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Abstract
We find the minimax rate of convergence in Hausdorff distance for estimating a manifold M of
dimension d embedded in RD given a noisy sample from the manifold. Under certain conditions,
we show that the optimal rate of convergence is n−2/(2+d). Thus, the minimax rate depends only
on the dimension of the manifold, not on the dimension of the space in which M is embedded.
Keywords: manifold learning, minimax estimation

1. Introduction

We consider the problem of estimating a manifold M given noisy observations near the manifold.
The observed data are a random sample Y1, . . . ,Yn where Yi ∈ RD. The model for the data is

Yi = ξi+Zi

where ξ1, . . . ,ξn are unobserved variables drawn from a distribution supported on a manifold M
with dimension d < D. The noise variables Z1, . . . ,Zn are drawn from a distribution F . Our main
assumption is that M is a compact, d-dimensional, smooth Riemannian submanifold in RD; the
precise conditions onM are given in Section 2.1.

A manifold M and a distribution for (ξ,Z) induce a distribution Q ≡ QM for Y . In Section 2.2,
we define a class of such distributions

Q =
{
QM : M ∈M

}

∗. Also in the Department of Statistical Sciences, Sapienza University of Rome, Italy.
†. Also in the Machine Learning Department, Carnegie Mellon University.

c©2012 Christopher Genovese, Marco Perone-Pacifico, Isabella Verdinelli and Larry Wasserman.
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whereM is a set of manifolds. Given two sets A and B, the Hausdorff distance between A and B is

H(A,B) = inf
{
ε : A⊂ B⊕ ε and B⊂ A⊕ ε

}

where
A⊕ ε=

⋃
x∈A

BD(x,ε)

and BD(x,ε) is an open ball in RD centered at x with radius ε. We are interested in the minimax risk

Rn(Q ) = inf
M̂
sup
Q∈Q

EQ[H(M̂,M)]

where the infimum is over all estimators M̂. By an estimator M̂ we mean a measurable function of
Y1, . . . ,Yn taking values in the set of all manifolds. Our first main result is the following minimax
lower bound which is proved in Section 3.

Theorem 1 Under assumptions (A1)-(A4) given in Section 2, there is a constant C1 > 0 such that,
for all large n,

inf
M̂
sup
Q∈Q

EQ

[
H(M̂,M)

]
≥C1

(
1
n

) 2
2+d

where the infimum is over all estimators M̂.

Thus, no method of estimating M can have an expected Hausdorff distance smaller than the
stated bound. Note that the rate depends on d but not onD even though the support of the distribution
Q forY has dimensionD. Our second result is the following upper bound which is proved in Section
4.2.

Theorem 2 Under assumptions (A1)-(A4) given in Section 2, there exists an estimator M̂ such that,
for all large n,

sup
Q∈Q

EQ

[
H(M̂,M)

]
≤C2

(
logn
n

) 2
2+d

for some C2 > 0.

Thus the rate is tight, up to logarithmic factors. The estimator in Theorem 2 is of theoretical
interest because it establishes that the lower bound is tight. But, the estimator constructed in the
proof of that theorem is not practical and so in Section 5, we construct a very simple estimator M̂
such that

sup
Q∈Q

EQ

[
H(M̂,M)

]
≤
(
C logn
n

)1/D
.

This is slower than the minimax rate, but the estimator is computationally very simple and requires
no knowledge of d or the smoothness of M.
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1.1 Related Work

There is a vast literature on manifold estimation. Much of the literature deals with using manifolds
for the purpose of dimension reduction. See, for example, Baraniuk and Wakin (2007) and refer-
ences therein. We are interested instead in actually estimating the manifold itself. There is a large
literature on this problem in the field of computational geometry; see, for example, Dey (2006),
Dey and Goswami (2004), Chazal and Lieutier (2008) Cheng and Dey (2005) and Boissonnat and
Ghosh (2010). However, very few papers allow for noise in the statistical sense, by which we mean
observations drawn randomly from a distribution. In the literature on computational geometry, ob-
servations are called noisy if they depart from the underlying manifold in a very specific way: the
observations have to be close to the manifold but not too close to each other. This notion of noise is
quite different from random sampling from a distribution. An exception is Niyogi et al. (2008) who
constructed the following estimator. Let I = {i : p̂(Yi) > λ} where p̂ is a density estimator. They
define M̂ =

⋃
i∈I BD(Yi,ε) and they show that if λ and ε are chosen properly, then M̂ is homologous

toM. (This means thatM and M̂ share certain topological properties.) However, the result does not
guarantee closeness in Hausdorff distance. Note that

⋃n
i=1BD(Yi,ε) is precisely the Devroye-Wise

estimator for the support of a distribution (Devroye and Wise, 1980).

1.2 Notation

Given a set S, we denote its boundary by ∂S. We let BD(x,r) denote a D-dimensional open ball
centered at x with radius r. If A is a set and x is a point then we write d(x,A) = infy∈A ||x−y|| where
|| · || is the Euclidean norm. Let

A◦B= (A∩Bc)
⋃

(Ac∩B)

denote symmetric set difference between sets A and B.
The uniform measure on a manifold M is denoted by µM. Lebesgue measure on Rk is denoted

by νk. In case k=D, we sometimes writeV instead of νD; in other wordsV (A) is simply the volume
of A. Any integral of the form

∫
f is understood to be the integral with respect to Lebesgue measure

on RD. If P and Q are two probability measures on RD with densities p and q then the Hellinger
distance between P and Q is

h(P,Q)≡ h(p,q) =
√∫

(
√
p−

√
q)2 =

√

2
(
1−

∫ √
pq
)

where the integrals are with respect to νD. Recall that

!1(p,q)≤ h(p,q)≤
√

!1(p,q) (1)

where !1(p,q) =
∫
|p−q|. Let p(x)∧q(x) =min{p(x),q(x)}. The affinity between P and Q is

||P∧Q||=
∫
p∧q= 1−

1
2

∫
|p−q|.

Let Pn denote the n-fold product measure based on n independent observations from P. In the
appendix Section 7.1 we show that

||Pn∧Qn||≥
1
2

(
1−

1
2

∫
|p−q|

)2n
. (2)
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Figure 1: The condition number Δ(M) of a manifold is the largest number κ such that the normals
to the manifold do not cross as long as they are not extended beyond κ. The plot on the
left shows a one-dimensional manifold (a curve) and some normals of length r < κ. The
plot on the right shows the same manifold and some normals of length r > κ.

We write Xn=OP(an) to mean that, for every ε> 0 there existsC> 0 such that P(||Xn||/an>C)≤ ε
for all large n. Throughout, we use symbols like C,C0,C1,c,c0,c1 . . . to denote generic positive
constants whose value may be different in different expressions.

2. Model Assumptions

In this section we describe all the assumptions on the manifold and on the underlying distributions.

2.1 Manifold Conditions

We shall be concerned with d-dimensional compact Riemannian submanifolds without boundary
embedded in RD with d <D. (Informally, this means thatM looks like Rd in a small neighborhood
around any point inM.) We assume thatM is contained in some compact set K ⊂ RD.

At each u ∈ M let TuM denote the tangent space to M and let T⊥
u M be the normal space. We

can regard TuM as a d-dimensional hyperplane in RD and we can regard T⊥
u M as the D−d dimen-

sional hyperplane perpendicular to TuM. Define the fiber of size a at u to be La(u) ≡ La(u,M) =
T⊥
u M

⋂
BD(u,a).

Let Δ(M) be the largest r such that each point in M⊕ r has a unique projection onto M. The
quantity Δ(M) will be small if eitherM highly curved or ifM is close to being self-intersecting. Let
M ≡M (κ) denote all d-dimensional manifolds embedded in K such that Δ(M) ≥ κ. Throughout
this paper, κ is a fixed positive constant. The quantity Δ(M) has been rediscovered many times. It is
called the condition number in Niyogi et al. (2006), the thickness in Gonzalez and Maddocks (1999)
and the reach in Federer (1959).

An equivalent definition of Δ(M) is the following: Δ(M) is the largest number r such that the
fibers Lr(u) never intersect. See Figure 1. Note that if M is a sphere then Δ(M) is just the radius of
the sphere and if M is a linear space then Δ(M) = ∞. Also, if σ < Δ(M) then M⊕σ is the disjoint
union of its fibers:

M⊕σ=
⋃
u∈M

Lσ(u). (3)

Define tube(M,a) =
⋃
u∈M La(u). Thus, if σ< Δ(M) then M⊕σ= tube(M,σ).
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Let p,q ∈M. The angle between two tangent spaces Tp and Tq is defined to be

angle(Tp,Tq) = cos−1
(
min
u∈Tp

max
v∈Tq

|〈u− p,v−q〉|
)

where 〈u,v〉 is the usual inner product in RD. Let dM(p,q) denote the geodesic distance between
p,q ∈M.

We now summarize some useful results from Niyogi et al. (2006).

Lemma 3 Let M ⊂K be a manifold and suppose that Δ(M) = κ> 0. Let p,q ∈M.

1. Let γ be a geodesic connecting p and q with unit speed parameterization. Then the curvature
of γ is bounded above by 1/κ.

2. cos(angle(Tp,Tq))> 1−dM(p,q)/κ. Thus, angle(Tp,Tq)≤
√
2dM(p,q)/κ+o(

√
dM(p,q)/κ).

3. If a= ||p−q||≤ κ/2 then dM(p,q)≤ κ−κ
√
1− (2a)/κ= a+o(a).

4. If a= ||p−q||≤ κ/2 then a≥ dM(p,q)− (dM(p,q))2/(2κ).

5. If ||q− p||> ε and v ∈ BD(q,ε)∩T⊥
p M∩BD(p,κ) then ||v− p||< ε2/κ.

6. Fix any δ> 0. There exists points x1, . . . ,xN ∈M such that M ⊂
⋃N
j=1BD(x j,δ) and such that

N ≤ (c/δ)d.

For further information about manifolds, see Lee (2002).

2.2 Distributional Assumptions

The distribution of Y is induced by the distribution of ξ and Z. We will assume that ξ is drawn
uniformly on the manifold. Then we assume that Z is drawn uniformly on the normal to M. More
precisely, given ξ, we draw Z uniformly on Lσ(ξ). In other words, the noise is perpendicular to the
manifold. The result is that, if σ< κ, then the distribution Q=QM of Y has support equal toM⊕σ.

The distributional assumption on ξ is not critical. Any smooth density bounded away from 0 on
the manifold will lead to similar results. However, the assumption on the noise Z is critical. We have
chosen the simplest noise distribution here. (Perpendicular noise is also assumed in Niyogi et al.,
2008.) In current work, we are deriving the rates for more complicated noise distributions. The
rates are quite different and the proofs are more complex. Those results will be reported elsewhere.

The set of distributions we consider is as follows. Let κ and σ be fixed positive numbers such
that 0< σ< κ. Let

Q ≡ Q (κ,σ) =
{
QM : M ∈M (κ)

}
.

For anyM ∈M (κ) consider the corresponding distribution QM, supported on SM =M⊕σ. Let
qM be the density of QM with respect to Lebesgue measure. We now show that qM is bounded above
and below by a uniform density.

Recall that the essential supremum and essential infimum of qM are defined by

esssup
y∈A

qM = inf
{
a ∈ R : νD({y : qM(y)> a}∩A) = 0

}
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and
ess inf
y∈A

qM = sup
{
a ∈ R : νD({y : qM(y)< a}∩A) = 0

}
.

Also recall that, by the Lebesgue density theorem, qM(y) = limε→0QM(BD(y,ε))/V (BD(y,ε)) for
almost all y. LetUM be the uniform distribution on M⊕σ and let uM = 1/V (M⊕σ) be the density
ofUM. Note that, for A⊂M⊕σ,UM(A) =V (A)/V (M⊕σ).

Lemma 4 There exist constants 0<C∗ ≤C∗ < ∞, depending only on κ and d, such that

C∗ ≤ inf
M∈M

ess inf
y∈SM

qM(y)
uM(y)

≤ sup
M∈M

esssup
y∈SM

qM(y)
uM(y)

≤C∗.

Proof Choose any M ∈M (κ). Let x by any point in the interior of SM . Let B = BD(x,ε) where
ε > 0 is small enough so that B ⊂ SM = M⊕σ. Let y be the projection of x onto M. We want to
upper and lower bound Q(B)/V (B). Then we will take the limit as ε→ 0. Consider the two spheres
of radius κ tangent to M at y in the direction of the line between x and y. (See Figure 2.) Note that
Q(B) is maximized by takingM to be equal to the upper sphere and Q(B) is minimized by takingM
to be equal to the lower sphere. Let us consider first the case where M is equal to the upper sphere.
Let

U =
{
u ∈M : Lσ(u)∩B 2= /0

}

be the projection of B onto M. By simple geometry,U =M∩BD(y,rε) where

(
1+

σ
κ

)−1
≤ r ≤

(
1+

σ
κ

)
.

Let Vol denote d-dimensional volume on M. Then Vol(BD(y,rε)∩M) ≤ c1rdεdωd where ωd is
the volume of a unit d-ball and c1 depends only on κ and d. To see this, note that because M
is a manifold and Δ(M) ≥ κ, it follows that near y, M may be locally parameterized as a smooth
function f = ( f1, . . . , fD−d) over B∩ TyM. The surface area of the graph of f over B∩ TyM is

bounded by
∫
BD(y,rε)∩TyM

√
1+‖∇ fi‖2, which is bounded by a constant c1 uniformly over M .

Hence, Vol(BD(y,rε)∩M)≤ c1Vol(BD(y,rε)∩TyM) = c1rdεdωd .
Let ΛM be the uniform distribution onM and let Γu denote the uniform measure on Lσ(u). Note

that, for u ∈U , Lσ(u)∩B is a (D−d)-ball whose radius is at most ε. Hence,

Γu(Lσ(u)∩B)≤
εD−dωD−d
σD−dωD−d

=
( ε
σ

)D−d
.

Thus,

QM(B) =
∫
M
Γu(B∩Lσ(u))dΛM(u) =

∫
U
Γu(B∩Lσ(u))dΛM(u)

≤
( ε
σ

)D−d
Λ(U) =

( ε
σ

)D−d Vol(BD(y,r)∩M)

Vol(M)

≤
( ε
σ

)D−d εdrdωd
Vol(M)

≤
( ε
σ

)D−d εd(1+σ/κ)dωd
Vol(M)

.
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Figure 2: Figure for proof of Lemma 4. x is a point in the support M⊕σ. y is the projection of x
onto M. The two spheres are tangent toM at y and have radius κ.

Now,UM(B) =V (B)/V (M⊕σ) = εDωD/(σD−dVol(M)). Hence,

QM(B)
UM(B)

≤
(
1+

σ
κ

)d
ωd .

Taking limits as ε→ 0 we have that qM(y)≤C∗uM(y) for almost all y.
The proof of the lower bound is similar to the upper bound except for the following changes: let

U0 denote all u ∈U such that the radius of B∩Lσ(u) is at least ε/2. Then Λ(U0)≥ Λ(U)(1−O(ε))
and the projection ofU0 onto M is again of the form BD(y,rε)∩M. By Lemma 5.3 of Niyogi et al.
(2006),

Vol(BD(y,r)∩M)≥
(
1−

r2ε2

4κ2

)d/2
rdεdωd

and the latter is larger than 2−d/2rdεdωd for all small ε. Also, Γu(Lσ(u)∩B)≥ (ε/(2σ))D−d for all
u ∈U0.

Of course, an immediate consequence of the above lemma is that, for every M ∈ M (κ) and
every measurable set A,C∗UM(A)≤QM(A)≤C∗UM(A). We conclude this section by recording all
the assumptions in Theorems 1 and 2:
(A1) The manifold M is d-dimensional and is contained in a compact set K ⊂ RD with d < D.
(A2) The manifold M satisfies Δ(M)≥ κ> 0.
(A3) The observed data Y1, . . . ,Yn are iid observations with Yi = Xi+ ξi. Here, ξ1, . . . ,ξn are drawn
uniformly on M. Xi given ξi is drawn uniformly on Lσ(ξi) = T⊥

ξi

⋂
BD(ξi,σ).
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(A4) The noise level σ satisfies 0< σ< κ.
Remark: As noted by a referee, the assumptions are very specific and the results do depend criti-
cally on the assumptions especially the assumption that d is known.
Remark: A referee has pointed out that another reasonable model is to assume that the Yi have a
uniform distribution on the tube of size σ around the manifold. To the best of our knowledge, this
does not correspond to our model except in the special case where Δ(M) = ∞. However, all the
results of our paper still apply in this case as long as σ< κ.

3. Minimax Lower Bound

In this section we derive a lower bound on the minimax rate of convergence for this problem. We
will make use of the following result due to LeCam (1973). The following version is from Lemma
1 of Yu (1997).

Lemma 5 (Le Cam 1973) Let Q be a set of distributions. Let θ(Q) take values in a metric space
with metric ρ. Let Q0,Q1 ∈ Q be any pair of distributions in Q . Let Y1, . . . ,Yn be drawn iid from
some Q ∈ Q and denote the corresponding product measure by Qn. Let θ̂(Y1, . . . ,Yn) be any estima-
tor. Then

sup
Q∈Q

EQn
[
ρ(θ̂(Y1, . . . ,Yn),θ(Q))

]
≥ ρ
(
θ(Q0),θ(Q1)

)
||Qn

0∧Qn
1||.

To get a useful bound from Le Cam’s lemma, we need to construct an appropriate pair Q0 and
Q1. This is the topic of the next subsection.

3.1 A Geometric Construction

In this section, we construct a pair of manifolds M0,M1 ∈M (κ) and corresponding distributions
Q0,Q1 for use in Le Cam’s lemma. An informal description is as follows. Roughly speaking, M0
and M1 minimize the Hellinger distance h(Q0,Q1) subject to their Hausdorff distance H(M0,M1)
being equal to a given value γ.

Let
M0 =

{
(u1, . . . ,ud,0, . . . ,0) : −1≤ u j ≤ 1, 1≤ j ≤ d

}

be a d-dimensional hyperplane in RD. Hence Δ(M0) = ∞. Place a hypersphere of radius κ below
M0. Push the sphere upwards into M0 causing a bump of height γ at the origin. This creates a new
manifold M′

0 such that H(M0,M′
0) = γ. However, M′

0 is not smooth. We will roll a sphere of radius
κ around M′

0 to get a smooth manifold M1 as in Figure 3. We re-iterate that this is only an informal
description and the reader should see Section 7.2 for the formal details.

Theorem 6 Let γ be a small positive number. Let M0 and M1 be as defined in Section 7.2. Let Qi
be the corresponding distributions on Mi⊕σ for i= 0,1. Then:

1. Δ(Mi)≥ κ, i= 0,1.

2. H(M0,M1) = γ.

3.
∫
|q0−q1|= O(γ(d+2)/2).

Proof See Section 7.2.
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A

B

C

D

Figure 3: A sphere of radius κ is pushed upwards into the plane M0 (panel A). The resulting mani-
foldM′

0 is not smooth (panel B). A sphere is then rolled around the manifold (panel C) to
produce a smooth manifoldM1 (panel D).
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3.2 Proof of the Lower Bound

Now we are in a position to prove the first theorem. Let us first restate the theorem.
Theorem 1. Under assumptions (A1)-(A4), there is a constant C > 0 such that, for all large n,

inf
M̂
sup
Q∈Q

EQ

[
H(M̂,M)

]
≥Cn−

2
2+d

where the infimum is over all estimators M̂.
Proof of Theorem 1. LetM0 andM1 be as defined in Section 3.1. LetQi be the uniform distribution
onMi⊕σ, i= 0,1. Let qi be the density of Qi with respect to Lebesgue measure νD, i= 0,1. Then,
from Theorem 6, H(M0,M1) = γ and

∫
|q0−q1|=O(γ(d+2)/2). Le Cam’s lemma then gives, for any

M̂,
sup
Q∈Q

EQn [H(M,M̂)]≥ H(M0,M1) ||Qn
0∧Qn

1||≥
γ
2
(1− cγ(d+2)/2)2n

where we used Equation (2). Setting γ= n−2/(d+2) yields the result. !

4. Upper bound

To establish the upper bound, we will construct an estimator that achieves the appropriate rate. The
estimator is intended only for the theoretical purpose of establishing the rate. (A simpler but non-
optimal method is discussed in Section 5.) Recall that M =M (κ) is the set of all d-dimensional
submanifolds M contained in K such that Δ(M) ≥ κ > 0. Before proceeding, we need to discuss
sieve maximum likelihood.

4.1 Sieve Maximum Likelihood

Let P be any set of distributions such that each P ∈ P has a density p with respect to Lebesgue
measure νD. Recall that h denotes Hellinger distance. A set of pairs of functions B = {(!1,u1), . . . ,
(!N ,uN)} is an ε-Hellinger bracketing for P if, (i) for each p ∈ P there is a (!,u) ∈ B such that
!(y)≤ p(y)≤ u(y) for all y and (ii) h(!,u)≤ ε. The logarithm of the size of the smallest ε-bracketing
is called the bracketing entropy and is denoted by H[ ](ε,P ,h).

We will make use of the following result which is Example 4 of Shen and Wong (1995).

Theorem 7 (Shen and Wong, 1995) Let εn solve the equation H[ ](εn,P ,h) = nε2n. Let (!1,u1), . . . ,
(!N ,uN) be an εn bracketing where N = H[ ](εn,P ,h). Define the set of densities S∗n = {p∗1, . . . , p∗N}
where p∗t = ut/

∫
ut . Let p̂∗ maximize the likelihood ∏n

i=1 p∗t (Yi) over the set S∗n. Then

sup
P∈P

Pn ({h(p, p̂∗)≥ εn})≤ c1e−c2nε
2
n .

The sequence {S∗n} in Theorem 7 is called a sieve and the estimator p̂∗ is called a sieve-maximum
likelihood estimator. The estimator p̂∗ need not be in P . We will actually need an estimator that
is contained in P . We may construct one as follows. Let p̂∗ be the sieve mle corresponding to S∗n.
Then p̂∗ = p∗t for some t. Let (!̂, û)≡ (!t ,ut) be the corresponding bracket.

Lemma 8 Assume the conditions in Theorem 7. Let p̂ be any density in P such that !̂ ≤ p̂ ≤ û. If
εn ≤ 1 then

sup
P∈P

Pn ({h(p, p̂)≥ cεn})≤ c1e−c2nε
2
n .
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Proof By the triangle inequality, h(p, p̂) ≤ h(p, p̂∗) + h( p̂, p̂∗) = h(p, p̂∗) + h( p̂,ut/
∫
ut) where

p̂∗ = ut/
∫
ut for some t. From Theorem 7, h(p, p̂∗) ≤ εn with high probability. Thus we need to

show that h( p̂,ut/
∫
ut)≤Cεn. It suffices to show that, in general, h(p,u/

∫
u)≤Ch(!,u) whenever

!≤ p≤ u.
Let (!,u) be a bracket and let δ2= h2(!,u)≤ 1. Let !≤ p≤ u. We claim that h2(p,u/

∫
u)≤ 4δ2.

(Taking δ = εn then proves the result.) Let c2 =
∫
u. Then 1 ≤ c2 =

∫
u =

∫
p+

∫
(u− p) = 1+∫

(u− p) = 1+ !1(u, p)≤ 1+2h(u,!) = 1+2δ. Now,

h2
(
p,

u∫
u

)
=

∫
(
√
u/c−

√
p)2 =

1
c2

∫
(
√
u− c

√
p)2 ≤

∫
(
√
u− c

√
p)2

=
∫
((
√
u−

√
p)+(c−1)√p)2 ≤ 2

∫
(
√
u−

√
p)2+2(c−1)2

≤ 2δ2+2(
√
1+2δ−1)2 ≤ 2δ2+2δ2 = 4δ2

where the last inequality used the fact that δ≤ 1.

In light of the above result, we define modified maximum likelihood sieve estimator p̂ to be any
p ∈ P such that !̂ ≤ p̂ ≤ û. For simplicity, in the rest of the paper, we refer to the modified sieve
estimator p̂, simply as the maximum likelihood estimator (mle).

4.2 Outline of Proof

We are now ready to find an estimator M̂ that converges at the optimal rate (up to logarithmic terms.)
Our strategy for estimatingM has the following steps:

Step 1. We split the data into two halves.
Step 2. Let Q̃ be the maximum likelihood estimator using the first half of the data. Define M̃ to be

the corresponding manifold. We call M̃, the pilot estimator. We show that M̃ is a consistent
estimator ofM that converges at a sub-optimal rate an = n−

2
D(d+2) . To show this we:

a. Compute the Hellinger bracketing entropy of Q . (Theorem 9, Lemmas 10 and 11).
b. Establish the rate of convergence of the mle in Hellinger distance, using the bracketing
entropy and Theorem 7.
c. Relate the Hausdorff distance to the Hellinger distance and hence establish the rate of
convergence an of the mle in Hausdorff distance. (Lemma 13).
d. Conclude that the true manifold is contained, with high probability, in Mn = {M ∈
M (κ) : H(M,M̃)≤ an} (Lemma 14). Hence, we can now restrict attention toMn.

Step 3. To improve the pilot estimator, we need to control the relationship between Hellinger and
Hausdorff distance and thus need to work over small sets on which the manifold cannot vary
too greatly. Hence, we cover the pilot estimator with long, thin slabs R1, . . . ,RN . We do this by
first covering M̃ with spheres ,1ג . . . Nג, of radius δn = O((logn/n)1/(2+d)). We define a slab
Rj to be the union of fibers of size b= σ+an within one of the spheres: Rj = ∪x∈ג jLb(x,M̃).
We then show that:

a. The set of fibers on M̃ cover eachM ∈Mn in a nice way. In particular, ifM ∈Mn then
each fiber from M̃ is nearly normal to M. (Lemma 15).
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b. As M cuts through a slab, it stays nearly parallel to M̃. Roughly speaking, M behaves
like a smooth, nearly linear function within each slab. (Lemma 16).

Step 4. Using the second half of the data, we apply maximum likelihood within each slab. This
defines estimators M̂ j, for 1≤ j ≤ N. We show that:

a. The entropy of the set of distributions within a slab is very small. (Lemma 18).
b. Because the entropy is small, the maximum likelihood estimator within a slab con-
verges fairly quickly in Hellinger distance. The rate is εn = (logn/n)1/(2+d). (Lemma
19).
c. Within a slab, there is a tight relationship between Hellinger distance and Hausdorff
distance. Specifically, H(M1,M2)≤ ch2(Q1,Q2). (Lemma 20).
d. Steps (4b) and (4c) imply that H(M∩Rj,M̂ j) = OP(ε2n) = OP((logn/n)2/(d+2)).

Step 5. Finally we define M̂ =
⋃N
j=1 M̂ j and show that M̂ converges at the optimal rate because each

M̂ j does within its own slab.

The reason for getting a preliminary estimator and then covering the estimator with thin slabs is
that, within a slab, there is a tight relationship between Hellinger distance and Hausdorff distance.
This is not true globally but only in thin slabs. Maximum likelihood is optimal with respect to
Hellinger distance. Within a slab, this allows us to get optimal rates in Hausdorff distance.

4.3 Step 1: Data Splitting

For simplicity assume the sample size is even and denote it by 2n. We split the data into two halves
which we denote by X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn).

4.4 Step 2: Pilot Estimator

Let q̃ be the maximum likelihood estimator over Q . Let M̃ be the corresponding manifold. To
study the properties of M̃ requires two steps: computing the bracketing entropy of Q and relating
H(M,M̃) to h(q, q̃). The former allows us to apply Theorem 7 to bound h(q, q̃), and the latter allows
us to control the Hausdorff distance.

4.5 Step 2a: Computing the Entropy of Q

To compute the entropy of Q we start by constructing a finite net of manifolds to cover M (κ). A
finite set of d-manifoldsMγ = {M1, . . . ,MN} is a γ-net (or a γ-cover) if, for eachM ∈M there exists
Mj ∈Mγ such that H(M,Mj) ≤ γ. Let N(γ) = N(γ,M ,H) be the size of the smallest covering set,
called the (Hausdorff) covering number ofM .

Theorem 9 The Hausdorff covering number ofM satisfies the following:

N(γ)≡ N(γ,M ,H)≤ c1κ2(κ,d,D)exp
(
κ3(κ,d,D)γ−d/2

)
≡ cexp

(
c′γ−d/2

)

where κ2(κ,d,D) =
(D
d
)(c2/κ)D and κ3(κ,d,D) = 2d/2(D−d)(c2/κ)D, for a constant c2 that depends

only on κ and d.
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Proof Recall that the manifolds in M all lie within K . Consider any hypercube containing K .
Divide this cube into a grid of J = (2c/κ)D sub-cubes {C1, . . . ,CJ} of side length κ/c, where c≥ 4
is a positive constant chosen to be sufficiently large. Our strategy is to show that within each of
these cubes, the manifold is the graph of a smooth function. We then only need count the number
of such smooth functions.

In thinking about the manifold as (locally) the graph of a smooth function, it helps to be able
to translate easily between the natural coordinates in K and the domain-range coordinates of the
function. To that end, within each subcube Cj for j ∈ {1, . . . ,J}, we define K =

(D
d
)
coordinate

frames, Fjk for k ∈ {1, . . . ,K}, in which d out of D coordinates are labeled as “domain” and the
remaining D−d coordinates are labeled as “range.”

Each frame is associated with a relabeling of the coordinates so that the d “domain” coordinates
are listed first and D− d “range” coordinates last. That is, Fjk is defined by a one-to-one corre-
spondence between x ∈ Cj and (u,v) ∈ π jk(x) where u ∈ Rd and v ∈ RD−d and π jk(x1, . . . ,xD) =
(xi1 , . . . ,xid ,x j1 , . . . ,x jD−d ) for domain coordinate indices i1 < .. . < id and range coordinate indices
j1 < .. . < jD−d .
We define domain(Fjk) = {u ∈ Rd : ∃v ∈ RD−d such that (u,v) ∈ Fjk}, and let G jk denote the

class of functions defined on domain(Fjk) whose second derivative (i.e., second fundamental form)
is bounded above by a constantC(κ) that depends only on κ. To say that a set R⊂Cj is the graph of
a function on a d-dimensional subset of the coordinates in Cj is equivalent to saying that for some
frame Fjk and some set A⊂ domain(Fjk), R= π−1jk {(u, f (u)) : u ∈ A}.

We will prove the theorem by establishing the following claims.
Claim 1. Let M ∈ M and Cj be a subcube that intersects M. Then: (i) for at least one k ∈
{1, . . . ,K}, the set M ∩Cj is the graph of a function (i.e., single-valued mapping) defined on a
set A ⊂ domain(Fjk), of the form (u1, . . . ,ud) 7→ π−1jk ((u, f (u))) for some function f on A , and
(ii) this function lies in G jk.
Claim 2. M is in one-to-one correspondence with a subset of G =∏J

j=1
⋃K
k=1G jk.

Claim 3. The L∞ covering number of G satisfies

N(γ,G ,L∞)≤ c1
(
D
d

)(2c/κ)D

exp
(
(D−d)(2c/κ)Dγ−d/2

)
.

Claim 4. There is a one-to-one correspondence between an γ/2 L∞-cover of G and an γ Hausdorff-
cover ofM .

Taken together, the claims imply that

N(γ,M ,H)≤ c1
(
D
d

)(2c/κ)D

exp((D−d)(2c/κ)D2d/2γ−d/2).

Taking c2 = 2c proves the theorem.

Proof of Claim 1. We begin by showing that (i) implies (ii). By part 1 of Lemma 3, each
M ∈ M has curvature (second fundamental form) bounded above by 1/κ. This implies that the
function identified in (i) has uniformly bounded second derivative and thus lies in the corresponding
G jk.

We prove (i) by contradiction. Suppose that there is an M ∈ M such that for every j with
M∩Cj 2= /0, the set M∩Cj is not the graph of a single-valued mapping for any of the K coordinate
frames.
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Fix j ∈ {1, . . . ,J}. Then in each domain(Fjk), there is a point u such that Cj ∩π−1jk (u×RD−d)

intersects M in at least two points, call them ak and bk. By construction ‖ak−bk‖ ≤
√
D−d ·κ/c,

and hence by choosing c large enough (making the cubes small), part 3 of Lemma 3 tells us that
dM(ak,bk)≤ 2

√
D−dκ/c. Then we argue as follows:

1. By parts 2 and 3 of Lemma 3 and the fact thatCj has diameter
√
Dκ/c and

max
p,q∈Cj∩M

cos(angle(TpM,TqM))≥ 1−
2
√
D
c

.

For large enough c, the maximum angle between tangent vectors can be made smaller than
π/3.

2. By part 2 of Lemma 3, any point z along a geodesic between ak and bk,

cos(angle(TakM,TzM))≥ 1−
2
√
D−d
c

.

It follows that there is a point in Cj ∩M and a tangent vector vk at that point such that
angle(vk,bk−ak) = O(1/

√
c).

3. We have for each of K =
(D
d
)
coordinate frames and associated tangent vectors v1, . . . ,vK that

are each nearly orthogonal to at least d of the others. Consequently, there are ≥ d+1 nearly
orthogonal tangent vectors ofM withinCj. This contradicts point 1 and proves the claim.

Proof of Claim 2. We construct the correspondence as follows. For each cube Cj, let k∗j be
the smallest k such that M ∩Cj is the graph of a function φ jk ∈ G jk as in Claim 1. Map M to
ϕ=(φ1k∗1 , . . . ,φJk∗J ), and letF ⊂G be the image of this map. IfM 2=M′ ∈M , then the corresponding
ϕ and ϕ′ must be distinct. If not, then M ∩Cj = M′ ∩Cj for all j, contradicting M 2= M′. The
correspondence fromM to F is thus a one-to-one correspondence.

Proof of Claim 3. From the results in Birman and Solomjak (1967), the set of functions defined
on a pre-compact d-dimensional set that take values in a fixed dimension space Rm with uniformly
bounded second derivative has L∞ covering number bounded above by c1em(1/γ)

d/2 for some c1.
Part 1 of Lemma 3 shows that each M ∈ M has curvature (second fundamental form) bounded
above by 1/κ, so each G jk satisfies Birman and Solomjak’s conditions. Hence, N(γ,G jk,L∞) ≤
c1e(D−d)(1/γ)

d/2 . Because all theG jk’s are disjoint, simple counting arguments show thatN(γ,G ,L∞)=((D
d
)
N(γ,G jk,L∞)

)J
, where J is the number of cubes defined above. The claim follows. (Note that

the functions in Claim 1 are defined on a subset of domain(Fjk). But because all such functions have
an extension in G jk, a covering of G jk also covers these functions defined on restricted domains.)

Proof of Claim 4. First, note that if two functions are less than γ distant in L∞, their graphs are
less than γ distant in Hausdorff distance, and vice versa. This implies that a γ L∞-cover of a set of
functions corresponds directly to an γ Hausdorff-cover of the set of the functions’ graphs. Hence, in
the argument that follows, we can work with functions or graphs interchangeably.

For k ∈ {1, . . . ,K}, let G γ
jk be a minimal L∞ cover of G jk by γ/2 balls; specifically, we assume

that G γ
jk is the set of centers of these balls. For each g jk ∈ G γ

jk, define f jk(u) = π−1jk (u,g jk(u)).
For every j, choose one such f jk, and define a set M′ =

⋃
j(Cj ∩ range( f jk j)), which is a union

of manifolds with boundary that have curvature bounded by 1/κ. That is, such an M′ is piecewise
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smooth (smooth within each cube) but may fail to satisfy Δ(M′)≥ κ globally. LetA be the collection
of M′ constructed this way. There are N(γ/2,G ,L∞) elements in this collection.

By construction and Claim 2, for eachM ∈M , there exists anM′ ∈A such thatH(M,M′)≤ γ/2.
In other words, the set of γ/2 Hausdorff balls around the manifolds in A coversM but the elements
of A are not themselves necessarily inM . Let BH(A,γ/2) denote the set of all d-manifoldsM ∈M
such that H(A,M)≤ γ/2. Let

A0 =
{
A ∈ A : BH(A,γ/2)∩M 2= /0

}
.

For each A ∈A0, choose some Ã ∈ BH(A,γ/2)∩M . By the triangle inequality, the set {Ã : A ∈A0}
forms an γ Hausdorff-net forM . This proves the claim.

We are almost ready to compute the entropy. We will need the following lemma.

Lemma 10 Let 0< γ< κ−σ. There exists a constant K > 0 (depending only on K ,κ and σ) such
that, for any M1,M2 ∈M (κ), H(M1,M2) ≤ γ implies that |V (M1⊕σ)−V (M2⊕σ)| ≤ Kγ. Also,
for any M ∈M (κ), |V (M⊕ (σ+ γ))−V (M⊕σ)|≤ Kγ.

Proof Let S j =Mj⊕σ, j = 1,2. Then, using (3),

S2 ⊂M1⊕ (σ+ γ) =
⋃
u∈M1

Lσ+γ(u).

Hence, uniformly overM ,

V (S2)≤
∫
M1
νD−d(Lσ+γ(u))dµM1 ≤

∫
M1
νD−d(Lσ(u))dµM1 +Kγ=V (S1)+Kγ

since νD−d(B(u,σ+ γ)) ≤ νD−d(B(u,σ))+Kγ for some K > 0 not depending on M1 or M2. By a
symmetric argument, V (S1) ≤ V (S2)+Kγ. Hence, |V (M1⊕σ)−V (M2⊕σ)| ≤ Kγ. The second
statement is proved in a similar way.

Now we construct a Hellinger bracketing. Let γ= ε2. LetMγ = {M1, . . . ,MN} be a γ-Hausdorff
net of manifolds. Thus, by Theorem 9, N = N(ε2,M ,H)≤ c1ec2(1/ε)

d . Let ω denote the volume of
a sphere of radius σ. Let q j be the density corresponding toMj. Define

u j(y) =
(
q j(y)+

2ε2

V (Mj⊕ (σ+ ε2))

)
I(y ∈Mj⊕ (σ+ ε2))

and

! j(y) =
(
q j(y)−

2ε2

V (Mj⊕ (σ− ε2))

)
I(y ∈Mj⊕ (σ− ε2)).

Let B = {(!1,u1), . . . ,(!N ,uN)}.

Lemma 11 B is an ε-Hellinger bracketing of Q . Hence, H[ ](ε,Q ,h)≤C(1/ε)d.
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Proof LetM ∈M (κ) and letQ=QM be the corresponding distribution. Let q be the density ofQ. Q
is supported on S=M⊕σ. There existsMj ∈Mγ such thatH(M,Mj)≤ ε2. Let y be in S. Then there
is a x∈M such that ||y−x||≤σ. There is a x′ ∈Mj such that ||x−x′||≤ ε2. Hence, d(y,Mj)≤σ+ε2

and thus y is in the support of u j. Now, for y ∈ S, u j(y)−q(y) = 2ε2/V (Mj⊕ (σ+ε2))≥ 0. Hence,
q(y)≤ u j(y). By a similar argument, ! j(y)≤ q(y). Thus B is a bracketing. Now

!1(! j,u j) =
∫
u j−

∫
! j =

(
1+

2Kε2

ω

)
−
(
1−

2Kε2

ω

)
=
4Kε2

ω
.

Finally, by (1), h(u j,! j)≤
√
!1(! j,u j) =Cε. Thus B is aCε-Hellinger bracketing.

4.6 Step 2b. Hellinger Rate

Lemma 12 Let Q̃ be the mle. Then

sup
Q∈Q

Qn
({

h(Q, Q̃)>C0n−
1

d+2

})
≤ exp

{
−Cn

d
2+d

}
.

Proof We have shown (Lemma 11) thatH[ ](ε,Q ,h)≤C(1/ε)d . Solving the equationH[ ](εn,Q ,h)=
nε2n from Theorem 7 we get εn = (1/n)1/(d+2). From Lemma 8, for all Q

Qn
({

h(Q, Q̃)>C0n−
1

d+2

})
≤ c1e−c2nε

2
n = exp

{
−Cn

d
2+d

}
.

4.7 Step 2c. Relating Hellinger Distance and Hausdorff Distance

Lemma 13 Let c= (κ−σ)
√
πC∗/(2Γ(D/2+1)). If M1,M2 ∈M (κ) and h(Q1,Q2)< c then

H(M2,M2)≤

[
2√
π

(
Γ(D/2+1)

C∗

)1/D]
h
1
D (Q1,Q2)

Proof Let b=H(M1,M2) and γ=min{κ−σ,b}. Let S1,S2 be the supports of Q1 and Q2. Because
H(M1,M2) = b, we can find points x ∈M1 and y ∈M2 such that ‖y− x‖ = b. Note that TxM1 and
TyM2. are parallel, otherwise we could move x or y and increase ‖y− x‖. It follows that the line
segment [x,y] is along a common normal vector of the two manifolds and we can write y = x± bu
for some u ∈ Lσ(u,M). Without loss of generality, assume that y = x+ bu. Let x′ = x+σu and
y′ = y+σu. Hence, x′ ∈ ∂S1, y′ ∈ ∂S2 and ||x′ − y′|| = b. Note that ∂S1 and ∂S2 are themselves
smooth D-manifolds with Δ(∂Si)≥ κ−σ> 0.

We now make the following three claims:

1. y′ ∈ S2−S1.

2. (x′,y′]⊂ S2−S1

3. interiorB
(
x′+y′
2 , γ2

)
⊂ S2−S1
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First, note that y′ differs from y along a fiber ofM2 by exactly σ, therefore [x′,y′]⊂ S2. Second,
because x′ ∈ ∂S1, there is a neighborhood of x′ in [x′,y′] that is not contained in S1. Hence, if there is
a point in S1∩ [x′,y′] there must be a point z′ ∈ ∂S1∩ [x′,y′], with z′ 2= x′. This implies the existence
of two distinct points whose fibers of length less than κ−σ cross, which contradicts the fact that
Δ(∂S1)≥ κ−σ. Claims 1 and 2 follows.

Let B = B
(
x′+y′
2 , γ2

)
. By construction, B is tangent to ∂S1 at x′ and tangent to ∂S2 at y′, and

B contains [x′,y′]. The ball has radius γ/2 = (1/2)min{κ−σ,b} < κ−σ. Because B intersects
S2−S1, the interior of B cannot intersect either ∂S1 or ∂S2. Claim 3 follows by a similar argument
as in the proof of Claim 2. (In particular, if there were a point in the interior of B that is either in S1
or outside S2, a line segment from (x′+y′)/2 to that point would have to intersect the corresponding
boundary, which cannot happen.)

Now V (B) = (γ/2)DπD/2/Γ(D/2+1). So

h(Q1,Q2) ≥ !1(Q1,Q2) =
∫

|q1−q2|≥
∫
S1∩Sc2

|q1−q2|

=
∫
S1∩Sc2

q1 = Q1(S1∩Sc2)≥C∗V (S1∩Sc2) =C∗(γ/2)DπD/2/Γ(D/2+1).

Hence,

γ=min{κ−σ,b}≤

[
2√
π

(
Γ(D/2+1)

C∗

)1/D]
h1/D(Q1,Q2).

If κ−σ ≤ b this implies that h(Q1,Q2) > c which contradicts the assumption that h(Q1,Q2) < c.
Therefore, γ= b and the conclusion follows.

4.8 Step 2d. Computing The Hausdorff Rate of the Pilot

Lemma 14 Let an =
(
C0
n

) 2
D(d+2) . For all large n,

sup
Q∈Q

Qn
(
{H(M,M̃)> an}

)
≤ exp

{
−Cn

d
2+d

}
.

Proof Follows by combining Lemma 12 and Lemma 13.

We conclude that, with high probability, the true manifoldM is contained in the setMn =
{
M ∈

M (κ) : H(M̃,M)≤ an
}
.

4.9 Step 3: Cover With Slabs

Now we cover the pilot estimator M̃ with (possibly overlapping) slabs. Let δn =
(
C logn
n

) 1
2+d . It

follows from part 6 of Lemma 3 that there exists a collection of points F = {x1, . . . ,xN}⊂ M̃, such
that N = (cδn)−d = (Cn/ logn)d/(2+d) and such that M̃ ⊂

⋃N
j=1BD(x j,cδ).
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Figure 4: Figure for the proof of part 1 of Lemma 15.

4.10 Step 3a. The Fibers of M̃ Cover M Nicely

Lemma 15 Let b = σ+ an. For x̃ ∈ M̃, let Lb(x̃) = T⊥
x̃ M̃ ∩BD(x̃,b) be a fiber at x̃ of size b. Let

M ∈Mn. Then:

1. If x̃ ∈ M̃ and x ∈M are such that ‖x− x̃‖ ≤ an, then angle(TxM,Tx̃M̃)< π/4.

2. Lb(x̃)∩M 2= /0.

3. If x ∈ Lb(x̃)∩M, then ‖x− x̃‖ ≤ 2an.

4. For any x̃ ∈ M̃, #{Lb(x̃)∩M}= 1.

5. We have M ⊂
⋃
x̃∈M̃ Lb(x̃).

Proof 1. Let x and x̃ be as given in the statement of the lemma and let θ = angle(TxM,Tx̃M̃).
Suppose that θ ≥ π/4. There exists unit vectors u ∈ Tx̃M̃ and v ∈ TxM such that angle(u,v) =
θ. Without loss of generality, we can assume that x = x̃. (The extension to the case x 2= x̃ is
straightforward.)

Consider the plane defined by u and v as in Figure 4. We assume, without loss of generality, that
(u+ v)/2 generates the x-axis in this plane and that v lies above the x-axis and u lies below the x
axis. Let ! denote the horizontal line, parallel to the x-axis and lying 2an units above the horizontal
axis. Hence, u and v each make an angle greater than π/8 with respect to the x-axis.

Consider the two circles C1 and C2 tangent toM at x with radius κ where C1 lies below v and C2
lies above v. Let w be the point at which C1 intersects !. The arclength of C1 from x to w is Can for
some C > 1. Let γ be the geodesic on M through x with gradient v. The projection γ̂ of γ into the
plane must fall between C1 and C2. Let y= γ(Can) and ŷ be the projection of y into the plane.

Now ||y− x̃|| ≥ ||ŷ− x̃|| ≥ ||w− x̃|| ≥ 2an > an. There exists z̃ ∈ M̃ such that ||z̃− y|| ≤ an.
Hence, ||ẑ− ŷ|| ≤ an where ẑ is the projection of z̃ into the plane. Let q be the point on the plane
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with coordinates (an
√
C2−1,an). Thus, ||q− x̃||=Can. Note that angle(ẑ− x̃,u) is larger than the

angle between q− x̃ and the x-axis which is arctan
(

1√
C2−1

)
≡ α> 0. Hence,

angle(z̃− x̃,u)≥ angle(ẑ− x̃,u)≥ α.

Let γ̃ be a geodesic on M̃, parameterized by arclength connecting x̃ and z̃. Thus γ̃(0) = x̃ and
γ̃(T ) = z̃ for some T . There exists some 0≤ t ≤ T such that γ′(t) ∝ z̃− x̃. So

angle(γ′(t),γ′(0)) = α> 0.

However, ||z̃− x̃|| ≤ (C+ 1)an which implies, by part 2 of Lemma 3, that angle(γ′(t),γ′(0)) =
O(√an)< α which is a contradiction.
2. For any x̃ ∈ M̃, the closest point x ∈ M must satisfy ‖x− x̃‖ ≤ an. Let y be the projection of x

onto Tx̃M̃. Let U = Tx̃M̃∩Bd(y,an). Let Cyl =
⋃
u∈U BD(u,3an)∩

(
Tx̃M̃

)⊥
. Cyl is a small hyper-

cylinder containing y and x̃, with the former in the center. M cannot intersect the top or bottom faces
of the cylinder. Otherwise, we can find a point p∈M such that angle(Tx̃M̃,TpM)> arctan(1) = π/4
contradicting 1. Thus, any path through x onM must intersect the sides of Cyl. Hence, Lb(x̃)∩M 2=
/0.
3. Let x ∈ M ∩ Lb(x̃). Suppose that ||x− x̃|| > 2an. There exists q ∈ M̃ such that ||q− x|| ≤ an.
Note that ||q− x̃|| > an. Now we apply part 5 Lemma 3 with p = x̃ and v = x. This implies that
||v− p||= ||x− x̃||< a2n/κ which contradicts the assumption that ||x− x̃||> 2an.
4. Suppose that more than one point of M were in Lb(x̃). Pick two and call them x1 and x2. By 3,
‖xi− x̃‖≤ 2an. It follows that ‖x1− x2‖≤ 4an and thus they areO(an) close in geodesic distance by
part 3 of Lemma 3. Hence, there is a geodesic on M connecting x1 and x2 that is contained strictly
within theCan ball. Because x2−x1 lies in Lb(x̃) and is consequently orthogonal to Tx̃M̃, there must
exist a point on the geodesic whose angle with Tx̃M̃ equals π/2, contradicting part 1.
5. BecauseH(M̃,M)≤ an, we have thatM⊂ tube(M̃,an). Because an< κ, the fibers Lb(x̃) partition
tube(M̃,an). Hence, each x ∈M must lie on one (and only one) Lb(x̃).

4.11 Step 3b. Construct Slabs that Cover M Nicely

Let ג j = BD(x j,δn)∩ M̃. Define the slab

Rj =
⋃
x∈ג j

Lb(x,M̃).

Lemma 16 The collection of slabs R1, . . . ,RN has the following properties. Let M ∈Mn.

1. M ⊂
⋃N
j=1Rj.

2. M ∩Rj is function-like over R j. That is, there exists a function g j : ג j → RD−d such that
M∩Rj = {g j(x) : x ∈ ג j}.

3. For each x ∈ ג j, Lb(x)∩M 2= /0.

4. There exists a linear function ! j : ג j → RD−d such that supx∈ג j ||g j(x)− ! j(x)||≤Cδ2n.
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5. supM∈Mn diam(M∩Rj)≤Cδn.

Thus the slabs coverM andM cuts across Rj is a function-like way. Moreover,M∩Rj is nearly
linear.
Proof The first three claims follow immediately from Lemma 15. In particular, g j in claim 2 is
defined by g j(x) = {M ∩Lb(x)}. Now we show 4. We can write g j(x) = g j(x j)+ (x− x j)T∇g+
1
2(x− x j)THess(x− x j) where Hess is the Hessian matrix of g j evaluated at some point between
x and x j. By part 1 of Lemma 3, the largest eigenvalue of Hess is bounded above by 1/κ. Since
||x− x j||≤ cδ2n, the claim follows. Part 5 follows easily.

4.12 Step 4: Local Conditional Likelihood

Recall thatMn = {M ∈M (κ) : H(M̃,M)≤ an}. Let

Qn = {QM : M ∈Mn}.

Consider a slab Rj. For each Q ∈ Qn define Qj ≡ Q(·|Rj) by Qj(A) = Q(A∩Rj)/Q(Rj). Note that
Qj is supported over tube(M,σ)∩Rj. Let Qn, j = {Qj : Q ∈ Qn}. Before we proceed we need to
establish the following.

Lemma 17 Let I j(M) = tube(M,σ)∩Rj. Then there exists c0 > 0 such that

inf
M∈Mn

V (I j(M))≥ c0δdn .

Proof By Lemma 16, M∩Rj lies in a slab of size an orthogonal to ג j. Because the angle between
the two manifolds on this set must be no more than π/4 and because an > δn, the manifold M
cannot intersect both the “top” and “bottom” surfaces of the slab. Hence, for large enough C > 0,
J j =

⋃
x∈ג j BD(x,σ/C)⊂ I j. By construction, V (I j)≥V (J j)≥ cδdn .

4.13 Step 4a. The Entropy of Qn, j
Lemma 18 H[ ](ε,Qn, j,h)≤ c1 log(c2/ε).

Proof We begin by creating a γ Hausdorff net for Qn, j. To do this, we will parameterize the support
of these distributions. Each Q ∈ Qn, j has support in the collection Sn, j = {(M⊕σ)∩Rj : M ∈Mn}.
We will construct a γ-Hausdorff net for Sn, j.

Let x̃ ∈ M̃ be the center of ג j. Let y1, . . . ,yr be a c1γ-net of Lb(x̃), and let θ1 < θ2 < · · ·< θs <
π/2−η for a small, fixed η> 0 where θ j−θ j−1 ≤ c2γ. Note that r = O(γ−(D−d)) and s= O(1/γ).
For every pair yi and θ j, let Mi j be a M ∈Mn that crosses through yi with angle(TyiM,Tx̃M̃) = θ j.
These manifolds comprise a collection of size O((1/γ)D−d−1) which we will denote by Net(γ).

Let M ∈Mn. Let y be the point where M crosses Lb(x̃). Let yi be the closest point in the net
to y and let θ j be the closest angle in the net to angle(TyM,Tx̃M̃). Because the angle between M
and Mi j is strictly less than π/4 (part 1 of Lemma 15) and the slab Rj has radius δn, it follows that
H(M,Mi j)≤C1γ+δnC2γ≤Cγ. Hence, Net(γ) is a γ-Hausdorff net.
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Now consider Net(γ) with γ = ε2. For each Mi j ∈ Net(γ) let qi j be the corresponding density
and define ui j and !i j by

ui j(y) =
(
qi j(y)+

Cε2

V (Mi j⊕ (σ+ ε2))

)
I(y ∈Mi j⊕ (σ+ ε2))

and
!i j(y) =

(
qi j(y)−

Cε2

V (Mi j⊕ (σ− ε2))

)
I(y ∈Mj⊕ (σ− ε2)).

Let B = {(!i j,ui j)}.
LetM ∈Mn and letMi j be the element of the net closest toM. It follows easily that ui j ≥ qM ≥

!i j. Thus B is a bracketing. Now,
∫
ui j− !i j = 1+Cε2− (1−Cε2) = 2Cε2.

Hence, h(ui j,!i j)≤
√∫

|ui j− !i j|=
√
2Cε. Hence, B is an

√
2C− ε-bracketing. So,

H[ ](ε,Qn, j,h)≤ (D−d−1) log(c/ε),

which proves the lemma.

4.14 Step 4b. Hellinger Rate of the Conditional MLE

Let q̂ be the mle over Qn, j using the Yi’s in Rj. Let M̂ be the manifold corresponding to q̂ and let
M̂ j = M̂∩Rj.

Lemma 19 For all Q, all A> 0 and all large n,

Qn

({
h(Q, Q̂)>

(
C0 logn

n

) 1
2+d
})

≤ n−A.

Proof Let Nj be the number of observations from the second half of the data that are in Rj. Let
µj = E(Nj) and define mn = n

2
2+d . First, we claim that Nj ≥ µj/2 = O(mn) for all j, except on a

set of probability e−cn2/(2+d) . Let π j = Q(Rj). By Lemma 17 and Lemma 4, π j ≥ cδdn for some
c> 0. Hence, µj ≥ mn. Note that σ2 ≡ Var(Nj)/n= π j(1−π j)≤ π j. Let t = µj/2. By Bernstein’s
inequality,

P(Nj ≤ µj/2) = P(Nj−µj ≤−µj/2)≤ exp
{
−

t2

2nσ2+2t/3

}
≤ exp

{
−cn2/(2+d)

}
.

Hence, by the union bound,

P(Nj ≤ µj/2 for some j)≤
1
N
exp
{
−cn2/(2+d)

}
≤ exp

{
−c′n2/(2+d)

}

since there are N =O(1/δn) slabs. Thus we can assume that there are at least order mn observations
in each Rj.

1283



GENOVESE, PERONE-PACIFICO, VERDINELLI AND WASSERMAN

Since H[ ](ε,Qn, j,h) ≤ log(C(1/ε)), solving the equation H[ ](ε,Qn, j,h) = mnε2 we get εm ≥√
C logmn/mn = (logn/n)2/(2(2+d)) = δn. From Lemma 8, we have, for all Q ∈ Qn, j,

Qn
({

h(Q, Q̂)> δn
})

= Qn
({

h(Q, Q̂)> εm
})

≤ c1e−c2mnε
2
m ≤ n−A.

4.15 Step 4c. Relating Hausdorff Distance to Hellinger Distance Within a Slab

Lemma 20 For each M1,M2 ∈Mn, H(M1∩Rj,M2∩Rj)≤Ch2(Qj1,Qj2).

Proof Let g1 and g2 be defined as in Lemma 16. There exists x∈ ג j such that g1(x)∈M1, g2(x)∈M2
and ||g1(x)−g2(x)||= γ. We claim there exists ′ג ⊂ ג j such that infx∈ג′ ||g1(x)−g2(x)||≥ γ/2 and
such that V (′ג) ≥ cδdn . This follows since g1 and g2 are smooth, they both lie in a slab of size an
around ג j and the angle between the tangent of g j(x) and ג j is bounded by π/4.

Create a modified manifold M′
2 such that M′

2 differs from M1 over ′ג by a γ/2 shift orthogonal
to ג j and such that M′

2 is otherwise equal to M1. It follows that !1(M1,M2) ≥ !1(M1,M′
2) and

h(Q1,Q2)≥ h(Q1,Q′
2).

Every point in the support of the conditioned distributions can be written as an ordered pair
(x,y) where x ∈ ג j and y lies in a d′ ball of radius σ. M′

2 is shifted a distance of γ/2 in the direction
orthogonal to ג j. As a result, the !1 distance between M1 and M′

2 equals the integral over C′ of the
volume difference between two d′ balls of the same radius that are shifted by γ/2 relative to each
other. This volume δdnγ. Hence, V (M1∩ ג j) ◦ (M2∩ ג j) ≥ γδdn . Let A = {x ∈ ג j : q1 > 0,q2 = 0},
B= {x ∈ ג j : q1 > 0,q2 > 0}, C = {x ∈ ג j : q1 = 0,q2 > 0}. At least one of A or B has volume at
least γδdn/2. Without loss of generality, assume that it is A. Then

h2(q1,q2) =
∫
(
√
q1−

√
q2)2 ≥

∫
A
(
√
q1−

√
q2)2 =

∫
A
q1

≥
C∗cδdnγ
δdn

= cC∗γ= cC∗H(M1,M2).

4.16 Step 4d. The Hausdorff Rate

Lemma 21 For any A> 0 there exists C0 such that

Qn

({
H(M∩Rj,M̂ j)>

(
C0 logn

n

) 2
2+d
})

≤
1
nA

.

Proof This follows by combining Lemma 20 and Lemma 19.
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4.17 Step 5: Final Estimator

Now we can combine the estimators from the difference slabs. Let M̂ =
⋃N
j=1 M̂ j. Recall that the

number of slabs is N = (cδn)−d = (Cn/ logn)d/(2+d).
Proof of Theorem 2. Choose an A> 2/(2+d). We have:

Qn

({
H(M̂,M)>

(
C0 logn

n

) 2
2+d
})

≤ ∑
j
Qn

({
H(M̂ j,M∩Rj)>

(
C0 logn

n

) 2
2+d
})

≤
N
nA

=

(
n

C logn

) 1
2+d

×
1
nA

≤
c
nA

.

Let rn =
(
C0 logn

n

)2/(2+d)
. Since M and M̂ are contained in a compact set, H(M̂,M) is uniformly

bounded above by a constant K0. Hence,

EQH(M̂,M) = EQ[H(M̂,M)I(H(M̂,M)> rn)]+EQ[H(M̂,M)I(H(M̂,M)≤ rn)]
≤ K0Qn(H(M̂,M)> rn)+ rn

≤
c
nA

+ rn = O

((
logn
n

)2/(2+d))
.

!

5. A Simple, Consistent Estimator

Here we give a practical, consistent estimator, one that does not converge at the optimal rate. It is
a generalization of the estimator in Genovese et al. (2010) and is similar to the estimator in Niyogi
et al. (2006). Let

Ŝ=
n⋃
i=1

BD(Yi,ε)

and define ∂̂S= ∂(Ŝ), σ̂=maxy∈Ŝ d(y, ∂̂S) and

M̂ =
{
y ∈ Ŝ : d(y, ∂̂S)≥ σ̂−2ε

}
.

Lemma 22 Let εn =C(logn/n)1/D in the estimator M̂. Then

H(M,M̂) = O
(
logn
n

)1/D

almost surely for all large n.

Before proving the lemma we need a few definitions. Following Cuevas and Rodrı́guez-Casal
(2004), we say that a set S is (χ,λ)-standard if there exist positive numbers χ and λ such that

νD(BD(y,ε)∩S)≥ χ νD(B(y,ε)) for all y ∈ S, 0< ε≤ λ.

We say that S is partly expandable if there exist r > 0 and R≥ 1 such that H(∂S,∂(S⊕ ε))≤ Rε for
all 0≤ ε< r. A standard set has no sharp peaks while a partly expandable set has not deep inlets.
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Lemma 23 If σ< Δ(M) then S=M⊕σ is standard with χ= 2−D and λ= σ and partly expandable
with r = Δ(M)−σ and R= 1.

Proof Let χ= 2−D. Let y be a point in S and let Λ(y)≤ σ be its distance from the boundary ∂S. If
Λ(y)≥ ε then BD(y,ε)∩S= BD(y,ε) so that νD(BD(y,ε)∩S) = νD(BD(y,ε))≥ χνD(BD(y,ε)).

Suppose that Λ(y) < ε. Let v be a point on the manifold closest to y and let y∗ be the point on
the segment joining y to v such that ||y− y∗||= ε/2. The ball A = BD(y∗,ε/2) is contained in both
BD(y,ε) and S. Hence, νD(BD(y,ε)∩S)≥ νD(A)≥ χνD(BD(y,ε)). This is true for all ε≤ σ, hence
S is (χ,λ)-standard for χ= 1/2D and λ= σ.

Now we show that S is partly expandable. By Proposition 1 in Cuevas and Rodrı́guez-Casal
(2004) it suffices to show that a ball of radius r rolls freely outside S for some r, meaning that, for
each y ∈ ∂S, there is an a such that y ∈ B(a,r) ⊂ Sc, where Sc is the complement of S. Let Oy be
the ball of radius Δ−σ tangent to y such that Oy ⊂ Sc. Such a ball exists by virtue of the fact that
σ< Δ(M).

Theorem 24 (Cuevas and Rodrı́guez-Casal, 2004) Let Y1, . . . ,Yn be a random sample from a dis-
tribution with support S. Let S be compact, (λ,χ)-standard and partly expandable. Let

Ŝ=
n⋃
i=1

B(Yi,εn)

and let ∂̂S be the boundary of Ŝ. Let εn = C(logn/n)1/D with C > (2/(χ ωD))1/D where ωD =
V (BD(0,1)). Then, with probability one,

H(S, Ŝ)≤C
(
logn
n

)1/D
and H(∂S, ∂̂S)≤C

(
logn
n

)1/D

for all large n. Also, S⊂ Ŝ almost surely for all large n.

Proof of Lemma 22. Theorem 24 and Lemma 23 imply that H(S, Ŝ) ≤ C(logn/n)1/D and
H(∂S, ∂̂S) ≤ C(logn/n)1/D. It follows that σ̂ ≥ σ− ε. First we show that y ∈ M̂ implies that
d(y,M) ≤ 4ε. Let y ∈ M̂. Then d(y,∂S) ≥ d(y, ∂̂S)− ε ≥ σ̂− 2ε− ε ≥ σ− ε− 2ε− ε = σ− 4ε.
So d(y,M) = σ− d(y,∂S) ≤ σ−σ+ 4ε = 4ε. Now we show that M ⊂ M̂. Suppose that y ∈ M.
Then,

d(y, ∂̂S)≥ d(y,∂S)− ε= σ− ε≥ σ̂−2ε

so that y ∈ M̂. !

6. Conclusion and Open Questions

We have established that the optimal rate for estimating a smooth manifold in Hausdorff distance is
n−

2
2+d . We conclude with some comments and open questions.

1. We have assumed that the noise is perpendicular to the manifold. In current work we are
deriving the minimax rate under the more general assumption that ε is drawn from a general,
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spherically symmetric distribution. We also allow the distribution along the manifold to be
any smooth density bounded away from 0. The rates are quite different and the methods for
proving the rates are substantially more involved. Moreover, the rates depends on the behavior
of the noise density near the boundary of its support. We will report on this elsewhere.

2. Perhaps the most important open question is to find a computationally tractable estimator that
achieves the optimal rate. It is possible that combining the estimator in Section 5 with one
of the estimators in the computational geometry literature (Dey, 2006) could work. However,
it appears that some modification of such an estimator is needed. This is a difficult question
which we hope to address in the future.

3. It is interesting to note that Niyogi et al. (2006) have a Gaussian noise distribution. While
it is possible to infer the homology of M with Gaussian noise it is not possible to infer M
itself with any accuracy. The reason is that manifold estimation is similar to (and in fact,
more difficult than) nonparametric regression with measurement error. In that case, it is well
known that the fastest possible rates under Gaussian noise are logarithmic. This highlights an
important distinction between estimating the topological structure of M versus estimating M
in Hausdorff distance.

4. The current results take Δ(M), d and σ as known (or at least bounded by known constants).
In practice these must be estimated. We do not know whether there exist minimax estimators
that are adaptive over d,Δ(M) and σ.
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7. Appendix

This appendix contains proofs of some technical results used earlier in the paper.

7.1 Proof of Equation 2

We will use the following two results (see Section 2.4 of Tsybakov, 2008):

h2(Pn,Qn) = 2
(
1−
[
1−

h2(P,Q)
2

]n)

and

||P∧Q||≥
1
2

(
1−

h2(P,Q)
2

)2
.

We have

||Pn∧Qn|| ≥
1
2

(
1−

h2(Pn,Qn)

2

)2
=
1
2

(
1−

h2(P,Q)
2

)2n

≥
1
2

(
1−

!1(P,Q)
2

)2n
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since h2(P,Q)≤ !1(P,Q).

7.2 Proof of Theorem 6

We define two manifolds M0 and M1 with corresponding distributions Q0 and Q1 such that (i)
Δ(Mi) ≥ κ i = 0,1, (ii) H(M0,M1) = γ and (iii) such that the volume of S0 ◦ S1 is of order γ

d
2+1,

where Si is the support of Qi.
We write a generic D-dimensional vector as y = (u,v,z), with u ∈ Rd , v ∈ R, z ∈ RD−d−1. For

each u ∈ Rd with ||u||≤ 1, define the disk in Rd+1

D0 =
{
(u,0) ∈ Rd+1 : u ∈ Bd(0,1)

}

and let

F0 = ∂



 ⋃
(u,v)∈D0

Bd+1((u,v),κ)



 .

Now define the following d-dimensional manifold in RD

M0 =
{
(u,v,0D−d−1) : (u,v) ∈ F0

}

=
{
(u,a(u),0D−d−1) : u ∈ Bd(0,1+κ)

}
∪
{
(u,−a(u),0D−d−1) : u ∈ Bd(0,1+κ)

}

where
a(u) =

{
κ if ||u||≤ 1√
κ2− (||u||−1)2 if 1< ||u||≤ 1+κ.

The manifold M0 has no boundary and, by construction, Δ(M0)≥ κ.
Now define a second manifold that coincides with M0 but has a small perturbation. Let γ ∈

(0,4κ) and define

M1 =
{
(u,b(u),0D−d−1) : u ∈ Bd(0,1+κ)

}
∪
{
(u,−a(u),0D−d−1) : u ∈ Bd(0,1+κ)

}

where

b(u) =






γ+
√
κ2− ||u||2 if ||u||≤ 1

2
√
4γκ− γ2

2κ−
√
κ2− (||u||−

√
4γκ− γ2)2 if 12

√
4γκ− γ2 < ||u||≤

√
4γκ− γ2

a(u) if
√
4γκ− γ2 < ||u||≤

√
4γκ− γ2+κ.

Note that Δ(M1)≥ κ since the perturbation is obtained using portions of spheres of radius κ. In fact

• for ||u||≤ 1
2
√
4γκ− γ2, b(u) is the d+1-th coordinate of the “upper” portion of the (d+1)-

dimensional sphere with radius κ centered at (0, · · · ,0,γ), hence b(u) satisfies

||u||2+(b(u)− γ)2 = κ2 with b(u)≥ γ;

• for 12
√
4γκ− γ2 < ||u||≤

√
4γκ− γ2, b(u) is the (d+1)-th coordinate of the “lower” portion

of the (d+1)-dimensional sphere with radius κ centered at (u ·
√
4γκ− γ2/||u||,2κ) (note that

the center of the sphere differs according to the direction of u), hence b(u) satisfies
∣∣∣∣

∣∣∣∣u−
u

||u||
√
4γκ− γ2

∣∣∣∣

∣∣∣∣
2
+(b(u)−2κ)2 = κ2 with b(u)≤ 2κ.
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To summarize, M0 and M1 are both manifolds with no boundary, Δ(M0) ≥ κ and Δ(M1) ≥ κ.
See Figure 5. Now

E0 = M0−M1 =
{
(u,a(u),0D−d−1) : u ∈ Bd(0,

√
4γκ− γ2)

}

E1 = M1−M0 =
{
(u,b(u),0D−d−1) : u ∈ Bd(0,

√
4γκ− γ2)

}
.

Figure 5: One section of manifolds M0 and M1. The common part is dashed, E0 is dotted and E1
solid. R1 and R2 denote the regions where the different definitions of the perturbation
apply: R1 is ||u||≤ 1

2
√
4γκ− γ2 while R2 denotes 12

√
4γκ− γ2 < ||u||≤

√
4γκ− γ2.

Note that for each point y ∈ E0 there exists y′ ∈ E1 such that ||y−y′||≤ |a(u)−b(u)|≤ γ. Also,
y0 = (0,a(0),0) ∈ M0 has as its closest M1 point y1 = (0,b(0),0), so that ||y0− y1|| = γ. Hence
H(M0,M1) = H(E0,E1) = γ.

To find an upper bound for V (S0 ◦ S1), we show that each y = (u,v,z) ∈ S1− S0 satisfies the
following conditions:

(i) u ∈ Bd(0,
√
4γκ− γ2);

(ii) z ∈ BD−d−1(0,σ);

(iii) κ+σ− ||z||< v≤ κ+ γ+σ− ||z||.

If y = (u,v,z) belongs to S1 and has ||u|| >
√
4γκ− γ2, then there is a point of M0 ∩M1

within distance σ, hence y 2∈ S1− S0. This proves (i). Before proving (ii) and (iii), note that if
u ∈ Bd(0,

√
4γκ− γ2) then

κ= a(u)≤ b(u)≤ κ+ γ.

Now, let y′ = (u′,b(u′),0) ∈ E1 be the point in S1 closest to y. We have

d(y,S1) = ||y− y′||≤ ||u−u′||+ |v−b(u′)|+ ||z||≤ σ.
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This gives condition (ii) above ||z||≤ σ and also

|v−b(u′)|≤ σ− ||z||. (4)

Since b(u′)≤ κ+ γ, we obtain

v≤ b(u′)+σ− ||z||≤ κ+ γ+σ− ||z||

which is the right inequality in (iii). Finally,

σ< d(y,M0)≤ ||y− (u,a(u),0)||≤ |v−a(u)|+ ||z||

which implies either v < a(u)− (σ− ||z||) or v > a(u)+ (σ− ||z||). The former inequality would
imply

v< a(u)− (σ− ||z||) = κ− (σ− ||z||)≤ inf
u′
b(u′)− (σ− ||z||)

so that |v− b(u′)| > σ− ||z|| for all u′, which is in contradiction with (4). Hence we have v >
a(u)+(σ− ||z||) = κ+(σ− ||z||) that is the left inequality in (iii).

As a consequence,

S1−S0⊂Bd(0,
√
4γκ− γ2)×

{
(v,z)∈RD−d : κ−γ+σ− ||z||< v≤ κ+γ+σ− ||z||,z∈BD−d−1(0,σ)

}

and
V (S0−S1)≤C · (

√
4γκ− γ2)d · γ ·σD−d−1.

Hence, V (S0−S1) = O(γ d2+1).
With similar arguments one can show that V (S1−S0) = O(γ d2+1) so that

V (S0 ◦S1) = O(γ
d
2+1).

It then follows that
∫
|q0−q1|= O(γ(d+2)/2).
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Abstract
Classifiers are often used to detect miscreant activities. We study how an adversary can system-
atically query a classifier to elicit information that allows the attacker to evade detection while
incurring a near-minimal cost of modifying their intended malfeasance. We generalize the theory
of Lowd and Meek (2005) to the family of convex-inducing classifiers that partition their feature
space into two sets, one of which is convex. We present query algorithms for this family that con-
struct undetected instances of approximately minimal cost using only polynomially-many queries
in the dimension of the space and in the level of approximation. Our results demonstrate that near-
optimal evasion can be accomplished for this family without reverse engineering the classifier’s
decision boundary. We also consider general !p costs and show that near-optimal evasion on the
family of convex-inducing classifiers is generally efficient for both positive and negative convexity
for all levels of approximation if p= 1.
Keywords: query algorithms, evasion, reverse engineering, adversarial learning

1. Introduction

A number of systems and security engineers have proposed the use of machine learning to detect
miscreant activities in a variety of applications; for example, spam, intrusion, virus, and fraud de-
tection. However, all known detection techniques have blind spots: classes of miscreant activity
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that fail to be detected. While learning allows the detection algorithm to adapt over time, real-world
constraints on the learner typically allow an adversary to programmatically find vulnerabilities. We
consider how an adversary can systematically discover blind spots by querying a fixed or learning-
based detector to find a low cost (for some cost function) instance that the detector does not filter.
As a motivating example, consider a spammer who wishes to minimally modify a spam message so
it is not classified as a spam (here, cost is a measure of how much the spam must be modified). As a
second example, consider the design of an exploit that must avoid intrusion detection systems (here,
cost may be a measure of the exploit’s severity). There are a variety of domain-specific mechanisms
an adversary can use to observe the classifier’s response to a query, or in other words, to query a
membership oracle of the filter; for example, the spam filter of a public email system can be ob-
served by creating a dummy account on that system and sending the queries to that account. By
observing the responses of the detector, the adversary can search for a modification while using as
few queries as possible.

The idealized theoretical problem of near-optimal evasion was first posed by Lowd and Meek
(2005). We continue their investigation by generalizing their results to convex-inducing classifiers—
classifiers that partition feature space into two sets, one of which is convex. The family of convex-
inducing classifiers is a particularly natural set to examine, as it includes the family of linear
classifiers studied by Lowd and Meek as well as anomaly detection classifiers using bounded
PCA (Lakhina et al., 2004), anomaly detection algorithms that use hyper-sphere boundaries (Bishop,
2006), one-class classifiers that predict anomalies by thresholding the log-likelihood of a log-
concave (or uni-modal) density function, and quadratic classifiers with a decision function of the
form x!Ax+b!x+ c ≥ 0 if A is semidefinite (see Boyd and Vandenberghe, 2004, Chapter 3), to
name a few. Furthermore, the family of convex-inducing classifiers also includes more complicated
bodies such as the countable intersection of halfspaces, cones, or balls.

We also show that near-optimal evasion does not require reverse engineering the classifier’s
decision boundary, which is the approach taken by Lowd and Meek (2005) for evading linear classi-
fiers in a continuous domain. Our algorithms for evading convex-inducing classifiers do not require
fully estimating the classifier’s boundary. Instead, we directly search for a minimal-cost evading
instance. Since our algorithms require only polynomially-many queries, while reverse engineering
the general convex case is hard (see Rademacher and Goyal, 2009), our algorithms witness a sep-
aration between the complexities of reverse engineering and evasion. In the special case of linear
classifiers, our algorithms achieve better query complexity than the previously-published reverse-
engineering technique. Finally, we also extend near-optimal evasion to general !p costs. For these
costs, we show that our algorithms can also be used for near-optimal evasion, but are generally not
efficient. However, in the cases when our algorithms are not efficient, we show that there is no
efficient query-based algorithm.

A preliminary version of this paper was previously published as the report (Nelson et al., 2010b)
extending our earlier work (Nelson et al., 2010a). This paper is organized as follows. We overview
past work related to near-optimal evasion in the remainder of this section. In Section 2, we formalize
the near-optimal evasion problem, and review Lowd and Meek’s definitions and results. We present
algorithms for evasion that are near-optimal under weighted !1 costs in Section 3, and we consider
minimizing general !p costs in Section 4. We conclude the paper by discussing future directions for
near-optimal evasion in Section 5.
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1.1 Related Work

Lowd and Meek (2005) first explored near-optimal evasion and developed a method that reverse
engineered linear classifiers in a continuous domain. Our approach generalizes that result and im-
proves upon it in three significant ways.

• We consider a more general family of classifiers: the family of convex-inducing classifiers
that partition the space of instances into two sets, one of which is convex. This family sub-
sumes the family of linear classifiers considered by Lowd and Meek.

• Our approach does not fully estimate the classifier’s decision boundary (which is generally
hard; see Rademacher and Goyal 2009) or reverse-engineer the classifier’s state. Instead,
we directly search for an instance that the classifier labels as negative and is close to the
desired attack instance (an evading instance of near-minimal cost). Lowd and Meek previ-
ously demonstrated a direct search technique for linear classifiers in Boolean spaces, but that
technique is not applicable to the classifiers we consider.

• Even though our algorithms find solutions for a more general family of classifiers, our algo-
rithms still use only polynomially-many queries in the dimension of the feature space and
the accuracy of the desired approximation. Moreover, our K-STEP MULTILINESEARCH
(Algorithm 3) solves the linear case with asymptotically fewer queries than the previously-
published reverse-engineering technique.

Dalvi et al. (2004) use a game-theoretic approach to preemptively patch a cost-sensitive naive
Bayes classifier’s blind spots. They construct a modified classifier designed to detect optimally
modified instances. Brückner and Scheffer (2009) and Kantarcioglu et al. (2009) have extended this
setting to larger families of classifiers and developed techniques to solve for equilibrium strategies to
their game. This prior research is complementary to query-based evasion; the near-optimal evasion
problem studies how an adversary can use queries to find blind spots of a classifier that is unknown
but queryable whereas their game-theoretic approaches assume the adversary knows the classifier
and can optimize their evasion accordingly at each step of an iterated game.

A number of authors have studied evading sequence-based intrusion detector systems (IDSs) (Tan
et al., 2002; Wagner and Soto, 2002). In exploring mimicry attacks, these authors demonstrated that
real IDSs can be fooled by modifying exploits to mimic normal behaviors. These authors used
offline analysis of the IDSs to construct their modifications; by contrast, our modifications are opti-
mized by querying the classifier.

The field of active learning also studies a form of query-based optimization (Schohn and Cohn,
2000). As summarized by Settles (2009), the three primary approaches to active learning are mem-
bership query synthesis, stream-based selective sampling and pool-based sampling. Our work is
most closely related to the membership query synthesis subfield introduced by Angluin (1988)
in which the learner can request the label for any instance in feature space rather than for unla-
beled instances drawn from a distribution. However, while active learning and near-optimal evasion
are similar in their exploration of query strategies, the objectives for these two settings are quite
different—evasion approaches search for low-cost negative instances within a factor 1+ ε of an
optimal cost whereas active learning algorithms seek to obtain hypotheses with low generalization
error often in a PAC-setting (see Section 2.3 for a discussion on reverse-engineering approaches to
evasion and active learning). It is interesting to note, nonetheless, that results in active learning set-
tings (e.g., Dasgupta et al., 2009; Feldman, 2009) have also achieved polynomial query complexities
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in specific cases. However, we focus solely on the evasion objective, and we leave the exploration
of relationships between our results and those in active learning to future work.

Another class of related techniques that use query-based optimization are non-gradient global
optimization methods often referred to as direct search. Simple examples of these techniques in-
clude bisection and golden-section search methods, for finding roots and extrema of univariate
functions, and derivative approximation approaches such as the secant method and interpolation
methods (e.g., Burden and Faires, 2000). Combinations of these approaches include Dekker’s and
Brent’s algorithms (e.g., Brent, 1973), which exhibit superlinear convergence under certain condi-
tions on the query function; that is, the number of queries is inversely quadratic in the desired error
tolerance. However, while these approaches can be adapted to multiple dimensions, their query
complexity grows exponentially with the dimension. Other approaches include the simplex method
of Nelder and Mead (1965) and the DIRECT search algorithm introduced by Jones et al. (1993)
(refer to Jones, 2001 and Kolda et al., 2003 for surveys of direct search methods), however, we
are unaware of query bounds for these methods. While any direct search methods can be adapted
for near-optimal evasion, these methods were designed to optimize an irregular function in a regular
domain with few dimensions whereas the near-optimal evasion problem involves optimizing regular
known functions (the cost function) over an unknown, possibly irregular, and high-dimensional do-
main (the points labeled as negative by the classifier). The methods we present specifically exploit
the regular structure of !p costs and of the convex-inducing classifiers to achieve near-optimality
with only polynomially-many queries.

2. Problem Setup

We begin by introducing our notation and assumptions. First, we assume that instances are rep-
resented in D-dimensional Euclidean feature space1 X = ℜD such as for some intrusion detection
systems (e.g., Wang and Stolfo, 2004). Each component of an instance x ∈ X is a feature which
we denote as xd . We use δd to denote each coordinate vector of the form (0, . . . ,1, . . . ,0) with a 1
only at the dth feature. We assume the feature space representation is known by the adversary and
there are no restrictions on the adversary’s queries; that is, any point x in feature space X can be
queried by the adversary to learn the classifier’s prediction at that point. These assumptions may
not be true in every real-world setting (for instance, spam detectors are often defined with discrete
features and designers often attempt to hide or randomize their feature set; for example, see Wang
et al., 2006), but they allow us to investigate strategies taken by a worst-case adversary. We revisit
these assumptions in Section 5.

We further assume the target classifier f belongs to a family of classifiers F . Any classifier
f ∈ F is a mapping f : X → Y from feature space X to its response space Y . We assume the
adversary’s attack will be against a fixed f so the learning method and the training data used to
select f are irrelevant. We assume the adversary does not know f but knows its family F . We also
restrict our attention to binary classifiers with Y = {'−', '+'}.

We assume f ∈ F is deterministic and so it partitions X into two sets—the positive class X+
f =

{x ∈ X | f (x) = '+'} and the negative class X−f = {x ∈ X | f (x) = '−'}. We take the negative set
to be normal instances. We assume that the adversary is aware of at least one instance in each class,

1. Lowd and Meek also consider integer and Boolean-valued feature spaces and derive results for several classes of
learners in these discrete-valued spaces.
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x− ∈X−f and xA ∈X+
f , and can observe f (x) for any x by issuing amembership query (see Section 5

for a more detailed discussion).

2.1 Adversarial Cost

We assume the adversary has a notion of utility over the feature space, which we quantify with a cost
function A : X → ℜ0+ (the non-negative reals); for example, for a spammer, this could be a string
edit distance on email messages. The adversary wishes to optimize A over the negative class, X−f ;
for example, the spammer wants to send spam that will be classified as normal email ('−') rather
than as spam ('+'). We assume this cost function is a distance to some target instance xA ∈ X+

f that
is most desirable to the adversary. We focus on the general class of weighted !p (0 < p ≤ ∞) cost
functions relative to the target xA given by

A(c)
p
(

x−xA
)

=

(
D

∑
d=1

cd
∣
∣xd− xAd

∣
∣
p
)1/p

, (1)

where 0 < cd < ∞ is the relative cost the adversary associates with altering the dth feature. When
the relative costs are uniform, cd = 1 for all d, we use the simplified notation Ap to refer to the
cost function. Similarly, when referring to a generic weighted cost function with weights c, we use
the notation A(c). We also consider the cases when some features have cd = 0 (adversary doesn’t
care about the dth feature) or cd = ∞ (adversary requires the dth feature to match xAd ). We use
BC (A;y) = {x ∈ X | A(x−y)≤C} to denote the cost ball (or sublevel set) centered at y with cost
no more than the threshold C. For instance, BC (A1;xA

)

is the set of instances that do not exceed
an !1 cost of C from the target xA. For convenience, we also use BC (A) ! BC (A;xA

)

to denote
theC-cost-ball of A re-centered at the adversary’s target, xA, since we focus on costs relative to this
instance. Unless stated otherwise, we take “!1 cost” to mean a weighted !1 cost in the sequel.

Unfortunately, !p costs do not include many interesting costs such as string edit distances for
spam and other real-world settings, such as the intrusion detection example from above where there
may be no natural notion of distance between points. Nevertheless, the objective of this paper is
not to provide practical evasion algorithms but rather to understand the theoretic capabilities of an
adversary on the analytically tractable, albeit practically restrictive, family of !p costs. Weighted
!1 costs are particularly appropriate for adversarial problems in which the adversary is interested
in some features more than others and his cost is assessed based on the degree to which a feature
is altered. Moreover, the !1-norm is a natural measure for a word-level edit distance for email
spam, where larger weights model tokens that are more costly to remove (e.g., a payload URL). In
Section 3, we focus on the weighted !1 costs studied by Lowd and Meek before exploring general
!p costs in Section 4. In the latter case, our discussion focuses on uniform weights for ease of
exposition, but the results also extend to the cost-sensitive case as presented for weighted !1 costs.

Lowd and Meek (2005) define minimal adversarial cost (MAC) of a classifier f to be

MAC (f ,A)! inf
x∈X−f

[

A
(

x−xA
)]

;

that is, the greatest lower bound on the cost obtained by any negative instance. They further define
a data point to be an ε-approximate instance of minimal adversarial cost (ε-IMAC) if it is a negative
instance with a cost no more than a factor (1+ε) of the MAC; that is, every ε-IMAC is a member of
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the set
ε-IMAC (f ,A)!

{

x ∈ X−f
∣
∣
∣ A
(

x−xA
)

≤ (1+ ε) ·MAC(f ,A)
}

. (2)

The adversary’s goal is to find an ε-IMAC efficiently, while issuing as few queries as possible.

2.2 Search Terminology

The notion of near optimality introduced in Equation (2) is that of multiplicative optimality; that
is, an ε-IMAC must have a cost within a factor of (1+ ε) of the MAC. However, the results of this
paper can also be immediately adapted for additive optimality in which we seek instances with cost
no more than η > 0 greater than the MAC. To differentiate between these notions of optimality,
we will use the notation ε-IMAC(∗) to refer to the set in Equation (2) and define an analogous set
η-IMAC(+) for additive optimality as

η-IMAC(+) (f ,A)!
{

x ∈ X−f
∣
∣
∣ A
(

x−xA
)

≤ η+MAC(f ,A)
}

. (3)

We use the terms ε-IMAC(∗) and η-IMAC(+) to refer both to the sets defined in Equation (2) and (3)
as well as the members of these sets—the usage will be clear from the context.

Either notion of optimality allows us to efficiently use bounds on the MAC to find an ε-IMAC(∗)

or an η-IMAC(+). Suppose there is a negative instance, x−, with cost C−, and there is a C+ > 0
such that all instances with cost no more thanC+ are positive; that is,C+ ≤MAC (f ,A)≤C−. Then
the negative instance x− is ε-multiplicatively optimal ifC−/C+ ≤ (1+ ε) whereas it is η-additively
optimal if C−−C+ ≤ η. In the sequel, we will consider algorithms that can achieve either additive
or multiplicative optimality via binary search. Namely, if the adversary can determine whether an
intermediate cost establishes a new upper or lower bound on the MAC, then binary search strategies
can iteratively reduce the t th gap between any bounds C−t and C+

t with the fewest steps. We now
provide common terminology for the binary search and in Section 3 we use convexity to establish a
new bound at each iteration.

Lemma 1 If an algorithm can provide bounds 0 <C+ ≤MAC (f ,A)≤C−, then this algorithm has
achieved (C−−C+)-additive optimality and (C

−

C+ −1)-multiplicative optimality.

In the t th iteration of an additive binary search, the additive gap between the t th bounds,C−t and
C+
t , is given by G(+)

t =C−t −C+
t with G(+)

0 defined accordingly by the initial bounds C−0 =C− and
C+

0 =C+. The search uses a proposal step of Ct = (C−t +C+
t )/2, a stopping criterion of G(+)

t ≤ η
and achieves η-additive optimality in

L(+)
η =

⌈

log2

[

G(+)
0
η

]⌉

steps. In fact, binary search has the best worst-case query complexity for achieving η-additive
optimality.

Binary search can also be used for multiplicative optimality by searching in exponential space.
Assuming thatC− ≥C+ > 0, we can rewrite our upper and lower bounds asC− = 2a andC+ = 2b,
and thus the multiplicative optimality condition becomes a− b ≤ log2(1+ ε); that is, an additive
optimality condition. Thus, binary search on the exponent achieves ε-multiplicative optimality and
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does so with the best worst-case query complexity. The multiplicative gap of the t th iteration is
G(∗)
t = C−t /C+

t with G(∗)
0 defined accordingly by the initial bounds C−0 and C+

0 . The t th query
is Ct =

√

C−t ·C+
t , the stopping criterion is G(∗)

t ≤ 1+ ε and the search achieves ε-multiplicative
optimality in

L(∗)ε =







log2





log2

(

G(∗)
0

)

log2(1+ ε)











(4)

steps. Although both additive and multiplicative criteria are related, there are two differences be-
tween these notions of optimality.

First, multiplicative optimality only makes sense when C+
0 is strictly positive whereas additive

optimality can still be achieved ifC+
0 = 0. TakingC+

0 > 0 is equivalent to assuming that xA is in the
interior of X+

f (a requirement for our algorithms to achieve multiplicative optimality). Otherwise,
when xA is on the boundary of X+

f , there is no ε-IMAC(∗) for any ε > 0 unless there is some point
x∗ ∈ X−f with 0 cost. Practically though, the need for a lower bound is a minor hindrance—as we
demonstrate in Section 3.1.3, there is an algorithm that can efficiently establish a lower bound C+

0
for any !p cost if such a lower bound exists.

Second, the additive optimality criterion is not scale invariant (i.e., any instance x† that satis-
fies the optimality criterion for cost A also satisfies it for A′ (x) = s ·A(x) for any s > 0) whereas
multiplicative optimality is scale invariant. Additive optimality is, however, shift invariant (i.e., any
instance x† that satisfies the optimality criterion for cost A also satisfies it for A′ (x) = s+A(x) for
any s≥ 0) whereas multiplicative optimality is not. Scale invariance is more salient in near-optimal
evasion because if the cost function is also scale invariant (all proper norms are) then the optimality
condition is invariant to a rescaling of the underlying feature space; for example, a change in units
for all features. Thus, multiplicative optimality is a unitless notion of optimality whereas additive
optimality is not.

The following result states that additive optimality’s lack of scale invariance allows for the
feature space to be arbitrarily rescaled until any fixed level of additive optimality can no longer be
achieved; that is, the units of the cost determine whether a particular level of additive accuracy can
be achieved. By contrast multiplicative costs are unitless.

Proposition 2 Consider any hypothesis space F , target instance xA and cost function A. If there
exists some  ε > 0 such that no efficient query-based algorithm can find an ε-IMAC(∗) for any 0 <
ε≤  ε, then there is no efficient query-based algorithm that can find an η-IMAC(+) for any 0 < η≤
 ε ·MAC (f ,A). In particular consider a sequence of classifiers fn admitting unbounded MACs, and a
sequence εn > 0 such that 1/εn = o(MAC (fn,A)). Then if no general algorithm can efficiently find
an εn-IMAC(∗) on each fn then no general algorithm can efficiently find an ηn-IMAC(+) for ηn→∞.

Proof Consider any classifier f ∈ F such that MAC (f ,A) > 0. Suppose there exists some x ∈
η-IMAC(+) for some η> 0. Let ε= η/MAC (f ,A) then by definition

A
(

x−xA
)

≤ η+MAC (f ,A) = (1+ ε)MAC (f ,A) ,

implying that x ∈ ε-IMAC(∗). Then by the contrapositive, if no ε-IMAC(∗) can be efficiently found
for any 0 < ε≤  ε, then no η-IMAC(+) can be efficiently found for any 0 < η≤  ε ·MAC (f ,A). The
last result is an immediate corollary.
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The last statement is, in fact, applicable to many common settings. For instance, for any of the
weighted !p costs (with 0 < p≤ ∞ and 0 < cd < ∞ for all d) the family of linear classifiers and the
family of hypersphere classifiers are both sufficiently diverse to yield such a sequence of classifiers
that admit unbounded MACs as required by the last statement. Thus, the family of convex-inducing
classifiers can also yield such a sequence. Moreover, as we show in Section 4, there are indeed !p
costs for which there exists  ε> 0 such that no efficient query-based algorithm can find an ε-IMAC(∗)

for any 0 < ε≤  ε. The consequence of this is that there is no general algorithm capable of achieving
additive optimality for any fixed η with respect to the convex-inducing classifiers for these !p costs.

For the remainder of this paper, we will address ε-multiplicative optimality for an ε-IMAC (ex-
cept where explicitly noted) and define Lε = L(∗)ε and Gt =G(∗)

t . Nonetheless, our algorithms can be
immediately adapted to additive optimality by simply changing the proposal step, stopping condi-
tion, and the definitions of L(∗)ε andGt ; the binary searches for additive and multiplicative optimality
differ in their proposal steps and stopping criteria only. Finally, while we express query complexity
in the sequel in terms of multiplicative Lε, note that L(∗)ε = Θ(log 1

ε ) and so in this way our query
complexities can be rewritten to directly depend on ε.

2.3 Near-Optimal Evasion

Lowd and Meek (2005) introduce the concept of adversarial classifier reverse engineering (ACRE)
learnability to quantify the difficulty of finding an ε-IMAC instance for a particular family of clas-
sifiers, F , and a family of adversarial costs, A . Using our notation, their definition of ACRE ε-
learnable is

A set of classifiersF is ACRE ε-learnable under a set of cost functionsA if an algorithm
exists such that for all f ∈ F and A ∈ A , it can find an x ∈ ε-IMAC (f ,A) using only
polynomially-many membership queries in terms of the dimension D, the encoded size
of f , and the encoded size of x+ and x−.

In this definition, Lowd and Meek use encoded size to refer to the length of the string of digits
used to encode f , x+, and x−. In generalizing their result, we slightly alter their definition of query
complexity. First, to quantify query complexity we use only the dimension, D, and the number of
steps, Lε, required by a univariate binary search to narrow the gap to within the desired accuracy.
By including Lε in our definition of query complexity, we do not require the encoded size of x+
and x− since Lε implicitly captures the size of the distance between these points as discussed above.
Second, we assume the adversary only has two initial points x− ∈ X−f and xA ∈ X+

f (the original
setting used a third x+ ∈ X+

f ): we restrict our setting to the case of x+ = xA, yielding simpler search
procedures.2 Finally, our algorithms do not reverse engineer the decision boundary, so “ACRE”
would be a misnomer here. Instead we refer to the overall problem as Near-Optimal Evasion and
replace ACRE ε-learnable with the following definition of ε-IMAC searchable.

A family of classifiers F is ε-IMAC searchable under a family of cost functions A
if for all f ∈ F and A ∈ A , there is an algorithm that finds some x ∈ ε-IMAC (f ,A)

2. As is apparent in our algorithms, using x+ = xA makes the attacker less covert since it is significantly easier to infer
the attacker’s intentions based on their queries. Covertness is not an explicit goal in ε-IMAC search, but it would be
a requirement of many real-world attackers. However, since our goal is not to design real attacks but rather analyze
the best possible attack so as to understand our classifier’s vulnerabilities, covertness can be ignored.
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using polynomially-many membership queries in D and Lε. We will refer to such an
algorithm as efficient.

Our definition does not include the encoded size of the classifier, f , because our approach to
near-optimal evasion does not reverse engineer the classifier’s parameters. Unlike Lowd and Meek’s
approach for continuous spaces, our algorithms construct queries to provably find an ε-IMAC with-
out reverse engineering the classifier’s decision boundary; that is, estimating the decision surface of
f or estimating the parameters that specify it. Efficient query-based reverse engineering for f ∈ F
is sufficient for minimizing A over the estimated negative space. However, generally reverse engi-
neering is an expensive approach for near-optimal evasion, requiring query complexity that is expo-
nential in the feature space dimension for general convex classes (Rademacher and Goyal, 2009),
while finding an ε-IMAC need not be as we demonstrate in this paper.3 In fact, the requirements
for finding an ε-IMAC differ significantly from the objectives of reverse-engineering approaches
such as active learning. Both approaches use queries to reduce the size of version space F̂ ⊂ F ;
that is, the set of classifiers consistent with the adversary’s membership queries. However reverse-
engineering approaches minimize the expected number of disagreements between members of F̂ .
To find an ε-IMAC, by contrast, we need only provide a single instance, x† ∈ ε-IMAC (f ,A), for all
f ∈ F̂ , while leaving the classifier largely unspecified; that is, we need to show that

⋂
f∈F̂

ε-IMAC (f ,A) *= /0 .

This objective allows the classifier to be unspecified in much of X . We present algorithms for ε-
IMAC search on a family of classifiers that generally cannot be efficiently reverse engineered—the
queries we construct necessarily elicit an ε-IMAC only; the classifier itself will be underspecified
in large regions of X so our techniques do not reverse engineer the classifier. Similarly, for linear
classifiers in Boolean spaces, Lowd and Meek demonstrated an efficient algorithm for near-optimal
evasion that does not reverse engineer the classifier—it too searches directly for an ε-IMAC and it
shows that this family is 2-IMAC searchable for !1 costs with uniform feature weights, c.

3. Evasion of Convex Classes for !1 Costs

We generalize ε-IMAC searchability to the family of convex-inducing classifiers F convex that par-
tition the feature space X into a positive and negative class, one of which is convex. The convex-
inducing classifiers include the linear classifiers studied by Lowd and Meek (2005), anomaly detec-
tors using bounded PCA (Lakhina et al., 2004) and using hyper-sphere boundaries (Bishop, 2006),
one-class classifiers that predict anomalies by thresholding the log-likelihood of a log-concave
(or uni-modal) density function, and quadratic classifiers with a decision function of the form
x!Ax+ b!x+ c ≥ 0 if A is semidefinite (see Boyd and Vandenberghe, 2004, Chapter 3). The
convex-inducing classifiers also include bodies such as any intersections of a countable number of
halfspaces, cones, or balls.

Restricting F to be the family of convex-inducing classifiers simplifies ε-IMAC search. In
our approach to this problem, we divide F convex, the family of convex-inducing classifiers, into

3. Lowd and Meek (2005) also previously showed that the reverse-engineering technique of finding a feature’s sign
witness is NP-complete for linear classifiers with Boolean features but also that this family was nonetheless 2-IMAC
searchable.
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Figure 1: Geometry of convex sets and !1 balls. (a) If the positive set X+
f is convex, finding an !1

ball contained within X+
f establishes a lower bound on the cost, otherwise at least one of

the !1 ball’s corners witnesses an upper bound. (b) If the negative set X−f is convex, we
can establish upper and lower bounds on the cost by determining whether or not an !1
ball intersects with X−f , but this intersection need not include any corner of the ball.

F convex,'−' and F convex,'+' corresponding to the classifiers that induce a convex set X−f or X+
f , re-

spectively (of course, linear classifiers belong to both). When the negative class X−f is convex (i.e.,
f ∈ F convex,'−'), the problem reduces to minimizing a (convex) function A constrained to a convex
set—if X−f were known to the adversary, then this would correspond to solving a convex program.
When the positive class X+

f is convex (i.e., f ∈ F convex,'+'), however, our task is to minimize the
convex function A outside of a convex set; this is generally a hard problem (cf. Section 4.1.4 where
we show that minimizing an !2 cost can require exponential query complexity). Nonetheless for
certain cost functions A, it is easy to determine whether a particular cost ball BC (A) is completely
contained within a convex set. This leads to efficient approximation algorithms.

We construct efficient algorithms for query-based optimization of the (weighted) !1 cost A(c)
1 of

Equation (1) for the family of convex-inducing classifiers. There is an asymmetry to this problem
depending on whether the positive or negative class is convex as illustrated in Figure 1. When the
positive set is convex, determining whether the !1 ball BC(A(c)

1 ) is a subset of X+
f only requires

querying the vertices of the ball as depicted in Figure 1(a). When the negative set is convex, deter-
mining whether BC(A(c)

1 )∩X−f = /0 is non-trivial since the intersection need not occur at a vertex as
depicted in Figure 1(b). We present an efficient algorithm for optimizing (weighted) !1 costs when
X+
f is convex and a polynomial randomized algorithm for optimizing any convex cost when X−f is

convex. In both cases, we consider only convex sets with non-empty interiors. The algorithms we
present achieve multiplicative optimality via the binary search strategies discussed in the previous
section. In the sequel, we use Equation (4) to define Lε and C−0 = A(c)

1
(

x−−xA
)

as an initial upper
bound on the MAC. We also assume there is someC+

0 > 0 that lower bounds the MAC.
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3.1 ε-IMAC Search for a Convex X+
f

Solving the ε-IMAC Search problem when f ∈F convex,'+' is hard in the general case of a convex cost
A. Here we introduce algorithms for the !1 cost that solve the problem as a binary search. Namely,
given initial costsC+

0 andC−0 that bound the MAC, our algorithm can efficiently determine whether
BCt (A1) ⊂ X+

f for any intermediate cost C+
t <Ct <C−t . If the !1 ball is contained in X+

f , then Ct
becomes the new lower bound C+

t+1. Otherwise Ct becomes the new upper bound C−t+1. Since our
objective given in Equation (2) is to obtain multiplicative optimality, our steps will take the form
Ct =

√

C+
t ·C−t . We now explain how we exploit the properties of the !1 ball and convexity of X+

f to
efficiently determine whether BC (A1) is a subset of X+

f for anyC. We also discuss practical aspects
of our algorithm and extensions to other !p cost functions.

The existence of an efficient query algorithm relies on three facts: (1) xA ∈ X+
f ; (2) every !1 cost

C-ball centered at xA intersects with X−f only if at least one of its vertices is in X−f ; and (3) C-balls
of !1 costs only have 2 ·D vertices. The vertices of the !1 ball BC (A1) are axis-aligned instances
differing from xA in exactly one feature (e.g., the dth feature) and can be expressed as

xA± C
cd

·δd , (5)

which belongs to theC-ball of our !1 cost (the coefficient C
cd normalizes for the weight cd on the dth

feature). We now formalize the second fact as follows.

Lemma 3 For all C > 0, if there exists some x ∈ X−f that achieves a cost of C = A(c)
1
(

x−xA
)

, then
there is some feature d such that a vertex of the form of Equation (5) is in X−f (and also achieves
cost C by Equation 1).

Proof Suppose not; then there is some x∈ X−f such that A(c)
1
(

x−xA
)

=C and x has M ≥ 2 features
that differ from xA (if x only differs in one feature it would be of the form of Equation 5). Let
{d1, . . . ,dM} be the differing features and let bdi = sign

(

xdi− xAdi
)

be the sign of the difference be-
tween x and xA along the di-th feature. For each di, let edi = xA+ C

cdi
·bdi ·δdi be a vertex of the form

of Equation (5) which has a cost C (from Equation 1). The M vertices edi form an M-dimensional
equi-cost simplex of cost C on which x lies; that is, x = ∑M

i=1αi · edi for some 0 ≤ αi ≤ 1. If all
edi ∈ X+

f , then the convexity of X+
f implies that all points in their simplex are in X+

f and so x ∈ X+
f

which violates our premise. Thus, if any instance in X−f achieves costC, there is always at least one
vertex of the form Equation (5) in X−f that also achieves costC.

As a consequence, if all such vertices of anyC ballBC (A1) are positive, then all xwith A(c)
1 (x)≤

C are positive thus establishing C as a lower bound on the MAC. Conversely, if any of the vertices
of BC (A1) are negative, then C is an upper bound on MAC. Thus, by simultaneously querying all
2 ·D equi-cost vertices of BC (A1), we either establishC as a new lower or upper bound on the MAC.
By performing a binary search onC we iteratively halve the multiplicative gap between our bounds
until it is within a factor of 1+ ε. This yields an ε-IMAC of the form of Equation (5).

A general form of this multiline search procedure is presented as Algorithm 1 and depicted in
Figure 2. MULTILINESEARCH simultaneously searches along the directions in a set W of search
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xA

(a)

ray
in
X
+
f

x ∈ X+
f

v

xA

(b)

xA

(c)

Figure 2: The geometry of search. (a) Weighted !1 balls are centered around the target xA and have
2 ·D vertices; (b) Search directions in multi-line search radiate from xA to probe specific
costs; (c) In general, we leverage convexity of the cost function when searching to evade.
By probing all search directions at a specific cost, the convex hull of the positive queries
bounds the !1 cost ball contained within it.

directions that radiate from their origin at xA and that are vectors of unit cost; that is, A(w) = 1
for every w ∈W . (We transform a given set of non-normalized search vectors {v} into unit search
vectors by simply applying a normalization constant of A(v)−1 to each vector.) At each step of
MULTILINESEARCH, at most |W | queries are issued in order to construct a bounding shell (i.e.,
the convex hull of these queries will either form an upper or lower bound on the MAC) to determine
whether BC (A) ⊂ X+

f . Once a negative instance is found at cost C, we cease further queries at
cost C since a single negative instance is sufficient to establish a lower bound. We call this policy
lazy querying—a practice that will lead to better bounds for a worst-case classifier. Further, when
an upper bound is established for a cost C (a negative vertex is found), our algorithm prunes all
directions that were positive at costC. This pruning is sound; by convexity, these pruned directions
are positive for all costs less than the new upper bound C on the MAC. Finally, by performing a
binary search on the cost, MULTILINESEARCH finds an ε-IMAC with no more than |W | ·Lε queries
but at least |W |+Lε queries. Thus, this algorithm is O (|W | ·Lε).

It is worth noting that, in its present form, MULTILINESEARCH has two implicit assumptions.
First, we assume all search directions radiate from a common origin, xA, and A(0) = 0. Without
this assumption, the ray-constrained cost function A(s ·w) is still convex in s≥ 0 but not necessar-
ily monotonic as required for binary search. Second, we assume the cost function A is a positive
homogeneous function along any ray from xA; that is, A(s ·w) = |s| ·A(w). This assumption al-
lows MULTILINESEARCH to scale its unit search vectors to achieve the same scaling of their cost.
Although the algorithm could be adapted to eliminate these assumptions, the cost functions in Equa-
tion (1) satisfy both assumptions since they are norms centered at xA.

Algorithm 2 uses MULTILINESEARCH for !1 costs by taking W to be the vertices of the unit-
cost !1 ball centered at xA. In this case, the search issues at most 2 ·D queries to determine whether
BC (A1) is a subset of X+

f and so Algorithm 2 is O (Lε ·D). However, MULTILINESEARCH does
not rely on its directions being vertices of the !1 ball although those vertices are sufficient to span
the !1 ball. Generally, MULTILINESEARCH is agnostic to the configuration of its search directions
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Algorithm 1 MULTI-LINE SEARCH

MLS
(

W ,xA,x−,C+
0 ,C

−
0 ,ε
)

x∗ ← x−
t← 0
whileC−t /C+

t > 1+ ε do
Ct ←

√

C+
t ·C−t

for all e ∈W do
Query: f te← f

(

xA+Ct · e
)

if f te = '−' then
x∗ ← xA+Ct · e
Prune i from W if f ti = '+'
break for-loop

end if
end for
C+
t+1←C+

t andC−t+1←C−t
if ∀e ∈W f te = '+' thenC+

t+1←Ct
elseC−t+1←Ct
t← t+1

end while
return: x∗

Algorithm 2 CONVEX X+
f SET SEARCH

ConvexSearch
(

xA,x−,c,ε,C+
)

D← dim
(

xA
)

C− ← A(c) (x−−xA
)

W ← /0
for i= 1 to D do
ei← 1

ci ·δi
W ←W ∪

{

±ei
}

end for
return: MLS

(

W ,xA,x−,C+,C−,ε
)

Figure 3: Algorithms for multi-line search. Algorithm 1 is a generic procedure for performing si-
multaneous binary searches along multiple search directions emanating from xA; each di-
rection, e∈W , must be a unit-cost direction. Algorithm 2 uses this MULTILINESEARCH
procedure to minimize weighted !1 costs when the positive class of a classifier is convex.
For this procedure, every weight, ci, must be on the range (0,∞) although extensions are
discussed in Section 3.1.3.

and can be adapted for any set of directions that can provide a sufficiently tight bound on the cost
using the convexity of X+

f (see Section 4.1.1 for the bounding requirements the search directions
must satisfy). However, as we show in Section 4.1, the number of search directions required to
adequately bound an !p cost ball for p> 1 can be exponential in D.

3.1.1 K-STEP MULTI-LINE SEARCH

Here we present a variant of the multi-line search algorithm that better exploits pruning to reduce
the query complexity of Algorithm 1—we call this variant K-STEP MULTILINESEARCH. The
MULTILINESEARCH algorithm consists of 2 · |W | simultaneous binary searches (a breadth-first
strategy). This strategy prunes directions most effectively when the convex body is asymmetrically
elongated relative to xA but fails to prune for symmetrically rounded bodies. We could instead
search each direction sequentially (a depth-first strategy) and still obtain a worst case of O (Lε ·D)
queries. This strategy uses fewer queries to shrink the cost gap on symmetrically rounded bodies
but is unable to do so for asymmetrically elongated bodies. We therefore propose an algorithm that
mixes these strategies.
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At each phase, the K-STEP MULTILINESEARCH (Algorithm 3) chooses a single direction e and
queries it for K steps to generate candidate bounds B− and B+ on the MAC. The algorithm makes
substantial progress towards reducing Gt without querying other directions (a depth-first strategy).
It then iteratively queries all remaining directions at the candidate lower bound B+ (a breadth-first
strategy). Again we use lazy querying and stop as soon as a negative instance is found since B+

is then no longer a viable lower bound. In this case, although the candidate bound is invalidated,
we can still prune all directions that were positive at B+. Thus, in every iteration, either the gap is
substantially decreased or at least one search direction is pruned. We show that for K = /

√
Lε1, the

algorithm achieves a delicate balance between the usual breadth-first and depth-first approaches to
attain a better worst-case complexity than either.

Theorem 4 Algorithm 3 will find an ε-IMAC with at most O
(

Lε+
√
Lε|W |

)

queries when K =
/
√
Lε1.

The proof of this theorem appears in Appendix A. As a consequence of Theorem 4, finding an
ε-IMAC with Algorithm 3 for an !1 cost requires O

(

Lε+
√
LεD

)

queries. Further, Algorithm 2 can
incorporate K-STEP MULTILINESEARCH directly by replacing its function calls to MULTILINE-
SEARCH with K-STEP MULTILINESEARCH and using K = /

√
Lε1.

3.1.2 LOWER BOUND

Here we find a lower bound on the number of queries required by any algorithm to find an ε-IMAC
when X+

f is convex for any convex cost function (e.g., Equation 1 for p ≥ 1). Below we present a
theorem that provides a lower bound for multiplicative optimality (for additive optimality, there is
an analogous lower bound for any 0 < η<C−0 −C

+
0 ). Notably, since an ε-IMAC uses multiplicative

optimality, we incorporate a boundC+
0 > 0 on the MAC into our statement.

Theorem 5 For any D> 0, any positive convex function A :ℜD→ℜ+, any initial bounds 0<C+
0 <

C−0 on the MAC, and 0 < ε< C−0
C+

0
−1, all algorithms must submit at least max{D,L(∗)ε } membership

queries in the worst case to be ε-multiplicatively optimal on F convex,'+'.

The proof of this result is in Appendix B. In this theorem, we restrict ε to the interval
(

0, C
−
0

C+
0
−1
)

since, outside of this interval, the strategy is trivial. For ε= 0 no approximation algorithm terminates
and for ε≥ C−0

C+
0
−1, x− is an ε-IMAC, so no queries are required.

Theorem 5 shows that ε-multiplicative optimality requires Ω(L(∗)ε +D) queries. Thus, we see
that our K-STEP MULTILINESEARCH algorithm (Algorithm 3) has close to the optimal query com-
plexity for !1-costs with its O(Lε+

√
LεD) queries. This lower bound also applies to any !p cost

with p> 1, but in Section 4 we show lower bounds for p> 1 that substantially improve this result.

3.1.3 SPECIAL CASES

Here we present a number of special cases that require minor modifications to Algorithms 1 and 3
primarily as preprocessing steps.

Revisiting Linear Classifiers: Lowd and Meek originally developed a method for reverse engi-
neering linear classifiers for an !1 cost. First their method isolates a sequence of points from x− to xA
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Algorithm 3 K-STEP MULTI-LINE SEARCH

KMLS
(

W ,xA,x−,C+
0 ,C

−
0 ,ε,K

)

x∗ ← x−
t← 0
whileC−t /C+

t > 1+ ε do
Choose a direction e ∈W
B+←C+

t
B− ←C−t
for K steps do
B←

√
B+ ·B−

Query: fe← f
(

xA+B · e
)

if fe = '+' then B+← B
else B− ← B and x∗ ← xA+B · e

end for
for all i ∈W \{e} do
Query: f ti ← f

(

xA+(B+) · i
)

if f ti = '−' then
x∗ ← xA+(B+) · i
Prune k from W if f tk = '+'
break for-loop

end if
end for
C−t+1← B−
if ∀i ∈W f ti = '+' thenC+

t+1← B+

elseC−t+1← B+

t← t+1
end while
return: x∗

Figure 4: Algorithm for multi-line search. It performs simultaneous binary searches along multiple
unit search directions emanating from xA. Algorithm 3 is asympototically more efficient
than Algorithm 1 when K = /

√
Lε1 and can be used as a substitute for it in Algorithm 2.

that cross the classifier’s boundary and then the method estimates the hyperplane’s parameters using
D binary line searches. However, as a consequence of the ability to efficiently minimize our objec-
tive when X+

f is convex, we immediately have an alternative method for linear classifiers. Because
linear classifiers are a special case of convex-inducing classifiers, Algorithm 2 can be applied, and
our K-STEP MULTILINESEARCH algorithm improves on complexity of Lowd and Meek’s reverse-
engineering technique’s O (Lε ·D) queries and applies to a broader family of classifiers.

While Algorithm 2 has superior complexity, it uses 2 ·D search directions rather than the D
directions used in the approach of Lowd and Meek, which may require our technique to issue more
queries in some practical settings. However, for some restrictive classifier families, it is also pos-
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sible to eliminate search directions proved to be infeasible based on the current set of queries. For
instance, given a set W of search directions, t queries

{

xi
}t
i=1 and their corresponding responses

{

yi
}t
i=1, a search direction e can be eliminated from W if for all C+

t ≤ α<C−t there does not exist
any classifier f ∈ F consistent with all previous queries (i.e., f (x−) = '−', f

(

xA
)

= '+' and for all
i ∈ {1, . . . , t}, f

(

xi
)

= yi) that also satisfies f (α · e) = '−' and f (α · i) = '+' for every i ∈W \ {e}.
That is, e is feasible if and only if it is the only search direction among the set of remaining search
directions, W , that would be classified as a negative for a cost α by some consistent classifier. Fur-
ther, since subsequent queries only restrict the feasible space of α and the set of consistent classifiers
F̂ , pruning these infeasible directions is sound for the remainder of the search.

For restrictive families of convex-inducing classifiers, these feasibility conditions can be effi-
ciently verified and may be used to prune search directions without issuing further queries. In fact,
for the family of linear classifiers written as f (x) = sign(w!x+ b) for a normal vector w and dis-
placement b, the above conditions become a set of linear inequalities along with quadratic inequal-
ities corresponding to the constraint involving search directions. This can be cast as the following
optimization program with respect to α, w and b:

min
α,w,b

α ·w!e+b

s.t.

α ∈ [C+
t ,C−t )

w!x−+b ≤ 0
w!xA+b ≥ 0

yi(w!xi+b) ≥ 0 ∀ i ∈ {1, . . . , t}
α ·w!i+b ≥ 0 ∀ i ∈W \{e}.

If the resulting minimum is less than zero, direction e is feasible, otherwise, e can be pruned.
Such programs can be efficiently solved and may allow the adversary to rapidly eliminate infeasible
search directions without issuing additional queries. However, refining these pruning procedures
further is beyond the scope of this paper.

Extending MULTILINESEARCH Algorithms to Weights cd = ∞ or cd = 0: In Algorithm 2, we
reweighted the dth axis-aligned directions by a factor 1

cd to make unit cost vectors by implicitly as-
suming cd ∈ (0,∞). The case of immutable features where cd =∞ is dealt with by simply removing
those features from the set of search directions W used in the MULTILINESEARCH. In the case
of useless or unconstrained features when cd = 0, MULTILINESEARCH-like algorithms no longer
ensure near-optimality because they implicitly assume that cost balls are bounded sets. If cd = 0,
then B0 (A) is no longer bounded and 0 cost can be achieved if X−f anywhere intersects the subspace
spanned by the 0-cost features—this makes near-optimality unachievable unless a negative 0-cost
instance can be found. In the worst case, such an instance could be arbitrarily far in any direction
within the 0-cost subspace making search for such an instance intractable. Nonetheless, one pos-
sible search strategy is to assign all 0-cost features a non-zero weight that decays quickly toward
0 (e.g., cd = 2−t in the t th iteration) as we repeatedly rerun MULTILINESEARCH on the altered
objective for T iterations. We will either find a negative instance that only alters 0-cost features
(and hence is a 0-IMAC), or it terminates with a non-zero cost instance, which is an ε-IMAC if no
0-cost negative instances exist. This algorithm does not ensure near-optimality but may be suitable
for practical settings using some fixed T runs.

Lack of an Initial Lower Cost Bound: Thus far, to find an ε-IMAC our algorithms have searched
between initial boundsC+

0 andC−0 , but, in general,C+
0 may not be known to a real-world adversary.
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We now present the SPIRALSEARCH algorithm (Algorithm 4) that efficiently establishes a lower
bound on the MAC if one exists. This algorithm performs a halving search on the exponent along
a single direction to find a positive example, then queries the remaining directions at this candidate
bound. Either the lower bound is verified or directions that were positive can be pruned for the
remainder of the search.

Algorithm 4 SPIRAL SEARCH

SpiralSearch
(

W ,xA,C−0
)

t← 0 and V ← /0
repeat

Choose a direction e ∈W
Remove e from W and V ← V ∪{e}
Query: fe← f

(

xA+C−0 ·2−2t · e
)

if fe = '−' then
W ←W ∪{e} and V ← /0
t← t+1

end if
untilW = /0
C+

0 ←C−0 ·2−2t

if t > 0 thenC−0 ←C−0 ·2−2t−1

return: (V ,C+
0 ,C−0 )

Figure 5: Algorithm for establishing an initial lower bound on the cost.

At the t th iteration of SPIRALSEARCH, a direction is selected and queried at the candidate lower
bound of (C−0 )2−2t . If the query is positive, that direction is added to the set V of directions
consistent with the lower bound. Otherwise, all positive directions in V are pruned, a new upper
bound is established, and the candidate lower bound is reduced with an exponentially decreasing
exponent. By definition of the MAC, this algorithm will terminate after t =

⌈

log2 log2
C−0

MAC(f ,A)

⌉

iterations. Further, in this algorithm, multiple directions are probed only during iterations with
positive queries and it makes at most one positive query for each direction. Thus, given that some
lower bound C+

0 > 0 does exist, SPIRALSEARCH will establish a lower bound with O (L′ε+D)
queries, where L′ε is given by Equation (4) defined using C+

0 = MAC (f ,A); the largest possible
lower bound.

This algorithm can be used as a precursor to any of the previous searches.4 Upon completion,
the upper and lower bounds it establishes have a multiplicative gap of 22t−1 for t > 0 or 2 for t = 0.
From the definition of t provided above in terms of the MAC, MULTILINESEARCH can hence
proceed using Lε = L′ε. Further, the search directions pruned by SPIRALSEARCH are also invalid
for the subsequent MULTILINESEARCH so the set V returned by SPIRALSEARCH will be used as
the initial set W for the subsequent search. Thus, the query complexity of the subsequent search is
the same as if it had started with the best possible lower bound.

4. If no lower bound on the cost exists, no algorithm can find an ε-IMAC. As presented, this algorithm would not
terminate, but in practice the search would be terminated after sufficiently many iterations.
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Lack of a Negative Example: Our algorithms can also naturally be adapted to the case when
the adversary has no negative example x−. This is accomplished by querying !1 balls of doubly
exponentially increasing cost until a negative instance is found. During the t th iteration, we probe
along every search direction at a cost (C+

0 )22t ; either all probes are positive (and we have a new
lower bound) or at least one is negative and we can terminate the search. Once a negative example
is located (having probed for T iterations), we must have (C+

0 )22T−1
<MAC (f ,A)≤ (C+

0 )22T ; thus,
T =

⌈

log2 log2
MAC(f ,A)

C+
0

⌉

. We can subsequently perform MULTILINESEARCH withC+
0 = 22T−1 and

C−0 = 22T ; that is, log2G0 = 2T−1. This precursor step requires at most |W | ·T queries to initialize
the MULTILINESEARCH algorithm with a gap such that Lε =

⌈

(T −1)+ log2
1

log2(1+ε)

⌉

according
to Equation (4).

If there is neither an initial upper bound or lower bound, we proceed by probing each search
direction at unit cost using an additional |W | queries. We will subsequently have either an upper or
lower bound and can proceed accordingly.

3.2 ε-IMAC Learning for a Convex X−f
Here, we minimize a convex cost function A with bounded cost balls (we focus on weighted !1
costs in Equation 1) when the feasible set X−f is convex. Any convex function can be efficiently
minimized within a known convex set (e.g., using an ellipsoid or interior point method; see Boyd and
Vandenberghe 2004). However, in our problem, the convex set is only accessible via membership
queries. We use a randomized polynomial algorithm of Bertsimas and Vempala (2004) to minimize
the cost function A given an initial point x− ∈ X−f . For any fixed cost, Ct , we use their algorithm
to determine (with high probability) whether X−f intersects with BCt (A); that is, whether Ct is a
new lower or upper bound on the MAC. With high probability, this approach can find an ε-IMAC
in no more than Lε repetitions using binary search. The following theorem is the main result of this
section.

Theorem 6 Let cost function A be convex and have bounded balls; that is, bounded sublevel sets.
Let the feasible set X−f be convex and assume there is some r> 0 and y∈ X−f such that X−f contains
the cost ball Br (A;y). Then given access to an oracle returning separating hyperplanes for the A
cost balls, Algorithm 7 will find an ε-IMAC using O∗

(

D5) queries with high probability.5

The proof of this result is outlined in the remainder of this section, and is based on Bertsimas
and Vempala (2004, Theorem 14). We first introduce their randomized ellipsoid algorithm, then we
elaborate on their procedure for efficient sampling from a convex body, and finally we present our
application to optimization. In this section, we focus only on weighted !1 costs (Equation 1) and
return to more general cases in Section 4.2.

3.2.1 INTERSECTION OF CONVEX SETS

Bertsimas and Vempala present a query-based procedure for determining whether two convex sets
(e.g., X−f and the A1-ball of radius Ct) intersect. Their INTERSECTSEARCH procedure, which we

5. O∗ (·) denotes the standard complexity notation O (·) without logarithmic terms. The dependence on ε is in these
logarithmic terms, see Bertsimas and Vempala (2004) for details.
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Algorithm 5 INTERSECT SEARCH

IntersectSearch
(

P 0,Q =
{

x j ∈ P 0} ,xA,C
)

for s= 1 to T do
(1) Generate 2N samples

{

x j
}2N
j=1

Choose x from Q
x j← HitRun

(

P s−1,Q ,x j
)

(2) If any x j, A
(

x j−xA
)

≤ C terminate the for-
loop
(3) Put samples into 2 sets of size N
R ←

{

x j
}N
j=1 and S ←

{

x j
}2N
j=N+1

(4) zs← 1
N ∑x j∈R x

j

(5) Compute Hzs using Equation (7)
(6) P s← P s−1∩Hzs
(7) Keep samples in P s

Q ← {x ∈ S ∧x ∈ P s}
end for
Return: the found [x j,P s,Q ]; or No Intersect

Algorithm 6 HIT-AND-RUN

HitRun
(

P ,
{

y j
}

,x0)

for i= 1 to K do
(1) Choose a random direction:
ν j ∼ N(0,1)
v← ∑ j ν j ·y j

(2) Sample uniformly along v using
rejection sampling:
Choose ω̂ s.t. xi−1 + ω̂ ·v /∈ P
repeat
ω∼ Unif (0, ω̂)
xi← xi−1 +ω ·v
ω̂← ω

until xi ∈ P
end for
Return: xK

Figure 6: Algorithms used for the randomized ellipsoid algorithm of Bertsimas and Vempala. IN-
TERSECTSEARCH is used to find the intersection between a pair of convex sets: P 0 is
queryable and B provides has a separating hyperplane from Equation (7). Note that the
ROUNDING algorithm discussed in Section 3.2.2 can be used as a preprocessing step so
that P 0 is near-isotropic and to obtain the samples for Q . The HIT-AND-RUN algorithm
is used to efficiently obtain uniform samples from a bounded near-isotropic convex set,
P , based on a set of uniform samples from it,

{

y j
}

, and a starting point x0.

present as Algorithm 5, is a randomized ellipsoid method for determining whether there is an in-
tersection between two bounded convex sets: P is only accessible through membership queries and
B provides a separating hyperplane for any point outside it (for our problem these sets correspond
to X−f and BCt (A1) respectively). They use efficient query-based approaches to uniformly sample
from P to obtain sufficiently many samples such that cutting P through the centroid of these samples
with a separating hyperplane from B significantly reduces the volume of P with high probability.
Their technique thus constructs a sequence of progressively smaller feasible sets P s ⊂ P s−1 until
either the algorithm finds a point in P ∩B or it is highly likely that the intersection is empty.

Our problem reduces to finding the intersection between X−f and BCt (A1). Though X−f may
be unbounded, we are minimizing a cost with bounded cost balls, so we can instead use the set
P 0 = X−f ∩B

2R (A1;x−) (where R = A
(

x−−xA
)

>Ct), which is a convex bounded subset of X−f .
Since, by the triangle inequality, the ball B2R (A1;x−) centered at x− envelops all of BCt (A1;xA

)

centered at xA, the set P 0 contains the entirety of the desired intersection, X−f ∩BCt (A1), if it exists.
We also assume that there is some r > 0 such that there is an r-ball contained in the convex set X−f ;
that is, there exists y ∈ X−f such that the r-ball centered at y, Br (A1;y), is a subset of X−f . This
assumption both ensures that X−f has a non-empty interior (a requirement for the HIT-AND-RUN
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Algorithm 7 CONVEX X−f SET SEARCH

SetSearch
(

P ,Q =
{

x j ∈ P
}

,xA,x−,C+
0 ,C

−
0 ,ε
)

x∗ ← x− and t← 0
whileC−t /C+

t > 1+ ε do
Ct ←

√

C−t ·C+
t

[x∗,P ′,Q ′]← IntersectSearch
(

P ,Q ,xA,Ct
)

if intersection found then
C−t+1← A

(

x∗ −xA
)

andC+
t+1←C+

t
P ← P ′ and Q ← Q ′

else
C−t+1←C−t and C+

t+1←Ct
end if
t← t+1

end while
Return: x∗

Figure 7: Algorithm that efficiently implements the randomized ellipsoid algorithm of Bertsimas
and Vempala. SETSEARCH performs a binary search for an ε-IMAC using the randomized
INTERSECTSEARCH procedure to determine, with high probability, whether or not X−f
contains any points less than a specified cost, Ct . Note that the ROUNDING algorithm
discussed in Section 3.2.2 can be used as a preprocessing step so that P is near-isotropic
and to obtain the samples for Q .

algorithm discussed below) and it provides a stopping condition for the overall intersection search
algorithm.

The foundation of Bertsimas and Vempala’s search algorithm is the capability to sample uni-
formly from an unknown but bounded convex body by means of the HIT-AND-RUN random walk
technique (Algorithm 6) introduced by Smith (1996). Given an instance x j ∈ P s−1, HIT-AND-RUN
selects a random direction v through x j (we return to the selection of v in Section 3.2.2). Since
P s−1 is a bounded convex set, the set Ω =

{

ω≥ 0
∣
∣ x j+ωv ∈ P s−1} is a bounded interval index-

ing all feasible points along direction v through x j. Sampling ω uniformly from Ω (using rejection
sampling) yields the next step of the random walk x j +ωv. As noted above, this random walk
will not make progress if the interior of P s−1 is empty (which we preclude by assuming that X−f
contains an r-ball), and efficient sampling also requires that P s−1 is sufficiently round. However,
under the conditions discussed in Section 3.2.2, the HIT-AND-RUN random walk generates a sample
uniformly from the convex body after O∗

(

D3) steps (Lovász and Vempala, 2004). We now detail
the overall INTERSECTSEARCH procedure (Algorithm 5) and then discuss the mechanism used to
maintain efficient sampling after each successive cut. It is worth noting that Algorithm 5 requires
P 0 to be in near-isotropic position and that Q is a set of samples from it; these requirements are met
by using the ROUNDING algorithm of Lovász and Vempala discussed at the end of Section 3.2.2.

Randomized Ellipsoid Method: We use HIT-AND-RUN to obtain 2N samples
{

x j
}

from P s−1 ⊂
X−f for a single phase of the randomized ellipsoid method. If any sample x j satisfies A1

(

x j−xA
)

≤
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Ct , then x j is in the intersection of X−f and BCt (A1) and the procedure is complete. Otherwise, we
want to significantly reduce the size of P s−1 without excluding any of BCt (A1) so that sampling
concentrates toward the intersection (if it exists)—for this we need a separating hyperplane for
BCt (A1). For any point y /∈ BCt (A1), the (sub)gradient of the !1 cost is given by

hyd = cd sign
(

yd− xAd
)

, (6)

and is a separating hyperplane for y and BCt (A1).
To achieve efficiency, we choose a point z ∈ P s−1 so that cutting P s−1 through z with the

hyperplane hz eliminates a significant fraction of P s−1. To do so, z must be centrally located within
P s−1. We use the empirical centroid z= N−1∑x∈R x of the half of our samples in R ; the other half
will be used in Section 3.2.2. We cut P s−1 with the hyperplane hz through z; that is, P s = P s−1∩Hz
where Hz is the halfspace

Hz =
{

x
∣
∣
∣ x!hz < z!hz

}

. (7)

As shown by Bertsimas and Vempala, this cut achieves vol(P s)≤ 2
3vol

(

P s−1)with high probability
if N =O∗ (D) and P s−1 is near-isotropic (see Section 3.2.2). Since the ratio of volumes between the
initial circumscribing and inscribing balls of the feasible set is (R/r)D, the algorithm can terminate
after T = O (D log(R/r)) unsuccessful iterations with a high probability that the intersection is
empty.

Because every iteration in Algorithm 5 requires N = O∗ (D) samples, each of which need K =
O∗
(

D3) random walk steps, and there are T = O∗ (D) iterations, the total number of membership
queries required by Algorithm 5 is O∗

(

D5).

3.2.2 SAMPLING FROM A QUERYABLE CONVEX BODY

In the randomized ellipsoid method, random samples are used for two purposes: estimating the con-
vex body’s centroid and maintaining the conditions required for the HIT-AND-RUN sampler to effi-
ciently generate points uniformly from a sequence of shrinking convex bodies. Until this point, we
assumed the HIT-AND-RUN random walk efficiently produces uniformly random samples from any
bounded convex body P accessible through membership queries. However, if the body is severely
elongated, randomly selected directions will rarely align with the long axis of the body and our
random walk will take small steps (relative to the long axis) and mix slowly. For the sampler to mix
effectively, we need the convex body P to be sufficiently round, or more formally near-isotropic:
for any unit vector v, Ex∼P

[
(

v! (x−Ex∼P [x])
)2
]

is bounded between 1/2 and 3/2 of vol(P ).
If the body is not near-isotropic, we must rescale X with an appropriate affine transformation

T so the resulting transformed body P ′ is near-isotropic. With sufficiently many samples from P
we can estimate T as their empirical covariance matrix. Instead, we rescale X implicitly using a
technique described by Bertsimas and Vempala (2004). We maintain a set Q of sufficiently many
uniform samples from the body P s, and in the HIT-AND-RUN algorithm (Algorithm 6), we sample
the direction v based on this set. Intuitively, because the samples in Q are distributed uniformly in
P s, the directions we sample based on the points in Q implicitly reflect the covariance structure of
P s. This is equivalent to sampling the direction v from a normal distribution with zero mean and
covariance of P .

We must ensure Q is a set of sufficiently many samples from P s after each cut taking P s ←
P s−1 ∩Hzs . To do so, we initially resample 2N points from P s−1 using HIT-AND-RUN—half of
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these, R , are used to estimate the centroid zs for the cut and the other half, S , are used to repopulate
Q after the cut. Because S contains independent uniform samples from P s−1, those in P s after
the cut constitute independent uniform samples from P s (i.e., rejection sampling). By choosing
N sufficiently large, our cut will be sufficiently deep and we will have sufficiently many points to
resample P s after the cut.

Finally, for this sampling approach to succeed, we need the initial set P 0 to be transformed into
near-isotropic position and we also need an initial set Q of uniform samples from the transformed
P 0 as input to Algorithm 5. However in our problem, we only have a single point x− ∈ X−f and our
set, P 0, need not be near-isotropic. Fortunately, there is an iterative procedure that uses the HIT-
AND-RUN algorithm to simultaneously transform the initial convex set, P 0, into a near-isotropic
position and construct our initial set of samples, Q . This algorithm, the ROUNDING algorithm as
described by Lovász and Vempala (2003), usesO∗

(

D4)membership queries to find a transformation
that places P 0 into a near-isotropic position and produces an initial set of samples from it. We use
this as a preprocessing step for Algorithms 5 and 7; that is, given X−f and x− ∈ X−f , we construct
P 0 = X−f ∩B

2R (A1;x−) and then can use the ROUNDING algorithm to transform P 0 and produce an
initial uniform sample from it; that is, Q =

{

x j ∈ P 0}. These sets are then the inputs to our search
algorithms.

3.2.3 OPTIMIZATION OVER !1 BALLS

We now revisit the outermost optimization loop (for searching the minimum feasible cost) of the
algorithm and suggest improvements. These improvements are reflected in our final procedure SET-
SEARCH in Algorithm 7—the total number of queries required is also O∗

(

D5). Again, Algorithm 7
requires P to be near-isotropic and that Q is a set of samples from it, which is accomplished by the
ROUNDING algorithm discussed at the end of Section 3.2.2. First, notice that xA and x− are the same
for every iteration of the optimization procedure. Further, in each iteration of Algorithm 7, the new
set, P , remains near-isotropic and the new Q is a set of samples from it since the sets returned by
Algorithm 5 retain these properties. Thus, the set, P , and the set of samples, Q =

{

x j ∈ P
}

, main-
tained by Algorithm 7 are sufficient to initialize INTERSECTSEARCH at each stage of its overall
binary search over Ct , and we only need to execute the ROUNDING procedure once as a prepro-
cessing step rather than re-invoking it before every invocation of INTERSECTSEARCH. Second, the
separating hyperplane hy given by Equation (6) does not depend on the target costCt but only on xA,
the common center of all the !1 balls used in this search. In fact, the separating hyperplane at point
y is valid for all !1-balls of cost C < A

(

y−xA
)

. Further, if C < Ct , we have BC (A1) ⊂ BCt (A1).
Thus, the final state from a successful call to INTERSECTSEARCH for theCt-ball can be used as the
starting state for any subsequent call to INTERSECTSEARCH for allC <Ct . Hence, in Algorithm 7,
we update P and Q only when Algorithm 5 succeeds.

4. Evasion for General !p Costs

Here we further extend ε-IMAC searchability over the family of convex-inducing classifiers to the
full family of !p costs for any 0 < p≤ ∞. As we demonstrate in this section, many !p costs are not
generally ε-IMAC searchable for all ε > 0 over the family of convex-inducing classifiers (i.e., we
show that finding an ε-IMAC for this family can require exponentially many queries in D and Lε). In
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fact, only the weighted !1 costs have known (randomized) polynomial query strategies when either
the positive or negative set is convex.

4.1 Convex Positive Set

Here we explore the ability of the MULTILINESEARCH and K-STEP MULTILINESEARCH algo-
rithms presented in Section 3.1 to find solutions to the near-optimal evasion problem for !p cost
functions with p *= 1. Particularly for p > 1 we will be exploring the consequences of using the
MULTILINESEARCH algorithms using more search directions than just the 2 ·D axis-aligned di-
rections. Figure 8 demonstrates how queries can be used to construct upper and lower bounds on
general !p costs. The following lemma also summarizes well-known bounds on general !p costs
using an !1 cost.

Lemma 7 The largest !p (p> 1) ball enclosed within a C-cost !1 ball has a cost of C ·D
1−p
p and for

p= ∞ the cost is C ·D−1.

4.1.1 BOUNDING !p BALLS

In general, suppose we probe along some set of M unit directions and at some point we have at
least one negative point supporting an upper bound ofC−0 and M positive points supporting a lower
bound ofC+

0 . The lower bound provided by those M positive points is the cost of the largest !p cost
ball that fits entirely within their convex hull; let’s say this cost is C† ≤ C+

0 . In order to achieve
ε-multiplicative optimality, we need C−0

C† ≤ 1+ ε, which we can rewrite as
(
C−0
C+

0

)(
C+

0
C†

)

≤ 1+ ε .

This allows us to break the problem into two parts. The first ratioC−0 /C
+
0 is controlled solely by the

accuracy ε achieved by running the multiline search algorithm for Lε steps whereas the second ratio
C+

0 /C† depends only on how well the !p ball is approximated by the convex hull of the M search
directions. These two ratios separate our task into choosing M and Lε so that their product is less
than 1+ε. First we can choose parameters α≥ 0 and β≥ 0 so that (1+α)(1+β)≤ 1+ε. Then we
chooseM so that C

+
0
C† = 1+β and use Lα steps so that multiline search withM directions will achieve

C−0
C+

0
= 1+α. In doing so, we create a generalized multiline search that can achieve ε-multiplicative

optimality.
In the case of p= 1, we previously saw that choosing M = 2 ·D allows us to exactly reconstruct

the !1 ball so that C+
0 /C† = 1 (i.e., β= 0). Thus by taking α= ε, we recover our original multiline

search result.
We now address costs where β > 0. For a MULTILINESEARCH algorithm to be efficient, it is

necessary that C
+
0
C† = 1+β can be achieved with polynomially-many search directions (in D and Lε)

for some β ≤ ε; otherwise, (1+α)(1+β) > 1+ ε and the MULTILINESEARCH approach cannot
succeed for any α > 0. Thus, we quantify how many search directions (or queries) are required to
achieve C+

0
C† ≤ 1+ ε. Note that this ratio is independent of the relative size of these costs, so without

loss of generality we will only consider bounds for unit-cost balls. Thus, we compute the largest
value of C† that can be achieved for the unit-cost !p ball (i.e., we make C+

0 = 1) within the convex
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Figure 8: Convex hull for a set of queries and the resulting bounding balls for several !p costs.
Each row represents a unique set of positive (red '+' points) and negative (black '∗' points)
queries and each column shows the implied upper bound (the green dashed ball) and lower
bound (the solid blue ball) for a different !p cost. In the first row, the body is defined by a
random set of seven queries, in the second, the queries are along the coordinate axes, and
in the third, the queries are around a circle.

hull of M queries. In particular, we quantify how many queries are required to achieve

C† ≥
1

1+ ε
.

We would like to show that only polynomially-many are required for at least some values of ε as
this is sufficient for a MULTILINESEARCH approach to be efficient.

Lemma 8 If there exists a configuration of M unit search directions with a convex hull that yields
a bound C† for the cost function A, then MULTILINESEARCH algorithms can use those search
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directions to achieve ε-multiplicative optimality with a query complexity that is polynomial in M
and L(∗)ε for any

ε>
1
C† −1 .

Moreover, if the M search directions yield C† = 1 for the cost function A, then MULTILINESEARCH
algorithms can achieve ε-multiplicative optimality with a query complexity that is polynomial in M
and L(∗)ε for any ε> 0.

Notice that this lemma also reaffirms that for p= 1 using the M = 2 ·D axis-aligned directions
allows MULTILINESEARCH algorithms to achieve ε-multiplicative optimality for any ε> 0 with a
query complexity that is polynomial in M and L(∗)ε .

4.1.2 MULTILINE SEARCH FOR 0 < p< 1

A simple result holds here. Namely, since the unit !1 ball bounds any unit !p balls with 0< p< 1, we
can achieveC+

0 /C† = 1 using only the 2 ·D axis-aligned search directions. Thus, for any 0 < p< 1,
we can efficiently search for any value of ε > 0. Whether or not any !p (0 < p < 1) cost function
can be efficiently optimized with fewer search directions is an open question.

4.1.3 MULTILINE SEARCH FOR p> 1

For this case, we can trivially use the !1 bound on !p balls as summarized by the following corollary.

Corollary 9 For 1 < p < ∞ and ε ∈
(

D
p−1
p −1,∞

)

any multi-line search algorithm can achieve
ε-multiplicative optimality on Ap using M = 2 ·D search directions. Similarly for ε ∈ (D−1,∞)
any multi-line search algorithm can achieve ε-multiplicative optimality on A∞ also using M = 2 ·D
directions.

Proof From Lemma 7, the largest co-centered !p ball contained within the unit !1 ball has radius
D

1−p
p cost (or D for p= ∞). The bounds on ε then follow from Lemma 8.

Unfortunately, this result only applies for a range of ε that grows with D, which is insufficient
for ε-IMAC searchability. In fact, for some fixed values of ε, there is no query-based strategy that
can bound !p costs using polynomially-many queries in D as the following result shows.

Theorem 10 For p> 1, D> 0, any initial bounds 0 <C+
0 <C−0 on the MAC, and ε∈

(

0,2
p−1
p −1

)

(or ε ∈ (0,1) for p = ∞), all algorithms must submit at least αDp,ε membership queries (for some
constant αp,ε > 1) in the worst case to be ε-multiplicatively optimal on F convex,'+' for !p costs.

The proof of this theorem and the definition of αp,ε are provided in Appendix C. A consequence
of this result is that there is no query-based algorithm that can efficiently find an ε-IMAC of any !p

cost (p> 1) for any fixed ε within the range 0 < ε< 2
p−1
p −1 (or 0 < ε< 1 for p=∞) on the family

F convex,'+'. However, from Theorem 9 and Lemma 8, multiline-search type algorithms efficiently
find the ε-IMAC of any !p cost (p> 1) for any ε ∈

(

D
p−1
p −1,∞

)

(or D−1 < ε< ∞ for p= ∞). It
is generally unclear if efficient algorithms exist for any values of ε between these intervals, but in
the following section we derive a stronger bound for the case p= 2.
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4.1.4 MULTILINE SEARCH FOR p= 2

Theorem 11 For any D> 1, any initial bounds 0 <C+
0 <C−0 on the MAC, and 0 < ε< C−0

C+
0
−1, all

algorithms must submit at least α
D−2

2
ε membership queries (where αε = (1+ε)2

(1+ε)2−1 > 1) in the worst
case to be ε-multiplicatively optimal on F convex,'+' for !2 costs.

The proof of this result is in Appendix D.
This result says that there is no algorithm that can generally achieve ε-multiplicative optimality

for !2 costs for any fixed ε> 0 using only polynomially-many queries in D since the ratio C−0
C+

0
could

be arbitrarily large. It may appear that Theorem 11 contradicts Corollary 9. However, Corollary 9
only applies for an interval of ε that depends on D; that is, ε >

√
D− 1. Interestingly, substituting

this lower bound on ε into the bound given by Theorem 11, we get that the number of required
queries for ε>

√
D−1 need only be

M ≥
(

(1+ ε)2

(1+ ε)2−1

)D−2
2

=

(
D

D−1

)D−2
2

,

which is a monotonically increasing function in D that asymptotes at
√
e≈ 1.64. Thus, Theorem 11

and Corollary 9 are in agreement since for ε >
√
D− 1, the former only requires that we need at

least 2 queries.

4.2 Convex Negative Set

Algorithm 7 generalizes immediately to all weighted !p costs (p ≥ 1) centered at xA since they
are convex. For these costs, an equivalent separating hyperplane for y can be used in place of
Equation (6). They are given by the equivalent (sub)-gradients for !p cost balls:

hyp,d = cd · sign
(

yd− xAd
)

·

(

|yd− xAd |

A(c)
p (y−xA)

)p−1

,

hy∞,d = cd · sign
(

yd− xAd
)

· I
{

|yd− xAd |= A(c)
∞

(

y−xA
)
}

.

By only changing the cost function A and the separating hyperplane hy used for the halfspace cut in
Algorithms 5 and 7, the randomized ellipsoid method can also be applied for any weighted !p cost
A(c)
p with p> 1.

For more general convex costs A, we still have that every C-cost ball is a convex set (i.e., the
sublevel set of a convex function is a convex set; see Boyd and Vandenberghe 2004, Chapter 3) and
thus has a separating hyperplane. Further, since for any D > C, BC (A) ⊂ BD (A), the separating
hyperplane of the D-cost ball is also a separating hyperplane of the C cost ball and can be re-used
in our Algorithm 7. Thus, this procedure is applicable for any convex cost function, A, so long as
we can compute the separating hyperplanes of any cost ball of A for any point y not in the cost ball.

For non-convex costs A such as weighted !p costs with 0 < p< 1, minimization over a convex
set X−f is generally hard. However, there may be special cases when minimizing such a cost can be
accomplished efficiently.
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5. Conclusions and Future Work

In this paper, we study ε-IMAC searchability of convex-inducing classifiers. We present membership
query algorithms that efficiently accomplish ε-IMAC search on this family. When the positive class
is convex, we demonstrate efficient techniques that outperform the previous reverse-engineering
approaches for linear classifiers in a continuous space. When the negative class is convex, we
apply the randomized ellipsoid method introduced by Bertsimas and Vempala to achieve efficient
ε-IMAC search. If the adversary is unaware of which set is convex, they can trivially run both
searches to discover an ε-IMAC with a combined polynomial query complexity. We also show our
algorithms can be efficiently extended for a number of special circumstances. Most importantly, we
demonstrate that these algorithms can succeed without reverse engineering the classifier. Instead,
these approaches systematically eliminate inconsistent hypotheses and progressively concentrate
their efforts in an ever-shrinking neighborhood of a MAC instance. By doing so, these algorithms
only require polynomially-many queries in spite of the size of the family of all convex-inducing
classifiers.

We also consider the family of !p costs and show that F convex is only generally ε-IMAC search-
able for all ε > 0 when p = 1. For 0 < p < 1, the MULTILINESEARCH algorithms of Section 3.1
achieve identical results when the positive set is convex, but the non-convexity of these !p costs
precludes the use of the randomized ellipsoid method when the negative set is convex. The ellipsoid
method does provide an efficient solution for convex negative sets when p> 1 (since these costs are
convex). However, for convex positive sets, our results show that for p> 1 there is no algorithm that
can efficiently find an ε-IMAC for all ε> 0. Moreover, for p= 2 we prove that there is no efficient
algorithm for finding an ε-IMAC for any fixed value of ε.

By studying ε-IMAC searchability, we provide a broader picture of how machine learning tech-
niques are vulnerable to query-based evasion attacks. Exploring near-optimal evasion is important
for understanding how an adversary may circumvent learners in security-sensitive settings. In such
an environment, system developers are hesitant to trust procedures that may create vulnerabilities.
The algorithms we present are invaluable tools not for an adversary to develop better attacks but
rather for analysts to better understand the vulnerabilities of their filters: our framework provides
the query complexity in the worst-case setting when an adversary can directly query the classifier.
However, our analysis and algorithms do not completely answer the evasion problem and also gen-
erally can not be easily used by an adversary since there are several real-world obstacles that are not
incorporated into our framework. Queries may only be partially observable or noisy, and the feature
set may only be partially known. Most importantly, an adversary may not be able to query all x∈ X ;
instead their queries must be legitimate objects (such as email) that are mapped into X . A real-world
adversary must invert the feature-mapping—a generally difficult task. These limitations necessitate
further research on the impact of partial observability and approximate querying on ε-IMAC search,
and to design more secure filters. Broader open problems include: is ε-IMAC search possible on
other classes of learners such as SVMs (linear in a large possibly infinite feature space)? Can an
adversary efficiently perform ε-IMAC search when his cost is defined in an alternate feature space to
the classifier’s? Is ε-IMAC search feasible against an online learner that adapts as it is queried? Can
learners be made resilient to these threats and how does this impact learning performance? These
and other open problems for near-optimal evasion are discussed in Nelson et al. (2011).
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Appendix A. Query Complexity for K-STEP MULTILINESEARCH Algorithm

We consider the evasion problem as a game between classifier (playing first) and adversary (playing
second) who wishes to evade detection by the classifier. To analyze the worst-case query complexity
of K-STEP MULTILINESEARCH (Algorithm 3), we consider a worst-case classifier that seeks to
maximize the number of queries submitted by the adversary. The worst-case classifier is completely
aware of the state of the adversary; that is, the dimension of the space D, the adversary’s goal Lε,
the cost function A, the bounds on the cost functionC+

t andC−t , and so forth.
Proof of Theorem 4 At each iteration of Algorithm 3, the adversary chooses some direction, e
not yet eliminated from W . Every direction in W is feasible (i.e., could yield an ε-IMAC) and
the worst-case classifier, by definition, will make this choice as costly as possible. During the K
steps of binary search along this direction, regardless of which direction e is selected or how the
worst-case classifier responds, the candidate multiplicative gap (see Section 2.2) along e will shrink
by an exponent of 2−K ; that is,

B−

B+
=

(
C−

C+

)2−K

,

log(G′t+1) = log(Gt) ·2−K .

The primary decision for the worst-case classifier occurs when the adversary begins querying other
directions beside e. At iteration t, the worst-case classifier has two options:

Case 1 (t ∈ C1): Respond with '+' for all remaining directions. Here the bound can-
didates B+ and B− are verified and thus the new gap is reduced by an exponent of
2−K ; however, no directions are eliminated from the search.

Case 2 (t ∈ C2): Choose at least one direction to respond with '−'. Here since only
the value ofC− changes, the worst-case classifier can choose to respond to the first
K queries so that the gap decreases by a negligible amount (by always responding
with '+' during the first K queries along e, the gap only decreases by an exponent of
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(

1−2−K
)

). However, the worst-case classifier must choose some number Et ≥ 1
of directions that will be eliminated.

We conservatively assume that the gap only decreases for case 1, which decouples the analysis of the
queries for C1 and C2 and allows us to upper bound the total number of queries. By this assumption,
if t ∈ C1 we have Gt = G2−K

t−1 whereas if t ∈ C2 then Gt = Gt−1. By analyzing the gap before and
after the final iteration T , it can be shown that

|C1|= /Lε/K1 (8)

since, for the algorithm to terminate, there must be a total of at least Lε binary search steps made
during case one iterations and every case one iteration takes exactly K steps.

At every iteration in case one, the adversary makes exactly K+ |Wt |− 1 queries where Wt is
the set of feasible directions remaining at the t th iteration. While Wt is controlled by the worst-case
classifier, we can apply the bound |Wt | ≤ |W |. Using this and the relation from Equation (8), we
can bound the number of queries, Q1, used in case 1 by

Q1 ≤ ∑
t∈C1

(K+ |W |−1)

=

⌈
Lε
K

⌉

· (K+ |W |−1)

≤
(
Lε
K

+1
)

·K+

⌈
Lε
K

⌉

· (|W |−1)

= Lε+K+

⌈
Lε
K

⌉

· (|W |−1) .

For each case two iteration, we make exactly K+Et queries, and each eliminates Et ≥ 1 di-
rections; hence, |Wt+1| = |Wt |−Et . A worst-case classifier will always make Et = 1 since that
maximally limits how much the adversary gains. Nevertheless, since case 2 requires the elimination
of at least 1 direction, we have |C2| ≤ |W |− 1 and moreover, regardless of the choice of Et we
have ∑t∈C2 Et ≤ |W |−1 since each direction can be eliminated no more than once and at least one
direction must remain. Thus,

Q2 = ∑
i∈C2

(K+Et)

≤ |C2| ·K+ |W |−1
≤ (|W |−1)(K+1) .

The total number of queries used by Algorithm 3 is then

Q= Q1 +Q2 ≤ Lε+K+

⌈
Lε
K

⌉

· (|W |−1)+(|W |−1)(K+1)

= Lε+
⌈
Lε
K

⌉

· |W |+K · |W |+ |W |−
⌈
Lε
K

⌉

−1

≤ Lε+
(⌈

Lε
K

⌉

+K+1
)

|W | .
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Finally, choosing K = /
√
Lε1 minimizes this expression. By substituting this K into Q’s bound

and using the bound Lε//
√
Lε1 ≤

√
Lε, we have

Q≤ Lε+
(

2/
√

Lε1+1
)

|W | ,

establishing the result.

Appendix B. Proof of Lower Bound

Here we prove the lower bound from Section 3.1.2. Recall that D is the dimension of the space,
A : ℜD→ℜ+ is any positive convex function, and 0 <C+

0 <C−0 are initial upper and lower bounds
on the MAC. We also have that F̂ convex,'+' ⊂ F convex,'+' is the set of classifiers consistent with
the constraints on the MAC; that is, for f ∈ F̂ convex,'+' we have X+

f is convex, BC+
0 (A) ⊂ X+

f , and
BC−0 (A) *⊂ X+

f . As above, we consider a worst-case classifier.
Proof of Theorem 5 Suppose a query-based algorithm submits N < D+ 1 membership queries
x1, . . . ,xN ∈ℜD to the classifier. For the algorithm to be ε-optimal, these queries must constrain all
consistent classifiers F̂ convex,'+' to have a common point among their ε-IMAC sets. Suppose that the
responses to the queries are consistent with the classifier f defined as:

f (x) =
{

+1 , if A
(

x−xA
)

<C−0
−1 , otherwise

.

For this classifier, X+
f is convex since A is a convex function, BC+

0 (A) ⊂ X+
f since C+

0 <C−0 , and
BC−0 (A) *⊂ X+

f since X+
f is the open C−0 -ball whereas BC−0 (A) is the closed C−0 -ball. Moreover,

since X+
f is the open C−0 -ball, ! x ∈ X−f s.t. A

(

x−xA
)

< C−0 therefore MAC (f ,A) = C−0 , and any
ε-optimal points x′ ∈ ε-IMAC(∗) (f ,A) must satisfyC−0 ≤ A

(

x′ −xA
)

≤ (1+ ε)C−0 .
Consider an alternative classifier g that responds identically to f for x1, . . . ,xN but has a different

convex positive set X+
g . Without loss of generality, suppose the first M ≤ N queries are positive and

the remainder are negative. Let G = conv
(

x1, . . . ,xM
)

; that is, the convex hull of the M positive
queries. Now let X+

g be the convex hull of G and the C+
0 -ball of A: X+

g = conv
(

G ∪BC+
0 (A)

)

.
SinceG contains all positive queries andC+

0 <C−0 , the convex set X+
g is consistent with the observed

responses, BC+
0 (A) ⊂ X+

g by definition, and BC−0 (A) *⊂ X+
g since the positive queries are all inside

the openC−0 -sublevel set. Further, since M ≤ N <D+1, G is contained in a proper linear subspace
of ℜD and hence the interior of G is empty; that is, int (G) = /0. Hence, there is always some
point from BC+

0 (A) that is on the boundary of X+
g ; that is, BC+

0 (A) *⊂ int (G) because int (G) = /0

and BC+
0 (A) *= /0. Hence, there must be at least one point from BC+

0 (A) on the boundary of the
convex hull of BC+

0 (A) and G . Hence, MAC (g,A) = infx∈X−g
[

A
(

x−xA
)]

=C+
0 . Since the accuracy

ε< C−0
C+

0
−1, any x ∈ ε-IMAC(∗) (g,A) must have

A
(

x−xA
)

≤ (1+ ε)C+
0 <

C−0
C+

0
C+

0 =C−0 ,
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whereas any y ∈ ε-IMAC(∗) (f ,A) must have A
(

y−xA
)

≥ C−0 . Thus, ε-IMAC(∗) (f ,A)∩
ε-IMAC(∗) (g,A) = /0 and we have constructed two convex-inducing classifiers f and g both con-
sistent with the query responses with no common ε-IMAC(∗).

Suppose instead that a query-based algorithm submits N < L(∗)ε membership queries. Recall our
definitions: C−0 is the initial upper bound on the MAC, C+

0 is the initial lower bound on the MAC,
and G(∗)

t = C−t /C+
t is the gap between the upper bound and lower bound at iteration t. Here, the

worst-case classifier f responds with

f
(

xt
)

=

{

+1 , if A
(

xt −xA
)

≤
√

C−t−1 ·C
+
t−1

−1 , otherwise
.

When the classifier responds with '+', C+
t increases to no more than

√

C−t−1 ·C
+
t−1 and so Gt ≥

√
Gt−1. Similarly when this classifier responds with '−', C−t decreases to no less than

√

C−t−1 ·C
+
t−1

and so againGt ≥
√
Gt−1. These responses ensure the invariantGt ≥

√
Gt−1 and since the algorithm

can not terminate until GN ≤ 1+ ε, we have N ≥ L(∗)ε from Equation (4). Otherwise, there are still
two convex-inducing classifiers with consistent query responses but with no common ε-IMAC. The
first classifier’s positive set is the smallest cost-ball enclosing all positive queries, while the second
classifier’s positive set is the largest cost-ball enclosing all positive queries but no negatives. The
MAC values for these classifiers differ by more than a factor of (1+ ε) if N < L(∗)ε , so they have no
common ε-IMAC.

Appendix C. Proof of Theorem 10

First we introduce the following lemma for the D-dimensional hypercube graphs—a collection of
2D nodes of the form (±1,±1, . . . ,±1) where each node has an edge to every other node that is
Hamming distance 1 from it.

Lemma 12 For any 0 < δ ≤ 1/2 and D ≥ 1, to cover a D-dimensional hypercube graph so that
every vertex has a Hamming distance of at most 5δD6 to some vertex in the covering, the number of
vertices in the covering must be

Q(D,h)≥ 2D(1−H(δ)) ,

where H (δ) =−δ log2 δ− (1−δ) log2(1−δ) is the entropy of δ.

Proof There are 2D vertices in the D-dimensional hypercube graph. Each vertex in the covering
is within a Hamming distance of at most h for exactly ∑h

k=0
(D
k
)

vertices. Thus, one needs at least
2D/

(

∑h
k=0
(D
k
)
)

to cover the hypercube graph. Now we apply the following bound (see Flum and
Grohe, 2006, Page 427)

5δD6

∑
k=0

(
D
k

)

≤ 2H(δ)D

to the denominator,6 which is valid for any 0 < δ≤ 1/2.

6. Gottlieb et al. (2011) present a better entropy bound on this sum of binomial coefficients, but it is unnecessary for
our result.
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Lemma 13 The minimum of the !p cost function Ap from the target xA to the halfspace Hw,b ={

x
∣
∣ x!w≥ b!w

}

can be expressed in terms of the equivalent hyperplane x!w≥ d parameterized
by a normal vector w and displacement d =

(

b−xA
)!w as

min
x∈Hw,d

Ap
(

x−xA
)

=

{

d ·‖w‖−1
p

p−1
, if d > 0

0 , otherwise
(9)

for all 1 < p< ∞ and for p= ∞ it is

min
x∈Hw,d

A∞
(

x−xA
)

=

{

d ·‖w‖−1
1 , if d > 0

0 , otherwise
. (10)

Proof For 1 < p<∞, minimizing Ap on the halfspace Hw,b is equivalent to finding a minimizer for

min
x

1
p

D

∑
i=1

|xi|p s.t. x!w≤ d .

Clearly, if d ≤ 0 then the vector 0 (corresponding to xA in the transformed space) trivially satisfies
the constraint and minimizes the cost function with cost 0 which yields the second case of Equa-
tion (9). For the case d > 0, we construct the Lagrangian

L (x,λ)! 1
p

D

∑
i=1

|xi|p−λ
(

x!w−d
)

.

Differentiating this with respect to x and setting that partial derivative equal to zero yields x∗i =
sign(wi)(λ|wi|)

1
p−1 . Plugging this back into the Lagrangian yields

L (x∗,λ) = 1− p
p

λ
p

p−1
D

∑
i=1

|wi|
p

p−1 +λd ,

which we now differentiate with respect to λ and set the derivative equal to zero to yield λ∗ =
(

d

∑Di=1 |wi|
p

p−1

)p−1
. Plugging this solution into the formula for x∗ yields the solution x∗i =

sign(wi)
(

d

∑Di=1 |wi|
p

p−1

)

|wi|
1
p−1 . The !p cost of this optimal solution is given by Ap

(

x∗ −xA
)

=

d ·‖w‖−1
p

p−1
, which is the first case of Equation (9).

For p= ∞, once again if d ≤ 0 then the vector 0 trivially satisfies the constraint and minimizes
the cost function with cost 0 which yields the second case of Equation (10). For the case d > 0,
we use the geometry of hypercubes (the equi-cost balls of a !∞ cost function) to derive the second
case of Equation (10). Any optimal solution must occur at a point where the hyperplane given by
x!w = b!w is tangent to a hypercube about xA—this can either occur along a side (face) of the
hypercube or at a corner. However, if the plane is tangent along a side (face) it is also tangent at a
corner of the hypercube. Hence, there is always an optimal solution at some corner of the optimal
cost hypercube.
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At a corner of the hypercube, we have the following property:

|x∗1|= |x∗2|= . . .= |x∗D| ;

that is, the magnitude of all coordinates of this optimal solution is the same value. Further, the sign
of the optimal solution’s ith coordinate must agree with the sign of the hyperplane’s ith coordinate,
wi. These constraints, along with the hyperplane constraint, lead to the following formula for an
optimal solution: xi = d · sign(wi)‖w‖−1

1 for all i. The !∞ cost of this solution is simply d · ‖w‖−1
1 .

Finally, for the proof of Theorem 10, we use the orthants (centered at xA)—an orthant is the D-
dimensional generalization of a quadrant in 2-dimensions. There are 2D orthants in aD-dimensional
space. We represent each orthant by its canonical representation which is a vector of D positive or
negative ones; that is, the orthant represented by a= (±1,±1, . . . ,±1) contains the point xA+a and
is the set of all points x satisfying:

xi ∈

{

[0,+∞] , if ai =+1
[−∞,0] , if ai =−1

.

Proof of Theorem 10 Suppose a query-based algorithm submitsN membership queries x1, . . . ,xN ∈
ℜD to the classifier. Again, for the algorithm to be ε-optimal, these queries must constrain all
consistent classifiers F̂ convex,'+' to have a common point among their ε-IMAC sets. The responses
described above are consistent with the classifier f defined as

f (x) =
{

+1 , if Ap
(

x−xA
)

<C−0
−1 , otherwise

.

For this classifier, X+
f is convex since Ap is a convex function for p ≥ 1, BC+

0 (Ap) ⊂ X+
f since

C+
0 <C−0 , and BC−0 (Ap) *⊂X+

f since X+
f is the openC−0 -ball whereas BC−0 (Ap) is the closedC−0 -ball.

Moreover, since X+
f is the open C−0 -ball, ! x ∈ X−f s.t. Ap

(

x−xA
)

<C−0 therefore MAC (f ,Ap) =
C−0 , and any ε-optimal points x′ ∈ ε-IMAC(∗) (f ,Ap) must satisfyC−0 ≤ Ap

(

x′ −xA
)

≤ (1+ ε)C−0 .
Now consider an alternative classifier g that responds identically to f for x1, . . . ,xN but has a

different convex positive set X+
g . Without loss of generality suppose the first M ≤ N queries are

positive and the remaining are negative. Here we consider a set which is a convex hull of the
orthants of all M positive queries; that is,

G = conv
(

orth
(

x1)∩X+
f ,orth

(

x2)∩X+
f , . . . ,orth

(

xM
)

∩X+
f

)

where orth(x) is some orthant that x lies within relative to the center, xA (a data point may lie
within more than one orthant but, to cover it, we need only have one orthant that contains it). By
intersecting each data point’s orthant with the set X+

f and taking the convex hull of these regions,
G is convex , contains xA and is a subset of X+

f consistent with all the query responses of f ; that
is, each of the M positive queries are in X+

g and all the negative queries are in X−g . Moreover, G
contains the convex hull of the M positive queries. Thus, by finding the largest enclosed !p ball
within the G , we upper bound MAC (g,Ap).
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We now represent each orthant as a vertex in a D-dimensional hypercube graph—the Hamming
distance between any pair of orthants is the number of different coordinates in their canonical rep-
resentations and two orthants are adjacent in the graph if and only if they have Hamming distance
of one. Using this notion of Hamming distance, we will seek a K-covering of the hypercube. We
refer to the orthants used in G to cover the M positive queries as covering orthants and their corre-
sponding vertices form a covering of the hypercube. Suppose the M covering orthants are sufficient
for a K covering but not a K−1 covering; then there must be at least one vertex not in the covering
that has at least a K Hamming distance to every vertex in the covering. This vertex corresponds to
an empty orthant that differs from all covered orthants in at least K coordinates of their canonical
vertices. Without loss of generality, suppose this uncovered orthant has the canonical vertex of all
positive ones which we scale to C−0 (+1,+1, . . . ,+1). Consider the hyperplane with normal vector
w= (+1,+1, . . . ,+1) and displacement

d =

{

C−0 (D−K)
p−1
p if 1 < p< ∞

C−0 (D−K) if p= ∞

that specifies the function s(x) = x!w − d = ∑D
i=1 xi − d. For this hyperplane, the vertex

C−0 (+1,+1, . . . ,+1) yields s
(

C−0 (+1,+1, . . . ,+1)
)

= C−0 D− d > 0. Also for any orthant a with
Hamming distance at least K from this uncovered orthant, we have that for any x ∈ orth(a)∩X+

f ,
by definition of the orthant and X+

f , the function s yields

s(x) = ∑
{i | ai=+1}

xi
︸︷︷︸

≥0

+ ∑
{i | ai=−1}

xi
︸︷︷︸

≤0

−d .

Since all the terms in the second summation are non-positive, the second sum is at most 0. Thus,
by maximizing the first summation, we upper bound s(x). The summation ∑{i | ai=+1} xi (with the
constraint that ‖x‖p <C−0 ) has at most D−K terms and is maximized by xi =C−0 (D−K)−1/p (or
xi =C−0 for p=∞) for which the first summation is upper bounded byC−0 (D−K)

p−1
p orC−0 (D−K)

for p = ∞; that is, it is upper bounded by d. Thus, we have that s(x) ≤ 0, and this hyperplane
separates the scaled vertexC−0 (+1,+1, . . . ,+1) from each set orth(a)∩X+

f where a is the canonical
representation of any orthant with a Hamming distance of at least K. This hyperplane also separates
the scaled vertex from G by the properties of the convex hull. Since the displacement d defined
above is greater than 0, by applying Lemma 13, this separating hyperplane upper bounds the cost of
the largest !p ball enclosed in G as

MAC (g,Ap)≤C−0 (D−K)
p−1
p ·‖w‖−1

p
p−1

=C−0

(
D−K
D

) p−1
p

for 1 < p< ∞ and
MAC (g,Ap)≤C−0 (D−K) ·‖1‖

−1
1 =C−0

D−K
D

for p=∞. Since we have an upper bound on the MAC of g and the MAC of f isC−0 , in order to have
a common ε-IMAC between these classifiers, we must have

(1+ ε)≥

{
( D
D−K

) p−1
p , if 1 < p< ∞

D
D−K , if p= ∞

.
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Solving for the value of K required to achieve a desired accuracy of 1+ ε we have

K ≤







(1+ε)
p

p−1−1

(1+ε)
p

p−1
D , if 1 < p< ∞

ε
1+εD , if p= ∞

,

which bounds the size of the covering required to achieve the desired accuracy.
For the case 1 < p< ∞, by Lemma 12, there must be

M ≥ exp

{

ln(2) ·D

(

1−H

(

(1+ ε)
p

p−1 −1
(1+ ε)

p
p−1

))}

vertices of the hypercube in the covering to achieve any accuracy 0 < ε < 2
p−1
p − 1, for which

δ= (1+ε)
p

p−1−1

(1+ε)
p

p−1
< 1

2 as required by the lemma. Moreover, since H (δ)< 1 for δ< 1
2 ,

αp,ε = exp

{

ln(2)

(

1−H

(

(1+ ε)
p

p−1 −1
(1+ ε)

p
p−1

))}

> 1

and we have M ≥ αDp,ε.
Similarly for p = ∞, Lemma 12 can be applied yielding M ≥ 2D(1−H( ε

1+ε)) to achieve any de-
sired accuracy 0 < ε < 1 (for which ε/(1+ ε) < 1/2 as required by the Lemma). Again, by the
properties of entropy, the constant α∞,ε = 2(1−H( ε

1+ε)) > 1 for 0 < ε< 1 and we have M ≥ αD∞,ε.

Appendix D. Proof of Theorem 11

For this proof, we build on previous results for covering hyperspheres. The proof is based on the
following covering number result by Wyner and Shannon, which bounds the minimum number
of spherical caps required to cover a hypersphere. A D-dimensional spherical cap is the outward
region formed by the intersection of a hypersphere and a halfspace as depicted in Figure 9. We
parameterize the caps by the hypersphere’s radius R and the half-angle φ about a central radius
(through the caps’s peak) as in the right-most diagram of Figure 9.

We now derive a bound on the number of spherical caps of half-angle φ required to cover the
sphere, mirroring the result of Wyner (1965).

Lemma 14 (Result based on Wyner 1965) Covering the surface of D-dimensional hypersphere of
radius R requires at least

(
1

sinφ

)D−2

spherical caps of half-angle φ ∈ (0, π2 ).

Proof In Capabilities of Bounded Discrepancy Decoding, Wyner showed that the minimal number,
M, of spherical caps of half-angle φ required to cover D-dimensional hypersphere of radius R is
given by

M ≥
D
√
πΓ
(D+1

2
)

(D−1)Γ
(

1+ D
2
)

[∫ φ

0
sinD−2(t)dt

]−1
.
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h

(a)

h

R−
h

R

√

h(2R−h)
φ

(b)

Figure 9: This figure depicts the geometry of spherical caps. (a) A spherical cap of height h, which
is created by a plane passing through the sphere. The green region represents the area
of the cap. (b) The geometry of the spherical cap; the intersecting halfspace forms a
right triangle with the centroid of the hypersphere. The length of the side of this triangle
adjacent to the centroid is R− h, its hypotenuse has length R, and the side opposite the
centroid has length

√

h(2R−h). The half angle φ, given by sin(φ) =
√
h(2R−h)
R , of the

right circular cone is used to parameterize the cap.

where Γ(x) is the usual gamma function. This result follows directly from computing the surface
area of the hypersphere and that of each spherical cap.

We continue by lower bounding the above integral for a looser but more interpretable bound.
Integrals of the form

∫ φ
0 sinD(t)dt also arise in computing the volume of a spherical cap. This

volume (and thus the integral) can be bounded by enclosing the cap within a hypersphere; compare
with Ball (1997). This yields the following bound:

∫ φ

0
sinD(t)dt ≤

√
πΓ
(D+1

2
)

Γ
(

1+ D
2
) · sinD φ .

Using this bound on the integral, our bound on the size of the covering becomes

M ≥
D
√
πΓ
(D+1

2
)

(D−1)Γ
(

1+ D
2
)

[√
πΓ
(D−1

2
)

Γ
(D

2
) · sinD−2φ

]−1

.

Now using properties of the gamma function, it can be shown that Γ(D+1
2 )Γ(D2 )

Γ(1+D
2 )Γ(

D−1
2 )

= D−1
D so that after

canceling terms we arrive at our result:

M ≥
(

1
sinφ

)D−2
.
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Proof of Theorem 11 Suppose a query-based algorithm submitsN membership queries x1, . . . ,xN ∈
ℜD to the classifier. For the algorithm to be ε-optimal, these queries must constrain all consistent
classifiers, F̂ convex,'+', to have a common point among their ε-IMAC sets. Suppose that all the
responses are consistent with the classifier f defined as

f (x) =
{

+1 , if A2
(

x−xA
)

<C−0
−1 , otherwise

.

For this classifier, X+
f is convex since A2 is a convex function, BC+

0 (A2)⊂ X+
f since C+

0 <C−0 , and
BC−0 (A2) *⊂ X+

f since X+
f is the open C−0 -ball whereas BC−0 (A2) is the closed C−0 -ball. Moreover,

since X+
f is the open C−0 -ball, ! x ∈ X−f such that A2

(

x−xA
)

<C−0 . Therefore, MAC (f ,A2) =C−0 ,
and any ε-optimal points x′ ∈ ε-IMAC(∗) (f ,A2) must satisfyC−0 ≤ A2

(

x′ −xA
)

≤ (1+ ε)C−0 .
Now consider an alternative classifier g that responds identically to f for x1, . . . ,xN but has a

different convex positive set X+
g . Without loss of generality, suppose the first M ≤ N queries are

positive and the remaining are negative. Let G = conv
(

x1, . . . ,xM
)

be the convex hull of these M
positive queries. We will assume xA ∈ G , since otherwise, we construct the set X+

g as in the proof
for Theorem 5 above and achieve MAC (f ,A2) = C+

0 thereby achieving our desired result. Now
consider the projection of each of the positive queries onto the surface of the !2 ball BC−0 (A2),
given by the points zi =C−0

xi
A2(xi−xA) . Since each positive query lies along the line between xA and

its projection zi, by convexity and the fact that xA ∈ G , we have G ⊂ conv
(

z1,z2, . . . ,zM
)

—we
will call this enlarged hull Ĝ . These M projected points

{

zi
}

must form a covering of the C−0 -
hypersphere as the locii of caps of half-angle φ∗ε = arccos

(

(1+ ε)−1). If not, then there exists some
point on the surface of this hypersphere that is at least an angle φ∗ε from all zi points and the resulting
φ∗ε-cap centered at this uncovered point is not in Ĝ (since a cap is defined as the intersection of the
hypersphere and a halfspace). Moreover, by definition of the φ∗ε-cap, it achieves a minimal !2 cost of
C−0 cosφ∗ε . Thus, if we fail to achieve a φ∗ε-covering of the C−0 -hypersphere, the alternative classifier
g has MAC (g,A2)<C−0 cosφ∗ε =C−0 /(1+ ε) and any x ∈ ε-IMAC(∗) (g,A2) must have

A2
(

x−xA
)

≤ (1+ ε)MAC < (1+ ε)
C−0

1+ ε
=C−0 ,

whereas any y ∈ ε-IMAC(∗) (f ,A) must have cost A
(

y−xA
)

≥ C−0 . Thus, we would have
ε-IMAC(∗) (f ,A)∩ε-IMAC(∗) (g,A)= /0 and would fail to achieve ε-multiplicative optimality. Hence,
we have shown that an φ∗ε-covering is necessary for ε-multiplicative optimality. Moreover, from our
definition of φ∗ε , for any ε ∈ (0,∞), φ∗ε ∈ (0, π2 ) and thus, Lemma 14 is applicable for all ε. From
Lemma 14, to have an φ∗ε-covering we must have

M ≥
(

1
sinφ∗ε

)D−2
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queries. Using the trigonometric identity sin(arccos(x)) =
√

1− x2, we can substitute for φ∗ε and
find

M ≥

(

1
sin
(

arccos
( 1

1+ε
))

)D−2

≥
(

(1+ ε)2

(1+ ε)2−1

)D−2
2

.
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Abstract
We present a framework for transfer in reinforcement learning based on the idea that related tasks
share some common features, and that transfer can be achieved via those shared features. The
framework attempts to capture the notion of tasks that are related but distinct, and provides some
insight into when transfer can be usefully applied to a problem sequence and when it cannot. We
apply the framework to the knowledge transfer problem, and show that an agent can learn a portable
shaping function from experience in a sequence of tasks to significantly improve performance in
a later related task, even given a very brief training period. We also apply the framework to skill
transfer, to show that agents can learn portable skills across a sequence of tasks that significantly
improve performance on later related tasks, approaching the performance of agents given perfectly
learned problem-specific skills.
Keywords: reinforcement learning, transfer, shaping, skills

1. Introduction

One aspect of human problem-solving that remains poorly understood is the ability to appropriately
generalize knowledge and skills learned in one task and apply them to improve performance in
another. This effective use of prior experience is one of the reasons that humans are effective
learners, and is therefore an aspect of human learning that we would like to replicate when designing
machine learning algorithms.

Although reinforcement learning researchers study algorithms for improving task performance
with experience, we do not yet understand how to effectively transfer learned skills and knowledge
from one problem setting to another. It is not even clear which problem sequences allow transfer,
which do not, and which do not need to. Although the idea behind transfer in reinforcement learning
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seems intuitively clear, no definition or framework exists that usefully formalises the notion of
“related but distinct” tasks—tasks that are similar enough to allow transfer but different enough to
require it.

In this paper we present a framework for transfer in reinforcement learning based on the idea
that related tasks share some common features and that transfer can take place through functions
defined only over those shared features. The framework attempts to capture the notion of tasks that
are related but distinct, and it provides some insight into when transfer can be usefully applied to a
problem sequence and when it cannot. We then demonstrate the framework’s use in producing algo-
rithms for knowledge and skill transfer, and we empirically demonstrate the resulting performance
benefits.

This paper proceeds as follows. Section 2 briefly introduces reinforcement learning, hierarchi-
cal reinforcement learning methods, and the notion of transfer. Section 3 introduces our framework
for transfer, which is applied in Section 4 to transfer knowledge learned from earlier tasks to im-
prove performance on later tasks, and in Section 5 to learn transferrable high-level skills. Section 7
discusses the implications and limitations of this work, and Section 8 concludes.

2. Background

The following sections briefly introduce the reinforcement learning problem, hierarchical reinforce-
ment learning methods, and the transfer problem.

2.1 Reinforcement Learning

Reinforcement learning (Sutton and Barto, 1998) is a machine learning paradigm where an agent
attempts to learn how to maximize a numerical reward signal over time in a given environment. As
a reinforcement learning agent interacts with its environment, it receives a reward (or sometimes
incurs a cost) for each action taken. The agent’s goal is to use this information to learn to act so as
to maximize the cumulative reward it receives over the future.

When the agent’s environment is characterized by a finite number of distinct states, it is usually
modeled as a finite Markov Decision Process (Puterman, 1994) described by a tupleM= 〈S,A,P,R〉,
where S is the finite set of environment states that the agent may encounter; A is a finite set of actions
that the agent may execute; P(s′|s,a) is the probability of moving to state s′ ∈ S from state s ∈ S
given action a ∈ A; and R is a reward function, which given states s and s′ and action a returns a
scalar reward signal to the agent for executing action a in s and moving to s′.

The agent’s objective is to maximize its cumulative reward. If the reward received by the agent
at time k is denoted rk, we denote this cumulative reward (termed return) from time t as Rt =
∑∞
i=0 γ

irt+i+1, where 0 < γ ≤ 1 is a discount factor that expresses the extent to which the agent
prefers immediate reward over delayed reward.

Given a policy π mapping states to actions, a reinforcement learning agent may learn a value
function, V , mapping states to expected return. If the agent is given or learns models of P and R,
then it may update its policy as follows:

π(s) = argmax
a

∑
s′
P(s′|s,a)[R(s,a,s′)+ γV (s′)],∀s ∈ S. (1)

Once the agent has updated its policy, it must learn a new estimate of V . The repeated execution
these two steps (value function learning and policy updates) is known as policy iteration. Under
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certain conditions (Sutton and Barto, 1998), policy iteration is guaranteed to converge to an optimal
policy π∗ that maximizes return from every state. Policy iteration is usually performed implicitly:
the agent simply defines its policy as Equation 1, effectively performing policy iteration after each
value function update.

In some applications, states are described by vectors of real-valued features, making the state
set a multidimensional continuous state space. (Hereafter we use the term state space to refer to
both discrete state sets and continuous state spaces.) This creates two problems. First, one must find
a way to compactly represent a value function defined on a multi-dimensional real-valued feature
space. Second, that representation must facilitate generalization: in a continuous state space the
agent may never encounter the same state twice and must instead generalize from experiences in
nearby states when encountering a novel one.

The most common approximation scheme is linear function approximation (Sutton and Barto,
1998). Here, V is approximated by the weighted sum of a vector Φ of basis functions:

 V (s) = w ·Φ(s) =
n

∑
i=1

wiφi(s), (2)

where φi is the ith basis function. Thus learning entails obtaining a weight vector w such that
the weighted sum in Equation 2 accurately approximates V . Since  V is linear in w, when V ’s
approximation as a weighted sum is not degenerate there is exactly one such optimal w; however,
we may represent complex value functions this way because each basis function φi may be an
arbitrarily complex function of s.

The most common family of reinforcement learning methods, and the methods used in this
work, are temporal difference methods (Sutton and Barto, 1998). Temporal difference methods
perform value function learning (and hence policy learning) online, through direct interaction with
the environment. For more details see Sutton and Barto (1998).

2.2 Hierarchical Reinforcement Learning and the Options Framework

Much recent research has focused on hierarchical reinforcement learning (Barto and Mahadevan,
2003), where, apart from a given set of primitive actions, an agent can acquire and use higher-level
macro actions built out of primitive actions. This paper adopts the options framework (Sutton et al.,
1999) for hierarchical reinforcement learning; however, our approach could also be applied in other
frameworks, for example the MAXQ (Dietterich, 2000) or Hierarchy of Abstract Machines (HAM)
(Parr and Russell, 1997) formulations.

An option o consists of three components:

πo : (s,a) )→ [0,1],
Io : s )→ {0,1},
βo : s )→ [0,1],

where πo is the option policy (which describes the probability of the agent executing action a in state
s, for all states in which the option is defined), Io is the initiation set indicator function, which is 1 for
states where the option can be executed and 0 elsewhere, and βo is the termination condition, giving
the probability of the option terminating in each state (Sutton et al., 1999). The options framework
provides methods for learning and planning using options as temporally extended actions in the
standard reinforcement learning framework (Sutton and Barto, 1998).
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Algorithms for learning new options must include a method for determining when to create an
option or alter its initiation set, how to define its termination condition, and how to learn its policy.
Policy learning is usually performed by an off-policy reinforcement learning algorithm so that the
agent can update many options simultaneously after taking an action (Sutton et al., 1998).

Creation and termination are usually performed by the identification of goal states, with an op-
tion created to reach a goal state and terminate when it does so. The initiation set is then the set of
states from which the goal is reachable. Previous research has selected goal states by a variety of
methods, for example: visit frequency and reward gradient (Digney, 1998), visit frequency on suc-
cessful trajectories (McGovern and Barto, 2001), variable change frequency (Hengst, 2002), relative
novelty (Şimşek and Barto, 2004), clustering algorithms and value gradients (Mannor et al., 2004),
local graph partitioning (Şimşek et al., 2005), salience (Singh et al., 2004), causal decomposition
(Jonsson and Barto, 2005), and causal analysis of expert trajectories (Mehta et al., 2008). Other
research has focused on extracting options by exploiting commonalities in collections of policies
over a single state space (Thrun and Schwartz, 1995; Bernstein, 1999; Perkins and Precup, 1999;
Pickett and Barto, 2002).

2.3 Transfer

Consider an agent solving a sequence of n problems, in the form of a sequence of Markov Decision
Processes M1, ...,Mn. If these problems are somehow “related”, and the agent has solved problems
M1, ...,Mn−1, then it seems intuitively reasonable that the agent should be able to use knowledge
gained in their solutions to solve Mn faster than it would be able to otherwise. The transfer problem
is the problem of how to obtain, represent and apply such knowledge.

Since transfer hinges on the tasks being related, the nature of that relationship will define how
transfer can take place. For example, it is common to assume that all of the tasks have the same
state space, action set and transition probabilities but differing reward functions, so that for any i,
Mi = 〈S,A,P,Ri〉. In that case, skills learned in the state space and knowledge about the structure
of the state space from previous tasks can be transferred, but knowledge about the optimal policy
cannot.

In many transfer settings, however, each task in the sequence has a distinct state space, but
the tasks nevertheless seem intuitively related. In the next section, we introduce a framework for
describing the commonalities between tasks that have different state spaces and action sets.

3. Related Tasks Share Common Features

Successful transfer requires an agent that must solve a sequence of tasks that are related but distinct—
different, but not so different that experience in one is irrelevant to experience in another. How can
we define such a sequence? How can we use such a definition to perform transfer?

Consider the illustrative example of an indoor mobile robot required to perform many learning
tasks over its lifetime. Although the robot might be equipped with a very rich set of sensors—for
example, laser range finders, temperature and pressure gauges—when facing a particular task it
will construct a task-specific representation that captures that task’s essential features. Such a task-
specific representation ensures that the resulting learning task is no more difficult than necessary,
and depends on the complexity of the problem rather than the robot (adding more sensors or actu-
ators should not make an easy task hard). In the reinforcement learning setting, a plausible design
for such a robot would use a task-specific MDP, most likely designed to be as small as possible
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(without discarding information necessary for a solution), and discrete (so that the task does not
require function approximation).

Thus, a robot given the tasks of searching for a particular type of object in two different buildings
B1 and B2 might form two completely distinct discrete MDPs,M1 andM2, most likely as topological
maps of the two buildings. Then even though the robot should be able to share information between
the two problems, without further knowledge there is no way to transfer information between them
based only on their description as MDPs, because the state labels and transition probabilities of M1
and M2 need have no relation at all.

We argue that finding relationships between pairs of arbitrary MDPs is both unnecessarily dif-
ficult and misses the connection between these problems. The problems that such a robot might
encounter are all related because they are faced by the same agent, and therefore the same sensor
features are present in each, even if those shared features are abstracted away when the problems are
framed as MDPs. If the robot is seeking a heat-emitting object in both B1 and B2, it should be able
to learn after solving B1 that its temperature gauge is a good predictor of the object’s location, and
use it to better search B2, even though its temperature gauge reading does not appear as a feature in
either MDP.

When trying to solve a single problem, we aim to create a minimal problem-specific repre-
sentation. When trying to transfer information across a sequence of problems, we should instead
concentrate on what is common across the sequence. We therefore propose that what makes tasks
related is the existence of a feature set that is shared and retains the same semantics across tasks.
To define what we mean by a feature having the same semantics across tasks, we define the notion
of a sensor.

Consider a parametrized class of tasks Γ(θ), where Γ returns a task instance given parameter
θ ∈ Θ. For example, Γ might be the class of square gridworlds, and θ might fix obstacle and goal
locations and size. We can obtain a sequence of tasks M1, ...,Mn via a sequence of task parameters
θ1, ...,θn.

Definition 1 A sensor ξ is a function mapping a task instance parameter θ ∈ Θ and state sθ ∈ SΘ
of the task obtained using θ to a real number f :

ξ : (θ,sθ) )→ f .

The important property of ξ is that it is a function defined over all tasks in Γ: it produces a
feature, f , that describes some property of an environment given that environment’s parameters and
current state. For example, f might describe the distance from a robot in a building to the nearest
wall; this requires both the position of the robot in the building (the problem state) and the layout
of the building (the environment parameters). The feature f has the same semantics across tasks
because it is generated by the same function in each task instance.1

An agent may in general be equipped with a suite of such sensors, from which it can read at
any point to obtain a feature vector. We call the space generated by the resulting features an agent-
space, because it is a property of the agent rather than any of the tasks individually, as opposed to
the problem-specific state space used to solve each problem (which we call a problem-space).

We note that in some cases the agent-space and problem-spaces used for a sequence of tasks may
be related, for example, each problem-space might be formed by appending a task-specific amount

1. We exclude degenerate cases, for example where ξ simply uses θ as an index and produces completely different
outputs for different values of θ, or where ξ returns a constant, or completely random, value.
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of memory to agent-space. However, in general it may not be possible to recover an agent-space
descriptor from a problem-space descriptor, or vice versa. The functions mapping the environment
to each descriptor are distinct and must be designed (or learned outside of the reinforcement learning
process) with different objectives.

We now model each problem in a sequence as an MDP augmented with an agent-space, writing
the augmented MDP corresponding to the ith problem as:

Mi = 〈Si,Ai,Pi,Ri,D〉,

where D (the agent-space) is a feature space defined across all tasks. For any state in any of the
environments, the agent also obtains an observation (or descriptor) d ∈ D, the features of which
have the same semantics across all tasks.

The core idea of our framework is that task learning occurs in problem-space, and transfer can
occur via agent-space. If we have an MDP augmented with features that are known to be shared,
we can use those shared features as a bridge across which knowledge can be transferred. This leads
to the following definition:

Definition 2 A sequence of tasks is related if that sequence has a non-empty agent-space—that is,
if a set of shared features exist in all of the tasks.

A further definition will prove useful in understanding when the transfer of information about
the value function is useful:

Definition 3 We define a sequence of related tasks to be reward-linked if the reward function for
all tasks is the same sensor, so that rewards are allocated the same way for all tasks (for example,
reward is always x for finding food).

A sequence of tasks must be (at least approximately) reward-linked if we aim to transfer infor-
mation about the optimal value function: if the reward functions in two tasks use different sensors
then there is no reason to hope that their value functions contain useful information about each other.

If a sequence of tasks is related, we may be able to perform effective transfer by taking advantage
of the shared space. If no such space exists, we cannot transfer across the sequence because there
is no view (however abstract or lossy) in which the tasks share common features. If we can find
an agent-space that is also usable as a problem-space for every task in the sequence, then we can
treat the sequence as a set of tasks in the same space (by using D directly as a state space) and
perform transfer directly by learning about the structure of this space. If in addition the sequence
is reward-linked, then the tasks are not distinct and transfer is trivial because we can view them as
a single problem. However, there may be cases where a shared problem-space exists but results in
slow learning, and using task-specific problem-spaces coupled with a transfer mechanism is more
practical.

We can therefore define the working hypothesis of this paper as follows:

We can usefully describe two tasks as related when they share a common feature space,
which we term an agent-space. If learning to solve each individual task is possible and
feasible in agent-space, then transfer is trivial: the tasks are effectively a single task
and we can learn a single policy in agent-space for all tasks. If it is not, then transfer
between two tasks can nevertheless be effected through agent-space, either through the
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transfer of knowledge about the value function (when the tasks are reward-linked), or
through the transfer of skills defined in agent-space.

In the following sections we use this framework to build agents that perform these two different
types of transfer. Section 4 shows that an agent can transfer value-functions learned in agent-space
to significantly decrease the time taken to find an initial solution to a task, given experience in a
sequence of related and reward-linked tasks. In Section 5 we show that an agent can learn portable
high-level skills directly in agent-space which can dramatically improve task performance, given
experience in a sequence of related tasks.

4. Knowledge Transfer

In this section, we show that agents that must repeatedly solve the same type of task (in the form of
a sequence of related, reward-linked tasks) can transfer useful knowledge in the form of a portable
shaping function that acts as an initial value function and thereby endows the agent with an initial
policy. This significantly improves initial performance in later tasks, resulting in agents that can,
for example, learn to solve difficult tasks quickly after being given a set of relatively easy training
tasks.

We empirically demonstrate the effects of knowledge transfer using a relatively simple demon-
stration domain (a rod positioning task with an artificial agent space) and a more challenging domain
(Keepaway). We argue (in Section 4.5) that this has the effect of creating agents which can learn
their own heuristic functions.

4.1 Shaping

Shaping is a popular method for speeding up reinforcement learning in general, and goal-directed
exploration in particular (Dorigo and Colombetti, 1998). Although this term has been applied to
a variety of different methods within the reinforcement learning community, only two are relevant
here. The first is the gradual increase in complexity of a single task toward some given final level
(for example, Randløv and Alstrøm 1998; Selfridge et al. 1985), so that the agent can safely learn
easier versions of the same task and use the resulting policy to speed learning as the task becomes
more complex.2 Unfortunately, this type of shaping does not generally transfer between tasks—
it can only be used to gently introduce an agent to a single task, and is therefore not suited to a
sequence of distinct tasks.

Alternatively, the agent’s reward function could be augmented through the use of intermediate
shaping rewards or “progress indicators” (Matarić, 1997) that provide an augmented (and hopefully
more informative) reinforcement signal to the agent. This has the effect of shortening the reward
horizon of the problem—the number of correct actions the agent must execute before receiving a
useful reward signal (Laud and DeJong, 2003). Ng et al. (1999) proved that an arbitrary externally
specified reward function could be included as a potential-based shaping function in a reinforce-
ment learning system without modifying its optimal policy. Wiewiora (2003) showed that this is
equivalent to using the same reward function as a non-uniform initial state value function, or with

2. We note that this definition of shaping is closest to its original meaning in the psychology literature, where it refers
to a process by which an experimenter rewards an animal for behavior that progresses toward the completion of
a complex task, and thereby guides the animal’s learning process. As such it refers to a training technique, not a
learning mechanism (see Skinner, 1938).
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a small change in action selection, as an initial state-action value function (Wiewiora et al., 2003).
Thus, we can use any function we like as an initial value function for the agent, even if (as is often
the case in function approximation) it is not possible to directly initialize the value function. The
major drawback is that designing such a shaping function requires significant engineering effort. In
the following sections we show that an agent can learn its own shaping function from experience
across several related, reward-linked tasks without having it specified in advance.

4.2 Learning Portable Shaping Functions

As before, consider an agent solving n problems with MDPs M1, ...,Mn, each with their own state
space, denoted S1, ...,Sn and augmented with agent-space features. We associate a four-tuple σ j

i
with the ith state in Mj:

σ j
i = 〈s ji ,d

j
i ,r

j
i ,v

j
i 〉,

where s ji is the usual problem-space state descriptor (sufficient to distinguish this state from the
others in S j), d ji is the agent-space descriptor, r ji is the reward obtained at the state and v ji is the
state’s value (expected total reward for action starting from the state). The goal of value-function
based reinforcement learning is to obtain the v ji values for each state in the form of a value function
Vj:

Vj : s ji )→ v ji .

Vj maps problem-specific state descriptors to expected return, but it is not portable between
tasks, because the form and meaning of s ji (as a problem-space descriptor) may change from one task
to another. However, the form and meaning of d ji (as an agent-space descriptor) does not change.
Since we want an estimator of return that is portable across tasks, we introduce a new function L
that is similar to each Vj, but that estimates expected return given an agent-space descriptor:

L : d ji )→ v ji .

L is also a value function, but it is defined over portable agent-space descriptors rather than
problem-specific state space descriptors. As such, we could consider it a form of feature-based value
function approximation and update it online (using a suitable reinforcement learning algorithm)
during each task. Alternatively, once an agent has completed some task S j and has learned a good
approximation of the value of each state using Vj, it can use its (d ji ,v

j
i ) pairs as training examples

for a supervised learning algorithm to learn L. Since L is portable, we can in addition use samples
from multiple related, reward-linked tasks.

After a reasonable amount of training, L can be used to estimate a value for newly observed
states in any future related and reward-linked tasks. Thus, when facing a new task Mk, the agent
can use L to provide a good initial estimate forVk that can be refined using a standard reinforcement
learning algorithm. Alternatively (and equivalently), L could be used as an external shaping reward
function.

4.3 A Rod Positioning Experiment

In this section we empirically evaluate the potential benefits of a learned shaping function in a rod
positioning task (Moore and Atkeson, 1993), where we add a simple artificial agent space that can
be easily manipulated for experimental purposes.
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Each task consists of a square workspace that contains a rod, some obstacles, and a target. The
agent is required to maneuver the rod so that its tip touches the target (by moving its base coordinate
or its angle of orientation) while avoiding obstacles. An example 20x20 unit task and solution path
are shown in Figure 1.

Figure 1: A 20x20 rod positioning task and one possible solution path.

Following Moore and Atkeson (1993), we discretize the state space into unit x and y coordi-
nates and 10◦ angle increments. Thus, each state in the problem-space can be described by two
coordinates and one angle, and the actions available to the agent are movement of one unit in either
direction along the rod’s axis, or a 10o rotation in either direction. If a movement causes the rod to
collide with an obstacle, it results in no change in state, so the portions of the state space where any
part of the rod would be interior to an obstacle are not reachable. The agent receives a reward of −1
for each action, and a reward of 1000 when reaching the goal (whereupon the current episode ends).

We augment the task environment with five beacons, each of which emits a signal that drops
off with the square of the Euclidean distance from a strength of 1 at the beacon to 0 at a distance
of 60 units. The tip of the rod has a sensor array that can detect the values of each of these signals
separately at the adjacent state in each action direction. Since these beacons are present in every
task, the sensor readings are an agent-space and we include an element in the agent that learns L
and uses it to predict reward for each adjacent state given the five signal levels present there.

The usefulness of L as a reward predictor will depend on the relationship between beacon place-
ment and reward across a sequence of individual rod positioning tasks. Thus we can consider the
beacons as simple abstract signals present in the environment, and by manipulating their placement
(and therefore their relationship to reward) across the sequence of tasks, we can experimentally
evaluate the usefulness of various forms of L.

4.3.1 EXPERIMENTAL STRUCTURE

In each experiment, the agent is exposed to a sequence of training experiences, during which it is
allowed to update L. After each training experience, it is evaluated in a large test case, during which
it is not allowed to update L.

Each individual training experience places the agent in a small task, randomly selected from a
randomly generated set of 100 such tasks, where it is given sufficient time to learn a good solution.
Once this time is up, the agent updates L using the value of each visited state and the sensory signal
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present at it, before it is tested on the much larger test task. All state value tables are cleared between
training episodes.

Each agent performed reinforcement learning using Sarsa(λ) (λ = 0.9,α = 0.1,γ = 0.99,
ε = 0.01) in problem-space and used training tasks that were either 10x10 (where it was given 100
episodes to converge in each training task), or 15x15 (when it was given 150 episodes to converge),
and tested in a 40x40 task.3 L was a linear estimator of reward, using either the five beacon signal
levels and a constant as features (requiring 6 parameters, and referred to as the linear model) or using
those with five additional features for the square of each beacon value (requiring 11 parameters,
referred to as the quadratic model). All parameters were initialized to 0, and learning for L was
accomplished using gradient descent with α = 0.001. We used two experiments with different
beacon placement schemes.

4.3.2 FOLLOWING A HOMING BEACON

In the first experiment, we always placed the first beacon at the target location, and randomly dis-
tributed the remainder throughout the workspace. Thus a high signal level from the first beacon
predicts high reward, and the others should be ignored. This is a very informative indication of
reward that should be easy to learn, and can be well approximated even with a linear L. Figure 2
shows the 40x40 test task used to evaluate the performance of each agent, and four sample 10x10
training tasks.

Figure 3(a) shows the number of steps (averaged over 50 runs) required to first reach the goal
in the test task, against the number of training tasks completed by the agent for the four types of
learned shaping elements (linear and quadratic L, and either 10x10 or 15x15 training tasks). It also
shows the average number of steps required by an agent with a uniform initial value of 0 (agents
with a uniform initial value of 500 performed similarly while first finding the goal). Note that there
is just a single data point for the uniform initial value agents (in the upper left corner) because their
performance does not vary with the number of training experiences.

Figure 3(a) shows that training significantly lowers the number of steps required to initially find
the goal in the test task in all cases, reducing it after one training experience from over 100,000 steps
to at most just over 70,000, and by six episodes to between 20,000 and 40,000 steps. This difference
is statistically significant (by a t-test, p < 0.01) for all combinations of L and training task sizes,
even after just a single training experience. Figure 3(a) also shows that the complexity of L does
not appear to make a significant difference to the long-term benefit of training (probably because
of the simplicity of the reward indicator), but training task size does. The difference between the
number of steps required to first find the goal for 10x10 and 15x15 training task sizes is statistically
significant (p< 0.01) after 20 training experiences for both linear and quadratic forms of L, although
this difference is clearer for the quadratic form, where it is significant after 6 training experiences.

Figure 3(b) shows the number of steps (averaged over 50 runs) required to reach the goal as
the agents repeat episodes in the test task, after completing 20 training experiences (note that L is
never updated in the test task), compared to the number of steps required by agents with value tables
uniformly initialized to 0 and 500. This illustrates the difference in overall learning performance
on a single new task between agents that have had many training experiences and agents that have

3. We note that in general the tasks used to train the agent need not be smaller than the task used to test it. We used
small training tasks in this experiment to highlight the fact that the size of problem-space may differ between related
tasks.
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a b

Figure 2: The homing experiment 40x40 test task (a) and four sample 10x10 training tasks (b).
Beacon locations are shown as crosses, and the goal is shown as a large dot. Note that the
first beacon is on the target in each task. The optimal solution for the test task requires 69
steps.

not. Figure 3(b) shows that the learned shaping function significantly improves performance during
the first few episodes of learning, as expected. It also shows that the number of episodes required
for convergence is roughly the same as that of an agent using a uniformly optimistic value table
initialization of 500, and slightly longer than that of an agent using a uniformly pessimistic value
table initialization of 0. This suggests that once a solution is found the agent must “unlearn” some of
its overly optimistic estimates to achieve convergence. Note that a uniform initial value of 0 works
well here because it discourages extended exploration, which is unnecessary in this domain.

4.3.3 FINDING THE CENTER OF A BEACON TRIANGLE

In the second experiment, we arranged the first three beacons in a triangle at the edges of the task
workspace, so that the first beacon lay to the left of the target, the second directly above it, and
the third to its right. The remaining two were randomly distributed throughout the workspace.
This provides a more informative signal, but results in a shaping function that is harder to learn.
Figure 4 shows the 10x10 sample training tasks given in Figure 2 after modification for the triangle
experiment. The test task was similarly modified.

Figure 5(a) shows the number of steps initially required to reach the goal for the triangle exper-
iment, again showing that completing even a single training task results in a statistically significant
(p< 0.01 in all cases) reduction from the number required by an agent using uniform initial values,
from just over 100,000 steps to at most just over 25,000 steps after a single training episode. Figure
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(a) The average number of steps required to first reach the goal in the homing test task, for agents
that have completed varying numbers of training task episodes.
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(b) Steps to reward against episodes in the homing test task for agents that have completed 20 training tasks.

Figure 3: Results for the homing task.
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Figure 4: Sample 10x10 training tasks for the triangle experiment. The three beacons surrounding
the goal in a triangle are shown in gray.

5(a) also shows that there is no significant difference between forms of L and size of training task.
This suggests that extra information in the agent-space more than makes up for a shaping function
being difficult to accurately represent—in all cases the performance of agents learning using the
triangle beacon arrangement is better than that of those learning using the homing beacon arrange-
ment. Figure 5(b) shows again that the initial few episodes of repeated learning in the test task
are much faster, and again that the total number of episodes required to converge lies somewhere
between the number required by an agent initializing its value table pessimistically to 0 and one
initializing it optimistically to 500.

4.3.4 SENSITIVITY ANALYSIS

So far, we have used shared features that are accurate in the sense that they provide a signal that
is uncorrupted by noise and that has exactly the same semantics across tasks. In this section, we
empirically examine how sensitive a learned shaping reward might be to the presence of noise, both
in the features and in their role across tasks.

To do so, we repeat the above experiments (using training tasks of size 15, and a quadratic
approximator) but with only a single beacon whose position is given by the following formula:

b= (1−η)g+ηr,

where g is the coordinate vector of the target, η ∈ [0,1] is a noise parameter, and r is a co-ordinate
vector generated uniformly at random. Thus, when η= 0 we have no noise and the beacon is always
placed directly over the goal; when η = 1, the beacon is placed randomly in the environment.
Varying η between 0 and 1 allows us to manipulate the amount of noise present in the beacon’s
placement, and hence in the shared feature used to learn a portable shaping function. We consider
two scenarios.

In the first scenario, the same η value is used to place the beacon in both the training and the
test problem. This corresponds to a signal that is perturbed by noise, but whose semantics remain
the same in both source and target tasks. This measures how sensitive learned shaping rewards are
to feature noise, and so we call this the noisy-signal task. The results are shown in Figure 6(a) and
6(b).

Figure 6(a) measures the number of steps required to complete the first episode in the large test
problem, given experience in various numbers of training problems and varying levels of noise. The
results show that transfer is fairly robust to noise, resulting in an improvement over starting from
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(a) The average number of steps required to first reach the goal in the triangle test task, for agents
that have completed varying number of training task episodes.
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(b) Steps to reward against episodes in the triangle test task for agents that have completed 20 training tasks.

Figure 5: Results for the triangle task.
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(a) The average number of steps required to first reach the test task goal given a predictor
learned using a noisy signal.
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(b) Steps to reward against episodes in the test task for agents that have completed 20 training task episodes
using a noisy signal.

Figure 6: Results for the noisy-signal task.
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scratch that drops with increased noise but still does better until η> 0.6, when the feature has more
noise than signal.

Higher levels of noise more severely affects agents that have seen higher numbers of training
problems, until a performance floor is reached between 5 and 10 training problems. This reflects
the training procedure used to learn L, whereby each training problem results in a small adjustment
of L’s parameters and those adjustments accumulate over several training episodes.

Similarly, Figure 6(b) shows learning curves in the test problem for agents that have experienced
20 test problems, with varying amounts of noise. We see that, although these agents often do worse
than learning from scratch in the first episode, they subsequently do better when η < 1, and again
converge at roughly the same rate as agents that use an optimistic initial value function.

In the second scenario, η is zero in the training problems, but non-zero in the test problem.
This corresponds to a feature which has slightly different semantics in the source and target tasks,
and thus measures how learning is affected by an imperfect or approximate choice of agent space
features. We call this the noisy-semantics task.

Results for the noisy-semantics task are given in Figures 7(a) and 7(b). These two graphs show
that transfer achieves a performance benefit when η < 0.5—when there is at least as much signal
as noise—and the more training problems the agent has solved, the worse its performance will be
when η= 1. However, the possible performance penalty for high η is more severe—an agent using
a learned shaping function that rewards it for following a beacon signal may take nearly four times
as long to first solve the test problem when that feature becomes random (at η= 1). Again, however,
when η< 1 the agents recover after their first episode to outperform agents that learn from scratch
within the first few episodes.

4.3.5 SUMMARY

The first two experiments above show that an agent able to learn its own shaping rewards through
training can use even a few training experiences to significantly improve its initial policy in a novel
task. They also show that such training results in agents with convergence characteristics similar
to that of agents using uniformly optimistic initial value functions. Thus, an agent that learns its
own shaping rewards can improve its initial speed at solving a task when compared to an agent that
cannot, but it will not converge to an approximately optimal policy in less time (as measured in
episodes).

The results also seem to suggest that a better training environment is helpful but that its useful-
ness decreases as the signal predicting reward becomes more informative, and that increasing the
complexity of the shaping function estimator does not appear to significantly improve the agent’s
performance. Although this is a very simple domain, this suggests that given a rich signal from
which to predict reward, even a weak estimator of reward can greatly improve performance.

Finally, our third pair of experiments suggest that transfer is relatively robust to noise, both
in the features themselves and in their relationship across tasks, resulting in performance benefits
provided there is at least as much useful information in the features as there is noise. Beyond that,
however, agents may experience negative transfer where either noisy features or an imperfect or
approximate set of agent-space features result in poor learned shaping functions.
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(a) The average number of steps required to first reach the test task goal given a predictor
learned using features with imperfectly preserved semantics.
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(b) Steps to reward against episodes in the test task for agents that have completed 20 training task episodes
using features with imperfectly preserved semantics.

Figure 7: Results for the noisy-semantics task.
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4.4 Keepaway

In this section we evaluate knowledge transfer using common features in Keepaway (Stone et al.,
2005), a robot soccer domain implemented in the RoboCup soccer simulator. Keepaway is a chal-
lenging domain for reinforcement learning because it is multi-agent and has a high-dimensional
continuous state space. We use Keepaway to illustrate the use of learned shaping rewards on a stan-
dard but challenging benchmark that has been used in other transfer studies (Taylor et al., 2007).

Keepaway has a square field of a given size, which contains players and a ball. Players are
divided into two groups: keepers, who are originally in possession of the ball and try to stay in
control of it, and takers, who attempt to capture the ball from the keepers. This arrangement is
depicted in Figure 8.

Figure 8: The Keepaway Task. The keepers (white circles) must keep possession of the ball and
not allow the takers (gray octagons) to take it away. This diagram depicts 3v2 Keepaway,
where there are 3 keepers and 2 takers.

Each episode begins with the takers in one corner of the field and the keepers randomly dis-
tributed. The episode ends when the ball goes out of bounds, or when a taker ends up in possession
of the ball (i.e., within a small distance of the ball for a specified period of time). The goal of the
keepers is then to maximize the duration of the episode. At each time step, the objective of learning
is to modify the behavior of the keeper currently in possession of the ball. The takers and other
keepers act according to simple hand-coded behaviors. Keepers not in possession of the ball try to
open a clear shot from the keeper with the ball to themselves and attempt to receive the ball when it
is passed to them. Takers either try to block keepers that are not holding the ball, try to take the ball
from the keeper in possession, or try to intercept a pass.

Rather than using the primitive actions of the domain, keepers are given a set of predefined
options. The options available to the keeper in possession of the ball are HoldBall (remain stationary
while keeping the ball positioned away from the takers) and PassBall(k) (pass the ball to the kth other
keeper). Since only the keeper in possession of the ball is acting according to the reinforcement
learner at any given time, multiple keepers may learn during each episode; each keeper’s learner
runs separately.

The state variables are continuous and defined according to the center of the board and the
location of the players, with the number of variables depending on the number of players. For
example, 3v2 Keepaway (three keepers versus two takers) has thirteen state variables: the distance
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from K1 (the keeper in possession) to each other player, the minimum angles BAC for each other
keeper (where B is the other keeper, A is K1, andC is a taker—this measures how “open” each other
keeper is to a pass), the distance from each player to the center, and the minimum distance from
each other keeper to a taker. The number of state variables is 4K+ 2T − 3, for K keepers and T
takers. We used a field measuring 20x20 units for 3v2 games, and a field measuring 30x30 for 4v3
and 5v4. For a more detailed description of the Keepaway domain we refer the reader to Stone et al.
(2005).

4.4.1 EXPERIMENTAL STRUCTURE

In the previous section, we studied transferring portable shaping functions from a varying number
of smaller randomly generated source tasks to a fixed larger target task. In Keepaway, instances of
the domain are obtained by fixing the number of keepers and the number of takers. Since we cannot
obtain experience in more than a few distinct source tasks, in this section we instead study the effect
of varying amounts of training time in a source task on performance in a target task.

We thus studied transfer from 3v2 Keepaway to 4v3 and 5v4 Keepway, and from 4v3 to 5v4;
these are the most common Keepaway configurations and are the same configurations studied by
Taylor and Stone (2005). In all three cases we used the state variables from 5v4 as an agent-space.
When a state variable is not defined (e.g., the distance to the 4th keeper in 3v2 Keepaway), we set
distances and angles to keepers to 0, and distances and angles to takers to their maximum value,
which effectively simulates their being present but not meaningfully involved in the current state.
We employed linear function approximation with Sarsa (Sutton and Barto, 1998) using 32 radial
basis functions per state variable, tiling each variable independently of the others, following and
using the same parameters as Stone et al. (2005).

We performed 20 separate runs for each condition. We first ran 20 baseline runs for 3v2, 4v3,
and 5v4 Keepaway, saving weights for the common space for each 3v2 and 4v3 run at 50, 250, 500,
1000, 2000, and 5000 episodes. Then for each set of common space weights from a given number
of episodes, we ran 20 transfer runs. For example, for the 3v2 to 5v4 transfer with 250-episode
weights, we ran 20 5v4 transfer runs, each of which used one of the 20 saved 250-episode 3v2
weights.

Because of Keepaway’s high variance, and in order to provide results loosely comparable with
Taylor and Stone (2005), we evaluated the performance of transfer in Keepaway by measuring the
average time required to reach some benchmark performance. We selected a benchmark time for
each setting (3v2, 4v3 or 5v4) which the baseline learner could consistently reach by about 5000
episodes. This benchmark time T is considered reached at episode n when the average of the
times from n− 500 to n+ 500 is at least T ; this window averaging compensates Keepaway’s high
performance variance. The benchmark times for each domain were, in order, 12.5 seconds, 9.5
seconds, and 8.5 seconds.

4.4.2 RESULTS

Table 1 shows the results of performing transfer from 3v2 Keepaway to 4v3 Keepaway. Results
are reported as time (in simulator hours) to reach the benchmark in the target task (4v3 Keepaway)
given a particular number of training episodes in the source task (3v2 Keepaway), and the total time
(source task training time plus time to reach the benchmark in the target task, in simulator hours).
We can thereby evaluate whether the agents achieve weak transfer—where there is an improvement
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in the target task with experience in the source task—by examining the third column (average 4v3
time), and strong transfer—where the sum of the time spent in both source and target tasks is lower
than that taken when learning the target task in isolation—by examining the fourth column (average
total time).

The results show that training in 3v2 decreases the amount of time required to reach the bench-
mark in 4v3, which shows that transfer is successful in this case and weak transfer is achieved.
However, the total (source and target) time to benchmark never decreases with experience in the
source task, so strong transfer is not achieved.

# 3v2 Episodes Ave. 3v2 Time Ave 4v3 Time Ave. Total Time Std. Dev.

0 0.0000 5.5616 5.5616 1.5012
50 0.0765 5.7780 5.8544 0.8870
250 0.3919 5.4763 5.8682 1.2399
500 0.8871 5.1192 6.0063 0.9914
1000 1.8166 4.7380 6.5546 1.2680
2000 3.9908 3.1295 7.1203 1.1465
5000 14.7554 1.4236 16.1790 0.2738

Table 1: Results of transfer from 3v2 Keepaway to 4v3 Keepaway.

Figure 9 shows sample learning curves for agents learning from scratch and agents using trans-
ferred knowledge from 5000 episodes of 3v2 Keepaway, demonstrating that agents that transfer
knowledge start with better policies and learn faster.

Table 2 shows the results of transfer from 3v2 Keepaway (Table 1(a)) and 4v3 Keepaway (Table
1(b)) to 5v4 Keepaway. As before, in both cases more training on the easier task results in better
performance in 5v4 Keepaway, demonstrating that weak transfer is achieved. However, the least
total time (including training time on the source task) is obtained using a moderate amount of source
task training, and so when transferring to 5v4 we achieve strong transfer.

Finally, Table 3 shows the results of transfer for shaping functions learned on both 3v2 and
4v3 Keepaway, applied to 5v4 Keepaway. Again, more training time obtains better results although
over-training appears to be harmful.

These results show that knowledge transfer through agent-space can achieve effective transfer in
a challenging problem and can do so in multiple problems through the same set of common features.

4.5 Discussion

The results presented above suggest that agents that employ reinforcement learning methods can
be augmented to use their experience to learn their own shaping rewards. This could result in
agents that are more flexible than those with pre-engineered shaping functions. It also creates the
possibility of training such agents on easy tasks as a way of equipping them with knowledge that
will make harder tasks tractable, and is thus an instance of an autonomous developmental learning
system (Weng et al., 2000).

In some situations, the learning algorithm chosen to learn the shaping function, or the sensory
patterns given to it, might result in an agent that is completely unable to learn anything useful. We
do not expect such an agent to do much worse than one without any shaping rewards at all. Another
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Figure 9: Sample learning curves for 4v3 Keepaway given no transfer (solid lines) or having expe-
rienced 5000 episodes of experience in 3v2 (dashed lines).

potential concern is the possibility that a maliciously chosen or unfortunate set of training tasks
could result in an agent that performs worse than one with no training. Fortunately, such agents will
still eventually be able to learn the correct value function (Ng et al., 1999).

All of the experiments reported in this paper use model-free learning algorithms. Given that
an agent facing a sequence of tasks receives many example transitions between pairs of agent-
space descriptors, it may prove efficient to instead learn an approximate transition model in agent-
space and then use that model to obtain a shaping function via planning. However, learning a good
transition model in such a scenario may prove difficult because the agent-space features are not
Markov.

In standard classical search algorithms such as A∗, a heuristic imposes an order in which nodes
are considered during the search process. In reinforcement learning the state space is searched
by the agent itself, but its initial value function (either directly or via a shaping function) acts to
order the selection of unvisited nodes by the agent. Therefore, we argue that reinforcement learning
agents using non-uniform initial value functions are using something very similar to a heuristic, and
those that are able to learn their own portable shaping functions are in effect able to learn their own
heuristics.

5. Skill Transfer

The previous section showed that we can effectively transfer knowledge about reward when a se-
quence of tasks is related and reward-linked, and that such knowledge can significantly improve
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(a) Transfer results from 3v2 to 5v4 Keepaway.

# 3v2 Episodes Ave. 3v2 Time Ave 5v4 Time Ave. Total Time Std. Dev.

0 0.0000 7.4931 7.4931 1.5229
50 0.0765 6.3963 6.4728 1.0036
250 0.3919 5.6675 6.0594 0.7657
500 0.8870 5.9012 6.7882 1.1754
1000 1.8166 3.9817 5.7983 1.2522
2000 3.9908 3.9678 7.9586 1.8367
5000 14.7554 3.9241 18.6795 1.3228

(b) Transfer results from 4v3 to 5v4 Keepaway.

# 4v3 Episodes Ave. 4v3 Time Ave 5v4 Time Ave. Total Time Std. Dev.

0 0.0000 7.4931 7.4930 1.5229
50 0.0856 6.6268 6.7125 1.2162
250 0.4366 6.1323 6.5689 1.1198
500 0.8951 6.3227 7.2177 1.0084
1000 1.8671 6.0406 7.9077 1.0766
2000 4.0224 5.0520 9.0744 0.9760
5000 11.9047 3.218 15.1222 0.6966

Table 2: Results of transfer to 5v4 Keepaway.

# 3v2 Episodes # 4v3 Episodes Ave 5v4 Time Ave. Total Time Std. Dev.

500 500 6.1716 8.0703 1.1421
500 1000 5.6139 8.6229 0.9597
1000 500 4.5395 7.3922 0.6689
1000 1000 4.8648 8.8448 0.9517

Table 3: Results of transfer from both 3v2 Keepaway and 4v3 Keepaway to 5v4 Keepaway.

performance. We can apply the same framework to effect skill transfer by creating portable option
policies. Most option learning methods work within the same state space as the problem the agent
is solving at the time. Although this can lead to faster learning on later tasks in the same state space,
learned options would be more useful if they could be reused in later tasks that are related but have
distinct state spaces.

In this section we demonstrate empirically that an agent that learns portable options directly in
agent-space can reuse those options in future related tasks to significantly improve performance.
We also show that the best performance is obtained using portable options in conjunction with
problem-specific options.
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5.1 Options in Agent-Space

Following section 4.2, we consider an agent solving n problemsM1, ...,Mn with state spaces S1, ...,Sn,
and action space A. Once again, we associate a four-tuple σ j

i with the ith state in Mj:

σ j
i = 〈s ji ,d

j
i ,r

j
i ,v

j
i 〉,

where s ji is the usual problem-space state descriptor (sufficient to distinguish this state from the
others in S j), d ji is the agent-space descriptor, r ji is the reward obtained at the state and v ji is the
state’s value (expected total reward for action starting from the state).

The agent is also either given, or learns, a set of higher-level options to reduce the time required
to solve the task. Options defined using s ji are not portable between tasks because the form and
meaning of s ji (as a problem-space descriptor) may change from one task to another. However, the
form and meaning of d ji (as an agent-space descriptor) does not. Therefore we define agent-space
option components as:

πo : (d ji ,a) )→ [0,1],
Io : d ji )→ {0,1},
βo : d ji )→ [0,1].

Although the agent will be learning task and option policies in different spaces, both types of poli-
cies can be updated simultaneously as the agent receives both agent-space and problem-space de-
scriptors at each state.

To support learning a portable shaping function, an agent space should contain some features
that are correlated to return across tasks. To support successful skill policy learning, an agent space
needs more: it must be suitable for directly learning control policies.

If that is the case, then why not perform task learning (in addition to option learning) in agent-
space? There are two primary reasons why we might prefer to perform task learning in problem-
space, even when given an agent-space suitable for control learning. The first is that agent-space
may be very much larger than problem-space, making directly learning the entire task in agent-space
inefficient or impractical. The second is that the agent-space may only be sufficient for learning
control policies locally, rather than globally. In the next two sections we demonstrate portable skill
learning on domains with each characteristic in turn.

5.2 The Lightworld Domain

The lightworld domain is a parameterizable class of discrete domains which share an agent-space
that is much larger than any individual problem-space. In this section, we empirically examine
whether learning portable skills can improve performance in such a domain.

An agent is placed in an environment consisting of a sequence of rooms, with each room con-
taining a locked door, a lock, and possibly a key. In order to leave a room, the agent must unlock
the door and step through it. In order to unlock the door, it must move up to the lock and press it,
but if a key is present in the room the agent must be holding it to successfully unlock the door. The
agent can obtain a key by moving on top of it and picking it up. The agent receives a reward of
1000 for leaving the door of the final room, and a step penalty of −1 for each action. Six actions
are available: movement in each of the four grid directions, a pickup action and a press action. The
environments are deterministic and unsuccessful actions (for example, moving into a wall) result in
no change in state.
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In order to specify an individual lightworld instance, we must specify the number of rooms, x
and y sizes for each room, and the location of the room entrance, key (or lack therefore), lock and
door in each. Thus, we may generate new lightworld instances by generating random values for
each of these parameters.

We equip the agent with twelve light sensors, grouped into threes on each of its sides. The first
sensor in each triplet detects red light, the second green and the third blue. Each sensor responds
to light sources on its side of the agent, ranging from a reading of 1 when it is on top of the light
source, to 0 when it is 20 squares away. Open doors emit a red light, keys on the floor (but not those
held by the agent) emit a green light, and locks emit a blue light. Figure 10 shows an example.

Figure 10: A small example lightworld.

Five pieces of data form a problem-space descriptor for any lightworld instance: the current
room number, the x and y coordinates of the agent in that room, whether or not the agent has
the key, and whether or not the door is open. We use the light sensor readings as an agent-space
because their semantics are consistent across lightworld instances. In this case the agent-space (with
12 continuous variables) has much higher dimension than any individual problem-space, and it is
impractical to perform task learning in it directly, even though the problem might in principle be
solvable that way.

5.2.1 TYPES OF AGENT

We used five types of reinforcement learning agents: agents without options, agents with problem-
space options, agents with perfect problem-space options, agents with agent-space options, and
agents with both option types.

The agents without options used Sarsa(λ) with ε-greedy action selection (α = 0.1, γ = 0.99,
λ= 0.9, ε= 0.01) to learn a solution policy in problem-space, with each state-action pair assigned
an initial value of 500.

Agents with problem-space options had an (initially unlearned) option for each pre-specified
salient event (picking up each key, unlocking each lock, and walking through each door). Options
were learned in problem-space and used the same parameters as the agent without options, but used
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off-policy trace-based tree-backup updates (Precup et al., 2000) for intra-option learning. We used
an option termination reward of 1 for successful completion, and a discount factor of 0.99 per action.
Options could be executed only in the room in which they were defined and only in states where
their value function exceeded a minimum threshold (0.0001). Because these options were learned
in problem-space, they were useful but needed to be relearned for each individual lightworld.

Agents with perfect problem-space options were given options with pre-learned policies for
each salient event, though they still performed option updates and were otherwise identical to the
standard agent with options. They represent the ideal case of agents with that can perform perfect
transfer, arriving in a new task with fully learned options.

Agents with agent-space options still learned their solution policies in problem-space but learned
their option policies in agent-space. Each agent employed three options: one for picking up a
key, one for going through an open door and one for unlocking a door, with each one’s policy a
function of the twelve light sensors. Since the sensor outputs are continuous we employed linear
function approximation for each option’s value function, performing updates using gradient descent
(α = 0.01) and off-policy trace-based tree-backup updates. We used an option termination reward
of 1, a step penalty of 0.05 and a discount factor of 0.99. An option could be taken at a particular
state when its value function there exceeded a minimum threshold of 0.1. Because these options
were learned in agent-space, they could be transferred between lightworld instances.

Finally, agents with both types of options were included to represent agents that learn both
general portable and specific non-portable skills simultaneously.

Note that all agents used discrete problem-space value functions to solve the underlying task
instance, because their agent-space descriptors are only Markov in lightworlds with a single room,
which were not present in our experiments.

5.2.2 EXPERIMENTAL STRUCTURE

We generated 100 random lightworlds, each consisting of 2-5 rooms with width and height of be-
tween 5 and 15 cells. A door and lock were randomly placed on each room boundary, and 1

3 of
rooms included a randomly placed key. This resulted in state space with between 600 and approxi-
mately 20,000 state-action pairs (4,900 on average). We evaluated each problem-space option agent
type on 1000 lightworlds (10 samples of each generated lightworld).

To evaluate the performance of agent-space options as the agents gained more experience, we
similarly obtained 1000 lightworld samples and test tasks, but for each test task we ran the agents
once without training and then with between 1 and 10 training experiences. Each training experience
for a test lightworld task consisted of 100 episodes in a training lightworld randomly selected from
the remaining 99. Although the agents updated their options during evaluation in the test lightworld,
these updates were discarded before the next training experience so the agent-space options never
received prior training in the test lightworld.

5.2.3 RESULTS

Figure 11(a) shows average learning curves for agents employing problem-space options, and Fig-
ure 11(b) shows the same for agents employing agent-space options. The first time an agent-space
option agent encounters a lightworld, it performs similarly to an agent without options (as evidenced
by the two topmost learning curves in each figure), but its performance rapidly improves with ex-
perience in other lightworlds. After experiencing a single training lightworld, the agent starts with
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better performance than an agent using problem-space options alone, until by 5 experiences its
learning curve is similar to that of an agent with perfect problem-space options (compare the learn-
ing curves in Figure 11(b) with the bottom-most learning curve of Figure 11(a)), even though its
options are never trained in the same lightworld in which it is tested. The comparison between
Figures 11(a) and 11(b) shows that agent-space options can be successfully transferred between
lightworld instances.
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(a) Learning curves for agents with problem-space op-
tions.
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(b) Learning curves for agents with agent-space options,
with varying numbers of training experiences.
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(c) Learning curves for agents with agent-space and
problem-space options, with varying numbers of training
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(d) Total steps over 70 episodes for agents with no options
(NO), learned problem-space options (LO), perfect options
(PO), agent-space options with 0-10 training experiences
(dark bars), and both option types with 0-10 training expe-
riences (light bars).

Figure 11: Results for the Lightworld Domain.

Figure 11(c) shows average learning curves for agents employing both types of options.4 The
first time such agents encounter a lightworld, they perform as well as agents using problem-space

4. In 8 of the more than 200,000 episodes used when testing agents with both types of options, an agent-space value
function approximator diverged, and we restarted the episode. Although this is a known problem with the backup
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options (compare with the second highest curve in Figure 11(a)), and thereafter rapidly improve
their performance (performing better than agents using only agent-space options) and again by
5 experiences performed nearly as well as agents with perfect options. This improvement can be
explained by two factors. First, the agent-space is much larger than any individual problem-space, so
problem-space options are easier to learn from scratch than agent-space options. This explains why
agents using only agent-space options and no training experiences perform more like agents without
options than like agents with problem-space options. Second, options learned in our problem-space
can represent exact solutions to specific subgoals, whereas options learned in our agent-space are
general and must be approximated, and are therefore likely to be slightly less efficient for any
specific subgoal. This explains why agents using both types of options perform better in the long
run than agents using only agent-space options.

Figure 11(d) shows the mean total number of steps required over 70 episodes for agents using
no options, problem-space options, perfect options, agent-space options, and both option types.
Experience in training environments rapidly drops the number of total steps required to nearly as
low as the number required for an agent with perfect options. It also clearly shows that agents using
both types of options do consistently better than those using agent-space options alone. We note that
the error bars in Figure 11(d) are small and decrease with experience, indicating consistent transfer.

In summary, these results show that learning using portable options can greatly improve per-
formance over learning using problem-specific options. Given enough experience, learned portable
options can perform similarly to perfect pre-learned problem-specific options, even when the agent-
space is much harder to learn in than any individual problem-space. However, the best learning
strategy is to learn using both problem-specific options and portable options.

5.3 The Conveyor Belt Domain

In the previous section we showed that an agent can use experience in related tasks to learn portable
options, and that those options can improve performance in later tasks, when the agent has a high-
dimensional agent-space. In this section we consider a task where the agent-space is not high-
dimensional, but is only sufficient for local control.

In the conveyor belt domain, a conveyor belt system must move a set of objects from a row
of feeders to a row of bins. There are two types of objects (triangles and squares), and each bin
starts with a capacity for each type. The objects are issued one at a time from a feeder and must be
directed to a bin. Dropping an object into a bin with a positive capacity for its type decrements that
capacity.

Each feeder is directly connected to its opposing bin through a conveyor belt, which is connected
to the belts above and below it at a pair of fixed points along its length. The system may either run
the conveyor belt (which moves the current object one step along the belt) or try to move it up or
down (which only moves the object if it is at a connection point). Each action results in a reward of
−1, except where it causes an object to be dropped into a bin with spare capacity, in which case it
results in a reward of 100. Dropping an object into a bin with zero capacity for that type results in
the standard reward of −1.

method we used (Precup et al., 2000), it did not occur during the same number of samples obtained for agents with
agent-space options only.
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To specify an instance of the conveyor belt domain, we must specify the number of objects
present, belts present, bin capacities, belt length, and where each adjacent pair of belts are con-
nected. A small example conveyor belt system is shown in Figure 12.

1

2

3

Figure 12: A small example conveyor belt problem.

Each system has a camera that tracks the current object and returns values indicating the distance
(up to 15 units) to the bin and each connector along the current belt. Because the space generated
by the camera is present in every conveyor-belt problem and retains the same semantics, it is an
agent-space, and because it is discrete and relatively small (13,500 states), we can learn policies in
it without function approximation. However, because it is non-Markov (due to its limited range and
inability to distinguish between belts), it cannot be used as a problem-space.

A problem-space descriptor for a conveyor belt instance consists of three numbers: the current
object number, the belt it is on, and how far along that belt it lies (technically we should include the
current capacity of each bin, but we can omit this and still obtain good policies). We generated 100
random instances with 30 objects and 20-30 belts (each of length 30-50) with randomly-selected
interconnections, resulting in problem-spaces of 18,000-45,000 states.

We ran experiments where the agents learned three options: one to move the current object to
the bin at the end of the belt it is currently on, one for moving it to the belt above it, and one for
moving it to the belt below it. We used the same agent types and experimental structure as before,
except that the agent-space options did not use function approximation.

5.3.1 RESULTS

Figures 13(a), 13(b) and 13(c) show learning curves for agents employing no options, problem-
space options and perfect options; agents employing agent-space options; and agents employing
both types of options, respectively.

Figure 13(b) shows that the agents with agent-space options and no prior experience initially
improve quickly but eventually obtain lower quality solutions than agents with problem-space op-
tions (Figure 13(a)). One or two training experiences result in roughly the same curve as agents
using problem-space options, but by 5 training experiences the agent-space options are a significant
improvement (although due to their limited range they are never as good as perfect options). This
initial dip relatively to agents with no prior experience is probably due to the limited range of the
agent-space options (due to the limited range of the camera) and the fact that they are only locally
Markov, even for their own subgoals.
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(a) Learning curves for agents with problem-space op-
tions.

0 10 20 30 40 50 60 70
−5000

−4000

−3000

−2000

−1000

0

1000

Episodes

R
e
w

a
rd

 

 

0 experiences

1 experience

3 experiences

5 experiences

8 experiences

10 experiences

(b) Learning curves for agents with agent-space options,
with varying numbers of training experiences.
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(c) Learning curves for agents with both types of options,
with varying numbers of training experiences.
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(d) Total reward over 70 episodes for agents with no op-
tions (NO), learned problem-space options (LO), perfect
options (PO), agent-space options with 0-10 training expe-
riences (dark bars), and both option types with 0-10 train-
ing experiences (light bars).

Figure 13: Results for the Conveyor Belt Domain.

Figure 13(c) shows that agents with both option types do not experience this initial dip relative
to agents with no prior experience and outperform problem-space options immediately, most likely
because the agent-space options are able to generalise across belts. Figure 13(d) shows the mean
total reward for each type of agent. Agents using agent-space options eventually outperform agents
using problem-space options only, even though the agent-space options have a much more limited
range; agents using both types of options consistently outperform agents with either option type and
eventually approach the performance of agents using pre-learned problem-space options.

In summary, these results demonstrate that when an agent-space is only locally Markov, learn-
ing portable options can still result in a significant performance improvement over learning using
problem-specific options, but that even with a great deal of experience will not reach the perfor-
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mance of perfect pre-learned problem-specific options. Once again, the best approach is to learn
using both problem-specific and agent-space options simultaneously.

5.4 Summary

Our results show that options learned in agent-space can be successfully transferred between related
tasks, and that this significantly improves performance in sequences of tasks where the agent space
cannot be used for learning directly. Our results suggest that when the agent space is large but can
support global policies, experience in related tasks can eventually result in options that perform as
well as perfect problem-specific options. When the agent space is only locally Markov, learned
portable options will improve performance but are unlikely to reach the performance of perfect
problem-specific options due to their limited range.

We expect that, in general, learning an option in agent-space will often actually be harder than
solving an individual problem-space instance, as was the case in our experiments. In such situations,
learning both problem-specific and agent space options simultaneously will likely obtain better
performance than either individually. Since intra-option learning methods allow for the update of
several options from the same experiences, it may be better in general to simultaneously learn both
general portable skills and specific, exact but non-portable skills, and allow them to bootstrap each
other.

6. Related Work

Although the majority of research in transfer assumes that the source and target problems have the
same state space, some existing research does not make that assumption.

Wilson et al. (2007) consider the case where an agent faces a sequence of environments, each
generated by one of a set of environment classes. Each environment class is modeled as a distri-
bution of values of some observed signal given a feature vector, and since the number of classes
is unknown, the agent must learn an infinite mixture model of classes. When faced with a new
environment, the agent determines which of its existing models it best matches or whether it instead
corresponds to a novel class. A model-based planning algorithm is then used to solve the new task.
This work explicitly considers environment sequences that do not have the same state space, and
thus defines the distributions of each environment class over the output of a function f that generates
a feature vector for each state in each environment. Since that feature vector retains its semantics
across all of the tasks, it is exactly an agent-space descriptor as defined here. Thus, this work can
be seen as using agent-space to learn a set of environment models.

Banerjee and Stone (2007) consider transfer learning for the case of General Game Playing,
where knowledge gained from playing one game (e.g., Tic-Tac-Toe) is exploited to improve perfor-
mance in another (e.g., Connect-4). Here, transfer is affected through the game tree: the authors
define generic game-tree features that apply across all games and then use their Q-values to initial-
ize the values of novel states with matching features when playing a subsequent game. This is a
very similar mechanism to a portable shaping function, including the use of features—in this case
derived from the game tree—that are common across all tasks.

Taylor et al. (2007) use a hand-coded transfer function to seed one task’s value function with
learned values from another similar task with a potentially different state space. This requires a
mapping to be constructed between the weights of the function approximators of each pair of tasks
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between which transfer might occur.5 Our method offers two advantages over this. First, we ef-
fectively require the construction of a mapping from each task to an agent-space, so the number of
mappings scales linearly with the number of tasks, rather than quadratically. Second, through the
use of a shaping function, those mappings can be constructed between state descriptors, rather than
between function approximation terms. This allows us to treat the function approximator employed
for each task as a black box rather than requiring detailed knowledge of its construction, and it
allows us to transfer between potentially very different function approximators where a direct map-
ping might be difficult to obtain. On the other hand, if performance is critical, then constructing a
specialized task-to-task mapping may result in better performance than a more generic agent-space
mapping; the results in Taylor et al. (2007) seem slightly better than those given in Section 4.4.2,
although a direct comparison is not possible since the benchmarks used (expressing the underlying
learning performance) differ (presumably due to implementation differences), even though we used
the same parameters.

Another related line of research focuses on effecting representation transfer, where basis func-
tions are learned in one task and applied in another. Representation transfer has so far focused
primarily on task sequences where reward function or dynamics differ but the state space remains
the same (Ferguson and Mahadevan, 2006; Ferrante et al., 2008). If the state spaces differ signifi-
cantly, manifold alignment or scaling methods may be employed to transform basis functions from
one state space to another (Ferguson and Mahadevan, 2008); however, such transformations require
prior knowledge of the topology of the two state spaces to either achieve scaling or to obtain a good
alignment.

Lazaric et al. (2008) introduced sample transfer, where sample transitions from a source task
may be used as additional data to improve performance in a new task. Transition samples from a
set of source tasks are stored, and then used along with a small set of sample transitions in a new
task to compute a similarity measure between the new task and the source tasks. The transferred
transitions are then sampled according to the similarity measure and added to the new task samples,
resulting in a performance boost for batch-learning methods. Reusing such samples requires their
state descriptors to (at least) be the same size, although if the reused descriptors were defined in
an agent-space, then such a method may be useful for more efficiently learning portable shaping
functions.

Konidaris and Hayes (2004) describe a similar method to ours that uses training tasks to learn
associations between reward and strong signals at reward states, resulting in a significant improve-
ment in the total reward obtained by a simulated robot learning to find a puck in a novel maze.
The research presented in this paper employs a more general mechanism where the agent learns a
heuristic from all visited states.

Zhang and Dietterich (1995) use common features to transfer learned value functions across
a class of job-shop scheduling problems. The value functions (represented as neural networks)
were learned using TD(λ) over a set of features constructed to be common to the entire problem
class. Value functions trained using small instances of scheduling problems were then used to
obtain solutions to larger problems. This research is a case where an agent-space was sufficient to

5. Construction has been primarily accomplished by hand, but we briefly discuss recent work aimed at automating it in
Section 7.1.
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represent a solution to each individual problem and the need for a problem-specific state space was
avoided.6

The X-STAGE algorithm (Boyan and Moore, 2000) uses features common across a class of
tasks to transfer learned evaluation functions that predict the performance of a local search algorithm
applied to an optimization task. The evaluation functions—which are similar to value functions in
that they predict the outcome of the execution of a policy, in this case a search algorithm—serve
to identify the most promising restart points for local search. The X-STAGE algorithm learns a
distinct evaluation function for each source task and then obtains a “vote” for the next action in
the target task from each source evaluation function. Interestingly, while this method of transfer
results in an initial performance boost, it eventually obtains solutions inferior to those obtained by
learning a problem-specific evaluation function; our use of shaping avoids this dilemma, because
it naturally incorporates experience from the current task into the agent’s value function and thus
avoids permanent bias arising from the use of transferred knowledge.

All of the option creation methods given in Section 2.2 learn options in the same state space in
which the agent is performing reinforcement learning, and thus the options can only be reused for
the same problem or for a new problem in the same space. The available state abstraction methods
(Jonsson and Barto, 2001; Hengst, 2002) only allow for the automatic selection of a subset of this
space for option learning, or they require an explicit transformation from one space to another
(Ravindran and Barto, 2003a).

There has been some research focusing on extracting options by exploiting commonalities in
collections of policies (Thrun and Schwartz, 1995; Bernstein, 1999; Perkins and Precup, 1999;
Pickett and Barto, 2002) or analysing the relationships between variables given sample trajectories
(Mehta et al., 2008), but in each case the options are learned over a single state space. In contrast,
we leave the method used for creating the options unspecified—any option creation method may be
used—but create them in a portable space.

Fernández and Veloso (2006) describe a method called Policy Reuse, where an agent given a
library of existing policies determines which of them is closest to a new problem it faces, and then
incorporates that policy into the agent’s exploration strategy. The resulting distance metric is also
used to build a library of core policies that can be reused for later tasks in the same state space. Al-
though this method has very attractive attributes (particularly when applied in a hierarchical setting),
it is limited to task sequences where only the reward function changes.

Torrey et al. (2006) show that policy fragments learned in a symbolic form using inductive
logic programming (ILP) can be transferred to new tasks as constraints on the new value-function.
This results in a substantial performance improvement. However, a user must provide a mapping
from state variables in the first task to the second, and the use of an ILP implementation introduces
significant complexity and overhead.

Croonenborghs et al. (2007) learns relational options and shows that they can be transferred to
different state spaces provided the same symbols are still present. This approach is similar to ours,
in that we could consider the symbols shared between the tasks to be an agent-space.

6. The agent-space in this case did introduce aliasing, which occasionally caused policies with loops. This was avoided
using a loop-detection algorithm.
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7. Discussion

The work in the preceding sections has shown that both knowledge and skill transfer can be effected
across a sequence of tasks through the use of features common to all tasks in the sequence. Our
results have shown significant improvements over learning from scratch, and the framework offers
some insight into which problems are amenable to transfer.

However, our framework requires the identification of a suitable agent-space to facilitate trans-
fer, but it does not specify how that space is identified, which creates a design problem similar to
that of standard state space design. Researchers in the reinforcement learning community have so
far developed significant expertise at designing problem-spaces, but not agent-spaces. Neverthe-
less, the example domains in this paper offer several examples of related tasks with different types
of common feature sets—deictic sensors (the Rod positioning task and the Lightworld), a maximum
set (Keepaway), and local sensing (the Conveyor Belt domain)—and we have pointed out the use of
similar feature sets in existing work (Zhang and Dietterich, 1995; Boyan and Moore, 2000; Wilson
et al., 2007; Snel and Whiteson, 2010). Taken together, these examples suggest that transfer via
common features may find wide application.

Additionally, for option learning, an agent-space descriptor should ideally be Markov within the
set of states that the option is defined over. The agent-space descriptor form will therefore affect
both what options can be learned and their range. In this respect, designing agent-spaces for learning
options requires more care than for learning shaping functions.

An important assumption made in our option transfer work is that all tasks have the same set of
available actions, even though they have different state spaces. If this is not the case, then learning
portable options directly is only possible if the action spaces share a common subset or if we can
find a mapping between action spaces. If no such mapping is given, we may be able to construct
one from experience using a homomorphism (Ravindran and Barto, 2003b).

When learning portable shaping functions, if the action space differs across tasks then we can
simply learn shaping functions defined over states only (as potential-based shaping functions were
originally defined by Ng et al., 1999) rather than defining them over state-action pairs. Although
we expect that learning using portable state-only shaping functions will not perform as well as
learning using portable state-action shaping functions, we nevertheless expect that they will result
in substantial performance gains for reward-linked tasks.

The idea of an agent-centric representation is closely related to the notion of deictic or ego-
centric representations (Agre and Chapman, 1987), where objects are represented from the point
of view of the agent rather than in some global frame of reference. We expect that for most prob-
lems, especially in robotics, agent-space representations will be egocentric, except in manipulation
tasks, where they will likely be object-centric. In problems involving spatial maps, we expect that
the difference between problem-space and agent-space will be closely related to the difference be-
tween allocentric and egocentric representations of space (Guazzelli et al., 1998)—the utility of
such spaces for transfer has been demonstrated by Frommberger (2008).

7.1 Identifying Agent-Spaces

In this work we have assumed that an agent-space is given. However, this may not always be
the case; if it is not, then we are faced with the problem of attempting to automatically identify
collections of features that retain their semantics across tasks.
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This problem may arise in several settings. In the simplest setting, given a pair of corresponding
feature sets for two problems, we must determine whether the two feature sets are an agent-space.
To do this, we may build approximate transition models for each feature set, and then compare them.

In an intermediate setting, we might be given two sets of corresponding features and asked to
identify which subsets of these features form an agent-space. Snel and Whiteson (2010) report very
promising results on this problem using a formalization of how task-informative a feature is (and
thus how likely it is to be in problem-space) against how domain-informative it is (and thus how
likely it is to be in agent-space).

The problem becomes much harder when we are given an arbitrary number of features for each
task, and we are required to both identify correspondences between features and determine which
subset of features form an agent-space. Taylor et al. (2008) address a similar problem: constructing
mappings between two sets of state variables for a pair of given tasks. They propose an algorithm
which generates all possible mappings from the first task to the second, then learns a transition
model from the first and compares its predictions (using each candidate mapping) to sample data
from the second; finally the algorithm selects the mapping with the lowest transition error. This
method can be adapted to our setting by selecting a reference task (most likely the first task the
agent sees) and then building mappings from each new task back to it. The subset of variables in
the reference task that appear in all mappings constitute an agent-space.

Taylor et al. (2008) claim that their algorithm is data-efficient because the same sample tran-
sitions can be used for comparing every possible mapping, even though the algorithm’s time com-
plexity is exponential in the size of the number of variables in the two tasks. In our setting, once the
first mapping (from the reference task to some other task) has been constructed, we may remove the
reference variables absent from the mapping from later consideration, which could lead to signifi-
cant efficiency gains when constructing later mappings. In addition, such a method (mapping to a
reference task) would require only n−1 mappings to be constructed for arbitrary transfer between
pairs of tasks drawn from a sequence of n tasks, whereas a direct mapping methodology requires
O(n2) mappings to be constructed.

In the most difficult setting, we might be given no features at all, and asked to construct an
agent-space. This can be considered a problem of discovering latent variables that describe aspects
of the state space which can be used for transfer. We expect that this will be a challenging but
fruitful avenue of future work.

7.2 Identifying Reward-Linked Tasks

An important distinction raised by this work is the difference between related tasks and tasks that
are both related and reward-linked. Tasks that are related (in that they share an agent-space) but are
not reward-linked do not allow us to transfer knowledge about the value function, since they do not
necessarily have similar reward functions.

This raises an important question for future work: given a solved task Ts and a new related task
Tn, how can we determine whether they are reward-linked? More broadly, given a set of previously
learned related tasks that are not reward-linked, which one should we use as the source of a portable
shaping function for a new related task?

Answering these questions relies upon us finding some method of comparison for the two task
reward functions, Rn and Rs. Since one of the important motivations behind learning portable shap-
ing functions is boosting initial task performance, we would prefer to perform this comparison
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without requiring much experience. If we are given Rn in some appropriate functional form, then
we could obtain its value at sample state-action pairs in Ts and compare the results with the expe-
rienced values of Rs. If the method used to compare the two reward functions returns a distance
metric, then the agent could use it to cluster portable shaping functions and build libraries of them,
drawing on an appropriate one for each new task it encounters.

However, if we are not given Rn, then we must sample Rn with experience. It is easy to construct
an adversarial argument showing that an agent with experience only in Ts cannot determine whether
Tn and Ts are reward-linked without at the very least one full episode’s worth of experience in Tn.

However, we do not believe the complete absence of prior information about a task is rep-
resentative of applied reinforcement learning settings where the agent must solve multiple tasks
sequentially. In most cases, the agent has access to some extra information about a new task before
it attempts to solve it. We can formalize this by attaching a descriptor to each task; then the extent
to which an agent can recognize a task “type” depends on how much information is contained in
its descriptor. If the relationship between task descriptor and task “type” is not known in advance,
it can be learned over time using training examples obtained by comparing reward functions after
experience.

8. Summary and Conclusions

We have presented a framework for transfer in reinforcement learning based on the idea that related
tasks share common features and that transfer can take place through functions defined over those
related features. The framework attempts to capture the notion of tasks that are related but distinct,
and it provides some insight into when transfer can be usefully applied to a problem sequence and
when it cannot.

Most prior work on transfer relies on mappings between pairs of tasks, and therefore implicitly
defines transfer as a relationship between problems. This work provides a contrasting viewpoint by
relying on a stronger notion of an agent: that there is something common across a series of tasks
faced by the same agent, and that that commonality derives from features shared because they are a
property of an agent.

We have empirically demonstrated that this framework can be successfully applied to signif-
icantly improve transfer using both knowledge transfer and skill transfer. It provides a practical
approach to building agents that are capable of improving their own problem-solving capabilities
through experience over multiple problems.
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Abstract
The problem of ranking is to predict or to guess the ordering between objects on the basis of their
observed features. In this paper we consider ranking estimators that minimize the empirical convex
risk. We prove generalization bounds for the excess risk of such estimators with rates that are
faster than 1√

n . We apply our results to commonly used ranking algorithms, for instance boosting
or support vector machines. Moreover, we study the performance of considered estimators on real
data sets.
Keywords: convex risk minimization, excess risk, support vector machine, empirical process,
U-process

1. Introduction

The problem of ranking is to predict or to guess the ordering between objects on the basis of their
observed features. This problem has numerous applications in practice. We can mention informa-
tion retrieval, banking, quality control or survival analysis. The problem is closely related to the
classification theory, however it has its own specificity. In recent years many authors have focused
their attention on this subject (Freund et al., 2004; Agarwal et al., 2005; Cossock and Zhang, 2006;
Rudin, 2006; Clémençon et al., 2008).

In the paper we consider a population of objects equipped with a relation of (linear) ordering.
For any two distinct objects o1 and o2 it holds either o1 " o2 or o1 # o2 (or maybe both), but it
is unknown which is true. We lose little generality by assuming that real numbers y1 and y2 are
assigned to the objects o1 and o2 in such a way that o1 " o2 is equivalent to y1 ≤ y2. Moreover, let
d-dimensional vectors x1 and x2 describe observed or measured features of the objects and let the
observation space X be a Borel subset of Rd . We are to construct a function f : X ×X → R, called
a ranking rule, which predicts the ordering between objects in the following way:

if f (x1,x2)≤ 0, then we predict that y1 ≤ y2.

To measure the quality of a ranking rule f we introduce a probabilistic setting. Let us assume that
two objects are randomly selected from the population. They are described by a pair of independent
and identically distributed (with respect to the measure P) random vectors Z1 = (X1,Y1) and Z2 =
(X2,Y2) taking values in X ×R. Random vectors X1 and X2 are regarded as observations, while Y1
and Y2 are unknown variables which define the ordering as above.

c©2012 Wojciech Rejchel.
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Most natural approach is to look for a function f which minimizes the risk (the probability of
incorrect ranking)

L( f ) = P(sign(Y1 −Y2) f (X1,X2)< 0) (1)

in some family of ranking rulesF , where sign(t)= 1 for t > 0, sign(t)=−1 for t < 0 and sign(t)= 0
for t = 0. Since we do not know the distribution P, we cannot solve this problem directly. But if we
possess a learning sample Z1 = (X1,Y1), . . . ,Zn = (Xn,Yn), then we can consider a sample analog of
(1), namely the empirical risk

Ln( f ) =
1

n(n−1)∑i)= j
I[sign(Yi−Yj) f (Xi,Xj)< 0], (2)

where I(·) is the indicator function. The ranking rule that minimizes (2) can be used as an estimator
of the function that minimizes (1). Notice that Ln( f ) is a U-statistic of the order two for a fixed
f ∈ F . The main difficulty in this approach lies in discontinuity of the function (2). It entails that
finding its minimizer is computationally difficult and not effective. This fact is probably the main
obstacle to wider use of such estimators in practice. To overcome this problem one usually replaces
the discontinuous loss function by its convex analog. This trick has been successfully used in the
classification theory and has allowed to invent boosting algorithms (Freund and Schapire, 1997) or
support vector machines (Vapnik, 1998). Therefore, instead of 0− 1 loss function we consider a
convex and nonnegative loss function ψ : R→ R. Denote the ”convex” risk of a ranking rule f by

Q( f ) = E ψ[ sign(Y1 −Y2) f (X1,X2)],

and the ”convex” empirical risk as

Qn( f ) =
1

n(n−1)∑i)= j
ψ f (Zi,Zj),

where ψ f (z1,z2) = ψ[sign(y1 − y2) f (x1,x2)]. Notice that Qn( f ) is also a U-statistic of the order
two for a fixed function f . Therefore, features of U-process {Qn( f ) : f ∈ F } are the basis for
our consideration on statistical properties of the rule fn = argmin

f∈F
Qn( f ) as an estimator of the

unknown function f ∗ = argmin
f∈F

Q( f ). Niemiro and Rejchel (2009) stated theorems about the strong

consistency and the asymptotical normality of the estimator fn in the linear case, that is, when
we consider linear ranking rules f (x1,x2) = θT (x1 − x2) , where θ ∈ Rd . Similar studies on the
asymptotic behaviour of estimators were done in Niemiro (1992) and Bose (1998).

In this paper we are interested in the excess risk of an estimator fn (in the general model, not
necessarily linear). This is the case when one compares the convex risk of fn with the convex risk of
the best rule in the class. Generalization bounds are very popular for such studying in the learning
theory. They are probabilistic inequalities of the following form: for every α ∈ (0,1)

P( Q( fn)−Q( f ∗)≤ η )≥ 1−α, (3)

where η > 0 is some small number that depends on the level α, the number n of elements in the
sample, a family of ranking rules F and a loss function ψ, but it is independent of an unknown dis-
tribution P. Similar objects were widely studied in the classification theory (Blanchard et al., 2003,
2008; Lugosi and Vayatis, 2004; Bartlett et al., 2006). In ranking one can find them in Clémençon
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et al. (2005, 2008). In the latter two papers Authors proved that with some restrictions on the class
F the number η in (3) is equal to C

√

ln(1/α)
n , where C is some constant. Their inequalities can be

applied to ranking analogs of support vector machines or boosting algorithms. Moreover, it was
shown in the classification theory that better rates than 1√

n are possible to obtain in similar bounds
to (3). Noticing the close relation between ranking and the classification theory Clémençon et al.
(2008) formulated the question if one can get generalization bounds with ”fast rates” for the excess
risk in ranking? They gave a positive answer (Clémençon et al., 2008, Corollary 6) but only for esti-
mators that minimize the empirical risk with 0−1 loss. We have already mentioned about problems
with finding such minimizers. Convex loss functions and estimators that minimize the convex em-
pirical risk are used in practice. In this paper we indicate assumptions and methods that allowed us
to obtain generalization bounds with better rates than 1√

n for the excess convex risk of such estima-
tors. Similar studies were done in Rejchel (2009), but here we strengthen and extend those results.
The construction of inequalities of the form (3) is based on the empirical and U-process theory.
Empirical processes are well-known and widely described in the literature, while U-processes are
not so popular. However, there are very comprehensive monographs about this theory (see de la
Peña and Giné, 1999), which originates from Hoeffding (1948).

The paper is organized as follows: Section 2 is devoted to theoretical results. We show that using
Hoeffding’s decomposition our problem can be divided into two parts. In the first one (Sections 2.1
and 2.2) we are interested in properties of some empirical process. The second part (Section 2.3) is
devoted to aU-process that we obtain after Hoeffding’s decomposition. We state the main theorem
and describe its applications to commonly used ranking algorithms in Section 2.4. In Section 3 we
study the practical performance of described estimators on real data sets.

2. Generalization Bounds

First, let us write conditions on a family of ranking rules F that we need in later work. For simplic-
ity, assume that f (x1,x2) =− f (x2,x1) for every f ∈ F which implies that the kernel of aU-statistic
Qn( f ) is symmetric. Moreover, let the class F be uniformly bounded which means that there exists
some constant A1 > 0 such that for every x1,x2 ∈ X and f ∈ F we have | f (x1,x2)| ≤ A1. We will
not repeat these conditions later.

Furthermore, we need some restrictions on the ”richness” of a family of ranking rules F . They
are bounds for the covering number of F and are similar to conditions that can be often found in the
literature (Pollard, 1984; de la Peña and Giné, 1999; Mendelson, 2002). Thus, let µ be a probability
measure on X ×X and let ρµ be a L2-pseudometric on F defined as

ρµ( f1, f2) =
1
A1

√∫
X×X

[ f1(x1,x2)− f2(x1,x2)]
2 dµ(x1,x2). (4)

The covering number N(t,F ,ρµ) of the class F with a pseudometric ρµ and a radius t > 0 is the
minimal number of balls (with respect to ρµ) with centers in F and radii t needed to cover F . Thus,
N(t,F ,ρµ) is the minimal number m with the property

∃  F ⊂F , |  F |=m ∀ f∈F ∃  f∈  F ρµ( f ,  f )≤ t.

Consider the marginal distribution PX of the vector X and two empirical measures: PXn = 1
n ∑

n
i=1 δXi

and νn = 1
n(n−1) ∑i)= j δ(Xi,Xj), where δ(·) is the counting measure. The family F that we consider

satisfies one of the following conditions:
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Assumption A There exist constants Di,Vi > 0, i= 1,2 such that for every measures of the form:
µ1 = PX ⊗PXn , µ2 = νn and each t ∈ (0,1] we have

N(t,F ,ρµi)≤ Dit−Vi i= 1,2.

Assumption B There exist constants Di > 0, Vi ∈ (0,1), i= 1,2 such that for every measures of
the form: µ1 = PX ⊗PXn , µ2 = νn and each t ∈ (0,1] we have

lnN(t,F ,ρµi)≤ Dit−Vi i= 1,2.

Families satisfying similar conditions to Assumption A are often called VC-classes or Euclidean
(Nolan and Pollard, 1987; Pakes and Pollard, 1989), while classes that fulfill Assumption B are
known as satisfying the uniform entropy condition (van der Vaart and Wellner, 1996). As we will
see in Section 2.4 more restrictive Assumption A leads to better results.

The first tool that we use is Hoeffding’s decomposition (de la Peña and Giné, 1999) of a U-
statistic Qn( f )−Qn( f ∗) that allows to obtain the equality

Q( f )−Q( f ∗)− [Qn( f )−Qn( f ∗)] = 2Pn [Q( f )−Q( f ∗)−Pψ f +Pψ f ∗ ]−Un(h f −h f ∗),

where

Pψ f (z1) = E [ψ f (Z1,Z2)|Z1 = z1],

Pn(g) =
1
n

n

∑
i=1

g(Zi),

Un(h f −h f ∗) =
1

n(n−1)∑i)= j
[h f (Zi,Zj)−h f ∗(Zi,Zj)] ,

h f (z1,z2) = ψ f (z1,z2)−Pψ f (z1)−Pψ f (z2)+Q( f ).

Therefore, Hoeffding’s decomposition breaks a difference between a U-statistic Qn( f )−Qn( f ∗)
and its expectation into the sum of iid random variables and a degenerate U-statistic Un(h f −h f ∗).
The degeneration of a U-statistic means that the conditional expectation of its kernel is the zero-
function, that is, E [h f (Z1,Z2)− h f ∗(Z1,Z2) |Z1 = z1] = 0 for each z1 ∈ X ×R . In what follows,
we will separately look for probabilistic inequalities of the appropriate order for the empirical and
degenerate term.

2.1 Empirical Term

The empirical process theory is the basis for our consideration concerning the first component in
Hoeffding’s decomposition of U-statistics. To get better rates in this case one has to be able to
uniformly bound second moments of functions from an adequate class by their expectations. This
fact combined with some consequence of Talagrand’s inequality (Talagrand, 1994) was the key to
obtain fast rates in the classification theory. In this subsection we want to apply this method to
ranking. First, we need a few preliminaries: let G be a class of real functions that is uniformly
bounded by a constant G > 0. Moreover, let us introduce an additional sequence of iid random
variables ε1, . . . ,εn (the Rademacher sequence). Variables εi’s take values 1 or −1 with probability
1
2 and are independent of the sample Z1, . . . ,Zn. Having the Rademacher sequence let us denote

Rn(G) = sup
g∈G

1
n

n

∑
i=1

εi g(Zi),
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and call an expression ERn(G) the Rademacher average of the class G . The expectation in the
Rademacher average is taken with respect to both samples Z1, . . . ,Zn and ε1, . . . ,εn.

Besides, we should also introduce so called sub-root functions, which are nonnegative and non-
decreasing functions φ : [0,∞) → [0,∞) such that for each r > 0 the function r 1−→ φ(r)/

√
r is

non-increasing. They have a lot of useful properties, for example they are continuous and have the
unique positive fixed point r∗ (the positive solution of the equation φ(r) = r). Proofs of these facts
can be easily found in the literature (Bartlett et al., 2005). Finally, let the class

G∗ = {αg : g ∈ G ,α ∈ [0,1]}

denote a star-hull of G and Pg= Eg(Z1). Now we can state the aforementioned theorem for empir-
ical processes which can be also found in Massart (2000) and Bartlett et al. (2005).

Theorem 1 Let the class G be such that for some constant B> 0 and every g ∈ G we have Pg2 ≤
BPg.Moreover, if there exists a sub-root function φ with the fixed point r∗, which satisfies

φ(r)≥ BERn(g ∈ G∗ : Pg2 ≤ r)

for each r ≥ r∗, then for every K > 1 and α ∈ (0,1)

P

(

∀g∈G Pg≤
K

K−1
Pn(g)+

6K
B
r∗+[22G+5BK]

ln(1/α)
n

)

≥ 1−α.

The proof of this theorem is based on Talagrand’s inequality applied to properly rescaled class G
and can be found in Bartlett et al. (2005). Theorem 1 says that to get better bounds for the empirical
term one needs to study properties of the fixed point r∗ of a sub-root φ. However, it gives no general
method for choosing φ, but it suggests to relate it to ERn(g ∈ G∗ :Pg2 ≤ r). We will follow this
suggestion, similar reasoning was carried out in Bartlett et al. (2005) or Boucheron et al. (2005). Of
course, for every n the function

r→ ERn(g ∈ G∗ : Pg2 ≤ r)

is nonnegative and non-decreasing. Replacing a class G by its star-hull is needed to prove the last
property from the definition of the sub-root function.

Using Theorem 1 we can state the following fact concerning the empirical term in Hoeffding’s
decomposition. The modulus of convexity of a function ψ that appears in this theorem is described
in the next subsection.

Theorem 2 Let the family of ranking rules F satisfy Assumption A and be convex. Moreover, if the
modulus of convexity of a loss function ψ fulfills on the interval [−A1,A1] the condition δ(t) ≥Ctp
for some constants C > 0 and p≤ 2, then for every α∈(0,1) and K > 1

P

(

∀ f∈F Q( f )−Q( f ∗)≤
K

K−1
Pn(Pψ f −Pψ f ∗)+C1V1

lnn+ ln(1/α)
n

)

≥ 1−α,

where the constant C1 depends on K.
If the family F satisfies Assumption B instead of Assumption A, then for every α∈(0,1) and

K > 1 with probability at least 1−α

∀ f∈F Q( f )−Q( f ∗)≤
K

K−1
Pn(Pψ f −Pψ f ∗)+C2 max

(

lnn
n

,
1
nβ

)

+C3
ln(1/α)

n

where 2
3 < β= 2

2+V1
< 1. Constants C2,C3 depend on K.
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Remark 3 Although the constants C1,C2,C3 can be recovered from the proofs we do not write their
explicit formulas, because our task is to prove bounds with better rates, that is, which decrease fast
with n→ ∞. For the same reason we do not attempt to optimize C1, C2 and C3.

Proof Consider the family of functions

PψF −Pψ f ∗ = {Pψ f −Pψ f ∗ : f ∈ F }.

A loss function ψ is convex so it is locally Lipschitz with constant Lψ. Since F is uniformly
bounded, then PψF −Pψ f ∗ is also uniformly bounded by 2LψA1. Moreover, we show in the next
subsection that if F is convex and the modulus of convexity of ψ satisfies the assumption given in
Theorem 2, then one can prove that for some constant B and every function f ∈ F

E [Pψ f (Z1)−Pψ f ∗(Z1)]
2 ≤ B[Q( f )−Q( f ∗)]. (5)

The precise value of the constant B is given in Lemma 5 in Section 2.2. Therefore, the relation
that is demanded in Theorem 1 between second moments and expectations of functions from the
considered class holds. Applying this theorem to the class of functions G =

{

Pψ f−Pψ f∗

2LψA1
: f ∈ F

}

and the sub-root function
φ(r) =

B
2LψA1

ERn(g ∈ G∗ : Pg2 ≤ r)

we get the following probabilistic inequality

P

(

∀ f∈F Q( f )−Q( f ∗)≤
K

K−1
Pn (Pψ f −Pψ f ∗)+C1r∗+C2

ln(1/α)
n

)

≥ 1−α .

ConstantsC1,C2 and others that appear in this proof may change from line to line. To finish the proof
of the first part of the theorem we have to bound the fixed point of the sub-root φ by lnn

n . Described
method is similar to consideration contained in Mendelson (2003) or Bartlett et al. (2005).

First we need two additional notations:

G∗
r = {g ∈ G∗ : Pg2 ≤ r}

for some r > 0 and
ξ= sup

g∈G∗
r

1
n

n

∑
i=1

g2(Zi).

Using Chaining Lemma for empirical processes (Pollard, 1984) we obtain

ERn(G∗
r )≤

C1√
n
E

∫ √
ξ/4

0

√

lnN (t,G∗
r ,ρPn)dt, (6)

where

ρPn(g1,g2) =

√

1
n

n

∑
i=1

[g1(Zi)−g2(Zi)]2 .

Notice that N (t,G∗
r ,ρPn) ≤ N (t,G∗,ρPn) ≤ N (t/2,G ,ρPn)

⌈ 1
t
⌉

since from a cover of a family G
with radius t/2 and a cover of the interval [0,1] with radius t/2 one can easily construct a cover of
a family G∗. Besides, it is not difficult to show that

N (t,PψF ,ρPn)≤ N (t,ψF ,ρP⊗Pn)≤ N
(

t
Lψ

,F ,ρPX⊗PXn

)

,
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since the first inequality follows from Nolan and Pollard (1987, Lemma 20) and to prove the second
one we use the fact thatψ is locally Lipschitz. Thus, Assumption A and above properties of covering
numbers imply that for some positive constantsC and C1

lnN (t,G∗
r ,ρPn)≤C1V1 ln

C
t
.

So the right side of (6) can be bounded by C1

√

V1
n E

∫√ξ/4
0

√

ln C
t dt. Using Mendelson (2003,

Lemma 3.8) and Jensen’s inequality we obtain

C1

√

V1
n
E

∫ √
ξ/4

0

√

ln
C
t
dt ≤C1

√

V1
n
√

Eξ

√

ln
(

C
Eξ

)

.

Furthermore, applying Talagrand (1994, Corollary 3.4) to the family G∗
r we have

Eξ≤ 8ERn(G∗
r )+ r.

Summarizing we have just shown that

ERn(G∗
r )≤C1

√

V1
n

√

8ERn(G∗
r )+ r

√

ln
C
r

which for the fixed point r∗ implies

r∗ ≤
C1V1
n

ln
C
r∗

,

and now it is easy to get that r∗ ≤CV1
lnn
n .

In the second part of the theorem we use less restrictive Assumption B. Reasoning is the same
as in the previous case, we need only to notice that

lnN(t,G∗
r ,ρPn)≤C

[

lnN
(

t,F ,ρPX⊗PXn
)

+ ln
C1
t

]

≤C
[

t−V1 + ln
C1
t

]

.

Therefore, the right side of (6) can be bounded by

C√
n
E

∫ √
ξ/4

0

√
t−V1 dt+

C√
n
E

∫ √
ξ/4

0

√

ln
C1
t
dt. (7)

The second component in (7) has been just considered, so we focus on the first one. Notice that it is
equal to C√

n Eξ
1/2−V1/4. Again, using Jensen’s inequality and Talagrand (1994, Corollary 3.4) it is

less than
C√
n
[8ERn(G∗

r )+ r]1/2−V1/4

which implies that

ERn (G∗
r )≤

C√
n

[

(8ERn(G∗
r )+ r)

1
2−

V1
4 +

√

(8ERn(G∗
r )+ r) ln

C1
r

]

. (8)
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For the fixed point r∗ the inequality (8) takes the form

r∗ ≤
C√
n

[

(r∗)
1
2−

V1
4 +

√

r∗ ln
C1
r∗

]

,

so

r∗ ≤Cmax

(

lnn
n

,
1

n
2

2+V1

)

and 2
3 < 2

2+V1
< 1, since 0 <V1 < 1.

2.2 On the Inequality (5)

Theorem 2 in the previous subsection shows that better rates can be obtained if we are able to bound
second moments of functions from the family PψF −Pψ f ∗ by their expectations. In this subsection
we indicate conditions that are sufficient for even stronger relationship, namely

E [ψ f (Z1,Z2)−ψ f ∗(Z1,Z2)]
2 ≤ B[Q( f )−Q( f ∗)]. (9)

The key object in further analysis is the modulus of convexity of the loss ψ. This function was
very helpful in proving similar relation in the classification theory (Mendelson, 2002; Bartlett et al.,
2006). With minor changes we will use it in our studies.

Definition 4 The modulus of convexity of ψ is the function δ : [0,∞)→ [0,∞] defined as

δ(t) = inf
{

ψ(x1)+ψ(x2)

2
−ψ

(

x1 + x2
2

)

: |x1 − x2|≥ t
}

.

We illustrate this object with a few examples: for the quadratic function ψ(x) = x2 we obtain δ(t) =
t2/4, the modulus of convexity of the exponential function defined on the interval [−a,a] is equal
to δ(t) = t2

8exp(a) +o(t2), whereas for ψ(x) = max[0,1− x] we have δ(t) = 0.
If the class F is convex, then the risk Q : F → R is the convex functional. It allows to consider

the modulus of convexity of Q, that is given by

δ̃(t) = inf
{

Q( f1)+Q( f2)
2

−Q
(

f1 + f2
2

)

: d( f1, f2)≥ t
}

,

where d is the L2-pseudometric on F , that is,

d( f1, f2) =
√

E [ f1(X1,X2)− f2(X1,X2)]2 .

The important property of the modulus of convexity is the fact that it can be often lower bounded by
Ctp for some C, p> 0. This relation is satisfied for many interesting convex functions, for instance
e−x, log2(1+ e−2x) or [max(0,1− x)]2 (the last case needs minor changes in consideration). This
property implies the similar one for the modulus of convexity of the functionalQ, which is sufficient
to prove the relationship (9) between second moments and expectations of functions from the family
ψF −ψ f ∗ . The following lemma, which is based on Bartlett et al. (2006, Lemma 7 and Lemma 8),
can be stated:
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Lemma 5 If the family F is convex and there exist constants C, p > 0 such that the modulus of
convexity of ψ satisfies

δ(t)≥Ctp, (10)
then

E [ψ f (Z1,Z2)−ψ f ∗(Z1,Z2)]
2 ≤ L2

ψDp[Q( f )−Q( f ∗)]min(1,2/p)
, (11)

where

Dp =

{

(2C)−2/p if p≥ 2,
21−pA2−p

1 C−1 if p< 2.
Proof Using Lipschitz property of ψ we can obtain

E [ψ f (Z1,Z2)−ψ f ∗(Z1,Z2)]
2

≤ L2
ψE [sign(Y1 −Y2) f (X1,X2)− sign(Y1 −Y2) f ∗(X1,X2)]

2

= L2
ψd2( f , f ∗). (12)

The second step of the proof is based on showing that if the modulus δ satisfies (10), then the
modulus δ̃ also fulfills a similar condition. Namely, let f1, f2 ∈ F satisfy d( f ,g)≥ t. Then from the
definition of the modulus of convexity δ and (10)

Q( f1)+Q( f2)
2

−Q
(

f1 + f2
2

)

= E

[

ψ f1(Z1,Z2)+ψ f2(Z1,Z2)

2
−ψ f1+ f2

2
(Z1,Z2)

]

≥ Eδ(|sign(Y1 −Y2) f1(X1,X2)− sign(Y1 −Y2) f2(X1,X2)|)
= Eδ(| f1(X1,X2)− f2(X1,X2)|)≥CE | f1(X1,X2)− f2(X1,X2)|p.

Easy calculation (see Bartlett et al., 2006, the proof of Lemma 8) indicates that the modulus δ̃ fulfills

δ̃(t)≥Cptmax(2,p) , (13)

where Cp = C for p ≥ 2 and Cp = C(2A1)
p−2, otherwise. Moreover, from the definition of the

modulus δ̃ and the fact that f ∗ is the minimizer of Q( f ) in the convex class F we have

Q( f )+Q( f ∗)
2

≥ Q
(

f + f ∗

2

)

+ δ̃(d( f , f ∗))≥ Q( f ∗)+ δ̃(d( f , f ∗)).

Combining this fact with the inequality (12) and the property (13) of the modulus δ̃ we get

Q( f )−Q( f ∗)≥ 2δ̃

(

√

E [ψ f (Z1,Z2)−ψ f ∗(Z1,Z2)]2

Lψ

)

≥ 2Cp

(

√

E [ψ f (Z1,Z2)−ψ f ∗(Z1,Z2)]2

Lψ

)max(2,p)

which is equivalent to the inequality (11).

Thus, for convex functions that were mentioned before Lemma 5 we obtain in the inequality
(11) the exponent equal to 1, because their modulus of convexity can be easily bounded from below
with p = 2. However, if p > 2, then the exponent belongs to the interval (0,1), but we can still
bound the considered empirical process by an expression of the order better than 1√

n (Mendelson,
2002; Bartlett et al., 2006). Of course, we get better bounds if the exponent is closer to 1.
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2.3 Degenerate Component

In this subsection we obtain exponential inequalities for degenerate U-processes. We bound the
second term in Hoeffding’s decomposition by 1

n that is sufficient to get better rates for the excess
risk of ranking estimators. Let us recall that considered object has the following form

{

Un (h f −h f ∗) =
1

n(n−1) ∑i)= j
[h f (Zi,Zj)−h f ∗(Zi,Zj)] : f ∈ F

}

, (14)

where
h f (z1,z2) = ψ f (z1,z2)−Pψ f (z1)−Pψ f (z2)+Q( f ).

Moreover, kernels of theU-process (14) are symmetric, uniformly bounded and degenerate.
Similar problems were also considered in Arcones and Giné (1994); de la Peña and Giné (1999),

Major (2006) and Adamczak (2007).

Theorem 6 If a family of ranking rules F satisfies Assumption A, then for every α ∈ (0,1)

P

(

∀ f∈F |Un (h f −h f ∗) |≤C1 max(V1,V2)
ln(C2/α)

n

)

≥ 1−α

for some constants C1,C2 > 0.
If a family of ranking rules F satisfies Assumption B, then for every α ∈ (0,1)

P

(

∀ f∈F |Un (h f −h f ∗) |≤
C3

1−max(V1,V2)

ln(C4/α)
n

)

≥ 1−α

for some constants C3,C4 > 0.

Remark 7 In Assumption B we restrict to V1,V2 < 1, whereas in the empirical process theory these
exponents usually belong to (0,2). This restriction is needed to prove Theorem 6, namely to calcu-
late the integral (19) in the proof of this theorem.

Proof Our aim is to bound the expression

E exp

(

λ
√

sup
f∈F

|(n−1)Un (h f −h f ∗) |

)

(15)

for every λ> 0. Combining it with Markov’s inequality finishes the proof.
Introduce the Rademacher sequence ε1, . . . ,εn and the symmetrizedU-process defined as

Sn (h f −h f ∗) =
1

n(n−1)∑i)= j
εiε j[h f (Zi,Zj)−h f ∗(Zi,Zj)].

Using Symmetrization forU-processes (de la Peña and Giné, 1999) we can bound (15) by

C2E exp

(

C1λ
√

sup
f∈F

|(n−1)Sn (h f −h f ∗) |

)

. (16)
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Constants C1,C2 that appear in this proof may differ from line to line. If we fix Z1, . . . ,Zn, then we
work with the Rademacher chaos process whose properties are well studied. By Arcones and Giné
(1994, Formula 3.4 and 3.5) and Hölder’s inequality we bound (16) by

C2E exp

(

C1λ
2
Eε sup

f∈F
|(n−1)Sn (h f −h f ∗) |

)

,

where Eε is conditional expectation with respect to the Rademacher sequence. To finish the proof
we study the expression Eε sup f∈F |(n− 1)Sn (h f −h f ∗) |. This step relies on Chaining Lemma for
U-processes (Nolan and Pollard, 1987, Lemma 5), similar reasoning can be found in Arcones and
Giné (1993) and Sherman (1993). For convenience let us denote h f − h f ∗ by h. Furthermore, for
fixed Z1, . . . ,Zn consider a stochastic process

{

Jn(h) =
1
En∑i)= j

εiε jh(Zi,Zj) : h ∈H

}

, (17)

where E is the uniform bound on elements of H . Define a pseudometric ρ on H = {h f −h f ∗ : f ∈
F } as

ρ(h1,h2) =
1
E

√

1
n(n−1)∑i)= j

[h1(Zi,Zj)−h2(Zi,Zj)]2 .

The process (17) satisfies assumptions of Chaining Lemma forU-processes with the function φ(x)=
exp
( x
κ −1

)

, where κ is some positive constant. Indeed, Jn(h1 −h2) is the Rademacher chaos of the
order two, so from de la Peña and Giné (1999, Corollary 3.2.6) there exists κ> 0 such that

Eε exp

(

|Jn(h1 −h2)|
κ
√

Eε[Jn(h1 −h2)]2

)

≤ e.

Moreover, it is easy to calculate that Eε[Jn(h1 − h2)]2 ≤ ρ2(h1,h2), which implies that
Eεφ

(

|Jn(h1−h2)|
ρ(h1,h2)

)

≤ 1. Therefore, we obtain the inequality

Eε sup
f∈F

|(n−1)Sn (h f −h f ∗) |≤C1

∫ 1/4

0
lnN (t,H ,ρ)dt. (18)

Besides, the covering number of the family H1+H2 = {h1+h2 : h1 ∈H1,h2 ∈H2} clearly satisfies
the inequality

N(2t,H1 +H2,ρ)≤ N(t,H1,ρ)N(t,H2,ρ).

If the family F fulfills Assumption A, then similarly to the proof of Theorem 2 we have
N(t,PψF ,ρPn)≤C1t−V1 and N(t,ψF ,ρ)≤C2t−V2 . Therefore, for some constantsC,C1 > 0

N(t,H ,ρ)≤Ct−C1 max(V1,V2)

and the right-hand side of (18) is bounded (for some constantsC,C1,C2 > 0) by

C1 max(V1,V2)
∫ 1/4

0
ln
C
t
dt ≤C2 max(V1,V2).
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If the family satisfies Assumption B, then the right-hand side of (18) is bounded (for some constants
C,C1 > 0) by

C
∫ 1/4

0
t−max(V1,V2) dt ≤

C1
1−max(V1,V2)

. (19)

Summarizing we obtain for every λ> 0

E exp

(

λ
√

sup
f∈F

|(n−1)Un (h f −h f ∗) |

)

≤C2 exp(C1λ
2)

and the form of the constant C1 depends on the assumption (A or B) that is satisfied by the family
F . Finally, we take λ=

√

ln(C2/α)
C1

and use Markov’s inequality.

2.4 Main Result and Examples

Our task relied on showing that in ranking, similarly to the classification theory, the convex excess
risk can be bounded with better rates than 1√

n which were proved in Clémençon et al. (2008). By
Hoeffding’s decomposition the effort was divided into the empirical term (Sections 2.1 and 2.2) and
the degenerateU-process (Section 2.3). Taking results of these three parts together we can state the
main theorem.

Theorem 8 Let the family of ranking rules F satisfy Assumption A and be convex. Moreover, if the
modulus of convexity of a function ψ fulfills on the interval [−A1,A1] the condition δ(t) ≥Ctp for
some constants C > 0 and p≤ 2, then for every α∈(0,1)

P

(

Q( fn)−Q( f ∗)≤C1 max(V1,V2)
lnn+ ln(C2/α)

n

)

≥ 1−α (20)

for some constants C1,C2.
If the family F satisfies Assumption B instead of Assumption A, then for every α∈(0,1)

P

(

Q( fn)−Q( f ∗)≤C3 max
(

lnn
n

,
1
nβ

)

+
C4

1−max(V1,V2)

ln(C5/α)
n

)

≥ 1−α

for some constants C3,C4,C5 and β= 2
2+V1

∈
( 2

3 ,1
)

.

Remark 9 The dependence on exponents V1,V2 in the inequality (20) is the same as in Clémençon
et al. (2008, Corollary 6), where one considered minimizers of the empirical risk with 0−1 loss and
the family F with finite Vapnik-Chervonenkis dimension.

Proof Let us slightly modify Hoeffding’s decomposition of theU-statistic Qn( f )−Qn( f ∗), namely
for each K > 2

(K−2)[Q( f )−Q( f ∗)]−K[Qn( f )−Qn( f ∗)]
= 2Pn

{

(K−1)[Q( f )−Q( f ∗)]−K(Pψ f−Pψ f ∗)
}

−K[Un(h f )−Un(h f ∗)].
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Therefore, the first part of Theorem 2, Lemma 5 and Theorem 6 are sufficient to prove that for every
α ∈ (0,1) and K > 2 with probability at least 1−α

∀ f∈F Q( f )−Q( f ∗)≤
K

K−2
[Qn( f )−Qn( f ∗)]+C1 max(V1,V2)

[

lnn+ ln(C2/α)
n

]

for some constants C1,C2. Moreover, for the rule fn that minimizes the empirical convex risk we
have Qn( fn)−Qn( f ∗)≤ 0. If the family F satisfies Assumption B we use the second thesis of The-
orem 2 and further reasoning is the same.

Now we give three examples of ranking procedures that we can apply Theorem 8 to.

Example 1 Consider the family F containing linear ranking rules

F = { f (x1,x2) = θT (x1 − x2) : θ,x1,x2 ∈ R
d}

In this case our prediction of the ordering between objects depends on the hyperplane that the vector
x1 − x2 belongs to. The family F is convex. Moreover, the class {subgraph( f ) : f ∈ F }, where

subgraph( f ) = {(x1,x2, t) ∈ X 2 ×R : 0 < t < f (x1,x2) or f (x1,x2)< t < 0},

is by Pakes and Pollard (1989, Lemma 2.4 and 2.5) a VC-class of sets. Thus, Pakes and Pollard
(1989, Lemma 2.12) implies that the family F satisfies Assumption A. If we take a ”good” function
ψ (for example one of functions mentioned in Section 2.2), then we obtain generalization bounds
for the excess risk of the estimator fn of the order lnn

n .

Theorem 8 can be also applied to a popular ranking procedure called ”boosting”. Here we are
interested in a ranking version of AdaBoost that uses the exponential loss function.

Example 2 Let R = {r : X ×X → {−1,1}} be a family of ”base” ranking rules with finite Vapnik-
Chervonenkis dimension. The output of the algorithm is an element of a convex T -hull of R , where
T is the number of iterations of the procedure. Namely, it belongs to the family

convT (R ) = { f (x1,x2) =
T

∑
j=1

wjr j(x1,x2) :
T

∑
j=1

wj = A1,

wj ≥ 0,r j ∈ R for j = 1, . . . ,T} .

This class is obviously convex. The family R has finite VC dimension, so a class

{Ar = {(x1,x2) : r(x1,x2) = 1} : r ∈ R }

is a VC-class of sets. The subgraph of each r ∈ R has the following form

{(x1,x2) ∈ Ar and t ∈ (0,1)} ∪ {(x1,x2) ∈ Acr and t ∈ (−1,0)}.

Again using Pakes and Pollard (1989, Lemma 2.5 and 2.12) we obtain that N (t,R ,ρµ)≤Ct−V for
some constants C,V > 0 and every probability measure µ on X ×X . Quick calculation shows that

N (t,convT (R ),ρµ)≤C1t−T (V+1),

soF satisfies Assumption A. Furthermore, the modulus of convexity ofψ(x)= exp(−x) fulfills on the
interval [−A1,A1] the condition δ(t)> t2

8exp(A1)
. Thus, in this example we also obtain generalization

bounds for the excess convex risk of fn of the order lnn
n .
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The last example is a ranking version of support vector machines.

Example 3 Let K :X 2×X 2 →R be a kernel that is symmetric, continuous and nonnegative definite
function. The last property means that for every natural number m, vectors  x1, . . . ,  xm ∈ X 2 and
α1, . . . ,αm ∈ R

m

∑
i, j=1

αiα jK(  xi,  x j)≥ 0.

One can show (Cucker and Smale, 2002) that for every kernel K there exists the unique Hilbert
space HK (called reproducing kernel Hilbert space) of real functions on X 2 that the inner product
of its elements is defined by K. Namely, HK is the completion of

span{K(  x, ·) :  x ∈ X 2},

and the inner product is defined by

〈 f1, f2〉=
k

∑
i=1

m

∑
j=1

αiβ jK(  xi,  x j)

for f1(·) = ∑k
i=1αiK(  xi, ·) and f2(·) = ∑m

j=1β jK(  x j, ·).
Similarly to SVM in the classification theory our task is to linearly separate (with possibly wide

”margin”) two sets: {(Xi,Xj) :Yi > Yj,1≤ i )= j ≤n} and {(Xi,Xj) :Yi<Yj,1≤ i )= j≤n}, which can
be solved using Lagrange multipliers. This primary problem is ”transposed” from the X 2 ⊂ R2d

to HK by the function  x 1−→ K(  x, ·) and by the ”kernel trick” we obtain the nonlinear procedure
- comprehensive descriptions are in Cortes and Vapnik (1995), Burges (1998), Vapnik (1998) and
Blanchard et al. (2008). Finally, we are to minimize the empirical convex risk of the form

Qn( f ) =
1

n(n−1)∑i)= j
max [0,1− sign(Yi−Yj) f (Xi,Xj)]+λ|| f ||2

in some ball with radius R in the Hilbert space HK , that is

F = { f ∈ HK : || f ||≤ R}

and λ> 0 is a parameter. Consider a Gaussian kernel of the form

K(  x,  x′) = exp
(

−σ2||  x−  x′||22
)

,

where  x,  x′ ∈ X 2, ||  x||2 =
√

∑2d
i=1  x2

i and σ > 0 is a scale parameter. Using Scovel and Steinwart
(2007, Theorem 3.1) we obtain that for every compact set X , σ≥ 1 and 0 <V < 1

lnN(t,F ,C(X 2))≤Ct−V (21)

for some constant C dependent on V,d,σ and R. The covering number N(t,F ,C(X 2)) denotes the
minimal number of balls with centers in the space of continuous functions on X 2 with the metric
d( f1, f2) = max

 x∈X 2
| f1(  x)− f2(  x)| needed to cover F . This definition differs from ours given in the

beginning of Section 2. But Steinwart (2001) proved that HK corresponding to the Gaussian kernel
is dense in C(X 2), so we can use the property (21) in our studies. Moreover, for every probability
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measure µ on X 2 we have ρµ( f1, f2) ≤ d( f1, f2), where ρµ is defined by (4). Thus, the family F
satisfies Assumption B and is convex. The inequality (5) with B = 2(2Rλ+1)2

λ can be obtained using
almost the same arguments as Scovel and Steinwart (2005, Section 6.1). Therefore, we get

P

(

Q( fn)−Q( f ∗)≤C1 max
(

lnn
n

,
1
nβ

)

+C2
ln(C3/α)

n

)

≥ 1−α

with 2
3 < β< 1.

In the paper we consider ranking estimators that minimize the convex empirical risk. The natural
question is: are these estimators also ”good” in the case of the primary 0− 1 loss function? Is
there any relation between the excess risk and the convex excess risk? Let us introduce, similarly to
Clémençon et al. (2008), two notations

ρ+(X1,X2) = P(Y1 > Y2 |X1,X2)

and
ρ−(X1,X2) = P(Y1 < Y2 |X1,X2).

It is easy to see that the ranking rule

 f (x1,x2) = 2I[ρ+(x1,x2)≥ρ−(x1,x2)]−1

minimizes the risk (1) in the class of all measurable functions. Denote L∗ = L(  f ). Let Q∗ be the
minimal value of Q( f ) for every measurable functions f : X ×X →R. Bartlett et al. (2006) proved
the relation between the excess risks and the convex excess risk for the classification theory. How-
ever, Clémençon et al. (2008) noticed that those results can be applied to ranking. They obtained
that for every ranking rule f

γ(L( f )−L∗)≤ Q( f )−Q∗

for some invertible function γ that depends on ψ. Moreover, γ can be computed in most interesting
cases, for instance: γ(x) = 1−

√
1− x2 for ψ(x) = exp(−x).

Divide the difference Q( f )−Q∗ into the sum of two terms

[Q( f )−Q( f ∗)]+ [Q( f ∗)−Q∗]. (22)

The first component in (22), so called ”estimation error”, tells us how close the risk of f is to the risk
of the best element in the class F . The second term (”approximation error”) describes how much
we lose using the family F . In the paper we study the estimation error, however approximation
properties of the family F are also important problems. For instance they were considered in
Cucker and Smale (2002), Lugosi and Vayatis (2004) and Scovel and Steinwart (2007).

3. Experiments

This section is devoted to results of our experiments on real data sets (Frank and Asuncion, 2010).
We compare the performance of different SVM’s for ranking problems. In Section 2.4 we describe
a general method to obtain such procedures, but one can propose some simplification of this idea

1387



REJCHEL

that is useful in practice. Consider linearly separable case which means that there exists a vector
θ ∈ Rd such that

θTXi > θTXj for Yi > Yj, 1 ≤ i )= j ≤ n.

Thus, our task is to assign differences Xi−Xj to classes defined by sign(Yi−Yj). We assume that the
distribution of the variable Y is continuous, so P(Y1 = Y2) = 0. Therefore, we can use SVM for the
classification theory to solve ranking problems if we consider differences of observations in place
of observations. Thus, instead of a kernel K : X 2 ×X 2 → R we can use a kernel K : X ×X → R if
we take

K ((x1,x2),(x3,x4)) = K(x1 − x2,x3 − x4).

The kernel K is symmetric, continuous and nonnegative definite by the same properties of the
kernel K. Therefore, all calculations done by a procedure are made in Rd instead of R2d . Similar
considerations can be found in Herbrich et al. (2000) and Joachims (2006).

To our experiments we use ”e1071” package in ”R” (R Development Core Team, 2009; Dimi-
triadou et al., 2010). We choose three types of kernels:

a) linear – K(x1,x2) =< x1,x2 >Rd ,

b) polynomial – K(x1,x2) =< x1,x2 >3
Rd ,

c) Gaussian – K(x1,x2) = exp
(

− 1
2 ||x1 − x2||2Rd

)

and two values of the parameter λ: 1 and 1
10 . Less value of λ corresponds to the case when the

algorithm should be more adjusted to the sample. Greater value of λ has an effect in wider margin.
We divide every considered data sets into two subsets. The first one is used as a learning sample

and we determine an estimator on it. On the second subset we test the estimator, that is, we take
two objects and check if the ordering indicated by the estimator is the same as the true one. We
repeat the experiment for every data set thirty times and average proportions of wrong decisions are
presented in tables below. We denote SVM with the linear kernel and the parameter λ equal to 1
and 1

10 by L(1) and L(10), respectively. Similarly, W(1) and W(10) stand for polynomial kernels,
and G(1) and G(10) for Gaussian kernels.

The first data set concerns experiments that the concrete compressive strength was measured
(Yeh, 1998). There are more than 1000 observations, 9 features are considered such that the age
of material, contents of water, cement and other ingredients, and finally the concrete compressive
strength. In Table 1 we compare errors in predicting the ordering between objects by six algorithms.
Notice that in both cases (a learning sample with 100 and 300 elements) SVM with Gaussian kernels

Error L(1) L(10) W(1) W(10) G(1) G(10)
n=100 0,198 0,196 0,199 0,196 0,179 0,185
n=300 0,191 0,189 - - 0,165 0,179

Table 1: Concrete compressive strength

have least errors, and among them G(1) is better. Proportions of wrong decisions of remaining four
algorithms are similar. Besides, for linear and polynomial kernels greater adjustment to the sample
has an effect in slightly better effectiveness, contrary to G(1) and G(10). The mark ”-” in the
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table means that the algorithm did not calculate an estimate for 100 minutes. Comparing to three
following data sets it usually happens for polynomial SVM and n=300. Such numerical problems
occur, since the number of pairs of instances, that algorithms work with, increases with the square
of the sample size n. It makes these procedures inefficient for large n. Some improvements can be
found in Joachims (2006).

In the second data set values of houses in the area of Boston are compared (Frank and Asuncion,
2010). Thirteen features were measured, for instance the crime rate, the distance to five Boston
employment centres or pupil-teacher ratio by town. Our results are contained in Table 2. We notice

Error L(1) L(10) W(1) W(10) G(1) G(10)
n=100 0,153 0,157 0,148 0,153 0,133 0,132
n=300 0,132 0,133 - - 0,107 0,123

Table 2: Boston housing data

an improvement of every procedure in recognizing the ordering. Again G(1) and G(10) have least
errors. In this case estimators obtained for greater value of the parameter λ (except for G(1)) are
better.

Last two experiments are carried out on data sets concerning the quality of red and white wine
(Cortez et al., 2009). In both cases one measured 11 features such that the content of alcohol, citric
acid, the density and pH. The quality of a wine was determined by wine experts. Results in Table

Red L(1) L(10) W(1) W(10) G(1) G(10)
n=100 0,226 0,227 0,281 0,271 0,257 0,285
n=300 0,214 0,216 - - 0,232 0,270
White
n=100 0,265 0,266 0,292 - 0,282 0,305
n=300 0,253 0,249 - - 0,268 0,303

Table 3: Wine quality

3 indicate lower efficiency of procedures than in previous examples. For red wine as well as white
one we can notice the advantage of SVM with linear kernels, whose errors are very similar. The
worst algorithm is G(10) which in previous experiments has one of the least error.
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Abstract
We introduce a framework for feature selection based on dependence maximization between the
selected features and the labels of an estimation problem, using the Hilbert-Schmidt Independence
Criterion. The key idea is that good features should be highly dependent on the labels. Our ap-
proach leads to a greedy procedure for feature selection. We show that a number of existing feature
selectors are special cases of this framework. Experiments on both artificial and real-world data
show that our feature selector works well in practice.
Keywords: kernel methods, feature selection, independence measure, Hilbert-Schmidt indepen-
dence criterion, Hilbert space embedding of distribution

1. Introduction

In data analysis we are typically given a set of observations X = {x1, . . . ,xm} ⊆ X which can be
used for a number of tasks, such as novelty detection, low-dimensional representation, or a range of
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supervised learning problems. In the latter case we also have a set of labels Y = {y1, . . . ,ym}⊆ Y at
our disposition. Tasks include ranking, classification, regression, or sequence annotation. While not
always true in practice, we assume in the following that the data X and Y are drawn independently
and identically distributed (i.i.d.) from some underlying distribution Pr(x,y).

We often want to reduce the dimension of the data (the number of features) before the actual
learning (Guyon and Elisseeff, 2003); a larger number of features can be associated with higher data
collection cost, more difficulty in model interpretation, higher computational cost for the classifier,
and sometimes decreased generalization ability. In other words, there often exist motives in addition
to finding a well performing estimator. It is therefore important to select an informative feature
subset.

The problem of supervised feature selection can be cast as a combinatorial optimization prob-
lem. We have a full set of features, denoted by S (each element in S corresponds to one dimension
of the data). It is our aim to select a subset T ⊆ S such that this subset retains the relevant infor-
mation contained in X . Suppose the relevance of a feature subset (to the outcome) is quantified by
Q (T ), and is computed by restricting the data to the dimensions in T . Feature selection can then
be formulated as

T0 = argmax
T ⊆S

Q (T ) subject to |T |≤ t, (1)

where | · | computes the cardinality of a set and t is an upper bound on the number of selected fea-
tures. Two important aspects of problem (1) are the choice of the criterion Q (T ) and the selection
algorithm.

1.1 Criteria for Feature Selection

A number of quality functionals Q (T ) are potential candidates for feature selection. For instance,
we could use a mutual information-related quantity or a Hilbert Space-based estimator. In any case,
the choice of Q (T ) should respect the underlying task. In the case of supervised learning, the goal
is to estimate a functional dependence f from training data such that f predicts well on test data.
Therefore, a good feature selection criterion should satisfy two conditions:

I: Q (T ) is capable of detecting desired (linear or nonlinear) functional dependence between the
data and the labels.

II: Q (T ) is concentrated with respect to the underlying measure. This guarantees with high
probability that detected functional dependence is preserved in test data.

While many feature selection criteria have been explored, not all of them take these two conditions
explicitly into account. Examples of criteria that satisfy both conditions include the leave-one-out
error bound of SVM (Weston et al., 2000) and the mutual information (Zaffalon and Hutter, 2002).
Although the latter has good theoretical justification, it requires density estimation, which is prob-
lematic for high dimensional and continuous variables. We sidestep these problems by employing
the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005a). Like the mutual in-
formation, HSIC is a nonparametric dependence measure, which takes into account all modes of
dependence between the variables (not just linear correlation). Unlike some popular mutual infor-
mation estimates, however, HSIC does not require density estimation as an intermediate step, being
based on the covariance between variables mapped to reproducing kernel Hilbert spaces (RKHS).
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HSIC has good uniform convergence guarantees, and an unbiased empirical estimate. As we show
in Section 2, HSIC satisfies conditions I and II required for Q (T ).

1.2 Feature Selection Algorithms

Finding a global optimum for (1) is typically NP-hard (Weston et al., 2003), unless the criterion is
easily decomposable or has properties which make approximate optimization easier, for example,
submodularity (Nemhauser et al., 1978; Guestrin et al., 2005). Many algorithms transform (1) into
a continuous problem by introducing weights on the dimensions (Weston et al., 2000; Bradley and
Mangasarian, 1998; Weston et al., 2003; Neal, 1998). These methods perform well for linearly sep-
arable problems. For nonlinear problems, however, the optimisation usually becomes non-convex
and a local optimum does not necessarily provide good features. Greedy approaches, such as for-
ward selection and backward elimination, are often used to tackle problem (1) directly. Forward
selection tries to increase Q (T ) as much as possible for each inclusion of features, and backward
elimination tries to achieve this for each deletion of features (Guyon et al., 2002). Although for-
ward selection is computationally more efficient, backward elimination provides better features in
general since the features are assessed within the context of all others present. See Section 7 for
experimental details.

In principle, the Hilbert-Schmidt independence criterion can be employed for feature selection
using either a weighting scheme, forward selection or backward selection, or even a mix of several
strategies. While the main focus of this paper is on the backward elimination strategy, we also
discuss the other selection strategies. As we shall see, several specific choices of kernel function
will lead to well known feature selection and feature rating methods. Note that backward elimination
using HSIC (BAHSIC) is a filter method for feature selection. It selects features independent of a
particular classifier. Such decoupling not only facilitates subsequent feature interpretation but also
speeds up the computation over wrapper and embedded methods.

We will see that BAHSIC is directly applicable to binary, multiclass, and regression problems.
Most other feature selection methods are only formulated either for binary classification or regres-
sion. Multiclass extensions of these methods are usually achieved using a one-versus-the-rest strat-
egy. Still fewer methods handle classification and regression cases at the same time. BAHSIC, on
the other hand, accommodates all these cases and unsupervised feature selection in a principled
way: by choosing different kernels, BAHSIC not only subsumes many existing methods as special
cases, but also allows us to define new feature selectors. This versatility is due to the generality of
HSIC. The current work is built on earlier presentations by Song et al. (2007b,a). Compared with
this earlier work, the present study contains more detailed proofs of the main theorems, proofs of
secondary theorems omitted due to space constraints, and a number of additional experiments.

Our paper is structured as follows. In Section 2, we introduce the Hilbert-Schmidt Indepen-
dence criterion. We provide both biased and unbiased empirical estimates, as well as more efficient
approximate empirical estimates. In addition, we prove the empirical estimate converges in prob-
ability, and provide its asymptotic distribution. Section 3 contains a brief description of notation
for the remainder of the paper. Section 4 presents our two feature selection algorithms, based re-
spectively on forward selection and backwards elimination. Section 5 presents a number of variants
of BAHSIC obtained via different kernel choices, with a focus on using the appropriate kernel for
the underlying task (e.g., two-class classification, multiclass classification, and regression). Section
6 gives an overview of a variety of feature selection approaches, which can be shown to employ
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particular variants of HSIC as their feature relevance criterion. Finally, Sections 7–9 contain our ex-
periments, where we apply HSIC to a number of domains, including real and artificial benchmarks,
brain computer interface data, and microarray data.

2. Measures of Dependence

We begin with the simple example of linear dependence detection, and then generalize to the de-
tection of more general kinds of dependence. Consider spaces X ⊂ Rd and Y ⊂ Rl , on which we
jointly sample observations (x,y) from a distribution Pr(x,y). Denote by Cxy the covariance matrix

Cxy = Exy

[

xy&
]

−Ex [x]Ey
[

y&
]

, (2)

which contains all second order dependence between the random variables. A statistic that effi-
ciently summarizes the degree of linear correlation between x and y is the Frobenius norm of Cxy.
Given the singular values σi of Cxy the norm is defined as

‖Cxy‖2
Frob :=∑

i
σ2
i = trCxyC&xy .

This quantity is zero if and only if there exists no linear dependence between x and y. This statistic
is limited in several respects, however, of which we mention two: first, dependence can exist in
forms other than that detectable via covariance (and even when a second order relation exists, the
full extent of the dependence between x and y may only be apparent when nonlinear effects are
included). Second, the restriction to subsets of Rd excludes many interesting kinds of variables,
such as strings and class labels. In the next section, we generalize the notion of covariance to
nonlinear relationships, and to a wider range of data types.

2.1 Hilbert-Schmidt Independence Criterion (HSIC)

In general X and Y will be two domains from which we draw samples (x,y): these may be real val-
ued, vector valued, class labels, strings (Lodhi et al., 2002), graphs (Gärtner et al., 2003), dynamical
systems (Vishwanathan et al., 2007), parse trees (Collins and Duffy, 2001), images (Schölkopf,
1997), and any other domain on which kernels can be defined. See Schölkopf et al. (2004) and
Schölkopf and Smola (2002) for further references.

We define a (possibly nonlinear) mapping φ : X → F from each x ∈ X to a feature space F
(and an analogous map ψ : Y → G wherever needed). In this case we may write the inner product
between the features via the positive definite kernel functions

k(x,x′) :=
〈

φ(x),φ(x′)
〉

and l(y,y′) :=
〈

ψ(y),ψ(y′)
〉

.

The kernels k and l are associated uniquely with respective reproducing kernel Hilbert spaces F
and G (although the feature maps φ and ψ may not be unique). For instance, if X = Rd , then this
could be as simple as a set of polynomials of order up to b in the components of x, with kernel
k(x,x′) = (〈x,x′〉+a)b. Other kernels, like the Gaussian RBF kernel correspond to infinitely large
feature spaces. We need never evaluate these feature representations explicitly, however.
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We may now define a cross-covariance operator1 between these feature maps, in accordance
with Baker (1973) and Fukumizu et al. (2004): this is a linear operator Cxy : G .−→ F such that

Cxy := Exy [(φ(x)−µx)⊗ (ψ(y)−µy)] where µx = Ex[φ(x)] and µy = Ey[ψ(y)].

Here ⊗ denotes the tensor product. We need to extend the notion of a Frobenius norm to operators.
This leads us to the Hilbert-Schmidt norm, which is given by the trace of CxyC&xy . For operators with
discrete spectrum this amounts to computing the !2 norm of the singular values. We use the square of
the Hilbert-Schmidt norm of the cross-covariance operator (HSIC), ‖Cxy‖2

HS as our feature selection
criterion Q (T ). Gretton et al. (2005a) show that HSIC can be expressed in terms of kernels as

HSIC(F ,G ,Pr
xy
) := ‖Cxy‖2

HS (3)

=Exx′yy′ [k(x,x′)l(y,y′)]+Exx′ [k(x,x′)]Eyy′ [l(y,y′)]−2Exy[Ex′ [k(x,x′)]Ey′ [l(y,y′)]].

This allows us to compute a measure of dependence between x and y simply by taking expectations
over a set of kernel functions k and l with respect to the joint and marginal distributions in x and y
without the need to perform density estimation (as may be needed for entropy based methods).

2.2 Estimating the Hilbert-Schmidt Independence Criterion

We denote by Z = (X ,Y ) the set of observations {(x1,y1), . . . ,(xm,ym)} which are drawn iid from
the joint distribution Prxy. We denote by EZ the expectation with respect Z as drawn from Prxy.
Moreover, K,L ∈ Rm×m are kernel matrices containing entries Ki j = k(xi,x j) and Li j = l(yi,y j).
Finally, H = I−m−111 ∈ Rm×m is a centering matrix which projects onto the space orthogonal to
the vector 1.

Gretton et al. (2005a) derive estimators of HSIC(F ,G ,Prxy) which have O(m−1) bias and they
show that this estimator is well concentrated by means of appropriate tail bounds. For completeness
we briefly restate this estimator and its properties below.

Theorem 1 (Biased estimator of HSIC Gretton et al., 2005a) The estimator

HSIC0(F ,G ,Z) := (m−1)−2 trKHLH (4)

has bias O(m−1), that is, HSIC(F ,G ,Prxy)−EZ [HSIC0(F ,G ,Z)] = O(m−1).

This bias arises from the self-interaction terms which are present in HSIC0, that is, we still have
O(m) terms of the form Ki jLil and K jiLli present in the sum, which leads to the O(m−1) bias.
To address this, we now devise an unbiased estimator which removes those additional terms while
ensuring proper normalization. Our proposed estimator has the form

HSIC1(F ,G ,Z) :=
1

m(m−3)

[

tr(K̃L̃)+ 1&K̃11&L̃1
(m−1)(m−2)

−
2

m−2
1&K̃L̃1

]

, (5)

where K̃ and L̃ are related toK and L by K̃i j = (1−δi j)Ki j and L̃i j = (1−δi j)Li j (i.e., the diagonal
entries of K̃ and L̃ are set to zero).

1. We abuse the notation here by using the same subscript in the operator Cxy as in the covariance matrix of (2), even
though we now refer to the covariance between feature maps.
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Theorem 2 (Unbiased estimator of HSIC) The estimator HSIC1 is unbiased, that is, we have
EZ [HSIC1(F ,G ,Z)] = HSIC(F ,G ,Prxy).

Proof We prove the claim by constructing unbiased estimators for each term in (3). Note that we
have three types of expectations, namely ExyEx′y′ , a partially decoupled expectation ExyEx′Ey′ , and
ExEyEx′Ey′ , which takes all four expectations independently.

If we want to replace the expectations by empirical averages, we need to take care to avoid
using the same discrete indices more than once for independent random variables. In other words,
when taking expectations over n independent random variables, we need n-tuples of indices where
each index occurs exactly once. We define the sets imn to be the collections of indices satisfying this
property. By simple combinatorics one can see that their cardinalities are given by the Pochhammer
symbols (m)n = m!

(m−n)! . Jointly drawn random variables, on the other hand, share the same index.
For the joint expectation over pairs we have

ExyEx′y′
[

k(x,x′)l(y,y′)
]

= (m)−1
2 EZ

[

∑
(i, j)∈im2

Ki jLi j
]

= (m)−1
2 EZ

[

trK̃L̃
]

. (6)

Recall that we set K̃ii = L̃ii = 0. In the case of the expectation over three independent terms
ExyEx′Ey′ [k(x,x′)l(y,y′)] we obtain

(m)−1
3 EZ

[

∑
(i, j,q)∈im3

Ki jLiq
]

= (m)−1
3 EZ

[

1&K̃L̃1− trK̃L̃
]

. (7)

For four independent random variables ExEyEx′Ey′ [k(x,x′)l(y,y′)],

(m)−1
4 EZ

[

∑
(i, j,q,r)∈im4

Ki jLqr
]

= (m)−1
4 EZ

[

1&K̃11&L̃1−41&K̃L̃1+2trK̃L̃
]

. (8)

To obtain an expression for HSIC we only need to take linear combinations using (3). Collecting
terms related to trK̃L̃, 1&K̃L̃1, and 1&K̃11&L̃1 yields

HSIC(F ,G ,Pr
xy
) =

1
m(m−3)

EZ

[

trK̃L̃+ 1&K̃11&L̃1
(m−1)(m−2)

−
2

m−2
1&K̃L̃1

]

. (9)

This is the expected value of HSIC1[F ,G ,Z].

Note that neither HSIC0 nor HSIC1 require any explicit regularization parameters, unlike earlier
work on kernel dependence estimation. Rather, the regularization is implicit in the choice of the
kernels. While in general the biased HSIC is acceptable for estimating dependence, bias becomes a
significant problem for diagonally dominant kernels. These occur mainly in the context of sequence
analysis such as texts and biological data. Experiments on such data (Quadrianto et al., 2009) show
that bias removal is essential to obtain good results.

For suitable kernels HSIC(F ,G ,Prxy) = 0 if and only if x and y are independent. Hence the
empirical estimate HSIC1 can be used to design nonparametric tests of independence. A key feature
is that HSIC1 itself is unbiased and its computation is simple. Compare this to quantities based
on the mutual information, which requires sophisticated bias correction strategies (e.g., Nemenman
et al., 2002).

Previous work used HSIC to measure independence between two sets of random variables
(Feuerverger, 1993; Gretton et al., 2005a). Here we use it to select a subset T from the first full
set of random variables S . We next describe properties of HSIC which support its use as a feature
selection criterion.
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2.3 HSIC Detects Arbitrary Dependence (Property I)

Whenever F ,G are RKHSs with characteristic kernels k, l (in the sense of Fukumizu et al., 2008;
Sriperumbudur et al., 2008, 2010), then HSIC(F ,G ,Prxy) = 0 if and only if x and y are indepen-
dent.2 In terms of feature selection, a characteristic kernel such as the Gaussian RBF kernel or the
Laplace kernel permits HSIC to detect any dependence between X and Y . HSIC is zero only if
features and labels are independent. Clearly we want to reach the opposite result, namely strong
dependence between features and labels. Hence we try to select features that maximize HSIC.
Likewise, whenever we want to select a subset of features from X we will try to retain maximal
dependence between X and its reduced version.

Note that non-characteristic and non-universal kernels can also be used for HSIC, although
they may not guarantee that all dependence is detected. Different kernels incorporate distinctive
prior knowledge into the dependence estimation, and they focus HSIC on dependence of a certain
type. For instance, a linear kernel requires HSIC to seek only second order dependence, whereas a
polynomial kernel of degree b restricts HSIC to test for dependences of degree (up to) b. Clearly
HSIC is capable of finding and exploiting dependence of a much more general nature by kernels on
graphs, strings, or other discrete domains. We return to this issue in Section 5, where we describe
the different kernels that are suited to different underlying classification tasks.

2.4 HSIC is Concentrated (Property II)

HSIC1, the estimator in (5), can be alternatively formulated using U-statistics (Hoeffding, 1948).
This reformulation allows us to derive a uniform convergence bound for HSIC1. Thus for a given
set of features, the feature quality evaluated using HSIC1 closely reflects its population counterpart
HSIC.

Theorem 3 (U-statistic of HSIC) HSIC1 can be rewritten in terms of a U-statistic

HSIC1(F ,G ,Z) = (m)−1
4 ∑

(i, j,q,r)∈im4

h(i, j,q,r), (10)

where the kernel h of the U-statistic is defined by

h(i, j,q,r) =
1

24

(i, j,q,r)

∑
(s,t,u,v)

Kst [Lst +Luv−2Lsu] (11)

=
1
6

(i, j,q,r)

∑
(s≺t),(u≺v)

Kst [Lst +Luv]−
1
12

(i, j,q,r)

∑
(s,t,u)

KstLsu. (12)

Here the first sum represents all 4! = 24 quadruples (s, t,u,v) which can be selected without re-
placement from (i, j,q,r). Likewise the sum over (s, t,u) is the sum over all triples chosen without
replacement. Finally, the sum over (s ≺ t),(u ≺ v) has the additional condition that the order im-
posed by (i, j,q,r) is preserved. That is (i,q) and ( j,r) are valid pairs, whereas (q, i) or (r,q) are
not.

2. This result is more general than the earlier result of Gretton et al. (2005a, Theorem 4), which states that when F ,G
are RKHSs with universal kernels k, l in the sense of Steinwart (2001), on respective compact domains X and Y ,
then HSIC(F ,G ,Prxy) = 0 if and only if x and y are independent. Universal kernels are characteristic on compact
domains, however characteristic kernels also exist on non-compact domains.
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Proof Combining the three unbiased estimators in (6-8) we obtain a single U-statistic

HSIC1(F ,G ,Z) = (m)−1
4 ∑

(i, j,q,r)∈im4

(Ki jLi j+Ki jLqr−2Ki jLiq) . (13)

In this form, however, the kernel h(i, j,q,r) = Ki jLi j +Ki jLqr − 2Ki jLiq is not symmetric in its
arguments. For instance h(i, j,q,r) 2= h(q, j,r, i). The same holds for other permutations of the
indices. Thus, we replace the kernel with a symmetrized version, which yields

h(i, j,q,r) :=
1
4!

(i, j,q,r)

∑
(s,t,u,v)

(KstLst +KstLuv−2KstLsu) (14)

where the sum in (14) represents all ordered quadruples (s, t,u,v) selected without replacement from
(i, j,q,r).

This kernel can be simplified, since Kst = Kts and Lst = Lts. The first one only contains terms
LstKst , hence the indices (u,v) are irrelevant. Exploiting symmetry we may impose (s≺ t) without
loss of generality. The same holds for the second term. The third term remains unchanged, which
completes the proof.

We now show that HSIC1(F ,G ,Z) is concentrated and that it converges to HSIC(F ,G ,Prxy) with
rate 1/

√
m. The latter is a slight improvement over the convergence of the biased estimator

HSIC0(F ,G ,Z), proposed by Gretton et al. (2005a).

Theorem 4 (HSIC is Concentrated) Assume k, l are bounded almost everywhere by 1, and are
non-negative. Then for m> 1 and all δ> 0, with probability at least 1−δ for all Prxy

∣

∣

∣
HSIC1(F ,G ,Z)−HSIC(F ,G ,Pr

xy
)
∣

∣

∣
≤ 8
√

log(2/δ)/m.

Proof [Sketch] By virtue of (10) we see immediately that HSIC1 is a U-statistic of order 4, where
each term is contained in [−2,2]. Applying Hoeffding’s bound for U-statistics as in Gretton et al.
(2005a) proves the result.

If k and l were just bounded by 1 in terms of absolute value the bound of Theorem 4 would be worse
by a factor of 2.

2.5 Asymptotic Normality

Theorem 4 gives worst case bounds on the deviation between HSIC and HSIC1. In many instances,
however, an indication of this difference in typical cases is needed. In particular, we would like
to know the limiting distribution of HSIC1 for large sample sizes. We now show that HSIC1 is
asymptotically normal, and we derive its variance. These results are also useful since they allow us
to formulate statistics for a significance test.

Theorem 5 (Asymptotic Normality) If E[h2]<∞, and data and labels are not independent,3 then
as m → ∞, HSIC1 converges in distribution to a Gaussian random variable with mean

3. This is a subtle but important point: if the data and labels are independent, then the U-statistic is degenerate, and the
null distribution takes a different form. See Gretton et al. (2008) and (Serfling, 1980, Section 5.5).
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HSIC(F ,G ,Prxy) and estimated variance

σ2
HSIC1 =

16
m
(

R−HSIC2
1
)

where R=
1
m

m

∑
i=1

(

(m−1)−1
3 ∑

( j,q,r)∈im3 \{i}
h(i, j,q,r)

)2
, (15)

where imn \{i} denotes the set of all n-tuples drawn without replacement from {1, . . . ,m}\{i}.

Proof [Sketch] This follows directly from Serfling (1980, Theorem B, p. 193), which shows asymp-
totic normality of U-statistics.

Unfortunately (15) is expensive to compute by means of an explicit summation: even computing
the kernel h of the U-statistic itself is a nontrivial task. For practical purposes we need an expres-
sion which can exploit fast matrix operations. As we shall see, σ2

HSIC1
can be computed in O(m2),

given the matrices K̃ and L̃. To do so, we first form a vector h with its ith entry corresponding to
∑( j,q,r)∈im3 \{i} h(i, j,q,r). Collecting terms in (11) related to matrices K̃ and L̃, h can be written as

h=(m−2)2(K̃◦ L̃)1+(m−2)
(

(trK̃L̃)1− K̃L̃1− L̃K̃1
)

−m(K̃1)◦ (L̃1)

+(1&L̃1)K̃1+(1&K̃1)L̃1− (1&K̃L̃1)1

where ◦ denotes elementwise matrix multiplication. Then R in (15) can be computed as R =
(4m)−1(m− 1)−2

3 h&h. Combining this with the the unbiased estimator in (5) leads to the matrix
computation of σ2

HSIC1
.

2.6 Computation

In this section, we first analyze the complexity of computing estimators for Hilbert-Schmidt Inde-
pendence Criterion. We then propose efficient methods for approximately computing these estima-
tors which are linear in the number of examples.

2.6.1 EXACT COMPUTATION OF HSIC0 AND HSIC1

Note that both HSIC0 and HSIC1 are simple to compute, since only the kernel matricesK and L are
needed, and no density estimation is involved. Assume that computing an entry in K and L takes
constant time, then computing the full matrix takes O(m2) time. In term of the sample size m, we
have the following analysis of the time complexity of HSIC0 and HSIC1 (by considering summation
and multiplication as atomic operations):

HSIC0 Centering L takes O(m2) time. Since tr(KHLH) is equivalent to 1&(K ◦HLH)1, it also
takes O(m2) time. Overall, computing HSIC0 takes O(m2) time.

HSIC1 Each of the three terms in HSIC1, namely tr(K̃L̃), 1&K̃11&L̃1 and 1&K̃L̃1, takes O(m2)
time. Overall, computing HSIC1 also takes O(m2) time.

2.6.2 APPROXIMATE COMPUTATION OF HSIC0 AND HSIC1

Further speedup is also possible via a low rank approximation of the kernel matrices. Particularly,
using incomplete Cholesky decomposition, Gretton et al. (2005a) derive an efficient approximation
of HSIC0. Formally, it can be summarized as the following lemma:
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Lemma 6 (Efficient Approximation to HSIC0) Let K ≈ AA& and L ≈ BB&, where A ∈ Rm×d f

and B ∈ Rm×dg . Then HSIC0 can be approximated in O(m(d2
f +d2

g)) time.

Note that in this case the dominant computation comes from the incomplete Cholesky decompo-
sition, which can be carried out in O(md2

f ) and O(md2
g) time respectively (Fine and Scheinberg,

2000).
The three terms in HSIC1 can be computed analogously. Denote by DK = diag(AA&) and

DL = diag(BB&) the diagonal matrices of the approximating terms. The latter can be computed in
O(mdf ) and O(mdg) time respectively. We have

1&K̃1= 1&(AA&−DK)1= ‖1&A‖2 +1&DK1.

Computation requires O(mdf ) time. The same holds when computing 1&L̃1. To obtain the second
term we exploit that

1&K̃L̃1= 1&(AA&−DK)(BB&−DK)1= ((A(A&1))−DK1)&((B(B&1))−DL1).

This can be computed in O(m(d f +dg)). Finally, to compute the third term we use

trK̃L̃= tr(AA&−DK)(BB&−DL)
= ‖A&B‖2

Frob− trB&DKB− trA&DLA+ trDKDL.

This can be computed in O(mdf dg) time. It is the most costly of all operations, since it takes all
interactions between the reduced factorizations of K and L into account. Hence we may compute
HSIC1 efficiently (note again that dominant computation comes from the incomplete Cholesky de-
composition):

Lemma 7 (Efficient Approximation of HSIC1) Let K ≈ AA& and L ≈ BB&, where A ∈ Rm×d f

and B ∈ Rm×dg . Then HSIC1 can be approximated in O(m(d2
f +d2

g)) time.

2.6.3 VARIANCE OF HSIC1

To compute the variance of HSIC1 we also need to deal with (K̃ ◦ L̃)1. For the latter, no imme-
diate linear algebra expansion is available. However, we may use of the following decomposition.
Assume that a and b are vectors in Rm. In this case

((aa&)◦ (bb&))1= (a◦b)(a◦b)&1

which can be computed in O(m) time. Hence we may compute

((AA&)◦ (BB&))1=
d f

∑
i=1

dg

∑
j=1

((Ai ◦B j)(Ai ◦B j)
&)1

which can be carried out in O(mdf dg) time. To take care of the diagonal corrections note that
(AA& −DK) ◦DL = 0. The same holds for B and DK. The remaining term DKDL1 is obviously
also computable in O(m) time.
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3. Notation

In the following sections, we will deal mainly with vectorial data. Whenever we have vectorial data,
we use X as a shorthand to denote the matrix of all vectorial observations xi ∈ Rd (the ith row of X
corresponds to x&i ). Likewise, whenever the labels can be bundled into a matrix Y or a vector y (for
binary classification), we will use the latter for a more concise notation. Also, we will refer to the
jth column of X and Y as x∗ j and y∗ j respectively as needed.

Furthermore, we denote the mean and standard deviation of the jth feature (dimension) by
 x j = 1

m ∑
m
i xi j and s j = ( 1

m ∑
m
i (xi j−  x j)2)1/2 respectively (xi j is the value of the jth feature of data xi).

For binary classification problems we denote by m+ and m− the numbers of positive and negative
observations. Moreover,  x j+ and  x j− correspond respectively to the means of the positive and
negative classes at the jth feature (the corresponding standard deviations are s j+ and s j−). More
generally, letmy be the number of samples with class label equal to y (this notation is also applicable
to multiclass problems). Finally, let 1n be a vector of all ones with length n and 0n be a vector of all
zeros.

For non-vectorial or scalar data, we will use lower case letters to denote them. Very often the
labels are scalars, we use y to denote them. The mean and standard deviation of the labels are  y and
sy respectively.

4. Feature Selection via HSIC

Having defined our feature selection criterion, we now describe algorithms that conduct feature
selection on the basis of this dependence measure. Denote by S the full set of features, T a subset
of features (T ⊆ S ). We want to find T such that the dependence between features in T and the
labels is maximized. Moreover, we may choose between different feature selection strategies, that is,
whether we would like to build up a catalog of features in an incremental fashion (forward selection)
or whether we would like to remove irrelevant features from a catalog (backward selection). For
certain kernels, such as a linear kernel, both selection methods are equivalent: the objective function
decomposes into individual coordinates, and thus feature selection can be done without recursion
in one go. Although forward selection is computationally more efficient, backward elimination in
general yields better features (especially for nonlinear features), since the quality of the features is
assessed within the context of all other features (Guyon and Elisseeff, 2003).

4.1 Backward Elimination Using HSIC (BAHSIC)

BAHSIC works by generating a list S † which contains the features in increasing degree of relevance.
At each step S † is appended by a feature from S which is not contained in S † yet by selecting the
features which are least dependent on the reference set (i.e., Y or the full set X).

Once we perform this operation, the feature selection problem in (1) can be solved by simply
taking the last t elements from S †. Our algorithm produces S † recursively, eliminating the least
relevant features from S and adding them to the end of S † at each iteration. For convenience, we
also denote HSIC as HSIC(σ,S), where S are the features used in computing the data kernel matrix
K, and σ is the parameter for the data kernel (for instance, this might be the size of a Gaussian
kernel k(x,x′) = exp(−σ‖x−x′‖2)).

Step 3 of the algorithm denotes a policy for adapting the kernel parameters. Depending on the
availability of prior knowledge and the type of preprocessing, we explored three types of policies
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1. If we have prior knowledge about the nature of the nonlinearity in the data, we can use a fixed
kernel parameter throughout the iterations. For instance, we can use a polynomial kernel of
fixed degree, for example, (〈x,x′〉+1)2, to select the features for the XOR data set in Figure
2(a).

2. If we have no prior knowledge, we can optimize HSIC over a set of kernel parameters. In this
case, the policy corresponds to argmaxσ∈Θ HSIC(σ,S), where Θ is a set of parameters that
ensure the kernel is bounded. For instance, σ can be the scale parameter of a Gaussian kernel,
k(x,x′) = exp(−σ‖x−x′‖2). Optimizing over the scaling parameter allows us to adapt to the
scale of the nonlinearity present in the (feature-reduced) data.

3. Adapting kernel parameters via optimization is computational intensive. Alternatively we
can use a policy that produces approximate parameters in each iteration. For instance, if we
normalize each feature separately to zero mean and unit variance, we know that the expected
value of the distance between data points, E

[

(x−x′)2], is 2d (d is the dimension of the data).
When using a Gaussian kernel, we can then use a policy that assigns σ to 1/(2d) as the
dimension of the data is reduced.

We now consider in more detail what it means to optimize the kernel. In the case of a radial
basis kernel on the observations and a linear kernel on binary labels, the example in Section 5.2 is
instructive: optimizing the bandwidth of the kernel k on the observations corresponds to finding the
optimum lengthscale for which smooth functions may be found to maximize the linear covariance
with the labels. This optimum lengthscale will change as the dimensionality of the observation
feature space changes (as feature selection progresses). For a related discussion, see (Sriperumbudur
et al., 2009, Section 5): in this case, the kernel bandwidth which maximizes a kernel distance
measure between two distributions P and Q corresponds to the lengthscale at which P and Q differ.
When P is the joint distirbution P = Pr(x,y), and Q the product of the marginals Q = Pr(x)Pr(y),
the kernel distance measure in Sriperumbudur et al. (2009) corresponds to HSIC (see Gretton et al.,
2007b, Section 7.3). Note further that when a radial basis kernel (such as the Gaussian) is used,
the unbiased HSIC1 is zero both for bandwidth zero, and as the bandwidth approaches infinity (in
the former case, the off-diagonal kernel values are zero; in the latter, the off-diagonal kernel values
are all equal). Thus HSIC1 must have a maximum between these two extremes in bandwidth, and
this maximum is bounded since the kernel is bounded. Again, see Sriperumbudur et al. (2009) for a
related discussion when comparing arbitrary distributions P and Q.

Algorithm 1 BAHSIC
Input: The full set of features S
Output: An ordered set of features S †

1: S †←∅

2: repeat
3: σ← Ξ
4: I ← argmaxI ∑ j∈I HSIC(σ,S \{ j}), I ⊂ S
5: S ← S \ I
6: S †← (S †,I )
7: until S =∅
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Step 4 of the algorithm is concerned with the selection of a set I of features to eliminate. While
one could choose a single element of S , this would be inefficient when there are a large number of
irrelevant features. On the other hand, removing too many features at once risks the loss of relevant
features. In our experiments, we found a good compromise between speed and feature quality was
to remove 10% of the current features at each iteration.

In BAHSIC, the kernel matrix L for the labels is fixed through the whole process. It can be
precomputed and stored for speedup if needed. Therefore, the major computation comes from
repeated calculation of the kernel matrix K for the dimension-reduced data. If we remove 1−β of
the data at every step and under the assumption that beyond computing the dot product the actual
evaluation of an entry inK requires only constant time irrespective of the dimension of the data, then
the ith iteration of BAHSIC takes O(βi−1dm2) time: d is the total number of features, hence βi−1d
features remain after i− 1 iterations and we have m2 elements in the kernel matrix in total. If we
want to reduce the number of features to t we need at most τ= logβ(t/d) iterations. This brings the
total time complexity to O

(

1−βτ
1−β dm

2
)

=O
(

d−t
1−βm

2
)

operations. When using incomplete Cholesky

factorization we may reduce computational complexity somewhat further to O
(

d−t
1−βm(d

2
f +d2

g)
)

time. This saving is significant as long as d f dg < m, which may happen, for instance whenever Y
is a binary label matrix. In this case dg = 1, hence incomplete factorizations may yield significant
computational gains.

4.2 Forward Selection Using HSIC (FOHSIC)

FOHSIC uses the converse approach to backward selection: it builds a list of features in decreasing
degree of relevance. This is achieved by adding one feature at a time to the set of features S †

obtained so far using HSIC as a criterion for the quality of the so-added features. For faster selection
of features, we can choose a group of features (for instance, a fixed proportion γ) at step 4 and add
them in one shot at step 6. The adaptation of kernel parameters in step 3 follows the same policies
as those for BAHSIC. The feature selection problem in (1) can be solved by simply taking the first
t elements from S †.

Algorithm 2 FOHSIC
Input: The full set of features S
Output: An ordered set of features S †

1: S †←∅

2: repeat
3: σ← Ξ
4: I ← argmaxI ∑ j∈I HSIC(σ,S †∪{ j}), I ⊂ S
5: S ← S \ I
6: S †← (S †,I )
7: until S =∅

4.2.1 TIME COMPLEXITY

Under the same assumption as BAHSIC, the ith iteration of FOHSIC takes O((1− γ)i−1dm2) time.
The total number of iterations τ to obtain t features is t = [1− (1− γ)τ]d, that is τ = log(d−t)−logd

log(1−γ)
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iterations. Performing τ steps will therefore take∑τ−1
i=0 d(1−γ)i= d(1−(1−γ)τ)/γ= t/γ operations.

This means that FOHSIC takes O(tm2/γ) time to extract t features.

5. Variants of BAHSIC

So far we discussed a set of algorithms to select features once we decided to choose a certain family
of kernels k, l to measure dependence between two sets of observations. We now proceed to dis-
cussing a number of design choices for k and l. This will happen in two parts: in the current section
we discuss generic choices of kernels on data and labels. Various combinations of such kernels will
then lead to new algorithms that aim to discover different types of dependence between features and
labels (or between a full and a restricted data set we are interested in unsupervised feature selec-
tion). After that (in Section 6) we will study specific choices of kernels which correspond to existing
feature selection methods.

5.1 Kernels on Data

There exists a great number of kernels on data. Obviously, different kernels will correspond to a
range of different assumptions on the type of dependence between the random variables x and y.
Hence different kernels induce distinctive similarity measure on the data.

5.1.1 LINEAR KERNEL

The simplest choice for k is to take a linear kernel k(x,x′) = 〈x,x′〉. This means that we are just
using the underlying Euclidean space to define the similarity measure. Whenever the dimensionality
d of x is very high, this may allow for more complexity in the function class than what we could
measure and assess otherwise. An additional advantage of this setting is that the kernel decomposes
into the sum of products between individual coordinates. This means that any expression of the type
trKM can be maximized with respect to the subset of available features via

d

∑
j=1
x&∗ jMx∗ j.

This means that the optimality criterion decomposes into a sum over the scores of individual coor-
dinates. Hence maximization with respect to a subset of size t is trivial, since it just involves finding
the t largest contributors. Using (9) we can see that for HSIC1 the matrixM is given by

M=
1

m(m−3)

[

L̃+
(

11&− I
) 1&L̃1
(m−1)(m−2)

−
2

m−2

(

L̃11&−diag
(

L̃1
)

)

]

.

These terms are essentially rank-1 and diagonal updates on L̃, which means that they can be com-
puted very efficiently. Note also that in this case FOHSIC and BAHSIC generate the optimal feature
selection with respect to the criterion applied.

5.1.2 POLYNOMIAL KERNEL

Clearly in some cases the use of linear features can be quite limiting. It is possible, though, to use
higher order correlations between data for the purpose of feature selection. This is achieved by
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using a polynomial kernel

k(x,x′) =
(〈

x,x′
〉

+a
)b for some a≥ 0 and b ∈ N.

This kernel incorporates all polynomial interactions up to degree b (provided that a > 0). For
instance, if we wanted to take only mean and variance into account, we would only need to consider
b= 2 and a= 1. Placing a higher emphasis on means is achieved by increasing the constant offset
a.

5.1.3 RADIAL BASIS FUNCTION KERNEL

Note that polynomial kernels only map data into a finite dimensional space: while potentially huge,
the dimensionality of polynomials of bounded degree is finite, hence criteria arising from such ker-
nels will not provide us with guarantees for a good dependence measure. On the other hand, many
radial basis function kernels, such as the Gaussian RBF kernel map x into an infinite dimensional
space. One may show that these kernels are in fact characteristic (Fukumizu et al., 2008; Sriperum-
budur et al., 2008, 2010). That is, we use kernels of the form

k(x,x′) = κ(‖x−x′‖) where κ(ξ) = exp(−ξ) or κ(ξ) = exp(−ξ2)

to obtain Laplace and Gaussian kernels respectively. Since the spectrum of the corresponding matri-
ces decays rapidly (Bach and Jordan, 2002, Appendix C), it is easy to compute incomplete Cholesky
factorizations of the kernel matrix efficiently.

5.1.4 STRING AND GRAPH KERNEL

One of the key advantages of our approach is that it is not limited to vectorial data. For instance, we
can perform feature selection on documents or graphs. For many such situations we have

k(x,x′) = ∑
a9x

wa#a(x)#a(x′),

where a 9 x is a substring of x (Vishwanathan and Smola, 2003; Leslie et al., 2002). Similar
decompositions can be made for graphs, where kernels on random walks and paths can be defined.
As before, we could use BAHSIC to remove or FOHSIC to generate a list of features such that only
relevant ones remain. That said, given that such kernels are additive in their features, we can use the
same argument as made above for linear kernels to determine meaningful features in one go.

5.2 Kernels on Labels

The kernels on the data described our inherent assumptions on which properties of x (e.g., linear,
polynomial, or nonparametric) are relevant for estimation. We now describe the complementary
part, namely a set of possible choices for kernels on labels. Note that these kernels can be just as
general as those defined on the data. This means that we may apply our algorithms to classification,
regression, Poisson models, ranking, etc., in the same fashion. This is a significant difference to
previous approaches which only apply to specialized settings such as binary classification. For
completeness we begin with the latter.
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5.2.1 BINARY CLASSIFICATION

The simplest kernel we may choose is

l(y,y′) = yy′ where y,y′ ∈ {±1} . (16)

In this case the label kernel matrix L = yy& has rank 1 and it is simply the outer product of the
vector of labels. Note that we could transform l by adding a positive constant c, such as to obtain
l(y,y′) = yy′+c which yields l(y,y′) = 2δy,y′ for c= 1. This transformation, however, is immaterial:
once K has been centered it is orthogonal to constant matrices.

A second transformation, however, leads to nontrivial changes: we may change the relative
weights of positive and negative classes. This is achieved by transforming y→ cyy. For instance,
we may pick c+ = m−1

+ and c− = m−1
− . That is, we choose

y=
(

m−1
+ 1&m+

,m−1
− 1&m−

)&
which leads to l(y,y′) = m−1

y m−1
y′ yy

′. (17)

That is, we give different weight to positive and negative class according to their sample size. As
we shall see in the next section, this corresponds to making the feature selection independent of the
class size and it will lead to criteria derived from Maximum Mean Discrepancy estimators (Gretton
et al., 2007a).

At this point, it is worth examining in more detail what it means to maximize HSIC in binary
classification, as required in Step 3 of Algorithms 1 and 2 (see Section 4). When a linear kernel is
used on the observations, HSIC is related to a number of well-established dependence measures, as
we will establish in Section 6. Hence, we focus for the moment on the case where the feature space
F for the observations is nonlinear (eg, an RBF kernel), and we use the linear kernel (16) on the
labels. HSIC being the squared Hilbert-Schmidt norm of the covariance operator between the fea-
ture spaces F and G , it corresponds to the sum of the squared singular values of this operator. The
maximum singular value (COCO; see Gretton et al., 2005b) corresponds to the largest covariance
between the mappings f1(X) and g1(Y ) of X and Y . Given a linear kernel is used on the labels,
g1(Y ) will be a linear function on the label space. The nature of f1(X) will depend on the choice of
observation kernel k. For a Gaussian kernel, f1(X) will be a smooth mapping.

We illustrate this property with a simple toy example in Figure 1. Figure 1(a) plots our obser-
vations, where one class has a bimodal distribution in feature X , with cluster centres at ±1. The
second class has a single peak at the origin. The maximum singular vector f1(X) is shown in Figure
1(b), and is computed using a Gaussian kernel on the observations in accordance with Gretton et al.
(2005b). The resulting mapped points in Figure 1(c) have a strong linear relation with the labels
(which can only be linearly transformed). Thus, when a nonlinear kernel is used on the observations,
the features that maximize HSIC are those that can be smoothly mapped to have a strong linear cor-
relation with the labels. The family of smooth mappings is determined by the choice of kernel on
the observations: as we see from Figure 1(b), too large or small a kernel can result in a mapping
that does not reflect the lengthscale of the underlying difference in features. This demonstrates the
need for the kernel bandwidth selection step described in Section 4.
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Figure 1: Maximum eigenfunction of the covrariance operator. Figure 1(a) contains the original
data, where blue points have the label +1 and red points are labeled −1. The feature of
interest is plotted along the x-axis, and an irrelevant feature on the y-axis. Figure 1(b)
contains the largest eigefunction of the covariance operator on the relevant feature alone,
for three different kernel sizes: the smallest kernel shows overfitting, and the largest is
too smooth. Figure 1(c) contains the mapped points for a “good” kernel choice σ = 0.1,
illustrating a strong linear relation between the mapped points and the labels for this
choice of σ.

5.2.2 MULTICLASS CLASSIFICATION

Here we have a somewhat larger choice of options to contend with. Clearly the simplest kernel
would be

l(y,y′) = cyδy,y′ where cy > 0. (18)

For cy = m−1
y we obtain a per-class normalization. Clearly, for n classes, the kernel matrix L can

be represented by the outer product of a rank-n matrix, where each row is given by cyie&yi , where ey
denotes the y-th unit vector in Rn. Alternatively, we may adjust the inner product between classes
to obtain

l(y,y′) =
〈

ψ(y),ψ(y′)
〉

(19)

where ψ(y) = ey
m

my(m−my)
− z and z= ((m−m1)

−1, . . . ,(m−mn)
−1)&.

This corresponds to assigning a “one versus the rest” feature to each class and taking the inner
product between them. As before in the binary case, note that we may drop z from the expansion,
since constant offsets do not change the relative values of HSIC for feature selection. In this case
we recover (18) with cy = m2m−2

y (m−my)−2.
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5.2.3 REGRESSION

This is one of the situations where the advantages of using HSIC are clearly apparent: we are able
to adjust our method to such situations simply by choosing appropriate kernels. Clearly, we could
just use a linear kernel l(y,y′) = yy′ which would select simple correlations between data and labels.

Another choice is to use an RBF kernel on the labels, such as

l(y,y′) = exp
(

−  σ
∥

∥y− y′
∥

∥

2
)

. (20)

This will ensure that we capture arbitrary nonlinear dependence between x and y. The price is that
in this case L will have full rank, hence computation of BAHSIC and FOHSIC are correspondingly
more expensive.

6. Connections to Other Approaches

We now show that several feature selection criteria are special cases of BAHSIC by choosing appro-
priate preprocessing of data and kernels. We will directly relate these criteria to the biased estimator
HSIC0 in (4). Given the fact that HSIC0 converges to HSIC1 with rate O(m−1) it follows that the
criteria are well related. Additionally we can infer from this that by using HSIC1 these other criteria
could also be improved by correcting their bias. In summary BAHSIC is capable of finding and
exploiting dependence of a much more general nature (for instance, dependence between data and
labels with graph and string values).

6.1 Pearson Correlation

Pearson’s correlation is commonly used in microarray analysis (van’t Veer et al., 2002; Ein-Dor
et al., 2006). It is defined as

Rj :=
1
m

m

∑
i=1

(

xi j−  x j
sx j

)(

yi−  y
sy

)

where (21)

 x j =
1
m

m

∑
i=1

xi j and  y=
1
m

m

∑
i=1

yi and s2
x j =

1
m

m

∑
i=1

(xi j−  x j)2 and s2
y =

1
m

m

∑
i=1

(yi−  y)2.

This means that all features are individually centered by  x j and scaled by their coordinate-wise
variance sx j as a preprocessing step. Performing those operations before applying a linear kernel
yields the equivalent HSIC0 formulation:

trKHLH= tr
(

XX&Hyy&H
)

=
∥

∥

∥
HX&Hy

∥

∥

∥

2
(22)

=
d

∑
j=1

(

m

∑
i=1

(

xi j−  x j
sx j

)(

yi−  y
sy

)

)2

=
d

∑
j=1

R2
j . (23)

Hence HSIC1 computes the sum of the squares of the Pearson Correlation (pc) coefficients. Since
the terms are additive, feature selection is straightforward by picking the list of best performing
features.
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6.2 Mean Difference and Its Variants

The difference between the means of the positive and negative classes at the jth feature, (  x j+−  x j−),
is useful for scoring individual features. With different normalization of the data and the labels,
many variants can be derived. In our experiments we compare a number of these variants. For
example, the centroid (lin) (Bedo et al., 2006), t-statistic (t), signal-to-noise ratio (snr), moderated
t-score (m-t) and B-statistics (lods) (Smyth, 2004) all belong to this family. In the following we
make those connections more explicit.

Centroid Bedo et al. (2006) use v j := λ  x j+− (1−λ)  x j− for λ ∈ (0,1) as the score for feature j.4
Features are subsequently selected according to the absolute value

∣

∣v j
∣

∣. In experiments the
authors typically choose λ= 1

2 .
For λ = 1

2 we can achieve the same goal by choosing Lii′ = yiyi′
myimyi′

(yi,yi′ ∈ {±1}), in which
case HLH= L, since the label kernel matrix is already centered. Hence we have

trKHLH=
m

∑
i,i′=1

yiyi′
myimyi′

x&i xi′ =
d

∑
j=1

(

m

∑
i,i′=1

yiyi′xi jxi′ j
myimyi′

)

=
d

∑
j=1

(  x j+−  x j−)2.

This proves that the centroid feature selector can be viewed as a special case of BAHSIC in the
case of λ= 1

2 . From our analysis we see that other values of λ amount to effectively rescaling
the patterns xi differently for different classes, which may lead to undesirable features being
selected.

t-Statistic The normalization for the jth feature is computed as

 s j =

[

s2
j+

m+
+
s2
j−

m−

]
1
2

. (24)

In this case we define the t-statistic for the jth feature via t j = (  x j+−  x j−)/  s j.
Compared to the Pearson correlation, the key difference is that now we normalize each feature
not by the overall sample standard deviation but rather by a value which takes each of the two
classes separately into account.

Signal to noise ratio is yet another criterion to use in feature selection. The key idea is to normalize
each feature by  s j = s j+ + s j− instead. Subsequently the (  x j+−  x j−)/  s j are used to score
features.

Moderated t-score is similar to t-statistic and is used for microarray analysis (Smyth, 2004). Its
normalization for the jth feature is derived via a Bayes approach as

s̃ j =
m  s2

j +m0  s2
0

m+m0

where  s j is from (24), and  s0 andm0 are hyperparameters for the prior distribution on  s j (all  s j
are assumed to be iid).  s0 andm0 are estimated using information from all feature dimensions.

4. The parameterization in Bedo et al. (2006) is different but it can be shown to be equivalent.
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This effectively borrows information from the ensemble of features to aid with the scoring of
an individual feature. More specifically,  s0 and m0 can be computed as (Smyth, 2004)

m0 = 2Γ′−1

(

1
d

d

∑
j=1

(z j−  z)2−Γ′
(m

2

)

)

, (25)

 s2
0 = exp

(

 z−Γ
(m

2

)

+Γ
(m0

2

)

− ln
(m0
m

))

where Γ(·) is the gamma function, ′ denotes derivative, z j = ln(  s2
j) and  z= 1

d ∑
d
j=1 z j.

B-statistic is the logarithm of the posterior odds (lods) that a feature is differentially expressed.
Lönnstedt and Speed (2002) and Smyth (2004) show that, for large number of features, B-
statistic is given by

Bj = a+bt̃2j
where both a and b are constant (b> 0), and t̃ j is the moderated-t statistic for the jth feature.
Here we see that Bj is monotonic increasing in t̃ j, and thus results in the same gene ranking
as the moderated-t statistic.

The reason why these connections work is that the signal-to-noise ratio, moderated t-statistic, and
B-statistic are three variants of the t-test. They differ only in their respective denominators, and are
thus special cases of HSIC0 if we normalize the data accordingly.

6.3 Maximum Mean Discrepancy

For binary classification, an alternative criterion for selecting features is to check whether the dis-
tributions Pr(x|y = 1) and Pr(x|y = −1) differ and subsequently pick those coordinates of the data
which primarily contribute to the difference between the two distributions.

More specifically, we could use Maximum Mean Discrepancy (MMD) (Gretton et al., 2007a),
which is a generalization of mean difference for Reproducing Kernel Hilbert Spaces, given by

MMD = ‖Ex [φ(x)|y= 1]−Ex [φ(x)|y=−1]‖2
H .

A biased estimator of the above quantity can be obtained simply by replacing expectations by av-
erages over a finite sample. We relate a biased estimator of MMD to HSIC0 again by setting m−1

+

as the labels for positive samples and −m−1
− for negative samples. If we apply a linear kernel on

labels, L is automatically centered, that is, L1= 0 and HLH= L. This yields

trKHLH= trKL (26)

=
1
m2
+

m+

∑
i, j
k(xi,x j)+

1
m2
−

m−

∑
i, j
k(xi,x j)−

2
m+m−

m+

∑
i

m−

∑
j
k(xi,x j)

=

∥

∥

∥

∥

∥

1
m+

m+

∑
i
φ(xi)−

1
m−

m−

∑
j
φ(x j)

∥

∥

∥

∥

∥

2

H

.

The quantity in the last line is an estimator of MMD with bias O(m−1) (Gretton et al., 2007a). This
implies that HSIC0 and the biased estimator of MMD are identical up to a constant factor. Since the
bias of HSIC0 is also O(m−1), this effectively show that scaled MMD and HSIC1 converges to each
other with rate O(m−1).
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6.4 Kernel Target Alignment

Alternatively, one could use Kernel Target Alignment (KTA) (Cristianini et al., 2003) to test di-
rectly whether there exists any correlation between data and labels. KTA has been used for feature
selection in this context. Formally it is defined as tr(KL)/‖K‖‖L‖, that is, as the normalized cosine
between the kernel matrix and the label matrix.

The nonlinear dependence on K makes it somewhat hard to optimize for. Indeed, for compu-
tational convenience the normalization is often omitted in practice (Neumann et al., 2005), which
leaves us with trKL, the corresponding estimator of MMD.5 Note the key difference, though, that
normalization of L according to label size does not occur. Nor does KTA take centering into ac-
count. Both normalizations are rather important, in particular when dealing with data with very
uneven distribution of classes and when using data that is highly collinear in feature space. On the
other hand, whenever the sample sizes for both classes are approximately matched, such lack of
normalization is negligible and we see that both criteria are similar.

Hence in some cases in binary classification, selecting features that maximizes HSIC also maxi-
mizes MMD and KTA. Note that in general (multiclass, regression, or generic binary classification)
this connection does not hold. Moreover, the use of HSIC offers uniform convergence bounds on
the tails of the distribution of the estimators.

6.5 Shrunken Centroid

The shrunken centroid (pam) method (Tibshirani et al., 2002, 2003) performs feature ranking using
the differences from the class centroids to the centroid of all the data, that is

(  x j+−  x j)2 +(  x j−−  x j)2 ,

as a criterion to determine the relevance of a given feature. It also scores each feature separately.
To show that this criterion is related to HSIC we need to devise an appropriate map for the labels

y. Consider the feature map ψ(y) with ψ(1) = (m−1
+ ,0)& and ψ(−1) = (0,m−1

− )&. Clearly, when
applying H to Y we obtain the following centered effective feature maps

 ψ(1) = (m−1
+ −m−1,−m−1) and  ψ(−1) = (−m−1,m−1

− −m−1).

Consequently we may express trKHLH via

trKHLH=
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∥
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=
d

∑
j=1

(

(  x j+−  x j)2 +(  x j−−  x j)2
)

.

5. The denominator provides a trivial constraint in the case where the features are individually normalized to unit norm
for a linear kernel, since in this case ‖K‖= d: that is, the norm of the kernel matrix scales with the dimensionality d
of remaining features in X . The normalization in the denominator can have a more meaningful effect, however, for
instance in the taxonomy fitting work of Blaschko and Gretton (2009), where the quality-of-fit score could otherwise
be made arbitrarily large independent of the data.
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This is the information used by the shrunken centroid method, hence we see that it can be seen
to be a special case of HSIC when using a linear kernel on the data and a specific feature map on
the labels. Note that we could assign different weights to the two classes, which would lead to a
weighted linear combination of distances from the centroid. Finally, it is straightforward how this
definition can be extended to multiclass settings, simply by considering the map ψ : y→ m−1

y ey.

6.6 Ridge Regression

BAHSIC can also be used to select features for regression problems, except that in this case the
labels are continuous variables. We could, in principle, use an RBF kernel or similar on the labels
to address the feature selection issue. What we show now is that even for a simple linear kernel,
interesting results can be obtained. More to the point, we show that feature selection using ridge
regression can also be seen to arise as a special case of HSIC feature selection. We assume here that
y is centered.

In ridge regression (Hastie et al., 2001), we estimate the outputs y using the design matrix V
and a parameter vector w by minimizing the following regularized risk functional

J = ‖y−Vw‖2 +λ‖w‖2 .

Here the second term is known as the regularizer. If we chooseV=Xwe obtain the family of linear
models. In the general (nonlinear) case V may be an arbitrary matrix, where each row consists of
a set of basis functions, for example, a feature map φ(x). One might conclude that small values of
J correspond to good sets of features, since there a w with small norm would still lead to a small
approximation error. It turns out that J is minimized for w= (V&V+λI)−1y. Hence the minimum
is given by

J∗ = y&y−y&V(V&V+λI)−1V&y (29)

= constant− tr
[

V(V&V+λI)−1V&
]

yy&.

Whenever we are only given K= V&V we have the following equality

J∗ = constant− tr
[

K(K+λI)−1]yy&.

This means that the matrices
 K := V(V&V+λI)−1V& and  K :=K(K+λI)−1

are equivalent kernel matrices to be used in BAHSIC. Note that obviously instead of using yy& as
a kernel on the labels L we could use a nonlinear kernel in conjunction with the matrices arrived at
from feature selection by ridge regression. It also generalizes the setting of Hastie et al. (2001) to
situations other than regression.

6.7 Quadratic Mutual Information

Torr (2003) introduces the quadratic mutual information for feature selection. That is, he uses the L2
distance between the joint and the marginal distributions on x and y as a criterion for how dependent
the two distributions are:

I(x,y) =
∫ ∫

(Pr(x,y)−Pr(x)Pr(y))2dxdy. (30)
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In general, (30) is not efficiently computable. That said, when using a Parzen windows estimate of
the joint and the marginals, it is possible to evaluate I(x,y) explicitly. Since we only have a finite
number of observations, one uses the estimates

p̂(x) =
1
m

m

∑
i=1

κx(xi− x),

p̂(y) =
1
m

m

∑
i=1

κy(yi− y),

p̂(x,y) =
1
m

m

∑
i=1

κx(xi− x)κy(yi− y).

Here κx and κy are appropriate kernels of the Parzen windows density estimator. Denote by

κi j =
∫
κx(xi− x)κx(x j− x)dx and νi j =

∫
κy(yi− y)κy(y j− y)dy

inner products between Parzen windows kernels. In this case we have

‖ p̂(x,y)− p̂(x) · p̂(y)‖2 = m−2
[

trκν−21&κν1+1&κ11&ν1
]

= m−2κHνH.

In other words, we obtain the same criterion as what can be derived from a biased estimator of
HSIC. The key difference, though, is that this analogy only works whenever κ and ν can be seen to
be arising from an inner product between Parzen windows kernel estimates. This is not universally
true: for instance, for graphs, trees, or strings no simple density estimates can be found. This is a
serious limitation. Moreover, since we are using a plug-in estimate of the densities, we inherit an
innate slow-down of convergence due to the convergence of the density estimators. This issue is
discussed in detail in Anderson et al. (1994).

6.8 Recursive Feature Elimination with Support Vectors

Another popular feature selection algorithm is to use Support Vector Machines and to determine
the relevance of features by the size of the induced margin as a solution of the dual optimization
problem (Guyon et al., 2002). While the connection to BAHSIC is somewhat more tenuous in this
context, it is still possible to recast this algorithm in our framework. Before we do so, we describe
the basic idea of the method, using ν-SVM instead of plainC-SVMs: for ν-SVM without a constant
offset b we have the following dual optimization problem (Schölkopf et al., 1999).

minimize
α

1
2
α&(K◦L)α subject to α&1= νm and αi ∈ [0,1]. (31)

This problem is first solved with respect to α for the full set of features. Features are then selected
from (31) by removing coordinates such that the objective function decreases least (if at all). For
computational convenience, α is not recomputed for a number of feature removals, since repeated
solving of a quadratic program tends to be computationally expensive.

We now show that this procedure can be viewed as a special case of BAHSIC, where now the
class of kernels, parameterized by σ is the one of conformal kernels. Given a base kernel k(x,x′)
Amari and Wu (1999) propose the following kernel:

 k(x,x′) = α(x)α(x′)k(x,x′) where α(x)≥ 0.
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It is easy to see that

α&(K◦L)α= y& [diagα]K [diagα]y= y&  Ky,

where  K is the kernel matrix arising from the conformal kernel  k(x,x′). Hence for fixed α the
objective function is given by a quantity which can be interpreted as a biased version of HSIC.
Re-optimization with respect to α is consistent with the kernel adjustment step in Algorithm 1. The
only difference being that here the kernel parameters are given by α rather than a kernel width σ.
That said, it is also clear from the optimization problem that this style of feature selection may not
be as desirable, since the choice of kernel parameters emphasizes only points close to the decision
boundary.

7. Experiments

We analyze BAHSIC and related algorithms in an extensive set of experiments. The current section
contains results on synthetic and real benchmark data, that is, data from Statlib, the UCI repository,
and data from the NIPS feature selection challenge. Sections 8 and 9 then discusses applications to
biological data, namely brain signal analysis and feature selection for microarrays.

Since the number of possible choices for feature selection within the BAHSIC family is huge,
it is clearly impossible to investigate and compare all of them to all possible other feature selectors.
In the present section we pick the following three feature selectors as representative examples. A
wider range of kernels and choices is investigated in Section 8 and 9 in the context of biomedical
applications.

In this section, we presents three concrete examples of BAHSIC which are used for our later
experiments. We apply a Gaussian kernel k(x,x′) = exp(−σ‖x− x′‖2) on data, while varying the
kernels on labels. These BAHSIC variants are dedicated respectively to the following settings:

Binary classification (BIN) Use the feature map in (17) and apply a linear kernel.

Multiclass classification (MUL) Use the feature map in (18) and apply a linear kernel.

Regression problem (REG) Use the kernel in (20), that is, a Gaussian RBF kernel on Y.

For the above variants a further speedup of BAHSIC is possible by updating entries in the data kernel
matrix incrementally. We use the fact that distance computation of a RBF kernel decomposes into
individual coordinates, that is, we use that ‖xi−xi′‖2 = ∑d

j=1 ‖xi j− xi′ j‖2. Hence ‖xi−xi′‖2 needs
to be computed only once, and subsequent updates are effected by subtracting ‖xi j− xi′ j‖2.

We will use BIN, MUL and REG as the particular instances of BAHSIC in our experiments.
We will refer to them commonly as BAHSIC since the exact meaning will be clear depending on
the data sets encountered. Furthermore, we also instantiate FOHSIC using the same kernels as BIN,
MUL and REG, and we adopt the same convention when we refer to it in our experiments.

7.1 Artificial Data

We constructed 3 artificial data sets, as illustrated in Figure 2, to illustrate the difference between
BAHSIC variants with linear and nonlinear kernels. Each data set has 22 dimensions—only the first
two dimensions are related to the prediction task and the rest are just Gaussian noise. These data
sets are (i) Binary XOR data: samples belonging to the same class have multimodal distributions;
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Artificial data sets and the performance of different methods when varying the number of
observations. The first row contains plots for the first 2 dimension of the (a) binary (b)
multiclass and (c) regression data. Different classes are encoded with different colours.
The second row plots the median rank (y-axis) of the two relevant features as a function
of sample size (x-axis) for the corresponding data sets in the first row. The third row plots
median rank (y-axis) of the two relevant features produced in the first iteration of BAHSIC
as a function of the sample size. (Blue circle: Pearson’s correlation; Green triangle:
RELIEF; Magenta downward triangle: mutual information; Black triangle: FOHSIC;
Red square: BAHSIC. Note that RELIEF only works for binary classification.)

(ii) Multiclass data: there are 4 classes but 3 of them are collinear; (iii) Nonlinear regression
data: labels are related to the first two dimension of the data by y = x1 exp(−x2

1− x2
2)+ ε, where ε

denotes additive Gaussian noise. We compare BAHSIC to FOHSIC, Pearson’s correlation, mutual
information (Zaffalon and Hutter, 2002), and RELIEF (RELIEF works only for binary problems).
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We aim to show that when nonlinear dependencies exist in the data, BAHSIC with nonlinear kernels
is very competent in finding them.

We instantiate the artificial data sets over a range of sample sizes (from 40 to 400), and plot the
median rank, produced by various methods, for the first two dimensions of the data. All numbers
in Figure 2 are averaged over 10 runs. In all cases, BAHSIC shows good performance. More
specifically, we observe:

Binary XOR Both BAHSIC and RELIEF correctly select the first two dimensions of the data even
for small sample sizes; while FOHSIC, Pearson’s correlation, and mutual information fail.
This is because the latter three evaluate the goodness of each feature independently. Hence
they are unable to capture nonlinear interaction between features.

Multiclass Data BAHSIC, FOHSIC and mutual information select the correct features irrespec-
tive of the size of the sample. Pearson’s correlation only works for large sample size. The
collinearity of 3 classes provides linear correlation between the data and the labels, but due to
the interference of the fourth class such correlation is picked up by Pearson’s correlation only
for a large sample size.

Nonlinear Regression Data The performance of Pearson’s correlation and mutual information is
slightly better than random. BAHSIC and FOHSIC quickly converge to the correct answer as
the sample size increases.

In fact, we observe that as the sample size increases, BAHSIC is able to rank the relevant features
(the first two dimensions) almost correctly in the first iteration. In the third row of Figure 2, we show
the median rank of the relevant features produced in the first iteration as a function of the sample
size. It is clear from the pictures that BAHSIC effectively selects features in a single iteration when
the sample size is large enough. For the regression case, we also see that BAHSIC with several
iterations, indicated by the red square in Figure 2(f), slightly improves the correct ranking over
BAHSIC with a single iteration, given by the blue square in Figure 2(i).

While this does not prove BAHSIC with nonlinear kernels is always better than that with a linear
kernel, it illustrates the competence of BAHSIC in detecting nonlinear features. This is obviously
useful in a real-world situations. The second advantage of BAHSIC is that it is readily applicable to
both classification and regression problems, by simply choosing a different kernel on the labels.

7.2 Public Benchmark Data

In this section, we compare our method, BAHSIC, to several state-of-the-art feature selectors on a
large collection of public benchmark datasets. BAHSIC achieves the overall best performance in
three experimental settings, i.e., feature selection for binary, multiclass and regression problems.

7.2.1 ALGORITHMS

In this experiment, we show that the performance of BAHSIC can be comparable to other state-of-
the-art feature selectors, namely SVM Recursive Feature Elimination (RFE) (Guyon et al., 2002),
RELIEF (Kira and Rendell, 1992), L0-norm SVM (L0) (Weston et al., 2003), and R2W2 (Weston
et al., 2000). We used the implementation of these algorithms as given in the Spider machine
learning toolbox, since those were the only publicly available implementations.6 Furthermore, we

6. The Spider toolbox can be found at http://www.kyb.tuebingen.mpg.de/bs/people/spider.
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also include filter methods, namely FOHSIC, Pearson’s correlation (PC), and mutual information
(MI), in our comparisons.

7.2.2 DATA SETS

We used various real world data sets taken from the UCI repository,7 the Statlib repository,8 the
LibSVM website,9 and the NIPS feature selection challenge 10 for comparison. Due to scalability
issues in Spider, we produced a balanced random sample of size less than 2000 for data sets with
more than 2000 samples.

7.2.3 EXPERIMENTAL PROTOCOL

We report the performance of an SVM using a Gaussian kernel on a feature subset of size 5 and
10-fold cross-validation. These 5 features were selected per fold using different methods. Since
we are comparing the selected features, we used the same family of classifiers for all methods:
an SVM with a Gaussian kernel. To address issues of automatic bandwidth selection (after all,
we are interested in adjusting the function class to the data at hand) we chose σ to be the median
distance between points in the sample (Schölkopf and Smola, 2002) and we fixed the regularization
parameter toC= 100. On classification data sets, we measured the performance using the error rate,
and on regression data sets we used the percentage of variance not-explained (also known as 1−r2).
The results for binary data sets are summarized in the first part of Table 1. Those for multiclass and
regression data sets are reported respectively in the second and the third parts of Table 1.

To provide a concise summary of the performance of various methods on binary data sets, we
measured how the methods compare with the best performing one in each data set in Table 1. We
recorded the best absolute performance of all feature selectors as the baseline, and computed the
distance of each algorithm to the best possible result. In this context it makes sense to penalize
catastrophic failures more than small deviations. In other words, we would like to have a method
which is at least almost always very close to the best performing one. Taking the !2 distance achieves
this effect, by penalizing larger differences more heavily. It is also our goal to choose an algorithm
that performs homogeneously well across all data sets. The !2 distance scores are listed for the
binary data sets in Table 1. In general, the smaller the !2 distance, the better the method. In this
respect, BAHSIC and FOHSIC have the best performance. We did not produce the !2 distance for
multiclass and regression data sets, since the limited number of such data sets did not allow us to
draw statistically significant conclusions.

Besides using 5 features, we also plot the performance of the learners as a function of the num-
ber of selected features for 9 data sets (covertype, ionosphere, sonar, satimage, segment, vehicle,
housing, bodyfat and abalone) in Figure 3. Generally speaking, the smaller the plotted number the
better the performance of the corresponding learner. For multiclass and regression data sets, it is
clear that the curves for BAHSIC very often lie along the lower bound of all methods. For binary
classification, however, SVM-RFE as a member of our framework performs the best in general.
The advantage of BAHSIC becomes apparent when a small percentage of features is selected. For
instance, BAHSIC is the best when only 5 features are selected from data set 1 and 2. Note that

7. UCI repository can be found at http://www.ics.uci.edu/˜mlearn/MLSummary.html.
8. Statlib repository can be found at http://lib.stat.cmu.edu/datasets/.
9. LibSVM can be found at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.

10. NIPS feature selection challenge can be found at http://clopinet.com/isabelle/Projects/NIPS2003/.
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Data BAHSIC FOHSIC PC MI RFE RELIEF L0 R2W2
covertype 26.3±1.5 37.9±1.7 40.3±1.3 26.7±1.1 33.0±1.9 42.7±0.7 43.4±0.7 44.2±1.7
ionosphere 12.3±1.7 12.8±1.6 12.3±1.5 13.1±1.7 20.2±2.2 11.7±2.0 35.9±0.4 13.7±2.7

sonar 27.9±3.1 25.0±2.3 25.5±2.4 26.9±1.9 21.6±3.4 24.0±2.4 36.5±3.3 32.3±1.8
heart 14.8±2.4 14.4±2.4 16.7±2.4 15.2±2.5 21.9±3.0 21.9±3.4 30.7±2.8 19.3±2.6

breastcancer 3.8±0.4 3.8±0.4 4.0±0.4 3.5±0.5 3.4±0.6 3.1±0.3 32.7±2.3 3.4±0.4
australian 14.3±1.3 14.3±1.3 14.5±1.3 14.5±1.3 14.8±1.2 14.5±1.3 35.9±1.0 14.5±1.3

splice 22.6±1.1 22.6±1.1 22.8±0.9 21.9±1.0 20.7±1.0 22.3±1.0 45.2±1.2 24.0±1.0
svmguide3 20.8±0.6 20.9±0.6 21.2±0.6 20.4±0.7 21.0±0.7 21.6±0.4 23.3±0.3 23.9±0.2

adult 24.8±0.2 24.4±0.6 18.3±1.1 21.6±1.1 21.3±0.9 24.4±0.2 24.7±0.1 100.0±0.0∗
cleveland 19.0±2.1 20.5±1.9 21.9±1.7 19.5±2.2 20.9±2.1 22.4±2.5 25.2±0.6 21.5±1.3

derm 0.3±0.3 0.3±0.3 0.3±0.3 0.3±0.3 0.3±0.3 0.3±0.3 24.3±2.6 0.3±0.3
hepatitis 13.8±3.5 15.0±2.5 15.0±4.1 15.0±4.1 15.0±2.5 17.5±2.0 16.3±1.9 17.5±2.0

musk 29.9±2.5 29.6±1.8 26.9±2.0 31.9±2.0 34.7±2.5 27.7±1.6 42.6±2.2 36.4±2.4
optdigits 0.5±0.2 0.5±0.2 0.5±0.2 3.4±0.6 3.0±1.6 0.9±0.3 12.5±1.7 0.8±0.3

specft 20.0±2.8 20.0±2.8 18.8±3.4 18.8±3.4 37.5±6.7 26.3±3.5 36.3±4.4 31.3±3.4
wdbc 5.3±0.6 5.3±0.6 5.3±0.7 6.7±0.5 7.7±1.8 7.2±1.0 16.7±2.7 6.8±1.2
wine 1.7±1.1 1.7±1.1 1.7±1.1 1.7±1.1 3.4±1.4 4.2±1.9 25.1±7.2 1.7±1.1

german 29.2±1.9 29.2±1.8 26.2±1.5 26.2±1.7 27.2±2.4 33.2±1.1 32.0±0.0 24.8±1.4
gisette 12.4±1.0 13.0±0.9 16.0±0.7 50.0±0.0 42.8±1.3 16.7±0.6 42.7±0.7 100.0±0.0∗
arcene 22.0±5.1 19.0±3.1 31.0±3.5 45.0±2.7 34.0±4.5 30.0±3.9 46.0±6.2 32.0±5.5

madelon 37.9±0.8 38.0±0.7 38.4±0.6 51.6±1.0 41.5±0.8 38.6±0.7 51.3±1.1 100.0±0.0∗
!2 11.2 14.8 19.7 48.6 42.2 25.9 85.0 138.3

satimage 15.8±1.0 17.9±0.8 52.6±1.7 22.7±0.9 18.7±1.3 - 22.1±1.8 -
segment 28.6±1.3 33.9±0.9 22.9±0.5 27.1±1.3 24.5±0.8 - 68.7±7.1 -
vehicle 36.4±1.5 48.7±2.2 42.8±1.4 45.8±2.5 35.7±1.3 - 40.7±1.4 -

svmguide2 22.8±2.7 22.2±2.8 26.4±2.5 27.4±1.6 35.6±1.3 - 34.5±1.7 -
vowel 44.7±2.0 44.7±2.0 48.1±2.0 45.4±2.2 51.9±2.0 - 85.6±1.0 -
usps 43.4±1.3 43.4±1.3 73.7±2.2 67.8±1.8 55.8±2.6 - 67.0±2.2 -

housing 18.5±2.6 18.9±3.6 25.3±2.5 18.9±2.7 - - - -
bodyfat 3.5±2.5 3.5±2.5 3.4±2.5 3.4±2.5 - - - -
abalone 55.1±2.7 55.9±2.9 54.2±3.3 56.5±2.6 - - - -

Table 1: Classification error (%) or percentage of variance not-explained (%). The best result, and
those results not significantly worse than it, are highlighted in bold (Matlab signrank test
with 0.05 significance level). 100.0±0.0∗: program is not finished in a week or crashed. -:
not applicable.

in these cases, the performance produced by BAHSIC is very close to that using all features. In a
sense, BAHSIC is able to shortlist the most informative features.

8. Analysis of Brain Computer Interface Data

In this experiment, we show that BAHSIC selects features that are meaningful in practice. Here
we use it to select a frequency band for a brain-computer interface (BCI) data set from the Berlin
BCI group (Dornhege et al., 2004). The data contains EEG signals (118 channels, sampled at 100
Hz) from five healthy subjects (‘aa’, ‘al’, ‘av’, ‘aw’ and ‘ay’) recorded during two types of motor
imaginations. The task is to classify the imagination for individual trials.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: The performance of a classifier or a regressor (vertical axes) as a function of the number
of selected features (horizontal axes). Note that the maximum of the horizontal axes are
equal to the total number of features in each data set. (a-c) Balanced error rate by a SVM
classifier on the binary data sets Covertype (1), Ionosphere (2) and Sonar (3) respectively;
(d-f) balanced error rate by a one-versus-the-rest SVM classfier on multiclass data sets
Satimage (22), Segment (23) and Vehicle (24) respectively; (g-i) percentage of variance
not-explained by a SVR regressor on regression data set Housing (25), Body fat (26) and
Abalone (27) respectively.

Our experiment proceeds in 3 steps: (i) A Fast Fourier transformation (FFT) is performed on
each channel and the power spectrum is computed. (ii) The power spectra from all channels are
averaged to obtain a single spectrum for each trial. (iii) BAHSIC is used to select the top 5 discrim-
inative frequency components based on the power spectrum. The 5 selected frequencies and their 4
nearest neighbours are used to reconstruct the temporal signals (with all other Fourier coefficients
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(a) (b) (c)

(d) (e)

Figure 4: HSIC, encoded by the colour value for different frequency bands. The x-axis corresponds
to the upper cutoff and the y-axis denotes the lower cutoff (clearly no signal can be found
where the lower bound exceeds the upper bound). Red corresponds to strong dependence,
whereas blue indicates that no dependence was found. The figures are for subject (a) ‘aa’,
(b) ‘al’, (c) ‘av’, (d) ‘aw’ and (e) ‘ay’.

eliminated). The result is then passed to a normal CSP method (Dornhege et al., 2004) for feature
extraction and then classified using a linear SVM.

Automatic filtering using BAHSIC is then compared to other filtering approaches: normal CSP
method with manual filtering (8-40 Hz), the CSSP method (Lemm et al., 2005) and the CSSSP
method (Dornhege et al., 2006). All results presented in Table 2 are obtained using 50× 2-fold
cross-validation. Our method is very competitive and obtains the first and second place for 4 of
the 5 subjects. While the CSSP and the CSSSP methods are specialized embedded methods (w.r.t.
the CSP method) for frequency selection on BCI data, our method is entirely generic. BAHSIC
decouples feature selection from CSP, while proving competitive.

In Figure 4, we use HSIC to visualize the responsiveness of different frequency bands to motor
imagination. The horizontal and the vertical axes in each subfigure represent the lower and upper
bounds for a frequency band, respectively. HSIC is computed for each of these bands. Dornhege
et al. (2006) report that the µ rhythm (approx. 12 Hz) of EEG is most responsive to motor imagi-
nation, and that the β rhythm (approx. 22 Hz) is also responsive. We expect that HSIC will create
a strong peak at the µ rhythm and a weaker peak at the β rhythm, and the absence of other respon-
sive frequency components will create block patterns. Both predictions are confirmed in Figure 4.
Furthermore, the large area of the red region for subject ‘al’ indicates good responsiveness of his µ
rhythm. This also corresponds well with the lowest classification error obtained for him in Table 2.
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Method aa al av aw ay
CSP(8-40Hz) 17.5±2.5 3.1±1.2 32.1±2.5 7.3±2.7 6.0±1.6

CSSP 14.9±2.9 2.4±1.3 33.0±2.7 5.4±1.9 6.2±1.5
CSSSP 12.2±2.1 2.2±0.9 31.8±2.8 6.3±1.8 12.7±2.0
BAHSIC 13.7±4.3 1.9±1.3 30.5±3.3 6.1±3.8 9.0±6.0

Table 2: Classification errors (%) on BCI data after selecting a frequency range.

9. Analysis of Microarray Data

The fact that BAHSIC may be instantiated in numerous ways may create problems for applica-
tion, that is, it is not immediately clear which criteria we might want to choose. Here we provide
guidelines for choosing a specific member of the BAHSIC family by using gene selection as an
illustration.

9.1 Data Sets

While some past work focused on analysis of a specific single microarray data set we decided to
perform a large scale comparison of a raft of techniques on many data sets. We believe that this leads
to a more accurate description of the performance of feature selectors. We ran our experiments on
28 data sets, of which 15 are two-class data sets and 13 are multiclass data sets. These data sets
are assigned a reference number for convenience. Two-class data sets have a reference number less
than or equal to 15, and multiclass data sets have reference numbers of 16 and above. Only one data
set, yeast, has feature dimension less than 1000 (79 features). All other data sets have dimensions
ranging from approximately 2000 to 25000. The number of samples varies between approximately
50 and 300 samples. A summary of the data sets and their sources is as follows:

• The six data sets studied in Ein-Dor et al. (2006). Three deal with breast cancer (van’t Veer
et al., 2002; van de Vijver et al., 2002; Wang et al., 2005) (numbered 1, 2 and 3), two with
lung cancer (Bhattacharjee et al., 2001; Beer et al., 2002) (4, 5), and one with hepatocellular
carcinoma (Iizuka et al., 2003) (6). The B cell lymphoma data set (Rosenwald et al., 2002) is
not used because none of the tested methods produce classification errors lower than 40%.

• The six data sets studied in Warnat et al. (2005). Two deal with prostate cancer (Dhanasekaran
et al., 2001; Welsh et al., 2001) (7, 8), two with breast cancer (Gruvberger et al., 2001; West,
2003) (9, 10), and two with leukaemia (Bullinger et al., 2004; Valk et al., 2004) (16, 17).

• Five commonly used bioinformatics benchmark data sets on colon cancer (Alon et al., 1999)
(11), ovarian cancer (Berchuck et al., 2005) (12), leukaemia (Golub et al., 1999)(13), lym-
phoma (Alizadeh et al., 2000)(18), and yeast (Brown et al., 2000)(19).

• Nine data sets from the NCBI GEO database. The GDS IDs and reference numbers for this pa-
per are GDS1962 (20), GDS330 (21), GDS531 (14), GDS589 (22), GDS968 (23), GDS1021
(24), GDS1027 (25), GDS1244 (26), GDS1319 (27), GDS1454 (28), and GDS1490 (15),
respectively.
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9.2 Classification Error and Robustness of Genes

We used stratified 10-fold cross-validation and SVMs to evaluate the predictive performance of the
top 10 features selected by various members of BAHSIC. For two-class data sets, a nonlinear SVM
with an Gaussian RBF kernel, k(x,x′) = exp

(

−‖x−x
′‖2

2σ2

)

, was used. The regularization constant C
and the kernel width σ were tuned on a grid of {0.1,1,10,102,103}× {1,10,102,103}. Classifi-
cation performance is measured as the fraction of misclassified samples. For multiclass data sets,
all procedures are the same except that we used the SVM in a one-versus-the-rest fashion. A new
BAHSIC member are also included in the comparison, with kernels (‖x− x′‖+ ε)−1 (dis; ε is a
small positive number to avoid singularity) on the data.

The classification results for binary and multiclass data sets are reported in Table 3 and Table
4, respectively. In addition to error rate we also report the overlap between the top 10 gene lists
created in each fold. The multiclass results are presented separately since some older members
of the BAHSIC family, and some competitors, are not naturally extensible to multiclass data sets.
From the experiments we make the following observations:

When comparing the overall performance of various gene selection algorithms, it is of primary
interest to choose a method which works well everywhere, rather than one which sometimes works
well and sometimes performs catastrophically. It turns out that the linear kernel (lin) outperforms
all other methods in this regard, both for binary and multiclass problems.

To show this, we measure how various methods compare with the best performing one in each
data set in Tables 3 and 4. The deviation between algorithms is taken as the square of the differ-
ence in performance. This measure is chosen because gene expression data is relative expensive to
obtain, and we want an algorithm to select the best genes from them. If an algorithm selects genes
that are far inferior to the best possible among all algorithms (catastrophic case), we downgrade the
algorithm more heavily. Squaring the performance difference achieves exactly this effect, by penal-
ising larger differences more heavily. In other words, we want to choose an algorithm that performs
homogeneously well in all data sets. To provide a concise summary, we add these deviations over
the data sets and take the square root as the measure of goodness. These scores (called !2 distance)
are listed in Tables 3 and 4. In general, the smaller the !2 distance, the better the method. It can
been seen that the linear kernel has the smallest !2 distance on both the binary and multiclass data
sets.

9.3 Subtype Discrimination using Nonlinear Kernels

We now investigate why it is that nonlinear kernels (RBF and dis) provide better genes for clas-
sification in three data sets from Table 4 (data sets 18 Alizadeh et al., 2000, 27 (GDS1319), and
28 (GDS1454)). These data sets all represent multiclass problems, where at least two of the classes
are subtypes with respect to the same supertype.11 Ideally, the selected genes should contain infor-
mation discriminating the classes. To visualise this information, we plot in Figure 5 the expression
value of the top-ranked gene against that of a second gene ranked in the top 10. This second gene
is chosen so that it has minimal correlation with the first gene. We use colours and shapes to dis-
tinguish data from different classes (data sets 18 and 28 each contain 3 classes, therefore we use

11. For data set 18, the 3 subtypes are diffuse large B-cell lymphoma and leukemia, follicular lymphoma, and chronic
lymphocytic leukemia; For data set 27, the 4 subtypes are various C blastomere mutant embryos: wild type, pie-
1, pie-1+pal-1, and mex-3+skn-1; For data set 28, the 3 subtypes are normal cell, IgV unmutated B-cell, and IgV
mutated B-cell.
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3 different colour and shape combinations for them; data set 27 has 4 classes, so we use 4 such
combinations).

We found that genes selected using nonlinear kernels provide better separation between the
two classes that correspond to the same supertype (red dots and green diamonds), while the genes
selected with the linear kernel do not separate these subtypes well. In the case of data set 27, the
increased discrimination between red and green comes at the cost of a greater number of errors in
another class (black triangle), however these mistakes are less severe than the errors made between
the two subtypes by the linear kernel. This eventually leads to better classification performance for
the nonlinear kernels (see Table 4).

The principal characteristic of the data sets is that the blue square class is clearly separated
from the rest, while the difference between the two subtypes (red dots and green diamonds) is
less clear. The first gene provides information that distinguishes the blue square class, however it
provides almost no information about the separation between the two subtypes. The linear kernel
does not search for information complementary to the first gene, whereas nonlinear kernels are
able to incorporate complementary information. In fact, the second gene that distinguishes the two
subtypes (red dots and green diamonds) does not separate all classes. From this gene alone, the blue
square class is heavily mixed with other classes. However, combining the two genes together results
in better separation between all classes.

(a) (b) (c)

(d) (e) (f)

Figure 5: Nonlinear kernels (MUL and dis) select genes that discriminate subtypes (red dots and
green diamonds) where the linear kernel fails. The two genes in the first row are represen-
tative of those selected by the linear kernel, while those in the second row are produced
with a nonlinear kernel for the corresponding data sets. Different colors and shapes rep-
resent data from different classes. (a,d) data set 18; (b,e) data set 28; and (e,f) data set
27.
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9.4 Rules of Thumb and Implication to Gene Activity

To conclude these experiments, considering the fact that the linear kernel performed best in our
feature selection evaluation, yet also taking into account the existence of nonlinear interaction be-
tween genes (as demonstrated in Section 9.3), we propose the following two rules of thumb for gene
selection:

1. Always apply a linear kernel for general purpose gene selection.

2. Apply a Gaussian kernel if nonlinear effects are present, such as multimodality or comple-
mentary effects of different genes.

This result should come as no surprise, due to the high dimensionality of microarray data sets, but
we corroborate our claims by means of an extensive experimental evaluation. These experiments
also imply a desirable property of gene activity as a whole: it correlates well with the observed
outcomes. Multimodal and highly nonlinear situations exist, where a nonlinear feature selector is
needed (as can be seen in the outcomes on data sets 18, 27 and 28), yet they occur relatively rarely
in practice.

10. Conclusion

This paper provides a unifying framework for a raft of feature selection methods. This allows us to
give tail bounds and asymptotic expansions for feature selectors. Moreover, we are able to design
new feature selectors which work well in practice by means of the Hilbert-Schmidt Independence
Criterion (HSIC).

The idea behind the resulting algorithm, BAHSIC, is to choose the feature subset that maximises
the dependence between the data and labels. The absence of bias and good convergence properties
of the empirical HSIC estimate provide a strong theoretical justification for using HSIC in this
context. Although BAHSIC is a filter method, it still demonstrates good performance compared
with more specialised methods in both artificial and real world data. It is also very competitive in
terms of runtime performance.12

A variant of BAHSIC can also be used to perform feature selection for unlabeled data. In this
case, we want to select a subset T of variables such that it is strongly correlated with the full data
set. In other words, we want to find a compressed representation of the data itself in the hope that
it is useful for a subsequent learning tasks. BAHSIC readily accommodates this by simply using
the full data set X as the labels. Clearly, we want to maximize dependence between the selected
variables and X without adding many variables which are simply very much correlated to each other.
This ingredient is not yet explicitly formulated in the BAHSIC framework. We will investigate this
in the future.
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Appendix A. Feature Weighting Using HSIC

Besides the backward elimination algorithm, feature selection using HSIC can also proceed by
converting problem (1) into a continuous optimization problem. By adding a penalty on the number
of nonzero terms, such as a relaxed !0 “norm” of a weight vector over the features we are able
to solve the problem with continuous optimization methods. Unfortunately, this approach does
not perform as well as the the backward elimination procedure proposed in the main text. For
completeness and since related methods are somewhat popular in the literature, the approach is
described below.

We introduce a weighting w ∈ Rn on the dimensions of the data: x .−→ w◦ x, where ◦ denotes
element-wise product. Thus feature selection using HSIC becomes an optimization problem with
respect to w (for convenience we write HSIC as a function of w, HSIC(w)). To obtain a sparse solu-
tion of the selected features, the zero “norm” ‖w‖0 is also incorporated into our objective function
(clearly ‖.‖0 is not a proper norm). ‖w‖0 computes the number of non-zero entries in w and the
sparsity is achieved by imposing heavier penalty on solutions with large number of non-zero entries.
In summary, feature selection using HSIC can be formulated as:

w= argmax
w

HSIC(w)−λ‖w‖0 where w ∈ [0,∞)n. (32)

The zero “norm” is not a continuous function. However, it can be approximated well by a concave
function (Fung et al., 2002) (α= 5 works well in practice):

‖w‖0 ≈ 1
&(1− exp−αw). (33)

While the optimization problem in (32) is non-convex, we may use relatively more efficient opti-
mization procedures for the concave approximation of the !0 norm. For instance, we may use the
convex-concave procedure (CCCP) of Yuille and Rangarajan (2003). For a Gaussian kernel HSIC
can be decomposed into the sum of a convex and a concave function:

HSIC(w)−λ‖w‖0 ≈ tr(K(I−m−111&)L(I−m−111&))−λ1&(1− e−αw).

Depending on the choice of L we need to assign all terms involving exp with positive coefficients
into the convex and all terms involving negative coefficients to the concave function.
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Abstract
We consider a class of sparse learning problems in high dimensional feature space regularized by
a structured sparsity-inducing norm that incorporates prior knowledge of the group structure of
the features. Such problems often pose a considerable challenge to optimization algorithms due
to the non-smoothness and non-separability of the regularization term. In this paper, we focus
on two commonly adopted sparsity-inducing regularization terms, the overlapping Group Lasso
penalty l1/l2-norm and the l1/l∞-norm. We propose a unified framework based on the augmented
Lagrangian method, under which problems with both types of regularization and their variants
can be efficiently solved. As one of the core building-blocks of this framework, we develop new
algorithms using a partial-linearization/splitting technique and prove that the accelerated versions
of these algorithms require O( 1√

ε
) iterations to obtain an ε-optimal solution. We compare the

performance of these algorithms against that of the alternating direction augmented Lagrangian
and FISTA methods on a collection of data sets and apply them to two real-world problems to
compare the relative merits of the two norms.
Keywords: structured sparsity, overlapping Group Lasso, alternating direction methods, variable
splitting, augmented Lagrangian

1. Introduction

For feature learning problems in a high-dimensional space, sparsity in the feature vector is usually a
desirable property. Many statistical models have been proposed in the literature to enforce sparsity,
dating back to the classical Lasso model (l1-regularization) (Tibshirani, 1996; Chen et al., 1999).
The Lasso model is particularly appealing because it can be solved by very efficient proximal gradi-
ent methods; for example, see Combettes and Pesquet (2011). However, the Lasso does not take into
account the structure of the features (Zou and Hastie, 2005). In many real applications, the features
in a learning problem are often highly correlated, exhibiting a group structure. Structured sparsity
has been shown to be effective in those cases. The Group Lasso model (Yuan and Lin, 2006; Bach,
2008; Roth and Fischer, 2008) assumes disjoint groups and enforces sparsity on the pre-defined
groups of features. This model has been extended to allow for groups that are hierarchical as well
as overlapping (Jenatton et al., 2011; Kim and Xing, 2010; Bach, 2010) with a wide array of appli-
cations from gene selection (Kim and Xing, 2010) to computer vision (Huang et al., 2009; Jenatton
et al., 2010). For image denoising problems, extensions with non-integer block sizes and adaptive
partitions have been proposed by Peyre and Fadili (2011) and Peyre et al. (2011). In this paper, we
consider the following basic model of minimizing the squared-error loss with a regularization term

c©2012 Zhiwei Qin and Donald Goldfarb.
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to induce group sparsity:
min
x∈Rm

L(x)+Ω(x), (1)

where

L(x) =
1
2
‖Ax−b‖2, A ∈ R

n×m,

Ω(x) =

{

Ωl1/l2(x)≡ λ∑s∈S ws‖xs‖, or
Ωl1/l∞(x)≡ λ∑s∈S ws‖xs‖∞ , (2)

S = {s1, · · · ,s|S |} is the set of group indices with |S |= J, and the elements (features) in the groups
possibly overlap (Chen et al., 2010; Mairal et al., 2010; Jenatton et al., 2011; Bach, 2010). In this
model, λ,ws,S are all pre-defined. ‖ · ‖ without a subscript denotes the l2-norm. We note that the
penalty term Ωl1/l2(x) in (2) is different from the one proposed by Jacob et al. (2009),1 although
both are called overlapping Group Lasso penalties. In particular, (1)-(2) cannot be cast into a non-
overlapping group lasso problem as done by Jacob et al. (2009).

1.1 Related Work

Two proximal gradient methods have been proposed to solve a close variant of (1) with an l1/l2
penalty,

min
x∈Rm

L(x)+Ωl1/l2(x)+λ‖x‖1, (3)

which has an additional l1-regularization term on x. Chen et al. (2010) replace Ωl1/l2(x) with a
smooth approximation Ωη(x) by using Nesterov’s smoothing technique (Nesterov, 2005) and solve
the resulting problem by the Fast Iterative Shrinkage Thresholding algorithm (FISTA) (Beck and
Teboulle, 2009). The parameter η is a smoothing parameter, upon which the practical and theoretical
convergence speed of the algorithm critically depends. Liu and Ye (2010) also apply FISTA to solve
(3), but in each iteration, they transform the computation of the proximal operator associated with
the combined penalty term into an equivalent constrained smooth problem and solve it by Nesterov’s
accelerated gradient descent method (Nesterov, 2005). Mairal et al. (2010) apply the accelerated
proximal gradient method to (1) with l1/l∞ penalty and propose a network flow algorithm to solve
the proximal problem associated with Ωl1/l∞(x). The method proposed by Mosci et al. (2010) for
solving the Group Lasso problem in Jacob et al. (2009) is in the same spirit as the method of Liu
and Ye (2010), but their approach uses a projected Newton method.

1.2 Our Contributions

We take a unified approach to tackle problem (1) with both l1/l2- and l1/l∞-regularizations. Our
strategy is to develop efficient algorithms based on the Alternating Linearization Method with Skip-
ping (ALM-S) (Goldfarb et al., 2011) and FISTA for solving an equivalent constrained version
of problem (1) (to be introduced in Section 2) in an augmented Lagrangian method framework.
Specifically, we make the following contributions in this paper:

• We build a general framework based on the augmented Lagrangian method, under which
learning problems with both l1/l2 and l1/l∞ regularizations (and their variants) can be solved.
This framework allows for experimentation with its key building blocks.

1. This norm has been further investigated and renamed as latent Group Lasso (Obozinski et al., 2011).
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• We propose new algorithms: ALM-S with partial splitting (APLM-S) and FISTA with partial
linearization (FISTA-p), to serve as the key building block for this framework. We prove that
APLM-S and FISTA-p have convergence rates of O( 1

k ) and O( 1
k2 ) respectively, where k is the

number of iterations. Our algorithms are easy to implement and tune, and they do not require
line-search, eliminating the need to evaluate the objective function at every iteration.

• We evaluate the quality and speed of the proposed algorithms and framework against state-of-
the-art approaches on a rich set of synthetic test data and compare the l1/l2 and l1/l∞ models
on breast cancer gene expression data (Van De Vijver et al., 2002) and a video sequence
background subtraction task (Mairal et al., 2010).

2. A Variable-Splitting Augmented Lagrangian Framework

In this section, we present a unified framework, based on variable splitting and the augmented La-
grangian method for solving (1) with both l1/l2- and l1/l∞-regularizations. This framework refor-
mulates problem (1) as an equivalent linearly-constrained problem, by using the following variable-
splitting procedure.

Let y ∈ R∑s∈S |s| be the vector obtained from the vector x ∈ Rm by repeating components of x
so that no component of y belongs to more than one group. Let M = ∑s∈S |s|. The relationship
between x and y is specified by the linear constraintCx= y, where the (i, j)-th element of the matrix
C ∈ RM×m is

Ci, j =
{

1, if yi is a replicate of x j,
0, otherwise.

For examples ofC, refer to Chen et al. (2010). Consequently, (1) is equivalent to

min Fob j(x,y)≡
1
2
‖Ax−b‖2 + Ω̃(y) (4)

s.t. Cx= y,

where Ω̃(y) is the non-overlapping group-structured penalty term corresponding to Ω(y) defined in
(2).

Note that C is a highly sparse matrix, and D = CTC is a diagonal matrix with the diagonal
entries equal to the number of times that each entry of x is included in some group. Problem (4)
now includes two sets of variables x and y, where x appears only in the loss term L(x) and y appears
only in the penalty term Ω̃(y).

All the non-overlapping versions of Ω(·), including the Lasso and Group Lasso, are special
cases of Ω(·), with C = I, that is, x = y. Hence, (4) in this case is equivalent to applying variable-
splitting on x. Problems with a composite penalty term, such as the Elastic Net, λ1‖x‖1 +λ2‖x‖2,
can also be reformulated in a similar way by merging the smooth part of the penalty term (λ2‖x‖2

in the case of the Elastic Net) with the loss function L(x).
To solve (4), we apply the augmented Lagrangian method (Hestenes, 1969; Powell, 1972; No-

cedal and Wright, 1999; Bertsekas, 1999) to it. This method, Algorithm 1, minimizes the augmented
Lagrangian

L(x,y,v) =
1
2
‖Ax−b‖2− vT (Cx− y)+

1
2µ
‖Cx− y‖2 + Ω̃(y) (5)
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exactly for a given Lagrange multiplier v in every iteration followed by an update to v. The parame-
ter µ in (5) controls the amount of weight that is placed on violations of the constraintCx= y. Algo-
rithm 1 can also be viewed as a dual ascent algorithm applied to P(v) = minx,yL(x,y,v) (Bertsekas,
1976), where v is the dual variable, 1

µ is the step-length, and Cx− y is the gradient ∇vP(v). This

Algorithm 1 AugLag
1: Choose x0,y0,v0.
2: for l = 0,1, · · · do
3: (xl+1,yl+1)← argminx,yL(x,y,vl)
4: vl+1← vl− 1

µ(Cx
l+1− yl+1)

5: Update µ according to the chosen updating scheme.
6: end for

algorithm does not require µ to be very small to guarantee convergence to the solution of problem
(4) (Nocedal and Wright, 1999). However, solving the problem in Line 3 of Algorithm 1 exactly can
be very challenging in the case of structured sparsity. We instead seek an approximate minimizer
of the augmented Lagrangian via the abstract subroutine ApproxAugLagMin(x,y,v). The following
theorem (Rockafellar, 1973) guarantees the convergence of this inexact version of Algorithm 1.

Theorem 1 Let αl := L(xl,yl,vl)− infx∈Rm,y∈RM L(x,y,vl) and F∗ be the optimal value of problem
(4). Suppose problem (4) satisfies the modified Slater’s condition, and

∞

∑
l=1

√
αl <+∞. (6)

Then, the sequence {vl} converges to v∗, which satisfies

inf
x∈Rm,y∈RM

(

Fob j(x,y)− (v∗)T (Cx− y)
)

= F∗,

while the sequence {xl ,yl} satisfies liml→∞Cxl− yl = 0 and liml→∞Fob j(xl,yl) = F∗.

The condition (6) requires the augmented Lagrangian subproblem be solved with increasing ac-
curacy. We formally state this framework in Algorithm 2. We index the iterations of Algorithm

Algorithm 2 OGLasso-AugLag
1: Choose x0,y0,v0.
2: for l = 0,1, · · · do
3: (xl+1,yl+1) ← ApproxAugLagMin(xl,yl,vl), to compute an approximate minimizer of

L(x,y,vl)
4: vl+1← vl− 1

µ(Cx
l+1− yl+1)

5: Update µ according to the chosen updating scheme.
6: end for

2 by l and call them ‘outer iterations’. In Sections 3, we develop algorithms that implement
ApproxAugLagMin(x,y,v). The iterations of these subroutine are indexed by k and are called ‘inner
iterations’.
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3. Methods for Approximately Minimizing the Augmented Lagrangian

In this section, we use the overlapping Group Lasso penalty Ω(x) = λ∑s∈S ws‖xs‖ to illustrate the
optimization algorithms under discussion. The case of l1/l∞-regularization will be discussed in
Section 4. From now on, we assume without loss of generality that ws = 1 for every group s.

3.1 Alternating Direction Augmented Lagrangian (ADAL) Method

The well-known Alternating Direction Augmented Lagrangian (ADAL) method (Eckstein and Bert-
sekas, 1992; Gabay and Mercier, 1976; Glowinski and Marroco, 1975; Boyd et al., 2010)2 approx-
imately minimizes the augmented Lagrangian by minimizing (5) with respect to x and y alternat-
ingly and then updates the Lagrange multiplier v on each iteration (e.g., see Bertsekas and Tsit-
siklis, 1989, Section 3.4). Specifically, the single-iteration procedure that serves as the procedure
ApproxAugLagMin(x,y,v) is given below as Algorithm 3.

Algorithm 3 ADAL
1: Given xl , yl , and vl .
2: xl+1← argminxL(x,yl,vl)
3: yl+1← argminyL(xl+1,y,vl)
4: return xl+1,yl+1.

The ADAL method, also known as the alternating direction method of multipliers (ADMM)
and the split Bregman method, has recently been applied to problems in signal and image process-
ing (Combettes and Pesquet, 2011; Afonso et al., 2009; Goldstein and Osher, 2009) and low-rank
matrix recovery (Lin et al., 2010). Its convergence has been established by Eckstein and Bertsekas
(1992). This method can accommodate a sum of more than two functions. For example, by ap-
plying variable-splitting (e.g., see Bertsekas and Tsitsiklis, 1989; Boyd et al., 2010) to the problem
minx f (x)+∑K

i=1 gi(Cix), it can be transformed into

min
x,y1,··· ,yK

f (x)+
K

∑
i=1

gi(yi)

s.t. yi =Cix, i= 1, · · · ,K.

The subproblems corresponding to yi’s can thus be solved simultaneously by the ADAL method.
This so-called simultaneous direction method of multipliers (SDMM) (Setzer et al., 2010) is related
to Spingarn’s method of partial inverses (Spingarn, 1983) and has been shown to be a special in-
stance of a more general parallel proximal algorithm with inertia parameters (Pesquet and Pustelnik,
2010).

Note that the problem solved in Line 3 of Algorithm 3,

yl+1 = argmin
y
L(xl+1,y,vl)≡ argmin

y

{

1
2µ
‖dl− y‖2 + Ω̃(y)

}

, (7)

where dl = Cxl+1−µvl , is group-separable and hence can be solved in parallel. As in Qin et al.
(2010), each subproblem can be solved by applying the block soft-thresholding operator, T (dls,µλ)≡

2. Recently, Mairal et al. (2011) also applied ADAL with two variants based on variable-splitting to the overlapping
Group Lasso problem.
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dls
‖dls‖

max(0,‖dls‖−λµ),s= 1, · · · ,J. Solving for xl+1 in Line 2 of Algorithm 3, that is,

xl+1 = argmin
x
L(x,yl,vl)≡ argmin

x

{

1
2
‖Ax−b‖2− (vl)TCx+

1
2µ
‖Cx− yl‖2

}

, (8)

involves solving the linear system

(ATA+
1
µ
D)x= ATb+CTvl+

1
µ
CTyl , (9)

where the matrix on the left hand side of (9) has dimension m×m. Many real-world data sets, such
as gene expression data, are highly under-determined. Hence, the number of features (m) is much
larger than the number of samples (n). In such cases, one can use the Sherman-Morrison-Woodbury
formula,

(ATA+
1
µ
D)−1 = µD−1−µ2D−1AT (I+µAD−1AT )−1AD−1,

and solve instead an n×n linear system involving the matrix I+µAD−1AT . In addition, as long as
µ stays the same, one has to factorize ATA+ 1

µD or I+µAD−1AT only once and store their factors
for subsequent iterations.

When both n and m are very large, it might be infeasible to compute or store ATA, not to
mention its eigen-decomposition, or the Cholesky decomposition of ATA+ 1

µD. In this case, one
can solve the linear systems using the preconditioned Conjugate Gradient (PCG) method (Golub
and Van Loan, 1996). Similar comments apply to the other algorithms proposed in Sections 3.2 -
3.4 below.Alternatively, we can apply FISTA to Line 3 in Algorithm 2 (see Section 3.5).

3.2 ALM-S: partial split (APLM-S)

We now consider applying the Alternating Linearization Method with Skipping (ALM-S) from
Goldfarb et al. (2011) to approximately minimize (5). In particular, we apply variable splitting
(Section 2) to the variable y, to which the group-sparse regularizer Ω̃ is applied, (the original ALM-
S splits both variables x and y,) and re-formulate (5) as follows.

min
x,y,  y

1
2
‖Ax−b‖2− vT (Cx− y)+

1
2µ
‖Cx− y‖2 + Ω̃(  y) (10)

s.t. y=  y.

Note that the Lagrange multiplier v is fixed here. Defining

f (x,y) :=
1
2
‖Ax−b‖2− vT (Cx− y)+

1
2µ
‖Cx− y‖2, (11)

g(y) = Ω̃(y) = λ∑
s
‖ys‖, (12)

problem (10) is of the form

min f (x,y)+g(  y) (13)
s.t. y=  y,

to which we now apply partial-linearization.
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3.2.1 PARTIAL LINEARIZATION AND CONVERGENCE RATE ANALYSIS

Let us define

F(x,y) := f (x,y)+g(y) = L(x,y;v),

Lρ(x,y,  y,γ) := f (x,y)+g(  y)+ γT (  y− y)+
1

2ρ
‖  y− y‖2, (14)

where γ is the Lagrange multiplier in the augmented Lagrangian (14) corresponding to problem (13).
We now present our partial-split alternating linearization algorithm to implement
ApproxAugLagMin(x,y,v) in Algorithm 2.

Algorithm 4 APLM-S
1: Given x0,  y0,v. Choose ρ,γ0, such that −γ0 ∈ ∂g(  y0). Define f (x,y) as in (11).
2: for k = 0,1, · · · until stopping criterion is satisfied do
3: (xk+1,yk+1)← argminx,yLρ(x,y,  yk,γk).
4: if F(xk+1,yk+1)> Lρ(xk+1,yk+1,  yk,γk) then
5: yk+1←  yk
6: xk+1← argminx f (x,yk+1)≡ argminxLρ(x;yk+1,  yk,γk)
7: end if
8:  yk+1← p f (xk+1,yk+1)≡ argmin yLρ(xk+1,yk+1,  y,∇y f (xk+1,yk+1))

9: γk+1← ∇y f (xk+1,yk+1)− yk+1−  yk+1

ρ
10: end for
11: return (xK+1,  yK+1)

We note that in Line 6 in Algorithm 4,

xk+1 = argmin
x
Lρ(x;yk+1,  yk,γk)≡ argmin

x
f (x;yk+1)≡ argmin

x
f (x;  yk). (15)

Now, we have a variant of Lemma 2.2 in Goldfarb et al. (2011).

Lemma 1 For any (x,y), if  q := argmin yLρ(x,y,  y,∇y f (x,y)), and

F(x,  q)≤ Lρ(x,y,  q,∇y f (x,y)), (16)

then for any (  x,  y),

2ρ(F(  x,  y)−F(x,  q))≥ ‖  q−  y‖2−‖y−  y‖2 +2ρ((  x− x)T∇x f (x,y)). (17)

Similarly, for any  y, if (p,q) := argminx,yLρ(x,y,  y,−γg(  y)), γg(  y) is a sub-gradient of g at  y, and

F(p,q)≤ Lρ((p,q),  y,−γg(  y)), (18)

then for any (x,y),
2ρ(F(x,y)−F(p,q))≥ ‖q− y‖2−‖  y− y‖2. (19)
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Proof See Appendix A.

Algorithm 4 checks condition (18) at Line 4 because the function g is non-smooth and condition
(18) may not hold no matter what the value of ρ is. When this condition is violated, a skipping step
occurs in which the value of y is set to the value of  y in the previous iteration (Line 5) and Lρ
re-minimized with respect to x (Line 6) to ensure convergence. Let us define a regular iteration of
Algorithm 4 to be an iteration where no skipping step occurs, that is, Lines 5 and 6 are not executed.
Likewise, we define a skipping iteration to be an iteration where a skipping step occurs. Now, we
are ready to state the iteration complexity result for APLM-S.

Theorem 2 Assume that ∇y f (x,y) is Lipschitz continuous in y with Lipschitz constant Ly( f ), that
is, for any x, ‖∇y f (x,y)−∇y f (x,z)‖ ≤ Ly( f )‖y− z‖, for all y and z. For ρ ≤ 1

Ly( f ) , the iterates
(xk,  yk) in Algorithm 4 satisfy

F(xk,  yk)−F(x∗,y∗)≤
‖  y0− y∗‖2

2ρ(k+ kn)
, ∀k, (20)

where (x∗,y∗) is an optimal solution to (10), and kn is the number of regular iterations among the
first k iterations.

Proof See Appendix B.

Remark 1 For Theorem 2 to hold, we need ρ≤ 1
Ly( f ) . From the definition of f (x,y) in (11), it is easy

to see that Ly( f ) = 1
µ regardless of the loss function L(x). Hence, we set ρ = µ, so that condition

(16) in Lemma 1 is satisfied.

In Section 3.3, we will discuss the case where the iterations entirely consist of skipping steps.
We will show that this is equivalent to ISTA (Beck and Teboulle, 2009) with partial linearization as
well as a variant of ADAL. In this case, the inner Lagrange multiplier γ is redundant.

3.2.2 SOLVING THE SUBPROBLEMS

We now show how to solve the subproblems in Algorithm 4. First, observe that since ρ= µ,

argmin
 y
Lρ(x,y,  y,∇y f (x,y)) ≡ argmin

 y

{

∇y f (x,y)T  y+
1
2µ
‖  y− y‖2 +g(  y)

}

≡ argmin
 y

{

1
2µ
‖d−  y‖2 +λ∑

s
‖  ys‖

}

,

where d = Cx− µv. Hence,  y can be obtained by applying the block soft-thresholding operator
T (ds,µλ) as in Section 3.1. Next consider the subproblem

min
(x,y)

Lρ(x,y,  y,γ)≡min
(x,y)

{

f (x,y)+ γT (  y− y)+
1

2µ
‖  y− y‖2

}

. (21)
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It is easy to verify that solving the linear system given by the optimality conditions for (21) by block
Gaussian elimination yields the system

(

ATA+
1

2µ
D
)

x= rx+
1
2
CT ry

for computing x, where rx = ATb+CTv and ry =−v+ γ+  y
ρ . Then y can be computed as (µ2)(ry+

1
µCx).

As in Section 3.1, only one Cholesky factorization of ATA+ 1
2µD is required for each invocation

of Algorithm 4. Hence, the amount of work involved in each iteration of Algorithm 4 is comparable
to that of an ADAL iteration.

It is straightforward to derive an accelerated version of Algorithm 4, which we shall refer to as
FAPLM-S, that corresponds to a partial-split version of the FALM algorithm proposed by Goldfarb
et al. (2011) and also requires O(

√

L( f )
ε ) iterations to obtain an ε-optimal solution. In Section 3.4,

we present an algorithm FISTA-p, which is a special version of FAPLM-S in which every iteration
is a skipping iteration and which has a much simpler form than FAPLM-S, while having essentially
the same iteration complexity.

It is also possible to apply ALM-S directly, which splits both x and y, to solve the augmented
Lagrangian subproblem. Similar to (10), we reformulate (5) as

min
(x,y),(  x,  y)

1
2
‖Ax−b‖2− vT (Cx− y)+

1
2µ
‖Cx− y‖2 +λ∑

s
‖  ys‖ (22)

s.t. x=  x,
y=  y.

The functions f and g are defined as in (11) and (12), except that now we write g as g(  x,  y) even
though the variable  x does not appear in the expression for g. It can be shown that  y admits exactly
the same expression as in APLM-S, whereas  x is obtained by a gradient step, x− ρ∇x f (x,y). To
obtain x, we solve the linear system

(

ATA+
1

µ+ρ
D+

1
ρ
I
)

x= rx+
ρ

µ+ρ
CTry, (23)

after which y is computed by y=
(

µρ
µ+ρ

)(

ry+ 1
µCx
)

.

Remark 2 For ALM-S, the Lipschitz constant for ∇ f (x,y) Lf = λmax(ATA)+ 1
µdmax, where dmax =

maxi Dii ≥ 1. For the complexity results in Goldfarb et al. (2011) to hold, we need ρ ≤ 1
Lf . Since

λmax(ATA) is usually not known, it is necessary to perform a backtracking line-search on ρ to ensure
that F(xk+1,yk+1) ≤ Lρ(xk+1,yk+1,  xk,  yk,γk). In practice, we adopted the following continuation
scheme instead. We initially set ρ= ρ0 =

µ
dmax and decreased ρ by a factor of β after a given number

of iterations until ρ reached a user-supplied minimum value ρmin. This scheme prevents ρ from being
too small, and hence negatively impacting computational performance. However, in both cases the
left-hand-side of the system (23) has to be re-factorized every time ρ is updated.

As we have seen above, the Lipschitz constant resulting from splitting both x and y is potentially
much larger than 1

µ. Hence, partial-linearization reduces the Lipschitz constant and hence improves
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the bound on the right-hand-side of (20) and allows Algorithm 4 to take larger step sizes (equal to
µ). Compared to ALM-S, solving for x in the skipping step (Line 6) becomes harder. Intuitively,
APLM-S does a better job of ‘load-balancing’ by managing a better trade-off between the hardness
of the subproblems and the practical convergence rate.

3.3 ISTA: Partial Linearization (ISTA-p)

We can also minimize the augmented Lagrangian (5), which we write as L(x,y,v) = f (x,y)+g(y)
with f (x,y) and g(y) defined as in (11) and (12), using a variant of ISTA that only linearizes f (x,y)
with respect to the y variables. As in Section 3.2, we can set ρ = µ and guarantee the convergence
properties of ISTA-p (see Corollary 1 below). Formally, let (x,y) be the current iterate and (x+,y+)
be the next iterate. We compute y+ by

y+ = argmin
y′

Lρ(x,y,y′,∇y f (x,y))

= argmin
y′

{

1
2µ∑j

(‖y′j−dyj‖
2 +λ‖y′j‖)

}

, (24)

where dy =Cx−µv. Hence the solution y+ to problem (24) is given blockwise by T ([dy] j,µλ), j =
1, · · · ,J.

Now given y+, we solve for x+ by

x+ = argmin
x′

f (x′,y+)

= argmin
x′

{

1
2
‖Ax′ −b‖2− vT (Cx′ − y+)+

1
2µ
‖Cx′ − y+‖2

}

(25)

The algorithm that implements subroutine ApproxAugLagMin(x,y,v) in Algorithm 2 by ISTA with
partial linearization is stated below as Algorithm 5.

Algorithm 5 ISTA-p (partial linearization)
1: Given x0,  y0,v. Choose ρ. Define f (x,y) as in (11).
2: for k = 0,1, · · · until stopping criterion is satisfied do
3: xk+1← argminx f (x;  yk)
4:  yk+1← argminyLρ(xk+1,  yk,y,∇y f (xk+1,  yk))
5: end for
6: return (xK+1,  yK+1)

As we remarked in Section 3.2, Algorithm 5 is equivalent to Algorithm 4 (APLM-S) where
every iteration is a skipping iteration. Hence, we have from Theorem 2.

Corollary 1 Assume ∇y f (·, ·) is Lipschitz continuous with Lipschitz constant Ly( f ). For ρ≤ 1
Ly( f ) ,

the iterates (xk,  yk) in Algorithm 5 satisfy

F(xk,  yk)−F(x∗,y∗)≤
‖  y0− y∗‖2

2ρk
, ∀k,

where (x∗,y∗) is an optimal solution to (10).
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It is easy to see that (24) is equivalent to (7), and that (25) is the same as (8) in ADAL.

Remark 3 We have shown that with a fixed v, the ISTA-p iterations are exactly the same as the
ADAL iterations. The difference between the two algorithms is that ADAL updates the (outer)
Lagrange multiplier v in each iteration, while in ISTA-p, v stays the same throughout the inner
iterations. We can thus view ISTA-p as a variant of ADAL with delayed updating of the Lagrange
multiplier.

The ‘load-balancing’ behavior discussed in Section 3.2 is more obvious for ISTA-p. As we will
see in Section 3.5, if we apply ISTA (with full linearization) to minimize (5), solving for x is simply
a gradient step. Here, we need to minimize f (x,y) with respect to x exactly, while being able to take
larger step sizes in the other subproblem, due to the smaller associated Lipschitz constant.

3.4 FISTA-p

We now present an accelerated version FISTA-p of ISTA-p. FISTA-p is a special case of FAPLM-S
with a skipping step occurring in every iteration.We state the algorithm formally as Algorithm 6.
The iteration complexity of FISTA-p (and FAPLM-S) is given by the following theorem.

Algorithm 6 FISTA-p (partial linearization)
1: Given x0,  y0,v. Choose ρ, and z0 =  y0. Define f (x,y) as in (11).
2: for k = 0,1, · · · ,K do
3: xk+1← argminx f (x;zk)
4:  yk+1← argminyLρ(xk+1,zk,y,∇y f (xk+1,zk))

5: tk+1←
1+
√

1+4t2k
2

6: zk+1←  yk+1 +
(

tk−1
tk+1

)

(  yk+1−  yk)
7: end for
8: return (xK+1,  yK+1)

Theorem 3 Assuming that ∇y f (·) is Lipschitz continuous with Lipschitz constant Ly( f ) and ρ ≤
1

Ly( f ) , the sequence {x
k,  yk} generated by Algorithm 6 satisfies

F(xk,  yk)−F(x∗,y∗)≤
2‖  y0− y∗‖2

ρ(k+1)2 ,

Although we need to solve a linear system in every iteration of Algorithms 4, 5, and 6, the
left-hand-side of the system stays constant throughout the invocation of the algorithms because,
following Remark 1, we can always set ρ = µ. Hence, no line-search is necessary, and this step
essentially requires only one backward- and one forward-substitution, the complexity of which is
the same as a gradient step.
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3.5 ISTA/FISTA: Full Linearization

ISTA solves the following problem in each iteration to produce the next iterate
(

x+
y+
)

.

min
x′,y′

1
2ρ

∥

∥

∥

∥

(

x′
y′
)

−d
∥

∥

∥

∥

2
+λ∑

s
‖ys‖

≡
1

2ρ
‖x′ −dx‖2 +∑

j

1
2ρ
(

‖y′j−dyj‖
2 +λ‖y′j‖

)

, (26)

where d =
(

dx
dy

)

=

(

x
y

)

−ρ∇ f (x,y), and f (x,y) is defined in (11). It is easy to see that we can

solve for x+ and y+ separately in (26). Specifically,

x+ = dx, (27)

y+j =
dyj
‖dyj‖

max(0,‖dyj‖−λρ), j = 1, . . . ,J.

Using ISTA to solve the outer augmented Lagrangian (5) subproblem is equivalent to taking only
skipping steps in ALM-S. In our experiments, we used the accelerated version of ISTA, that is,
FISTA (Algorithm 7) to solve (5).

Algorithm 7 FISTA
1: Given  x0,  y0,v. Choose ρ0. Set t0 = 0,z0

x =  x0,z0
y =  y0. Define f (x,y) as in (11).

2: for k = 0,1, · · · until stopping criterion is satisfied do
3: Perform a backtracking line-search on ρ, starting from ρ0.

4:

(

dx
dy

)

=

(

zkx
zky

)

−ρ∇ f (zkx,zky)

5:  xk+1← dx
6:  yk+1

j ←
dy j
‖dy j‖

max(0,‖dyj‖−λρ), j = 1, . . . ,J.

7: tk+1←
1+
√

1+4t2k
2

8: zk+1
x ←  xk+ tk−1

tk+1
(  xk+1−  xk)

9: zk+1
y ←  yk+ tk−1

tk+1
(  yk+1−  yk)

10: end for
11: return (  xK+1,  yK+1)

FISTA (resp. ISTA) is, in fact, an inexact version of FISTA-p (resp. ISTA-p), where we mini-
mize with respect to x a linearized approximation

f̃ (x,zk) := f (xk,zk)+∇x f (xk,zk)(x− xk)+
1

2ρ
‖x− xk‖2

of the quadratic objective function f (x,zk) in (25). The update to x in Line 3 of Algorithm 6 is
replaced by (27) as a result. Similar to FISTA-p, FISTA is also a special skipping version of the
full-split FALM-S. Considering that FISTA has an iteration complexity of O( 1

k2 ), it is not surprising
that FISTA-p has the same iteration complexity.
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Remark 4 Since FISTA requires only the gradient of f (x,y), it can easily handle any smooth convex
loss function, such as the logistic loss for binary classification, L(x) = ∑N

i=1 log(1+ exp(−biaTi x)),
where aTi is the i-th row of A, and b is the vector of labels. Moreover, when the scale of the data
(min{n,m}) is so large that it is impractical to compute the Cholesky factorization of ATA, FISTA
is a good choice to serve as the subroutine ApproxAugLagMin(x,y,v) in OGLasso-AugLag.

4. Overlapping Group l1/l∞-Regularization

The subproblems with respect to y (or  y) involved in all the algorithms presented in the previous
sections take the following form

min
y

1
2ρ
‖c− y‖2 + Ω̃(y), (28)

where Ω̃(y) = λ∑s∈S̃ ws‖ys‖∞ in the case of l1/l∞-regularization. In (7), for example, c=Cx−µv.
The solution to (28) is the proximal operator of Ω̃ (Combettes and Wajs, 2006; Combettes and
Pesquet, 2011). Similar to the classical Group Lasso, this problem is block-separable and hence all
blocks can be solved simultaneously.

Again, for notational simplicity, we assume ws = 1 ∀s ∈ S̃ and omit it from now on. For each
s ∈ S̃ , the subproblem in (28) is of the form

min
ys

1
2
‖cs− ys‖2 +ρλ‖ys‖∞. (29)

As shown by Wright et al. (2009), the optimal solution to the above problem is cs−P(cs), where
P denotes the orthogonal projector onto the ball of radius ρλ in the dual norm of the l∞-norm, that
is, the l1-norm. The Euclidean projection onto the simplex can be computed in (expected) linear
time (Duchi et al., 2008; Brucker, 1984). Duchi et al. (2008) show that the problem of computing
the Euclidean projection onto the l1-ball can be reduced to that of finding the Euclidean projection
onto the simplex in the following way. First, we replace cs in problem (29) by |cs|, where the
absolute value is taken component-wise. After we obtain the projection zs onto the simplex, we
can construct the projection onto the l1-ball by setting y∗s = sign(cs)zs, where sign(·) is also taken
component-wise.

5. Experiments

We tested the OGLasso-AugLag framework (Algorithm 2) with four subroutines: ADAL, FISTA,
FISTA-p, and APLM-S. We implemented the framework with the first three subroutines in C++ to
compare them with the ProxFlow algorithm proposed by Mairal et al. (2010). We used the C inter-
face and BLAS and LAPACK subroutines provided by the AMD Core Math Library (ACML).3 To
compare with ProxGrad (Chen et al., 2010), we implemented the framework and all four algorithms
in Matlab. We did not include ALM-S in our experiments because it is time-consuming to find the
right ρ for the inner loops as discussed in Remark 2, and our preliminary computational experience
showed that ALM-S was slower than the other algorithms, even when the heuristic ρ-setting scheme
discussed in Remark 2 was used, because a large number of steps were skipping steps, which meant

3. ACML can be found at http://developer.amd.com/libraries/acml/pages/default.aspx. Ideally, we should
have used the Intel Math Kernel Library (Intel MKL), which is optimized for Intel processors, but Intel MKL is not
freely available.
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Algorithm Outer rel. dual residual sl+1 Inner iteration
Rel. primal residual Rel. objective gradient residual

ADAL ‖CT (yl+1−yl)‖
‖CT yl‖ - -

FISTA-p ‖CT (  yK+1−zK)‖
‖CT zK‖

‖  yk+1−zk‖
‖zk‖

‖CT (  yk+1−zk)‖
‖CT zk‖

APLM-S ‖CT (  yK+1−yK+1)‖
‖CT yK+1‖

‖  yk+1−yk+1‖
‖yk+1‖

‖CT (  yk+1−yk+1‖)
‖CT yk+1‖

FISTA

∥

∥

∥

∥

∥

∥





 xK+1

 yK+1



−





zKx
zKy





∥

∥

∥

∥
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Table 1: Specification of the quantities used in the outer and inner stopping criteria.

that the computation involved in solving the linear systems in those steps was wasted. All of our
experiments were performed on a laptop PC with an Intel Core 2 Duo 2.0 GHz processor and 4 Gb
of memory.

5.1 Algorithm Parameters and Termination Criteria

Each algorithm (framework + subroutine)4 required several parameters to be set and termination
criteria to be specified. We used stopping criteria based on the primal and dual residuals suggested
by Boyd et al. (2010). We specify the criteria for each of the algorithms below, but defer their
derivation to Appendix C. The maximum number of outer iterations was set to 500, and the tolerance
for the outer loop was set at εout = 10−4. The number of inner-iterations was capped at 2000, and
the tolerance at the l-th outer iteration for the inner loops was εlin. Our termination criterion for the
outer iterations was

max{rl ,sl}≤ εout ,

where rl = ‖Cxl−yl‖
max{‖Cxl‖,‖yl‖} is the outer relative primal residual and sl is the relative dual residual,

which is given for each algorithm in Table 1. Recall that K+1 is the index of the last inner iteration
of the l-th outer iteration; for example, for APLM-S, (xl+1,yl+1) takes the value of the last inner
iterate (xK+1,  yK+1). We stopped the inner iterations when the maximum of the relative primal
residual and the relative objective gradient for the inner problem was less than εlin. (See Table 1 for
the expressions of these two quantities.) We see there that sl+1 can be obtained directly from the
relative gradient residual computed in the last inner iteration of the l-th outer iteration.

We set µ0 = 0.01 in all algorithms except that we set µ0 = 0.1 in ADAL for the data sets other
than the first synthetic set and the breast cancer data set. We set ρ= µ in FISTA-p and APLM-S and
ρ0 = µ in FISTA.

For Theorem 1 to hold, the solution returned by the function ApproxAugLagMin(x,y,v) has to
become increasingly more accurate over the outer iterations. However, it is not possible to evaluate
the sub-optimality quantity αl in (6) exactly because the optimal value of the augmented Lagrangian
L(x,y,vl) is not known in advance. In our experiments, we used the maximum of the relative primal

4. For conciseness, we use the subroutine names (e.g., FISTA-p) to represent the full algorithms that consist of the
OGLasso-AugLag framework and the subroutines.
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and dual residuals (max{rl,sl}) as a surrogate to αl for two reasons: First, it has been shown (Boyd
et al., 2010) that rl and sl are closely related to αl . Second, the quantities rl and sl are readily
available as bi-products of the inner and outer iterations. To ensure that the sequence {εlin} satisfies
(6), we basically set:

εl+1
in = βinεlin, (30)

with ε0
in = 0.01 and βin = 0.5. However, since we terminate the outer iterations at εout > 0, it is

not necessary to solve the subproblems to an accuracy much higher than the one for the outer loop.
On the other hand, it is also important for εlin to decrease to below εout , since sl is closely related
to the quantities involved in the inner stopping criteria. Hence, we slightly modified (30) and used
εl+1
in = max{βinεlin,0.2εout}.

Recently, we became aware of an alternative ‘relative error’ stopping criterion (Eckstein and
Silva, 2012) for the inner loops, which guarantees convergence of Algorithm 2. In our context, this
criterion essentially requires that the absolute dual residual is less than a fraction of the absolute
primal residual. For FISTA-p, for instance, this condition requires that the (l+1)-th iterate satisfies

2
∥

∥

∥

∥

(

w0
x− xl+1

wly− yl+1

)∥

∥

∥

∥

 sl+1 +
(  sl+1)2

µ2 ≤ σ(  rl+1)2,

where  r and  s are the numerators in the expressions for r and s respectively, σ = 0.99, w0
x is a

constant, and wy is an auxiliary variable updated in each outer iteration by wl+1
y =wly− 1

µ2CT (  yK+1−
zK). We experimented with this criterion but did not find any computational advantage over the
heuristic based on the relative primal and dual residuals.

5.2 Strategies for Updating µ

The penalty parameter µ in the outer augmented Lagrangian (5) not only controls the infeasibility in
the constraint Cx= y, but also serves as the step-length in the y-subproblem (and the x-subproblem
in the case of FISTA). We adopted two kinds of strategies for updating µ. The first one simply kept
µ fixed. In this case, choosing an appropriate µ0 was important for good performance. This was
especially true for ADAL in our computational experiments. Usually, a µ0 in the range of 10−1 to
10−3 worked well.

The second strategy is a dynamic scheme based on the values rl and sl (Boyd et al., 2010). Since
1
µ penalizes the primal infeasibility, a small µ tends to result in a small primal residual. On the other
hand, a large µ tends to yield a small dual residual. Hence, to keep rl and sl approximately balanced
in each outer iteration, our scheme updated µ as follows:

µl+1←







max{βµl ,µmin}, if rl > τsl
min{µl/β,µmax}, if sl > τrl
µl, otherwise,

where we set µmax = 10, µmin = 10−6, τ = 10 and β = 0.5, except for the first synthetic data set,
where we set β= 0.1 for ADAL, FISTA-p, and APLM-S.

5.3 Synthetic Examples

To compare our algorithms with the ProxGrad algorithm of Chen et al. (2010), we first tested a
synthetic data set (ogl) using the procedure reported by Chen et al. (2010) and Jacob et al. (2009).
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The sequence of decision variables x were arranged in groups of ten, with adjacent groups having
an overlap of three variables. The support of x was set to the first half of the variables. Each entry
in the design matrix A and the non-zero entries of x were sampled from i.i.d. standard Gaussian
distributions, and the output b was set to b= Ax+ ε, where the noise ε∼N (0, I). Two sets of data
were generated as follows: (a) Fix n= 5000 and vary the number of groups J from 100 to 1000 with
increments of 100. (b) Fix J = 200 and vary n from 1000 to 10000 with increments of 1000. The
stopping criterion for ProxGrad was the same as the one used for FISTA, and we set its smoothing
parameter to 10−3. Figure 1 plots the CPU times taken by the Matlab version of our algorithms
and ProxGrad (also in Matlab) on theses scalability tests on l1/l2-regularization. A subset of the
numerical results on which these plots are based is presented in Tables 4 and 5.

The plots clearly show that the alternating direction methods were much faster than ProxGrad
on these two data sets. Compared to ADAL, FISTA-p performed slightly better, while it showed
obvious computational advantage over its general version APLM-S. In the plot on the left of Figure
1, FISTA exhibited the advantage of a gradient-based algorithm when both n and m are large. In that
case (towards the right end of the plot), the Cholesky factorizations required by ADAL, APLM-S,
and FISTA-p became relatively expensive. When min{n,m} is small or the linear systems can be
solved cheaply, as the plot on the right shows, FISTA-p and ADAL have an edge over FISTA due to
the smaller numbers of inner iterations required.

We generated a second data set (dct) using the approach of Mairal et al. (2010) for scalability
tests on both the l1/l2 and l1/l∞ group penalties. The design matrix A was formed from over-
complete dictionaries of discrete cosine transforms (DCT). The set of groups were all the contiguous
sequences of length five in one-dimensional space. x had about 10% non-zero entries, selected
randomly. We generated the output as b= Ax+ ε, where ε∼N (0,0.01‖Ax‖2). We fixed n= 1000
and varied the number of features m from 5000 to 30000 with increments of 5000. This set of
data leads to considerably harder problems than the previous set because the groups are heavily
overlapping, and the DCT dictionary-based design matrix exhibits local correlations. Due to the
excessive running time required on Matlab, we ran the C++ version of our algorithms for this data
set, leaving out APLM-S and ProxGrad, whose performance compared to the other algorithms is
already fairly clear from Figure 1. For ProxFlow, we set the tolerance on the relative duality gap to
10−4, the same as εout , and kept all the other parameters at their default values.

Figure 2 presents the CPU times required by the algorithms versus the number of features. In
the case of l1/l2-regularization, it is clear that FISTA-p outperformed the other two algorithms.
For l1/l∞-regularization, ADAL and FISTA-p performed equally well and compared favorably to
ProxFlow. In both cases, the growth of the CPU times for FISTA follows the same trend as that
for FISTA-p, and they required a similar number of outer iterations, as shown in Tables 6 and 7.
However, FISTA lagged behind in speed due to larger numbers of inner iterations. Unlike in the
case of the ogl data set, Cholesky factorization was not a bottleneck for FISTA-p and ADAL here
because we needed to compute it only once.

To simulate the situation where computing or caching ATA and its Cholesky factorization is not
feasible, we switched ADAL and FISTA-p to PCG mode by always using PCG to solve the linear
systems in the subproblems. We compared the performance of ADAL, FISTA-p, and FISTA on
the previous data set for both l1/l2 and l1/l∞ models. The results for ProxFlow are copied from
from Figure 2 and Table 9 to serve as a reference. We experimented with the fixed-value and
the dynamic updating schemes for µ on all three algorithms. From Figure 3, it is clear that the
performance of FISTA-p was significantly improved by using the dynamic scheme. For ADAL,
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Figure 1: Scalability test results of the algorithms on the synthetic overlapping Group Lasso data
sets from Chen et al. (2010). The scale of the y-axis is logarithmic. The dynamic scheme
for µwas used for all algorithms except ProxGrad.

however, the dynamic scheme worked well only in the l1/l2 case, whereas the performance turned
worse in general in the l1/l∞ case. We did not include the results for FISTA with the dynamic
scheme because the solutions obtained were considerably more suboptimal than the ones obtained
with the fixed-µ scheme. Tables 8 and 9 report the best results of the algorithms in each case. The
plots and numerical results show that FISTA-p compares favorably to ADAL and stays competitive
to ProxFlow. In terms of the quality of the solutions, FISTA-p and ADAL also did a better job than
FISTA, as evidenced in Table 9. On the other hand, the gap in CPU time between FISTA and the
other three algorithms is less obvious.

5.4 Real-world Examples

To demonstrate the practical usefulness of our algorithms, we tested our algorithms on two real-
world applications.

5.4.1 BREAST CANCER GENE EXPRESSIONS

We used the breast cancer data set (Van De Vijver et al., 2002) with canonical pathways from
MSigDB (Subramanian et al., 2005). The data was collected from 295 breast cancer tumor samples
and contains gene expression measurements for 8,141 genes. The goal was to select a small set
of the most relevant genes that yield the best prediction performance. A detailed description of
the data set can be found in Chen et al. (2010) and Jacob et al. (2009). In our experiment, we
performed a regression task to predict the length of survival of the patients. The canonical pathways
naturally provide grouping information of the genes. Hence, we used them as the groups for the
group-structured regularization term Ω(·).

1451



QIN AND GOLDFARB

0.5 1 1.5 2 2.5 3
x 104

101

102

103
l1/l2

Number of features (m)

CP
U 

(s
ec

)

 

 
ADAL
FISTA−p
FISTA

0.5 1 1.5 2 2.5 3
x 104

101

102

103
l1/l

∞

Number of features (m)

CP
U 

(s
ec

)

 

 
ADAL
FISTA−p
FISTA
ProxFlow

Figure 2: Scalability test results on the DCT set with l1/l2-regularization (left column) and l1/l∞-
regularization (right column). The scale of the y-axis is logarithmic. All of FISTA-p,
FITSA, and ADAL were run with a fixed µ= µ0.
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Figure 3: Scalability test results on the DCT set with l1/l2-regularization (left column) and l1/l∞-
regularization (right column). The scale of the y-axis is logarithmic. FISTA-p and ADAL
are in PCG mode. The dotted lines denote the results obtained with the dynamic updating
scheme for µ.
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Data sets N (no. samples) J (no. groups) group size average frequency
BreastCancerData 295 637 23.7 (avg) 4

Table 2: The Breast Cancer Data Set

Figure 4: On the left: Plot of root-mean-squared-error against the number of active genes for the
Breast Cancer data. The plot is based on the regularization path for ten different values for
λ. The total CPU time (in Matlab) using FISTA-p was 51 seconds for l1/l2-regularization
and 115 seconds for l1/l∞-regularization. On the right: The recovered sparse gene coef-
ficients for predicting the length of the survival period. The value of λ used here was the
one minimizing the RMSE in the plot on the left.

Table 2 summarizes the data attributes. The numerical results for the l1/l2-norm are collected
in Table 10, which show that FISTA-p and ADAL were the fastest on this data set. Again, we had
to tune ADAL with different initial values (µ0) and updating schemes of µ for speed and quality of
the solution, and we eventually kept µ constant at 0.01. The dynamic updating scheme for µ also
did not work for FISTA, which returned a very suboptimal solution in this case. We instead adopted
a simple scheme of decreasing µ by half every 10 outer iterations. Figure 6 graphically depicts
the performance of the different algorithms. In terms of the outer iterations, APLM-S behaved
identically to FISTA-p, and FISTA also behaved similarly to ADAL. However, APLM-S and FISTA
were considerably slower due to larger numbers of inner iterations.

We plot the root-mean-squared-error (RMSE) over different values of λ (which lead to different
numbers of active genes) in the left half of Figure 4. The training set consists of 200 randomly
selected samples, and the RMSE was computed on the remaining 95 samples. l1/l2-regularization
achieved lower RMSE in this case. However, l1/l∞-regularization yielded better group sparsity as
shown in Figure 5. The sets of active genes selected by the two models were very similar as illus-
trated in the right half of Figure 4. In general, the magnitudes of the coefficients returned by l1/l∞-
regularization tended to be similar within a group, whereas those returned by l1/l2-regularization
did not follow that pattern. This is because l1/l∞-regularization penalizes only the maximum el-
ement, rather than all the coefficients in a group, resulting in many coefficients having the same
magnitudes.
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Figure 5: Pathway-level sparsity v.s. Gene-level sparsity.
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Figure 6: Objective values v.s. Outer iters and Objective values v.s. CPU time plots for the Breast
Cancer data. The results for ProxGrad are not plotted due to the different objective func-
tion that it minimizes. The red (APLM-S) and blue (FISTA-p) lines overlap in the left
column.

5.4.2 VIDEO SEQUENCE BACKGROUND SUBTRACTION

We next considered the video sequence background subtraction task from Mairal et al. (2010) and
Huang et al. (2009). The main objective here is to segment out foreground objects in an image
(frame), given a sequence of m frames from a fixed camera. The data used in this experiment
is available online 5 (Toyama et al., 1999). The basic setup of the problem is as follows. We
represent each frame of n pixels as a column vector Aj ∈ Rn and form the matrix A ∈ Rn×m as
A ≡

(

A1 A2 · · · Am
)

. The test frame is represented by b ∈ Rn. We model the relationship
between b and A by b≈ Ax+ e, where x is assumed to be sparse, and e is the ’noise’ term which is
also assumed to be sparse. Ax is thus a sparse linear combination of the video frame sequence and

5. Data can be found at http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/
testimages.htm.
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accounts for the background present in both A and b. e contains the sparse foreground objects in b.
The basic model with l1-regularization (Lasso) is

min
x,e

1
2
‖Ax+ e−b‖2 +λ(‖x‖1 +‖e‖1). (31)

It has been shown in Mairal et al. (2010) that we can significantly improve the quality of seg-
mentation by applying a group-structured regularization Ω(·) on e, where the groups are all the
overlapping k× k-square patches in the image. Here, we set k = 3. The model thus becomes

min
x,e

1
2
‖Ax+ e−b‖2 +λ(‖x‖1 +‖e‖1 +Ω(e)). (32)

Note that (32) still fits into the group-sparse framework if we treat the l1-regularization terms as the
sum of the group norms, where the each groups consists of only one element.

We also considered an alternative model, where a Ridge regularization is applied to x and an
Elastic-Net penalty (Zou and Hastie, 2005) to e. This model

min
x,e

1
2
‖Ax+ e−b‖2 +λ1‖e‖1 +λ2(‖x‖2 +‖e‖2) (33)

does not yield a sparse x, but sparsity in x is not a crucial factor here. It is, however, well suited for
our partial linearization methods (APLM-S and FISTA-p), since there is no need for the augmented
Lagrangian framework. Of course, we can also apply FISTA to solve (33).

We recovered the foreground objects by solving the above optimization problems and applying
the sparsity pattern of e as a mask for the original test frame. A hand-segmented evaluation image
from Toyama et al. (1999) served as the ground truth. The regularization parameters λ,λ1, and λ2
were selected in such a way that the recovered foreground objects matched the ground truth to the
maximum extent.

FISTA-p was used to solve all three models. The l1 model (31) was treated as a special case of
the group regularization model (32), with each group containing only one component of the feature
vector.6 For the Ridge/Elastic-Net penalty model, we applied FISTA-p directly without the outer
augmented Lagrangian layer.

The solutions for the l1/l2, l1/l∞, and Lasso models were not strictly sparse in the sense that
those supposedly zero feature coefficients had non-zero (albeit extremely small) magnitudes, since
we enforced the linear constraints Cx = y through an augmented Lagrangian approach. To obtain
sparse solutions, we truncated the non-sparse solutions using thresholds ranging from 10−9 to 10−3

and selected the threshold that yielded the best accuracy.
Note that because of the additional feature vector e, the data matrix is effectively Ã=

(

A In
)

∈
Rn×(m+n). For solving (32), FISTA-p has to solve the linear system

(

ATA+ 1
µDx AT

A In+ 1
µDe

)

(

x
e

)

=

(

rx
re

)

,

where D is a diagonal matrix, and Dx,De,rx,re are the components of D and r corresponding to x
and e respectively. In this example, n is much larger than m, for example, n = 57600,m= 200. To

6. We did not use the original version of FISTA to solve the model as an l1-regularization problem because it took too
long to converge in our experiments due to extremely small step sizes.
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Figure 7: Separation results for the video sequence background substraction example. Each training
image had 120× 160 RGB pixels. The training set contained 200 images in sequence.
The accuracy indicated for each of the different models is the percentage of pixels that
matched the ground truth.

avoid solving a system of size n×n, we took the Schur complement of In+ 1
µDe and solved instead

the positive definite m×m system
(

ATA+
1
µ
Dx−AT (I+

1
µ
De)

−1A
)

x = rx−AT (I+
1
µ
De)

−1re,

e = diag(1+ 1
µ
De)

−1(re−Ax).

The l1/l∞ model yielded the best background separation accuracy (marginally better than the
l1/l2 model), but it also was the most computationally expensive. (See Table 3 and Figure 7.)
Although the Ridge/Elastic-Net model yielded as poor separation results as the Lasso (l1) model, it
was orders of magnitude faster to solve using FISTA-p. We again observed that the dynamic scheme
for µworked better for FISTA-p than for ADAL. For a constant µ over the entire run, ADAL took at
least twice as long as FISTA-p to produce a solution of the same quality. A typical run of FISTA-p
on this problem with the best selected λ took less than 10 outer iterations. On the other hand, ADAL
took more than 500 iterations to meet the stopping criteria.

5.5 Comments on Results

The computational results exhibit two general patterns. First, the simpler algorithms (FISTA-p and
ADAL) were significantly faster than the more general algorithms, such as APLM-S. Interestingly,
the majority of the APLM-S inner iterations consisted of a skipping step for the tests on synthetic
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Model Accuracy (percent) Total CPU time (s) No. parameter values on reg path
l1/l2 97.17 2.48e+003 8
l1/l∞ 98.18 4.07e+003 6
l1 87.63 1.61e+003 11

ridge + elastic net 87.89 1.82e+002 64

Table 3: Computational results for the video sequence background subtraction example. The algo-
rithm used is FISTA-p. We used the Matlab version for the ease of generating the images.
The C++ version runs at least four times faster from our experience in the previous exper-
iments. We report the best accuracy found on the regularization path of each model. The
total CPU time is recorded for computing the entire regularization path, with the specified
number of different regularization parameter values.

data and the breast cancer data, which means that APLM-S essentially behaved like ISTA-p in
these cases. Indeed, FISTA-p generally required the same number of outer-iterations as APLM-
S but much fewer inner-iterations, as predicted by theory. In addition, no computational steps
were wasted and no function evaluations were required for FISTA-p and ADAL. Second, FISTA-
p converged faster (required less iterations) than its full-linearization counterpart FISTA. We have
suggested possible reasons for this in Section 3. On the other hand, FISTA was very effective
for data both of whose dimensions were large because it required only gradient computations and
soft-thresholding operations, and did not require linear systems to be solved.

Our experiments showed that the performance of ADAL (as well as the quality of the solution
that it returned) varied a lot as a function of the parameter settings, and it was tricky to tune them
optimally. In contrast, FISTA-p exhibited fairly stable performance for a simple set of parameters
that we rarely had to alter and in general performed better than ADAL.

It may seem straight-forward to apply FISTA directly to the Lasso problem (31) without the
augmented Lagrangian framework.7 However, as we have seen in our experiments, FISTA took
much longer than AugLag-FISTA-p to solve this problem. We believe that this is further evidence
of the ‘load-balancing’ property of the latter algorithm that we discussed in Section 3.2. It also
demonstrates the versatility of our approach to regularized learning problems.

6. Conclusion

We have built a unified framework for solving sparse learning problems involving group-structured
regularization, in particular, the l1/l2- or l1/l∞-regularization of arbitrarily overlapping groups of
variables. For the key building-block of this framework, we developed new efficient algorithms
based on alternating partial-linearization/splitting, with proven convergence rates. In addition, we
have also incorporated ADAL and FISTA into our framework. Computational tests on several sets of
synthetic test data demonstrated the relative strength of the algorithms, and through two real-world
applications we compared the relative merits of these structured sparsity-inducing norms. Among
the algorithms studied, FISTA-p and ADAL performed the best on most of the data sets, and FISTA

7. To avoid confusion with our algorithms that consist of inner-outer iterations, we prefix our algorithms with ‘AugLag’
here.
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appeared to be a good alternative choice for large-scale data. From our experience, FISTA-p is
easier to configure and is more robust to variations in the algorithm parameters. Together, they form
a flexible and versatile suite of methods for group-sparse problems of different sizes.

Acknowledgments

We would like to thank Katya Scheinberg and Shiqian Ma for many helpful discussions, and Xi
Chen for providing the Matlab code for ProxGrad. We also thank the three anonymous reviewers
for their valuable suggestions and comments. This research was supported in part by NSF Grant
DMS 10-16571, ONR Grant N00014-08-1-1118 and DOE Grant DE-FG02-08ER25856.

Appendix A. Proof of Lemma 1

F(  x,  y)−F(x,  q) ≥ F(  x,  y)−Lρ(x,y,  q,∇y f (x,y))

= F(  x,  y)−
(

f (x,y)+∇y f (x,y)T (  q− y)+
1

2ρ
‖  q− y‖2 +g(  q)

)

. (34)

From the optimality of  q, we also have

γg(  q)+∇y f (x,y)+
1
ρ
(  q− y) = 0. (35)

Since F(x,y) = f (x,y)+g(y), and f and g are convex functions, for any (  x,  y),

F(  x,  y)≥ g(  q)+(  y−  q)T γg(  q)+ f (x,y)+(  y− y)T∇y f (x,y)+(  x− x)T∇x f (x,y). (36)

Therefore, from (34), (35), and (36), it follows that

F(  x,  y)−F(x,  q) ≥ g(  q)+(  y−  q)T γg(  q)+ f (x,y)+(  y− y)T∇y f (x,y)
+(  x− x)T∇x f (x,y)

−
(

f (x,y)+∇y f (x,y)T (  q− y)+
1

2ρ
‖  q− y‖2 +g(  q)

)

= (  y−  q)T (γg(  q)+∇y f (x,y))−
1

2ρ
‖  q− y‖2 +(  x− x)T∇x f (x,y)

= (  y−  q)T
(

−
1
ρ
(  q− y)

)

−
1

2ρ
‖  q− y‖2 +(  x− x)T∇x f (x,y)

=
1

2ρ
(‖  q−  y‖2−‖y−  y‖2)+(  x− x)T∇x f (x,y).

The proof for the second part of the lemma is very similar, but we give it for completeness.

F(x,y)−F(p,q)≥ F(x,y)−
(

f (p,q)+g(  y)+ γg(  y)T (q−  y)+
1

2ρ
‖q−  y‖2

)

(37)

By the optimality of (p,q), we have

∇x f (p,q) = 0, (38)

∇y f (p,q)+ γg(  y)+
1
ρ
(q−  y) = 0. (39)
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Since F(x,y) = f (x,y)+g(y), it follows from the convexity of both f and g and (38) that

F(x,y)≥ g(  y)+(y−  y)T γg(  y)+ f (p,q)+(y−q)T∇y f (p,q). (40)

Now combining (37), (39), and (40), it follows that

F(x,y)−F(p,q) ≥ (y−q)T (γg(  y)+∇y f (p,q))−
1

2ρ
‖q−  y‖2

= (y−q)T
(

1
ρ
(  y−q)

)

−
1

2ρ
‖q−  y‖2

=
1

2ρ
(‖q− y‖2−‖y−  y‖2).

Appendix B. Proof of Theorem 2

Let I be the set of all regular iteration indices among the first k− 1 iterations, and let Ic be its
complement. For all n ∈ Ic,yn+1 =  yn.

For n ∈ I, we can apply Lemma 1 since (18) automatically holds, and (16) holds when ρ≤ 1
L( f ) .

In (19), by letting (x,y) = (x∗,y∗), and  y=  yn, we get (p,q) = (xn+1,yn+1), and

2ρ(F(x∗,y∗)−F(xn+1,yn+1))≥ ‖yn+1− y∗‖2−‖  yn− y∗‖2. (41)

In (17), by letting (  x,  y) = (x∗,y∗),(x,y) = (xn+1,yn+1), we get  q=  yn+1 and

2ρ(F(x∗,y∗)−F(xn+1,  yn+1)) ≥ ‖  yn+1− y∗‖2−‖yn+1− y∗‖2

+(x∗ − xn+1)T∇x f (xn+1,yn+1)

= ‖  yn+1− y∗‖2−‖yn+1− y∗‖2., (42)

since ∇x f (xn+1,yn+1) = 0, for n ∈ I by (38) and for n ∈ Ic by (15). Adding (42) to (41), we get

2ρ(2F(x∗,y∗)−F(xn+1,yn+1)−F(xn+1,  yn+1))≥ ‖  yn+1− y∗‖2−‖  yn− y∗‖2. (43)

For n ∈ Ic, since ∇x f (xn+1,yn+1) = 0, we have that (42) holds. Since yn+1 =  yn, it follows that

2ρ(F(x∗,y∗)−F(xn+1,  yn+1))≥ ‖  yn+1− y∗‖2−‖  yn− y∗‖2. (44)

Summing (43) and (44) over n= 0,1, . . . ,k−1 and observing that 2|I|+ |Ic|= k+ kn, we obtain

2ρ

(

(k+ kn)F(x∗,y∗)−
k−1

∑
n=1

F(xn+1,  yn+1)−∑
n∈I

F(xn+1,yn+1)

)

(45)

≥
k−1

∑
n=0

(‖  yn+1− y∗‖2−‖  yn− y∗‖2)

= ‖  yk− y∗‖2−‖  y0− y∗‖2

≥ −‖  y0− y∗‖2.

In Lemma 1, by letting (  x,  y) = (xn+1,yn+1) in (17) instead of (x∗,y∗), we have from (42) that

2ρ(F(xn+1,yn+1)−F(xn+1,  yn+1))≥ ‖  yn+1− yn+1‖2 ≥ 0. (46)
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Similarly, for n ∈ I, if we let (x,y) = (xn,  yn) instead of (x∗,y∗) in (41), we have

2ρ(F(xn,  yn)−F(xn+1,yn+1))≥ ‖yn+1−  yn‖2 ≥ 0. (47)

For n ∈ Ic, yn+1 =  yn; from (15), since xn+1 = argminx F(x,y) with y=  yn = yn+1,

2ρ(F(xn,  yn)−F(xn+1,yn+1))≥ 0. (48)

Hence, from (46) and (47) to (48), F(xn,yn)≥ F(xn,  yn)≥ F(xn+1,yn+1)≥ F(xn+1,  yn+1). Then, we
have

k−1

∑
n=0

F(xn+1,  yn+1)≥ kF(xk,  yk),and ∑
n∈I

F(xn+1,yn+1)≥ knF(xk,yk). (49)

Combining (45) and (49) yields 2ρ(k+ kn)(F(x∗,y∗)−F(xk,  yk))≥−‖  y0− y∗‖2.

Appendix C. Derivation of the Stopping Criteria

In this section, we show that the quantities that we use in our stopping criteria correspond to the
primal and dual residuals (Boyd et al., 2010) for the outer iterations and the gradient residuals for
the inner iterations. We first consider the inner iterations.

FISTA-p The necessary and sufficient optimality conditions for problem (10) or (13) are primal
feasibility

 y∗ − y∗ = 0, (50)

and vanishing of the gradient of the objective function at (x∗,  y∗), that is,

0 = ∇x f (x∗,  y∗), (51)
0 ∈ ∇y f (x∗,  y∗)+∂g(  y∗). (52)

Since yk+1 = zk, the primal residual is thus  yk+1 − yk+1 =  yk+1 − zk. It follows from the
optimality of xk+1 in Line 3 of Algorithm 6 that

AT (Axk+1−b)−CTvl+
1
µ
CT (Cxk+1−  yk+1)+

1
µ
CT (  yk+1− zk) = 0

⇒ ∇x f (xk+1,  yk+1) =
1
µ
CT (zk−  yk+1).

Similarly, from the optimality of  yk+1 in Line 4, we have that

0 ∈ ∂g(  yk+1)+∇y f (xk+1,zk)+
1
ρ
(  yk+1− zk)

= ∂g(  yk+1)+∇y f (xk+1,  yk+1)−
1
µ
(  yk+1− zk)+

1
ρ
(  yk+1− zk)

= ∂g(  yk+1)+∇y f (xk+1,  yk+1),

where the last step follows from µ= ρ. Hence, we see that 1
µC

T (zk−  yk+1) is the gradient
residual corresponding to (51), while (52) is satisfied in every inner iteration.

1460



STRUCTURED SPARSITY VIA ALTERNATING DIRECTION METHODS

APLM-S The primal residual is  yk+1− yk+1 from (50). Following the derivation for FISTA-p, it is
not hard to verify that (52) is always satisfied, and the gradient residual corresponding to (51)
is 1

µC
T (yk+1−  yk+1).

FISTA Similar to FISTA-p, the necessary and sufficient optimality conditions for problem (22) are
primal feasibility

(x∗,y∗) = (  x∗,  y∗),

and vanishing of the objective gradient at (  x∗,  y∗),

0 = ∇x f (  x∗,  y∗),
0 ∈ ∇y f (  x∗,  y∗)+∂g(  y∗).

Clearly, the primal residual is (  xk+1− zkx,  yk+1− zky) since (xk+1,yk+1) ≡ (zkx,zky). From the
optimality of (  xk+1,  yk+1), it follows that

0 = ∇x f (zkx,zky)+
1
ρ
(  xk+1− zkx),

0 ∈ ∂g(  yk+1)+∇y f (zkx,zky)+
1
ρ
(  yk+1− zky).

Here, we simply use 1
ρ(  xk+1− zkx) and 1

ρ(  yk+1− zky) to approximate the gradient residuals.

Next, we consider the outer iterations. The necessary and sufficient optimality conditions for
problem (4) are primal feasibility

Cx∗ − y∗ = 0,

and dual feasibility

0 = ∇L(x∗)−CTv∗,
0 ∈ ∂Ω̃(y∗)+ v∗.

Clearly, the primal residual is rl =Cxl− yl . The dual residual is
(

∇L(xl+1)−CT (vl− 1
µ(Cx

l+1−  yl+1))

∂Ω̃(yl+1)+ vl− 1
µ(Cx

l+1−  yl+1)

)

, recalling that vl+1 = vl − 1
µ(Cx

l+1−  yl+1). The above

is simply the gradient of the augmented Lagrangian (5) evaluated at (xl,yl,vl). Now, since the
objective function of an inner iteration is the augmented Lagrangian with v = vl , the dual residual
for an outer iteration is readily available from the gradient residual computed for the last inner
iteration of the outer iteration.

Appendix D. Numerical Results

See Tables 4 to 10.
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Data Sets Algs CPU (s) Iters Avg Sub-iters F(x)

ogl-5000-100-10-3

ADAL 1.70e+000 61 1.00e+000 1.9482e+005
APLM-S 1.71e+000 8 4.88e+000 1.9482e+005
FISTA-p 9.08e-001 8 4.38e+000 1.9482e+005
FISTA 2.74e+000 10 7.30e+000 1.9482e+005

ProxGrad 7.92e+001 3858 - -

ogl-5000-600-10-3

ADAL 6.75e+001 105 1.00e+000 1.4603e+006
APLM-S 1.79e+002 9 1.74e+001 1.4603e+006
FISTA-p 4.77e+001 9 8.56e+000 1.4603e+006
FISTA 3.28e+001 12 1.36e+001 1.4603e+006

ProxGrad 7.96e+002 5608 - -

ogl-5000-1000-10-3

ADAL 2.83e+002 151 1.00e+000 2.6746e+006
APLM-S 8.06e+002 10 2.76e+001 2.6746e+006
FISTA-p 2.49e+002 10 1.28e+001 2.6746e+006
FISTA 5.21e+001 13 1.55e+001 2.6746e+006

ProxGrad 1.64e+003 6471 - -

Table 4: Numerical results for ogl set 1. For ProxGrad, Avg Sub-Iters and F(x) fields are not
applicable since the algorithm is not based on an outer-inner iteration scheme, and the
objective function that it minimizes is different from ours. We tested ten problems with
J = 100, · · · ,1000, but only show the results for three of them to save space.

Data Sets Algs CPU (s) Iters Avg Sub-iters F(x)

ogl-1000-200-10-3

ADAL 4.18e+000 77 1.00e+000 9.6155e+004
APLM-S 1.64e+001 9 2.32e+001 9.6156e+004
FISTA-p 3.85e+000 9 1.02e+001 9.6156e+004
FISTA 2.92e+000 11 1.44e+001 9.6158e+004

ProxGrad 1.16e+002 4137 - -

ogl-5000-200-10-3

ADAL 5.04e+000 63 1.00e+000 4.1573e+005
APLM-S 8.42e+000 8 8.38e+000 4.1576e+005
FISTA-p 3.96e+000 9 6.56e+000 4.1572e+005
FISTA 6.54e+000 10 9.70e+000 4.1573e+005

ProxGrad 1.68e+002 4345 - -

ogl-10000-200-10-3

ADAL 6.41e+000 44 1.00e+000 1.0026e+006
APLM-S 1.46e+001 10 7.60e+000 1.0026e+006
FISTA-p 5.60e+000 10 5.50e+000 1.0026e+006
FISTA 1.09e+001 10 8.50e+000 1.0027e+006

ProxGrad 3.31e+002 6186 - -

Table 5: Numerical results for ogl set 2. We ran the test for ten problems with n= 1000, · · · ,10000,
but only show the results for three of them to save space.
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Data Sets Algs CPU (s) Iters Avg Sub-iters F(x)

ogl-dct-1000-5000-1
ADAL 1.14e+001 194 1.00e+000 8.4892e+002

FISTA-p 1.21e+001 20 1.11e+001 8.4892e+002
FISTA 2.49e+001 24 2.51e+001 8.4893e+002

ogl-dct-1000-10000-1
ADAL 3.31e+001 398 1.00e+000 1.4887e+003

FISTA-p 2.54e+001 41 5.61e+000 1.4887e+003
FISTA 6.33e+001 44 1.74e+001 1.4887e+003

ogl-dct-1000-15000-1
ADAL 6.09e+001 515 1.00e+000 2.7506e+003

FISTA-p 3.95e+001 52 4.44e+000 2.7506e+003
FISTA 9.73e+001 54 1.32e+001 2.7506e+003

ogl-dct-1000-20000-1
ADAL 9.52e+001 626 1.00e+000 3.3415e+003

FISTA-p 6.66e+001 63 6.10e+000 3.3415e+003
FISTA 1.81e+002 64 1.61e+001 3.3415e+003

ogl-dct-1000-25000-1
ADAL 1.54e+002 882 1.00e+000 4.1987e+003

FISTA-p 7.50e+001 88 3.20e+000 4.1987e+003
FISTA 1.76e+002 89 8.64e+000 4.1987e+003

ogl-dct-1000-30000-1
ADAL 1.87e+002 957 1.00e+000 4.6111e+003

FISTA-p 8.79e+001 96 2.86e+000 4.6111e+003
FISTA 2.24e+002 94 8.54e+000 4.6111e+003

Table 6: Numerical results for dct set 2 (scalability test) with l1/l2-regularization. All three algo-
rithms were ran in factorization mode with a fixed µ= µ0.
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Data Sets Algs CPU (s) Iters Avg Sub-iters F(x)

ogl-dct-1000-5000-1

ADAL 1.53e+001 266 1.00e+000 7.3218e+002
FISTA-p 1.61e+001 10 3.05e+001 7.3219e+002
FISTA 3.02e+001 16 4.09e+001 7.3233e+002

ProxFlow 1.97e+001 - - 7.3236e+002

ogl-dct-1000-10000-1

ADAL 3.30e+001 330 1.00e+000 1.2707e+003
FISTA-p 3.16e+001 10 3.10e+001 1.2708e+003
FISTA 7.27e+001 24 3.25e+001 1.2708e+003

ProxFlow 3.67e+001 - - 1.2709e+003

ogl-dct-1000-15000-1

ADAL 4.83e+001 328 1.00e+000 2.2444e+003
FISTA-p 5.40e+001 15 2.52e+001 2.2444e+003
FISTA 8.64e+001 23 2.66e+001 2.2449e+003

ProxFlow 9.91e+001 - - 2.2467e+003

ogl-dct-1000-20000-1

ADAL 8.09e+001 463 1.00e+000 2.6340e+003
FISTA-p 8.09e+001 16 2.88e+001 2.6340e+003
FISTA 1.48e+002 26 2.93e+001 2.6342e+003

ProxFlow 2.55e+002 - - 2.6357e+003

ogl-dct-1000-25000-1

ADAL 7.48e+001 309 1.00e+000 3.5566e+003
FISTA-p 1.15e+002 30 1.83e+001 3.5566e+003
FISTA 2.09e+002 38 2.30e+001 3.5568e+003

ProxFlow 1.38e+002 - - 3.5571e+003

ogl-dct-1000-30000-1

ADAL 9.99e+001 359 1.00e+000 3.7057e+003
FISTA-p 1.55e+002 29 2.17e+001 3.7057e+003
FISTA 2.60e+002 39 2.25e+001 3.7060e+003

ProxFlow 1.07e+002 - - 3.7063e+003

Table 7: Numerical results for dct set 2 (scalability test) with l1/l∞-regularization. The algorithm
configurations are exactly the same as in Table 6.
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Data Sets Algs CPU (s) Iters Avg Sub-iters F(x)

ogl-dct-1000-5000-1
FISTA-p 1.83e+001 12 2.34e+001 8.4892e+002
FISTA 2.49e+001 24 2.51e+001 8.4893e+002
ADAL 1.35e+001 181 1.00e+000 8.4892e+002

ogl-dct-1000-10000-1
FISTA-p 3.16e+001 14 1.73e+001 1.4887e+003
FISTA 6.33e+001 44 1.74e+001 1.4887e+003
ADAL 4.43e+001 270 1.00e+000 1.4887e+003

ogl-dct-1000-15000-1
FISTA-p 4.29e+001 14 1.51e+001 2.7506e+003
FISTA 9.73e+001 54 1.32e+001 2.7506e+003
ADAL 5.37e+001 216 1.00e+000 2.7506e+003

ogl-dct-1000-20000-1
FISTA-p 7.53e+001 13 2.06e+001 3.3416e+003
FISTA 1.81e+002 64 1.61e+001 3.3415e+003
ADAL 1.57e+002 390 1.00e+000 3.3415e+003

ogl-dct-1000-25000-1
FISTA-p 7.41e+001 15 1.47e+001 4.1987e+003
FISTA 1.76e+002 89 8.64e+000 4.1987e+003
ADAL 8.79e+001 231 1.00e+000 4.1987e+003

ogl-dct-1000-30000-1
FISTA-p 8.95e+001 14 1.58e+001 4.6111e+003
FISTA 2.24e+002 94 8.54e+000 4.6111e+003
ADAL 1.12e+002 249 1.00e+000 4.6111e+003

Table 8: Numerical results for the DCT set with l1/l2-regularization. FISTA-p and ADAL were ran
in PCG mode with the dynamic scheme for updating µ. µwas fixed at µ0 for FISTA.
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Data Sets Algs CPU (s) Iters Avg Sub-iters F(x)

ogl-dct-1000-5000-1 FISTA-p 2.30e+001 11 2.93e+001 7.3219e+002
ADAL 1.89e+001 265 1.00e+000 7.3218e+002
FISTA 3.02e+001 16 4.09e+001 7.3233e+002

ProxFlow 1.97e+001 - - 7.3236e+002

ogl-dct-1000-10000-1 FISTA-p 5.09e+001 11 3.16e+001 1.2708e+003
ADAL 4.77e+001 323 1.00e+000 1.2708e+003
FISTA 7.27e+001 24 3.25e+001 1.2708e+003

ProxFlow 3.67e+001 - - 1.2709e+003

ogl-dct-1000-15000-1 FISTA-p 6.33e+001 12 2.48e+001 2.2445e+003
ADAL 9.41e+001 333 1.00e+000 2.2444e+003
FISTA 8.64e+001 23 2.66e+001 2.2449e+003

ProxFlow 9.91e+001 - - 2.2467e+003

ogl-dct-1000-20000-1 FISTA-p 8.21e+001 12 2.42e+001 2.6341e+003
ADAL 1.59e+002 415 1.00e+000 2.6340e+003
FISTA 1.48e+002 26 2.93e+001 2.6342e+003

ProxFlow 2.55e+002 - - 2.6357e+003

ogl-dct-1000-25000-1 FISTA-p 1.43e+002 13 2.98e+001 3.5567e+003
ADAL 1.20e+002 310 1.00e+000 3.5566e+003
FISTA 2.09e+002 38 2.30e+001 3.5568e+003

ProxFlow 1.38e+002 - - 3.5571e+003

ogl-dct-1000-30000-1 FISTA-p 1.75e+002 13 3.18e+001 3.7057e+003
ADAL 2.01e+002 361 1.00e+000 3.7057e+003
FISTA 2.60e+002 39 2.25e+001 3.7060e+003

ProxFlow 1.07e+002 - - 3.7063e+003

Table 9: Numerical results for the DCT set with l1/l∞-regularization. FISTA-p and ADAL were ran
in PCG mode. The dynamic updating scheme for µwas applied to FISTA-p, while µwas
fixed at µ0 for ADAL and FISTA.

Data Sets Algs CPU (s) Iters Avg Sub-iters F(x)

BreastCancerData

ADAL 6.24e+000 136 1.00e+000 2.9331e+003
APLM-S 4.02e+001 12 4.55e+001 2.9331e+003
FISTA-p 6.86e+000 12 1.48e+001 2.9331e+003
FISTA 5.11e+001 75 1.29e+001 2.9340e+003

ProxGrad 7.76e+002 6605 1.00e+000 -

Table 10: Numerical results for Breast Cancer Data using l1/l2-regularization. In this experiment,
we kept µ constant at 0.01 for ADAL. The CPU time is for a single run on the entire data
set with the value of λ selected to minimize the RMSE in Figure 4.
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Abstract
We study the theoretical advantages of active learning over passive learning. Specifically, we prove
that, in noise-free classifier learning for VC classes, any passive learning algorithm can be trans-
formed into an active learning algorithm with asymptotically strictly superior label complexity for
all nontrivial target functions and distributions. We further provide a general characterization of
the magnitudes of these improvements in terms of a novel generalization of the disagreement co-
efficient. We also extend these results to active learning in the presence of label noise, and find
that even under broad classes of noise distributions, we can typically guarantee strict improvements
over the known results for passive learning.
Keywords: active learning, selective sampling, sequential design, statistical learning theory, PAC
learning, sample complexity

1. Introduction and Background

The recent rapid growth in data sources has spawned an equally rapid expansion in the number of
potential applications of machine learning methodologies to extract useful concepts from these data.
However, in many cases, the bottleneck in the application process is the need to obtain accurate an-
notation of the raw data according to the target concept to be learned. For instance, in webpage
classification, it is straightforward to rapidly collect a large number of webpages, but training an
accurate classifier typically requires a human expert to examine and label a number of these web-
pages, which may require significant time and effort. For this reason, it is natural to look for ways
to reduce the total number of labeled examples required to train an accurate classifier. In the tradi-
tional machine learning protocol, here referred to as passive learning, the examples labeled by the
expert are sampled independently at random, and the emphasis is on designing learning algorithms
that make the most effective use of the number of these labeled examples available. However, it
is possible to go beyond such methods by altering the protocol itself, allowing the learning algo-
rithm to sequentially select the examples to be labeled, based on its observations of the labels of
previously-selected examples; this interactive protocol is referred to as active learning. The objec-
tive in designing this selection mechanism is to focus the expert’s efforts toward labeling only the
most informative data for the learning process, thus eliminating some degree of redundancy in the
information content of the labeled examples.

∗. Some of these (and related) results previously appeared in the author’s doctoral dissertation (Hanneke, 2009b).

c©2012 Steve Hanneke.
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It is now well-established that active learning can sometimes provide significant practical and
theoretical advantages over passive learning, in terms of the number of labels required to obtain a
given accuracy. However, our current understanding of active learning in general is still quite limited
in several respects. First, since we are lacking a complete understanding of the potential capabil-
ities of active learning, we are not yet sure to what standards we should aspire for active learning
algorithms to meet, and in particular this challenges our ability to characterize how a “good” active
learning algorithm should behave. Second, since we have yet to identify a complete set of general
principles for the design of effective active learning algorithms, in many cases the most effective
known active learning algorithms have problem-specific designs (e.g., designed specifically for lin-
ear separators, or decision trees, etc., under specific assumptions on the data distribution), and it
is not clear what components of their design can be abstracted and transferred to the design of
active learning algorithms for different learning problems (e.g., with different types of classifiers,
or different data distributions). Finally, we have yet to fully understand the scope of the relative
benefits of active learning over passive learning, and in particular the conditions under which such
improvements are achievable, as well as a general characterization of the potential magnitudes of
these improvements. In the present work, we take steps toward closing this gap in our understanding
of the capabilities, general principles, and advantages of active learning.

Additionally, this work has a second theme, motivated by practical concerns. To date, the ma-
chine learning community has invested decades of research into constructing solid, reliable, and
well-behaved passive learning algorithms, and into understanding their theoretical properties. We
might hope that an equivalent amount of effort is not required in order to discover and understand
effective active learning algorithms. In particular, rather than starting from scratch in the design
and analysis of active learning algorithms, it seems desirable to leverage this vast knowledge of
passive learning, to whatever extent possible. For instance, it may be possible to design active
learning algorithms that inherit certain desirable behaviors or properties of a given passive learning
algorithm. In this way, we can use a given passive learning algorithm as a reference point, and
the objective is to design an active learning algorithm with performance guarantees strictly superior
to those of the passive algorithm. Thus, if the passive learning algorithm has proven effective in
a variety of common learning problems, then the active learning algorithm should be even better
for those same learning problems. This approach also has the advantage of immediately supplying
us with a collection of theoretical guarantees on the performance of the active learning algorithm:
namely, improved forms of all known guarantees on the performance of the given passive learning
algorithm.

Due to its obvious practical advantages, this general line of informal thinking dominates the
existing literature on empirically-tested heuristic approaches to active learning, as most of the pub-
lished heuristic active learning algorithms make use of a passive learning algorithm as a subroutine
(e.g., SVM, logistic regression, k-NN, etc.), constructing sets of labeled examples and feeding them
into the passive learning algorithm at various times during the execution of the active learning algo-
rithm (see the references in Section 7). Below, we take a more rigorous look at this general strategy.
We develop a reduction-style framework for studying this approach to the design of active learning
algorithms relative to a given passive learning algorithm. We then proceed to develop and analyze a
variety of such methods, to realize this approach in a very general sense.

Specifically, we explore the following fundamental questions.
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• Is there a general procedure that, given any passive learning algorithm, transforms it into an
active learning algorithm requiring significantly fewer labels to achieve a given accuracy?

• If so, how large is the reduction in the number of labels required by the resulting active learn-
ing algorithm, compared to the number of labels required by the original passive algorithm?

• What are sufficient conditions for an exponential reduction in the number of labels required?

• To what extent can these methods be made robust to imperfect or noisy labels?

In the process of exploring these questions, we find that for many interesting learning problems, the
techniques in the existing literature are not capable of realizing the full potential of active learn-
ing. Thus, exploring this topic in generality requires us to develop novel insights and entirely new
techniques for the design of active learning algorithms. We also develop corresponding natural
complexity quantities to characterize the performance of such algorithms. Several of the results we
establish here are more general than any related results in the existing literature, and in many cases
the algorithms we develop use significantly fewer labels than any previously published methods.

1.1 Background

The term active learning refers to a family of supervised learning protocols, characterized by the
ability of the learning algorithm to pose queries to a teacher, who has access to the target concept
to be learned. In practice, the teacher and queries may take a variety of forms: a human expert,
in which case the queries may be questions or annotation tasks; nature, in which case the queries
may be scientific experiments; a computer simulation, in which case the queries may be particu-
lar parameter values or initial conditions for the simulator; or a host of other possibilities. In our
present context, we will specifically discuss a protocol known as pool-based active learning, a type
of sequential design based on a collection of unlabeled examples; this seems to be the most com-
mon form of active learning in practical use today (e.g., Settles, 2010; Baldridge and Palmer, 2009;
Gangadharaiah, Brown, and Carbonell, 2009; Hoi, Jin, Zhu, and Lyu, 2006; Luo, Kramer, Goldgof,
Hall, Samson, Remsen, and Hopkins, 2005; Roy and McCallum, 2001; Tong and Koller, 2001; Mc-
Callum and Nigam, 1998). We will not discuss alternative models of active learning, such as online
(Dekel, Gentile, and Sridharan, 2010) or exact (Hegedüs, 1995). In the pool-based active learning
setting, the learning algorithm is supplied with a large collection of unlabeled examples (the pool),
and is allowed to select any example from the pool to request that it be labeled. After observing
the label of this example, the algorithm can then select another unlabeled example from the pool to
request that it be labeled. This continues sequentially for a number of rounds until some halting con-
dition is satisfied, at which time the algorithm returns a function intended to approximately mimic
and generalize the observed labeling behavior. This setting contrasts with passive learning, where
the learning algorithm is supplied with a collection of labeled examples without any interaction.

Supposing the labels received agree with some true target concept, the objective is to use this
returned function to approximate the true target concept on future (previously unobserved) data
points. The hope is that, by carefully selecting which examples should be labeled, the algorithm can
achieve improved accuracy while using fewer labels compared to passive learning. The motivation
for this setting is simple. For many modern machine learning problems, unlabeled examples are
inexpensive and available in abundance, while annotation is time-consuming or expensive. For in-
stance, this is the case in the aforementioned webpage classification problem, where the pool would
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be the set of all webpages, and labeling a webpage requires a human expert to examine the website
content. Settles (2010) surveys a variety of other applications for which active learning is presently
being used. To simplify the discussion, in this work we focus specifically on binary classification, in
which there are only two possible labels. The results generalize naturally to multiclass classification
as well.

As the above description indicates, when studying the advantages of active learning, we are
primarily interested in the number of label requests sufficient to achieve a given accuracy, a quantity
referred to as the label complexity (Definition 1 below). Although active learning has been an active
topic in the machine learning literature for many years now, our theoretical understanding of this
topic was largely lacking until very recently. However, within the past few years, there has been an
explosion of progress. These advances can be grouped into two categories: namely, the realizable
case and the agnostic case.

1.1.1 THE REALIZABLE CASE

In the realizable case, we are interested in a particularly strict scenario, where the true label of
any example is determined by a function of the features (covariates), and where that function has
a specific known form (e.g., linear separator, decision tree, union of intervals, etc.); the set of
classifiers having this known form is referred to as the concept space. The natural formalization
of the realizable case is very much analogous to the well-known PAC model for passive learning
(Valiant, 1984). In the realizable case, there are obvious examples of learning problems where
active learning can provide a significant advantage compared to passive learning; for instance, in
the problem of learning threshold classifiers on the real line (Example 1 below), a kind of binary
search strategy for selecting which examples to request labels for naturally leads to exponential
improvements in label complexity compared to learning from random labeled examples (passive
learning). As such, there is a natural attraction to determine how general this phenomenon is.
This leads us to think about general-purpose learning strategies (i.e., which can be instantiated for
more than merely threshold classifiers on the real line), which exhibit this binary search behavior in
various special cases.

The first such general-purpose strategy to emerge in the literature was a particularly elegant
strategy proposed by Cohn, Atlas, and Ladner (1994), typically referred to as CAL after its dis-
coverers (Meta-Algorithm 2 below). The strategy behind CAL is the following. The algorithm
examines each example in the unlabeled pool in sequence, and if there are two classifiers in the
concept space consistent with all previously-observed labels, but which disagree on the label of this
next example, then the algorithm requests that label, and otherwise it does not. For this reason, be-
low we refer to the general family of algorithms inspired by CAL as disagreement-based methods.
Disagreement-based methods are sometimes referred to as “mellow” active learning, since in some
sense this is the least we can expect from a reasonable active learning algorithm; it never requests
the label of an example whose label it can infer from information already available, but otherwise
makes no attempt to seek out particularly informative examples to request the labels of. That is, the
notion of informativeness implicit in disagreement-based methods is a binary one, so that an exam-
ple is either informative or not informative, but there is no further ranking of the informativeness
of examples. The disagreement-based strategy is quite general, and obviously leads to algorithms
that are at least reasonable, but Cohn, Atlas, and Ladner (1994) did not study the label complexity
achieved by their strategy in any generality.
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In a Bayesian variant of the realizable setting, Freund, Seung, Shamir, and Tishby (1997) studied
an algorithm known as query by committee (QBC), which in some sense represents a Bayesian
variant of CAL. However, QBC does distinguish between different levels of informativeness beyond
simple disagreement, based on the amount of disagreement on a random unlabeled example. They
were able to analyze the label complexity achieved by QBC in terms of a type of information gain,
and found that when the information gain is lower bounded by a positive constant, the algorithm
achieves a label complexity exponentially smaller than the known results for passive learning. In
particular, this is the case for the threshold learning problem, and also for the problem of learning
higher-dimensional (nearly balanced) linear separators when the data satisfy a certain (uniform)
distribution. Below, we will not discuss this analysis further, since it is for a slightly different
(Bayesian) setting. However, the results below in our present setting do have interesting implications
for the Bayesian setting as well, as discussed in the recent work of Yang, Hanneke, and Carbonell
(2011).

The first general analysis of the label complexity of active learning in the (non-Bayesian) real-
izable case came in the breakthrough work of Dasgupta (2005). In that work, Dasgupta proposed a
quantity, called the splitting index, to characterize the label complexities achievable by active learn-
ing. The splitting index analysis is noteworthy for several reasons. First, one can show it provides
nearly tight bounds on theminimax label complexity for a given concept space and data distribution.
In particular, the analysis matches the exponential improvements known to be possible for threshold
classifiers, as well as generalizations to higher-dimensional homogeneous linear separators under
near-uniform distributions (as first established by Dasgupta, Kalai, and Monteleoni, 2005, 2009).
Second, it provides a novel notion of informativeness of an example, beyond the simple binary
notion of informativeness employed in disagreement-based methods. Specifically, it describes the
informativeness of an example in terms of the number of pairs of well-separated classifiers for
which at least one out of each pair will be contradicted, supposing the least-favorable label. Finally,
unlike any other existing work on active learning (present work included), it provides an elegant
description of the trade-off between the number of label requests and the number of unlabeled ex-
amples needed by the learning algorithm. Another interesting byproduct of Dasgupta’s work is a
better understanding of the nature of the improvements achievable by active learning in the general
case. In particular, his work clearly illustrates the need to study the label complexity as a quantity
that varies depending on the particular target concept and data distribution. We will see this issue
arise in many of the examples below.

Coming from a slightly different perspective, Hanneke (2007a) later analyzed the label com-
plexity of active learning in terms of an extension of the teaching dimension (Goldman and Kearns,
1995). Related quantities were previously used by Hegedüs (1995) and Hellerstein, Pillaipakkam-
natt, Raghavan, and Wilkins (1996) to tightly characterize the number of membership queries suf-
ficient for Exact learning; Hanneke (2007a) provided a natural generalization to the PAC learning
setting. At this time, it is not clear how this quantity relates to the splitting index. From a practical
perspective, in some instances it may be easier to calculate (see the work of Nowak, 2008 for a
discussion related to this), though in other cases the opposite seems true.

The next progress toward understanding the label complexity of active learning came in the work
of Hanneke (2007b), who introduced a quantity called the disagreement coefficient (Definition 9 be-
low), accompanied by a technique for analyzing disagreement-based active learning algorithms. In
particular, implicit in that work, and made explicit in the later work of Hanneke (2011), was the
first general characterization of the label complexities achieved by the original CAL strategy for
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active learning in the realizable case, stated in terms of the disagreement coefficient. The results of
the present work are direct descendants of that 2007 paper, and we will discuss the disagreement
coefficient, and results based on it, in substantial detail below. Disagreement-based active learners
such as CAL are known to be sometimes suboptimal relative to the splitting index analysis, and
therefore the disagreement coefficient analysis sometimes results in larger label complexity bounds
than the splitting index analysis. However, in many cases the label complexity bounds based on
the disagreement coefficient are surprisingly good considering the simplicity of the methods. Fur-
thermore, as we will see below, the disagreement coefficient has the practical benefit of often being
fairly straightforward to calculate for a variety of learning problems, particularly when there is a
natural geometric interpretation of the classifiers and the data distribution is relatively smooth. As
we discuss below, it can also be used to bound the label complexity of active learning in noisy
settings. For these reasons (simplicity of algorithms, ease of calculation, and applicability beyond
the realizable case), subsequent work on the label complexity of active learning has tended to favor
the disagreement-based approach, making use of the disagreement coefficient to bound the label
complexity (Dasgupta, Hsu, and Monteleoni, 2007; Friedman, 2009; Beygelzimer, Dasgupta, and
Langford, 2009; Wang, 2009; Balcan, Hanneke, and Vaughan, 2010; Hanneke, 2011; Koltchinskii,
2010; Beygelzimer, Hsu, Langford, and Zhang, 2010; Mahalanabis, 2011; Wang, 2011). A signif-
icant part of the present paper focuses on extending and generalizing the disagreement coefficient
analysis, while still maintaining the relative ease of calculation that makes the disagreement coeffi-
cient so useful.

In addition to many positive results, Dasgupta (2005) also pointed out several negative results,
even for very simple and natural learning problems. In particular, for many problems, the minimax
label complexity of active learning will be no better than that of passive learning. In fact, Balcan,
Hanneke, and Vaughan (2010) later showed that, for a certain type of active learning algorithm—
namely, self-verifying algorithms, which themselves adaptively determine how many label requests
they need to achieve a given accuracy—there are even particular target concepts and data distribu-
tions for which no active learning algorithm of that type can outperform passive learning. Since all
of the above label complexity analyses (splitting index, teaching dimension, disagreement coeffi-
cient) apply to certain respective self-verifying learning algorithms, these negative results are also
reflected in all of the existing general label complexity analyses.

While at first these negative results may seem discouraging, Balcan, Hanneke, and Vaughan
(2010) noted that if we do not require the algorithm to be self-verifying, instead simply measuring
the number of label requests the algorithm needs to find a good classifier, rather than the number
needed to both find a good classifier and verify that it is indeed good, then these negative results
vanish. In fact, (shockingly) they were able to show that for any concept space with finite VC
dimension, and any fixed data distribution, for any given passive learning algorithm there is an
active learning algorithm with asymptotically superior label complexity for every nontrivial target
concept! A positive result of this generality and strength is certainly an exciting advance in our
understanding of the advantages of active learning. But perhaps equally exciting are the unresolved
questions raised by that work, as there are potential opportunities to strengthen, generalize, simplify,
and elaborate on this result. First, note that the above statement allows the active learning algorithm
to be specialized to the particular distribution according to which the (unlabeled) data are sampled,
and indeed the active learning method used by Balcan, Hanneke, and Vaughan (2010) in their proof
has a rather strong direct dependence on the data distribution (which cannot be removed by simply
replacing some calculations with data-dependent estimators). One interesting question is whether
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an alternative approach might avoid this direct distribution-dependence in the algorithm, so that
the claim can be strengthened to say that the active algorithm is superior to the passive algorithm
for all nontrivial target concepts and data distributions. This question is interesting both theoreti-
cally, in order to obtain the strongest possible theorem on the advantages of active learning, as well
as practically, since direct access to the distribution from which the data are sampled is typically
not available in practical learning scenarios. A second question left open by Balcan, Hanneke, and
Vaughan (2010) regards the magnitude of the gap between the active and passive label complexities.
Specifically, although they did find particularly nasty learning problems where the label complexity
of active learning will be close to that of passive learning (though always better), they hypothesized
that for most natural learning problems, the improvements over passive learning should typically
be exponentially large (as is the case for threshold classifiers); they gave many examples to illus-
trate this point, but left open the problem of characterizing general sufficient conditions for these
exponential improvements to be achievable, even when they are not achievable by self-verifying
algorithms. Another question left unresolved by Balcan, Hanneke, and Vaughan (2010) is whether
this type of general improvement guarantee might be realized by a computationally efficient active
learning algorithm. Finally, they left open the question of whether such general results might be
further generalized to settings that involve noisy labels. The present work picks up where Balcan,
Hanneke, and Vaughan (2010) left off in several respects, making progress on each of the above
questions, in some cases completely resolving the question.

1.1.2 THE AGNOSTIC CASE

In addition to the above advances in our understanding of active learning in the realizable case, there
has also been wonderful progress in making these methods robust to imperfect teachers, feature
space underspecification, and model misspecification. This general topic goes by the name agnostic
active learning, from its roots in the agnostic PAC model (Kearns, Schapire, and Sellie, 1994). In
contrast to the realizable case, in the agnostic case, there is not necessarily a perfect classifier of a
known form, and indeed there may even be label noise so that there is no perfect classifier of any
form. Rather, we have a given set of classifiers (e.g., linear separators, or depth-limited decision
trees, etc.), and the objective is to identify a classifier whose accuracy is not much worse than the
best classifier of that type. Agnostic learning is strictly more general, and often more difficult, than
realizable learning; this is true for both passive learning and active learning. However, for a given
agnostic learning problem, we might still hope that active learning can achieve a given accuracy
using fewer labels than required for passive learning.

The general topic of agnostic active learning got its first taste of real progress from Balcan,
Beygelzimer, and Langford (2006a, 2009) with the publication of the A2 (agnostic active) algorithm.
This method is a noise-robust disagreement-based algorithm, which can be applied with essentially
arbitrary types of classifiers under arbitrary noise distributions. It is interesting both for its effec-
tiveness and (as with CAL) its elegance. The original work of Balcan, Beygelzimer, and Langford
(2006a, 2009) showed that, in some special cases (thresholds, and homogeneous linear separators
under a uniform distribution), the A2 algorithm does achieve improved label complexities compared
to the known results for passive learning.

Using a different type of general active learning strategy, Hanneke (2007a) found that the teach-
ing dimension analysis (discussed above for the realizable case) can be extended beyond the real-
izable case, arriving at general bounds on the label complexity under arbitrary noise distributions.
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These bounds improve over the known results for passive learning in many cases. However, the
algorithm requires direct access to a certain quantity that depends on the noise distribution (namely,
the noise rate, defined in Section 6 below), which would not be available in many real-world learning
problems.

Later, Hanneke (2007b) established a general characterization of the label complexities achieved
by A2, expressed in terms of the disagreement coefficient. The result holds for arbitrary types of
classifiers (of finite VC dimension) and arbitrary noise distributions, and represents the natural gen-
eralization of the aforementioned realizable-case analysis of CAL. In many cases, this result shows
improvements over the known results for passive learning. Furthermore, because of the simplicity of
the disagreement coefficient, the bound can be calculated for a variety of natural learning problems.

Soon after this, Dasgupta, Hsu, and Monteleoni (2007) proposed a new active learning strat-
egy, which is also effective in the agnostic setting. Like A2, the new algorithm is a noise-robust
disagreement-based method. The work of Dasgupta, Hsu, and Monteleoni (2007) is significant for
at least two reasons. First, they were able to establish a general label complexity bound for this
method based on the disagreement coefficient. The bound is similar in form to the previous label
complexity bound for A2 by Hanneke (2007b), but improves the dependence of the bound on the
disagreement coefficient. Second, the proposed method of Dasgupta, Hsu, and Monteleoni (2007)
set a new standard for computational and aesthetic simplicity in agnostic active learning algorithms.
This work has since been followed by related methods of Beygelzimer, Dasgupta, and Langford
(2009) and Beygelzimer, Hsu, Langford, and Zhang (2010). In particular, Beygelzimer, Dasgupta,
and Langford (2009) develop a method capable of learning under an essentially arbitrary loss func-
tion; they also show label complexity bounds similar to those of Dasgupta, Hsu, and Monteleoni
(2007), but applicable to a larger class of loss functions, and stated in terms of a generalization of
the disagreement coefficient for arbitrary loss functions.

While the above results are encouraging, the guarantees reflected in these label complexity
bounds essentially take the form of (at best) constant factor improvements; specifically, in some
cases the bounds improve the dependence on the noise rate factor (defined in Section 6 below),
compared to the known results for passive learning. In fact, Kääriäinen (2006) showed that any
label complexity bound depending on the noise distribution only via the noise rate cannot do better
than this type of constant-factor improvement. This raised the question of whether, with a more de-
tailed description of the noise distribution, one can show improvements in the asymptotic form of the
label complexity compared to passive learning. Toward this end, Castro and Nowak (2008) studied
a certain refined description of the noise conditions, related to the margin conditions of Mammen
and Tsybakov (1999), which are well-studied in the passive learning literature. Specifically, they
found that in some special cases, under certain restrictions on the noise distribution, the asymptotic
form of the label complexity can be improved compared to passive learning, and in some cases the
improvements can even be exponential in magnitude; to achieve this, they developed algorithms
specifically tailored to the types of classifiers they studied (threshold classifiers and boundary frag-
ment classes). Balcan, Broder, and Zhang (2007) later extended this result to general homogeneous
linear separators under a uniform distribution. Following this, Hanneke (2009a, 2011) generalized
these results, showing that both of the published general agnostic active learning algorithms (Bal-
can, Beygelzimer, and Langford, 2009; Dasgupta, Hsu, and Monteleoni, 2007) can also achieve
these types of improvements in the asymptotic form of the label complexity; he further proved
general bounds on the label complexities of these methods, again based on the disagreement coef-
ficient, which apply to arbitrary types of classifiers, and which reflect these types of improvements
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(under conditions on the disagreement coefficient). Wang (2009) later bounded the label complexity
of A2 under somewhat different noise conditions, in particular identifying weaker noise conditions
sufficient for these improvements to be exponential in magnitude (again, under conditions on the
disagreement coefficient). Koltchinskii (2010) has recently improved on some of Hanneke’s results,
refining certain logarithmic factors and simplifying the proofs, using a slightly different algorithm
based on similar principles. Though the present work discusses only classes of finite VC dimen-
sion, most of the above references also contain results for various types of nonparametric classes
with infinite VC dimension.

At present, all of the published bounds on the label complexity of agnostic active learning also
apply to self-verifying algorithms. As mentioned, in the realizable case, it is typically possible to
achieve significantly better label complexities if we do not require the active learning algorithm to
be self-verifying, since the verification of learning may be more difficult than the learning itself
(Balcan, Hanneke, and Vaughan, 2010). We might wonder whether this is also true in the agnostic
case, and whether agnostic active learning algorithms that are not self-verifying might possibly
achieve significantly better label complexities than the existing label complexity bounds described
above. We investigate this in depth below.

1.2 Summary of Contributions

In the present work, we build on and extend the above results in a variety of ways, resolving a
number of open problems. The main contributions of this work can be summarized as follows.

• We formally define a notion of a universal activizer, a meta-algorithm that transforms any pas-
sive learning algorithm into an active learning algorithm with asymptotically strictly superior
label complexities for all nontrivial distributions and target concepts in the concept space.

• We analyze the existing strategy of disagreement-based active learning from this perspec-
tive, precisely characterizing the conditions under which this strategy can lead to a universal
activizer for VC classes in the realizable case.

• We propose a new type of active learning algorithm, based on shatterable sets, and construct
universal activizers for all VC classes in the realizable case based on this idea; in particular,
this overcomes the issue of distribution-dependence in the existing results mentioned above.

• We present a novel generalization of the disagreement coefficient, along with a new asymp-
totic bound on the label complexities achievable by active learning in the realizable case; this
new bound is often significantly smaller than the existing results in the published literature.

• We state new concise sufficient conditions for exponential improvements over passive learn-
ing to be achievable in the realizable case, including a significant weakening of known con-
ditions in the published literature.

• We present a new general-purpose active learning algorithm for the agnostic case, based on
the aforementioned idea involving shatterable sets.

• We prove a new asymptotic bound on the label complexities achievable by active learning in
the presence of label noise (the agnostic case), often significantly smaller than any previously
published results.
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• We formulate a general conjecture on the theoretical advantages of active learning over pas-
sive learning in the presence of arbitrary types of label noise.

1.3 Outline of the Paper

The paper is organized as follows. In Section 2, we introduce the basic notation used throughout,
formally define the learning protocol, and formally define the label complexity. We also define the
notion of an activizer, which is a procedure that transforms a passive learning algorithm into an
active learning algorithm with asymptotically superior label complexity. In Section 3, we review
the established technique of disagreement-based active learning, and prove a new result precisely
characterizing the scenarios in which disagreement-based active learning can be used to construct
an activizer. In particular, we find that in many scenarios, disagreement-based active learning is not
powerful enough to provide the desired improvements. In Section 4, we move beyond disagreement-
based active learning, developing a new type of active learning algorithm based on shatterable sets
of points. We apply this technique to construct a simple 3-stage procedure, which we then prove is a
universal activizer for any concept space of finite VC dimension. In Section 5, we begin by review-
ing the known results for bounding the label complexity of disagreement-based active learning in
terms of the disagreement coefficient; we then develop a somewhat more involved procedure, again
based on shatterable sets, which takes full advantage of the sequential nature of active learning. In
addition to being an activizer, we show that this procedure often achieves dramatically superior la-
bel complexities than achievable by passive learning. In particular, we define a novel generalization
of the disagreement coefficient, and use it to bound the label complexity of this procedure. This
also provides us with concise sufficient conditions for obtaining exponential improvements over
passive learning. Continuing in Section 6, we extend our framework to allow for label noise (the
agnostic case), and discuss the possibility of extending the results from previous sections to these
noisy learning problems. We first review the known results for noise-robust disagreement-based ac-
tive learning, and characterizations of its label complexity in terms of the disagreement coefficient
and Mammen-Tsybakov noise parameters. We then proceed to develop a new type of noise-robust
active learning algorithm, again based on shatterable sets, and prove bounds on its label complexity
in terms of our aforementioned generalization of the disagreement coefficient. Additionally, we
present a general conjecture concerning the existence of activizers for certain passive learning al-
gorithms in the agnostic case. We conclude in Section 7 with a host of enticing open problems for
future investigation.

2. Definitions and Notation

For most of the paper, we consider the following formal setting. There is a measurable space
(X ,FX ), where X is called the instance space; for simplicity, we suppose this is a standard Borel
space (Srivastava, 1998) (e.g., Rm under the usual Borel σ -algebra), though most of the results gen-
eralize. A classifier is any measurable function h : X → {−1,+1}. There is a set C of classifiers
called the concept space. In the realizable case, the learning problem is characterized as follows.
There is a probability measure P on X , and a sequence ZX = {X1,X2, . . .} of independent X -valued
random variables, each with distribution P . We refer to these random variables as the sequence
of unlabeled examples; although in practice, this sequence would typically be large but finite, to
simplify the discussion and focus strictly on counting labels, we will suppose this sequence is inex-
haustible. There is additionally a special element f ∈C, called the target function, and we denote by
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Yi = f (Xi); we further denote by Z = {(X1,Y1),(X2,Y2), . . .} the sequence of labeled examples, and
for m ∈ N we denote by Zm = {(X1,Y1),(X2,Y2), . . . ,(Xm,Ym)} the finite subsequence consisting of
the first m elements of Z . For any classifier h, we define the error rate er(h) = P(x : h(x) &= f (x)).
Informally, the learning objective in the realizable case is to identify some h with small er(h) using
elements from Z , without direct access to f .

An active learning algorithm A is permitted direct access to the ZX sequence (the unlabeled
examples), but to gain access to the Yi values it must request them one at a time, in a sequential
manner. Specifically, given access to the ZX values, the algorithm selects any index i ∈ N, requests
to observe the Yi value, then having observed the value of Yi, selects another index i′, observes the
value ofYi′ , etc. The algorithm is given as input an integer n, called the label budget, and is permitted
to observe at most n labels total before eventually halting and returning a classifier ĥn =A(n); that
is, by definition, an active learning algorithm never attempts to access more than the given budget n
number of labels. We will then study the values of n sufficient to guarantee E[er(ĥn)] ≤ ε , for any
given value ε ∈ (0,1). We refer to this as the label complexity. We will be particularly interested in
the asymptotic dependence on ε in the label complexity, as ε→ 0. Formally, we have the following
definition.

Definition 1 An active learning algorithm A achieves label complexity Λ(·, ·, ·) if, for every target
function f , distribution P , ε ∈ (0,1), and integer n≥ Λ(ε , f ,P), we have E [er(A(n))]≤ ε .

This definition of label complexity is similar to one originally studied by Balcan, Hanneke, and
Vaughan (2010). It has a few features worth noting. First, the label complexity has an explicit
dependence on the target function f and distribution P . As noted by Dasgupta (2005), we need
this dependence if we are to fully understand the range of label complexities achievable by active
learning; we further illustrate this issue in the examples below. The second feature to note is that
the label complexity, as defined here, is simply a sufficient budget size to achieve the specified
accuracy. That is, here we are asking only how many label requests are required for the algorithm
to achieve a given accuracy (in expectation). However, as noted by Balcan, Hanneke, and Vaughan
(2010), this number might not be sufficiently large to detect that the algorithm has indeed achieved
the required accuracy based only on the observed data. That is, because the number of labeled
examples used in active learning can be quite small, we come across the problem that the number
of labels needed to learn a concept might be significantly smaller than the number of labels needed
to verify that we have successfully learned the concept. As such, this notion of label complexity
is most useful in the design of effective learning algorithms, rather than for predicting the number
of labels an algorithm should request in any particular application. Specifically, to design effective
active learning algorithms, we should generally desire small label complexity values, so that (in the
extreme case) if some algorithm A has smaller label complexity values than some other algorithm
A′ for all target functions and distributions, then (all other factors being equal) we should clearly
prefer algorithm A over algorithm A′; this is true regardless of whether we have a means to detect
(verify) how large the improvements offered by algorithm A over algorithm A′ are for any particular
application. Thus, in our present context, performance guarantees in terms of this notion of label
complexity play a role analogous to concepts such as universal consistency or admissibility, which
are also generally useful in guiding the design of effective algorithms, but are not intended to be
informative in the context of any particular application. See the work of Balcan, Hanneke, and
Vaughan (2010) for a discussion of this issue, as it relates to a definition of label complexity similar

1479



HANNEKE

to that above, as well as other notions of label complexity from the active learning literature (some
of which include a verification requirement).

We will be interested in the performance of active learning algorithms, relative to the perfor-
mance of a given passive learning algorithm. In this context, a passive learning algorithm A takes
as input a finite sequence of labeled examples L ∈

⋃

n(X × {−1,+1})n, and returns a classifier
ĥ = A(L). We allow both active and passive learning algorithms to be randomized: that is, to
have independent internal randomness, in addition to the given random data. We define the label
complexity for a passive learning algorithm as follows.

Definition 2 A passive learning algorithm A achieves label complexity Λ(·, ·, ·) if, for every target
function f , distribution P , ε ∈ (0,1), and integer n≥ Λ(ε , f ,P), we have E [er(A(Zn))]≤ ε .

Although technically some algorithms may be able to achieve a desired accuracy without any
observations, to make the general results easier to state (namely, those in Section 5), unless oth-
erwise stated we suppose label complexities (both passive and active) take strictly positive values,
among N∪ {∞}; note that label complexities (both passive and active) can be infinite, indicating
that the corresponding algorithm might not achieve expected error rate ε for any n ∈ N. Both the
passive and active label complexities are defined as a number of labels sufficient to guarantee the
expected error rate is at most ε . It is also common in the literature to discuss the number of label
requests sufficient to guarantee the error rate is at most ε with high probability 1− δ (e.g., Bal-
can, Hanneke, and Vaughan, 2010). In the present work, we formulate our results in terms of the
expected error rate because it simplifies the discussion of asymptotics, in that we need only study
the behavior of the label complexity as the single argument ε approaches 0, rather than the more
complicated behavior of a function of ε and δ as both ε and δ approach 0 at various relative rates.
However, we note that analogous results for these high-probability guarantees on the error rate can
be extracted from the proofs below without much difficulty, and in several places we explicitly state
results of this form.

Below we employ the standard notation from asymptotic analysis, including O(·), o(·), Ω(·),
ω(·), Θ(·), -, and .. In all contexts below not otherwise specified, the asymptotics are always
considered as ε → 0 when considering a function of ε , and as n→∞ when considering a function
of n; also, in any expression of the form “x→ 0,” we always mean the limit from above (i.e., x ↓ 0).
For instance, when considering nonnegative functions of ε , λa(ε) and λp(ε), the above notations
are defined as follows. We say λa(ε) = o(λp(ε)) when lim

ε→0
λa(ε)
λp(ε)

= 0, and this is equivalent to
writing λp(ε) = ω(λa(ε)), λa(ε)- λp(ε), or λp(ε). λa(ε). We say λa(ε) = O(λp(ε)) when
limsup
ε→0

λa(ε)
λp(ε)

<∞, which can equivalently be expressed as λp(ε) = Ω(λa(ε)). Finally, we write

λa(ε) = Θ(λp(ε)) to mean that both λa(ε) = O(λp(ε)) and λa(ε) = Ω(λp(ε)) are satisfied. We
also use the standard notation for the limit of a sequence of sets, such as lim

r→0
Ar, defined by the

property lim
r→0

Ar = lim
r→0

Ar (if the latter exists), where A is the indicator function for the set A.

Define the class of functions Polylog(1/ε) as those g : (0,1)→ [0,∞) such that, for some
k ∈ [0,∞), g(ε) = O(logk(1/ε)). For a label complexity Λ, also define the set Nontrivial(Λ) as the
collection of all pairs ( f ,P) of a classifier and a distribution such that, ∀ε > 0,Λ(ε , f ,P)<∞, and
∀g ∈ Polylog(1/ε), Λ(ε , f ,P) = ω(g(ε)).
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In this context, an active meta-algorithm is a procedure Aa taking as input a passive algorithm
Ap and a label budget n, such that for any passive algorithm Ap, Aa(Ap, ·) is an active learning
algorithm. We define an activizer for a given passive algorithm as follows.

Definition 3 We say an active meta-algorithm Aa activizes a passive algorithm Ap for a concept
space C if the following holds. For any label complexity Λp achieved by Ap, the active learning
algorithmAa(Ap, ·) achieves a label complexityΛa such that, for every f ∈C and every distribution
P on X with ( f ,P) ∈ Nontrivial(Λp), there exists a constant c ∈ [1,∞) such that

Λa(cε , f ,P) = o(Λp(ε , f ,P)) .

In this case, Aa is called an activizer for Ap with respect to C, and the active learning algorithm
Aa(Ap, ·) is called the Aa-activized Ap.

We also refer to any active meta-algorithm Aa that activizes every passive algorithm Ap for C
as a universal activizer for C. One of the main contributions of this work is establishing that such
universal activizers do exist for any VC class C.

A bit of explanation is in order regarding Definition 3. We might interpret it as follows: an
activizer for Ap strongly improves (in a little-o sense) the label complexity for all nontrivial target
functions and distributions. Here, we seek a meta-algorithm that, when given Ap as input, results
in an active learning algorithm with strictly superior label complexities. However, there is a sense
in which some distributions P or target functions f are trivial relative to Ap. For instance, perhaps
Ap has a default classifier that it is naturally biased toward (e.g., with minimal P(x : h(x) = +1),
as in the Closure algorithm of Helmbold, Sloan, and Warmuth, 1990), so that when this default
classifier is the target function, Ap achieves a constant label complexity. In these trivial scenarios,
we cannot hope to improve over the behavior of the passive algorithm, but instead can only hope
to compete with it. The sense in which we wish to compete may be a subject of some controversy,
but the implication of Definition 3 is that the label complexity of the activized algorithm should be
strictly better than every nontrivial upper bound on the label complexity of the passive algorithm.
For instance, if Λp(ε , f ,P) ∈ Polylog(1/ε), then we are guaranteed Λa(ε , f ,P) ∈ Polylog(1/ε)
as well, but if Λp(ε , f ,P) = O(1), we are still only guaranteed Λa(ε , f ,P) ∈ Polylog(1/ε). This
serves the purpose of defining a framework that can be studied without requiring too much obsession
over small additive terms in trivial scenarios, thus focusing the analyst’s efforts toward nontrivial
scenarios where Ap has relatively large label complexity, which are precisely the scenarios for
which active learning is truly needed. In our proofs, we find that in fact Polylog(1/ε) can be
replaced with O(log(1/ε)), giving a slightly broader definition of “nontrivial,” for which all of the
results below still hold. Section 7 discusses open problems regarding this issue of trivial problems.

The definition of Nontrivial(·) also only requires the activized algorithm to be effective in sce-
narios where the passive learning algorithm has reasonable behavior (i.e., finite label complexities);
this is only intended to keep with the reduction-based style of the framework, and in fact this re-
striction can easily be lifted using a trick from Balcan, Hanneke, and Vaughan (2010) (aggregating
the activized algorithm with another algorithm that is always reasonable).

Finally, we also allow a constant factor c loss in the ε argument to Λa. We allow this to be an
arbitrary constant, again in the interest of allowing the analyst to focus only on the most signifi-
cant aspects of the problem; for most reasonable passive learning algorithms, we typically expect
Λp(ε , f ,P) = Poly(1/ε), in which case c can be set to 1 by adjusting the leading constant factors of
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Λa. A careful inspection of our proofs reveals that c can always be set arbitrarily close to 1 without
affecting the theorems below (and in fact, we can even get c= (1+o(1)), a function of ε).

Throughout this work, we will adopt the usual notation for probabilities, such as P(er(ĥ)> ε),
and as usual we interpret this as measuring the corresponding event in the (implicit) underlying
probability space. In particular, we make the usual implicit assumption that all sets involved in
the analysis are measurable; where this assumption does not hold, we may turn to outer prob-
abilities, though we will not make further mention of these technical details. We will also use
the notation P k(·) to represent k-dimensional product measures; for instance, for a measurable set
A ⊆ X k, Pk(A) = P((X ′1, . . . ,X ′k) ∈ A), for independent P-distributed random variables X ′1, . . . ,X ′k.
Additionally, to simplify notation, we will adopt the convention that X 0 = {∅} and P0(X 0) = 1.
Throughout, we will denote by A(z) the indicator function for a set A, which has the value 1 when
z ∈ A and 0 otherwise; additionally, at times it will be more convenient to use the bipolar indicator
function, defined as ±

A (z) = 2 A(z)−1.
We will require a few additional definitions for the discussion below. For any classifier h : X →

{−1,+1} and finite sequence of labeled examples L ∈
⋃

m(X × {−1,+1})m, define the empirical
error rate erL(h) = |L|−1∑

(x,y)∈L {−y}(h(x)); for completeness, define er∅(h) = 0. Also, for
L=Zm, the first m labeled examples in the data sequence, abbreviate this as erm(h) = erZm(h). For
any probability measure P on X , set of classifiers H, classifier h, and r > 0, define BH,P (h,r) =
{g ∈H : P (x : h(x) &= g(x)) ≤ r}; when P = P , the distribution of the unlabeled examples, and P
is clear from the context, we abbreviate this as BH(h,r) = BH,P(h,r); furthermore, when P = P
and H = C, the concept space, and both P and C are clear from the context, we abbreviate this
as B(h,r) = BC,P(h,r). Also, for any set of classifiers H, and any sequence of labeled examples
L ∈

⋃

m(X × {−1,+1})m, define H[L] = {h ∈ H : erL(h) = 0}; for any (x,y) ∈ X × {−1,+1},
abbreviate H[(x,y)] =H[{(x,y)}] = {h ∈H : h(x) = y}.

We also adopt the usual definition of “shattering” used in learning theory (e.g., Vapnik, 1998).
Specifically, for any set of classifiers H, k ∈ N, and S = (x1, . . . ,xk) ∈ X k, we say H shatters S if,
∀(y1, . . . ,yk) ∈ {−1,+1}k, ∃h ∈H such that ∀i ∈ {1, . . . ,k}, h(xi) = yi; equivalently, H shatters S
if ∃{h1, . . . ,h2k} ⊆H such that for each i, j ∈ {1, . . . ,2k} with i &= j, ∃! ∈ {1, . . . ,k} with hi(x!) &=
h j(x!). To simplify notation, we will also say that H shatters ∅ if and only if H &= {}. As usual,
we define the VC dimension of C, denoted d, as the largest integer k such that ∃S ∈ X k shattered by
C (Vapnik and Chervonenkis, 1971; Vapnik, 1998). To focus on nontrivial problems, we will only
consider concept spaces C with d > 0 in the results below. Generally, any such concept space C

with d <∞ is called a VC class.

2.1 Motivating Examples

Throughout this paper, we will repeatedly refer to a few canonical examples. Although themselves
quite toy-like, they represent the boiled-down essence of some important distinctions between var-
ious types of learning problems. In some sense, the process of grappling with the fundamental
distinctions raised by these types of examples has been a driving force behind much of the recent
progress in understanding the label complexity of active learning.

The first example is perhaps the most classic, and is clearly the first that comes to mind when
considering the potential for active learning to provide strong improvements over passive learning.

Example 1 In the problem of learning threshold classifiers, we consider X = [0,1] and
C= {hz(x) = ±

[z,1](x) : z ∈ (0,1)}.
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There is a simple universal activizer for threshold classifiers, based on a kind of binary search.
Specifically, suppose n ∈ N and that Ap is any given passive learning algorithm. Consider the
points in {X1,X2, . . . ,Xm}, for m= 2n−1, and sort them in increasing order: X(1),X(2), . . . ,X(m). Also
initialize != 0 and u=m+1, and define X(0) = 0 and X(m+1) = 1. Now request the label of X(i) for
i = 3(!+u)/24 (i.e., the median point between ! and u); if the label is −1, let ! = i, and otherwise
let u = i; repeat this (requesting this median point, then updating ! or u accordingly) until we have
u= !+1. Finally, let ẑ=X(u), construct the labeled sequence L= {(X1,hẑ(X1)) , . . . ,(Xm,hẑ(Xm))},
and return the classifier ĥ=Ap(L).

Since each label request at least halves the set of integers between ! and u, the total number
of label requests is at most log2(m)+ 1 = n. Supposing f ∈ C is the target function, this proce-
dure maintains the invariant that f (X(!)) = −1 and f (X(u)) = +1. Thus, once we reach u = !+ 1,
since f is a threshold, it must be some hz with z ∈ (!,u]; therefore every X( j) with j ≤ ! has
f (X( j)) = −1, and likewise every X( j) with j ≥ u has f (X( j)) = +1; in particular, this means L
equals Zm, the true labeled sequence. But this means ĥ = Ap(Zm). Since n = log2(m)+ 1, this
active learning algorithm will achieve an equivalent error rate to what Ap achieves with m labeled
examples, but using only log2(m)+ 1 label requests. In particular, this implies that if Ap achieves
label complexity Λp, then this active learning algorithm achieves label complexity Λa such that
Λa(ε , f ,P) ≤ log2Λp(ε , f ,P)+ 2; as long as 1- Λp(ε , f ,P) <∞, this is o(Λp(ε , f ,P)), so that
this procedure activizes Ap for C.

The second example we consider is almost equally simple (only increasing the VC dimension
from 1 to 2), but is far more subtle in terms of how we must approach its analysis in active learning.

Example 2 In the problem of learning interval classifiers, we consider X = [0,1] and
C= {h[a,b](x) = ±

[a,b](x) : 0 < a≤ b< 1}.

For the intervals problem, we can also construct a universal activizer, though slightly more
complicated. Specifically, suppose again that n ∈ N and that Ap is any given passive learning
algorithm. We first request the labels {Y1,Y2, . . . ,Y5n/26} of the first 5n/26 examples in the sequence.
If every one of these labels is −1, then we immediately return the all-negative constant classifier
ĥ(x) = −1. Otherwise, consider the points {X1,X2, . . . ,Xm}, for m = max

{

23n/44−1,n
}

, and sort
them in increasing order X(1),X(2), . . . ,X(m). For some value i ∈ {1, . . . ,5n/26} with Yi = +1, let
j+ denote the corresponding index j such that X( j) = Xi. Also initialize !1 = 0, u1 = !2 = j+, and
u2 = m+ 1, and define X(0) = 0 and X(m+1) = 1. Now if !1 + 1 < u1, request the label of X(i) for
i= 3(!1 +u1)/24 (the median point between !1 and u1); if the label is −1, let !1 = i, and otherwise
let u1 = i; repeat this (requesting this median point, then updating !1 or u1 accordingly) until we
have u1 = !1+1. Now if !2+1 < u2, request the label of X(i) for i= 3(!2+u2)/24 (the median point
between !2 and u2); if the label is−1, let u2 = i, and otherwise let !2 = i; repeat this (requesting this
median point, then updating u2 or !2 accordingly) until we have u2 = !2 +1. Finally, let â= u1 and
b̂= !2, construct the labeled sequence L=

{(

X1,h[â,b̂](X1)
)

, . . . ,
(

Xm,h[â,b̂](Xm)
)}

, and return the
classifier ĥ=Ap(L).

Since each label request in the second phase halves the set of values between either !1 and
u1 or !2 and u2, the total number of label requests is at most min{m,5n/26+2log2(m)+2} ≤ n.
Suppose f ∈ C is the target function, and let w( f ) = P(x : f (x) = +1). If w( f ) = 0, then with
probability 1 the algorithm will return the constant classifier ĥ(x) =−1, which has er(ĥ) = 0 in this
case. Otherwise, if w( f )> 0, then for any n≥ 2

w( f ) ln 1
ε , with probability at least 1− ε , there exists
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i ∈ {1, . . . ,5n/26} with Yi = +1. Let H+ denote the event that such an i exists. Supposing this is
the case, the algorithm will make it into the second phase. In this case, the procedure maintains the
invariant that f (X(!1)) =−1, f (X(u1)) = f (X(!2)) =+1, and f (X(u2)) =−1, where !1 < u1 ≤ !2 < u2.
Thus, once we have u1 = !1 + 1 and u2 = !2 + 1, since f is an interval, it must be some h[a,b] with
a ∈ (!1,u1] and b ∈ [!2,u1); therefore, every X( j) with j ≤ !1 or j ≥ u2 has f (X( j)) =−1, and like-
wise every X( j) with u1 ≤ j ≤ !2 has f (X( j)) = +1; in particular, this means L equals Zm, the true
labeled sequence. But this means ĥ = Ap(Zm). Supposing Ap achieves label complexity Λp, and
that n ≥ max

{

8+4log2Λp(ε , f ,P), 2
w( f ) ln 1

ε

}

, then m ≥ 23n/44−1 ≥ Λp(ε , f ,P) and E
[

er(ĥ)
]

≤
E
[

er(ĥ) H+

]

+(1−P(H+))≤ E [er(Ap(Zm))]+ ε ≤ 2ε . In particular, this means this active learn-
ing algorithm achieves label complexityΛa such that, for any f ∈C withw( f )= 0,Λa(2ε , f ,P)= 0,
and for any f ∈C with w( f )> 0, Λa(2ε , f ,P)≤max

{

8+4log2Λp(ε , f ,P), 2
w( f ) ln 1

ε

}

. If ( f ,P)∈
Nontrivial(Λp), then 2

w( f ) ln 1
ε = o(Λp(ε , f ,P)) and 8+4log2Λp(ε , f ,P) = o(Λp(ε , f ,P)), so that

Λa(2ε , f ,P) = o(Λp(ε , f ,P)). Therefore, this procedure activizes Ap for C.
This example also brings to light some interesting phenomena in the analysis of the label com-

plexity of active learning. Note that unlike the thresholds example, we have a much stronger de-
pendence on the target function in these label complexity bounds, via the w( f ) quantity. This
issue is fundamental to the problem, and cannot be avoided. In particular, when P([0,x]) is con-
tinuous, this is the very issue that makes the minimax label complexity for this problem (i.e.,
minΛa max f∈CΛa(ε , f ,P)) no better than passive learning (Dasgupta, 2005). Thus, this problem
emphasizes the need for any informative label complexity analysis of active learning to explicitly
describe the dependence of the label complexity on the target function, as advocated by Dasgupta
(2005). This example also highlights the unverifiability phenomenon explored by Balcan, Hanneke,
and Vaughan (2010), since in the case of w( f ) = 0, the error rate of the returned classifier is zero,
but (for nondegenerate P) there is no way for the algorithm to verify this fact based only on the
finite number of labels it observes. In fact, Balcan, Hanneke, and Vaughan (2010) have shown that
under continuous P , for any f ∈C with w( f ) = 0, the number of labels required to both find a clas-
sifier of small error rate and verify that the error rate is small based only on observable quantities is
essentially no better than for passive learning.

These issues are present to a small degree in the intervals example, but were easily handled
in a very natural way. The target-dependence shows up only in an initial phase of waiting for a
positive example, and the always-negative classifiers were handled by setting a default return value.
However, we can amplify these issues so that they show up in more subtle and involved ways.
Specifically, consider the following example, studied by Balcan, Hanneke, and Vaughan (2010).

Example 3 In the problem of learning unions of i intervals, we consider X = [0,1] and

C=

{

hz(x) = ±
⋃i
j=1[z2 j−1,z2 j]

(x) : 0 < z1 ≤ z2 ≤ . . .≤ z2i < 1
}

.

The challenge of this problem is that, because sometimes z j = z j+1 for some j values, we do not
know how many intervals are required to minimally represent the target function: only that it is at
most i. This issue will be made clearer below. We can essentially think of any effective strategy here
as having two components: one component that searches (perhaps randomly) with the purpose of
identifying at least one example from each decision region, and another component that refines our
estimates of the end-points of the regions the first component identifies. Later, we will go through
the behavior of a universal activizer for this problem in detail.
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3. Disagreement-Based Active Learning

At present, perhaps the best-understood active learning algorithms are those choosing their label
requests based on disagreement among a set of remaining candidate classifiers. The canonical algo-
rithm of this type, a version of which we discuss below in Section 5.1, was proposed by Cohn, Atlas,
and Ladner (1994). Specifically, for any set H of classifiers, define the region of disagreement:

DIS(H) = {x ∈ X : ∃h1,h2 ∈H s.t. h1(x) &= h2(x)} .

The basic idea of disagreement-based algorithms is that, at any given time in the algorithm,
there is a subset V ⊆ C of remaining candidates, called the version space, which is guaranteed to
contain the target f . When deciding whether to request a particular label Yi, the algorithm simply
checks whether Xi ∈ DIS(V ): if so, the algorithm requests Yi, and otherwise it does not. This gen-
eral strategy is reasonable, since for any Xi /∈ DIS(V ), the label agreed upon by V must be f (Xi),
so that we would get no information by requesting Yi; that is, for Xi /∈ DIS(V ), we can accurately
infer Yi based on information already available. This type of algorithm has recently received sub-
stantial attention, not only for its obvious elegance and simplicity, but also because (as we discuss
in Section 6) there are natural ways to extend the technique to the general problem of learning with
label noise and model misspecification (the agnostic setting). The details of disagreement-based
algorithms can vary in how they update the set V and how frequently they do so, but it turns out
almost all disagreement-based algorithms share many of the same fundamental properties, which
we describe below.

3.1 A Basic Disagreement-Based Active Learning Algorithm

In Section 5.1, we discuss several known results on the label complexities achievable by these types
of active learning algorithms. However, for now let us examine a very basic algorithm of this type.
The following is intended to be a simple representative of the family of disagreement-based active
learning algorithms. It has been stripped down to the bare essentials of what makes such algorithms
work. As a result, although the gap between its label complexity and that achieved by passive
learning is not necessarily as large as those achieved by the more sophisticated disagreement-based
active learning algorithms of Section 5.1, it has the property that whenever those more sophisticated
methods have label complexities asymptotically superior to those achieved by passive learning, that
guarantee will also be true for this simpler method, and vice versa. The algorithm operates in only
2 phases. In the first, it uses one batch of label requests to reduce the version space V to a subset of
C; in the second, it uses another batch of label requests, this time only requesting labels for points
in DIS(V ). Thus, we have isolated precisely that aspect of disagreement-based active learning that
involves improvements due to only requesting the labels of examples in the region of disagreement.
The procedure is formally defined as follows, in terms of an estimator P̂n(DIS(V )) specified below.
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Meta-Algorithm 0
Input: passive algorithm Ap, label budget n
Output: classifier ĥ

0. Request the first 3n/24 labels {Y1, . . . ,Y3n/24}, and let t← 3n/24
1. Let V = {h ∈ C : er3n/24(h) = 0}
2. Let Δ̂← P̂n(DIS(V ))
3. Let L← {}
4. For m= 3n/24+1, . . .3n/24+ 3n/(4Δ̂)4
5. If Xm ∈ DIS(V ) and t < n, request the label Ym of Xm, and let ŷ← Ym and t← t+1
6. Else let ŷ← h(Xm) for an arbitrary h ∈V
7. Let L← L∪{(Xm, ŷ)}
8. Return Ap(L)

Meta-Algorithm 0 depends on a data-dependent estimator P̂n(DIS(V )) of P(DIS(V )), which
we can define in a variety of ways using only unlabeled examples. In particular, for the theorems
below, we will take the following definition for P̂n(DIS(V )), designed to be a confidence upper
bound on P(DIS(V )). Let Un = {Xn2+1, . . . ,X2n2}. Then define

P̂n(DIS(V )) = max







2
n2

∑

x∈Un
DIS(V )(x),

4
n







. (1)

Meta-Algorithm 0 is divided into two stages: one stage where we focus on reducing V , and a
second stage where we construct the sample L for the passive algorithm. This might intuitively seem
somewhat wasteful, as one might wish to use the requested labels from the first stage to augment
those in the second stage when constructing L, thus feeding all of the observed labels into the
passive algorithm Ap. Indeed, this can improve the label complexity in some cases (albeit only by
a constant factor); however, in order to get the general property of being an activizer for all passive
algorithms Ap, we construct the sample L so that the conditional distribution of the X components
in L given |L| is P|L|, so that it is (conditionally) an i.i.d. sample, which is essential to our analysis.
The choice of the number of (unlabeled) examples to process in the second stage guarantees (by a
Chernoff bound) that the “t < n” constraint in Step 5 is redundant; this is a trick we will employ in
several of the methods below. As explained above, because f ∈V , this implies that every (x,y) ∈ L
has y= f (x).

To give some basic intuition for how this algorithm behaves, consider the example of learning
threshold classifiers (Example 1); to simplify the explanation, for now we ignore the fact that P̂n
is only an estimate, as well as the “t < n” constraint in Step 5 (both of which will be addressed in
the general analysis below). In this case, suppose the target function is f = hz . Let a = max{Xi :
Xi < z,1 ≤ i ≤ 3n/24} and b = min{Xi : Xi ≥ z,1 ≤ i ≤ 3n/24}. Then V = {hz′ : a < z′ ≤ b} and
DIS(V ) = (a,b), so that the second phase of the algorithm only requests labels for a number of
points in the region (a,b). With probability 1− ε , the probability mass in this region is at most
O(log(1/ε)/n), so that |L|≥ !n,ε = Ω(n2/ log(1/ε)); also, since the labels in L are all correct, and
the Xm values in L are conditionally iid (with distribution P) given |L|, we see that the conditional
distribution of L given |L|= ! is the same as the (unconditional) distribution of Z!. In particular, if
Ap achieves label complexity Λp, and ĥn is the classifier returned by Meta-Algorithm 0 applied to
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Ap, then for any n= Ω
(√

Λp(ε , f ,P) log(1/ε)
)

chosen so that !n,ε ≥ Λp(ε , f ,P), we have

E
[

er
(

ĥn
)]

≤ ε+ sup
!≥!n,ε

E [er(Ap(Z!))]≤ ε+ sup
!≥Λp(ε, f ,P)

E [er(Ap(Z!))]≤ 2ε .

This indicates the active learning algorithm achieves label complexity Λa with Λa(2ε , f ,P) =
O
(√

Λp(ε , f ,P) log(1/ε)
)

. In particular, if∞> Λp(ε , f ,P) = ω(log(1/ε)), then Λa(2ε , f ,P) =
o(Λp(ε , f ,P)). Therefore, Meta-Algorithm 0 is a universal activizer for the space of threshold
classifiers.

In contrast, consider the problem of learning interval classifiers (Example 2). In this case,
suppose the target function f has P(x : f (x) = +1) = 0, and that P is uniform in [0,1]. Since (with
probability one) every Yi =−1, we haveV = {h[a,b] : {X1, . . . ,X3n/24}∩ [a,b] = ∅}. But this contains
classifiers h[a,a] for every a ∈ (0,1) \ {X1, . . . ,X3n/24}, so that DIS(V ) = (0,1) \ {X1, . . . ,X3n/24}.
Thus, P(DIS(V )) = 1, and |L| = O(n); that is, Ap gets run with no more labeled examples than
simple passive learning would use. This indicates we should not expect Meta-Algorithm 0 to be
a universal activizer for interval classifiers. Below, we formalize this by constructing a passive
learning algorithm Ap that Meta-Algorithm 0 does not activize in scenarios of this type.

3.2 The Limiting Region of Disagreement

In this subsection, we generalize the examples from the previous subsection. Specifically, we prove
that the performance of Meta-Algorithm 0 is intimately tied to a particular limiting set, referred to
as the disagreement core. A similar definition was given by Balcan, Hanneke, and Vaughan (2010)
(there referred to as the boundary, for reasons that will become clear below); it is also related to
certain quantities in the work of Hanneke (2007b, 2011) described below in Section 5.1.

Definition 4 Define the disagreement core of a classifier f with respect to a set of classifiersH and
probability measure P as

∂H,P f = lim
r→0

DIS(BH,P ( f ,r)) .

When P = P , the data distribution on X , and P is clear from the context, we abbreviate this as
∂H f = ∂H,P f ; if additionally H = C, the full concept space, which is clear from the context, we
further abbreviate this as ∂ f = ∂C f = ∂C,P f .

As we will see, disagreement-based algorithms often tend to focus their label requests around
the disagreement core of the target function. As such, the concept of the disagreement core will
be essential in much of our discussion below. We therefore go through a few examples to build
intuition about this concept and its properties. Perhaps the simplest example to start with is C

as the class of threshold classifiers (Example 1), under P uniform on [0,1]. For any hz ∈ C and
sufficiently small r > 0, B( f ,r) = {hz′ : |z′ − z| ≤ r}, and DIS(B( f ,r)) = [z− r, z+ r). There-
fore, ∂hz = lim

r→0
DIS(B(hz,r)) = lim

r→0
[z− r, z+ r) = {z}. Thus, in this case, the disagreement core

of hz with respect to C and P is precisely the decision boundary of the classifier. As a slightly
more involved example, consider again the example of interval classifiers (Example 2), again un-
der P uniform on [0,1]. Now for any h[a,b] ∈ C with b− a > 0, for any sufficiently small r > 0,
B(h[a,b],r) = {h[a′,b′] : |a− a′|+ |b− b′| ≤ r}, and DIS(B(h[a,b],r)) = [a− r,a+ r)∪ (b− r,b+ r].
Therefore, ∂h[a,b] = lim

r→0
DIS(B(h[a,b],r)) = lim

r→0
[a− r,a+ r)∪ (b− r,b+ r] = {a,b}. Thus, in this

case as well, the disagreement core of h[a,b] with respect to C and P is again the decision boundary
of the classifier.
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As the above two examples illustrate, ∂ f often corresponds to the decision boundary of f in
some geometric interpretation of X and f . Indeed, under fairly general conditions on C and P ,
the disagreement core of f does correspond to (a subset of) the set of points dividing the two
label regions of f ; for instance, Friedman (2009) derives sufficient conditions, under which this is
the case. In these cases, the behavior of disagreement-based active learning algorithms can often
be interpreted in the intuitive terms of seeking label requests near the decision boundary of the
target function, to refine an estimate of that boundary. However, in some more subtle scenarios
this is no longer the case, for interesting reasons. To illustrate this, let us continue the example of
interval classifiers from above, but now consider h[a,a] (i.e., h[a,b] with a = b). This time, for any
r ∈ (0,1) we have B(h[a,a],r) = {h[a′,b′] ∈ C : b′ −a′ ≤ r}, and DIS(B(h[a,a],r)) = (0,1). Therefore,
∂h[a,a] = lim

r→0
DIS(B(h[a,a],r)) = lim

r→0
(0,1) = (0,1).

This example shows that in some cases, the disagreement core does not correspond to the de-
cision boundary of the classifier, and indeed has P(∂ f ) > 0. Intuitively, as in the above example,
this typically happens when the decision surface of the classifier is in some sense simpler than it
could be. For instance, consider the space C of unions of two intervals (Example 3 with i = 2)
under uniform P . The classifiers f ∈ C with P(∂ f ) > 0 are precisely those representable (up to
probability zero differences) as a single interval. The others (with 0 < z1 < z2 < z3 < z4 < 1) have
∂hz = {z1, z2, z3, z4}. In these examples, the f ∈ C with P(∂ f )> 0 are not only simpler than other
nearby classifiers in C, but they are also in some sense degenerate relative to the rest of C; however,
it turns out this is not always the case, as there exist scenarios (C,P), even with d = 2, and even
with countable C, for which every f ∈ C has P(∂ f )> 0; in these cases, every classifier is in some
important sense simpler than some other subset of nearby classifiers in C.

In Section 3.3, we show that the label complexity of disagreement-based active learning is in-
timately tied to the disagreement core. In particular, scenarios where P(∂ f ) > 0, such as those
mentioned above, lead to the conclusion that disagreement-based methods are sometimes insuffi-
cient for activized learning. This motivates the design of more sophisticated methods in Section 4,
which overcome this deficiency, along with a corresponding refinement of the definition of “dis-
agreement core ” in Section 5.2 that eliminates the above issue with “simple” classifiers.

3.3 Necessary and Sufficient Conditions for Disagreement-Based Activized Learning

In the specific case of Meta-Algorithm 0, for large n we may intuitively expect it to focus its second
batch of label requests in and around the disagreement core of the target function. Thus, when-
ever P(∂ f ) = 0, we should expect the label requests to be quite focused, and therefore the algo-
rithm should achieve smaller label complexity compared to passive learning. On the other hand, if
P(∂ f )> 0, then the label requests will not become focused beyond a constant fraction of the space,
so that the improvements achieved by Meta-Algorithm 0 over passive learning should be, at best, a
constant factor. This intuition is formalized in the following general theorem, the proof of which is
included in Appendix A.

Theorem 5 For any VC class C, Meta-Algorithm 0 is a universal activizer for C if and only if every
f ∈ C and distribution P has P (∂C,P f ) = 0.

While the formal proof is given in Appendix A, the general idea is simple. As we always have
f ∈V , any ŷ inferred in Step 6 must equal f (x), so that all of the labels in L are correct. Also, as n
grows large, classic results on passive learning imply the diameter of the set V will become small,
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shrinking to zero as n→∞ (Vapnik and Chervonenkis, 1971; Vapnik, 1982; Blumer, Ehrenfeucht,
Haussler, and Warmuth, 1989). Therefore, as n→∞, DIS(V ) should converge to a subset of ∂ f ,
so that in the case P(∂ f ) = 0, we have Δ̂→ 0; thus |L|. n, which implies an asymptotic strict
improvement in label complexity over the passive algorithm Ap that L is fed into in Step 8. On the
other hand, since ∂ f is defined by classifiers arbitrarily close to f , it is unlikely that any finite sample
of correctly labeled examples can contradict enough classifiers to make DIS(V ) significantly smaller
than ∂ f , so that we always have P(DIS(V )) ≥ P(∂ f ). Therefore, if P(∂ f )> 0, then Δ̂ converges
to some nonzero constant, so that |L| = O(n), representing only a constant factor improvement in
label complexity. In fact, as is implied from this sketch (and is proven in Appendix A), the targets
f and distributions P for which Meta-Algorithm 0 achieves asymptotic strict improvements for all
passive learning algorithms (for which f and P are nontrivial) are precisely those (and only those)
for which P(∂C,P f ) = 0.

There are some general conditions under which the zero-probability disagreement cores con-
dition of Theorem 5 will hold. For instance, it is not difficult to show this will always hold when
X is countable. Furthermore, with some effort one can show it will hold for most classes having
VC dimension one (e.g., any countable C with d = 1). However, as we have seen, not all spaces
C satisfy this zero-probability disagreement cores property. In particular, for the interval classifiers
studied in Section 3.2, we have P(∂h[a,a]) = P((0,1)) = 1. Indeed, the aforementioned special
cases aside, for most nontrivial spaces C, one can construct distributions P that in some sense make
C mimic the intervals problem, so that we should typically expect disagreement-based methods will
not be activizers. For detailed discussions of various scenarios where the P(∂C,P f ) = 0 condition
is (or is not) satisfied for various C, P , and f , see the works of Hanneke (2009b), Hanneke (2007b),
Hanneke (2011), Balcan, Hanneke, and Vaughan (2010), Friedman (2009), Wang (2009) and Wang
(2011).

4. Beyond Disagreement: A Basic Activizer

Since the zero-probability disagreement cores condition of Theorem 5 is not always satisfied, we are
left with the question of whether there could be other techniques for active learning, beyond simple
disagreement-based methods, which could activize every passive learning algorithm for every VC
class. In this section, we present an entirely new type of active learning algorithm, unlike anything
in the existing literature, and we show that indeed it is a universal activizer for any class C of finite
VC dimension.

4.1 A Basic Activizer

As mentioned, the case P(∂ f ) = 0 is already handled nicely by disagreement-based methods, since
the label requests made in the second stage of Meta-Algorithm 0 will become focused into a small
region, and L therefore grows faster than n. Thus, the primary question we are faced with is what
to do when P(∂ f ) > 0. Since (loosely speaking) we have DIS(V )→ ∂ f in Meta-Algorithm 0,
P(∂ f )> 0 corresponds to scenarios where the label requests of Meta-Algorithm 0 will not become
focused beyond a certain extent; specifically, as we show in Appendix B (Lemmas 35 and 36),
P(DIS(V )⊕∂ f )→ 0 almost surely, where ⊕ is the symmetric difference, so that we expect Meta-
Algorithm 0 will request labels for at least some constant fraction of the examples in L.

On the one hand, this is definitely a major problem for disagreement-based methods, since it
prevents them from improving over passive learning in those cases. On the other hand, if we do not
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restrict ourselves to disagreement-based methods, we may actually be able to exploit properties of
this scenario, so that it works to our advantage. In particular, in addition to the fact that P(DIS(V )⊕
∂C f )→ 0, we show in Appendix B (Lemma 35) that P(∂V f ⊕∂C f ) = 0 (almost surely) in Meta-
Algorithm 0; this implies that for sufficiently large n, a random point x1 in DIS(V ) is likely to be in
∂V f . We can exploit this fact by using x1 to split V into two subsets: V [(x1,+1)] and V [(x1,−1)].
Now, if x1 ∈ ∂V f , then (by definition of the disagreement core) inf

h∈V [(x1,+1)]
er(h) = inf

h∈V [(x1,−1)]
er(h) =

0. Therefore, for almost every point x /∈ DIS(V [(x1,+1)]), the label agreed upon for x by classifiers
in V [(x1,+1)] should be f (x). Likewise, for almost every point x /∈ DIS(V [(x1,−1)]), the label
agreed upon for x by classifiers inV [(x1,−1)] should be f (x). Thus, we can accurately infer the label
of any point x /∈ DIS(V [(x1,+1)])∩DIS(V [(x1,−1)]) (except perhaps a zero-probability subset).
With these setsV [(x1,+1)] andV [(x1,−1)] in hand, there is no longer a need to request the labels of
points for which either of them has agreement about the label, and we can focus our label requests
to the region DIS(V [(x1,+1)])∩DIS(V [(x1,−1)]), which may be much smaller than DIS(V ). Now
if P(DIS(V [(x1,+1)])∩DIS(V [(x1,−1)]))→ 0, then the label requests will become focused to a
shrinking region, and by the same reasoning as for Theorem 5 we can asymptotically achieve strict
improvements over passive learning by a method analogous to Meta-Algorithm 0 (with the above
changes).

Already this provides a significant improvement over disagreement-based methods in many
cases; indeed, in some cases (such as intervals) this fully addresses the nonzero-probability dis-
agreement core issue in Theorem 5. In other cases (such as unions of two intervals), it does
not completely address the issue, since for some targets we do not have P(DIS(V [(x1,+1)])∩
DIS(V [(x1,−1)]))→ 0. However, by repeatedly applying this same reasoning, we can address
the issue in full generality. Specifically, if P(DIS(V [(x1,+1)]) ∩DIS(V [(x1,−1)])) " 0, then
DIS(V [(x1,+1)]) ∩DIS(V [(x1,−1)]) essentially converges to a region ∂C[(x1,+1)] f ∩ ∂C[(x1,−1)] f ,
which has nonzero probability, and is nearly equivalent to ∂V [(x1,+1)] f ∩∂V [(x1,−1)] f . Thus, for suffi-
ciently large n, a random x2 in DIS(V [(x1,+1)])∩DIS(V [(x1,−1)]) will likely be in ∂V [(x1,+1)] f ∩
∂V [(x1,−1)] f . In this case, we can repeat the above argument, this time splitting V into four sets
(V [(x1,+1)][(x2,+1)],V [(x1,+1)][(x2,−1)],V [(x1,−1)][(x2,+1)], andV [(x1,−1)][(x2,−1)]), each
with infimum error rate equal zero, so that for a point x in the region of agreement of any of these
four sets, the agreed-upon label will (almost surely) be f (x), so that we can infer that label. Thus,
we need only request the labels of those points in the intersection of all four regions of disagree-
ment. We can further repeat this process as many times as needed, until we get a partition of V with
shrinking probability mass in the intersection of the regions of disagreement, which (as above) can
then be used to obtain asymptotic improvements over passive learning.

Note that the above argument can be written more concisely in terms of shattering. That is, any
x ∈DIS(V ) is simply an x such thatV shatters {x}; a point x ∈DIS(V [(x1,+1)])∩DIS(V [(x1,−1)])
is simply one for whichV shatters {x1,x}, and for any x /∈DIS(V [(x1,+1)])∩DIS(V [(x1,−1)]), the
label y we infer about x has the property that the setV [(x,−y)] does not shatter {x1}. This continues
for each repetition of the above idea, with x in the intersection of the four regions of disagreement
simply being one for which V shatters {x1,x2,x}, and so on. In particular, this perspective makes it
clear that we need only repeat this idea at most d times to get a shrinking intersection region, since
no set of d+ 1 points is shatterable. Note that there may be unobservable factors (e.g., the target
function) determining the appropriate number of iterations of this idea sufficient to have a shrinking
probability of requesting a label, while maintaining the accuracy of inferred labels. To address this,
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we can simply try all d+ 1 possibilities, and then select one of the resulting d+ 1 classifiers via a
kind of tournament of pairwise comparisons. Also, in order to reduce the probability of a mistaken
inference due to x1 /∈ ∂V f (or similarly for later xi), we can replace each single xi with multiple
samples, and then take a majority vote over whether to infer the label, and which label to infer if
we do so; generally, we can think of this as estimating certain probabilities, and below we write
these estimators as P̂m, and discuss the details of their implementation later. Combining Meta-
Algorithm 0 with the above reasoning motivates a new type of active learning algorithm, referred to
as Meta-Algorithm 1 below, and stated as follows.

Meta-Algorithm 1
Input: passive algorithm Ap, label budget n
Output: classifier ĥ

0. Request the first mn = 3n/34 labels, {Y1, . . . ,Ymn}, and let t← mn
1. Let V = {h ∈ C : ermn(h) = 0}
2. For k = 1,2, . . . ,d+1
3. Δ̂(k)← P̂mn

(

x : P̂
(

S ∈ X k−1 :V shatters S∪{x}|V shatters S
)

≥ 1/2
)

4. Let Lk← {}
5. For m= mn+1, . . . ,mn+ 3n/(6 ·2kΔ̂(k))4
6. If P̂m

(

S ∈ X k−1 :V shatters S∪{Xm}|V shatters S
)

≥ 1/2 and t < 32n/34
7. Request the label Ym of Xm, and let ŷ← Ym and t← t+1
8. Else, let ŷ← argmax

y∈{−1,+1}
P̂m
(

S ∈ X k−1 :V [(Xm,−y)] does not shatter S|V shatters S
)

9. Let Lk← Lk∪{(Xm, ŷ)}
10. Return ActiveSelect({Ap(L1),Ap(L2), . . . ,Ap(Ld+1)},3n/34,{Xmn+maxk |Lk|+1, . . .})

Subroutine: ActiveSelect
Input: set of classifiers {h1,h2, . . . ,hN}, label budget m, sequence of unlabeled examples U
Output: classifier ĥ

0. For each j,k ∈ {1,2, . . . ,N} s.t. j < k,
1. Let Rjk be the first

⌊

m
j(N− j) ln(eN)

⌋

points in U∩{x : h j(x) &= hk(x)} (if such values exist)
2. Request the labels for Rjk and let Qjk be the resulting set of labeled examples
3. Let mk j = erQjk(hk)
4. Return hk̂, where k̂ = max

{

k ∈ {1, . . . ,N} : max j<k mk j ≤ 7/12
}

Meta-Algorithm 1 is stated as a function of three types of estimated probabilities: namely,

P̂m
(

S ∈ X k−1 :V shatters S∪{x}
∣

∣

∣
V shatters S

)

,

P̂m
(

S ∈ X k−1 :V [(x,−y)] does not shatter S
∣

∣

∣
V shatters S

)

,

and P̂m
(

x : P̂
(

S ∈ X k−1 :V shatters S∪{x}
∣

∣

∣
V shatters S

)

≥ 1/2
)

.

These can be defined in a variety of ways to make this a universal activizer for C. Generally, the
only requirement seems to be that they converge to the appropriate respective probabilities at a
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sufficiently fast rate. For the theorem stated below regarding Meta-Algorithm 1, we will take the
specific definitions stated in Appendix B.1.

Meta-Algorithm 1 requests labels in three batches: one to initially prune down the version
space V , a second one to construct the labeled samples Lk, and a third batch to select among the
d+ 1 classifiers Ap(Lk) in the ActiveSelect subroutine. As before, the choice of the number of
(unlabeled) examples to process in the second batch guarantees (by a Chernoff bound) that the
“t < 32n/34” constraint in Step 6 is redundant. The mechanism for requesting labels in the second
batch is motivated by the reasoning outlined above, using the shatterable sets S to split V into
2k−1 subsets, each of which approximates the target with high probability (for large n), and then
checking whether the new point x is in the regions of disagreement for all 2k−1 subsets (by testing
shatterability of S∪{x}). To increase confidence in this test, we use many such S sets, and let them
vote on whether or not to request the label (Step 6). As mentioned, if x is not in the region of
disagreement for one of these 2k−1 subsets (call it V ′), the agreed-upon label y has the property that
V [(x,−y)] does not shatter S (since V [(x,−y)] does not intersect with V ′, which represents one of
the 2k−1 labelings required to shatter S). Therefore, we infer that this label y is the correct label
of x, and again we vote over many such S sets to increase confidence in this choice (Step 8). As
mentioned, this reasoning leads to correctly inferred labels in Step 8 as long as n is sufficiently large
and Pk−1(S∈X k−1 :V shatters S)" 0. In particular, we are primarily interested in the largest value
of k for which this reasoning holds, since this is the value at which the probability of requesting a
label (Step 7) shrinks to zero as n→∞. However, since we typically cannot predict a priori what
this largest valid k value will be (as it is target-dependent), we try all d+1 values of k, to generate
d+1 hypotheses, and then use a simple pairwise testing procedure to select among them; note that
we need at most try d+1 values, since V definitely cannot shatter any S ∈ X d+1. We will see that
the ActiveSelect subroutine is guaranteed to select a classifier with error rate never significantly
larger than the best among the classifiers given to it (say within a factor of 2, with high probability).
Therefore, in the present context, we need only consider whether some k has a set Lk with correct
labels and |Lk|. n.

4.2 Examples

In the next subsection, we state a general result for Meta-Algorithm 1. But first, to illustrate how
this procedure operates, we walk through its behavior on our usual examples; as we did for the
examples of Meta-Algorithm 0, to simplify the explanation, for now we will ignore the fact that
the P̂m values are estimates, as well as the “t < 32n/34” constraint of Step 6, and the issue of
effectiveness of ActiveSelect; in the proofs of the general results below, we will show that these
issues do not fundamentally change the analysis. For now, we merely focus on showing that some
k has Lk correctly labeled and |Lk|. n.

For threshold classifiers (Example 1), we have d = 1. In this case, the k = 1 round of the
algorithm is essentially identical to Meta-Algorithm 0 (recall our conventions that X 0 = {∅},
P(X 0) = 1, and V shatters ∅ iff V &= {}), and we therefore have |L1|. n, as discussed previ-
ously, so that Meta-Algorithm 1 is a universal activizer for threshold classifiers.

Next consider interval classifiers (Example 2), with P uniform on [0,1]; in this case, we have
d = 2. If f = h[a,b] for a < b, then again the k = 1 round behaves essentially the same as Meta-
Algorithm 0, and since we have seen P(∂h[a,b]) = 0 in this case, we have |L1|. n. However, the
behavior becomes far more interesting when f = h[a,a], which was precisely the case that prevented
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Meta-Algorithm 0 from improving over passive learning. In this case, as we know from above,
the k = 1 round will have |L1| = O(n), so that we need to consider larger values of k to identify
improvements. In this case, the k = 2 round behaves as follows. With probability 1, the initial
3n/34 labels used to define V will all be negative. Thus, V is precisely the set of intervals that do
not contain any of the initial 3n/34 points. Now consider any S = {x1} ∈ X 1, with x1 not equal to
any of these initial 3n/34 points, and consider any x /∈ {x1,X1, . . . ,X3n/34}. First note that V shatters
S, since we can optionally put a small interval around x1 using an element of V . If there is a point
x′ among the initial 3n/34 between x and x1, then any h[a,b] ∈ V with x ∈ [a,b] cannot also have
x1 ∈ [a,b], as it would also contain the observed negative point between them. Thus, V does not
shatter {x1,x}= S∪{x}, so that this S will vote to infer (rather than request) the label of x in Step 6.
Furthermore, we see that V [(x,+1)] does not shatter S, while V [(x,−1)] does shatter S, so that this
S would also vote for the label ŷ=−1 in Step 8. For sufficiently large n, with high probability, any
given x not equal one of the initial 3n/34 should have most (probability at least 1−O(n−1 logn))
of the possible x1 values separated from it by at least one of the initial 3n/34 points, so that the
outcome of the vote in Step 6 will be a decision to infer (not request) the label, and the vote in
Step 8 will be for −1. Since, with probability one, every Xm &= a, we have every Ym = −1, so that
every point in L2 is labeled correctly. This also indicates that, for sufficiently large n, we have
P(x : P1(S ∈X 1 :V shatters S∪{x}|V shatters S)≥ 1/2) = 0, so that the size of L2 is only limited
by the precision of estimation in P̂mn in Step 3. Thus, as long as we implement P̂mn so that its value
is at most o(1) larger than the true probability, we can guarantee |L2|. n.

The unions of i intervals example (Example 3), again under P uniform on [0,1], is slightly
more involved; in this case, the appropriate value of k to consider for any given target depends on
the minimum number of intervals necessary to represent the target function (up to zero-probability
differences). If j intervals are required for this, then the appropriate value is k = i− j+1. Specifi-
cally, suppose the target is minimally representable as a union of j ∈ {1, . . . , i} intervals of nonzero
width: [z1, z2]∪ [z3, z4]∪ · · ·∪ [z2 j−1, z2 j]: that is, z1 < z2 < .. . < z2 j−1 < z2 j. Every target in C

has distance zero to some classifier of this type, and will agree with that classifier on all samples
with probability one, so we lose no generality by assuming all j intervals have nonzero width. Then
consider any x ∈ (0,1) and S = {x1, . . . ,xi− j} ∈ X i− j such that, between any pair of elements of
S∪{x}∪{z1, . . . , z2 j}, there is at least one of the initial 3n/34 points, and none of S∪{x} are them-
selves equal to any of those initial points. First note that V shatters S, since for any x! not in one of
the [z2p−1, z2p] intervals (i.e., negative), we may optionally add an interval [x!,x!] while staying inV ,
and for any x! in one of the [z2p−1, z2p] intervals (i.e., positive), we may optionally split [z2p−1, z2p]
into two intervals to barely exclude the point x! (and a small neighborhood around it), by adding at
most one interval to the representation; thus, in total we need to add at most i− j intervals to the
representation, so that the largest number of intervals used by any of these 2i− j classifiers involved
in shattering is i, as required; furthermore, note that one of these 2i− j classifiers actually requires i
intervals. Now for any such x and S as above, since one of the 2i− j classifiers in V used to shatter
S requires i intervals to represent it, and x is separated from each element of S∪ {z1, . . . , z2 j} by a
labeled example, we see that V cannot shatter S∪ {x}. Furthermore, if f (x) = y, then any labeled
example to the immediate left or right of x is also labeled y, and in particular among the 2i− j classi-
fiers h from V that shatter S, the one h that requires i intervals to represent must also have h(x) = y,
so that V [(x,−y)] does not shatter S. Thus, any set S satisfying this separation property will vote to
infer (rather than request) the label of x in Step 6, and will vote for the label f (x) in Step 8. Fur-
thermore, for sufficiently large n, for any given x separated from {z1, . . . , z2 j} by {X1, . . . ,X3n/34},
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with high probability most of the sets S ∈ X i− j will satisfy this pairwise separation property, and
therefore so will most of the shatterable sets S ∈ X i− j, so that the overall outcome of the votes will
favor inferring the label of x, and in particular inferring the label f (x) for x. On the other hand, for x
not satisfying this property (i.e., not separated from some zp by any of the initial 3n/34 examples),
for any set S as above, V can shatter S∪{x}, since we can optionally increase or decrease this zp to
include or exclude x from the associated interval, in addition to optionally adding the extra intervals
to shatter S; therefore, by the same reasoning as above, for sufficiently large n, any such x will sat-
isfy the condition in Step 6, and thus have its label requested. Thus, for sufficiently large n, every
example in Li− j+1 will be labeled correctly. Finally, note that with probability one, the set of points
x separated from each of the zp values by at least one of the 3n/34 initial points has probability
approaching one as n→∞, so that again we have |Li− j+1|. n.

The above examples give some intuition about the operation of this procedure. Next, we turn to
general results showing that this type of improvement generally holds.

4.3 General Results on Activized Learning

Returning to the abstract setting, we have the following general theorem, representing one of the
main results of this paper. Its proof is included in Appendix B.

Theorem 6 For any VC class C, Meta-Algorithm 1 is a universal activizer for C.

This result is interesting both for its strength and generality. Recall that it means that given any
passive learning algorithm Ap, the active learning algorithm obtained by providing Ap as input to
Meta-Algorithm 1 achieves a label complexity that strongly dominates that of Ap for all nontrivial
distributions P and target functions f ∈ C. Results of this type were not previously known. The
specific technical advance over existing results (namely, those of Balcan, Hanneke, and Vaughan,
2010) is the fact that Meta-Algorithm 1 has no direct dependence on the distribution P; as mentioned
earlier, the (very different) approach proposed by Balcan, Hanneke, and Vaughan (2010) has a strong
direct dependence on the distribution, to the extent that the distribution-dependence in that approach
cannot be removed by merely replacing certain calculations with data-dependent estimators (as we
did in Meta-Algorithm 1). In the proof, we actually show a somewhat more general result: namely,
that Meta-Algorithm 1 achieves these asymptotic improvements for any target function f in the
closure of C (i.e., any f such that ∀r > 0,B( f ,r) &= ∅).

The following corollary is one concrete implication of Theorem 6.

Corollary 7 For any VC class C, there exists an active learning algorithm achieving a label com-
plexity Λa such that, for all target functions f ∈ C and distributions P ,

Λa(ε , f ,P) = o(1/ε).

Proof The one-inclusion graph passive learning algorithm of Haussler, Littlestone, and Warmuth
(1994) is known to achieve label complexity at most d/ε , for every target function f ∈ C and dis-
tribution P . Thus, Theorem 6 implies that the (Meta-Algorithm 1)-activized one-inclusion graph
algorithm satisfies the claim.

As a byproduct, Theorem 6 also establishes the basic fact that there exist activizers. In some
sense, this observation opens up a new realm for exploration: namely, characterizing the properties

1494



ACTIVIZED LEARNING

that activizers can possess. This topic includes a vast array of questions, many of which deal with
whether activizers are capable of preserving various properties of the given passive algorithm (e.g.,
margin-based dimension-independence, minimaxity, admissibility, etc.). Section 7 describes a vari-
ety of enticing questions of this type. In the sections below, we will consider quantifying how large
the gap in label complexity between the given passive learning algorithm and the resulting activized
algorithm can be. We will additionally study the effects of label noise on the possibility of activized
learning.

4.4 Implementation and Efficiency

Meta-Algorithm 1 typically also has certain desirable efficiency guarantees. Specifically, suppose
that for any m labeled examples Q, there is an algorithm with poly(d ·m) running time that finds
some h ∈ C with erQ(h) = 0 if one exists, and otherwise returns a value indicating that no such
h exists in C; for many concept spaces there are known methods with this capability (e.g., linear
or polynomial separators, rectangles, k-DNF) (Khachiyan, 1979; Karmarkar, 1984; Valiant, 1984;
Kearns and Vazirani, 1994), while for others this is known to be hard (e.g., k-term DNF, bounded-
size decision trees) (Pitt and Valiant, 1988; Alekhnovich, Braverman, Feldman, Klivans, and Pitassi,
2004). Given such a subroutine, we can create an efficient implementation of the main body of
Meta-Algorithm 1. Specifically, rather than explicitly representing V in Step 1, we can simply store
the set Q0 = {(X1,Y1), . . . ,(Xmn ,Ymn)}. Then for any step in the algorithm where we need to test
whether V shatters a set R, we can simply try all 2|R| possible labelings of R, and for each one
temporarily add these |R| additional labeled examples to Q0 and check whether there is an h ∈ C

consistent with all of the labels. At first, it might seem that these 2k evaluations would be prohibitive;
however, supposing P̂mn is implemented so that it is Ω(1/poly(n)) (as it is in Appendix B.1), note
that the loop beginning at Step 5 executes a nonzero number of times only if n/Δ̂(k) > 2k, so that
2k ≤ poly(n); we can easily add a condition that skips the step of calculating Δ̂(k) if 2k exceeds this
poly(n) lower bound on n/Δ̂(k), so that even those shatterability tests can be skipped in this case.
Thus, for the actual occurrences of it in the algorithm, testing whether V shatters R requires only
poly(n) ·poly(d · (|Q0|+ |R|)) time. The total number of times this test is performed in calculating
Δ̂(k) (from Appendix B.1) is itself only poly(n), and the number of iterations of the loop in Step 5 is
at most n/Δ̂(k) = poly(n). Determining the label ŷ in Step 8 can be performed in a similar fashion.
So in general, the total running time of the main body of Meta-Algorithm 1 is poly(d ·n).

The only remaining question is the efficiency of the final step. Of course, we can require Ap
to have running time polynomial in the size of its input set (and d). But beyond this, we must con-
sider the efficiency of the ActiveSelect subroutine. This actually turns out to have some subtleties
involved. The way it is stated above is simple and elegant, but not always efficient. Specifically,
we have no a priori bound on the number of unlabeled examples the algorithm must process before
finding a point Xm where h j(Xm) &= hk(Xm). Indeed, if P(x : h j(x) &= hk(x)) = 0, we may effectively
need to examine the entire infinite sequence of Xm values to determine this. Fortunately, these prob-
lems can be corrected without difficulty, simply by truncating the search at a predetermined number
of points. Specifically, rather than taking the next 3m/

(N
2
)

4 examples for which h j and hk disagree,
simply restrict ourselves to at most this number, or at most the number of such points among the
next M unlabeled examples. In Appendix B, we show that ActiveSelect, as originally stated, has
a high-probability (1− exp{−Ω(m)}) guarantee that the classifier it selects has error rate at most
twice the best of the N it is given. With the modification to truncate the search at M unlabeled exam-

1495



HANNEKE

ples, this guarantee is increased to mink er(hk)+max{er(hk),m/M}. For the concrete guarantee of
Corollary 7, it suffices to take M. m2. However, to guarantee the modified ActiveSelect can still
be used in Meta-Algorithm 1 while maintaining (the stronger) Theorem 6, we need M at least as big
as Ω (min{exp{mc} ,m/mink er(hk)}), for any constant c > 0. In general, if we have a 1/poly(n)
lower bound on the error rate of the classifier produced by Ap for a given number of labeled ex-
amples as input, we can set M as above using this lower bound in place of mink er(hk), resulting
in an efficient version of ActiveSelect that still guarantees Theorem 6. However, it is presently not
known whether there always exist universal activizers for C that are efficient (either poly(d · n) or
poly(d/ε) running time) when the above assumptions on efficiency of Ap and finding h ∈ C with
erQ(h) = 0 hold.

5. The Magnitudes of Improvements

In the previous section, we saw that we can always improve the label complexity of a passive
learning algorithm by activizing it. However, there remains the question of how large the gap is
between the passive algorithm’s label complexity and the activized algorithm’s label complexity.
In the present section, we refine the above procedures to take greater advantage of the sequential
nature of active learning. For each, we characterize the improvements it achieves relative to any
given passive algorithm.

As a byproduct, this provides concise sufficient conditions for exponential gains, addressing
an open problem of Balcan, Hanneke, and Vaughan (2010). Specifically, consider the following
definition, essentially similar to one explored by Balcan, Hanneke, and Vaughan (2010).

Definition 8 For a concept space C and distribution P , we say that (C,P) is learnable at an ex-
ponential rate if there exists an active learning algorithm achieving label complexity Λ such that,
∀ f ∈ C, Λ(ε , f ,P) ∈ Polylog(1/ε). We further say C is learnable at an exponential rate if there
exists an active learning algorithm achieving label complexity Λ such that, for all distributions P
and all f ∈ C, Λ(ε , f ,P) ∈ Polylog(1/ε).

5.1 The Label Complexity of Disagreement-Based Active Learning

As before, to establish a foundation to build upon, we begin by studying the label complexity gains
achievable by disagreement-based active learning. From above, we already know that disagreement-
based active learning is not sufficient to achieve the best possible gains; but as before, it will serve as
a suitable starting place to gain intuition for how we might approach the problem of improving Meta-
Algorithm 1 and quantifying the improvements achievable over passive learning by the resulting
more sophisticated methods.

The upper bounds on the label complexity of disagreement-based learning in this subsection are
essentially already known and available in the published literature (though in a slightly less gen-
eral form). Specifically, we review (a modified version of) the method of Cohn, Atlas, and Ladner
(1994), referred to as Meta-Algorithm 2 below, which was historically the original disagreement-
based active learning algorithm. We then state the known results on the label complexities achiev-
able by this method, in terms of a quantity known as the disagreement coefficient; that result is due
to Hanneke (2011, 2007b). We further provide a novel lower bound on the label complexity of this
method, again in terms of the disagreement coefficient; in particular, this shows that the stated upper
bounds represent a fairly tight analysis of this method.
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5.1.1 THE CAL ACTIVE LEARNING ALGORITHM

To begin, we consider the following simple disagreement-based method, typically referred to as
CAL after its discoverers Cohn, Atlas, and Ladner (1994), though the version here is slightly modi-
fied compared to the original (see below). It essentially represents a refinement of Meta-Algorithm
0 to take greater advantage of the sequential aspect of active learning. That is, rather than request-
ing only two batches of labels, as in Meta-Algorithm 0, this method updates the version space after
every label request, thus focusing the region of disagreement (and therefore the region in which it
requests labels) after each label request.

Meta-Algorithm 2
Input: passive algorithm Ap, label budget n
Output: classifier ĥ

0. V ← C, t← 0, m← 0, L← {}
1. While t < 5n/26 and m≤ 2n
2. m← m+1
3. If Xm ∈ DIS(V )
4. Request the label Ym of Xm and let t← t+1
5. Let V ←V [(Xm,Ym)]
6. Let Δ̂← P̂m(DIS(V ))
7. Do 3n/(6Δ̂)4 times
8. m← m+1
9. If Xm ∈ DIS(V ) and t < n
10. Request the label Ym of Xm and let ŷ← Ym and t← t+1
11. Else let ŷ= h(Xm) for an arbitrary h ∈V
12. Let L← L∪{(Xm, ŷ)} and V ←V [(Xm, ŷ)]
13. Return Ap(L)

The procedure is specified in terms of an estimator P̂m; for our purposes, we define this as in
(13) of Appendix B.1 (with k= 1 there). Every example Xm added to the set L in Step 12 either has
its label requested (Step 10) or inferred (Step 11). By the same Chernoff bound argument mentioned
for the previous methods, we are guaranteed (with high probability) that the “t < n” constraint in
Step 9 is always satisfied when Xm ∈DIS(V ). Since we assume f ∈C, an inductive argument shows
that we will always have f ∈ V as well; thus, every label requested or inferred will agree with f ,
and therefore the labels in L are all correct.

As with Meta-Algorithm 0, this method has two stages to it: one in which we focus on reducing
the version space V , and a second in which we focus on constructing a set of labeled examples to
feed into the passive algorithm. The original algorithm of Cohn, Atlas, and Ladner (1994) essen-
tially used only the first stage, and simply returned any classifier inV after exhausting its budget for
label requests. Here we have added the second stage (Steps 6-13) so that we can guarantee a certain
conditional independence (given |L|) among the examples fed into the passive algorithm, which is
important for the general results (Theorem 10 below). Hanneke (2011) showed that the original
(simpler) algorithm achieves the (less general) label complexity bound of Corollary 11 below.
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5.1.2 EXAMPLES

Not surprisingly, by essentially the same argument as Meta-Algorithm 0, one can show Meta-
Algorithm 2 satisfies the claim in Theorem 5. That is, Meta-Algorithm 2 is a universal activizer
for C if and only if P(∂ f ) = 0 for every P and f ∈ C. However, there are further results known on
the label complexity achieved by Meta-Algorithm 2. Specifically, to illustrate the types of improve-
ments achievable by Meta-Algorithm 2, consider our usual toy examples; as before, to simplify the
explanation, for these examples we ignore the fact that P̂m is only an estimate, as well as the “t < n”
constraint in Step 9 (both of which will be addressed in the general results below).

First, consider threshold classifiers (Example 1) under a uniform P on [0,1], and suppose
f = hz ∈ C. Suppose the given passive algorithm has label complexity Λp. To get expected error at
most ε in Meta-Algorithm 2, it suffices to have |L|≥Λp(ε/2, f ,P) with probability at least 1−ε/2.
Starting from any particular V set obtained in the algorithm, call it V0, the set DIS(V0) is simply the
region between the largest negative example observed so far (say z!) and the smallest positive exam-
ple observed so far (say zr). With probability at least 1− ε/n, at least one of the next O(log(n/ε))
examples in this [z!, zr] region will be in [z!+(1/3)(zr−z!), zr− (1/3)(zr−z!)], so that after pro-
cessing that example, we definitely have P(DIS(V ))≤ (2/3)P(DIS(V0)). Thus, upon reaching Step
6, since we have made n/2 label requests, a union bound implies that with probability 1− ε/2, we
have P(DIS(V )) ≤ exp{−Ω(n/ log(n/ε))}, and therefore |L| ≥ exp{Ω(n/ log(n/ε))}. Thus, for
some value Λa(ε , f ,P) = O(log(Λp(ε/2, f ,P)) log(log(Λp(ε/2, f ,P))/ε)), any n ≥ Λa(ε , f ,P)
gives |L|≥ Λp(ε/2, f ,P) with probability at least 1− ε/2, so that the activized algorithm achieves
label complexity Λa(ε , f ,P) ∈ Polylog(Λp(ε/2, f ,P)/ε).

Consider also the intervals problem (Example 2) under a uniform P on [0,1], and suppose
f = h[a,b] ∈ C, for b > a. In this case, as with any disagreement-based algorithm, until the al-
gorithm observes the first positive example (i.e., the first Xm ∈ [a,b]), it will request the label of
every example (see the reasoning above for Meta-Algorithm 0). However, at every time after ob-
serving this first positive point, say x, the region DIS(V ) is restricted to the region between the
largest negative point less than x and smallest positive point, and the region between the largest
positive point and the smallest negative point larger than x. For each of these two regions, the
same arguments used for the threshold problem above can be applied to show that, with probability
1−O(ε), the region of disagreement is reduced by at least a constant fraction every O(log(n/ε))
label requests, so that |L|≥ exp{Ω(n/ log(n/ε))}. Thus, again the label complexity is of the form
O(log(Λp(ε/2, f ,P)) log(log(Λp(ε/2, f ,P))/ε)), which is Polylog(Λp(ε/2, f ,P)/ε), though this
time there is a significant (additive) target-dependent term (roughly ∝ 1

b−a log(1/ε)), accounting for
the length of the initial phase before observing any positive examples. On the other hand, as with
any disagreement-based algorithm, when f = h[a,a], because the algorithm never observes a positive
example, it requests the label of every example it considers; in this case, by the same argument given
for Meta-Algorithm 0, upon reaching Step 6 we have P(DIS(V )) = 1, so that |L| = O(n), and we
observe no improvements for some passive algorithms Ap.

A similar analysis can be performed for unions of i intervals under P uniform on [0,1]. In that
case, we find that any hz ∈C not representable (up to zero-probability differences) by a union of i−1
or fewer intervals allows for the exponential improvements of the type observed in the previous two
examples; this time, the phase of exponentially decreasing P(DIS(V )) only occurs after observing
an example in each of the i intervals and each of the i−1 negative regions separating the intervals,
resulting in an additive term of roughly ∝ 1

min1≤ j<2i z j+1−z j log(i/ε) in the label complexity. However,
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any hz ∈ C representable (up to zero-probability differences) by a union of i− 1 or fewer intervals
has P(∂hz)= 1, which means |L|=O(n), and therefore (as with any disagreement-based algorithm)
Meta-Algorithm 2 will not provide improvements for some passive algorithms Ap.

5.1.3 THE DISAGREEMENT COEFFICIENT

Toward generalizing the arguments from the above examples, consider the following definition of
Hanneke (2007b).

Definition 9 For ε ≥ 0, the disagreement coefficient of a classifier f with respect to a concept space
C under a distribution P is defined as

θ f (ε) = 1∨ sup
r>ε

P (DIS(B( f ,r)))
r

.

Also abbreviate θ f = θ f (0).

Informally, the disagreement coefficient describes the rate of collapse of the region of disagree-
ment, relative to the distance from f . It has been useful in characterizing the label complexities
achieved by several disagreement-based active learning algorithms (Hanneke, 2007b, 2011; Das-
gupta, Hsu, and Monteleoni, 2007; Beygelzimer, Dasgupta, and Langford, 2009; Wang, 2009;
Koltchinskii, 2010; Beygelzimer, Hsu, Langford, and Zhang, 2010), and itself has been studied
and bounded for various families of learning problems (Hanneke, 2007b, 2011; Balcan, Hanneke,
and Vaughan, 2010; Friedman, 2009; Beygelzimer, Dasgupta, and Langford, 2009; Mahalanabis,
2011; Wang, 2011). See the paper of Hanneke (2011) for a detailed discussion of the disagreement
coefficient, including its relationships to several related quantities, as well as a variety of general
properties that it satisfies. In particular, below we use the fact that, for any constant c ∈ [1,∞),
θ f (ε)≤ θ f (ε/c)≤ cθ f (ε). Also note that P(∂ f ) = 0 if and only if θ f (ε) = o(1/ε). See the papers
of Friedman (2009) and Mahalanabis (2011) for some general conditions on C and P , under which
every f ∈ C has θ f <∞, which (as we explain below) has particularly interesting implications for
active learning (Hanneke, 2007b, 2011).

To build intuition about the behavior of the disagreement coefficient, we briefly go through its
calculation for our usual toy examples from above. The first two of these calculations are taken from
Hanneke (2007b), and the last is from Balcan, Hanneke, and Vaughan (2010). First, consider the
thresholds problem (Example 1), and for simplicity suppose the distribution P is uniform on [0,1].
In this case, as in Section 3.2, B(hz,r) = {hz′ ∈ C : |z′ − z|≤ r}, and DIS(B(hz,r))⊆ [z− r, z+ r)
with equality for sufficiently small r. Therefore, P(DIS(B(hz,r)))≤ 2r (with equality for small r),
and θhz(ε)≤ 2 with equality for sufficiently small ε . In particular, θhz = 2.

On the other hand, consider the intervals problem (Example 2), again under P uniform on [0,1].
This time, for h[a,b] ∈ C with b−a> 0, we have for 0 < r < b−a, B(h[a,b],r) = {h[a′,b′] ∈ C : |a−
a′|+ |b−b′|≤ r}, DIS(B(h[a,b],r))⊆ [a−r,a+r)∪(b−r,b+r], and P(DIS(B(h[a,b],r)))≤ 4r (with
equality for sufficiently small r). But for 0 < b−a≤ r, we have B(h[a,b],r)⊇ {h[a′,a′] : a′ ∈ (0,1)},
so that DIS(B(h[a,b],r)) = (0,1) and P(DIS(B(h[a,b],r))) = 1. Thus, we generally have θh[a,b] (ε)≤
max

{ 1
b−a ,4

}

, with equality for sufficiently small ε . However, this last reasoning also indicates ∀r>
0,B(h[a,a],r)⊇ {h[a′,a′] : a′ ∈ (0,1)}, so that DIS(B(h[a,a],r)) = (0,1) and P(DIS(B(h[a,a],r))) = 1;
therefore, θh[a,a] (ε) =

1
ε , the largest possible value for the disagreement coefficient; in particular, this

also means θh[a,a] =∞.
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Finally, consider the unions of i intervals problem (Example 3), again under P uniform on [0,1].
First take any hz ∈ C such that any hz′ ∈ C representable as a union of i− 1 intervals has P({x :
hz(x) &= hz′(x)}) > 0. Then for 0 < r < min

1≤ j<2i
z j+1− z j, B(hz,r) = {hz′ ∈ C :

∑

1≤ j≤2i
|z j− z′j| ≤ r},

so that P(DIS(B(hz,r))) ≤ 4ir, with equality for sufficiently small r. For r > min
1≤ j<2i

z j+1− z j,

B(hz,r) contains a set of classifiers that flips the labels (compared to hz) in that smallest region and
uses the resulting extra interval to disagree with hz on a tiny region at an arbitrary location (either
by encompassing some point with a small interval, or by splitting an interval into two intervals
separated by a small gap). Thus, DIS(B(hz,r))= (0,1), and P(DIS(hz,r))= 1. So in total, θhz(ε)≤

max
{

1
min

1≤ j<2i
z j+1−z j ,4i

}

, with equality for sufficiently small ε . On the other hand, if hz ∈ C can be

represented by a union of i−1 (or fewer) intervals, then we can use the extra interval to disagree with
hz on a tiny region at an arbitrary location, while still remaining in B(hz,r), so that DIS(B(hz,r)) =
(0,1), P(DIS(B(hz,r))) = 1, and θhz(ε) = 1

ε ; in particular, in this case we have θhz =∞.

5.1.4 GENERAL UPPER BOUNDS ON THE LABEL COMPLEXITY OF META-ALGORITHM 2

As mentioned, the disagreement coefficient has implications for the label complexities achievable
by disagreement-based active learning. The intuitive reason for this is that, as the number of label
requests increases, the diameter of the version space shrinks at a predictable rate. The disagreement
coefficient then relates the diameter of the version space to the size of its region of disagreement,
which in turn describes the probability of requesting a label. Thus, the expected frequency of label
requests in the data sequence decreases at a predictable rate related to the disagreement coefficient,
so that |L| in Meta-Algorithm 2 can be lower bounded by a function of the disagreement coefficient.
Specifically, the following result was essentially established by Hanneke (2011, 2007b), though
actually the result below is slightly more general than the original.

Theorem 10 For any VC class C, and any passive learning algorithm Ap achieving label com-
plexity Λp, the active learning algorithm obtained by applying Meta-Algorithm 2 with Ap as input
achieves a label complexity Λa that, for any distribution P and classifier f ∈ C, satisfies

Λa(ε , f ,P) = O
(

θ f
(

Λp(ε/2, f ,P)−1) log2 Λp(ε/2, f ,P)

ε

)

.

The proof of Theorem 10 is similar to the original result of Hanneke (2011, 2007b), with only
minor modifications to account for using Ap instead of returning an arbitrary element of V . The
formal details are implicit in the proof of Theorem 16 below (since Meta-Algorithm 2 is essentially
identical to the k= 1 round of Meta-Algorithm 3, defined below). We also have the following simple
corollaries.

Corollary 11 For any VC class C, there exists a passive learning algorithmAp such that, for every
f ∈C and distributionP , the active learning algorithm obtained by applying Meta-Algorithm 2 with
Ap as input achieves label complexity

Λa(ε , f ,P) = O
(

θ f (ε) log2 (1/ε)
)

.
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Proof The one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth (1994) is a passive
learning algorithm achieving label complexity Λp(ε , f ,P) ≤ d/ε . Plugging this into Theorem 10,
using the fact that θ f (ε/2d)≤ 2dθ f (ε), and simplifying, we arrive at the result. In fact, we will see
in the proof of Theorem 16 that incurring this extra constant factor of d is not actually necessary.

Corollary 12 For any VC class C and distribution P , if ∀ f ∈ C, θ f <∞, then (C,P) is learnable
at an exponential rate. If this is true for all P , then C is learnable at an exponential rate.

Proof The first claim follows directly from Corollary 11, since θ f (ε)≤ θ f . The second claim then
follows from the fact that Meta-Algorithm 2 is adaptive to P (has no direct dependence on P except
via the data).

Aside from the disagreement coefficient and Λp terms, the other constant factors hidden in the
big-O in Theorem 10 are only C-dependent (i.e., independent of f and P). As mentioned, if we are
only interested in achieving the label complexity bound of Corollary 11, we can obtain this result
more directly by the simpler original algorithm of Cohn, Atlas, and Ladner (1994) via the analysis
of Hanneke (2011, 2007b).

5.1.5 GENERAL LOWER BOUNDS ON THE LABEL COMPLEXITY OF META-ALGORITHM 2

It is also possible to prove a kind of lower bound on the label complexity of Meta-Algorithm 2 in
terms of the disagreement coefficient, so that the dependence on the disagreement coefficient in
Theorem 10 is unavoidable. Specifically, there are two simple observations that intuitively explain
the possibility of such lower bounds. The first observation is that the expected number of label
requests Meta-Algorithm 2 makes among the first 51/ε6 unlabeled examples is at least θ f (ε)/2
(assuming it does not halt first). Similarly, the second observation is that, to arrive at a region of
disagreement with expected probability mass less than P(DIS(B( f ,ε)))/2, Meta-Algorithm 2 re-
quires a budget n of size at least θ f (ε)/2. These observations are formalized in Appendix C as
Lemmas 47 and 48. The relevance of these observations in the context of deriving lower bounds
based on the disagreement coefficient is clear. In particular, we can use the latter of these insights to
arrive at the following theorem, which essentially complements Theorem 10, showing that it cannot
generally be improved beyond reducing the constants and logarithmic factors, without altering the
algorithm or introducing additional Ap-dependent quantities in the label complexity bound. The
proof is included in Appendix C.

Theorem 13 For any set of classifiers C, f ∈ C, distribution P , and nonincreasing function λ :
(0,1)→ N, there exists a passive learning algorithm Ap achieving a label complexity Λp with
Λp(ε , f ,P) = λ (ε) for all ε > 0, such that if Meta-Algorithm 2, with Ap as its argument, achieves
label complexity Λa, then

Λa(ε , f ,P) = Ω
(

θ f
(

Λp(2ε , f ,P)−1)) .

Recall that there are many natural learning problems for which θ f =∞, and indeed where
θ f (ε) = Ω(1/ε): for instance, intervals with f = h[a,a] under uniform P , or unions of i intervals un-
der uniform P with f representable as i−1 or fewer intervals. Thus, since we have just seen that the
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improvements gained by disagreement-based methods are well-characterized by the disagreement
coefficient, if we would like to achieve exponential improvements over passive learning for these
problems, we will need to move beyond these disagreement-based methods. In the subsections that
follow, we will use an alternative algorithm and analysis, and prove a general result that is always
at least as good as Theorem 10 (in a big-O sense), and often significantly better (in a little-o sense).
In particular, it leads to a sufficient condition for learnability at an exponential rate, strictly more
general than that of Corollary 12.

5.2 An Improved Activizer

In this subsection, we define a new active learning method based on shattering, as in Meta-Algorithm
1, but which also takes fuller advantage of the sequential aspect of active learning, as in Meta-
Algorithm 2. We will see that this algorithm can be analyzed in a manner analogous to the disagree-
ment coefficient analysis of Meta-Algorithm 2, leading to a new and often dramatically-improved
label complexity bound. Specifically, consider the following meta-algorithm.

Meta-Algorithm 3
Input: passive algorithm Ap, label budget n
Output: classifier ĥ

0. V ←V0 = C, T0← 52n/36, t← 0, m← 0
1. For k = 1,2, . . . ,d+1
2. Let Lk← {}, Tk← Tk−1− t, and let t← 0
3. While t < 5Tk/46 and m≤ k ·2n
4. m← m+1
5. If P̂m

(

S ∈ X k−1 :V shatters S∪{Xm}|V shatters S
)

≥ 1/2
6. Request the label Ym of Xm, and let ŷ← Ym and t← t+1
7. Else let ŷ← argmax

y∈{−1,+1}
P̂m
(

S ∈ X k−1 :V [(Xm,−y)] does not shatter S|V shatters S
)

8. Let V ←Vm =Vm−1 [(Xm, ŷ)]
9. Δ̂(k)← P̂m

(

x : P̂
(

S ∈ X k−1 :V shatters S∪{x}|V shatters S
)

≥ 1/2
)

10. Do 3Tk/(3Δ̂(k))4 times
11. m← m+1
12. If P̂m

(

S ∈ X k−1 :V shatters S∪{Xm}|V shatters S
)

≥ 1/2 and t < 33Tk/44
13. Request the label Ym of Xm, and let ŷ← Ym and t← t+1
14. Else, let ŷ← argmax

y∈{−1,+1}
P̂m
(

S ∈ X k−1 :V [(Xm,−y)] does not shatter S|V shatters S
)

15. Let Lk← Lk∪{(Xm, ŷ)} and V ←Vm =Vm−1 [(Xm, ŷ)]
16. Return ActiveSelect({Ap(L1),Ap(L2), . . . ,Ap(Ld+1)},3n/34,{Xm+1,Xm+2, . . .})

As before, the procedure is specified in terms of estimators P̂m. Again, these can be defined in a
variety of ways, as long as they converge (at a fast enough rate) to their respective true probabilities.
For the results below, we will use the definitions given in Appendix B.1: that is, the same definitions
used in Meta-Algorithm 1. Following the same argument as for Meta-Algorithm 1, one can show
that Meta-Algorithm 3 is a universal activizer for C, for any VC class C. However, we can also
obtain more detailed results in terms of a generalization of the disagreement coefficient given below.
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As with Meta-Algorithm 1, this procedure has three main components: one in which we focus
on reducing the version spaceV , one in which we focus on collecting a (conditionally) i.i.d. sample
to feed into Ap, and one in which we select from among the d+ 1 executions of Ap. However,
unlike Meta-Algorithm 1, here the first stage is also broken up based on the value of k, so that each
k has its own first and second stages, rather than sharing a single first stage. Again, the choice of the
number of (unlabeled) examples processed in each second stage guarantees (by a Chernoff bound)
that the “t < 33Tk/44” constraint in Step 12 is redundant. Depending on the type of label complexity
result we wish to prove, this multistage architecture is sometimes avoidable. In particular, as with
Corollary 11 above, to directly achieve the label complexity bound in Corollary 17 below, we can
use a much simpler approach that replaces Steps 9-16, instead simply returning an arbitrary element
of V upon termination.

Within each value of k, Meta-Algorithm 3 behaves analogous to Meta-Algorithm 2, requesting
the label of an example only if it cannot infer the label from known information, and updating the
version space V after every label request; however, unlike Meta-Algorithm 2, for values of k > 1,
the mechanism for inferring a label is based on shatterable sets, as in Meta-Algorithm 1, and is mo-
tivated by the same argument of splitting V into subsets containing arbitrarily good classifiers (see
the discussion in Section 4.1). Also unlike Meta-Algorithm 2, even the inferred labels can be used
to reduce the set V (Steps 8 and 15), since they are not only correct but also potentially informative
in the sense that x ∈DIS(V ). As with Meta-Algorithm 1, the key to obtaining improvement guaran-
tees is that some value of k has |Lk|. n, while maintaining that all of the labels in Lk are correct;
ActiveSelect then guarantees the overall performance is not too much worse than that obtained by
Ap(Lk) for this value of k.

To build intuition about the behavior of Meta-Algorithm 3, let us consider our usual toy exam-
ples, again under a uniform distribution P on [0,1]; as before, for simplicity we ignore the fact that
P̂m is only an estimate, as well as the constraint on t in Step 12 and the effectiveness of ActiveSelect,
all of which will be addressed in the general analysis. First, for the behavior of the algorithm for
thresholds and nonzero-width intervals, we may simply refer to the discussion of Meta-Algorithm
2, since the k = 1 round of Meta-Algorithm 3 is essentially identical to Meta-Algorithm 2; in this
case, we have already seen that |L1| grows as exp{Ω(n/ log(n/ε))} for thresholds, and does so for
nonzero-width intervals after some initial period of slow growth related to the width of the target
interval (i.e., the period before finding the first positive example). As with Meta-Algorithm 1, for
zero-width intervals, we must look to the k = 2 round of Meta-Algorithm 3 to find improvements.
Also as with Meta-Algorithm 1, for sufficiently large n, every Xm processed in the k = 2 round will
have its label inferred (correctly) in Step 7 or 14 (i.e., it does not request any labels). But this means
we reach Step 9 with m = 2 ·2n+1; furthermore, in these circumstances the definition of P̂m from
Appendix B.1 guarantees (for sufficiently large n) that Δ̂(2) = 2/m, so that |L2|∝n ·m= Ω (n ·2n).
Thus, we expect the label complexity gains to be exponentially improved compared to Ap.

For a more involved example, consider unions of 2 intervals (Example 3), under uniform P
on [0,1], and suppose f = h(a,b,a,b) for b− a > 0; that is, the target function is representable as
a single nonzero-width interval [a,b] ⊂ (0,1). As we have seen, ∂ f = (0,1) in this case, so that
disagreement-based methods are ineffective at improving over passive. This also means the k = 1
round of Meta-Algorithm 3 will not provide improvements (i.e., |L1| = O(n)). However, consider
the k= 2 round. As discussed in Section 4.2, for sufficiently large n, after the first round (k= 1) the
set V is such that any label we infer in the k= 2 round will be correct. Thus, it suffices to determine
how large the set L2 becomes. By the same reasoning as in Section 4.2, for sufficiently large n, the

1503



HANNEKE

examples Xm whose labels are requested in Step 6 are precisely those not separated from both a and
b by at least one of the m−1 examples already processed (sinceV is consistent with the labels of all
m−1 of those examples). But this is the same set of points Meta-Algorithm 2 would query for the
intervals example in Section 5.1; thus, the same argument used there implies that in this problem we
have |L2|≥ exp{Ω(n/ log(n/ε))} with probability 1− ε/2, which means we should expect a label
complexity of O(log(Λp(ε/2, f ,P)) log(log(Λp(ε/2, f ,P))/ε)), where Λp is the label complexity
of Ap. For the case f = h(a,a,a,a), k = 3 is the relevant round, and the analysis goes similarly to the
h[a,a] scenario for intervals above. Unions of i > 2 intervals can be studied analogously, with the
appropriate value of k to analyze being determined by the number of intervals required to represent
the target up to zero-probability differences (see the discussion in Section 4.2).

5.3 Beyond the Disagreement Coefficient

In this subsection, we introduce a new quantity, a generalization of the disagreement coefficient,
which we will later use to provide a general characterization of the improvements achievable by
Meta-Algorithm 3, analogous to how the disagreement coefficient characterized the improvements
achievable by Meta-Algorithm 2 in Theorem 10. First, let us define the following generalization of
the disagreement core.

Definition 14 For an integer k ≥ 0, define the k-dimensional shatter core of a classifier f with
respect to a set of classifiersH and probability measure P as

∂kH,P f = lim
r→0

{

S ∈ X k : BH,P ( f ,r) shatters S
}

.

As before, when P = P , and P is clear from the context, we will abbreviate ∂kH f = ∂kH,P f , and
when we also intend H = C, the full concept space, and C is clearly defined in the given context,
we further abbreviate ∂k f = ∂k

C
f = ∂k

C,P f . We have the following definition, which will play a key
role in the label complexity bounds below.

Definition 15 For any concept space C, distribution P , and classifier f , ∀k ∈ N, ∀ε ≥ 0, define

θ (k)
f (ε) = 1∨ sup

r>ε

Pk (S ∈ X k : B( f ,r) shatters S
)

r
.

Then define
d̃ f = min

{

k ∈ N : Pk
(

∂k f
)

= 0
}

and
θ̃ f (ε) = θ

(d̃ f )
f (ε).

Also abbreviate θ (k)
f = θ (k)

f (0) and θ̃ f = θ̃ f (0).

We might refer to the quantity θ (k)
f (ε) as the order-k (or k-dimensional) disagreement coeffi-

cient, as it represents a direct generalization of the disagreement coefficient θ f (ε). However, rather
than merely measuring the rate of collapse of the probability of disagreement (one-dimensional
shatterability), θ (k)

f (ε) measures the rate of collapse of the probability of k-dimensional shatterabil-

ity. In particular, we have θ̃ f (ε) = θ
(d̃ f )
f (ε) ≤ θ (1)

f (ε) = θ f (ε), so that this new quantity is never
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larger than the disagreement coefficient. However, unlike the disagreement coefficient, we always
have θ̃ f (ε) = o(1/ε) for VC classes C. In fact, we could equivalently define θ̃ f (ε) as the value
of θ (k)

f (ε) for the smallest k with θ (k)
f (ε) = o(1/ε). Additionally, we will see below that there are

many interesting cases where θ f =∞ (even θ f (ε) = Ω(1/ε)) but θ̃ f <∞ (e.g., intervals with a
zero-width target, or unions of i intervals where the target is representable as a union of i− 1 or
fewer intervals). As was the case for θ f , we will see that showing θ̃ f <∞ for a given learning prob-
lem has interesting implications for the label complexity of active learning (Corollary 18 below). In
the process, we have also defined the quantity d̃ f , which may itself be of independent interest in the
asymptotic analysis of learning in general. For VC classes, d̃ f always exists, and in fact is at most
d+1 (since C cannot shatter any d+1 points). When d =∞, the quantity d̃ f might not be defined
(or defined as∞), in which case θ̃ f (ε) is also not defined; in this work we restrict our discussion to
VC classes, so that this issue never comes up; Section 7 discusses possible extensions to classes of
infinite VC dimension.

We should mention that the restriction of θ̃ f (ε)≥ 1 in the definition is only for convenience, as
it simplifies the theorem statements and proofs below. It is not fundamental to the definition, and
can be removed (at the expense of slightly more complicated theorem statements). In fact, this only
makes a difference to the value of θ̃ f (ε) in some (seemingly unusual) degenerate cases. The same
is true of θ f (ε) in Definition 9.

The process of calculating θ̃ f (ε) is quite similar to that for the disagreement coefficient; we
are interested in describing B( f ,r), and specifically the variety of behaviors of elements of B( f ,r)
on points in X , in this case with respect to shattering. To illustrate the calculation of θ̃ f (ε), con-
sider our usual toy examples, again under P uniform on [0,1]. For the thresholds example (Ex-
ample 1), we have d̃ f = 1, so that θ̃ f (ε) = θ (1)

f (ε) = θ f (ε), which we have seen is equal 2 for
small ε . Similarly, for the intervals example (Example 2), any f = h[a,b] ∈ C with b− a > 0 has
d̃ f = 1, so that θ̃ f (ε) = θ (1)

f (ε) = θ f (ε), which for sufficiently small ε , is equal max
{ 1
b−a ,4

}

.
Thus, for these two examples, θ̃ f (ε) = θ f (ε). However, continuing the intervals example, consider
f = h[a,a] ∈ C. In this case, we have seen ∂1 f = ∂ f = (0,1), so that P(∂1 f ) = 1 > 0. For any
x1,x2 ∈ (0,1) with 0 < |x1− x2| ≤ r, B( f ,r) can shatter (x1,x2), specifically using the classifiers
{h[x1,x2],h[x1,x1],h[x2,x2],h[x3,x3]} for any x3 ∈ (0,1) \ {x1,x2}. However, for any x1,x2 ∈ (0,1) with
|x1− x2| > r, no element of B( f ,r) classifies both as +1 (as it would need width greater than r,
and thus would have distance from h[a,a] greater than r). Therefore, {S ∈ X 2 : B( f ,r) shatters S}=
{(x1,x2)∈ (0,1)2 : 0 < |x1−x2|≤ r}; this latter set has probability 2r(1−r)+r2 = (2−r) ·r, which
shrinks to 0 as r→ 0. Therefore, d̃ f = 2. Furthermore, this shows θ̃ f (ε)= θ (2)

f (ε)= supr>ε(2−r)=
2− ε ≤ 2. Contrasting this with θ f (ε) = 1/ε , we see θ̃ f (ε) is significantly smaller than the dis-
agreement coefficient; in particular, θ̃ f = 2 <∞, while θ f =∞.

Consider also the space of unions of i intervals (Example 3) under P uniform on [0,1]. In
this case, we have already seen that, for any f = hz ∈ C not representable (up to zero-probability
differences) by a union of i− 1 or fewer intervals, we have P(∂1 f ) = P(∂ f ) = 0, so that d̃ f = 1,

and θ̃ f = θ (1)
f = θ f = max

{

1
min

1≤p<2i
zp+1−zp ,4i

}

. To generalize this, suppose f = hz is minimally

representable as a union of any number j ≤ i of intervals of nonzero width: [z1, z2]∪ [z3, z4]∪ · · ·∪
[z2 j−1, z2 j], with 0 < z1 < z2 < · · · < z2 j < 1. For our purposes, this is fully general, since every
element of C has distance zero to some hz of this type, and θ̃h = θ̃h′ for any h,h′ with P(x : h(x) &=
h′(x)) = 0. Now for any k < i− j+1, and any S = (x1, . . . ,xk) ∈ X k with all elements distinct, the
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set B( f ,r) can shatter S, as follows. Begin with the intervals [z2p−1, z2p] as above, and modify the
classifier in the following way for each labeling of S. For any of the x! values we wish to label +1,
if it is already in an interval [z2p−1, z2p], we do nothing; if it is not in one of the [z2p−1, z2p] intervals,
we add the interval [x!,x!] to the classifier. For any of the x! values we wish to label −1, if it is not
in any interval [z2p−1, z2p], we do nothing; if it is in some interval [z2p−1, z2p], we split the interval
by setting to −1 the labels in a small region (x!− γ ,x!+ γ), for γ < r/k chosen small enough so
that (x!− γ ,x!+ γ) does not contain any other element of S. These operations add at most k new
intervals to the minimal representation of the classifier as a union of intervals, which therefore has
at most j+ k ≤ i intervals. Furthermore, the classifier disagrees with f on a set of size at most r, so
that it is contained in B( f ,r). We therefore have Pk(S ∈X k : B( f ,r) shatters S) = 1. However, note
that for 0 < r < min

1≤p<2 j
zp+1− zp, for any k and S ∈ X k with all elements of S∪ {zp : 1 ≤ p ≤ 2 j}

separated by a distance greater than r, classifying the points in S opposite to f while remaining
r-close to f requires us to increase to a minimum of j+k intervals. Thus, for k= i− j+1, any S=
(x1, . . . ,xk)∈X k with min

y1,y2∈S∪{zp}p:y1 &=y2
|y1−y2|> r is not shatterable by B( f ,r). We therefore have

{S∈X k : B( f ,r) shatters S}⊆
{

S ∈ X k : min
y1,y2∈S∪{zp}p:y1 &=y2

|y1− y2|≤ r
}

. For r< min
1≤p<2 j

zp+1−zp,

we can bound the probability of this latter set by considering sampling the points x! sequentially;
the probability the !th point is within r of one of x1, . . . ,x!−1, z1, . . . , z2 j is at most 2r(2 j+ !− 1),
so (by a union bound) the probability any of the k points x1, . . . ,xk is within r of any other or any
of z1, . . . , z2 j is at most

∑k
!=1 2r(2 j+ !− 1) = 2r

(

2 jk+
(k

2
)

)

= (1+ i− j)(i+ 3 j)r. Since this

approaches zero as r→ 0, we have d̃ f = i− j+1. Furthermore, this analysis shows θ̃ f = θ (i− j+1)
f ≤

max
{

1
min

1≤p<2 j
zp+1−zp ,(1+ i− j)(i+3 j)

}

. In fact, careful further inspection reveals that this upper

bound is tight (i.e., this is the exact value of θ̃ f ). Recalling that θ f (ε) = 1/ε for j < i, we see that
again θ̃ f (ε) is significantly smaller than the disagreement coefficient; in particular, θ̃ f <∞ while
θ f =∞.

Of course, for the quantity θ̃ f (ε) to be truly useful, we need to be able to describe its behav-
ior for families of learning problems beyond these simple toy problems. Fortunately, as with the
disagreement coefficient, for learning problems with simple “geometric” interpretations, one can
typically bound the value of θ̃ f without too much difficulty. For instance, consider X the surface of
a unit hypersphere in p-dimensional Euclidean space (with p≥ 3), with P uniform on X , and C the
space of linear separators: C= {hw,b(x) = ±

[0,∞)(w ·x+b) :w∈Rp,b∈R}. Balcan, Hanneke, and
Vaughan (2010) proved that (C,P) is learnable at an exponential rate, by a specialized argument
for this space. In the process, they established that for any f ∈ C with P(x : f (x) = +1) ∈ (0,1),
θ f <∞; in fact, a similar argument shows θ f ≤ 4π√p/minyP(x : f (x) = y). Thus, in this case,
d̃ f = 1, and θ̃ f = θ f <∞. However, consider f ∈C with P(x : f (x)= y)= 1 for some y∈ {−1,+1}.
In this case, every h ∈C with P(x : h(x) =−y)≤ r has P(x : h(x) &= f (x))≤ r and is therefore con-
tained in B( f ,r). In particular, for any x∈X , there is such an h that disagrees with f on only a small
spherical cap containing x, so that DIS(B( f ,r)) = X for all r > 0. But this means ∂ f = X , which
implies θ f (ε) = 1/ε and d̃ f > 1. However, let us examine the value of θ (2)

f . Let Ap = 2π p/2

Γ( p2 )
denote

the surface area of the unit sphere in Rp, and let Cp(z) = 1
2ApI2z−z2

(

p−1
2 , 1

2

)

denote the surface

area of a spherical cap of height z ∈ (0,1) (Li, 2011), where Ix(a,b) = Γ(a+b)
Γ(a)Γ(b)

∫ x
0 ta−1(1− t)b−1dt
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is the regularized incomplete beta function. In particular, since
√

p
12 ≤

Γ( p2 )
Γ( p−1

2 )Γ( 1
2)
≤ 1

2
√
p−2, the

probability mass Cp(z)
Ap = 1

2
Γ( p2 )

Γ( p−1
2 )Γ( 1

2)

∫ 2z−z2

0 t
p−3

2 (1− t)− 1
2 dt contained in a spherical cap of height

z satisfies

Cp(z)
Ap

≥ 1
2

√

p
12

∫ 2z−z2

0
t
p−3

2 dt =
√

p
12

(2z− z2)
p−1

2

p−1
≥ (2z− z2)

p−1
2

√
12p

, (2)

and letting  z = min{z,1/2}, also satisfies

Cp(z)
Ap

≤
2Cp (  z)
Ap

≤ 1
2
√

p−2
∫ 2 z−  z2

0
t
p−3

2 (1− t)−
1
2 dt

≤
√

p−2
∫ 2z−z2

0
t
p−3

2 dt =
2
√
p−2

p−1
(2z− z2)

p−1
2 ≤ (2z− z2)

p−1
2

√

p/6
≤ (2z)

p−1
2

√

p/6
. (3)

Consider any linear separator h ∈ B( f ,r) for r< 1/2, and let z(h) denote the height of the spherical

cap where h(x) = −y. Then (2) indicates the probability of this region is at least (2z(h)−z(h)2)
p−1

2√
12p .

Since h∈B( f ,r), we know this probability mass is at most r, and we therefore have 2z(h)−z(h)2≤
(√

12pr
)

2
p−1 . Now for any x1 ∈X , the set of x2 ∈X for which B( f ,r) shatters (x1,x2) is equivalent

to the set DIS({h ∈ B( f ,r) : h(x1) = −y}). But if h(x1) = −y, then x1 is in the aforementioned
spherical cap associated with h. A little trigonometry reveals that, for any spherical cap of height
z(h), any two points on the surface of this cap are within distance 2

√

2z(h)− z(h)2≤ 2
(√

12pr
)

1
p−1

of each other. Thus, for any point x2 further than 2
(√

12pr
)

1
p−1 from x1, it must be outside the

spherical cap associated with h, which means h(x2) = y. But this is true for every h ∈ B( f ,r) with
h(x1) =−y, so that DIS({h∈B( f ,r) : h(x1) =−y}) is contained in the spherical cap of all elements
of X within distance 2

(√
12pr

)
1
p−1 of x1; a little more trigonometry reveals that the height of this

spherical cap is 2
(√

12pr
)

2
p−1 . Then (3) indicates the probability mass in this region is at most

2p−1√12pr√
p/6

= 2p
√

18r. Thus, P2((x1,x2) : B( f ,r) shatters (x1,x2)) =
∫

P(DIS({h ∈ B( f ,r) : h(x1) =

−y}))P(dx1) ≤ 2p
√

18r. In particular, since this approaches zero as r→ 0, we have d̃ f = 2. This
also shows that θ̃ f = θ (2)

f ≤ 2p
√

18, a finite constant (albeit a rather large one). Following similar
reasoning, using the opposite inequalities as appropriate, and taking r sufficiently small, one can
also show θ̃ f ≥ 2p/(12

√
2).

5.4 Bounds on the Label Complexity of Activized Learning

We have seen above that in the context of several examples, Meta-Algorithm 3 can offer signif-
icant advantages in label complexity over any given passive learning algorithm, and indeed also
over disagreement-based active learning in many cases. In this subsection, we present a general re-
sult characterizing the magnitudes of these improvements over passive learning, in terms of θ̃ f (ε).
Specifically, we have the following general theorem, along with two immediate corollaries. The
proof is included in Appendix D.
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Theorem 16 For any VC class C, and any passive learning algorithmAp achieving label complex-
ity Λp, the (Meta-Algorithm 3)-activized Ap algorithm achieves a label complexity Λa that, for any
distribution P and classifier f ∈ C, satisfies

Λa(ε , f ,P) = O
(

θ̃ f
(

Λp(ε/4, f ,P)−1) log2 Λp(ε/4, f ,P)

ε

)

.

Corollary 17 For any VC class C, there exists a passive learning algorithm Ap such that, the
(Meta-Algorithm 3)-activizedAp algorithm achieves a label complexity Λa that, for any distribution
P and classifier f ∈ C, satisfies

Λa(ε , f ,P) = O
(

θ̃ f (ε) log2(1/ε)
)

.

Proof The one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth (1994) is a passive
learning algorithm achieving label complexity Λp(ε , f ,P) ≤ d/ε . Plugging this into Theorem 16,
using the fact that θ̃ f (ε/4d)≤ 4dθ̃ f (ε), and simplifying, we arrive at the result. In fact, we will see
in the proof of Theorem 16 that incurring this extra constant factor of d is not actually necessary.

Corollary 18 For any VC class C and distribution P , if ∀ f ∈ C, θ̃ f <∞, then (C,P) is learnable
at an exponential rate. If this is true for all P , then C is learnable at an exponential rate.

Proof The first claim follows directly from Corollary 17, since θ̃ f (ε)≤ θ̃ f . The second claim then
follows from the fact that Meta-Algorithm 3 is adaptive to P (has no direct dependence on P except
via the data).

Actually, in the proof we arrive at a somewhat more general result, in that the bound of The-
orem 16 actually holds for any target function f in the “closure” of C: that is, any f such that
∀r > 0,B( f ,r) &= ∅. As previously mentioned, if our goal is only to obtain the label complexity
bound of Corollary 17 by a direct approach, then we can use a simpler procedure (which cuts out
Steps 9-16, instead returning an arbitrary element of V ), analogous to how the analysis of the orig-
inal algorithm of Cohn, Atlas, and Ladner (1994) by Hanneke (2011) obtains the label complexity
bound of Corollary 11 (see also Algorithm 5 below). However, the general result of Theorem 16 is
interesting in that it applies to any passive algorithm.

Inspecting the proof, we see that it is also possible to state a result that separates the prob-
ability of success from the achieved error rate, similar to the PAC model of Valiant (1984) and
the analysis of active learning by Balcan, Hanneke, and Vaughan (2010). Specifically, suppose
Ap is a passive learning algorithm such that, ∀ε ,δ ∈ (0,1), there is a value λ (ε ,δ , f ,P) ∈ N

such that ∀n ≥ λ (ε ,δ , f ,P), P(er(Ap(Zn))> ε) ≤ δ . Suppose ĥn is the classifier returned by the
(Meta-Algorithm 3)-activized Ap with label budget n. Then for some (C,P, f )-dependent constant
c ∈ [1,∞), ∀ε ,δ ∈ (0,e−3), letting λ = λ (ε/2,δ/2, f ,P),

∀n≥ cθ̃ f
(

λ−1) log2 (λ/δ ) , P
(

er
(

ĥn
)

> ε
)

≤ δ .

For instance, if Ap is an empirical risk minimization algorithm, then this is ∝θ̃ f (ε)polylog
( 1
εδ

)

.
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5.5 Limitations and Potential Improvements

Theorem 16 and its corollaries represent significant improvements over most known results for
the label complexity of active learning, and in particular over Theorem 10 and its corollaries. As
for whether this also represents the best possible label complexity gains achievable by any active
learning algorithm, the answer is mixed. As with most algorithms and analyses, Meta-Algorithm
3, Theorem 16, and corollaries, represent one set of solutions in a spectrum that trades strength
of performance guarantees with simplicity. As such, there are several possible modifications one
might make, which could potentially improve the performance guarantees. Here we sketch a few
such possibilities. This subsection can be skipped by the casual reader without loss of continuity.

Even with Meta-Algorithm 3 as-is, various improvements to the bound of Theorem 16 should
be possible, simply by being more careful in the analysis. For instance, as mentioned, Meta-
Algorithm 3 is a universal activizer for any VC class C, so in particular we know that whenever
θ̃ f (ε) &= o

(

1/
(

ε log2(1/ε)
))

, the above bound is not tight (see the work of Balcan, Hanneke, and
Vaughan, 2010 for a construction leading to such θ̃ f (ε) values), and indeed any bound of the form
θ̃ f (ε)polylog(1/ε) will not be tight in some cases of this type. A more refined analysis may close
this gap.

Another type of potential improvement is in the constant factors. Specifically, in the case when
θ̃ f <∞, if we are only interested in asymptotic label complexity guarantees in Corollary 17, we can
replace “sup

r>0
” in Definition 15 with “limsup

r→0
,” which can sometimes be significantly smaller and/or

easier to study. This is true for the disagreement coefficient in Corollary 11 as well. Additionally,
the proof (in Appendix D) reveals that there are significant (C,P, f )-dependent constant factors
other than θ̃ f (ε), and it is quite likely that these can be improved by a more careful analysis of
Meta-Algorithm 3 (or in some cases, possibly an improved definition of the estimators P̂m).

However, even with such refinements to improve the results, the approach of using θ̃ f to prove
learnability at an exponential rate has limits. For instance, it is known that any countable C is learn-
able at an exponential rate (Balcan, Hanneke, and Vaughan, 2010). However, there are countable
VC classes C for which θ̃ f =∞ for some elements of C (e.g., take the tree-paths concept space of
Balcan, Hanneke, and Vaughan (2010), except instead of all infinite-depth paths from the root, take
all of the finite-depth paths from the root, but keep one infinite-depth path f ; for this modified space
C, which is countable, every h ∈ C has d̃h = 1, and for that one infinite-depth f we have θ̃ f =∞).

Inspecting the proof reveals that it is possible to make the results slightly sharper by replacing
θ̃ f (r0) (for r0 = Λp(ε/4, f ,P)−1) with a somewhat more complicated quantity: namely,

min
k<d̃ f

sup
r>r0

r−1 ·P
(

x ∈ X : Pk
(

S ∈ X k : B( f ,r) shatters S∪{x}
)

≥ P

(

∂k f
)

/16
)

. (4)

This quantity can be bounded in terms of θ̃ f (r0) via Markov’s inequality, but is sometimes smaller.
As for improving Meta-Algorithm 3 itself, there are several possibilities. One immediate im-

provement one can make is to replace the condition in Steps 5 and 12 by min1≤ j≤k P̂m(S ∈ X j−1 :
V shatters S∪ {Xm}|V shatters S) ≥ 1/2, likewise replacing the corresponding quantity in Step 9,
and substituting in Steps 7 and 14 the quantity max1≤ j≤k P̂m(S ∈ X j−1 :V [(Xm,−y)] does not shat-
ter S|V shatters S); in particular, the results stated for Meta-Algorithm 3 remain valid with this
substitution, requiring only minor modifications to the proofs. However, it is not clear what gains
in theoretical guarantees this achieves.
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Additionally, there are various quantities in this procedure that can be altered almost arbitrarily,
allowing room for fine-tuning. Specifically, the 2/3 in Step 0 and 1/3 in Step 16 can be set to
arbitrary constants summing to 1. Likewise, the 1/4 in Step 3, 1/3 in Step 10, and 3/4 in Step 12
can be changed to any constants in (0,1), possibly depending on k, such that the sum of the first
two is strictly less than the third. Also, the 1/2 in Steps 5, 9, and 12 can be set to any constant in
(0,1). Furthermore, the k ·2n in Step 3 only prevents infinite looping, and can be set to any function
growing superlinearly in n, though to get the largest possible improvements it should at least grow
exponentially in n; typically, any active learning algorithm capable of exponential improvements
over reasonable passive learning algorithms will require access to a number of unlabeled examples
exponential in n, and Meta-Algorithm 3 is no exception to this.

One major issue in the design of the procedure is an inherent trade-off between the achieved
label complexity and the number of unlabeled examples used by the algorithm. This is noteworthy
both because of the practical concerns of gathering such large quantities of unlabeled data, and also
for computational efficiency reasons. In contrast to disagreement-based methods, the design of the
estimators used in Meta-Algorithm 3 introduces such a trade-off, though in contrast to the splitting
index analysis of Dasgupta (2005), the trade-off here seems only in the constant factors. The choice
of these P̂m estimators, both in their definition in Appendix B.1, and indeed in the very quantities
they estimate, is such that we can (if desired) limit the number of unlabeled examples the main body
of the algorithm uses (the actual number it needs to achieve Theorem 16 can be extracted from the
proofs in Appendix D.1). However, if the number of unlabeled examples used by the algorithm is
not a limiting factor, we can suggest more effective quantities. Specifically, following the original
motivation for using shatterable sets, we might consider a greedily-constructed distribution over the
set {S ∈X j :V shatters S,1≤ j< k, and either j= k−1 or P(s :V shatters S∪{s}) = 0}. We can
construct the distribution implicitly, via the following generative model. First we set S = {}. Then
repeat the following. If |S|= k−1 or P(s∈X :V shatters S∪{s}) = 0, output S; otherwise, sample
s according to the conditional distribution of X given thatV shatters S∪{X}. If we denote this distri-
bution (over S) as P̃k, then replacing the estimator P̂m

(

S ∈ X k−1 :V shatters S∪{Xm}|V shatters S
)

in Meta-Algorithm 3 with an appropriately constructed estimator of P̃k (S :V shatters S∪{Xm})
(and similarly replacing the other estimators) can lead to some improvements in the constant factors
of the label complexity. However, such a modification can also dramatically increase the number
of unlabeled examples required by the algorithm, since rejection-sampling to get a point from the
conditional distribution of X given V shatters S∪ {X} can be costly, as can determining whether
P(s ∈ X :V shatters S∪{s})≈ 0.

Unlike Meta-Algorithm 1, there remain serious efficiency concerns about Meta-Algorithm 3. If
we knew the value of d̃ f and d̃ f ≤ c log2(d) for some constant c, then we could potentially design an
efficient version of Meta-Algorithm 3 still achieving Corollary 17. Specifically, suppose we can find
a classifier in C consistent with any given sample, or determine that no such classifier exists, in time
polynomial in the sample size (and d), and also that Ap efficiently returns a classifier in C consistent
with the sample it is given. Then restricting the loop of Step 1 to those k ≤ d̃ f and returning
Ap(Ld̃ f ), the algorithm becomes efficient, in the sense that with high probability, its running time
is poly(d/ε), where ε is the error rate guarantee from inverting the label complexity at the value
of n given to the algorithm. To be clear, in some cases we may obtain values m∝exp{Ω(n)}, but
the error rate guaranteed by Ap is Õ(1/m) in these cases, so that we still have m polynomial in
d/ε . However, in the absence of this access to d̃ f , the values of k > d̃ f in Meta-Algorithm 3 may
reach values of m much larger than poly(d/ε), since the error rates obtained from these Ap(Lk)
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evaluations are not guaranteed to be better than the Ap(Ld̃ f ) evaluations, and yet we may have
|Lk|. |Ld̃ f |. Thus, there remains a challenging problem of obtaining the results above (Theorem 16
and Corollary 17) via an efficient algorithm, adaptive to the value of d̃ f .

6. Toward Agnostic Activized Learning

The previous sections addressed learning in the realizable case, where there is a perfect classifier
f ∈ C (i.e., er( f ) = 0). To move beyond these scenarios, to problems in which f is not a perfect
classifier (i.e., stochastic labels) or not well-approximated by C, requires a change in technique to
make the algorithms more robust to such issues. As we will see in Section 6.2, the results we can
prove in this more general setting are not quite as strong as those of the previous sections, but in
some ways they are more interesting, both from a practical perspective, as we expect real learning
problems to involve imperfect teachers or underspecified instance representations, and also from a
theoretical perspective, as the class of problems addressed is significantly more general than those
encompassed by the realizable case above.

In this context, we will be largely interested in more general versions of the same types of
questions as above, such as whether one can activize a given passive learning algorithm, in this
case guaranteeing strictly improved label complexities for all nontrivial joint distributions over
X × {−1,+1}. In Section 6.3, we present a general conjecture regarding this type of strong dom-
ination. To approach such questions, we will explore techniques for making the above algorithms
robust to label noise. Specifically, we will use a natural generalization of a technique developed for
noise-robust disagreement-based active learning. Toward this end, as well as for the sake of com-
parison, we will review the known techniques and results for disagreement-based agnostic active
learning in Section 6.5. We then extend these techniques in Section 6.6 to develop a new type of ag-
nostic active learning algorithm, based on shatterable sets, which relates to the disagreement-based
agnostic active learning algorithms in a way analogous to how Meta-Algorithm 3 relates to Meta-
Algorithm 2. Furthermore, we present a bound on the label complexities achieved by this method,
representing a natural generalization of both Corollary 17 and the known results on disagreement-
based agnostic active learning (Hanneke, 2011).

Although we present several new results, in some sense this section is less about what we know
and more about what we do not yet know. As such, we will focus less on presenting a complete
and elegant theory, and more on identifying potentially promising directions for exploration. In
particular, Section 6.8 sketches out some interesting directions, which could potentially lead to a
resolution of the aforementioned general conjecture from Section 6.3.

6.1 Definitions and Notation

In this setting, there is a joint distribution PXY on X × {−1,+1}, with marginal distribution P on
X . For any classifier h, we denote by er(h) = PXY ((x,y) : h(x) &= y). Also, denote by ν∗(PXY ) =

inf
h:X→{−1,+1}

er(h) the Bayes error rate, or simply ν∗ when PXY is clear from the context; also define

the conditional label distribution η(x;PXY ) = P(Y = +1|X = x), where (X ,Y ) ∼ PXY , or η(x) =
η(x;PXY ) when PXY is clear from the context. For a given concept space C, denote ν(C;PXY ) =
inf
h∈C

er(h), called the noise rate of C; when C and/or PXY is clear from the context, we may abbreviate
ν = ν(C) = ν(C;PXY ). For H⊆ C, the diameter is defined as diam(H;P) = sup

h1,h2∈H
P(x : h1(x) &=
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h2(x)). Also, for any ε > 0, define the ε-minimal set C(ε;PXY ) = {h ∈ C : er(h) ≤ ν + ε}. For
any set of classifiers H, define the closure, denoted cl(H;P), as the set of all measurable h : X →
{−1,+1} such that ∀r> 0,BH,P(h,r) &= ∅. When PXY is clear from the context, we will simply refer
to C(ε) =C(ε;PXY ), and when P is clear, we write diam(H) = diam(H;P) and cl(H) = cl(H;P).

In the noisy setting, rather than being a perfect classifier, we will let f denote an arbitrary
element of cl(C;P) with er( f ) = ν(C;PXY ): that is, f ∈

⋂

ε>0
cl(C(ε;PXY );P). Such a classifier

must exist, since cl(C) is compact in the pseudo-metric ρ(h,g) =
∫

|h− g|dP∝P(x : h(x) &= g(x))
(in the usual sense of the equivalence classes being compact in the ρ-induced metric). This can be
seen by recalling that C is totally bounded (Haussler, 1992), and thus so is cl(C), and that cl(C) is
a closed subset of L1(P), which is complete (Dudley, 2002), so cl(C) is also complete (Munkres,
2000). Total boundedness and completeness together imply compactness (Munkres, 2000), and this
implies the existence of f since monotone sequences of nonempty closed subsets of a compact space
have a nonempty limit set (Munkres, 2000).

As before, in the learning problem there is a sequence Z = {(X1,Y1),(X2,Y2), . . .}, where the
(Xi,Yi) are independent and identically distributed, and we denote by Zm = {(Xi,Yi)}mi=1. As before,
the Xi ∼ P , but rather than having each Yi value determined as a function of Xi, instead we have
each pair (Xi,Yi)∼PXY . The learning protocol is defined identically as above; that is, the algorithm
has direct access to the Xi values, but must request the Yi (label) values one at a time, sequentially,
and can request at most n total labels, where n is a budget provided as input to the algorithm. The
label complexity is now defined just as before (Definition 1), but generalized by replacing ( f ,P)
with the joint distribution PXY . Specifically, we have the following formal definition, which will be
used throughout this section (and the corresponding appendices).

Definition 19 An active learning algorithm A achieves label complexity Λ(·, ·) if, for any joint
distribution PXY , for any ε ∈ (0,1) and any integer n≥ Λ(ε ,PXY ), we have E [er(A(n))]≤ ε .

However, because there may not be any classifier with error rate less than any arbitrary ε ∈ (0,1),
our objective changes here to achieving error rate at most ν+ ε for any given ε ∈ (0,1). Thus, we
are interested in the quantity Λ(ν + ε ,PXY ), and will be particularly interested in this quantity’s
asymptotic dependence on ε , as ε → 0. In particular, Λ(ε ,PXY ) may often be infinite for ε < ν .

The label complexity for passive learning can be generalized analogously, again replacing ( f ,P)
by PXY in Definition 2 as follows.

Definition 20 A passive learning algorithm A achieves label complexity Λ(·, ·) if, for any joint
distributionPXY , for any ε ∈ (0,1) and any integer n≥Λ(ε ,PXY ), we have E [er(A(Zn))]≤ ε .

For any label complexity Λ in the agnostic case, define the set Nontrivial(Λ;C) as the set of all
distributions PXY on X ×{−1,+1} such that ∀ε > 0,Λ(ν+ ε ,PXY )<∞, and ∀g ∈ Polylog(1/ε),
Λ(ν+ ε ,PXY ) = ω(g(ε)). In this context, we can define an activizer for a given passive algorithm
as follows.

Definition 21 We say an active meta-algorithm Aa activizes a passive algorithm Ap for C in
the agnostic case if the following holds. For any label complexity Λp achieved by Ap, the ac-
tive learning algorithm Aa(Ap, ·) achieves a label complexity Λa such that, for every distribution
PXY ∈ Nontrivial(Λp;C), there exists a constant c ∈ [1,∞) such that

Λa(ν+ cε ,PXY ) = o(Λp(ν+ ε ,PXY )) .
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In this case, Aa is called an activizer for Ap with respect to C in the agnostic case, and the active
learning algorithm Aa(Ap, ·) is called the Aa-activized Ap.

6.2 A Negative Result

First, the bad news: we cannot generally hope for universal activizers for VC classes in the agnostic
case. In fact, there even exist passive algorithms that cannot be activized, even by any specialized
active learning algorithm.

Specifically, consider again Example 1, where X = [0,1] and C is the class of threshold clas-
sifiers, and let Ǎp be a passive learning algorithm that behaves as follows. Given n points Zn =

{(X1,Y1),(X2,Y2), . . . ,(Xn,Yn)}, Ǎp(Zn) returns the classifier hẑ ∈ C, where ẑ = 1−2η̂0
1−η̂0

and η̂0 =
(

|{i∈{1,...,n}:Xi=0,Yi=+1}|
|{i∈{1,...,n}:Xi=0}| ∨ 1

8

)

∧ 3
8 , taking η̂0 = 1/8 if {i ∈ {1, . . . ,n} : Xi = 0} = ∅. For most distri-

butions PXY , this algorithm clearly would not behave “reasonably,” in that its error rate would be
quite large; in particular, in the realizable case, the algorithm’s worst-case expected error rate does
not converge to zero as n→∞. However, for certain distributions PXY engineered specifically for
this algorithm, it has near-optimal behavior in a strong sense. Specifically, we have the following
result, the proof of which is included in Appendix E.1.

Theorem 22 There is no activizer for Ǎp with respect to the space of threshold classifiers in the
agnostic case.

Recall that threshold classifiers were, in some sense, one of the simplest scenarios for activized
learning in the realizable case. Also, since threshold-like problems are embedded in most “geo-
metric” concept spaces, this indicates we should generally not expect there to exist activizers for
arbitrary passive algorithms in the agnostic case. However, this leaves open the question of whether
certain families of passive learning algorithms can be activized in the agnostic case, a topic we turn
to next.

6.3 A Conjecture: Activized Empirical Risk Minimization

The counterexample above is interesting, in that it exposes the limits on generality in the agnostic
setting. However, the passive algorithm that cannot be activized there is in many ways not very rea-
sonable, in that it has suboptimal worst-case expected excess error rate (among other deficiencies).
It may therefore be more interesting to ask whether some family of “reasonable” passive learning
algorithms can be activized in the agnostic case. It seems that, unlike Ǎp above, certain passive
learning algorithms should not have too peculiar a dependence on the label noise, so that they use
Yi to help determine f (Xi) and that is all. In such cases, any Yi value for which we can already infer
the value f (Xi) should simply be ignored as redundant information, so that we needn’t request such
values. While this discussion is admittedly vague, consider the following formal conjecture.

Recall that an empirical risk minimization algorithm for C is a type of passive learning algorithm
A, characterized by the fact that for any set L ∈

⋃

m(X ×{−1,+1})m, A(L) ∈ argmin
h∈C

erL(h).

Conjecture 23 For any VC class, there exists an active meta-algorithm Aa and an empirical risk
minimization algorithm Ap for C such that Aa activizes Ap for C in the agnostic case.

Resolution of this conjecture would be interesting for a variety of reasons. If the conjecture
is correct, it means that the vast (and growing) literature on the label complexity of empirical risk
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minimization has direct implications for the potential performance of active learning under the same
conditions. We might also expect activized empirical risk minimization to be quite effective in
practical applications.

While this conjecture remains open at this time, the remainder of this section might be viewed
as partial evidence in its favor, as we show that active learning is able to achieve improvements over
the known bounds on the label complexity of passive learning in many cases.

6.4 Low Noise Conditions

In the subsections below, we will be interested in stating bounds on the label complexity of active
learning, analogous to those of Theorem 10 and Theorem 16, but for learning with label noise.
As in the realizable case, we should expect such bounds to have some explicit dependence on
the distribution PXY . Initially, one might hope that we could state interesting label complexity
bounds purely in terms of a simple quantity such as ν(C;PXY ). However, it is known that any
label complexity bound for a nontrivial C (for either passive or active) depending on PXY only via
ν(C;PXY ) will be Ω

(

ε−2) when ν(C;PXY ) > 0 (Kääriäinen, 2006). Since passive learning can
achieve a PXY -independent O

(

ε−2) label complexity bound for any VC class (Alexander, 1984),
we will need to discuss label complexity bounds that depend on PXY via more detailed quantities
than merely ν(C;PXY ) if we are to characterize the improvements of active learning over passive.

In this subsection, we review an index commonly used to describe certain properties of PXY
relative to C: namely, the Mammen-Tsybakov margin conditions (Mammen and Tsybakov, 1999;
Tsybakov, 2004; Koltchinskii, 2006). Specifically, we have the following formal condition from
Koltchinskii (2006).

Condition 1 There exist constants µ ,κ ∈ [1,∞) such that ∀ε > 0, diam(C(ε;PXY );P)≤ µ · ε 1
κ .

This condition has recently been studied in depth in the passive learning literature, as it can be
used to characterize scenarios where the label complexity of passive learning is between the worst-
case Θ(1/ε2) and the realizable case Θ(1/ε) (e.g., Mammen and Tsybakov, 1999; Tsybakov, 2004;
Massart and Nédélec, 2006; Koltchinskii, 2006). The condition can equivalently be stated as

∃µ ′ ∈ (0,1],κ ∈ [1,∞) s.t. ∀h ∈ C,er(h)−ν(C;PXY )≥ µ ′ ·P(x : h(x) &= f (x))κ .

The condition is implied by a variety of interesting special cases. For instance, it is satisfied when
ν(C;PXY ) = ν∗(PXY ) and

∃µ ′′,α ∈ (0,∞) s.t. ∀ε > 0,P(x : |η(x;PXY )−1/2|≤ ε)≤ µ ′′ · εα ,

where κ and µ are functions of α and µ ′′ (Mammen and Tsybakov, 1999; Tsybakov, 2004); in
particular, κ = (1 + α)/α . This can intuitively be interpreted as saying that very noisy points
are relatively rare. Special cases of this condition have also been studied in depth; for instance,
bounded noise conditions, wherein ν(C;PXY ) = ν∗(PXY ) and ∀x, |η(x;PXY )− 1/2| > c for some
constant c> 0 (e.g., Giné and Koltchinskii, 2006; Massart and Nédélec, 2006), are a special case of
Condition 1 with κ = 1.

Condition 1 can be interpreted in a variety of ways, depending on the context. For instance, in
certain concept spaces with a geometric interpretation, it can often be realized as a kind of large
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margin condition, under some condition relating the noisiness of a point’s label to its distance from
the optimal decision surface. That is, if the magnitude of noise (1/2− |η(x;PXY )− 1/2|) for a
given point depends inversely on its distance from the optimal decision surface, so that points closer
to the decision surface have noisier labels, a small value of κ in Condition 1 will occur if the
distribution P has low density near the optimal decision surface (assuming ν(C;PXY ) = ν∗(PXY ))
(e.g., Dekel, Gentile, and Sridharan, 2010). On the other hand, when there is high density near the
optimal decision surface, the value of κ may be determined by how quickly η(x;PXY ) changes as
x approaches the decision boundary (Castro and Nowak, 2008). See the works of Mammen and
Tsybakov (1999), Tsybakov (2004), Koltchinskii (2006), Massart and Nédélec (2006), Castro and
Nowak (2008), Dekel, Gentile, and Sridharan (2010) and Bartlett, Jordan, and McAuliffe (2006) for
further interpretations of Condition 1.

In the context of passive learning, one natural method to study is that of empirical risk minimiza-
tion. Recall that a passive learning algorithm A is called an empirical risk minimization algorithm
for C if it returns a classifier from C making the minimum number of mistakes on the labeled sam-
ple it is given as input. It is known that for any VC class C, for any PXY satisfying Condition 1 for
finite µ and κ , every empirical risk minimization algorithm for C achieves a label complexity

Λ(ν+ ε ,PXY ) = O
(

ε
1
κ−2 · log

1
ε

)

. (5)

This follows from the works of Koltchinskii (2006) and Massart and Nédélec (2006). Furthermore,
for nontrivial concept spaces, one can show that infΛ supPXY Λ(ν+ε;PXY ) = Ω

(

ε
1
κ−2
)

, where the
supremum ranges over all PXY satisfying Condition 1 for the given µ and κ values, and the infimum
ranges over all label complexities achievable by passive learning algorithms (Castro and Nowak,
2008; Hanneke, 2011); that is, the bound (5) cannot be significantly improved by any passive al-
gorithm, without allowing the label complexity to have a more refined dependence on PXY than
afforded by Condition 1.

In the context of active learning, a variety of results are presently known, which in some cases
show improvements over (5). Specifically, for any VC class C and any PXY satisfying Condition 1,
a certain noise-robust disagreement-based active learning algorithm achieves label complexity

Λ(ν+ ε ,PXY ) = O
(

θ f
(

ε
1
κ

)

· ε
2
κ−2 · log2 1

ε

)

.

This general result was established by Hanneke (2011) (analyzing the algorithm of Dasgupta,
Hsu, and Monteleoni, 2007), generalizing earlier C-specific results by Castro and Nowak (2008)
and Balcan, Broder, and Zhang (2007), and was later simplified and refined in some cases by
Koltchinskii (2010). Comparing this to (5), when θ f <∞ this is an improvement over passive
learning by a factor of ε 1

κ · log(1/ε). Note that this generalizes the label complexity bound of
Corollary 11 above, since the realizable case entails Condition 1 with κ = µ/2 = 1. It is also
known that this type of improvement is essentially the best we can hope for when we describe PXY
purely in terms of the parameters of Condition 1. Specifically, for any nontrivial concept space C,
infΛ supPXY Λ(ν+ε ,PXY ) = Ω

(

max
{

ε
2
κ−2, log 1

ε

})

, where the supremum ranges over all PXY sat-
isfying Condition 1 for the given µ and κ values, and the infimum ranges over all label complexities
achievable by active learning algorithms (Hanneke, 2011; Castro and Nowak, 2008).

In the following subsection, we review the established techniques and results for disagreement-
based agnostic active learning; the algorithm presented here is slightly different from that originally
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analyzed by Hanneke (2011), but the label complexity bounds of Hanneke (2011) hold for this
new algorithm as well. We follow this in Section 6.7 with a new agnostic active learning method
that goes beyond disagreement-based learning, again generalizing the notion of disagreement to the
notion of shatterability; this can be viewed as analogous to the generalization of Meta-Algorithm
2 represented by Meta-Algorithm 3, and as in that case the resulting label complexity bound replaces
θ f (·) with θ̃ f (·).

For both passive and active learning, results under Condition 1 are also known for more general
scenarios than VC classes: namely, under entropy conditions (Mammen and Tsybakov, 1999; Tsy-
bakov, 2004; Koltchinskii, 2006, 2011; Massart and Nédélec, 2006; Castro and Nowak, 2008; Han-
neke, 2011; Koltchinskii, 2010). For a nonparametric class known as boundary fragments, Castro
and Nowak (2008) find that active learning sometimes offers advantages over passive learning, un-
der a special case of Condition 1. Furthermore, Hanneke (2011) shows a general result on the label
complexity achievable by disagreement-based agnostic active learning, which sometimes exhibits
an improved dependence on the parameters of Condition 1 under conditions on the disagreement
coefficient and certain entropy conditions for (C,P) (see also Koltchinskii, 2010). These results
will not play a role in the discussion below, as in the present work we restrict ourselves strictly to
VC classes, leaving more general results for future investigations.

6.5 Disagreement-Based Agnostic Active Learning

Unlike the realizable case, here in the agnostic case we cannot eliminate a classifier from the version
space after making merely a single mistake, since even the best classifier is potentially imperfect.
Rather, we take a collection of samples with labels, and eliminate those classifiers making signifi-
cantly more mistakes relative to some others in the version space. This is the basic idea underlying
most of the known agnostic active learning algorithms, including those discussed in the present
work. The precise meaning of “significantly more,” sufficient to guarantee the version space always
contains some good classifier, is typically determined by established bounds on the deviation of
excess empirical error rates from excess true error rates, taken from the passive learning literature.

The following disagreement-based algorithm is slightly different from any in the existing lit-
erature, but is similar in style to a method of Beygelzimer, Dasgupta, and Langford (2009); it also
bares resemblance to the algorithms of Koltchinskii (2010); Dasgupta, Hsu, and Monteleoni (2007);
Balcan, Beygelzimer, and Langford (2006a, 2009). It should be considered as representative of the
family of disagreement-based agnostic active learning algorithms, and all results below concerning
it have analogous results for variants of these other disagreement-based methods.
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Algorithm 4
Input: label budget n, confidence parameter δ
Output: classifier ĥ

0. m← 0, i← 0, V0← C, L1← {}
1. While t < n and m≤ 2n
2. m← m+1
3. If Xm ∈ DIS(Vi)
4. Request the label Ym of Xm, and let Li+1← Li+1∪{(Xm,Ym)} and t← t+1
5. Else let ŷ be the label agreed upon by classifiers in Vi, and Li+1← Li+1∪{(Xm, ŷ)}
6. If m= 2i+1

7. Vi+1←
{

h ∈Vi : erLi+1(h)−min
h′∈Vi

erLi+1(h′)≤ Ûi+1 (Vi,δ )
}

8. i← i+1, and then Li+1← {}
9. Return any ĥ ∈Vi

The algorithm is specified in terms of an estimator, Ûi. The definition of Ûi should typically be
based on generalization bounds known for passive learning. Inspired by the work of Koltchinskii
(2006) and applications thereof in active learning (Hanneke, 2011; Koltchinskii, 2010), we will take
a definition of Ûi based on a data-dependent Rademacher complexity, as follows. Let ξ1,ξ2, . . .
denote a sequence of independent Rademacher random variables (i.e., uniform in {−1,+1}), also
independent from all other random variables in the algorithm (i.e., Z). Then for any set H ⊆ C,
define

R̂i(H) = sup
h1,h2∈H

2−i
2i
∑

m=2i−1+1

ξm · (h1(Xm)−h2(Xm)),

D̂i(H) = sup
h1,h2∈H

2−i
2i
∑

m=2i−1+1

|h1(Xm)−h2(Xm)|,

Ûi(H,δ ) = 12R̂i(H)+34
√

D̂i(H)
ln(32i2/δ )

2i−1 +
752ln(32i2/δ )

2i−1 . (6)

Algorithm 4 operates by repeatedly doubling the sample size |Li+1|, while only requesting the
labels of the points in the region of disagreement of the version space. Each time it doubles the size
of the sample Li+1, it updates the version space by eliminating any classifiers that make significantly
more mistakes on Li+1 relative to others in the version space. Since the labels of the examples we
infer in Step 5 are agreed upon by all elements of the version space, the difference of empirical error
rates in Step 7 is identical to the difference of empirical error rates under the true labels. This allows
us to use established results on deviations of excess empirical error rates from excess true error rates
to judge suboptimality of some of the classifiers in the version space in Step 7, thus reducing the
version space.

As with Meta-Algorithm 2, for computational feasibility, the sets Vi and DIS(Vi) in Algorithm
4 can be represented implicitly by a set of constraints imposed by previous rounds of the loop. Also,
the update to Li+1 in Step 5 is included only to make Step 7 somewhat simpler or more intuitive;
it can be be removed without altering the behavior of the algorithm, as long as we compensate by
multiplying erLi+1 by an appropriate renormalization constant in Step 7: namely, 2−i|Li+1|.

1517



HANNEKE

We have the following result about the label complexity of Algorithm 4; it is representative of
the type of theorem one can prove about disagreement-based active learning under Condition 1.

Lemma 24 Let C be a VC class and suppose the joint distribution PXY on X ×{−1,+1} satisfies
Condition 1 for finite parameters µ and κ . There is a (C,PXY )-dependent constant c ∈ (0,∞) such
that, for any ε ,δ ∈ (0,e−3), and any integer

n≥ c ·θ f
(

ε
1
κ

)

· ε
2
κ−2 · log2 1

εδ
,

if ĥn is the output of Algorithm 4 when run with label budget n and confidence parameter δ , then on
an event of probability at least 1−δ ,

er
(

ĥn
)

≤ ν+ ε .

The proof of this result is essentially similar to the proof by Hanneke (2011), combined with
some simplifying ideas from Koltchinskii (2010). It is also implicit in the proof of Lemma 26 below
(by replacing “d̃ f ” with “1” in the proof). The details are omitted. This result leads immediately to
the following implication concerning the label complexity.

Theorem 25 Let C be a VC class and suppose the joint distribution PXY on X ×{−1,+1} satisfies
Condition 1 for finite parameters µ ,κ ∈ (1,∞). With an appropriate (n,κ)-dependent setting of δ ,
Algorithm 4 achieves a label complexity Λa with

Λa(ν+ ε ,PXY ) = O
(

θ f
(

ε
1
κ

)

· ε
2
κ−2 · log2 1

ε

)

.

Proof Taking δ = n−
κ

2κ−2 , the result follows by simple algebra.

We should note that it is possible to design a kind of wrapper to adaptively determine an appro-
priate δ value, so that the algorithm achieves the label complexity guarantee of Theorem 25 without
requiring any explicit dependence on the noise parameter κ . Specifically, one can use an idea simi-
lar to the model selection procedure of Hanneke (2011) for this purpose. However, as our focus in
this work is on moving beyond disagreement-based active learning, we do not include the details of
such a procedure here.

Note that Theorem 25 represents an improvement over the known results for passive learning
(namely, (5)) whenever θ f (ε) is small, and in particular this gap can be large when θ f <∞. The
results of Lemma 24 and Theorem 25 represent the state-of-the-art (up to logarithmic factors) in our
understanding of the label complexity of agnostic active learning for VC classes. Thus, any signif-
icant improvement over these would advance our understanding of the fundamental capabilities of
active learning in the presence of label noise. Next, we provide such an improvement.

6.6 A New Type of Agnostic Active Learning Algorithm Based on Shatterable Sets

Algorithm 4 and Theorem 25 represent natural extensions of Meta-Algorithm 2 and Theorem 10 to
the agnostic setting. As such, they not only benefit from the advantages of those methods (small
θ f (ε) implies improved label complexity), but also suffer the same disadvantages (P(∂ f ) > 0 im-
plies no strong improvements over passive). It is therefore natural to investigate whether the im-
provements offered by Meta-Algorithm 3 and the corresponding Theorem 16 can be extended to the
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agnostic setting in a similar way. In particular, as was possible for Theorem 16 with respect to The-
orem 10, we might wonder whether it is possible to replace θ f

(

ε
1
κ

)

in Theorem 25 with θ̃ f
(

ε
1
κ

)

by a modification of Algorithm 4 analogous to the modification of Meta-Algorithm 2 embodied in
Meta-Algorithm 3. As we have seen, θ̃ f

(

ε
1
κ

)

is often significantly smaller in its asymptotic depen-

dence on ε , compared to θ f
(

ε
1
κ

)

, in many cases even bounded by a finite constant when θ f
(

ε
1
κ

)

is not. This would therefore represent a significant improvement over the known results for active
learning under Condition 1. Toward this end, consider the following algorithm.

Algorithm 5
Input: label budget n, confidence parameter δ
Output: classifier ĥ

0. m← 0, i0← 0, V0← C

1. For k = 1,2, . . . ,d+1
2. t← 0, ik← ik−1, m← 2ik , Vik+1←Vik , Lik+1← {}
3. While t <

⌊

2−kn
⌋

and m≤ k ·2n
4. m← m+1
5. If P̂4m

(

S ∈ X k−1 :Vik+1 shatters S∪{Xm}|Vik+1 shatters S
)

≥ 1/2
6. Request the label Ym of Xm, and let Lik+1← Lik+1∪{(Xm,Ym)} and t← t+1
7. Else ŷ← argmax

y∈{−1,+1}
P̂4m
(

S ∈ X k−1 :Vik+1[(Xm,−y)] does not shatter S|Vik+1 shatters S
)

8. Lik+1← Lik+1∪{(Xm, ŷ)} and Vik+1←Vik+1[(Xm, ŷ)]
9. If m= 2ik+1

10. Vik+1←
{

h ∈Vik+1 : erLik+1(h)− min
h′∈Vik+1

erLik+1(h′)≤ Ûik+1 (Vik ,δ )

}

11. ik← ik+1, then Vik+1←Vik , and Lik+1← {}
12. Return any ĥ ∈Vid+1+1

For the argmax in Step 7, we break ties in favor of a ŷ value with Vik+1[(Xm, ŷ)] &= ∅ to maintain
the invariant that Vik+1 &= ∅ (see the proof of Lemma 59); when both y values satisfy this, we may
break ties arbitrarily. The procedure is specified in terms of several estimators. The P̂4m estimators,
as usual, are defined in Appendix B.1. For Ûi, we again use the definition (6) above, based on a
data-dependent Rademacher complexity.

Algorithm 5 is largely based on the same principles as Algorithm 4, combined with Meta-
Algorithm 3. As in Algorithm 4, the algorithm proceeds by repeatedly doubling the size of a labeled
sample Li+1, while only requesting a subset of the labels in Li+1, inferring the others. As before, it
updates the version space every time it doubles the size of the sample Li+1, and the update eliminates
classifiers from the version space that make significantly more mistakes on Li+1 compared to others
in the version space. In Algorithm 4, this is guaranteed to be effective, since the classifiers in the
version space agree on all of the inferred labels, so that the differences of empirical error rates
remain equal to the true differences of empirical error rates (i.e., under the true Ym labels for all
elements of Li+1); thus, the established results from the passive learning literature bounding the
deviations of excess empirical error rates from excess true error rates can be applied, showing that
this does not eliminate the best classifiers. In Algorithm 5, the situation is somewhat more subtle,
but the principle remains the same. In this case, we enforce that the classifiers in the version space
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agree on the inferred labels in Li+1 by explicitly removing the disagreeing classifiers in Step 8.
Thus, as long as Step 8 does not eliminate all of the good classifiers, then neither will Step 10. To
argue that Step 8 does not eliminate all good classifiers, we appeal to the same reasoning as for
Meta-Algorithm 1 and Meta-Algorithm 3. That is, for k ≤ d̃ f and sufficiently large n, as long as
there exist good classifiers in the version space, the labels ŷ inferred in Step 7 will agree with some
good classifiers, and thus Step 8 will not eliminate all good classifiers. However, for k > d̃ f , the
labels ŷ in Step 7 have no such guarantees, so that we are only guaranteed that some classifier in
the version space is not eliminated. Thus, determining guarantees on the error rate of this algorithm
hinges on bounding the worst excess error rate among all classifiers in the version space at the
conclusion of the k= d̃ f round. This is essentially determined by the size of Lik at the conclusion of
that round, which itself is largely determined by how frequently the algorithm requests labels during
this k = d̃ f round. Thus, once again the analysis rests on bounding the rate at which the frequency
of label requests shrinks in the k = d̃ f round, which determines the rate of growth of |Lik |, and thus
the final guarantee on the excess error rate.

As before, for computational feasibility, we can maintain the sets Vi implicitly as a set of con-
straints imposed by the previous updates, so that we may perform the various calculations required
for the estimators P̂ as constrained optimizations. Also, the update to Lik+1 in Step 8 is merely
included to make the algorithm statement and the proofs somewhat more elegant; it can be omit-
ted, as long as we compensate with an appropriate renormalization of the erLik+1 values in Step 10
(i.e., multiplying by 2−ik |Lik+1|). Additionally, the same potential improvements we proposed in
Section 5.5 for Meta-Algorithm 3 can be made to Algorithm 5 as well, again with only minor mod-
ifications to the proofs. We should note that Algorithm 5 is certainly not the only reasonable way to
extend Meta-Algorithm 3 to the agnostic setting. For instance, another natural extension of Meta-
Algorithm 1 to the agnostic setting, based on a completely different idea, appears in the author’s
doctoral dissertation (Hanneke, 2009b); that method can be improved in a natural way to take advan-
tage of the sequential aspect of active learning, yielding an agnostic extension of Meta-Algorithm
3 differing from Algorithm 5 in several interesting ways (see the discussion in Section 6.8 below).

In the next subsection, we will see that the label complexities achieved by Algorithm 5 are often
significantly better than the known results for passive learning. In fact, they are often significantly
better than the presently-known results for any active learning algorithms in the published literature.

6.7 Improved Label Complexity Bounds for Active Learning with Noise

Under Condition 1, we can extend Lemma 24 and Theorem 25 in an analogous way to how The-
orem 16 extends Theorem 10. Specifically, we have the following result, the proof of which is
included in Appendix E.2.

Lemma 26 Let C be a VC class and suppose the joint distribution PXY on X ×{−1,+1} satisfies
Condition 1 for finite parameters µ and κ . There is a (C,PXY )-dependent constant c ∈ (0,∞) such
that, for any ε ,δ ∈

(

0,e−3), and any integer

n≥ c · θ̃ f
(

ε
1
κ

)

· ε
2
κ−2 · log2 1

εδ
,

if ĥn is the output of Algorithm 5 when run with label budget n and confidence parameter δ , then on
an event of probability at least 1−δ ,

er
(

ĥn
)

≤ ν+ ε .
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This has the following implication for the label complexity of Algorithm 5.

Theorem 27 Let C be a VC class and suppose the joint distribution PXY on X ×{−1,+1} satisfies
Condition 1 for finite parameters µ ,κ ∈ (1,∞). With an appropriate (n,κ)-dependent setting of δ ,
Algorithm 5 achieves a label complexity Λa with

Λa(ν+ ε ,PXY ) = O
(

θ̃ f
(

ε
1
κ

)

· ε
2
κ−2 · log2 1

ε

)

.

Proof Taking δ = n−
κ

2κ−2 , the result follows by simple algebra.

Theorem 27 represents an interesting generalization beyond the realizable case, and beyond the
disagreement coefficient analysis. Note that if θ̃ f (ε) = o

(

ε−1 log−2(1/ε)
)

, Theorem 27 represents
an improvement over the known results for passive learning (Massart and Nédélec, 2006). As we
always have θ̃ f (ε) = o(1/ε), we should typically expect such improvements for all but the most
extreme learning problems. Recall that θ f (ε) is often not o(1/ε), so that Theorem 27 is often a
much stronger statement than Theorem 25. In particular, this is a significant improvement over the
known results for passive learning whenever θ̃ f <∞, and an equally significant improvement over
Theorem 25 whenever θ̃ f <∞ but θ f (ε) = Ω(1/ε) (see above for examples of this). However,
note that unlike Meta-Algorithm 3, Algorithm 5 is not an activizer. Indeed, it is not clear (to the
author) how to modify the algorithm to make it a universal activizer for C (even for the realizable
case), while maintaining the guarantees of Theorem 27.

As with Theorem 16 and Corollary 17, Algorithm 5 and Theorem 27 can potentially be improved
in a variety of ways, as outlined in Section 5.5. In particular, Theorem 27 can be made slightly
sharper in some cases by replacing θ̃ f

(

ε
1
κ

)

with the sometimes-smaller (though more complicated)

quantity (4) (with r0 = ε
1
κ ).

6.8 Beyond Condition 1

While Theorem 27 represents an improvement over the known results for agnostic active learn-
ing, Condition 1 is not fully general, and disallows many important and interesting scenarios. In
particular, one key property of Condition 1, heavily exploited in the label complexity proofs for
both passive learning and disagreement-based active learning, is that it implies diam(C(ε)) →
0 as ε → 0. In scenarios where this shrinking diameter condition is not satisfied, the existing
proofs of (5) for passive learning break down, and furthermore, the disagreement-based algo-
rithms themselves cease to give significant improvements over passive learning, for essentially
the same reasons leading to the “only if” part of Theorem 5 (i.e., the sampling region never fo-
cuses beyond some nonzero-probability region). Even more alarming (at first glance) is the fact
that this same problem can sometimes be observed for the k = d̃ f round of Algorithm 5; that is,
P
(

x : P d̃ f−1(S ∈ X d̃ f−1 :Vid̃ f +1 shatters S∪{x}|Vid̃ f+1 shatters S)≥ 1/2
)

is no longer guaranteed
to approach 0 as the budget n increases (as it does when diam(C(ε))→ 0). Thus, if we wish to ap-
proach an understanding of improvements achievable by active learning in general, we must come
to terms with scenarios where diam(C(ε)) does not shrink to zero.

Interestingly, it seems that diam(C(ε))" 0 might not be a problem for some algorithms based
on shatterable sets, such as Algorithm 5. In particular, Algorithm 5 appears to continue exhibiting
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reasonable behavior in such scenarios. That is, even if there is a nonshrinking probability that the
query condition in Step 5 is satisfied for k = d̃ f , on any given sequence Z there must be some
smallest value of k for which this probability does shrink as n→∞. For this value of k, we should
expect to observe good behavior from the algorithm, in that (for sufficiently large n) the inferred
labels in Step 7 will tend to agree with some classifier f ∈ cl(C) with er( f ) = ν(C;PXY ). Thus, the
algorithm addresses the problem of multiple optimal classifiers by effectively selecting one of the
optimal classifiers.

To illustrate this phenomenon, consider learning with respect to the space of threshold classifiers
(Example 1) with P uniform in [0,1], and let (X ,Y ) ∼ PXY satisfy P(Y = +1|X) = 0 for X <
1/3, P(Y = +1|X) = 1/2 for 1/3 ≤ X < 2/3, and P(Y = +1|X) = 1 for 2/3 ≤ X . As we know
from above, d̃ f = 1 here. However, in this scenario we have DIS(C(ε))→ [1/3,2/3] as ε → 0.
Thus, Algorithm 4 never focuses its queries beyond a constant fraction of X , and therefore cannot
improve over certain passive learning algorithms in terms of the asymptotic dependence of its label
complexity on ε (assuming a worst-case choice of ĥ in Step 9). However, for k = 2 in Algorithm 5,
every Xm will be assigned a label ŷ in Step 7 (since no two points are shattered); furthermore, for
sufficiently large n we have (with high probability) DIS(Vi1) not too much larger than [1/3,2/3],
so that most points in DIS(Vi1) can be labeled either +1 or −1 by some optimal classifier. For us,
this has two implications. First, one can show that with very high probability, the S ∈ [1/3,2/3]1
will dominate the votes for ŷ in Step 7 (for all m processed while k = 2), so that the ŷ inferred
for any Xm /∈ [1/3,2/3] will agree with all of the optimal classifiers. Second, the inferred labels
ŷ for Xm ∈ [1/3,2/3] will definitely agree with some optimal classifier. Since we also impose the
h(Xm) = ŷ constraint for Vi2+1 in Step 8, the inferred ŷ labels must all be consistent with the same
optimal classifier, so that Vi2+1 will quickly converge to within a small neighborhood around that
classifier, without any further label requests. Note, however, that the particular optimal classifier
the algorithm converges to will be a random variable, determined by the particular sequence of
data points processed by the algorithm; thus, it cannot be determined a priori, which significantly
complicates any general attempt to analyze the label complexity achieved by the algorithm for
arbitrary C and PXY . In particular, for some C and PXY , even this minimal k for which convergence
occurs may be a nondeterministic random variable. At this time, it is not entirely clear how general
this phenomenon is (i.e., Algorithm 5 providing improvements over certain passive algorithms even
for distributions with diam(C(ε))" 0), nor how to characterize the label complexity achieved by
Algorithm 5 in general settings where diam(C(ε))" 0.

However, as mentioned earlier, there are other natural ways to generalize Meta-Algorithm 3 to
handle noise, some of which have more predictable behavior. In particular, the original thesis work
of Hanneke (2009b) explores a technique for active learning, which unlike Algorithm 5, only uses
the requested labels, not the inferred labels, and as a consequence never eliminates any optimal
classifier from V . Because of this fact, the sampling region for each k converges to a predictable
limiting region, so that we have an accurate a priori characterization of the algorithm’s behavior.
However, it is not immediately clear (to the author) whether this alternative technique might lead to
a method achieving results similar to Theorem 27.

To get a better understanding of the scenario where diam(C(ε))" 0, it will be helpful to par-
tition the distributions into two distinct categories, which we will refer to as the benign noise case
and the misspecified model case. The PXY in the benign noise case are characterized by the property
that ν(C;PXY ) = ν∗(PXY ); this is in some ways similar to the realizable case, in that C can approx-
imate an optimal classifier, except that the labels are stochastic. In the benign noise case, the only
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reason diam(C(ε)) would not shrink to zero is if there is a nonzero probability set of points x with
η(x) = 1/2; that is, there are at least two classifiers achieving the Bayes error rate, and they are at
nonzero distance from each other, which must mean they disagree on some points that have equal
probability of either label occurring. In contrast, the misspecified model case is characterized by
ν(C;PXY )> ν∗(PXY ). In this case, if the diameter does not shrink, it is because of the existence of
two classifiers h1,h2 ∈ cl(C) achieving error rate ν(C;PXY ), with P(x : h1(x) &= h2(x))> 0. How-
ever, unlike above, since they do not achieve the Bayes error rate, it is possible that a significant
fraction of the set of points they disagree on may have η(x) &= 1/2.

Intuitively, the benign noise case is relatively easier for active learning, since the noisy points
that prevent diam(C(ε)) from shrinking can essentially be assigned arbitrary labels, as in the thresh-
olds example above. For instance, as in Algorithm 5, we could assign a label to points in this region
and discard any classifiers inconsistent with the label, confident that we have kept at least one opti-
mal classifier. Another possibility is simply to ignore the points in this region, since in the end they
are inconsequential for the excess error rate of the classifier we return; in some sense, this is the
strategy taken by the method of Hanneke (2009b).

In contrast, the misspecified model case intuitively makes the active learning problem more
difficult. For instance, if h1 and h2 in cl(C) both have error rate ν(C;PXY ), the original method of
Hanneke (2009b) has the possibility of inferring the label h2(x) for some point x when in fact h1(x)
is better for that particular x, and vice versa for the points xwhere h2(x) would be better, thus getting
the worst of both and potentially doubling the error rate in the process. Algorithm 5 may fare better
in this case, since imposing the inferred label ŷ as a constraint in Step 8 effectively selects one of
h1 or h2, and discards the other one. As before, whether Algorithm 5 selects h1 or h2 will generally
depend on the particular data sequence Z , which therefore makes any a priori analysis of the label
complexity more challenging.

Interestingly, it turns out that, for the purpose of exploring Conjecture 23, we can circumvent all
of these issues by noting that there is a trivial solution to the misspecified model case. Specifically,
since in our present context we are only interested in the label complexity for achieving error rate
better than ν + ε , we can simply turn to any algorithm that asymptotically achieves an error rate
strictly better than ν (e.g., Devroye et al., 1996), in which case the algorithm should require only
a finite constant number of labels to achieve an expected error rate better than ν . To make the
algorithm effective for the general case, we simply split our budget in three: one part for an active
learning algorithm, such as Algorithm 5, for the benign noise case, one part for the method above
handling the misspecified model case, and one part to select among their outputs. The full details of
such a procedure are specified in Appendix E.3, along with a proof of its performance guarantees,
which are summarized as follows.

Theorem 28 Fix any concept space C. Suppose there exists an active learning algorithm Aa
achieving a label complexity Λa. Then there exists an active learning algorithm A′a achieving a
label complexity Λ′a such that, for any distribution PXY on X × {−1,+1}, there exists a function
λ (ε) ∈ Polylog(1/ε) such that

Λ′a(ν+ ε ,PXY )≤
{

max{2Λa(ν+ ε/2,PXY ),λ (ε)} , in the benign noise case
λ (ε), in the misspecified model case

.
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The main point of Theorem 28 is that, for our purposes, we can safely ignore the misspecified
model case (as its solution is a trivial extension), and focus entirely on the performance of algorithms
for the benign noise case. In particular, for any label complexity Λp, every PXY ∈Nontrivial(Λp;C)
in the misspecified model case has Λ′a(ν+ ε ,PXY ) = o(Λp(ν+ ε ,PXY )), for Λ′a as in Theorem 28.
Thus, if there exists an active meta-algorithm achieving the strong improvement guarantees of an
activizer for some passive learning algorithm Ap (Definition 21) for all distributions PXY in the
benign noise case, then there exists an activizer for Ap with respect to C in the agnostic case.

7. Open Problems

In some sense, this work raises more questions than it answers. Here, we list several problems that
remain open at this time. Resolving any of these problems would make a significant contribution to
our understanding of the fundamental capabilities of active learning.

• We have established the existence of universal activizers for VC classes in the realizable case.
However, we have not made any serious attempt to characterize the properties that such ac-
tivizers can possess. In particular, as mentioned, it would be interesting to know whether
activizers exist that preserve certain favorable properties of the given passive learning algo-
rithm. For instance, we know that some passive learning algorithms (say, for linear separators)
achieve a label complexity that is independent of the dimensionality of the space X , under
a large margin condition on f and P (Balcan, Blum, and Vempala, 2006b). Is there an ac-
tivizer for such algorithms that preserves this large-margin-based dimension-independence in
the label complexity? Similarly, there are passive algorithms whose label complexity has a
weak dependence on dimensionality, due to sparsity considerations (Bunea, Tsybakov, and
Wegkamp, 2009; Wang and Shen, 2007). Is there an activizer for these algorithms that pre-
serves this sparsity-based weak dependence on dimension? Is there an activizer that preserves
adaptiveness to the dimension of the manifold to which P is restricted? What about an ac-
tivizer that is sparsistent (Rocha, Wang, and Yu, 2009), given any sparsistent passive learning
algorithm as input? Is there an activizer that preserves admissibility, in that given any ad-
missible passive learning algorithm, the activized algorithm is an admissible active learning
algorithm? Is there an activizer that, given any minimax optimal passive learning algorithm
as input, produces a minimax optimal active learning algorithm? What about preserving other
notions of optimality, or other properties?

• There may be some waste in the above activizers, since the label requests used in their ini-
tial phase (reducing the version space) are not used by the passive algorithm to produce the
final classifier. This guarantees the examples fed into the passive algorithm are conditionally
independent given the number of examples. Intuitively, this seems necessary for the gen-
eral results, since any dependence among the examples fed to the passive algorithm could
influence its label complexity. However, it is not clear (to the author) how dramatic this effect
can be, nor whether a simpler strategy (e.g., slightly randomizing the budget of label requests)
might yield a similar effect while allowing a single-stage approach where all labels are used in
the passive algorithm. It seems intuitively clear that some special types of passive algorithms
should be able to use the full set of examples, from both phases, while still maintaining the
strict improvements guaranteed in the main theorems above. What general properties must
such passive algorithms possess?

1524



ACTIVIZED LEARNING

• As previously mentioned, the vast majority of empirically-tested heuristic active learning al-
gorithms in the published literature are designed in a reduction style, using a well-known
passive learning algorithm as a subroutine, constructing sets of labeled examples and feed-
ing them into the passive learning algorithm at various points in the execution of the active
learning algorithm (e.g., Abe and Mamitsuka, 1998; McCallum and Nigam, 1998; Schohn and
Cohn, 2000; Campbell, Cristianini, and Smola, 2000; Tong and Koller, 2001; Roy and McCal-
lum, 2001; Muslea, Minton, and Knoblock, 2002; Lindenbaum, Markovitch, and Rusakov,
2004; Mitra, Murthy, and Pal, 2004; Roth and Small, 2006; Schein and Ungar, 2007; Har-
Peled, Roth, and Zimak, 2007; Beygelzimer, Dasgupta, and Langford, 2009). However, rather
than including some examples whose labels are requested and other examples whose labels
are inferred in the sets of labeled examples given to the passive learning algorithm (as in our
rigorous methods above), these heuristic methods typically only input to the passive algo-
rithm the examples whose labels were requested. We should expect that meta-algorithms of
this type could not be universal activizers for C, but perhaps there do exist meta-algorithms
of this type that are activizers for every passive learning algorithm of some special type. What
are some general conditions on the passive learning algorithm so that some meta-algorithm
of this type (i.e., feeding in only the requested labels) can activize every passive learning
algorithm satisfying those conditions?

• As discussed earlier, the definition of “activizer” is based on a trade-off between the strength
of claimed improvements for nontrivial scenarios, and ease of analysis within the framework.
There are two natural questions regarding the possibility of stronger notions of “activizer.” In
Definition 3 we allow a constant factor c loss in the ε argument of the label complexity. In
most scenarios, this loss is inconsequential (e.g., typically Λp(ε/c, f ,P) = O(Λp(ε , f ,P))),
but one can construct scenarios where it does make a difference. In our proofs, we see that
it is possible to achieve c = 3; in fact, a careful inspection of the proofs reveals we can even
get c = (1+ o(1)), a function of ε , converging to 1. However, whether there exist universal
activizers for every VC class that have c= 1 remains an open question.

A second question regards our notion of “nontrivial problems.” In Definition 3, we have
chosen to think of any target and distribution with label complexity growing faster than
Polylog(1/ε) as nontrivial, and do not require the activized algorithm to improve over the
underlying passive algorithm for scenarios that are trivial for the passive algorithm. As men-
tioned, Definition 3 does have implications for the label complexities of these problems,
as the label complexity of the activized algorithm will improve over every nontrivial up-
per bound on the label complexity of the passive algorithm. However, in order to allow for
various operations in the meta-algorithm that may introduce additive Polylog(1/ε) terms due
to exponentially small failure probabilities, such as the test that selects among hypotheses in
ActiveSelect, we do not require the activized algorithm to achieve the same order of label
complexity in trivial scenarios. For instance, there may be cases in which a passive algo-
rithm achieves O(1) label complexity for a particular ( f ,P), but its activized counterpart has
Θ(log(1/ε)) label complexity. The intention is to define a framework that focuses on non-
trivial scenarios, where passive learning uses prohibitively many labels, rather than one that
requires us to obsess over extra additive logarithmic terms. Nonetheless, there is a question of
whether these losses in the label complexities of trivial problems are necessary to gain these
improvements in the label complexities of nontrivial problems.
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There is also the question of how much the definition of “nontrivial” can be relaxed. Specifi-
cally, we have the following question: to what extent can we relax the notion of “nontrivial” in
Definition 3, while still maintaining the existence of universal activizers for VC classes? We
see from our proofs that we can at least replace Polylog(1/ε) with O(log(1/ε)). However, it
is not clear whether we can go further than this in the realizable case (e.g., to say “nontrivial”
means ω(1)). When there is noise, it is clear that we cannot relax the notion of “nontriv-
ial” beyond replacing Polylog(1/ε) with O(log(1/ε)). Specifically, whenever DIS(C) &= ∅,
for any label complexity Λa achieved by an active learning algorithm, there must be some
PXY with Λa(ν + ε ,PXY ) = Ω(log(1/ε)), even with the support of P restricted to a single
point x ∈ DIS(C); the proof of this is via a reduction from sequential hypothesis testing for
whether a coin has bias α or 1−α , for some α ∈ (0,1/2). Since passive learning via empiri-
cal risk minimization can achieve label complexity Λp(ν+ ε ,PXY ) =O(log(1/ε)) whenever
the support of P is restricted to a single point, we cannot further relax the notion of “nontriv-
ial,” while preserving the possibility of a positive outcome for Conjecture 23. It is interesting
to note that this entire issue vanishes if we are only interested in methods that achieve er-
ror at most ε with probability at least 1− δ , where δ ∈ (0,1) is some acceptable constant
failure probability, as in the work of Balcan, Hanneke, and Vaughan (2010); in this case,
we can simply take “nontrivial” to mean ω(1) label complexity, and both Meta-Algorithm
1 and Meta-Algorithm 3 remain universal activizers for C under this alternative definition,
and achieve O(1) label complexity in trivial scenarios.

• Another interesting question concerns efficiency. Suppose there exists an algorithm to find
an element of C consistent with any labeled sequence L in time polynomial in |L| and d,
and that Ap(L) has running time polynomial in |L| and d. Under these conditions, is there
an activizer for Ap capable of achieving an error rate smaller than any ε in running time
polynomial in 1/ε and d, given some appropriately large budget n? Recall that if we knew
the value of d̃ f and d̃ f ≤ c logd, then Meta-Algorithm 1 could be made efficient, as discussed
above. Therefore, this question is largely focused on the issue of adapting to the value of d̃ f .
Another related question is whether there is an efficient active learning algorithm achieving
the label complexity bound of Corollary 7 or Corollary 17.

• One question that comes up in the results above is the minimum number of batches of label
requests necessary for a universal activizer for C. In Meta-Algorithm 0 and Theorem 5, we
saw that sometimes two batches are sufficient: one to reduce the version space, and another
to construct the labeled sample by requesting only those points in the region of disagreement.
We certainly cannot use fewer than two batches in a universal activizer for any nontrivial
concept space, so that this represents the minimum. However, to get a universal activizer
for every concept space, we increased the number of batches to three in Meta-Algorithm 1.
The question is whether this increase is really necessary. Is there always a universal activizer
using only two batches of label requests, for every VC class C?

• For some C, the learning process in the above methods might be viewed in two components:
one component that performs active learning as usual (say, disagreement-based) under the
assumption that the target function is very simple, and another component that searches for
signs that the target function is in fact more complex. Thus, for some natural classes such
as linear separators, it would be interesting to find simpler, more specialized methods, which
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explicitly execute these two components. For instance, for the first component, we might con-
sider the usual margin-based active learning methods, which query near a current guess of the
separator (Dasgupta, Kalai, and Monteleoni, 2005, 2009; Balcan, Broder, and Zhang, 2007),
except that we bias toward simple hypotheses via a regularization penalty in the optimization
that defines how we update the separator in response to a query. The second component might
then be a simple random search for points whose correct classification requires larger values
of the regularization term.

• Can we construct universal activizers for some concept spaces with infinite VC dimension?
What about under some constraints on the distribution P or PXY (e.g., the usual entropy
conditions)? It seems we can still run Meta-Algorithm 1, Meta-Algorithm 3, and Algorithm
5 in this case, except we should increase the number of rounds (values of k) as a function
of n; this may continue to have reasonable behavior even in some cases where d̃ f =∞, es-
pecially when Pk(∂k f )→ 0 as k→∞. However, it is not clear whether they will continue
to guarantee the strict improvements over passive learning in the realizable case, nor what
label complexity guarantees they will achieve. One specific question is whether there is a
method always achieving label complexity o

(

ε
1−ρ
κ −2

)

, where ρ is from the entropy condi-
tions (van der Vaart and Wellner, 1996) and κ is from Condition 1. This would be an improve-
ment over the known results for passive learning (Mammen and Tsybakov, 1999; Tsybakov,
2004; Koltchinskii, 2006). Another related question is whether we can improve over the
known results for active learning in these scenarios. Specifically, Hanneke (2011) proved a
bound of Õ

(

θ f
(

ε
1
κ

)

ε
2−ρ
κ −2

)

on the label complexity of a certain disagreement-based active
learning method, under entropy conditions and Condition 1. Do there exist active learning
methods achieving asymptotically smaller label complexities than this, in particular improv-
ing the θ f

(

ε
1
κ

)

factor? The quantity θ̃ f
(

ε
1
κ

)

is no longer defined when d̃ f =∞, so this
might not be a direct extension of Theorem 27, but we could perhaps use the sequence of
θ (k)
f

(

ε
1
κ

)

values in some other way to replace θ f
(

ε
1
κ

)

in this case.

• Generalizing the previous question, we might even be so bold as to ask whether there exists a
universal activizer for the space of all classifiers. Let us refer to such a method as a universal
activizer (in general). The present work shows that there is a universal activizer for every
VC class. Furthermore, Lemma 34 implies that, for any sequence C1,C2, . . . of concept
spaces for which there exist universal activizers, there also exists a universal activizer for
⋃∞
i=1Ci: namely, the method that runs each of the activizers for Ci with respective budgets
33n/(πi)24, for i = 1,2, . . . ,3

√
3n/π4, producing hypotheses h1, . . . ,h3√3n/π4, then returns

the value of ActiveSelect({h1, . . . ,h3√3n/π4},5n/26,{XM,XM+1, . . .}), where M is larger than
any index accessed by these 3

√
3n/π4 activizers. In fact, the proof of Theorem 6 entails that

the o(Λp(ε , f ,P)) guarantee holds for f in the closure cl(C) of any VC class C. Combined
with the above trick, it follows that we can achieve the o(Λp(ε , f ,P)) strong improvement
guarantee over passive learning for all f in

⋃∞
i=1 cl(Ci), where the Ci sets are VC classes.

We can always construct a sequence of VC classes C1,C2, . . . such that cl(
⋃∞
i=1Ci) is the

set of all classifiers. However,
⋃∞
i=1 cl(Ci) is generally not the same as cl(

⋃∞
i=1Ci), so that

achievingΛa(cε , f ,P)= o(Λp(ε , f ,P)) for all f ∈
⋃∞
i=1 cl(Ci) does not necessarily guarantee

the same for all f ∈ cl(
⋃∞
i=1Ci). Thus, constructing a general universal activizer would be
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a nontrivial extension of the present work, and the fundamental question of the existence (or
nonexistence) of such meta-algorithms remains a fascinating open question.

• There is also a question about generalizing this approach to label spaces other than {−1,+1},
and possibly other loss functions. It should be straightforward to extend these results to the
setting of multiclass classification. However, it is not clear what the implications would be
for general structured prediction problems, where the label space may be quite large (even
infinite), and the loss function involves a notion of distance between labels. From a practical
perspective, this question is particularly interesting, since problems with more complicated
label spaces are often the scenarios where active learning is most needed, as it takes substan-
tial time or effort to label each example. At this time, there are no published theoretical results
on the label complexity improvements achievable for general structured prediction problems.

• All of the claims in this work also hold when Ap is a semi-supervised passive learning al-
gorithm, simply by withholding a set of unlabeled data points in a preprocessing step, and
feeding them into the passive algorithm along with the labeled set generated by the activizer.
However, it is not clear whether further claims are possible when activizing a semi-supervised
algorithm, for instance by taking into account specific details of the learning bias used by the
particular semi-supervised algorithm (e.g., a cluster assumption).

• The splitting index analysis of Dasgupta (2005) has the interesting feature of characterizing a
trade-off between the number of label requests and the number of unlabeled examples used
by the active learning algorithm. In the present work, we do not characterize any such trade-
off. Indeed, the algorithms do not really have any parameter to adjust the number of unlabeled
examples they use (aside from the precision of the P̂ estimators), so that they simply use as
many as they need and then halt. This is true in both the realizable case and in the agnostic
case. It would be interesting to try to modify these algorithms and their analysis so that,
when there are more unlabeled examples available than would be used by the above methods,
the algorithms can take advantage of this in a way that can be reflected in improved label
complexity bounds, and when there are fewer unlabeled examples available, the algorithms
can alter their behavior to compensate for this, at the cost of an increased label complexity.
This would be interesting both for the realizable and agnostic cases. In fact, in the agnostic
case, there are no known methods that exhibit this type of trade-off.

• Finally, as mentioned in the previous section, there is a serious question concerning what
types of algorithms can be activized in the agnostic case, and how large the improvements in
label complexity will be. In particular, Conjecture 23 hypothesizes that for any VC class, we
can activize some empirical risk minimization algorithm in the agnostic case. Resolving this
conjecture (either positively or negatively) should significantly advance our understanding of
the capabilities of active learning compared to passive learning.
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Appendix A. Proofs Related to Section 3: Disagreement-Based Learning

The following result follows from a theorem of Anthony and Bartlett (1999), based on the clas-
sic results of Vapnik (1982) (with slightly better constant factors); see also the work of Blumer,
Ehrenfeucht, Haussler, and Warmuth (1989).

Lemma 29 For any VC class C, m ∈ N, and classifier f such that ∀r > 0,B( f ,r) &= ∅, let V $
m =

{h ∈C : ∀i≤m,h(Xi) = f (Xi)}; for any δ ∈ (0,1), there is an event Hm(δ ) with P(Hm(δ ))≥ 1−δ
such that, on Hm(δ ), V $

m ⊆ B( f ,φ(m;δ )), where

φ(m;δ ) = 2
d ln 2emax{m,d}

d + ln(2/δ )
m

.

A fact we will use repeatedly is that, for any N(ε) = ω(log(1/ε)), we have φ(N(ε);ε) = o(1).

Lemma 30 For P̂n(DIS(V )) from (1), on an event Jn with P(Jn)≥ 1−2 · exp{−n/4},

max{P(DIS(V )),4/n}≤ P̂n(DIS(V ))≤max{4P(DIS(V )),8/n} .

Proof Note that the sequence Un from (1) is independent from bothV and L. By a Chernoff bound,
on an event Jn with P(Jn)≥ 1−2 · exp{−n/4},

P(DIS(V ))> 2/n =⇒ P(DIS(V ))
1
n2

∑

x∈Un DIS(V )(x)
∈ [1/2,2],

and P(DIS(V ))≤ 2/n =⇒ 1
n2

∑

x∈Un
DIS(V )(x)≤ 4/n.

This immediately implies the stated result.

Lemma 31 Let λ : (0,1)→ (0,∞) and L : N×(0,1)→ [0,∞) be s.t. λ (ε) =ω(1), L(1,ε) = 0 and
L(n,ε)→∞ as n→∞ for every ε ∈ (0,1), and for any N-valued N(ε) = ω(λ (ε)), L(N(ε),ε) =
ω(N(ε)). Let L−1(m;ε) = max{n ∈ N : L(n,ε)< m} for every m ∈ (0,∞). Then for any Λ :
(0,1)→ (0,∞) with Λ(ε) = ω(λ (ε)), we have L−1(Λ(ε);ε) = o(Λ(ε)).

Proof First note that L−1 is well-defined and finite, due to the facts that L(n,ε) can be 0 and is
diverging in n. Let Λ(ε) = ω(λ (ε)). It is fairly straightforward to show L−1(Λ(ε);ε) &= Ω(Λ(ε)),
but the stronger o(Λ(ε)) result takes slightly more work. Let  L(n,ε) = min

{

L(n,ε),n2/λ (ε)
}

for
every n ∈ N and ε ∈ (0,1), and let  L−1(m;ε) = max{n ∈ N :  L(n,ε)< m}. We will first prove the
result for  L.

Note that by definition of  L−1, we know
(  L−1 (Λ(ε);ε)+1

)2
/λ (ε)≥  L

(  L−1 (Λ(ε);ε)+1,ε
)

≥ Λ(ε) = ω(λ (ε)),

which implies  L−1 (Λ(ε);ε) = ω(λ (ε)). But, by definition of  L−1 and the condition on L,

Λ(ε)>  L
(  L−1 (Λ(ε);ε) ,ε

)

= ω
(  L−1 (Λ(ε);ε)

)

.

Since  L−1(m;ε) ≥ L−1(m;ε) for all m > 0, this implies Λ(ε) = ω
(

L−1 (Λ(ε);ε)
)

, or equivalently
L−1 (Λ(ε);ε) = o(Λ(ε)).
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Lemma 32 For any VC class C and passive algorithm Ap, if Ap achieves label complexity Λp,
then Meta-Algorithm 0, with Ap as its argument, achieves a label complexity Λa such that, for
every f ∈C and distribution P over X , if P(∂C,P f ) = 0 and∞>Λp(ε , f ,P) =ω(log(1/ε)), then
Λa(2ε , f ,P) = o(Λp(ε , f ,P)).

Proof This proof follows similar lines to a proof of a related result of Balcan, Hanneke, and
Vaughan (2010). Suppose Ap achieves a label complexity Λp, and that f ∈ C and distribution
P satisfy ∞ > Λp(ε , f ,P) = ω(log(1/ε)) and P(∂C,P f ) = 0. Let ε ∈ (0,1). For n ∈ N, let
Δn(ε) = P(DIS(B( f ,φ(3n/24;ε/2)))), L(n;ε) = 3n/max{32/n,16Δn(ε)}4, and for m ∈ (0,∞)
let L−1(m;ε) = max{n ∈ N : L(n;ε)< m}. Suppose

n≥max
{

12ln(6/ε),1+L−1 (Λp(ε , f ,P);ε)
}

.

Consider running Meta-Algorithm 0 with Ap and n as arguments, while f is the target function and
P is the data distribution. Let V and L be as in Meta-Algorithm 0, and let ĥn =Ap(L) denote the
classifier returned at the end.

By Lemma 29, on the event H3n/24(ε/2),V ⊆B( f ,φ(3n/24;ε/2)), so that P(DIS(V ))≤ Δn(ε).
Letting U = {X3n/24+1, . . . ,X3n/24+3n/(4Δ̂)4}, by Lemma 30, on H3n/24(ε/2)∩ Jn we have

3n/max{32/n,16Δn(ε)}4 ≤ |U|≤ 3n/max{4P(DIS(V )),16/n}4 . (7)

By a Chernoff bound, for an event Kn with P(Kn) ≥ 1− exp{−n/12}, on H3n/24(ε/2)∩ Jn ∩Kn,
|U ∩DIS(V )|≤ 2P(DIS(V )) · 3n/max{4P(DIS(V )),16/n}4 ≤ 5n/26. Defining the event Gn(ε) =
H3n/24(ε/2)∩ Jn∩Kn, we see that on Gn(ε), every time Xm ∈ DIS(V ) in Step 5 of Meta-Algorithm
0, we have t < n; therefore, since f ∈V implies that the inferred labels in Step 6 are correct as well,
we have that on Gn(ε),

∀(x, ŷ) ∈ L, ŷ= f (x). (8)

Noting that

P(Gn(ε)c)≤ P
(

H3n/24(ε/2)c
)

+P(Jcn)+P(Kc
n)≤ ε/2+2 · exp{−n/4}+ exp{−n/12}≤ ε ,

we have

E
[

er
(

ĥn
)]

≤ E
[

Gn(ε) [|L|≥ Λp(ε , f ,P)]er
(

ĥn
)]

+P(Gn(ε)∩{|L|< Λp(ε , f ,P)})+P(Gn(ε)c)

≤ E
[

Gn(ε) [|L|≥ Λp(ε , f ,P)]er(Ap(L))
]

+P(Gn(ε)∩{|L|< Λp(ε , f ,P)})+ ε . (9)

On Gn(ε), (7) implies |L| ≥ L(n;ε), and we chose n large enough so that L(n;ε) ≥ Λp(ε , f ,P).
Thus, the second term in (9) is zero, and we have

E
[

er
(

ĥn
)]

≤ E
[

Gn(ε) [|L|≥ Λp(ε , f ,P)]er(Ap (L))
]

+ ε

= E

[

E

[

Gn(ε) er(Ap (L))
∣

∣

∣
|L|
]

[|L|≥ Λp(ε , f ,P)]
]

+ ε . (10)

For any !∈N with P(|L|= !)> 0, the conditional of U|{|U|= !} is a product distribution P!; that is,
the samples in U are conditionally independent and identically distributed with distribution P , which
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is the same as the distribution of {X1,X2, . . . ,X!}. Therefore, for any such ! with ! ≥ Λp(ε , f ,P),
by (8) we have

E

[

Gn(ε) er(Ap (L))
∣

∣

∣
{|L|= !}

]

≤ E [er(Ap (Z!))]≤ ε .

In particular, this means (10) is at most 2ε . This implies Meta-Algorithm 0, with Ap as its argument,
achieves a label complexity Λa such that

Λa(2ε , f ,P)≤max
{

12ln(6/ε),1+L−1 (Λp(ε , f ,P);ε)
}

.

Since Λp(ε , f ,P) = ω(log(1/ε))⇒ 12ln(6/ε) = o(Λp(ε , f ,P)), it remains only to show that
L−1 (Λp(ε , f ,P);ε) = o(Λp(ε , f ,P)). Note that ∀ε ∈ (0,1), L(1;ε) = 0 and L(n;ε) is diverging in
n. Furthermore, by the assumption P(∂C,P f ) = 0, we know that for any N(ε) = ω(log(1/ε)), we
have ΔN(ε)(ε) = o(1) (by continuity of probability measures), which implies L(N(ε);ε) =ω(N(ε)).
Thus, since Λp(ε , f ,P) = ω(log(1/ε)), Lemma 31 implies L−1 (Λp(ε , f ,P);ε) = o(Λp(ε , f ,P)),
as desired.

Lemma 33 For any VC class C, target function f ∈ C, and distribution P , if P(∂C,P f ) > 0, then
there exists a passive learning algorithm Ap achieving a label complexity Λp such that ( f ,P) ∈
Nontrivial(Λp), and for any label complexity Λa achieved by running Meta-Algorithm 0 with Ap as
its argument, and any constant c ∈ (0,∞),

Λa(cε , f ,P) &= o(Λp(ε , f ,P)).

Proof The proof can be broken down into three essential claims. First, it follows from Lemma 35
below that, on an event H ′ of probability one, P(∂V f )≥ P(∂C f ); since P(DIS(V ))≥ P(∂V f ), we
have P(DIS(V ))≥ P(∂C f ) on H ′.

The second claim is that on H ′ ∩ Jn, |L| = O(n). This follows from Lemma 30 and our first
claim by noting that, on H ′ ∩ Jn, |L|=

⌊

n/(4Δ̂)
⌋

≤ n/(4P(DIS(V )))≤ n/(4P(∂C f )).
Finally, we construct a passive algorithm Ap whose label complexity is not significantly im-

proved when |L| = O(n). There is a fairly obvious randomized Ap with this property (simply
returning − f with probability 1/|L|, and otherwise f ); however, we can even satisfy the property
with a deterministic Ap, as follows. Let H f = {hi}∞i=1 be any sequence of classifiers (not necessarily
in C) with 0 < P(x : hi(x) &= f (x)) strictly decreasing to 0, (say with h1 = − f ). We know such a
sequence must exist since P(∂C f )> 0. Now define, for nonempty S,

Ap(S) = argmin
hi∈H f

P(x : hi(x) &= f (x))+2 [0,1/|S|)(P(x : hi(x) &= f (x))).

Ap is constructed so that, in the special case that this particular f is the target function and this
particular P is the data distribution, Ap(S) returns the hi ∈H f with minimal er(hi) such that er(hi)≥
1/|S|. For completeness, let Ap(∅) = h1. Define εi = er(hi) = P(x : hi(x) &= f (x)).

Now let ĥn be the returned classifier from running Meta-Algorithm 0 with Ap and n as inputs, let
Λp be the (minimal) label complexity achieved by Ap, and let Λa be the (minimal) label complexity
achieved by Meta-Algorithm 0 with Ap as input. Take any c ∈ (0,∞), and i sufficiently large so
that εi−1 < 1/2. Then we know that for any ε ∈ [εi,εi−1), Λp(ε , f ,P) = 51/εi6. In particular,
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Λp(ε , f ,P) ≥ 1/ε , so that ( f ,P) ∈ Nontrivial(Λp). Also, by Markov’s inequality and the above
results on |L|,

E[er(ĥn)]≥ E

[

1
|L|

]

≥ 4P(∂C f )
n

P

(

1
|L| >

4P(∂C f )
n

)

≥ 4P(∂C f )
n

P(H ′ ∩ Jn)≥
4P(∂C f )

n
(1−2 · exp{−n/4}) .

This implies that for 4 ln(4)< n< 2P(∂C f )
cεi , we have E

[

er(ĥn)
]

> cεi, so that for all sufficiently large
i,

Λa(cεi, f ,P)≥ 2P(∂C f )
cεi

≥ P(∂C f )
c

⌈

1
εi

⌉

=
P(∂C f )

c
Λp(εi, f ,P).

Since this happens for all sufficiently large i, and thus for arbitrarily small εi values, we have

Λa(cε , f ,P) &= o(Λp(ε , f ,P)) .

Proof [Theorem 5] Theorem 5 now follows directly from Lemmas 32 and 33, corresponding to the
“if” and “only if” parts of the claim, respectively.

Appendix B. Proofs Related to Section 4: Basic Activizer

In this section, we provide detailed definitions, lemmas and proofs related to Meta-Algorithm 1.
In fact, we will develop slightly more general results here. Specifically, we fix an arbitrary

constant γ ∈ (0,1), and will prove the result for a family of meta-algorithms parameterized by the
value γ , used as the threshold in Steps 3 and 6 of Meta-Algorithm 1, which were set to 1/2 above to
simplify the algorithm. Thus, setting γ = 1/2 in the statements below will give the stated theorem.

Throughout this section, we will assume C is a VC class with VC dimension d, and let P denote
the (arbitrary) marginal distribution of Xi (∀i). We also fix an arbitrary classifier f ∈ cl(C), where
(as in Section 6) cl(C) = {h : ∀r > 0,B(h,r) &= ∅} denotes the closure of C. In the present context,
f corresponds to the target function when running Meta-Algorithm 1. Thus, we will study the
behavior of Meta-Algorithm 1 for this fixed f and P; since they are chosen arbitrarily, to establish
Theorem 6 it will suffice to prove that for any passive Ap, Meta-Algorithm 1 with Ap as input
achieves superior label complexity compared to Ap for this f and P . In fact, because here we only
assume f ∈ cl(C) (rather than f ∈ C), we actually end up proving a slightly more general version
of Theorem 6. But more importantly, this relaxation to cl(C) will also make the lemmas developed
below more useful for subsequent proofs: namely, those in Appendix E.2. For this same reason,
many of the lemmas of this section are substantially more general than is necessary for the proof of
Theorem 6; the more general versions will be used in the proofs of results in later sections.

For any m ∈ N, we define V $
m = {h ∈ C : ∀i≤ m,h(Xi) = f (Xi)}. Additionally, for H ⊆ C, and

an integer k ≥ 0, we will adopt the notation

Sk(H) =
{

S ∈ X k : H shatters S
}

,

 Sk(H) = X k \Sk(H),
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and as in Section 5, we define the k-dimensional shatter core of f with respect to H (and P) as

∂kH f = lim
r→0

Sk (BH( f ,r)) ,

and further define
 ∂kH f = X k \∂kH f .

Also as in Section 5, define

d̃ f = min
{

k ∈ N : Pk
(

∂kC f
)

= 0
}

.

For convenience, we also define the abbreviation

δ̃ f = P d̃ f−1
(

∂
d̃ f−1
C

f
)

.

Also, recall that we are using the convention that X 0 = {∅}, P0(X 0) = 1, and we say a set of
classifiers H shatters ∅ iff H &= {}. In particular, S0(H) &= {} iff H &= {}, and ∂0

H f &= {} iff
infh∈HP(x : h(x) &= f (x)) = 0. For any measurable sets S1,S2 ⊆ X k with Pk(S2) > 0, as usual we
define Pk(S1|S2) = Pk(S1 ∩ S2)/Pk(S2); in the situation where Pk(S2) = 0, it will be convenient
to define Pk(S1|S2) = 0. We use the definition of er(h) from above, and additionally define the
conditional error rate er(h|S) =P({x : h(x) &= f (x)}|S) for any measurable S⊆X . We also adopt the
usual short-hand for equalities and inequalities involving conditional expectations and probabilities
given random variables, wherein for instance, we write E[X |Y ] = Z to mean that there is a version
of E[X |Y ] that is everywhere equal to Z, so that in particular, any version of E[X |Y ] equals Z almost
everywhere (see, e.g., Ash and Doléans-Dade, 2000).

B.1 Definition of Estimators for Meta-Algorithm 1

While the estimated probabilities used in Meta-Algorithm 1 can be defined in a variety of ways to
make it a universal activizer for C, in the statement of Theorem 6 above and proof thereof below,
we take the following specific definitions. After the definition, we discuss alternative possibilities.

Though it is a slight twist on the formal model, it will greatly simplify our discussion be-
low to suppose we have access to two independent sequences of i.i.d. unlabeled examples W1 =
{w1,w2, . . .} and W2 = {w′1,w′2, . . .}, also independent from the main sequence {X1,X2, . . .}, with
wi,w′i ∼ P . Since the data sequence {X1,X2, . . .} is i.i.d., this is distributionally equivalent to sup-
posing we partition the data sequence in a preprocessing step, into three subsequences, alternatingly
assigning each data point to either Z ′X , W1, or W2. Then, if we suppose Z ′X = {X ′1,X ′2, . . .}, and we
replace all references to Xi with X ′i in the algorithms and results, we obtain the equivalent statements
holding for the model as originally stated. Thus, supposing the existence of theseWi sequences sim-
ply serves to simplify notation, and does not represent a further assumption on top of the previously
stated framework.

For each k ≥ 2, we partitionW2 into subsets of size k−1, as follows. For i ∈ N, let

S(k)i = {w′1+(i−1)(k−1), . . . ,w
′
i(k−1)}.
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We define the P̂m estimators in terms of three types of functions, defined below. For any H⊆C,
x ∈ X , y ∈ {−1,+1}, m ∈ N, we define

P̂m
(

S ∈ X k−1 : H shatters S∪{x}|H shatters S
)

= Δ̂(k)
m (x,W2,H), (11)

P̂m
(

S ∈ X k−1 : H[(x,−y)] does not shatter S|H shatters S
)

= Γ̂(k)m (x,y,W2,H), (12)

P̂m
(

x : P̂
(

S ∈ X k−1 : H shatters S∪{x}|H shatters S
)

≥ γ
)

= Δ̂(k)
m (W1,W2,H). (13)

The quantities Δ̂(k)
m (x,W2,H), Γ̂(k)m (x,y,W2,H), and Δ̂(k)

m (W1,W2,H) are specified as follows.
For k = 1, Γ̂(1)m (x,y,W2,H) is simply an indicator for whether every h ∈H has h(x) = y, while

Δ̂(1)
m (x,W2,H) is an indicator for whether x ∈ DIS(H). Formally, they are defined as follows.

Γ̂(1)m (x,y,W2,H) = ⋂

h∈H
{h(x)}(y).

Δ̂(1)
m (x,W2,H) = DIS(H)(x).

For k ≥ 2, we first define

M(k)
m (H) = max







1,
m3
∑

i=1
Sk−1(H)

(

S(k)i
)







.

Then we take the following definitions for Γ̂(k) and Δ̂(k).

Γ̂(k)m (x,y,W2,H) =
1

M(k)
m (H)

m3
∑

i=1
 Sk−1(H[(x,−y)])

(

S(k)i
)

Sk−1(H)

(

S(k)i
)

. (14)

Δ̂(k)
m (x,W2,H) =

1
M(k)
m (H)

m3
∑

i=1
Sk(H)

(

S(k)i ∪{x}
)

. (15)

For the remaining estimator, for any k we generally define

Δ̂(k)
m (W1,W2,H) =

2
m
+

1
m3

m3
∑

i=1
[γ/4,∞)

(

Δ̂(k)
m (wi,W2,H)

)

.

The above definitions will be used in the proofs below. However, there are certainly viable al-
ternative definitions one can consider, some of which may have interesting theoretical properties. In
general, one has the same sorts of trade-offs present whenever estimating a conditional probability.
For instance, we could replace “m3” in (14) and (15) by min

{

! ∈ N : M(k)
! (H) = m3

}

, and then nor-

malize by m3 instead of M(k)
m (H); this would give us m3 samples from the conditional distribution

with which to estimate the conditional probability. The advantages of this approach would be its
simplicity or elegance, and possibly some improvement in the constant factors in the label complex-
ity bounds below. On the other hand, the drawback of this alternative definition would be that we
do not know a priori how many unlabeled samples we will need to process in order to calculate it;
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indeed, for some values of k and H, we expect Pk−1 (Sk−1(H)
)

= 0, so that M(k)
! (H) is bounded,

and we might technically need to examine the entire sequence to distinguish this case from the case
of very small Pk−1 (Sk−1(H)

)

. Of course, these practical issues can be addressed with small mod-
ifications, but only at the expense of complicating the analysis, thus losing the elegance factor. For
these reasons, we have opted for the slightly looser and less elegant, but more practical, definitions
above in (14) and (15).

B.2 Proof of Theorem 6

At a high level, the structure of the proof is the following. The primary components of the proof
are three lemmas: 34, 37, and 38. Setting aside, for a moment, the fact that we are using the P̂m
estimators rather than the actual probability values they estimate, Lemma 38 indicates that the num-
ber of data points in Ld̃ f grows superlinearly in n (the number of label requests), while Lemma 37
guarantees that the labels of these points are correct, and Lemma 34 tells us that the classifier re-
turned in the end is never much worse than Ap(Ld̃ f ). These three factors combine to prove the
result. The rest of the proof is composed of supporting lemmas and details regarding the P̂m esti-
mators. Specifically, Lemmas 35 and 36 serve a supporting role, with the purpose of showing that
the set of V -shatterable k-tuples converges to the k-dimensional shatter core (up to probability-zero
differences). The other lemmas below (39–45) are needed primarily to extend the above basic idea
to the actual scenario where the P̂m estimators are used as surrogates for the probability values. Ad-
ditionally, a sub-case of Lemma 45 is needed in order to guarantee the label request budget will not
be reached prematurely. Again, in many cases we prove a more general lemma than is required for
its use in the proof of Theorem 6; these more general results will be needed in subsequent proofs:
namely, in the proofs of Theorem 16 and Lemma 26.

We begin with a lemma concerning the ActiveSelect subroutine.

Lemma 34 For any k∗,M,N ∈ N with k∗ ≤ N, and N classifiers {h1,h2, . . . ,hN} (themselves pos-
sibly random variables independent from {XM,XM+1, . . .}), a call to ActiveSelect({h1,h2, . . . ,hN},
m, {XM,XM+1, . . .}) makes at most m label requests, and if hk̂ is the classifier it returns, then with
probability at least 1− eN · exp{−m/(72k∗N ln(eN))}, we have er(hk̂)≤ 2er(hk∗).

Proof This proof is essentially identical to a similar result of Balcan, Hanneke, and Vaughan (2010),
but is included here for completeness.

Let Mk =
⌊

m
k(N−k) ln(eN)

⌋

. First note that the total number of label requests in ActiveSelect is at
most m, since summing up the sizes of the batches of label requests made in all executions of Step
2 yields

N−1
∑

j=1

N
∑

k= j+1

⌊

m
j(N− j) ln(eN)

⌋

≤
N−1
∑

j=1

m
j ln(eN)

≤ m.

Let k∗∗ = argmink∈{1,...,k∗} er(hk). For any j ∈ {1,2, . . . ,k∗∗−1} with P(x : h j(x) &= hk∗∗(x))> 0,
the law of large numbers implies that with probability one |{XM,XM+1, . . .}∩{x : h j(x) &= hk∗∗(x)}|≥
Mj, and since er(hk∗∗ |{x : h j(x) &= hk∗∗(x)})≤ 1/2, Hoeffding’s inequality implies that

P
(

mk∗∗ j > 7/12
)

≤ exp
{

−Mj/72
}

≤ exp{1−m/(72k∗N ln(eN))} .
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A union bound implies

P

(

max
j<k∗∗

mk∗∗ j > 7/12
)

≤ k∗∗ · exp{1−m/(72k∗N ln(eN))} .

In particular, note that when max j<k∗∗mk∗∗ j ≤ 7/12, we must have k̂ ≥ k∗∗.
Now suppose j ∈ {k∗∗+ 1, . . . ,N} has er(h j) > 2er(hk∗∗). In particular, this implies er(h j|{x :

hk∗∗(x) &= h j(x)}) > 2/3 and P(x : h j(x) &= hk∗∗(x)) > 0, which again means (with probability one)
|{XM,XM+1, . . .}∩{x : h j(x) &= hk∗∗(x)}|≥Mk∗∗ . By Hoeffding’s inequality, we have that

P
(

mjk∗∗ ≤ 7/12
)

≤ exp{−Mk∗∗/72}≤ exp{1−m/(72k∗N ln(eN))} .

By a union bound, we have that

P
(

∃ j > k∗∗ : er(h j)> 2er(hk∗∗) and mjk∗∗ ≤ 7/12
)

≤ (N− k∗∗) · exp{1−m/(72k∗N ln(eN))} .

In particular, when k̂≥ k∗∗, and mjk∗∗ > 7/12 for all j > k∗∗ with er(h j)> 2er(hk∗∗), it must be true
that er(hk̂)≤ 2er(hk∗∗)≤ 2er(hk∗).

So, by a union bound, with probability ≥ 1− eN · exp{−m/(72k∗N ln(eN))}, the k̂ chosen by
ActiveSelect has er(hk̂)≤ 2er(hk∗).

The next two lemmas describe the limiting behavior of Sk(V $
m). In particular, we see that its

limiting value is precisely ∂k
C
f (up to zero-probability differences). Lemma 35 establishes that

Sk(V $
m) does not decrease below ∂k

C
f (except for a zero-probability set), and Lemma 36 establishes

that its limit is not larger than ∂k
C
f (again, except for a zero-probability set).

Lemma 35 There is an event H ′ with P(H ′) = 1 such that on H ′, ∀m ∈N, ∀k ∈ {0, . . . , d̃ f −1}, for
anyH with V $

m ⊆H⊆ C,

Pk
(

Sk(H)
∣

∣

∣
∂kC f

)

= Pk
(

∂kH f
∣

∣

∣
∂kC f

)

= 1,

and
∀i ∈ N, ∂k

H
f

(

S(k+1)
i

)

= ∂k
C
f

(

S(k+1)
i

)

.

Also, on H ′, every suchH has Pk
(

∂kH f
)

= Pk
(

∂k
C
f
)

, and M(k)
! (H)→∞ as !→∞.

Proof We will show the first claim for the set V $
m, and the result will then hold for H by mono-

tonicity. In particular, we will show this for any fixed k ∈ {0, . . . , d̃ f − 1} and m ∈ N, and the
existence of H ′ then holds by a union bound. Fix any set S ∈ ∂k

C
f . Suppose BV $

m( f ,r) does not
shatter S for some r > 0. There is an infinite sequence of sets {{h(i)1 ,h(i)2 , . . . ,h(i)2k }}i with ∀ j ≤ 2k,
P(x : h(i)j (x) &= f (x)) ↓ 0, such that each {h(i)1 , . . . ,h(i)2k } ⊆ B( f ,r) and shatters S. Since BV $

m( f ,r)
does not shatter S,

1 = inf
i

[

∃ j : h(i)j /∈ BV $
m( f ,r)

]

= inf
i

[

∃ j ≤ 2k,!≤ m : h(i)j (X!) &= f (X!)
]

.
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But

P

(

inf
i

[

∃ j ≤ 2k,!≤ m : h(i)j (X!) &= f (X!)
]

= 1
)

≤ inf
i
P

(

∃ j ≤ 2k,!≤ m : h(i)j (X!) &= f (X!)
)

≤ lim
i→∞

∑

j≤2k
mP

(

x : h(i)j (x) &= f (x)
)

=
∑

j≤2k
m lim
i→∞

P
(

x : h(i)j (x) &= f (x)
)

= 0,

where the second inequality follows by a union bound. Therefore, ∀r> 0, P
(

S /∈ Sk
(

BV $
m( f ,r)

))

=
0. Furthermore, since  Sk

(

BV $
m( f ,r)

)

is monotonic in r, the dominated convergence theorem gives
us that

P

(

S /∈ ∂kV $
m
f
)

= E

[

lim
r→0

 Sk(BV$m ( f ,r))
(S)
]

= lim
r→0

P

(

S /∈ Sk
(

BV $
m( f ,r)

)

)

= 0.

This implies that (letting S∼ Pk be independent from V $
m)

P

(

Pk
(

 ∂kV $
m
f
∣

∣

∣
∂kC f

)

> 0
)

= P

(

Pk
(

 ∂kV $
m
f ∩∂kC f

)

> 0
)

= lim
ξ→0

P

(

Pk
(

 ∂kV $
m
f ∩∂kC f

)

> ξ
)

≤ lim
ξ→0

1
ξ
E

[

Pk
(

 ∂kV $
m
f ∩∂kC f

)]

(Markov)

= lim
ξ→0

1
ξ
E

[

∂k
C
f (S)P

(

S /∈ ∂kV $
m
f
∣

∣

∣
S
)]

(Fubini)

= lim
ξ→0

0 = 0.

This establishes the first claim for V $
m, on an event of probability 1, and monotonicity extends the

claim to any H⊇V $
m. Also note that, on this event,

Pk
(

∂kH f
)

≥ Pk
(

∂kH f ∩∂kC f
)

= Pk
(

∂kH f
∣

∣

∣
∂kC f

)

Pk
(

∂kC f
)

= Pk
(

∂kC f
)

,

where the last equality follows from the first claim. Noting that for H ⊆ C, ∂kH f ⊆ ∂k
C
f , we must

have
Pk
(

∂kH f
)

= Pk
(

∂kC f
)

.

This establishes the third claim. From the first claim, for any given value of i ∈ N the second claim
holds for S(k+1)

i (with H = V $
m) on an additional event of probability 1; taking a union bound over

all i ∈ N extends this claim to every S(k)i on an event of probability 1. Monotonicity then implies

∂k
C
f

(

S(k+1)
i

)

= ∂kV$m
f

(

S(k+1)
i

)

≤ ∂k
H
f

(

S(k+1)
i

)

≤ ∂k
C
f

(

S(k+1)
i

)

,

extending the result to general H. Also, as k< d̃ f , we know Pk (∂k
C
f
)

> 0, and since we also know
V $
m is independent from W2, the strong law of large numbers implies the final claim (for V $

m) on an
additional event of probability 1; again, monotonicity extends this claim to any H⊇V $

m. Intersecting
the above events over values m ∈ N and k < d̃ f gives the event H ′, and as each of the above events
has probability 1 and there are countably many such events, a union bound implies P(H ′) = 1.

1537



HANNEKE

Note that one specific implication of Lemma 35, obtained by taking k= 0, is that on H ′, V $
m &= ∅

(even if f ∈ cl(C) \C). This is because, for f ∈ cl(C), we have ∂0
C
f = X 0 so that P0 (∂0

C
f
)

= 1,
which means P0

(

∂0
V $
m
f
)

= 1 (on H ′), so that we must have ∂0
V $
m
f = X 0, which implies V $

m &= ∅. In
particular, this also means f ∈ cl(V $

m).

Lemma 36 There is a monotonic function q(r) = o(1) (as r→ 0) such that, on event H ′, for any
k ∈
{

0, . . . , d̃ f −1
}

, m ∈ N, r > 0, and setH such that V $
m ⊆H⊆ B( f ,r),

Pk
(

 ∂kC f
∣

∣

∣
Sk (H)

)

≤ q(r).

In particular, for τ ∈ N and δ > 0, on Hτ(δ )∩H ′ (where Hτ(δ ) is from Lemma 29), every m ≥ τ

and k ∈
{

0, . . . , d̃ f −1
}

has Pk
(

 ∂k
C
f
∣

∣

∣
Sk (V $

m)
)

≤ q(φ(τ;δ )).

Proof Fix any k ∈
{

0, . . . , d̃ f −1
}

. By Lemma 35, we know that on event H ′,

Pk
(

 ∂kC f
∣

∣

∣
Sk (H)

)

=
Pk (  ∂k

C
f ∩Sk (H)

)

Pk (Sk (H))
≤

Pk (  ∂k
C
f ∩Sk (H)

)

Pk
(

∂kH f
)

=
Pk (  ∂k

C
f ∩Sk (H)

)

Pk
(

∂k
C
f
) ≤

Pk (  ∂k
C
f ∩Sk (B( f ,r))

)

Pk
(

∂k
C
f
) .

Define qk(r) as this latter quantity. Since Pk (  ∂k
C
f ∩Sk (B( f ,r))

)

is monotonic in r,

lim
r→0

Pk (  ∂k
C
f ∩Sk (B( f ,r))

)

Pk
(

∂k
C
f
) =

Pk
(

 ∂k
C
f ∩ lim

r→0
Sk (B( f ,r))

)

Pk
(

∂k
C
f
) =

Pk (  ∂k
C
f ∩∂k

C
f
)

Pk
(

∂k
C
f
) = 0.

This proves qk(r) = o(1). Defining

q(r) = max
{

qk(r) : k ∈
{

0,1, . . . , d̃ f −1
}}

= o(1)

completes the proof of the first claim.
For the final claim, simply recall that by Lemma 29, on Hτ(δ ), every m ≥ τ has V $

m ⊆ V $
τ ⊆

B( f ,φ(τ;δ )).

Lemma 37 For ζ ∈ (0,1), define

rζ = sup{r ∈ (0,1) : q(r)< ζ}/2.

On H ′, ∀k ∈
{

0, . . . , d̃ f −1
}

, ∀ζ ∈ (0,1), ∀m ∈ N, for any setH such that V $
m ⊆H ⊆ B( f ,rζ ),

P
(

x : Pk
(

 Sk (H[(x, f (x))])
∣

∣

∣
Sk (H)

)

> ζ
)

= P
(

x : Pk
(

 Sk (H[(x, f (x))])
∣

∣

∣
∂kH f

)

> ζ
)

= 0. (16)

In particular, for δ ∈ (0,1), defining τ(ζ ;δ ) = min
{

τ ∈ N : sup
m≥τ

φ(m;δ )≤ rζ
}

, ∀τ ≥ τ(ζ ;δ ), and

∀m≥ τ , on Hτ(δ )∩H ′, (16) holds forH=V $
m.
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Proof Fix k,m,H as described above, and suppose q = Pk (  ∂k
C
f |Sk(H)

)

< ζ ; by Lemma 36, this
happens on H ′. Since, ∂kH f ⊆ Sk(H), we have that ∀x ∈ X ,

Pk
(

 Sk (H[(x, f (x))])
∣

∣

∣
Sk(H)

)

= Pk
(

 Sk (H[(x, f (x))])
∣

∣

∣
∂kH f

)

Pk
(

∂kH f
∣

∣

∣
Sk(H)

)

+Pk
(

 Sk (H[(x, f (x))])
∣

∣

∣
Sk(H)∩  ∂kH f

)

Pk
(

 ∂kH f
∣

∣

∣
Sk(H)

)

.

Since all probability values are bounded by 1, we have

Pk
(

 Sk (H[(x, f (x))])
∣

∣

∣
Sk(H)

)

≤ Pk
(

 Sk (H[(x, f (x))])
∣

∣

∣
∂kH f

)

+Pk
(

 ∂kH f
∣

∣

∣
Sk(H)

)

. (17)

Isolating the right-most term in (17), by basic properties of probabilities we have

Pk
(

 ∂kH f
∣

∣

∣
Sk(H)

)

= Pk
(

 ∂kH f
∣

∣

∣
Sk(H)∩  ∂kC f

)

Pk
(

 ∂kC f
∣

∣

∣
Sk(H)

)

+Pk
(

 ∂kH f
∣

∣

∣
Sk(H)∩∂kC f

)

Pk
(

∂kC f
∣

∣

∣
Sk(H)

)

≤ Pk
(

 ∂kC f
∣

∣

∣
Sk(H)

)

+Pk
(

 ∂kH f
∣

∣

∣
Sk(H)∩∂kC f

)

. (18)

By assumption, the left term in (18) equals q. Examining the right term in (18), we see that

Pk
(

 ∂kH f
∣

∣

∣
Sk(H)∩∂kC f

)

= Pk
(

Sk(H)∩  ∂kH f
∣

∣

∣
∂kC f

)

/Pk
(

Sk(H)
∣

∣

∣
∂kC f

)

≤ Pk
(

 ∂kH f
∣

∣

∣
∂kC f

)

/Pk
(

∂kH f
∣

∣

∣
∂kC f

)

. (19)

By Lemma 35, on H ′ the denominator in (19) is 1 and the numerator is 0. Thus, combining this fact
with (17) and (18), we have that on H ′,

P
(

x :Pk
(

 Sk(H[(x, f (x))])
∣

∣

∣
Sk(H)

)

> ζ
)

≤ P
(

x :Pk
(

 Sk(H[(x, f (x))])
∣

∣

∣
∂kH f

)

> ζ −q
)

. (20)

Note that proving the right side of (20) equals zero will suffice to establish the result, since it upper
bounds both the first expression of (16) (as just established) and the second expression of (16)
(by monotonicity of measures). Letting X ∼ P be independent from the other random variables
(Z,W1,W2), by Markov’s inequality, the right side of (20) is at most

1
ζ −qE

[

Pk
(

 Sk (H[(X , f (X))])
∣

∣

∣
∂kH f

)∣

∣

∣
H
]

=
E

[

Pk (  Sk (H[(X , f (X))])∩∂kH f
)

∣

∣

∣
H
]

(ζ −q)Pk
(

∂kH f
) ,

and by Fubini’s theorem, this is (letting S∼ Pk be independent from the other random variables)

E

[

∂k
H
f (S)P

(

x : S /∈ Sk (H[(x, f (x))])
)

∣

∣

∣
H
]

(ζ −q)Pk
(

∂kH f
) .

Lemma 35 implies this equals

E

[

∂k
H
f (S)P

(

x : S /∈ Sk (H[(x, f (x))])
)

∣

∣

∣
H
]

(ζ −q)Pk
(

∂k
C
f
) . (21)
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For any fixed S ∈ ∂kH f , there is an infinite sequence of sets
{{

h(i)1 ,h(i)2 , . . . ,h(i)2k

}}

i∈N
with ∀ j ≤

2k, P
(

x : h(i)j (x) &= f (x)
)

↓ 0, such that each
{

h(i)1 , . . . ,h(i)2k

}

⊆H and shatters S. If H[(x, f (x))] does
not shatter S, then

1 = inf
i

[

∃ j : h(i)j /∈H[(x, f (x))]
]

= inf
i

[

∃ j : h(i)j (x) &= f (x)
]

.

In particular,

P
(

x : S /∈ Sk (H[(x, f (x))])
)

≤ P
(

x : inf
i

[

∃ j : h(i)j (x) &= f (x)
]

= 1
)

= P
(

⋂

i

{

x : ∃ j : h(i)j (x) &= f (x)
}

)

≤ inf
i
P
(

x : ∃ j s.t. h(i)j (x) &= f (x)
)

≤ lim
i→∞

∑

j≤2k
P
(

x : h(i)j (x) &= f (x)
)

=
∑

j≤2k
lim
i→∞

P
(

x : h(i)j (x) &= f (x)
)

= 0.

Thus (21) is zero, which establishes the result.
The final claim is then implied by Lemma 29 and monotonicity of V $

m in m: that is, on Hτ(δ ),
V $
m ⊆V $

τ ⊆ B( f ,φ(τ;δ ))⊆ B( f ,rζ ).

Lemma 38 For any ζ ∈ (0,1), there are values
{

Δ(ζ )
n (ε) : n ∈ N,ε ∈ (0,1)

}

such that, for any
n ∈ N and ε > 0, on event H3n/34(ε/2)∩H ′, letting V =V $

3n/34,

P
(

x : P d̃ f−1
(

S ∈ X d̃ f−1 : S∪{x} ∈ S d̃ f (V )
∣

∣

∣
S d̃ f−1(V )

)

≥ ζ
)

≤ Δ(ζ )
n (ε),

and for any N-valued N(ε) = ω(log(1/ε)), Δ(ζ )
N(ε)(ε) = o(1).

Proof Throughout, we suppose the event H3n/34(ε/2)∩H ′, and fix some ζ ∈ (0,1). We have ∀x,

P d̃ f−1
(

S ∈ X d̃ f−1 : S∪{x} ∈ S d̃ f (V )
∣

∣

∣
S d̃ f−1(V )

)

= P d̃ f−1
(

S ∈ X d̃ f−1 : S∪{x} ∈ S d̃ f (V )
∣

∣

∣
S d̃ f−1(V )∩∂ d̃ f−1

C
f
)

P d̃ f−1
(

∂
d̃ f−1
C

f
∣

∣

∣
S d̃ f−1(V )

)

+P d̃ f−1
(

S ∈ X d̃ f−1 : S∪{x} ∈ S d̃ f (V )
∣

∣

∣
S d̃ f−1(V )∩  ∂ d̃ f−1

C
f
)

P d̃ f−1
(

 ∂ d̃ f−1
C

f
∣

∣

∣
S d̃ f−1(V )

)

≤ P d̃ f−1
(

S∈X d̃ f−1 : S∪{x} ∈ S d̃ f (V )
∣

∣

∣
S d̃ f−1(V )∩∂ d̃ f−1

C
f
)

+P d̃ f−1
(

 ∂ d̃ f−1
C

f
∣

∣

∣
S d̃ f−1(V )

)

. (22)

By Lemma 35, the left term in (22) equals

P d̃ f−1
(

S ∈ X d̃ f−1 : S∪{x} ∈ S d̃ f (V )
∣

∣

∣
S d̃ f−1(V )∩∂ d̃ f−1

C
f
)

P d̃ f−1
(

S d̃ f−1(V )
∣

∣

∣
∂
d̃ f−1
C

f
)

= P d̃ f−1
(

S ∈ X d̃ f−1 : S∪{x} ∈ S d̃ f (V )
∣

∣

∣
∂
d̃ f−1
C

f
)

,
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and by Lemma 36, the right term in (22) is at most q(φ(3n/34;ε/2)). Thus, we have

P
(

x : P d̃ f−1
(

S ∈ X d̃ f−1 : S∪{x} ∈ S d̃ f (V )
∣

∣

∣
S d̃ f−1(V )

)

≥ ζ
)

≤ P
(

x : P d̃ f−1
(

S ∈ X d̃ f−1 : S∪{x} ∈ S d̃ f (V )
∣

∣

∣
∂
d̃ f−1
C

f
)

≥ ζ −q(φ(3n/34;ε/2))
)

. (23)

For n< 3τ(ζ/2;ε/2) (for τ(·; ·) defined in Lemma 37), we define Δ(ζ )
n (ε) = 1. Otherwise, suppose

n≥ 3τ(ζ/2;ε/2), so that q(φ(3n/34;ε/2))< ζ/2, and thus (23) is at most

P
(

x : P d̃ f−1
(

S ∈ X d̃ f−1 : S∪{x} ∈ S d̃ f (V )
∣

∣

∣
∂
d̃ f−1
C

f
)

≥ ζ/2
)

.

By Lemma 29, this is at most

P
(

x : P d̃ f−1
(

S ∈ X d̃ f−1 : S∪{x} ∈ S d̃ f (B( f ,φ(3n/34;ε/2)))
∣

∣

∣
∂
d̃ f−1
C

f
)

≥ ζ/2
)

.

Letting X ∼ P , by Markov’s inequality this is at most

2
ζ
E

[

P d̃ f−1
(

S ∈ X d̃ f−1 : S∪{X} ∈ S d̃ f (B( f ,φ(3n/34;ε/2)))
∣

∣

∣
∂
d̃ f−1
C

f
)]

=
2
ζ δ̃ f

P d̃ f
(

S∪{x} ∈ X d̃ f : S∪{x} ∈ S d̃ f (B( f ,φ(3n/34;ε/2))) and S ∈ ∂
d̃ f−1
C

f
)

≤ 2
ζ δ̃ f

P d̃ f
(

S d̃ f (B( f ,φ(3n/34;ε/2)))
)

. (24)

Thus, defining Δ(ζ )
n (ε) as (24) for n≥ 3τ(ζ/2;ε/2) establishes the first claim.

It remains only to prove the second claim. Let N(ε) = ω(log(1/ε)). Since τ(ζ/2;ε/2) ≤
⌈

4
rζ/2

(

d ln
(

4e
rζ/2

)

+ ln
( 4
ε

)

)⌉

= O(log(1/ε)), we have that for all sufficiently small ε > 0, N(ε) ≥

3τ(ζ/2;ε/2), so that Δ(ζ )
N(ε)(ε) equals (24) (with n = N(ε)). Furthermore, since δ̃ f > 0, while

P d̃ f
(

∂
d̃ f
C
f
)

= 0, and φ(3N(ε)/34;ε/2) = o(1), by continuity of probability measures we know

(24) is o(1) when n= N(ε), so that we generally have Δ(ζ )
N(ε)(ε) = o(1).

For any m ∈ N, define
M̃(m) = m3δ̃ f /2.

Lemma 39 There is a (C,P, f )-dependent constant c(i) ∈ (0,∞) such that, for any τ ∈ N there is
an event H(i)

τ ⊆ H ′ with
P

(

H(i)
τ

)

≥ 1− c(i) · exp
{

−M̃(τ)/4
}

such that on H(i)
τ , if d̃ f ≥ 2, then ∀k ∈

{

2, . . . , d̃ f
}

, ∀m ≥ τ , ∀! ∈ N, for any set H such that V $
! ⊆

H⊆ C,
M(k)
m (H)≥ M̃(m).
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Proof On H ′, Lemma 35 implies every Sk−1(H)

(

S(k)i
)

≥
∂
k−1
H

f

(

S(k)i
)

=
∂
k−1
C

f

(

S(k)i
)

, so we

focus on showing
∣

∣

∣

{

S(k)i : i≤ m3
}

∩∂k−1
C

f
∣

∣

∣
≥ M̃(m) on an appropriate event. We know

P

(

∀k ∈
{

2, . . . , d̃ f
}

,∀m≥ τ ,
∣

∣

∣

{

S(k)i : i≤ m3
}

∩∂k−1
C

f
∣

∣

∣
≥ M̃(m)

)

= 1−P

(

∃k ∈
{

2, . . . , d̃ f
}

,m≥ τ :
∣

∣

∣

{

S(k)i : i≤ m3
}

∩∂k−1
C

f
∣

∣

∣
< M̃(m)

)

≥ 1−
∑

m≥τ

d̃ f
∑

k=2
P

(∣

∣

∣

{

S(k)i : i≤ m3
}

∩∂k−1
C

f
∣

∣

∣
< M̃(m)

)

,

where the last line follows by a union bound. Thus, we will focus on bounding

∑

m≥τ

d̃ f
∑

k=2
P

(∣

∣

∣

{

S(k)i : i≤ m3
}

∩∂k−1
C

f
∣

∣

∣
< M̃(m)

)

. (25)

Fix any k ∈
{

2, . . . , d̃ f
}

, and integer m≥ τ . Since

E

[∣

∣

∣

{

S(k)i : i≤ m3
}

∩∂k−1
C

f
∣

∣

∣

]

= Pk−1
(

∂k−1
C

f
)

m3 ≥ δ̃ f m3,

a Chernoff bound implies that

P

(∣

∣

∣

{

S(k)i : i≤ m3
}

∩∂k−1
C

f
∣

∣

∣
< M̃(m)

)

≤ exp
{

−m3Pk−1
(

∂k−1
C

f
)

/8
}

≤ exp
{

−m3δ̃ f /8
}

.

Thus, we have that (25) is at most

∑

m≥τ

d̃ f
∑

k=2
exp
{

−m3δ̃ f /8
}

≤
∑

m≥τ
d̃ f · exp

{

−m3δ̃ f /8
}

≤
∑

m≥τ3

d̃ f · exp
{

−mδ̃ f /8
}

≤ d̃ f · exp
{

−M̃(τ)/4
}

+ d̃ f ·
∫ ∞

τ3
exp
{

−xδ̃ f /8
}

dx

= d̃ f ·
(

1+8/δ̃ f
)

· exp
{

−M̃(τ)/4
}

≤
(

9d̃ f /δ̃ f
)

· exp
{

−M̃(τ)/4
}

.

Note that since P(H ′) = 1, defining

H(i)
τ =

{

∀k ∈
{

2, . . . , d̃ f
}

,∀m≥ τ ,
∣

∣

∣

{

S(k)i : i≤ m3
}

∩∂k−1
C

f
∣

∣

∣
≥ M̃(m)

}

∩H ′

has the required properties.
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Lemma 40 For any τ ∈ N, there is an event G(i)
τ with

P

(

H(i)
τ \G(i)

τ

)

≤
(

121d̃ f /δ̃ f
)

· exp
{

−M̃(τ)/60
}

such that, on G(i)
τ , if d̃ f ≥ 2, then for every integer s≥ τ and k ∈

{

2, . . . , d̃ f
}

, ∀r ∈
(

0,r1/6
]

,

M(k)
s (B( f ,r))≤ (3/2)

∣

∣

∣

{

S(k)i : i≤ s3
}

∩∂k−1
C

f
∣

∣

∣
.

Proof Fix integers s≥ τ and k∈
{

2, . . . , d̃ f
}

, and let r= r1/6. Define the set Ŝk−1 =
{

S(k)i : i≤ s3
}

∩

Sk−1 (B( f ,r)). Note
∣

∣Ŝk−1∣
∣=M(k)

s (B( f ,r)) and the elements of Ŝk−1 are conditionally i.i.d. given
M(k)
s (B( f ,r)), each with conditional distribution equivalent to the conditional distribution of S(k)1

given
{

S(k)1 ∈ Sk−1 (B( f ,r))
}

. In particular,

E

[

∣

∣Ŝk−1∩∂k−1
C

f
∣

∣

∣

∣

∣
M(k)
s (B( f ,r))

]

= Pk−1
(

∂k−1
C

f
∣

∣

∣
Sk−1 (B( f ,r))

)

M(k)
s (B( f ,r)) .

Define the event
G(i)
τ (k,s) =

{

∣

∣Ŝk−1∣
∣≤ (3/2)

∣

∣Ŝk−1∩∂k−1
C

f
∣

∣

}

.

By Lemma 36 (indeed by definition of q(r) and r1/6) we have

1−P

(

G(i)
τ (k,s)

∣

∣

∣
M(k)
s (B( f ,r))

)

= P

(

∣

∣Ŝk−1∩∂k−1
C

f
∣

∣< (2/3)M(k)
s (B( f ,r))

∣

∣

∣
M(k)
s (B( f ,r))

)

≤ P

(

∣

∣Ŝk−1∩∂k−1
C

f
∣

∣< (4/5)(1−q(r))M(k)
s (B( f ,r))

∣

∣

∣
M(k)
s (B( f ,r))

)

≤ P

(

∣

∣Ŝk−1∩∂k−1
C

f
∣

∣< (4/5)Pk−1
(

∂k−1
C

f
∣

∣

∣
Sk−1 (B( f ,r))

)

M(k)
s (B( f ,r))

∣

∣

∣
M(k)
s (B( f ,r))

)

. (26)

By a Chernoff bound, (26) is at most

exp
{

−M(k)
s (B( f ,r))Pk−1

(

∂k−1
C

f
∣

∣

∣
Sk−1 (B( f ,r))

)

/50
}

≤ exp
{

−M(k)
s (B( f ,r))(1−q(r))/50

}

≤ exp
{

−M(k)
s (B( f ,r))/60

}

.

Thus, by Lemma 39,

P

(

H(i)
τ \G(i)

τ (k,s)
)

≤ P

({

M(k)
s (B( f ,r))≥ M̃(s)

}

\G(i)
τ (k,s)

)

= E

[(

1−P

(

G(i)
τ (k,s)

∣

∣

∣
M(k)
s (B( f ,r))

))

[M̃(s),∞)

(

M(k)
s (B( f ,r))

)]

≤ E

[

exp
{

−M(k)
s (B( f ,r))/60

}

[M̃(s),∞)

(

M(k)
s (B( f ,r))

)]

≤ exp
{

−M̃(s)/60
}

.
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Now defining G(i)
τ =

⋂

s≥τ
⋂d̃ f
k=2G

(i)
τ (k,s), a union bound implies

P

(

H(i)
τ \G(i)

τ

)

≤
∑

s≥τ
d̃ f · exp

{

−M̃(s)/60
}

≤ d̃ f
(

exp
{

−M̃(τ)/60
}

+
∫ ∞

τ3
exp
{

−xδ̃ f /120
}

dx
)

= d̃ f
(

1+120/δ̃ f
)

· exp
{

−M̃(τ)/60
}

≤
(

121d̃ f /δ̃ f
)

· exp
{

−M̃(τ)/60
}

.

This completes the proof for r = r1/6. Monotonicity extends the result to any r ∈
(

0,r1/6
]

.

Lemma 41 There exist (C,P, f ,γ)-dependent constants τ∗ ∈N and c(ii) ∈ (0,∞) such that, for any
integer τ ≥ τ∗, there is an event H(ii)

τ ⊆ G
(i)
τ with

P

(

H(i)
τ \H(ii)

τ

)

≤ c(ii) · exp
{

−M̃(τ)1/3/60
}

(27)

such that, on H(i)
τ ∩H

(ii)
τ , ∀s,m,!,k ∈ N with ! < m and k ≤ d̃ f , for any set of classifiers H with

V $
! ⊆H, if either k = 1, or s≥ τ andH⊆ B( f ,r(1−γ)/6), then

Δ̂(k)
s (Xm,W2,H)< γ =⇒ Γ̂(k)s (Xm,− f (Xm),W2,H)< Γ̂(k)s (Xm, f (Xm),W2,H) .

In particular, for δ ∈ (0,1) and τ ≥ max{τ((1− γ)/6;δ ),τ∗}, on Hτ(δ )∩H(i)
τ ∩H

(ii)
τ , this is true

forH=V $
! for every k,!,m,s ∈ N satisfying τ ≤ !< m, τ ≤ s, and k ≤ d̃ f .

Proof Let τ∗=(6/(1−γ)) ·
(

2/δ̃ f
)1/3

, and consider any τ ,k,!,m,s,H as described above. If k= 1,

the result clearly holds. In particular, Lemma 35 implies that on H(i)
τ , H[(Xm, f (Xm))]⊇V $

m &= ∅, so
that some h ∈H has h(Xm) = f (Xm), and therefore

Γ̂(1)s (Xm,− f (Xm),W2,H) = ⋂

h∈H
{h(Xm)}(− f (Xm)) = 0,

and since Δ̂(1)
s (Xm,W2,H) = DIS(H)(Xm), if Δ̂(1)

s (Xm,W2,H) < γ , then since γ < 1 we have Xm /∈
DIS(H), so that

Γ̂(1)s (Xm, f (Xm),W2,H) = ⋂

h∈H
{h(Xm)}( f (Xm)) = 1.
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Otherwise, suppose 2 ≤ k ≤ d̃ f . Note that on H(i)
τ ∩G

(i)
τ , ∀m ∈ N, and any H with V $

! ⊆H ⊆
B( f ,r(1−γ)/6) for some ! ∈ N,

Γ̂(k)s (Xm,− f (Xm),W2,H)

=
1

M(k)
s (H)

s3
∑

i=1
 Sk−1(H[(Xm, f (Xm))])

(

S(k)i
)

Sk−1(H)

(

S(k)i
)

≤ 1
∣

∣

∣

{

S(k)i : i≤ s3
}

∩∂k−1
H f

∣

∣

∣

s3
∑

i=1
 Sk−1(V $

m)

(

S(k)i
)

Sk−1(B( f ,r(1−γ)/6))

(

S(k)i
)

(monotonicity)

≤ 1
∣

∣

∣

{

S(k)i : i≤ s3
}

∩∂k−1
H f

∣

∣

∣

s3
∑

i=1
 ∂k−1
V$m

f

(

S(k)i
)

Sk−1(B( f ,r(1−γ)/6))

(

S(k)i
)

(monotonicity)

=
1

∣

∣

∣

{

S(k)i : i≤ s3
}

∩∂k−1
C

f
∣

∣

∣

s3
∑

i=1
 ∂k−1
C

f

(

S(k)i
)

Sk−1(B( f ,r(1−γ)/6))

(

S(k)i
)

(Lemma 35)

≤ 3
2M(k)

s (B( f ,r(1−γ)/6))

s3
∑

i=1
 ∂k−1
C

f

(

S(k)i
)

Sk−1(B( f ,r(1−γ)/6))

(

S(k)i
)

. (Lemma 40)

For brevity, let Γ̂ denote this last quantity, and let Mks = M(k)
s
(

B
(

f ,r(1−γ)/6
))

. By Hoeffding’s
inequality, we have

P

(

(2/3)Γ̂> Pk−1
(

 ∂k−1
C

f
∣

∣

∣
Sk−1 (B

(

f ,r(1−γ)/6
))

)

+M−1/3
ks

∣

∣

∣

∣

∣

Mks

)

≤ exp
{

−2M1/3
ks

}

.

Thus, by Lemmas 36, 39, and 40,

P

({

(2/3)Γ̂(k)s (Xm,− f (Xm),W2,H)> q
(

r(1−γ)/6
)

+ M̃(s)−1/3
}

∩H(i)
τ ∩G

(i)
τ

)

≤ P

({

(2/3)Γ̂> Pk−1
(

 ∂k−1
C

f
∣

∣

∣
Sk−1 (B

(

f ,r(1−γ)/6
))

)

+ M̃(s)−1/3
}

∩H(i)
τ

)

≤ P

({

(2/3)Γ̂> Pk−1
(

 ∂k−1
C

f
∣

∣

∣
Sk−1 (B

(

f ,r(1−γ)/6
))

)

+M−1/3
ks

}

∩{Mks ≥ M̃(s)}
)

= E

[

P

(

(2/3)Γ̂> Pk−1
(

 ∂k−1
C

f
∣

∣

∣
Sk−1 (B

(

f ,r(1−γ)/6
))

)

+M−1/3
ks

∣

∣

∣

∣

∣

Mks

)

[M̃(s),∞) (Mks)

]

≤ E

[

exp
{

−2M1/3
ks

}

[M̃(s),∞) (Mks)
]

≤ exp
{

−2M̃(s)1/3
}

.

Thus, there is an event H(ii)
τ (k,s) with P

(

H(i)
τ ∩G

(ii)
τ \H(ii)

τ (k,s)
)

≤ exp
{

−2M̃(s)1/3} such that

Γ̂(k)s (Xm,− f (Xm),W2,H)≤ (3/2)
(

q
(

r(1−γ)/6
)

+ M̃(s)−1/3
)

holds for these particular values of k and s.
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To extend to the full range of values, we simply take H(ii)
τ = G(i)

τ ∩
⋂

s≥τ
⋂

k≤d̃ f H
(ii)
τ (k,s). Since

τ ≥ (2/δ̃ f )1/3, we have M̃(τ)≥ 1, so a union bound implies

P

(

H(i)
τ ∩G

(i)
τ \H(ii)

τ

)

≤
∑

s≥τ
d̃ f · exp

{

−2M̃(s)1/3
}

≤ d̃ f ·
(

exp
{

−2M̃(τ)1/3
}

+
∫ ∞

τ
exp
{

−2M̃(x)1/3
}

dx
)

= d̃ f
(

1+2−2/3δ̃−1/3
f

)

· exp
{

−2M̃(τ)1/3
}

≤ 2d̃ f δ̃
−1/3
f · exp

{

−2M̃(τ)1/3
}

.

Then Lemma 40 and a union bound imply

P

(

H(i)
τ \H(ii)

τ

)

≤ 2d̃ f δ̃
−1/3
f · exp

{

−2M̃(τ)1/3
}

+121d̃ f δ̃−1
f · exp

{

−M̃(τ)/60
}

≤ 123d̃ f δ̃−1
f · exp

{

−M̃(τ)1/3/60
}

.

On H(i)
τ ∩H

(ii)
τ , every such s,m,!,k and H satisfy

Γ̂(k)s (Xm,− f (Xm),W2,H)≤ (3/2)
(

q(r(1−γ)/6)+ M̃(s)−1/3
)

< (3/2)((1− γ)/6+(1− γ)/6) = (1− γ)/2, (28)

where the second inequality follows by definition of r(1−γ)/6 and s≥ τ ≥ τ∗.
If Δ̂(k)

s (Xm,W2,H)< γ , then

1− γ < 1− Δ̂(k)
s (Xm,W2,H) =

1
M(k)
s (H)

s3
∑

i=1
Sk−1(H)

(

S(k)i
)

 Sk(H)

(

S(k)i ∪{Xm}
)

. (29)

Finally, noting that we always have

 Sk(H)

(

S(k)i ∪{Xm}
)

≤  Sk−1(H[(Xm, f (Xm))])

(

S(k)i
)

+  Sk−1(H[(Xm,− f (Xm))])

(

S(k)i
)

,

we have that, on the event H(i)
τ ∩H

(ii)
τ , if Δ̂(k)

s (Xm,W2,H)< γ , then

Γ̂(k)s (Xm,− f (Xm),W2,H)

< (1− γ)/2 =−(1− γ)/2+(1− γ) by (28)

<−(1− γ)/2+
1

M(k)
s (H)

s3
∑

i=1
Sk−1(H)

(

S(k)i
)

 Sk(H)

(

S(k)i ∪{Xm}
)

by (29)

≤−(1− γ)/2+
1

M(k)
s (H)

s3
∑

i=1
Sk−1(H)

(

S(k)i
)

 Sk−1(H[(Xm, f (Xm))])

(

S(k)i
)

+
1

M(k)
s (H)

s3
∑

i=1
Sk−1(H)

(

S(k)i
)

 Sk−1(H[(Xm,− f (Xm))])

(

S(k)i
)

=−(1− γ)/2+ Γ̂(k)s (Xm,− f (Xm),W2,H)+ Γ̂(k)s (Xm, f (Xm),W2,H)

< Γ̂(k)s (Xm, f (Xm),W2,H) . by (28)
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The final claim in the lemma statement is then implied by Lemma 29, since we haveV $
! ⊆V $

τ ⊆
B( f ,φ(τ;δ ))⊆ B

(

f ,r(1−γ)/6
)

on Hτ(δ ).

For any k,!,m ∈ N, and any x ∈ X , define

p̂x(k,!,m) = Δ̂(k)
m (x,W2,V $

! )

px(k,!) = Pk−1
(

S ∈ X k−1 : S∪{x} ∈ Sk (V $
! )
∣

∣

∣
Sk−1 (V $

! )
)

.

Lemma 42 For any ζ ∈ (0,1), there is a (C,P, f ,ζ )-dependent constant c(iii)(ζ ) ∈ (0,∞) such
that, for any τ ∈ N, there is an event H(iii)

τ (ζ ) with

P

(

H(i)
τ \H(iii)

τ (ζ )
)

≤ c(iii)(ζ ) · exp
{

−ζ 2M̃(τ)
}

such that on H(i)
τ ∩H

(iii)
τ (ζ ), ∀k,!,m ∈ N with τ ≤ !≤ m and k ≤ d̃ f , for any x ∈ X ,

P (x : |px(k,!)− p̂x(k,!,m)|> ζ )≤ exp
{

−ζ 2M̃(m)
}

.

Proof Fix any k,!,m ∈ N with τ ≤ ! ≤ m and k ≤ d̃ f . Recall our convention that X 0 = {∅} and
P0 (X 0)= 1; thus, if k = 1, p̂x(k,!,m) = DIS(V $

! )
(x) =

S1(V $
! )
(x) = px(k,!), so the result clearly

holds for k = 1.
For the remaining case, suppose 2≤ k≤ d̃ f . To simplify notation, let m̃=M(k)

m (V $
! ), X = X!+1,

px = px(k,!) and p̂x = p̂x(k,!,m). Consider the event

H(iii)(k,!,m,ζ ) =
{

P (x : |px− p̂x|> ζ )≤ exp
{

−ζ 2M̃(m)
}}

.

We have

P

(

H(i)
τ \H(iii)(k,!,m,ζ )

∣

∣

∣
V $
!

)

(30)

≤ P

(

{

m̃≥ M̃(m)
}

\H(iii)(k,!,m,ζ )
∣

∣

∣
V $
!

)

(by Lemma 39)

= P

(

{

m̃≥ M̃(m)
}

∩
{

P

(

esm̃|pX− p̂X | > esm̃ζ
∣

∣

∣
W2,V $

!

)

> e−ζ
2M̃(m)

}∣

∣

∣
V $
!

)

, (31)

for any value s > 0. Proceeding as in Chernoff’s bounding technique, by Markov’s inequality (31)
is at most

P

(

{

m̃≥ M̃(m)
}

∩
{

e−sm̃ζE
[

esm̃|pX− p̂X |
∣

∣

∣
W2,V $

!

]

> e−ζ
2M̃(m)

}∣

∣

∣
V $
!

)

≤ P

(

{

m̃≥ M̃(m)
}

∩
{

e−sm̃ζE
[

esm̃(pX− p̂X ) + esm̃(p̂X−pX )
∣

∣

∣
W2,V $

!

]

> e−ζ
2M̃(m)

}∣

∣

∣
V $
!

)

= E

[

[M̃(m),∞) (m̃)P
(

e−sm̃ζE
[

esm̃(pX− p̂X )+ esm̃(p̂X−pX )
∣

∣

∣
W2,V $

!

]

> e−ζ
2M̃(m)

∣

∣

∣
m̃,V $

!

)

∣

∣

∣

∣

∣

V $
!

]
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By Markov’s inequality, this is at most

E

[

[M̃(m),∞) (m̃)e
ζ 2M̃(m)

E

[

e−sm̃ζE
[

esm̃(pX− p̂X ) + esm̃( p̂X−pX )
∣

∣

∣
W2,V $

!

]∣

∣

∣
m̃,V $

!

]

∣

∣

∣

∣

∣

V $
!

]

= E

[

[M̃(m),∞) (m̃)e
ζ 2M̃(m)e−sm̃ζE

[

esm̃(pX− p̂X ) + esm̃(p̂X−pX )
∣

∣

∣
m̃,V $

!

]

∣

∣

∣

∣

∣

V $
!

]

= E

[

[M̃(m),∞) (m̃)e
ζ 2M̃(m)e−sm̃ζE

[

E

[

esm̃(pX− p̂X ) + esm̃( p̂X−pX )
∣

∣

∣
X , m̃,V $

!

]∣

∣

∣
m̃,V $

!

]

∣

∣

∣

∣

∣

V $
!

]

. (32)

The conditional distribution of m̃p̂X given (X , m̃,V $
! ) is Binomial(m̃, pX), so letting

{

B j(pX)
}∞

j=1
denote a sequence of random variables, conditionally independent given (X , m̃,V $

! ), with the condi-
tional distribution of each B j(pX) being Bernoulli(pX) given (X , m̃,V $

! ), we have

E

[

esm̃(pX− p̂X ) + esm̃( p̂X−pX )
∣

∣

∣
X , m̃,V $

!

]

= E

[

esm̃(pX− p̂X )
∣

∣

∣
X , m̃,V $

!

]

+E

[

esm̃(p̂X−pX )
∣

∣

∣
X , m̃,V $

!

]

= E

[

m̃

∏
i=1

es(pX−Bi(pX ))
∣

∣

∣
X , m̃,V $

!

]

+E

[

m̃

∏
i=1

es(Bi(pX )−pX )
∣

∣

∣
X , m̃,V $

!

]

= E

[

es(pX−B1(pX ))
∣

∣

∣
X , m̃,V $

!

]m̃
+E

[

es(B1(pX )−pX )
∣

∣

∣
X , m̃,V $

!

]m̃
. (33)

It is known that for B∼Bernoulli(p), E
[

es(B−p)
]

and E
[

es(p−B)
]

are at most es2/8 (see, e.g., Lemma
8.1 of Devroye, Györfi, and Lugosi, 1996). Thus, taking s= 4ζ , (33) is at most 2e2m̃ζ 2 , and (32) is
at most

E

[

[M̃(m),∞) (m̃)2eζ
2M̃(m)e−4m̃ζ 2

e2m̃ζ 2
∣

∣

∣
V $
!

]

= E

[

[M̃(m),∞) (m̃)2eζ
2M̃(m)e−2m̃ζ 2

∣

∣

∣
V $
!

]

≤ 2exp
{

−ζ 2M̃(m)
}

.

Since this bound holds for (30), the law of total probability implies

P

(

H(i)
τ \H(iii)(k,!,m,ζ )

)

= E

[

P

(

H(i)
τ \H(iii)(k,!,m,ζ )

∣

∣

∣
V $
!

)]

≤ 2 · exp
{

−ζ 2M̃(m)
}

.
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Defining H(iii)
τ (ζ ) =

⋂

!≥τ
⋂

m≥!
⋂d̃ f
k=2H

(iii)(k,!,m,ζ ), we have the required property for the claimed
ranges of k, ! and m, and a union bound implies

P

(

H(i)
τ \H(iii)

τ (ζ )
)

≤
∑

!≥τ

∑

m≥!
2d̃ f · exp

{

−ζ 2M̃(m)
}

≤ 2d̃ f ·
∑

!≥τ

(

exp
{

−ζ 2M̃(!)
}

+
∫ ∞

!3
exp
{

−xζ 2δ̃ f /2
}

dx
)

= 2d̃ f ·
∑

!≥τ

(

1+2ζ−2δ̃−1
f

)

· exp
{

−ζ 2M̃(!)
}

≤ 2d̃ f ·
(

1+2ζ−2δ̃−1
f

)

·
(

exp
{

−ζ 2M̃(τ)
}

+
∫ ∞

τ3
exp
{

−xζ 2δ̃ f /2
}

dx
)

= 2d̃ f ·
(

1+2ζ−2δ̃−1
f

)2
· exp

{

−ζ 2M̃(τ)
}

≤ 18d̃ f ζ−4δ̃−2
f · exp

{

−ζ 2M̃(τ)
}

.

For k,!,m ∈ N and ζ ∈ (0,1), define

 pζ (k,!,m) = P (x : p̂x (k,!,m)≥ ζ ) . (34)

Lemma 43 For any α ,ζ ,δ ∈ (0,1), β ∈
(

0,1−
√
α
]

, and integer τ ≥ τ(β ;δ ), on Hτ(δ )∩H(i)
τ ∩

H(iii)
τ (βζ ), for any k,!,!′,m ∈ N with τ ≤ !≤ !′ ≤ m and k ≤ d̃ f ,

 pζ (k,!′,m)≤ P (x : px(k,!)≥ αζ )+ exp
{

−β 2ζ 2M̃(m)
}

. (35)

Proof Fix any α ,ζ ,δ ∈ (0,1), β ∈
(

0,1−
√
α
]

, τ ,k,!,!′,m ∈N with τ(β ;δ )≤ τ ≤ !≤ !′ ≤m and
k ≤ d̃ f .

If k = 1, the result clearly holds. In particular, we have

 pζ (1,!′,m) = P (DIS(V $
!′ ))≤ P (DIS(V $

! )) = P (x : px(1,!)≥ αζ ) .

Otherwise, suppose 2≤ k ≤ d̃ f . By a union bound,

 pζ (k,!′,m) = P
(

x : p̂x(k,!′,m)≥ ζ
)

≤ P
(

x : px(k,!′)≥
√
αζ
)

+P
(

x :
∣

∣px(k,!′)− p̂x(k,!′,m)
∣

∣> (1−
√
α)ζ

)

. (36)

Since

P
(

x :
∣

∣px(k,!′)− p̂x(k,!′,m)
∣

∣> (1−
√
α)ζ

)

≤ P
(

x :
∣

∣px(k,!′)− p̂x(k,!′,m)
∣

∣> βζ
)

,

Lemma 42 implies that, on H(i)
τ ∩H

(iii)
τ (βζ ),

P
(

x :
∣

∣px(k,!′)− p̂x(k,!′,m)
∣

∣> (1−
√
α)ζ

)

≤ exp
{

−β 2ζ 2M̃(m)
}

. (37)
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It remains only to examine the first term on the right side of (36). For this, if Pk−1 (Sk−1 (V $
!′
))

= 0,
then the first term is 0 by our aforementioned convention, and thus (35) holds; otherwise, since

∀x ∈ X ,
{

S ∈ X k−1 : S∪{x} ∈ Sk (V $
!′ )
}

⊆ Sk−1 (V $
!′ ) ,

we have

P
(

x : px(k,!′)≥
√
αζ
)

= P
(

x : Pk−1
(

S ∈ X k−1 : S∪{x} ∈ Sk (V $
!′ )
∣

∣

∣
Sk−1 (V $

!′ )
)

≥
√
αζ
)

= P
(

x : Pk−1
(

S ∈ X k−1 : S∪{x} ∈ Sk (V $
!′ )
)

≥
√
αζPk−1

(

Sk−1 (V $
!′ )
))

. (38)

By Lemma 35 and monotonicity, on H(i)
τ ⊆ H ′, (38) is at most

P
(

x : Pk−1
(

S ∈ X k−1 : S∪{x} ∈ Sk (V $
!′ )
)

≥
√
αζPk−1

(

∂k−1
C

f
))

,

and monotonicity implies this is at most

P
(

x : Pk−1
(

S ∈ X k−1 : S∪{x} ∈ Sk (V $
! )
)

≥
√
αζPk−1

(

∂k−1
C

f
))

. (39)

By Lemma 36, for τ ≥ τ(β ;δ ), on Hτ(δ )∩H(i)
τ ,

Pk−1
(

 ∂k−1
C

f
∣

∣Sk−1 (V $
! )
)

≤ q(φ(τ;δ ))< β ≤ 1−
√
α ,

which implies

Pk−1
(

∂k−1
C

f
)

≥ Pk−1
(

∂k−1
C

f ∩Sk−1 (V $
! )
)

=
(

1−Pk−1
(

 ∂k−1
C

f
∣

∣

∣
Sk−1 (V $

! )
))

Pk−1
(

Sk−1 (V $
! )
)

≥
√
αPk−1

(

Sk−1 (V $
! )
)

.

Altogether, for τ ≥ τ(β ;δ ), on Hτ(δ )∩H(i)
τ , (39) is at most

P
(

x : Pk−1
(

S∈X k−1 : S∪{x}∈Sk (V $
! )
)

≥ αζPk−1
(

Sk−1 (V $
! )
))

= P (x : px(k,!)≥ αζ ),

which, combined with (36) and (37), establishes (35).

Lemma 44 There are events
{

H(iv)
τ : τ ∈ N

}

with

P

(

H(iv)
τ

)

≥ 1−3d̃ f · exp{−2τ}

s.t. for any ξ ∈ (0,γ/16], δ ∈ (0,1), letting τ(iv)(ξ ;δ ) = max
{

τ(4ξ/γ;δ ),
(

4
δ̃ f ξ 2 ln

(

4
δ̃ f ξ 2

))1/3
}

,

for any integer τ ≥ τ(iv)(ξ ;δ ), on Hτ(δ )∩H(i)
τ ∩H

(iii)
τ (ξ )∩H(iv)

τ , ∀k ∈
{

1, . . . , d̃ f
}

, ∀! ∈ N with
!≥ τ ,

P
(

x : px(k,!)≥ γ/2
)

+ exp
{

−γ2M̃(!)/256
}

≤ Δ̂(k)
! (W1,W2,V $

! ) (40)

≤ P (x : px(k,!)≥ γ/8)+4!−1. (41)
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Proof For any k,! ∈ N, by Hoeffding’s inequality and the law of total probability, on an event
G(iv)(k,!) with P

(

G(iv)(k,!)
)

≥ 1−2exp{−2!}, we have
∣

∣

∣

∣

∣

∣

 pγ/4(k,!,!)− !−3
!3
∑

i=1
[γ/4,∞)

(

Δ̂(k)
! (wi,W2,V $

! )
)

∣

∣

∣

∣

∣

∣

≤ !−1. (42)

Define the event H(iv)
τ =

⋂

!≥τ
⋂d̃ f
k=1G

(iv)(k,!). By a union bound, we have

1−P

(

H(iv)
τ

)

≤ 2d̃ f ·
∑

!≥τ
exp{−2!}

≤ 2d̃ f ·
(

exp{−2τ}+
∫ ∞

τ
exp{−2x}dx

)

= 3d̃ f · exp{−2τ} .

Now fix any !≥ τ and k ∈
{

1, . . . , d̃ f
}

. By a union bound,

P (x : px(k,!)≥ γ/2)≤ P (x : p̂x(k,!,!)≥ γ/4)+P (x : |px(k,!)− p̂x(k,!,!)|> γ/4) . (43)

By Lemma 42, on H(i)
τ ∩H

(iii)
τ (ξ ),

P (x : |px(k,!)− p̂x(k,!,!)|> γ/4)≤ P (x : |px(k,!)− p̂x(k,!,!)|> ξ )≤ exp
{

−ξ 2M̃(!)
}

. (44)

Also, on H(iv)
τ , (42) implies

P (x : p̂x(k,!,!)≥ γ/4) =  pγ/4(k,!,!)

≤ !−1 + !−3
!3
∑

i=1
[γ/4,∞)

(

Δ̂(k)
! (wi,W2,V $

! )
)

= Δ̂(k)
! (W1,W2,V $

! )− !−1. (45)

Combining (43) with (44) and (45) yields

P (x : px(k,!)≥ γ/2)≤ Δ̂(k)
! (W1,W2,V $

! )− !−1 + exp
{

−ξ 2M̃(!)
}

. (46)

For τ ≥ τ(iv)(ξ ;δ ), exp
{

−ξ 2M̃(!)
}

− !−1 ≤ −exp
{

−γ2M̃(!)/256
}

, so that (46) implies the first
inequality of the lemma: namely (40).

For the second inequality (i.e., (41)), on H(iv)
τ , (42) implies we have

Δ̂(k)
! (W1,W2,V $

! )≤  pγ/4(k,!,!)+3!−1. (47)

Also, by Lemma 43 (with α = 1/2, ζ = γ/4, β = ξ/ζ < 1−
√
α), for τ ≥ τ(iv)(ξ ;δ ), on Hτ(δ )∩

H(i)
τ ∩H

(iii)
τ (ξ ),

 pγ/4(k,!,!)≤ P (x : px(k,!)≥ γ/8)+ exp
{

−ξ 2M̃(!)
}

. (48)

Thus, combining (47) with (48) yields

Δ̂(k)
! (W1,W2,V $

! )≤ P (x : px(k,!)≥ γ/8)+3!−1 + exp
{

−ξ 2M̃(!)
}

.
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For τ ≥ τ(iv)(ξ ;δ ), we have exp
{

−ξ 2M̃(!)
}

≤ !−1, which establishes (41).

For n ∈ N and k ∈ {1, . . . ,d+1}, define the set

U (k)
n =

{

mn+1, . . . ,mn+
⌊

n/
(

6 ·2kΔ̂(k)
mn (W1,W2,V )

)⌋}

,

where mn = 3n/34; U (k)
n represents the set of indices processed in the inner loop of Meta-Algorithm

1 for the specified value of k.

Lemma 45 There are ( f ,C,P,γ)-dependent constants ĉ1, ĉ2 ∈ (0,∞) such that, for any ε ∈ (0,1)
and integer n≥ ĉ1 ln(ĉ2/ε), on an event Ĥn(ε) with

P(Ĥn(ε))≥ 1− (3/4)ε , (49)

we have, for V =V $
mn,

∀k ∈
{

1, . . . , d̃ f
}

,
∣

∣

∣

{

m ∈ U (k)
n : Δ̂(k)

m (Xm,W2,V )≥ γ
}∣

∣

∣
≤
⌊

n/
(

3 ·2k
)⌋

, (50)

Δ̂
(d̃ f )
mn (W1,W2,V )≤ Δ(γ/8)

n (ε)+4m−1
n , (51)

and ∀m ∈ U (d̃ f )
n ,

Δ̂
(d̃ f )
m (Xm,W2,V )< γ ⇒ Γ̂

(d̃ f )
m (Xm,− f (Xm),W2,V )< Γ̂

(d̃ f )
m (Xm, f (Xm),W2,V ). (52)

Proof Suppose n≥ ĉ1 ln(ĉ2/ε), where

ĉ1 = max

{

2d̃ f+12

δ̃ f γ2
,

24
r(1/16)

,
24

r(1−γ)/6
,3τ∗

}

and ĉ2 = max

{

4
(

c(i) + c(ii) + c(iii)(γ/16)+6d̃ f
)

,4
(

4e
r(1/16)

)d
,4
(

4e
r(1−γ)/6

)d
}

.

In particular, we have chosen ĉ1 and ĉ2 large enough so that

mn ≥max
{

τ(1/16;ε/2),τ(iv)(γ/16;ε/2),τ((1− γ)/6;ε/2),τ∗
}

.

We begin with (50). By Lemmas 43 and 44, on the event

Ĥ(1)
n (ε) = Hmn(ε/2)∩H(i)

mn ∩H
(iii)
mn (γ/16)∩H(iv)

mn ,

∀m ∈ U (k)
n ,∀k ∈

{

1, . . . , d̃ f
}

,

 pγ (k,mn,m)≤ P (x : px(k,mn)≥ γ/2)+ exp
{

−γ2M̃(m)/256
}

≤ P (x : px(k,mn)≥ γ/2)+ exp
{

−γ2M̃(mn)/256
}

≤ Δ̂(k)
mn (W1,W2,V ) . (53)
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Recall that
{

Xm : m ∈ U (k)
n

}

is a sample of size
⌊

n/(6 ·2kΔ̂(k)
mn (W1,W2,V ))

⌋

, conditionally i.i.d.

(given (W1,W2,V )) with conditional distributions P . Thus, ∀k ∈
{

1, . . . , d̃ f
}

, on Ĥ(1)
n (ε),

P

(

∣

∣

∣

{

m ∈ U (k)
n : Δ̂(k)

m (Xm,W2,V )≥ γ
}∣

∣

∣
> n/

(

3 ·2k
)

∣

∣

∣

∣

∣

W1,W2,V

)

≤ P

(

∣

∣

∣

{

m ∈ U (k)
n : Δ̂(k)

m (Xm,W2,V )≥ γ
}∣

∣

∣
> 2

∣

∣

∣
U (k)
n

∣

∣

∣
Δ̂(k)
mn (W1,W2,V )

∣

∣

∣

∣

∣

W1,W2,V

)

≤ P

(

B
(

|U (k)
n |, Δ̂(k)

mn (W1,W2,V )
)

> 2
∣

∣

∣
U (k)
n

∣

∣

∣
Δ̂(k)
mn (W1,W2,V )

∣

∣

∣

∣

∣

W1,W2,V

)

, (54)

where this last inequality follows from (53), and B(u, p) ∼ Binomial(u, p) is independent from
W1,W2,V (for any fixed u and p). By a Chernoff bound, (54) is at most

exp
{

−
⌊

n/
(

6 ·2kΔ̂(k)
mn (W1,W2,V )

)⌋

Δ̂(k)
mn (W1,W2,V )/3

}

≤ exp
{

1−n/
(

18 ·2k
)}

.

By the law of total probability and a union bound, there exists an event Ĥ(2)
n with

P

(

Ĥ(1)
n (ε)\ Ĥ(2)

n

)

≤ d̃ f · exp
{

1−n/
(

18 ·2d̃ f
)}

such that, on Ĥ(1)
n (ε)∩ Ĥ(2)

n , (50) holds.
Next, by Lemma 44, on Ĥ(1)

n (ε),

Δ̂
(d̃ f )
mn (W1,W2,V )≤ P

(

x : px
(

d̃ f ,mn
)

≥ γ/8
)

+4m−1
n ,

and by Lemma 38, on Ĥ(1)
n (ε), this is at most Δ(γ/8)

n (ε)+4m−1
n , which establishes (51).

Finally, Lemma 41 implies that on Ĥ(1)
n (ε)∩H(ii)

mn , ∀m ∈ U (d̃ f )
n , (52) holds.

Thus, defining
Ĥn(ε) = Ĥ(1)

n (ε)∩ Ĥ(2)
n ∩H(ii)

mn ,

it remains only to establish (49). By a union bound, we have

1−P
(

Ĥn
)

≤ (1−P(Hmn(ε/2)))+
(

1−P

(

H(i)
mn

))

+P

(

H(i)
mn \H

(ii)
mn

)

+P

(

H(i)
mn \H

(iii)
mn (γ/16)

)

+
(

1−P

(

H(iv)
mn

))

+P

(

Ĥ(1)
n (ε)\ Ĥ(2)

n

)

.

≤ ε/2+ c(i) · exp
{

−M̃(mn)/4
}

+ c(ii) · exp
{

−M̃(mn)
1/3/60

}

+ c(iii)(γ/16) · exp
{

−M̃(mn)γ2/256
}

+3d̃ f · exp{−2mn}

+ d̃ f · exp
{

1−n/
(

18 ·2d̃ f
)}

≤ ε/2+
(

c(i) + c(ii) + c(iii)(γ/16)+6d̃ f
)

· exp
{

−nδ̃ f γ22−d̃ f−12
}

. (55)

We have chosen n large enough so that (55) is at most (3/4)ε , which establishes (49).

The following result is a slightly stronger version of Theorem 6.
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Lemma 46 For any passive learning algorithm Ap, if Ap achieves a label complexity Λp with
∞> Λp(ε , f ,P) = ω(log(1/ε)), then Meta-Algorithm 1, withAp as its argument, achieves a label
complexity Λa such that Λa(3ε , f ,P) = o(Λp(ε , f ,P)).

Proof Suppose Ap achieves label complexity Λp with ∞ > Λp(ε , f ,P) = ω(log(1/ε)). Let ε ∈
(0,1), define L(n;ε) =

⌊

n/
(

6 ·2d̃ f
(

Δ(γ/8)
n (ε)+4m−1

n

))⌋

(for any n ∈ N), and let L−1(m;ε) =
max{n ∈ N : L(n;ε)< m} (for any m ∈ (0,∞)). Define

c1 = max
{

ĉ1,2 ·63(d+1)d̃ f ln(e(d+1))
}

and c2 = max{ĉ2,4e(d+1)} ,

and suppose
n≥max

{

c1 ln(c2/ε),1+L−1 (Λp(ε , f ,P);ε)
}

.

Consider running Meta-Algorithm 1 with Ap and n as inputs, while f is the target function and P
is the data distribution.

Letting ĥn denote the classifier returned from Meta-Algorithm 1, Lemma 34 implies that on an
event Ên with P(Ên)≥ 1−e(d+1) ·exp

{

−3n/34/(72d̃ f (d+1) ln(e(d+1)))
}

≥ 1−ε/4, we have

er(ĥn)≤ 2er
(

Ap

(

Ld̃ f

))

.

By a union bound, the event Ĝn(ε) = Ên∩ Ĥn(ε) has P
(

Ĝn(ε)
)

≥ 1− ε . Thus,

E
[

er
(

ĥn
)]

≤ E

[

Ĝn(ε)

[

|Ld̃ f |≥ Λp(ε , f ,P)
]

er
(

ĥn
)

]

+P

(

Ĝn(ε)∩
{

|Ld̃ f |< Λp(ε , f ,P)
})

+P
(

Ĝn(ε)c
)

≤ E

[

Ĝn(ε)

[

|Ld̃ f |≥ Λp(ε , f ,P)
]

2er
(

Ap

(

Ld̃ f

))]

+P

(

Ĝn(ε)∩
{

|Ld̃ f |< Λp(ε , f ,P)
})

+ ε . (56)

On Ĝn(ε), (51) of Lemma 45 implies |Ld̃ f |≥ L(n;ε), and we chose n large enough so that L(n;ε)≥
Λp(ε , f ,P). Thus, the second term in (56) is zero, and we have

E
[

er
(

ĥn
)]

≤ 2 ·E
[

Ĝn(ε)

[

|Ld̃ f |≥ Λp(ε , f ,P)
]

er
(

Ap

(

Ld̃ f

))]

+ ε

= 2 ·E
[

E

[

Ĝn(ε) er
(

Ap

(

Ld̃ f

))∣

∣

∣
|Ld̃ f |

] [

|Ld̃ f |≥ Λp(ε , f ,P)
]]

+ ε . (57)

Note that for any ! with P(|Ld̃ f |= !)> 0, the conditional distribution of
{

Xm : m ∈ U (d̃ f )
n

}

given
{

|Ld̃ f |= !
}

is simply the product P! (i.e., conditionally i.i.d.), which is the same as the distribution
of {X1,X2, . . . ,X!}. Furthermore, on Ĝn(ε), (50) implies that the t < 32n/34 condition is always
satisfied in Step 6 of Meta-Algorithm 1 while k ≤ d̃ f , and (52) implies that the inferred labels from
Step 8 for k = d̃ f are all correct. Therefore, for any such ! with !≥ Λp(ε , f ,P), we have

E

[

Ĝn(ε) er
(

Ap

(

Ld̃ f

))∣

∣

∣

{

|Ld̃ f |= !
}]

≤ E [er(Ap (Z!))]≤ ε .
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In particular, this means (57) is at most 3ε . This implies that Meta-Algorithm 1, with Ap as its
argument, achieves a label complexity Λa such that

Λa(3ε , f ,P)≤max
{

c1 ln(c2/ε),1+L−1 (Λp(ε , f ,P);ε)
}

.

Since Λp(ε , f ,P) = ω(log(1/ε))⇒ c1 ln(c2/ε) = o(Λp(ε , f ,P)), it remains only to show that
L−1 (Λp(ε , f ,P);ε) = o(Λp(ε , f ,P)). Note that ∀ε ∈ (0,1), L(1;ε) = 0 and L(n;ε) is diverging
in n. Furthermore, by Lemma 38, we know that for any N-valued N(ε) = ω(log(1/ε)), we have
Δ(γ/8)
N(ε) (ε) = o(1), which implies L(N(ε);ε) = ω(N(ε)). Thus, since Λp(ε , f ,P) = ω(log(1/ε)),

Lemma 31 implies L−1 (Λp(ε , f ,P);ε) = o(Λp(ε , f ,P)), as desired.
This establishes the result for an arbitrary γ ∈ (0,1). To specialize to the specific procedure

stated as Meta-Algorithm 1, we simply take γ = 1/2.

Proof [Theorem 6] Theorem 6 now follows immediately from Lemma 46. Specifically, we have
proven Lemma 46 for an arbitrary distribution P on X , an arbitrary f ∈ cl(C), and an arbitrary
passive algorithm Ap. Therefore, it will certainly hold for every P and f ∈ C, and since every
( f ,P) ∈Nontrivial(Λp) has∞> Λp(ε , f ,P) = ω(log(1/ε)), the implication that Meta-Algorithm
1 activizes every passive algorithm Ap for C follows.

Careful examination of the proofs above reveals that the “3” in Lemma 46 can be set to any
arbitrary constant strictly larger than 1, by an appropriate modification of the “7/12” threshold
in ActiveSelect. In fact, if we were to replace Step 4 of ActiveSelect by instead selecting k̂ =
argminkmax j &=k mk j (where mk j = erQk j(hk) when k < j), then we could even make this a certain
(1+o(1)) function of ε , at the expense of larger constant factors in Λa.

Appendix C. The Label Complexity of Meta-Algorithm 2

As mentioned, Theorem 10 is essentially implied by the details of the proof of Theorem 16 in Ap-
pendix D below. Here we present a proof of Theorem 13, along with two useful related lemmas.
The first, Lemma 47, lower bounds the expected number of label requests Meta-Algorithm 2 would
make while processing a given number of random unlabeled examples. The second, Lemma 48,
bounds the amount by which each label request is expected to reduce the probability mass in the re-
gion of disagreement. Although we will only use Lemma 48 in our proof of Theorem 13, Lemma 47
may be of independent interest, as it provides additional insights into the behavior of disagreement
based methods, as related to the disagreement coefficient, and is included for this reason.

Throughout, we fix an arbitrary class C, a target function f ∈ C, and a distribution P , and we
continue using the notational conventions of the proofs above, such asV $

m = {h∈C : ∀i≤m,h(Xi) =
f (Xi)} (with V $

0 = C). Additionally, for t ∈ N, define the random variable

M(t) = min

{

m ∈ N :
m
∑

!=1
DIS(V $

!−1)
(X!) = t

}

,

which represents the index of the t th unlabeled example Meta-Algorithm 2 would request the label
of (assuming it has not yet halted).

The two aforementioned lemmas are formally stated as follows.
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Lemma 47 For any r ∈ (0,1) and ! ∈ N,

E [P (DIS(V $
! ∩B( f ,r)))]≥ (1− r)!P (DIS(B( f ,r))) ,

and E





51/r6
∑

m=1
DIS(V $

m−1∩B( f ,r)) (Xm)



≥ P (DIS(B( f ,r)))
2r

.

Lemma 48 For any r ∈ (0,1) and n ∈ N,

E

[

P
(

DIS
(

V $
M(n)∩B( f ,r)

))]

≥ P (DIS(B( f ,r)))−nr.

Note these results immediately imply that

E





51/r6
∑

m=1
DIS(V $

m−1)
(Xm)



≥ P (DIS(B( f ,r)))
2r

and
E

[

P
(

DIS
(

V $
M(n)

))]

≥ P (DIS(B( f ,r)))−nr,

which are then directly relevant to the expected number of label requests made by Meta-Algorithm
2 among the first m data points, and the probability Meta-Algorithm 2 requests the label of the next
point, after already making n label requests, respectively.

Before proving these lemmas, let us first mention their relevance to the disagreement coefficient
analysis. Specifically, for any ε ∈ (0,r], we have

E





51/ε6
∑

m=1
DIS(V $

m−1)
(Xm)



≥ E





51/r6
∑

m=1
DIS(V $

m−1)
(Xm)



≥ P (DIS(B( f ,r)))
2r

.

In particular, maximizing over r > ε , we have

E





51/ε6
∑

m=1
DIS(V $

m−1)
(Xm)



≥ θ f (ε)/2.

Thus, the expected number of label requests among the first 51/ε6 unlabeled examples processed by
Meta-Algorithm 2 is at least θ f (ε)/2 (assuming it does not halt first). Similarly, for any ε ∈ (0,r],
for any n≤ P(DIS(B( f ,r)))/(2r), Lemma 48 implies

E

[

P
(

DIS
(

V $
M(n)

))]

≥ P (DIS(B( f ,r)))/2≥ P (DIS(B( f ,ε)))/2.

Maximizing over r > ε , we see that

n≤ θ f (ε)/2 =⇒ E

[

P
(

DIS
(

V $
M(n)

))]

≥ P (DIS(B( f ,ε)))/2.

In other words, for Meta-Algorithm 2 to arrive at a region of disagreement with expected probability
mass less than P(DIS(B( f ,ε)))/2 requires a budget n of at least θ f (ε)/2.
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We now present proofs of Lemmas 47 and 48.
Proof [Lemma 47] Let Dm = DIS(V $

m∩B( f ,r)). Since

E





51/r6
∑

m=1
Dm−1 (Xm)



=

51/r6
∑

m=1
E

[

P

(

Xm ∈ Dm−1

∣

∣

∣
V $
m−1

)]

=

51/r6
∑

m=1
E [P (Dm−1)] , (58)

we focus on lower bounding E [P (Dm)] for m ∈ N∪{0}. Note that for any x ∈ DIS(B( f ,r)), there
exists some hx ∈ B( f ,r) with hx(x) &= f (x), and if this hx ∈ V $

m, then x ∈ Dm as well. This means
∀x, Dm(x)≥ DIS(B( f ,r))(x) · V $

m(hx) = DIS(B( f ,r))(x) ·∏m
!=1 DIS({hx, f})c(X!). Therefore,

E [P (Dm)] = P(Xm+1 ∈ Dm) = E

[

E

[

Dm (Xm+1)
∣

∣

∣
Xm+1

]]

≥ E

[

E

[

DIS(B( f ,r))(Xm+1) ·
m

∏
!=1

DIS({hXm+1 , f})c(X!)

∣

∣

∣

∣

∣

Xm+1

]]

= E

[

m

∏
!=1

P

(

hXm+1(X!) = f (X!)
∣

∣

∣
Xm+1

)

DIS(B( f ,r))(Xm+1)

]

(59)

≥ E
[

(1− r)m DIS(B( f ,r))(Xm+1)
]

= (1− r)mP(DIS(B( f ,r))), (60)

where the equality in (59) is by conditional independence of the DIS({hXm+1 , f})c(X!) indicators, given
Xm+1, and the inequality in (60) is due to hXm+1 ∈ B( f ,r). This indicates (58) is at least

51/r6
∑

m=1
(1− r)m−1P (DIS(B( f ,r))) =

(

1− (1− r)51/r6
) P (DIS(B( f ,r)))

r

≥
(

1− 1
e

)

P (DIS(B( f ,r)))
r

≥ P (DIS(B( f ,r)))
2r

.

Proof [Lemma 48] For each m ∈ N ∪ {0}, let Dm = DIS(B( f ,r)∩V $
m). For convenience, let

M(0) = 0. We prove the result by induction. We clearly have E
[

P
(

DM(0)
)]

= E [P (D0)] =
P(DIS(B( f ,r))), which serves as our base case. Now fix any n ∈ N and take as the inductive
hypothesis that

E
[

P
(

DM(n−1)
)]

≥ P(DIS(B( f ,r)))− (n−1)r.

As in the proof of Lemma 47, for any x ∈ DM(n−1), there exists hx ∈ B( f ,r)∩V $
M(n−1) with hx(x) &=

f (x); unlike the proof of Lemma 47, here hx is a random variable, determined by V $
M(n−1). If hx is

also in V $
M(n), then x ∈ DM(n) as well. Thus, ∀x, DM(n) (x) ≥ DM(n−1) (x) · V $

M(n)
(hx) = DM(n−1) (x) ·

DIS({hx, f})c(XM(n)), where this last equality is due to the fact that every m ∈ {M(n− 1) + 1, . . . ,
M(n)−1} has Xm /∈ DIS

(

V $
m−1
)

, so that in particular hx(Xm) = f (Xm). Therefore, letting X ∼ P be
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independent of the data Z ,

E
[

P
(

DM(n)
)]

= E

[

DM(n) (X)
]

≥ E

[

DM(n−1) (X) · DIS({hX , f})c(XM(n))
]

= E

[

DM(n−1) (X) ·P
(

hX(XM(n)) = f (XM(n))
∣

∣

∣
X ,V $

M(n−1)

)]

. (61)

The conditional distribution of XM(n) given V $
M(n−1) is merely P but with support restricted to

DIS
(

V $
M(n−1)

)

and renormalized to a probability measure: that is P
(

·
∣

∣

∣
DIS

(

V $
M(n−1)

))

. Thus,

since any x ∈ DM(n−1) has DIS({hx, f})⊆ DIS
(

V $
M(n−1)

)

, we have

P

(

hx(XM(n)) &= f (XM(n))
∣

∣

∣
V $
M(n−1)

)

=
P (DIS({hx, f}))

P
(

DIS
(

V $
M(n−1)

)) ≤ r
P
(

DM(n−1)
) ,

where the inequality follows from hx ∈ B( f ,r) and DM(n−1) ⊆ DIS
(

V $
M(n−1)

)

. Therefore, (61) is at
least

E

[

DM(n−1) (X)·
(

1− r
P(DM(n−1))

)]

= E

[

P

(

X ∈ DM(n−1)

∣

∣

∣
DM(n−1)

)

·
(

1− r
P(DM(n−1))

)]

= E

[

P
(

DM(n−1)
)

·
(

1− r
P(DM(n−1))

)]

= E
[

P
(

DM(n−1)
)]

− r.

By the inductive hypothesis, this is at least P(DIS(B( f ,r)))−nr.

With Lemma 48 in hand, we are ready for the proof of Theorem 13.
Proof [Theorem 13] Let C, f , P , and λ be as in the theorem statement. For m ∈ N, let λ−1(m) =
inf{ε > 0 : λ (ε)≤m}, or 1 if this is not defined. We define Ap as a randomized algorithm such that,
form∈N and L∈ (X ×{−1,+1})m, Ap(L) returns f with probability 1−λ−1(|L|) and returns− f
with probability λ−1(|L|) (independent of the contents of L). Note that, for any integer m≥ λ (ε),
E [er(Ap (Zm))] = λ−1(m) ≤ λ−1(λ (ε)) ≤ ε . Therefore, Ap achieves some label complexity Λp
with Λp(ε , f ,P) = λ (ε) for all ε > 0.

If θ f
(

λ (ε)−1) &= ω(1), then monotonicity implies θ f
(

λ (ε)−1) = O(1), and since every label
complexity Λa is Ω(1), the result clearly holds. Otherwise, suppose θ f

(

λ (ε)−1)= ω(1); in partic-
ular, this means ∃ε0 ∈ (0,1/2) such that θ f

(

λ (2ε0)−1) ≥ 12. Fix any ε ∈ (0,ε0), let r > λ (2ε)−1

be such that P(DIS(B( f ,r)))
r ≥ θ f

(

λ (2ε)−1)/2, and let n ∈ N satisfy n≤ θ f
(

λ (2ε)−1)/4.
Consider running Meta-Algorithm 2 with arguments Ap and n, and let L̂ denote the final value

of the set L, and let m̌ denote the value of m upon reaching Step 6. Note that any m < λ (2ε) and
L ∈ (X × {−1,+1})m has er(Ap(L)) = λ−1(m) ≥ inf{ε ′ > 0 : λ (ε ′) < λ (2ε)} ≥ 2ε . Therefore,
we have

E
[

er
(

Ap
(

L̂
))]

≥ 2εP
(

|L̂|< λ (2ε)
)

= 2εP
(⌊

n/
(

6Δ̂
)⌋

< λ (2ε)
)

= 2εP
(

Δ̂>
n

6λ (2ε)

)

= 2ε
(

1−P

(

Δ̂≤ n
6λ (2ε)

))

. (62)
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Since n≤ θ f
(

λ (2ε)−1)/4≤ P(DIS(B( f ,r)))/(2r)< λ (2ε)P(DIS(B( f ,r)))/2, we have

P

(

Δ̂≤ n
6λ (2ε)

)

≤ P
(

Δ̂< P(DIS(B( f ,r)))/12
)

≤ P

({

P (DIS(V $
m̌))< P(DIS(B( f ,r)))/12

}

∪
{

Δ̂< P (DIS(V $
m̌))
}

)

. (63)

Since m̌≤M(5n/26), monotonicity and a union bound imply this is at most

P

(

P
(

DIS
(

V $
M(5n/26)

))

< P(DIS(B( f ,r)))/12
)

+P
(

Δ̂< P (DIS(V $
m̌))
)

. (64)

Markov’s inequality implies

P

(

P
(

DIS
(

V $
M(5n/26)

))

< P(DIS(B( f ,r)))/12
)

= P

(

P(DIS(B( f ,r)))−P
(

DIS
(

V $
M(5n/26)

))

>
11
12

P(DIS(B( f ,r)))
)

≤ P

(

P(DIS(B( f ,r)))−P
(

DIS
(

V $
M(5n/26)∩B( f ,r)

))

>
11
12

P(DIS(B( f ,r)))
)

≤
E

[

P(DIS(B( f ,r)))−P
(

DIS
(

V $
M(5n/26)∩B( f ,r)

))]

11
12P(DIS(B( f ,r)))

=
12
11



1−
E

[

P
(

DIS
(

V $
M(5n/26)∩B( f ,r)

))]

P(DIS(B( f ,r)))



 .

Lemma 48 implies this is at most 12
11

5n/26r
P(DIS(B( f ,r))) ≤

12
11

⌈

P(DIS(B( f ,r)))
4r

⌉

r
P(DIS(B( f ,r))) . Since any a≥

3/2 has 5a6 ≤ (3/2)a, and θ f
(

λ (2ε)−1)≥ 12 implies P(DIS(B( f ,r)))
4r ≥ 3/2, we have

⌈

P(DIS(B( f ,r)))
4r

⌉

≤ 3
8
P(DIS(B( f ,r)))

r , so that 12
11

⌈

P(DIS(B( f ,r)))
4r

⌉

r
P(DIS(B( f ,r))) ≤

9
22 . Combining the above, we have

P

(

P
(

DIS
(

V $
M(5n/26)

))

< P(DIS(B( f ,r)))/12
)

≤ 9
22

. (65)

Examining the second term in (64), Hoeffding’s inequality and the definition of Δ̂ from (13) imply

P
(

Δ̂< P (DIS(V $
m̌))
)

= E

[

P

(

Δ̂< P (DIS(V $
m̌))
∣

∣

∣
V $
m̌, m̌

)]

≤ E
[

e−8m̌]≤ e−8 < 1/11. (66)

Combining (62), (63), (64), (65), and (66) implies

E
[

er
(

Ap
(

L̂
))]

> 2ε
(

1− 9
22
− 1

11

)

= ε .

Thus, for any label complexity Λa achieved by running Meta-Algorithm 2 with Ap as its argument,
we must have Λa(ε , f ,P) > θ f

(

λ (2ε)−1)/4. Since this is true for all ε ∈ (0,ε0), this establishes
the result.
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Appendix D. The Label Complexity of Meta-Algorithm 3

As in Appendix B, we will assume C is a fixed VC class, P is some arbitrary distribution, and
f ∈ cl(C) is an arbitrary fixed function. We continue using the notation introduced above: in
particular, Sk(H) =

{

S ∈ X k : H shatters S
}

,  Sk(H) = X k \ Sk(H),  ∂kH f = X k \ ∂kH f , and δ̃ f =

P d̃ f−1
(

∂
d̃ f−1
C

f
)

. Also, as above, we will prove a more general result replacing the “1/2” in Steps
5, 9, and 12 of Meta-Algorithm 3 with an arbitrary value γ ∈ (0,1); thus, the specific result for the
stated algorithm will be obtained by taking γ = 1/2.

For the estimators P̂m in Meta-Algorithm 3, we take precisely the same definitions as given in
Appendix B.1 for the estimators in Meta-Algorithm 1. In particular, the quantities Δ̂(k)

m (x,W2,H),
Δ̂(k)
m (W1,W2,H), Γ̂(k)m (x,y,W2,H), and M(k)

m (H) are all defined as in Appendix B.1, and the P̂m esti-
mators are again defined as in (11), (12) and (13).

Also, we sometimes refer to quantities defined above, such as  pζ (k,!,m) (defined in (34)), as
well as the various events from the lemmas of the previous appendix, such as Hτ(δ ), H ′, H

(i)
τ , H(ii)

τ ,
H(iii)
τ (ζ ), H(iv)

τ , and G(i)
τ .

D.1 Proof of Theorem 16

Throughout the proof, we will make reference to the sets Vm defined in Meta-Algorithm 3. Also
let V (k) denote the final value of V obtained for the specified value of k in Meta-Algorithm 3. Both
Vm and V (k) are implicitly functions of the budget, n, given to Meta-Algorithm 3. As above, we
continue to denote by V $

m = {h ∈ C : ∀i ≤ m,h(Xm) = f (Xm)}. One important fact we will use
repeatedly below is that if Vm = V $

m for some m, then since Lemma 35 implies that V $
m &= ∅ on H ′,

we must have that all of the previous ŷ values were consistent with f , which means that ∀! ≤ m,
V! =V $

! . In particular, ifV (k′) =V $
m for the largest m value obtained while k= k′ in Meta-Algorithm

3, then V! =V $
! for all ! obtained while k ≤ k′ in Meta-Algorithm 3.

Additionally, define m̃n = 3n/244, and note that the value m= 5n/66 is obtained while k = 1 in
Meta-Algorithm 3. We also define the following quantities, which we will show are typically equal
to related quantities in Meta-Algorithm 3. Define m̂0 = 0, T $

0 = 52n/36, and t̂0 = 0, and for each
k ∈ {1, . . . ,d+1}, inductively define
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T $
k = T $

k−1− t̂k−1,

I$mk = [γ,∞)

(

Δ̂(k)
m
(

Xm,W2,V $
m−1
)

)

,∀m ∈ N,

m̌k = min







m≥ m̂k−1 :
m
∑

!=m̂k−1+1
I$!k = 5T $

k /46







∪{max{k ·2n+1, m̂k−1}} ,

m̂k = m̌k+
⌊

T $
k /
(

3Δ̂(k)
m̌k

(

W1,W2,V $
m̌k
)

)⌋

,

Ǔk = (m̂k−1, m̌k]∩N,
Ûk = (m̌k, m̂k]∩N,

C$
mk = [0,33T $

k /44)





m−1
∑

!=m̂k−1+1
I$!k





Q$
k =

∑

m∈Ûk

I$mk ·C$
mk,

and t̂k = Q$
k+

∑

m∈Ǔk

I$mk.

The meaning of these values can be understood in the context of Meta-Algorithm 3, under the
condition that Vm = V $

m for values of m obtained for the respective value of k. Specifically, under
this condition, T $

k corresponds to Tk, t̂k represents the final value t for round k, m̌k represents the
value of m upon reaching Step 9 in round k, while m̂k represents the value of m at the end of round k,
Ǔk corresponds to the set of indices arrived at in Step 4 during round k, while Ûk corresponds to the
set of indices arrived at in Step 11 during round k, for m ∈ Ǔk, I$mk indicates whether the label of Xm
is requested, while for m ∈ Ûk, I$mk ·C$

mk indicates whether the label of Xm is requested. Finally Q$
k

corresponds to the number of label requests in Step 13 during round k. In particular, note m̌1 ≥ m̃n.

Lemma 49 For any τ ∈ N, on the event H ′ ∩G(i)
τ , ∀k,!,m ∈ N with k ≤ d̃ f , ∀x ∈ X , for any setsH

andH′ with V $
! ⊆H⊆H′ ⊆ B( f ,r1/6), if either k = 1 or m≥ τ , then

Δ̂(k)
m (x,W2,H)≤ (3/2)Δ̂(k)

m
(

x,W2,H′
)

.

In particular, for any δ ∈ (0,1) and τ ≥ τ(1/6;δ ), on H ′ ∩Hτ(δ )∩G(i)
τ , ∀k,!,!′,m ∈N with m≥ τ ,

!≥ !′ ≥ τ , and k ≤ d̃ f , ∀x ∈ X , Δ̂(k)
m (x,W2,V $

! )≤ (3/2)Δ̂(k)
m
(

x,W2,V $
!′
)

.

Proof First note that ∀m ∈ N, ∀x ∈ X ,

Δ̂(1)
m (x,W2,H) = DIS(H)(x)≤ DIS(H′)(x) = Δ̂(1)

m
(

x,W2,H′
)

,

so the result holds for k = 1. Lemma 35, Lemma 40, and monotonicity of M(k)
m (·) imply that on

H ′ ∩G(i)
τ , for any m≥ τ and k ∈

{

2, . . . , d̃ f
}

,

M(k)
m (H)≥

m3
∑

i=1
∂
k−1
C

f

(

S(k)i
)

≥ (2/3)M(k)
m
(

B( f ,r1/6)
)

≥ (2/3)M(k)
m
(

H′
)

,
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so that ∀x ∈ X ,

Δ̂(k)
m (x,W2,H) =M(k)

m (H)−1
m3
∑

i=1
Sk(H)

(

S(k)i ∪{x}
)

≤M(k)
m (H)−1

m3
∑

i=1
Sk(H′)

(

S(k)i ∪{x}
)

≤ (3/2)M(k)
m
(

H′
)−1

m3
∑

i=1
Sk(H′)

(

S(k)i ∪{x}
)

= (3/2)Δ̂(k)
m
(

x,W2,H′
)

.

The final claim follows from Lemma 29.

Lemma 50 For any k∈ {1, . . . ,d+1}, if n≥ 3 ·4k−1, then T $
k ≥ 41−k(2n/3) and t̂k ≤

⌊

3T $
k /4

⌋

.

Proof Recall T $
1 = 52n/36 ≥ 2n/3. If n ≥ 2, we also have 33T $

1 /44 ≥ 5T $
1 /46, so that (due to the

C$
m1 factors) t̂1 ≤ 33T $

1 /44. For the purpose of induction, suppose some k ∈ {2, . . . ,d+1} has n ≥
3 ·4k−1, T $

k−1 ≥ 42−k(2n/3), and t̂k−1 ≤ 33T $
k−1/44. Then T $

k = T $
k−1− t̂k−1 ≥ T $

k−1/4≥ 41−k(2n/3),
and since n≥ 3 ·4k−1, we also have 33T $

k /44 ≥ 5T $
k /46, so that t̂k ≤ 33T $

k /44 (again, due to theC$
mk

factors). Thus, by induction, this holds for all k ∈ {1, . . . ,d+1} with n≥ 3 ·4k−1.

The next lemma indicates that the “t < 33Tk/44” constraint in Step 12 is redundant for k≤ d̃ f . It
is similar to (50) in Lemma 45, but is made only slightly more complicated by the fact that the Δ̂(k)

estimate is calculated in Step 9 based on a set Vm different from the ones used to decide whether or
not to request a label in Step 12.

Lemma 51 There exist (C,P, f ,γ)-dependent constants c̃(i)1 , c̃(i)2 ∈ [1,∞) such that, for any δ ∈
(0,1), and any integer n≥ c̃(i)1 ln

(

c̃(i)2 /δ
)

, on an event

H̃(i)
n (δ )⊆ G(i)

m̃n ∩Hm̃n(δ )∩H
(i)
m̃n ∩H

(iii)
m̃n (γ/16)∩H(iv)

m̃n

with P
(

H̃(i)
n (δ )

)

≥ 1−2δ , ∀k ∈
{

1, . . . , d̃ f
}

, t̂k =
m̂k
∑

m=m̂k−1+1
I$mk ≤ 3T $

k /4.

Proof Define the constants

c̃(i)1 = max
{

192d
r(3/32)

, 3·4d̃ f+6

δ̃ f γ2

}

, c̃(i)2 = max
{

8e
r(3/32)

,
(

c(i) + c(iii)(γ/16)+125d̃ f δ̃−1
f

)

}

,

and let n(i)(δ ) = c̃(i)1 ln
(

c̃(i)2 /δ
)

. Fix any integer n≥ n(i)(δ ) and consider the event

H̃(1)
n (δ ) = G(i)

m̃n ∩Hm̃n(δ )∩H
(i)
m̃n ∩H

(iii)
m̃n (γ/16)∩H(iv)

m̃n .
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By Lemma 49 and the fact that m̌k ≥ m̃n for all k ≥ 1, since n≥ n(i)(δ )≥ 24τ (1/6;δ ), on H̃(1)
n (δ ),

∀k ∈
{

1, . . . , d̃ f
}

, ∀m ∈ Ûk,

Δ̂(k)
m
(

Xm,W2,V $
m−1
)

≤ (3/2)Δ̂(k)
m
(

Xm,W2,V $
m̌k
)

. (67)

Now fix any k∈
{

1, . . . , d̃ f
}

. Since n≥ n(i)(δ )≥ 27 ·4k−1, Lemma 50 implies T $
k ≥ 18, which means

3T $
k /4−5T $

k /46 ≥ 4T $
k /9. Also note

∑

m∈Ǔk I
$
mk ≤

⌈

T $
k /4

⌉

. Let Nk = (4/3)Δ̂(k)
m̌k

(

W1,W2,V $
m̌k

)

∣

∣Ûk
∣

∣,

and note that
∣

∣Ûk
∣

∣=
⌊

T $
k /
(

3Δ̂(k)
m̌k

(

W1,W2,V $
m̌k

))⌋

, so that Nk ≤ (4/9)T $
k . Thus, we have

P



H̃(1)
n (δ )∩







m̂k
∑

m=m̂k−1+1
I$mk > 3T $

k /4











≤ P



H̃(1)
n (δ )∩







∑

m∈Ûk

I$mk > 4T $
k /9









≤ P



H̃(1)
n (δ )∩







∑

m∈Ûk

I$mk > Nk











≤ P



H̃(1)
n (δ )∩







∑

m∈Ûk

[2γ/3,∞)

(

Δ̂(k)
m
(

Xm,W2,V $
m̌k
)

)

> Nk









 , (68)

where this last inequality is by (67). To simplify notation, define Z̃k =
(

T $
k , m̌k,W1,W2,V $

m̌k

)

. By
Lemmas 43 and 44 (with β = 3/32, ζ = 2γ/3, α = 3/4, and ξ = γ/16), since n ≥ n(i)(δ ) ≥
24 ·max

{

τ(iv)(γ/16;δ ),τ(3/32;δ )
}

, on H̃(1)
n (δ ), ∀m ∈ Ûk,

 p2γ/3(k, m̌k,m)≤ P (x : px (k, m̌k)≥ γ/2)+ exp
{

−γ2M̃(m)/256
}

≤ P (x : px (k, m̌k)≥ γ/2)+ exp
{

−γ2M̃(m̌k)/256
}

≤ Δ̂(k)
m̌k

(

W1,W2,V $
m̌k
)

.

Letting G̃′n(k) denote the event  p2γ/3(k, m̌k,m) ≤ Δ̂(k)
m̌k

(

W1,W2,V $
m̌k

)

, we see that G̃′n(k) ⊇ H̃(1)
n (δ ).

Thus, since the [2γ/3,∞)

(

Δ̂(k)
m

(

Xm,W2,V $
m̌k

))

variables are conditionally independent given Z̃k for
m ∈ Ûk, each with respective conditional distribution Bernoulli

(

 p2γ/3 (k, m̌k,m)
)

, the law of total
probability and a Chernoff bound imply that (68) is at most

P



G̃′n(k)∩







∑

m∈Ûk

[2γ/3,∞)

(

Δ̂(k)
m
(

Xm,W2,V $
m̌k
)

)

> Nk











= E



P





∑

m∈Ûk

[2γ/3,∞)

(

Δ̂(k)
m
(

Xm,W2,V $
m̌k
)

)

> Nk

∣

∣

∣

∣

∣

Z̃k



 · G̃′n(k)





≤ E

[

exp
{

−Δ̂(k)
m̌k

(

W1,W2,V $
m̌k
)∣

∣Ûk
∣

∣/27
}]

≤ E [exp{−T $
k /162}]≤ exp

{

−n/
(

243 ·4k−1
)}

,
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where the last inequality is by Lemma 50. Thus, there exists G̃n(k) with P

(

H̃(1)
n (δ )\ G̃n(k)

)

≤

exp
{

−n/
(

243 ·4k−1)} such that, on H̃(1)
n (δ )∩ G̃n(k), we have

∑m̂k
m=m̂k−1+1 I

$
mk ≤ 3T $

k /4. Defining

H̃(i)
n (δ ) = H̃(1)

n (δ )∩
⋂d̃ f
k=1 G̃n(k), a union bound implies

P

(

H̃(1)
n (δ )\ H̃(i)

n (δ )
)

≤ d̃ f · exp
{

−n/
(

243 ·4d̃ f−1
)}

, (69)

and on H̃(i)
n (δ ), every k ∈

{

1, . . . , d̃ f
}

has
∑m̂k

m=m̂k−1+1 I
$
mk ≤ 3T $

k /4. In particular, this means theC$
mk

factors are redundant in Q$
k , so that t̂k =

∑m̂k
m=m̂k−1+1 I

$
mk.

To get the stated probability bound, a union bound implies that

1−P

(

H̃(1)
n (δ )

)

≤ (1−P(Hm̃n(δ )))+
(

1−P

(

H(i)
m̃n

))

+P

(

H(i)
m̃n \H

(iii)
m̃n (γ/16)

)

+
(

1−P

(

H(iv)
m̃n

))

+P

(

H(i)
m̃n \G

(i)
m̃n

)

≤ δ + c(i) · exp
{

−M̃ (m̃n)/4
}

+ c(iii)(γ/16) · exp
{

−M̃ (m̃n)γ2/256
}

+3d̃ f · exp{−2m̃n}
+121d̃ f δ̃−1

f · exp
{

−M̃ (m̃n)/60
}

≤ δ +
(

c(i) + c(iii)(γ/16)+124d̃ f δ̃−1
f

)

· exp
{

−m̃nδ̃ f γ2/512
}

. (70)

Since n≥ n(i)(δ )≥ 24, we have m̃n ≥ n/48, so that summing (69) and (70) gives us

1−P

(

H̃(i)
n (δ )

)

≤ δ +
(

c(i) + c(iii)(γ/16)+125d̃ f δ̃−1
f

)

·exp
{

−nδ̃ f γ2/
(

512 ·48 ·4d̃ f−1
)}

. (71)

Finally, note that we have chosen n(i)(δ ) sufficiently large so that (71) is at most 2δ .

The next lemma indicates that the redundancy of the “t < 33Tk/44” constraint, just established
in Lemma 51, implies that all ŷ labels obtained while k ≤ d̃ f are consistent with the target function.

Lemma 52 Consider running Meta-Algorithm 3 with a budget n ∈ N, while f is the target func-
tion and P is the data distribution. There is an event H̃(ii)

n and (C,P, f ,γ)-dependent constants
c̃(ii)1 , c̃(ii)2 ∈ [1,∞) such that, for any δ ∈ (0,1), if n≥ c̃(ii)1 ln

(

c̃(ii)2 /δ
)

, then P
(

H̃(i)
n (δ )\ H̃(ii)

n

)

≤ δ ,

and on H̃(i)
n (δ )∩ H̃(ii)

n , we have V (d̃ f ) =Vm̂d̃ f =V $
m̂d̃ f

.

Proof Define c̃(ii)1 = max
{

c̃(i)1 , 192d
r(1−γ)/6

, 211

δ̃ 1/3
f

}

, c̃(ii)2 = max
{

c̃(i)2 , 8e
r(1−γ)/6

,c(ii),exp{τ∗}
}

, let n(ii)(δ ) =

c̃(ii)1 ln
(

c̃(ii)2 /δ
)

, suppose n≥ n(ii)(δ ), and define the event H̃(ii)
n = H(ii)

m̃n .

By Lemma 41, since n ≥ n(ii)(δ ) ≥ 24 ·max{τ((1− γ)/6;δ ),τ∗}, on H̃(i)
n (δ )∩ H̃(ii)

n , ∀m ∈ N

and k ∈
{

1, . . . , d̃ f
}

with either k = 1 or m> m̃n,

Δ̂(k)
m
(

Xm,W2,V $
m−1
)

< γ ⇒ Γ̂(k)m
(

Xm,− f (Xm),W2,V $
m−1
)

< Γ̂(k)m
(

Xm, f (Xm),W2,V $
m−1
)

. (72)
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Recall that m̃n ≤ min{5T1/46 ,2n} = 552n/36/46. Therefore, Vm̃n is obtained purely by m̃n exe-
cutions of Step 8 while k = 1. Thus, for every m obtained in Meta-Algorithm 3, either k = 1 or
m > m̃n. We now proceed by induction on m. We already know V0 = C = V $

0 , so this serves as
our base case. Now consider some value m ∈ N obtained in Meta-Algorithm 3 while k ≤ d̃ f , and
suppose every m′ < m has Vm′ =V $

m′ . But this means that Tk = T $
k and the value of t upon obtaining

this particular m has t ≤
∑m−1

!=m̂k−1+1 I$!k. In particular, if Δ̂(k)
m (Xm,W2,Vm−1) ≥ γ , then I$mk = 1, so

that t <
∑m

!=m̂k−1+1 I$mk; by Lemma 51, on H̃(i)
n (δ )∩ H̃(ii)

n ,
∑m

!=m̂k−1+1 I$mk ≤
∑m̂k

!=m̂k−1+1 I
$
mk ≤ 3T $

k /4,
so that t < 3T $

k /4, and therefore ŷ = Ym = f (Xm); this implies Vm = V $
m. On the other hand, on

H̃(i)
n (δ )∩ H̃(ii)

n , if Δ̂(k)
m (Xm,W2,Vm−1)< γ , then (72) implies

ŷ= argmax
y∈{−1,+1}

Γ̂(k)m (Xm,y,W2,Vm−1) = f (Xm),

so that again Vm = V $
m. Thus, by the principle of induction, on H̃(i)

n (δ )∩ H̃(ii)
n , for every m ∈ N

obtained while k≤ d̃ f , we have Vm =V $
m; in particular, this implies V (d̃ f ) =Vm̂d̃ f =V $

m̂d̃ f
. The bound

on P

(

H̃(i)
n (δ )\ H̃(ii)

n

)

then follows from Lemma 41, as we have chosen n(ii)(δ ) sufficiently large so
that (27) (with τ = m̃n) is at most δ .

Lemma 53 Consider running Meta-Algorithm 3 with a budget n ∈ N, while f is the target func-
tion and P is the data distribution. There exist (C,P, f ,γ)-dependent constants c̃(iii)1 , c̃(iii)2 ∈ [1,∞)

such that, for any δ ∈ (0,e−3), λ ∈ [1,∞), and n ∈ N, there exists an event H̃(iii)
n (δ ,λ ) having

P

(

H̃(i)
n (δ )∩ H̃(ii)

n \ H̃(iii)
n (δ ,λ )

)

≤ δ with the property that, if

n≥ c̃(iii)1 θ̃ f (d/λ ) ln2

(

c̃(iii)2 λ
δ

)

,

then on H̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(iii)
n (δ ,λ ), at the conclusion of Meta-Algorithm 3,

∣

∣

∣
Ld̃ f

∣

∣

∣
≥ λ .

Proof Let c̃(iii)1 = max
{

c̃(i)1 , c̃(ii)1 ,
d·d̃ f ·410+2d̃ f

γ3δ̃ 3
f

, 192d
r(3/32)

}

, c̃(iii)2 = max
{

c̃(i)2 , c̃(ii)2 , 8e
r(3/32)

}

, fix any δ ∈

(0,e−3), λ ∈ [1,∞), let n(iii)(δ ,λ ) = c̃(iii)1 θ̃ f (d/λ ) ln2(c̃(iii)2 λ/δ ), and suppose n≥ n(iii)(δ ,λ ).
Define a sequence !i = 2i for integers i ≥ 0, and let ι̂ =

⌈

log2

(

42+d̃ f λ/γδ̃ f
)⌉

. Also define
φ̃(m,δ ,λ ) = max{φ (m;δ/2ι̂) ,d/λ}, where φ is defined in Lemma 29. Then define the events

H̃(3)(δ ,λ ) =
ι̂
⋂

i=1
H!i (δ/2ι̂) , H̃(iii)

n (δ ,λ ) = H̃(3)(δ ,λ )∩
{

m̌d̃ f ≥ !ι̂
}

.

Note that ι̂ ≤ n, so that !ι̂ ≤ 2n, and therefore the truncation in the definition of m̌d̃ f , which enforces
m̌d̃ f ≤max

{

d̃ f ·2n+1, m̂k−1
}

, will never be a factor in whether or not m̌d̃ f ≥ !ι̂ is satisfied.

Since n≥ n(iii)(λ ,δ )≥ c̃(ii)1 ln
(

c̃(ii)2 /δ
)

, Lemma 52 implies that on H̃(i)
n (δ )∩ H̃(ii)

n , Vm̂d̃ f =V $
m̂d̃ f

.
Recall that this implies that all ŷ values obtained while m≤ m̂d̃ f are consistent with their respective
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f (Xm) values, so that every such m has Vm = V $
m as well. In particular, Vm̌d̃ f = V $

m̌d̃ f
. Also note that

n(iii)(δ ,λ ) ≥ 24 · τ(iv)(γ/16;δ ), so that τ(iv)(γ/16;δ ) ≤ m̃n, and recall we always have m̃n ≤ m̌d̃ f .
Thus, on H̃(i)

n (δ )∩ H̃(ii)
n ∩ H̃(iii)

n (δ ,λ ), (taking Δ̂(k) as in Meta-Algorithm 3)

Δ̂(d̃ f ) = Δ̂
(d̃ f )
m̌d̃ f

(

W1,W2,V $
m̌d̃ f

)

(Lemma 52)

≤ P
(

x : px
(

d̃ f , m̌d̃ f

)

≥ γ/8
)

+4m̌−1
d̃ f

(Lemma 44)

≤
8P d̃ f

(

S d̃ f
(

V $
m̌d̃ f

))

γP d̃ f−1
(

S d̃ f−1
(

V $
m̌d̃ f

)) +4m̌−1
d̃ f

(Markov’s ineq.)

≤
(

8/γδ̃ f
)

P d̃ f
(

S d̃ f
(

V $
m̌d̃ f

))

+4m̌−1
d̃ f

(Lemma 35)

≤
(

8/γδ̃ f
)

P d̃ f
(

S d̃ f
(

V $
!ι̂

)

)

+4!−1
ι̂ (defn of H̃(iii)

n (δ ,λ ))

≤
(

8/γδ̃ f
)

P d̃ f
(

S d̃ f
(

B
(

f , φ̃ (!ι̂ ,δ ,λ )
))

)

+4!−1
ι̂ (Lemma 29)

≤
(

8/γδ̃ f
)

θ̃ f (d/λ )φ̃ (!ι̂ ,δ ,λ )+4!−1
ι̂ (defn of θ̃ f (d/λ ))

≤
(

12/γδ̃ f
)

θ̃ f (d/λ )φ̃ (!ι̂ ,δ ,λ ) (φ̃ (!ι̂ ,δ ,λ )≥ !−1
ι̂ )

=
12θ̃ f (d/λ )

γδ̃ f
max

{

2
d ln(2emax{!ι̂ ,d}/d)+ ln(4ι̂/δ )

!ι̂
,d/λ

}

. (73)

Plugging in the definition of ι̂ and !ι̂ ,

d ln(2emax{!ι̂ ,d}/d)+ ln(4ι̂/δ )
!ι̂

≤ (d/λ )γδ̃ f 4−1−d̃ f ln
(

41+d̃ f λ/δγδ̃ f
)

≤ (d/λ ) ln(λ/δ ) .

Therefore, (73) is at most 24θ̃ f (d/λ )(d/λ ) ln(λ/δ )/γδ̃ f . Thus, since

n(iii)(δ ,λ )≥max
{

c̃(i)1 ln
(

c̃(i)2 /δ
)

, c̃(ii)1 ln
(

c̃(ii)2 /δ
)}

,

Lemmas 51 and 52 imply that on H̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(iii)
n (δ ,λ ),

∣

∣

∣
Ld̃ f

∣

∣

∣
=
⌊

T $
d̃ f
/
(

3Δ̂(d̃ f )
)⌋

≥
⌊

41−d̃ f 2n/
(

9Δ̂(d̃ f )
)⌋

≥
41−d̃ f γδ̃ f n

9 ·24 · θ̃ f (d/λ )(d/λ ) ln(λ/δ )
≥ λ ln(λ/δ )≥ λ .

Now we turn to bounding P

(

H̃(i)
n (δ )∩ H̃(ii)

n \ H̃(iii)
n (δ ,λ )

)

. By a union bound, we have

1−P

(

H̃(3)(δ ,λ )
)

≤
ι̂
∑

i=1
(1−P(H!i (δ/2ι̂)))≤ δ/2. (74)
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Thus, it remains only to bound P

(

H̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(3)(δ ,λ )∩
{

m̌d̃ f < !ι̂
})

.

For each i ∈ {0,1, . . . , ι̂−1}, let Q̌i =
∣

∣

∣

{

m ∈ (!i,!i+1]∩ Ǔd̃ f : I$md̃ f = 1
}∣

∣

∣
. Now consider the set

I of all i ∈ {0,1, . . . , ι̂−1} with !i ≥ m̃n and (!i,!i+1]∩ Ǔd̃ f &= ∅. Note that n(iii)(δ ,λ )≥ 48, so that
!0 < m̃n. Fix any i∈ I. Since n(iii)(λ ,δ )≥ 24 ·τ(1/6;δ ), we have m̃n≥ τ(1/6;δ ), so that Lemma 49
implies that on H̃(i)

n (δ )∩ H̃(ii)
n ∩ H̃(3)(δ ,λ ), letting  Q= 2 ·46+d̃ f

(

d/γ2δ̃ 2
f

)

θ̃ f (d/λ ) ln(λ/δ ),

P

(

H̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(3)(δ ,λ )∩
{

Q̌i >  Q
}

∣

∣

∣
W2,V $

!i

)

≤ P

(

∣

∣

∣

{

m ∈ (!i,!i+1]∩N : Δ̂(d̃ f )
m
(

Xm,W2,V $
!i

)

≥ 2γ/3
}∣

∣

∣
>  Q

∣

∣

∣

∣

∣

W2,V $
!i

)

. (75)

For m > !i, the variables [2γ/3,∞)

(

Δ̂
(d̃ f )
m

(

Xm,W2,V $
!i

))

are conditionally (given W2,V $
!i

) indepen-
dent, each with respective conditional distribution Bernoulli with mean  p2γ/3

(

d̃ f ,!i,m
)

. Since
n(iii)(δ ,λ )≥ 24 ·τ(3/32;δ ), we have m̃n ≥ τ(3/32;δ ), so that Lemma 43 (with ζ = 2γ/3, α = 3/4,
and β = 3/32) implies that on H̃(i)

n (δ )∩ H̃(ii)
n ∩ H̃(3)(δ ,λ ), each of these m values has

 p2γ/3
(

d̃ f ,!i,m
)

≤ P
(

x : px
(

d̃ f ,!i
)

≥ γ/2
)

+ exp
{

−M̃(m)γ2/256
}

≤
2P d̃ f

(

S d̃ f
(

V $
!i

))

γP d̃ f−1
(

S d̃ f−1
(

V $
!i

)) + exp
{

−M̃(!i)γ2/256
}

(Markov’s ineq.)

≤
(

2/γδ̃ f
)

P d̃ f
(

S d̃ f
(

V $
!i

)

)

+ exp
{

−M̃(!i)γ2/256
}

(Lemma 35)

≤
(

2/γδ̃ f
)

P d̃ f
(

S d̃ f
(

B
(

f , φ̃(!i,δ ,λ )
))

)

+ exp
{

−M̃(!i)γ2/256
}

(Lemma 29)

≤
(

2/γδ̃ f
)

θ̃ f (d/λ )φ̃(!i,δ ,λ )+ exp
{

−M̃(!i)γ2/256
}

(defn of θ̃ f (d/λ )).

Denote the expression in this last line by pi, and let B(!i, pi) be a Binomial(!i, pi) random vari-
able. Noting that !i+1 − !i = !i, we have that on H̃(i)

n (δ ) ∩ H̃(ii)
n ∩ H̃(3)(δ ,λ ), (75) is at most

P
(

B(!i, pi)>  Q
)

. Next, note that

!i pi = (2/γδ̃ f )θ̃ f (d/λ )!iφ̃(!i,δ ,λ )+ !i · exp
{

−!3
i δ̃ f γ

2/512
}

.

Since u · exp
{

−u3}≤ (3e)−1/3 for any u, letting u= !iδ̃ f γ/8 we have

!i · exp
{

−!3
i δ̃ f γ

2/512
}

≤
(

8/γδ̃ f
)

u · exp
{

−u3}≤ 8/
(

γδ̃ f (3e)1/3
)

≤ 4/γδ̃ f .
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Therefore, since φ̃(!i,δ ,λ )≥ !−1
i , we have that !i pi is at most

6
γδ̃ f

θ̃ f (d/λ )!iφ̃(!i,δ ,λ )≤
6
γδ̃ f

θ̃ f (d/λ )max
{

2d ln(2e!ι̂)+2ln
(

4ι̂
δ

)

,!ι̂d/λ
}

≤ 6
γδ̃ f

θ̃ f (d/λ )max

{

2d ln

(

43+d̃ f eλ
γδ̃ f

)

+2ln

(

43+d̃ f 2λ
γδ̃ f δ

)

,
d43+d̃ f

γδ̃ f

}

≤ 6
γδ̃ f

θ̃ f (d/λ )max

{

4d ln

(

43+d̃ f λ

γδ̃ f δ

)

,
d43+d̃ f

γδ̃ f

}

≤ 6
γδ̃ f

θ̃ f (d/λ ) ·
d44+d̃ f

γδ̃ f
ln
(

λ
δ

)

≤ 46+d̃ f d
γ2δ̃ 2

f
θ̃ f (d/λ ) ln

(

λ
δ

)

=  Q/2.

Therefore, a Chernoff bound implies P
(

B(!i, pi)>  Q
)

≤ exp
{

−  Q/6
}

≤ δ/2ι̂ , so that on H̃(i)
n (δ )∩

H̃(ii)
n ∩ H̃(3)(δ ,λ ), (75) is at most δ/2ι̂ . The law of total probability implies there exists an event

H̃(4)
n (i,δ ,λ ) with P

(

H̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(3)(δ ,λ )\ H̃(4)
n (i,δ ,λ )

)

≤ δ/2ι̂ such that, on H̃(i)
n (δ )∩

H̃(ii)
n ∩ H̃(3)(δ ,λ )∩ H̃(4)

n (i,δ ,λ ), Q̌i ≤  Q.
Note that

ι̂  Q≤ log2

(

42+d̃ f λ/γδ̃ f
)

·47+d̃ f
(

d/γ2δ̃ 2
f

)

θ̃ f (d/λ ) ln(λ/δ )

≤
(

d̃ f 49+d̃ f /γ3δ̃ 3
f

)

dθ̃ f (d/λ ) ln2 (λ/δ )≤ 41−d̃ f n/12. (76)

Since
∑

m≤2m̃n I
$
md̃ f
≤ n/12, if d̃ f = 1 then (76) implies that on the event H̃(i)

n (δ )∩H̃(ii)
n ∩H̃(3)(δ ,λ )∩

⋂

i∈I H̃
(4)
n (i,δ ,λ ),

∑

m≤!ι̂ I
$
m1 ≤ n/12+

∑

i∈I Q̌i ≤ n/12+ ι̂  Q ≤ n/6 ≤ 5T $
1 /46, so that m̌1 ≥ !ι̂ .

Otherwise, if d̃ f > 1, then everym∈ Ǔd̃ f hasm> 2m̃n, so that
∑

i≤ι̂ Q̌i=
∑

i∈I Q̌i; thus, on H̃(i)
n (δ )∩

H̃(ii)
n ∩ H̃(3)(δ ,λ )∩

⋂

i∈I H̃
(4)
n (i,δ ,λ ),

∑

i∈I Q̌i ≤ ι̂  Q≤ 41−d̃ f n/12; Lemma 50 implies 41−d̃ f n/12≤
⌈

T $
d̃ f
/4
⌉

, so that again we have m̌d̃ f ≥ !ι̂ . Combined with a union bound, this implies

P

(

H̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(3)(δ ,λ )∩
{

m̌d̃ f < !ι̂
})

≤ P

(

H̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(3)(δ ,λ )\
⋂

i∈I
H̃(4)
n (i,δ ,λ )

)

≤
∑

i∈I
P

(

H̃(i)
n (δ )∩ H̃(ii)

n ∩ H̃(3)(δ ,λ )\ H̃(4)
n (i,δ ,λ )

)

≤ δ/2. (77)

Therefore, P
(

H̃(i)
n (δ )∩ H̃(ii)

n \ H̃(iii)
n (δ ,λ )

)

≤ δ , obtained by summing (77) and (74).

Proof [Theorem 16] If Λp(ε/4, f ,P) = ∞ then the result trivially holds. Otherwise, suppose
ε ∈ (0,10e−3), let δ = ε/10, λ = Λp(ε/4, f ,P), c̃2 = max

{

10c̃(i)2 ,10c̃(ii)2 ,10c̃(iii)2 ,10e(d+1)
}

,

and c̃1 = max
{

c̃(i)1 , c̃(ii)1 , c̃(iii)1 ,2 ·63(d+1)d̃ ln(e(d+1))
}

, and consider running Meta-Algorithm
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3 with passive algorithm Ap and budget n ≥ c̃1θ̃ f (d/λ ) ln2(c̃2λ/ε), while f is the target func-
tion and P is the data distribution. On the event H̃(i)

n (δ )∩ H̃(ii)
n ∩ H̃(iii)

n (δ ,λ ), Lemma 53 im-
plies

∣

∣

∣
Ld̃ f

∣

∣

∣
≥ λ , while Lemma 52 implies V (d̃ f ) = V $

m̂d̃ f
; recalling that Lemma 35 implies that

V $
m̂d̃ f
&= ∅ on this event, we must have erLd̃ f

( f ) = 0. Furthermore, if ĥ is the classifier returned

by Meta-Algorithm 3, then Lemma 34 implies that er(ĥ) is at most 2er(Ap(Ld̃ f )), on a high
probability event (call it Ê2 in this context). Letting Ê3(δ ) = Ê2 ∩ H̃(i)

n (δ )∩ H̃(ii)
n ∩ H̃(iii)

n (δ ,λ ),
a union bound implies the total failure probability 1− P(Ê3(δ )) from all of these events is at
most 4δ + e(d+1) · exp

{

−3n/34/
(

72d̃ f (d+1) ln(e(d+1))
)}

≤ 5δ = ε/2. Since, for ! ∈ N with
P

(∣

∣

∣
Ld̃ f

∣

∣

∣
= !
)

> 0, the sequence of Xm values appearing in Ld̃ f are conditionally distributed as P!

given |Ld̃ f |= !, and this is the same as the (unconditional) distribution of {X1,X2, . . . ,X!}, we have
that

E
[

er
(

ĥ
)]

≤ E

[

2er
(

Ap

(

Ld̃ f

))

Ê3(δ )

]

+ ε/2 = E

[

E

[

2er
(

Ap

(

Ld̃ f

))

Ê3(δ )

∣

∣

∣
|Ld̃ f |

]]

+ ε/2

≤ 2 sup
!≥Λp(ε/4, f ,P)

E [er(Ap (Z!))]+ ε/2≤ ε .

To specialize to the specific variant of Meta-Algorithm 3 stated in Section 5.2, take γ = 1/2.

Appendix E. Proofs Related to Section 6: Agnostic Learning

This appendix contains the proofs of our results on learning with noise. Specifically, Appendix E.1
provides the proof of the counterexample from Theorem 22, demonstrating that there is no activizer
for the Ǎp passive learning algorithm described in Section 6.2 in the agnostic case. Appendix E.2
presents the proof of Lemma 26 from Section 6.7, bounding the label complexity of Algorithm
5 under Condition 1. Finally, Appendix E.3 presents a proof of Theorem 28, demonstrating that any
active learning algorithm can be modified to trivialize the misspecified model case. The notation
used throughout Appendix E is taken from Section 6.

E.1 Proof of Theorem 22: Negative Result for Agnostic Activized Learning

It suffices to show that Ǎp achieves a label complexity Λp such that, for any label complexity
Λa achieved by any active learning algorithm Aa, there exists a distribution PXY on X ×{−1,+1}
such that PXY ∈Nontrivial(Λp;C) and yet Λa(ν+cε ,PXY ) &= o(Λp(ν+ ε ,PXY )) for every constant
c ∈ (0,∞). Specifically, we will show that there is a distribution PXY for which Λp(ν+ ε ,PXY ) =
Θ(1/ε) and Λa(ν+ ε ,PXY ) &= o(1/ε).

Let P({0}) = 1/2, and for any measurable A ⊆ (0,1], P(A) = λ (A)/2, where λ is Lebesgue
measure. Let D be the family of distributions PXY on X ×{−1,+1} characterized by the properties
that the marginal distribution on X is P , η(0;PXY ) ∈ (1/8,3/8), and ∀x ∈ (0,1],

η(x;PXY ) = η(0;PXY )+(x/2) · (1−η(0;PXY )) .

Thus, η(x;PXY ) is a linear function. For any PXY ∈ D, since the point z∗ = 1−2η(0;PXY )
1−η(0;PXY )

has
η(z∗;PXY ) = 1/2, we see that f = hz∗ is a Bayes optimal classifier. Furthermore, for any η0 ∈
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[1/8,3/8],
∣

∣

∣

∣

1−2η0
1−η0

− 1−2η(0;PXY )

1−η(0;PXY )

∣

∣

∣

∣

=
|η(0;PXY )−η0|

(1−η0)(1−η(0;PXY ))
,

and since (1−η0)(1−η(0;PXY )) ∈ (25/64,49/64)⊂ (1/3,1), the value z = 1−2η0
1−η0

satisfies

|η0−η(0;PXY )|≤ |z− z∗|≤ 3|η0−η(0;PXY )|. (78)

Also note that under PXY , since (1−2η(0;PXY )) = (1−η(0;PXY ))z∗, any z ∈ (0,1) has

er(hz)− er(hz∗) =
∫ z∗

z

(

1−2η(x;PXY )
)

dx=
∫ z∗

z

(

1−2η(0;PXY )− x(1−η(0;PXY ))
)

dx

= (1−η(0;PXY ))
∫ z∗

z

(z∗ − x)dx=
(1−η(0;PXY ))

2
(z∗ − z)2 ,

so that
5

16
(z− z∗)2 ≤ er(hz)− er(hz∗)≤

7
16

(z− z∗)2. (79)

Finally, note that any x,x′ ∈ (0,1] with |x− z∗|< |x′ − z∗| has

|1−2η(x;PXY )|= |x− z∗|(1−η(0;PXY ))< |x′ − z∗|(1−η(0;PXY )) = |1−2η(x′;PXY )|.

Thus, for any q ∈ (0,1/2], there exists z′q ∈ [0,1] such that z∗ ∈ [z′q, z
′
q+ 2q] ⊆ [0,1], and the clas-

sifier h′q(x) = hz∗(x) ·
(

1−2 (z′q,z
′
q+2q](x)

)

has er(h) ≥ er(h′q) for every classifier h with h(0) =

−1 and P(x : h(x) &= hz∗(x)) = q. Noting that er(h′q)− er(hz∗) =
(

limz↓z′q er(hz)− er(hz∗)
)

+
(

er(hz′q+2q)− er(hz∗)
)

, (79) implies that er(h′q)−er(hz∗)≥ 5
16

(

(

z′q− z∗
)2

+
(

z′q+2q− z∗
)2
)

, and
since max{z∗ − z′q, z

′
q+ 2q− z∗} ≥ q, this is at least 5

16q
2. In general, any h with h(0) = +1 has

er(h)− er(hz∗)≥ 1/2−η(0;PXY )> 1/8≥ (1/8)P(x : h(x) &= hz∗(x))2. Combining these facts, we
see that any classifier h has

er(h)− er(hz∗)≥ (1/8)P (x : h(x) &= hz∗(x))2 . (80)

Lemma 54 The passive learning algorithm Ǎp achieves a label complexity Λp such that, for every
PXY ∈ D, Λp(ν+ ε ,PXY ) =Θ(1/ε).

Proof Consider the values η̂0 and ẑ from Ǎp(Zn) for some n ∈ N. Combining (78) and (79),
we have er(hẑ)− er(hz∗) ≤ 7

16(ẑ− z∗)2 ≤ 63
16(η̂0−η(0;PXY ))2 ≤ 4(η̂0−η(0;PXY ))2. Let Nn =

|{i ∈ {1, . . . ,n} : Xi = 0}|, and  η0 = N−1
n |{i ∈ {1, . . . ,n} : Xi = 0,Yi = +1}| if Nn > 0, or  η0 = 0 if

Nn = 0. Note that η̂0 =
(

 η0∨ 1
8
)

∧ 3
8 , and since η(0;PXY )∈ (1/8,3/8), we have |η̂0−η(0;PXY )|≤

|  η0−η(0;PXY )|. Therefore, for any PXY ∈ D,

E [er(hẑ)− er(hz∗)]≤ 4E
[

(η̂0−η(0;PXY ))
2]≤ 4E

[

(  η0−η(0;PXY ))
2]

≤ 4E
[

E

[

(  η0−η(0;PXY ))
2
∣

∣

∣
Nn
]

[n/4,n](Nn)
]

+4P(Nn < n/4). (81)

By a Chernoff bound, P(Nn < n/4) ≤ exp{−n/16}, and since the conditional distribution of Nn  η0
given Nn is Binomial(Nn,η(0;PXY )), (81) is at most

4E
[

1
Nn∨n/4

η(0;PXY )(1−η(0;PXY ))

]

+4 · exp{−n/16}≤ 4 · 4
n
· 15

64
+4 · 16

n
<

68
n
.
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For any n ≥ 568/ε6, this is at most ε . Therefore, Ǎp achieves a label complexity Λp such that, for
any PXY ∈ D, Λp(ν+ ε ,PXY ) = 568/ε6=Θ(1/ε).

Next we establish a corresponding lower bound for any active learning algorithm. Note that this
requires more than a simple minimax lower bound, since we must have an asymptotic lower bound
for a fixed PXY , rather than selecting a different PXY for each ε value; this is akin to the strong
minimax lower bounds proven by Antos and Lugosi (1998) for passive learning in the realizable
case. For this, we proceed by reduction from the task of estimating a binomial mean; toward this
end, the following lemma will be useful.

Lemma 55 For any nonempty (a,b) ⊂ [0,1], and any sequence of estimators p̂n : {0,1}n→ [0,1],
there exists p ∈ (a,b) such that, if B1,B2, . . . are independent Bernoulli(p) random variables, also
independent from every p̂n, then E

[

( p̂n(B1, . . . ,Bn)− p)2
]

&= o(1/n).

Proof We first establish the claim when a = 0 and b = 1. For any p ∈ [0,1], let B1(p),B2(p), . . .
be i.i.d. Bernoulli(p) random variables, independent from any internal randomness of the p̂n esti-
mators. We proceed by reduction from hypothesis testing, for which there are known lower bounds.
Specifically, it is known (e.g., Wald, 1945; Bar-Yossef, 2003) that for any p,q∈ (0,1), δ ∈ (0,e−1),
any (possibly randomized) q̂ : {0,1}n→ {p,q}, and any n ∈ N,

n<
(1−8δ ) ln(1/8δ )

8KL(p‖q) =⇒ max
p∗∈{p,q}

P(q̂(B1(p∗), . . . ,Bn(p∗)) &= p∗)> δ ,

where KL(p‖q) = p ln(p/q)+(1− p) ln((1− p)/(1−q)). It is also known (e.g., Poland and Hutter,
2006) that for p,q ∈ [1/4,3/4], KL(p‖q)≤ (8/3)(p−q)2. Combining this with the above fact, we
have that for p,q ∈ [1/4,3/4],

max
p∗∈{p,q}

P(q̂(B1(p∗), . . . ,Bn(p∗)) &= p∗)≥ (1/16) · exp
{

−128(p−q)2n/3
}

. (82)

Given the estimator p̂n from the lemma statement, we construct a sequence of hypothesis tests as
follows. For i ∈ N, let αi = exp

{

−2i
}

and ni =
⌊

1/α2
i
⌋

. Define p∗0 = 1/4, and for i ∈ N, induc-
tively define q̂i(b1, . . . ,bni) = argminp∈{p∗i−1,p∗i−1+αi} |p̂ni(b1, . . . ,bni)− p| for b1, . . . ,bni ∈ {0,1}, and
p∗i = argmaxp∈{p∗i−1,p∗i−1+αi}P(q̂i(B1(p), . . . ,Bni(p)) &= p). Finally, define p∗= limi→∞ p∗i . Note that
∀i ∈ N, p∗i < 1/2, p∗i−1, p∗i−1 +αi ∈ [1/4,3/4], and 0 ≤ p∗ − p∗i ≤

∑∞
j=i+1α j < 2αi+1 = 2α2

i . We
generally have

E

[

(p̂ni(B1(p∗), . . . ,Bni(p
∗))− p∗)2

]

≥ 1
3
E

[

(p̂ni(B1(p∗), . . . ,Bni(p
∗))− p∗i )

2
]

− (p∗ − p∗i )
2

≥ 1
3
E

[

(p̂ni(B1(p∗), . . . ,Bni(p
∗))− p∗i )

2
]

−4α4
i .

Furthermore, note that for any m ∈ {0, . . . ,ni},

(p∗)m(1− p∗)ni−m

(p∗i )m(1− p∗i )ni−m
≥
(

1− p∗

1− p∗i

)ni
≥
(

1− p∗i −2α2
i

1− p∗i

)ni

≥
(

1−4α2
i
)ni ≥ exp

{

−8α2
i ni
}

≥ e−8,
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so that the probability mass function of (B1(p∗), . . . ,Bni(p∗)) is never smaller than e−8 times that of
(B1(p∗i ), . . . ,Bni(p∗i )), which implies (by the law of the unconscious statistician)

E

[

( p̂ni(B1(p∗), . . . ,Bni(p
∗))− p∗i )

2
]

≥ e−8
E

[

(p̂ni(B1(p∗i ), . . . ,Bni(p
∗
i ))− p∗i )

2
]

.

By a triangle inequality, we have

E

[

(p̂ni(B1(p∗i ), . . . ,Bni(p
∗
i ))− p∗i )

2
]

≥ α2
i

4
P(q̂i(B1(p∗i ), . . . ,Bni(p

∗
i )) &= p∗i ) .

By (82), this is at least

α2
i

4
(1/16) · exp

{

−128α2
i ni/3

}

≥ 2−6e−43α2
i .

Combining the above, we have

E

[

(p̂ni(B1(p∗), . . . ,Bni(p
∗))− p∗)2

]

≥ 3−12−6e−51α2
i −4α4

i ≥ 2−9e−51n−1
i −4n−2

i .

For i≥ 5, this is larger than 2−11e−51n−1
i . Since ni diverges as i→∞, we have that

E

[

( p̂ni(B1(p∗), . . . ,Bni(p
∗))− p∗)2

]

&= o(1/n),

which establishes the result for a= 0 and b= 1.
To extend this result to general nonempty ranges (a,b), we proceed by reduction from the

above problem. Specifically, suppose p′ ∈ (0,1), and consider the following independent random
variables (also independent from the Bi(p′) variables and p̂n estimators). For each i ∈ N, Ci1 ∼
Bernoulli(a), Ci2 ∼ Bernoulli((b−a)/(1−a)). Then for bi ∈ {0,1}, define B′i(bi) = max{Ci1,Ci2 ·
bi}. For any given p′ ∈ (0,1), the random variables B′i(Bi(p′)) are i.i.d. Bernoulli(p), with p =
a+(b−a)p′ ∈ (a,b) (which forms a bijection between (0,1) and (a,b)). Defining p̂′n(b1, . . . ,bn) =
( p̂n(B′1(b1), . . . ,B′n(bn))−a)/(b−a), we have

E

[

(p̂n(B1(p), . . . ,Bn(p))− p)2
]

= (b−a)2 ·E
[

(

p̂′n(B1(p′), . . . ,Bn(p′))− p′
)2
]

. (83)

We have already shown there exists a value of p′ ∈ (0,1) such that the right side of (83) is not
o(1/n). Therefore, the corresponding value of p= a+(b−a)p′ ∈ (a,b) has the left side of (83) not
o(1/n), which establishes the result.

We are now ready for the lower bound result for our setting.

Lemma 56 For any label complexity Λa achieved by any active learning algorithmAa, there exists
a PXY ∈ D such that Λa(ν+ ε ,PXY ) &= o(1/ε).

Proof The idea here is to reduce from the task of estimating the mean of iid Bernoulli trials,
corresponding to theYi values. Specifically, consider any active learning algorithm Aa; we use Aa to
construct an estimator for the mean of iid Bernoulli trials as follows. Suppose we have B1,B2, . . . ,Bn
i.i.d. Bernoulli(p), for some p ∈ (1/8,3/8) and n ∈ N. We take the sequence of X1,X2, . . . random
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variables i.i.d. with distribution P defined above (independent from the Bj variables). For each
i, we additionally have a random variable Ci with conditional distribution Bernoulli(Xi/2) given
Xi, where the Ci are conditionally independent given the Xi sequence, and independent from the Bi
sequence as well.

We run Aa with this sequence of Xi values. For the t th label request made by the algorithm,
say for the Yi value corresponding to some Xi, if it has previously requested this Yi already, then
we simply repeat the same answer for Yi again, and otherwise we return to the algorithm the value
2max{Bt ,Ci}− 1 for Yi. Note that in the latter case, the conditional distribution of max{Bt ,Ci} is
Bernoulli(p+(1− p)Xi/2), given the Xi that Aa requests the label of; thus, the Yi response has the
same conditional distribution given Xi as it would have for the PXY ∈ D with η(0;PXY ) = p (i.e.,
η(Xi;PXY ) = p+(1− p)Xi/2). Since this Yi value is conditionally (given Xi) independent from the
previously returned labels and Xj sequence, this is distributionally equivalent to running Aa under
the PXY ∈ D with η(0;PXY ) = p.

Let ĥn be the classifier returned by Aa(n) in the above context, and let ẑn denote the value
of z ∈ [2/5,6/7] with minimum P(x : hz(x) &= ĥn(x)). Then define p̂n = 1−ẑn

2−ẑn ∈ [1/8,3/8] and
z∗ = 1−2p

1−p ∈ (2/5,6/7). By a triangle inequality, we have |ẑn− z∗| = 2P(x : hẑn(x) &= hz∗(x)) ≤
4P(x : ĥn(x) &= hz∗(x)). Combining this with (80) and (78) implies that

er(ĥn)− er(hz∗)≥
1
8
P
(

x : ĥn(x) &= hz∗(x)
)2 ≥ 1

128
(ẑn− z∗)2 ≥ 1

128
( p̂n− p)2 . (84)

In particular, by Lemma 55, we can choose p∈ (1/8,3/8) so that E
[

( p̂n− p)2
]

&= o(1/n), which, by
(84), implies E

[

er(ĥn)
]

−ν &= o(1/n). This means there is an increasing infinite sequence of values
nk ∈N, and a constant c ∈ (0,∞) such that ∀k ∈N, E

[

er(ĥnk)
]

−ν ≥ c/nk. Supposing Aa achieves
label complexity Λa, and taking the values εk = c/(2nk), we have Λa(ν+ εk,PXY )> nk = c/(2εk).
Since εk > 0 and approaches 0 as k→∞, we have Λa(ν+ ε ,PXY ) &= o(1/ε).

Proof [of Theorem 22] The result follows from Lemmas 54 and 56.

E.2 Proof of Lemma 26: Label Complexity of Algorithm 5

The proof of Lemma 26 essentially runs parallel to that of Theorem 16, with variants of each lemma
from that proof adapted to the noise-robust Algorithm 5.

As before, in this section we will fix a particular joint distribution PXY on X × {−1,+1} with
marginal P on X , and then analyze the label complexity achieved by Algorithm 5 for that particular
distribution. For our purposes, we will suppose PXY satisfies Condition 1 for some finite parameters
µ and κ . We also fix any f ∈

⋂

ε>0
cl(C(ε)). Furthermore, we will continue using the notation of

Appendix B, such as Sk(H), etc., and in particular we continue to denote V $
m = {h ∈ C : ∀! ≤

m,h(X!) = f (X!)} (though note that in this case, we may sometimes have f (X!) &= Y!, so that V $
m &=

C[Zm]). As in the above proofs, we will prove a slightly more general result in which the “1/2”
threshold in Step 5 can be replaced by an arbitrary constant γ ∈ (0,1).

For the estimators P̂4m used in the algorithm, we take the same definitions as in Appendix B.1.
To be clear, we assume the sequences W1 and W2 mentioned there are independent from the entire
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(X1,Y1),(X2,Y2), . . . sequence of data points; this is consistent with the earlier discussion of how
theseW1 andW2 sequences can be constructed in a preprocessing step.

We will consider running Algorithm 5 with label budget n ∈ N and confidence parameter δ ∈
(0,e−3), and analyze properties of the internal sets Vi. We will denote by V̂i, L̂i, and îk, the final
values of Vi, Li, and ik, respectively, for each i and k in Algorithm 5. We also denote by m̂(k)

and V̂ (k) the final values of m and Vik+1, respectively, obtained while k has the specified value in
Algorithm 5; V̂ (k) may be smaller than V̂îk when m̂(k) is not a power of 2. Additionally, define
L$
i = {(Xm,Ym)}2i

m=2i−1+1. After establishing a few results concerning these, we will show that for
n satisfying the condition in Lemma 26, the conclusion of the lemma holds. First, we have a few
auxiliary definitions. For H⊆ C, and any i ∈ N, define

φi(H) = E sup
h1,h2∈H

∣

∣

(

er(h1)− erL$
i
(h1)

)

−
(

er(h2)− erL$
i
(h2)

)∣

∣

and Ũi(H,δ ) = min

{

K̃

(

φi(H)+

√

diam(H)
ln(32i2/δ )

2i−1 +
ln(32i2/δ )

2i−1

)

,1

}

,

where for our purposes we can take K̃ = 8272. It is known (see, e.g., Massart and Nédélec, 2006;
Giné and Koltchinskii, 2006) that for some universal constant c′ ∈ [2,∞),

φi+1(H)≤ c′max

{
√

diam(H)2−id log2
2

diam(H)
,2−idi

}

. (85)

We also generally have φi(H) ≤ 2 for every i ∈ N. The next lemma is taken from the work of
Koltchinskii (2006) on data-dependent Rademacher complexity bounds on the excess risk.

Lemma 57 For any δ ∈ (0,e−3), any H ⊆ C with f ∈ cl(H), and any i ∈ N, on an event Ki with
P(Ki)≥ 1−δ/4i2, ∀h ∈H,

erL$
i
(h)−min

h′∈H
erL$

i
(h′)≤ er(h)− er( f )+Ûi(H,δ )

er(h)− er( f )≤ erL$
i
(h)− erL$

i
( f )+Ûi(H,δ )

min
{

Ûi(H,δ ),1
}

≤ Ũi(H,δ ).

Lemma 57 essentially follows from a version of Talagrand’s inequality. The details of the proof
may be extracted from the proofs of Koltchinskii (2006), and related derivations have previously
been presented by Hanneke (2011) and Koltchinskii (2010). The only minor twist here is that f
need only be in cl(H), rather than in H itself, which easily follows from Koltchinskii’s original
results, since the Borel-Cantelli lemma implies that with probability one, every ε > 0 has some
g ∈H(ε) (very close to f ) with erL$

i
(g) = erL$

i
( f ).

For our purposes, the important implications of Lemma 57 are summarized by the following
lemma.

Lemma 58 For any δ ∈ (0,e−3) and any n ∈N, when running Algorithm 5 with label budget n and
confidence parameter δ , on an event Jn(δ ) with P(Jn(δ ))≥ 1−δ/2, ∀i∈ {0,1, . . . , îd+1}, if V $

2i ⊆ V̂i
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then ∀h ∈ V̂i,

erL$
i+1
(h)−min

h′∈V̂i
erL$

i+1
(h′)≤ er(h)− er( f )+Ûi+1(V̂i,δ )

er(h)− er( f )≤ erL$
i+1
(h)− erL$

i+1
( f )+Ûi+1(V̂i,δ )

min
{

Ûi+1(V̂i,δ ),1
}

≤ Ũi+1(V̂i,δ ).

Proof For each i, consider applying Lemma 57 under the conditional distribution given V̂i. The
set L$

i+1 is independent from V̂i, as are the Rademacher variables in the definition of R̂i+1(V̂i). Fur-
thermore, by Lemma 35, on H ′, f ∈ cl

(

V $
2i
)

, so that the conditions of Lemma 57 hold. The law of
total probability then implies the existence of an event Ji of probability P(Ji)≥ 1−δ/4(i+1)2, on
which the claimed inequalities hold for that value of i if i≤ îd+1. A union bound over values of i then
implies the existence of an event Jn(δ ) =

⋂

i Ji with probability P(Jn(δ )) ≥ 1−
∑

i δ/4(i+ 1)2 ≥
1−δ/2 on which the claimed inequalities hold for all i≤ îd+1.

Lemma 59 For some (C,PXY ,γ)-dependent constants c,c∗ ∈ [1,∞), for any δ ∈ (0,e−3) and inte-
ger n≥ c∗ ln(1/δ ), when running Algorithm 5 with label budget n and confidence parameter δ , on
event Jn(δ )∩H(i)

n ∩H(ii)
n , every i ∈ {0,1, . . . , îd̃ f } satisfies

V $
2i ⊆ V̂i ⊆ C

(

c
(

di+ ln(1/δ )
2i

)
κ

2κ−1
)

,

and furthermore V $

m̂(d̃ f )
⊆ V̂ (d̃ f ).

Proof Define c =
(

24K̃c′√µ
)

2κ
2κ−1 , c∗ = max

{

τ∗,8d
(

µc1/κ

r(1−γ)/6

)
1

2κ−1 log2

(

4µc1/κ

r(1−γ)/6

)

}

, and suppose

n ≥ c∗ ln(1/δ ). We now proceed by induction. As the right side equals C for i = 0, the claimed
inclusions are certainly true for V̂0 = C, which serves as our base case. Now suppose some i ∈
{0,1, . . . , îd̃ f } satisfies

V $
2i ⊆ V̂i ⊆ C

(

c
(

di+ ln(1/δ )
2i

)
κ

2κ−1
)

. (86)

In particular, Condition 1 implies

diam(V̂i)≤ diam

(

C

(

c
(

di+ ln(1/δ )
2i

)
κ

2κ−1
))

≤ µc
1
κ

(

di+ ln(1/δ )
2i

)
1

2κ−1
. (87)

If i < îd̃ f , then let k be the integer for which îk−1 ≤ i < îk, and otherwise let k = d̃ f . Note that we
certainly have î1 ≥ 3log2(n/2)4, since m= 3n/24 ≥ 23log2(n/2)4 is obtained while k = 1. Therefore,
if k > 1,

di+ ln(1/δ )
2i

≤ 4d log2(n)+4ln(1/δ )
n

,
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so that (87) implies

diam
(

V̂i
)

≤ µc
1
κ

(

4d log2(n)+4ln(1/δ )
n

)
1

2κ−1
.

By our choice of c∗, the right side is at most r(1−γ)/6. Therefore, since Lemma 35 implies f ∈ cl
(

V $
2i
)

on H(i)
n , we have V̂i ⊆ B

(

f ,r(1−γ)/6
)

when k > 1. Combined with (86), we have that V $
2i ⊆ V̂i, and

either k = 1, or V̂i ⊆ B( f ,r(1−γ)/6) and 4m > 43n/24 ≥ n. Now consider any m with 2i+ 1 ≤ m ≤
min

{

2i+1, m̂(d̃ f )
}

, and for the purpose of induction suppose V $
m−1 ⊆ Vi+1 upon reaching Step 5 for

that value of m in Algorithm 5. SinceVi+1 ⊆ V̂i and n≥ τ∗, Lemma 41 (with !=m−1) implies that
on H(i)

n ∩H(ii)
n ,

Δ̂(k)
4m (Xm,W2,Vi+1)< γ =⇒ Γ̂(k)4m (Xm,− f (Xm),W2,Vi+1)< Γ̂(k)4m (Xm, f (Xm),W2,Vi+1) ,

so that after Step 8 we have V $
m ⊆ Vi+1. Since (86) implies that the V $

m−1 ⊆ Vi+1 condition holds if
Algorithm 5 reaches Step 5 with m = 2i+ 1 (at which time Vi+1 = V̂i), we have by induction that
on H(i)

n ∩H(ii)
n , V $

m ⊆ Vi+1 upon reaching Step 9 with m = min
{

2i+1, m̂(d̃ f )
}

. This establishes the
final claim of the lemma, given that the first claim holds. For the remainder of this inductive proof,
suppose i< îd̃ f . Since Step 8 enforces that, upon reaching Step 9 with m= 2i+1, every h1,h2 ∈Vi+1

have erL̂i+1
(h1)− erL̂i+1

(h2) = erL$
i+1
(h1)− erL$

i+1
(h2), on Jn(δ )∩H(i)

n ∩H(ii)
n we have

V̂i+1 ⊆
{

h ∈ V̂i : erL$
i+1
(h)− min

h′∈V $
2i+1

erL$
i+1
(h′)≤ Ûi+1

(

V̂i,δ
)

}

⊆
{

h ∈ V̂i : erL$
i+1
(h)− erL$

i+1
( f )≤ Ûi+1

(

V̂i,δ
)

}

⊆ V̂i∩C
(

2Ûi+1
(

V̂i,δ
))

⊆ C
(

2Ũi+1
(

V̂i,δ
))

, (88)

where the second line follows from Lemma 35 and the last two inclusions follow from Lemma 58.
Focusing on (88), combining (87) with (85) (and the fact that φi+1(V̂i)≤ 2), we can bound the value
of Ũi+1

(

V̂i,δ
)

as follows.

√

diam(V̂i)
ln(32(i+1)2/δ )

2i
≤
√
µc

1
2κ

(

di+ ln(1/δ )
2i

)
1

4κ−2
(

ln(32(i+1)2/δ )
2i

)

1
2

≤
√
µc

1
2κ

(

2di+2ln(1/δ )
2i+1

)
1

4κ−2
(

8(i+1)+2ln(1/δ )
2i+1

)
1
2

≤ 4
√
µc

1
2κ

(

d(i+1)+ ln(1/δ )
2i+1

)
κ

2κ−1
,

φi+1(V̂i)≤ c′
√
µc

1
2κ

(

di+ ln(1/δ )
2i

)
1

4κ−2
(

d(i+2)
2i

)
1
2

≤ 4c′
√
µc

1
2κ

(

d(i+1)+ ln(1/δ )
2i+1

)
κ

2κ−1
,
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and thus

Ũi+1(V̂i,δ )≤min

{

8K̃c′
√
µc

1
2κ

(

d(i+1)+ ln(1/δ )
2i+1

)
κ

2κ−1
+ K̃

ln(32(i+1)2/δ )
2i

,1

}

≤ 12K̃c′
√
µc

1
2κ

(

d(i+1)+ ln(1/δ )
2i+1

)
κ

2κ−1
= (c/2)

(

d(i+1)+ ln(1/δ )
2i+1

)
κ

2κ−1
.

Combining this with (88) now implies

V̂i+1 ⊆ C

(

c
(

d(i+1)+ ln(1/δ )
2i+1

)
κ

2κ−1
)

.

To complete the inductive proof, it remains only to show V $
2i+1 ⊆ V̂i+1. Toward this end, recall

we have shown above that on H(i)
n ∩H(ii)

n , V $
2i+1 ⊆Vi+1 upon reaching Step 9 with m= 2i+1, and that

every h1,h2 ∈Vi+1 at this point have erL̂i+1
(h1)−erL̂i+1

(h2) = erL$
i+1
(h1)−erL$

i+1
(h2). Consider any

h ∈V $
2i+1 , and note that any other g ∈V $

2i+1 has erL$
i+1
(g) = erL$

i+1
(h). Thus, on H(i)

n ∩H(ii)
n ,

erL̂i+1
(h)− min

h′∈Vi+1
erL̂i+1

(h′) = erL$
i+1
(h)− min

h′∈Vi+1
erL$

i+1
(h′)

≤ erL$
i+1
(h)−min

h′∈V̂i
erL$

i+1
(h′) = inf

g∈V $
2i+1

erL$
i+1
(g)−min

h′∈V̂i
erL$

i+1
(h′). (89)

Lemma 58 and (86) imply that on Jn(δ )∩H(i)
n ∩H(ii)

n , the last expression in (89) is not larger
than infg∈V $

2i+1
er(g)− er( f ) + Ûi+1(V̂i,δ ), and Lemma 35 implies f ∈ cl

(

V $
2i+1

)

on H(i)
n , so that

infg∈V $
2i+1

er(g) = er( f ). We therefore have

erL̂i+1
(h)− min

h′∈Vi+1
erL̂i+1

(h′)≤ Ûi+1(V̂i,δ ),

so that h ∈ V̂i+1 as well. Since this holds for any h ∈ V $
2i+1 , we have V $

2i+1 ⊆ V̂i+1. The lemma now
follows by the principle of induction.

Lemma 60 There exist (C,PXY ,γ)-dependent constants c∗1,c∗2 ∈ [1,∞) such that, for any ε ,δ ∈
(0,e−3) and integer

n≥ c∗1 + c∗2θ̃ f
(

ε
1
κ

)

ε
2
κ−2 log2

2

(

1
εδ

)

,

when running Algorithm 5 with label budget n and confidence parameter δ , on an event J∗n (ε ,δ )
with P(J∗n (ε ,δ ))≥ 1−δ , we have V̂îd̃ f

⊆ C(ε).

Proof Define

c∗1 = max







2d̃ f+5

(

µc1/κ

r(1−γ)/6

)2κ−1

d log2
dµc1/κ

r(1−γ)/6
,

2
δ̃ 1/3
f

ln
(

8c(i)
)

,
120
δ̃ 1/3
f

ln
(

8c(ii)
)
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and

c∗2 = max







c∗,2d̃ f+5 ·
(

µc1/κ

r(1−γ)/6

)2κ−1

,2d̃ f+15 · µc
2d

γδ̃ f
log2

2(4dc)







.

Fix any ε ,δ ∈ (0,e−3) and integer n≥ c∗1 + c∗2θ̃ f
(

ε
1
κ

)

ε
2
κ−2 log2

2
( 1
εδ

)

.

For each i ∈ {0,1, . . .}, let r̃i = µc 1
κ

(

di+ln(1/δ )
2i

)
1

2κ−1 . Also define

ĩ=
⌈(

2− 1
κ

)

log2
c
ε
+ log2

[

8d log2
2dc
εδ

]⌉

.

and let ǐ= min
{

i ∈ N : sup j≥i r̃ j < r(1−γ)/6
}

. For any i ∈
{

ǐ, . . . , îd̃ f
}

, let

Qi+1 =
{

m ∈
{

2i+1, . . . ,2i+1} : Δ̂(d̃ f )
4m (Xm,W2,B( f , r̃i))≥ 2γ/3

}

.

Also define
Q̃=

96
γδ̃ f

θ̃ f
(

ε
1
κ

)

·2µc2 ·
(

8d log2
2dc
εδ

)

· ε
2
κ−2.

By Lemma 59 and Condition 1, on Jn(δ )∩H(i)
n ∩H(ii)

n , if i≤ îd̃ f ,

V̂i ⊆ C

(

c
(

di+ ln(1/δ )
2i

)
κ

2κ−1
)

⊆ B( f , r̃i) . (90)

Lemma 59 also implies that, on Jn(δ )∩H(i)
n ∩H(ii)

n , for i with îd̃ f−1 ≤ i ≤ îd̃ f , all of the sets Vi+1

obtained in Algorithm 5 while k= d̃ f andm∈
{

2i+1, . . . ,2i+1} satisfyV $
2i+1 ⊆Vi+1⊆ V̂i. Recall that

î1≥3log2(n/2)4, so that we have either d̃ f = 1 or else everym∈
{

2i+1, . . . ,2i+1} has 4m> n. Also
recall that Lemma 49 implies that when the above conditions are satisfied, and i ≥ ǐ, on H ′ ∩G(i)

n ,
Δ̂
(d̃ f )
4m (Xm,W2,Vi+1)≤ (3/2)Δ̂(d̃ f )

4m (Xm,W2,B( f , r̃i)), so that |Qi+1| upper bounds the number of m ∈
{

2i+1, . . . ,2i+1} for which Algorithm 5 requests the label Ym in Step 6 of the k = d̃ f round. Thus,

on Jn(δ )∩H(i)
n ∩H(ii)

n , 2ǐ+
∑

îd̃ f
i=max

{

ǐ,îd̃ f−1

} |Qi+1| upper bounds the total number of label requests

by Algorithm 5 while k= d̃ f ; therefore, by the constraint in Step 3, we know that either this quantity
is at least as big as

⌊

2−d̃ f n
⌋

, or else we have 2îd̃ f +1
> d̃ f ·2n. In particular, on this event, if we can

show that

2ǐ+
min
{

îd̃ f ,ĩ
}

∑

i=max
{

ǐ,îd̃ f−1

}

|Qi+1|<
⌊

2−d̃ f n
⌋

and 2ĩ+1 ≤ d̃ f ·2n, (91)

then it must be true that ĩ< îd̃ f . Next, we will focus on establishing this fact.

Consider any i ∈
{

max
{

ǐ, îd̃ f−1

}

, . . . ,min
{

îd̃ f , ĩ
}}

and any m ∈
{

2i+1, . . . ,2i+1}. If d̃ f = 1,
then

P

(

Δ̂
(d̃ f )
4m (Xm,W2,B( f , r̃i))≥ 2γ/3

∣

∣

∣
W2

)

= P d̃ f
(

S d̃ f (B( f , r̃i))
)

.
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Otherwise, if d̃ f > 1, then by Markov’s inequality and the definition of Δ̂(d̃ f )
4m (·, ·, ·) from (15),

P

(

Δ̂
(d̃ f )
4m (Xm,W2,B( f , r̃i))≥ 2γ/3

∣

∣

∣
W2

)

≤ 3
2γ

E

[

Δ̂
(d̃ f )
4m (Xm,W2,B( f , r̃i))

∣

∣

∣
W2

]

=
3
2γ

1

M(d̃ f )
4m (B( f , r̃i))

(4m)3
∑

s=1
P

(

S(d̃ f )s ∪{Xm} ∈ S d̃ f (B( f , r̃i))
∣

∣

∣
S(d̃ f )s

)

.

By Lemma 39, Lemma 59, and (90), on Jn(δ )∩H(i)
n ∩H(ii)

n , this is at most

3
δ̃ f γ

1
(4m)3

(4m)3
∑

s=1
P

(

S(d̃ f )s ∪{Xm} ∈ S d̃ f (B( f , r̃i))
∣

∣

∣
S(d̃ f )s

)

≤ 24
δ̃ f γ

1
4323i+3

4323i+3
∑

s=1
P

(

S(d̃ f )s ∪{Xm} ∈ S d̃ f (B( f , r̃i))
∣

∣

∣
S(d̃ f )s

)

.

Note that this value is invariant to the choice of m ∈
{

2i+1, . . . ,2i+1}. By Hoeffding’s inequality,
on an event J∗n (i) of probability P(J∗n (i))≥ 1−δ/(16i2), this is at most

24
δ̃ f γ

(
√

ln(4i/δ )
4323i+3 +P d̃ f

(

S d̃ f (B( f , r̃i))
)

)

. (92)

Since i≥ î1 > log2(n/4) and n≥ ln(1/δ ), we have
√

ln(4i/δ )
4323i+3 ≤ 2−i

√

ln(4log2(n/4)/δ )
128n

≤ 2−i
√

ln(n/δ )
128n

≤ 2−i.

Thus, (92) is at most
24
δ̃ f γ

(

2−i+P d̃ f
(

S d̃ f (B( f , r̃i))
))

.

In either case (d̃ f = 1 or d̃ f > 1), by definition of θ̃ f
(

ε
1
κ

)

, on Jn(δ )∩H(i)
n ∩H(ii)

n ∩ J∗n (i), ∀m ∈
{

2i+1, . . . ,2i+1} we have

P

(

Δ̂
(d̃ f )
4m (Xm,W2,B( f , r̃i))≥ 2γ/3

∣

∣

∣
W2

)

≤ 24
δ̃ f γ

(

2−i+ θ̃ f
(

ε
1
κ

)

·max
{

r̃i,ε
1
κ

})

. (93)

Furthermore, the [2γ/3,∞)

(

Δ̂
(d̃ f )
4m (Xm,W2,B( f , r̃i))

)

indicators are conditionally independent given

W2, so that we may bound P

(

|Qi+1|> Q̃
∣

∣

∣
W2

)

via a Chernoff bound. Toward this end, note that on

Jn(δ )∩H(i)
n ∩H(ii)

n ∩ J∗n (i), (93) implies

E
[

|Qi+1|
∣

∣W2
]

=
2i+1
∑

m=2i+1

P

(

Δ̂
(d̃ f )
4m (Xm,W2,B( f , r̃i))≥ 2γ/3

∣

∣

∣
W2

)

≤ 2i · 24
δ̃ f γ

(

2−i+ θ̃ f
(

ε
1
κ

)

·max
{

r̃i,ε
1
κ

})

≤ 24
δ̃ f γ

(

1+ θ̃ f
(

ε
1
κ

)

·max
{

2ir̃i,2ĩε
1
κ

})

. (94)
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Note that

2ir̃i = µc
1
κ (di+ ln(1/δ ))

1
2κ−1 ·2i(1− 1

2κ−1)

≤ µc
1
κ
(

dĩ+ ln(1/δ )
)

1
2κ−1 ·2ĩ(1− 1

2κ−1) ≤ µc
1
κ

(

8d log2
2dc
εδ

)
1

2κ−1
·2ĩ(1− 1

2κ−1).

Then since 2−ĩ
1

2κ−1 ≤
( ε
c
)

1
κ ·
(

8d log2
2dc
εδ

)− 1
2κ−1 , we have that the rightmost expression in (94) is at

most

24
γδ̃ f

(

1+ θ̃ f
(

ε
1
κ

)

·µ ·2ĩε
1
κ

)

≤ 24
γδ̃ f

(

1+ θ̃ f
(

ε
1
κ

)

·2µc2 ·
(

8d log2
2dc
εδ

)

· ε
2
κ−2
)

≤ Q̃/2.

Therefore, a Chernoff bound implies that on Jn(δ )∩H(i)
n ∩H(ii)

n ∩ J∗n (i), we have

P

(

|Qi+1|> Q̃
∣

∣

∣
W2

)

≤ exp
{

−Q̃/6
}

≤ exp
{

−8log2

(

2dc
εδ

)}

≤ exp
{

− log2

(

48log2 (2dc/εδ )
δ

)}

≤ δ/(8ĩ).

Combined with the law of total probability and a union bound over i values, this implies there exists
an event J∗n (ε ,δ )⊆ Jn(δ )∩H

(i)
n ∩H(ii)

n with

P

(

Jn(δ )∩H(i)
n ∩H(ii)

n \ J∗n (ε ,δ )
)

≤
ĩ
∑

i=ǐ

(

δ/(16i2)+δ/(8ĩ)
)

≤ δ/4,

on which every i ∈
{

max
{

ǐ, îd̃ f−1

}

, . . . ,min
{

îd̃ f , ĩ
}}

has |Qi+1|≤ Q̃.

We have chosen c∗1 and c∗2 large enough that 2ĩ+1 < d̃ f ·2n and 2ǐ < 2−d̃ f−2n. In particular, this
means that on J∗n (ε ,δ ),

2ǐ+
min
{

ĩ,îd̃ f
}

∑

i=max
{

ǐ,îd̃ f−1

}

|Qi+1|< 2−d̃ f−2n+ ĩQ̃.

Furthermore, since ĩ≤ 3log2
4dc
εδ , we have

ĩQ̃≤ 213µc2d
γδ̃ f

θ̃ f
(

ε
1
κ

)

· ε
2
κ−2 · log2

2
4dc
εδ

≤ 213µc2d log2
2(4dc)

γδ̃ f
θ̃ f
(

ε
1
κ

)

· ε
2
κ−2 · log2

2
1
εδ
≤ 2−d̃ f−2n.

Combining the above, we have that (91) is satisfied on J∗n (ε ,δ ), so that îd̃ f > ĩ. Combined with
Lemma 59, this implies that on J∗n (ε ,δ ),

V̂îd̃ f
⊆ V̂ĩ ⊆ C

(

c
(

dĩ+ ln(1/δ )
2ĩ

)
κ

2κ−1
)

,
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and by definition of ĩ we have

c
(

dĩ+ ln(1/δ )
2ĩ

)
κ

2κ−1

≤ c
(

8d log2
2dc
εδ

)
κ

2κ−1
·2−ĩ

κ
2κ−1

≤ c
(

8d log2
2dc
εδ

)
κ

2κ−1
· (ε/c) ·

(

8d log2
2dc
εδ

)− κ
2κ−1

= ε ,

so that V̂îd̃ f
⊆ C(ε).

Finally, to prove the stated bound on P(J∗n (ε ,δ )), by a union bound we have

1−P(J∗n (ε ,δ ))≤ (1−P(Jn(δ )))+
(

1−P

(

H(i)
n

))

+P

(

H(i)
n \H(ii)

n

)

+P

(

Jn(δ )∩H(i)
n ∩H(ii)

n \ J∗n (ε ,δ )
)

≤ 3δ/4+ c(i) · exp
{

−n3δ̃ f /8
}

+ c(ii) · exp
{

−nδ̃ 1/3
f /120

}

≤ δ .

We are now ready for the proof of Lemma 26.
Proof [Lemma 26] First, note that because we break ties in the argmax of Step 7 in favor of a ŷ value
with Vik+1[(Xm, ŷ)] &= ∅, if Vik+1 &= ∅ before Step 8, then this remains true after Step 8. Furthermore,
the Ûik+1 estimator is nonnegative, and thus the update in Step 10 never removes from Vik+1 the
minimizer of erL̂ik+1

(h) among h ∈ Vik+1. Therefore, by induction we have Vik &= ∅ at all times in
Algorithm 5. In particular, V̂îd+1+1 &= ∅ so that the return classifier ĥ exists. Also, by Lemma 60, for
n as in Lemma 60, on J∗n (ε ,δ ), running Algorithm 5 with label budget n and confidence parameter
δ results in V̂îd̃ f

⊆ C(ε). Combining these two facts implies that for such a value of n, on J∗n (ε ,δ ),

ĥ ∈ V̂îd+1+1 ⊆ V̂îd̃ f
⊆ C(ε), so that er

(

ĥ
)

≤ ν+ ε .

E.3 The Misspecified Model Case

Here we present a proof of Theorem 28, including a specification of the method A′a from the theorem
statement.
Proof [Theorem 28] Consider a weakly universally consistent passive learning algorithm Au (De-
vroye, Györfi, and Lugosi, 1996). Such a method must exist in our setting; for instance, Hoeffding’s
inequality and a union bound imply that it suffices to take Au(L) = argmin ±

Bi
erL( ±

Bi)+
√

ln(4i2|L|)
2|L| ,

where {B1,B2, . . .} is a countable algebra that generates FX .
Then Au achieves a label complexity Λu such that for any distribution PXY on X × {−1,+1},

∀ε ∈ (0,1), Λu(ε + ν∗(PXY ),PXY ) <∞. In particular, if ν∗(PXY ) < ν(C;PXY ), then we have
Λu((ν∗(PXY )+ν(C;PXY ))/2,PXY )<∞.

Fix any n ∈ N and describe the execution of A′a(n) as follows. In a preprocessing step, with-
hold the first mun = n− 3n/24 − 3n/34 ≥ n/6 examples {X1, . . . ,Xmun} and request their labels
{Y1, . . . ,Ymun}. Run Aa(3n/24) on the remainder of the sequence {Xmun+1,Xmun+2, . . .} (i.e., shift
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any index references in the algorithm by mun), and let ha denote the classifier it returns. Also re-
quest the labels Ymun+1, . . .Ymun+3n/34, and let

hu =Au
({

(Xmun+1,Ymun+1), . . . ,(Xmun+3n/34,Ymun+3n/34)
})

.

If ermun(ha)− ermun(hu)> n−1/3, return ĥ= hu; otherwise, return ĥ= ha. This method achieves the
stated result, for the following reasons.

First, let us examine the final step of this algorithm. By Hoeffding’s inequality, with probability
at least 1−2 · exp

{

−n1/3/12
}

,

|(ermun(ha)− ermun(hu))− (er(ha)− er(hu))|≤ n−1/3.

When this is the case, a triangle inequality implies er(ĥ)≤min{er(ha),er(hu)+2n−1/3}.
If PXY satisfies the benign noise case, then for any

n≥ 2Λa(ε/2+ν(C;PXY ),PXY ),

we have E[er(ha)]≤ ν(C;PXY )+ ε/2, so E[er(ĥ)]≤ ν(C;PXY )+ ε/2+2 · exp{−n1/3/12}, which
is at most ν(C;PXY )+ ε if n≥ 123 ln3(4/ε). So in this case, we can take λ (ε) =

⌈

123 ln3(4/ε)
⌉

.
On the other hand, if PXY is not in the benign noise case (i.e., the misspecified model case), then

for any n≥ 3Λu((ν∗(PXY )+ν(C;PXY ))/2,PXY ), E [er(hu)]≤ (ν∗(PXY )+ν(C;PXY ))/2, so that

E[er(ĥ)]≤ E[er(hu)]+2n−1/3 +2 · exp{−n1/3/12}
≤ (ν∗(PXY )+ν(C;PXY ))/2+2n−1/3 +2 · exp{−n1/3/12}.

Again, this is at most ν(C;PXY )+ε if n≥max
{

123 ln3 2
ε ,64(ν(C;PXY )−ν∗(PXY ))−3}. So in this

case, we can take

λ (ε) =
⌈

max
{

123 ln3 2
ε
,3Λu

(

ν∗(PXY )+ν(C;PXY )

2
,PXY

)

,
64

(ν(C;PXY )−ν∗(PXY ))3

}⌉

.

In either case, we have λ (ε) ∈ Polylog(1/ε).

References

N. Abe and H. Mamitsuka. Query learning strategies using boosting and bagging. In Proceedings
of the 15th International Conference on Machine Learning, 1998.

M. Alekhnovich, M. Braverman, V. Feldman, A. Klivans, and T. Pitassi. Learnability and automa-
tizability. In Proceedings of the 45th Foundations of Computer Science, 2004.

K. Alexander. Probability inequalities for empirical processes and a law of the iterated logarithm.
The Annals of Probability, 4:1041–1067, 1984.

M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge
University Press, 1999.

1582



ACTIVIZED LEARNING

A. Antos and G. Lugosi. Strong minimax lower bounds for learning. Machine Learning, 30:31–56,
1998.
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Abstract

In cognitive science and neuroscience, there have been two leading models describing how humans
perceive and classify facial expressions of emotion—the continuous and the categorical model. The
continuous model defines each facial expression of emotion as a feature vector in a face space. This
model explains, for example, how expressions of emotion can be seen at different intensities. In
contrast, the categorical model consists of C classifiers, each tuned to a specific emotion category.
This model explains, among other findings, why the images in a morphing sequence between a
happy and a surprise face are perceived as either happy or surprise but not something in between.
While the continuous model has a more difficult time justifying this latter finding, the categori-
cal model is not as good when it comes to explaining how expressions are recognized at different
intensities or modes. Most importantly, both models have problems explaining how one can recog-
nize combinations of emotion categories such as happily surprised versus angrily surprised versus
surprise. To resolve these issues, in the past several years, we have worked on a revised model that
justifies the results reported in the cognitive science and neuroscience literature. This model con-
sists of C distinct continuous spaces. Multiple (compound) emotion categories can be recognized
by linearly combining these C face spaces. The dimensions of these spaces are shown to be mostly
configural. According to this model, the major task for the classification of facial expressions of
emotion is precise, detailed detection of facial landmarks rather than recognition. We provide an
overview of the literature justifying the model, show how the resulting model can be employed to
build algorithms for the recognition of facial expression of emotion, and propose research directions
in machine learning and computer vision researchers to keep pushing the state of the art in these
areas. We also discuss how the model can aid in studies of human perception, social interactions
and disorders.

Keywords: vision, face perception, emotions, computational modeling, categorical perception,
face detection

1. Introduction

The face is an object of major importance in our daily lives. Faces tell us the identity of the person

we are looking at and provide information on gender, attractiveness and age, among many others.

Of primary interest is the production and recognition of facial expressions of emotion. Emotions

play a fundamental role in human cognition (Damasio, 1995) and are thus essential in studies of

cognitive science, neuroscience and social psychology. Facial expressions of emotion could also

c©2012 Aleix Martinez and Shichuan Du.
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play a pivotal role in human communication (Schmidt and Cohn, 2001). And, sign languages use

facial expressions to encode part of the grammar (Wilbur, 2011). It has also been speculated that

expressions of emotion were relevant in human evolution (Darwin, 1872). Models of the perception

of facial expressions of emotion are thus important for the advance of many scientific disciplines.

A first reason machine learning and computer vision researchers are interested in creating com-

putational models of the perception of facial expressions of emotion is to aid studies in the above

sciences (Martinez, 2003). Furthermore, computational models of facial expressions of emotion are

important for the development of artificial intelligence (Minsky, 1988) and are essential in human-

computer interaction (HCI) systems (Pentland, 2000).

Yet, as much as we understand how facial expressions of emotion are produced, very little

is known on how they are interpreted by the human visual system. Without proper models, the

scientific studies summarized above as well as the design of intelligent agents and efficient HCI

platforms will continue to elude us. A HCI system that can easily recognize expressions of no

interest to the human user is of limited interest. A system that fails to recognize emotions readily

identified by us is worse.

In the last several years, we have defined a computational model consistent with the cognitive

science and neuroscience literature. The present paper presents an overview of this research and a

perspective of future areas of interest. We also discuss how machine learning and computer vision

should proceed to successfully emulate this capacity in computers and how these models can aid in

studies of visual perception, social interactions and disorders such as schizophrenia and autism. In

particular, we provide the following discussion.

• A model of human perception of facial expressions of emotion: We provide an overview of

the cognitive science literature and define a computational model consistent with it.

• Dimensions of the computational space: Recent research has shown that human used mostly

shape for the perception and recognition of facial expressions of emotion. In particular, we

show that configural features are of much use in this process. A configural feature is defined

as a non-rotation invariant modeling of the distance between facial components; for example,

the vertical distance between eyebrows and mouth.

• We argue that to overcome the current problems of face recognition algorithms (including

identity and expressions), the area should make a shift toward a more shape-based modeling.

Under this model, the major difficulty for the design of computer vision and machine learning

systems is that of precise detection of the features, rather than classification. We provide a

perspective on how to address these problems.

The rest of the paper is organized as follows. Section 2 reviews relevant research on the percep-

tion of facial expressions of emotion by humans. Section 3 defines a computational model consistent

with the results reported in the previous section. Section 4 illustrates the importance of configural

and shape features for the recognition of emotions in face images. Section 5 argues that the real

problem in machine learning and computer vision is a detection one and emphasizes the importance

of research in this domain before we can move forward with improved algorithms of face recogni-

tion. In Section 6, we summarize some of the implications of the proposed model. We conclude in

Section 7.
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2. Facial Expressions: From Production to Perception

The human face is an engineering marvel. Underneath our skin, a large number of muscles allow

us to produce many configurations. The face muscles can be summarized as Action Unit (AU)

(Ekman and Friesen, 1976) defining positions characteristic of facial expressions of emotion. These

face muscles are connected to the motor neurons in the cerebral cortex through the corticobulbar

track. The top muscles are connected bilaterally, while the bottom ones are connected unilaterally

to the opposite hemisphere. With proper training, one can learn to move most of the face muscles

independently. Otherwise, facial expressions take on predetermined configurations.

There is debate on whether these predetermined configurations are innate or learned (nature vs.

nurture) and whether the expressions of some emotions is universal (Izard, 2009). By universal,

we mean that people from different cultures produce similar muscle movements when expressing

some emotions. Facial expressions typically classified as universal are joy, surprise, anger, sadness,

disgust and fear (Darwin, 1872; Ekman and Friesen, 1976). Universality of emotions is contro-

versial, since it assumes facial expressions of emotion are innate (rather than culturally bound). It

also favors a categorical perception of facial expressions of emotion. That is, there is a finite set of

predefined classes such as the six listed above. This is known as the categorical model.

In the categorical model, we have a set of C classifiers. Each classifier is specifically designed

to recognize a single emotion label, such as surprise. Several psychophysical experiments suggest

the perception of emotions by humans is categorical (Ekman and Rosenberg, 2005). Studies in

neuroscience further suggest that distinct regions (or pathways) in the brain are used to recognize

different expressions of emotion (Calder et al., 2001).

An alternative to the categorical model is the continuous model (Russell, 2003; Rolls, 1990).

Here, each emotion is represented as a feature vector in a multidimensional space given by some

characteristics common to all emotions. One such model is Russell’s 2-dimensional circumplex

model (Russell, 1980), where the first basis measures pleasure-displeasure and the second arousal.

This model can justify the perception of many expressions, whereas the categorical model needs

to define a class (i.e., classifier) for every possible expression. It also allows for intensity in the

perception of the emotion label. Whereas the categorical model would need to add an additional

computation to achieve this goal (Martinez, 2003), in the continuous model the intensity is intrin-

sically defined in its representation. Yet, morphs between expressions of emotions are generally

classified to the closest class rather than to an intermediate category (Beale and Keil, 1995). Per-

haps more interestingly, the continuous model better explains the caricature effect (Rhodes et al.,

1987; Calder et al., 1997), where the shape features of someone’s face are exaggerated (e..g, making

a long nose longer). This is because the farther the feature vector representing that expression is

from the mean (or center of the face space), the easier it is to recognize it (Valentine, 1991).

In neuroscience, the multidimensional (or continuous) view of emotions was best exploited

under the limbic hypothesis (Calder et al., 2001). Under this model, there should be a neural mech-

anism responsible for the recognition of all facial expressions of emotion, which was assumed to

take place in the limbic system. Recent results have however uncovered dissociated networks for the

recognition of most emotions. This is not necessarily proof of a categorical model, but it strongly

suggests that there are at least distinct groups of emotions, each following distinct interpretations.

Furthermore, humans are only very good at recognizing a number of facial expressions of emo-

tion. The most readily recognized emotions are happiness and surprise. It has been shown that joy

and surprise can be robustly identified extremely accurately at almost any resolution (Du and Mar-

1591



MARTINEZ AND DU

Figure 1: Happy faces at four different resolutions. From left o right: 240 by 160, 120 by 80, 60

by 40, and 30 by 20 pixels. All images have been resized to a common image size for

visualization.

tinez, 2011). Figure 1 shows a happy expression at four different resolutions. The reader should not

have any problem recognizing the emotion in display even at the lowest of resolutions. However,

humans are not as good at recognizing anger and sadness and are even worse at fear and disgust.

A major question of interest is the following. Why are some facial configurations more easily

recognizable than others? One possibility is that expressions such as joy and surprise involve larger

face transformations than the others. This has recently proven not to be the case (Du and Martinez,

2011). While surprise does have the largest deformation, this is followed by disgust and fear (which

are poorly recognized). Learning why some expressions are so readily classified by our visual

system should facilitate the definition of the form and dimensions of the computational model of

facial expressions of emotion.

The search is on to resolve these two problems. First, we need to determine the form of the

computational space (e.g., a continuous model defined by a multidimensional space). Second, we

ought to define the dimensions of this model (e.g., the dimensions of this multidimensional face

space are given by configural features). In the following sections we overview the research we have

conducted in the last several years leading to a solution to the above questions. We then discuss

on the implications of this model. In particular, we provide a perspective on how machine learning

and computer vision researcher should move forward if they are to define models based on the

perception of facial expressions of emotion by humans.

3. A Model of the Perception of Facial Expressions of Emotion

In cognitive science and neuroscience researchers have been mostly concerned with models of the

perception and classification of the six facial expressions of emotion listed above. Similarly, com-

puter vision and machine learning algorithms generally employ a face space to represent these six

emotions. Sample feature vectors or regions of this feature space are used to represent each of these

six emotion labels. This approach has a major drawback—it can only detect one emotion from a

single image. In machine learning, this is generally done by a winner-takes-all approach (Torre and

Cohn, 2011). This means that when a new category wants to be included, one generally needs to

provide labeled samples of it to the learning algorithm.

Yet, everyday experience demonstrates that we can perceive more than one emotional category

in a single image (Martinez, 2011), even if we have no prior experience with it. For example,
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Figure 2: Faces expressing different surprise. From left to right: happily surprised, sadly surprised,

angrily surprised, fearfully surprised, disgustedly surprised, and surprise.

Figure 2 shows images of faces expressing different surprises—happily surprised, angrily surprised,

fearfully surprised, disgustedly surprised and the typically studied surprise.

If we were to use a continuous model, we would need to have a very large number of labels

represented all over the space; including all possible types of surprises. This would require a very

large training set, since each possible combination of labels would have to be learned. But this

is the same problem a categorical model would face. In such a case, dozens if not hundreds of

sample images for each possible category would be needed. Alternatively, Susskind et al. (2007)

have shown that the appearance of a continuous model may be obtained from a set of classifiers

defining a small number of categories.

If we define an independent computational (face) space for a small number of emotion labels,

we will only need sample faces of those few facial expressions of emotion. This is indeed the

approach we have taken. Details of this model are given next.

Key to this model is to note that we can define new categories as linear combinations of a small

set of categories. Figure 3 illustrates this approach. In this figure, we show how we can obtain the

above listed different surprises as a linear combination of known categories. For instance, happily

surprised can be defined as expressing 40% joy plus 60% surprise, that is, expression = .4 happy

+ .6 surprise. A large number of such expressions exist that are a combination of the six emotion

categories listed above and, hence, the above list of six categories is a potential set of basic emotion

classes. Also, there is some evidence form cognitive science to suggest that these are important

categories for humans (Izard, 2009) Of course, one needs not base the model on this set of six

emotions. This is an area that will undoubtedly attract lots of interest. A question of particular

interest is to determine not only which basic categories to include in the model but how many. To

this end both, cognitive studies with humans and computational extensions of the proposed model

will be necessary, with the results of one area aiding the research of the other.

The approach described in the preceding paragraph would correspond to a categorical model.

However, we now go one step further and define each of these face spaces as continuous feature

spaces, Figure 3. This allows for the perception of each emotion at different intensities, for example,

less happy to exhilarant (Neth and Martinez, 2010). Less happy would correspond to a feature vector

(in the left most face space in the figure) closer to the mean (or origin of the feature space). Feature

vectors farther from the mean would be perceived as happier. The proposed model also explains the

caricature effect, because within each category the face space is continuous and exaggerating the
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Figure 3: This figure shows how to construct linear combinations of known categories. At the

top of the figure, we have the known or learned categories (emotions). The coefficients

si determine the contribution of each of these categories to the final perception of the

emotion.

expression will move the feature vector representing the expression further from the mean of that

category.

Furthermore, the proposed model can define new terms, for example, “hatred” which is defined

as having a small percentage of disgust and a larger percentage of anger; still linear. In essence,

the intensity observed in this continuous representation defines the weight of the contribution of

each basic category toward the final decision (classification). It also allows for the representation

and recognition of a very large number of emotion categories without the need to have a categorical

space for each or having to use many samples of each expression as in the continuous model.

The proposed model thus bridges the gap between the categorical and continuous ones and

resolves most of the debate facing each of the models individually. To complete the definition of the

model, we need to specify what defines each of the dimensions of the continuous spaces representing

each category. We turn to this problem in the next section.

4. Dimensions of the Model

In the early years of computer vision, researchers derived several feature- and shape-based algo-

rithms for the recognition of objects and faces (Kanade, 1973; Marr, 1976; Lowe, 1983). In these

methods, geometric, shape features and edges were extracted from an image and used to build a

model of the face. This model was then fitted to the image. Good fits determined the class and

position of the face.

Later, the so-called appearance-based approach, where faces are represented by their pixel-

intensity maps or the response of some filters (e.g., Gabors), was studied (Sirovich and Kirby,
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1987). In this alternative texture-based approach, a metric is defined to detect and recognize faces

in test images (Turk and Pentland, 1991). Advances in pattern recognition and machine learning

have made this the preferred approach in the last two decades (Brunelli and Poggio, 1993).

Inspired by this success, many algorithms developed in computer vision for the recognition of

expressions of emotion have also used the appearance-based model (Torre and Cohn, 2011). The

appearance-based approach has also gained momentum in the analysis of AUs from images of faces.

The main advantage of the appearance-based model is that one does not need to predefine a feature

or shape model as in the earlier approaches. Rather, the face model is inherently given by the

training images.

The appearance-based approach does provide good results from near-frontal images of a reason-

able quality, but it suffers from several major inherent problems. The main drawback is its sensitivity

to image manipulation. Image size (scale), illumination changes and pose are all examples of this.

Most of these problems are intrinsic to the definition of the approach since this cannot generalize

well to conditions not included in the training set. One solution would be to enlarge the number

of training images (Martinez, 2002). However, learning from very large data sets (in the order of

millions of samples) is, for the most part, unsolved (Lawrence, 2005). Progress has been made in

learning complex, non-linear decision boundaries, but most algorithms are unable to accommodate

large amounts of data—either in space (memory) or time (computation).

This begs the question as to how the human visual system solves the problem. One could argue

that, throughout evolution, the homo genus (and potentially before it) has been exposed to trillions

of faces. This has facilitated the development of simple, yet robust algorithms. In computer vision

and machine learning, we wish to define algorithms that take a shorter time to learn a similarly

useful image representation. One option is to decipher the algorithm used by our visual system.

Research in face recognition of identity suggests that the algorithm used by the human brain is

not appearance-based (Wilbraham et al., 2008). Rather, it seems that, over time, the algorithm has

identified a set of robust features that facilitate rapid categorization (Young et al., 1987; Hosie et al.,

1988; Barlett and Searcy, 1993).

This is also the case in the recognition of facial expressions of emotion (Neth and Martinez,

2010). Figure 4 shows four examples. These images all bear a neutral expression, that is, an

expression associated to no emotion category. Yet, human subjects perceive them as expressing

sadness, anger, surprise and disgust. The most striking part of this illusion is that these faces do

not and cannot express any emotion, since all relevant AUs are inactive. This effect is called over-

generalization (Zebrowitz et al., 2010), since human perception is generalizing the learned features

defining these face spaces over to images with a different label.

The images in Figure 4 do have something in common though—they all include a configural

transformation. What the human visual system has learned is that faces do not usually look like

those in the image. Rather the relationship (distances) between brows, nose, mouth and the contour

of the face is quite standard. They follow a Gaussian distribution with small variance (Neth and

Martinez, 2010). The images shown in this figure however bear uncanny distributions of the face

components. In the sad-looking example, the distance between the brows and mouth is larger than

normal (Neth and Martinez, 2009) and the face is thinner than usual (Neth and Martinez, 2010).

This places this sample face, most likely, outside the 99% confidence interval of all Caucasian faces

on these two measures. The angry-looking face has a much-shorter-than-average brow to mouth

distance and a wide face. While the surprise-looking face has a large distance between eyes and
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Figure 4: The four face images and schematics shown above all correspond to neutral expressions

(i.e., the sender does not intend to convey any emotion to the receiver). Yet, most human

subjects interpret these faces as conveying anger, sadness, surprise and disgust. Note

that although these faces look very different from one another, three of them are actually

morphs from the same (original) image.

brows and a thinner face. The disgust-looking face has a shorter distance between brows, eyes, nose

and mouth. These effects are also clear in the schematic faces shown in the figure.

Yet, configural cues alone are not sufficient to create an impressive, lasting effect. Other shape

changes are needed. For example, the curvature of the mouth in joy or the opening of the eyes—

showing additional sclera—in surprise. Note how the surprise-looking face in Figure 4 appears to

also express disinterest or sleepiness. Wide-open eyes would remove these perceptions. But this can

only be achieved with a shape change. Hence, our face spaces should include both, configural and

shape features. It is important to note that configural features can be obtained from an appropriate

representation of shape. Expressions such as fear and disgust seem to be mostly (if not solely) based

on shape features, making recognition less accurate and more susceptible to image manipulation.

We have previously shown (Neth and Martinez, 2010) that configural cues are amongst the most

discriminant features in a classical (Procrustes) shape representation, which can be made invariant

to 3D rotations of the face (Hamsici and Martinez, 2009a).

Thus, each of the six categories of emotion (happy, sad, surprise, angry, fear and disgust) is

represented in a shape space given by classical statistical shape analysis. First the face and the

shape of the major facial components are automatically detected. This includes delineating the

brows, eyes, nose, mouth and jaw line. The shape is then sample with d equally spaced landmark

points. The mean (center of mass) of all the points is computed. The 2d-dimensional shape feature

vector is given by the x and y coordinates of the d shape landmarks subtracted by the mean and

divided by its norm. This provides invariance to translation and scale. 3D rotation invariance can be

achieved with the inclusion of a kernel as defined in Hamsici and Martinez (2009a). The dimensions

of each emotion category can now be obtained with the use of an appropriate discriminant analysis

method. We use the algorithm defined by Hamsici and Martinez (2008) because it minimizes the

Bayes classification error.

1596



A MODEL OF THE PERCEPTION OF FACIAL EXPRESSIONS OF EMOTION

(a)

(b)

Figure 5: (a) Shown here are the two most discriminant dimensions of the face shape vectors. We

also plot the images of anger and sadness of Ekman and Friesen (1976). In dashed are

simple linear boundaries separating angry and sad faces according to the model. The

first dimension (distance between brows and mouth) successfully classifies 100% of the

sample images. This continuous model is further illustrated in (b). Note that, in the

proposed computational model, the face space defining sadness corresponds to the right-

bottom quadrant, while that of anger is given by the left-top quadrant. The dashed arrows

in the figure reflect the fact that as we move away from the “mean” (or norm) face,

recognition of that emotion become easier.
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As an example, the approach detailed in this section identifies the distance between the brows

and mouth and the width of the face as the two most important shape features of anger and sad-

ness. It is important to note that, if we reduce the computational spaces of anger and sadness to

2-dimensions, they are almost indistinguishable. Thus, it is possible that these two categories are

in fact connected by a more general one. This goes back to our question of the number of basic

categories used by the human visual system. The face space of anger and sadness is illustrated in

Figure 5, where we have also plotted the feature vectors of the face set of Ekman and Friesen (1976).

As in the above, we can use the shape space defined above to find the two most discriminant

dimensions separating each of the six categories listed earlier. The resulting face spaces are shown

in Figure 6. In each space, a simple linear classifier in these spaces can successfully classify each

emotion very accurately. To test this, we trained a linear support vector machine (Vapnik, 1998)

and use the leave-one-out test on the data set of images of Ekman and Friesen (1976). Happiness is

correctly classified 99% of the time. Surprise and disgust 95% of the time. Sadness 90% and anger

94%. While fear is successfully classified at 92%. Of course, adding additional dimensions in the

feature space and using nonlinear classifiers can readily achieve perfect classification (i.e., 100%).

The important point from these results is to note that simple configural features can linearly dis-

criminate most of the samples in each emotion. These features are very robust to image degradation

and are thus ideal for recognition in challenging environments (e.g., low resolution)—a message to

keep in mind for the development of machine learning and computer vision systems.

5. Precise Detection of Faces and Facial Features

As seen thus far, human perception is extremely tuned to small configural and shape changes. If we

are to develop computer vision and machine learning systems that can emulate this capacity, the real

problem to be addressed by the community is that of precise detection of faces and facial features

(Ding and Martinez, 2010). Classification is less important, since this is embedded in the detection

process; that is, we want to precisely detect changes that are important to recognize emotions.

Most computer vision algorithms defined to date provide, however, inaccurate detections. One

classical approach to detection is template matching. In this approach, we first define a template

(e.g., the face or the right eye or the left corner of the mouth or any other feature we wish to detect).

This template is learned from a set of sample images; for example, estimating the distribution or

manifold defining the appearance (pixel map) of the object (Yang et al., 2002). Detection of the ob-

ject is based on a window search. That is, the learned template is compared to all possible windows

in the image. If the template and the window are similar according to some metric, then the bound-

ing box defining this window marks the location and size (scale) of the face. The major drawback

of this approach is that it yields imprecise detections of the learned object, because a window of an

non-centered face is more similar to the learned template than a window with background (say, a

tree). An example of this result is shown in Figure 7.

A solution to the above problem is to learn to discriminate between non-centered windows of

the objects and well centered ones (Ding and Martinez, 2010). In this alternative, a non-linear

classifier (or some density estimator) is employed to discriminate the region of the feature space

defining well-centered windows of the objects and non-centered ones. We call these non-centered

windows the context of the object, in the sense that these windows provide the information typically

found around the object but do not correspond to the actual face. This features versus context idea

is illustrated in Figure 8. This approach can be used to precisely detect faces, eyes, mouth, or any
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Figure 6: Shown in the above are the six feature spaces defining each of the six basic emotion

categories. A simple linear Support Vector Machine (SVM) can achieve high classifica-

tion accuracies; where we have used a one-versus-all strategy to construct each classifier

and tested it using the leave-one-out strategy. Here, we only used two features (dimen-

sions) for clarity of presentation. Higher accuracies are obtained if we include additional

dimensions and training samples.
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Figure 7: Two example of imprecise detections of a face with a state of the art algorithm.

Figure 8: The idea behind the features versus context approach is to learn to discriminate between

the feature we wish to detect (e.g., a face, an eye, etc.) and poorly detected versions of

it. This approach eliminates the classical overlapping of multiple detections around the

object of interest at multiple scales. At the same time, it increases the accuracy of the

detection because we are moving away from poor detections and toward precise ones.

Figure 9: Precise detections of faces and facial features using the algorithm of (Ding and Martinez,

2010).
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Figure 10: Manifold learning is ideal for learning mappings between face (object) images and their

shape description vectors.

other facial feature where there is a textural discrimination between it and its surroundings. Figure 9

shows some sample results of accurate detection of faces and facial features with this approach.

The same features versus context idea can be applied to other detection and modeling algo-

rithms, such as Active Appearance Models (AAM) (Cootes et al., 2001). AAM use a linear model—

usually based on Principal Component Analysis (PCA)—to learn the relationship between the shape

of an object (e.g., a face) and its texture. One obvious limitation is that the learned model is linear.

A solution to this problem is to employ a kernel map. Kernel PCA is one option. Once we have

introduced a kernel we can move one step further and use it to address additional issues of interest.

A first capability we may like to add to a AAM is the possibility to work with three-dimensions.

The second could be to omit the least-squares iterative nature of the Procrustes alignment required

in most statistical shape analysis methods such as AAM. An approach that successfully addresses

these problem uses a set of kernels called Rotation Invariant Kernels (RIK) (Hamsici and Martinez,

2009a). RIK add yet another important advantage to shape analysis: they provide rotation invari-

ance. Thus, once the shape is been mapped to the RIK space, objects (e.g., faces) are invariant

to translation, scale and rotation. These kernels are thus very attractive for the design of AAM

algorithms (Hamsici and Martinez, 2009b).

By now we know that humans are very sensitive to small changes. But we do not yet know how

sensitive (or accurate). Of course, it is impossible to be pixel accurate when marking the boundaries

of each facial feature, because edges blur over several pixels. This can be readily observed by

zooming in the corner of an eye. To estimate the accuracy of human subjects, we performed the

following experiment. First, we designed a system that allows users to zoom in at any specified

location to facilitate delineation of each of the facial features manually. Second, we asked three

people (herein referred to as judges) to manually delineate each of the facial components of close to

4,000 images of faces. Third, we compared the markings of each of the three judges. The within-

judge variability was (on average) 3.8 pixels, corresponding to a percentage of error of 1.2% in

terms of the size of the face. This gives us an estimate of the accuracy of the manual detections. The

average error of the algorithm of Ding and Martinez (2010) is 7.3 pixels (or 2.3%), very accurate

but still far short of what humans can achieve. Thus, further research is needed to develop computer

vision algorithms that can extract even more accurate detection of faces and its components.
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Figure 11: Shape detection examples at different resolutions. Note how the shape estimation is

almost as good regardless of the resolution of the image.

Another problem is what happens when the resolution of the image diminishes. Humans are

quite robust to these image manipulations (Du and Martinez, 2011). One solution to this problem

is to use manifold learning. In particular, we wish to define a non-linear mapping f (.) between the

image of a face and its shape. This is illustrated in Figure 10. That is, given enough sample images

and their shape feature vectors described in the preceding section, we need to find the function

which relates the two. This can be done, for example, using kernel regression methods (Rivera

and Martinez, 2012). One of the advantages of this approach is that this function can be defined

to detect shape from very low resolution images or even under occlusions. Occlusions can be

“learned” by adding synthetic occlusions or missing data in the training samples but leaving the

shape feature vector undisturbed (Martinez, 2002). Example detections using this approach are

shown in Figure 11.

One can go one step further and recover the three-dimensional information when a video se-

quence is available (Gotardo and Martinez, 2011a). Recent advances in non-rigid structure from

motion allow us to recover very accurate reconstructions of both the shape and the motion even

under occlusion. A recent approach resolves the nonlinearity of the problem using kernel mappings

(Gotardo and Martinez, 2011b).

Combining the two approaches to detection defined in this section should yield even more accu-

rate results in low-resolution images and under occlusions or other image manipulations. We hope

that more research will be devoted to this important topic in face recognition.

The approaches defined in this section are a good start, but much research is needed to make

these systems comparable to human accuracies. We argue that research in machine learning should

address these problems rather than the typical classification one. A first goal is to define algorithms
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that can detect face landmarks very accurately even at low resolutions. Kernel methods and regres-

sion approaches are surely good solutions as illustrated above. But more targeted approaches are

needed to define truly successful computational models of the perception of facial expressions of

emotion.

6. Discussion

In the real world, occlusions and unavoidable imprecise detections of the fiducial points, among

others, are known to affect recognition (Torre and Cohn, 2011; Martinez, 2003). Additionally, some

expressions are, by definition, ambiguous. Most importantly though seems to be the fact that people

are not very good at recognizing facial expressions of emotion even under favorable condition (Du

and Martinez, 2011). Humans are very robust at detection joy and surprise from images of faces;

regardless of the image conditions or resolution. However, we are not as good at recognizing anger

and sadness and are worst at fear and disgust.

The above results suggest that there could be three groups of expressions of emotion. The first

group is intended for conveying emotions to observers. These expressions have evolved a facial

construct (i.e., facial muscle positions) that is distinctive and readily detected by an observer at

short or large distances. Example expressions in this group are happiness and surprise. A computer

vision system—especially a HCI—should make sure these expressions are accurately and robustly

recognized across image degradation. Therefore, we believe that work needs to be dedicated to

make systems very robust when recognizing these emotions.

The second group of expressions (e.g., anger and sadness) is reasonably recognized at close

proximity only. A computer vision system should recognize these expressions in good quality

images, but can be expected to fail as the image degrades due to resolution or other image manip-

ulations. An interesting open question is to determine why this is the case and what can be learned

about human cognition from such a result.

The third and final group of emotions constitutes those at which humans are not very good rec-

ognizers. This includes expressions such as fear and disgust. Early work (especially in evolutionary

psychology) had assumed that recognition of fear was primal because it served as a necessary sur-

vival mechanism (LeDoux, 2000). Recent studies have demonstrated much the contrary. Fear is

generally poorly recognized by healthy human subjects (Smith and Schyns, 2009; Du and Martinez,

2011). One hypothesis is that expressions in this group have evolved for other than communication

reasons. For example, it has been proposed that fear opens sensory channels (i.e., breathing in and

wide open eye), while disgust closes them (i.e., breathing out and closed eyes) (Susskind et al.,

2008). Under this model, the receiver has learned to identify those face configurations to some

extent, but without the involvement of the sender—modifying the expression to maximize transmis-

sion of information through a noisy environment—the recognition of these emotions has remained

poor. Note that people can be trained to detect such changes quite reliably (Ekman and Rosenberg,

2005), but this is not the case for the general population.

Another area that will require additional research is to exploit other types of facial expressions.

Facial expressions are regularly used by people in a variety of setting. More research is needed to

understand these. Moreover, it will be important to test the model in natural occurring environments.

Collection and handling of this data poses several challenges, but the research described in these

pages serves as a good starting point for such studies. In such cases, it may be necessary to go

beyond a linear combination of basic categories. However, without empirical proof for the need
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of something more complex than linear combinations of basic emotion categories, such extensions

are unlikely. The cognitive system has generally evolved the simplest possible algorithms for the

analysis or processing of data. Strong evidence of more complex models would need to be collected

to justify such extensions. One way to do this is by finding examples that cannot be parsed by the

current model, suggesting a more complex structure is needed.

It is important to note that these results will have many applications in studies of agnosias and

disorders. Of particular interest are studies of depression or anxiety disorders. Depression afflicts

a large number of people in the developed countries. Models that can help us better understand its

cognitive processes, behaviors and patterns could be of great importance for the design of coping

mechanisms. Improvements may also be possible if it were to better understand how facial expres-

sions of emotion affect these people. Other syndromes such as autism are also of great importance

these days. More children than ever are being diagnosed with the disorder (CDC, 2012; Prior,

2003). We know that autistic children do not perceive facial expressions of emotion as others do

(Jemel et al., 2006) (but see Castelli, 2005). A modified computational model of the perception of

facial expressions of emotion in autism could help design better teaching tools for this group and

may bring us closer to understanding the syndrome.

There are indeed many great possibilities for machine learning researchers to help move these

studies forward. Extending or modifying the modeled summarized in the present paper is one

way. Developing machine learning algorithms to detect face landmark more accurately is another.

Developing statistical tools that more accurately represent the underlying manifold or distribution

of the data is yet another great way to move the state of the art forward.

7. Conclusions

In the present work we have summarized the development of a model of the perception of facial

expressions of emotion by humans. A key idea in this model is to linearly combine a set of face

spaces defining some basic emotion categories. The model is consistent with our current under-

standing of human perception and can be successfully exploited to achieve great recognition results

for computer vision and HCI applications. We have shown how, to be consistent with the literature,

the dimensions of these computational spaces need to encode configural and shape features.

We conclude that to move the state of the art forward, face recognition research has to focus

on a topic that has received little attention in recent years—precise, detailed detection of faces and

facial features. Although we have focused our study on the recognition of facial expressions of

emotion, we believe that the results apply to most face recognition tasks. We have listed a variety of

ways in which the machine learning community can get involved in this research project and briefly

discussed applications in the study of human perception and the better understanding of disorders.
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Abstract

We introduce a new perspective on spectral dimensionality reduction which views these methods as Gaussian

Markov random fields (GRFs). Our unifying perspective is based on the maximum entropy principle which

is in turn inspired by maximum variance unfolding. The resulting model, which we call maximum entropy

unfolding (MEU) is a nonlinear generalization of principal component analysis. We relate the model to Lapla-

cian eigenmaps and isomap. We show that parameter fitting in the locally linear embedding (LLE) is approx-

imate maximum likelihood MEU. We introduce a variant of LLE that performs maximum likelihood exactly:

Acyclic LLE (ALLE). We show that MEU and ALLE are competitive with the leading spectral approaches

on a robot navigation visualization and a human motion capture data set. Finally the maximum likelihood

perspective allows us to introduce a new approach to dimensionality reduction based on L1 regularization of

the Gaussian random field via the graphical lasso.

1. Introduction

A representation of an object for processing by computer typically requires that object to be summarized by
a series of features, represented by numbers. As the representation becomes more complex, the number of
features required typically increases. Examples include: the characteristics of a customer in a database; the
pixel intensities in an image; a time series of angles associated with data captured from human motion for
animation; the energy at different frequencies (or across the cepstrum) as a time series for interpreting speech;
the frequencies of given words as they appear in a set of documents; the level of expression of thousands of
genes, across a time series, or for different diseases.

With the increasing complexity of the representation, the number of features that are stored also increases.
Data of this type is known as high dimensional data.

Consider the simple example of a handwritten six. The six in Figure 1 is represented on a grid of pixels
which is 64 rows by 57 columns, giving a datum with 3,648 dimensions. The space in which this digit sits
contains far more than the digit. Imagine a simple probabilistic model of the digit which assumes that each
pixel in the image is independent and is on with a given probability. We can sample from such a model
(Figure 1(b)).

Even if we were to sample every nanosecond from now until the end of the universe we would be highly
unlikely to see the original six. The space covered by this model is very large but fundamentally the data lies
on low dimensional embedded space. This is illustrated in Figure 1(c). Here a data set has been constructed
by rotating the digit 360 times in one degree intervals. The data is then projected onto its first two principal
components. The spherical structure of the rotation is clearly visible in the projected data. Despite the
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Figure 1: The storage capacity of high dimensional spaces. (a) A six from the USPS digit data set. (b) A
sample from a simple independent pixel model of the six. There are 23,648 possible images. Even
with an enormous number of samples from such a model we would never see the original six. (c)
A data set generated by rotating the original six from (a) 360 times. The data is projected onto its
first two principal components. These two principal components show us that the data lives on a
circle in this high dimensional space. There is a small amount of noise due to interpolation used in
the image rotation. Alongside the projected points we show some examples of the rotated sixes.

data being high dimensional, the underlying structure is low dimensional. The objective of dimensionality
reduction is to recover this underlying structure.

Given a data set with n data points and p features associated with each data point, dimensionality reduction
involves representing the data set using n points each with a reduced number, q, of features, with q < p.
Dimensionality reduction is a popular approach to dealing with high dimensional data: the hope is that while
many data sets seem high dimensional, it may be that their intrinsic dimensionality is low like the rotated six
above.

1.1 Spectral Dimensionality Reduction

Spectral approaches to dimensionality reduction involve taking a data set containing n points and forming a
matrix of size n×n from which eigenvectors are extracted to give a representation of the data in a low dimen-
sional space. Several spectral methods have become popular in the machine learning community including
isomap (Tenenbaum et al., 2000), locally linear embeddings (LLE, Roweis and Saul, 2000), Laplacian eigen-
maps (Belkin and Niyogi, 2003) and maximum variance unfolding (MVU, Weinberger et al., 2004). These
approaches (and kernel principal component analysis, kernel PCA, Schölkopf et al., 1998) are closely related.
For a kernel perspective on the relationships see Ham et al. (2004) and Bengio et al. (2004b,a). Our focus
in this work is unifying the methods from a classical multidimensional scaling (CMDS, Mardia et al., 1979)
perspective.

In classical multidimensional scaling an n× n symmetric distance matrix, whose elements contain the
distance between two data points, is converted to a similarity matrix and visualized through its principal
eigenvectors. Viewed from the perspective of CMDS the main difference between the spectral approaches
developed in the machine learning community is in the distance matrices they (perhaps implicitly) proscribe.

In this paper we introduce a probabilistic approach to constructing the distance matrix: maximum entropy
unfolding (MEU). We describe how isomap, LLE, Laplacian eigenmaps and MVU are related to MEU using
the unifying perspective of Gaussian random fields and CMDS.
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The parameters of the model are fitted through maximum likelihood in a Gaussian Markov random field
(GRF). The random field specifies dependencies between data points rather than the more typical approach
which specifies dependencies between data features. We show that the locally linear embedding algorithm is
an approximation to maximum entropy unfolding where pseudolikelihood is maximized as an approximation
to the model likelihood. Our probabilistic perspective inspires new dimensionality reduction algorithms. We
introduce an exact version of locally linear embedding based on an acyclic graph structure that maximizes
the true model likelihood (acyclic locally linear embedding, ALLE). We also consider approaches to learning
the structure of the GRF through graphical regression (Friedman et al., 2008). By L1 regularization of the
dependencies we explore whether learning the graph structure (rather than prespecifying by nearest neigh-
bour) improves performance. We call the algorithm Dimensionality reduction through Regularization of the
Inverse covariance in the Log Likelihood (DRILL).

Our methods are based on maximum likelihood. Normally maximum likelihood algorithms specify a
distribution which factorizes over the data points (each data point is independent given the model parameters).
In our models the likelihood factorizes over the features (each feature from the data set is independent given
the model parameters). This means that maximum likelihood in our model is consistent as the number of
features increases, p → ∞ rather than the number of data points. Alternatively, the parameters of our models
become better determined as the number of features increase, rather than the number of data. This can be
interpreted as a blessing of dimensionality rather than the more usual ‘curse of dimensionality.’ This has
significant implications for learning in high dimensional data (known as the large p small n regime) which
run counter to received wisdom.

In Section 2 we derive our model through using standard assumptions from the field of dimensionality
reduction and the maximum entropy principle (Jaynes, 1986). We then relate the model to other popular
spectral approaches for dimensionality reduction and show how the parameters of the model can be fitted
through maximum likelihood. This allows us to regularize the system with sparse priors and seek MAP
solutions that restrict the inter point dependencies. Finally, we demonstrate the model (with comparisons) on
two real world data sets. First though, we will review classical multidimensional scaling which provides the
general framework through which these approaches can be related (see also Ham et al., 2004; Bengio et al.,
2004b,a).

1.2 Classical Multidimensional Scaling

Given an n×n matrix of similarities, K, or dissimilarities, D, between a set of data points, multidimensional
scaling considers the problem of how to represent these data in a low dimensional space. One way of doing
this is to associate a q dimensional latent vector with each data point, yi,:, and define a set of dissimilarities

between each latent point, δi, j =
∥

∥xi,: −x j,:

∥

∥

2

2
(where ‖·‖2 represents the L2-norm) to give a matrix ∆. Here

we have specified the squared distance between each point as the dissimilarity.1

If the error for the latent representation is then taken to be the sum of absolute values between the dissim-
ilarity matrix entries,

E(X) =
n

∑
i=1

i−1

∑
j=1

∥

∥di, j −δi, j

∥

∥

1
, (1)

and we assume that the data dissimilarities also represent a squared Euclidean distance matrix (perhaps com-
puted in some high, maybe infinite, dimensional space) then the optimal linear dimensionality reduction is
given by the following procedure (Mardia et al., 1979, pg. 400),

1. Convert the matrix of dissimilarities to a matrix of similarities by taking B = − 1
2 HDH where H =

I−n−111' is a centering matrix.

2. Extract the first q principal eigenvectors of B.

1. It is more usual to specify the distance directly as the dissimilarity, however, for our purposes it will be more convenient to work
with squared distances.
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3. Setting X to these principal eigenvectors (appropriately scaled) gives a global minimum for the error
function (1).

The centering matrix H is so called because when applied to data in the form of a design matrix, Y ∈
Rn×p, that is, one where each row is a data point and each column is a data set feature, the centred data matrix
is recovered,

Ŷ =YH

=Y−n−1Y11',

=Y−µ1'

where µ= n−1Y1 is the empirical mean of the data set.

2. Maximum Entropy Unfolding

Classical multidimensional scaling provides the optimal linear transformation of the space in which the
squared distances are expressed. The key contribution of recently developed spectral approaches in machine
learning is to compute these distances in a space which is nonlinearly related to the data thereby ensuring a
nonlinear dimensionality reduction algorithm. From a machine learning perspective this is perhaps clearest
for kernel PCA (Schölkopf et al., 1998). In kernel PCA the squared distances are computed between points
in a Hilbert space and related to the original data through a kernel function,

di, j = k(yi,:,yi,:)−2k(yi,:,y j,:)+ k(y j,:,y j,:). (2)

For the linear kernel function, k(yi,:,y j,:) = y'i,:y j,: this reduces to the squared Euclidean distance, but for

nonlinear kernel functions such as k(yi,:,y j,:) = exp(−γ
∥

∥yi,: −y j,:

∥

∥

2

2
) the distances are nonlinearly related to

the data space. They are recognized as squared distances which are computed in a “feature space” (see, e.g.,
Ham et al., 2004; Bengio et al., 2004b,a). If we equate the kernel matrix, K, to the similarity matrix in CMDS
then this equation is also known as the standard transformation between a similarity and distance (Mardia
et al., 1979).

Kernel PCA (KPCA) recovers an xi,: for each data point and a mapping from the data space to the X

space. Under the CMDS procedure we outlined above the eigenvalue problem is performed on the centered
kernel matrix,

B = HKH,

where K = [k(yi,:,y j,:)]i, j. This matches the procedure for the KPCA algorithm (Schölkopf et al., 1998).2

However, for the commonly used exponentiated quadratic kernel,

k(yi,:,y j,:) = exp(−γ
∥

∥yi,: −y j,:

∥

∥

2

2
),

KPCA actually expands the feature space rather than reducing the dimension (see Weinberger et al., 2004,
for some examples of this). Unless data points are repeated the exponentiated quadratic kernel always leads
to a full rank matrix, K, and correspondingly a rank n− 1 centred kernel matrix, B. To exactly reconstruct
the squared distances computed in feature space all but one of the eigenvectors of B need to be retained for
our latent representation, X. If the dimensionality of the data, p, is smaller than the number of data points, n,
then we have a latent representation for our data which has higher dimensionality than the original data.

The observation that KPCA does not reduce the data dimensionality motivated the maximum variance
unfolding algorithm (MVU, Weinberger et al., 2004). The idea in MVU is to learn a kernel matrix that will
allow for dimensionality reduction. This is achieved by only considering local relationships in the data. A set

2. For stationary kernels, kernel PCA also has an interpretation as a particular form of metric multidimensional scaling, see Williams
(2001) for details.
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of neighbors is defined (e.g., by k-nearest neighbors) and only distances between neighboring data points are
respected. These distances are specified as constraints, and the other elements of the kernel matrix are filled
in by maximizing its trace, tr(K), that is, the total variance of the data in feature space, while respecting the
distance constraints and keeping the resulting matrix centered. Maximizing tr(K) maximizes the interpoint
squared distances for all points that are unconnected in the neighborhood graph, thereby unravelling the
manifold.

In this paper we consider an alternative maximum entropy formalism of this problem. Since entropy
is related to variance, we might expect a similar result in the quality of the resulting algorithm, but since
maximum entropy also provides a probability distribution we should also obtain a probabilistic model with
all the associated advantages (dealing with missing data, extensions to mixture models, fitting parameters
by Bayesian methods, combining with other probabilistic models). Importantly, our interpretation will also
enable us to relate our algorithm to other well known spectral techniques as they each turn out to approximate
maximum entropy unfolding in some way.

2.1 Constraints from D Lead to a Density on Y

The maximum entropy formalism (see, e.g., Jaynes, 1986) allows us to derive a probability density given only
a set of constraints on expectations under that density. These constraints may be derived from observation.
In our case the observations will be squared distances between data points, but we will derive a density over
Y directly (not over the squared distances). We will do this by looking to constrain the expected squared
inter-point distances, di, j, of any two samples, yi,: and y j,:, from the density. This means that while our
observations may be only of the squared distances, di, j, the corresponding density will be over the data space
that gives rise to those distances, p(Y). Of course, once we have found the form of probability density we are
free to directly model in the space Y or make use only of the squared distance constraints. Direct modeling
in Y turns out to be equivalent to maximum likelihood. However, since we do not construct a density over
the squared distance matrix, modeling based on that information alone should be thought of as maximum
entropy under distance constraints rather than maximum likelihood.

In the maximum entropy formalism, we specify the density by a free form maximization of the entropy
subject to the imposed expectation constraints. The constraints we use will correspond to the constraints
applied to maximum variance unfolding: the expectations of the squared distances between two neighboring
data points sampled from the model.

2.2 Maximum Entropy in Continuous Systems

The entropy of a continuous density is normally defined as the limit of a discrete system. The continuous
distribution is discretized and we consider the limit as the discrete bin widths approach zero. However, as that
limit is taken the term dependent on the bin width approaches ∞. Normally this is dealt with by ignoring that
term and referring to the remaining term as differential entropy. However, the maximum entropy solution for
this differential entropy turns out to be undefined. Jaynes (1986) proposes an alternative invariant measure

to the entropy. For maximum entropy in continuous systems we maximize the negative Kullback Leibler
divergence (KL divergence, Kullback and Leibler, 1951) between a base density, m(Y), and the density of
interest, p(Y),

H =−
∫

p(Y) log
p(Y)

m(Y)
dY.

Maximizing this measure is equivalent to minimizing the KL divergence between p(Y) and the base density,
m(Y). Any choice of base density can be made, but the solution will be pulled towards the base density
(through the minimization of the KL divergence). We choose a base density to be a very broad, spherical,
Gaussian density with covariance γ−1I. This adds a new parameter, γ, to the system, but it will turn out that
this parameter has little affect on our analysis. Typically it can be taken to zero or assumed small. The density
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that minimizes the KL divergence under the constraints on the expectations is then

p(Y) ∝ exp

(

−
1

2
tr
(

γYY'
)

)

exp



−
1

2 ∑
i

∑
j∈N (i)

λi, jdi, j



 ,

where N (i) represents the set of neighbors of data point i, and Y = [y1,:, . . . ,yn,:]' ∈ ℜn×p is a design matrix

containing our data. Note that we have introduced a factor of −1/2 in front of our Lagrange multipliers,3

{λi, j}, for later notational convenience. We now define the matrix Λ to contain λi, j if i is a neighbor of j and
zero otherwise. This allows us to write the distribution4 as

p(Y) ∝ exp

(

−
1

2
tr
(

γYY'
)

−
1

4
tr(ΛD)

)

.

We now introduce a matrix L, which has the form of a graph Laplacian. It is symmetric and constrained to
have a null space in the constant vector, L1 = 0. Its off diagonal elements are given by −Λ and its diagonal
elements are given by

!i,i = ∑
j∈N (i)

λi, j

to enforce the null space constraint. The null space constraint enables us to write

p(Y) =
|L+ γI|

1
2

τ
np
2

exp

(

−
1

2
tr
(

(L+ γI)YY'
)

)

, (3)

where for convenience we have defined τ = 2π. We arrive here because the distance matrix is zero along the
diagonal. This allows us to set the diagonal elements of L as we please without changing the value of tr(LD).
Our choice to set them as the sum of the off diagonals gives the matrix a null space in the constant vector
enabling us to use the fact that

D = 1diag
(

YY'
)'

−2YY'+diag
(

YY'
)

1'

(where the operator diag(A) forms a vector from the diagonal of A) to write

−tr(ΛD) = tr(LD) = tr

(

L1diag
(

YY'
)'

−2LYY'+diag
(

YY'
)

1'L

)

=−2tr
(

LYY'
)

,

which in turn allows us to recover (3). This probability distribution is a Gaussian random field. It can also be
written as

p(Y) =
p

∏
j=1

|L+ γI|
1
2

τ
n
2

exp

(

−
1

2
y':, j(L+ γI)y:, j

)

,

which emphasizes the independence of the density across data features.

2.3 Gaussian Markov Random Fields

Multivariate Gaussian densities are specified by their mean, µ, and a covariance matrix, C. A standard
modeling assumption is that data is drawn independently from identical Gaussian densities. For this case the
likelihood of the data, p(Y), will be factorized across the individual data points,

p(Y) =
n

∏
i=1

p(yi,:) =
n

∏
i=1

N (yi,:|µ,C)

3. We use λ for both Lagrange multipliers and eigenvalues, we hope that the meaning is clear from the context of use.
4. In our matrix notation the Lagrange multipliers and distances are appearing twice inside the trace, in matrices that are constrained

symmetric, Λ and D. The factor of 1
4 replaces the factor of 1

2 in the previous equation to account for this “double counting.”
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1

4 5

2 3

Figure 2: Graph representing conditional relationships between p = 5 features from a Gaussian Markov ran-
dom field. Here the 5th feature is independent of the others. Feature 1 is conditionally dependent
on 2, feature 2 is conditional dependent on 1, 3 and 4. Feature 3 is conditionally dependent on 2
and 4, and feature 4 is conditionally dependent on 2 and 3.

and the mean and covariance of the Gaussian are estimated by maximizing the log likelihood of the data. The

covariance matrix is symmetric and positive definite. It contains
p(p+1)

2 parameters. However, if the number
of data points, n, is small relative to the number of features p, then the parameters may not be well determined.
For this reason we might seek a representation of the covariance matrix which has fewer parameters. One
option is a low rank representation,

C = WW'+D,

where D is a diagonal matrix and W ∈ ℜp×q. This is the representation underlying factor analysis, and if
D = σ2I, probabilistic principal component analysis (PPCA, Tipping and Bishop, 1999). For PPCA there are
pq+1 parameters in the covariance representation.

An alternative approach, and one that is particularly popular in spatial systems, is to assume a sparse
inverse covariance matrix, known as the precision matrix, or information matrix. In this representation we
consider each feature to be a vertex in a graph. If two vertices are unconnected they are conditionally inde-
pendent in the graph. In Figure 2 we show a simple example graph where the precision matrix is

K−1 = J =













j1,1 j1,2 0 0 0
j2,1 j2,2 j2,3 j2,4 0
0 j3,2 j3,3 j3,4 0
0 j4,2 j4,3 j4,4 0
0 0 0 0 j5,5













.

Zeros correspond to locations where there are no edges between vertices in the graph.

If each feature is constrained to only have K neighbors in the graph, then the inverse covariance (and cor-
respondingly the covariance) is only parameterized by K p+ p parameters. So the GRF provides an alternative
approach to reducing the number of parameters in the covariance matrix.

2.4 Independence Over Data Features

The Gaussian Markov random field (GRF) for maximum entropy unfolding is unusual in that the indepen-
dence is being expressed over data features (in the p-dimensional direction) instead of over data points (in
the n-dimensional direction). This means that our model assumes that data features are independently and
identically distributed (i.i.d.) given the model parameters. The standard assumption for Gaussian models is
that data points we are expressing conditional probability densities between data points are i.i.d. given the
parameters. This specification cannot be thought of as “the wrong way around” as it is merely a consequence
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of the constraints we chose to impose on the maximum entropy solution. If those constraints are credible,
then this model is also credible. This is not the first model proposed for which the independence assumptions
are reversed. Such models have been proposed formerly in the context of semi-supervised learning (Zhu
et al., 2003), probabilistic nonlinear dimensionality reduction (Lawrence, 2004, 2005) and in models that aim
to discover structural form from data (Kemp and Tenenbaum, 2008).

2.5 Maximum Likelihood and Blessing of Dimensionality

Once the form of a maximum entropy density is determined, finding the Lagrange multipliers in the model
is equivalent to maximizing the likelihood of the model, where the Lagrange multipliers are now considered
to be parameters. The theory underpinning maximum likelihood is broad and well understood, but much
of it relies on assuming independence across data points rather than data features. For example, maximum
likelihood with independence across data points can be shown to be consistent by viewing the objective
as a sample based approximation to the Kullback-Leibler (KL) divergence between the true data generating
density, p̃(y), and our approximation p(y|θ) which in turn depends on parameters, θ. Taking the expectations
under the generating density this KL divergence is written as

KL(p̃(y)‖ p(y|θ)) =
∫

p̃(y) log p̃(y)dy−
∫

p̃(y) log p(y|θ)dy.

Given n sampled data points from p̃(y), {yi,:} we can write down a sample based approximation to the KL
divergence in the form

KL(p̃(y)‖ p(y))≈−
1

n

n

∑
i=1

log p(yi,:|θ)+ const.,

where the constant term derives from the entropy of the generating density, which whilst unknown, does not
depend on our model parameters. Since the sample based approximation is known to become exact in the
large sample limit, and the KL divergence has a global minimum of zero only when the generating density
and our approximation are identical, we know that, if the generating density falls within our chosen class of
densities, maximum likelihood will reveal it in the large data limit. The global maximum of the likelihood
will correspond to a global minimum of the KL divergence. Further, we can show that as we approach this
limit, if the total number of parameters is fixed, our parameter values, θ, will become better determined (see,
e.g., Wasserman, 2003, pg. 126). Since the number of parameters is often related to data dimensionality,
p, this implies that for a given data dimensionality, p, we require a large number of data points, n, to have
confidence we are approaching the large sample limit and our model’s parameters will be well determined.
We refer to this model set up as the sampled-points formalism.

The scenario described above does not apply for the situation where we have independence across data
features. In this situation we construct an alternative consistency argument, but it is based around a density
which describes correlation between data points instead of data features. This model is independent across
data features. Models of this type can occur quite naturally. Consider the following illustrative example from
cognitive science (Kemp and Tenenbaum, 2008). We wish to understand the relationship between different
animals as more information about those animals’ features is uncovered. There are 33 species in the group,
and information is gained by unveiling features of the animals. A model which assumes independence over
animals would struggle to incorporate additional feature information (such as whether or not the animal has
feet, or whether or not it lives in the ocean). A model which assumes independence across features handles
this situation naturally. However, to show the consistency of the model we must now think of our model as
a generative model for data features, p̃(y′), rather than data points. Our approximation to the KL divergence
still applies,

KL
(

p̃(y′)‖ p(y′)
)

≈−
1

p

p

∑
j=1

log p(y:,i|θ)+ const.,

but now the sample based approximation is based on independent samples of features (in the animal example,
whether or not it has a beak, or whether the animal can fly), instead of samples of data points. This model
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will typically have a parameter vector that increases in size with the data set size, n (in that sense it is non-
parametric), rather than the data dimensionality, p. The model is consistent as the number of features becomes
large, rather than data points. For our Gaussian random field, the number of parameters increases linearly
with the number of data points, but does not increase with the number of data (each datum requires O(K)
parameters to connect with K neighbors). However, as we increase features there is no corresponding increase
in parameters. In other words as the number of features increases there is a clear blessing of dimensionality.
We refer to this model set up as the sampled-features formalism.

There is perhaps a deeper lesson here in terms of how we should interpret such consistency results.
In the sampled-points formalism, as we increase the number of data points, the parameters become better
determined. In the sampled-features formalism, as we increase the number of features, the parameters become
better determined. However, for consistency results to hold, the class of models we consider must include
the actual model that generated the data. If we believe that “Essentially, all models are wrong, but some are
useful” (Box and Draper, 1987, pg. 424) we may feel that encapsulating the right model within our class is
a practical impossibility. Given that, we might pragmatically bias our choice somewhat to ensure utility of
the resulting model. From this perspective, in the large p small n domain, the sampled-features formalism is
attractive. A practical issue can arise though. If we wish to compute the likelihood of an out of sample data-
point, we must first estimate the parameters associated with that new data point. This can be problematic. Of
course, for the sampled-points formalism the same problem exists when you wish to include an out of sample
data-feature in your model (such as in the animals example in Kemp and Tenenbaum, 2008). Unsurprisingly,
addressing this issue for spectral methods is nontrivial (Bengio et al., 2004b).

2.5.1 PARAMETER GRADIENTS

We can find the parameters, Λ, through maximum likelihood on the Gaussian Markov random field given in
(3). Some algebra shows that the gradient of each Lagrange multiplier is given by,

d log p(Y)

dλi, j
=

1

2

〈

di, j
〉

p(Y)−
1

2
di, j,

where 〈〉p(·) represents an expectation under the distribution p(·). This result is a consequence of the maxi-
mum entropy formulation: the Lagrange multipliers have a gradient of zero when the constraints are satisfied.
To compute gradients we need the expectation of the squared distance given by

〈

di, j
〉

=
〈

y'i,:yi,:

〉

−2
〈

y'i,:y j,:

〉

+
〈

y'j,:y j,:

〉

,

which we can compute directly from the covariance matrix of the GRF, K = (L+ γI)−1,

〈

di, j
〉

=
p

2
(ki,i −2ki, j + k j, j) .

This is immediately recognized as a scaled version of the standard transformation between distances and sim-
ilarities (see (2)). This relationship arises naturally in the probablistic model. Every GRF has an associated
interpoint distance matrix. It is this matrix that is being used in CMDS. The machine learning community
might interpret this as the relationship between distances in “feature space” and the kernel function. Note
though that here (and also in MVU) each individual element of the kernel matrix cannot be represented only
as a function of the corresponding two data points (i.e., we cannot represent them as ki, j = k(yi,:,y j,:), where
each ki, j is a function only of the i and jth data points). Given this we feel it is more correct to think of
this matrix as a covariance matrix induced by our specification of the random field rather than a true Mercer
kernel. We use the notation ki, j to denote an element of such a covariance (or similarity matrix) and only use
k(·, ·) notation when the value of the similarity matrix can be explicitly represented as a Mercer kernel.

The Base Density Parameter. One role of the base density parameter, γ, is to ensure that the precision matrix
is positive definite. Recall that the Laplacian has a null space in the constant vector, implying that K1 = γ−1,
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which becomes infinite as γ → 0. This reflects an insensitivity of the covariance matrix to the data mean, and
this in turn arises because that information is lost when we specify the expectation constraints only through
interpoint distances. In practise though, K is always centred before its eigenvectors are extracted, B = HKH,
resulting in B1 = 0 so γ has no effect on the final visualization. In some cases, it may be necessary to set γ to
a small non-zero value to ensure stability of the inverse L+ γI. In these cases we set it to γ = 1×10−4 but in
many of the comparisons we make to other spectral algorithms below we take it to be zero.

Number of Model Parameters. If K neighbors are used for each data point there are O(Kn) parameters in the
model, so the model is nonparametric in the sense that the number of parameters increases with the number
of data. For the parameters to be well determined we require a large number of features, p, for each data
point, otherwise we would need to regularize the model (see Section 3). This implies that the model is well
primed for the so-called “large p small n domain.”

Once the maximum likelihood solution is recovered the data can be visualized, as for MVU and kernel
PCA, by looking at the eigenvectors of the centered covariance matrix HKH. We call this algorithm maxi-
mum entropy unfolding (MEU).

Positive Definite Constraints. The maximum variance unfolding (MVU) algorithm maximizes the trace of
the covariance matrix (given by the sum of its eigenvalues, {λi}),

tr(K) =
n

∑
i=1

λi,

subject to constraints on the elements of K arising from the squared distances. These constraints are lin-
ear in the elements of K. There is a further constraint on K, that it should be positive semi-definite. This
means MVU can be optimized through a a semi-definite program. In contrast MEU cannot be optimized
through a semi-definite program because the objective is not linear in K. This implies we need to find other
approaches to maintaining the positive-definite constraint on K. Possibilities include exploiting the fact that
if the Lagrange multipliers are constrained to be positive the system is “attractive” and this guarantees a valid
covariance (see, e.g., Koller and Friedman, 2009, pg. 255). Although now (as in a suggested variant of
the MVU) the distance constraints would be inequalities. Another alternative would be to constrain L to be
diagonally dominant through adjusting γ. We will also consider two further approaches in Section 2.7 and
Section 3.

Non-linear Generalizations of PCA. Kernel PCA provides a non-linear generalization of PCA. This is achieved
by ’kernelizing’ the principal coordinate analysis algorithm: replacing data point inner products with a kernel
function. Maximum variance unfolding and maximum entropy unfolding also provide non linear general-
izations of PCA. For these algorithms, if we increase the neighborhood size to K = n− 1, then all squared
distances implied by the GRF model are constrained to match the observed inter data point squared distances
and L becomes non-sparse. Classical multidimensional scaling on the resulting squared distance matrix is
known as principal coordinate analysis and is equivalent to principal component analysis (see Mardia et al.,
1979).5

2.6 Relation to Laplacian Eigenmaps

Laplacian eigenmaps is a spectral algorithm introduced by Belkin and Niyogi (2003). In the Laplacian eigen-
map procedure, a neighborhood is first defined in the data space. Typically this is done through nearest
neighbor algorithms or defining all points within distance ε of each point to be neighbors. In Laplacian
eigenmaps a symmetric sparse (possibly weighted) adjacency matrix, A ∈ ℜn×n, is defined whose i, jth ele-
ment, ai, j is non-zero if the ith and jth data points are neighbors. Belkin and Niyogi argue that a good one

5. In this case CMDS proceeds by computing the eigendecomposition of the centred negative squared distance matrix, which is the
eigendecomposition of the centred inner product matrix as is performed for principal coordinate analysis.

1618



UNIFYING SPECTRAL DIMENSIONALITY REDUCTION

dimensional embedding is one where the latent points, X minimize

E(X) =
1

4

n

∑
i=1

n

∑
j=1

ai, j(xi − x j)
2.

For a multidimensional embedding we can rewrite this objective in terms of the squared distance between

two latent points, δi, j =
∥

∥xi,: −x j,:

∥

∥

2

2
, as

E(X) =
1

4

n

∑
i=1

n

∑
j=1

ai, jδi, j.

The motivation behind this objective function is that neighboring points have non-zero entries in the adjacency
matrix, therefore their inter point squared distances in latent space need to be minimized. In other words
points which are neighbors in data space will be kept close together in the latent space. The objective function
can be rewritten in matrix form as

E(X) =
1

4
tr(A∆) .

Squared Euclidean distance matrices of this type can be rewritten in terms of the original vector space by
introducing the Laplacian matrix. Introducing the degree matrix, D, which is diagonal with entries, di,i =
∑ j Ai, j the Laplacian associated with the neighborhood graph can be written

L = D−A

and the error function can now be written directly in terms of the latent coordinates,

E(X) =
1

2
tr
(

LXX'
)

by exploiting the null space of the Laplacian (L1 = 0) as we saw in Section 2.1.
Let us consider the properties of this objective. Since the error function is in terms of interpoint distances,

it is insensitive to translations of the embeddings. The mean of the latent projections is therefore undefined.
Further, there is a trivial solution for this objective. If the latent points are all placed on top of one another
the interpoint distance matrix will be all zeros. To prevent this collapse Belkin and Niyogi suggest that each
dimension of the latent representation is constrained,

x':,iDx:,i = 1.

Here the degree matrix, D, acts to scale each data point so that points associated with a larger neighborhood
are pulled towards the origin.

Given this constraint the objective function is minimized for a q dimensional space by the generalized
eigenvalue problem,

Lui = λiDui,

where λi is an eigenvalue and ui is its associated eigenvector. The smallest eigenvalue is zero and is associated
with the constant eigenvector. This eigenvector is discarded, whereas the eigenvectors associated with the
next q smallest eigenvalues are retained for the embedding. So we have,

x:,i = ui+1 for i = 1..q

if we assume that eigenvalues are ordered according to magnitude with the smallest first.
Note that the generalized eigenvalue problem underlying Laplacian eigenmaps can be readily converted

to the related, symmetric, eigenvalue problem.

L̂vi = λivi (4)

where L̂ is the normalized Laplacian matrix,

L̂ = D− 1
2 LD− 1

2 = I−D− 1
2 AD− 1

2

and the relationship between the eigenvectors is through scaling by the degree matrix, vi = D
1
2 ui (implying

v'i vi = 1). The eigenvalues remain unchanged in each case.
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2.6.1 PARAMETERIZATION IN LAPLACIAN EIGENMAPS

In Laplacian eigenmaps the adjacency matrix can either be unweighted (Belkin and Niyogi refer to this as the
simple-minded approach) or weighted according to the distance between two data points,

ai, j = exp

(

−

∥

∥yi,: −y j,:

∥

∥

2

2

2σ2

)

, (5)

which is justified by analogy between the discrete graph Laplacian and its continuous equivalent, the Laplace
Beltrami operator (Belkin and Niyogi, 2003).

2.6.2 RELATING LAPLACIAN EIGENMAPS TO MEU

The relationship of MEU to Laplacian eigenmaps is starting to become clear. In Laplacian eigenmaps a graph
Laplacian is specified across the data points just as in maximum entropy unfolding. In classical multidimen-
sional scaling, as applied in MEU and MVU, the eigenvectors associated with the largest eigenvalues of the
centred covariance matrix,

B = H(L+ γI)−1 H (6)

are used for visualization. In Laplacian eigenmaps the smallest eigenvectors of L are used, disregarding the
eigenvector associated with the null space.

Note that if we define the eigendecomposition of the covariance in the GRF as

K = UΛU'

it is easy to show that the eigendecomposition of the associated Laplacian matrix is

L = U
(

Λ
−1 − γI

)

U'.

We know that the smallest eigenvalue of L is zero with a constant eigenvector. That implies that the largest
eigenvalue of K is γ−1 and is associated with a constant eigenvector. However, we do not use the eigenvectors
of K directly. We first apply the centering operation in (6). This projects out the constant eigenvector, but
leaves the remaining eigenvectors and eigenvalues intact.

To make the analogy with Laplacian eigenmaps direct we consider the formulation of its eigenvalue
problem with the normalized graph Laplacian as given in (4). Substituting the normalized graph Laplacian
into our covariance matrix, K, we see that for Laplacian eigenmaps we are visualizing a Gaussian random
field with a covariance as follows,

K = (L̂+ γI)−1.

Naturally we could also consider a variant of the algorithm which used the unnormalized Laplacian directly,
K = (L + γI)−1. Under the Laplacian eigenmap formulation that would be equivalent to preventing the
collapse of the latent points by constraining x':,ix:,i = 1 instead of x':,iDx:,i = 1.

This shows the relationship between the eigenvalue problems for Laplacian eigenmaps and CMDS. The
principal eigenvalues of K will be the smallest eigenvalues of L. The very smallest eigenvalue of L is zero
and associated with the constant eigenvector. However, in CMDS this would be removed by the centering
operation and in Laplacian eigenmaps it is discarded. Once the parameters of the Laplacian have been set
CMDS is being performed to recover the latent variables in Laplacian eigenmaps.

2.6.3 LAPLACIAN EIGENMAPS SUMMARY

The Laplacian eigenmaps procedure does not fit parameters through maximum likelihood. It uses analogies
with the continuous Laplace Beltrami operator to set them via the Gaussian-like relationship in (5). This
means that the local distance constraints are not a feature of Laplacian eigenmaps. The implied squared dis-
tance matrix used for CMDS will not preserve the interneighbor distances as it will for MVU and MEU. In
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fact since the covariance matrix is never explicitly computed it is not possible to make specific statements
about what these distances will be in general. However, Laplacian eigenmaps gains significant computational
advantage by not representing the covariance matrix explicitly. No matrix inverses are required in the algo-
rithm and the resulting eigenvalue problem is sparse. This means that Laplacian eigenmaps can be applied to
much larger data sets than would be possible for MEU or MVU.

2.7 Relation of MEU to Locally Linear Embedding

The locally linear embedding (LLE Roweis and Saul, 2000) is a dimensionality reduction that was originally
motivated by the idea that a non-linear manifold could be approximated by small linear patches. If the
distance between data points is small relative to the curvature of the manifold at a particular point, then the
manifold encircling a data point and its nearest neighbors may be approximated locally by a linear patch. This
idea gave rise to the locally linear embedding algorithm. First define a local neighborhood for each data point
and find a set of linear regression weights that allows each data point to be reconstructed by its neighbors.
Considering the ith data point, yi,: and a vector of reconstruction weights, w:,i, associated with that data point
a standard least squares regression objective takes the form,

E(w:,i) =
1

2

∥

∥

∥

∥

∥

yi,: − ∑
j∈N (i)

y j,:w j,i

∥

∥

∥

∥

∥

2

2

, (7)

for each data point. Here the sum over the reconstruction weights, w:, j is restricted to data points,
{

y j,:
}

j∈N (()i),

which are in the neighborhood of the data point of interest, yi,:. Roweis and Saul point out that the objective
function in (7) is invariant to rotation and rescaling of the data. If we rotate each data vector in (7) the objec-
tive does not change. If data are rescaled, for example, multiplied by a factor α, then the objective is simply
rescaled by a factor α2. However, the objective is not invariant to translation. For example if we were to
translate the data, ŷi,: = yi,: −µ, where µ could be the sample mean of our data set (or any other translation),
we obtain the following modified objective,

E(w:,i) =
1

2

∥

∥

∥

∥

∥

ŷi,: +µ− ∑
j∈N (i)

ŷ j,:w j,i −µ ∑
j∈N (i)

w j,i

∥

∥

∥

∥

∥

2

2

,

which retains a dependence on µ. Roweis and Saul point out that if we constrain ∑ j∈N (i) w j,i = 1 the terms
involving µ cancel and we recover the original objective. Imposing this constraint on the regression weights
(which can also be written w'

:,i1 = 1), ensures the objective is translation invariant.
To facilitate the comparison with the maximum entropy unfolding algorithm we now introduce an alter-

native approach to enforcing translation invariance. Our approach generalizes the LLE algorithm. First of all
we introduce a new matrix M. The sparsity pattern of this matrix should match that of W for off diagonal
elements. We then set the diagonal elements of each row of M to be the negative sum of the off diagonal
columns, so we have mi,i =−∑ j∈N (i) w j,i. We can then rewrite the objective in (7) as,

E(w:,i) =
1

2

∥

∥

∥
Y'm:,i

∥

∥

∥

2

2
= m'

:,iYY'm:,i,

which is identical to (7) if mi,i is further constrained to 1. However, even if this constraint is not imposed, the
translational invariance is retained. This is clear if we rewrite the objective in terms of the non-zero elements
of m:,i,

E(m:,i) =
m2

i,i

2

∥

∥

∥

∥

∥

yi,: + ∑
j∈N (i)

y j,:
m j,i

mi,i

∥

∥

∥

∥

∥

2

2

=
m2

i,i

2

∥

∥

∥

∥

∥

yi,: − ∑
j∈N (i)

y j,:w j,i

∥

∥

∥

∥

∥

2

2
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where

w j,i =−
m j,i

mi,i

and by definition of mi,i we have ∑ j∈N (i) w j,i = 1. We now see that up to a scalar factor, m2
i,i, this equation is

identical to (7).

This form of the objective also shows us that mi,i has the role of scaling each data point’s contribution to
the overall objective function (rather like the degree, di,i would do in the unnormalized variant of Laplacian
eigenmaps we discussed in Section 2.6.2).

The objective function is a least squares formulation with particular constraints on the regression weights,
m:,i. As with all least squares regressions, there is an underlying probabilistic interpretation of the regression
which suggests Gaussian noise. In our objective function the variance of the Gaussian noise for the ith data
point is given by m−2

i,i . We can be a little more explicit about this by writing down the error as the negative

log likelihood of the equivalent Gaussian model. This then includes a normalization term, logm2
i,i, which is

zero in standard LLE where m2
i,i = 1,

E(w:,i) =− logN



yi,:| ∑
j∈N (i)

y j,:m̂ j,i,m
−2
i,i





=
m2

i,i

2

∥

∥

∥

∥

∥

yi,: − ∑
j∈N (i)

y j,:m̂ j,i

∥

∥

∥

∥

∥

2

2

−
1

2
logm2

i,i + const

=
1

2
m'

:,iYY'm:,i −
1

2
logm2

i,i + const. (8)

The overall objective is the sum of the objectives for each column of W. Under the probabilistic interpretation
this is equivalent to assuming independence between the individual regressions. The objective can be written
in matrix form as

E(W) =
1

2

n

∑
i=1

m'
:,iYY'm:,i −

1

2

n

∑
i=1

logm2
i,i + const. (9)

Recalling that our definition of M was in terms of W, we now make that dependence explicit by pa-
rameterizing the objective function only in terms of the non-zero elements of W. To do this we introduce a
‘croupier matrix’ Si ∈ ℜn×ki , where ki is the size of the i data point’s neighborhood. This matrix will dis-
tribute the non-zero elements of W appropriately into M. It is defined in such a way that for the ith data point
we have m:,i = Siwi, where we use the shorthand wi = wN (i),i. In other words wi is the vector of regression
weights being used to reconstruct the ith data point. It contains the non-zero elements from the ith column of
W. The matrix Si is constructed by setting all elements in its ith row to −1 (causing mi,i to be the negative
sum of the elements of wi as defined). Then we set s!, j to 1 if ! is the jth neighbor of the data point i and zero
otherwise. We can then rewrite the objective function for the data set as

E(W) =
1

2

n

∑
i=1

w'
i S'

i YY'Siwi −
1

2

n

∑
i=1

logw'
i 11'wi + const,

A fixed point can be found by taking gradients with respect to wi,

dE(W)

dwi
= S'

i YY'Siwi −
1

w'
i 1

1

which implies that the direction of wi is given by

wi ∝ C−1
i 1
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where Ci = S'
i YY'Si has been called the “local covariance matrix” by Roweis and Saul (2000), removing

the croupier matrix we can express the local covariance matrix in the same form given by Roweis and Saul
(2000),

Ci = ∑
j∈N (i)

(y j,: −yi,:)(y j,: −yi,:)
'.

For standard LLE the magnitude of the vector wi is set by the fact that 1'wi = 1. In our alternative formulation
we can find the magnitude of the vector through differentiation of (8) with respect to m2

i,i leading to the
following fixed point

m−2
i,i =

∥

∥

∥

∥

∥

yi,: − ∑
j∈N (i)

y j,:m̂ j,i

∥

∥

∥

∥

∥

2

2

,

where m̂ j,i = −m j,i/mi,i. This update shows explicitly that mi,i estimates the precision with which each
individual regression problem is solved.

2.7.1 DETERMINING THE EMBEDDING IN LLE

If the data is truly low dimensional, then we might expect that the local linear relationships between neighbors
continue to hold for a data set X, of lower dimensionality, q < p, than the original data Y. The next step in
the LLE procedure is to find this data set. We do this by minimizing the objective function in (9) with respect
to this new, low dimensional data set. Writing the objective in terms of this reduced dimensional data set, X,
we have

E(X) =
1

2

n

∑
i=1

m'
:,iXX'm:,i + const

=
1

2
tr
(

MM'XX
)

+ const

=
1

2

n

∑
i=1

x'i,:MM'xi,: + const.

Clearly the objective function is trivially minimized by setting X = 0, so to avoid this solution a constraint is
imposed that X'X = I. This leads to an eigenvalue problem of the form

MM'ui = λiui.

Here the smallest q+1 eigenvalues are extracted. The smallest eigenvector is the constant eigenvector and is
associated with an eigenvalue of zero. This is because, by construction, we have set MM'1 = 0. The next q

eigenvectors are retained to make up the low dimensional representation so we have

x:,i = ui+1 for i = 1..q.

Extracting the latent coordinates in LLE is extremely similar to the process suggested in Laplacian eigen-
maps, despite different motivations. Though in the LLE case the constraint on the latent embeddings is not
scaled by the degree matrix. The procedure is also identical to that used in classical multidimensional scaling,
and therefore matches that used in MVU and MEU, although again the motivation is different. Rather than
distance matching, as suggested for CMDS, in LLE we are looking for a ‘representative,’ low dimensional,
data set.

2.7.2 RELATING LLE TO MEU

We can see the similarity now between LLE and the Laplacian eigenmaps. If we interpret MM' as a Lapla-
cian we notice that the eigenvalue problem being solved for LLE to recover the embedding is similar to
that being solved in Laplacian eigenmaps. The key difference between LLE and Laplacian eigenmaps is the
manner in which the Laplacian is parameterized.
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When introducing MEU we discussed how it is necessary to constrain the Laplacian matrix to be positive
definite (see Section 2.5.1). One way of doing this is to assume the Laplacian factorizes as

L = MM'

where M is non-symmetric. If M is constrained so that M'1 = 0 then we will also have L1 = 0. As we saw
in the last section, this constraint is easily achieved by setting the diagonal elements mi,i = −∑ j∈N (i) m j,i.

Then if we force m j,i = 0 if j /∈ N (i) we will have a Laplacian matrix which is positive semidefinite without
need for any further constraint on M. The sparsity pattern of L will, however, be different from the pattern of
M. The entry for !i, j will only be zero if there are no shared neighbors between i and j.

We described above how the parameters of LLE, W, are chosen to reflect locally linear relationships
between neighboring data points. Here we show that this algorithm is actually approximate maximum like-
lihood in the MEU model. Indeed LLE turns out to be the specific case of maximum entropy unfolding
where:

1. The diagonal sums, mi,i, are further constrained to unity.

2. The parameters of the model are optimized by maximizing the pseudolikelihood of the resulting GRF.

As we described in our introduction to LLE, traditionally the reconstruction weights, wi, are constrained to
sum to 1. If this is the case then by our definition of M we can write M = I−W. The sparsity pattern of W

matches M, apart from the diagonal of W which is set to zero. These constraints mean that (I−W)'1 = 0.
The LLE algorithm (Roweis and Saul, 2000) proscribes that the smallest eigenvectors of (I−W)(I−W)' =
MM' = L are used with the constant eigenvector associated with the eigenvalue of 0 being discarded. This
matches the CMDS procedure as applied to the MEU model, where the eigenvectors of L are computed with
the smallest eigenvector discarded through the centering operation.

2.7.3 PSEUDOLIKELIHOOD APPROXIMATION

To see how pseudolikelihood in the MEU model results in the LLE procedure we firstly review the pseudo-
likelihood approximation (Besag, 1975).

The Hammersley-Clifford theorem (Hammersley and Clifford, 1971) states that for a Markov random
field (of which our Gaussian random field is one example) the joint probability density can be represented
as a factorization over the cliques of the graph. In the Gaussian random field underlying maximum entropy
unfolding the cliques are defined by the neighbors of each data point and the relevant factorization is

p(Y) ∝
n

∏
i=1

p(yi,:|Y\i), (10)

where Y\i represents all data other than the ith point and in practice each conditional distribution is typically
only dependent on a sub-set of Y\i (as defined by the neighborhood). As we will see, these conditional
distributions are straightforward to write out for maximum entropy unfolding, particularly in the case where
we have assumed the factorization of the Laplacian, L = MM'.

The pseudolikelihood assumes that the proportionality in (10) can be ignored and that the approximation

p(Y)≈
n

∏
i=1

p(yi,:|Y\i)

is valid.

To see how the decomposition into cliques applies in the factorizable MEU model first recall that

tr
(

YY'MM'
)

=
n

∑
i=1

m'
:,iYY'm:,i
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so for the MEU model we have6

p(Y) ∝ exp

(

−
1

2
tr
(

YY'MM'
)

)

=
n

∏
i=1

exp

(

−
1

2
m'

:,iYY'm:,i

)

.

This provides the necessary factorization for each conditional density which can now be rewritten as

p(yi,:|Y\i) =

(

m2
i,i

τ

)
p
2

exp



−
m2

i,i

2

∥

∥

∥

∥

∥

yi,: + ∑
j∈N (i)

m j,i

mi,i
y j,:

∥

∥

∥

∥

∥

2

2



 .

Optimizing the pseudolikelihood is equivalent to optimizing the conditional density for each of these cliques
independently,

log p(Y)≈
n

∑
i=1

log p(yi,:|Y\i),

which is equivalent to solving n independent regression problems with a constraint on the regression weights
that they sum to one. This is exactly the optimization suggested in (9). In maximum entropy unfolding the
constraint arises because the regression weights are constrained to be w j,i/mi,i and mi,i = ∑ j∈N (i) w j,i. In
standard LLE a further constraint is placed that mi,i = 1 which implies none of these regression problems
should be solved to a greater precision than another. However, as we derived above, LLE is also applicable
even if this further constraint is not imposed.

Locally linear embeddings make use of the pseudolikelihood approximation to parameter determina-
tion Gaussian random field. Underpinning this is a neat way of constraining the Laplacian to be positive
semidefinite by assuming a factorized form. The pseudolikelihood also allows for relatively quick parameter
estimation by ignoring the partition function from the actual likelihood. This again removes the need to invert
to recover the covariance matrix and means that LLE can be applied to larger data sets than MEU or MVU.
However, the sparsity pattern in the Laplacian for LLE will not match that used in the Laplacian for the other
algorithms due to the factorized representation.

2.7.4 WHEN IS THE PSEUDOLIKELIHOOD VALID IN LLE?

The pseudolikelihood was motivated by Besag (1975) for computational reasons. However, it obtains speed
ups whilst sacrificing accuracy: it does not make use of the correct form of the normalization of the Gaussian
random field. For a Gaussian model the normalization is the determinant of the covariance matrix,

|K|= |L+ γI|−1 .

However, under particular circumstances the approximation is exact. Here we quickly review an occasion
when this occurs.

Imagine if we force M to be lower triangular, that is, we have a Cholesky form for our factorization of
L = MM'. The interpretation here is now that M is a weighted adjacency matrix from a directed acyclic

graph. When constructing the LLE neighborhood the triangular form for this matrix can be achieved by first
imposing an ordering on the data points. Then, when seeking the nearest K neighbors for i, we only consider
a candidate data point j if j > i. In the resulting directed acyclic graph the neighbors of each data point are
its parents.7 The weighting of the edge between node j and its parent, i, is given by the (i, j)th element of
M. To enforce the constraint that M'1 = 0 the diagonal elements of M are given by the negative sum of the
off diagonal elements from each column (i.e., the sum of their parents). Note that the last data point (index
n) has no parents and so the (n,n)th element of M is zero.

6. Here we have ignored the term arising from the base density, tr
(

γYY'
)

. It also factorizes, but it does not affect the dependence of
the pseudolikelihood on W.

7. Note that parents having a lower index than children is the reverse of the standard convention. However, here it is necessary to
maintain the structure of the Cholesky decomposition.
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Now we use the fact that the log determinant of L is given by log
∣

∣MM'
∣

∣ = ∑i logm2
i,i if M is lower

triangular. This means that for the particular structure we have imposed on the covariance the true log
likelihood does factorize into n independent regression problems,

log p(Y) =

∣

∣MM'
∣

∣

1
2

τ
n
2

exp

(

−
1

2
tr
(

YYMM'
)

)

=
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∏
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∥
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∥

∥
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The representation corresponds to a Gaussian random field which is constructed from specifying the directed
relationship between the nodes in the graph. We can derive the Gaussian random field by considering a series
of conditional relationships,

p(yi,:|Y\i) = p(yi,:|Y j>i,:)

where our notation here is designed to indicate that the model is constrained so that the density associated with
each data point, yi,:, is only dependent on data points with an index greater than i, a matrix we denote with
Y j>i,:. This constraint is enforced by our demand that the only potential neighbors (parents in the directed
graph) are those data points with an index greater than i. The undirected system can now be produced by
taking the conditional densities of each data point,

p(yi,:|Y j>i,:) = N
(

yi,:|Y
'
j>i,:m j>i,i,m

−2
i,i I
)

,

and multiplying them together8

p(Y) =
n

∏
i=1

p(yi,:|Y j>i,:),

to form the joint density. Note that the nth data point has no parents so we can write p(yn,:|Y j>n,:) = p(yn,:).
However, since we defined m j, j =−∑i> j mi, j the model as it currently stands associates an infinite variance

with this marginal density (mn,n = 0). This is a consequence of the constraint M'1 = 0. The problem mani-
fests itself when computing the log determinant of L, log

∣

∣MM'
∣

∣= ∑i logm2
i,i to develop the log likelihood.

The last term in this sum is now logm2
n,n = log0. As for the standard model this is resolved if we include the

γI term from the base density when computing the determinant, but this destroys the separability of the deter-
minant computation. If the likelihood is required the value mn,n could be set to a small value, or optimized,
relaxing the constraint on M.

We call the algorithm based on the above decomposition acyclic locally linear embedding (ALLE). A
weakness for the ALLE is the need to specify an ordering for the data. The ordering specifies which points
can be neighbors and different orderings will lead to different results. Ideally one might want to specify the
sparsity pattern in L and derive the appropriate sparsity structure for M. However, given a general undirected
graph it is not possible, in general, to find an equivalent directed acyclic graph. This is because co-parents in
the directed graph gain an edge in the undirected graph, but the weight associated with this edge cannot be
set independently of the weights associated with the edges between those co-parents and their children.

2.7.5 LLE AND PCA

LLE is motivated by considering local linear embeddings of the data, although interestingly, as we increase
the neighborhood size to K = n− 1 we do not recover PCA, which is known to be the optimal linear em-
bedding of the data under linear Gaussian constraints. The fact that LLE is optimizing the pseudolikelihood
makes it clear why this is the case. In contrast the MEU algorithm, which LLE approximates, does recover
PCA when K = n−1. The ALLE algorithm also recovers PCA.

8. The idea of modelling a joint distribution by approximating its conditionals was described by Li and Stephens (2003) in the context
of haplotype modeling. Generic density estimators based on this idea appeared earlier (e.g., Frey et al., 1996), using sigmoid belief
networks (Neal, 1992). Larochelle and Murray (2011) recently extended these type of models with latent variables for modeling
binary data in the neural autoregressive distribution estimator.
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2.8 Relation to Isomap

The isomap algorithm (Tenenbaum et al., 2000) more directly follows the CMDS framework. In isomap
(Tenenbaum et al., 2000) a sparse graph of distances is created between all points considered to be neighbors.
This graph is then filled in for all non-neighboring points by finding the shortest distance between any two
neighboring points in the graph (along the edges specified by the neighbors). The resulting matrix is then
element-wise squared to give a matrix of square distances which is then processed in the usual manner (cen-
tering and multiplying by -0.5) to provide a similarity matrix for multidimensional scaling. Compare this to
the situation for MVU and MEU. Both MVU and MEU can be thought of as starting with a sparse graph
of (squared) distances. The other distances are then filled in by either maximizing the trace of the associ-
ated covariance or maximizing the entropy. Importantly, though, the interneighbor distances in this graph
are preserved (through constraints imposed by Lagrange multipliers) just like in isomap. For both MVU and
MEU the covariance matrix, K, is guaranteed positive semidefinite because the distances are implied by an
underlying covariance matrix that is constrained positive definite. For isomap the shortest path algorithm
is effectively approximating the distances between non-neighboring points. This can lead to an implied co-
variance matrix which has negative eigenvalues (see Weinberger et al., 2004). The algorithm is still slower
than LLE and Laplacian eigenmaps because it requires a dense eigenvalue problem and the application of a
shortest path algorithm to the graph provided by the neighbors.

3. Estimating Graph Structure

The relationship between spectral dimensionality reduction algorithms and Gaussian random fields now leads
us to consider a novel approach to dimensionality reduction. Recently it has been shown that the structure of
a Gaussian random field can be estimated through using L1 shrinkage on the parameters of the inverse covari-
ance (see Hastie et al., 2009, Chapter 17). These sparse graph estimators are attractive as the regularization
allows some structure determination. In other words, rather than relying entirely on the structure provided
by the K nearest neighbors in data space, we can estimate this structure from the data. We call the resulting
class of approaches Dimensionality reduction through Regularization of the Inverse covariance in the Log
Likelihood (DRILL).

Before introducing the method, we need to first re-derive the maximum entropy approach by constraining
the second moment of neighboring data points to equal the empirical observation instead of the expected inter
data point squared distances. We first define the empirically observed second moment observation to be

S = YY'

so if two points, i and j are neighbors then we constrain

si, j =
〈

y'i,:y j,:

〉

,

where si, j is the i, jth element of S. If we then further constrain the diagonal moments,

〈

y'i,:yi,:

〉

= si,i (11)

then the expected squared distance between two data points, will be given by

〈

di, j
〉

=
〈

y'i,:yi,:

〉

−2
〈

y'i,:y j,:

〉

+
〈

y'j,:y j,:

〉

= si,i −2si, j + s j, j.

So the expected interpoint squared distance will match the empirically observed interpoint squared distance
from the data. In other words, whilst we have formulated the constraints slightly differently, the final model
will respect the same interpoint squared distance constraints as our original formulation of maximum entropy
unfolding.

1627



LAWRENCE

The maximum entropy solution for the distribution has the form

p(Y) ∝ exp

(

−
1

2
tr
(

YY'(Λ+ γI)
)

)

,

where now the matrix of Lagrange multipliers matches the sparsity structure of the underlying neighborhood
graph but also contains diagonal elements to enforce the constraint from (11). Writing the full log likelihood
in terms of the matrix S we have

log p(Y) =−
pn

2
logτ+

p

2
log |Λ+ γI|−

1

2
tr(S(Λ+ γI)) ,

Once again, maximum likelihood in this system is equivalent to finding the Lagrange multipliers so, given
the structure from the neighborhood relationships, we simply need to maximize the likelihood to solve the
system. That will lead to an implied covariance matrix,

K = (Λ+ γI)−1,

which once again should be centred, B = HKH, and the principal eigenvectors extracted to visualize the
embedding. Here, though, we are proposing some additional structure learning. If elements of the inverse
covariance are regularized appropriately the model can perform some additional structure learning. In par-
ticular recent work on application of L1 priors on the elements of the inverse covariance (see, e.g., Banerjee
et al., 2007; Friedman et al., 2008) allows us to apply a L1 regularizer to the inverse covariance and learn the
elements of Λ efficiently. The objective function for this system is now

E(Λ) =− log p(Y)+∑
i< j

∥

∥λi, j

∥

∥

1

There has been a great deal of recent work on maximizing objectives of this form. In our experiments we
used the graphical lasso algorithm (Friedman et al., 2008) which converts the optimization into a series of
iteratively applied lasso regressions.

4. Experiments

The models we have introduced are illustrative and draw on the connections between existing methods. The
advantages of our approaches are in the unifying perspective they give and their potential to exploit the char-
acteristics of the probabilistic formulation to explore extensions based on missing data, Bayesian formulations
etc.. However, for illustrative purposes we conclude with a short experimental section.

For our experiments we consider two real world data sets. Code to recreate all our experiments is available
online. We applied each of the spectral methods we have reviewed along with MEU using positive constraints
on the Lagrange multipliers (denoted MEU) and the DRILL described in Section 3. To evaluate the quality of
our embeddings we follow the suggestion of Harmeling (2007) and use the GP-LVM likelihood (Lawrence,
2005). The higher the likelihood the better the embedding. Harmeling conducted exhaustive tests over
different manifold types (with known ground truth) and found the GP-LVM likelihood was the best indicator
of the manifold quality amoungst all the measures he tried. Our first data set consists of human motion
capture data.

4.1 Motion Capture Data

The data consists of a 3-dimensional point cloud of the location of 34 points from a subject performing a
run. This leads to a 102 dimensional data set containing 55 frames of motion capture. The subject begins
the motion from stationary and takes approximately three strides of run. We hope to see this structure in the
visualization: a starting position followed by a series of loops. The data was made available by Ohio State
University. The data is characterized by a cyclic pattern during the strides of run. However, the angle of
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Figure 3: Motion capture data visualized in two dimensions for each algorithm we reviewed using 6 nearest
neighbors. Models capture either the cyclic structure or the structure associated with the start of
the run or both parts.

inclination during the run changes so there are slight differences for each cycle. The data is very low noise,
as the motion capture rig is designed to extract the point locations of the subject to a high precision.

The two dominant eigenvectors are visualized in Figures 3–4 and the quality of the visualizations under
the GP-LVM likelihood is given in Figure 7(a).

There is a clear difference in quality between the methods that constrain local distances (ALLE, MVU,
isomap, MEU and DRILL) which are much better under the score than those that do not (Laplacian eigenmaps
and LLE). Amongst the distance preserving methods isomap is the best performer under the GPLVM score,
followed by ALLE, MVU, DRILL and MEU. The MEU model here preserves the positive definiteness of the
covariance by constraining the Lagrange multipliers to be positive (an ‘attractive’ network as discussed in
Section 2.5.1). It may be that this departure from the true maximum entropy framework explains its relatively
poorer performance..
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Figure 4: Motion capture data visualized in two dimensions for models derived from the maximum entropy
perspective. Again for each algorithm we used 6 nearest neighbors.
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4.2 Robot Navigation Example

The second data set we use is a series of recordings from a robot as it traces a square path in a building. The
robot records the strength of WiFi signals in an attempt to localize its position (see Ferris et al., 2007, for an
application). Since the robot moves only in two dimensions, the inherent dimensionality of the data should
be two: the reduced dimensional space should reflect the robot’s movement. The WiFi signals are noisier
than the motion capture data, so it makes an interesting contrast. The robot completes a single circuit after
entering from a separate corridor, so it is expected to exhibit “loop closure” in the resulting map. The data
consists of 215 frames of measurement, each frame consists of the WiFi signal strength of 30 access points.

The results for the range of spectral approaches are shown in Figures 5–6 with the quality of the methods
scored in Figure 7(b). Both in the visualizations and in the GP-LVM scores we see a clear difference in quality
for the methods that preserve local distances (i.e., again isomap, ALLE, MVU, MEU and DRILL are better
than LLE and Laplacian eigenmaps). Amongst the methods that do preserve local distance relationships
MEU seems to smooth the robot path more than the other three approaches. Given that it has the lowest score
of the four distance preserving techniques this smoothing may be unwarranted. MVU appears to have an
overly noisy representation of the path.

4.3 Learning the Neighborhood

Our final experiments test the ability of L1 regularization of the random field to learn the neighborhood. We
firstly considered the motion capture data and used the DRILL with a large neighborhood size of 20 and L1
regularization on the parameters. As we varied the regularization coefficient we found a maximum under the
GP-LVM score (Figure 8(a)). The visualization associated with this maximum is shown in Figure 8(b) this
may be compared with Figure 4(c) which used 6 neighbors. Finally we investigated whether L1 regularization
alone could recover a reasonable representation of the data. We again considered the motion capture data but
initialized all points as neighbors. We then applied L1 regularization to learn a neighborhood structure.
Again a maximum under the GP-LVM score was found (Figure 9(a)) and the visualization associated with
this maximum is shown Figure 9(b).

The structural learning prior was able to improve the model fitted with 20 neighbors considerably until
its performance was similar to that of the the six neighbor model shown in Figure 4(c). However, L1 reg-
ularization alone was not able to obtain such a good performance, and was unable to tease out the starting
position from the rest of the run in the final visualization. It appears that structural learning using L1-priors
for sparsity is not on its own enough to find an appropriate neighborhood structure for this data set.

5. Discussion and Conclusions

We have introduced a new perspective on dimensionality reduction algorithms based around maximum en-
tropy. Our starting point was the maximum variance unfolding and our end point was a novel approach
to dimensionality reduction based on Gaussian random fields and lasso based structure learning. We hope
that this new perspective on dimensionality reduction will encourage new strands of research at the interface
between these areas.

One feature that stands out from our unifying perspective (see also Ham et al., 2004; Bengio et al.,
2004b,a) is the three separate stages used in existing spectral dimensionality algorithms.

1. A neighborhood between data points is selected. Normally k-nearest neighbors or similar algorithms
are used.

2. Interpoint distances between neighbors are fed to the algorithms which provide a similarity matrix.
The way the entries in the similarity matrix are computed is the main difference between the different
algorithms.

3. The relationship between points in the similarity matrix is visualized using the eigenvectors of the
similarity matrix.
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Figure 5: Visualization of the robot WiFi navigation data for different spectral algorithms we reviewed with
seven neighbors used to construct graphs. LE and LLE struggle to captured the loop structure
(perhaps because of the higher level of noise). Several of the models also show the noise present
in the WiFi signals.

Our unifying perspective shows that actually each of these steps is somewhat orthogonal. The neighbor-
hood relations need not come from nearest neighbors, we can use structural learning algorithms such as that
suggested in DRILL to learn the interpoint structure. The main difference between the different approaches
to spectral dimensionality reduction is how the entries of the similarity matrix are determined. Maximum
variance unfolding looks to maximize the trace under the distance constraints from the neighbours. Our new
algorithms maximize the entropy or, equivalently, the likelihood of the data. Locally linear embedding max-
imizes an approximation to our likelihood. Laplacian eigenmaps parameterize the inverse similarity through
appealing to physical analogies. Finally, isomap uses shortest path algorithms to compute interpoint distances
and centres the resulting matrix to give the similarities.

The final step of the algorithm attempts to visualize the similarity matrices using their eigenvectors.
However, it simply makes use of one possible objective function to perform this visualization. Considering
that underlying the similarity matrix, K, is a sparse Laplacian matrix, L, which represents a Gaussian-Markov
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Figure 6: Visualization of the robot WiFi navigation data using algorithms based on maximum entropy.
Again seven neighbors are used.
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Figure 7: Model scores for the different spectral approaches. (a) the motion capture data visualizations, (b)
the robot navigation example visualizations.
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Figure 8: Structure learning for the DRILL algorithm on the motion capture data set. A model with 20 neigh-
bors was fitted to the data. L1 regularization was used to reduce the number of neighbors associated
with each data point. (a) shows the model score for the different L1 regularization parameters and
(b) shows the visualization that corresponded to the best score (regularization parameter is 0.01).
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Figure 9: Full structure learning for the DRILL algorithm. Here all points are considered neighbors, the
structure of the model is then recovered by L1 regularization. (a) shows the model score associated
with the different L1 regularization parameters and (b) shows the visualization corresponding to
the best score (regularization parameter 0.002).

random field, we can see this final step as visualizing that random field. There are many potential ways to
visualize that field and the eigenvectors of the precision is just one of them. In fact, there is an entire field
of graph visualization proposing different approaches to visualizing such graphs. However, we could even
choose not to visualize the resulting graph. It may be that the structure of the graph is of interest in itself.
Work in human cognition by Kemp and Tenenbaum (2008) has sought to fit Gaussian graphical models
to data in natural structures such as trees, chains and rings. Visualization of such graphs through reduced
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dimensional spaces is only likely to be appropriate in some cases, for example planar structures. For this
model only the first two steps are necessary.

One advantage to conflating the three steps we have identified is the possibility to speed up the complete
algorithm. For example, conflating the second and third step allows us to speed up algorithms through never
explicitly computing the similarity matrix. Using the fact that the principal eigenvectors of the similarity are
the minor eigenvalues of the Laplacian and exploiting fast eigensolvers that act on sparse matrices very large
data sets can be addressed. However, we still can understand the algorithm from the unifying perspective
while exploiting the computational advantages offered by this neat shortcut.

5.1 Gaussian Process Latent Variable Models

Finally, there are similarities between maximum entropy unfolding and the Gaussian process latent vari-
able model (GP-LVM). Both specify a Gaussian density over the training data and in practise the GP-LVM
normally makes an assumption of independence across the features. In the GP-LVM a Gaussian process is
defined that maps from the latent space, X, to the data space, Y. The resulting likelihood is then optimized
with respect to the latent points, X. Maximum entropy unfolding leads to a Gauss Markov Random field,
where the conditional dependencies are between neighbors. In one dimension, a Gauss Markov random
field can easily be specified by a Gaussian process through appropriate covariance functions. The Ornstein-
Uhlbeck covariance function is the unique covariance function for a stationary Gauss Markov process. If
such a covariance was defined in a GP-LVM with a one dimensional latent space

k(x,x′) = exp(−‖x− x′‖1)

then the inverse covariance will be sparse with only the nearest neighbors in the one dimensional latent space
connected. The elements of the inverse covariance would be dependent on the distance between the two
latent points, which in the GP-LVM is optimized as part of the training procedure. The resulting model is
strikingly similar to the MEU model, but in the GP-LVM the neighborhood is learnt by the model (through
optimization of X), rather than being specified in advance. The visualization is given directly by the resulting
X. There is no secondary step of performing an eigendecomposition to recover the point positions. For larger
latent dimensions and different neighborhood sizes, the exact correspondence is harder to establish: Gaussian
processes are defined on a continuous space and the Markov property we exploit in MEU arises from discrete
relations. But the models are still similar in that they proscribe a Gaussian covariance across the data points
which is derived from the spatial relationships between the points.

5.2 Notes

The plots in this document were generated using MATweave (http://staffwww.dcs.shef.ac.uk/people/
N.Lawrence/matweave.html). Code was run using Octave version 3.2.4 on x86_64-pc-linux-gnu archi-
tecture. Results were generated on 23/10/2010. All plots and results can be reproduced from the underlying
LATEX document which includes the MATLAB/Octave source code.
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Abstract
Mixability of a loss characterizes fast rates in the online learning setting of prediction with ex-
pert advice. The determination of the mixability constant for binary losses is straightforward but
opaque. In the binary case we make this transparent and simpler by characterising mixability in
terms of the second derivative of the Bayes risk of proper losses. We then extend this result to
multiclass proper losses where there are few existing results. We show that mixability is governed
by the maximum eigenvalue of the Hessian of the Bayes risk, relative to the Hessian of the Bayes
risk for log loss. We conclude by comparing our result to other work that bounds prediction perfor-
mance in terms of the geometry of the Bayes risk. Although all calculations are for proper losses,
we also show how to carry the results across to improper losses.
Keywords: mixability, multiclass, prediction with expert advice, proper loss, learning rates

1. Introduction

In prediction with expert advice (Vovk, 1990, 1995, 2001; Cesa-Bianchi and Lugosi, 2006) a learner
has to predict a sequence of outcomes, which might be chosen adversarially. The setting is online,
meaning that learning proceeds in rounds; and the learner is aided by a finite number of experts. At
the start of each round, all experts first announce their predictions for that round, then the learner has
to make a prediction, and finally the real outcome is revealed. The discrepancy between a prediction
and an outcome is measured by a loss function, and losses add up between rounds. Finally, the goal
for the learner is to minimize their regret, which is the difference between their cumulative loss and
the cumulative loss of the best expert after T rounds.

Strategies for the learner usually come with guaranteed bounds on the regret in the worst case
over all possible outcomes and expert predictions, which ensures good learning performance under
all circumstances. How strong these guaranteed bounds can be depends on the loss function. Some
losses are easy in the sense that the worst-case regret can be bounded by a constant, which is O(1)
in T . For other losses only a rate of O(

√
T ) or worse can be guaranteed (Kalnishkan and Vyugin,
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2008). Our results provide new insight and new technical tools for the class of losses for which fast,
O(1) rates are possible.

1.1 Fast Rates and Mixability

It is known that, under very general conditions, O(1) rates are possible if and only if the loss is η-
mixable (defined below) for some η> 0, which means that mixability characterizes fast rates. More
specifically, if a loss is η-mixable and there are N experts, then using the so-called aggregating
algorithm (Vovk, 2001) the learner is guaranteed to have regret bounded by

lnN
η

, (1)

which does not grow with T . Conversely, if the loss is not η-mixable for any η > 0 and satisfies
very mild regularity conditions, then it is not possible to bound the worst-case regret by an additive
constant for any strategy (Kalnishkan and Vyugin, 2008; Vovk, 1995). Examples of mixable losses
include the logarithmic loss, the relative entropy loss, the square loss on binary outcomes (Haussler
et al., 1998) and the Brier score (Vovk and Zhdanov, 2009), which are all 1-mixable except for the
square loss, which is 2-mixable.

A related condition requires the loss to be exp-concave (Cesa-Bianchi and Lugosi, 2006). Al-
though exp-concavity implies mixability, the converse is not true, and therefore exp-concavity does
not characterize fast rates.

Although mixability is associated with fast rates, it also appears in the analysis of losses with
O(

√
T ) rates. For example, the analysis of Kalnishkan and Vyugin (2008) may be interpreted as ap-

proximating non-mixable losses by a sequence of η-mixable losses with η going to zero (Kalnishkan
and Vyugin, 2008, Remark 19). Thus mixability appears to be one of the most fundamental proper-
ties to study in the prediction with expert advice setting.

1.2 Main Results

The aggregating algorithm depends on η, and its regret bound (1) is optimized when η is as large as
possible. For any loss of interest !, it is thus desirable to know the largest η for which ! is η-mixable.
We call this the mixability constant for !.

For outcomes with two possible values, determining the mixability constant is straight-forward
using a formula due to Haussler et al. (1998), but their expression has no clear interpretation. In
Section 4.1 we show how, for the important class of proper losses, the result by Haussler et al.
simplifies considerably, and may be expressed in terms of the curvature of the Bayes risk of the loss
relative to the Bayes risk for the logarithmic loss. The relevant notions of properness and Bayes risk
will first be reviewed in Section 3.

We refer to the case where outcomes have more than two possible values as the multiclass
setting. Here no general result has previously been available, and the mixability constant has only
been determined for a limited number of cases (mainly logarithmic loss and the Brier score). Our
main contribution is a simple explicit formula for the mixability constant in the multiclass setting
(Theorem 13 and Corollary 14), which generalises our result for binary-valued outcomes. Along
the way we develop other useful characterizations of mixability in Theorem 10. We illustrate the
usefulness of our results by giving a short proof for 1-mixability of the multiclass Brier score in
Section 5, which is simpler than the previously known proof (Vovk and Zhdanov, 2009).
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Although our results are stated for proper losses, in Section 6 we show how they carry across to
losses that are not proper.

1.3 Outline

The paper is structured as follows. In the next section we introduce general notation. Then Sec-
tion 3 reviews the class of proper losses and the definition of Bayes risk, along with some of their
properties that are required later. It also states Condition A, which lists several continuity conditions
on the loss that are required for our main results.

In Section 4 we come to the main part of the paper. There mixability is formally defined, and in
Section 4.1 we state our results for binary-valued outcomes. The remainder of Section 4 is devoted
to generalising this result to the multiclass setting (Theorem 13 and Corollary 14). An important
intermediate result is stated in Theorem 10, and we discuss some of its direct consequences in
Corollaries 11 and 12. These show that the sum of two η-mixable losses is η-mixable and that the
logarithmic loss is the “most mixable” in a sense.

Section 5 contains a simplified proof for 1-mixability of the Brier score. And in Section 6 we
show how our results carry across to losses that are not proper. In Section 7 we also relate our
results to recent work by Abernethy et al. (2009) in a related online learning setting. Our proofs in
Section 4 require some results from matrix calculus, which we review briefly in Appendix A.

2. Setting

We consider a game of prediction with expert advice, which goes on for rounds t = 1, . . . ,T . At
the start of each round t, N experts choose their predictions v1t , . . . ,vNt from a set V; then the learner
chooses their prediction vt ∈ V; and finally the true outcome yt ∈ Y= {1, . . . ,n} is revealed. When
the outcomes are binary-valued, n = 2, but in the multiclass setting n can be any positive integer.
Losses are measured by a function ! : Y×V → [0,∞] and over the course of the game add up to
Loss(T ) := ∑T

t=1 !(yt ,vt) for the learner and to Loss j(T ) = ∑T
t=1 !(yt ,v

j
t ) for the j-th expert. The

goal for the learner is to predict nearly as well as the best expert, as measured by the regret

R(T ) = Loss(T )−min
j
Loss j(T ).

Typical strategies in the literature come with bounds on the regret that hold in the worst case, for
any possible expert predictions and any possible sequence of outcomes. In particular, if the loss ! is
η-mixable for some η> 0 and the learner predicts according to the aggregating algorithm, then the
regret is bounded by

R(T )≤
lnN
η

, (2)

no matter what the expert predictions or the outcomes are.

2.1 Notation

We use the following notation throughout. Let [n] := {1, . . . ,n} and denote by R+ the non-negative
reals. The transpose of a vector x is x′. If x is a n-vector, A = diag(x) is the n× n matrix with
entries Ai,i = xi , i ∈ [n] and Ai, j = 0 for i *= j. We also write diag(xi)ni=1 := diag(x1, . . . ,xn) :=
diag((x1, . . . ,xn)′). The inner product of two n-vectors x and y is denoted by matrix product x′y. We
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sometimes write A ·B for the matrix product AB for clarity when required. If A−B is positive definite
(resp. semi-definite), then we write A + B (resp. A ! B). The n-simplex Δn :=
{(x1, . . . ,xn)′ ∈ Rn : xi ≥ 0, i ∈ [n], ∑n

i=1 xi = 1}. Other notation (the Kronecker product ⊗, the
derivative D, and the Hessian H) is defined in Appendix A, which also includes several matrix
calculus results we use.

3. Proper Multiclass Losses

We consider multiclass losses for class probability estimation, in which predictions are probability
distributions: V= Δn. As we will often consider how the loss changes as a function of the predicted
distribution q ∈ Δn, it is convenient to define a partial loss function !i(q) = !(i,q) for any outcome
i ∈ [n]. Together these partial loss functions make up the full loss function ! : Δn → [0,∞]n, which
assigns a loss vector !(q) = (!1(q), . . . ,!n(q))′ to each distribution q ∈ Δn. If the outcomes are
distributed with probability p ∈ Δn then the risk for predicting q is just the expected loss

L(p,q) := p′!(q) =
n

∑
i=1

pi!i(q).

The Bayes risk for p is the minimal achievable risk for that outcome distribution,

L(p) := inf
q∈Δn

L(p,q).

A loss is called proper whenever the minimal risk is always achieved by predicting the true outcome
distribution, that is, L(p) = L(p, p) for all p ∈ Δn. A proper loss is strictly proper if there exists no
q *= p such that L(p,q) = L(p). For example, the log loss !log(p) := (− ln(p1), . . . ,− ln(pn))′ is
strictly proper, and its corresponding Bayes risk is the entropy Llog(p) =−∑n

i=1 pi ln(pi).
We call a proper loss ! strongly invertible if for all distributions p *= q ∈ Δn there exists at least

one outcome i ∈ [n] such that !i(p) *= !i(q) and pi > 0. Note that without the requirement that
pi > 0 this would be ordinary invertibility. One might also understand strong invertibility as saying
that the loss should be invertible, and if we restrict the game to a face of the simplex (effectively
removing one possible outcome), then the loss function for the resulting game should again be
strongly invertible.

Since it is central to our results, we will assume all losses are strictly proper for the remainder
of the paper (except Section 6 where we show how the assumption may be relaxed). Lemma 2 in
the next section shows that strictness is not such a strong requirement.

3.1 Projecting Down to n−1 Dimensions

Because probabilities sum up to one, any p ∈ Δn is fully determined by its first n− 1 components
p̃= (p1, . . . , pn−1). It follows that any function of p can also be expressed as a function of p̃, which
is convenient in order to use the standard rules when taking derivatives on Δn. To go back and forth
between p and p̃, we define pn( p̃) := 1−∑n−1

i=1 p̃i and the projection

ΠΔ(p) := (p1, . . . , pn−1)′,

which is a continuous and invertible function from Δn to Δ̃n := {(p1, . . . , pn−1)′ : p ∈ Δn}, with
continuous inverse Π−1

Δ ( p̃) = ( p̃1, . . . , p̃n−1, pn( p̃)). For similar reasons, we sometimes project loss
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Δn Λ Φη

Δ̃n Λ̃ Φ̃η
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Eη!̃

ΠΛ ΠΦ

τη

Figure 1: Mappings and spaces.

vectors !(p) onto their first n−1 components (!1(p), . . . ,!n−1(p))′, using the projection

ΠΛ(λ) := (λ1, . . . ,λn−1)
′.

We write Λ := !(Δn) for the domain of ΠΛ and Λ̃ for its range.
For loss functions !(p), we will overload notation and abbreviate !( p̃) := !(Π−1

Δ ( p̃)). In addi-
tion, we write

!̃( p̃) :=ΠΛ(!( p̃)) = (!1( p̃), . . . ,!n−1( p̃))′

for the first n− 1 components of the loss (see Figure 1). By contrast, for L(p) we will be more
careful about its domain, and use the separate notation L̃( p̃) := L(Π−1

Δ ( p̃)) when we consider it as
a function of p̃.

It may well be that one can avoid the explicit projection down to n− 1 dimensions using the
intrinsic methods of differential geometry (Thorpe, 1979), but we have been unable to prove our
results using that machinery. In any case, in order to do calculations, one will need some coordinate
system. Our projection simply defines the natural (n−1)-dimensional coordinate system on Δn.

3.2 First Properties

Our final result requires the following conditions on the loss:

Condition A The loss !(p) is strictly proper, continuous on Δn, and continuously differentiable on
the relative interior rel int(Δn) of its domain.

As the projection ΠΔ is a linear function, differentiability of !(p) is equivalent to differentiability of
!( p̃), which will usually be easier to verify. Note that it follows from (15) below that existence of
D!̃ guarantees the existence of HL̃.

Lemma 1 Let !(p) be a strictly proper loss. Then the corresponding Bayes risk L(p) is strictly
concave, and if !(p) is differentiable on the relative interior rel int(Δn) of Δn then it satisfies the
stationarity condition

p′D!( p̃) = 0n−1 for p ∈ rel int(Δn). (3)

If !(p) is also continuous on the whole simplex Δn, then ΠΛ, !(p) and !̃( p̃) are all continuous and
invertible, with continuous inverses.

Proof Let p0, p1 ∈ Δn and let pλ = (1−λ)p0+λp1. Then for any λ ∈ (0,1)

L(pλ) = p′λ!(pλ) = (1−λ)L(p0, pλ)+λL(p1, pλ)> (1−λ)L(p0)+λL(p1),

1643



VAN ERVEN, REID AND WILLIAMSON


 



Figure 2: Left: the (boundary of the) superprediction set on two outcomes for the Brier score and
the boundary of the superprediction set for log loss. Right: the same boundaries after
applying the η-exponential operator for η ∈ {3/4,1,5/4}. The dark curves correspond
to η= 1.

so L(p) is strictly concave. Properness guarantees that the function Lp(q̃) := L(p,q(q̃)) has a mini-
mum at q̃= p̃. Hence DLp(q̃) = p′D!(q̃) = 0n−1 at q̃= p̃, giving the stationarity condition.

Now suppose ! is continuous on Δn, and observe that ΠΛ is also continuous. Then by tracing
the relations in Figure 1, one sees that all remaining claims follow if we can establish invertibility
of !̃ and continuity of its inverse. (Recall that ΠΔ is invertible with continuous inverse.)

To establish invertibility, suppose there exist p̃ *= q̃ in Δ̃n such that !̃( p̃) = !̃(q̃) and assume
without loss of generality that !n(p) ≤ !n(q) (otherwise, just swap them). Then L(q) = q̃′!̃(q̃)+
qn!n(q)≥ q̃′!̃( p̃)+qn!n(p) = L(q, p), which contradicts strict properness. Hence !̃ must be invert-
ible.

To establish continuity of !̃−1, we need to show that !̃( p̃m) → !̃( p̃) implies p̃m → p̃ for any
sequence ( p̃m)m=1,2,... of elements from Δ̃n. To this end, let ε > 0 be arbitrary. Then it is sufficient
to show that there exist only a finite number of elements in ( p̃m) such that ‖ p̃m− p̃‖ > ε. Towards
a contradiction, suppose that (q̃k)k=1,2,... is a subsequence of ( p̃m) such that ‖q̃k− p̃‖ ≥ ε for all q̃k.
Then the fact that Δ̃n is a compact subset of Rn−1 implies (by the Bolzano-Weierstrass theorem) that
(q̃k) contains a converging subsequence r̃v → r̃. Since continuity of ! and Π−1

Δ imply continuity of
!̃, we have !̃(r̃v)→ !̃(r̃). But since r̃v is a subsequence of ( p̃m), we also have that !̃(r̃v)→ !̃( p̃) and
hence !̃(r̃) = !̃( p̃). But then strict properness implies that r̃ = p̃, which contradicts the assumption
that ‖r̃v− p̃‖ ≥ ε for all v.

4. Mixability

We use the following characterisation of mixability (as discussed by Vovk and Zhdanov, 2009) and
motivate our main result by looking at the binary case. To define mixability we need the notions
of a superprediction set and a parametrised exponential operator. The superprediction set S! for a
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loss ! : Δn → [0,∞]n is the set of points in [0,∞]n that point-wise dominate some point on the loss
surface. That is,

S! := {λ ∈ [0,∞]n : ∃q ∈ Δn, ∀i ∈ [n], !i(q)≤ λi}. (4)

For any dimension m and η≥ 0, the η-exponential operator Eη : [0,∞]m → [0,1]m is defined by

Eη(λ) := (e−ηλ1 , . . . ,e−ηλm).

For η> 0 it is clearly invertible, with inverse E−1
η (φ) =−η−1(lnφ1, . . . , lnφm). We will both apply

it for m= n and for m= n−1. The dimension will always be clear from the context.
A loss ! is η-mixable when the set Eη(S!) is convex. The largest η such that a loss is η-mixable

is of special interest, because it determines the best possible bound in (2). We call this the mixability
constant and denote it by η!:

η! :=max{η≥ 0: ! is η-mixable}.

A loss is always 0-mixable, so η! ≥ 0, but note that for η! = 0 the bound in (2) is vacuous. A loss
is therefore called mixable only if its mixability constant is positive, that is, η! > 0.

One may rewrite the definition of Eη(S!) as follows:

Eη(S!) = {Eη(λ) : λ ∈ [0,∞]n, ∃q ∈ Δn, ∀i ∈ [n], !i(q)≤ λi}

= {z ∈ [0,1]n : ∃q ∈ Δn, ∀i ∈ [n], e−η!i(q) ≥ zi},

since x 1→ e−ηx is nonincreasing (in fact, decreasing for η > 0). Hence in order for Eη(S!) to be
convex graph( fη) = Φη := {(e−η!1(q), . . . ,e−η!n(q)) : q ∈ Δn} needs to be concave. Here fη is the
function whose graph is given by the set above. An explicit definition of fη is given in (11) after
we have introduced some more notation. Observe that Φη is the (upper) boundary of Eη(S!); that is
why concavity of fη corresponds to convexity of Eη(S!).

Lemma 2 If a proper, strongly invertible loss ! is mixable, then it is strictly proper.

An example of a mixable proper loss that is not strictly proper, is when !(p) does not depend on p.
In this case the loss is not invertible.
Proof Suppose ! is not strictly proper. Then there exist p *= q such that L(p) = L(p,q). In addition,
mixability implies that for any λ ∈ (0,1) there exists a distribution rλ such that for all i ∈ [n]

!i(rλ)≤− 1
η!
log

(

(1−λ)e−η!!i(p) +λe−η!!i(q)
)

≤ (1−λ)!i(p)+λ!i(q),

where the second inequality follows from (strict) convexity of x 1→ e−x and is strict when !i(p) *=
!i(q). Since !i(p) *= !i(q) for at least one i with pi > 0, it follows that

L(p,rλ) = p′!(rλ)< p′
(

(1−λ)!(p)+λ!(q)
)

= L(p),

which contradicts the definition of L(p). Thus mixability implies that ! must be strictly proper.
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4.1 The Binary Case

A loss is called binary if there are only two outcomes: n= 2. For twice differentiable binary losses
! it is known (Haussler et al., 1998) that

η! = inf
p̃∈(0,1)

!′1( p̃)!′′2( p̃)− !′′1( p̃)!′2( p̃)
!′1( p̃)!′2( p̃)(!′2( p̃)− !′1( p̃))

. (5)

When a proper binary loss ! is differentiable, the stationarity condition (3) implies

p̃!′1( p̃)+(1− p̃)!′2( p̃) = 0
⇒ p̃!′1( p̃) = ( p̃−1)!′2( p̃) (6)

⇒
!′1( p̃)
p̃−1

=
!′2( p̃)
p̃

=: w( p̃) =: w!( p̃). (7)

We have L̃( p̃) = p̃!1( p̃)+ (1− p̃)!2( p̃). Thus by differentiating both sides of (6) and substituting
into L̃′′( p̃) one obtains L̃′′( p̃) = !′1( p̃)

1− p̃ = −w( p̃). (See Reid and Williamson, 2011). Equation 7
implies !′1( p̃) = ( p̃−1)w( p̃), !′2( p̃) = p̃w( p̃) and hence !′′1( p̃) = w( p̃)+ ( p̃−1)w′( p̃) and !′′2( p̃) =
w( p̃)+ p̃w′( p̃). Substituting these expressions into (5) gives

η! = inf
p̃∈(0,1)

( p̃−1)w( p̃)[w( p̃)+ p̃w′( p̃)]− [w( p̃)+( p̃−1)w′( p̃)] p̃w( p̃)
( p̃−1)w( p̃) p̃w( p̃)[ p̃w( p̃)− ( p̃−1)w( p̃)]

= inf
p̃∈(0,1)

1
p̃(1− p̃)w( p̃)

.

Observing that Llog(p) =−p1 ln p1− p2 ln p2 we have L̃log( p̃) =− p̃ ln p̃−(1− p̃) ln(1− p̃) and thus
L̃′′log( p̃) = −1

p̃(1− p̃) and so wlog( p̃) =
1

p̃(1− p̃) . Thus

η! = inf
p̃∈(0,1)

wlog( p̃)
w!( p̃)

= inf
p̃∈(0,1)

L̃′′log( p̃)
L̃′′( p̃)

. (8)

That is, the mixability constant of binary proper losses is the minimal ratio of the second derivatives
of the Bayes risks for log loss and the loss in question. The rest of this paper is devoted to the
generalisation of (8) to the multiclass case. That there is a relationship between Bayes risk and
mixability was also pointed out (in a less explicit form) by Kalnishkan et al. (2004).

By substituting w!( p̃) =
!′1( p̃)
p̃−1 and wlog( p̃) =

1
p̃(1− p̃) into (8), one obtains an expression to com-

pute η! that is simpler than (5):
−1
η!

= inf
p̃∈(0,1)

p̃!′1( p̃). (9)

This result also generalizes to the multiclass case; see Corollary 14.

4.2 Mixability and the Concavity of the Function fη
Our aim is to relate mixability of a loss to the curvature of its Bayes risk surface. Since mixability is
equivalent to concavity of the function fη, which maps the first n−1 coordinates of Φη to the n-th
coordinate, we will start by giving an explicit expression for fη. We will assume throughout that the
loss ! is strictly proper and continuous on Δn.
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It is convenient to introduce an auxiliary function τη : Δ̃n → [0,1]n−1 as

τη( p̃) := Eη(!̃( p̃)) =
(

e−η!1( p̃), . . . ,e−η!n−1( p̃)
)

, (10)

which maps a distribution p̃ to the first n−1 coordinates of an element in Φη. The range of τη will
be denoted Φ̃η (see Figure 1). In addition, let the projection ΠΦ : Φη → Φ̃η map any element of
φ ∈ Φη to its first n− 1 coordinates (φ1, . . . ,φn−1). Then under our assumptions, all the maps we
have defined are well-behaved:

Lemma 3 Let ! be a continuous, strictly proper loss. Then for η > 0 all functions in Figure 1 are
continuous and invertible with continuous inverse.

Proof Lemma 1 already covers most of the functions. Given that Eη satisfies the required properties,
they can be derived for the remaining functions by writing them as a composition of functions for
which the properties are known. For example, τη = Eη ◦ !̃ is a composition of two continuous and
invertible functions, which each have a continuous inverse.

It follows that, under the conditions of the lemma, the function fη : Φ̃η → [0,1] may be defined as

fη(φ̃) = e−η!n(τ
−1
η (φ̃)) (11)

and is continuous. Moreover, as Φ̃η (the domain of fη) is the preimage under τ−1 of the closed set
Δ̃n, continuity of τ−1 implies that Φ̃η is closed as well. However, continuity implies that we may
restrict attention to the interiors of Φ̃η and of the probability simplex:

Lemma 4 Let ! be a continuous, strictly proper loss. Then, for η > 0, fη is concave if and only if
it is concave on the interior int(Φ̃η) of its domain. Furthermore this set corresponds to a subset of
the interior of the simplex: τ−1η (int(Φ̃η))⊆ int(Δ̃n) =ΠΔ(rel int(Δn)).

Proof The restriction to int(Φ̃η) follows trivially from continuity of fη. The set τ−1η (int(Φ̃η)) is the
preimage under τη of the open set int(Φ̃η). Since τη is continuous, it follows that this set must also
be open and hence be a subset of the interior of Δ̃n.

4.3 Relating Concavity of fη to the Hessian of L

The aim of this subsection is to express the Hessian of fη in terms of the Bayes risk of the loss
function defining fη. We first note that a twice differentiable function f : X → R defined on X ⊆
Rn−1 is concave if and only if its Hessian at x, H f (x), is negative semi-definite for all x∈ X (Hiriart-
Urruty and Lemaréchal, 1993). The argument that follows consists of repeated applications of the
chain and inverse rules for Hessians to compute H fη.

We start the analysis by considering the η-exponential operator, used in the definition of τ (10):

Lemma 5 Suppose η> 0. Then the derivatives of Eη and E−1
η are

DEη(λ) =−ηdiag(Eη(λ)) and DE−1
η (φ) =−η−1 [diag(φ)]−1 .
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And the Hessian of E−1
η is

HE−1
η (φ) =

1
η







diag(φ−21 ,0, . . . ,0)
...

diag(0, . . . ,0,φ−2n )






. (12)

If η = 1 and ! = !log = p 1→ −(ln p1, . . . , ln pn)′ is the log loss, then the map τ1 is the identity map
(i.e., φ̃= τ1( p̃) = p̃) and E−1

1 ( p̃) = !̃log( p̃) is the (projected) log loss.

Proof The derivatives follow immediately from the definitions. By (24) the Hessian HE−1
η (φ) =

D
(

DE−1
η (φ)

)

and so

HE−1
η (φ) = D

((

−
1
η
[diag(φ)]−1

)′)

=−
1
η
Ddiag(φ−1i )ni=1.

Let h(φ) = diag(φ−1i )ni=1. We have

Dh(φ) = Dvech(φ) =







diag(−φ−21 ,0, . . . ,0)
...

diag(0, . . . ,0,−φ−2n )






.

The result for η= 1 and !log follows from τ1( p̃) = E1(!̃( p̃)) = (e−1·− ln p̃1 , . . . ,e−1·− ln p̃n−1)′.

Next we turn our attention to other components of fη. Using the stationarity condition and
invertibility of ! from Lemma 1, simple expressions can be derived for the Jacobian and Hessian of
the projected Bayes risk L̃( p̃) := L(Π−1

Δ ( p̃)):

Lemma 6 Suppose the loss ! satisfied Condition A. Take p̃ ∈ int(Δ̃n), and let y( p̃) := − p̃/pn( p̃).
Then

Y ( p̃) :=−pn( p̃)Dy( p̃) =
(

In−1+
1
pn
p̃ ′

n−1

)

is invertible for all p̃, and
D!n( p̃) = y( p̃)′ ·D!̃( p̃). (13)

The projected Bayes risk function L̃( p̃) satisfies

DL̃( p̃) = !̃( p̃)′ − !n( p̃) ′
n−1 (14)

and HL̃( p̃) = Y ( p̃)′ ·D!̃( p̃). (15)

Furthermore, the matrix HL̃( p̃) is negative definite and invertible for all p̃, and when != !log is the
log loss

HL̃log( p̃) =−Y ( p̃)′ · [diag( p̃)]−1 . (16)

Proof The stationarity condition (Lemma 1) guarantees that p′D!( p̃) = 0n−1 for all p ∈ rel int(Δn).
This is equivalent to p̃′D!̃( p̃)+ pn( p̃)D!n( p̃) = 0n−1, which can be rearranged to obtain (13).
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By the product rule Da′b= (Da′)b+a′(Db), we obtain

Dy( p̃) =− p̃D[pn( p̃)−1]− [pn( p̃)−1]Dp̃
= p̃[pn( p̃)−2]Dpn( p̃)− [pn( p̃)−1]In−1
=− p̃[pn( p̃)−2] ′

n−1− [pn( p̃)−1]In−1

=−
1

pn( p̃)

[

In−1+
1

pn( p̃)
p̃ ′

n−1

]

,

since pn( p̃)= 1−∑i∈[n−1] p̃i impliesDpn( p̃)=− ′
n−1. This establishes thatY ( p̃)= In−1+ 1

pn( p̃) p̃
′
n−1.

That this matrix is invertible can be easily checked since

(In−1− p̃ ′
n−1)(In−1+

1
pn( p̃)

p̃ ′
n−1) = In−1

by expanding and noting p̃ ′
n−1 p̃ ′

n−1 = (1− pn) p̃ ′
n−1.

The Bayes risk is L̃( p̃) = p̃′!̃( p̃)+ pn( p̃)!n( p̃). Taking the derivative and using the product rule
gives

DL̃( p̃) = D
[

p̃′!̃( p̃)
]

+D [pn( p̃)!n( p̃)]
= !̃( p̃)+ p̃′D!̃( p̃)+ [Dpn( p̃)]!n( p̃)+ pn( p̃)D!n( p̃)
= !̃( p̃)− pn( p̃)D!n( p̃)− !n( p̃) ′

n−1+ pn( p̃)D!n( p̃)

by (13). Thus, DL̃( p̃) = !̃( p̃)′ − !n( p̃) ′
n−1, establishing (14).

Equation 15 is obtained by taking derivatives once more and using (13) again, yielding

HL̃( p̃) = D

(

(

DL̃( p̃)
)′
)

= D!̃( p̃)− n−1 ·D!n( p̃) =
(

In−1+
1
pn

n−1 p̃′
)

D!̃( p̃)

as required. Now L̃( p̃) = L(p1, . . . , pn−1, pn( p̃)) = L(p1, . . . , pn−1,1−∑n−1
i=1 pi) = L(C( p̃)) whereC

is affine. Since p 1→ L(p) is strictly concave (Lemma 1) it follows (Hiriart-Urruty and Lemaréchal,
1993) that p̃ 1→ L̃( p̃) is also strictly concave and thus HL̃( p̃) is negative definite. It is invertible
since we have shown Y ( p̃) is invertible and D!̃ is invertible by the inverse function theorem and the
invertibility of !̃ (Lemma 1).

Finally, Equation 16 holds since Lemma 5 gives us E−1
1 = !̃log so (15) specialises to HL̃log( p̃) =

Y ( p̃)′ ·D!̃log( p̃) = Y ( p̃)′ ·DE−1
1 ( p̃) =−Y ( p̃)′ · [diag( p̃)]−1 , also by Lemma 5.

4.4 Completion of the Argument

Recall that our aim is to compute the Hessian of the function describing the boundary of the η-
exponentiated superprediction set and determine when it is negative semi-definite. The boundary is
described by the function fη which can be written as the composition hη ◦ gη where hη(z) := e−ηz
and gη(φ̃) := !n

(

τ−1η (φ̃)
)

. The Hessian of fη can be expanded in terms of gη using the chain rule
for the Hessian (Theorem 21) as follows.
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Lemma 7 Suppose the loss ! satisfies Condition A and η> 0. Then for all φ̃ ∈ int(Φ̃), the Hessian
of fη at φ̃ is

H fη(φ̃) = ηe−ηgη(φ̃)Γη(φ̃),

where Γη(φ̃) := ηDgη(φ̃)′ ·Dgη(φ̃)−Hgη(φ̃). Furthermore, for η> 0 the negative semi-definiteness
of H fη(φ̃) (and thus the concavity of fη) is equivalent to the negative semi-definiteness of Γη(φ̃).

Proof Using f := fη and g := gη temporarily and letting z= g(φ̃), the chain rule for H gives

H f (φ̃) =
(

I1⊗Dg(φ̃)′
)

· (Hhη(z)) ·Dg(φ̃)+(Dhη(z)⊗ In−1) ·Hg(φ̃)
= η2e−ηzDg(φ̃)′ ·Dg(φ̃)−ηe−ηzHg(φ̃)

= ηe−ηg(φ̃)
[

ηDg(φ̃)′ ·Dg(φ̃)−Hg(φ̃)
]

,

since α⊗A = αA for scalar α and matrix A and Dhη(z) = D[exp(−ηz)] = −ηe−ηz so Hh(z) =
η2e−ηz. Whether H f " 0 depends only on Γη since ηe−ηg(φ̃) is positive for all η> 0 and φ̃.

We proceed to compute the derivative and Hessian of gη:

Lemma 8 Suppose ! satisfies Condition A. For η > 0 and φ̃ ∈ int(Φ̃η), let λ := E−1
η (φ̃) and p̃ :=

!̃−1(λ). Then

Dgη(φ̃) = y( p̃)′Aη(φ̃) (17)

and Hgη(φ̃) =−
1

pn( p̃)
Aη(φ̃)′ ·

[

ηdiag( p̃)+Y ( p̃) ·
[

HL̃( p̃)
]−1 ·Y ( p̃)′

]

·Aη(φ̃),

where Aη(φ̃) := DE−1
η (φ̃).

Proof By definition, gη(φ̃) := !n(τ−1η (φ̃)). Since τ−1η = !̃−1 ◦E−1
η we have gη = !n ◦ !̃−1 ◦E−1

η .
Thus, by the chain rule, Equation 13 from Lemma 6, and the inverse function theorem, we obtain

Dgη(φ̃) = D!n( p̃) ·D!̃−1(λ) ·DE−1
η (φ̃) = y( p̃)′D!̃( p̃) ·

[

D!̃( p̃)
]−1 ·

[

DE−1
η (φ̃)

]

= y( p̃)′Aη(φ̃)

yielding (17). Since p̃= τ−1η (φ̃) and Hgη = D((Dgη)′) (see (24)), the chain and product rules give

Hgη(φ̃) = D

[

(

DE−1
η (φ̃)

)′ · y
(

τ−1η (φ̃)
)

]

=
(

y(τ−1η (φ̃))′ ⊗ In−1
)

·D
(

DE−1
η (φ̃)′

)

+
(

I1⊗ (DE−1
η (φ̃))′

)

·D
(

y
(

τ−1η (φ̃)
))

=
(

y( p̃)′ ⊗ In−1
)

·HE−1
η (φ̃)+

(

DE−1
η (φ̃)

)′ ·Dy( p̃) ·Dτ−1η (φ̃)

=−
η

pn( p̃)
Aη(φ̃) ·diag( p̃) ·Aη(φ̃)+Aη(φ̃)′ ·Dy( p̃) ·Dτ−1η (φ̃). (18)
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The first summand in (18) is due to (12) and the fact that

(y⊗ In−1) ·HE−1
η (φ̃) =

1
η
[y1In−1, . . . ,yn−1In−1] ·







diag(φ−21 ,0, . . . ,0)
...

diag(0, . . . ,0,φ−2n−1)







=
1
η

n−1

∑
i=1

yi · In−1 ·diag(0, . . . ,0,φ−2i ,0, . . . ,0)

=
1
η
diag(yiφ−2i )n−1i=1

=
−η
pn( p̃)

Aη(φ̃)′ ·diag( p̃) ·Aη(φ̃).

The last equality holds because Aη(φ̃)′ ·Aη(φ̃) = η−2 diag(φ̃−2i )n−1i=1 by Lemma 5, the definition of
y( p̃) =−[pn( p̃)]−1 p̃, and because all the matrices are diagonal and thus commute.

The second summand in (18) reduces by Dy( p̃) =− 1
pn( p̃)Y ( p̃) from Lemma 6 and τη = Eη ◦ !̃:

Dτ−1η (φ̃) =
[

DEη(λ) ·D!̃( p̃)
]−1

=
[

DEη(λ) · (Y ( p̃)′)−1 ·HL̃( p̃)
]−1

=
[

HL̃( p̃)
]−1·Y ( p̃)′ ·DE−1

η (λ).

Substituting these into (18) gives

Hgη(φ̃) =−
η

pn( p̃)
Aη(φ̃) ·diag( p̃) ·Aη(φ̃)−

1
pn( p̃)

Aη(φ̃)′ ·Y ( p̃) ·
[

HL̃( p̃)
]−1 ·Y ( p̃)′ ·Aη(φ̃),

which can be factored into the required result.

We can now use the last two lemmata to express the function Γη in terms of the Hessian of the
Bayes risk functions for the specified loss ! and the log loss.

Lemma 9 Suppose a loss ! satisfies Condition A. Then for η > 0 the matrix-valued function Γη
satisfies the following: for all φ̃ ∈ int(Φ̃η) and p̃= τ−1η (φ̃),

Γη(φ̃) =
1
pn
Aη(φ̃)′ ·Y ( p̃) ·

[

[

HL̃( p̃)
]−1−η

[

HL̃log( p̃)
]−1

]

·Y ( p̃)′ ·Aη(φ̃), (19)

and is negative semi-definite if and only if R(η,!, p̃) :=
[

HL̃( p̃)
]−1−η

[

HL̃log( p̃)
]−1 is negative

semi-definite.

Proof Substituting the values of Dgη and Hgη from Lemma 8 into the definition of Γη from
Lemma 7 and then using Lemma 5 and the definition of y( p̃), we obtain

Γη(φ̃) = ηAη(φ̃)′ · y( p̃) · y( p̃)′ ·Aη(φ̃)

+
1

pn( p̃)
Aη(φ̃)′ ·

[

ηdiag( p̃)+Y ( p̃) ·
[

HL̃( p̃)
]−1 ·Y ( p̃)′

]

·Aη(φ̃)

=
1
pn
Aη(φ̃)′ ·

[

η
1
pn
p̃ · p̃′+ηdiag( p̃)+Y ( p̃) ·

[

HL̃( p̃)
]−1 ·Y ( p̃)′

]

·Aη(φ̃). (20)
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Using Lemma 6 we then see that

−Y ( p̃) ·
[

HL̃log( p̃)
]−1 ·Y ( p̃)′ =−Y ( p̃) ·

[

−Y ( p̃)′ diag( p̃)−1
]−1 ·Y ( p̃)′

= Y ( p̃) ·diag( p̃) · (Y ( p̃)′)−1 ·Y ( p̃)′

= (In−1+
1
pn

n−1 p̃′) ·diag( p̃)

= diag( p̃)+
1
pn
p̃ · p̃′.

Substituting this for the appropriate terms in (20) gives

Γη(φ̃) =
1
pn
Aη(φ̃)′ ·

[

Y ( p̃) ·
[

HL̃( p̃)
]−1 ·Y ( p̃)′ −ηY ( p̃) ·

[

HL̃log( p̃)
]−1 ·Y ( p̃)′

]

·Aη(φ̃),

which equals (19).
Since Γη = [pn]−1BRB′ where B = Aη(φ̃)′Y ( p̃) and R = R(η,!, p̃) the definition of negative

semi-definiteness and the positivity of pn means we need to show that ∀x : x′Γηx ≤ 0 ⇐⇒ ∀y :
y′Ry ≤ 0. It suffices to show that B is invertible, since we can let y = Bx to establish the equiva-
lence. The matrix Aη(φ̃) is invertible since, by definition, Aη(φ̃) =DE−1

η (φ̃) =−η−1[diag(φ̃)]−1 by
Lemma 5 and so has matrix inverse −ηdiag(φ̃). The matrix Y ( p̃) is invertible by Lemma 8. Thus,
B is invertible because it is the product of two invertible matrices.

The above arguments result in a characterisation of the concavity of the function fη (via its
Hessian)—and hence the convexity of the η-exponentiated superprediction set—in terms of the
Hessian of the Bayes risk function of the loss ! and the log loss !log. As in the binary case (cf. (8)),
this means we are now able to specify the mixability constant η! in terms of the curvature HL̃ of the
Bayes risk for ! relative to the curvature HL̃log of the Bayes risk for log loss.

Theorem 10 Suppose a loss ! satisfies Condition A. Let L̃( p̃) be the Bayes risk for ! and L̃log( p̃) be
the Bayes risk for the log loss. Then the following statements are equivalent:

(i.) ! is η-mixable;

(ii.) ηHL̃( p̃)! HL̃log( p̃) for all p̃ ∈ int(Δ̃n);

(iii.) ηL(p)−Llog(p) is convex on rel int(Δn);

(iv.) ηL̃( p̃)− L̃log( p̃) is convex on int(Δ̃n).

Note that the largest η that satisfies any one of (i)–(iv) is the mixability constant for the loss. For
example,

η! =max{η≥ 0: ∀ p̃ ∈ int(Δ̃n) , ηHL̃( p̃)! HL̃log( p̃)}.

Proof The case η = 0 is trivial, so suppose η > 0. Then by Lemmas 7 and 9 we know H fη( p̃) "
0 ⇐⇒ R(η,!, p̃)" 0. By Lemma 6,HL̃( p̃)≺ 0 andHL̃log( p̃)≺ 0 for all p̃ and so we can use the fact
that for positive definite matrices A and Bwe have A!B ⇐⇒ B−1!A−1 (Horn and Johnson, 1985,
Corollary 7.7.4). This means R(η,!, p̃) " 0 ⇐⇒ HL̃( p̃)−1 " ηHL̃log( p̃)−1 ⇐⇒ η−1HL̃log( p̃) "
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HL̃( p̃) ⇐⇒ ηHL̃( p̃)! HL̃log( p̃). Therefore fη is concave at p̃ if and only if ηHL̃( p̃) ! HL̃log( p̃).
Since concavity of fη was equivalent to η-mixability, this establishes equivalence of (i) and (ii).

Since ηHL̃( p̃) ! HL̃log( p̃) ⇐⇒ H
(

ηL̃( p̃)− L̃log( p̃)
)

! 0, equivalence of (ii) and (iv) follows
from the fact that positive semi-definiteness of the Hessian of a function on an open set is equivalent
to convexity of the function (Hiriart-Urruty and Lemaréchal, 1993). Finally, equivalence of (iv) and
(iii) follows by linearity of the map pn( p̃) = 1−∑n−1

i=1 p̃i.

The lemma allows one to derive η-mixability of an average of two η-mixable proper losses that
satisfy its conditions:

Corollary 11 Suppose !A and !B are two η-mixable losses that satisfy Condition A. Then, for any
λ ∈ (0,1), the loss != (1−λ)!A+λ!B is also η-mixable.

Proof Clearly ! is continuous and continuously differentiable. And because properness of !A and
!B implies that L!(p) = (1−λ)L!A(p)+λL!B(p), it is also strictly proper. Thus Theorem 10 applies
to !, and we just need to verify that ηL!(p)−Llog(p) is convex. Noting that

ηL!(p)−Llog(p) = (1−λ)
(

ηL!A(p)−Llog(p)
)

+λ
(

ηL!B(p)−Llog(p)
)

is a convex combination of two convex functions, the result follows.

One may wonder which loss is the most mixable. In the following we derive a straight-forward
result that shows the (perhaps unsurprising) answer is log loss. Let ei ∈ Δn denote the point-mass
on the i-th outcome. Then we call a proper loss fair if L(ei,ei) = L(ei) = 0 for all i (Reid and
Williamson, 2011). That is, if one is certain that outcome i will occur and this is correct, then it is
only fair if one incurs no loss. Any loss can be made fair by subtracting the unique affine function
that interpolates {L(ei) : i ∈ [n]} from its Bayes risk. This does not change the curvature of L and
thus by Theorem 10 it has the same mixability constant (provided the conditions of the theorem are
satisfied). We will call a proper loss normalised if it is fair and maxp∈Δn L(p) = 1. If a fair proper
loss is not normalised, one may normalise it by dividing the loss on all outcomes by maxp∈Δn L(p).
This scales up the mixability constant by maxp∈Δn L(p). For example, log loss is fair, but in order
to normalise it, one needs to divide by maxp∈Δn Llog(p) = log(n), and the mixability constant η! for
the resulting loss is log(n).

Corollary 12 Suppose a loss ! satisfies Condition A. Then, if ! is normalised and L(p) is contin-
uous, it can only be η-mixable for η ≤ log(n). This bound is achieved if ! is the normalised log
loss.

Proof Since L(p) is continuous and has a compact domain, there exists a p∗ = argmaxp∈Δn L(p)
that achieves its maximum, which is 1 by assumption. Now by Theorem 10, η-mixability implies
convexity of ηL(p)−Llog(p) on int(Δn), which extends to convexity on Δn by continuity of L(p)
and Llog(p), and hence

0= Ei∼p∗
[

ηL(ei)−Llog(ei)
]

≥ ηL(p∗)−Llog(p∗) = η−Llog(p∗)

⇒η≤ Llog(p∗)≤ Llog
(1
n , . . . ,

1
n
)

= log(n),
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where the first equality follows from fairness of ! and log loss, and the first inequality follows from
Jensen’s inequality.

The mixability constant can also be expressed in terms of the maximal eigenvalue of the “ratio”
of the Hessian matrices for the Bayes risk for log loss and the loss in question. In the following,
λi(A)will denote the ith largest (possibly repeated) eigenvalue of the n×n symmetric matrix A. That
is, λmin(A) := λ1(A)≤ λ2(A)≤ · · ·≤ λn =: λmax(A) where each λi(A) satisfies |A−λi(A)I|= 0.

Theorem 13 Suppose a loss ! satisfies Condition A. Then its mixability constant is

η! = inf
p̃∈int(Δ̃n)

λmax
(

(HL̃( p̃))−1 ·HL̃log( p̃)
)

. (21)

Equation 21 reduces to (8) when n= 2 since the maximum eigenvalue of a 1×1 matrix is simply
its single entry. Since the maximum eigenvalue of the Hessian of a function can be thought of as
the “curvature”, the above result justifies the title of the paper.

Proof For p̃ ∈ int(Δ̃n), we define Cη( p̃) := ηHL̃( p̃)−HL̃log( p̃) and ρ( p̃) := HL̃( p̃)−1 ·HL̃log( p̃)
and first show that zero is an eigenvalue ofCη( p̃) if and only if η is an eigenvalue of ρ( p̃). This can
be seen since HL̃( p̃) is invertible (Lemma 6) so

|Cη( p̃)−0I|= 0 ⇐⇒ |ηHL̃( p̃)−HL̃log( p̃)|= 0 ⇐⇒ |HL̃( p̃)−1||ηHL̃( p̃)−HL̃log( p̃)|= 0
⇐⇒

∣

∣HL̃( p̃)−1 ·
[

ηHL̃( p̃)−HL̃log( p̃)
]∣

∣= 0 ⇐⇒ |ηI−HL̃( p̃)−1 ·HL̃log( p̃)|= 0.

Since a symmetric matrix is positive semidefinite if and only if all its eigenvalues are non-negative it
must be the case that if λmin(Cη( p̃))≥ 0 thenCη( p̃)! 0 since every other eigenvalue is bigger than
the minimum one. Conversely, if Cη( p̃) *! 0 then at least one eigenvalue must be negative, thus the
smallest eigenvalue must be negative. Thus, λmin(Cη( p̃))≥ 0 ⇐⇒ Cη( p̃)! 0. Now define η( p̃) :=
sup{η> 0 :Cη( p̃)! 0}= sup{η> 0 : λmin(Cη( p̃))≥ 0}. We show that for each p̃ the function η 1→
λmin(Cη( p̃)) is continuous and only has a single root. First, continuity follows because the entries
of Cη( p̃) are continuous in η for each p̃ and eigenvalues are continuous functions of their matrix’s
entries (Horn and Johnson, 1985, Appendix D). Second, as a function of its matrix arguments, the
minimum eigenvalue λmin is known to be concave (Magnus and Neudecker, 1999, §11.6). Thus,
for any fixed p̃, its restriction to the convex set of matrices {Cη( p̃) : η > 0} is also concave in its
entries and so in η. Since C0( p̃) = −HL̃log( p̃) is positive definite for every p̃ (Lemma 6) we have
λmin(C0( p̃))> 0 and so, by the concavity of the map η 1→ λmin(Cη( p̃)), there can be only one η> 0
for which λmin(Cη( p̃)) = 0 and by continuity it must be largest non-negative one, that is, η( p̃).

Thus

η( p̃) = sup{η> 0 : λmin(Cη( p̃)) = 0}= sup{η> 0 : η is an eigenvalue of ρ( p̃)}= λmax(ρ( p̃)).

Now let η∗ := infp̃∈int(Δ̃n)η( p̃) = infp̃∈int(Δ̃n)λmax(ρ( p̃)). We now claim that Cη∗( p̃) ! 0 for all p̃
since if there was some q̃∈ Δ̃n such thatCη∗(q̃) *! 0 we would have η(q̃)<η∗ since η 1→ λmin(Cη(q̃))
only has a single root—a contradiction. Thus, since we have shown η∗ is the largest η such that
Cη∗( p̃)! 0 it must be η!, by Theorem 10, as required.
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The following Corollary gives an expression for η! that is simpler than (21), generalising (9)
from the binary case.

Corollary 14 Suppose ! satisfies Condition A. Then its mixability constant satisfies

−1
η!

= inf
p̃∈int(Δ̃n)

λmax
(

diag( p̃) ·D!̃( p̃)
)

. (22)

Proof Theorem 13 combined with Lemma 6 allows us to write

η! = inf
p̃∈int Δ̃n

λmax
(

(

Y ( p̃)′ ·D!̃( p̃)
)−1 ·

(

Y ( p̃)′ ·D!̃log( p̃)
)

)

= inf
p̃∈int Δ̃n

λmax
(

(D!̃( p̃))−1 ·D!̃log( p̃)
)

= inf
p̃∈int Δ̃n

λmax
(

(D!̃( p̃))−1 ·diag(−1/pi)n−1i=1
)

.

=− sup
p̃∈int Δ̃n

λmin
(

(D!̃( p̃))−1 ·diag(1/pi)n−1i=1
)

and thus (22) follows since λmax(A) = 1/λmin(A−1).

5. Mixability of the Brier Score

We will now apply the results from the previous section to show that the multiclass Brier score is
mixable with mixability constant 1, as first proved by Vovk and Zhdanov (2009). The n-class Brier
score is1

!Brier(y, p̂) =
n

∑
i=1

(!yi = 1"− p̂i)2,

where y ∈ {0,1}n and p̂ ∈ Δn. Thus

LBrier(p, p̂) =
n

∑
i=1

EY∼p(!Yi = 1"− p̂i)2 =
n

∑
i=1

(pi−2pi p̂i+ p̂2i ).

Hence LBrier(p)= LBrier(p, p)=∑n
i=1(pi−2pipi+ p2i )= 1−∑n

i=1 p2i since∑n
i=1 pi= 1, and L̃Brier( p̃)=

1−∑n−1
i=1 p2i −

(

1−∑n−1
i=1 pi

)2
.

Theorem 15 The Brier score is mixable, with mixability constant ηBrier = 1.

Proof It can be verified by basic calculus that !Brier is continuous and continuously differentiable
on int(Δ̃n). To see that it is strictly proper, note that for p̂ *= p the inequality LBrier(p, p̂)> LBrier(p)
is equivalent to

n

∑
i=1

(p2i −2pi p̂i+ p̂2i )> 0 or
n

∑
i=1

(pi− p̂i)2 > 0,

1. This is the definition used by Vovk and Zhdanov (2009). Cesa-Bianchi and Lugosi (2006) use a different definition
(for the binary case) which differs by a constant. Their definition results in L̃( p̃) = p̃(1− p̃) and thus L̃′′( p̃) =−2. If
n= 2, then L̃Brier as defined above leads to L̃

′′
Brier( p̃) = HL̃Brier( p̃) =−2(1+1) =−4.
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and the latter inequality is true because pi *= p̂i for at least one i by assumption. Hence the conditions
of Theorem 10 are satisfied.

We will first prove that ηBrier ≤ 1 by showing that convexity of ηL̃Brier( p̃)− L̃log( p̃) on int(Δ̃n)
implies η ≤ 1. If ηL̃Brier( p̃)− L̃log( p̃) is convex, then it is convex as a function of p1 when all
other elements of p̃ are kept fixed. Consequently, the second derivative with respect to p1 must be
nonnegative:

0≤
∂2

∂p21

(

ηL̃Brier( p̃)− L̃log( p̃)
)

=
1
p1

+
1
pn

−4η.

By letting p1 and pn both tend to 1/2, it follows that η≤ 1.
It remains to show that ηBrier ≥ 1. By Theorem 10 it is sufficient to show that, for η ≤ 1,

ηLBrier(p)− Llog(p) is convex on rel int(Δn). We proceed by induction. For n = 1, the required
convexity holds trivially. Suppose the lemma holds for n−1, and let fn(p1, . . . , pn) = ηLBrier(p)−
Llog(p) for all n. Then for n≥ 2

fn(p1, . . . , pn) = fn−1(p1+ p2, p3, . . . , pn)+g(p1, p2),

where g(p1, p2) = −ηp21−ηp22+η(p1+ p2)2+ p1 ln p1+ p2 ln p2− (p1+ p2) ln(p1+ p2). Since
fn−1 is convex by inductive assumption and the sum of two convex functions is convex, it is therefore
sufficient to show that g(p1, p2) is convex or, equivalently, that its Hessian is positive semi-definite.
Abbreviating q= p1+ p2, we have that

Hg(p1, p2) =
(

1/p1−1/q 2η−1/q
2η−1/q 1/p2−1/q

)

.

A 2× 2 matrix is positive semi-definite if its trace and determinant are both non-negative, which
is easily verified in the present case: Tr(Hg(p1, p2)) = 1/p1+ 1/p2− 2/q ≥ 0 and |Hg(p1, p2)| =
(1/p1−1/q)(1/p2−1/q)− (2η−1/q)2, which is non-negative if

1
p1p2

−
1
p1q

−
1
p2q

≥ 4η2−
4η
q

0≥ 4η2q−4η
ηq≤ 1.

Since q = p1+ p2 ≤ 1, this inequality holds for η ≤ 1, which shows that g(p1, p2) is convex and
thereby completes the proof.

6. Extension to Improper Losses

Our results are stated for proper losses. However, they also extend to a large class of improper (i.e.,
not proper) loss functions !imp : V→ [0,∞], which may be related to a proper loss ! with the same
mixability constant using the following construction.

For any distribution p ∈ Δn and action v ∈ V, let Limp(p,v) = p′!imp(v) denote the risk and let
Limp(p) = infv∈VLimp(p,v) denote the Bayes risk for !imp. If the infimum in the definition of the
Bayes risk is achieved for all p, there exists a (possibly non-unique) reference link ψimp : Δn → V

(Reid and Williamson, 2010), which is a function satisfying

Limp(p,ψimp(p)) = Limp(p).
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This function can be seen as one which “calibrates” !imp by returning ψimp(p), the best possible
prediction under outcomes distributed by p. The loss function defined by

!(q) := !imp(ψimp(q)) (q ∈ Δn)

is proper by definition of the reference link.
If for every action v ∈ V there exists a distribution p ∈ Δn such that ψimp(p) = v (i.e., the

reference link is surjective), then ! is just a reparametrization of !imp and their superprediction sets
S! and S!imp , as defined in (4), are the same. It then follows that Eη(S!) = Eη(S!imp) for all η, such
that ! and !imp must have the same mixability constants.

It turns out that the superprediction sets of ! and !imp are often the same even if ψimp is not
surjective. This follows from Theorem 20 of Chernov et al. (2010) and its proof,2 which may be
reformulated as follows.

Theorem 16 (Chernov et al., 2010) Let Λimp = !imp(V) be the set of achievable loss vectors. Sup-
pose !imp is mixable and satisfies the following conditions:

(i.) Λimp is a compact subset of [0,∞]n (in the extended topology);

(ii.) There exists an action v ∈ V such that all components of !imp(v) are finite;

(iii.) For every distribution p ∈ Δn such that pi = p j = 0 for some i *= j, the minimum of Limp(p, ·)
is unique.

Then a unique reference link ψimp exists and S! = S!imp , so ! and !imp have the same mixability
constants. Moreover, ! is continuous and strictly proper.

Remark 17 To see the equivalence between our version and Theorem 20 of Chernov et al. (2010),
note that mixability of !imp implies that ΣηΛ = ΣΛ in their notation, for any η > 0 such that !imp is
η-mixable.

It seems likely that the mixability constants for !imp and ! will be the same even under weaker
conditions than those of Theorem 16. In particular, we suspect that mixability of !imp is not always
necessary, and Chernov and Vovk (2010) suggest that Condition iii may be removed. See also the
discussion on mixability of composite losses by Vernet et al. (2012).

In the absence of such strengthenings of Theorem 16, it may be useful to recall that exp-
concavity of !imp implies mixability (Cesa-Bianchi and Lugosi, 2006). An easy test to determine
the mixability constant for !imp in some cases where it is 0, is given by the following observation
(Kalnishkan and Vyugin, 2008):

Lemma 18 If S!imp is not convex, then !imp is not mixable.

Proof Suppose !imp is η-mixable for some η > 0. Then, for any x,y ∈ S!imp and any λ ∈ [0,1],
the set Eη(S!imp) contains the point z = (1−λ)Eη(x)+λEη(y). Consequently, S!imp itself contains
z′ = E−1

η (z), and by construction each component of z′ satisfies

z′i =−
1
η
ln
(

(1−λ)e−ηxi +λe−ηyi
)

≤ (1−λ)xi+λyi (i= 1, . . . ,n)

2. We thank a COLT2011 referee for referring us to this result.
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by convexity of the exponential function. It follows that the point (1−λ)x+λy dominates z′ and
hence is also contained in S!imp . Thus S!imp is convex, and we have shown that mixability implies
convexity of S!imp , from which the result follows.

7. Connection to α-Flatness and Strong Convexity

We now briefly relate our result to recent work by Abernethy et al. (2009). They formulate the
learning problem slightly differently. They do not restrict themselves to proper losses and so the
predictions are not restricted to the simplex. This means it is not necessary to go to the submanifold
Δ̃n in order for derivatives to be well defined.

Abernethy et al. (2009) have developed their own bounds on cumulative loss in terms of the
α-flatness (defined below) of L(p). They show that α-flatness is implied by strong convexity of the
loss !. The duality between the loss surface and Bayes risk that they established through the use of
support functions can also be seen in Lemma 6 in the relationship between the Hessian of L̃ and the
derivative of !̃. Although it is obscured somewhat due to our use of functions of p̃, this relationship
is due to the properness of ! guaranteeing that !−1 is the (homogeneously extended) Gauss map for
the surface L̃. Below we point out the relationship between α-flatness and the positive definiteness
of HL(p) (we stress that in our work we used HL̃( p̃)). Whilst the two results are not precisely
comparable, the comparison below seems to suggest that the condition of Abernethy et al. (2009) is
stronger than necessary.

Suppose X is a Banach space with norm ‖ · ‖. Given a real number α > 0 and a function
σ : R+ → [0,∞] such that σ(0) = 0, a convex function f : X → R is said to be (α,σ,‖ · ‖)-flat (or
(α,σ,‖ ·‖)-smooth)3 if for all x,x0 ∈ X,

f (x)− f (x0)≤ D f (x0) · (x− x0)+ασ(‖x− x0‖).

A concave function g is flat if the convex function −g is flat. When ‖ · ‖ = ‖ · ‖2, and σ(x) = x2,
it is known (Hiriart-Urruty and Lemaréchal, 1993) that for α > 0, f is (α,x 1→ x2,‖ ·‖2)-flat if and
only if f −α‖ ·‖2 is concave. Thus f is α-flat if and only if H( f −α‖ ·‖2) is negative semi-definite,
which is equivalent to H f −2αI " 0 ⇐⇒ H f " 2αI.

Abernethy et al. (2009) show that if L is (α,x 1→ x2,‖ · ‖1)-flat, then the minimax regret for a
prediction game with T rounds is bounded above by 4α logT . It is thus of interest to relate their
assumption on L to the mixability condition (which guarantees constant regret, in the prediction
with experts setting).

In contrast to the above quoted result for ‖ ·‖2, we only get a one-way implication for ‖ ·‖1.

Lemma 19 If f −α‖ ·‖21 is concave on Rn
+ then f is (α,x 1→ x2,‖ ·‖1)-flat.

Proof It is known (Hiriart-Urruty and Lemaréchal, 1993, page 183) that a function h is concave if
and only if h(x)≤ h(x0)+Dh(x0) · (x− x0) for all x,x0. Hence f −α‖ ·‖21 is concave on Rn

+ if and

3. This definition is redundantly parametrised: (α,σ,‖ ·‖)-flatness is equivalent to (1,ασ,‖ ·‖)-flatness. We have defined
the notion as above in order to relate to existing definitions and because in fact one sometimes fixes σ and then is
interested in the effect of varying α. When σ(x) = x2, Abernethy et al. (2009) and Kakade et al. (2010) call this α-flat
with respect to ‖ · ‖. Azé and Penot (1995) and Zǎlinescu (1983) would say f is σ-flat with respect to an implicitly
given norm if f is (in our definition) (α,σ,‖ ·‖)-flat for some α> 0 (which in their setup is effectively bundled into
σ). These differences do not matter (unless one wishes to use results from the earlier literature, which we do not).
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only if for all x,x0 ∈ Rn
+,

f (x)−α‖x‖21 ≤ f (x0)−α‖x0‖21+D( f (x0)−α‖x0‖21) · (x− x0)
⇔ f (x)− f (x0) ≤ α‖x‖21−α‖x0‖21+D f (x0) · (x− x0)−αD(‖x0‖21) · (x− x0). (23)

SinceD(‖x0‖21)= 2‖x0‖1 and 2‖x0‖1( ·(x−x0))= 2‖x0‖1(‖x‖1−‖x0‖1)= 2‖x0‖1‖x‖1−2‖x0‖21,

(23)⇔ f (x)− f (x0) ≤ α
(

‖x‖21+‖x0‖2−2‖x0‖1‖x‖1
)

+D f (x0) · (x− x0)

⇔ f (x)− f (x0) ≤ Df (x0) · (x− x0)+α(‖x‖1−‖x0‖1)2 .

By the reverse triangle inequality ‖x− x0‖1 ≥ |‖x‖1−‖x0‖1| ≥ ‖x‖1−‖x0‖1 and thus ‖x− x0‖21 ≥
(‖x‖1−‖x0‖1)2, which gives

⇒ f (x)− f (x0) ≤ D f (x0) · (x− x0)+α‖x− x0‖21.

Now f −α‖ · ‖21 is concave if and only if H( f −α‖ · ‖21) " 0. We have (again for x ∈ Rn
+)

H( f −α‖ ·‖21) =H f −αH(‖ ·‖21). Let φ(x) = ‖x‖21. Then Dφ(x) = 2‖x‖1D(‖x‖1) = 2‖x‖1 . Hence
Hφ(x) = D(Dφ(x))′) = D(2‖x‖1 ′) = 2 · ′. Thus (α,x 1→ x2,‖ · ‖1)-flatness of L is implied by
negative semi-definiteness of the Hessian of L relative to 2α · ′, instead of Llog (see Theorem 10,
part ii). The comparison with log loss is not that surprising in light of the observations regarding
mixability by Grünwald (2007, §17.9).

The above analysis is not entirely satisfactory for three reasons: 1) Lemma 19 does not char-
acterise the flatness condition (it is only a sufficient condition); 2) we have glossed over the fact
that in order to compute derivatives one needs to work in Δ̃n; and 3) the learning protocols for the
two situations are not identical. These last two points can be potentially addressed in future work.
However the first seems impossible since there can not exist a characterisation of (α,x 1→ x2,‖ ·‖1)-
flatness in terms of concavity of some function. To see this, consider the one dimensional case and
suppose there was some function g such that f was flat if g was concave. Then we would require
Dg(x) · (x− x0) = α‖x− x0‖21 ⇒ Dg(x)(x− x0) = α|x− x0|2 = α(x− x0)2 ⇒ Dg(x) = α(x− x0)
which is impossible because the left hand side Dg(x) does not depend upon x0. On the other hand,
perhaps it is not worth further investigation since the result due to Abernethy et al. (2009) is only a
sufficient condition for logarithmic regret.

8. Conclusion

Mixability characterizes fast rates in the prediction with expert advice setting in terms of the mix-
ability constant. An explicit formula to determine the mixability constant was previously available
only for binary-valued outcomes, and the formula did not have a clear interpretation.

For strictly proper losses, Theorem 13 simplifies this formula and generalises it to outcomes
with any finite number of possible values. The new formula has a clear interpretation as the minimal
curvature of the Bayes risk for the loss relative to log loss. This shows in a precise and intuitive
way the effect of the choice of loss function on the worst-case regret of the learner, and the special
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role played by log loss in such settings. Closely related characterizations of mixability are given in
Theorem 10 and Corollary 14.

Although our main results are stated only for proper losses, Section 6 shows that many losses
that are not proper can be related to a proper loss with the same mixability constant, which implies
that our results cover these improper losses as well.
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Appendix A. Matrix Calculus

We adopt the notation of Magnus and Neudecker (1999): In is the n× n identity matrix, A′ is the
transpose of A, the n-vector n := (1, . . . ,1)′, and 0n×m denotes the zero matrix with n rows and
m columns. The unit n-vector eni := (0, . . . ,0,1,0, . . . ,0)′ has a 1 in the ith coordinate and zeroes
elsewhere. If A= [ai j] is an n×mmatrix, vecA is the vector of columns of A stacked on top of each
other. The Kronecker product of an m×n matrix A with a p×q matrix B is the mp×nq matrix

A⊗B :=







A1,1B · · · A1,nB
... . . . ...

Am,1B · · · Am,nB






.

We use the following properties of Kronecker products (See Magnus and Neudecker, 1999, Chapter
2): (A⊗B)(C⊗D) = (AC⊗BD) for all appropriately sized A,B,C,D and (A⊗B)−1 = (A−1⊗B−1)
for invertible A and B.

If f : Rn → Rm is differentiable at c then the partial derivative of fi with respect to the jth
coordinate at c is denoted D j fi(c) and is often4 also written as [∂ fi/∂x j]x=c. The m× n matrix of
partial derivatives of f is the Jacobian of f and denoted

(D f (c))i, j := D j fi(c) for i ∈ [m], j ∈ [n].

The inverse function theorem relates the Jacobians of a function and its inverse (cf. Fleming, 1977,
§4.5):

4. See Chapter 9 of Magnus and Neudecker (1999) for why the ∂/∂x notation is a poor one for multivariate differential
calculus despite its popularity.
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Theorem 20 Let S⊂Rn be an open set and g : S→Rn be a Cq function with q≥ 1 (i.e., continuous
with at least one continuous derivative). If Dg(s) *= 0 then: there exists an open set S0 such that
s ∈ S0 and the restriction of g to S0 is invertible; g(S0) is open; f , the inverse of the restriction of g
to S0, is Cq; and D f (t) = [Dg(s)]−1 for t = g(s) and s ∈ S0.

If F is a matrix valued function DF(X) := D f (vecX) where f (X) = vecF(X).
We will require the product rule for matrix valued functions (Fackler, 2005): Suppose f : Rn →

Rm×p, g : Rn → Rp×q so that ( f ×g) : Rn → Rm×q. Then

D( f ×g)(x) = (g(x)′ ⊗ Im) ·D f (x)+(Iq⊗ f (x)) ·Dg(x).

The Hessian at x ∈ X ⊆ Rn of a real-valued function f : Rn → R is the n× n real, symmetric
matrix of second derivatives at x

(H f (x)) j,k := Dk, j f (x) =
∂2 f
∂xk∂x j

.

Note that the derivative Dk, j is in row j, column k. It is easy to establish that the Jacobian of the
transpose of the Jacobian of f is the Hessian of f . That is,

H f (x) = D
(

(D f (x))′
)

(24)

(Magnus and Neudecker, 1999, Chapter 10). If f : X → Rm for X ⊆ Rn is a vector valued function
then the Hessian of f at x ∈ X is the mn×n matrix that consists of the Hessians of the functions fi
stacked vertically:

H f (x) :=







H f1(x)
...

H fm(x)






.

The following theorem regarding the chain rule for Hessian matrices can be found in the book
of Magnus and Neudecker (1999, pg. 110).

Theorem 21 Let S be a subset of Rn, and f : S→ Rm be twice differentiable at a point c in the
interior of S. Let T be a subset of Rm containing f (S), and g : T →Rp be twice differentiable at the
interior point b= f (c). Then the function h(x) := g( f (x)) is twice differentiable at c and

Hh(c) = (Ip⊗D f (c))′ · (Hg(b)) ·D f (c)+(Dg(b)⊗ In) ·H f (c).

Applying the chain rule to functions that are inverses of each other gives the following corollary.

Corollary 22 Suppose f : Rn → Rn is invertible with inverse g := f−1. If b= f (c) then

H f−1(b) =−
(

G⊗G′)
H f (c)G,

where G := [D f (c)]−1 = Dg(b).

Proof Since f ◦g= id and H[id] = 0n2×n Theorem 21 implies that for c in the interior of the domain
of f and b= f (c)

H(g◦ f )(c) = (In⊗D f (c))′ ·Hg(b) ·D f (c)+(Dg(b)⊗ In) ·H f (c) = 0n2×n.
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Solving this for Hg(b) gives

Hg(b) =−
[

(In⊗D f (c))′
]−1 · (Dg(b))⊗ In) ·H f (c) · [D f (c)]−1.

Since (A⊗B)−1 = (A−1⊗B−1) and (A′)−1 = (A−1)′ we have [(I⊗B)′]−1 = [(I⊗B)−1]′ = (I−1⊗
B−1)′ = (I⊗B−1)′ so the first term in the above product simplifies to −

[

(In⊗D f (c)−1)
]′. The

inverse function theorem implies Dg(b) = [D f (c)]−1 =: G and so

Hg(b) =−(In⊗G)′ · (G⊗ In) ·H f (c) ·G
=−(G⊗G′) ·H f (c) ·G

as required, since (A⊗B)(C⊗D) = (AC⊗BD).
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Abstract
We consider the matrix completion problem under a form of row/column weighted entrywise sam-
pling, including the case of uniform entrywise sampling as a special case. We analyze the associated
random observation operator, and prove that with high probability, it satisfies a form of restricted
strong convexity with respect to weighted Frobenius norm. Using this property, we obtain as corol-
laries a number of error bounds on matrix completion in the weighted Frobenius norm under noisy
sampling and for both exact and near low-rank matrices. Our results are based on measures of
the “spikiness” and “low-rankness” of matrices that are less restrictive than the incoherence con-
ditions imposed in previous work. Our technique involves an M-estimator that includes controls
on both the rank and spikiness of the solution, and we establish non-asymptotic error bounds in
weighted Frobenius norm for recovering matrices lying with !q-“balls” of bounded spikiness. Us-
ing information-theoretic methods, we show that no algorithm can achieve better estimates (up to
a logarithmic factor) over these same sets, showing that our conditions on matrices and associated
rates are essentially optimal.
Keywords: matrix completion, collaborative filtering, convex optimization

1. Introduction

Matrix completion problems correspond to reconstructing matrices, either exactly or approximately,
based on observing a subset of their entries (Laurent, 2001; Deza and Laurent, 1997). In the sim-
plest formulation of matrix completion, the observations are assumed to be uncorrupted, whereas a
more general formulation (as considered in this paper) allows for noisiness in these observations.
Matrix recovery based on only partial information is an ill-posed problem, and accurate estimates
are possible only if the matrix satisfies additional structural constraints, with examples including
bandedness, positive semidefiniteness, Euclidean distance measurements, Toeplitz, and low-rank
structure (see the survey paper by Laurent (2001) and references therein for more background).

The focus of this paper is low-rank matrix completion based on noisy observations. This prob-
lem is motivated by a variety of applications where an underlying matrix is likely to have low-rank,
or near low-rank structure. The archetypal example is the Netflix challenge, a version of the col-
laborative filtering problem, in which the unknown matrix is indexed by individuals and movies,
and each observed entry of the matrix corresponds to the rating assigned to the associated movie

∗. Also in the department of Statistics.
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by the given individual. Since the typical person only watches a tiny number of movies (compared
to the total Netflix database), it is only a sparse subset of matrix entries that are observed. In this
context, one goal of collaborative filtering is to use the observed entries to make recommendations
to a person regarding movies that they have not yet seen. We refer the reader to Srebro (2004)
(and references therein) for further discussion and motivation for collaborative filtering and related
problems.

In this paper, we analyze a method for approximate low-rank matrix recovery using an M-
estimator that is a combination of a data term, and a weighted nuclear norm as a regularizer. The
nuclear norm is the sum of the singular values of a matrix (Horn and Johnson, 1985), and has
been studied in a body of past work, both on matrix completion and more general problems of
low-rank matrix estimation (e.g., Fazel, 2002; Srebro, 2004; Srebro et al., 2005, 2004; Recht et al.,
2010; Bach, 2008; Candes and Tao, 2010; Recht, 2011; Keshavan et al., 2010a,b; Negahban and
Wainwright, 2011; Rohde and Tsybakov, 2011). A parallel line of work has studied computation-
ally efficient algorithms for solving problems with nuclear norm constraints (e.g, Mazumber et al.,
2010; Nesterov, 2007; Lin et al., 2009). Here we limit our detailed discussion to those papers that
study various aspects of the matrix completion problem. Motivated by various problems in col-
laborative filtering, Srebro (2004) and Srebro et al. (2005) studied various aspects nuclear norm
regularization, and established generalization error bounds under certain conditions. Candès and
Recht (2009) studied the exact reconstruction of a low-rank matrix given perfect (noiseless) obser-
vations of a subset of entries, and provided sufficient conditions for exact recovery via nuclear norm
relaxation, with later refinements provided by various authors (Candes and Tao, 2010; Recht, 2011;
Gross, 2011). In particular, Gross (2011) recognized the utility of the Ahlswede-Winter matrix con-
centration bounds, and the simplest argument to date is provided by Recht (2011). In a parallel line
of work, Keshavan et al. (2010a,b) have studied a method based on thresholding and singular value
decomposition, and established various results on its behavior, both for noiseless and noisy matrix
completion. Among other results, Rohde and Tsybakov (2011) establish prediction error bounds for
matrix completion, a different metric than the matrix recovery problem of interest here. In recent
work, Salakhutdinov and Srebro (2010) provided various motivations for the use of weighted nu-
clear norms, in particular showing that the standard nuclear norm relaxation can behave very poorly
when the sampling is non-uniform. The analysis of this paper applies to both uniform and non-
uniform sampling, as well as a form of reweighted nuclear norm as suggested by these authors, one
which includes the ordinary nuclear norm as a special case. We provide a more detailed comparison
between our results and some aspects of past work in Section 3.4.

As has been noted before (Candès and Plan, 2010), a significant theoretical challenge is that
conditions that have proven very useful for sparse linear regression—among them the restricted
isometry property—are not satisfied for the matrix completion problem. For this reason, it is natu-
ral to seek an alternative and less restrictive property that might be satisfied in the matrix completion
setting. In recent work, Negahban et al. (2009) have isolated a weaker and more general condition
known as restricted strong convexity (RSC), and proven that certain statistical models satisfy RSC
with high probability when the associated regularizer satisfies a decomposability condition. When
anM-estimator satisfies the RSC condition, it is relatively straightforward to derive non-asymptotic
error bounds on parameter estimates (Negahban et al., 2009). The class of decomposable regulariz-
ers includes the nuclear norm as particular case, and the RSC/decomposability approach has been
exploited to derive bounds for various matrix estimation problems, among them multi-task learning,
autoregressive system identification, and compressed sensing (Negahban and Wainwright, 2011).
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To date, however, an open question is whether or not an appropriate form of RSC holds for
the matrix completion problem. If it did hold, then it would be possible to derive non-asymptotic
error bounds (in Frobenius norm) for matrix completion based on noisy observations. Within this
context, the main contribution of this paper is to prove that with high probability, a form of the
RSC condition holds for the matrix completion problem, in particular over an interesting set of
matrices C, as defined in Equation (4) to follow, that have both low nuclear/Frobenius norm ratio
and low “spikiness”. Exploiting this RSC condition then allows us to derive non-asymptotic error
bounds on matrix recovery in weighted Frobenius norms, both for exactly and approximately low-
rank matrices. The theoretical core of this paper consists of three main results. Our first result
(Theorem 1) proves that the matrix completion loss function satisfies restricted strong convexity
with high probability over the set C. Our second result (Theorem 2) exploits this fact to derive a
non-asymptotic error bound for matrix recovery in the weighted Frobenius norm, one applicable
to general matrices. We then specialize this result to the problem of estimating exactly low-rank
matrices (with a small number of non-zero singular values), as well as near low-rank matrices
characterized by relatively swift decay of their singular values. To the best of our knowledge, our
results on near low-rank matrices are the first for approximate matrix recovery in the noisy setting,
and as we discuss at more length in Section 3.4, our results on the exactly low-rank case are sharper
than past work on the problem. Indeed, our final result (Theorem 3) uses information-theoretic
techniques to establish that up to logarithmic factors, no algorithm can obtain faster rates than our
method over the !q-balls of matrices with bounded spikiness treated in this paper.

The remainder of this paper is organized as follows. We begin in Section 2 with background
and a precise formulation of the problem. Section 3 is devoted to a statement of our main results,
and discussion of some of their consequences. In Sections 4 and Section 5, we prove our main
results, with more technical aspects of the arguments deferred to appendices. We conclude with a
discussion in Section 6.

2. Background and Problem Formulation

In this section, we introduce background on low-rank matrix completion problem, and also provide
a precise statement of the problem studied in this paper.

2.1 Uniform and Weighted Sampling Models

Let Θ∗ ∈ Rdr×dc be an unknown matrix, and consider an observation model in which we make n
i.i.d. observations of the form

ỹi = Θ∗
j(i)k(i) +

ν√
drdc

ξ̃i, (1)

Here the quantities ν√
drdc

ξ̃i correspond to additive observation noises with variance appropriately
scaled according to the matrix dimensions. In defining the observation model, one can either allow
the Frobenius norm of Θ∗ to grow with the dimension, as in done in other work (Candès and Plan,
2010; Keshavan et al., 2010b), or rescale the noise as we have done here. This choice is consistent
with our assumption that Θ∗ has constant Frobenius norm regardless of its rank or dimensions.
With this scaling, each observation in the model (1) has a constant signal-to-noise ratio regardless
of matrix dimensions.
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In the simplest model, the row j(i) and column k(i) indices are chosen uniformly at random
from the sets {1,2, . . . ,dr} and {1,2, . . . ,dc} respectively. In this paper, we consider a somewhat
more general weighted sampling model. In particular, let R ∈ Rdr×dr and C ∈ Rdc×dc be diagonal
matrices, with rescaled diagonals {Rj/dr, j= 1,2, . . . ,dr} and {Ck/dc,k= 1,2, . . . ,dc} representing
probability distributions over the rows and columns of an dr×dc matrix. We consider the weighted
sampling model in which we make a noisy observation of entry ( j,k) with probability RjCk/(drdc),
meaning that the row index j(i) (respectively column index k(i)) is chosen according to the proba-
bility distribution R/dr (respectively C/dc). Note that in the special case that R = 1dr and C = 1dc ,
the observation model (1) reduces to the usual model of uniform sampling.

We assume that each row and column is sampled with positive probability, in particular that
there is some constant 1 ≤ L < ∞ such that Ra ≥ 1/L and Cb ≥ 1/L for all rows and columns.
However, apart from the constraints ∑dr

a=1Raa = dr and ∑dc
b=1Cbb = dc, we do not require that the

row and column weights remain bounded as dr and dc tend to infinity.

2.2 The Observation Operator and Restricted Strong Convexity

We now describe an alternative formulation of the observation model (1) that, while statistically
equivalent to the original, turns out to be more natural for analysis. For each i = 1,2, . . . ,n, define
the matrix

X (i) =
√
drdc εi ea(i)eTb(i),

where εi ∈ {−1,+1} is a random sign, and consider the observation model

yi = 〈〈X (i), Θ∗〉〉+νξi, for i= 1, . . . ,n, (2)

where 〈〈A, B〉〉 := ∑ j,k A jkB jk is the trace inner product, and ξi is an additive noise from the same
distribution as the original model. The model (2) is can be obtained from the original model (1) by
rescaling all terms by the factor

√
drdc, and introducing the random signs εi. The rescaling has no

statistical effect, and nor do the random signs, since the noise is symmetric (so that ξi = εiξ̃i has the
same distribution as ξ̃i). Thus, the observation model (2) is statistically equivalent to the original
one (1).

In order to specify a vector form of the observation model, let us define a linear operator
Xn : Rdr×dc → Rn via

[Xn(Θ)]i := 〈〈X (i), Θ〉〉, for i= 1,2, . . .n.

We refer to Xn as the observation operator, since it maps any matrix Θ ∈ Rdr×dc to an n-vector of
samples. With this notation, we can write the observations (2) in a vectorized form as
y= Xn(Θ∗)+νξ.

The reformulation (2) is convenient for various reasons. For any matrix Θ ∈ Rdr×dc , we have
E[〈〈X (i), Θ〉〉] = 0 and

E
[
〈〈X (i), Θ〉〉2

]
=

dr
∑
j=1

dc
∑
k=1

RjΘ
2
jkCk = |||

√
RΘ

√
C|||2F︸ ︷︷ ︸

|||Θ|||2ω(F)

,
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where we have defined the weighted Frobenius norm ||| · |||ω(F) in terms of the row R and column C
weights. As a consequence, the signal-to-noise ratio in the observation model (2) is given by the
ratio SNR=

|||Θ∗|||2ω(F)
ν2 .

As shown by Negahban et al. (2009), a key ingredient in establishing error bounds for the obser-
vation model (2) is obtaining lower bounds on the restricted curvature of the sampling operator—in
particular, to establish the existence of a constant c> 0, which may be arbitrarily small as long as it
is positive, such that

‖Xn(Θ)‖2√
n

≥ c |||Θ|||ω(F). (3)

For sample sizes of interest for matrix completion (n- drdc) , one cannot expect such a bound to
hold uniformly over all matrices Θ ∈ Rdr×dc , even when rank constraints are imposed. Indeed, as
noted by Candès and Plan (2010), the condition (3) is violated with high probability by the rank one
matrix Θ∗ such that Θ∗

11 = 1 with all other entries zero. Indeed, for a sample size n- drdc, we have
a vanishing probability of observing the entry Θ∗

11, so that Xn(Θ∗) = 0 with high probability.

2.3 Controlling the Spikiness and Rank

Intuitively, one must exclude matrices that are overly “spiky” in order to avoid the phenomenon just
described. Past work has relied on fairly restrictive matrix incoherence conditions (see Section 3.4
for more discussion), based on specific conditions on singular vectors of the unknown matrix Θ∗.
In this paper, we formalize the notion of “spikiness” in a natural and less restrictive way—namely
by comparing a weighted form of !∞-norm to the weighted Frobenius norm. In particular, for any
non-zero matrix Θ, let us define (for any non-zero matrix) the weighted spikiness ratio

αsp(Θ) :=
√
drdc

|||Θ|||ω(∞)
|||Θ|||ω(F)

,

where |||Θ|||ω(∞) := ‖
√
RΘ

√
C‖∞ is the weighted elementwise !∞-norm. Note that this ratio is in-

variant to the scaling of Θ, and satisfies the inequalities 1≤ αsp(Θ)≤
√
drdc. We have αsp(Θ) = 1

for any non-zero matrix whose entries are all equal, whereas the opposite extreme αsp(Θ) =
√
drdc

is achieved by the “maximally spiky” matrix that is zero everywhere except for a single position.
In order to provide a tractable measure of how close Θ is to a low-rank matrix, we define (for

any non-zero matrix) the ratio

βra(Θ) :=
|||Θ|||ω(1)
|||Θ|||ω(F)

which satisfies the inequalities 1≤ βra(Θ)≤
√
min{dr,dc}. By definition of the (weighted) nuclear

and Frobenius norms, note that βra(Θ) is simply the ratio of the !1 to !2 norms of the singular values
of the weighted matrix

√
RΘ

√
C. This measure can also be upper bounded by the rank ofΘ: indeed,

since R andC are full-rank, we always have

β2ra(Θ)≤ rank(
√
RΘ

√
C) = rank(Θ),

with equality holding if all the non-zero singular values of
√
RΘ

√
C are identical.
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3. Main Results and Their Consequences

We now turn to the statement of our main results, and discussion of their consequences. Section 3.1
is devoted to a result showing that a suitable form of restricted strong convexity holds for the ran-
dom sampling operator Xn, as long as we restrict it to matrices Δ for which βra(Δ) and αsp(Δ) are
not “overly large”. In Section 3.2, we develop the consequences of the RSC condition for noisy
matrix completion, and in Section 3.3, we prove that our error bounds are minimax-optimal up to
logarithmic factors. In Section 3.4, we provide a detailed comparison of our results with past work.

3.1 Restricted Strong Convexity for Matrix Sampling

Introducing the convenient shorthand d = 1
2(dr+dc), let us define the constraint set

C(n;c0) :=
{
Δ ∈ R

dr×dc , Δ .= 0 | αsp(Δ) βra(Δ)≤
1
c0L

√
n

d logd

}
, (4)

where c0 is a universal constant. Note that as the sample size n increases, this set allows for matrices
with larger values of the spikiness and/or rank measures, αsp(Δ) and βra(Δ) respectively.

Theorem 1 There are universal constants (c0,c1,c2,c3) such that as long as n> c3 d logd, we have

‖Xn(Δ)‖2√
n

≥
1
8
|||Δ|||ω(F)

{
1−

128αsp(Δ)L√
n

}
for all Δ ∈ C(n;c0) (5)

with probability greater than 1− c1 exp(−c2d logd).

Roughly speaking, this bound guarantees that the observation operator captures a substantial
component of any matrix Δ∈C(n;c0) that is not overly spiky. More precisely, as long as

128Lαsp(Δ)√
n ≤

1
2 , the bound (5) implies that

‖Xn(Δ)‖22
n

≥
1
256

|||Δ|||2ω(F) for any Δ ∈ C(n;c0). (6)

This bound can be interpreted in terms of restricted strong convexity (Negahban et al., 2009). In
particular, given a vector y ∈ Rn of noisy observations, consider the quadratic loss function

L(Θ;y) =
1
2n

‖y−Xn(Θ)‖22.

Since the Hessian matrix of this function is given by Xn
∗
Xn/n, the bound (6) implies that the

quadratic loss is strongly convex in a restricted set of directions Δ.
As discussed previously, the worst-case value of the “spikiness” measure is αsp(Δ) =

√
drdc,

achieved for a matrix that is zero everywhere except a single position. In this most degenerate of
cases, the combination of the constraints αsp(Δ)√

n < 1 and the membership condition Δ∈C(n;c0) imply
that even for a rank one matrix (so that βra(Δ) = 1), we need sample size n/ d2 for Theorem 1 to
provide a non-trivial result, as is to be expected.
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3.2 Consequences for Noisy Matrix Completion

We now turn to some consequences of Theorem 1 for matrix completion in the noisy setting. In
particular, assume that we are given n i.i.d. samples from the model (2), and let Θ̂ be some estimate
of the unknown matrix Θ∗. Our strategy is to exploit the lower bound (5) in application to the error
matrix Θ̂−Θ∗, and accordingly, we need to ensure that it has relatively low-rank and spikiness.
Based on this intuition, it is natural to consider the estimator

Θ̂ ∈ arg min
|||Θ|||ω(∞)≤ α∗√

drdc

{ 1
2n

‖y−Xn(Θ)‖22+λn|||Θ|||ω(1)
}
, (7)

where α∗ ≥ 1 is a measure of spikiness, and the regularization parameter λn > 0 serves to control
the nuclear norm of the solution. In the special case when both R and C are identity matrices (of
the appropriate dimensions), this estimator is closely related to the standard one considered in past
work on the problem, with the only difference between the additional !∞-norm constraint. In the
more general weighted case, an M-estimator of the form (7) using the weighted nuclear norm (but
without the elementwise constraint) was recently suggested by Salakhutdinov and Srebro (2010),
who provided empirical results to show superiority of the weighted nuclear norm over the standard
choice for the Netflix problem.

Past work on matrix completion has focused on the case of exactly low-rank matrices. Here we
consider the more general setting of approximately low-rank matrices, including the exact setting
as a particular case. We begin by stating a general upper bound that applies to any matrix Θ∗, and
involves a natural decomposition into estimation and approximation error terms. The only relevant
quantity is the signal-to-noise ratio, as measured by the ratio of the Frobenius norm of Θ∗ to the
noise variance, so that we allow the noise variance to be free, while assuming that |||Δ̃|||ω(F) remains
bounded.

Theorem 2 Suppose that n≥ Ld logd, and consider any solution Θ̂ to the weighted SDP (7) using
regularization parameter

λn ≥ 2ν |||
1
n

n

∑
i=1

ξiR− 1
2X (i)C− 1

2 |||op, (8)

and define λ∗n = max{λn,L
√

d logd
n }. Then with probability greater than 1− c2 exp(−c2 logd), for

each r = 1, . . . ,dr, the error Δ̃= Θ̂−Θ∗ satisfies

|||Δ̃|||2ω(F) ≤ c1 α∗ λ∗n

[√
r|||Δ̃|||ω(F) +

dr
∑
j=r+1

σ j(
√
RΘ∗√C)

]
+
c1(α∗L)2

n
. (9)

Apart from the trailing O(n−1) the term, the bound (9) shows a natural splitting into two terms.
The first can be interpreted as the estimation error associated with a rank r matrix, whereas the
second term corresponds to approximation error, measuring how far

√
RΘ∗√C is from a rank r

matrix. Of course, the bound holds for any choice of r, and in the corollaries to follow, we choose r
optimally so as to balance the estimation and approximation error terms.

In order to provide concrete rates using Theorem 2, it remains to address two issues. First,
we need to specify an explicit choice of λn by bounding the operator norm of the noise matrix
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1
n ∑

n
i=1 ξi

√
RX (i)√C, and secondly, we need to understand how to choose the parameter r so as

to achieve the tightest possible bound. When Θ∗ is exactly low-rank, then it is obvious that we
should choose r = rank(Θ∗), so that the approximation error vanishes—more specifically, so that
∑dr
j=r+1σ j(

√
RΘ∗√C) j = 0. Doing so yields the following result:

Corollary 1 (Exactly low-rank matrices) Suppose that the noise sequence {ξi} is i.i.d., zero-mean
and sub-exponential, and Θ∗ has rank at most r, Frobenius norm at most 1, and spikiness at most
αsp(Θ∗) ≤ α∗. If we solve the SDP (7) with λn = 4ν

√
d logd
n then there is a numerical constant c′1

such that

|||Θ̂−Θ∗|||2ω(F) ≤ c′1 (ν2∨L2) (α∗)2
rd logd

n
+
c1(α∗L)2

n
(10)

with probability greater than 1− c2 exp(−c3 logd).

Note that this rate has a natural interpretation: since a rank r matrix of dimension dr × dc has
roughly r(dr+ dc) free parameters, we require a sample size of this order (up to logarithmic fac-
tors) so as to obtain a controlled error bound. An interesting feature of the bound (10) is the term
ν2∨1=max{ν2,1}, which implies that we do not obtain exact recovery as ν→ 0. As we discuss at
more length in Section 3.4, under the mild spikiness condition that we have imposed, this behavior
is unavoidable due to lack of identifiability within a certain radius, as specified in the set C. For
instance, consider the matrix Θ∗ and the perturbed version Θ̃ = Θ∗+ 1√

drdc
e1eT1 . With high prob-

ability, we have Xn(Θ∗) = Xn(Θ̃), so that the observations—even if they were noiseless—fail to
distinguish between these two models. These types of examples, leading to non-identifiability, can-
not be overcome without imposing fairly restrictive matrix incoherence conditions, as we discuss at
more length in Section 3.4.

As with past work (Candès and Plan, 2010; Keshavan et al., 2010b), Corollary 1 applies to the
case of matrices that have exactly rank r. In practical settings, it is more realistic to assume that the
unknown matrix is not exactly low-rank, but rather can be well approximated by a matrix with low
rank. One way in which to formalize this notion is via the !q-“ball” of matrices

Bq(ρq) :=
{
Θ ∈ R

dr×dc |
min{dr,dc}

∑
j=1

|σ j(
√
RΘ

√
C)|q ≤ ρq

}
. (11)

For q = 0, this set corresponds to the set of matrices with rank at most r = ρ0, whereas for values
q ∈ (0,1], it consists of matrices whose (weighted) singular values decay at a relatively fast rate. By
applying Theorem 2 to this matrix family, we obtain the following corollary:

Corollary 2 (Estimation of near low-rank matrices) Suppose that the noise {ξi} is zero-mean
and sub-exponential, Consider a matrix Θ∗ ∈ Bq(ρq) with spikiness at most αsp(Θ∗) ≤ α∗, and
Frobenius norm at most one. With the same choice of λn as Corollary 1, there is a universal con-
stant c′1 such that

|||Θ̂−Θ∗|||2ω(F) ≤ c1ρq
(
(ν2∨L2)(α∗)2

d logd
n

)1− q
2
+
c1(α∗L)2

n
(12)

with probability greater than 1− c2 exp(−c3 logd).
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Note that this result is a strict generalization of Corollary 1, to which it reduces in the case q = 0.
(When q= 0, we have ρ0 = r so that the bound has the same form.) Note that the price that we pay
for approximately low rank is a smaller exponent—namely, 1−q/2 as opposed to 1 in the case q= 0.
The proof of Corollary 2 is based on a more subtle application of Theorem 2, one which chooses
the effective rank r in the bound (9) so as to trade off between the estimation and approximation
errors. In particular, the choice r 2 ρq ( n

d logd )
q/2 turns out to yield the optimal trade-off, and hence

the given error bound (12).
Although we have stated our results in terms of bounds on the weighted squared Frobenius norm

|||Θ|||2ω(F) = |||
√
RΘ

√
C|||2F , our assumed lower bound on the entries R andC implies that |||Θ|||2ω(F) ≥

|||Θ|||2F
L2 . Consequently, as long as each row and column is sampled a constant fraction of the time, our
results also yield bounds on the Frobenius norm. In some applications, certain rows and columns
might be heavily sampled, meaning that some entries of R and/or C could be relatively large. Since
we require only a lower bound on the row/column sampling frequencies, our Frobenius norm bounds
would not degrade if some rows and/or columns were heavily sampled. In contrast, a RIP-type
analysis would not be valid in this setting, since heavy sampling means that the Frobenius norm
could not be uniformly bounded from above.

In order to illustrate the sharpness of our theory, let us compare the predictions of our two
corollaries to the empirical behavior of the M-estimator. In particular, we applied the nuclear norm
SDP to simulated data, using Gaussian observation noise with variance ν2 = 0.25 and the uniform
sampling model. In all cases, we solved the nuclear norm SDP using a non-smooth optimization
procedure due to Nesterov (2007), via our own implementation in MATLAB. For a given problem
size d, we ran T = 25 trials and computed the squared Frobenius norm error |||Θ̂−Θ∗|||2F averaged
over the trials.

Figure 1 shows the results in the case of exactly low-rank matrices (q = 0), with the matrix
rank given by r = 3log2(d)4. Panel (a) shows plots of the mean-squared Frobenius error versus
the raw sample size, for three different problem sizes with the number of matrix elements sizes
d2 ∈ {402,602,802,1002}. These plots show that the M-estimator is consistent, since each of the
curves decreases to zero as the sample size n increases. Note that the curves shift to the right as
the matrix dimension d increases, reflecting the natural intuition that larger matrices require more
samples. Based on the scaling predicted by Corollary 1, we expect that the mean-squared Frobenius
error should exhibit the scaling |||Θ̂−Θ∗|||2F 2 rd logd

n . Equivalently, if we plot the MSE versus the
rescaled sample size N := n

rd logd , then all the curves should be relatively well aligned, and decay at
the rate 1/N. Panel (b) of Figure 1 shows the same simulation results re-plotted versus this rescaled
sample size. Consistent with the prediction of Corollary 1, all four plots are now relatively well-
aligned. Figure 2 shows the same plots for the case of approximately low-rank matrices (q = 0.5).
Again, consistent with the prediction of Corollary 2, we see qualitatively similar behavior in the
plots of the MSE versus sample size (panel (a)), and the rescaled sample size (panel (b)).

3.3 Information-theoretic Lower Bounds

The results of the previous section are achievable results, based on a particular polynomial-time
estimator. It is natural to ask how these bounds compare to the fundamental limits of the problem,
meaning the best performance achievable by any algorithm. As various authors have noted (Candès
and Plan, 2010; Keshavan et al., 2010b), a parameter counting argument indicates that roughly
n≈ r (dr+dc) samples are required to estimate an dr×dc matrix with rank r. This calculation can
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Figure 1: Plots of the mean-squared error in Frobenius norm for q= 0. Each curve corresponds to
a different problem size d2 ∈ {402,602,802,1002}. (a) MSE versus the raw sample size
n. As expected, the curves shift to the right as d increases, since more samples should be
required to achieve a given MSE for larger problems. (b) The same MSE plotted versus
the rescaled sample size n/(rd logd). Consistent with Corollary 1, all the plots are now
fairly well-aligned.

be made more formal by metric entropy calculations for the Grassman manifold (e.g., Szarek, 1983);
see also Rohde and Tsybakov (2011) for results on approximation numbers for the more general !q-
balls of matrices. Such calculations, while accounting for the low-rank conditions, do not address
the additional “spikiness” constraints that are essential to the setting of matrix completion. It is
conceivable that these additional constraints could lead to a substantial volume reduction in the
allowable class of matrices, so that the scalings suggested by parameter counting or metric entropy
calculation for Grassman manifolds would be overly conservative.

Accordingly, in this section, we provide a direct and constructive argument to lower bound the
minimax rates of Frobenius norm over classes of matrices that are near low-rank and not overly
spiky. This argument establishes that the bounds established in Corollaries 1 and 2 are sharp up to
logarithmic factors, meaning that no estimator performs substantially better than the one considered
here. More precisely, consider the matrix classes

B̃(ρq) =

{
Θ ∈ R

d×d |
d

∑
j=1

σ j(Θ)q ≤ ρq, αsp(Θ)≤
√
32logd

}
,

corresponding to square d×d matrices that are near low-rank (belonging to the !q-balls previously
defined (11)), and have a logarithmic spikiness ratio. The following result applies to the minimax
risk in Frobenius norm, namely the quantity

Mn(B̃(ρq)) := inf
Θ̃

sup
Θ∗∈B̃(ρq)

E
[
|||Θ̃−Θ∗|||2F

]
,

where the infimum is taken over all estimators Θ̃ that are measurable functions of n samples.
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Figure 2: Plots of the mean-squared error in Frobenius norm for q= 0.5. Each curve corresponds to
a different problem size d2 ∈ {402,602,802,1002}. (a) MSE versus the raw sample size
n. As expected, the curves shift to the right as d increases, since more samples should be
required to achieve a given MSE for larger problems. (b) The same MSE plotted versus

the rescaled sample size n/(ρ
1

1−q/2
q d logd). Consistent with Corollary 2, all the plots are

now fairly well-aligned.

Theorem 3 There is a universal numerical constant c5 > 0 such that

Mn(B̃(ρq))≥ c5 min
{
ρq

(
ν2d
n

)1− q
2
,
ν2d2

n

}
.

The term of primary interest in this bound is the first one—namely, ρq
(
ν2d
n
)1− q

2 . It is the dominant
term in the bound whenever the !q-radius satisfies the bound

ρq ≤
(
ν2d
n

) q
2
d. (13)

In the special case q = 0, corresponding the exactly low-rank case, the bound (13) always holds,
since it reduces to requiring that the rank r = ρ0 is less than or equal to d. In these regimes,
Theorem 3 establishes that the upper bounds obtained in Corollaries 1 and 2 are minimax-optimal
up to factors logarithmic in matrix dimension d.

3.4 Comparison to Other Work

We now turn to a detailed comparison of our bounds to those obtained in past work on noisy matrix
completion, in particular the papers by Candès and Plan (2010) (hereafter CP) and Keshavan et al.
(2010b) (hereafter KMO). Both papers considered only the case of exactly low-rank matrices, cor-
responding to the special case of q= 0 in our notation. Since neither paper provided results for the
general case of near-low rank matrices, nor the general result (with estimation and approximation
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errors) stated in Theorem 2, our discussion is mainly limited to comparing Corollary 1 to their re-
sults. So as to simplify discussion, we restate all results under the scalings used in this paper1 (i.e.,
with |||Θ∗|||F = 1).

3.4.1 COMPARISON OF RATES

Under the strong incoherence conditions required for exact matrix recovery (see below for discus-
sion), Theorem 7 in CP give an bound on |||Θ̂−Θ∗|||F that depends on the Frobenius norm of the
potentially adversarial error matrix Ξ ∈ Rd1×d2 , as defined by the noise variables [Ξ] j(i) k(i) = ξ̃i in
our case. In the special case of stochastic noise, under the observation model (1) and the scalings of
our paper, as long as n> d, where d = d1+d2—a condition certainly required for Frobenius norm
consistency—we have |||Ξ|||F = Θ(ν

√
n/d) with high probability. Given this scaling, the CP upper

bound takes the form

|||Θ̂−Θ∗|||F ! ν

{√
d+

√
n
d

}
.

Note that if the noise standard deviation ν tends to zero while the sample size n, matrix size p and
rank r all remain fixed, then this bound guarantees that the Frobenius error tends to zero. This
behavior as ν→ 0 is intuitively reasonable, given that their proof technique is an extrapolation from
the case of exact recovery for noiseless observations (ν= 0). However, note that for any fixed noise
deviation ν > 0, the first term increases to infinity as the matrix dimension d increases, whereas
the second term actually grows as the sample size n increases. Consequently, the CP results do not
guarantee statistical consistency, unlike the bounds proved here.

Turning to a setting with adversarial noise, suppose that the error vector has Frobenius norm
at most δ. A modification of our analysis yields error bounds of the form |||Θ̂−Θ∗|||F !

{ d2√
nδ+√

rd logd
n

}
. In the setting of square matrices with δ ≥

√
r logd
d , our result yields an upper bound

tighter by a factor of order
√
d better than those presented in CP. Last, as pointed out by a reviewer,

the CP analysis does yield bounds for approximately low-rank matrices, in particular by writing
Θ∗ = Πr(Θ∗)+Δ, where Πr is the Frobenius norm projection onto the space of rank r matrices,
and Δ=Θ∗ −Πr(Θ∗) is the approximation error. With this notation, their analysis guarantees error
bounds of the form

√
d|||Δ|||F with high probability, which is a weaker guarantee than our bound

whenever |||Δ|||F ≥ c
√

r logd
n and n=Ω(d logd).

Keshavan et al. (2010b) analyzed alternative methods based on trimming and applying the SVD.
For Gaussian noise, their methods guarantee bounds (with high probability) of the form

|||Θ̂−Θ∗|||F ! νmin
{
α

√
d2
d1

,κ2(Θ∗)
}
√
rd2
n

, (14)

where d2/d1 is the aspect ratio of Θ∗, and κ(Θ∗) = σmax(Θ∗)
σmin(Θ∗) is the condition number of Θ

∗. This
result is more directly comparable to our Corollary 1; apart from the additional factor involving
either the aspect ratio or the condition number, it is sharper since it does not involve the factor logd
present in our bound. For a fixed noise standard deviation ν, the bound (14) guarantees statistical

1. The paper CP and KMO use two different sets of scaling, one with |||Θ∗|||F =Θ(d) and the other with |||Θ∗|||F =
√
r,

so that some care is required in converting between results.
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consistency as long as rd2
n tends to zero. The most significant differences are the presence of the

aspect ratio d2/d1 or the condition number κ(Θ∗) in the upper bound (14). The aspect ratio is a
quantity that can be as small as one, or as large as d2, so that the pre-factor in the bound (14)
can scale in a dimension-dependent way. Similarly, for any matrix with rank larger than one, the
condition number can be made arbitrarily large. For instance, in the rank two case, define a matrix
with σmax(Θ∗) =

√
1−δ2 and σmin(Θ∗) = δ, and consider the behavior as δ→ 0. In contrast, our

bounds are invariant to both the aspect ratio and the condition number of Θ∗.

3.4.2 COMPARISON OF MATRIX CONDITIONS

We now turn to a comparison of the various matrix incoherence assumptions invoked in the analysis
of CP and KMO, and comparison to our spikiness condition. As before, for clarity, we specialize our
discussion to the square case (dr= dc= d), since the rectangular case is not essentially different. The
matrix incoherence conditions are stated in terms of the singular value decomposition Θ∗ =UΣVT

of the target matrix. HereU ∈Rd×r and V ∈Rd×r are matrices of the left and right singular vectors
respectively, satisfying UTU =VTV = Ir×r, whereas Σ ∈ Rr×r is a diagonal matrix of the singular
values. The purpose of matrix incoherence is to enforce that the left and right singular vectors
should not be aligned with the standard basis. Among other assumptions, the CP analysis imposes
the incoherence conditions

‖UUT −
r
d
Id×d‖∞ ≤ µ

√
r
d

, ‖VVT −
r
d
Id×d‖∞ ≤ µ

√
r
d

, and ‖UVT‖∞ ≤ µ
√
r
d

, (15)

for some constant µ> 0. Parts of the KMO analysis impose the related incoherence condition

max
j=1,...,d

|UUT | j j ≤ µ0
r
d
, and max

j=1,...,d
|VVT | j j ≤ µ0

r
d
. (16)

Both of these conditions ensure that the singular vectors are sufficiently “spread-out”, so as not to
be aligned with the standard basis.

A remarkable property of conditions (15) and (16) is that they exhibit no dependence on the
singular values of Θ∗. If one is interested only in exact recovery in the noiseless setting, then this
lack of dependence is reasonable. However, if approximate recovery is the goal—as is necessarily
the case in the more realistic setting of noisy observations—then it is clear that a minimal set of
sufficient conditions should also involve the singular values, as is the case for our spikiness measure
αsp(Θ∗). The following example gives a concrete demonstration of an instance where our condi-
tions are satisfied, so that approximate recovery is possible, whereas the incoherence conditions are
violated.
Example. Let Γ ∈ Rd×d be a positive semidefinite symmetric matrix with rank r− 1, Frobenius
norm |||Γ|||F = 1 and ‖Γ‖∞ ≤ c0/d. For a scalar parameter t > 0, consider the matrix

Θ∗ := Γ+ te1eT1
where e1 ∈ Rd is the canonical basis vector with one in its first entry, and zero elsewhere. By
construction, the matrix Θ∗ has rank at most r. Moreover, as long as t = O(1/d), we are guaranteed
that our spikiness measure satisfies the bound αsp(Θ∗) = O(1). Indeed, we have |||Θ∗|||F ≥ |||Γ|||F −
t = 1− t, and hence

αsp(Θ∗) =
d‖Θ∗‖∞
|||Θ∗|||F

≤
d
(
‖Γ‖∞+ t

)

1− t
≤

c0+dt
1− t

= O(1).
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Consequently, for any choice of Γ as specified above, Corollary 1 implies that the SDP will recover
the matrix Θ∗ up to a tolerance O(

√
rd logd

n ). This captures the natural intuition that “poisoning” the
matrix Γ with the term teT1 e1 should have essentially no effect, as long as t is not too large.

On the other hand, suppose that we choose the matrix Γ such that its r− 1 eigenvectors are
orthogonal to e1. In this case, we have Θ∗e1 = te1, so that e1 is also an eigenvector of Θ∗. Letting
U ∈ Rd×r be the matrix of eigenvectors, we have eT1UUTe1 = 1. Consequently, for any fixed µ (or
µ0) and rank r- d, conditions (15) and (16) are violated.

♦

4. Proofs for Noisy Matrix Completion

We now turn to the proofs of our results. This section is devoted to the results that apply directly
to noisy matrix completion, in particular the achievable result given in Theorem 2, its associated
Corollaries 1 and 2, and the information-theoretic lower bound given in Theorem 3. The proof of
Theorem 1 is provided in Section 5 to follow.

4.1 A Useful Transformation

We begin by describing a transformation that is useful both in these proofs, and the later proof of
Theorem 1. In particular, we consider the mapping Θ 7→ Γ :=

√
RΘ

√
C, as well as the modified

observation operator Xn
′ : Rd×d → Rn with elements

[Xn
′(Γ)]i = 〈〈X̃ (i), Γ〉〉, for i= 1,2, . . . ,n,

where X̃ (i) := R−1/2X (i)C−1/2. Note that Xn
′(Γ) = Xn(Θ) by construction, and moreover

|||Γ|||F = |||Θ|||ω(F), |||Γ|||1 = |||Θ|||ω(1), and |||Γ|||∞ = |||Θ|||ω(∞),

which implies that

βra(Θ) =
|||Γ|||1
|||Γ|||F︸ ︷︷ ︸
β′ra(Γ)

, and αsp(Θ) =
d ‖Γ‖∞
|||Γ|||F︸ ︷︷ ︸
α′
sp(Γ)

.

Based on this change of variables, let us define a modified version of the constraint set (4) as follows

C
′(n;c0) =

{
0 .= Γ ∈ R

d×d | α′
sp(Γ) β

′
ra(Γ)≤

1
c0

√
n

d logd

}
. (17)

In this new notation, the lower bound (5) from Theorem 1 can be re-stated as

‖Xn
′(Γ)‖2√
n

≥
1
8
|||Γ|||F

{
1−

128Lα′
sp(Γ)√
n

}
for all Γ ∈ C′(n;c0). (18)

4.2 Proof of Theorem 2

We now turn to the proof of Theorem 2. Defining the estimate Γ̂ :=
√
RΘ̂

√
C, we have

Γ̂ ∈ arg min
‖Γ‖∞≤ α∗√

drdc

{ 1
2n

‖y−Xn
′(Γ)‖22+λn|||Γ|||1

}
, (19)
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and our goal is to upper bound the ordinary Frobenius norm |||Γ̂−Γ∗|||F .
We now state a useful technical result. Parts (a) and (b) of the following lemma were proven by

Recht et al. (2010), and Negahban and Wainwright (2011), respectively. We recall that we adopt the
shorthand Δ̂= Γ̂−Γ∗ throughout the analysis.

Lemma 1 Let (Ũ ,Ṽ ) represent a pair of r-dimensional subspaces of left and right singular vectors
of Γ∗. Then there exists a matrix decomposition Δ̂= Δ̂′+ Δ̂′′ of the error Δ̂ such that

(a) The matrix Δ̂′ satisfies the constraint rank(Δ̂′)≤ 2r, and

(b) Given the choice (8), the nuclear norm of Δ̂′′ is bounded as

|||Δ̂′′|||1 ≤ 3|||Δ̂′|||1 + 4
dr
∑
j=r+1

σ j(Γ
∗). (20)

Note that the bound (20), combined with triangle inequality, implies that

|||Δ̂|||1 ≤ |||Δ̂′|||1+ |||Δ̂′′|||1 ≤ 4|||Δ̂′|||1 + 4
dr
∑
j=r+1

σ j(Γ
∗)

≤ 8
√
r|||Δ̂|||F +4

dr
∑
j=r+1

σ j(Γ
∗) (21)

where the second inequality uses the fact that rank(Δ̂′)≤ 2r.
We now split into two cases, depending on whether or not the error Δ̂ belongs to the set C′(n;c0).

4.2.1 CASE 1

First suppose that Δ̂ /∈ C′(n;c0). In this case, by the definition (17), we have

|||Δ̂|||2F ≤ c0L
(√

drdc‖Δ̂‖∞
)
|||Δ̂|||1

√
d logd
n

≤ 2c0Lα∗|||Δ̂|||1

√
d logd
n

,

since ‖Δ̂‖∞ ≤ ‖Γ∗‖∞+‖Γ̂‖∞ ≤ 2α∗
√
drdc
. Now applying the bound (21), we obtain

|||Δ̂|||2F ≤ 2c0Lα∗
√
d logd
n

{
8
√
r|||Δ̂|||F +4

dr
∑
j=r+1

σ j(Γ
∗)
}
. (22)

4.2.2 CASE 2

Otherwise, we must have Δ̂ ∈ C′(n;c0). Recall the reformulated lower bound (18). On one hand, if
128Lα′

sp(Δ̂)√
n > 1/2, then we have

|||Δ̂|||F ≤
256L

√
drdc‖Δ̂‖∞√
n

≤
512Lα∗
√
n

. (23)
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On the other hand, if 128Lα
′
sp(Δ̂)√
n ≤ 1/2, then from the bound (18), we have

‖Xn
′(Δ̂)‖2√
n

≥
|||Δ̂|||F
16

(24)

with high probability. Note that Γ̂ is optimal and Γ∗ is feasible for the convex program (19), so that
we have the basic inequality

1
2n

‖y−Xn
′(Γ̂)‖22+λn|||Γ̂|||1 ≤

1
2n

‖y−Xn
′(Γ∗)‖22+λn|||Γ∗|||1.

Some algebra then yields the inequality

1
2n

‖Xn
′(Δ̂)‖22 ≤ ν〈〈Δ̂,

1
n

n

∑
i=1

ξiX̃ (i)〉〉+λn|||Γ∗|||1−λn|||Γ∗+ Δ̂|||,

Substituting the lower bound (24) into this inequality yields

‖Δ̂‖2F
512

≤ ν〈〈Δ̂,
1
n

n

∑
i=1

ξiX̃ (i)〉〉+λn|||Γ∗|||1−λn|||Γ∗+ Δ̂|||.

From this point onwards, the proof is identical (apart from constants) to Theorem 1 in Negahban
and Wainwright (2011), and we obtain that there is a numerical constant c1 such that

|||Δ̂|||2F ≤ c1α∗λn

{√
r|||Δ̂|||F +

dr
∑
j=r+1

σ j(Γ
∗)

}
. (25)

4.2.3 PUTTING TOGETHER THE PIECES

Summarizing our results, we have shown that with high probability, one of the three bounds (22),
(23) or (25) must hold. Since α∗ ≥ 1, these claims can be summarized in the form

|||Δ̂|||2F ≤ c1 max
{
λn,

√
d logd
n

} [√
r|||Δ̂|||F +

dr
∑
j=r+1

σ j(Γ
∗)
]
.

for a universal positive constant c1. Translating this result back to the original co-ordinate system
(Γ∗ =

√
RΘ∗√C) yields the claim (9).

4.3 Proof of Corollary 1

When Θ∗ (and hence
√
RΘ∗√C) has rank r < dr, then we have ∑dr

j=r+1σ j(
√
RΘ∗√C) = 0. Conse-

quently, the bound (9) reduces to |||Δ̃|||ω(F) ≤ c1α∗λ∗n
√
r. To complete the proof, it suffices to show

that

P
[
|||
1
n

n

∑
i=1

ξiR−1/2X (i)C−1/2|||2 ≥ c1 ν
√
d logd
n

]
≤ c2 exp(−c2d logd).
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We do so via the Ahlswede-Winter matrix bound, as stated in Appendix F. Defining the ran-
dom matrix Y (i) := ξiR−1/2X (i)C−1/2, we first note that ξi is sub-exponential with parameter 1,
and |R−1/2X (i)C−1/2| has a single entry with magnitude at most L

√
drdc, which implies that

‖Y (i)‖ψ1 ≤ Lν
√
drdc ≤ 2νLd.

(Here ‖ ·‖ψ1 denotes the Orlicz norm (Ledoux and Talagrand, 1991) of a random variable, as defined
by the function ψ1(x) = exp(x)−1; see Appendix F). Moreover, we have

E[(Y (i))TY (i)] = ν2E
[ drdc
R j(i)Ck(i)

ek(i)eTj(i)e j(i)e
T
k(i)

]

= ν2E
[ drdc
R j(i)Ck(i)

ek(i)eTk(i)
]

= ν2 drIdc×dc .

so that |||E[(Y (i))TY (i)]|||2 ≤ 2ν2d, recalling that 2d = dr + dc ≥ dr. The same bound applies to
|||E[Y (i)(Y (i))T ]|||2, so that applying Lemma 7 with t = nδ, we conclude that

P
[
|||
1
n

n

∑
i=1

ξiR−1/2X (i)C−1/2|||2 ≥ δ
]
≤ (dr×dc)max

{
exp(−nδ2/(16ν2d), exp(−

nδ
4νLd

)
}
.

Since
√
drdc ≤ dr+ dc = 2d, if we set δ2 = c21ν2

d logd
n for a sufficiently large constant c1, the re-

sult follows. (Here we also use the assumption that n = Ω(Ld logd), so that the term
√

d logd
n is

dominant.)

4.4 Proof of Corollary 2

For this corollary, we need to determine an appropriate choice of r so as to optimize the bound (9).
To ease notation, let us make use of the shorthand notation Γ∗ =

√
RΘ∗√C. With the singular

values of Γ∗ ordered in non-increasing order, fix some threshold τ > 0 to be determined, and set
r =max{ j | σ j(Γ∗)> τ}. This choice ensures that

dr
∑
j=r+1

σ j(Γ
∗) = τ

dr
∑
j=r+1

σ j(Γ∗)
τ

≤ τ
dr
∑
j=r+1

(σ j(Γ∗)
τ

)q ≤ τ1−qρq.

Moreover, we have r τq ≤ ∑r
j=1

{
σ j(Γ∗)

}q ≤ ρq, which implies that
√
r ≤√

ρqτ−q/2. Substituting
these relations into the upper bound (9) leads to

|||Δ̃|||2ω(F) ≤ c1 α∗ λ∗n
[√

ρqτ
−q/2|||Δ̃|||ω(F) + τ1−qρq

}
.

In order to obtain the sharpest possible upper bound, we set τ= α∗λ∗n. Following some algebra, we
find that there is a universal constant c1 such that

|||Δ̃|||2ω(F) ≤ c1ρq
(
(α∗)2(λ∗n)

2)1− q
2 .

As in the proof of Corollary 1, it suffices to choose λn=Ω(ν
√

d logd
n ), so that λ∗n = O

√
(ν2+L) d logdn ),

from which the claim follows.
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4.5 Proof of Theorem 3

Our proof of this lower bound exploits a combination of information-theoretic methods
(Yu, 1997; Yang and Barron, 1999), which allow us to reduce to a multiway hypothesis test, and an
application of the probabilistic method so as to construct a suitably large packing set. By Markov’s
inequality, it suffices to prove that

sup
Θ∗∈B̃(ρq)

P

[
|||Θ̂−Θ∗|||2F ≥

δ2

4

]
≥
1
2
.

In order to do so, we proceed in a standard way—namely, by reducing the estimation problem to
a testing problem over a suitably constructed packing set contained within B̃(ρq). In particular,
consider a set {Θ1, . . . ,ΘM(δ)} of matrices, contained within B̃(ρq), such that |||Θk −Θ!|||F ≥ δ
for all ! .= k. To ease notation, we use M as shorthand for M(δ) through much of the argument.
Suppose that we choose an index V ∈ {1,2, . . . ,M} uniformly at random (u.a.r.), and we are given
observations y ∈ Rn from the observation model (2) with Θ∗ = ΘV . Then triangle inequality yields
the lower bound

sup
Θ∗∈B̃(ρq)

P

[
|||Θ̂−Θ∗|||F ≥

δ
2

]
≥ P[V̂ .=V ].

If we condition on Xn, a variant of Fano’s inequality yields

P[V̂ .=V | Xn]≥ 1−
(
(M
2
)
)−1∑! .=k D(Θk ‖Θ!)+ log2

logM
, (26)

where D(Θk ‖ Θ!) denotes the Kullback-Leibler divergence between the distributions of (y|Xn,Θk)
and (y|Xn,Θ!). In particular, for additive Gaussian noise with variance ν2, we have

D(Θk ‖Θ!) =
1
2ν2

‖Xn(Θ
k)−Xn(Θ

!)‖22,

and moreover,

EXn

[
D(Θk ‖ Θ!)

]
=

1
2ν2

|||Θk−Θ!|||2F .

Combined with the bound (26), we obtain the bound

P[V̂ .=V ] = EXn

{
P[V̂ .=V | Xn]

}

≥ 1−
(
(M
2
)
)−1∑! .=k

n
2ν2 |||Θ

k−Θ!|||2F + log2
logM

, (27)

The remainder of the proof hinges on the following technical lemma, which we prove in Ap-
pendix A.

Lemma 2 Let d ≥ 10 be a positive integer, and let δ> 0. Then for each r = 1,2, . . . ,d, there exists
a set of d-dimensional matrices {Θ1, . . . ,ΘM} with cardinality M = 8 14 exp

( rd
128

)
9 such that each
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matrix has rank r, and moreover

|||Θ!|||F = δ for all != 1,2, . . . ,M,
|||Θ!−Θk|||F ≥ δ for all ! .= k,

αsp(Θ
!)≤

√
32logd for all != 1,2, . . . ,M, and

|||Θ!|||2 ≤
4δ√
r

for all != 1,2, . . . ,M.

We now show how to use this packing set in our Fano bound. To avoid technical complications,
we assume throughout that rd > 1024log2. Note that packing set from Lemma 2 satisfies |||Θk−
Θ!|||F ≤ 2δ for all k .= !, and hence from Fano bound (27), we obtain

P[V̂ .=V ]≥ 1−
2 nδ2ν2 + log2
rd
128 − log4

≥ 1−
2 nδ2ν2 + log2

rd
256

≥ 1−
512nδ2ν2 +256log2

rd
.

If we now choose δ2 = ν2
2048

rd
n , then

P[V̂ .=V ]≥ 1−
rd
4 +256log2

rd
≥
1
2
,

where the final inequality again uses the bound rd ≥ 1024log2.
In the special case q= 0, the proof is complete, since the elements Θ! all have rank r = R0, and

satisfy the bound αsp(Θ!)≤
√
32logd. For q ∈ (0,1], consider the matrix class B̃(ρq), and let us set

r =min{d,3ρq
(d
n
)− q

2 4} in Lemma 2. With this choice, since each matrix Θ! has rank r, we have

p

∑
j=1

σi(Θ!)q ≤ r
(

δ√
r

)q
= r

(
1

2048

√
d
n

)q
≤ ρq,

so that we are guaranteed that Θ! ∈ B̃(ρq). Finally, we note that

rd
n

≥min
{
ρq

(
d
n

)1− q
2
,
d2

n
}
,

so that we conclude that the minimax error is lower bounded by

1
4096

min
{
ρq

(
ν2d
n

)1− q
2
,
ν2d2

n

}

for dr sufficiently large. (At the expense of a worse pre-factor, the same bound holds for all d ≥ 10.)
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5. Proof of Theorem 1

We now turn to the proof that the sampling operator in weighted matrix completion satisfies re-
stricted strong convexity over the set C, as stated in Theorem 1. In order to lighten notation, we
prove the theorem in the case dr = dc. In terms of rates, this is a worst-case assumption, effectively
amounting to replacing both dr and dc by the worst-case max{dr,dc}. However, since our rates are
driven by d = 1

2(dr+dc) and we have the inequalities
1
2
max{dr,dc} ≤

1
2
(dr+dc) ≤max{dr,dc},

this change has only an effect on the constant factors. The proof can be extended to the general
setting dr .= dc by appropriate modifications if these constant factors are of interest.

5.1 Reduction to Simpler Events

In order to prove Theorem 1, it is equivalent to show that, with high probability, we have
‖Xn

′(Γ)‖2√
n

≥
1
8
|||Γ|||F −

48L d ‖Γ‖∞√
n

for all Γ ∈ C′(n;c0). (28)

The remainder of the proof is devoted to studying the “bad” event

E(Xn
′) :=

{
∃ Γ ∈ C

′(n;c0) |
∣∣∣
‖Xn

′(Γ)‖2√
n

− |||Γ|||F
∣∣∣>

7
8
|||Γ|||F +

48L d ‖Γ‖∞√
n

}
.

Suppose that E(Xn
′) does not hold: then we have

∣∣∣
‖Xn

′(Γ)‖2√
n

− |||Γ|||F
∣∣∣≤

7
8
|||Γ|||F +

48L d ‖Γ‖∞√
n

for all Γ ∈ C′(n;c0),

which implies that the bound (28) holds. Consequently, in terms of the “bad” event, the claim of
Theorem 1 is implied by the tail bound P[E(Xn

′)]≤ 16exp(−c′d logd).
We now show that in order to establish a tail bound on E(Xn

′), it suffices to bound the proba-
bility of some simpler events E(Xn

′;D), defined below. Since the definition of the set C′(n;c0) and
eventE(Xn

′) is invariant to rescaling of Γ, we may assume without loss of generality that ‖Γ‖∞= 1
d .

The remaining degrees of freedom in the set C′(n;c0) can be parameterized in terms of the quan-
tities D = |||Γ|||F and ρ = |||Γ|||1. For any Γ ∈ C′(n;c0) with ‖Γ‖∞ = 1

d and |||Γ|||F ≤ D, we have
|||Γ|||1 ≤ ρ(D), where

ρ(D) :=
D2

c0L
√

d logd
n

.

For each radius D> 0, consider the set

B(D) :=
{
Γ ∈ C

′(n;c0) | ‖Γ‖∞ =
1
d
, |||Γ|||F ≤ D, |||Γ|||1 ≤ ρ(D)

}
, (29)

and the associated event

E(Xn
′;D) :=

{
∃ Γ ∈B(D) |

∣∣‖Xn
′(Γ)‖2√
n

− |||Γ|||F
∣∣≥

3
4
D+

48L√
n

}
.

The following lemma shows that it suffices to upper bound the probability of the event E(Xn
′;D)

for each fixed D> 0.
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Lemma 3 Suppose that are universal constants (c1,c2) such that

P[E(Xn
′;D)]≤ c1 exp(−c2nD2) (30)

for each fixed D> 0. Then there is a universal constant c′2 such that

P[E(Xn
′)]≤ c1

exp(−c′2d logd)
1− exp(−c′2d logd)

.

The proof of this claim, provided in Appendix B, follows by a peeling argument.

5.2 Bounding the Probability of E(Xn
′;D)

Based on Lemma 3, it suffices to prove the tail bound (30) on the event E(Xn
′;D) for each fixed

D> 0. Let us define

Zn(D) := sup
Γ∈B(D)

∣∣∣∣∣
‖Xn

′(Γ)‖2√
n

− |||Γ|||F

∣∣∣∣∣,

where

B(D) :=
{
Γ ∈ C

′(n;c0) | ‖Γ‖∞ ≤
1
d
, |||Γ|||F ≤ D, |||Γ|||1 ≤ ρ(D)

}
. (31)

(The only difference fromB(D) is that we have relaxed to the inequality ‖Γ‖∞ ≤ 1
d .) In the remain-

der of this section, we prove that there are universal constants (c1,c2) such that

P
[
Zn(D)≥

3
4
D+

48L√
n
]
≤ c1 exp(−c2

nD2

L2
) for each fixed D> 0. (32)

This tail bound means that the condition of Lemma 3 is satisfied, and so completes the proof of
Theorem 1.

In order to prove (32), we begin with a discretization argument. Let Γ1, . . . ,ΓN(δ) be a δ-covering
ofB(D) in the Frobenius norm. By definition, given an arbitrary Γ∈B(D), there exists some index
k ∈ {1, . . . ,N(δ)} and a matrix Δ ∈ Rd×d with |||Δ|||F ≤ δ such that Γ= Γk+Δ. Therefore, we have

‖Xn
′(Γ)‖2√
n

− |||Γ|||F =
‖Xn

′(Γk+Δ)‖2√
n

− |||Γk+Δ|||F

≤
‖Xn

′(Γk)‖2√
n

+
‖Xn

′(Δ)‖2√
n

− |||Γk|||F + |||Δ|||F

≤
∣∣∣
‖Xn

′(Γk)‖2√
n

− |||Γk|||F
∣∣∣+

‖Xn
′(Δ)‖2√
n

+δ,

where we have used the triangle inequality. Following the same steps establishes that this inequality
holds for the absolute value of the difference.

Moreover, since Δ= Γk−Γ with both Γk and Γ belonging toB(D), we have |||Δ|||1 ≤ 2ρ(D) and
‖Δ‖∞ ≤ 2

d , where we have used the definition (29). Putting together the pieces, we conclude that

Zn(D) ≤ δ + max
k=1,...,N(δ)

∣∣∣
‖Xn

′(Γk)‖2√
n

− |||Γk|||F
∣∣∣ + sup

Δ∈D(δ,R)

∣∣‖Xn
′(Δ)‖2√
n

∣∣, (33)
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where

D(δ,R) :=
{
Δ ∈ R

d×d | |||Δ|||F ≤ δ, |||Δ|||1 ≤ 2ρ(D), ‖Δ‖∞ ≤
2
d
}
.

Note that the bound (33) holds for any choice of δ > 0. We establish the tail bound (32) with
the choice δ = D/8, and using the following two lemmas. The first lemma provides control of the
maximum over the covering set:

Lemma 4 As long d ≥ 10, we have

max
k=1,...,N(D/8)

∣∣∣
‖Xn

′(Γk)‖2√
n

− |||Γk|||F
∣∣∣≤

D
8
+
48L√
n

with probability greater than 1− cexp
(
− nD2

2048L2
)
.

See Appendix C for the proof of this claim.
Our second lemma, proved in Appendix D, provides control over the final term in the upper

bound (33).

Lemma 5

sup
Δ∈D(D8 ,R)

∣∣‖Xn
′(Δ)‖2√
n

∣∣≤
D
2

with probability at least 1−2exp
(
− nD2
8192L2

)
.

Combining these two lemmas with the upper bound (33) with δ= D/8, we obtain

Zn(D)≤
D
8
+
D
8
+
48L√
n
+
D
2

≤
3D
4

+
48L√
n

with probability at least 1−4exp
(
− nD2
8192

)
, thereby establishing the tail bound (32) and completing

the proof of Theorem 1.

6. Discussion

In this paper, we have established error bounds for the problem of weighted matrix completion based
on partial and noisy observations. We proved both a general result, one which applies to any matrix,
and showed how it yields corollaries for both the cases of exactly low-rank and approximately low-
rank matrices. A key technical result is establishing that the matrix sampling operator satisfies a
suitable form of restricted strong convexity (Negahban et al., 2009) over a set of matrices with con-
trolled rank and spikiness. Since more restrictive properties such as RIP do not hold for matrix com-
pletion, this RSC ingredient is essential to our analysis. Our proof of the RSC condition relied on
a number of techniques from empirical process and random matrix theory, including concentration
of measure, contraction inequalities and the Ahlswede-Winter bound. Using information-theoretic
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methods, we also proved that up to logarithmic factors, our error bounds cannot be improved upon
by any algorithm, showing that our method is essentially minimax-optimal.

There are various open questions that remain to be studied. Although our analysis applies
to both uniform and non-uniform sampling models, it is limited to the case where each row (or
column) is sampled with a certain probability. It would be interesting to consider extensions to
settings in which the sampling probability differed from entry to entry, as investigated empirically
by Salakhutdinov and Srebro (2010). Although we have focused on least-squares losses in this
paper, the notion of restricted strong convexity applies to more general loss functions. Indeed, it
should be possible to combine the results of this paper with Proposition 2 in Negahban et al. (2009)
so as to obtain bounds for matrix completion with general losses. Lastly, although this paper has
focused on statistical consequences, the RSC property also has implications for the fast convergence
of gradient-type algorithms for solving matrix completion problems (Agarwal et al., 2011).
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Appendix A. Proof of Lemma 2

We proceed via the probabilistic method, in particular by showing that a random procedure succeeds
in generating such a set with probability at least 1/2. LetM′ = exp

( rd
128

)
, and for each != 1, . . . ,M′,

we draw a random matrix Θ̃! ∈ Rd×d according to the following procedure:
(a) For rows i= 1, . . . ,r and for each column j= 1, . . . ,d, choose each Θ̃!

i j ∈ {−1,+1} uniformly
at random, independently across (i, j).

(b) For rows i= r+1, . . . ,d, set Θ̃!
i j = 0.

We then let Q ∈ Rd×d be a random unitary matrix, and define Θ! = δ√
rd QΘ̃

! for all != 1, . . . ,M′.
The remainder of the proof analyzes the random set {Θ1, . . . ,ΘM′}, and shows that it contains a
subset of size at leastM =M′/4 that has properties (a) through (d) with probability at least 1/2.

By construction, each matrix Θ̃! has rank at most r, and Frobenius norm |||Θ̃!|||F =
√
rd. Since

Q is unitary, the rescaled matrices Θ! have Frobenius norm |||Θ!|||F = δ. We now prove that

|||Θ!−Θk|||F ≥ δ for all ! .= k

with probability at least 7/8. Again, since Q is unitary, it suffices to show that |||Θ̃!− Θ̃k|||F ≥
√
rd

for any pair ! .= k. We have

1
rd

|||Θ̃k− Θ̃!|||2F =
1
rd

r

∑
i=1

d

∑
j=1

(
Θ̃!
i j− Θ̃k

i j
)2
.

This is a sum of rd i.i.d. variables, each bounded by 4. The mean of the sum is 2, so that the
Hoeffding bound implies that

P
[ 1
rd

|||Θ̃k− Θ̃!|||2F ≤ 2− t
]
≤ 2exp

(
− rd t2/32

)
.
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Since there are less than (M′)2 pairs of matrices in total, setting t = 1 yields

P
[

min
!,k=1,...,M′

|||Θ̃!− Θ̃k|||2F
rd

≥ 1
]
≥ 1−2exp

(
−
rd
32

+2logM′) ≥
7
8
,

where we have used the facts logM′ = rd
128 and d ≥ 10. Recalling the definition of Θ

!, we conclude
that

P
[

min
!,k=1,...,M′

|||Θ!−Θk|||2F ≥ δ2
]
≥
7
8
.

We now establish bounds on αsp(Θ!) and |||Θ!|||2. We first prove that for any fixed index ! ∈
{1,2, . . . ,M′}, our construction satisfies

P

[
αsp(Θ!)≤

√
32logd

]
≥
3
4
. (34)

Indeed, for any pair of indices (i, j), we have |Θ!
i j|= |〈qi, v j〉|, where qi ∈Rd is drawn from the uni-

form distribution over the d-dimensional sphere, and ‖v j‖2 =
√
r δ√

rd = |||Θ!|||F√
d . By Levy’s theorem

for concentration on the sphere (Ledoux, 2001), we have

P
[
|〈qi, v j〉|≥ t

]
≤ 2exp

(
−

d2

8 |||Θ!|||2F
t2
)
.

Setting t = s/d and taking the union bound over all d2 indices, we obtain

P
[
d ‖Θ!‖∞ ≥ s

]
≤ 2exp

(
−

1
8 |||Θ!|||2F

s2+2logd
)
.

This probability is less than 1/2 for s= |||Θ!|||F
√
32logd and d ≥ 2, which establishes the interme-

diate claim (34).
Finally, we turn to property (d). For each fixed !, by definition ofΘ! and the unitary nature of Q,

we have |||Θ!|||2 = δ√
rd |||U |||2, where U ∈ {−1,+1}r×d is a random matrix with i.i.d. Rademacher

(and hence sub-Gaussian) entries. Known results on sub-Gaussian matrices (Vershynin, 2012) yield

P

[ δ√
rd

|||U |||2 ≤
2δ√
rd

(√
r+

√
d
)]

≥ 1−2exp
(
−
1
4
(
√
r+

√
d)2

)
≥
3
4

for d ≥ 10. Since r ≤ d, we conclude that

P

[
|||Θ!|||2 ≤

4δ√
r

]
≥
3
4
. (35)

By combining the bounds (34) and (35), we find that for each fixed != 1, . . . ,M′, we have

P

[
|||Θ!|||2 ≤

4δ√
r
,
αsp(Θ!)

|||Θ|||F
≤
√
32logd

]
≥
1
2
. (36)

Consider the event E that there exists a subset S⊂ {1, . . . ,M′} of cardinalityM = 1
4M

′ such that

|||Θ!|||2 ≤ 4
δ√
n
, and

αsp(Θ!)

|||Θ|||F
≤
√
32logd for all ! ∈ S.
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By the bound (36), we have

P[E ]≥
M′

∑
k=M

(
M′

k

)
(1/2)k.

Since we have chosenM <M′/2, we are guaranteed that P[E ]≥ 1/2, thereby completing the proof.

Appendix B. Proof of Lemma 3

We first observe that for any Γ ∈ C′(n;c0) with ‖Γ‖∞ = 1
d , we have

|||Γ|||2F ≥ c0 |||Γ|||1

√
d logd
n

≥ c0|||Γ|||F

√
d logd
n

,

whence |||Γ|||F ≥ c0
√

d logd
n . Accordingly, recalling the definition (29), it suffices to restrict our

attention to setsB(D) with D≥ µ := c0
√

d logd
n . For != 1,2, . . . and α= 7

6 , define the sets

S! :=
{
Γ ∈ C

′(n;c0) | ‖Γ‖∞ =
1
d
, α!−1µ≤ |||Γ|||F ≤ α!µ, and |||Γ|||1 ≤ ρ(α!µ)

}
. (37)

From the definition (29), note that by construction, we have S! ⊂ B(α!µ).
Now if the event E(Xn

′) holds for some matrix Γ, then this matrix Γ must belong to some set
S!. When Γ ∈ S!, then we are guaranteed the existence of a matrix Γ ∈B(α!µ) such that

∣∣‖Xn
′(Γ)‖2√
n

− |||Γ|||F
∣∣>

7
8
|||Γ|||F +

48L√
n

≥
7
8
α!−1µ+

48L√
n

=
3
4
α!µ+

48L√
n
,

where the final equality follows since α= 7/6. Thus, we have shown that when the violating matrix
Γ ∈ S!, then event E(Xn

′;α!µ) must hold. Since any violating matrix must fall into some set S!, the
union bound implies that

P[E(Xn
′)]≤

∞

∑
!=1

P[E(Xn
′;α!µ)]

≤ c1
∞

∑
!=1
exp

(
− c2nα2!µ2

)

≤ c1
∞

∑
!=1
exp

(
−2c2 log(α)!nµ2

)

≤ c1
exp(−c′2nµ2)

1− exp(−c′2nµ2)
.

Since nµ2 =Ω(d logd), the claim follows.
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Appendix C. Proof of Lemma 4

For a fixed matrix Γ, define the function FΓ(Xn
′) = 1√

n‖Xn
′(Γ)‖2. We prove the lemma in two parts:

first, we establish that for any fixed Γ, the function FΓ satisfies the tail bound

P
[
|FΓ(Xn

′)− |||Γ|||F |≥ δ+
48L√
n
]
≤ 4exp

(
−
nδ2

4L2
)
. (38)

We then show that there exists a δ-covering ofB(D) such that

logN(δ)≤ 36
(
ρ(D)/δ

)2 d. (39)

Combining the tail bound (38) with the union bound, we obtain

P
[

max
k=1,...,N(δ)

|FΓ(Xn
′)− |||Γk|||F |≥ δ+

16L√
n
]
≤ 4exp

(
−
nδ2

4L2
+ logN(δ)

)

≤ 4exp
{
−
nδ2

4L2
+36

(
ρ(D)/δ

)2 d
}

where the final inequality uses the bound (39). Since Lemma 4 is based on the choice δ = D/8, it
suffices to show that

nD2

512L2
≥ 36

(
ρ(D)/(D/8)

)2 d

= 36
(
8D
c0L

√
n

d logd

)2
d

=
2304D2

c20L2
n
logd

.

Noting that the terms involving D2, L2, and n both cancel out, we see that for any fixed c0, this
inequality holds once logd is sufficiently large. By choosing c0 sufficiently large, we can ensure
that it holds for all d ≥ 2.

It remains to establish the two intermediate claims (38) and (39).

C.1 Upper Bounding the Covering Number (39)

We start by proving the upper bound (39) on the covering number. To begin, let Ñ(δ) denote the
δ-covering number (in Frobenius norm) of the nuclear norm ball B1(ρ(D)) =

{
Δ ∈Rd×d | |||Δ|||1 ≤

ρ(D)
}
, and let N(δ) be the covering number of the setB(D). We first claim that N(δ)≤ Ñ(δ). Let

{Γ1, . . . ,ΓÑ(δ)} be a δ-cover of B1(ρ(D)), From Equation (31), note that the setB(D) is contained
within B1(ρ(D)); in particular, it is obtained by intersecting the latter set with the set

S :=
{
Δ ∈ R

d×d | ‖Δ‖∞ ≤
1
d
, |||Δ|||F ≤ D

}
.
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Letting ΠS denote the projection operator under Frobenius norm onto this set, we claim that
{ΠS (Γ j), j = 1, . . . , Ñ(δ)} is a δ-cover of B(D). Indeed, since S is non-empty, closed and con-
vex, the projection operator is non-expansive (Bertsekas, 1995), and thus for any Γ ∈ B(D) ⊂ S ,
we have

|||ΠS (Γ
j)−Γ|||F = |||ΠS (Γ

j)−ΠS (Γ)|||F ≤ |||Γ j−Γ|||F ,

which establishes the claim.
We now upper bound Ñ(δ). Let G ∈ Rd×d be a random matrix with i.i.d. N(0,1) entries. By

Sudakov minoration (cf. Theorem 5.6 in Pisier, 1989), we have
√
log Ñ(δ) ≤

3
δ
E
[

sup
|||Δ|||1≤ρ(D)

〈〈G, Δ〉〉
]

≤
3ρ(D)
δ

E
[
|||G|||2

]
,

where the second inequality follows from the duality between the nuclear and operator norms. From
known results on the operator norms of Gaussian random matrices (Davidson and Szarek, 2001),
we have the upper bound E[|||G|||2]≤ 2

√
d, so that

√
log Ñ(δ) ≤

6ρ(D)
δ

√
d,

thereby establishing the bound (39).

C.2 Establishing the Tail Bound (38)

Recalling the definition of the operator Xn
′, we have

FΓ(Xn
′) =

1√
n
{ n

∑
i=1

〈〈X̃ (i), Γ〉〉2
}1/2

=
1√
n
sup

‖u‖2=1

n

∑
i=1

ui〈〈X̃ (i), Γ〉〉

=
1√
n
sup

‖u‖2=1

n

∑
i=1

uiYi

where we have defined the random variables Yi := 〈〈X̃ (i), Γ〉〉. Note that each Yi is zero-mean, and
bounded by 2L since

|Yi|= |〈〈X̃ (i), Γ〉〉|

≤
(
∑
a,b

|X̃ (i)|ab
)
‖Γ‖∞ ≤ 2L.

where we have used the facts that ‖Γ‖∞ ≤ 2/d, and ∑a,b |X̃ (i)|ab ≤ L d, by definition of the matrices
X̃ (i).

Therefore, applying Corollary 4.8 from Ledoux (2001), we conclude that

P
[
|FΓ(Xn

′)−E[FΓ(Xn
′)]|≥ δ+

32L√
n
]
≤ 4exp

(
−
nδ2

4L2
)
.
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The same corollary implies that

∣∣
√
E[F2Γ (Xn

′)]−E[FΓ(Xn
′)]
∣∣≤

16L√
n
.

Since E[F2Γ (Xn
′)] = |||Γ|||2F , the tail bound (38) follows.

Appendix D. Proof of Lemma 5

From the proof of Lemma 4, recall the definition FΓ(Xn
′) = 1√

n‖Xn
′(Γ)‖2 where Xn

′ is the random
sampling operator defined by the n matrices (X̃ (1), . . . , X̃ (n)). Using this notation, our goal is to
bound the function

G(Xn
′) := sup

Δ∈D(δ,R)
FΔ(Xn

′),

where we recall that D(δ,R) :=
{
Δ ∈ Rdr×dc | |||Δ|||F ≤ δ, |||Δ|||1 ≤ 2ρ(D), ‖Δ‖∞ ≤ 2

d
}
. Ultimately,

we will set δ= D
8 , but we use δ until the end of the proof for compactness in notation.

Our approach is a standard one: first show concentration of G around its expectation E[G(Xn
′)],

and then upper bound the expectation. We show concentration via a bounded difference inequality;
since G is a symmetric function of its arguments, it suffices to establish the bounded difference
property with respect to the first co-ordinate. In order to do so, consider a second operator X̃n

′

defined by the matrices (Z(1), X̃ (2), . . . , X̃ (n)), differing from Xn
′ only in the first matrix. Given the

pair (Xn
′, X̃n

′), we have

G(Xn
′)−G(X̃n

′) = sup
Δ∈D(δ,R)

FΔ(Xn
′)− sup

Θ∈D(δ,R)
FΘ(X̃n

′)

≤ sup
Δ∈D(δ,R)

[
FΔ(Xn

′)−FΔ(X̃n
′)
]

≤ sup
Δ∈D(δ,R)

1√
n
‖Xn

′(Δ)− X̃n
′(Δ)‖2

= sup
Δ∈D(δ,R)

1√
n
∣∣〈〈X̃ (1)−Z(1), Δ〉〉

∣∣.

For any fixed Δ ∈D(δ,R), we have
∣∣〈〈X̃ (1)−Z(1), Δ〉〉

∣∣≤ 2Ld ‖Δ‖∞ ≤ 4L,

where we have used the fact that the matrix X̃ (1) − Z(1) is non-zero in at most two entries with
values upper bounded by 2Ld. Combining the pieces yields G(Xn

′)−G(X̃n
′)≤ 4L√

n . Since the same

argument can be applied with the roles of Xn
′ and X̃n

′ interchanged, we conclude that |G(Xn
′)−

G(X̃n
′)| ≤ 4L√

n . Therefore, by the bounded differences variant of the Azuma-Hoeffding inequality
(Ledoux, 2001), we have

P
[
|G(Xn

′)−E[G(Xn
′)]|≥ t

]
≤ 2exp

(
−

nt2

32L2
)
. (40)
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Next we bound the expectation. First applying Jensen’s inequality, we have

(E[G(Xn
′)])2 ≤ E[G2(Xn

′)]

= E
[
sup

Δ∈D(δ,R)

1
n

n

∑
i=1

〈〈X̃ (i), Δ〉〉2
]

= E

[
sup

Δ∈D(δ,R)

{
1
n

n

∑
i=1

[
〈〈X̃ (i), Δ〉〉2−E[〈〈X̃ (i), Δ〉〉2]

]
+ |||Δ|||2F

}]

≤ E

[
sup

Δ∈D(δ,R)

{
1
n

n

∑
i=1

[
〈〈X̃ (i), Δ〉〉2−E[〈〈X̃ (i), Δ〉〉2]

]}]
+δ2,

where we have used the fact that E[〈〈X̃ (i), Δ〉〉2 = |||Δ|||2F ≤ δ2. Now a standard symmetrization
argument (Ledoux and Talagrand, 1991) yields

EXn
′ [G2(Xn

′)] ≤ 2EXn
′,ε

[
sup

Δ∈D(δ,R)

1
n

n

∑
i=1

εi〈〈X̃ (i), Δ〉〉2
]
+δ2,

where {εi}ni=1 is an i.i.d. Rademacher sequence. Since |〈〈X̃ (i), Δ〉〉| ≤ 2L for all i, the Ledoux-
Talagrand contraction inequality (p. 112, Ledoux and Talagrand, 1991) implies that

E[G2(Xn
′)] ≤ 16L E

[
sup

Δ∈D(δ,R)

{1
n

n

∑
i=1

εi〈〈X̃ (i), Δ〉〉
}]

+δ2.

By the duality between operator and nuclear norms, we have

∣∣1
n

n

∑
i=1

εi〈〈X̃ (i), Δ〉〉
∣∣≤ |||

1
n

n

∑
i=1

εiX̃ (i)|||2 |||Δ|||1,

and hence, since |||Δ|||1 ≤ ρ(D) for all Δ ∈D(δ,R), we have

E[G2(Xn
′)]≤ 16Lρ(D) E

[
|||
1
n

n

∑
i=1

εiX̃ (i)|||2
]
+δ2. (41)

It remains to bound the operator norm E
[
||| 1n ∑

n
i=1 εiX̃ (i)|||2

]
. The following lemma, proved in

Appendix E, provides a suitable upper bound:

Lemma 6 We have the upper bound

E
[
|||
1
n

n

∑
i=1

εiX̃ (i)|||2
]
≤ 10 max

{
√
d logd
n

,
Ld logd

n
}
.

Thus, as long as n=Ω(Ld logd), combined with the earlier bound (41), we conclude that

E[G(Xn
′)]≤

√
E[G2(Xn

′)]≤
[
160Lρ(D)

√
d logd
n

+δ2
]1/2

,

where we have used the fact that L≥ 1. By definition of ρ(D), we have

160L2ρ(D)
√
d logd
n

=
160
c0

D2 ≤
(5D
16

)2
,
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where the final inequality can be guaranteed by choosing c0 sufficiently large.
Consequently, recalling our choice δ = D/8 and using the inequality

√
a2+b2 ≤ |a|+ |b|, we

obtain

E[G(Xn
′)]≤

5
16
D+

D
8
=
7
16
D.

Finally, setting t = D
16 in the concentration bound (40) yields

G(Xn
′)≤

D
16

+
7
16
D=

D
2

with probability at least 1−2exp
(
− c′ nD2L2

)
as claimed.

Appendix E. Proof of Lemma 6

We prove this lemma by applying a form of Ahlswede-Winter matrix bound (2002), as stated in
Appendix F, to the matrix Y (i) := εiX̃ (i). We first compute the quantities involved in Lemma 7. Note
that Y (i) is a zero-mean random matrix, and satisfies the bound

|||Y (i)|||2 = d
1√

Rj(i)
√
Ck(i)

|||εi e j(i) eTk(i)|||2 ≤ Ld.

Let us now compute the quantities σi in Lemma 7. We have

E
[
(Y (i)T )Y (i)]= E

[
d2

Rj(i)Ck(i)
ek(i)eTk(i)

]
= dId×d

and similarly, E
[
Y (i) (Y (i))T

]
= dId×d , so that

σ2i =max
{
|||E

[
Y (i) (Y (i))T

]
|||2, |||E

[
(Y (i))T Y (i)]|||2

}
= d.

Thus, applying Lemma 7 yields the tail bound

P
[
|||

n

∑
i=1

εiX̃ (i)|||2 ≥ t
]
≤ 2d max

{
exp(−

t2

4nd
), exp(−

t
2Ld

)
}
.

Setting t = nδ, we obtain

P
[
|||
1
n

n

∑
i=1

εiX̃ (i)|||2 ≥ δ
]
≤ 2d max

{
exp(−

nδ2

4d
),exp(−

nδ
2Ld

)
}
.

Recall that for any non-negative random variable T , we have E[T ] =
∫ ∞
0 P[T ≥ s]ds. Applying

this fact to T := ||| 1n ∑
n
i=1 εiX̃ (i)|||2 and integrating the tail bound, we obtain

E
[
|||
1
n

n

∑
i=1

εiX̃ (i)|||2
]
≤ 10 max

{
√
d logd
n

,
Ld logd

n
}
.
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Appendix F. Ahlswede-Winter Matrix Bound

Here we state a Bernstein version of the Ahlswede-Winter (2002) tail bound for the operator norm
of a sum of randommatrices. The version here is a slight weakening (but sufficient for our purposes)
of a result due to Recht (2011); we also refer the reader to the chapter of Vershynin (2012), and the
strengthened results provided by Tropp (2010).

Let Y (i) be independent dr×dc zero-mean random matrices such that |||Y (i)|||2 ≤M, and define
σ2i :=max

{
|||E[(Y (i))TY (i)]|||2, |||E[Y (i)(Y (i))T ]|||2} as well as σ2 := ∑n

i=1σ
2
i .

Lemma 7 We have

P
[
|||

n

∑
i=1
Y (i)|||2 ≥ t

]
≤ (dr×dc)max

{
exp(−t2/(4σ2), exp(−

t
2M

)
}
.

As noted by Vershynin (2009), the same bound also holds under the assumption that each Y (i) is
sub-exponential with parameterM = ‖Y (i)‖ψ1 . Here we are using the Orlicz norm

‖Z‖ψ1 := inf{t > 0 | E[ψ(|Z|/t)]< ∞},

defined by the function ψ1(x) = exp(x)−1, as is appropriate for sub-exponential variables (e.g., see
Ledoux and Talagrand, 1991).
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72076 Tübingen, Germany

Editor: Mikio Braun

Abstract

The glm-ie toolbox contains functionality for estimation and inference in generalised linear mod-
els over continuous-valued variables. Besides a variety of penalised least squares solvers for esti-
mation, it offers inference based on (convex) variational bounds, on expectation propagation and
on factorial mean field. Scalable and efficient inference in fully-connected undirected graphical
models or Markov random fields with Gaussian and non-Gaussian potentials is achieved by casting
all the computations as matrix vector multiplications. We provide a wide choice of penalty func-
tions for estimation, potential functions for inference and matrix classes with lazy evaluation for
convenient modelling. We designed the glm-ie package to be simple, generic and easily expansi-
ble. Most of the code is written in Matlab including some MEX files to be fully compatible to both
Matlab 7.x and GNU Octave 3.3.x. Large scale probabilistic classification as well as sparse linear
modelling can be performed in a common algorithmical framework by the glm-ie toolkit.

Keywords: sparse linear models, generalised linear models, Bayesian inference, approximate
inference, probabilistic regression and classification, penalised least squares estimation, lazy eval-
uation matrix class

1. Introduction

Generalised Linear Models (GLMs) are a widely used class of probabilistic graphical models over

continuous variables allowing a unified treatment of linear, logistic and Poisson regression and

applications range from simple binary pattern classification over continuous regression to image

reconstruction. GLMs combine the computational and analytical simplicity of linear functions with

the expressivity of pointwise nonlinear link functions.

Estimation of the unknown parameters by maximum likelihood and penalised variants thereof

can be done by iteratively reweighted least squares (IRLS). Penalised least squares (PLS) corre-

sponds to maximum a posteriori estimation (MAP) in a Bayesian model.

(Approximate) Bayesian inference as opposed to MAP places the parameter estimate at the

centre of mass rather than at the mode of the posterior distribution.

• We support Expectation Propagation (EP) or TAP (Minka, 2001; Opper and Winther, 2001)

using parallel moment matching (van Gerven et al., 2010),

• Variational Bounding (VB) (Seeger and Nickisch, 2011) based on decoupling (Wipf and Na-

garajan, 2008) and (convex) (Nickisch and Seeger, 2009) optimisation, and

• Mean field (MF) (Miskin and MacKay, 2000) factorial inference.

c©2012 Hannes Nickisch.
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While EP yields very accurate approximations for small models, VB allows for efficient compu-

tations in large-scale models by a sequence of variance-smoothed PLS problems, which makes

experimental design for imaging applications (Seeger et al., 2010) possible.

Related codes are the GPML library and the Infer.NET framework both of which do not offer

scalable matrix vector multiplication (MVM) based approximate inference.

2. Implementation and Model Class

The glm-ie toolbox can be obtained from http://mloss.org/software/view/269/ and from

http://hannes.nickisch.org/code/glm-ie/ under the FreeBSD license. Based on simple in-

terfaces for potential, penalty, and estimation functions as well as inference methods and matrix

classes, we offer full compatibility to Matlab 7.x1 and GNU Octave 3.3.x2.

We provide modular, extensible and tested code. The algorithms rely on PLS estimations

based on MVMs in turn. Our documentation comes in two parts: (i) a hypertext document3

doc/index.html with detailed examples and (ii) a technical documentation4 doc/manual.pdf

explaining the interfaces to allow inclusion of new functionality.

The glm-ie toolbox deals with inference and estimation in GLMs of unknown hidden parame-

ters u ∈ Rn, Gaussian observations y ∈ Rm and non-Gaussian potentials T j(s j)

y = Xu+ε, ε∼ N (0,σ2I), s = Bu ∈ Rq,

leading to a posterior of the form

P(u|D) = P(u|X,y,σ) =
1

Z
N (y|Xu,σ2I)

q

∏
j=1

T j(s j), Z=
∫

N (y|Xu,σ2I)
q

∏
j=1

T j(s j)du. (1)

A MAP estimate ûMAP ∈Rn is the parameter value with highest posterior density; finding ûMAP

is equivalent to solving the PLS problem

ûMAP = argmax
u

P(u|D) = argmin
u

‖Xu−y‖2 +2λ ·ρ(s), s = Bu, λ ∈ R+ (2)

with penalty function ρ(s) = −∑
q
j=1 lnT j(s j) derived from the potential function T (s) and weight

λ = σ2. The normalisation constant Z is called the model evidence or equivalently the marginal

likelihood and can be used to compare models and adjust free parameters such as σ.

Our approximate inference algorithms replace the non-Gaussian potentials T j(s j) by Gaussians

N (s j|β jγ j,γ j) ∝ exp(−s2
j/(2γ j)+β js j) resulting in an overall Gaussian approximation P(u|D) ≈

Q(u) = N (u|m,V), where V−1 = A = X'X/σ2 +B'Γ−1B and m = A−1(X'y/σ2 +B'β) corre-

spond to the mean and (co)variance and Γ := dg(γ1, ..,γq).
Overall, a GLM can be specified by three kinds of objects: (i) potentials T (s) and penalties

ρ(s), (ii) matrices X, B and (iii) PLS algorithms. Together with the responses y, scalar parameters

and optimisation options, these three constituents serve as inputs to the double loop inference engine

dli computing approximations to lnZ, m and V.

1. Matlab is available from MathWorks, http://www.mathworks.com/.

2. Octave is available from the Free Software Foundation, http://www.gnu.org/software/octave/.

3. Documentation can be found at http://people.kyb.tuebingen.mpg.de/hn/glm-ie/doc/index.html.

4. Technical docs are available at http://people.kyb.tuebingen.mpg.de/hn/glm-ie/manual.pdf.
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2.1 Potential and Penalty Functions

Several non-Gaussian potentials T (s)5 can be used to shape the posterior distribution of Equa-

tion (1). In addition to the Gaussian potential potGauss, we provide several sparse potentials (ex-

ponential power potExpPow, Laplace potLaplace, Sech-squared6 potSech2, Student’s t potT) and

the logistic potential potLogistic for binary classification.

In MAP estimation, we most naturally use the penalty function ρ(s) =− lnT (s) in Equation (2)

which includes penalty functions like p-norms penAbs, penQuad, penPow. Approximate inference

by variational bounding requires penalty functions derived from a potential function, for example,

penVB or penVBNorm.

2.2 General Matrix Class and Implementations

To facilitate the specification and composition of system matrices X, B (and their respective trans-

poses) in a GLM, the glm-ie toolbox contains a specialised matrix class mat. As MVMs form

the most important computations in both estimation and inference, the class mat provides addi-

tion, transposition, scaling, composition, and concatenation. Thus, expressions like A+B’, A*B, A*x,

a*A, [A,B], [A;B], A(:,1), kron(A,B), repmat(A,[2,3]) are possible even though A or B are

of type mat and have a size that would not fit into memory if stored as a dense array. Combi-

nations are also possible. We provide several matrix classes that are derived from mat and im-

plement their own MVM. Besides 2d convolution matConv2, diagonal matDiag, finite difference

matFD2 and (quadrature mirror) wavelet matrices matWav, we offer three kinds of Fourier matrices

matFFT2line, matFFTNmask and matFFT2nu allowing for nonuniform spacing. Computations only

take place through MVMs; the other operations (addition, composition etc.) are pure bookkeeping.

2.3 Penalised Least Squares Solvers

The glm-ie toolbox contains several solvers for the PLS estimation problem of Equation (2):

• plsCG: Conjugate Gradients (CG) using a standalone solver (Rasmussen, 2006),

• plsCGBT: CG with an Armijo backtracking rule (Lustig et al., 2007),

• plsTN: Truncated Newton or IRLS (Seeger et al., 2009),

• plsLBFGS: uses a wrapper for the famous LBFGSB code (L-BFGS-B, 1997),

• plsBB: first order two-point step size rule (Barzilai and Borwein, 1988), and

• plsSB: Bregman Splitting (Goldstein and Osher, 2009).

The solvers can be used for a standalone estimation task or—together with the penVB penalty

function—as the inner loop of the double loop variational inference algorithm.

5. We use an additional scale parameter τ, that is, the rescaled potential T (τs).
6. The sech-square distribution is another name for the logistic distribution. We use sech-square to avoid a name clash

with the logistic classification potential.
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3. Example and Code

To illustrate the modular structure of the glm-ie toolbox, we provide a simple code example7. We

use a sparse linear model to describe Fourier measurements y = Xu+ε ∈ Cm of an unknown pixel

image u∈Rn where the design matrix X contains a subset of the rows of the Fourier matrix F, that is,

X = MF as specified by a measurement masking matrix M ∈ {0,1}m×n. As a prior, we employ the

knowledge that the filter responses s=Bu of natural images with zero mean filters b j, j=1..q follow

a sparse distribution imitated by the Laplace potential T j(s j) = e−τ|s j|. More specifically, the filter

matrix B contains multiscale derivatives; it is a concatenation of finite differences in both image

directions and wavelet coefficients. This model allows to reconstruct images from undersampled

magnetic resonance imaging scanner measurements, where m < n.

These steps are illustrated below, and following the code, we discuss in some detail, the meaning

and role of each line, and mention in passing some of the alternative possibilities. Note that, full

specification and prediction can be done in as little as nine lines of code:

1 [y,mask] = read_data; su = size(mask); % load measurements y and mask

2 X = matFFTNmask(mask); % construct a partial Fourier matrix

3 s2 = 1e-5; % define the observation noise variance

4 B = [matWav(su); matFD2(su)]; % conc. wavelet and finite difference matrix

5 pen = @(s) penAbs(s); % define l1-norm penalty function (LASSO)

6 [u,phi] = plsLBFGS(u0,X,y,B,opt,s2,pen); % perform PLS estimation

7 pot = @potLaplace; % define a Laplace potential (corresponds to l1-norm)

8 tau = 15; % declare width of the Laplace potential

9 [m,ga,be,z,zu,nlZ] = dli(X,y,s2,B,pot,tau,opts); % double loop VB inference

Data y is loaded in line 1. The observation noise variance σ2 and the design matrix X as declared

in lines 2-3 form the Gaussian part. The filter matrix B for the non-Gaussian part is constructed

in line 4 as the concatenation of two matrices. More involved compositions such as [W; a*D]

are possible. In the next two lines, we perform estimation by optimising equation (2) using the

plsLBFGS solver in line 6 for the penalty function ρ(s) = ∑ j |s j| as declared in line 5. Variational

inference requires a potential T (τs); here T (τs) = exp(−τ|s|), with scale τ, is defined in lines 7-8.

The engine for double loop inference dli is finally called in line 9 yielding the posterior mean

estimate m, the variational parameters γ and β, the marginal variances z = var(Bu), zu = var(u)
and the negative log evidence − lnZ ≡ nlZ of the model.
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Abstract

Iterative methods that calculate their steps from approximate subgradient directions have proved to
be useful for stochastic learning problems over large and streaming data sets. When the objective
consists of a loss function plus a nonsmooth regularization term, the solution often lies on a low-
dimensional manifold of parameter space along which the regularizer is smooth. (When an !1

regularizer is used to induce sparsity in the solution, for example, this manifold is defined by the
set of nonzero components of the parameter vector.) This paper shows that a regularized dual
averaging algorithm can identify this manifold, with high probability, before reaching the solution.
This observation motivates an algorithmic strategy in which, once an iterate is suspected of lying
on an optimal or near-optimal manifold, we switch to a “local phase” that searches in this manifold,
thus converging rapidly to a near-optimal point. Computational results are presented to verify the
identification property and to illustrate the effectiveness of this approach.

Keywords: regularization, dual averaging, partly smooth manifold, manifold identification

1. Introduction

Online learning algorithms based on stochastic approximation often are effective for solving large

machine learning problems. Each step of these methods evaluates an approximate subgradient of

the objective at the current iterate, based on a small subset (perhaps a single item) of the data. The

amount of computation and data manipulation required per iteration is therefore small. Although

many iterations are needed to converge to high-accuracy solutions, the tradeoffs between optimiza-

tion errors and the other errors that arise in machine learning problems suggest that solutions of

moderate accuracy often suffice. However, most existing stochastic algorithms do not produce ap-

proximate solutions that have the desirable structure (such as sparsity) that motivate the use of a

regularization term in the objective.

We focus on the regularized dual averaging (RDA) approach developed by Nesterov (2009) and

extended by Xiao (2010) to regularized problems. We show that, under appropriate assumptions,

iterates generated by this method have a structure similar to the solution (with high probability) after

c©2012 Sangkyun Lee and Stephen J. Wright.
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a sufficiently large number of iterations. This structure is characterized by a manifold, and identifi-

cation of structure corresponds to identifying the manifold on which the solution lies. We sketch an

algorithmic strategy that exploits this property by switching to a “local phase” that searches on the

identified manifold, which often has much lower dimension than the full space.

1.1 Problem Setting and Regularized Dual Averaging

In regularized stochastic learning, we consider the following problem:

min
w∈Rn

φ(w) := f (w)+Ψ(w), (1)

where

f (w) := Eξ[F(w;ξ)] =
∫

Ξ
F(w;ξ)dP(ξ), (2)

and ξ is a random vector whose probability distribution P is supported on the set Ξ ⊂ Rd . The

regularization function Ψ :Rn→R∪{+∞} is assumed to be a closed proper convex function whose

effective domain (denoted by domΨ) is closed, and there is an open neighborhood O of domΨ that

is contained in the domain of F(·,ξ), for all ξ ∈ Ξ. We assume that the expectation in (2) is well

defined and finite-valued for all w∈O and that for every ξ∈ Ξ, F(w,ξ) is a smooth convex function

of w ∈ O. (An elementary argument shows that f is therefore convex.) We use w∗ to denote a

minimizer of (1).

The purpose of the regularizer Ψ is to promote certain desirable types of structure in the solution

of (1). A common desirable property is sparsity (that is, w∗ has few nonzero elements), which can

be promoted by setting Ψ(·) = λ‖ ·‖1 for some parameter λ > 0.

One method for finding an (approximate) solution to (1) is to draw random variables ξ j for all

j ∈ N independently from the space Ξ, where N is an index set of finite cardinality, and solve a

sample average approximation (SAA) problem

min
w∈Rn

φ̃N (w) := f̃N (w)+Ψ(w) (3)

where f̃N (w) := 1
card(N ) ∑ j∈N F(w;ξ j). This approach requires batch optimization, which does not

scale well as card(N ) grows.

Iteration t of a stochastic online learning approach examines a cost function F(·;ξt) : Rn→ R

for some ξt ∈ Ξ, drawn randomly according to the distribution P, where {ξt}t≥1 forms an i.i.d.

sequence of samples. The next iterate wt+1 is obtained from information gathered up to the time t,

the aim being to generate a sequence {wt} such that

lim
t→∞

E[F(wt ;ξ)]+Ψ(wt) = f (w∗)+Ψ(w∗). (4)

We focus on objectives that consist of a smooth loss function F in conjunction with a nonsmooth

regularizer Ψ. Xiao (2010) recently developed the regularized dual averaging (RDA) method, in

which the smooth term is approximated by an averaged gradient in the subproblem at each iteration,

while the regularization term appears explicitly. Xiao’s approach extends the method of Nesterov

(2009) in the sense that the regularization term is not handled explicitly in Nesterov’s paper. Specif-

ically, the RDA subproblem is

wt+1 = argmin
w∈Rn

{

〈ḡt ,w〉+Ψ(w)+
βt

t
h(w)

}

, (5)
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where ḡt =
1
t ∑t

j=1 g j and g j ∈ ∂F(w j;ξ j). The prox-function h(·) is a proper strongly convex func-

tion whose minimizers are also minimizers of Ψ, and for which the starting point w1 of the algorithm

is a minimizer of h. (The function h(·) = ‖ ·−w1‖2 is a case of particular interest.) The sequence

{βt}t≥1 is nonnegative.

A characteristic of problems with nonsmooth regularizers is that the solution often lies on a

manifold of low dimension. In !1-regularized problems, for instance, the number of nonzero com-

ponents at the solution is often a small fraction of the dimension of the full space. When a reliable

method for identifying an optimal (or near-optimal) manifold is available, we have the possibility

of invoking an algorithm that searches just in the low-dimensional space defined by this manifold—

possibly a very different algorithm from the one used on the full space. One local-phase algorithm

that is well suited to the !1 regularizer is the LASSO-patternsearch (LPS) (Shi et al., 2008; Wright,

2012), a batch optimization method for !1-regularized logistic regression, which takes gradient steps

in the space of nonzero variables, enhanced by Newton-like scaling. In logistic regression, as in

other applications, it can be much less expensive to compute first- and second-order information on

a restricted subspace than on the full space.

A second motivation for aiming to identify the optimal manifold is that for problems of large

dimension, it may be quite expensive even to store a single iterate wt , whereas an iterate whose

structure is similar to that of the solution w∗ may be stored economically. (To take the case of !1

regularization again, we would need to store only the nonzero elements of wt and their locations.)

In this paper, we investigate the ability of the RDA algorithm to identify the optimal manifold.

We also describe an enhanced, two-phase version of this algorithm, which we call RDA+. We test

this approach on !1-regularized logistic regression problems, in which an LPS-based algorithm is

used to explore the near-optimal manifold identified by RDA.

1.2 Optimal Manifolds and the Identification

Identification of optimal manifolds has been studied in the context of constrained convex opti-

mization (Wright, 1993; Burke and Moré, 1994) and nonsmooth nonconvex optimization (Hare

and Lewis, 2004). In constrained optimization, the optimal manifold is typically a face or edge of

the feasible set that contains the solution. In nonsmooth optimization, the optimal manifold is a

smooth surface passing through the optimum, parameterizable by relatively few variables, such that

the restriction of the objective function to the manifold is smooth. In either case, when a certain

nondegeneracy condition is satisfied, this manifold may be identified without knowing the solution,

usually as a by-product of an algorithm for solving the problem. Lewis and Wright (2008) analyze

a framework for composite minimization (which uses a subproblem in which f is replaced by an

exact linearization around wt) and prove identification results. Part of the motivation for the current

paper is to obtain similar results as in Lewis and Wright (2008) in the stochastic gradient setting.

1.3 Alternative Stochastic Approximation Approaches

Stochastic approximation algorithms have a rich history and are currently the focus of intense re-

search in the machine learning and optimization communities. We mention a few relevant develop-

ments here, and discuss their manifold identification properties.

Stochastic approximation methods often solve formulations in which an explicit constraint w ∈
W (for a compact convex set W) is present. These can be incorporated into the framework (1) by
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defining the regularization function Ψ as follows:

Ψ(w) := δW(w)+ψ(w),

where δW(w) is the indicator function (zero on W and +∞ elsewhere) and ψ is a convex function

whose domain includes W . (In this setting, O is taken to be an open neighborhood of W .) The

classical approaches to solve such problems can be traced back to Robbins and Monro (1951) and

Kiefer and Wolfowitz (1952). The stochastic gradient descent (SGD) method generates its iterates

by stepping in the direction of a subgradient estimate and then projecting onto W , as follows:

wt+1 = ΠW (wt −αt(gt +κt)) , t = 1,2, . . .

where gt ∈ ∂F(wt ;ξt) for some sampled random variable ξt , κt ∈ ∂ψ(wt), and ΠW(·) denotes the

Euclidean projection onto the set W . With steplength choice of the form αt = θ/t (for a well-chosen

constant θ), the SGD method exhibits O(1/t) convergence rate in the quantity (4) for strongly

convex functions f (Chung, 1954; Sacks, 1958). For general convex functions, a step length of

the form αt = θ′/
√

t (for some θ′ > 0) yields an O(1/
√

t) rate of convergence in the function

value (Nemirovski and Yudin, 1978; Polyak, 1990; Polyak and Juditsky, 1992). Simplified proofs

of these rates are given by Nemirovski et al. (2009). These rates are known to be optimal for

subgradient schemes in “black-box” algorithmic models (Nemirovski and Yudin, 1983). Although

batch optimization methods based on an approximate objective, such as (3), may provide better

convergence rates, SGD has been widely used in machine learning because it scales well to large

data sets and provides good generalization performance in practice (Zinkevich, 2003; Bottou, 2004;

Zhang, 2004; Shalev-Shwartz et al., 2007).

As discussed by Xiao (2010), the SGD method does not exploit the problem structure that

is present in the regularizer ψ, and there is no reason to believe that these algorithms have good

manifold identification properties. When ψ(·) = ‖ ·‖1, for instance, there is no particular reason for

the iterates wt to be sparse. Though equal in expectation, gt and ∇ f (xt) may be far apart, so that

even if a careful choice of κt is made at each iteration, the updates may have the cumulative effect

of destroying sparsity in the iterates wt .

Variants of SGD for the general convex case often work with averaged primal iterates, of the

form

w̄t :=
∑t

j=1 ν jw j

∑t
j=1 ν j

, (6)

where the ν j are nonnegative weights (see, for example, Nemirovski et al., 2009). Averaging does

not improve identification properties. For !1 regularization, we can still expect the averaged iterates

w̄t to be at least as dense as the “raw” iterates wt .

Recently, various authors have proposed modifications of SGD that account for the regulariza-

tion structure. Some representative examples include composite objective mirror descent (COMID)

(Duchi et al., 2010), forward-backward splitting (FOBOS) (Duchi and Singer, 2009), truncated

gradient (TG) (Langford et al., 2009), and sparsity-preserving stochastic gradient (SSG) (Lin et al.,

2011). The basic FOBOS subproblem is similar to that of the prox-descent algorithm of Lewis and

Wright (2008) and the SpaRSA framework of Wright et al. (2009), which generate their iterates by

setting gt = ∇ f (wt) and solving

wt+1 = argmin
w∈Rn

{

〈gt ,w〉+Ψ(w)+
1

2αt
‖w−wt‖2

2

}

, (7)
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for some parameter αt > 0 (which plays a step-length-like role). Duchi and Singer (2009) suggest

an extension to an online setting, in which gt is replaced by an approximate gradient. SSG (Lin

et al., 2011) also has the subproblem (7) at its core, but embeds it in a strategy for generating

three sequences of iterates (rather than the single sequence {wt}), extending an idea of Nesterov

(2004). The TG method (Langford et al., 2009) solves a subproblem like (7) on some iterations;

on other iterations it simply steps in the direction gt of the latest gradient estimate for f , ignoring

the regularization term. COMID (Duchi et al., 2010) is also based on a subproblem of the form

(7), but with a Bregman divergence replacing the final quadratic term, thus yielding a more general

framework.

Since all these methods make explicit use of the regularization term Ψ in the subproblem, they

are more likely to generate iteration sequences that share the structure of the solution w∗, that is, to

identify a near-optimal manifold. Such behavior is far from guaranteed, however, because gt may

be only a rough approximation to ∇ f (wt). The inaccuracy of this gradient estimate may cause the

iterates to step away from the optimal manifold, even from an iterate wt that is close to the solution

w∗. (In Example 1 at the end of Section 4, we discuss a function satisfying all the assumptions

of this paper, in which the subproblem (7) steps away from the optimal point and off the optimal

manifold.) In contrast, the dual average ḡt used by the RDA subproblem stabilizes around ∇ f (w∗)
as the iterates converge to w∗, allowing identification results to be derived from analysis like that of

Hare and Lewis (2004) and Lewis and Wright (2008), suitably generalized to the stochastic setting.

Averaging of the primal iterates (6) does not improve the identification properties of the meth-

ods above, and will usually make them worse. Considering again !1 regularization, we observe that

if component i of any iterate wt is nonzero, then component i of all averaged iterates at subsequent

iterations will also be nonzero (unless some fortuitous cancellation occurs). RDA itself, in the ver-

sion recommended by the analysis of Xiao (2010), has the same deficiency, as the main convergence

results in that paper are for averaged iterates (6). In the current paper, we facilitate the use of the

raw iterates wt by RDA by adding two assumptions. First, w∗ is assumed to be a strong minimizer

of the restriction of φ to the optimal manifold. Second, a nondegeneracy condition ensures that φ
increases sharply as we move off the manifold. Together, these conditions ensure that w∗ is a strong

minimizer of φ, so convergence of φ(wt) to φ(w∗) forces convergence of wt to w∗.

Convergence analysis of stochastic approximation algorithms focuses largely on the regret,

which is defined as follows, for any instantiation of the random sequence {wt}t≥1 with respect

to any fixed decision w ∈ domΨ:

Rt(w) :=
t

∑
j=1

[F(w j;ξ j)+Ψ(w j)]−
t

∑
j=1

[F(w;ξ j)+Ψ(w)]. (8)

As we discuss later, the RDA algorithm has O(
√

t) regret bounds when βt = O(
√

t) for general

convex cases, and O(ln t) bounds with βt = O(ln t) for strongly convex cases. These bounds are

comparable to those of the SGD method. For general convex cases, when we use αt = O(1/
√

t),
SGD achieves an O(

√
t) regret bound (see, for example, Zinkevich, 2003; Nemirovski et al., 2009),

which cannot be improved in general. For the strongly convex case, SGD has an O(ln t) regret

bound (see, for example, Hazan et al., 2006; Bartlett et al., 2008) with αt = O(1/t).
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1.4 Notation and Terminology

Throughout the paper, we use ‖ · ‖ (without a subscript) to denote the Euclidean norm ‖ · ‖2, and

card(M) to denote the cardinality of a finite set M. The distance function dist(w,C) for w ∈ Rn and

a convex set C ⊂ Rn is defined by dist(w,C) := infc∈C ‖w− c‖. The effective domain of Ψ : Rn→
R∪ {+∞} is defined by domΨ := {w ∈ Rn |Ψ(w) < +∞}. ri C denotes the relative interior of a

convex set C, that is, the interior relative to the affine span of C (the smallest affine set which can be

expressed as the intersection of hyperplanes containing C).

We call a function ϕ : Rn→R∪{+∞} strongly convex if there exists a constant σ > 0 such that

∀w,w′ ∈ domϕ and ∀α ∈ [0,1],

ϕ(αw+(1−α)w′)≤ αϕ(w)+(1−α)ϕ(w′)− σ

2
α(1−α)‖w−w′‖2.

(σ is known as the modulus of convexity.) Strong convexity implies that for any w ∈ domϕ and

w′ ∈ ri domϕ, we have

ϕ(w)≥ ϕ(w′)+ 〈s,w−w′〉+ σ

2
‖w−w′‖2, ∀s ∈ ∂ϕ(w′). (9)

We say that a function ϕ has a locally strong minimizer at w∗ if there exist positive constants c

and r̄ such that

ϕ(w)−ϕ(w∗)≥ c‖w−w∗‖2, for all w ∈O with ‖w−w∗‖ ≤ r̄.

w∗ is a globally strong minimizer if this expression is true with r̄ = ∞.

The algorithm we consider in this paper makes use of an i.i.d. sequence {ξ j} j≥1 of random

variables drawn from Ξ according to the distribution P. We denote the history of random variables

up to time t by

ξ[t] := {ξ1,ξ2, . . . ,ξt}.

The iterate wt produced by the algorithm depends on ξ1,ξ2, . . . ,ξt−1 but not on ξt ,ξt+1, · · · ; we

sometimes emphasize this fact by writing wt = wt(ξ[t−1]).

2. Assumptions and Basic Results

We summarize here our fundamental assumptions about the problem and its solution, together with

some basic observations and results that will be used in later sections.

2.1 Unbiasedness

As in Nemirovski et al. (2009), we assume the following unbiasedness property:

∇ f (w) = ∇wE[F(w;ξ)] = E[∇wF(w;ξ)] (10)

for any w independent of ξ. (As the differentiation of F is taken only for its first argument, we omit

the subscript “w” in subsequent discussions.) Given that wt = wt(ξ[t−1]), this implies

E[∇F(wt ;ξt)] = E
[

E[∇F(wt ;ξt)|ξ[t−1]]
]

= E [∇ f (wt)] .
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2.2 Uniform Lipschitz Continuity

We assume that each F(w;ξ) is a smooth convex function of w∈O for every ξ∈Ξ, and in particular

that ∇F(·;ξ) is uniformly Lipschitz continuous with respect to its first argument, over all ξ. That is,

there exists a constant L > 0 such that

‖∇F(w;ξ)−∇F(w′;ξ)‖ ≤ L‖w−w′‖, ∀w,w′ ∈O, ∀ξ ∈ Ξ. (11)

We further assume that there exists a uniform bound G for which

‖∇F(w;ξ)‖ ≤ G, ∀w ∈O, ∀ξ ∈ Ξ. (12)

These assumptions immediately lead to similar properties on ∇ f . We prove this claim after noting

a simple consequence of Jensen’s inequality, whose proof is omitted.

Lemma 1 For a vector-valued function v : Ξ→ Rn which is integrable with respect to P, we have

‖Ev‖2 ≤ E‖v‖2.

Lemma 2 If ∇F(w;ξ) satisfies the uniform Lipschitz continuity assumption (11), then ∇ f (w) is

also uniformly Lipschitz continuous on O with the same constant L. If ∇F(w;ξ) satisfies the uniform

bound (12), then ∇ f satisfies the same bound, that is, ‖∇ f (x)‖ ≤ G for all w ∈O.

Proof From unbiasedness, we have for w,w′ ∈O independent of ξ that

∇ f (w) = ∇E[F(w;ξ)] = E[∇F(w;ξ)] from (10)

= E[∇F(w′;ξ)+uξ] for uξ := ∇F(w;ξ)−∇F(w′;ξ)

= ∇ f (w′)+E[uξ] from (10) again.

Since ‖uξ‖ ≤ L‖w−w′‖, we have

‖∇ f (w)−∇ f (w′)‖= ‖Euξ‖ ≤ E‖uξ‖ ≤ L‖w−w′‖,

where the first inequality is due to Lemma 1. This proves the first claim.

For the second claim, we have

‖∇ f (w)‖= ‖E[∇F(w;ξ)]‖ ≤ E‖∇F(w;ξ)‖ ≤ G,

as required.

2.3 Optimality and Nondegeneracy

We specify several optimality conditions that are assumed to hold throughout the paper. The opti-

mality of w∗ for the problem (1) can be characterized as follows:

0 ∈ ∇ f (w∗)+∂Ψ(w∗).

We assume that w∗ is a nondegenerate solution—one that satisfies the stronger condition

0 ∈ ri [∇ f (w∗)+∂Ψ(w∗)] . (13)

The nondegeneracy assumption is common in manifold identification analyses. It can be replaced

with weaker assumptions to prove weaker results (see, for instance, Oberlin and Wright, 2006),

though the analysis is somewhat more complicated.
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2.4 Manifolds and Partial Smoothness

In this section we discuss properties of differential manifolds and partial smoothness by repeating

some definitions from Hare and Lewis (2004).

Definition 3 (Manifold) A set M⊂Rn is a manifold about z̄ ∈M if it can be described locally by

a collection of C p functions (p≥ 2) with linearly independent gradients. That is, there exists a map

H : Rn→Rk that is C p around z̄ with ∇H(z̄)T ∈Rk×n, surjective, such that points z near z̄ lie in M
if and only if H(z) = 0.

The normal space to M at z̄, denoted by NM(z̄), is the range space of ∇H(z̄), while the tangent

space to M at z̄ is the null space of ∇H(z̄)T . We assume without loss of generality that ∇H(z̄) has

orthonormal columns.

We define partial smoothness as follows (Lewis, 2003, Section 2).

Definition 4 (Partial Smoothness) A function ϕ : Rn→R∪{+∞} is (C2-) partly smooth at a point

z̄∈Rn relative to a set M⊂Rn containing z̄ if M is a manifold about z̄ and the following properties

hold:

(i) (Smoothness) The function ϕ restricted to M, denoted by ϕ|M, is C2 near z̄,

(ii) (Regularity) ϕ is subdifferentially regular at all points z ∈M near z̄, with ∂ϕ(z) 1= /0,

(iii) (Sharpness) The affine span of ∂ϕ(z̄) is a translate of NM(z̄), and

(iv) (Sub-continuity) The set-valued mapping ∂ϕ : M⇒ Rn is continuous at z̄.

We refer to M as the active manifold at the point z̄, and as the optimal manifold when z̄ = w∗, where

w∗ is a solution of (1).

The regularity condition (ii) is discussed by Lewis (2003, p. 706); for our purposes it suffices to

note that this condition holds for closed convex functions and continuously differentiable functions,

and hence for our objective φ. Henceforth, we assume that Ψ is partly smooth at w∗ relative to the

optimal manifold, which implies partial smoothness of φ (by an argument like that of Lemma 2).

We discuss the concepts outlined in the definitions above for the specific case of Ψ(·) = ‖ · ‖1.

Given z̄ ∈ Rn, we define the following partition of the indices {1,2, . . . ,n}:

{1,2, . . . ,n}= P ∪N ∪Z,

where z̄i = 0 for all i ∈ Z , z̄i > 0 for all i ∈ P , and z̄i < 0 for all i ∈N . A natural definition of the

active manifold M is thus

M= {z ∈ R
n |zi = 0 for all i ∈ Z}.

Note that z̄ ∈M, and that the mapping H of Definition 3 can be defined as H(z) = [zi]i∈Z , with

k = card(Z) in that definition. The restriction of Ψ to this manifold thus has the following form for

all z ∈M near z̄:

− ∑
i∈N

zi + ∑
i∈P

zi,
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so that (i) of Definition 4 is satisfied. For z ∈M near z̄, we have

[∂φ(z)]i = [∇ f (z)]i +











[−1,1] for i ∈ Z,

−1 for i ∈N ,

+1 for i ∈ P.

Clearly, condition (ii) of Definition 4 holds. The affine span of ∂φ(z̄) is

{∇ f (z̄)+g |gi =−1 for i ∈N , gi =+1 for i ∈ P , and gi ∈ R for i ∈ Z},

whereas NM(z̄) = {g |gi = 0 for i ∈ P ∪N , gi ∈ R for i ∈ Z}. Comparison of the last two expres-

sions shows that (iii) of Definition 4 is satisfied. Finally, the set-valued map ∂Ψ is in fact constant

along M near z̄, so because f is smooth, Definition 4 (iv) also holds.

2.5 Strong Minimizer Properties

We assume that w∗ is a locally strong minimizer of φ relative to the optimal manifold M with

modulus cM, that is, there exists cM > 0 and rM > 0 such that {w ∈Rn |‖w−w∗‖ ≤ rM}⊂O and

φ|M(w)≥ φ|M(w∗)+ cM‖w−w∗‖2, for all w ∈M with ‖w−w∗‖ ≤ rM. (14)

Together with a nondegeneracy assumption (13), these conditions imply that w∗ is a locally strong

minimizer of φ(w) (without restriction to the optimal manifold), as we now prove.

Theorem 5 (Strong Minimizer for General Convex Case) Suppose that φ is partly smooth at w∗

relative to the optimal manifold M, that w∗ is a locally strong minimizer of φ|M with the modulus

cM > 0 and radius rM > 0 defined in (14), and that the nondegeneracy condition (13) holds at w∗.
Then there exist c ∈ (0,cM] and r̄ ∈ (0,rM] such that

φ(w)−φ(w∗)≥ c‖w−w∗‖2, for all w with ‖w−w∗‖ ≤ r̄, (15)

that is, w∗ is a locally strong minimizer of φ, without restriction to the manifold M.

Proof The proof is a simplification of the proof of Wright (2012, Theorem 2.5), which considers

the more general case in which f is prox-regular rather than convex. For completeness, we present

the proof in Appendix A.

Henceforth, we assume without loss of generality that r̄ ∈ (0,1].
The condition (15) is similar to the quadratic growth condition proposed by Anitescu (2000) in

the context of nonlinear programming. It was shown by Anitescu that this fundamental condition is

weaker than many other second-order conditions that are widely used in nonlinear programming.

Two corollaries follow in a straightforward fashion from the theorem above. We state these

results here and give their proofs in Appendix A.

Corollary 6 Suppose that w∗ is a locally strong minimizer of (1) that satisfies (15). For all w ∈O
with ‖w−w∗‖> r̄, we have

φ(w)−φ(w∗)> cr̄‖w−w∗‖.

Corollary 7 (Globally Strong Minimizer for Strongly Convex Case) Suppose that w∗ is a locally

strong minimizer of (1) satisfying (15). If φ is strongly convex on domΨ with modulus σ > 0, then

w∗ is a globally strong minimizer of (1) with modulus min(c,σ/2), that is,

φ(w)≥ φ(w∗)+min(c,σ/2)‖w−w∗‖2, for all w ∈O. (16)
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2.6 Summary of Assumptions

We summarize here the assumptions introduced in this section, for reference in the remainder of the

paper.

The first assumption summarizes basic properties of the functions and the minimizer.

Assumption 1 The unbiasedness property (10), uniform Lipschitz continuity of ∇F(·;ξ) for all

ξ ∈ Ξ (11), uniform boundedness of ‖∇F(·,ξ)‖ (12), and nondegeneracy at the optimum w∗ (13)

are satisfied.

The second assumption provides sufficient conditions for w∗ to be a locally strong minimizer.

Assumption 2 The function φ is partly smooth at its minimizer w∗ relative to the optimal manifold

M and w∗ is a locally strong minimizer of φ|M as defined in (14).

3. Regularized Dual Averaging Algorithm

We start this section by describing regret bounds for the regularized dual averaging (RDA) algorithm

of Xiao (2010) (following Nesterov, 2009), focusing on its stochastic variant. We also describe the

consequences for the analysis of the condition that the minimum is strong locally (15) or glob-

ally (16). We then analyze the properties of the averaged gradient; this analysis forms the basis of

the manifold identification result in Section 4.

3.1 The RDA Algorithm

We start by specifying the RDA algorithm from Xiao (2010), noting that our assumptions on the

functions F , f , and Ψ from Section 1 are stronger than the corresponding conditions in Xiao (2010),

which require only subdifferentiability of F(w;ξt) on domΨ.

As introduced in (5), the prox-function h :Rn→R∪{+∞} is proper, strongly convex on domΨ,

and subdifferentiable on ri domΨ. In addition, we require h to satisfy

argmin
w

h(w) ∈ argmin
w

Ψ(w).

The prox-center w1 of domΨ with respect to h, which is used as the starting point of the RDA

method, is defined as follows:

w1 := argmin
w∈domΨ

h(w).

The terms “prox-function” and “prox-center” are borrowed from Nesterov (2009). Following Xiao

(2010), we assume without loss of generality that the strong convexity modulus of h(w) is one,

and that minw h(w) = minw Ψ(w) = 0. This implies h(w1) = 0 and Ψ(w1) = 0. The most obvious

prox-function is h(·) = 1
2‖ ·−w1‖2, where w1 ∈ argminw Ψ(w).

We now define a constant D that reappears throughout the analysis. For any D > 0, we consider

a level set of the prox-function h defined as follows:

FD := {w ∈ domΨ | h(w)≤ D2}.

We assume in the analysis that points of interest (specifically, w∗) lie in FD. Because of (9) and our

assumptions on h (in particular, h(w1) = 0, 0 ∈ ∂h(w1), and h has modulus of convexity 1), we have

that

w ∈ FD ⇒ D2 ≥ h(w)≥ 1

2
‖w−w1‖2 ⇒ ‖w−w1‖ ≤

√
2D. (17)
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Algorithm 1: The RDA Algorithm.

Input:

• a prox-function h(w) that is strongly convex on domΨ and also satisfies

argmin
w∈Rn

h(w) ∈ argmin
w∈Rn

Ψ(w).

• a nonnegative and nondecreasing sequence {βt}t≥1.

Initialize: set w1 = argmin h(w) and ḡ0 = 0

for t = 1,2, . . . do

Sample ξt from Ξ and compute a gradient gt = ∇F(wt ;ξt);
Update the average gradient:

ḡt =
t−1

t
ḡt−1 +

1

t
gt .

Compute the next iterate:

wt+1 = argmin
w∈Rn

{

〈ḡt ,w〉+Ψ(w)+
βt

t
h(w)

}

. (18)

end

At iteration t, the stochastic RDA algorithm samples a vector ξt ∈ Ξ, according to the distribu-

tion P, and evaluates an approximate gradient as follows:

gt := ∇F(wt ;ξt).

We assume that the random variables ξt are i.i.d. The dual average—an averaged approximation to

the gradient of f —is defined as follows:

ḡt :=
1

t

t

∑
j=1

g j =
1

t

t

∑
j=1

∇F(w j;ξ j). (19)

The RDA algorithm is specified in Algorithm 1. As the objective function in the subproblem

(18) is strongly convex when βt > 0 or when Ψ(·) is strongly convex (at least one of which we

assume for the analysis below), wt+1 is uniquely defined by (18). Note that wt+1 depends on the

history of random variables ξ[t] up to iteration t, and is independent of later samples ξt+1,ξt+2, . . . .
We consider two choices of parameter sequences {βt} in the remainder of the paper, depending

on whether the regularization function Ψ is strongly convex or not. The first choice holds for general

convex regularizers Ψ:

βt = γ
√

t, ∀t ≥ 1, for some constant γ > 0. (20)

The second choice, βt =O(1+ ln t), can be used when Ψ is a strongly convex function, with modulus

σ> 0. Among the three choices discussed in Xiao (2010), that is, βt =σ, βt =σ(1+ ln t), and βt = 0,

we focus on the zero sequence, which gives the simplest bounds:

βt = 0, ∀t ≥ 1. (21)
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In this case, the subproblem (18) in Algorithm RDA has no damping term; we rely instead on the

damping effect supplied by the strong convexity of Ψ to stabilize the iterates.

3.2 Bounds on Regret and Expected Errors in the Iterations

Our first key result concerns bounds on the regret function defined in (8).

Theorem 8 Suppose that the unbiasedness and uniform boundedness properties in Assumption 1

are satisfied. When {βt} is chosen according to (20), we have for any w ∈ FD that

Rt(w)≤
(

γD2 +
G2

γ

)√
t, t ≥ 1. (22)

Moreover, when Ψ(w) is strongly convex with the modulus σ > 0, then the choice (21) for {βt}
results in the following bound for w ∈ FD:

Rt(w)≤
G2

2σ
(6+ ln t), t ≥ 1. (23)

Proof See Xiao (2010, Corollary 2) for the general convex case, and Xiao (2010, Theorem 1 and

Section 3.2) for the strongly convex case.

The next result obtains bounds on the expected errors in the iterates generated by Algorithm 1.

For the purpose of this and future results, we define the indicator function I(A) for the event A as

follows

I(A) =

{

1 if event A is true,

0 if event A is false.

For a random event A, I(A) is a random variable.

Lemma 9 (Expected Error Bounds of Iterates) Suppose that Assumptions 1 and 2 are satisfied,

and that w∗ ∈ FD. Then for the iterates w1,w2, . . . ,wt generated by the stochastic RDA algorithm

with {βt} chosen by (20), we have

1

t

t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

≤ 1

c

(

γD2 +
G2

γ

)

t−1/2, (24)

1

t

t

∑
j=1

E

[

I(‖w j−w∗‖>r̄)‖w j−w∗‖
]

≤ 1

cr̄

(

γD2 +
G2

γ

)

t−1/2. (25)

When Ψ(w) is strongly convex with the modulus σ > 0, then with {βt} chosen by (21) we have

1

t

t

∑
j=1

E
[

‖w j−w∗‖2
]

≤ G2

2σmin(c,σ/2)

6+ ln t

t
. (26)

Proof See Appendix B.

Note the differences between (24) and (25): the norms in the summation are squared in the first

expression but not in the second, which includes an extra factor of 1/r̄. The next result combines

these bounds into a more useful form for the results that follow.
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Theorem 10 Suppose the assumptions of Lemma 9 are satisfied. Then for the iterates w1,w2, . . . ,wt

generated by the stochastic RDA algorithm with the choice (20) for {βt}, we have

1

t

t

∑
j=1

E‖w j−w∗‖ ≤ µt−1/4, (27)

for all t ≥ t̂ , where the constants t̂ and µ are defined as follows:

µ :=
2√
cr̄

(

γD2 +
G2

γ

)1/2

, t̂ :=

⌈

1

r̄2c2

(

γD2 +
G2

γ

)2
⌉

. (28)

When Ψ(w) is strongly convex with the modulus σ > 0, then with the choice (21) for {βt} we have

1

t

t

∑
j=1

E‖w j−w∗‖ ≤ µ′
(

6+ ln t

t

)1/2

(29)

for the constant µ′ defined by

µ′ :=
G

√

2σmin(c,σ/2)
. (30)

Proof See Appendix B.

3.3 Stochastic Behavior of the Dual Average

We now study the convergence properties of the dual average ḡt , showing that the probability that

ḡt lies outside any given ball around ∇ f (w∗) goes to zero as t increases.

Theorem 11 Suppose that Assumptions 1 and 2 are satisfied and that w∗ ∈ FD, and let ε > 0 be

any chosen positive constant. When {βt} is chosen from (20), we have

P(‖ḡt −∇ f (w∗)‖ ≥ ε)≤ 2nexp

(

− ε2t

32n2G2

)

+2µε−1Lt−1/4, ∀t ≥ t̂, (31)

where µ and t̂ are defined in (28). When Ψ is strongly convex and the choice (21) is used for {βt},

we have

P(‖ḡt −∇ f (w∗)‖ ≥ ε)≤ 2nexp

(

− ε2t

32n2G2

)

+2µ′ε−1L

(

6+ ln t

t

)1/2

, ∀t ≥ 1, (32)

where µ′ is defined in (30).

Proof Using the definition (19) of ḡt and the unbiasedness property (10) that E[∇F(w j;ξ j) |
ξ[ j−1]] = ∇ f (w j), we can write

t[ḡt −∇ f (w∗)] =
t

∑
j=1

{

∇F(w j;ξ j)−E[∇F(w j;ξ j) | ξ[ j−1]]
}

+
t

∑
j=1

{

∇ f (w j)−∇ f (w∗)
}

.
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Considering the norms of the vectors in both sides and using the Lipschitz property of ∇ f (·) in

Lemma 2, we get

t‖ḡt −∇ f (w∗)‖ ≤

∥

∥

∥

∥

∥

t

∑
j=1

z j

∥

∥

∥

∥

∥

+L
t

∑
j=1

‖w j−w∗‖, (33)

where we define z j := ∇F(w j;ξ j)−E[∇F(w j;ξ j) | ξ[ j−1]].
For the ith component [z j]i of the vector z j ∈ Rn, ∑t

j=1[z j]i forms a martingale with bounded

differences since |[z j]i| ≤ 2G from (12) and E[z j | ξ[ j−1]] = 0. Therefore by Hoeffding-Azuma

inequality (Azuma, 1967) we obtain for any θ > 0,

P

(
∣

∣

∣

∣

∣

t

∑
j=1

[z j]i

∣

∣

∣

∣

∣

≥ θ

)

≤ 2exp

(

− θ2

8tG2

)

, i = 1,2, . . . ,n.

Therefore, using the equivalence relation ‖v‖2 ≤ ‖v‖1 of norms for a vector v ∈ Rn, we have

P

(
∥

∥

∥

∥

∥

t

∑
j=1

z j

∥

∥

∥

∥

∥

2

≥ θ

)

≤ P

(
∥

∥

∥

∥

∥

t

∑
j=1

z j

∥

∥

∥

∥

∥

1

≥ θ

)

= P

(

n

∑
i=1

∣

∣

∣

∣

∣

t

∑
j=1

[z j]i

∣

∣

∣

∣

∣

≥ θ

)

≤ P

(

n⋃
i=1

{
∣

∣

∣

∣

∣

t

∑
j=1

[z j]i

∣

∣

∣

∣

∣

≥ θ

n

})

≤ 2nexp

(

− θ2

8tn2G2

)

. (34)

Here the second inequality uses the implication that at least one ai ∈R should satisfy ai ≥ b/n when

∑n
i=1 ai ≥ b, and the last inequality is from the union bound of probabilities.

Also, from Markov’s inequality and the bound (27) in Theorem 10 we get for any θ′ > 0 and

t ≥ t̂ that

P

(

1

t

t

∑
j=1

‖w j−w∗‖ ≥ θ′
)

≤ µt−1/4

θ′
. (35)

Together with (33), the bounds in (34) and (35) imply that

P(t‖ḡt −∇ f (w∗)‖ ≥ δ)≤ P

(
∥

∥

∥

∥

∥

t

∑
j=1

zi

∥

∥

∥

∥

∥

+L
t

∑
j=1

‖w j−w∗‖ ≥ δ

)

≤ P

(
∥

∥

∥

∥

∥

t

∑
j=1

zi

∥

∥

∥

∥

∥

≥ δ

2

)

+P

(

1

t

t

∑
j=1

‖w j−w∗‖ ≥ δ

2tL

)

≤ 2nexp

(

− δ2

32tn2G2

)

+
2µLt3/4

δ
.

The first claim follows when we define δ := εt:

P(‖ḡt −∇ f (w∗)‖ ≥ ε)≤ 2nexp

(

− ε2t

32n2G2

)

+
2µLt−1/4

ε
.

The claim for the strongly convex case is proved similarly, using the bound (29) in Theorem 10

instead of (27) when we apply Markov inequality in (35).

The next result shows formally that for all t sufficiently large, the second term dominates in the

bounds (31) and (32).
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Corollary 12 Suppose the assumptions of Theorem 11 hold and let µ and t̂ be defined as in (28).

Then for ε ∈ (0,4nG/
√

e ] and t ≥max(t̂, t̄), with

t̄ :=

⌈

16n2G2ε−2 max

(

−W

(

−ε2

16n2G2

)

,−4ln

(

µL

nε

))⌉

, (36)

(where W (·) denotes the branch of the Lambert function with W <−1), the bound (31) simplifies to

P(‖ḡt −∇ f (w∗)‖ ≥ ε)≤ 4µε−1Lt−1/4. (37)

When Ψ is strongly convex and the choice (21) is used for {βt}, and provided that ε∈
(

0,4nG/
√

2/e
]

and t ≥ t̄ ′ with

t̄ ′ :=

⌈

32n2G2ε−2 max

(

−W

(

−ε2

32n2G2

)

,−2ln

(

µ′L
√

6

nε

))⌉

, (38)

the bound (32) simplifies to

P(‖ḡt −∇ f (w∗)‖ ≥ ε)≤ 4µ′ε−1L

(

6+ ln t

t

)1/2

, t ≥ 1. (39)

Proof Note first that the ratio (ln t)/t is decreasing for t ≥ e, so for t1 defined by

ln t1 =
ε2

16n2G2
t1, (40)

we have for t ≥ t1 and for sufficiently small ε ensuring ε2/(16n2G2)≤ 1/e (which is guaranteed by

our assumption on ε) that
ln t

t
≤ ln t1

t1
≤ ε2

16n2G2
. (41)

Note that (40) has the form ln t1 = αt1, for α = ε2/(16n2G2), for which the solution is

t1 = −W (−α)/α. Thus, for any t ≥ t̄, the condition (41) holds. We continue to assume that t ≥ t̄,

and note that

− ε2t

32n2G2
+

1

4
ln t

(41)
≤ − ε2t

32n2G2
+

ε2t

64n2G2
=− ε2t

64n2G2

(36)
≤ ln

(

µL

nε

)

.

By rearranging this expression and taking the exponential of both sides, we obtain

− ε2t

32n2G2
≤ ln

(

µL

nε

)

− 1

4
ln t ⇔ exp

(

− ε2t

32n2G2

)

≤
(

µL

nε

)

t−1/4,

which implies that the first term on the right-hand side of the bound (31) is dominated by the second.

We obtain the result (37) by substituting into (31).

The strongly convex case is similar. By solving ln t2 = αt2, for α = ε2/(32n2G2), we have for

t ≥ t2 and sufficiently small ε that

ln t

t
≤ ln t2

t2
≤ ε2

32n2G2
. (42)
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Thus for t ≥ t̄ ′, we have

− ε2t

32n2G2
+

1

2
ln t

(42)
≤ − ε2t

64n2G2

(38)
≤ ln

(

µ′L
√

6

εn

)

≤ ln

(

µ′L
√

6+ ln t

εn

)

.

By rearranging the outermost expressions in this bound, and taking the exponents of both sides, we

obtain

exp

(

− ε2t

32n2G2

)

≤ µ′L

εn

(

6+ ln t

t

)1/2

,

from which the result (39) follows.

The max-terms in (36) and (38) grow only slowly with the dimension n. Hence, we can base

our estimate of the required size of t on the factor in front of the max terms in (36) and (38), and on

the right-hand sides of (37) and (39). In particular, for the general case, we need t to be at least a

modest multiple of (4nG/ε)2 (for t ≥ t̄) and also t ≥ (4µL/ε)4 (for the right-hand side of (37) to be

useful).

4. Manifold Identification

In this section we show that most sufficiently advanced iterates of the RDA algorithm lie on the

optimal manifold. Our analysis is based upon the properties of the dual average discussed in the

previous section and on basic results for manifold identification. Specifically, we make use of

a result of Hare and Lewis (2004), which states that when a sequence of points approaches a limit

lying on an optimal nondegenerate manifold and the subgradients at these points approach zero, then

all sufficiently advanced members of the sequence lie on the manifold. We identify subsequences

of the RDA sequence that lie on the optimal manifold with increasing likelihood as the iteration

counter grows. We further show that these subsequences form a dense subset of the full sequence.

Separate but similar results are proved for the general convex case and the strongly convex case.

4.1 Convergent Sequences

We start with two results that estimate the likelihood of w j lying within a given radius of w∗. The

first of these results is for general convex objectives.

Lemma 13 (Convergent Sequences for General Convex Case) Suppose that Assumptions 1 and

2 hold, that w∗ ∈ FD, and that {β j} is chosen according to (20). Define the subsequence S by

S :=
{

j ∈ {1,2, . . .} | E
[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

≤ j−1/4, and

E

[

I(‖w j−w∗‖>r̄)‖w j−w∗‖
]

≤ (1/r̄) j−1/4
}

. (43)

For any ε > 0, we then have

P(‖w j−w∗‖ ≥ ε)≤ 1

ε

(

1

ε
+

1

r̄

)

j−1/4, ∀ j ∈ S. (44)

Defining

St := S ∩{1,2, . . . , t},
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we have
1

t
card(St)≥ 1− 2

c

(

γD2 +
G2

γ

)

t−1/4, (45)

that is, the density of St in {1,2, . . . , t} is 1−O(t−1/4).

Proof To measure the cardinality of the complement of St , that is, Sc
t := {1,2, . . . , t}\St , we first

define indicator variables χ j
− and χ j

+ for j ≥ 1 as follows:

χ j
− :=

{

1 if E
[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

> j−1/4,

0 otherwise.

χ j
+ :=

{

1 if E
[

I(‖w j−w∗‖>r̄)‖w j−w∗‖
]

> (1/r̄) j−1/4,

0 otherwise.

As the set Sc
t contains all indices j ∈ {1,2, . . . , t} that satisfy χ j

− = 1 or χ j
+ = 1, the cardinality of

Sc
t is bounded above by ∑t

j=1(χ
j
−+χ j

+). For ∑t
j=1 χ j

−, we note that

t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

≥
t

∑
j=1

χ j
−E
[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

≥
t

∑
j=1

χ j
− j−1/4 (from the definition of χ j

−)

≥ t−1/4
t

∑
j=1

χ j
−.

Using (24), we deduce that

1

t

t

∑
j=1

χ j
− ≤

1

c

(

γD2 +
G2

γ

)

t−1/4.

Similar arguments for ∑t
j=1 χ j

+ with E

[

I(‖w j−w∗‖>r̄)‖w j−w∗‖
]

, j = 1,2, . . . , t and (25) lead to

1

t

t

∑
j=1

χ j
+ ≤

1

c

(

γD2 +
G2

γ

)

t−1/4.

Therefore, the fraction of the cardinality of St to {1,2, . . . , t} is

1

t
card(St) = 1− 1

t
card(Sc

t )

≥ 1− 1

t

t

∑
j=1

(χ j
−+χ j

+)

≥ 1− 2

c

(

γD2 +
G2

γ

)

t−1/4,

thus proving (45).
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To show (44), we first observe that for any ε > 0,

P(‖w j−w∗‖ ≥ ε) = P(‖w j−w∗‖ ≥ ε, ‖w j−w∗‖ ≤ r̄)

+P(‖w j−w∗‖ ≥ ε, ‖w j−w∗‖> r̄). (46)

Focusing on the first term, we have for all j ∈ S that

P(‖w j−w∗‖ ≥ ε, ‖w j−w∗‖ ≤ r̄) = P(I(‖w j−w∗‖≤r̄)‖w j−w∗‖ ≥ ε)

≤ ε−2
E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

≤ ε−2 j−1/4, (47)

where the first inequality is due to Markov and the second inequality is from the definition of S in

(43). Similarly for the second term in (46), we have for all j ∈ S that

P(‖w j−w∗‖ ≥ ε, ‖w j−w∗‖> r̄) = P(I(‖w j−w∗‖>r̄)‖w j−w∗‖ ≥ ε)

≤ ε−1
E

[

I(‖w j−w∗‖>r̄)‖w j−w∗‖
]

≤ ε−1r̄−1 j−1/4. (48)

Applying (47) and (48) to (46) leads to the claim,

P(‖w j−w∗‖ ≥ ε)≤ ε−1(ε−1 + r̄−1) j−1/4, ∀ j ∈ S.

This result implies that for sufficiently large j, the majority of iterates w j converges to w∗, in prob-

ability. Similar results can be derived for the convergence of E[φ(w j)] to φ(w∗). The next theorem

is the corresponding result for the strongly convex case.

Lemma 14 (Convergent Sequences for Strongly Convex Case) Suppose that Assumptions 1 and

2 hold, that w∗ ∈ FD, and that the regularizer Ψ is strongly convex with modulus σ > 0. Suppose

that {β j} is defined by (21). For any ε > 0, we have

P(‖w j−w∗‖ ≥ ε)≤ G2

ε2σ2

(

6+ ln j

j

)

, j ≥ 1.

Proof From the proof of Xiao (2010, Corollary 4), we have

E
[

‖w j−w∗‖2
]

≤ G2

σ2

(

6+ ln j

j

)

, j ≥ 1.

The claim follows from the Markov inequality.
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4.2 Identification

In this subsection, we state the main identification results. We start with a result from Hare and

Lewis (2004), stating it in a modified form that is useful for our analysis below.

Theorem 15 Suppose that φ is partly smooth at the minimizer w∗ relative to the optimal manifold

M and that the nondegeneracy condition (13) holds. Then there exists a threshold ε̄ > 0 such that

for all w ∈O with ‖w−w∗‖< ε̄ and dist(0,∂φ(w))< ε̄, we have w ∈M.

Proof Suppose for contradiction that no such ε̄ exists. Let {ε j} j≥1 be any sequence of positive num-

bers such that ε j ↓ 0. Then for each j≥ 1 we have w j such that ‖w j−w∗‖< ε j, dist(0,∂φ(w j))< ε j

but w j /∈M. Considering the sequence {w j} j≥1, we have that w j → w∗, and dist(0,∂φ(w j))→ 0.

With convexity, these imply φ(w j)→ φ(w∗), since for all a j ∈ ∂φ(w j) we have φ(w j)− φ(w∗) ≤
aT

j (w j−w∗)≤‖a j‖‖w j−w∗‖. (Because of our assumptions, we can choose a j such that ‖a j‖≤ ε j.)

Convexity implies prox-regularity, so by applying Theorem 5.3 of Hare and Lewis (2004), we have

that w j ∈M for all j sufficiently large. This contradicts our choice of w j, so we conclude that ε̄ > 0

with the claimed properties exists.

The next theorem is our main result, showing that the RDA algorithm identifies the optimal

manifold with increasing probability as iterations proceed. This result requires a condition (49) on

h that is trivially satisfied by the usual prox-function h(w) = 1
2‖w−w1‖2, with constant η = 1.

Theorem 16 (Identification for General Convex Case) Suppose that Assumptions 1 and 2 hold,

that w∗ ∈ FD, that

sup
b j∈∂h(w j)

‖b j‖ ≤ η‖w j−w1‖, j = 1,2, . . . (49)

for some η > 0, and that {β j} is defined as in (20). Given the set of indices S defined in (43), we

have

P(w j ∈M)≥ 1− (ζ1 +ζ2) j−1/4

for all j ∈ S sufficiently large, where

ζ1 :=
3max(1,L)

ε̄

(

3max(1,L)

ε̄
+

1

r̄

)

, and ζ2 :=
15µL

ε̄
.

Here ε̄ > 0 has the value defined in Theorem 15, L is the Lipschitz constant of (11), r̄ is the radius

of strong local minimization from (15), and µ is defined in (28).

Proof We focus on the iterate w j and the random events associated with it. First we denote the

following event as E1:

E1 : ‖w j−w∗‖ ≤ ε̄

3max(L,1)
.

Note that E1 depends on the history ξ[ j−1] of random variables prior to iteration j. If E1 is true, it

trivially implies the condition ‖w j−w∗‖ ≤ ε̄ of Theorem 15. From Lemma 13, with ε = ε̄
3max(L,1) ,

we have that

P(‖w j−w∗‖ ≤ ε̄)≥ P(E1)≥ 1−ζ1 j−1/4, for all j ∈ S . (50)
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We now examine the other condition in Theorem 15, namely

dist
(

0,∇ f (w j)+∂Ψ(w j)
)

≤ ε̄.

By adding and subtracting terms, we obtain

∇ f (w j)+a j = (∇ f (w j)−∇ f (w∗))+(∇ f (w∗)− ḡ j−1)−
β j−1

j−1
b j

+

(

ḡ j−1 +a j +
β j−1

j−1
b j

)

. (51)

for any a j ∈ ∂Ψ(w j) and b j ∈ ∂h(w j). We choose the specific a j and b j that satisfy the optimality

of the subproblem (18), that is,

0 = ḡ j−1 +a j +
β j−1

j−1
b j.

This choice eliminates the last term in (51). For the other three terms, we have the following

observations.

(i) For those w j satisfying E1, the Lipschitz property of ∇ f (Lemma 2) implies that

‖∇ f (w j)−∇ f (w∗)‖ ≤ L‖w j−w∗‖ ≤ ε̄L

3max(L,1)
≤ ε̄

3
.

Hence, E1 implies the following event:

E2 : ‖∇ f (w j)−∇ f (w∗)‖ ≤ ε̄/3.

(ii) From Corollary 12, we have by setting ε = ε̄/3 and t = j−1 that

P(‖∇ f (w∗)− ḡ j−1‖ ≥ ε̄/3)≤ 4µL

(

3

ε̄

)

( j−1)−1/4 < ζ2 j−1/4,

for j−1≥max(t̂, t̄), where t̂ is defined in (28) and t̄, which depends on ε̄, is defined in (36).

Hence, denoting by E3 the event

E3 : ‖∇ f (w∗)− ḡ j−1‖ ≤ ε̄/3,

we have that

P(¬E3)< ζ2 j−1/4, j ≥max(t̂, t̄)+1. (52)

(iii) Since β j−1 = γ( j−1)1/2, we have for w j satisfying E1 that

β j−1

j−1
‖b j‖= γ( j−1)−1/2‖b j‖

≤ γη( j−1)−1/2‖w j−w1‖ from (49)

≤ γη( j−1)−1/2(‖w j−w∗‖+‖w1−w∗‖)

≤ γη( j−1)−1/2

(

ε̄

3max(L,1)
+
√

2D

)

from w∗ ∈ FD and (17).
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Therefore, E1 implies the event

E4 :
β j−1

j−1
‖b j‖ ≤

ε̄

3
, j ≥ t0 +1,

where we define t0 by

t0 :=

⌈

9γ2η2

ε̄2

(

ε̄

3max(L,1)
+
√

2D

)2
⌉

.

Therefore for j ∈ S with j ≥max{t̂, t̄, t0}+1, by definition of the events E1, E2, E3, and E4 above,

the probability that the conditions of Theorem 15 hold is bounded as follows:

P

(

‖w j−w∗‖ ≤ ε̄ ∧ dist(0,∂φ(w j))≤ ε̄
)

≥ P

(

E1∧E2∧E3∧E4

)

= P(E1∧E3)

≥ 1−P(¬E1)−P(¬E3)≥ 1− (ζ1 +ζ2) j−1/4,

where the last inequality is due to (50) and (52). Our claim follows.

Theorem 17 (Identification for Strongly Convex Case) Suppose that Assumptions 1 and 2 hold,

that Ψ is strongly convex with modulus σ > 0, that w∗ ∈FD, that h(·) satisfies (49), and that β j = 0

for all j ≥ 1, as defined in (21). Then we have

P(w j ∈M)≥ 1− (ζ′1 +ζ′2)

(

6+ ln j

j

)1/2

.

for all j sufficiently large, where

ζ′1 :=
G2

σ2

(

3max(1,L)

ε̄

)2

, and ζ′2 :=
17µ′L

ε̄
.

Here ε̄ > 0 has the value defined in Theorem 15, L is the Lipschitz constant of (11), G is the uniform

bound on gradient norms in (12), and µ′ is defined in (30).

Proof This proof is almost identical to that of Theorem 16; here we briefly mention the required

changes for the strongly convex case. Consider ε̄ > 0 and the event E1 defined in the proof of

Theorem 16. From Lemma 14 with ε = ε̄
3max(L,1) , we have

P(‖w j−w∗‖ ≤ ε̄)≥ P(E1)≥ 1−ζ′1(6+ ln j)/ j, j ≥ 1.

Instead of (ii) and (iii) in the proof of Theorem 16, we use the following:

(ii’) From Corollary 12, we have by setting ε = ε̄/3 and t = j−1 that

P(‖∇ f (w∗)− ḡ j−1‖ ≥ ε̄/3)≤ 4µ′
3

ε̄
L

(

6+ ln( j−1)

j−1

)1/2

<
17µ′L

ε̄

(

6+ ln j

j

)1/2

,
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for all j > max(t̄ ′ + 1,2), where t̄ ′ is defined in (38). Hence, denoting by E3 the event

‖∇ f (w∗)− ḡ j−1‖ ≤ ε̄/3, we have that

P(¬E3)< ζ′2

(

6+ ln j

j

)1/2

,

for all j sufficiently large.

(iii’) With β j−1 = 0 and the given conditions, the event E4 holds for all j ≥ 2.

Using the modified probability bounds for E1 and E3, we have

P
(

‖w j−w∗‖ ≤ ε̄ ∧ dist(0,∂φ(w j))≤ ε̄
)

≥ P
(

E1∧E3

)

≥ 1−ζ′1

(

6+ ln j

j

)

−ζ′2

(

6+ ln j

j

)1/2

≥ 1− (ζ′1 +ζ′2)

(

6+ ln j

j

)1/2

,

for all j ≥max(t̄ ′+1,9), using the fact that (6+ ln j)/ j ≤ 1 for j ≥ 9. Our claim follows.

Lemma 13 tells us that the sequence S is “dense” in {1,2, . . .}, while Theorem 16 states that

for all sufficiently large j ∈ S , w j lies on the optimal manifold with probability approaching one as

j increases. When the regularizer Ψ is strongly convex, Theorem 17 tells that similar results hold

earlier in the sequence {w j}.

We conclude this section with a simple example to show that algorithms based on subproblem

(7) that were discussed in Section 1.3 do not have reliable identification properties. The major

reason is that each iteration uses a “raw” sampled gradient gt of f , rather than the averaged (and

thus smoothed) approximate gradient ḡt of RDA. Thus, as we see now, even when the current iterate

wt is optimal, the subproblem may step away from this point, and away from the optimal manifold.

Example 1 Consider the following definitions for the problem (1):

• n = 1 (a scalar problem)

• Ξ = [−2,2] with ξ uniformly distributed on this interval.

• F(w;ξ) = ξw. Thus ∇F(w;ξ) = ξ and f (w)≡ 0.

• Ψ(w) = |w|.

With these definitions, the solution is w∗ = 0 and the optimal manifold is zero-dimensional: M =
{0}. Thus Assumption 2 is trivially satisfied. Regarding Assumption 1, the nondegeneracy condi-

tion is satisfied, since ∂Ψ(0) = [−1,1] while ∇ f (0) = 0. It is easy to verify too that F satisfies the

unbiasedness, uniform Lipschitz, and uniform boundedness properties of Assumption 1.

Setting wt = w∗ = 0, the subproblem (7) is

wt+1 = argmin
w

ξtw+ |w|+ 1

2αt
w2,
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where ξt is selected uniformly at random from [−2,2]. For ξt ∈ [−1,1], we have wt+1 = 0, so the

next iterate remains at the optimal point. However, if ξt ∈ [−2,−1), we have wt+1 =−αt(ξt +1)>
0, while if ξt ∈ (1,2], we have wt+1 = −αt(ξt − 1) < 0. In both cases, the next iterate steps away

from the solution w∗ = 0 and from the optimal manifold. Because ξt is uniformly distributed in

[−2,2], this event happens with probability 1/2 in this example. (The probability of this behavior

can be made arbitrarily close to 1 by suitable extension of the interval Ξ.)

5. Enhancing the Regularized Dual Averaging Algorithm

Here we present a simple optimization strategy motivated by our analysis above, in which the RDA

method gives way to a local phase after a near-optimal manifold is identified.

Algorithm 2 summarizes our algorithm RDA+. This algorithm starts with RDA steps until it

identifies a near-optimal manifold, then searches this manifold using a different optimization strat-

egy, possibly better suited to lower-dimensional spaces and possibly with better local convergence

properties. If an explicit parametrization of M is available, the “local phase” could take the form

of a Newton-like method applied to the composition of the objective with this parametrization. In

the important special case of Ψ(·) = λ‖ ·‖1, M can be represented simply by its nonzero variables,

and LPS (Shi et al., 2008; Wright, 2012) can be applied on the space of just these variables.

To decide when to make the switch to the local phase, we use a simple heuristic inspired by

Theorem 16 and 17 that if the past τ consecutive iterates have been on the same manifold M,

we take M to be approximately optimal. However, we “safeguard” by expanding M to incorporate

additional dimensions that may yet contain the minimizer. This simple approach will work provided

that the M so constructed is a superset of the optimal manifold, since our implementation of the

local phase is able to move to more restricted submanifolds of M but does not expand its search to

include dimensions not originally included in the manifold. When sufficient progress is not attained

in the local phase, we can resume the paused dual-averaging phase.

We describe the details of Algorithm 2 for !1 regularization, where Ψ(w) = λ‖w‖1 for some

λ > 0. (Thus, the starting point will be w1 = 0.) The optimal manifold corresponds (near w∗) to the

points in Rn that have the same nonzero patterns as w∗. We use the simple quadratic prox-function

h(w) = 1
2‖w−w1‖2. Since Ψ is not strongly convex, we use the sequence {βt} defined in (20).

We now describe various specifics of the implementation of Algorithm 2 for this case.

5.1 Computation of w j+1

The closed-form solution for the subproblem (18) with t = j is

[w j+1]i =

√
j

γ
soft(−[ḡ j]i, λ), i = 1,2, . . . ,n,

where soft(u,a) := sgn(u)max{|u|−a,0} is the well-known soft-threshold function.

5.2 Surrogate Objective

To apply the batch optimization method LPS in the local phase of Algorithm 2, we use an empirical

estimate φ̃N in (3) as a surrogate objective function (where ξ j, j∈N is a sample of random variables

from the space Ξ according to the distribution P), and then solve

min
w∈M

φ̃N (w) = f̃N (w)+λ‖w‖1. (53)
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Algorithm 2: RDA+ Algorithm.

Input:

• a prox-function h(w) that is strongly convex on domΨ and also satisfies

argmin
w∈Rn

h(w) ∈ argmin
w∈Rn

Ψ(w),

sup
b∈∂h(w)

‖b‖ ≤ η‖w−w1‖, ∀w ∈ domΨ, where w1 ∈ argmin
w

Ψ(w).

• a nonnegative and nondecreasing sequence {β j}, j ≥ 1.

• a positive integer τ.

Initialize: Set ḡ0 = 0;

for j = 1,2, . . . do (Dual Averaging)

Choose a random vector ξ j ∈ Ξ;

Compute a gradient g j = ∇F(w j;ξ j);
Update the average gradient:

ḡ j =
j−1

j
ḡ j−1 +

1

j
g j.

Compute the next iterate by solving the subproblem (18), which is

w j+1 = argmin
w∈Rn

{

〈ḡ j,w〉+Ψ(w)+
β j

j
h(w)

}

.

if there is M such that w j+2−i ∈M for i = 1,2, . . . ,τ then (Local Phase)

Safeguard M by adding dimensionality as appropriate to encompass w∗;
Use a technique for low-dimensional optimization to search for a solution on

manifold M, starting at w j+1;

end

end

LPS calculates first- and second-order information for φ̃N on the subset of components defined by

M. Since the intrinsic dimension of M is usually much smaller than the dimension n of the full

space, these restricted gradients and Hessians are much cheaper to compute than their full-space

counterparts.

5.3 Local Phase: LPS

We give further information on the LPS approach, following Wright (2012) but specializing the

description to the problem (53). Many details are omitted; we refer the reader to Wright (2012) for

a complete description and analysis of the approach, and to Shi et al. (2008) for an earlier version

together with an application to !1-regularized logistic regression.
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Algorithm 3: LPS Approach in Local Phase

Input: νmax > νmin > 0, K > 1, s > 1, w j+1;

Initialize: z0← w j+1;

for k = 0,1,2, . . . do
Choose Mk ⊂M such that each nonzero component in M appears in at least one of the

manifolds Mk,Mk−1, . . . ,Mk−K+1, for k ≥ K;

Choose νk ∈ [νmin,νmax];
Solve (54) for dk;

while φ̃N (zk +dk)> φ̃N (zk)− |dk|3 do

Set νk← sνk;

Solve (54) for dk;

end

RN Find d̃k with φ̃N (zk + d̃k)≤ φ̃N (zk +dk) and φ̃N (zk + d̃k)≤ φ̃N (zk)− .01|d̃k|3;

Set zk+1← zk + d̃k;

end

The scheme is outlined as Algorithm 3. We use Mk to denote a subset of the restricted manifold

M, again defined by the indices of the components in which we consider a move at iteration k. We

require that each nonzero component in M be considered for a possible step at least once every K

iterations, where K is a defined parameter. The basic step at each iteration, given an LPS iterate zk,

is obtained by solving the following subproblem:

min
d∈Mk

∇ f̃N (zk)
T d +

νk

2
dT d +λ‖zk +d‖1, (54)

where νk is manipulated by the algorithm to produce a decrease in the objective at each iteration.

Formulation of this subproblem requires evaluation only of those elements of the gradient ∇ f̃N
corresponding to the nonzero set Mk. Since it is separable in the components of d, it can be solved

in closed form in a number of operations proportional to the number of nonzero components in Mk.

The enhancement in the line marked as RN of Algorithm 3 can be carried out by a reduced

Newton-type method, applied to the current set of nonzero components of zk +dk. Here, we obtain

an estimate of the restriction of the Hessian ∇2 f̃N to the nonzero set, possibly by taking a random

sub-batch of N .

5.4 Checking Optimality

From the optimality condition for (3), we define the optimality measure δ(w j) as follows,

δ(w j) :=
1√
n

inf
a j∈∂‖w j‖1

‖∇ f̃N (w j)+λa j‖. (55)

Since δ(w∗)≈ 0 for a sufficiently large sample set N because of the law of large numbers, it makes

sense to terminate when δ(w j) drops below a certain threshold.
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5.5 Safeguarding

At the start of the local phase, we augment M by adding components i for which [w j+1]i = 0 but

[ḡ j]i is close to one of the endpoints of its allowable range; that is,

[w j+1]i = 0 and |[ḡ j]i|> ρλ (56)

for some ρ between 0 and 1 (but closer to 1). This conservative strategy allows for the possibility

that |[ḡ j]i| will exceed λ on a later iteration, causing [w j+1]i to move away from zero.

6. Computational Experiments

We report here on computational experiments involving binary classification tasks via !1-regularized

logistic regression. Given a set of m training examples, we select one at time t—indexed by ξt—and

use its feature vector xξt
∈ Rn−1 and label yξt

∈ {−1,1} to define the corresponding loss function

for w̃ ∈ Rn−1, b ∈ R and w = (w̃,b):

F (w;ξt) = ln
(

1+ exp
(

−yξt
(w̃T xξt

+b)
))

.

We choose Ψ(w) = λ‖w̃‖1 as the regularizer for some λ > 0, and set w1 = 0, as required in Algo-

rithm 2.

For the second phase of Algorithm 2, we set N = {1,2, . . . ,m} to obtain the empirical estimate

φ̃N from the full training set.

6.1 Manifold Identification

To investigate the identification behavior of the RDA algorithm in practical circumstances, we use

five data sets from the UCI Machine Learning Repository, which have the sizes / dimensions shown

in Table 1. We apply the original LPS to acquire the reference solution w∗N of (3), with the tight

optimality threshold of 10−6. We then tabulate how many iterations of RDA are required before it

generates a point in the optimal manifold M containing w∗N . We also check when the iterates of

RDA reach a modest superset of the optimal manifold—a “2×” superset composed of the points in

Rn having the same sign pattern for the active components in M, and up to twice as many nonzeros

as the points in M. For each data set we use three values of λ equally spaced in the log-scale range

of [0.3,0.9]λmax, where λmax, computed accordingly to Koh et al. (2007), is the value beyond which

the solution w∗N has all zero components, except for the intercept term.

Table 1 shows performance of the RDA algorithm, over 100 repeated runs for each data set

(using random permutations of training data for each run and for each sweep through the data), as

measured by the number of iterations required for the algorithm to identify the optimal manifold

and its 2× superset. Since the empirical distributions of the iteration counts are skewed, we show

the median (rather than the mean) and the standard deviation. The table also shows the values

of the optimality measure δ defined in (55) for the iterate at the moment we identify the optimal

manifold. These results demonstrate that a huge number of iterations may be required to identify

the optimal manifold, whereas identifying the superset is often much easier. In cases in which only a

few components of w∗N are nonzero, just a small fraction of the training examples usually suffice to

identify the 2× superset. We note too that even when optimal identification is achieved, the iterate

is still far from being optimal, by the criterion (55), suggesting the need for a local phase to achieve

tighter optimality.
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Data set λ 2× Superset Optimal M Optimality δ NNZs w∗N

Glass

(m = 214,n = 10)

0.29 14 (25) 20 (27) 0.068 1

0.17 13 (10) 116 (428) 0.063 2

0.10 13 (11) 28392 (6907) 0.016 3

Iono

(m = 351,n = 35)

0.22 38 (84) 122 (95) 0.015 2

0.13 44 (28) 30812 (15575) 0.008 3

0.07 86 (41) 404 (150) 0.019 5

Arrhythmia

(m = 452,n = 280)

0.15 192 (110) 304 (141) 0.001 2

0.09 272 (88) 2036 (1076) 0.002 8

0.05 447 (195) 27750 (4590) 0.001 13

Spambase

(m = 4601,n = 58)

0.17 137 (219) 357 (325) 0.006 1

0.10 722 (2495) 4340 (3097) 0.004 8

0.06 812 (1247) 4680 (2209) 0.004 17

Pageblock

(m = 5473,n = 11)

0.11 26 (326) 58 (395) 0.063 1

0.07 182 (941) 524 (1233) 0.038 3

0.04 103 (913) 461 (1232) 0.040 4

Table 1: Manifold identification properties of the RDA algorithm over 100 runs for each data set.

The median number of iterations required to identify the optimal manifold M, and the

number required to identify a 2× superset, are presented, along with the standard devia-

tions over the 100 tests (in parentheses). δ represents the optimality measure at the moment

of identifying M, while the last column shows the number of nonzeros (excluding inter-

cepts) in the reference solution obtained by LPS.

6.2 Performance on the MNIST Data Set

We now focus on the effects of the local phase on the performance of RDA+. For this purpose, we

use the MNIST data set which consists of gray-scale images of digits represented by 28×28 pixels.

We choose the binary classification problem of distinguishing between the digits 6 and 7, for which

the data set has 12183 training and 1986 test examples. Although the “6 vs 7” task is relatively easy,

we choose this setting so that we can compare our results to those reported by Xiao (2010) for the

original RDA algorithm.

We compare RDA+ to several other algorithms: SGD, TG, RDA, and LPS. The SGD method

(see, for instance, Nemirovski et al., 2009) for !1 regularization consists of the iterations

[wt+1]i = [wt ]i−αt

(

[gt ]i +λsgn([wt ]i)
)

, i = 1,2, . . . ,n,

where gt is a sampled approximation to the gradient of f at wt , obtained from a single training

example. The TG method (Langford et al., 2009) truncates the iterates obtained by the standard

SGD at every Kth step (where K is a user-defined constant). That is,

[wt+1]i =

{

trnc
(

[wt ]i−αt [gt ]i, λTG
t , θ

)

if mod(t,K) = 0,

[wt ]i−αt [gt ]i otherwise,
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where λTG
t := αtλK, mod(t,K) is the remainder on division of t by K, θ is a user-defined constant,

and

trnc(ω, λTG
t , θ) =











0 if |ω|≤ λTG
t ,

ω−λTG
t sgn(ω) if λTG

t < |ω|≤ θ,

ω otherwise.

We follow Xiao (2010) in using θ = ∞ and K = 10.

For the stepsize αt in SGD and TG, we adopt a variable stepsize scheme (Zinkevich, 2003;

Nemirovski et al., 2009), choosing αt to be a multiple of 1/
√

t so that the methods can achieve

regret bounds of O(
√

t) similar to that of RDA.

In our implementations of RDA+ and RDA, we set γ = 5000 in (20). (This value is determined

by cross validation with RDA, using a single scan through the data set.) For LPS and the local phase

of RDA+, we compute a reduced Newton step on the current active manifold only when the number

of nonzeros falls below 200. We also use the full set of training examples to compute the reduced

gradient and reduced Hessian of the surrogate function fN .

For SGD, TG, and RDA, we keep track not only of the primal iteration sequence {wt}, but

also the primal averages w̄T := 1
T ∑T

t=1 wt , where T for each algorithm denotes the iteration number

where the algorithm is stopped. We include these in the comparison because the convergence of

the stochastic subgradient algorithms is often described in terms of the primal averages. Note that

RDA+ and LPS do not make use of primal averages.

We first run the RDA+ algorithm with random permutations of the training samples, stopping

when τ = 100 consecutive iterates have the same sparsity pattern, after seeing all samples at least

once. (All repeated runs required at most 19327 iterations to stop, which is less than two complete

sweeps through the data set.) In the safeguarding test (56), we use ρ = 0.85. We run the local phase

of RDA+ until the optimality measure in (55) falls below 10−4. We record the total runtime of the

RDA+ algorithm, then run other algorithms SGD, TG, RDA, and LPS up to the runtime of RDA+,

stopping them earlier if they achieve the desired optimality before that point.

6.2.1 PROGRESS IN TIME

We compare the convergence of the algorithms in terms of the optimality measure and the number

of nonzero components. Figure 1 presents the plots for the iterates without averaging, for three

different values of λ: 10, 1, and 0.1. The optimality plots (on the left) show that RDA+ achieves

the target optimality much faster than other algorithms, including LPS. RDA behaves better than

SGD and TG, but still does not come close to the target value of optimality. There is only a modest

decrease in the optimality measure for SGD, TG, and RDA over the time frame of this experiment.

The plots on the right of Figure 1 show the number of nonzeros (excluding intercepts hereafter)

in the iterates. RDA tends to produce much sparser iterates with less fluctuation than SGD and TG,

but it fails to reduce the number of nonzeros to the smallest number identified by RDA+ in the given

time, for the values λ = 1.0 and λ = 0.1.

In its local phase, RDA+ behaves very similarly to LPS, sharing the typical behavior of non-

monotonic decrease in the optimality measure (55). However, the local phase often converges faster

than LPS, because it starts with the reduced space chosen by the dual-averaging phase of RDA+.

The number of nonzeros often increases at the point of switching between phases, as the safeguard-

ing strategy adds more elements to the nonzero set.
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Figure 2 shows similar plots but for the primal averaged iterates w̄t . We duplicate the plots

of RDA+ and LPS (which do not use iterate averaging) from Figure 1 for easy comparison. The

number of nonzero components is clearly higher for averaged iterates.

6.2.2 QUALITY OF SOLUTIONS

In Figure 3, we compare the quality of the solutions in terms of optimality, the number of nonzeros,

and test error rate. We present the results for the iterates without averaging in the three plots on the

left, and those for the primal-averaged iterates (for algorithms SGD, TG, and RDA) in the plots on

the right. (The plots of RDA+ and LPS on the left are duplicated in the right-hand plots for easy

comparison.) We run the algorithms with the same setting used in the previous experiments, except

for LPS, which we run to optimality (10−4, without time limit) to provide a baseline for comparison.

(The runtime of LPS was about four times longer than that of RDA+ on average.) The experiments

are repeated for 100 runs of the data (using random permutations of training data for each run and

for each sweep through the data), for each of seven λ values in the interval [.01,10]. (The value of

λmax for this data set is 45.8.)

In Figure 3, only the solutions from RDA+ achieve the desired optimality and the smallest

number of nonzeros, with almost identical quality to the solutions from LPS. The solutions (both

with and without averaging) from SGD, TG, and RDA are suboptimal, leaving much scope for

zeroing out many more components of the iterates. RDA achieves a similar number of nonzeros to

RDA+ for large λ values, but more nonzeros for smaller values of λ. In terms of the test error

rate, RDA+ produces slightly better solutions than SGD, TG, and RDA overall. Although the

improvement is marginal, we note that high accuracy is difficult to achieve solely with the stochastic

online learning algorithms in limited time. The averaged iterates of SGD and TG show smaller test

error for λ ≥ 1 than others, but they require a large number of nonzero components, despite the

strong regularization imposed.

In Figure 4, we show typical solutions obtained from the various algorithms for different values

of λ. The first three rows present the solutions acquired without averaging, and the last three rows

present those obtained with primal averaging. The solutions from RDA+ reveal almost identical

sparsity pattern to those from the baseline algorithm LPS, achieving smallest nonzero patterns.

RDA produces solutions of similar sparsity to RDA+ for large λ values, but much denser solutions

for smaller λ values. Again, we see that primal-averaged solutions are denser than those without

averaging.

7. Conclusion

We have shown that under assumptions of nondegeneracy and strong local minimization at the

optimum, the (non-averaged) iterates generated by the RDA algorithm identify the optimal manifold

with probability approaching one as iterations proceed. This observation enables us to develop a new

algorithmic framework that enjoys the low computational footprint of stochastic gradient methods

as well as the rapid local convergence of Newton-type optimization techniques, which can be used

to search for solutions on near-optimal manifolds that often have much lower intrinsic dimension

than the full space.

We believe that our analysis can be extended in several directions. First, the use of !p norms

in definition of the prox-function h can lead to faster convergence of RDA, but the interaction

with the strong minimizer assumption and the manifold identification results that we use here is
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Figure 1: Convergence of iterates for various algorithms applied to an !1-regularized logistic regres-

sion function constructed from the digits 6 and 7 in the MNIST data set. Convergence

is measured in terms of the optimality measure (left) and the number of nonzero compo-

nents (excluding intercepts) in the iterates (right). SGD, TG, RDA, and LPS are run up to

the time taken for RDA+ to achieve 10−4 optimality value. The vertical lines indicate the

event of phase switching in RDA+. The vertical axes on the left are in logarithmic scale.
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Figure 2: Convergence of averaged iterates (for SGD, TG, and RDA) and original iterates (for

RDA+ and LPS) on the !1-regularized logistic regression function constructed from the

digits 6 and 7 in the MNIST data set. Convergence is measured in terms of the optimality

measure (left) and the number of nonzero components (excluding intercepts) in the iter-

ates (right). SGD, TG, RDA, and LPS are run up to the time taken for RDA+ to achieve

10−4 optimality value. The vertical lines indicate the event of phase switching in RDA+.

The vertical axes on the left are in logarithmic scale.
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Figure 3: Quality of solutions (MNIST 6 vs. 7) in terms of the optimality, the number of nonzero

components (without intercepts), and the test error rate, measured for 100 different ran-

dom permutations of the training set. The plots on the left show the results for the iterates

without averaging, and those on the right show averaged primal iterates for algorithms

SGD, TG, and RDA, and non-averaged iterates for RDA+ and LPS. The SGD, TG, and

RDA algorithms are run up to the time taken for RDA+ to achieve a 10−4 threshold in the

measure (55), whereas LPS is run to convergence. Axes in the first and third rows are in

logarithmic scale.
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Figure 4: Sparsity patterns of the solutions for classification of the digits 6 and 7 in the MNIST

data set. The regularization parameter λ is varied in the range of [0.01,10]. The spots

represent the positive (bright) and negative (dark) values, whereas the gray background

represents zero. The top three rows show the solutions acquired without averaging, and

the bottom three rows show those obtained with primal averaging. The two rows in the

middle presents the solutions from RDA+ and LPS. The algorithms SGD, TG, and RDA

are run up to the time taken for RDA+ to achieve a solution with 10−4 optimality value;

the batch algorithm LPS is run without time limit. Note that for each value of λ, the

sparsest solutions are obtained by RDA+ and LPS.

1737



LEE AND WRIGHT

complicated. Second, multiple samples could be used as in Dekel et al. (2012) to construct an

approximate subgradient with reduced variance, which may thus lead to faster identification. Third,

it is likely that the nondegeneracy assumption can be weakened, in which case a “super-manifold”

of the optimal manifold would be identifiable. We leave such investigations to future work.
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Appendix A. Strong Minimizer Property

In this section we prove Theorem 5 and its corollaries stated in Section 2.5, based on results from

manifold analysis and other elementary arguments. Our proof is similar to that of Wright (2012,

Theorem 2.5), but simpler.

We first state an elementary result on manifold characterization, which is proved by Vaisman

(1984, Sections 1.4-1.5) and Wright (2012, Appendix A).

Lemma 18 Let the manifold M ⊂ Rn containing z̄ be characterized by a C p (p ≥ 2) function H :

Rn→ Rk. Then there is ȳ ∈ Rn−k and a C p function G mapping some neighborhood of ȳ to Rn such

that G(y) ∈M for all y near ȳ. Moreover, G(y)− z̄ = Y (y− ȳ)+O(‖y− ȳ‖2), where Y ∈ Rn×(n−k)

is an orthonormal matrix whose columns span the tangent space to M at z̄.

The next result, from Wright (2012, Lemma 2.2), shows how perturbations from a point at which the

objective function is partly smooth can be decomposed according to the manifold characterization

above.

Lemma 19 Let the manifold M ⊂ Rn be characterized in a neighborhood of z̄ ∈M by C p map-

pings H : Rn → Rk and G : Rn−k → Rn and the point ȳ described in Lemma 18. Then for all z

near z̄, there are unique vectors y ∈ Rn−k and v ∈ Rk with ‖(yT − ȳT ,vT )‖ = O(‖z− z̄‖) such that

z = G(y)+∇H(z̄)v.

We also make use of a result from Wright (2012, Lemma A.1).

Lemma 20 Consider a function ϕ : Rn→R∪{+∞}, a point z̄ ∈Rn, and a manifold M containing

z̄ such that ϕ is partly smooth at z̄ with respect to M. If the nondegeneracy condition 0 ∈ ri ∂ϕ(z̄)
holds, then there exists ε > 0 such that

sup
g∈∂ϕ(z̄)

〈g,d〉 ≥ ε‖d‖, ∀d ∈ NM(z̄).

Proof (Theorem 5) We now proceed with the proof of the main result of Section 2.5. Recall the

following assumptions:
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(i) φ is partly smooth at w∗ relative to the optimal manifold M.

(ii) w∗ is a locally strong minimizer of φ|M with modulus cM > 0 and radius rM > 0, and

(iii) the nondegeneracy condition (13) holds at w∗.

For the minimizer w∗ of (1) and the optimal manifold M containing w∗, we consider the map-

pings H and G, the matrix Y , and the point ȳ ∈ Rn−k satisfying Lemma 18 and Lemma 19, associ-

ated with z̄ = w∗ ∈Rn. From Lemma 19, for all w satisfying ‖w−w∗‖ ≤ r̄≤ rM with small enough

r̄ > 0, we can find unique vectors y ∈ Rn−k and v ∈ Rk with ‖(yT − ȳT ,vT )‖ = O(‖w−w∗‖) such

that w = G(y)+∇H(w∗)v. Therefore we have

φ(w)−φ(w∗) = [φ(G(y)+∇H(w∗)v)−φ(G(y))]+ [φ(G(y))−φ(w∗)] . (57)

From the locally strong minimizer property relative to M and the facts that w∗ ∈M and G(y) ∈M
for all y near ȳ, we have for the second bracketed term that

φ(G(y))−φ(w∗) = φ|M(G(y))−φ|M(w∗)≥ cM‖G(y)−w∗‖2 (58)

for all y near ȳ. Consider next the first bracketed term of (57). From Lemma 20, we have ε > 0

such that supg∈∂φ(w∗)〈g,d〉 ≥ ε‖d‖ for all d ∈ NM(w∗). From the subcontinuity property (iv) of

∂φ(w∗) in Definition 4, we can choose a neighborhood of w∗ sufficiently small that for all G(y) in

this neighborhood and g ∈ ∂φ(w∗), there exists ĝ ∈ ∂φ(G(y)) such that ‖ĝ−g‖ ≤ ε/2. These facts,

together with convexity of φ, imply that for all y near ȳ and v near 0 we have

φ(G(y)+∇H(w∗)v)−φ(G(y))≥ sup
ĝ∈∂φ(G(y))

〈ĝ,∇H(w∗)v〉

≥ sup
g∈∂φ(w∗)

〈g,∇H(w∗)v〉− (ε/2)‖∇H(w∗)v‖

≥ (ε/2)‖∇H(w∗)v‖.

By substituting this inequality and (58) into (57), we obtain

φ(w)−φ(w∗)≥ (ε/2)‖∇H(w∗)v‖+ cM‖G(y)−w∗‖2.

By further reducing r̄ if necessary, we can choose the neighborhood of w∗ small enough to ensure

that ‖∇H(w∗)v‖ ≤ 1, and therefore

φ(w)−φ(w∗)≥ (ε/2)‖∇H(w∗)v‖2 + cM‖G(y)−w∗‖2

≥min(ε/2,cM)
[

‖∇H(w∗)v‖2 +‖G(y)−w∗‖2
]

≥ 1

2
min(ε/2,cM)

[

‖∇H(w∗)v‖+‖G(y)−w∗‖
]2

≥ 1

2
min(ε/2,cM)‖w−w∗‖2.

(The third inequality follows from the elementary bound (a2 + b2) ≥ 1
2(a+ b)2, for any scalars a

and b.) We have thus shown that w∗ indeed is a local strong minimizer of φ, without the restriction

to the manifold M, with modulus c := 1
2 min(ε/2,cM) and radius r̄.
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We follow with the proofs of the remaining results of Section 2.5.

Proof (Corollary 6) Given w ∈O with ‖w−w∗‖> r̄, we have from the convexity of φ that

φ

(

w∗+ r̄
w−w∗

‖w−w∗‖

)

≤ φ(w∗)+
r̄

‖w−w∗‖(φ(w)−φ(w∗)).

From the locally strong minimizer property (Theorem 5), we also have

φ

(

w∗+ r̄
w−w∗

‖w−w∗‖

)

−φ(w∗)≥ c

∥

∥

∥

∥

(

w∗+ r̄
w−w∗

‖w−w∗‖

)

−w∗
∥

∥

∥

∥

2

= cr̄2.

Collecting the above two inequalities leads to the claim.

Proof (Corollary 7) Given w∈O, if ‖w−w∗‖ ≤ r̄, then the claim follows from (15). If ‖w−w∗‖>
r̄, then we have from strong convexity of φ that

φ

(

w∗+ r̄
w−w∗

‖w−w∗‖

)

≤ φ(w∗)+
r̄

‖w−w∗‖(φ(w)−φ(w∗))

− σ

2

r̄

‖w−w∗‖

(

1− r̄

‖w−w∗‖

)

‖w−w∗‖2.

From the locally strong minimizer property (Theorem 5), we also have

φ

(

w∗+ r̄
w−w∗

‖w−w∗‖

)

−φ(w∗)≥ cr̄2.

Combining the above two inequalities results in

φ(w)−φ(w∗)≥
[

σ/2+
r̄

‖w−w∗‖(c−σ/2)

]

‖w−w∗‖2 ≥min(c,σ/2)‖w−w∗‖2.

Appendix B. Expected Error Bounds for Iterates of RDA

In this section we provide the background for the results of Section 3, regarding the iterates gener-

ated by the RDA algorithm.
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Proof (Lemma 9) For the general convex case, with {βt} chosen by (20), we consider the expected

regret up to time t with respect to w∗, and obtain

E[Rt(w
∗)] = E

[

t

∑
j=1

(F(w j;ξ j)+Ψ(w j))−
t

∑
j=1

(F(w∗;ξ j)+Ψ(w∗))

]

=
t

∑
j=1

E
[

E
{

(F(w j;ξ j)+Ψ(w j)−F(w∗;ξ j)−Ψ(w∗)) |ξ[ j−1]

}]

=
t

∑
j=1

E [ f (w j)+Ψ(w j)− f (w∗)−Ψ(w∗)]

=
t

∑
j=1

E [φ(w j)−φ(w∗)] . (59)

Under Assumptions 1 and 2, there exists c > 0 and r̄ > 0 that satisfy (15), which is

φ(w)−φ(w∗)≥ c‖w−w∗‖2, for all w with ‖w−w∗‖ ≤ r̄,

as proved in Theorem 5. Noting that I(‖w j−w∗‖≤r̄) + I(‖w j−w∗|>r̄) = 1, we can split the right-hand side

of (59) into two sums and obtain

E[Rt(w
∗)] =

t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄){φ(w j)−φ(w∗)}
]

+
t

∑
j=1

E

[

I(‖w j−w∗‖>r̄){φ(w j)−φ(w∗)}
]

. (60)

Note that both terms on the right-hand side of (60) are nonnegative. For the first term, we have by

using the regret bound (22) and the locally strong minimizer property (15) that

(

γD2 +
G2

γ

)

t1/2 ≥
t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄){φ(w j)−φ(w∗)}
]

≥ c
t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

,

proving the first inequality (24). For the second inequality, we have from (60), the regret bound

(22), and Corollary 6 that

(

γD2 +
G2

γ

)

t1/2 ≥
t

∑
j=1

E

[

I(‖w j−w∗‖>r̄){φ(w j)−φ(w∗)}
]

≥ cr̄
t

∑
j=1

E

[

I(‖w j−w∗‖>r̄)‖w j−w∗‖
]

,

thus proving (25).

When Ψ is strongly convex with the modulus σ > 0 and {βt} chosen by (21), we apply the other

regret bound (23) to (59), resulting in

G2

2σ
(6+ ln t)≥ ERt(w

∗)≥
t

∑
j=1

E{φ(w j)−φ(w∗)}≥min(c,σ/2)
t

∑
j=1

E
[

‖w j−w∗‖2
]

,
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where for the last inequality we use the fact that w∗ is a (global) strong minimizer with the modulus

min(c,σ/2), as shown in Corollary 7. This proves (26).

Proof (Theorem 10) We start with the general convex case. From the Cauchy-Schwartz inequality

‖z‖1 ≤
√

m‖z‖2 for a vector z ∈ Rm and Jensen’s inequality, we have

1

t

t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖
]

≤
√

t

t

[

t

∑
j=1

{

E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖
]}2

]1/2

≤
[

1

t

t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖2
]

]1/2

≤ 1√
c

(

γD2 +
G2

γ

)1/2

t−1/4,

where the last inequality is from (24). By combining this result with (25) and the definition of t̂ in

(28), and using our standing assumption that r̄ ∈ (0,1], we have for t ≥ t̂ that

1

t

t

∑
j=1

E‖w j−w∗‖= 1

t

t

∑
j=1

E

[

I(‖w j−w∗‖≤r̄)‖w j−w∗‖
]

+
1

t

t

∑
j=1

E

[

I(‖w j−w∗‖>r̄)‖w j−w∗‖
]

≤ 1√
c

(

γD2 +
G2

γ

)1/2

t−1/4 +
1

r̄c

(

γD2 +
G2

γ

)

t−1/2

≤ 1√
c

(

γD2 +
G2

γ

)1/2

t−1/4 +
1√
r̄c

(

γD2 +
G2

γ

)1/2

t−1/4

≤ µt−1/4.

for µ defined in (28).

For the strongly convex case, we have from Cauchy-Schwarz and Jensen’s inequalities that

1

t

t

∑
j=1

E‖w j−w∗‖ ≤
[

1

t

t

∑
j=1

{

E‖w j−w∗‖
}2

]1/2

≤
[

1

t

t

∑
j=1

E‖w j−w∗‖2

]1/2

.

Applying the bound in (26) to the last line leads to (29).
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Abstract

Gaussian process prior with an appropriate likelihood function is a flexible non-parametric model
for a variety of learning tasks. One important and standard task is multi-class classification, which
is the categorization of an item into one of several fixed classes. A usual likelihood function for
this is the multinomial logistic likelihood function. However, exact inference with this model has
proved to be difficult because high-dimensional integrations are required. In this paper, we pro-
pose a variational approximation to this model, and we describe the optimization of the variational
parameters. Experiments have shown our approximation to be tight. In addition, we provide data-
independent bounds on the marginal likelihood of the model, one of which is shown to be much
tighter than the existing variational mean-field bound in the experiments. We also derive a proper
lower bound on the predictive likelihood that involves the Kullback-Leibler divergence between the
approximating and the true posterior. We combine our approach with a recently proposed sparse ap-
proximation to give a variational sparse approximation to the Gaussian process multi-class model.
We also derive criteria which can be used to select the inducing set, and we show the effectiveness
of these criteria over random selection in an experiment.

Keywords: Gaussian process, probabilistic classification, multinomial logistic, variational ap-
proximation, sparse approximation

1. Introduction

Gaussian process (GP, Rasmussen and Williams, 2006) is attractive for non-parametric probabilistic

inference because knowledge can be specified directly in the prior distribution through the mean and

covariance function of the process. Inference can be achieved in closed form for regression under

Gaussian noise, but approximation is necessary under other likelihoods. For binary classification

with logistic and probit likelihoods, a number of approximations have been proposed and compared

(Nickisch and Rasmussen, 2008). These are either Gaussian or factorial approximations to the

posterior of the latent function values at the observed inputs. Compared to the binary case, progress

is slight for multi-class classification. The main hurdle is the need for—and yet the lack of—

accurate approximation to the multi-dimensional integration of the likelihood or the log-likelihood

against Gaussians (Seeger and Jordan, 2004).

For multi-class classification with latent Gaussian process, different likelihood functions may

be used: the multinomial logistic function (Williams and Barber, 1998; Gibbs, 1997; Seeger and

Jordan, 2004), also called the soft-max (Bridle, 1989); the multinomial probit function (Girolami

and Rogers, 2006); and the uniform noise model (Kim and Ghahramani, 2006). For inference,

the exact posterior is usually approximated with a Gaussian or a factorial distribution, similar to

c©2012 Kian Ming A. Chai.
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the binary case. Different principles may be used to fit the approximation: Laplace approximation

(Williams and Barber, 1998); assumed density filtering (Seeger and Jordan, 2004) and expectation

propagation (Kim and Ghahramani, 2006); and variational approximation (Gibbs, 1997; Girolami

and Rogers, 2006).

This paper addresses the variational approximation of the multinomial logit Gaussian process

model, where the likelihood function is the multinomial logistic. In contrast with the variational

mean-field approach of Girolami and Rogers (2006), where a factorial approximation is assumed

from the onset, we use a full Gaussian approximation on the posterior of the latent function values.

The approximation is fitted by minimizing the Kullback-Leibler divergence to the true posterior,

which is known to be the same as maximizing a variational lower bound on the marginal likelihood.

This procedure requires the expectation of the log-likelihood under the approximating distribution.

This is intractable in general, so we introduce a bound on the expected log-likelihood and optimize

this bound instead. This contrasts with the proposal by Gibbs (1997) to bound the multinomial

logistic likelihood directly. Our bound on the expected log-likelihood is derived using a novel vari-

ational method that results in the multinomial logistic being associated with a mixture of Gaussians.

Monte-Carlo simulations indicate that this bound is very tight in practice.

Our approach gives a lower bound on the marginal likelihood of the model. By fixing some

variational parameters, we arrive at data-independent bounds on the marginal likelihood. These

bounds depend only on the number of classes and kernel Gram matrix of the data, but not on the

classifications in the data. On four UCI data sets, the one bound we evaluated is tighter than the

variational mean-field bound (Girolami and Rogers, 2006).

Although the variational approximation provides a lower bound on the marginal likelihood,

approximate prediction in the usual straightforward manner does not necessarily give a lower bound

on the predictive likelihood. We show that a proper lower bound on the predictive likelihood can

be obtained when we take into account the Kullback-Leibler divergence between the approximating

and the true posterior. This perspective supports the minimization of the divergence as a criterion

for approximate inference.

To address large data sets, we give a sparse approximation to the multinomial logit Gaussian

process model. In a natural manner, this sparse approximation combines our proposed variational

approximation with the variational sparse approximation that has been introduced for regression

(Titsias, 2009a). The result maintains a variational lower bound on the marginal likelihood, which

can be used to guide model learning. We also introduce scoring criteria for the selection of the

inducing variables in the sparse approximation. Experiments indicate that the criteria are effective.

1.1 Overview

In Section 2, we describe the latent Gaussian process model with the multinomial logistic likelihood,

and we give the variational lower bound on the marginal likelihood for approximate inference. The

data-independent bounds on the marginal likelihood are developed in this section and so are the

bounds for the predictive likelihood. In Section 3, we provide the necessary updates to optimize

the variational bound. Sparse approximation is presented in Section 4. Section 5 looks at the

sum-to-zero property that exists in our variational inference for certain covariance functions. This

is the property that has been used in motivating several single-machine multi-class support vector

machines (SVMs). Section 6 addresses model learning for the multinomial logit Gaussian process

model. It also looks at the active selection of the inducing set for sparse approximation. Section 7
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outlines the computational complexity of our approach. Related work is discussed in Section 8.

Section 9 describes several experiments and gives the results. Among others, we compare the

tightness of our variational approximation to the variational mean-field approximation (Girolami

and Rogers, 2006), and the errors of our classification results with those given by four single-

machine multi-class SVMs. Section 10 concludes and provides further discussions.

1.2 Notation

Vectors are represented by lower-case bold-faced letters, and matrices are represented by upper-case

normal-faced letters. The transpose of matrix X is denoted by XT. An asterisk ∗ in the superscript is

used for the optimized value of a quantity or function. Sometimes it is used twice when optimized

with respect to two variables. For example, if h(x,y) is a function, h∗(y) is h(x,y) optimized over x,

and h∗∗ is h(x,y) optimized over x and y. The dependency of a function on its variables is frequently

suppressed when the context is clear: we write h instead of h(x,y) and h∗ instead of h∗(y). In

optimizing a function h(x) over x, xfx and xNR refers to fixed-point update and Newton-Raphson up-

date respectively, while xcc refers to an update using the convex combination xcc = (1−η)x1 +ηx2,

where η ∈ [0,1] is to be determined, and x1 and x2 are in the domain of optimization.

We use xi for an input that has to be classified into one of C classes. The class of xi is denoted by

yi using the one-of-C encoding. Hence, yi is in the canonical basis of RC, which is the set {ec}C
c=1,

where ec has one at the cth entry and zero everywhere else. Class index c is used as superscript,

while datum index i is used as subscript. The cth entry in yi is denoted by yc
i , which is in {0,1}, and

xi belongs to the cth class if yc
i = 1.

Both xi and yi are observed variables. Associated with each yc
i is a latent random function

response f c
i . For sparse approximation, we introduce another layer of latent variables, which we

denote by z collectively. These are called the inducing variables. Other variables and functions

associated with the sparse approximation are given a tilde ∼ accent. The asterisk subscript is used

on x, y, f and z for two different purposes depending on the context: it is used to indicate a test

input for predictive inference, and it is also used for a site under consideration for inclusion to the

inducing set for sparse approximation.

We use p to represent the probability density determined by the model and the data, including

the case where the model involves sparsity. Any variational approximation to p is denoted by q.

2. Model and Variational Inference

We recall the multinomial logit Gaussian process model (Williams and Barber, 1998) in Section 2.1.

We add a simple generalization of the model to include the prior covariance between the latent

functions. Bayesian inference with this model is outlined in Section 2.2; this is intractable. We

provide variational bounds and approximate inference for the model in Section 2.3.

2.1 Model

For classifying or categorizing the ith input xi into one of C classes, we use a vector of C indicator

variables yi ∈ {ec}, wherein the cth entry, yc
i , is one if xi is in class c and zero otherwise. We

introduce C latent functions, f 1, . . . , f C, on which we place a zero mean Gaussian process prior

〈 f c(x) f c′(x′)〉= Kc
cc′k

x(x,x′), (1)
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where Kc
cc′ is the (c,c′)th entry of a C-by-C positive semi-definite matrix Kc for modeling inter-

function covariances, and kx is a covariance function on the inputs. Let f c
i

def= f c(xi). Given the

vector of function values fi
def= ( f 1

i , . . . , f C
i )

T at xi, the likelihood for the class label is the multinomial

logistic

p(yc
i = 1|fi) def=

exp f c
i

∑C
c′=1 exp f c′

i

. (2)

This can also be written as

p(yi|fi) =
exp fT

i yi

∑C
c=1 exp fT

i ec
.

These two expressions for the likelihood function will be used interchangeably. We use the first

expression when the interest on the class c and the second when the interest is on fi.

The above model for the latent functions f cs has been used previously for multi-task learning

(Bonilla et al., 2008), where f c is the latent function for the cth task. Most prior works on multi-

class Gaussian process (Williams and Barber, 1998; Seeger and Jordan, 2004; Kim and Ghahramani,

2006; Girolami and Rogers, 2006) have chosen Kc to be the C-by-C identity matrix, so their latent

functions are identical and independent. Williams and Barber (1998) have made this choice because

the inter-function correlations are usually difficult to specify, although they have acknowledged that

such correlations can be included in general. We agree with them on the difficulty, but we choose

to address it by estimating Kc from observed data, as has been done for multi-task learning (Bonilla

et al., 2008). If Kc is the identity matrix, then the block structure of the covariance matrix between

the latent function values can be exploited to reduce computation (Seeger and Jordan, 2004).

The model in Equation 1 is known as the separable model for covariance. It is perhaps the

simplest manner to involve inter-function correlations. One can also consider more involved models,

such as those using convolution (Ver Hoef and Barry, 1998) and transformation (Lázaro-Gredilla

and Figueiras-Vidal, 2009). Our presentation will mostly be general and applicable to these as well.

2.2 Exact Inference

Given a set of n observations {(xi,yi)}n
i=1, we have an nC-vector y (resp. f) of indicator variables

(resp. latent function values) by stacking the yis (resp. fis). Let X collects x1, . . . ,xn. Dependencies

on the inputs X are suppressed henceforth unless necessary.

By Bayes’ rule, the posterior over the latent function values is p(f|y) = p(y|f)p(f)/p(y), where

p(y|f) = ∏i p(yi|fi) and p(y) =
∫

p(y|f)p(f)df. Inference for a test input x∗ is performed in two

steps. First we compute the distribution of latent function values at x∗: p(f∗|y) =
∫

p(f∗|f) p(f|y)df.

Then we compute the posterior predictive probability of x∗ being in class c, which is given by

p(yc
∗ = 1|y) =

∫
p(yc

∗ = 1|f∗) p(f∗|y)df∗.

2.3 Variational Inference

The integrals needed in the exact inference steps are intractable due to the non-Gaussian likeli-

hood p(y|f). To progress, we employ variational inference in the following manner. The posterior

p(f|y) is approximated by the variational posterior q(f|y) by minimizing the Kullback-Leibler (KL)

divergence

KL(q(f|y)‖ p(f|y)) =
∫

q(f|y) log
q(f|y)
p(f|y)

df.
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This is the difference between the log marginal likelihood log p(y) and a variational lower bound

logZB =−KL(q(f|y)‖ p(f))+
n

∑
i=1

"i(yi;q), (3)

where

"i(yi;q) def=

∫
q(fi|y) log p(yi|fi)dfi (4)

is the expected log-likelihood of the ith datum under distribution q, and

q(fi|y) =
∫

q(f|y)∏
j *=i

dfj (5)

is the variational marginal distribution of fi; see Appendix B.1 for details. The Kullback-Leibler

divergence component of logZB can be interpreted as the regularizing factor for the approximate

posterior q(f|y), while the expected log-likelihood can be interpreted as the data fit component. The

inequality log p(y) ≥ logZB with ZB expressed as in Equation 3 has been given previously in the

same context of variational inference for Gaussian latent models (Challis and Barber, 2011). It has

also been used in the online learning setting (see Banerjee, 2006, and references therein).

For approximate inference on a test input x∗, first we obtain the approximate posterior, which is

q(f∗|y) def=
∫

p(f∗|f)q(f|y)df. Then we obtain a lower bound to the approximate predictive probability

for class c:

logq(yc
∗ = 1|y) def= log

∫
p(yc

∗ = 1|f∗)q(f∗|y)df∗

≥
∫

q(f∗|y) log p(yc
∗ = 1|f∗)df∗

= "∗(y
c
∗ = 1;q),

(6)

where the inequality is due to Jensen’s inequality. The corresponding upper bound is obtained using

the property of mutual exclusivity:

q(yc
∗ = 1|y) = 1− ∑

c′ *=c

q(yc′
∗ = 1|y)≤ 1− ∑

c′ *=c

exp"∗(y
c′
∗ = 1;q). (7)

The Bayes classification decision based on the upper bound is consistent with that based on the

lower bound, since

argmax
c

(

1− ∑
c′ *=c

exp"c′
∗

)

= argmax
c

(

1−
C

∑
c′=1

exp"c′
∗ + exp"c

∗

)

= argmax
c

(exp"c
∗) ,

where we have written "c
∗ for "∗(yc

∗ = 1;q).
The variational inference procedure outlined here depends on the ability to compute expressions

(a) KL(q(f|y)‖ p(f)), (b) q(f∗|y) and (c) "i(yi;q). Expressions (a) and (b) can be made tractable

by constraining q(f|y) to be a Gaussian density with mean m and covariance V , which are the

variational parameters. For (c), we compute its lower bound instead, as detailed in the next section.

Remark 1 Approximate prediction using the approximate posterior as outlined above is the more

common approach (see, for example, Rasmussen and Williams, 2006, §3.5). An alternative is to

use p(y∗|y) = p(y∗,y)/p(y) directly. Lower bounds to the marginal likelihoods p(y∗,y) and p(y)
may replace the exact values if they are tight. However, this procedure is more expensive in general

since an (approximate) marginal likelihood has to be computed for the training data together with

the test data point for every test point.
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2.3.1 VARIATIONAL BOUNDS FOR EXPECTED LOG-LIKELIHOOD

Equations 3 to 7 require the computation of the expected log-likelihood under q(f|y):

"(y;q) def=

∫
q(f|y) log p(y|f)df, (8)

where we have suppressed the datum indices i and ∗ here and henceforth for this section. In our

setting, q(f|y) is a Gaussian density with mean m and covariance V , and we regard these parameters

to be constant throughout this section. The subject of this section is lower bounds on "(y;q). Two

trivial lower bounds can be obtained by expanding p(y|f) and using the Jensen’s inequality:

"(y;q)≥ mTy− log
C

∑
c=1

exp

[

mTec +
1

2
(y− ec)TV (y− ec)

]

, (9)

"(y;q)≥ mTy− log
C

∑
c=1

exp

[

mTec +
1

2
(ec)TV ec

]

. (10)

These bounds can be very loose. In this section, we give a variational lower bound, and we have

found this bound to be quite tight when the variational parameters are optimized. This bound ex-

ploits that if a prior r(f) is a mixture of C Gaussians with a particular set of parameters, then the

corresponding posterior under the multinomial logistic likelihood is a C-variate Gaussian. We in-

troduce this bound in terms of probability distributions and then express it in terms of variational

parameters.

Lemma 2 Let r(f|y) be a C-variate Gaussian density with mean a and precision W, and let ac be

such that Wac =Wa+ ec −y. If r(f) = ∑C
c=1 γ

crc(f) is the mixture of C Gaussians model on f with

mixture proportions and components

γc def=
exp
[

1
2(a

c)TWac
]

∑c′ exp
[

1
2(a

c′)TWac′
] , rc(f) def=

|W |1/2

(2π)C/2
exp

[

−
1

2
(f−ac)TW (f−ac)

]

,

and if

r(y) =
exp
[

1
2 aTWa

]

∑
C
c=1 exp

[

1
2(a

c)TWac
] , (11)

then

"(y;q)≥ h(y;q,r) def=

∫
q(f|y) logr(f|y)df+ logr(y)− log

C

∑
c=1

γc
∫

q(f|y)rc(f)df. (12)

Proof The choice of notation used in the lemma will be clear from its proof. We begin with a

variational posterior distribution r(f|y). Denote by r(f) the corresponding prior distribution that

gives this posterior when combined with the exact data likelihood p(y|f); that is

r(f|y) = p(y|f)r(f)/r(y), where r(y) def=

∫
p(y|f)r(f)df.

Rearranging for p(y|f) and putting back into "(y;q) defined by (8) gives

"(y;q) =
∫

q(f|y) logr(f|y)df+ logr(y)−
∫

q(f|y) logr(f)df. (13)
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This is valid for any choice of distribution r(f|y), but let us choose it to be a C-variate Gaussian

density with mean a and precision W . After some algebraic manipulation detailed in Appendix B.2,

we obtain the expressions for r(f) and r(y) given in the lemma. We proceed with Jensen’s inequality

to move the logarithm outside the integral for the last term on the right of (13). This leads to the

lower bound (12).

Remark 3 The first two terms in the expression for the expected log-likelihood "(y;q) given by (13)

are computable, since r(f|y) is Gaussian by definition, and r(y) is given in (11); however, the third

term remains intractable since r(f) is a mixture of Gaussians. Hence the additional step of using

the Jensen’s inequality is required to obtain the lower bound h(y;q,r) in (12) that is computable.

Remark 4 Lemma 2 depends only on the multinomial logistic likelihood function. It does not de-

pend on the distribution q(f|y). In particular, q(f|y) can be non-Gaussian.

Lemma 5 Let W be a C-by-C positive semi-definite matrix, and let a ∈ RC. Define S def=V−1 +W,

b def=W (m−a)+y, and

gc(y;q,a,W ) def= exp

[

mTec +
1

2
(b− ec)TS−1(b− ec)

]

. (14)

Then

"(y;q)≥ h(y;q,a,W ) =
C

2
+

1

2
log |SV |−

1

2
trSV +mTy− log

C

∑
c=1

gc(y;q,a,W ). (15)

Proof This follows from Lemma 2 by expressing h(y;q,r) in terms of parameters W and a; the

derivation is in Appendix B.3. Matrix W is allowed to be singular because our derivation does not

involve the inversion of W ; and the determinants of W taken in r(f|y) and rc(f) directly cancel out

by subtraction, so continuity arguments can be applied.

We can view h given in (15) as parameterized either by W and a or by S and b. For the latter

view, the definitions of S and b constrain their values. Therefore, the following seem necessary from

the onset in order for the bound to be valid.

• S -V−1 so that W is well-defined.

• If W is rank-deficient, then b lies on the hyperplane passing through y and in the column

space of W .

However, further analysis will show these constraints to be unnecessary for h to be a lower bound.

Consequently, we can view h as a function of the pair (b,S), regardless of there being a pair (a,W )
mapping to (b,S). Before proceeding to the formal theorem, a few notations are necessary. Let

gc(q,b,S) def= exp

[

mTec +
1

2
(b− ec)TS−1(b− ec)

]

(16)
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be a function of the mean m of distribution q and of b and S . 0. When the context is clear, we will

suppress the parameters of gc for conciseness. Let

ḡc def= gc/∑C
c′=1 gc′ , ḡ def= (ḡ1, . . . , ḡC)T, (17)

and let Ḡ be the diagonal matrix with ḡ along its diagonal. We further define

A def= ∑C
c=1 ḡc(b− ec)(b− ec)T = bbT −bḡT − ḡbT + Ḡ - 0. (18)

Matrix A given above is a convex combination of C positive semi-definite matrices of ranks one, so

A is positive semi-definite. Furthermore, A *= 0. We will also suppress the dependency of A on m, b

and S for conciseness.

The lemmas necessary for the proof of the following theorem are in Appendix B.4.

Theorem 6 Let S be a C-by-C positive definite matrix, and let b ∈ RC. Let

h(y;q,b,S) def=
C

2
+

1

2
log |SV |−

1

2
trSV +mTy− log

C

∑
c=1

gc(q,b,S) (19)

be a function of b and S, where gc(q,b,S) is given by (16). Then "(y;q)≥ h(y;q,b,S).

Proof Let (b∗,S∗) def= argmax(b,S) h(y;q,b,S). The joint concavity of h in b and S (Lemma 25)

implies h(y;q,b∗,S∗)> h(y;q,b,S) for any b *= b∗ and S *= S∗. Thus we only need to prove

"(y;q) ≥ h(y;q,b∗,S∗). Now, if there exists a pair (a∗,W ∗) with W ∗ - 0 such that S∗ =V−1 +W ∗

and b∗ =W ∗(m−a∗)+y, then the application of Lemma 5 completes the proof. To find such a

pair, we first set S∗ and W ∗ to the Sfx and the W fx given by Lemma 28, then we show below that

there exists an a∗ under this setting.

Let ḡ∗ def= ḡ(q,b∗,S∗) and Ḡ∗ be the diagonal matrix with ḡ∗ along its diagonal. By Lemma 26,

b∗ = ḡ∗, so matrix A simplifies to A∗ given by A∗ def= Ḡ∗ − ḡ∗(ḡ∗)T. Since ḡ∗ is a probability vector,

matrix A∗ is the covariance matrix of a multinomial distribution. The entries in ḡ∗ are non-zero,

so matrix A∗ is of rank (C − 1), and an eigenpair of A∗ is (0,1) (see Watson, 1996). In other

words, null(A∗∗) = {η1 | η ∈ R}. Using Lemma 28, we also have null(W ∗) = {η1 | η ∈ R}. Since

(b∗ −y)T1 = 1−1 = 0, we have (b∗ − y) *∈ null(W ∗), unless (b∗ − y) = 0. Equivalently, (b∗ − y)
is in the row space of W ∗. Hence, there exists a vector v such that W ∗v = b∗ −y. We let a∗ def= m−v

to complete the proof.

There are two properties that W ∗ obeys: null(W ∗) = {η1 | η ∈R} and W ∗ - 0. One parametriza-

tion of W that always satisfies these properties is

W def= M−M11TM/1TM1, where M . 0. (20)

The proof for the null space is straightforward, while the proof for positive definiteness is an appli-

cation of Theorem 7.7.7(a) by Horn and Johnson (1985). If M is a diagonal positive definite matrix,

then the parametrization proposed by Seeger and Jordan (2004) is obtained. Further constrain-

ing the diagonal to sum to one gives the parametrization resultant from the Laplace approximation

(Williams and Barber, 1998; Rasmussen and Williams, 2006). A diagonal M is appealing because

it entails that W is the covariance of the multinomial or the Dirichlet distribution, which matches
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the likelihood. However, our experience has shown that a diagonal M is far from optimum for our

bounds. Therefore, we shall let W vary freely but be subjected directly to the two properties stated

at the beginning of this paragraph. There are two reasons for the non-optimality. First, the varia-

tional prior r(f) in Lemma 2 is a mixture of Gaussian distributions and not a Dirichlet distribution.

Second, the use of Jensen’s inequality in Lemma 5 weaken the interpretation of W as the covariance

of the variational posterior r(f|y). Nonetheless, since the null space of W ∗ is the line {η1 | η ∈ R},

the optimized variational posterior satisfies the invariance r(f|y) = r(f+ η1|y), η ∈ R. This is a

pleasant property because the likelihood satisfies the same invariance: p(y|f) = p(y|f+η1).
The significance of Theorem 6 over Lemma 5 is in the practical aspects of variational inference:

1. Maximizing h with respect to V does not involve the function gc.

2. A block coordinate approach to optimization can be used, since we can optimize with respect

to V and to S alternately, without ensuring S -V−1 when optimizing for V .

3. The vector y of observed classifications does not appear in the definition of gc given by Equa-

tion 16, in contrast to Equation 14.

Let us emphasis the second point listed above. In place of definitions (16) and (19) for functions

gc and h, suppose we had used

gc(b′,S) def= exp
1

2
(b′ − ec)TS−1(b′ − ec),

h(y;q,b,S) def=
C

2
+

1

2
log |SV |−

1

2
trS(V +mmT)+mT(y−b′)− log

C

∑
c=1

gc(q,b′,S)

as functions of b′ and S . 0. This is obtained from Lemma 2 by substituting in S def=V−1 +W

and b′ def=−V−1m−Wa+y. This formulation of h is jointly concave in b′ and S, so there should

be no computation difficulties in optimization. Unfortunately, this formulation does not guarantee

S -V−1 when the optimization is done without constraints. This is in contrast with the formulation

in Theorem 6, for which validity is guaranteed by Lemma 28.

The bound h as defined in Theorem 6 is maximized by finding the stationary points with respect

to variational parameters b and S. Computation can be reduced when the bound is relaxed through

fixing or constraining these parameters. Two choices for S are convenient: I and V−1. Fixing

S to V−1 is expected to be a better choice since its optimal value is between V−1 and V−1 + A

(Lemma 27). This gives the relaxed bound

h(y;q,b,V−1) = mTy− log
C

∑
c=1

exp

[

mTec +
1

2
(b− ec)TV (b− ec)

]

.

For the case where q is non-correlated Gaussians, that is, where V is a diagonal matrix, we ob-

tain the bound that has been proposed for variational message passing (Knowles and Minka, 2011,

Equation 12). We can also choose to fix b to y, giving

h(y;q,y,V−1) = mTy− log
C

∑
c=1

exp

[

mTec +
1

2
(y− ec)TV (y− ec)

]

.

This is the bound (9) obtained using Jensen’s inequality directly. Setting b to 0 instead of y gives

h(y;q,0,V−1) = mTy− log
C

∑
c=1

exp

[

mTec +
1

2
(ec)TV ec

]

,
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which is the bound (10) also obtained using Jensen’s inequality directly. Therefore, the bound

max(b,S) h(y;q,b,S) is provably at least as tight as the Jensen’s inequality bounds. Other choices for

S and b give different lower bounds on max(b,S) h(y;q,b,S).
Thus far we have delved into lower bounds for "(y;q) defined by Equation 8. Of independent

interest is the following upper bound that is proved in Appendix B.5:

Lemma 7 "(y;q)≤ log p(y|m) def= mTy− log∑
C
c=1 expmTec.

2.3.2 VARIATIONAL BOUNDS FOR MARGINAL LIKELIHOOD

To consolidate, the log marginal likelihood is lower bounded via the sequence

log p(y)≥ logZB ≥ logZh
def=−KL(q(f|y)‖ p(f))+

n

∑
i=1

h(yi;qi,bi,Si),

where the datum subscript i is reintroduced. The aim is to optimize the last lower bound. Recall that

m and V are the mean and covariance of the variational posterior q(f|y). Also recall that the prior

distribution on f is given by the Gaussian process prior stated in Section 2.1, so f has zero mean

and covariance K def= Kx ⊗Kc, where Kx is the n-by-n matrix of covariances between the inputs

x1, . . . ,xn. Using arguments similar to those used in proving Lemma 25, one can show that logZh

is jointly concave in m, V , {bi} and {Si}. We highlight this with the following proposition, where

logZh is expressed explicitly in the variational parameters.

Proposition 8 Let V be an nC-by-nC positive definite matrix and let m ∈ RnC. For i = 1, . . .n, let

Si be a C-by-C positive definite matrix and let bi ∈ RC. Let

logZh = nC+
1

2
log |K−1V |−

1

2
trK−1V −

1

2
mTK−1m+mTy

+
1

2

n

∑
i=1

(

log |SiVi|− trSiVi

)

−
n

∑
i=1

log
C

∑
c=1

exp

[

mT
i ec +

1

2
(bi − ec)TS−1

i (bi − ec)

]

, (21)

where Vi is the ith C-by-C diagonal block of V , and mi is the ith C-vector of m. Then logZh is jointly

concave in m, V , {bi} and {Si}, and log p(y)≥ logZh.

Suitable choices of the variational parameters leads to the following two theorems that are

proved in Appendix B.6.

Theorem 9 For a multinomial logit Gaussian process model where the latent process has zero

mean and the covariance function induces the Gram matrix K, the average log-marginal-likelihood

satisfies

1

n
log p(y)≥

C

2
+

C

2
logσ2

v −
1

2n
log |K|−

σ2
v

2n
trK−1

−
C−1

2

[

2

√

σ2
v

C
+

1

4
− log

(
√

σ2
v

C
+

1

4
+

1

2

)

−1

]

− logC

>
C

2
+

C

2
logσ2

v −
1

2n
log |K|−

σ2
v

2n
trK−1 −

σ2
v

2
− logC

for every σ2
v > 0.
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Theorem 10 For a multinomial logit Gaussian process model where the latent process has zero

mean, the covariance function is k((x,c),(x′,c′)) = σ2δ(c,c′)kx(x,x′) and kx is a correlation func-

tion, that is, kx(x,x) = 1, the average log-marginal-likelihood satisfies

1

n
log p(y)≥−

C−1

2

[

2

√

σ2

C
+

1

4
− log

(
√

σ2

C
+

1

4
+

1

2

)

−1

]

− logC

>−σ2/2− logC.

The bounds in the theorems do not dependent on the observed classes y because they have been

“zeroed-out” by setting m = 0. For the setting in Theorem 10, the lower bound in Theorem 10 is

always tighter than that in Theorem 9 because the first four terms within the latter is the negative of

a Kullback-Leibler divergence, which is always less than zero. One may imagine that this bound is

rather loose. However, we will show in experiments in Section 9.1 that even this is better than the

optimized variational mean-field lower bound (Girolami and Rogers, 2006).

Remark 11 Theorem 10 is consistent with and generalizes the calculations previously obtained for

binary classification and in certain limits of the length-scales of the model (Nickisch and Rasmussen,

2008, Appendix B). Our result is also more general because it includes the latent scale σ2 of the

model.

2.3.3 PREDICTIVE DENSITY: APPROXIMATION AND BOUNDS

According to the Gaussian process prior model specified in Section 2.1, the C latent function values

f∗ of a test input x∗ and the latent function values of the n observed data have prior
(

f

f∗

)

∼ N

(

0,

(

K K∗
KT
∗ K∗∗

))

,

where K∗
def= kx

∗ ⊗Kc, K∗∗
def= kx(x∗,x∗)Kc, and kx

∗ is the vector of covariances between the observed

inputs X and the test input x∗. After the variational posterior q(f|y) = N (f|m,V ) has been obtained

by maximizing the lower bound logZh in Proposition 8, we can obtain the approximate posterior at

the test input x∗:

q(f∗|y) def=

∫
p(f∗|f)q(f|y)df = N (f∗|m∗,V∗),

where m∗
def= KT

∗ K−1m and V∗
def= K∗∗ −KT

∗ K−1K∗+KT
∗ K−1V K−1K∗.

The approximation to the posterior predictive density of y∗ at x∗ is

log p(yc
∗ = 1|y)≈ logq(yc

∗ = 1|y) def= log

∫
p(yc

∗ = 1|f∗)q(f∗|y)df∗ (22)

≥ "∗(y
c
∗ = 1;q)

≥ max
b∗,S∗

h(ec;q∗,b∗,S∗), (23)

where "∗(yc
∗ = 1;q) =

∫
q(f∗|y) log p(yc

∗ = 1|f∗)df∗, and q∗ in the last expression refers to q(f∗|y).
Expanding h using definitions (16) and (19) gives

log p(yc
∗ = 1|y) !

C

2
+ mT

∗ec + max
b∗,S∗

(

1

2
log |S∗V∗|−

1

2
trS∗V∗ − log

C

∑
c′=1

gc′(q∗,b∗,S∗)

)

, (24)
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where the probed class ec is used only outside the max operator. Hence maximization needs to be

only done once instead of C times. Moreover, if one is interested only in the classification decision,

then one may simply compare the re-normalized probabilities

p̃(yc
∗ = 1|y) = p(yc

∗ = 1|m∗) def=
exp(mc

∗)

∑C
c′=1 exp(mc′

∗ )
. (25)

In this case, no maximization is required, and class prediction is faster. The faster prediction is

possible because we have used the lower bound (23) for making classification decisions. These

classification decisions do not match those given by q(yc
∗|y) in general (Rasmussen and Williams,

2006, Section 3.5 and Exercise 3.10.3). In addition to the normalization across the C classes, the

predictive probability p̃(yc
∗ = 1|y) is also an upper bound on exp"∗(yc

∗ = 1;q) because of Lemma 7.

The relation in Equation 24 is an approximate inequality (!) instead of a proper inequality (≥)

due to the approximation to logq(yc
∗ = 1|y) in Equation 22. As far as we are aware, this approx-

imation is currently used throughout the literature for Gaussian process classification (Rasmussen

and Williams 2006, Equations 3.25, 3.40 & 3.41 and 3.62; Nickisch and Rasmussen 2008, Equation

16). In order to obtain a proper inequality, we will show that the Kullback-Leibler divergence from

the approximate posterior to the true posterior has to be accounted for.

First, we generalize and consider a set of n∗ test inputs X∗
def= {x∗1, . . . ,x∗n∗}. The following

theorem, which give proper lower bounds, is proved in Appendix B.7.

Theorem 12 The log joint predictive probability for x∗j to be in class c j ( j = 1 . . .n∗) has lower

bounds

log p({y
c j

∗j = 1}n∗
j=1|y)≥

n∗

∑
j=1

∫
q(f∗j|y) log p(y

c j

∗j = 1|f∗j)df∗j −KL(q(f|y)‖p(f|y))

≥
n∗

∑
j=1

max
b∗j,S∗j

h(ec j ;q∗j,b∗j,S∗j)+ logZB − log p(y)

≥
n∗

∑
j=1

max
b∗j,S∗j

h(ec j ;q∗j,b∗j,S∗j)+ logZh − log p(y).

In the first bound, the computation of the Kullback-Leibler divergence is intractable, but it is pre-

cisely this quantity that we have sought to minimize in the beginning, in Section 2.3. This implies

that this divergence is a correct quantity to minimize in order to tighten the lower bound on the

predictive probabilities. For one test input x∗,

log p(yc
∗ = 1|y)≥ max

b∗,S∗
h(ec;q∗,b∗,S∗)+ logZh − log p(y).

Because logZB, logZh and log p(y) are independent of the probed class ec at x∗, the classification de-

cision and the re-normalized probabilities (25) are also based on a true lower bound to the predictive

probability.

Dividing the last bound in Theorem 12 by n∗ gives

1

n∗
log p({y

c j

∗j = 1}n∗
j=1|y)≥

1

n∗

n∗

∑
j=1

max
b∗j,S∗j

h(ec j ;q∗j,b∗j,S∗j)+
1

n∗

[

logZh − log p(y)
]

.
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The term logZh − log p(y) is a constant independent of n∗, so the last term diminishes when n∗ is

large. In contrast the other two terms on either side of the inequality remain significant because each

of them is the sum of n∗ summands. Hence, for large n∗, the last term can practically be ignored to

give a computable lower bound on the average log predictive probability.

3. Variational Bound Optimization

To optimize the lower bound logZh during learning, we choose a block coordinate approach, where

we optimize with respect to the variational parameters {bi}, {Si}, m and V in turn. For prediction,

we only need to optimize h with respect to the variational parameters b∗ and S∗ for the test input x∗.

3.1 Parameter bi

Parameters bi and Si are contained within h(yi;qi,bi,Si), so we only need to consider this function.

For clarity, we suppress the datum subscript i and the parameters for h and gc. The partial gradient

with respect to b is −S−1 (b− ḡ), where ḡ is defined by Equation 17. Setting the gradient to zero

gives the fixed-point update bfx = ḡ, where ḡ is evaluated at the previous value of b. This says that

the optimal value b∗ lies on the C-simplex, so a sensible initialization for b is a point therein. When

the fixed-point update does not improve the lower bound h, we use to the Newton-Raphson update,

which incorporates the Hessian

∂2h

∂b∂bT
=−S−1 −S−1

(

Ḡ− ḡḡT
)

S−1,

where Ḡ is the diagonal matrix with ḡ along its diagonal. The Hessian is negative semi-definite,

which is another proof that h is a concave function of b; see Lemma 25. The update is

bNR = b−η

(

∂2h

∂b∂bT

)−1
∂h

∂b
= b−η

[

I +
(

Ḡ− ḡḡT
)

S−1
]−1

(b− ḡ) ,

where η = 1. This update may fail due to numerical errors in areas of high curvatures. In such a

case, we search for an optimal η ∈ [0,1] using the false position method.

3.2 Parameter Si

Similar to bi, only h(yi;qi,bi,Si) needs to be considered for Si, and the datum subscript i is sup-

pressed here. The partial gradient with respect to S is given by Equation 59, from which we obtain

the implicit Equation 60. Let V factorizes to LLT, where L is non-singular since V . 0. Using A

given by (18) at the current value of S, a fixed-point update for S is

Sfx = L−TPΛ̃PTL−1, Λ̃ def= (Λ+ I/4)1/2 + I/2,

where PΛPT is the eigen-decomposition of LTAL; see the proof of Lemma 28 in Appendix B.4.

The fixed-point update Sfx may fail to improve the bound. We may fall-back on the Newton-

Raphson update for S that uses gradient (59) and a C2-by-C2 Hessian matrix. However, this can

be rather involved since it needs to ensure that S stays positive definite. An alternative, which we

prefer, is to perform line-search in a direction that guarantees positive definiteness. To this end, let

S = Scc def= (1−η)S+ηSfx, and we search for a η ∈ [0,1] that optimizes the bound using the false

position method. Appendix C.1 gives the details.
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3.3 Parameter m, and Joint Optimization with b

We now optimize the bound logZh with respect to m. Here, the datum subscript i is reintroduced.

Let y (resp. ḡ) be the nC-vector obtained by stacking the yis (resp. ḡis). Let Ḡ be the nC-by-nC

diagonal matrix with ḡ along its diagonal, and let G̃ be the nC-by-nC block diagonal matrix with

ḡiḡ
T
i as the ith block. The gradient and Hessian with respect to m are

∂ logZh

∂m
=−K−1m+y− ḡ,

∂2 logZh

∂m∂mT
=−K−1 −

(

Ḡ− G̃
)

. (26)

The Hessian is negative semi-definite; this is another proof that logZh is concave in m. The fixed-

point update mfx = K(y− ḡ) can be obtained by setting the gradient to zero. This update may fail to

give a better bound. One remedy is to use the Newton-Raphson update. Alternatively the concavity

in m can be exploited to optimize with respect to η ∈ [0,1] in mcc def= (1−η)m+ηmfx, such as is

done for the parameters Sis in the previous section. Here we will give a combined update for m and

the bis that can be used during variational learning. This update avoids inverting K, which can be

ill-conditioned.

The gradient in (26) implies the self-consistent equation m∗ = K (y− ḡ∗) at the maximum,

where ḡ∗ is ḡ evaluated the the optimum parameters. From Lemma 26, another self-consistent

equation is b∗ = ḡ∗, where the nC-vector b∗ is obtained by stacking all the bis. Combining these

two equations gives m∗ = K (y−b∗), which is a bijection between b∗ and m∗ if K has full rank.

For the sparse approximation that will be introduced later, K will be replaced by the “fat” matrix

Kf, which is column-rank deficient. There, the mapping from b∗ to m∗ becomes many-to-one. With

this in mind, instead of letting m be a variational parameter, we fix it to be a function of b, that is,

m = K (y−b) , (27)

and we optimize over b instead. The details are in Appendix C.2.

This joint update for m and the bis can be used for variational learning. This, however, does

not make the update in Section 3.1 redundant: that is still required during approximate prediction,

where the b∗ for the test input x∗ still needs to be optimized over even though m is fixed after

learning.

3.4 Parameter V

For the gradient with respect to V we have

∂hi

∂Vi
=

1

2
V−T

i −
1

2
ST

i =−
1

2
W T

i ,
∂ logZh

∂V
=

1

2
V−1 −

1

2
K−1 −

1

2
W−1,

where Wi
def= Si −V−1

i , and W is the block diagonal matrix of the Wis. Here, function hi is regarded

as parameterized by Si (as in Theorem 6) rather than by Wi (as in Lemma 25). Using gradient

∂ logZh/∂V directly as a search direction to update V is undesirable for two reasons. First, it may

not preserve the positive-definiteness of V . Second, it requires K to be inverted, and this can cause

numerical issues for some covariance functions such as the squared exponential covariance function,

which has exponentially vanishing eigenvalues.

We propose to let V follow the trajectory along a modified gradient, where W is regarded

fixed instead of depending on V . To explain, we recall that logZh
def=−KL(q(f|y)‖p(f))+h, where
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h def= ∑n
i=1 hi is the sum of functions each concave in V . The modified gradient holds the gradient

contribution from h constant at the value at the initial V while the gradient contribution from the

Kullback-Leibler divergence varies along the trajectory. We follow the trajectory until the modified

gradient is zero. Let this point be V fx. Then

1

2
(V fx)−1 −

1

2
K−1 −

1

2
W−1 = 0, or V fx =

(

K−1 +W
)−1

. (28)

The equation on the right can be used as a naı̈ve fix-point update.

The trajectory following this modified gradient will diverge from the trajectory following the

exact gradient, so there is no guarantee that V fx gives an improvement over V . To remedy, we

follow the strategy used for updating S: we use V cc def= (1−η)V +ηV fx and optimize with respect to

η ∈ [0,1]. Matrix V cc is guaranteed to be positive definite, since it is a convex combination of two

positive definite matrices. Details are in Appendix C.3.

4. Sparse Approximation

The variational approach for learning multinomial logit Gaussian processes discussed in the previ-

ous sections has transformed an intractable integral problem into a tractable optimization problem.

However, the variational approach is still expensive for large data sets because the computational

complexity of the matrix operations is O(C3n3), where n is the size of the observed set and C is

the number of classes. One popular approach to reduce the complexity is to use sparse approxima-

tions: only s 1 n data inputs or sites are chosen to be used within a complete but smaller Gaussian

process model, and information for the rest of the observations are induced via these s sites. Each

of the s data sites is called an inducing site, and the associated random variables z are called the

inducing variables. We use the term inducing set to mean either the inducing sites or the inducing

variables or both. The selection of the inducing set is seen as a model selection problem (Snelson

and Ghahramani, 2006; Titsias, 2009a) and will be addressed in Section 6.1.

We seek a sparse approximation will lead to a lower bound on the true marginal likelihood. This

approach has been proposed for Gaussian process regression (Titsias, 2009a), and it will facilitate

the search for the inducing set later. Recall that the inducing variables at the s inducing sites are

denoted by z ∈Rs. We retain f for the nC latent function values associated with the n observed data

(X ,y). In general, the inducing variables z need not be chosen from the latent function values f, so

our presentation will treat them as distinct.

The Gaussian prior over the latent values f is extended to the inducing variables z to give a

Gaussian joint prior p(f,z). Let p(f,z|y) be the true joint posterior of the latent and inducing vari-

ables is given the observed data. This posterior is non-Gaussian because of the multinomial logistic

likelihood function, and it is intractable to calculate this posterior as is in the non-sparse case. The

approximation q(f,z|y) to the exact posterior is performed in two steps. In the first step, we let

q(f,z|y) be a Gaussian distribution. This is a natural choice which follows from the non-sparse

case. In the second step, we use the factorization

q(f,z|y) def= p(f|z)q(z|y), (29)

where p(f|z) is the marginal of f from the prior p(f,z). The same approximation has been used

in the sparse approximation for regression (Titsias, 2009a, paragraph before Equation 7). This
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approximation makes clear the role of inducing variables z as the conduit of information from y to

f. Under this approximate posterior, we have the bound

log p(y)≥ log Z̃B =−KL(q(z|y)‖p(z))+
n

∑
i=1

"i(yi;q),

where "i(yi;q) def=
∫

q(fi|y) log p(yi|fi)dfi, and q(fi|y) is the marginal distribution of fi from the joint

distribution q(f,z|y); see Appendix B.1. The reader may wish to compare with Equations 3, 4 and 5

for the non-sparse variational approximation.

Similar to the dissection of logZB after Equation 3, the Kullback-Leibler divergence component

of log Z̃B can be interpreted as the regularizing factor for the approximate posterior q(z|y), while the

expected log-likelihood can be interpreted as the data fit component. This dissection provides three

insights into the sparse formulation. First, the specification of p(z) is part of the model and not part

of the approximation—the approximation step is in the factorization (29). Second, the Kullback-

Leibler divergence term involves only the inducing variables z and not the latent variables f. Hence,

the regularizing is on the approximate posterior of z and not on that of f. Third, the involvement of f

is confined to the data fit component in a two step process: generating f from z and then generating

y from f.

Applying Theorem 6 on the "is gives

log Z̃B ≥ log Z̃h
def=−KL(q(z|y)‖p(z))+

n

∑
i=1

h(yi;qi,bi,Si), (30)

where h is defined by Equation 19, and the qi within h is the marginal distribution q(fi|y).
We now examine log Z̃h using the parameters of the distributions. Let the joint prior be

p

((

z

f

))

= N

(

0,

(

K Kf

KT
f Kff

))

.

One can generalize the prior for z to have a non-zero mean, but the above suffice for our purpose

and simplifies the presentation. In the case where an inducing variable zi coincide with a latent

variable f c
j , we can “tie” them by setting their prior correlation to one. The marginal distribution

p(f) is the Gaussian process prior of the model, but we are now using Kff to denote the covariance

induced by Kc and kx(·, ·) while reserving K for the covariance of z. This facilitates comparison to

the expressions for the non-sparse approximation.

For the approximate posterior, let q(z|y) = N (m,V ), so m and V are the variational parameters

of the approximation. Then q(f|y) is Gaussian with mean and covariance

mf = KT
f K−1m, Vf = Kff −KT

f K−1Kf +KT
f K−1V K−1Kf. (31)

Therefore, the lower bound on the log marginal likelihood is

log Z̃h =
s

2
+

1

2
log |K−1V |−

1

2
trK−1V −

1

2
mTK−1m

+
nC

2
+mT

f y+
1

2

n

∑
i=1

(

log |SiVfi|− trSiVfi

)

−
n

∑
i=1

log
C

∑
c=1

gc
i , (32)
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where Vfi is the ith diagonal C-by-C block matrix of Vf and

gc
i

def= exp

[

mT
fie

c +
1

2
(bi − ec)TS−1

i (bi − ec)

]

.

Remark 13 It is not necessary for z to be drawn from the latent Gaussian process prior directly.

Therefore, the covariance K of z need not be given by the covariance functions Kc and kx(·, ·) of

the latent Gaussian process model. In fact, z can be any linear functional of draws from the latent

Gaussian process prior (see, for example, Titsias, 2009b, Section 6). For example, it is almost

always necessary to set z = z′+ ε, where ε is the isotropic noise, so that the matrix inversion of K

is not ill-conditioned. This matrix inversion cannot be avoided (without involving O(s3) computa-

tions) in the sparse approximation because of the need to compute KT
f K−1Kf, which is the Nyström

approximation to Kff if z′ ≡ f (Williams and Seeger, 2001). One attractiveness of having a lower

bound associated to the sparse approximation is that the noise variance of ε can be treated as a

lower bounded variational parameter to be optimized (Titsias, 2009b, Section 6).

Remark 14 The inducing variables z are associated with the latent values f and not with the ob-

served data (X ,y). Therefore, it is not necessary to choose all the latent values f 1
i , . . . , f C

i for any

datum xi. One may choose the inducing sites to include, say, f c
i for datum xi and f c′

j for datum xj,

and to exclude f c′
i for datum xi and f c

j for datum xj. This flexibility requires additional bookkeeping

in the implementation.

4.1 Comparing Sparse and Non-sparse Approximations

We can relate the bounds for the non-sparse and sparse approximations:

Theorem 15 Let

logZ∗
B

def= max
q(f|y)

logZB, logZ∗
h

def= max
q(f|y)

logZh, log Z̃∗
B

def= max
q(z|y)

log Z̃B, log Z̃∗
h

def= max
q(z|y)

log Z̃h,

where the sparse bounds are for any inducing set. Then logZ∗
B ≥ log Z̃∗

B and logZ∗
h ≥ log Z̃∗

h .

The proof for the first inequality is given in Appendix B.1.1, while the second inequality is a con-

sequence of Proposition 17 derived in Section 6.1. Though intuitive, the second inequality is not

obvious because of the additional maximization over the variational parameters {bi} and {Si}. The

presented sparse approximation is optimal: if z ≡ f, then log Z̃B = logZB and log Z̃h = logZh, and

the sparse approximation becomes the non-sparse approximation.

4.2 Optimization

The sparse approximation requires optimizing log Z̃h with respect to the variational parameters:

mean m and covariance V of the inducing variables; and {bi} and {Si} for the lower bound on the

expected log-likelihood. The optimization with respect to {Si} is the same as that for the non-sparse

approximation, but using mf and Vf for the mean and covariance of the latent variables. For {bi} and

m, a joint optimization akin to that for the non-sparse approximation described in Section 3.3 can be

used. Let b be the nC-vector that is the stacking of the bis. At the saddle point with respect to {bi}
and m, we have the self-consistent equations b∗

i = ḡ∗i and m∗ = Kf(y− ḡ∗), from which is obtained
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the linear mapping m∗ = Kf(y−b∗). For sparse approximation, matrix Kf has more columns than

rows (that is, a “fat” matrix), so the linear mapping from b∗ to m∗ is many to one. Hence we

substitute the constraint m = Kf(y−b) into the bound and optimize over b. The optimization is

similar to non-sparse case, and is detailed in Appendix C.2.1.

For V , the approach in Section 3.4 for the non-sparse approximation is followed. The gradients

with respect to V are

∂hi

∂V
=

1

2
K−1Kfi

(

V−1
fi −Si

)

KT
fi K

−1

=−
1

2
K−1KfiWfiK

T
fi K

−1;

∂ log Z̃h

∂V
=

1

2
V−1 −

1

2
K−1 −

1

2
K−1KfWfK

T
f K−1

=
1

2
V−1 −

1

2
K−1 −

1

2
W,

where Wfi
def= Si −V−1

fi ; matrix Wf is block diagonal with Wfi as its ith block; and we have introduced

W def= K−1KfWfK
T
f K−1. The fixed point update for V is

V fx =
(

K−1 +W
)−1

, (33)

which is obtained by setting ∂Zh/∂V at V fx to zero. This update is of the same character as Equa-

tion 28 for the non-sparse case. In the case where V fx does not yield an improvement to the objective

log Z̃h, we search for a V cc def= (1−η)V +ηV fx, η ∈ [0,1], using the false position method along η.

Further details can be found in Appendix C.3.1.

5. On the Sum-to-zero Property

For many single-machine multi-class support vector machines (SVMs, Vapnik 1998; Bredensteiner

and Bennett 1999; Guermeur 2002; Lee, Lin, and Wahba 2004), the sum of the predictive functions

over the classes is constrained to be zero everywhere. For these SVMs, the constraint ensures the

uniqueness of the solution (Guermeur, 2002). The lack of uniqueness without constraint is simi-

lar the non-identifiability of parameters in the multinomial probit model in statistics (see Geweke,

Keane, and Runkle, 1994, and references therein). For multi-class classification with Gaussian

process prior and multinomial logistic likelihood, the redundancy in representation has been ac-

knowledged, but typically uniqueness has not been enforced to avoid arbitrary asymmetry in the

prior (Williams and Barber, 1998; Neal, 1998). An exception is the work by Kim and Ghahramani

(2006), where a linear transformation of the latent functions has been used to remove the redun-

dancy. In this section, we show that such sum-to-zero property is present in the optimal variational

posterior under certain common settings.

Recall from Equation 27 in Section 3.3 that m = K(y−b) when the lower bound Zh is opti-

mized. Let α def= K−1m. Then the set of self-consistent equations at stationary gives αi = yi −bi,

whereαi is the ith C-dimensional sub-vector ofα. Since bi = ḡi at stationary, and ḡi is a probability

vector, it follows that

∀i
C

∑
c=1

αc
i = 0, and αc

i =

{

−bc
i ∈ ]−1,0[ if yc

i = 0

1−bc
i ∈ ]0,1[ if yc

i = 1.

Consider an input x∗, which may be in the observed set. Let kx
∗ be the vector of covariances to

all the other inputs under the covariance function kx. The posterior latent mean of f∗ at x∗ under
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separable covariance (1) is

m∗ =
(

(kx
∗)

T ⊗Kc
)

α=
n

∑
i=1

(kx(x∗,xi)K
c)αi = Kc

n

∑
i=1

kx(x∗,xi)αi. (34)

Consider the common case where Kc = I. Then the posterior latent mean for the cth class is

mc
∗ = ∑n

i=1 kx(x∗,xi)αc
i , and the covariance from the ith datum has a positive contribution if it is

from the cth class and a negative contribution otherwise. Moreover, the sum of the latent means is

1Tm∗ = 1T
n

∑
i=1

kx(x∗,xi)αi =
n

∑
i=1

kx(x∗,xi)1
Tαi = 0. (35)

Hence that the sum of the latent means for any datum, whether observed or novel, is constant at

zero. We call this the sum-to-zero property.

The sum-to-zero property is also present, but in a different way, when

Kc = M−M11TM/1TM1, (36)

where M is C-by-C and positive semi-definite. This is reminiscent of Equation 20, which gives a

similar parametrization for W∗. Using the rightmost expression in (34) for m∗, we find that 1Tm∗ = 0

because Kc1 = 0. This is in contrast with (35) for Kc = I, where the sum-to-zero property holds

because 1Tαi = 0.

Setting Kc via (36) leads to a degenerate Gaussian process, since the matrix will have a zero

eigenvalue even if M is strictly positive definite. Since degeneracy is usually not desirable, we add

to (36) the term ηI, where η > 0:

Kc = M−M11TM/1TM1+ηI. (37)

This not only ensures that Kc is positive definite but also preserves the sum-to-zero property. The

parametrization effectively constrains the least dominant eigenvector of Kc to 1/
√

C.

5.1 The Sum-to-zero Property in Sparse Approximation

The sum-to-zero property is also present in sparse approximation when the inducing variables are

such that if f c
i is an inducing variable, then so are f 1

i , . . . , f C
i . That is, the C latent variables asso-

ciated with any input xi are either omitted or included together in the inducing set. The sparsity of

single-machine multi-class SVMs is of this nature. Let t be the number of inputs for which their

latent variables are included.

Under the separable covariance model (1), covariance between the inducing variables and the

latent variables is the Kronecker product Kf = Kx
f ⊗Kc, where Kx

f is the covariance on the inputs

only. The stationary point of the lower bound Z̃h in the sparse approximation has the self-consistent

equation m = Kf(y− ḡ); see Section 4.2. As before, let α def= K−1m. The Gram matrix K is the Kro-

necker product Kx ⊗Kc under the separable covariance model. Hence α=
(

(Kx)−1Kx
f ⊗ I

)

(y− ḡ)
using the mixed-product property. Vector α is the stacking of vectors α1, . . . ,αt , where each αj is

for one of the t inputs with their latent variables in the inducing set and can be expressed as

αj =
n

∑
i=1

(

(Kx)−1Kx
f

)

ji
(yi − ḡi).

One finds that 1Tαj = 0, and the discussion for the non-sparse case applies similarly from Equa-

tion 34 onwards.
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6. Model Learning

Model learning in a Gaussian process model is achieved by maximizing the marginal likelihood

with respect to the parameters θ of the covariance function. In the case of variational inference,

the lower bound on the marginal likelihood is maximized instead. For the non-sparse variational

approximation to the multinomial logit Gaussian process, this is

logZ∗
h(θ)

def= max
m,V,{bi},{Si}

logZh(m,V,{bi},{Si};X ,y,θ),

which is the maximal lower bound on log marginal likelihood on the observed data (X ,y). The

maximization is achieved by ascending the gradient

dlogZ∗
h

dθj
=−

1

2
tr

(

K−1 ∂K

∂θj

)

+
1

2
tr

(

K−1V K−1 ∂K

∂θj

)

+
1

2
mTK−1 ∂K

∂θj
K−1m

=
1

2
tr

(

(

ααT −K−1 +K−1V K−1
) ∂K

∂θj

)

,

where α def= K−1m. This gradient is also the partial and explicit gradient of logZh with respect to θj.

The implicit gradients via the variational parameters are not required since the derivative of logZh

with respect to each of them is zero at the fixed point logZ∗
h .

For the sparse approximation, we differentiate log Z̃∗
h—the optimized bound on the log marginal

likelihood for the sparse case given by Equation 32—with respect to the covariance function param-

eter θj. The derivation in Appendix C.4 gives

dlog Z̃∗
h

dθj
=−

1

2
tr

(

(

ααT −K−1 +K−1V K−1 +W
) ∂K

∂θj

)

+ tr

(

(

(y− ḡ)αT +WfK
T
f

(

K−1 −K−1V K−1
)) ∂Kf

∂θj

)

−
1

2
tr

(

Wf
∂Kff

∂θj

)

,

where α def= K−1m, and matrices Wf and W are defined in Section 4.2.

The selection of the inducing set in sparse approximation can also be seen as a model learning

problem (Snelson and Ghahramani, 2006; Titsias, 2009a).1 This is addressed in the reminder of this

section.

6.1 Active Inducing Set Selection

The quality of the sparse approximation depends on the set of inducing sites. Prior works have

suggested using scores to greedily and iteratively add to the set. The Informative Vector Machine

(IVM, Lawrence et al. 2003) and its generalization to multiple classes (Seeger and Jordan, 2004) use

the differential entropy, which is the amount of additional information to the posterior. Alternatives

based on the data likelihood have also been proposed (Girolami and Rogers, 2006; Henao and

Winther, 2010). However, since our aim has always been to maximize the marginal likelihood

p(y) of the observed data, it is natural to choose the inducing sites that effect the most increase

in the marginal likelihood. The same thought is behind the scoring for greedy selection in the

1. However, in the strict sense, the exact model is fixed during the selection of the inducing set: the object that is learned

is the approximating model.
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sparse variational approximation to Gaussian process regression (Titsias, 2009a). For multi-class

classification, it is too expensive to compute the exact increase in the marginal likelihood. Instead,

we use the lower bound on the increment to (the lower bound on) the marginal likelihood.

Throughout, the asterisk ∗ will be used to subscript variables pertaining to the newly introduced

inducing site x̃∗. Given the current set of inducing sites X̃ , the inclusion of x̃∗ gives the new set

X̃∗. The function values at x̃∗, X̃ and X̃∗ are denoted by z∗, z and z∗
def= (zT,z∗)T. There is only one

random scalar variable z∗ at the inducing site x̃∗. In contrast, there is a random C-vector fi at an

observed input xi; see Remark 14. Hence there are C potential inducing sites from a single observed

site xi: x̃∗ ∈ {(xi,1), . . . ,(xi,C)}.

We aim to select x̃∗ that maximizes the increase in the optimized lower bounds on the marginal

likelihood: d(x̃∗; X̃) def= log Z̃∗
h(X̃∗)− log Z̃∗

h(X̃), where X̃∗
def= {x̃∗}∪ X̃ , and

log Z̃∗
h(X̃∗) def= max

m∗,V∗,{b∗i},{S∗i}
log Z̃h(m∗,V∗,{b∗i},{S∗i}; X̃∗),

log Z̃∗
h(X̃) def= max

m,V,{bi},{Si}
log Z̃h(m,V,{bi},{Si}; X̃).

In words, Z̃∗
h(X̃) is the optimized lower bound on marginal likelihood with the current inducing set

X̃ , while Z̃∗
h(X̃∗) is the optimized lower bound with the proposed new inducing set X̃∗. Because

Z̃h combines the Kullback-Leibler divergence of the prior from the approximate posterior and the

sum of the lower bounds on the expected log-likelihoods, d(x̃∗; X̃) includes both the change in the

approximate posterior and the effect of this change in explaining the observed data.

Computing d(x̃∗; X̃) involves Z̃∗
h(X̃∗), and this can be computationally expensive. A more viable

alternative is to lower bound d(x̃∗; X̃) by fixing selected variational parameters in Z̃h(· · · ; X̃∗) to the

optimal ones from Z̃∗
h(X̃), which has already been computed. Let

{m,V,{bi},{Si}} def= arg log Z̃∗
h(X̃).

For the inducing set X̃∗, we set the prior on the inducing and latent variables, and the approximate

posterior on the inducing variables to

p

((

z∗
f

))

def= N

(

0,

(

K∗ Kf∗
KT

f∗ Kff

))

, q(z∗ | y) def= N (m∗,V∗) ,

where

K∗
def=

(

K k∗
kT
∗ k∗∗

)

, Kf∗
def=

(

Kf

kT
f∗

)

, m∗
def=

(

m

m∗

)

, V∗
def=

(

V v∗
vT
∗ v∗∗

)

. (38)

The above choice of posterior fixes the mean and the covariance of z for X̃ to the mean m and

covariance V in log Z̃∗
h(X̃). Further setting {b∗i}≡ {bi} and {S∗i}≡ {Si}, the additional variational

parameters are those in the posterior of the inducing points for the additional site x̃∗. Since we are

optimizing over only a subset of the possible parameters, we obtain a lower bound on d(x̃∗|X̃):

d(x̃∗|X̃)≥ d1(x̃∗|X̃) def= max
m∗,v∗∗,v∗

log Z̃h(m∗,V∗,{bi},{Si}; X̃∗)− log Z̃∗
h(X̃), (39)

where m∗ and V∗ are as defined in Equation 38. By separating log Z̃h into its summands expressed

in Equation 30, we write

d1(x̃∗|X̃) = max
m∗,v∗∗,v∗

(

dKL(m∗,v∗∗,v∗, x̃∗|X̃)+
n

∑
i=1

di
h(m∗,v∗∗,v∗, x̃∗|X̃)

)

,
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where

dKL(m∗,v∗∗,v∗, x̃∗|X̃) def=−KL(q(z∗ | y)‖ p(z∗))+KL(q(z | y)‖ p(z)), (40)

di
h(m∗,v∗∗,v∗, x̃∗|X̃) def= h(yi;q∗i,bi,Si)−h(yi;qi,bi,Si). (41)

The expressions for dKL and di
h in terms of the variational parameters m∗, v∗∗ and v∗ are given

in Appendix D.1. On inspecting these expressions, we find that the contributions from m∗ and

(v∗,v∗∗) are decoupled in objective function dKL +∑dh within d1, so the search for the optimal m∗
and (v∗,v∗∗) are can be perform separately. Moreover, dKL +∑dh is concave in m∗ and v∗∗ but not

necessarily concave in v∗. These findings are elaborated in Appendix D.2, which also gives the

gradient updates for m∗ and v∗∗ (given a fixed v∗).

The non-concavity in v∗ makes the maximization in d1 less feasible. To make progress, we

fix v∗ to be that which maximizes only dKL. This gives v∗ =V K−1k∗ and leads to a second lower

bound. This lower bound is non-trivial in the sense that it is non-negative. This is established in

following lemma, which leads to another proposition.

Lemma 16 Let functions d1, dKL and di
h be as defined in Equations 39, 40 and 41, and let

d2(x̃∗|X̃) def= max
m∗,v∗∗

(

dKL(m∗,v∗∗,V K−1k∗, x̃∗|X̃)+
n

∑
i=1

di
h(m∗,v∗∗,V K−1k∗, x̃∗|X̃)

)

. (42)

Then 0 ≤ d2(x̃∗|X̃)≤ d1(x̃∗|X̃).

Proof Function d2 is upper bounded by d1 because it maximizes over a subset of the variational

parameters in d1. For non-negativity, we observe that the objective function within d2 is zero when

we set m∗ = kT
∗K−1m and v∗∗ = k∗∗ −kT

∗K−1k∗+kT
∗K−1V K−1k∗.

Proposition 17 For the sparse variational approximation to the multinomial logit Gaussian pro-

cess, any site added to the inducing set can never decrease the lower bound Z̃∗
h to the marginal

likelihood.

This proposition is analogous one for Gaussian process regression (Titsias, 2009a, Proposition 1).

Hence, we can interleave the greedy selection of inducing sites with hyper-parameters optimization

(Titsias, 2009a, Section 3.1). One might have thought that this proposition is trivial because an ad-

ditional inducing variable increases the flexibility of the variational model. Such an argument would

have worked if we had compared the exact marginal likelihood p(y) or the optimized variational

lower bound Z̃∗
B. It would not have worked here because the optimized lower bound Z̃∗

h is used here.

6.1.1 SUBSAMPLING AND FILTERING

Computation of d2 for every possible site requires the full Gram matrix. This is because the required

vector kf∗ for the site x̃∗ = (x∗,c) under consideration is the covariance from x∗ to all the other

observed data. This may be undesirable when covariance function is expensive to evaluate. In this

case, we propose to approximate ∑n
i=1 di

h, which is over the whole data set, with one that is computed

over a subset S :

d3(x̃∗,S |X̃) def= max
m∗,v∗∗

(

dKL(m∗,v∗∗,V K−1k∗, x̃∗|X̃) +
n

|S | ∑
i∈S

di
h(m∗,v∗∗,V K−1k∗, x̃∗|X̃)

)

, (43)
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where S is the set of indices of the data to evaluate against. By partitioning the observed data

appropriately, the number of covariance function evaluations can be reduced. This d3 score can be

used to directly choose the site to be added to the inducing set. Alternatively, it can be used as a

filtering step so that only sites with high d3 scores are further evaluated using the more expensive d2

score function.

7. Computational Complexity

We now discuss the computation complexity of the approximate inference. For the non-sparse

approximate inference, O(n3C3) computations are required per iteration of the variational bound

optimization, where n is the size of the observed data set and C is the number of classes. For the

sparse approximate inference, O(nC3 + nCs2 + nC2s+ s3) computations are required per iteration,

where s is the number of inducing variables. This complexity is when we exploit the block diagonal

structure of the variables. The complexity of computing the set of n d2-scores for active inducing

set selection is the same. For probabilistic prediction with the posterior using sparsity, computing

the lower bounds (24) to the predictive probabilities requires O(C3 +Cs2 +C2s) computations per

datum, while computing the re-normalized probabilities (25) needs O(Cs), which is less. For pre-

diction with the posterior in the non-sparse case, these are O(nC3 +n2C) and O(nC2) respectively.

One might have thought that complexity can be improved if Kc = I so that K is block diagonal

(after re-ordering) in the non-sparse approximation. However, we have not been able to exploit this

structure. This is because computing K−1 +W in Equation 28 involves W that is block diagonal

with a different ordering, which essentially destroys the structure (Seeger and Jordan, 2004).

For the sparse approximate inference, the direct complexity with respect to n is linear. If we let

s ∼ logCn, then the overall complexity is O(n log2 n) in n. Let us now consider three regimes de-

pending on C. For n 1C, we opine that some clustering process may be more appropriate than the

classification model consider here. For C 1 s, the dominant complexity is O(nCs2). For s 1C 1 n,

the dominant complexity is O(nC3), which is for optimizing the variational parameters bi and Si for

each of the n observed data.2 Reducing the cubic complexity in C requires constraining the vari-

ational parameters. In particular, one may constrain Si = (Vfi)−1 +Wi where Wi = γi(Πi −πiπ
T
i ),

γi > 0 and πi is a probability vector. As remarked upon after Theorem 6, we have found that this

constraint gives bounds that are quite loose. In addition, our present opinion is that effective infer-

ence with such a small inducing set may require rather strong correlations in both Kc and kx(·, ·) of

the prior. We defer further investigation in the regime s 1C 1 n to future work.

In the C 1 s regime, Seeger and Jordan (2004) and Girolami and Rogers (2006) have reported

O(nCs2) computational complexity. In their cases, however, this complexity includes both the in-

ference with a subset of the observed data and the active selection of the subset. Direct comparison

with our approach can be misleading: the O(nCs2) in the preceding paragraph does not include

active selection, but it does include projecting from the inducing variables to the entire set of ob-

served data in the sparse approximate inference. Including the cost of greedy active selection up to

s inducing variables gives O(nCs3).

2. In this regime, one should optimize the bis separately. This is cheaper than optimizing m and b jointly.

1767



CHAI

Model Approximating Posterior Likelihood Approximation

Citation prior likelihood Family Principle Learning Prediction

Williams and Barber (1998) i.i.d. logistic Gaussian Laplace Exact Monte Carlo

Neal (1998) i.i.d. logistic Samples MCMC MCMC MCMC

Gibbs (1997) independent logistic Factored

Gaussian

Variational Variational Analytic

approximation

Seeger and Jordan (2004) i.i.d. logistic Gaussian ADF Quadrature Quadrature

Kim and Ghahramani (2006) i.i.d. uniform Gaussian EP EP

Girolami and Rogers (2006) i.i.d. probit Factored

Gaussian

Variational Monte Carlo Monte Carlo

This paper separable logistic Gaussian Variational Variational Variational

Table 1: Existing works in multi-class Gaussian processes and their different aspects. In this paper,

the likelihood approximation is for the expectation of the log-likelihood.

8. Related Work

We now discuss related works on multi-class Gaussian process classification. Table 1 tabulates dif-

ferent aspects of the existing related works that we know in the machine learning literature. Most

consider the case where the latent functions are independent and identically distribution (i.i.d.),

although Williams and Barber (1998) have seen no difficulty in extending to correlated latent func-

tions. Gibbs (1997) has considered the case where the covariance functions of the prior latent

Gaussian processes are independent and assumed to be from the same parametric family with pos-

sibility different parameters. In this paper, most results are applicable as long as the latent functions

are jointly Gaussian, although at specific places we consider the separable covariance in Equation 1.

As with most existing works, our likelihood function is the multinomial logistic (2). Other like-

lihood functions are possible. In particular, one class of likelihood functions uses auxiliary indepen-

dent random variables ucs, c = 1, . . . ,C, and determine the class by argmaxc uc, The multinomial

logistic is in this class, and it is obtained when each auxiliary variable uc is Gumbel distributed

with p(uc| f c) = te−t , where t def= e−(uc− f c) (McFadden, 1974). If uc ∼ N ( f c,1), then the likelihood

is the multinomial probit used by Girolami and Rogers (2006). If each auxiliary variable uc is sup-

ported only at f c, we have the threshold likelihood function used by Kim and Ghahramani (2006).

From this perspective, a model with the threshold likelihood function and prior covariance function

kx(x,x′)+δ(x,x′), where δ is the Kronecker delta function, is essentially the same as the model

with the multinomial probit likelihood and prior covariance function kx(x,x′). Kim and Ghahra-

mani (2006) have also used uniform noise (Angluin and Laird, 1988) with the threshold likelihood.

With any of these likelihoods, exact inference is non-tractable and approximations must be

used. Except for the work of Neal (1998) where the approximation is a set of samples obtained

from Markov Chain Monte Carlo (MCMC), all existing works have used a Gaussian approximation

to the true posterior. The approximating Gaussian can be determined through fitting using different

principles: Laplace (Williams and Barber, 1998), assumed density filtering (ADF, Seeger and Jor-

dan, 2004) and expectation propagation (EP, Kim and Ghahramani, 2006), and variational bounding

(Gibbs, 1997; Girolami and Rogers, 2006).

This paper uses the variational approach, for which a lower bound on the marginal likelihood

can be obtained. However, the variational approach used in this paper differs from those in existing
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works (Gibbs, 1997; Girolami and Rogers, 2006). Gibbs has placed Gaussian-type bounds that

factorizes over the classes on the multinomial logistic likelihood functions. Since the prior also

factorizes over the classes, the approximate posterior factorizes similarly. Girolami and Rogers have

constrained the approximating Gaussian to factorize over classes from the onset, and have proceeded

to use variational mean field to obtain the factors. In contrast, the approximating Gaussian in this

paper does not factorize over classes. We begin from an unconstrained Gaussian. This is followed by

the Kullback-Leibler divergence and a bound on the expected log-likelihood (Theorem 6). Neither

of these steps needs factorization over classes.

In general, the approximating Gaussian has covariance (K−1 +W )−1, where W is a block diag-

onal matrix of n C-by-C blocks. Let Wi be the ith C×C block in W . The matrix W is diagonal when

the assumed likelihood factorizes over classes and data (Gibbs, 1997; Girolami and Rogers, 2006).

Let πi be a probability vector, and let Πi be the diagonal matrix with πi along its diagonal. Then the

ith block Wi of W in the Laplace approximation (Williams and Barber, 1998) is Πi −πiπ
T
i , where

the cth element in πi is the multinomial logistic p(yc
i |fi). This parametrization of Wi follows directly

from fitting principle of Laplace approximation. If computational time complexity is important, one

can also use the parameterization Wi
def= γi

(

Πi −πiπ
T
i

)

, where γi > 0 and πi are to be estimated, to

obtain the same computational complexity as factorized mean-field (Seeger and Jordan, 2004). If

computational time complexity is not a major consideration, any positive definite Wi can be used for

a tighter approximation (see Kim and Ghahramani, 2006, for example). In the present paper, each

block Wi is determined by optimizing the expected log-likelihood of the ith datum. The optimized

Wi has null space {η1 | η ∈ R}. Further discussions in relation to the works of Williams and Barber

(1998) and Seeger and Jordan (2004) have been given after Theorem 6.

The approximate predictive probability in the multi-class Gaussian process model is the ex-

pected likelihood under the approximate posterior. This is intractable and approximations are

needed. Two common approaches are Monte Carlo (Williams and Barber, 1998; Neal, 1998; Giro-

lami and Rogers, 2006) and traditional numerical integration (Seeger and Jordan, 2004). Analytic

approximation has also been used (Gibbs, 1997). In this paper, we have given a variational approx-

imation of the expected log-likelihood through Theorem 6. In Section 9.1.1, we will see that this is

quite tight on average.

In previous works, sparsity in multi-class Gaussian processes is achieved by performing in-

ference using only a subset of the observed data (SoD), which can be selected actively (Seeger

and Jordan, 2004; Girolami and Rogers, 2006). In contrast, the sparsity in this paper is achieved

through using the subset to induce the entire set. Quiñonero-Candela et al. (2007) have discussed

in detail the SoD approach and the more general inducing approaches in the context of regression.

We use the variational approach for both sparse approximation and active selection of the subset.

For regression, this approach has been shown to have several desirable characteristics over the other

approaches (Titsias, 2009a).

9. Experiments and Results

We evaluate our approach to multi-class logit Gaussian process classification in various aspects. In

Section 9.1, we compare the bounds in the marginal likelihood and the predictive likelihood pro-

vided by our variational approach with those provided by the variational mean-field approximation
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Name train set test set classes attributes task description

iris 90 60 3 4 determine class of iris plant

thyroid 129 86 3 5 diagnosis of a patient’s thyroid

wine 106 72 3 13 determine the cultivar of wine

glass 128 86 7 9 determine the type of glass

Table 2: Summary of the four UCI data sets used in our experiments. For the glass data, there is no

instance of class “vehicle windows that are non-float processed” in the set.

to multinomial probit regression (Girolami and Rogers, 2006).3 We also look at how the quality of

our bounds vary with the prior variance of the latent process. In Section 9.2, we relate the logit to

the probit, and we also look at the the prior correlation between the latent process. Section 9.3 inves-

tigates the effectiveness of active inducing set selection using the criteria proposed in Section 6.1.

In Section 9.4, we compare with single-machine multi-class support vector machines.

For comparison, we use a tight approximation to the exact posterior of the multi-class logit and

probit Gaussian process model. This is obtained by importance sampling where the proposal is the

multivariate-t distribution (Kotz and Nadarajah, 2004) with four degrees of freedom, centered at

the mean m∗ of our variational approximation to p(f|y) and with covariance 2K. We have found

this to be more effective than the Gibbs sampling used by Girolami and Rogers (2006) and the

anneal importance sampling (Neal, 2001) used by Nickisch and Rasmussen (2008). Due to the

central limit theorem, the Monte Carlo estimate p̂(y) on the marginal likelihood has distribution

N (p(y),σ2/ns), where σ2 is the true variance of the importance weights and ns is the number

of samples. When reporting the marginal likelihood estimate, we use p̂(y)+3.09σ/
√

ns to upper

bound p(y) with probability 0.999, where σ is estimated from the samples. In our experiments,

ns = 100,000 for each Monte Carlo run. Details are in Appendix F.4

Our experiments are conducted on four data sets from the UCI Machine Learning Repository

(Frank and Asuncion, 2010): iris, thyroid, wine and glass. Following Girolami and Rogers (2006),

for each data set, 60% is used for training and 40% for testing. Each input attribute is normalized

to zero mean and unit variance on the training set. Our experiments are conducted with fifty such

random splits for each data set. The summary statistics for the data sets are given in Table 2.

9.1 Comparing Variational Approaches

We evaluate our approach against variational mean-field (Girolami and Rogers, 2006) and impor-

tance sampling. We fix the latent random functions to be independent and identically distributed

(i.i.d.); that is, Kc = I. The covariance function on inputs x and x′ in Rd is the unit variance squared-

3. We use version 1.6.0 of the R package available at http://www.bioconductor.org/packages/devel/bioc/

html/vbmp.html.

4. We have also experimented with using the approximate posterior q(f|y) directly as the proposal distribution (Ghahra-

mani and Beal, 2000a,b). The set of estimates obtained in this way is generally indistinguishable from that obtained

using the multivariate-t distribution. However, the latter comes with a convergence rate guarantee because the tail of

the t distribution is heavier than that of a Gaussian.
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exponential covariance function

kx(x,x′) = usqexpard(x,x′;θ) def= exp

(

−
1

2

d

∑
j=1

(

x j − x′j

θ j

)2
)

, (44)

where x j (resp. x′j) is the jth dimensional of x (resp. x′), θ j is the length-scale of the jth dimension,

and θ def= (θ1, . . . ,θd)T collects parameters. Each length-scale affects the influence of the dimension;

this allows automatic relevance determination (ARD, Neal 1996).

Table 3 reports the results comparing the log marginal likelihood logZ or its bounds on the

training sets, and the predictive error and the log joint predictive probability log p(y∗) on the test

sets. The means and standard deviations over the fifty partitions for each data set are given. We

use MNL to denote multinomial logistic likelihood and MNP to denote multinomial probit like-

lihood. KL-MNL is our variational approach with multinomial logistic likelihood, and MF-MNP

is the variational mean-field with multinomial probit likelihood (Girolami and Rogers, 2006). MC-

MNP and MC-MNL are the Monte Carlo approximations using importance sampling. The marginal

likelihood estimates for importance sampling are the high confidence upper bounds. Column Theo-

rem 10 gives theoretic lower bounds on the marginal likelihood for the logistic likelihood. Results

with two sets of hyper-parameters are given: one from the variational mean parameter estimation

for MF-MNP (Girolami and Rogers, 2006), and the other from the model learning for KL-MNL

(Section 6). With either set of hyper-parameters, the prior latent process has unit variance due to the

choice of covariance function. Our results for MC-MNP are consistent with, but tighter than, those

reported by Girolami and Rogers (2006, Table 1, column Gibbs Sampler).

We first compare the marginal likelihoods on the training data along the rows headed by logZ.

For either set of hyper-parameters, our variational approach (KL-MNL) gives lower bounds that are

very close to the high confidence upper bounds on the marginal likelihoods obtained by sampling

(MC-MNL). In fact, it is this tightness that leads us to finally use importance sampling: with Gibbs

sampling and annealed importance sampling, we are unable to obtain estimates that are larger than

our lower bounds. For MF-MNP, we find that it consistently gives lower bounds that are looser than

the theoretical ones under column Theorem 10. This suggests that the theoretic bounds may be use-

ful as sanity checks for variational approaches, although we must qualify that the theoretic bounds

are for the multinomial logistic likelihood rather than for the probit one. Using the reasoning to be

outlined in Section 9.2.1, we obtain approximate theoretic bounds for the probit using σ2 = π2/6 in

Theorem 10, and these bounds are −139.84, −200.44, −164.70 and −331.06 for the iris, thyroid,

wine and glass data sets respectively. These are lower than the theoretical ones in Table 3, but are

still higher the bounds given by MF-MNP. The looseness of the bounds given by MF-MNP is also

evident when compared with the estimates from sampling (MC-MNP).

Next, we compare the log joint predictive probability log p(y∗) on the test set. One set of

results obtained using Monte Carlo is reported for MF-MNP, MC-MNP and MC-MNL. Two sets

of results are reported for KL-MNL: the upper set uses the re-normalized probabilities given by

Equation 25 and the lower set uses Equation 24. As discussed in Section 2.3.3, the probabilities

based on Equation 24 are approximate lower bounds on the exact predictive probabilities, while the

re-normalized probabilities are always larger than these lower bounds. In the table, we see that these

two sets of predictive probabilities from KL-MNL bound the probabilities from MC-MNL rather

tightly. For MF-MNP, its predictive probabilities are close to those given by sampling (MC-MNP).

This suggests that variational mean-field, which couples of posterior means of the latent function
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MF-MNP-θ KL-MNL-θ

Theorem 10 MF-MNP MC-MNP KL-MNL MC-MNL KL-MNL MC-MNL

Iris

logZ −125.28 −187.32± 1.71 −27.71± 1.74 −32.63± 1.60 −32.48± 1.60 −31.46± 1.36 −31.32± 1.37

Error 2.66± 1.27 2.64± 1.26 2.66± 1.26 2.64± 1.22 2.28± 1.25 2.28± 1.25

log p(y∗) −10.35± 1.87 −10.53± 1.89 −11.27± 1.79 −12.61± 1.70 −9.45± 1.38 −10.90± 1.35

−13.15± 1.82 −11.38± 1.48
Thyroid

logZ −179.57 −270.63± 3.60 −41.54± 3.70 −47.15± 3.49 −46.97± 3.49 −45.13± 2.85 −44.95± 2.85

Error 7.84± 2.54 7.86± 2.54 7.92± 2.75 8.00± 2.85 6.44± 2.92 6.52± 3.03

log p(y∗) −22.02± 4.57 −22.10± 4.61 −23.08± 4.58 −24.29± 4.27 −20.55± 4.58 −22.13± 4.19

−25.67± 4.66 −23.85± 4.64
Wine

logZ −147.56 −222.63± 1.91 −36.41± 2.07 −42.56± 1.96 −42.38± 1.96 −41.18± 1.74 −41.01± 1.74

Error 4.88± 2.74 4.88± 2.88 4.96± 2.73 4.94± 2.75 3.22± 1.83 3.22± 1.73

log p(y∗) −16.19± 3.84 −16.27± 3.94 −17.19± 3.83 −19.01± 3.59 −14.47± 2.03 −16.74± 1.98

−20.37± 3.96 −18.02± 2.28
Glass

logZ −300.61 −827.58± 6.46 −150.23± 6.88 −158.16± 5.77 −157.53± 5.79 −154.74± 5.08 −154.08± 5.04

Error 33.72± 4.03 36.00± 4.16 34.20± 4.03 34.40± 4.09 32.62± 4.09 33.02± 4.05

log p(y∗) −89.63± 6.15 −95.62± 8.78 −92.78± 6.09 −94.79± 5.50 −88.82± 5.49 −91.31± 5.00

−101.00± 5.93 −97.97± 5.58

Table 3: Results with the usqexpard covariance function (44) on inputs and with i.i.d. latent functions. The log marginal likelihood logZ (or

its bounds), the empirical error and the log joint predictive probability log p(y∗) (or its bounds and approximations) are reported

with means and standard deviations over 50 partitions. Theoretic lower bounds are given under Theorem 10. Methods with MNP

after the dash uses of the multinomial probit likelihood, while those with MNL uses the multinomial logistic likelihood. MF-MNP

is the variational mean-field method (Girolami and Rogers, 2006), KL-MNL is the variational approach of this paper, while MC-

MNP and MC-MNL are importance sampling. Columns under MF-MNP-θ use the estimated mean hyper-parameters for MF-MNP;

those under KL-MNL-θ use the hyper-parameters optimized for KL-MNL. Method KL-MNL reports two sets of approximations

to log p(y∗): the upper set uses the re-normalized probabilities given by Equation 25 and the lower set uses the lower bound in

Equation 24.
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values, is perhaps sufficient for accurate predictive probabilities. In addition, the figures suggest

that the predictive probabilities by MF-MNP upper bound those by MC-MNP. Further analysis is

needed to confirm this for the general case.

Finally, we compare errors on test data. For the MF-MNP-θ hyper-parameters, we find the errors

to be similar across all methods, although KL-MNL and MC-MNL, which use the multinomial

logistic likelihood, give marginally more errors. However, with hyper-parameters optimized for

KL-MNL, both KL-MNL and MC-MNL give less errors consistently. This suggests that model

learning is better performed with a tight approximation to the marginal likelihood, as is provided by

KL-MNL.

9.1.1 EFFECT OF PRIOR VARIANCE

The results in Table 3 are where the latent processes have unit prior variance. Using the iris data

set, we investigate the quality of our marginal likelihood bound when the prior variance increases.

For each random partition, we fix the ARD hyper-parameters to that estimated for MF-MNP. The

prior variance is then increased in steps. For each step, we obtain the marginal likelihoods using

our variational inference and using importance sampling. The former is denoted by Zh, and the

latter by Z. Using Equation 3, we also obtain ZB, which approximates the posterior with a Gaussian

but computes the expected log-likelihood exactly. The Kullback-Leibler divergence is computed

exactly, while L def= ∑n
i=1 "i(yi;q) is computed with Monte Carlo using ns = 100,000 samples. For

a sample f(s) from the variational posterior, let w(s) def= ∑
n
i=1 log p(yi|f

(s)
i ). Then the Monte Carlo

estimate of L is the sample mean w̄ of the w(s)s. We use the 99.9% confidence upper bound on ZB

by estimating L with w̄+3.09σ/
√

ns, where σ2 is the sample variance of the w(s)s.5

Figure 1 gives plots against the prior variance of the latent process. The left figure (a) plots

the log marginal likelihoods while the right figure (b) gives the violin plots of the log ratios of the

marginal likelihoods. The plots show that the quality of the bounds ZB and Zh decreases with prior

variance. This is largely due to the Gaussian approximation to the posterior, which is given by

ZB, rather than the approximation h to the expected likelihood: the violin plot for logZB/Zh shows

only slight increase as the prior variance increase, while the violin plot for logZ/ZB increases more

significantly. This illustrates the robustness of the approximation h to the expected log-likelihood.

The deterioration of Gaussian approximation to the posterior is also present in binary Gaussian

process classification (Nickisch and Rasmussen, 2008, Figure 3). The intuition is that a higher prior

variance allows the posterior latent process more flexibility to become less Gaussian.

9.2 Comparing Models

The availability of fairly tight approximations to the exact posterior opens the opportunity for model

comparison on each model’s own merit without being confounded by the gap that results from

approximation. In this section, we investigate the Gaussian process models in two areas: the choice

of likelihood and the choice of prior correlation between the functions.

5. Since log-probability is unbounded, the true distribution of w(s) may not have finite variance. We eliminate this

possibility empirically by verifying that the running sample variance has converged and that the estimated tail is not

heavy (Koopman et al., 2009).
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(b) Violin plot of log ratios of marginal likelihood

Figure 1: The quality of the lower bound on marginal likelihood for the iris data set by fixing

the ARD hyper-parameters to those estimated for MF-MNP-θ and then increasing the

prior variance. Figure (a) plots the log marginal likelihood against the prior variance

(on log-scale). The topmost curve logZ is for the marginal likelihood obtained using

importance sampling; the middle curve logZB approximates the posterior of the latent

process with a Gaussian; while the bottom curve logZh further approximates the expected

log-likelihood. The error bars give 95% confidence interval computed over 50 random

partitions of the data. The curves are translated slightly horizontally to reduce overlap

in the error bars. Figure (b) plots the log marginal likelihood ratios against the prior

variance (on log-scale) using the violin plot. The upper violin plot is for logZ/ZB and

the lower one is for logZB/Zh. These figures illustrate that the bound logZh becomes

looser with increase in prior variance, and that this is mainly contributed by the Gaussian

approximation to the posterior.
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9.2.1 LIKELIHOOD

In Table 3, when we compare MC-MNP and MC-MNL on the set of hyper-parameters given by MF-

MNP-θ, we see that the multinomial probit likelihood (MNP) fits the four training data sets better

than the multinomial logistic likelihood (MNL). This difference can be explained by an equivalent

model for each likelihood.

As outlined in Section 8, the Gaussian process latent model with covariance function kx(x,x′)
on the inputs and with the multinomial probit likelihood is equivalent to the model with covariance

function kx(x,x′)+ δ(x,x′) and the threshold likelihood function. This threshold likelihood parti-

tions the space RnC into orthants, one of which corresponds to the vector of observed data classes y.

Let us call this the y-orthant. The marginal likelihood is hence the fraction of the prior probability

mass in the y-orthant. For a centered Gaussian prior, this fraction is determined by the correlation.

For multinomial logit likelihood, each auxiliary variable uc is Gumbel distributed around f c in-

stead of Gaussian distributed; see Section 8. A moment matching approximation to the distribution

of uc is a Gaussian cent-red at f c with variance π2/6. Hence an approximation to the logit model

is a Gaussian process latent model with covariance kx(x,x′)+ δ(x,x′)π2/6 and with the threshold

likelihood. As before, the marginal likelihood is the prior probability mass in the y-orthant, and this

is determined by the correlation.

The correlation functions of the equivalent models for the multinomial probit and multinomial

logistic likelihoods are different. The former is obtained by removing the variance in kx(x,x′)+
δ(x,x′), while the latter, kx(x,x′)+ δ(x,x′)π2/6. One way to match the two correlation functions

is to scale the original latent Gaussian process for the logit model by π2/6, so that the equivalent

covariance function becomes π2/6[kx(x,x′)+ δ(x,x′)]. Consulting Figure 1a, the mean exact log

marginal likelihood for the logit model on the iris data set is logZ ≈−0.28 at log(π2/6)≈ 1/2 on

the x-axis. This is consistent with the −27.82 under MC-MNP for the iris data set in Table 3.

9.2.2 PRIOR CORRELATION AMONG LATENT PROCESSES

It is common to assume prior independence among the latent functions for two reasons: to reduce

computational complexity and to adhere to the principle of parsimony. In this section, we investigate

if parsimony is a reason enough to exclude considering prior dependence among the latent functions.

We evaluate on the four UCI data sets using the separable covariance structure in Equation 1.

For this evaluation, the covariance function on the inputs in Rd is the squared-exponential co-

variance function with equal length-scales along all the dimensions:

kx(x,x′) = sqexpiso(x,x′;σx,θ) def= σ2
x exp

(

−
1

2

d

∑
j=1

(

x j − x′j

θ

)2
)

. (45)

We consider five models M1, . . . ,M5 of covariances Kc between the latent functions for the classes.

In each model, we keep the total variance trKc to be constant at C.6 The first model M1 is where

the latent functions are i.i.d., so Kc is the C-by-C identity matrix. The second is a diagonal matrix

where the diagonal entries are positive and sum to C. Here, the latent functions remain a-priori

independent, but they can have different variances while keeping the total variance the same as the

first model. For the third and fourth models, we scale the Kc given by Equation 37 to have the same

6. The total variance in Kc is then scaled by the σ2
x in kx, so the total variance of the latent process at each datum is Cσ2

x.

1775



CHAI

total variance as the first two models:

K̃c = M−M11TM/1TM1+ I, Kc =
C

tr K̃c
K̃c. (46)

The equation for K̃c omits the weight for the identity matrix because the normalization in Kc makes

this unnecessary. Model M3 sets M to be diagonal with positive diagonal entries; this is an attempt

to approximate the correlation of multinomial or Dirichlet random variables. Model M4 allows M

to be any positive semi-definite matrix. Finally, in the fifth model, Kc is any positive definite matrix

with trKc =C; this allows the latent functions to be correlated arbitrarily.

The first, third and fourth models satisfy the sum-to-zero property discussed in Section 5. Using

Mi ⊃M j to indicate that Mi is more expressive than M j, we have the ordering M5 ⊃M4 ⊃M3 ⊃M1

and M5 ⊃ M2 ⊃ M1. The second model is not comparable with the third and fourth models in this

ordering. The Kc for M1 is fixed and therefore parameter-free. The number of free parameters of

Kc in models M2 and M3 are C−1. For M4 and M5, these are C(C+1)/2−2 and C(C+1)/2−1.

We estimate the parameters of the models in the following way. First, the hyper-parameters σx

and θ for model M1 are optimized for the variational bound on marginal likelihood on the observed

data. These two hyper-parameters are then considered fixed when optimizing matrix Kc for the

other models using the variational bound.

After the hyper-parameters for each model have been estimated, we use sampling to obtain

better estimates of the marginal likelihoods, errors and predictive likelihoods given the model and

its hyper-parameters. This is done for each of the fifty partitions of the four UCI data sets. The

sampling procedure is that outlined in the introduction to this section except for the glass data set,

for which the Monte Carlo estimates to the marginal likelihood are lower than the variational lower

bounds. There are two reasons for the lower estimates: (a) the sampling space is larger than in the

other data sets because this data set has seven classes; and (b) for each data set partition, the prior

variance is around 16, so the true posterior is conceivably less Gaussian and more different from the

prior. To obtain Monte Carlo estimates that are better than the variational ones for this data set, we

instead sample from the multivariate-t distribution that has covariance 2V instead of 2K, where V is

the covariance of the variational approximation.

Figure 2 gives a paired comparison between the models M1, . . . ,M5 based on their marginal

likelihoods on the observed data. There are four sub-figures, one for each data set. Each graph is a

scatter-plot, in which each point is for one partition of the data set named in the sub-caption, and the

location of each point is the log marginal likelihoods of the two models indicated on the top and the

left edge of the sub-figure. For a scatter-plot, if the points are mostly above the diagonal line, then

model named on the left edge is better than the model named on the top edge. From Figure 2, we see

no noticeable difference among the models for the wine data set, while we make the following four

observations for the other data sets. (a) More free parameters generally results in better marginal

likelihoods, as expected.7 (b) Although M2 and M3 have the same number of free parameters, M3

generally gives better marginal likelihoods. (c) The marginal likelihoods of M4 and M5 are similar,

showing that the additional free parameter in M5 over M4 is not useful. Observations (b) and (c)

suggest that it is worthwhile to consider the sum-to-zero constraint, which is satisfied by M3 and

M4 but not by M2 and M5.

7. There are two reasons why more free parameters is not always better. First, the hyper-parameters are optimized using

the variational approximations and not the true marginal likelihoods. Although our approximations are rather tight,

the hyper-parameters may be sensitive to the remaining gaps in the approximations. Second, the marginal likelihood

surface can be multi-modal with respect to the hyper-parameters, hence gradient ascent can be stuck at local maxima.
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Figure 2: Paired comparisons of the marginal likelihood between five models of prior correlations

Kc between the latent functions: M1 gives i.i.d. latent functions; M2 gives independent

latent functions with different variances; M3 allows the functions to be correlated using

Equation 46 where M is diagonal; M4 also uses Equation 46 but allows M to be any

positive semi-definite matrix; and M5 allows the functions to be correlated arbitrarily.

For each model, Kc is scaled such that the total variance trKc is constant C. Each figure

is for the data set indicated in its caption. Each graph in a figure plots the log marginal

likelihood (logZ) of the model named at the left edge of the figure versus that named at

the top edge. Each point in the scatter-plot is for one of the fifty random partitions of the

data set. To ease comparison, the x = y line is plotted in each graph. For example, each

point in top left graph of Figure (a) is at the location (x,y), where x (resp. y) is the logZ

for M1 (resp. M5) on one partition of the iris data set. All the points in this graph are

above the x = y line, so M5 gives better marginal likelihood than M1 for all the partitions.
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Figure 3: The histograms of the prior variances of the latent functions in Kc estimated from the

thyroid data under model M4. From left to right, we have histograms for euthyroidism,

hyperthyroidism and hypothyroidism.
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Figure 4: The histograms of the prior correlation of the latent functions estimated from the thy-

roid data under model M4. From left to right, we have histograms for the correlation

between euthyroidism and hyperthyroidism, between euthyroidism and hypothyroidism,

and between hyperthyroidism and hypothyroidism.

For the errors and predictive likelihoods, we observe no significant difference among the models,

based on plots similar to those in Figure 2. For the purpose of prediction then, it seems sufficient

to rely on the likelihood to provide the necessary posterior coupling between the latent functions.

Nonetheless, we believe there may still be applications where prior coupling between the latent

functions is helpful in prediction.

More insights into the various models can be obtained by looking at the estimated variances and

correlations between the latent functions. As an example we shall use the thyroid data with model

M4; examination with model M3 or model M5 gives similar conclusions. The task for the thyroid

data is to predict the state of a subject’s thyroid given the results of five different laboratory tests.

This state can be one of three classes: euthyroidism (having normal functioning thyroid), hyper-

thyroidism (having overactive thyroid) and hypothyroidism (having underactive thyroid). Figure 3

gives the histogram of the prior variances of the latent functions in Kc estimated by M4 over the

fifty different partitions. From left to right, the histograms are for euthyroidism, hyperthyroidism

and hypothyroidism. Each histogram is concentrated around a single mode. Bearing in mind that

we have constrained the total variance in Kc to be 3, the evidence in the data suggests that class hy-
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Figure 5: The performance of active selection over random selection as the number of inducing

point is incremented in steps of 25. Each histogram is for the log ratios of Z∗
h for active

selection to random selection. The plot shows that active selection is better than random

selection, though the advantage decreases with the number of inducing points.

perthyroidism varies more than class hypothyroidism, which varies more than class euthyroidism.

Figure 4 gives the histogram of the correlations between the latent functions. From left to right,

we have the correlations between euthyroidism and hyperthyroidism, between euthyroidism and

hypothyroidism, and between hyperthyroidism and hypothyroidism. As for the variances, each his-

togram is concentrated around a single mode. The most significant result is the right histogram,

which shows hyperthyroidism and hypothyroidism to be negatively correlated. This is intuitive: the

two classes correspond to overproduction and underproduction of thyroid hormones respectively.

9.3 Active Inducing Set Selection

Sparse approximation is commonly used for efficient inference in large data sets. The quality of

this approximation is dependent on the inducing set. In this section, we evaluate the effectiveness

of criteria d2 and d3 (Equations 42 and 43 in Section 6.1) in selecting the inducing set actively. We

do this by comparing with random selection on the glass data set.

We use the usqexpard covariance function (44) on the inputs and assume that the latent functions

are i.i.d. For each training set partition, we fix the hyper-parameters to those optimized for our

variational lower bound using the entire training set; these are the KL-MNL-θ hyper-parameters

estimated in Section 9.1. Given the training set partition and the hyper-parameters, the random

approach selects δ sites to be added to the inducing set at each iteration. The active approach begins

with the same δ random sites as the random approach, but subsequent choices of the δ sites are

selected based on the d2 and d3 criteria. For each random variable induced by the training set, we

use d3 with subsample set of size |S |. Next, we compute the d2 scores of the t random variables

with the highest d3 scores. The δ random variables having the highest d2 scores computed in this

manner will be added to the inducing set. We use δ = 25, |S |= 5 and t = 40 in the experiment.
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The optimized variational lower bound Z∗
h on the marginal likelihood for random selection is

computed at each iteration for each training set partition. The same is computed for active selection.

Figure 5 gives the violin plot of the log ratios of the Z∗
h for the active selection to the Z∗

h for the

random selection. The horizontal axis gives the size of the inducing set—there are 896 potential

inducing sites from the 7 types of glass and the 128 training xs. The histogram at each iteration is

over the fifty random training set partitions.

At the first iteration with 25 inducing sites, the ratio is zero because both the random selec-

tion and the active selection begin with the same 25 random sites. At the second iteration with

an additional 25 inducing sites, active selection usually provides higher Z∗
h , but it is possible for

active selection to be worse than random selection. This is because the d2 and d3 criteria are de-

signed for single inducing sites, so they are not optimal for selecting more than one site—25 in

this experiment—at once. Nevertheless, in subsequent iterations, active selection always provides

higher Z∗
h than random selection. As the size of the inducing set increases, the benefit from active

selection decreases because the value of any inducing site decreases.

9.4 Comparing with Single-machine Multi-class Support Vector Machines

Support vector machines (SVMs, Vapnik, 1998) are popular for classification and they have been

known to give good classification accuracies in general. Although originally formulated for binary

classification, several extensions have been proposed for multi-class classification. These extensions

can be grouped roughly into two: one is to transform the multi-class problem into several binary

class problems together with a decoding step; the other, called the single-machine approach, is to

solve a single optimization problem for multiple classes, keeping to the broad principles of structural

risk minimization (Vapnik, 1998). Comparisons between the two groups have been done by Rifkin

and Klautau (2004). In this section, we compare our proposed variational approximation on multi-

class Gaussian processes to four different single-machine multi-class SVMs using the MSVMpack

package (Lauer and Guermeur, 2011). We denote the four single machines by WW (Vapnik, 1998;

Weston and Watkins, 1999), CS (Crammer and Singer, 2001), LLW (Lee et al., 2004) and MSVM2

(Guermeur and Monfrini, 2011). The comparison is on the four UCI data sets.

For both Gaussian processes and SVMs, we use the sqexpiso covariance function or kernel

(45). The signal variance σ2
x in the Gaussian process covariance function corresponds to the soft-

margin trade-off parameter in the SVM objective functions, usually denoted by C. For the multi-

class Gaussian processes, the parameters of the covariance function are estimated by optimizing our

variational lower bound on the marginal likelihood. For the single-machine SVMs, the parameters C

and θ are estimated from a grid (log10C,θ) ∈ {−2,−1,0,1,2,3}×{0.1,1,5,10,15} using five-fold

cross validation on the training set.8 This is repeated for each of the fifty train/test set partitions.

Table 4 gives the means and standard deviations of the errors over the fifty random train/test

set partitions. The results for WW, CS and LLW are consistent with those reported by Weston and

Watkins (1999), Hsu and Lin (2002) and Lee et al. (2004), when we take into perspective that their

results are for 90%/10% train/test splits instead of the 60%/40% here. Comparing the errors for

the Gaussian processes under column KL-MNL with the errors for the single-machine SVMs, we

see that the Gaussian processes give better performances on the average. One reason is that model

learning is achieved using continuous optimization with Gaussian processes, while only discrete

8. When MSVMpack does not seem to converge on its stopping criterion for a parameter pair (C,θ), the learning is

forced to terminate for that pair, and the validation score is computed based on the model at the point of termination.
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Single-machine multi-class support vector machines

Data set KL-MNL WW CS LLW MSVM2

Iris 2.18± 1.42 3.02± 2.51 3.22± 4.34 2.74± 1.45 2.88± 1.47

Thyroid 3.54± 1.68 4.42± 3.45 4.82± 1.89 5.28± 2.08 5.58± 2.56

Wine 1.40± 0.90 1.40± 0.69 2.20± 1.34 1.62± 1.03 1.50± 0.95

Glass 27.44± 3.78 29.30± 10.70 28.70± 3.17 29.54± 9.72 29.42± 3.59

Table 4: Errors of variational multinomial logit Gaussian process (column KL-MNL) and four vari-

ants of single-machine multi-class SVMs. The means and standard deviations of the errors

over fifty partitions are reported. The sqexpiso covariance function/kernel (45) is used on

the inputs, and there is no inter-class correlations between the functions.

Errors Number of support vectors

Data set Sparse KL-MNL SVM-WW min Q1 Q2 Q3 max

Iris 2.14± 1.39 3.02± 2.51 12 17 20 24 36

Thyroid 7.38± 5.22 4.42± 3.45 2 3 4 7 39

Wine 1.32± 0.91 1.40± 0.69 4 10 25 34 37

Glass 28.42± 4.05 29.30± 10.70 8 18 56 65 75

Table 5: Errors of sparse variational multinomial logit Gaussian process and the WW variant of

multi-class SVM. The means and standard deviations of the errors over fifty partitions are

reported. The sqexpiso covariance function/kernel (45) is used on the inputs, and there is

no inter-class correlations. The number of inducing variables for the sparse approximation

is the number of support vectors given by WW times the number of classes. The last

five columns give the statistics of number of support vectors over the partitions. Column

SVM-WW duplicates column WW in Table 4.

optimization on the grid is used with the SVMs. Hence, the Gaussian processes can give finer

parameter estimates.

The above uses the full (or non-sparse) approximation to the Gaussian process model. We also

experiment with the sparse approximation. For each data set and each partition of the set, the target

number inducing variables is fixed to the number of support vectors selected by WW multiplied by

the number of classes. The initial inducing set is C randomly chosen variables. Inducing variables

are added using the strategy described in Section 9.3, but now with δ =C, |S |= 5 and t = 20.

This expansion of the inducing set is alternated with one gradient-line-search to optimize the hyper-

parameters of the model. After all the inducing variables are added, the hyper-parameters are further

optimized. Table 5 reports the results repeated over the fifty partitions for each data set. The table

also gives the minimum, maximum and quartiles (Q1,Q2,Q3) of the number of support vectors.
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Figure 6: The quality of sparse approximations, at the same level of sparsity as the WW variant of

SVM. Each histogram is for the log ratios of Z∗
h for the full model to Z̃∗

h for the sparse

model. The approximation is mostly tight for the iris, wine and glass data sets, but is

loose for the thyroid data. The histogram for the iris data concentrated at 0, so it is barely

visible. The hyper-parameters for Z∗
h and for Z̃∗

h are different.

From Table 5, we see that the sparse Gaussian process model with active selection of inducing

set compares favourably with the WW variant of SVM in terms of errors for three of the four data

sets. The sparse Gaussian process model gives significantly more errors for the thyroid data. We

believe there are two reasons for this. First, most of the fifty repetitions for the thyroid data have very

small number inducing variables: the median is 4× 3 = 12. Second, the sparsity in the Gaussian

process is an imposed approximation to the full Gaussian process, while the sparsity in the SVM is

a direct consequence of its objective function. Therefore, limited to a median of only 12 inducing

variables, the sparse approximation is unsatisfactory. This is reflected in Figure 6, which gives the

violin plot of the log ratios of the marginal likelihood for the full model to the sparse model. From

the figure, we see that approximation of the Gaussian process model with the same level of sparsity

as WW is unsatisfactory for the thyroid data. Finally, we remark that the full Gaussian process

model gives 3.54±1.68 errors; see Table 4.

10. Conclusion and Discussion

We have introduced a tractable variational approximation to the multinomial logit Gaussian pro-

cesses for multi-class classification in Section 2.3, and we have provided the necessary updates

to optimize this approximation in Section 3. Empirical results in Section 9.1 have indicated that

our approximation is very faithful to the exact distribution, in contrast to the variational mean-field

approximation (Girolami and Rogers, 2006). One key to the success of this approximation is Theo-

rem 6, which gives a variational lower bound on the expected log-likelihood at each observation. In

addition, bounds on the train data marginal likelihood and test data predictive likelihoods have been

given in Sections 2.3.2 and 2.3.3, and these bounds have been shown to be supported by empirical

results in Section 9.1.

In Section 4, the proposed variational approximation has been combined with the sparse vari-

ational approximation approach previously advocated for regression (Titsias, 2009a). This sparse

approximation to the multinomial logit Gaussian processes has the property that incremental in-

creases in the inducing set will lead to tighter bounds on the marginal likelihood. This property

has been exploited in Section 6.1 to derive scores for potential inducing sites. An active selection
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strategy making greedy use of these scores has been compared favorably with random selection in

Section 9.3.

The present paper is mostly independent of the covariance structure of the Gaussian process.

Nevertheless, at various points, we have focused on the case where the covariance is separable into

the covariance on the inputs and the covariance on the classes. Such separable covariance has been

investigated previously in the context of multi-task Gaussian process regression (see, for example,

Bonilla et al., 2008). In Section 5, we have looked into the cases where the optimized variational

posterior satisfies the sum-to-zero property; this property is also present in many single-machine

multi-class SVMs. In Section 9.2.2, we have compared several models of prior correlation between

the latent functions. Although the experimental results are neither general nor conclusive against

or for Kc = I, further investigation into the thyroid data has suggested that useful knowledge can

indeed be extracted if inter-latent-function correlations are permitted.

There are several possibilities building upon and extending this work. From the model perspec-

tive, it is worthwhile to have more interesting models in which latent functions can be related than,

for example, the separable covariance of Equation 1. For this, covariance models developed for

multi-task learning in the regression setting can be assessed for multinomial logit Gaussian process.

Here, two questions specific to multi-class classification are of interest. First, should one consider

models where a pair of latent functions are allowed to be positively correlated? On the one hand,

the classes are mutually exclusive, so an increase in the probability of one class necessarily entails a

decrease in the probability of another class when the probability of other classes are held constant;

hence we can expect negative correlations between the latent functions. On the other hand, if there

is a natural hierarchical structure to the classes, then the probability of two classes can rise in tan-

dem against the probability of the other classes; hence we may also find positive correlations. The

second question is: should the set of length-scales of the latent functions be the same? To argue

for the same set of length-scales, one may say that a single property of the given object x is being

predicted. The counter argument is that there are different values for this property, and the latent

function for each value may demand its own set of length-scales.

From the variational approximation perspective, further constraints can be placed on the any of

the variational parameters: m, V , the bis and the Sis. Some constraints will lead to more efficient

algorithms though with less faithful approximations, and trade-offs between the two conflicting

goals will have to be examined. From a purely algorithmic perspective, more efficient updates than

the ones presented in Section 3 can be explored.

Theorem 6 gives a variational lower bound on the expected log-likelihood at each observation.

We have seen that it is rather tight on the average in Section 9.1. This bound can be applied to

on-line multi-class classification under the assumed density filtering framework, following a prior

work on sparse on-line binary classification (Csató and Opper, 2002).

Acknowledgments

We thank Chris Williams, Hai Leong Chieu and the reviewers for their helpful comments and sug-

gestions. We are grateful to DSO National Laboratories, Singapore, for the permission to publish

this work. This work is funded by DR-Tech, Singapore.

1783



CHAI

Appendix A. Mathematical Preliminaries

We provide general results required in the proofs for the main results of this paper.

A.1 Gaussians

Lemma 18 Let x1 ∈ Rn1 and x2 ∈ Rn2 be random vectors with two jointly normal distributions

p(x1,x2) def= N (n,U) and q(x1,x2) def= N (m,V ), where the parameters are partitioned as

n def=

(

n1

n2

)

, U def=

(

U11 U12

U21 U22

)

, m def=

(

m1

m2

)

, V def=

(

V11 V12

V21 V22

)

.

The difference between the Kullback-Leibler divergences on x def= (xT
1 ,x

T
2 )

T and x1 is

KL(p(x)‖q(x))−KL(p(x1)‖q(x1))

=−
n2

2
−

1

2
log
∣

∣

∣
V−1

2|1 U2|1

∣

∣

∣
+

1

2
trV−1

2|1

(

U2|1 +WU−1
11 W T

)

+
1

2
tTV−1

2|1 t,

where

U2|1
def=U22 −U21U−1

11 U12, V2|1
def=V22 −V21V−1

11 V12,

W def=U21 −V21V−1
11 U11, t def= (m2 −n2)−V21V−1

11 (m1 −n1) .

Proof The conditional distributions p(x2|x1) and q(x2|x1) have means

n2|1
def= n2 +U21U−1

11 (x1 −n1) , m2|1
def= m2 +V21V−1

11 (x1 −m1)

and covariances U2|1 and V2|1. The difference between the Kullback-Leibler divergences can be

derived through the Kullback-Leibler divergence of these conditionals:

KL(p(x)‖q(x))−KL(p(x1)‖q(x1)) =
∫

p(x) log
p(x)/p(x1)

q(x)/q(x1)
dx =

∫
p(x) log

p(x2|x1)

q(x2|x1)
dx

=
1

2

∫
p(x1)

[

−n2 − log
∣

∣

∣
V−1

2|1 U2|1

∣

∣

∣
+ trV−1

2|1 U2|1 +
(

m2|1 −n2|1
)T

V−1
2|1
(

m2|1 −n2|1
)

]

dx1

In the last expression above, only the final quadratic term in the integrand depends on x1, so we

can move the other terms out of the integral. For this final term, its integral under p(x1)dx1 is

trV−1
2|1
(

WU−1
11 W T

)

+ tTV−1
2|1 t.

A.2 Matrix

Proposition 19 For positive semi-definite matrices A and B of the same order, we have B 9 A im-

plies null(A)⊆ null(B).

Proof Let x ∈ null(A), then Ax = 0 by definition. Hence xTAx = 0. Since 0 9 B 9 A, we have

0 ≤ xTBx ≤ xTAx = 0. Therefore xTBx = 0. This means Bx = 0, or x ∈ null(B) (Horn and Johnson,

1985, Section 7.5, Problem 14). Thus x ∈ null(A) =⇒ x ∈ null(B).
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Lemma 20 (Matrix determinant lemma) For an n-by-n non-singular matrix A and vectors u and v

in Rn, |A+uvT|= (1+vTA−1u)|A|.

Lemma 21 Under the setting in Lemma 20

|A+uvT +vuT|=
[

(1+vTA−1u)(1+uTA−1v)−uTA−1uvTA−1v)
]

|A|.

Proof Apply Lemma 20 twice; then use the Sherman-Morrison formula on (A+uvT)−1.

Corollary 22 If A is also symmetric, then

|A+uvT +vuT|=
[

(1+uTA−1v)2 −uTA−1uvTA−1v)
]

|A|.

Lemma 23 Further, with a ∈ R, we have

|A+auuT +uvT +vuT|=
(

(

1+uTA−1v
)2 −uTA−1uvTA−1v+auTA−1u

)

|A|.

Proof Let X def= A+auuT and b def= 1+auTA−1u. We apply Corollary 22, then we use Lemma 20 on

|X | and the Sherman-Morrison formula on X−1:

[

(1+uTX−1v)2 −uTX−1uvTX−1v)
]

|X |

= |A|b

[

(

1+
1

b
uTA−1v

)2

−
1

b
uTA−1u

(

vTA−1v−
a

b

(

uTA−1v
)2
)

]

= |A|b

[

1+
2

b
uTA−1v+

1

b

(

uTA−1v
)2 −

1

b
uTA−1uvTA−1v

]

= |A|
[

(1+uTA−1v)2 +auTA−1u−uTA−1uvTA−1v
]

.

The second step in the derivation applies the identity 1− (a/b)uTA−1u = 1/b.

Theorem 24 (Matrix quadratic equation, a special case of Potter 1966). Let A and B be two real

symmetric n-by-n matrices such that A+B2 is positive semi-definite and B is positive definite. Then

the positive definite solution to the equation −X2 +BX +XB+A = 0 is X = PΛ
1
2 PT + B, where

PΛPT is the eigen-decomposition of A+B2.

Proof The solution X can be proved by direct substitution into the equation, or by completing the

square, or by following a construction due to Potter (1966). For positive definiteness, since B . 0,

we only require that (A+B2) is positive semi-definite.

Appendix B. Bounds

This appendix provides the proofs for the bounds stated in the main text.
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B.1 Variational Lower Bound on the Marginal Likelihood

We derive the variational lower bounds Z̃B on the true marginal likelihood in the sparse case. Using

Jensen’s inequality, we have

log p(y) = log

∫
p(y, f,z)dzdf = log

∫
p(y, f,z)

q(f,z|y)
q(f,z|y)

dzdf ≥ log Z̃B,

where log Z̃B
def=

∫
q(f,z|y) log

p(y, f,z)

q(f,z|y)
dzdf. (47)

Given the model, the joint distribution p(y, f,z) factorizes into p(y|f)p(f|z)p(z) exactly; there is

no approximation involved. For the approximate posterior q(f,z|y), however, the factorization

q(f,z|y) = p(f|z)q(z|y) is assumed. Using these two factorizations, we have

log Z̃B =
∫

p(f|z)q(z|y) log
p(y|f)p(z)

q(z|y)
dzdf

=
∫

q(z|y)
[

log
p(z)

q(z|y)
+

∫
p(f|z) log p(y|f)df

]

dz

=−KL(q(z|y)‖p(z))+
∫

q(f|y) log p(y|f)df,

where q(f|y) def=
∫

q(f,z|y)dz. Since the joint likelihood factorizes across the n data points, this is

also log Z̃B =−KL(q(z|y)‖ p(z))+∑n
i=1 "i(yi;q), where "i(yi;q) def=

∫
q(fi|y) log p(yi|fi)dfi.

The bound ZB in the non-sparse case can be obtained in a similar manner with

logZB
def=

∫
q(f|y) log

p(y, f)

q(f|y)
df. (48)

B.1.1 RELATION BETWEEN BOUNDS FOR NON-SPARSE AND SPARSE APPROXIMATIONS

We show that the optimized non-sparse bound logZ∗
B is not smaller than the optimized sparse bound

log Z̃∗
B. We begin by constraining the approximate posterior in logZB:

logZ∗
B

def= max
q(f|y)

logZB ≥ max
q(z|y)

logZB (where q(f|y) =
∫

p(f|z)q(z|y)dz) . (49)

We introduce an arbitrary distribution r on z and use Jensen’s inequality to get

log p(y, f) = log

∫
p(y, f,z)dz = log

∫
r(z)

p(y, f,z)

r(z)
dz ≥

∫
r(z) log

p(y, f,z)

r(z)
dz.

The above inequality is substituted into logZB through its definition (48), and the result is applied

to the leftmost expression in (49):

logZ∗
B ≥ max

q(z|y)

∫
q(f|y)r(z) log

p(y, f,z)

q(f|y)r(z)
dzdf (where q(f|y) =

∫
p(f|z)q(z|y)dz) .

This is for any r(z). We choose r(z) def= q(z|f,y) = q(f,z|y)/q(f|y) and cancel out q(f|y) to obtain

logZ∗
B ≥ max

q(z|y)

∫
q(f,z|y) log

p(y, f,z)

q(f,z|y)
dzdf.

The objective on the right is log Z̃B by definition (47).
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B.2 Derivation of r(f) and r(y) for Lemma 2

Let r(f) be a prior distribution such that the posterior

r(f|y) = p(y|f)r(f)/r(y), where r(y) def=

∫
p(y|f)r(f)df,

is a C-variate Gaussian density on f with mean a and precision W . Rearranging gives

r(f)

r(y)
=

r(f|y)
p(y|f)

=
C

∑
c=1

|W |1/2

(2π)C/2
exp−

1

2

[

(f−a)TW (f−a)−2(ec −y)Tf)
]

. (50)

Let ac be such that

Wac =Wa+ ec −y, (51)

and define

rc(f) def=
|W |1/2

(2π)C/2
exp

[

−
1

2
(f−ac)TW (f−ac)

]

.

By completing the square the terms within the brackets of (50), we obtain

r(f) = r(y)exp

[

−
1

2
aTWa

] C

∑
c=1

exp

[

1

2
(ac)TWac

]

rc(f).

This is a mixture of Gaussians model, so let r(f) = ∑c γ
crc(f). Normalization gives

r(y) =
exp
[

1
2 aTWa

]

∑C
c=1 exp

[

1
2(a

c)TWac
] , γc def=

exp
[

1
2(a

c)TWac
]

∑c′ exp
[

1
2(a

c′)TWac′
] . (52)

B.3 Derivation of Lower Bound h on the Expected Log-likelihood for Lemma 5

Recall from (12) that

h(y;q,r) def=

∫
q(f|y) logr(f|y)df+ logr(y)− log

C

∑
c=1

γc
∫

q(f|y)rc(f)df. (53)

We simplify the first two terms on the right:

∫
q(f|y) logr(f|y)df =

1

2

(

−C log2π+ log |W |− (m−a)TW (m−a)T − trWV
)

, (54)

logr(y) =
1

2
aTWa− log

C

∑
c=1

exp

[

1

2
(ac)TWac

]

. (55)

For the third term on the right of (53), we introduce S def=V−1 +W and use

∫
q(f|y)rc(f)df

=

√

|W |
(2π)C|V | |S|

exp−
1

2

[

mTV−1m+(ac)TWac −
(

V−1m+Wac
)T

S−1
(

V−1m+Wac
)

] (56)
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to obtain

log
C

∑
c=1

γc
∫

q(f|y)rc(f)df =− log
C

∑
c=1

exp

[

1

2
(ac)TWac

]

+
1

2
log |W |−

C

2
log2π−

1

2
log |SV |

+ log
C

∑
c=1

exp−
1

2

{

mTV−1m−
(

V−1m+Wac
)T

S−1
(

V−1m+Wac
)

}

, (57)

where the first term is from the denominator of γc (Equation 52) and the second to fourth terms are

from the first factor in Equation 56. At present, let us focus on the term within the braces in the

above equation. Let b def=W (m−a)+y and use the identity Wac =Wa+ ec −y (Equation 51) and

definition S def=V−1 +W . Then

mTV−1m−
(

V−1m+Wac
)T

S−1
(

V−1m+Wac
)

= mTV−1m−
(

V−1m+Wa+ ec −y
)T

S−1
(

V−1m+Wa+ ec −y
)

= mTV−1m−
(

V−1m+Wm+ ec −b
)T

S−1
(

V−1m+Wm+ ec −b
)

= mTV−1m− (Sm+ ec −b)T S−1 (Sm+ ec −b)

= mTV−1m−mTSm−2mT(ec −b)− (ec −b)T S−1 (ec −b)

=−mTWm+2mTW (m−a)+2mTy−2mTec − (b− ec)T S−1 (b− ec)

= mTWm−2mTWa+2mTy−2mTec − (b− ec)T S−1 (b− ec)

= (m−a)TW (m−a)−aTWa+2mTy−2mTec − (b− ec)T S−1 (b− ec)

= (m−a)TW (m−a)−aTWa+2mTy−2loggc(y;q,r),

where gc(y;q,r) def= exp
[

mTec + 1
2(b− ec)TS−1(b− ec)

]

. By pulling out the terms independent of

the dummy variable c in the last term of (57), we can rewrite

log
C

∑
c=1

γc
∫

q(f|y)rc(f)df =− log
C

∑
c=1

exp

[

1

2
(ac)TWac

]

+
1

2
log |W |−

C

2
log2π

−
1

2
log |SV |−

1

2
(m−a)TW (m−a)+

1

2
aTWa−mTy+ log

C

∑
c=1

gc(y;q,r). (58)

Finally, putting (54), (55) and (58) into (53) and cancelling terms yields

h(y;q,r) =
C

2
+

1

2
log |SV |−

1

2
trSV +mTy− log

C

∑
i=1

gc(y;q,r).

Since distribution r(f|y) is completely determined by its mean a and precision W , we may use these

parameters instead of r in our notation; that is, h(y;q,a,W ) instead of h(y;q,r).

B.4 Lemmas to Prove Theorem 6

This section collects the necessary lemmas to prove Theorem 6. Function gc(q,b,S) and function

h(y;q,b,S) are given by Equations 16 and 19 in the main text, while variables ḡ and A are defined

by Equations 17 and 18.
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Lemma 25 Function h is jointly concave in b and S.

Proof The following facts are used: (a) the log-determinant term is concave in S (Horn and Johnson,

1985, Theorem 7.6.7); (b) the matrix trace term is both concave and convex in S; (c) the quadratic

term in the exponent of gc is jointly convex in S and b (Ando, 1979); and (d) the sum of log-convex

functions is log-convex.

Lemma 26 The maximum of h given S with respect to b is at b = b∗ that satisfies b∗ = ḡ∗, where

ḡ∗ is obtained by evaluating ḡ at b∗.

Proof Proved by setting the gradient ∂h/∂b to zero.

Lemma 27 The maximum of h given b with respect to S is at S = S∗ that satisfies the implicit

equation −S∗V S∗+S∗+A∗ = 0, where A∗ *= 0 is A evaluated at S∗.

Proof Proved by equating the gradient

∂h

∂S
=−

1

2
V +

1

2
S−1 +

1

2
S−1AS−1 (59)

to zero and pre- and post-multiplying both sides by S (valid since S . 0 by definition).

Lemma 28 Let A *= 0, A - 0 and V . 0. Let Sfx be the fixed point given implicitly by

−SfxV Sfx +Sfx +A = 0. (60)

Then V−1 9 Sfx 9V−1 +A, and S *=V−1 and Sfx *=V−1 +A; that is, there exists a matrix W satis-

fying 0 9W fx 9 A and W *∈ {0,A} such that Sfx =V−1 +W fx. Furthermore, null(W fx) = null(A).

Proof Let V factorizes to LLT, where L is non-singular; for example, matrix L can be the lower

Cholesky factor of V . We pre- and post-multiply Equation 60 by LT and L to obtain the equation

−(LTSfxL)(LTSfxL)+(LTSfxL)+LTAL = 0. This is a matrix quadratic equation in LTSfxL, so we

use Theorem 24 to reach the solution

LTSfxL = PΛ̃PT, Λ̃ def= (Λ+ I/4)1/2 + I/2, (61)

where PΛPT is the eigen-decomposition of LTAL. Matrix A is positive semi-definite, so similarly is

LTAL (Horn and Johnson, 1985, Observation 7.7.2) and LTAL+ I/4. Therefore, LTSfxL is positive

definite; see Theorem 24. Since L is non-singular, we can write Sfx = L−T
(

LTSfxL
)

L−1, so Sfx is

positive definite (Horn and Johnson, 1985, Observation 7.7.2). Define W fx def= Sfx −V−1, then

W fx = L−T
(

LTSfxL
)

L−1 − (LLT)−1 = L−T
(

LTSfxL− I
)

L−1 = L−TP
(

Λ̃− I
)

PTL−1,
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where (61) is used. Since the least diagonal value in Λ̃ is one, W fx is positive semi-definite, so

Sfx - V−1. Moreover, since V *= 0 and A *= 0, so LTAL *= 0, Λ *= 0, Λ̃ *= I and W fx *= 0. Hence

Sfx *=V−1. Substitute Sfx =V−1 +W fx into (60) and rearranging gives

W fx = A−W fxVW fx 9 A. (62)

Thus Sfx 9V−1 +A. Moreover, W fx *= 0 and V *= 0 shows that Sfx *=V−1 +A.

We now prove null(W fx) = null(A). Already, W fx 9 A gives null(A)⊆ null(W ) with Proposi-

tion 19, so it remains to proof null(W fx)⊆ null(A). Let x ∈ null(W fx). Post-multiply both sides of

the equality in (62) by x and use W fxx = 0 to give Ax = 0. Thus x ∈ null(A).

B.5 Proof of Lemma 7

We introduce u(η), where u(0) = "(y;q) and u(1) = log p(y|m), and obtain its first two derivatives:

u(η) def=

∫
q(f|y)

(

[(1−η)f+ηm]T y− log
C

∑
c=1

exp [(1−η)f+ηm]T ec

)

df,

du

dη
=

∫
q(f|y)

(

[m− f]T y− [m− f]Tπη

)

df =−
∫

q(f|y) [m− f]Tπη df,

d2u

dη2
=−

∫
q(f|y) [m− f]T

(

Πη−πηπ
T
η

)

[m− f]df,

where

πc
η

def=
exp [(1−η)f+ηm]T ec

∑
C
c′=1 exp [(1−η)f+ηm]T ec′

, πη
def=
(

π1
η, . . . ,π

C
η

)T
,

and Πη is a diagonal matrix with πη along its diagonal. The first derivative du/dη at η = 1 is zero

because π1 is independent of f and the mean of f under q(f|y) is m. Moreover, the second derivative

d2u/dη2 is non-positive because the matrix within the parentheses is positive semi-definite. Hence

u is concave in η, and a maximal is u(1) = log p(y|m) where the gradient is zero.

B.6 A Data-independent Lower Bound on the Marginal Likelihood

We first introduce a bound on h(y;q,b,S) when the variational posterior is chosen to be an isotropic

Gaussian.

Lemma 29 Let q ≡ N (m,σ2
vI), and let h(y;q,b,S) be as defined by Equation 19. Then

max
b,S

h(y;q,b,S)≥−
C−1

2

[

2

√

σ2
v

C
+

1

4
− log

(
√

σ2
v

C
+

1

4
+

1

2

)

−1

]

−
1

2
logC

+
1

2
log

exp2mTy

∑C
c=1 exp2mTec

.
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with equality when m = 0. This is a decreasing function of C and σ2
v . Moreover

max
b,S

h(y;q,b,S)>−
1

2
σ2

v −
1

2
logC+

1

2
log

exp2mTy

∑C
c=1 exp2mTec

.

Proof Let g̃c(b,S) def= exp(b− ec)TS−1(b− ec). Using Cauchy-Schwarz inequality on ∑C
c=1 gc gives

log
C

∑
c=1

gc ≤
1

2
log

C

∑
c=1

exp2mTec +
1

2
log

C

∑
c=1

g̃c.

We use this inequality together with the choice of distribution q, which has variance σ2
v in all direc-

tions, to obtain h(y;q,b,S)≥ h̃(y;q,b,S), where

h̃(y;q,b,S) def=
C

2
+

C

2
logσ2

v +
1

2
log |S|−

σ2
v

2
trS −

1

2
log

C

∑
c=1

g̃c(b,S) +
1

2
log

exp2mTy

∑
C
c=1 exp2mTec

.

Let ¯̃gc def= g̃c/∑
C
c′=1 g̃c′ and ¯̃g def= ( ¯̃g1, . . . , ¯̃gC)T, where the arguments (b,S) are suppressed in the nota-

tion. Let ¯̃G be the diagonal matrix with ¯̃g along its diagonal. Also, define Ã def= bbT − ¯̃gbT −b¯̃g
T
+ ¯̃G.

These two definitions are analogous to the definitions of ḡ and A in Equations 17 and 18.

Let the maximum of h̃ be at (b∗,S∗). It is straightforward to modify Lemmas 25, 26 and 27 for

h̃. The modified Lemma 25 says that (b∗,S∗) is unique. The other two modified lemmas will give

the self-consistent equations

b∗ = ¯̃g(b∗,S∗), −σ2
v(S

∗)2 +S∗+A∗ = 0.

By symmetry, b∗ = 1/C and A∗ = I/C−11T/C2. An eigenpair of A∗ is (0,1/
√

C); the other (C−1)
eigenpairs are (1/C,ud), d = 1 . . .(C − 1), where 1Tud = 0 in addition to the orthonormal condi-

tions. Let

λ def=

√

σ2
v/C+1/4+1/2. (63)

Since σ2
vS∗ = (σ2

vA∗+ I/4)1/2 + I/2 (see the proof for Lemma 28 in Appendix B.4), the eigenvalues

of S∗ are σ−2
v (with algebraic multiplicity one) and σ−2

v λ (with algebraic multiplicity C− 1), and

the eigenvectors of S∗ are those of A∗. Thus the determinant and trace of S∗ can be readily obtained.

With b∗ = 1/C, observe that

(b∗ − ec)T1/
√

C = 0, (b∗ − ec)Tud =−udc,

where udc is the cth entry in the eigenvector ud . For the exponent of g̃c, using (S∗)−1 in its eigen-

decomposition and the two observations above gives (b∗ − ec)T(S∗)−1(b∗ − ec) = (σ2
v/λ)∑

C−1
d=1 u2

dc.

But the eigenvectors of S∗ are orthonormal, so
(

(1/
√

C)2 +∑
C−1
d=1 u2

dc

)

is unity. Hence, we have

(b∗ − ec)T(S∗)−1(b∗ − ec) = (σ2
v/λ)(1−1/C). This is independent of c. Therefore

max
b,S

h̃(y;q,b,S)

=
C

2
+

C

2
logσ2

v +
1

2
logσ−2

v (σ−2
v λ)C−1 −

σ2
v

2

(

σ−2
v +(C−1)σ−2

v λ
)

−
1

2
logC exp

[

σ2
v

λ

(

1−
1

C

)]

+
1

2
log

exp2mTy

∑C
c=1 exp2mTec

=
C

2
+

C−1

2
logλ−

1

2
(1+(C−1)λ)−

1

2

σ2
v

λ

(

1−
1

C

)

−
1

2
logC+

1

2
log

exp2mTy

∑C
c=1 exp2mTec

.
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The underlined term can be simplified to (C−1)(1−λ)/2 by expressing σ2
v in λ using (63). Further

simplification and substitution with the definition of λ gives

max
b,S

h̃(y;q,b,S) =−
C−1

2

[

2

√

σ2
v

C
+

1

4
− log

(
√

σ2
v

C
+

1

4
+

1

2

)

−1

]

−
1

2
logC+

1

2
log

exp2mTy

∑C
c=1 exp2mTec

.

Combining this with h(y;q,b,S)≥ h̃(y;q,b,S) gives the the first inequality in the lemma statement.

When m = 0, we can obtain a modification of the proof using ∑C
c=1 gc directly without bounding

through the Cauchy-Schwarz inequality. This modified proof shows that

max
b,S

h(y;q,b,S) =−
C−1

2

[

2

√

σ2
v

C
+

1

4
− log

(
√

σ2
v

C
+

1

4
+

1

2

)

−1

]

− logC. (m = 0)

The first term is a decreasing function of C, and we now show that this first term is bounded

by −σ2
v/2 from below. Let f (x) def= x2 −3x+2+ logx. Then f = 0 and d f/dx = 0 at x = 1, and

d2 f/dx2 > 0 in the domain x ≥ 1. Therefore, f (x)≥ 0 for all x ≥ 1. Then, for function f (x) we set

x def=
√

σ2
v/C+1/4+1/2 and use C−1 <C to complete the proof after rearrangement.

Proof (of Theorem 9)

log p(y)≥ max
q,{bi},{Si}

logZh ≥ max
{bi},{Si}

logZh|q(f|y)=N (0,σ2
vI)

=
nC

2
+

nC

2
logσ2

v −
1

2
log |K|−

σ2
v

2
trK−1 +

n

∑
i=1

max
bi,Si

h(yi,N (0,σ2
vI),bi,Si)

=
nC

2
+

nC

2
logσ2

v −
1

2
log |K|−

σ2
v

2
trK−1 +nmax

b,S
h(y,N (0,σ2

vI),b,S).

Lemma 29 is then applied on maxh.

Proof (of Theorem 10)

log p(y)≥ max
q,{bi},{Si}

logZh

≥ max
{bi},{Si}

logZh|q(f)=p(f)

= max
{bi},{Si}

[

nC

2
+

1

2

n

∑
i=1

(

log |SiKi|− trSiKi

)

−
n

∑
i=1

log
C

∑
c=1

exp

[

1

2
(bi − ec)TS−1

i (bi − ec)

]

]

.

The same expression can be obtained by setting V = K and m = η1 and maximizing the resultant

expression with respect to η. For K1 = K2, . . .Kn = Kc, we have

1

n
log p(y)≥ max

b,S

[

C

2
+

1

2
log |SKc|−

1

2
trSKc − log

C

∑
c=1

exp

[

1

2
(b− ec)TS−1(b− ec)

]

]

.

For the choice of Kc def= σ2I, we apply Lemma 29.
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B.7 Lower Bound on Predictive Probability: Proof of Theorem 12

For a set of n∗ test inputs X∗
def= {x∗1, . . . ,x∗n∗}, the log joint predictive probability for x∗j to be in

class c j ( j = 1 . . .n∗) is

log p({y
c j

∗j = 1}n∗
j=1|y) = log

∫
p({y

c j

∗j = 1}n∗
j=1|f∗) p(f∗|y)df∗

= log

∫
p({y

c j

∗j = 1}n∗
j=1|f∗) p(f∗, f|y)df∗ df

= log

∫
p({y

c j

∗j = 1}n∗
j=1|f∗)q(f∗, f|y)

p(f∗, f|y)
q(f∗, f|y)

df∗df.

Applying Jensen’s inequality gives the inequality

log p({y
c j

∗j = 1}n∗
j=1|y)≥

∫
q(f∗, f|y) log p({y

c j

∗j = 1}n∗
j=1|f∗)

p(f∗, f|y)
q(f∗, f|y)

df∗df

=
∫

q(f∗|y) log p({y
c j

∗j = 1}n∗
j=1|f∗)df∗ −KL(q(f∗, f|y)‖p(f∗, f|y)).

Within the first term, the conditional joint predictive probability factorizes across the x∗js. The

second term is the Kullback-Leibler divergence from q(f∗, f|y) to p(f∗, f|y), which can be written as

KL(q(f∗, f|y)‖p(f∗, f|y)) def=

∫
q(f, f∗|y) log

q(f, f∗|y)
p(f, f∗|y)

df∗df

=
∫

q(f|y) p(f∗|f) log
q(f|y) p(f∗|f)
p(f|y) p(f∗|f)

df∗df =
∫

q(f|y) log
q(f|y)
p(f|y)

df, (64)

which is KL(q(f|y)‖p(f|y)). Hence

log p({y
c j

∗j = 1}n∗
j=1|y)≥

n∗

∑
j=1

∫
q(f∗j|y) log p(y

c j

∗j = 1|f∗j)df∗j −KL(q(f|y)‖p(f|y)).

Theorem 6 can now be applied to each summand within the first term. For the second term, the

KL-divergence is also log p(y)− logZB, and logZB is lower bounded by logZh.

Remark 30 Derivation 64 has been shown in (Seeger, 2002, Section 2.2) and (Rasmussen and

Williams, 2006, Section 7.4.3), but there the exact prior has been used instead of the exact posterior.

Our presentation closely follows (Rasmussen and Williams, 2006)’s.

Appendix C. Optimization

We provide details on the optimization with respect to the variational parameters m, V , {bi} and

{Si} in Sections C.1 to C.3. In Section C.4, we give the derivation for the updates to the hyper-

parameters required for model learning in the sparse approximation.

Parameters m and bis are updated together using Newton-Raphson in Section C.2. In regions of

high-curvature, this update can be modified to include include a step-size η, the value of which can

be determined using the method of false position.
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Figure 7: Four possible shapes of a segment of the concave function h within the convex combi-

nation coefficient η ∈ [0,1]. The horizontal axis is along η, with Scc = S at η = 0 and

Scc = Sfx at η = 1. The vertical axis is the variational lower bound h(y;q,b,S). Cases

(b) and (c) can be removed from consideration, since update Scc is only used when h is

higher at S than at Sfx. Case (a) is eliminated by showing that the gradient with respect to

η at η = 0 is non-negative.

For V and the Sis, their fixed point updates given in Section 3 are computed and tested for im-

provement in the variational lower bound.9 When the bound is worse at the fixed point updates, we

search for the optimal convex combination between the previous value and the fixed-point update.

For example, Scc
i = (1−η)Si+ηSfx

i , where Si is the previous value and Sfx
i is the fixed point update.

We optimize η using the method of false position with end-point down-weighting. Sections C.1 and

C.3 give the gradients with respect to η and guarantee the existence of an optimal η.

C.1 Optimization for S along η

When the fixed-point Sfx improves the bound over S, it is accepted as an update. Otherwise, we

use Scc def= (1−η)S+ηSfx, and we search for a η ∈ [0,1] that optimizes the bound using the false

position method. Matrix Scc is guaranteed to be positive definite, since it is a convex combination

of two positive definite matrices. Let W = S−V−1 and W fx = Sfx −V−1. Matrices W and and W fx

are positive semi-definite; see Lemma 28.10 Define the gradient ∆ def= dScc/dη = Sfx −S =W fx −W .

The search gradient along η is

∂h(y;q,b,Scc)

∂η
=

1

2
tr
[{

−V +(Scc)−1 +(Scc)−1 Acc (Scc)−1
}

∆
]

,

where Acc is given by (18) evaluated at Scc (recall that A depends on gc, a function of S).

The optimal value of η is found using the false position method, which requires the maximal

to be bracketed within Scc = S and Scc = Sfx. Figure 7 enumerates the four possible segments of

a one-dimensional concave function. Let η = 0 at the start of the segment and η = 1 at the end.

If update Scc is only used when h(y;q,b,S)> h(y;q,b,Sfx), then segments (b) and (c) need not be

considered further. To show that the segment is always of the type given by Figure 7d, we require

9. These fixed point updates guarantees positive definiteness, a property which is absent in straightforward gradient

ascent. To guarantee positive definiteness, one may suppose a viable alternative is to update the Cholesky factors

or eigenvectors and eigenvalues. Unfortunately, the variational lower bound is not concave with respect to these

factorizations, so they cannot be used straightforwardly.

10. In the beginning, if W is not positive semi-definite, we can re-initialize it to be so, either by using a fixed positive

semi-definite matrix, or by letting W be W fx in the first iteration.
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∂h/∂η to be non-negative at η = 0. We proceed to show this. At η = 0, we have Scc = S and Acc = A

evaluated at S. Furthermore, we have A = SfxV Sfx −Sfx since Sfx satisfies (60). Thus

∂h(y;q,b,Scc)

∂η

∣

∣

∣

∣

η=0

=
1

2
tr
[(

−V +S−1 +S−1
(

SfxV Sfx −Sfx
)

S−1
)

∆
]

=
1

2
tr
[

S−1
(

SfxV Sfx −SV S−Sfx +S
)

S−1∆
]

=
1

2
tr
[

S−1
(

W fxVW fx −WVW
)

S−1∆
]

+
1

2
tr
[

S−1∆S−1∆
]

.

The second term on the right of the equality is non-negative, so its removal gives

∂h(y;q,b,Scc)

∂η

∣

∣

∣

∣

η=0

≥
1

2
tr
[

S−1
(

W fxVW fx −WVW
)

S−1∆
]

=
1

2
tr
[

S−1
(

W fxVW fx −WVW +W fxVW −W fxVW
)

S−1∆
]

=
1

2
tr
[

S−1
(

W fxVW −WVW +W fxVW fx −W fxVW
)

S−1∆
]

=
1

2
tr
[

S−1
(

∆VW +W fxV ∆
)

S−1∆
]

=
1

2
tr
[

S−1∆VWS−1∆
]

+
1

2
tr
[

S−1W fxV ∆S−1∆
]

≥ 0.

C.2 Joint Optimization for m and b

Let K def= (K1|K2| . . . |Kn) be a partition of K, where each Ki is a Cn-by-C matrix. We wish to optimize

the variational lower bound logZh (21) with respect to b by setting m = K(y−b). Call this partic-

ular setting of parameters logZ∗
h . The gradient of logZ∗

h with respect to b including the indirect

contribution from m is

∂ logZ∗
h

∂b
=

∂ logZ∗
h

∣

∣

m constant

∂b
+

dm

db

∂ logZ∗
h

∣

∣

b constant

∂m

=−S−1(b− ḡ)−K
(

−K−1m+y− ḡ
)

=−(K +S−1)(b− ḡ).

Unlike case of per-datum update for bi, we find the fixed-point update setting b to ḡ ineffective.

Therefore, we use the Newton-Raphson update. The required Hessian is

∂2 logZ∗
h

∂b∂bT
=−(K +S−1)

(

I −
∂ḡ

∂bT

)

=−(K +S−1)
(

I +(Ḡ− G̃)(K +S−1)
)

.

The Hessian is negative definite, so logZh is concave in b. The second order update is

bNR = b−
(

I +(Ḡ− G̃)(K +S−1)
)−1

(b− ḡ). (65)

C.2.1 JOINT OPTIMIZATION FOR m AND b IN SPARSE APPROXIMATION

For sparse approximation, the update is similar to Equation 65, the only difference being the re-

placement of K with KT
f K−1Kf:

bNR = b−
(

I +(Ḡ− G̃)
(

KT
f K−1Kf +S−1

))−1
(b− ḡ).
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C.3 Optimization for V along η

Let W be the block diagonal matrix with the ith block given by Wi
def= Si −V−1

i . 0. When the fixed-

point V fx = (K−1 +W )−1 improves the bound over V , it is accepted as an update. Otherwise, we

use V cc def= (1−η)V +ηV fx, and we search for a η ∈ [0,1] that optimizes the bound using the false

position method. Matrix V cc is guaranteed to be positive definite, since it is a convex combination

of two positive definite matrices. Let ∆ def= dV cc/dη =V fx −V . Below, we shall make explicit that

the lower bound logZh is parameterized by the covariance V of the variational posterior. The search

gradient is

∂ logZh(V cc)

∂η
=

1

2
tr
(

(V cc)−1∆
)

−
1

2
tr
(

K−1∆
)

+
1

2

n

∑
i=1

tr
(

(V cc
i )−1∆i

)

−
1

2

n

∑
i=1

tr(Si∆i) ,

where V cc
i and ∆i are the ith blocks along the diagonal of V cc and ∆ respectively. The update V cc is

only used when logZh(V )> logZh(V cc). By arguments similar to those for the update Scc discussed

in Appendix C.1, we can guarantee that there is a maximum between V and V fx by showing that

∂Zh/∂η is non-negative at η = 0:

∂ logZh(V cc)

∂η

∣

∣

∣

∣

η=0

=
1

2
tr
(

V−1∆
)

−
1

2
tr
(

K−1∆
)

−
1

2

n

∑
i=1

tr(Wi∆i)

=
1

2
tr
(

V−1∆
)

−
1

2
tr
(

K−1∆
)

−
1

2
tr(W∆) (since W is block diagonal)

=
1

2
tr
(

V−1∆
)

−
1

2
tr
(

K−1∆
)

−
1

2
tr
((

(V fx)−1 −K−1
)

∆
)

(since V fx = (K−1 +W )−1)

=
1

2
tr
((

V−1 − (V fx)−1
)

∆
)

=
1

2
tr
(

(V fx)−1(V fx −V )V−1∆
)

=
1

2
tr
(

(V fx)−1∆V−1∆
)

≥ 0.

C.3.1 OPTIMIZATION FOR V ALONG η IN SPARSE APPROXIMATION

We use the same strategy in the sparse approximation. Let the covariance of the inducing variables

be V cc def= (1−η)V +ηV fx. The covariance of the latent variables is V cc
f = (1−η)Vf +ηV fx

f . Let

∆ def= dV cc/dη =V fx −V , and let ∆f
def= dV cc

f /dη =V fx
f −Vf = KT

f K−1∆K−1Kf. The gradient along

η ∈ [0,1] for the false position update is

∂ log Z̃h(V cc)

∂η
=

1

2
tr((V cc)−1∆)−

1

2
tr(K−1∆)+

1

2

n

∑
i=1

tr((V cc
fi )

−1∆fi)−
1

2

n

∑
i=1

tr(Si∆fi).

The proof that ∂ log Z̃h(V cc)/∂η is non-negative at η = 0 follows the same reasoning as that for the

non-sparse approximation.
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C.4 Hyper-parameter Estimation in Sparse Approximation

In this section, we give the gradients of the optimized variational lower bound Z̃∗
h for the sparse

case. First, we introduce

T def= K−1 −K−1V K−1, Γj
def= K

(

∂K−1Kf

∂θj

)

=
∂Kf

∂θj
−

∂K

∂θj
K−1Kf. (66)

Then

∂mf

∂θj
= ΓT

j K−1m = ΓT
j α, (67)

∂Vf

∂θj
=

∂Kff

∂θj
−KT

f K−1 ∂K

∂θj
K−1Kf −ΓT

j T Kf −KT
f T Γj. (68)

The gradient is

dlog Z̃∗
h

dθj
= −

1

2
tr

(

K−1 ∂K

∂θj

)

+
1

2
tr

(

K−1V K−1 ∂K

∂θj

)

+
1

2
mTK−1 ∂K

∂θj
K−1m

+
∂mT

f

∂θj
y+

1

2

n

∑
i=1

tr

(

(Vfi)
−1 ∂Vfi

∂θj

)

−
1

2

n

∑
i=1

tr

(

Si
∂Vfi

∂θj

)

−
n

∑
i=1

C

∑
c=1

ḡc
i

∂mc
fi

∂θj

=
1

2
tr

(

(

ααT −T
) ∂K

∂θj

)

+
∂mT

f

∂θj
(y− ḡ)−

1

2
tr

(

Wf
∂Vf

∂θj

)

,

where α def= K−1m, Wfi
def= Si −V−1

fi and Wf is a block diagonal matrix of the Wfis. Let us investigate

the second term in the last expression above. Using (67), the definition of Γj in (66) and the identity

m = Kf (y− ḡ) at optimality (see Section 4.2), we have

∂mT
f

∂θj
(y− ḡ) =αTΓj(y− ḡ) =αT ∂Kf

∂θj
(y− ḡ)−αT ∂K

∂θj
K−1Kf(y− ḡ)

=αT ∂Kf

∂θj
(y− ḡ)−αT ∂K

∂θj
α.

We now turn to the trace expression in the gradient of log Z̃∗
h . Using (68), the definition of Γj

in (66) and the invariance of trace under cyclic permutations, we obtain

tr

(

Wf
∂Vf

∂θj

)

= tr

(

Wf
∂Kff

∂θj

)

− tr

(

W
∂K

∂θj

)

−2tr

(

WfK
T
f T

∂Kf

∂θj

)

+2tr

(

WKT
∂K

∂θj

)

,

where we have used W def= K−1KfWfK
T
f K−1. Further substituting the definition for T from (66) into

the last term and simplifying using W =V−1 −K−1 at optimality (see Equation 33) gives

tr

(

Wf
∂Vf

∂θj

)

= tr

(

Wf
∂Kff

∂θj

)

+ tr

(

(W −2T )
∂K

∂θj

)

−2tr

(

WfK
T
f T

∂Kf

∂θj

)

.

Putting the simplifications back into the gradient of log Z̃∗
h gives

dlog Z̃∗
h

dθj
= −

1

2
tr

(

(

ααT −T +W
) ∂K

∂θj

)

+ tr

(

(

(y− ḡ)αT +WfK
T
f T
) ∂Kf

∂θj

)

−
1

2
tr

(

Wf
∂Kff

∂θj

)

.
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Appendix D. Selection of Inducing Sites

This appendix details the derivation of criterion d1 used for selecting inducing sites actively.

D.1 A Lower Bound on the Increase to the Marginal Likelihood Bound

Our objective is to add an inducing site x̃∗ to the current inducing set X̃ so as to maximize the lower

bound (30) on the increase in log Z̃h. The random variables at x̃∗ and X̃ are denoted by z∗ and z. Let

z∗
def= (zT,z∗)T and X̃∗

def= X̃ ∪{x̃∗}. The prior on z∗ and f is

p

((

z∗
f

))

def= N

(

0,

(

K∗ Kf∗
KT

f∗ Kff

))

, where K∗
def=

(

K k∗
kT
∗ k∗∗

)

Kf∗
def=

(

Kf

kT
f∗

)

.

Let

{m,V,{bi},{Si}}= arg max
m,V,{bi},{Si}

log Z̃h(m,V,{bi},{Si}; X̃),

where m and V are the mean and covariance of z in the approximate posterior using inducing set

X̃ . Let log Z̃∗
h(X̃) be the optimal value of the objective function in the equation above. Then a lower

bound on the increase is

d1(x̃∗|X̃) def= max
m∗,v∗∗,v∗

logZh(m∗,V∗,{bi},{Si}; X̃∗)− logZ∗
h(X̃), (69)

where the mean m∗ and covariance V∗ of the approximate posterior on z∗ are constrained:

m∗
def=

(

m

m∗

)

, V∗
def=

(

V v∗
vT
∗ v∗∗

)

. (70)

Denote the posterior distribution of the latent function values f under the sparse approxima-

tion by q∗(f|y) def= q(f|y, X̃∗). This is the approximate posterior using the inducing sites X̃∗, while

q(f|y) def= q(f|y, X̃) is the posterior using X̃ . The choice of the factored form of the approximate

posterior in Equation 29 means that

q(f|y) =
∫

p(f|z)q(z|y)dz, q∗(f|y) =
∫

p(f|z∗)q(z∗|y)dz∗.

Expressions for the mean mf and covariance Vf of f under q(f|y) are given in Equation 31. The mean

mf∗ and covariance Vf∗ of f under q∗(f|y) are

mf∗ = KT
f∗K−1

∗ m∗ Vf∗ = Kff −KT
f∗K−1

∗ Kf∗+KT
f∗K−1

∗ V∗K−1
∗ Kf∗

= mf +µκ; =Vf − (κ−χ)κκT +ψκT +κψT, (71)

where

κ def= k∗∗ −kT
∗K−1k∗, ν def= v∗∗ −vT

∗V−1v∗, χ def= ν+νTV−1ν, µ def= m∗ −kT
∗K−1m,

κ def= (kf∗ −KT
f K−1k∗)/κ, ν def= v∗ −V K−1k∗, ψ def= KT

f K−1ν.

The two expressions in (71) relate the parameters for q∗(f|y) to those for q(f|y). The deriva-

tion uses the Banachiewicz inversion formula (Puntanen and Styan, 2005) on (K∗)−1. The term
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(κ−χ) in the expression for Vf∗ is non-negative because K∗ -V∗ at the stationary, which gives

(κ−χ) =
(

−K−1k∗ 1
)

(K∗ −V∗)
(

−K−1k∗ 1
)T ≥ 0. The posterior covariance for ith data point

under q∗ is the ith C-by-C diagonal block matrix of Vf∗:

Vf∗i =Vfi − (κ−χ)κiκ
T
i +ψiκ

T
i +κiψ

T
i , (72)

where Vfi is the ith C-by-C diagonal block matrix of of Vf, and κi (resp. ψi) is the ith C-vector of κ

(resp. ψ). Using Lemma 23, we obtain

|Vf∗i|= ωi|Vfi|, where ωi
def=
(

1+κT
i V−1

fi ψi

)2 −κT
i V−1

fi κi

(

κ−χ+ψT
i V−1

fi ψi

)

. (73)

Since |Vf∗i|> 0 and |Vfi|> 0, so ωi > 0. We are now ready to express d1 defined by (69) in terms of

the parameters, separating log Z̃h into its summands expressed in Equation 30:

d1(x̃∗|X̃) = max
m∗,v∗∗,v∗

(

dKL(m∗,v∗∗,v∗, x̃∗|X̃)+
n

∑
i=1

di
h(m∗,v∗∗,v∗, x̃∗|X̃)

)

,

where

dKL(m∗,v∗∗,v∗, x̃∗|X̃) def=−KL(q(z∗ | y)‖ p(z∗))+KL(q(z | y)‖ p(z))

=
1

2
+

1

2
log

ν

κ
−

χ

2κ
−

µ2

2κ
;

di
h(m∗,v∗∗,v∗, x̃∗|X̃) def= h(yi;q∗i,bi,Si)−h(yi;qi,bi,Si)

=
1

2
logωi +

κ−χ

2
κT

i Siκi −κT
i Siψi +µκT

i yi − log
C

∑
c=1

ḡc
i eµκ

T
i ec

.

Lemma 18 is used to obtain the second expression for dKL, and (71) to (73) are used to obtain the

second expression for di
h. The q∗i in the definition of di

h refers to the the marginal for fi under

q∗(f|y), while the ḡc
i s in the term for di

h is evaluated under q(f|y).

D.2 Optimizing the Lower Bound on the Increase

Let

d1(m∗,v∗∗,v∗, x̃∗|X̃) def= dKL(m∗,v∗∗,v∗, x̃∗|X̃)+
n

∑
i=1

di
h(m∗,v∗∗,v∗, x̃∗|X̃)

be the objective function within d1(x̃∗|X̃). Within this section, d1 shall refer to this objective func-

tion instead of its maximum. The contributions from m∗ and (v∗,v∗∗) are decoupled in this objective,

so the search for the optimal m∗ and (v∗,v∗∗) can be perform separately.

Instead of using m∗, v∗∗ and v∗ as the variational parameters, we can treat µ, ν and ν as the

variational parameters, and then define m∗∗, v∗∗ and v∗ as functions of them:

m∗
def= µ+kT

∗K−1m, v∗∗
def= ν+vT

∗V−1v∗, v∗
def= ν+V K−1k∗.

This is valid and does not change the search space of the original variational parameters. During the

optimization, the positive definiteness of V∗ (70) can be ensured by constraining the Schur comple-

ment ν to be positive (see Horn and Johnson 1985, Theorem 7.7.6). Under this re-parametrization,

d1 is concave in µ and ν but not necessarily concave in ν because of the positive quadratic term

within ωi (73).

Below, we give the gradient updates for µ and ν.
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D.2.1 NEWTON-RAPHSON UPDATES FOR µ

Let gc
∗i

def= ḡc
i expµκT

i ec, ḡc
∗i

def= gc
∗i/∑C

c′=1 gc′
∗i, ḡ∗i

def=
(

ḡ1
∗i, . . . , ḡ

C
∗i

)T
, ḡ∗ be the stacking of ḡ∗1, . . . , ḡ∗n,

Ḡ∗ be the diagonal matrix with ḡ∗ down its diagonal, and G̃∗ be a nC-by-nC block diagonal matrix

where the ith block is ḡ∗iḡ
T
∗i. The Newton-Raphson update for µ is obtained from the first and the

second derivatives ∂d1/∂µ=−µ/κ+κTy−κTḡ∗ and ∂2d1/∂µ2 =−1/κ−κT(Ḡ∗ − G̃∗)κ.

D.2.2 “BEYOND” NEWTON RAPHSON UPDATES FOR v∗∗

We give an update for ν that converges faster than the Newton-Raphson update for logν when the

optimal value is small, using a non-quadratic local approximation (Minka, 2002):

d̃1(ν) = constant+
1

2
logν+

n

2
log(ν+a)−

b

2
ν,

where a and b are parameters in the approximation. Within the approximation, ν is constrained to

be positive due to the second term. By equating the first two derivatives of d1(ν) to those of d̃1(ν)
at a given ν, we obtain

a =
√

n

∑
n
i=1 τ

2
i

−ν, b =
√

n∑n
i=1 τ

2
i +

1

κ
+κTSκ−

n

∑
i=1

τi,

where the positive branch of the square-root for a is used so that a+ν remains positive. Fixing a

and b, the update for ν is obtained by equating the gradient of d̃1(ν) at the updated point, say νbNR,

to zero. This involve a quadratic equation, and we use its positive solution

νbNR =
−(ab−n−1)+

√

(ab−n−1)2 +4ab

2b
. (74)

We prove that this update is guaranteed to be positive in Theorem 32 below.

Lemma 31 τi
def= κT

i V−1
fi κi/ωi < 1/ν.

Proof Define

Ṽ∗
def=

(

V v∗
vT
∗ vTV−1v

)

,

which is positive semi-definite (Horn and Johnson, 1985, Theorem 7.7.6). Then Ṽf∗ below is positive

definite since the covariance of the joint prior p(z∗, f) is positive definite.

Ṽf∗
def= Kff −KT

f∗K−1
∗ Kf∗+KT

f∗K−1
∗ Ṽ∗K−1

∗ Kf∗ =Vf − (κ− (χ−ν))κκT +ψκT +κψT.

Similarly, the ith diagonal C-by-C sub-matrix of Ṽf∗ given by

Ṽf∗i =Vfi − (κ− (χ−ν))κiκ
T
i +ψiκ

T
i +κiψ

T
i

is positive definite. Using Lemma 23, we obtain |Ṽf∗i|= ω̃i|Vfi|, where

ω̃i
def=
(

1+κT
i V−1

fi ψi

)2 −κT
i V−1

fi κi

(

κ− (χ−ν)+ψT
i V−1

fi ψi

)

is positive because both |Ṽf∗i| and |Vfi| are positive. But ω̃i = ωi −νκT
i V−1

fi κi. Thus

ωi = ω̃i +νκT
i V−1

fi κi > νκT
i V−1

fi κi.

So τi < 1/ν.
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Theorem 32 Update νbNR given in Equation 74 is positive.

Proof This update is guaranteed to be positive when a and b are both positive. Parameter b is pos-

itive because 1/κ+κTSκ is positive and ∑n
i=1 τi ≤ (n∑n

i=1 τ
2
i )

1/2 by applying the Cauchy-Schwarz

inequality. Parameter a is positive because τi < 1/ν from Lemma 31.

Appendix E. Implementation Considerations

This appendix considers the details for an implementation of the variational bound optimization

presented in this paper.

E.1 Matrix Inversion in Update for b in Sparse Approximation

For the sparse approximation, the Newton-Raphson update for b given in Appendix C.2.1 requires

inverting X def= I +(Ḡ− G̃)
(

KT
f K−1Kf +S−1

)

of order Cn-by-Cn. To avoid O(C3n3) computation,

we apply the Woodbury’s inversion lemma thrice. Let M def= (S+ Ḡ− G̃)−1, and L̃K
def= KT

f L−T
K , where

LK is the lower Cholesky factor of K. Then

X−1 = I − (Ḡ− G̃)
(

(

L̃KL̃T
K +S−1

)−1
+(Ḡ− G̃)

)−1

= I − (Ḡ− G̃)
(

M−1 −SL̃K

(

I + L̃T
KSL̃K

)−1
L̃T

KS
)−1

= I − (Ḡ− G̃)
(

M+MSL̃K

(

I + L̃T
K(S−SMS)L̃K

)−1
L̃T

KSM
)

= SM− (S−SMS)L̃K

(

I + L̃T
K(S−SMS)L̃K

)−1
L̃T

KSM,

where we have substituted (Ḡ− G̃) = M−1 −S to obtain the last expression.

E.2 Better Conditioned Updates for V

In this section, we give better conditioned updates for the optimization of V .

E.2.1 NON-SPARSE CASE

Equation 28 in Section 3.4 gives the fixed-point update V fx = (K−1 +W )−1 for the variational pa-

rameter V , where W is rank deficient (see Lemma 28). We factorize W = LW LT
W , and introduce

B def= LT
W KLW + I and T def= LW B−1LT

W . Then the Woodbury’s inversion lemma gives V fx = K −KT K.

The optimal update is given by the best convex combination of V and V fx. Let T old be such that

V = K −KT oldK. (75)

The best convex combination is the one optimized over η ∈ [0,1] in V cc = K −KT ccK, where

T cc def= (1−η)T old +ηT . The update for V cc implies that T cc is the T old for the next iteration,

so (75) is always possible. Moreover, with ∆ def= dV cc/dη, we also have ∆ = K(T old −T )K and

K−1∆ = (T old −T )K.
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E.2.2 SPARSE CASE

Equation 33 in Section 4.2 gives the fixed-point update in the sparse case:

V fx =
(

K−1 +K−1KfWfK
T
f K−1

)−1
.

If we were to proceed as for the non-sparse case using the Woodbury’s inversion lemma, then the in-

version of a Cn-by-Cn matrix would be required. However, this is to be avoided in the sparse approx-

imation, which aims to reduce time complexity. Instead, we compute V fx = LK(I + L̃T
KWfL̃K)−1LT

K ,

where LK is the lower Cholesky factor of K, and L̃K
def= KT

f L−T
K . This is more efficient and yet does

not involve any inversion of K.

The computation of Vf at this fixed point requires T def= K−1 −K−1V fxK−1. This can be done

with the above formula for V fx:

T = K−1 −L−T
K

(

I + L̃T
KWfL̃K

)−1
L−1

K = L−T
K

(

I −
(

I + L̃T
KWfL̃K

)−1
)

L−1
K .

Hence

V fx
f = Kff −KT

f T Kf = Kff − L̃K

(

I −
(

I + L̃T
KWfL̃K

)−1
)

L̃T
K .

E.3 Initialization

Our variational lower bound (21) on the marginal likelihood is concave with respect to all the varia-

tional parameters, so the initialization of parameters does not affect the converged answer in theory.

However, in practice, initialization is still important for two reasons. First, it can ensure that the

matrices are better conditioned. Second, it can ensure that we start near to the converged answer, so

that convergence is sooner.

For initialization, there are two cases to be considered. The easier case is during model learning

when we can use the optimized variational parameters from the previous model to initialize the

variational parameters of the current model. We shall omit details for this case. The more difficult

case is when there is no previous model, usually when no model learning is involved or at the onset

of model learning. In this section, we suggest a procedure for initialization in this case. The key idea

behind our procedure is to locate the variational mean at the data and to use the same covariance at

every input xi.

E.3.1 COVARIANCES

From Equation 20 for the analysis of the proof of Theorem 6, a parametrization of Wi that satisfies

the two mentioned properties is Wi
def= M−M11TM/1TM1, where M is a C-by-C positive definite

matrix. Although we have noted there that using a diagonal M is suboptimal, there is much appeal

in such a setting for initialization because of the match with the likelihood terms. Hence we shall

initialize with Wi
def= γ

(

I/C−1T1/C2
)

, for some γ > 0. The initial covariance V of the variational

posterior can be computed using Woodbury’s inversion lemma on the fixed point equation (K−1 +
W )−1, where W is the block diagonal matrix consisting or the Wis.

E.3.2 MEANS

Our initialization for the mean locate it at the data. To this end, let us recall a few invariances at the

stationary point of the variational lower bound (21) on the marginal likelihood. For the ith datum,
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ai and Wi are the parameters for the variational posterior r(fi|yi) defined in Lemma 2. For the case

of non-sparse approximation, we have the invariances

y−b =W (a−m), (From definition in Lemma 5)

m = K(y−b), (Section 3.3)

V = (K−1 +W )−1, (Section 3.4)

where y (resp. b, a, m) is the stacking of the yis (resp. bis, ais, mis) for each datum. Rearranging

for m gives

m = (I +KW )−1KWa = (K−1 +W )−1Wa =VWa. (76)

We initialize m through an appropriate value for a. Since ai is the mean of r(fi|yi), we choose to

set ai = γ(yi +(yi −1)/(C−1)), for some fixed parameter γ. For example, if xi is in the first class,

then ai = (γ,−γ/(C−1), . . . ,−γ/(C−1))T. This locates the mean of r(fi|yi) to be positive for the

class given by the data and uniformly negative otherwise. Let α def= K−1m. The initialization (76)

satisfies the sum-to-zero property:

1Tα= 1TK−1VWa = 1T(I +WK)−1Wa = 1TW (I +KW )−1a = 0,

where the third equality applies Searle’s Identity, and the last equality is because 1 is in the null-

space of W . With γ = 1, the setting for ai is the minimizer of the loss function in a multi-class SVM

under the sum-to-zero constraint (Lee et al., 2004, Lemma 1).

Similarly, for sparse approximation, we have

y−b =Wf(a−mf), (From definition in Lemma 5)

mf = KT
f K−1m, (Section 4, Equation 31)

m = Kf(y−b), (Section 4.2)

V = (K−1 +K−1KfWfK
T
f K−1)−1. (Section 4.2)

Rearranging for m gives

m+KfWfK
T
f K−1m = KfWfa ⇐⇒ KV−1m = KfWfa ⇐⇒ m =V K−1KfWfa.

Initialization of a is done as in the non-sparse case.

Appendix F. Importance Sampling

In this section, we describe how various quantities of interest can be computed using importance

sampling. Let p(f|y) be the exact posterior of the latent function values at the observed data. This is

obtained from Bayes’ rule p(f|y) = p(y|f)p(f)/p(y), where p(y) is the marginal likelihood, which

is intractable to compute exactly. Let ps(f) be a proposal distribution. Our choice of ps(f) is the

multivariate-t distribution (Kotz and Nadarajah, 2004) with four degrees of freedom, centered at

the that mean of the optimized variational approximation to p(f|y) and with covariance twice the

covariance of the prior p(f); that is

ps(f) =
Γ((ν+ p)/2)

((πν)p/2Γ(ν/2)|K|1/2

[

1+
1

ν
(f−m∗)TK−1(f−m∗)

](ν+p)/2

,
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where ν = 4, p = nC is the dimension of f, K is the prior covariance of f, and m∗ is the mean of the

optimized variational posterior. This choice of proposal ensures that p(f)≤ c ps(f) for all f for some

finite constant c > 0, which is a desideratum for importance samplers. It also locates the proposal

at the estimated mean of the posterior.

Let f(s) be a sample from the proposal, indexed by s over ns samples. Its unnormalized weight

w(s) is

w(s) def=
p(y)p(f(s)|y)

ps(f(s))
=

p(y|f(s))p(f(s))

ps(f(s))
,

which can be computed exactly for the multinomial logistic likelihood. A Monte Carlo estimate of

p(y) is p̂(y) def= ∑s w(s)/ns, which is the sample mean of the w(s)s, because

p(y) def=

∫
p(y|f)p(f)df =

∫
p(y|f)p(f)

ps(f)
ps(f)df ≈

1

ns
∑

s

w(s).

The strong law of large numbers says that p̂(y) converges to p(y) almost surely as ns approaches

infinity (Geweke, 2005, Theorem 4.2.2). The rate of convergence is given by the Lindeberg-Lévy

central limit theorem (Geweke, 2005, Theorem 4.2.2)

√
ns (p(y)− p̂(y))

d−→ N (0,σ2),

where σ2 is the true variance of unnormalized weights. This variance exists for our choice of

the proposal distribution because p(f)≤ c ps(f) and the likelihood is bounded. This variance can

be estimated from the samples w(s)s. We use this convergence in distribution to compute a high

probability upper bound to p(y) based on the samples. Since, the weights and p(y) are positive, one

might be concerned that skewness has not been factored into the approximation. Then, one might

consider using the χ2 approximation (Hall, 1983). However, our calculations have shown this to

have negligible effect on the upper bound estimate because we have used ns = 100,000 samples.

F.1 Prediction

The normalized weight w̃(s) of f(s) is estimated with

w̃(s) def=
1

ns

p(f(s)|y)
ps(f(s))

=
1

ns

w(s)

p(y)
≈

w(s)

∑s′ w
(s′)

.

For prediction at x∗, the exact joint posterior of (f, f∗) is p(f, f∗|y) = p(f|y)p(f∗|f). For the

proposal distribution, we use ps(f, f∗) = ps(f)p(f∗|f), and a draw from the proposal follows this

generative model. The normalized weight of sample (f, f∗)(s) def= (f(s), f
(s)
∗ ) is

w̃
(s)
∗

def=
1

ns

p(f(s)|y)p(f
(s)
∗ |f(s))

ps(f(s))p(f
(s)
∗ |f(s))

= w̃(s).

The predictive probability is

p(y∗|y) =
∫

p(y∗|f∗) p(f, f∗|y)dfdf∗ =
∫

p(y∗|f∗)
p(f, f∗|y)
ps(f, f∗)

ps(f, f∗)dfdf∗ ≈ ∑
s

w̃
(s)
∗ p(y∗|f

(s)
∗ ).

For the multinomial logistic likelihood, p(yi|fi) and p(y∗|f∗) can be computed readily. For the

multinomial probit likelihood, we use the sampling approach (Girolami and Rogers, 2006) with

twenty samples, which is sufficient when ns is large.
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Abstract

Contemporary global optimization algorithms are based on local measures of utility, rather than
a probability measure over location and value of the optimum. They thus attempt to collect low
function values, not to learn about the optimum. The reason for the absence of probabilistic global
optimizers is that the corresponding inference problem is intractable in several ways. This paper
develops desiderata for probabilistic optimization algorithms, then presents a concrete algorithm
which addresses each of the computational intractabilities with a sequence of approximations and
explicitly addresses the decision problem of maximizing information gain from each evaluation.

Keywords: optimization, probability, information, Gaussian processes, expectation propagation

1. Introduction

Optimization problems are ubiquitous in science, engineering, and economics. Over time the re-

quirements of many separate fields have led to a heterogeneous set of settings and algorithms.

Speaking very broadly, however, there are two distinct regimes for optimization. In the first one,

relatively cheap function evaluations take place on a numerical machine and the goal is to find a

“good” region of low or high function values. Noise tends to be small or negligible, and derivative

observations are often available at low additional cost; but the parameter space may be very high-

dimensional. This is the regime of numerical, local or convex optimization, often encountered as

a sub-problem of machine learning algorithms. Popular algorithms for such settings include quasi-

Newton methods (Broyden, 1965; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), the conjugate

gradient method (Hestenes and Stiefel, 1952), and stochastic optimization and evolutionary search

methods (for example Hansen and Ostermeier, 2001), to name only a few. Since these algorithms

perform local search, constraints on the solution space are often a crucial part of the problem. Thor-

ough introductions can be found in the textbooks by Nocedal and Wright (1999) and Boyd and

Vandenberghe (2004). This paper will use algorithms from this domain, but it is not its primary

subject.

In the second milieu, which this paper addresses, the function itself is not known and needs to

be learned during the search for its global minimum within some measurable (usually: bounded)

domain. Here, the parameter space is often relatively low-dimensional, but evaluating the func-

tion involves a monetarily or morally expensive physical process—building a prototype, drilling a

borehole, killing a rodent, treating a patient. Noise is often a nontrivial issue, and derivative obser-
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vations, while potentially available, cannot be expected in general. Algorithms for such applications

also need to be tractable, but their most important desideratum is efficient use of data, rather than

raw computational cost. This domain is often called global optimization, but is also closely associ-

ated with the field of experimental design and related to the concept of exploration in reinforcement

learning. The learned model of the function is also known as a response surface in some com-

munities. The two contributions of this paper are a probabilistic view on this field, and a concrete

algorithm for such problems.

1.1 Problem Definition

We define the problem of probabilistic global optimization: Let I ⊂ RD be some bounded domain

of the real vector space. There is a function f : I ! R, and our knowledge about f is described by

a probability measure p( f ) over the space of functions I ! R. This induces a measure

pmin(x)≡ p[x = arg min f (x)] =
∫

f :I!R

p( f )∏̃
x∈I

x̃ %=x

θ[ f (x̃)− f (x)]d f , (1)

where θ is Heaviside’s step function. The exact meaning of the “infinite product” over the entire

domain I in this equation should be intuitively clear, but is defined properly in the Appendix. Note

that the integral is over the infinite-dimensional space of functions. We assume we can evaluate

the function1 at any point x ∈ I within some bounded domain I, obtaining function values y(x)
corrupted by noise, as described by a likelihood p(y | f (x)). Finally, let L(x∗,xmin) be a loss function

describing the cost of naming x∗ as the result of optimization if the true minimum is at xmin. This

loss function induces a loss functional L(pmin) assigning utility to the uncertain knowledge about

xmin, as

L(pmin) =
∫

I
[min

x∗
L(x∗,xmin)]pmin(xmin)dxmin.

The goal of global optimization is to decrease the expected loss after H function evaluations at

locations x = {x1, . . . ,xH}⊂ I. The expected loss is

〈L〉H =
∫

p(y |x)L(pmin(x |y,x))dy =
∫∫

p(y | f (x))p( f (x) |x)L(pmin(x |y,x))dy d f , (2)

where L(pmin(x |y,x)) should be understood as the cost assigned to the measure pmin(x) induced by

the posterior belief over f after observations y = {y1, . . . ,yH}⊂ R at the locations x.

The remainder of this paper will replace the symbolic objects in this general definition with

concrete measures and models to construct an algorithm we call Entropy Search. But it is useful to

pause at this point to contrast this definition with other concepts of optimization.

1.1.1 PROBABILISTIC OPTIMIZATION

The distinctive aspect of our definition of “optimization” is Equation (1), an explicit role for the

function’s extremum. Previous work did not consider the extremum so directly. In fact, many

frameworks do not even use a measure over the function itself. An example of optimizers that only

1. We may further consider observations of linear operations on f . This includes derivative and integral observations of

any order, if they exist. Section 2.8.1 addresses this point; it is unproblematic under our chosen prior, but clutters the

notation, and is thus left out elsewhere in the paper.
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implicitly encode assumptions about the function are genetic algorithms (Schmitt, 2004) and evolu-

tionary search (Hansen and Ostermeier, 2001). If such formulations feature the global minimum xmin

at all, then only in statements about the limit behavior of the algorithm after many evaluations. Not

explicitly writing out the prior over the function space can have advantages: Probabilistic analyses

tend to involve intractable integrals; a less explicit formulation thus allows to construct algorithms

with interesting properties that would be challenging to derive from a probabilistic viewpoint. But

non-probabilistic algorithms cannot make explicit statements about the location of the minimum.

At best, they may be able to provide bounds.

Fundamentally, reasoning about optimization of functions on continuous domains after finitely

many evaluations, like any other inference task on spaces without natural measures, is impossible

without prior assumptions. For intuition, consider the following thought experiment: Let (x0,y0)
be a finite, possibly empty, set of previously collected data. For simplicity, and without loss of

generality, assume there was no measurement noise, so the true function actually passes through

each data point. Say we want to suggest that the minimum of f may be at x∗ ∈ I. To make this

argument, we propose a number of functions that pass through (x0,y0) and are minimized at x∗.

We may even suggest an uncountably infinite set of such functions. Whatever our proposal, a critic

can always suggest another uncountable set of functions that also pass through the data, and are

not minimized at x∗. To argue with this person, we need to reason about the relative size of our set

versus their set. Assigning size to infinite sets amounts to the aforementioned normalized measure

over admissible functions p( f ), and the consistent way to reason with such measures is probability

theory (Kolmogorov, 1933; Cox, 1946). Of course, this amounts to imposing assumptions on f , but

this is a fundamental epistemological limitation of inference, not a special aspect of optimization.

1.1.2 RELATIONSHIP TO THE BANDIT SETTING

There is a considerable amount of prior work on continuous bandit problems, also sometimes called

“global optimization” (for example Kleinberg, 2005; Grünewälder et al., 2010; Srinivas et al., 2010).

The bandit concept differs from the setting defined above, and bandit regret bounds do not apply

here: Bandit algorithms seek to minimize regret, the sum over function values at evaluation points,

while probabilistic optimizers seek to infer the minimum, no matter what the function values at

evaluation points. An optimizer gets to evaluate H times, then has to make one single decision

regarding L(pmin). Bandit players have to make H evaluations, such that the evaluations produce

low values. This forces bandits to focus their evaluation policy on function value, rather than the

loss at the horizon (see also Section 3.1). In probabilistic optimization, the only quantity that counts

is the quality of the belief on pmin under L , after H evaluations, not the sum of the function values

returned during those H steps.

1.1.3 RELATIONSHIP TO HEURISTIC GAUSSIAN PROCESS OPTIMIZATION AND RESPONSE

SURFACE OPTIMIZATION

There are also a number of works employing Gaussian process measures to construct heuristics

for search, also known as “Gaussian process global optimization” (Jones et al., 1998; Lizotte, 2008;

Osborne et al., 2009). As in our definition, these methods explicitly infer the function from observa-

tions, constructing a Gaussian process posterior. But they then evaluate at the location maximizing

a heuristic u[p( f (x))] that turns the marginal belief over f (x) at x, which is a univariate Gaussian

p( f (x)) = N [ f (x);µ(x),σ2(x)], into an ad hoc utility for evaluation, designed to have high value at

1811



HENNIG AND SCHULER

locations close to the function’s minimum. Two popular heuristics are the probability of improve-

ment (Lizotte, 2008)

uPI(x) = p[ f (x)< η] =
∫ η

−∞
N ( f (x);µ(x),σ(x)2)d f (x) = Φ

(

η−µ(x)

σ(x)

)

,

and expected improvement (Jones et al., 1998)

uEI(x) = E[min{0,(η− f (x))}] = (η−µ)Φ

(

η−µ(x)

σ(x)

)

+σφ

(

η−µ(x)

σ(x)

)

,

where Φ(z) = 1/2[1+ erf(z/
√

2)] is the standard Gaussian cumulative density function, φ(x) =
N (x;0,1) is the standard Gaussian probability density function, and η is a current “best guess” for

a low function value, for example the lowest evaluation so far.

These two heuristics have different units of measure: probability of improvement is a probabil-

ity, expected improvement has the units of f . Both utilities differ markedly from Equation (1), pmin,

which is a probability measure and as such a global quantity. See Figure 2 for a comparison of the

three concepts on an example. The advantage of the heuristic approach is that it is computationally

lightweight, because the utilities have analytic form. But local measures cannot capture general

decision problems of the type described above. For example, these algorithms do not capture the

effect of evaluations on knowledge: A small region of high density pmin(x) may be less interesting

to explore than a broad region of lower density, because the expected change in knowledge from

an evaluation in the broader region may be much larger, and may thus have much stronger effect

on the loss. If the goal is to infer the location of the minimum (more generally: minimize loss at

the horizon), the optimal strategy is to evaluate where we expect to learn most about the minimum

(reduce loss toward the horizon), rather then where we think the minimum is (recall Section 1.1.2).

The former is a nonlocal problem, because evaluations affect the belief, in general, everywhere. The

latter is a local problem.

2. Entropy Search

The probable reason for the absence of global optimization algorithms from the literature is a num-

ber of intractabilities in any concrete realisation of the setting of Section 1.1. This section makes

some choices and constructs a series of approximations, to arrive at a tangible algorithm, which we

call Entropy Search. The derivations evolve along the following path.

choosing p( f ) We commit to a Gaussian process prior on f (Section 2.1). Limitations and impli-

cations of this choice are outlined, and possible extensions suggested, in Sections 2.8.1 and

2.8.3.

discretizing pmin We discretize the problem of calculating pmin, to a finite set of representer points

chosen from a non-uniform measure, which deals gracefully with the curse of dimensionality.

Artifacts created by this discretization are studied in the tractable one-dimensional setting

(Section 2.2).

approximating pmin We construct an efficient approximation to pmin, which is required because

Equation (1), even for finite-dimensional Gaussian measures, is not analytically tractable,

(Section 2.3). We compare the approximation to the (asymptotically exact, but more expen-

sive) Monte Carlo solution.
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Figure 1: A Gaussian process measure (rational quadratic kernel), conditioned on three previous

observations (black crosses). Mean function in solid red, marginal standard deviation at

each location (two standard deviations) as light red tube. Five sampled functions from

the current belief as dashed red lines. Arbitrary ordinate scale, zero in gray.

predicting change to pmin The Gaussian process measure affords a straightforward but rarely used

analytic probabilistic formulation for the change of p( f ) as a function of the next evaluation

point (Section 2.4).

choosing loss function We commit to relative entropy from a uniform distribution as the loss func-

tion, as this can be interpreted as a utility on gained information about the location of the

minimum (Section 2.5).

predicting expected information gain From the predicted change, we construct a first-order ex-

pansion on 〈L〉 from future evaluations and, again, compare to the asymptotically exact Monte

Carlo answer (Section 2.6).

choosing greedily Faced with the exponential cost of the exact dynamic problem to the horizon H,

we accept a greedy approach for the reduction of 〈L〉 at every step. We illustrate the effect of

this shortcut in an example setting (Section 2.7).

2.1 Gaussian Process Measure on f

The remainder of the paper commits to Gaussian process measures for p( f ). These are conve-

nient for the task at hand due to their descriptive generality and their convenient analytic properties.

Since this paper is aimed at readers from several communities, this section contains a very brief

introduction to some relevant aspects of Gaussian processes; readers familiar with the subject can

safely skip ahead. A thorough introduction can be found in a textbook of Rasmussen and Williams

(2006). Some readers from other fields may find it helpful to know that more or less special cases

of Gaussian process inference are elsewhere known under names like Kriging (Krige, 1951) and

Kolmogorov-Wiener prediction (Wiener and Masani, 1957), but while these frameworks use essen-

tially the same idea, the generality of their definitions varies, so restrictions of those frameworks
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should not be assumed to carry over to Gaussian process inference as understood in machine learn-

ing.

A Gaussian process is an infinite-dimensional probability density, such that each linear finite-

dimensional restriction is multivariate Gaussian. The infinite-dimensional space can be thought

of as a space of functions, and the finite-dimensional restrictions as values of those functions at

locations {x∗i }i=1,...,N . Gaussian process beliefs are parametrized by a mean function m : I ! R and

a covariance function k : I × I ! R. For our particular analysis, we restrict the domain I to finite,

compact subsets of the real vector spaces RD. The covariance function, also known as the kernel, has

to be positive definite, in the sense that any finite-dimensional matrix with elements Ki j = k(xi,x j)
has to be positive definite ∀xi,x j ∈ I. A number of such kernel functions are known in the literature,

and different kernel functions induce different kinds of Gaussian process measures over the space

of functions. Among the most widely used kernels for regression are the squared exponential kernel

kSE(x,x
′;S,s) = s2 exp

[

−
1

2
(x− x′)ᵀS−1(x− x′)

]

,

which induces a measure that puts nonzero mass on only smooth functions of characteristic length-

scale S and signal variance s2 (MacKay, 1998b), and the rational quadratic kernel (Matérn, 1960;

Rasmussen and Williams, 2006)

kRQ(x,x
′;S,s,α) = s2

(

1+
1

2α
(x− x′)ᵀS−1(x− x′)

)−α

,

which induces a belief over smooth functions whose characteristic length scales are a scale mix-

ture over a distribution of width 1/α and location S. Other kernels can be used to induce beliefs

over non-smooth functions (Matérn, 1960), and even over non-continuous functions (Uhlenbeck

and Ornstein, 1930). Experiments in this paper use the two kernels defined above, but the results

apply to all kernels inducing beliefs over continuous functions. While there is a straightforward

relationship between kernel continuity and the mean square continuity of the induced process, the

relationship between the kernel function and the continuity of each sample is considerably more

involved (Adler, 1981, §3). Regularity of the kernel also plays a nontrivial role in the question

whether the distribution of infima of samples from the process is well-defined at all (Adler, 1990).

In this work, we side-step this issue by assuming that the chosen kernel is sufficiently regular to

induce a well-defined belief pmin as defined by Equation (8).

Kernels form a semiring: products and sums of kernels are kernels. These operations can be

used to generalize the induced beliefs over the function space (Section 2.8.3). Without loss of

generality, the mean function is often set to m ≡ 0 in theoretical analyses, and this paper will keep

with this tradition, except for Section 2.8.3. Where m is nonzero, its effect is a straightforward

off-set p( f (x)) ! p( f (x)−m(x)).
For the purpose of regression, the most important aspect of Gaussian process priors is that they

are conjugate to the likelihood from finitely many observations (X ,Y ) = {xi,yi}i=1,...,N of the form

yi(xi) = f (xi)+ξ with Gaussian noise ξ ∼ N (0,σ2). The posterior is a Gaussian process with mean

and covariance functions

µ(x∗) = kx∗,X [KX ,X +σ2I]−1y ; Σ(x∗,x∗) = kx∗,x∗ − kx∗,X [KX ,X +σ2I]−1kX ,x∗ , (3)

where KX ,X is the kernel Gram matrix K
(i, j)
X ,X = k(xi,x j), and other objects of the form ka,b are also

matrices with elements k
(i, j)
a,b = k(ai,b j). Finally, for what follows it is important to know that
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Figure 2: pmin induced by p( f ) from Figure 1. p( f ) repeated for reference. Blue solid line: Asymp-

totically exact representation of pmin gained from exact sampling of functions on a regular

grid (artifacts due to finite sample size). For comparison, the plot also shows the local

utilities probability of improvement (dashed magenta) and expected improvement (solid

magenta) often used for Gaussian process global optimization. Blue circles: Approximate

representation on representer points, sampled from probability of improvement measure.

Stochastic error on sampled values, due to only asymptotically correct assignment of

mass to samples, and varying density of points, focusing on relevant areas of pmin. This

plot uses arbitrary scales for each object: The two heuristics have different units of mea-

sure, differing from that of pmin. Notice the interesting features of pmin at the boundaries

of the domain: The prior belief encodes that f is smooth, and puts finite probability mass

on the hypothesis that f has negative (positive) derivative at the right (left) boundary of

the domain. With nonzero probability, the minimum thus lies exactly on the boundary of

the domain, rather than within a Taylor radius of it.

it is straightforward to sample “functions” (point-sets of arbitrary size from I) from a Gaussian

process. To sample the value of a particular sample at the M locations X∗, evaluate mean and

variance function as a function of any previously collected data points, using Equation (3), draw

a vector ζ ∼ ∏M N (0,1) of M random numbers i.i.d. from a standard one-dimensional Gaussian

distribution, then evaluate

f̃ (X∗) = µ(X∗)+C[Σ(X∗,X∗)]ᵀζ,

where the operator C denotes the Cholesky decomposition (Benoit, 1924).

2.2 Discrete Representations for Continuous Distributions

Having established a probability measure p( f ) on the function, we turn to constructing the belief

pmin(x) over its minimum. Inspecting Equation (1), it becomes apparent that it is challenging in two

ways: First, because it is an integral over an infinite-dimensional space, and second, because even

on a finite-dimensional space it may be a hard integral for a particular p( f ). This section deals with

the former issue, the following Section 2.3 with the latter.
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It may seem daunting that pmin involves an infinite-dimensional integral. The crucial observation

for a meaningful approximation in finite time is that regular functions can be represented meaning-

fully on finitely many points. If the stochastic process representing the belief over f is sufficiently

regular, then Equation (1) can be approximated arbitrarily well with finitely many representer points.

The discretization grid need not be regular—it may be sampled from any distribution which puts

non-zero measure on every open neighborhood of I. This latter point is central to a graceful han-

dling of the curse of dimensionality: The naı̈ve approach of approximately solving Equation (1) on

a regular grid, in a D-dimensional domain, would require O(exp(D)) points to achieve any given

resolution. This is obviously not efficient: Just like in other numerical quadrature problems, any

given resolution can be achieved with fewer representer points if they are chosen irregularly, with

higher resolution in regions of greater influence on the result of integration. We thus choose to

sample representer points from a proposal measure u, using a Markov chain Monte Carlo sampler

(our implementation uses shrinking rank slice sampling, by Thompson and Neal, 2010).

What is the effect of this stochastic discretization? A non-uniform quadrature measure u(x̃)
for N representer locations {x̃i}i=1,...,N leads to varying widths in the “steps” of the representing

staircase function. As N ! ∞, the width of each step is approximately proportional to (u(x̃i)N)−1.

Section 2.3 will construct a discretized q̂min(x̃i) that is an approximation to the probability that fmin

occurs within the step at x̃i. So the approximate p̂min on this step is proportional to q̂min(x̃i)u(x̃i),
and can be easily normalized numerically, to become an approximation to pmin.

How should the measure u be chosen? Unfortunately, the result of the integration, being a

density rather than a function, is itself a function of u, and the loss-function is also part of the

problem. So it is nontrivial to construct an optimal quadrature measure. Intuitively, a good proposal

measure for discretization points should put high resolution on regions of I where the shape of pmin

has strong influence on the loss, and on its change. For our choice of loss function (Section 2.5),

it is a good idea to choose u such that it puts high mass on regions of high value for pmin. But for

other functions, this need not always be the case.

We have experimented with a number of ad hoc choices for u, and found the aforementioned

“expected improvement” and “probability of improvement” (Section 1.1.3) to lead to reasonably

good performance. We use these functions for a similar reason as their original authors: Because

they tend to have high value in regions where pmin is also large. To avoid confusion, however,

note that we use these functions as unnormalized measures to sample discretization points for our

calculation of pmin, not as an approximation for pmin itself, as was done in previous work by other

authors. Defects in these heuristics have weaker effect on our algorithm than in the cited works: in

our case, if u is not a good proposal measure, we simply need more samples to construct a good

representation of pmin. In the limit of N ! ∞, all choices of u perform equally well, as long as they

put nonzero mass on all open neighborhoods of the domain.

2.3 Approximating pmin with Expectation Propagation

The previous Section 2.2 provided a way to construct a non-uniform grid of N discrete locations

x̃i, i = 1, . . . ,N. The restriction of the Gaussian process belief to these locations is a multivariate

Gaussian density with mean µ̃∈RN and covariance Σ̃∈RN×N . So Equation (1) reduces to a discrete

probability distribution (as opposed to a density)

p̂min(xi) =
∫

f∈RN
N ( f ; µ̃, Σ̃)

N

∏
i%= j

θ( f (x j)− f (xi))d f .
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fN ( f ; µ̃, Σ̃) θ[ f (x̃ j)− f (x̃i)]

i %= j

Figure 3: Graphical model providing motivation for EP approximation on pmin. See text for details.

This is a multivariate Gaussian integral over a half-open, convex, piecewise linearly constrained

integration region—a polyhedral cone. Unfortunately, such integrals are known to be intractable

(Plackett, 1954; Lazard-Holly and Holly, 2003). However, it is possible to construct an effective

approximation q̂min based on Expectation Propagation (EP) (Minka, 2001): Consider the belief

p( f (x̃)) as a “prior message” on f (x̃), and each of the terms in the product as one factor providing

another message. This gives the graphical model shown in Figure 3. Running EP on this graph

provides an approximate Gaussian marginal, whose normalization constant q̂min(xi), which EP also

provides, approximates p( f |xmin = xi). The EP algorithm itself is somewhat involved, and there

are a number of algorithmic technicalities to take into account for this particular setting. We refer

interested readers to recent work by Cunningham et al. (2011), which gives a detailed description of

these aspects. The cited work also establishes that, while EP’s approximations to Gaussian integrals

are not always reliable, in this particular case, where there are as many constraints as dimensions

to the problem, the approximation is generally of high quality (see Figure 4 for an example). An

important advantage of the EP approximation over both numerical integration and Monte Carlo

integration (see next Section) is that it allows analytic differentiation of q̂min with respect to the

parameters µ̃ and Σ̃ (Cunningham et al., 2011; Seeger, 2008). This fact will become important in

Section 2.6.

The computational cost of this approximation is considerable: Each computation of q̂min(x̃i), for

a given i, involves N factor updates, which each have rank 1 and thus cost O(N2). So, overall, the

cost of calculating q̂min(x̃) is O(N4). This means N is effectively limited to well below N = 1000.

Our implementation uses a default of N = 50, and can calculate next evaluation points in ∼ 10

seconds. Once again, it is clear that this algorithm is not suitable for simple numerical optimization

problems; but a few seconds are arguably an acceptable waiting time for physical optimization

problems.

2.3.1 AN ALTERNATIVE: SAMPLING

An alternative to EP is Monte Carlo integration: sample S functions exactly from the Gaussian

belief on p( f ), at cost O(N2) per sample, then find the minimum for each sample in O(N) time.

This technique was used to generate the asymptotically exact plots in Figures 2 and following. It

has overall cost O(SN3), and can be implemented efficiently using Matrix-Matrix multiplications,

so each evaluation of this algorithm is considerably faster than EP. It also has the advantage of

asymptotic exactness. But, unfortunately, it provides no analytic derivatives, because of strong

discontinuity in the step functions of Equation (1). So the choice is between a first-order expansion

using EP (see Section 2.6) which is expensive, but provides a reusable, differentiable function, and

repeated calls to a cheaper, asymptotically exact sampler. In our experiments, the former option

appeared to be considerably faster, and of acceptable approximative quality. But for relatively
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Figure 4: EP-approximation to pmin (dashed green). Other plots as in previous figures. EP achieves

good agreement with the asymptotically exact Monte Carlo approximation to pmin, in-

cluding the point masses at the boundaries of the domain.

Figure 5: Innovation from two observations at x = −3 and x = 3. Current belief as red outline in

background, from Figure 1. Samples from the belief over possible beliefs after observa-

tions at x in blue. For each sampled innovation, the plot also shows the induced innovated

pmin (lower sampling resolution as previous plots). Innovations from several (here: two)

observations can be sampled jointly.

high-dimensional optimization problems, where one would expect to require relatively large N for

acceptable discretization, the sampling approach can be expected to scale better. [Note added in

proof: It has been pointed out to us that a related approach, using sampling, was previously studied

by Villemonteix et al. (2009).]
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2.4 Predicting Innovation from Future Observations

As detailed in Equation (2), the optimal choice of the next H evaluations is such that the expected

change in the loss 〈L〉x is extremal, that is, it effects the biggest possible expected drop in loss. The

loss is a function of pmin, which in turn is a function of p( f ). So predicting change in loss requires

predicting change in p( f ) as a function of the next evaluation points. It is another convenient

aspect of Gaussian processes that they allow such predictions in analytic form (Hennig, 2011): Let

previous observations at X0 have yielded observations Y 0. Evaluating at locations X will give new

observations Y , and the mean will be given by

µ(x∗) = [kx∗,X0 ,kx∗,X ]

(

KX0,X0 kX0,X

kX ,X0 KX ,X

)−1(
Y 0

Y

)

= kx∗,X0K−1
X0,X0

Y 0 +(kx∗,X − kx∗,X0K−1
X0,X0

kX0,X)×

(kX ,X − kX ,X0K−1
X0,X0

kX0,X)
−1(Y − kX ,X0K−1

X0,X0
Y 0)

= µ0(x
∗)+Σ0(x

∗,X)Σ−1
0 (X ,X)(Y −µ0(X)),

(4)

where K
(i, j)
a,b = k(ai,b j)+δi jσ2. The step from the first to the second line involves an application of

the matrix inversion lemma, the last line uses the mean and covariance functions conditioned on the

data set (X0,Y 0) so far. Since Y is presumed to come from this very Gaussian process belief, we

can write

Y = µ(X)+C[Σ(X ,X)]ᵀΩ′+σω = µ(X)+C[Σ(X ,X)+σ2IH ]
ᵀΩ Ω,Ω′,ω ∼ N (0, IH),

and Equation (4) simplifies. An even simpler construction can be made for the covariance function.

We find that mean and covariance function of the posterior after observations (X ,Y ) are mean and

covariance function of the prior, incremented by the innovations

∆µX ,Ω(x
∗) = Σ(x∗,X)Σ−1(X ,X)C[Σ(X ,X)+σ2IH ]Ω

∆ΣX(x
∗,x∗) = Σ(x∗,X)Σ−1(X ,X)Σ(X ,x∗).

The change to the mean function is stochastic, while the change to the covariance function is deter-

ministic. Both innovations are functions both of X and of the evaluation points x∗. One use of this

result is to sample 〈L〉X by sampling innovations, then evaluating the innovated pmin for each inno-

vation in an inner loop, as described in Section 2.3.1. An alternative, described in the next section,

is to construct an analytic first order approximation to 〈L〉X from the EP prediction constructed in

Section 2.3. As mentioned above, the advantage of this latter option is that it provides an analytic

function, with derivatives, which allows efficient numerical local optimization.

2.5 Information Gain—the Log Loss

To solve the decision problem of where to evaluate the function next in order to learn most about

the location of the minimum, we need to say what it means to “learn”. Thus, we require a loss

functional that evaluates the information content of innovated beliefs pmin. This is, of course, a

core idea in information theory. The seminal paper by Shannon (1948) showed that the negative

expectation of probability logarithms,

H[p] =−〈log p〉p =−∑
i

pi log pi, (5)
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Figure 6: 1-step predicted loss improvement for the log loss (relative entropy). Upper part of plot as

before, for reference. Monte Carlo prediction on regular grid as solid black line. Monte

Carlo prediction from sampled irregular grid as dot-dashed black line. EP prediction on

regular grid as black dashed line. EP prediction from samples as black dotted line. The

minima of these functions, where the algorithm will evaluate next, are marked by vertical

lines. While the predictions from the various approximations are not identical, they lead

to similar next evaluation points. Note that these next evaluation points differ qualitatively

from the choice of the GP optimization heuristics of Figure 2. Since each approximation

is only tractable up a multiplicative constant, the scales of these plots are arbitrary, and

only chosen to overlap for convenience.

known as entropy, has a number of properties that allow its interpretation as a measure of uncer-

tainty represented by a probability distribution p. Its value can be be interpreted as the number of

natural information units an optimal compression algorithm requires to encode a sample from the

distribution, given knowledge of the distribution. However, it has since been pointed out repeatedly

that this concept does not easily generalize to probability densities. A density p(x) has a unit of

measure [x]−1, so its logarithm is not well-defined, and one cannot simply replace summation with

integration in Equation (5). A functional that is well-defined on probability densities and preserves

many of the information-content interpretations of entropy (Jaynes and Bretthorst, 2003) is relative

entropy, also known as Kullback-Leibler (1951) divergence. We use its negative value as a loss

function for information gain.

LKL(p;b) =−
∫

p(x) log
p(x)

b(x)
dx.

As base measure b we choose the uniform measure UI(x) = |I|−1 over I, which is well-defined

because I is presumed to be bounded.2 With this choice, the loss is maximized (at L = 0) for a

2. Although uniform measures appeal as a natural representation of ignorance, they do encode an assumption about

I being represented in a “natural” way. Under a nonlinear transformation of I, the distribution would not remain
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uniform belief over the minimum, and diverges toward negative infinity if p approaches a Dirac

point distribution. The resulting algorithm, Entropy Search, will thus choose evaluation points such

that it expects to move away from the uniform base measure toward a Dirac distribution as quickly

as possible.

The reader may wonder: What about the alternative idea of maximizing, at each evaluation,

entropy relative to the current pmin? This would only encourage the algorithm to attempt to change

the current belief, but not necessarily in the right direction. For example, if the current belief puts

very low mass on a certain region, an evaluation that has even a small chance of increasing pmin

in this region could appear more favorable than an alternative evaluation predicted to have a large

effect on regions where the current pmin has larger values. The point is not to just change pmin, but

to change it such that it moves away from the base measure.

Recall that we approximate the density p(x) using a distribution p̂(xi) on a finite set {xi} of rep-

resenter points, which define steps of width proportional, up to stochastic error, to an unnormalized

measure ũ(xi). In other words, we can approximate pmin(x) as

pmin(x)≈
p̂(xi)Nũ(xi)

Zu
; Zu =

∫
ũ(x)dx; xi = arg min

{x j}
‖x− x j‖.

We also note that after N samples, the unit element of measure has size, up to stochastic error, of

∆xi ≈ Zu

ũ(xi)N
. So we can approximately represent the loss

LKL(pmin;b) ≈−∑i pmin(xi)∆xi log
pmin(xi)

b(xi)

=−∑i p̂min(xi) log
p̂min(xi)Nũ(xi)

Zub(xi)

=−∑i p̂min(xi) log
p̂min(xi)ũ(xi)

b(xi)
+ log

(

Zu

N

)

∑i p̂min(xi)

= H[ p̂min]−〈log ũ〉 p̂min
+ 〈logb〉 p̂min

+ logZu − logN,

which means we do not require the normalization constant Zu for optimization of LKL. For our

uniform base measure, the third term in the last line is a constant, too; but other base measures

would contribute nontrivially.

2.6 First-Order Approximation to 〈L〉

Since EP provides analytic derivatives of pmin with respect to mean and covariance of the Gaus-

sian measure over f , we can construct a first order expansion of the expected change in loss from

evaluations. To do so, we consider, in turn, the effect of evaluations at X on the measure on f , the

induced change in pmin, and finally the change in L . Since the change to the mean is Gaussian

stochastic, Itō’s (1951) Lemma applies. The following Equation uses the summation convention:

double indices in products are summed over.

〈∆L〉X =
∫

L

[

p0
min +

∂pmin

∂Σ(x̃i, x̃ j)
∆ΣX(x̃i, x̃ j)+

∂2 pmin

∂µi∂µ j
∆µX ,1(x̃i)∆µX ,1(x̃ j)

+
∂pmin

∂µ(x̃i)
∆X ,Ωµ(x̃i)+O((∆µ)2,(∆Σ)2)

]

N (Ω;0,1)dΩ−L [p0
min]. (6)

uniform. For example, uniform measures on the [0,1] simplex appear bell-shaped in the softmax basis (MacKay,

1998a). So, while b here does not represent prior knowledge on xmin per se, it does provide a unit of measure to

information and as such is nontrivial.
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Figure 7: Expected drop in relative entropy (see Section 2.5) from two additional evaluations to the

three old evaluations shown in previous plots. First new evaluation on abscissa, second

new evaluation on ordinate, but due to the exchangeability of Gaussian process measures,

the plot is symmetric. Diagonal elements excluded for numerical reasons. Blue regions

are more beneficial than red ones. The relatively complicated structure of this plot illus-

trates the complexity of finding the optimal H-step evaluation locations.

The first line contains deterministic effects, the first term in the second line covers the stochastic

aspect. Monte Carlo integration over the stochastic effects can be performed approximately using a

small number of samples Ω. These samples should be drawn only once, at first calculation, to get a

differentiable function 〈∆L〉X that can be re-used in subsequent optimization steps.

The above formulation is agnostic with respect to the loss function. Hence, in principle, Entropy

Search should be easy to generalize to different loss functions. But recall that the fidelity of the

calculation of Equation (6) depends on the intermediate approximate steps, in particular the choice

of discretization measure ũ. We have experimented with other loss functions and found it difficult

to find a good measure ũ providing good performance for many such loss functions. So this paper

is limited to the specific choice of the relative entropy loss function. Generalization to other losses

is future work.

2.7 Greedy Planning, and its Defects

The previous sections constructed a means to predict, approximately, the expected drop in loss from

H new evaluations at locations X = {xi}i=1,...,N . The remaining task is to optimize these locations.

It may seem pointless to construct an optimization algorithm which itself contains an optimization

problem, but note that this new optimization problem is quite different from the initial one. It is

a numerical optimization problem, of the form described in Section 1: We can evaluate the utility
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function numerically, without noise, with derivatives, and at hopefully relatively low cost compared

to the physical process we are ultimately trying to optimize.

Nevertheless, one issue remains: Optimizing evaluations over the entire horizon H is a dynamic

programming problem, which, in general, has cost exponential in H. However, this problem has a

particular structure: Apart from the fact that evaluations drawn from Gaussian process measures are

exchangeable, there is also other evidence that optimization problems are benign from the point of

view of planning. For example, Srinivas et al. (2010) show that the information gain over the func-

tion values is submodular, so that greedy learning of the function comes close to optimal learning

of the function. While is is not immediately clear whether this statement extends to our issue of

learning about the function’s minimum, it is obvious that the greedy choice of whatever evaluation

location most reduces expected loss in the immediate next step is guaranteed to never be catastroph-

ically wrong. In contrast to general planning, there are no “dead ends” in inference problems. At

worst, a greedy algorithm may choose an evaluation point revealed as redundant by a later step. But

thanks to the consistency of Bayesian inference in general, and Gaussian process priors in particular

(van der Vaart and van Zanten, 2011), no decision can lead to an evaluation that somehow makes

it impossible to learn the true function afterward. In our approximate algorithm, we thus adopt this

greedy approach. It remains an open question for future research whether approximate planning

techniques can be applied efficiently to improve performance in this planning problem.

2.8 Further Issues

This section digresses from the main line of thought to briefly touch upon some extensions and

issues arising from the choices made in previous sections. For the most part, we point out well-

known analytic properties and approximations that can be used to generalize the algorithm. Since

they apply to Gaussian process regression rather than the optimizer itself, they will not play a role

in the empirical evaluation of Section 3.

2.8.1 DERIVATIVE OBSERVATIONS

Gaussian process inference remains analytically tractable if instead of, or in addition to direct obser-

vations of f , we observe the result of any linear operator acting on f . This includes observations of

the function’s derivatives (Rasmussen and Williams, 2006, §9.4) and, with some caveats, to integral

observations (Minka, 2000). The extension is pleasingly straightforward: The kernel defines co-

variances between function values. Covariances between the function and its derivatives are simply

given by

cov

(

∂n f (x)

∏i ∂xi
,
∂m f (x′)

∏ j ∂x′j

)

=
∂n+mk(x,x′)

∏i ∂xi ∏ j ∂x′j
,

so kernel evaluations simply have to be replaced with derivatives (or integrals) of the kernel where

required. Obviously, this operation is only valid as long as the derivatives and integrals in question

exist for the kernel in question. Hence, all results derived in previous sections for optimization

from function evaluations can trivially be extended to optimization from function and derivative

observations, or from only derivative observations.
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Figure 8: Generalizing GP regression. Left: Samples from different priors. Right: Posteriors

(mean, two standard deviations) after observing three data points with negligible noise

(kernel parameters differ between the two plots). base: standard GP regression with

Matérn kernel. kernel: sum of two kernels (square exponential and rational quadratic) of

different length scales and strengths. poly: polynomial (here: quadratic) mean function.

lik: Non-Gaussian likelihood (here: logarithmic link function). The scales of both x and

f (x) are functions of kernel parameters, so the numerical values in this plot have relevance

only relative to each other. Note the strong differences in both mean and covariance

functions of the posteriors.

2.8.2 LEARNING HYPERPARAMETERS

Throughout this paper, we have assumed kernel and likelihood function to be given. In real appli-

cations, this will not usually be the case. In such situations, the hyperparameters defining these two

functions, and if necessary a mean function, can be learned from the data, either by setting them to

maximum likelihood values, or by full-scale Bayesian inference using Markov chain Monte Carlo

methods. See Rasmussen and Williams (2006, §5) and Murray and Adams (2010) for details. In

the latter case, the belief p( f ) over the function is a mixture of Gaussian processes. To still be able

to use the algorithm derived so far, we approximate this belief with a single Gaussian process by

calculating expected values of mean and covariance function.

Ideally, one would want to take account of this hierarchical learning process in the decision

problem addressed by the optimizer. This adds another layer of computation complexity to the

problem, and is outside of the scope of this paper. Here, we content ourselves with considering the

uncertainty of the Gaussian process conditioned on a particular set of hyperparameters.
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2.8.3 LIMITATIONS AND EXTENSIONS OF GAUSSIAN PROCESSES FOR OPTIMIZATION

Like any probability measure over functions, Gaussian process measures are not arbitrarily general.

In particular, the most widely used kernels, including the two mentioned above, are stationary,

meaning they only depend on the difference between locations, not their absolute values. Loosely

speaking, the prior “looks the same everywhere”. One may argue that many real optimization

problems do not have this structure. For example, it may be known that the function tends to have

larger functions values toward the boundaries of I or, more vaguely, that it is roughly “bowl-shaped”.

Fortunately, a number of extensions readily suggest themselves to address such issues (Figure 8).

Parametric Means As pointed out in Section 2.1, we are free to add any parametric general linear

model as the mean function of the Gaussian process,

m(x) = ∑
i

φi(x)wi.

Using Gaussian beliefs on the weights wi of this model, this model may be learned at the same

time as the Gaussian process itself (Rasmussen and Williams, 2006, §2.7). Polynomials such

as the quadratic φ(x) = [x;xxᵀ] are beguiling in this regard, but they create an explicit “origin”

at the center of I, and induce strong long-range correlations between opposite ends of I. This

seems pathological: In most settings, observing the function on one end of I should not tell us

much about the value at the opposite end of I. But we may more generally choose any feature

set for the linear model. For example, a set of radial basis functions φi(x) = exp(‖x−ci‖2/!2
i )

around locations ci at the rims of I can explain large function values in a region of width !i

around such a feature, without having to predict large values at the center of I. This idea can

be extended to a nonparametric version, described in the next point.

Composite Kernels Since kernels form a semiring, we may sum a kernel of large length scale and

large signal variance and a kernel of short length scale and low signal variance. For example

k(x,x′) = kSE(x,x
′;s1,S1)+ kRQ(x,x

′,s2,S2,α2) s1 1 s2;S
i j
1 1 S

i j
2 ∀i, j

yields a kernel over functions that, within the bounded domain I, look like “rough troughs”:

global curvature paired with local stationary variations. A disadvantage of this prior is that it

thinks “domes” just as likely as “bowls”. An advantage is that it is a very flexible framework,

and does not induce unwanted global correlations.

Nonlinear Likelihoods An altogether different effect can be achieved by a non-Gaussian, non-

linear likelihood function. For example, if f is known to be strictly positive, one may assume

the noise model

p(y |g) = N (y; exp(g),σ2); f = exp(g), (7)

and learn g instead of f . Since the logarithm is a convex function, the minimum of the la-

tent g is also a minium of f . Of course, this likelihood leads to a non-Gaussian posterior.

To retain a tractable algorithm, approximate inference methods can be used to construct ap-

proximate Gaussian posteriors. In our example (labeled lik in Figure 8), we used a Laplace

approximation: It is straightforward to show that Equation (7) implies

∂ log p(y |g)
∂g

∣

∣

∣

∣

g=ĝ

!
=0 ⇒ ĝ = logy

∂2 log p(y |g)
∂2g

∣

∣

∣

∣

g=ĝ

=
y2

σ2
,
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Figure 9: Laplace approximation for a logarithmic Gaussian likelihood. True likelihood in thick

red, Gaussian approximation in thin blue, maximum likelihood solution marked in grey.

Four log relative values a = log(y/σ) of sample y and noise σ (scaled in height for read-

ability). a =−1 (solid); a = 0 (dash-dotted); a = 1 (dashed); a = 2 (dotted). The approx-

imation is good for a 1 0.

so a Laplace approximation amounts to a heteroscedastic noise model, in which an observa-

tion (y,σ2) is incorporated into the Gaussian process as (log(y),(σ/y)2). This approximation

is valid if σ 3 y (see Figure 9). For functions on logarithmic scales, however, finding min-

ima smaller than the noise level, at logarithmic resolution, is a considerably harder problem

anyway.

The right part of Figure 8 shows posteriors produced using the three approaches detailed above,

and the base case of a single kernel with strong signal variance, when presented with the same three

data points, with very low noise. The strong difference between the posteriors may be disappointing,

but it is a fundamental aspect of inference: Different prior assumptions lead to different posteriors,

and function space inference is impossible without priors. Each of the four beliefs shown in the

Figure may be preferable over the others in particular situations. The polynomial mean describes

functions that are almost parabolic. The exponential likelihood approximation is appropriate for

functions with an intrinsic logarithmic scale. The sum kernel approach is pertinent for the search for

local minima of globally stationary functions. Classic methods based on polynomial approximations

are a lot more restrictive than any of the models described above.

Perhaps the most general option is to use additional prior information I giving p(xmin |I ), inde-

pendent of p( f ), to encode outside information about the location of the minimum. Unfortunately,

this is intractable in general. But it may be approached through approximations. This option is

outside of the scope of this paper, but will be the subject of future work.

2.9 Summary—the Entire Algorithm

Algorithm 1 shows pseudocode for Entropy Search. It takes as input the prior, described by the

kernel k, and the likelihood l = p(y | f (x)), as well as the discretization measure u (which may itself
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Algorithm 1 Entropy Search

1: procedure ENTROPYSEARCH(k, l = p(y | f (x)),u,H,(x,y))
2: x̃ ∼ u(x,y) " discretize using measure u (Section 2.2)

3: [µ,Σ,∆µx,∆Σx] " GP(k, l,x,y) " infer function, innovation, from GP prior (2.1)

4: [q̂min(x̃),
∂q̂min

∂µ
, ∂2q̂min

∂µ∂µ
, ∂q̂minx

∂Σ ] " EP(µ,Σ) " approximate p̂min (2.3)

5: if H=0 then

6: return qmin " At horizon, return belief for final decision

7: else

8: x′ " arg min〈L〉x " predict information gain; Equation (6)

9: y′ " EVALUATE( f (x′)) " take measurement

10: ENTROPYSEARCH(k, l,u,H −1,(x,y)∪ (x′,y′)) " move to next evaluation

11: end if

12: end procedure

be a function of previous data, the Horizon H, and any previously collected observations (x,y). To

choose where to evaluate next, we first sample discretization points from u, then calculate the current

Gaussian belief over f on the discretized domain, along with its derivatives. We construct an approx-

imation to the belief over the minimum using Expectation Propagation, again with derivatives. Fi-

nally, we construct a first order approximation on the expected information gain from an evaluation

at x′ and optimize numerically. We evaluate f at this location, then the cycle repeats. An example

implementation in MATLAB can be downloaded from www.probabilistic-optimization.org.

3. Experiments

Figures in previous sections provided some intuition and anecdotal evidence for the efficacy of the

various approximations used by Entropy Search. In this section, we compare the resulting algorithm

to two Gaussian process global optimization heuristics: Expected Improvement, Probability of Im-

provement (Section 1.1.3), as well as to a continuous armed bandit algorithm: GP-UCB (Srinivas

et al., 2010). For reference, we also compare to a number of numerical optimization algorithms:

Trust-Region-Reflective (Coleman and Li, 1996, 1994), Active-Set (Powell, 1978b,a), interior point

(Byrd et al., 1999, 2000; Waltz et al., 2006), and a naı̈vely projected version of the BFGS algorithm

(Broyden, 1965; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). We avoid implementation bias by

using a uniform code framework for the three Gaussian process-based algorithms, that is, the algo-

rithms share code for the Gaussian process inference and only differ in the way they calculate their

utility. For the local numerical algorithms, we used third party code: The projected BFGS method

is based on code by Carl Rasmussen,3 the other methods come from version 6.0 of the optimization

toolbox of MATLAB.4

In some communities, optimization algorithms are tested on hand-crafted test functions. This

runs the risk of introducing bias. Instead, we compare our algorithms on a number of functions

sampled from a generative model. In the first experiment, the function is sampled from the model

used by the GP algorithms themselves. This eliminates all model-mismatch issues and allows a

3. Code can be found at http://www.gaussianprocess.org/gpml/code/matlab/util/minimize.m, version using

BFGS: personal communication.

4. Toolbox can be found at http://www.mathworks.de/help/toolbox/optim/rn/bsqj_zi.html.
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Figure 10: Distance of function value at optimizers’ best guess for xmin from true global minimum.

Log scale.

direct comparison of other GP optimizers to the probabilistic optimizer. In a second experiment, the

functions were sampled from a model strictly more general than the model used by the algorithms,

to show the effect of model mismatch.

3.1 Within-Model Comparison

The first experiment was carried out over the 2-dimensional unit domain I = [0,1]2. To generate

test functions, 1000 function values were jointly sampled from a Gaussian process with a squared-

exponential covariance function of length scale ! = 0.1 in each direction and unit signal variance.

The resulting posterior mean was used as the test function. All algorithms had access to noisy eval-

uations of the test functions. For the benefit of the numerical optimizers, noise was kept relatively

low: Gaussian with standard deviation σ = 10−3. All algorithms were tested on the same set of 40

test functions, all Figures in this section are averages over those sets of functions. It is nontrivial to

provide error bars on these average estimates, because the data sets have no parametric distribution.

But the regular structure of the plots, given that individual experiments were drawn i.i.d., indicates

that there is little remaining stochastic error.

After each function evaluation, the algorithms were asked to return a best guess for the minimum

xmin. For the local algorithms, this is simply the point of their next evaluation. The Gaussian process

based methods returned the global minimum of the mean belief over the function (found by local

optimization with random restarts). Figure 10 shows the difference between the global optimum

of the function and the function value at the reported best guesses. Since the best guesses do not
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Figure 11: Euclidean distance of optimizers’ best guess for xmin from truth. Log scale.

in general lie at a data point, their quality can actually decrease during optimization. The most

obvious feature of this plot is that local optimization algorithms are not adept at finding global

minima, which is not surprising, but gives an intuition for the difficulty of problems sampled from

this generative model. The plot shows a clear advantage for Entropy Search over its competitors,

even though the algorithm does not directly aim to optimize this particular loss function. The

flattening out of the error of all three global optimizers toward the right is due to evaluation noise

(recall that evaluations include Gaussian noise of standard deviation 10−3). Interestingly, Entropy

Search flattens out at an error almost an order of magnitude lower than that of the nearest competitor,

Expected Improvement. One possible explanation for this behavior is a pathology in the classic

heuristics: Both Expected Improvement and Probability of Improvement require a “current best

guess” η, which has to be a point estimate, because proper marginalization over an uncertain belief

is not tractable. Due to noise, it can thus happen that this best guess is overly optimistic, and the

algorithm then explores too aggressively in later stages.

Figure 11 shows data from the same experiments as the previous figure, but plots Euclidean

distance from the true global optimum in input space, rather than in function value space. The

results from this view are qualitatively similar to those shown in Figure 10.

Since Entropy Search attempts to optimize information gain from evaluations, one would also

like to compare to algorithms on the entropy loss function. However, this is challenging. First,

the local optimization algorithms provide no probabilistic model of the function and can thus not

provide this loss. But even for the optimization algorithms based on Gaussian process measures, it

is challenging to evaluate this loss globally with good resolution. The only option we are aware of

is to approximately calculate entropy, using the very algorithm introduced in this paper. Doing so

amounts to a kind of circular experiment that Entropy Search wins by definition, so we omit it here.
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Figure 12: Regret as a function of number of evaluations.

We pointed out in Section 1.1.2 that the bandit setting differs considerably from the kind of

optimization discussed in this paper, because bandit algorithms try to minimize regret, rather than

improve an estimate of the function’s optimum. To clarify this point further, Figure 12 shows the

regret

r(T ) =
T

∑
t=1

[yt − fmin],

for each of the algorithms. Notice that probability of improvement, which performs worst among

the global algorithms as seen from the previous two measures of performance, achieves the lowest

regret. The intuition here is that this heuristic focuses evaluations on regions known to give low

function values. In contrast, the actual value of the function at the evaluation point has no special

role in Entropy Search. The utility of an evaluation point only depends on its expected effect on

knowledge about the minimum of the function.

Surprisingly, the one algorithm explicitly designed to achieve low regret, GP-UCB, performs

worst in this comparison. This algorithm chooses evaluation points according to (Srinivas et al.,

2010)

xnext = arg min
x

[µ(x)−β1/2σ(x)] where β = 4(D+1) logT +C(k,δ)

with T , the number of previous evaluations, D, the dimensionality of the input domain, and C(k,δ) is

a constant that depends on some analytic properties of the kernel k and a free parameter, 0 < δ < 1.

We found it hard to find a good setting for this δ, which clearly has influence on the algorithm’s

performance. The results shown here represent the best performance over a set of 4 experiments

with different choices for δ. They appear to be slightly worse than, but comparable to the empirical

performance reported by the original paper on this algorithm (Srinivas et al., 2010, Figure 5a).
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Figure 13: Left: A sample from the GP prior with squared exponential kernel used in the on-model

experiments of Section 3.1. Right: Sample from prior with the rational quadratic kernel

used for the out-of-model comparison of Section 3.2.

3.2 Out-of-Model Comparison

In the previous section, the algorithms attempted to find minima of functions sampled from the

prior used by the algorithms themselves. In real applications, one can rarely hope to be so lucky,

but hierarchical inference can be used to generalize the prior and construct a relatively general al-

gorithm. But what if even the hierarchically extended prior class does not contain the true function?

Qualitatively, it is clear that, beyond a certain point of model-mismatch, all algorithms can be made

to perform arbitrarily badly. The poor performance of local optimizers (which may be interpreted

as building a quadratic model) in the previous section is an example of this effect. In this section,

we present results of the same kind of experiments as in the previous section, but on a set of 30

two-dimensional functions sampled from a Gaussian process prior with rational quadratic kernel,

with the same length scale and signal variance as above, and scale mixture parameter α = 1 (see

Equation 2.1). This means samples evolve over an infinite number of different length scales, includ-

ing both longer and shorter scales than those covered by the priors of the algorithms (Figure 13).

Figure 14 shows error on function values, Figure 15 Euclidean error in input space, Figure 16 regret.

Note the different scales for the ordinate axes relative to the corresponding previous plots: While

Entropy Search still (barely) outperforms the competitors, all three algorithms perform worse than

before; and their errors become more similar to each other. However, they still manage to discover

good regions in the domain, demonstrating a certain robustness to model-mismatch.

4. Conclusion

This paper presented a new probabilistic paradigm for global optimization, as an inference prob-

lem on the minimum of the function, rather than the problem of collecting iteratively lower and

lower function values. We argue that this description is closer to practitioners’ requirements than

classic response surface optimization, bandit algorithms, or other, heuristic, global optimization al-
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Figure 14: Function value error, off-model tasks.
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gorithms. In the main part of the paper, we constructed Entropy Search, a practical probabilistic

global optimization algorithm, using a series of analytic assumptions and numerical approxima-

tions: A particular family of priors over functions (Gaussian processes); constructing the belief

pmin over the location of the minimum on an irregular grid to deal with the curse of dimensional-

ity; and using Expectation Propagation toward an efficient analytic approximation. The Gaussian

belief allows analytic probabilistic predictions of the effect of future data points, from which we

constructed a first-order approximation of the expected change in relative entropy of pmin to a base

measure. For completeness, we also pointed out some already known analytic properties of Gaus-

sian process measures that can be used to generalize this algorithm. We showed that the resulting

algorithm outperforms both directly and distantly related competitors through its more elaborate,

probabilistic description of the problem. This increase in performance is exchanged for somewhat

increased computational cost (Entropy Search costs are a constant multiple of that of classic Gaus-

sian process global optimizers); so this algorithm is more suited for problems where evaluating

the function itself carries considerable cost. It provides a natural description of the optimization

problem, by focusing on the performance under a loss function at the horizon, rather than function

values returned during the optimization process. It allows the practitioner to explicitly encode prior

knowledge in a flexible way, and adapts its behavior to the user’s loss function.
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Appendix A. Mathematical Appendix

The notation in Equation (1) can be read, sloppily, to mean “pmin(x) is the probability that the

value of f at x is lower than at any other x̃ ∈ I”. For a continuous domain, though, there are

uncountably many other x̃. To give more precise meaning to this notation, consider the following

argument. Let there be a sequence of locations {xi}i=1,...,N , such that for N ! ∞ the density of

points at each location converges to a measure m(x) nonzero on every open neighborhood in I. If

the stochastic process p( f ) is sufficiently regular to ensure samples are almost surely continuous

(see footnote in Section 2.1), then almost every sample can be approximated arbitrarily well by a

staircase function with steps of width m(xi)/N at the locations xi, in the sense that ∀ε > 0 ∃N0 > 0

such that, ∀N > N0 : | f (x)− f (arg minx j, j=1,...,N |x− x j|)| < ε, where | · | is a norm (all norms on

finite-dimensional vector spaces are equivalent). This is the original reason why samples from

sufficiently regular Gaussian processes can be plotted using finitely many points, in the way used in

this paper. We now define the notation used in Equation (1) to mean the following limit, where it

exists.

pmin(x) =
∫

p( f )∏
x̃%=x

θ( f (x̃)− f (x))d f

≡ lim
N!∞

|xi−xi−1|·N!m(x)

∫
p[ f ({xi}i=1,...,N)]

N

∏
i=1;i%= j

θ[ f (xi)− f (x j)]d f ({xi}i=1,...,N) · |xi − xi−1| ·N. (8)

In words: The “infinite product” is meant to be the limit of finite-dimensional integrals with an in-

creasing number of factors and dimensions, where this limit exists. In doing so, we have sidestepped

the issue of whether this limit exists for any particular Gaussian process (kernel function). We do

so because the theory of suprema of stochastic processes is highly nontrivial. We refer the reader to

a friendly but demanding introduction to the topic by Adler (1990). From our applied standpoint,

the issue of whether (8) is well defined for a particular Gaussian prior is secondary: If it is known

that the true function is continuous and bounded, then it has a well-defined supremum, and the prior

should reflect this knowledge by assigning sufficiently regular beliefs. If the actual prior is such

that we expect the function to be discontinuous, it should be clear that optimization is extremely

challenging anyway. We conjecture that the finer details of the region between these two domains

have little relevance for communities interested in optimization.
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Abstract

The !1-penalized method, or the Lasso, has emerged as an important tool for the analysis of large
data sets. Many important results have been obtained for the Lasso in linear regression which
have led to a deeper understanding of high-dimensional statistical problems. In this article, we
consider a class of weighted !1-penalized estimators for convex loss functions of a general form,
including the generalized linear models. We study the estimation, prediction, selection and sparsity
properties of the weighted !1-penalized estimator in sparse, high-dimensional settings where the
number of predictors p can be much larger than the sample size n. Adaptive Lasso is considered as
a special case. A multistage method is developed to approximate concave regularized estimation by
applying an adaptive Lasso recursively. We provide prediction and estimation oracle inequalities
for single- and multi-stage estimators, a general selection consistency theorem, and an upper bound
for the dimension of the Lasso estimator. Important models including the linear regression, logistic
regression and log-linear models are used throughout to illustrate the applications of the general
results.

Keywords: variable selection, penalized estimation, oracle inequality, generalized linear models,
selection consistency, sparsity

1. Introduction

High-dimensional data arise in many diverse fields of scientific research. For example, in genetic

and genomic studies, more and more large data sets are being generated with rapid advances in

biotechnology, where the total number of variables p is larger than the sample size n. Fortunately,

statistical analysis is still possible for a substantial subset of such problems with a sparse underlying

model where the number of important variables is much smaller than the sample size. A fundamen-

tal problem in the analysis of such data is to find reasonably accurate sparse solutions that are easy

to interpret and can be used for the prediction and estimation of covariable effects. The !1-penalized

method, or the Lasso (Tibshirani, 1996; Chen et al., 1998), has emerged as an important approach

to finding such solutions in sparse, high-dimensional statistical problems.

In the last few years, considerable progress has been made in understanding the theoretical

properties of the Lasso in p ! n settings. Most results have been obtained for linear regression

c©2012 Jian Huang and Cun-Hui Zhang.
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models with a quadratic loss. Greenshtein and Ritov (2004) studied the prediction performance of

the Lasso in high-dimensional least squares regression. Meinshausen and Bühlmann (2006) showed

that, for neighborhood selection in the Gaussian graphical models, under a neighborhood stability

condition on the design matrix and certain additional regularity conditions, the Lasso is selection

consistent even when p→∞ at a rate faster than n. Zhao and Yu (2006) formalized the neighborhood

stability condition in the context of linear regression as a strong irrepresentable condition. Candes

and Tao (2007) derived an upper bound for the !2 loss of a closely related Dantzig selector in the

estimation of regression coefficients under a condition on the number of nonzero coefficients and a

uniform uncertainty principle on the design matrix. Similar results have been obtained for the Lasso.

For example, upper bounds for the !q loss of the Lasso estimator has being established by Bunea

et al. (2007) for q= 1, Zhang and Huang (2008) for q∈ [1;2], Meinshausen and Yu (2009) for q= 2,

Bickel et al. (2009) for q ∈ [1;2], and Zhang (2009) and Ye and Zhang (2010) for general q ≥ 1. For

convex minimization methods beyond linear regression, van de Geer (2008) studied the Lasso in

high-dimensional generalized linear models (GLM) and obtained prediction and !1 estimation error

bounds. Negahban et al. (2010) studied penalized M-estimators with a general class of regularizers,

including an !2 error bound for the Lasso in GLM under a restricted strong convexity and other

regularity conditions.

Theoretical studies of the Lasso have revealed that it may not perform well for the purpose of

variable selection, since its required irrepresentable condition is not properly scaled in the number

of relevant variables. In a number of simulation studies, the Lasso has shown weakness in variable

selection when the number of nonzero regression coefficients increases. As a remedy, a number of

proposals have been introduced in the literature and proven to be variable selection consistent under

regularity conditions of milder forms, including concave penalized LSE (Fan and Li, 2001; Zhang,

2010a), adaptive Lasso (Zou, 2006; Meier and Bühlmann, 2007; Huang et al., 2008), stepwise

regression (Zhang, 2011a), and multi-stage methods (Hunter and Li, 2005; Zou and Li, 2008; Zhang,

2010b, 2011b).

In this article, we study a class of weighted !1-penalized estimators with a convex loss function.

This class includes the Lasso, adaptive Lasso and multistage recursive application of adaptive Lasso

in generalized linear models as special cases. We study prediction, estimation, selection and sparsity

properties of the weighted !1-penalized estimator based on a convex loss in sparse, high-dimensional

settings where the number of predictors p can be much larger than the sample size n. The main

contributions of this work are as follows.

• We extend the existing theory for the unweighted Lasso from linear regression to more general

convex loss function.

• We develop a multistage method to approximate concave regularized convex minimization

with recursive application of adaptive Lasso, and provide sharper risk bounds for this concave

regularization approach in the general setting.

• We apply our results to a number of important special cases, including the linear, logistic and

log-linear regression models.

This article is organized as follows. In Section 2 we describe a general formulation of the

absolute penalized minimization problem with a convex loss, along with two basic inequalities

and a number of examples. In Section 3 we develop oracle inequalities for the weighted Lasso

estimator for general quasi star-shaped loss functions and an !2 bound on the prediction error. In
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Section 4 we develop multistage recursive applications of adaptive Lasso as an approximate concave

regularization method and provide sharper oracle inequalities for this approach. In Section 5 we

derive sufficient conditions for selection consistency. In Section 6 we provide an upper bound on

the dimension of the Lasso estimator. Concluding remarks are given in Section 7. All proofs are

provided in an appendix.

2. Absolute Penalized Convex Minimization

In this section, we define the weighted Lasso for a convex loss function and characterize its solutions

via the KKT conditions. We then derive some basic inequalities for the weighted Lasso solutions in

terms of the symmetrized Bregman divergence (Bregman, 1967; Nielsen and Nock, 2007). We also

illustrate the applications of the basic inequalities in several important examples.

2.1 Definition and the KKT Conditions

We consider a general convex loss function of the form

!(β) = ψ(β)−〈β,z〉, (1)

where ψ(β) is a known convex function, z is observed, and β is unknown. Unless otherwise stated,

the inner product space is Rp, so that {z,β} ⊂ Rp and 〈β,z〉 = β′z. Our analysis of (1) requires

certain smoothness of the function ψ(β) in terms of its differentiability. In what follows, such

smoothness assumptions are always explicitly described by invoking the derivative of ψ. For any

v = (v1, . . . ,vp)′, we use ‖v‖ to denote a general norm of v and |v|q the !q norm (∑ j |v j|q)1/q, with

|v|∞ = max j |v j|. Let ŵ ∈ Rp be a (possibly estimated) weight vector with nonnegative elements

ŵ j,1 ≤ j ≤ p, and Ŵ = diag(ŵ). The weighted absolute penalized estimator, or weighted Lasso, is

defined as

β̂ = argmin
β

{
!(β)+λ|Ŵβ|1

}
. (2)

Here we focus on the case where Ŵ is diagonal. In linear regression, Tibshirani and Taylor

(2011) considered non-diagonal, predetermined Ŵ and derived an algorithm for computing the so-

lution paths.

A vector β̂ is a global minimizer in (2) if and only if the negative gradient at β̂ satisfies the

Karush-Kuhn-Tucker (KKT) conditions,

g =−!̇(β̂) = z− ψ̇(β̂),

{
g j = ŵ jλsgn(β̂ j) if β̂ j -= 0

g j ∈ ŵ jλ[−1,1] all j,
(3)

where !̇(β) = (∂/∂β)!(β) and ψ̇(β) = (∂/∂β)ψ(β). Since the KKT conditions are necessary and

sufficient for (2), results on the performance of β̂ can be viewed as analytical consequences of (3).

The estimator (2) includes the !1-penalized estimator, or the Lasso, with the choice ŵ j = 1,1 ≤
j ≤ p. A careful study of the (unweighted) Lasso in general convex minimization (1) is by itself an

interesting and important problem. Our work includes the Lasso as a special case since ŵ j = 1 is

allowed in our theorems.
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In practice, unequal ŵ j arise in many ways. In adaptive Lasso (Zou, 2006), a decreasing function

of a certain initial estimator of β j is used as the weight ŵ j to remove the bias of the Lasso. In Zou

and Li (2008) and Zhang (2010b), the weights ŵ j are computed iteratively with ŵ j = ρ̇λ(β̂ j), where

ρ̇λ(t) = (d/dt)ρλ(t) with a suitable concave penalty function ρλ(t). This is also designed to remove

the bias of the Lasso, since the concavity of ρλ(t) guarantees smaller weight for larger β̂ j. In

Section 4, we provide results on the improvements of this weighted Lasso over the standard Lasso.

In linear regression, Zhang (2010b) gave sufficient conditions under which this iterative algorithm

provides smaller weights ŵ j for most large β j. Such nearly unbiased methods are expected to

produce better results than the Lasso when a significant fraction of nonzero |β j| are of the order λ or

larger. Regardless of the computational methods, the results in this paper demonstrate the benefits

of using data dependent weights in a general class of problems with convex losses.

Unequal weights may also arise for computational reasons. The Lasso with ŵ j = 1 is expected to

perform similarly to weighted Lasso with data dependent 1≤ ŵ j ≤C0, with a fixed C0. However, the

weighted Lasso is easier to compute since ŵ j can be determined as a part of an iterative algorithm.

For example, in a gradient descent algorithm, one may take larger steps and stop the computation

as soon as the KKT conditions (3) are attained for any weights satisfying 1 ≤ ŵ j ≤C0.

The weight function ŵ j can be also used to standardize the penalty level, for example with ŵ j =

{ψ̈ j j(β̂)}1/2, where ψ̈ j j(β) is the j-th diagonal element of the Hessian matrix of ψ(β). When ψ(β)

is quadratic, for example in linear regression, ŵ j = {ψ̈ j j(β̂)}1/2 does not depend on β̂. However, in

other convex minimization problems, such weights need to be computed iteratively.

Finally, in certain applications, the effects of a certain set S∗ of variables are of primary interest,

so that penalization of β̂S∗ , and thus the resulting bias, should be avoided. This leads to “semi-

penalized” estimators with ŵ j = 0 for j ∈ S∗, for example, with weights ŵi = I{ j -∈ S∗}.

2.2 Basic Inequalities, Prediction, and Bregman Divergence

Let β∗ denote a target vector for β. In high-dimensional models, the performance of an estimator

β̂ is typically measured by its proximity to a target under conditions on the sparsity of β∗ and the

size of the negative gradient −!̇(β∗) = z− ψ̇(β∗). For !1-penalized estimators, such results are often

derived from the KKT conditions (3) via certain basic inequalities, which are direct consequences

of the KKT conditions and have appeared in different forms in the literature, for example, in the

papers cited in Section 1. Let D(β,β∗) = !(β)− !(β∗)−〈!̇(β∗),β−β∗〉 be the Bregman divergence

(Bregman, 1967) and consider its symmetrized version (Nielsen and Nock, 2007)

∆(β,β∗) = D(β,β∗)+D(β∗,β) =
〈
β−β∗, ψ̇(β)− ψ̇(β∗)

〉
. (4)

Since ψ is convex, ∆(β,β∗) ≥ 0. Two basic inequalities below provide upper bounds for the sym-

metrized Bregman divergence ∆(β̂,β∗). The sparsity of β∗ is measured by a weighted !1 norm of β∗

in the first one and by a sparse set in the second one.

Let S be any set of indices satisfying S ⊇ { j : β∗
j -= 0} and let Sc be the complement of S in

{1, . . . , p}. We shall refer to S as the sparse set. Let W = diag(w) for a possibly unknown vector

w ∈ Rp with elements w j ≥ 0. Define

z∗0 = |{z− ψ̇(β∗)}S|∞, z∗1 = |W−1
Sc {z− ψ̇(β∗)}Sc |∞, (5)

Ω0 =
{

ŵ j ≤ w j ∀ j ∈ S
}
∩
{

w j ≤ ŵ j ∀ j ∈ Sc
}
, (6)
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where for any p-vector v and set A, vA = (v j : j ∈ A)′. Here and in the sequel MAB denotes the A×B

subblock of a matrix M and MA = MAA.

Lemma 1 (i) Let β∗ be a target vector. In the event Ω0 ∩{|(z− ψ̇(β∗)) j|≤ ŵ jλ ∀ j},

∆(β̂,β∗)≤ 2λ|Ŵβ∗|1 ≤ 2λ|Wβ∗|1. (7)

(ii) For any target vector β∗ and S ⊇ { j : β∗
j -= 0}, the error h = β̂−β∗ satisfies

∆(β∗+h,β∗)+(λ− z∗1)|WSchSc |1 ≤ 〈hS,gS −{z− ψ̇(β∗)}S〉
≤ (|wS|∞λ+ z∗0)|hS|1 (8)

in Ω0 for a certain negative gradient vector g satisfying |g j|≤ ŵ jλ. Consequently, in Ω0∩{(|wS|∞λ+
z∗0)/(λ−z∗1)≤ ξ}, h -= 0 belongs to the sign-restricted cone C−(ξ,S) = {b ∈C (ξ,S) : b j(ψ̇(β+b)−
ψ̇(β)) j ≤ 0 ∀ j ∈ Sc}, where

C (ξ,S) =
{

b ∈ R
p : |WScbSc |1 ≤ ξ|bS|1 -= 0

}
. (9)

Remark 2 Sufficient conditions are given in Subsection 3.2 for {|(z− ψ̇(β∗)) j| ≤ ŵ jλ ∀ j} to hold

with high probability in generalized linear models. See Lemma 8, Remarks 10 and 11 and Examples

7, 8, and 9.

A useful feature of Lemma 1 is the explicit statements of the monotonicity of the basic inequality

in the weights. By Lemma 1 (ii), it suffices to study the analytical properties of the penalized

criterion with the error h = β̂− β∗ in the sign-restricted cone, provided that the event (|wS|∞λ+
z∗0)/(λ− z∗1) ≤ ξ has large probability. However, unless C−(ξ,S) is specified, we will consider the

larger cone in (9) in order to simplify the analysis. The choices of the target vector β∗, the sparse set

S ⊇ { j : β∗
j -= 0}, weight vector ŵ and its bound w are quite flexible. The main requirement is that

{|S|,z∗0,z∗1} should be small. In linear regression or generalized linear models, we may conveniently

consider β∗ as the vector of true regression coefficients under a probability measure Pβ∗ . However,

β∗ can also be a sparse version of a true β, for example, β∗
j = β jI{|β j|≥ τ} for a threshold value τ

under Pβ.

The upper bound in Lemma 1 (i) gives the so called “slow rate” of convergence for the Bregman

divergence. In Section 3, we provide “fast rate” of convergence for the Bregman divergence via

oracle inequalities for |hS|1 in (8).

The symmetrized Bregman divergence ∆(β̂,β∗) has the interpretations as the regret in prediction

error in linear regression, the symmetrized Kullback-Leibler (KL) divergence in generalized linear

models (GLM) and density estimation, and a spectrum loss for the graphical Lasso, as shown in

examples below. These quantities can be all viewed as the size of the prediction error since they

measure distances between a target density of the observations and an estimated density.

Example 1 (Linear regression) Consider the linear regression model

yi =
p

∑
j=1

xi jβ j + εi, i = 1, . . . ,n, (10)
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where yi is the response variable, xi j are predictors or design variables, and εi is the error term. Let

y = (y1, . . . ,yn)′ and let X be the design matrix whose ith row is xi = (xi1, . . . ,xip). The estimator (2)

can be written as a weighted Lasso with ψ(β) = |Xβ|22/(2n) and z = X ′y/n in (1). For predicting a

vector ỹ with Eβ∗ [ỹ|X ,y] = Xβ∗,

n∆(β̂,β∗) = |X β̂−Xβ∗|22 = Eβ∗
[
|ỹ−X β̂|22

∣∣X ,y
]
− min

δ(X ,y)
Eβ∗

[
|ỹ−δ(X ,y)|22

∣∣X ,y
]

is the regret of using the linear predictor X β̂ compared with the optimal predictor. See Greenshtein

and Ritov (2004) for several implications of (7).

Example 2 (Logistic regression) We observe (X ,y) ∈ Rn×(p+1) with independent rows (xi,yi),
where yi ∈ {0,1} are binary response variables with

Pβ(yi = 1|xi) = πi(β) = exp(xiβ)/(1+ exp(xiβ)), 1 ≤ i ≤ n. (11)

The loss function (1) is the average negative log-likelihood:

!(β) = ψ(β)− z′β with ψ(β) =
n

∑
i=1

log(1+ exp(xiβ))

n
, z = X ′y/n. (12)

Thus, (2) is a weighted !1 penalized MLE. For probabilities {π′,π′′} ⊂ (0,1), the KL information

is K(π′,π′′) = π′ log(π′/π′′) + (1− π′) log{(1− π′)/(1− π′′)}. Since ψ̇(β) = ∑n
i=1 xiπi(β)/n and

logit(πi(β∗))− logit(πi(β)) = xi(β∗ −β), (4) gives

∆(β,β∗) =
1

n

n

∑
i=1

{
K
(
πi(β

∗),πi(β)
)
+K

(
πi(β),πi(β

∗)
)}

.

Thus, the symmetrized Bregman divergence ∆(β∗,β) is the symmetrised KL-divergence.

Example 3 (GLM). The GLM contains the linear and logistic regression models as special cases.

We observe (X ,y)∈Rn×(p+1) with rows (xi,yi). Suppose that conditionally on X, yi are independent

under Pβ with

yi ∼ f (yi|θi) = exp
(θiyi −ψ0(θi)

σ2
+

c(yi,σ)

σ2

)
, θi = xiβ. (13)

Let f(n)(y|X ,β) = ∏n
i=1 f (yi|xiβ). The loss function can be written as a normalized negative like-

lihood !(β) = (σ2/n) log f(n)(y|X ,β) with ψ(β) = ∑n
i=1{ψ0(xiβ)+ c(yi,σ)}/n and z = X ′y/n. The

KL divergence is

D
(

fn(·|X ,β∗)
∥∥∥ fn(·|X ,β)

)
= Eβ∗ log

( f(n)(y|X ,β∗)

f(n)(y|X ,β)

)
.

The symmetrized Bregman divergence can be written as

∆(β̂,β∗) =
σ2

n

{
D
(

f(n)(·|X ,β∗)
∥∥∥ f(n)(·|X , β̂)

)
+D

(
f(n)(·|X , β̂)

∥∥∥ f(n)(·|X ,β∗)
)}

.
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Example 4 (Nonparametric density estimation) Although the focus of this paper is on regression

models, here we illustrate that ∆(β̂,β∗) is the symmetrised KL divergence in the context of non-

parametric density estimation. Suppose the observations y = (y1, . . . ,yn)′ are iid from f (·|β) =
exp{〈β,T (·)〉 −ψ(β)} under Pβ, where T (·) = (u j(·), j ≤ p)′ with certain basis functions u j(·).
Let the loss function !(β) in (1) be the average negative log-likelihood n−1 ∑n

i=1 log f (yi|β) with

z = n−1 ∑n
i=1 T (yi). Since EβT (yi) = ψ̇(β), the KL divergence is

D
(

f (·|β∗)
∥∥∥ f (·|β)

)
= Eβ∗ log

( f (yi|β∗)

f (yi|β)

)
= ψ(β)−ψ(β∗)−〈β−β∗, ψ̇(β∗)〉.

Again, the symmetrized Bregman divergence is the symmetrised KL divergence between the target

density f (·|β∗) and the estimated density f (·|β̂):

∆(β,β∗) = D
(

f (·|β∗)
∥∥∥ f (·|β̂)

)
+D

(
f (·|β̂)

∥∥∥ f (·|β∗)
)
.

van de Geer (2008) pointed out that for this example, the natural choices of the basis functions u j

and weights w j satisfy
∫

u jdν = 0 and w2
k =

∫
u2

kdν.

Example 5 (Graphical Lasso) Suppose we observe X ∈Rn×p and would like to estimate the preci-

sion matrix β = (EX ′X/n)−1 ∈ Rp×p. In the graphical Lasso, (1) is the length normalized negative

likelihood with ψ(β) =− logdetβ, z =−X ′X/n, and 〈β,z〉=−trace(βz). Since the gradient of ψ is

ψ̇(β) = Eβz =−β−1, we find

∆(β,β∗) = trace
(
(β̂−β∗)((β∗)−1 − β̂−1

)
=

p

∑
j=1

(λ j −1)2/λ j,

where (λ1, . . . ,λp) are the eigenvalues of (β∗)−1/2β̂(β∗)−1/2. In graphical Lasso, the diagonal

elements are typically not penalized. Consider ŵ jk = I{ j -= k}, so that the penalty for the off-

diagonal elements are uniformly weighted. Since Lemma 1 requires |(z− ψ̇(β∗)) jk| ≤ ŵ jkλ, β∗ is

taken to match X ′X/n on the diagonal and the true β in correlations. Let S= {( j,k) : β jk -= 0, j -= k}.

In the event max j -=k |z jk −β∗
jk|≤ λ, Lemma 1 (i) gives

|S|λmax
j -=k

|β∗
jk|= o(1) ⇒ ‖(β∗)−1/2β̂(β∗)−1/2 − Ip×p‖2 = o(1)

where ‖ · ‖2 is the spectrum norm. Rothman et al. (2008) proved the consistency of the graphical

Lasso under similar conditions with a different analysis.

3. Oracle Inequalities

In this section, we extract upper bounds for the estimation error β̂− β∗ from the basic inequality

(8). Since (8) is monotone in the weights, the oracle inequalities are sharper when the weights ŵ j

are smaller in S ⊇ { j : β∗
j -= 0} and larger in Sc.

We say that a function φ(b) defined in Rp is quasi star-shaped if φ(tb) is continuous and non-

decreasing in t ∈ [0,∞) for all b ∈ Rp and limb→0 φ(b) = 0. All seminorms are quasi star-shaped.

The sublevel sets {b : φ(b)≤ t} of a quasi star-shaped function are all star-shaped. Constant factors

of the following form play a crucial role in our analysis.
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Definition 3 For 0 ≤ η∗ ≤ 1 and any pair of quasi star-shaped functions φ0(b) and φ(b), define a

general invertibility factor (GIF) over the cone (9) as follows:

F(ξ,S;φ0,φ) = inf
{∆(β∗+b,β∗)eφ0(b)

|bS|1φ(b)
: b ∈ C (ξ,S),φ0(b)≤ η∗

}
, (14)

where ∆(β,β∗) is as in (4).

The GIF extends the squared compatibility constant (van de Geer and Bühlmann, 2009) and the

weak and sign-restricted cone invertibility factors (Ye and Zhang, 2010) from the linear regression

model with φ0(·) = 0 to the general model (1) and from !q norms to general φ(·). They are all closely

related to the restricted eigenvalues (Bickel et al., 2009; Koltchinskii, 2009) as we will discuss in

Subsection 3.1.

The basic inequality (8) implies that the symmetrized Bregman divergence ∆(β̂,β∗) is no greater

than a linear function of |hS|1, where h = β̂− β∗. If ∆(β̂,β∗) is no smaller than a linear function

of the product |hS|1φ(h), then an upper bound for φ(h) exists. Since the symmetrized Bregman

divergence (4) is approximately quadratic, ∆(β̂,β∗) ≈ 〈h, ψ̈(β∗)h〉, in a neighborhood of β∗, this is

reasonable when h = β̂−β∗ is not too large and ψ̈(β∗) is invertible in the cone. A suitable factor

eφ0(b) in (14) forces the computation of this lower bound in a proper neighborhood of β∗.

We first provide a set of general oracle inequalities.

Theorem 4 Let {z∗0,z
∗
1} be as in (5) with S ⊇ { j : β∗

j -= 0}, Ω0 in (6), 0 ≤ η ≤ η∗ ≤ 1, and

{φ0(b),φ(b)} be a pair of quasi star-shaped functions. Then, in the event

Ω1 = Ω0 ∩
{ |wS|∞λ+ z∗0

(λ− z∗1)+
≤ ξ,

|wS|∞λ+ z∗0
F(ξ,S;φ0,φ0)

≤ ηe−η
}
, (15)

the following oracle inequalities hold:

φ0(β̂−β∗)≤ η, φ(β̂−β∗)≤
eη(|wS|∞λ+ z∗0)

F(ξ,S;φ0,φ)
, (16)

and with φ1,S(b) = |bS|1/|S|

∆(β̂,β∗)+(λ− z∗1)|WSc(β̂−β∗)Sc |1 ≤
eη(|wS|∞λ+ z∗0)

2|S|
F(ξ,S;φ0,φ1,S)

. (17)

Remark 5 Sufficient conditions are given in Subsection 3.2 for (15) to hold with high probability.

See Lemma 8, Remarks 10 and 11 and Examples 7, 8, and 9.

The oracle inequalities in Theorem 4 control both the estimation error in terms of φ(β̂− β∗)

and the prediction error in terms of the symmetrized Bregman divergence ∆(β̂,β∗) discussed in

Section 2. Since they are based on the GIF (14) in the intersection of the cone and the unit ball

{b : φ0(b)≤ 1/e}, they are different from typical results in a small-ball analysis based on the Taylor

expansion of ψ(β) at β = β∗. An important feature of Theorem 4 is that its regularity condition is

imposed only on the GIF (14) evaluated at the target β∗; The uniformity of the order of ∆(β+b,β)
in β is not required. Theorem 4 does allow φ0(·) = 0 with F(ξ,S;φ0,φ0) = ∞ and η = 0 in linear

regression.
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3.1 The Hessian and Related Quantities

In this subsection we describe the relationship between the GIF (14) and the Hessian of the convex

function ψ(·) in (1) and examine cases where the quasi star-shaped functions φ0(·) and φ(·) are

familiar seminorms. Throughout, we assume that ψ(β) is twice differentiable. Let ψ̈(β) be the

Hessian of ψ(β) and Σ∗ = ψ̈(β∗).
The GIF (14) can be simplified under the following condition.

Definition 6 Given a nonnegative-definite matrix Σ and constant η∗ > 0, the symmetriized Bregman

divergence ∆(β,β∗) satisfies the φ0-relaxed convexity (φ0-RC) condition if

∆(β∗+b,β∗)eφ0(b) ≥ 〈b,Σb〉, ∀ b ∈ C (ξ,S), φ0(b)≤ η∗. (18)

The φ0-RC condition is related to the restricted strong convexity condition for the Bregman di-

vergence (Negahban et al., 2010): !(β∗ + b)− !(β∗)− 〈!̇(β∗),b〉 ≥ κ̃‖b‖2 with a certain restric-

tion b ∈ S and a loss function ‖b‖. It actually implies the restricted strong convexity of the

symmetrized Bregman divergence with κ̃ = e−η∗
and loss ‖b‖∗ = 〈b,Σb〉1/2. However, (18) is

used in our analysis mainly to find a quadratic form as a media for the eventual comparison of

∆(β∗+ b,β∗) with |bS|1φ(b) in (14), where φ(b) is the loss function. In fact, in our examples, we

find quasi star-shaped functions φ0 for which (18) holds for unrestricted b (η∗ = ξ = ∞). In such

cases, the φ0-RC condition is a smoothness condition on the Hessian operator ψ̈(β) = !̈(β), since

∆(β∗+h,β∗) =
∫ 1

0 〈h, ψ̈(β∗+ th)h〉dt by (4).

In what follows, Σ = Σ∗ = ψ̈(β∗) is allowed in all statements unless otherwise stated. Under the

φ0-RC (18), the GIF (14) is bounded from below by the following simple GIF:

F0(ξ,S;φ) = inf
b∈C (ξ,S)

〈b,Σb〉
|bS|1φ(b)

. (19)

In linear regression, F0(ξ,S;φ) is the square of the compatibility factor for φ(b) = φ1,S(b) = |bS|1/|S|
(van de Geer, 2007) and the weak cone invertibility factor for φ(b) = φq(b) = |b|q/|S|1/q (Ye and

Zhang, 2010). They are both closely related to the restricted isometry property (RIP) (Candes

and Tao, 2005), the sparse Rieze condition (SRC) (Zhang and Huang, 2008), and the restricted

eigenvalue (Bickel et al., 2009). Extensive discussion of these quantities can be found in Bickel

et al. (2009), van de Geer and Bühlmann (2009) and Ye and Zhang (2010). The following corollary

is an extension of an oracle inequality of Ye and Zhang (2010) from linear regression to the general

convex minimization problem (1).

Corollary 7 Let η ≤ η∗ ≤ 1. Suppose the φ0-RC condition (18). Then, in the event

Ω0 ∩
{
|wS|∞λ+ z∗0 ≤ min

(
ξ(λ− z∗1),ηe−ηF0(ξ,S;φ0)

)}
,

the oracle inequalities (16) and (17) in Theorem 4 hold with the GIF F(ξ,S;φ0,φ) replaced by the

simple GIF F0(ξ,S;φ) in (19). In particular, in the same event,

φ0(h)≤ η, |h|q ≤
eη(|wS|∞λ+ z∗0)|S|1/q

F0(ξ,S;φq)
, ∀q > 0,

with φq(b) = |b|q/|S|1/q and h = β̂−β∗, and with φ1,S(b) = |bS|1/|S|,

e−η〈h,Σh〉 ≤ ∆(β̂,β∗)≤
eη(|wS|∞λ+ z∗0)

2|S|
F0(ξ,S;φ1,S)

− (λ− z∗1)|WSchSc |1.
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Here the only differences between the general model (1) and linear regression (φ0(b) = 0) are

the extra factor eη with η ≤ 1, the extra constraint |wS|∞λ+ z∗0 ≤ ηe−ηF0(ξ,S;φ0), and the extra φ0-

RC condition (18). Moreover, the simple GIF (19) explicitly expresses all conditions on F0(ξ,S;φ)
as properties of a fixed matrix Σ.

Example 6 (Linear regression: oracle inequalities). For ψ(β) = |Xb|22/(2n) and Σ = X ′X/n,

F0(ξ,S;φq) is the weak cone invertibility factor for q ∈ [1,∞] (Ye and Zhang, 2010), where a sharper

version is defined as the sign restricted invertibility factor (SCIF):

SCIFq(ξ,S) = inf
b∈C−(ξ,S)

|Σb|∞/φq(b), φq = |b|q/|S|1/q.

For q = 1, F
1/2

0 (ξ,S;φ1,S) is the compatibility constant (van de Geer, 2007)

κ∗(ξ,S) = inf
b∈C (ξ,S)

|S|1/2|Xb|2
|bS|1n1/2

= inf
b∈C (ξ,S)

( b′Σb

|bS|21/|S|

)1/2
. (20)

They are all closely related to the !2 restricted eigenvalues

RE2(ξ,S) = inf
b∈C (ξ,S)

|Xb|2
|b|2n1/2

= inf
b∈C (ξ,S)

(b′Σb

|b|22

)1/2

(Bickel et al., 2009; Koltchinskii, 2009). Since |bS|21 ≤ |b|22|S|, κ∗(ξ,S) ≥ RE2(ξ,S) (van de Geer

and Bühlmann, 2009). For the Lasso with ŵ j = 1,

|β̂−β∗|2 ≤
|S|1/2(λ+ z∗0)

SCIF2(ξ,S)
≤

|S|1/2(λ+ z∗0)

F0(ξ,S;φ2)
≤

|S|1/2(λ+ z∗0)

κ∗(ξ,S)RE2(ξ,S)
(21)

in the event λ+ z∗0 ≤ ξ(λ− z∗1) (Ye and Zhang, 2010). Thus, cone and general invertibility factors

yield sharper !2 oracle inequalities.

The factors in the oracle inequalities in (21) do not always have the same order for large |S|.
Although the oracle inequality based on SCIF2(ξ,S) is the sharpest among them, it seems not to lead

to a simple extension to the general convex minimization in (1). Thus, we settle with extensions of

the second sharpest oracle inequality in (21) with F0(ξ,S; ·).

3.2 Oracle Inequalities for the Lasso in GLM

An important special case of the general formulation is the !1-penalized estimator in a generalized

linear model (GLM) (McCullagh and Nelder, 1989). This is Example 3 in Subsection 2.2, where

we set up the notation in (13) and gave the KL divergence interpretation to (4). The !1 penalized,

normalized negative likelihood is

!(β) = ψ(β)− z′β, with ψ(β) =
1

n

n

∑
i=1

{
ψ0(x

iβ)− c(yi,σ)
}

and z =
X ′y

n
. (22)

Assume that ψ0 is twice differentiable. Denote the first and second derivatives of ψ0 by ψ̇0 and ψ̈0,

respectively. The gradient and Hessian are

ψ̇(β) = X ′ψ̇0(θ)/n and ψ̈(β) = X ′diag(ψ̈0(θ))X/n, (23)
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where θ = Xβ and ψ̇0 and ψ̈0 are applied to the individual components of θ.

A crucial condition in our analysis of the Lasso in GLM is the Lipschitz condition

max
i≤n

∣∣∣ log
(
ψ̈0(x

iβ∗+ t)
)
− log

(
ψ̈0(x

iβ∗)
)∣∣∣≤ M1|t|, ∀M1|t|≤ η∗, (24)

where M1 and η∗ are constants determined by ψ0. This condition gives

∆(β∗+b,β∗) =
∫ 1

0
〈b, ψ̈(β∗+ tb)b〉dt ≥

∫ 1

0
∑

tM1|xib|≤η∗

ψ̈0(xiβ∗)(xib)2

netM1|xib| dt,

which implies the following lower bound for the GIF in (14):

F(ξ,S;φ0,φ)≥ inf
b∈C (ξ,S),φ0(b)≤η∗

n

∑
i=1

ψ̈0(xiβ∗)(xib)2

n|bS|1φ(b)

∫ 1

0
I{tM1|xib|≤ φ0(b)}dt.

For seminorms φ0 and φ, the infimum above can be taken over φ0(b) = M2 due to scale invariance.

Thus, for φ0(b) = M2|b|2 and seminorms φ, this lower bound is

F∗(ξ,S;φ) = inf
b∈C (ξ,S),|b|2=1

n

∑
i=1

M2ψ̈0(xiβ∗)

n|bS|1φ(b)
min

( |xib|
M1

,
(xib)2

M2

)
, (25)

due to (xib)2
∫ 1

0 I{tM1|xib|≤ M2}dt = M2 min{|xib|/M1,(xib)2/M2}.

If (24) holds with η∗ = ∞, ∆(β∗+ b,β∗) ≥ n−1
∫ 1

0 ∑i ψ̈0(xiβ∗)(xib)2e−tM1|xib|dt, so that by the

Jensen inequality (18) holds with Σ = Σ∗ = ψ̈(β∗) and

φ0(b) =
M1 ∑n

i=1 ψ̈0(xiβ∗)|xib|3

∑n
i=1 ψ̈0(xiβ∗)(xib)2

≤ M1|Xb|∞. (26)

This gives a special F0(ξ,S;φ0) as

F∗(ξ,S) = inf
b∈C (ξ,S)

n〈b,Σ∗b〉2/(M1|bS|1)
∑n

i=1 ψ̈0(xiβ∗)|xib|3
. (27)

Since |Xb|∞ ≤ |XS|∞|bS|1 + |XScW−1
Sc |∞|WScbSc | ≤ {|XS|∞ + ξ|XScW−1

Sc |∞}|bS| in the cone C (ξ,S) in

(9), for φ0(b) = M3|bS|1 with M3 = M1{|XS|∞ + ξ|XScW−1
Sc |∞}, the φ0-RC condition (18) automati-

cally implies the stronger

e−φ0(b)〈b,Σ∗b〉 ≤ ∆(β∗+b,β∗)≤ eφ0(b)〈b,Σ∗b〉, ∀ b ∈ C (ξ,S), φ0(b)< ∞. (28)

Under the Lipschitz condition (24), we may also use the following large deviation inequalities

to find explicit penalty levels to guarantee the noise bound (15).

Lemma 8 (i) Suppose the model conditions (13) and (24) with certain {M1,η∗}. Let x j be the

columns of X, Σ∗
i j be the elements of Σ∗ = ψ̈(β∗). For penalty levels {λ0,λ1} define t j = λ0I{ j ∈

S}+w jλ1I{ j -∈ S}. Suppose the bounds w j in (6) are deterministic and

M1 max
j≤p

(
|x j|∞|t j/Σ∗

j j

)
≤ η0eη0 and

p

∑
j=1

exp
{
−

nt2
j e−η0

2σ2Σ∗
j j

}
≤

ε0

2
(29)
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for certain constants η0 ≤ η∗ and ε0 > 0. Then, Pβ∗

{
z∗0 ≤ λ0,z∗1 ≤ λ1

}
≥ 1− ε0.

(ii) If c0 = maxt ψ̈(t), then part (i) is still valid if (24) and (29) are replaced by

p

∑
j=1

exp
{
−

n2t2
j

2σ2c0|x j|22

}
≤

ε0

2
. (30)

In particular, if |x j|22 = n,1 ≤ j ≤ p,w j = 1, j -∈ S and λ0 = λ1 = λ (so t j = λ), then part (i) still

holds if λ ≥ σ
√
(2c0/n) log(2p/ε0).

The following theorem is a consequence of Theorem 4, Corollary 7 and Lemma 8.

Theorem 9 (i) Let β̂ be the weighted Lasso estimator in (2) with GLM loss function in (22). Let β∗

be a target vector and h = β̂−β∗. Suppose that the data follows the GML model (13) satisfying the

Lipschitz condition (24) with certain {M1,η∗}. Let F∗(ξ,S;φ) be as in (25) with S ⊇ { j : β∗
j -= 0}

and a constant M2. Let η ≤ 1∧η∗ and {λ,λ0,λ1} satisfy

|wS|∞λ+λ0 ≤ min
{

ξ(λ−λ1),ηe−ηF∗(ξ,S;M2| · |2)
}
. (31)

Then, in the event Ω0 ∩
{

maxk=0,1
(
z∗k/λk

)
≤ 1

}
with the z∗k in (5) and Ω0 in (6),

∆(β∗+h,β∗)≤
eη(|wS|∞λ+λ0)2|S|

F∗(ξ,S;φ1,S)
, φ(h)≤

eη(|wS|∞λ+λ0)

F∗(ξ,S;φ)
(32)

for any seminorm φ as the estimation loss. In particular, for φ(b) = M2|b|2, (32) gives |h|2 ≤ η/M2.

Moreover, if either (29) or (30) holds for the penalty level {λ0,λ1} and the weight bounds w j in (6)

are deterministic, then

Pβ∗
{

(32) holds for all seminorms φ
}
≥ Pβ∗(Ω0)− ε0.

(ii) Suppose η∗ =∞ and (31) holds with F∗(ξ,S;M2| · |2) replaced by the special simple GIF F∗(ξ,S)
in (27) for the φ0 in (26). Then, the conclusions of part (i) hold with F∗(ξ,S; ·) replaced by the

simple GIF F0(ξ,S; ·) in (19). Moreover, φ0(h) ≤ η and (32) can be strengthened with the lower

bound ∆(β∗+h,β∗)≥ e−η〈h,Σ∗h〉.
(iii) For any η∗ > 0, the conclusions of part (ii) hold for the φ0(b) = M3|bS|1 in (28), if F∗(ξ,S) is

replaced by κ2
∗(ξ,S)/(M3|S|) in (31), where κ∗(ξ,S) is the compatibility constant in (20).

Remark 10 If either (29) or (30) holds for the penalty levels {λ0,λ1} and the bounds w j in (6) are

deterministic, then (32) implies Pβ∗{the noise bound (15) holds}≥ Pβ∗(Ω0)− ε0.

Remark 11 Suppose that max j -∈S 1/w j, max j 1/Σ∗
j j, max j∈S w j, max j Σ∗

j j, and M1 are all bounded,

and that {1 + F2
∗ (ξ,S)}(log p)/n → 0. Then, (29) holds with the penalty level λ0 = λ1 =

aσ
√
(2/n) log(p/ε0) for certain a ≤ (1 + o(1))max j(Σ∗)

1/2
j j /w j, due to max{λ0,η,η0} → 0+.

Again, the conditions and conclusions of Theorem 9 “converge” to those for the linear regression

as if the Gram matrix is Σ∗.
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Remark 12 In Theorem 9, the key condition (31) is weaker in parts (i) and (ii) than part (iii),

although part (ii) requires η∗ = ∞. For Σ = Σ∗ and M1 = M2 ≤ M3/(1+ξ),

κ2
∗(ξ,S)/(M3|S|)≤ min

{
F∗(ξ,S),F

∗(ξ,S;M2| · |2)
}
,

since n−1 ∑n
i=1 ψ̈0(xiβ∗)|xib|3/〈b,Σ∗b〉≤ |Xb|∞ ≤ |bS|1M3/M1 as in the derivation of (28) and |b|2 ≤

|b|1 ≤ (1+ ξ)|bS|1 in the cone (9). For the more familiar κ2
∗(ξ,S)/(M3|S|) with the compatibility

constant, (31) essentially requires a small |S|
√
(log p)/n. The sharper Theorem 9 (i) and (ii) pro-

vides conditions to relax the requirement to a small |S|(log p)/n.

Remark 13 For ŵ j = 1, Negahban et al. (2010) considered M-estimators under the restricted

strong convexity condition discussed below Definition 6. For the GLM, they considered iid sub-

Gaussian xi and used empirical process theory to bound the ratio ∆(β∗+b,β∗)/{|b|2(|b|2−c0|b|1}
from below over the cone (9) with a small c0. Their result extends the !2 error bound |S|1/2(λ+
z∗0)/RE2

2(ξ,S) of Bickel et al. (2009), while Theorem 9 extends the sharper (21) with the factor

F0(ξ,S;φ2). Theorem 9 applies to both deterministic and random designs. Similar to Negahban

et al. (2010), for iid sub-Gaussian xi, empirical process theory can be applied to the lower bound

(25) for the GIF to verify the key condition (31) with F∗(ξ,S;M2| · |2) ! |S|−1/2, provided that

|S|(log p)/n is small.

Example 7 (Linear regression: oracle inequalities, continuation) For the linear regression model

(10) with quadratic loss, ψ0(θ) = θ2/2, so that (24) holds with M1 = 0 and η∗ = ∞. It follows that

F∗(ξ,S;M2| · |2) = ∞ and (31) has the interpretation with η = 0+ and ηe−ηF∗(ξ,S;M2| · |2) = ∞.

Moreover, since M1 = 0, η0 = 0+ in (29). Thus, the conditions and conclusions of Theorem 9

“converge” to the case of linear regression as M1 → 0+. Suppose iid εi ∼ N(0,σ2) as in (13).

For ŵ j = w j = 1 and Σ∗
j j = ∑n

i=1 x2
i j/n = 1, (29) holds with λ0 = λ1 = σ

√
(2/n) log(p/ε0) and

(31) holds with λ = λ0(1+ ξ)/(1− ξ). The value of σ can be estimated iteratively using the mean

residual squares (Städler et al., 2010; Sun and Zhang, 2011). Alternatively, cross-validation can be

used to pick λ. For φ(b) = φ2(b) = |b|2/|S|1/2, (32) matches the risk bound in (21) with the factor

F0(ξ,S;φ2).

Example 8 (Logistic regression: oracle inequalities) The model and loss function are given in

(11) and (12) respectively. Here we verify the conditions of Theorem 9. The Lipschitz condition (24)

holds with M1 = 1 and η∗ = ∞ since ψ0(t) = log(1+ et) provides

ψ̈0(θ+ t)

ψ̈0(θ)
=

et(1+ eθ)2

(1+ eθ+t)2
≥

{
e−|t| t < 0

e−t(1+ eθ)2/(e−t + eθ)2 ≥ e−|t| t > 0.

Since maxt ψ̈(t) = c0 = 1/4 we can apply (30). In particular, if ŵ j = w j = 1 = |x j|22/n, λ = {(ξ+
1)/(ξ− 1)}

√
(log(p/ε0))/(2n) and λ{2ξ/(ξ+ 1)}/F∗(ξ,S) ≤ ηe−η, then (32) holds with at least

probability 1− ε0 under Pβ∗ . For such deterministic Ŵ and X, an adaptive choice of the penalty

level is λ = σ̂
√
(2/n) log p with σ̂2 = ∑n

i=1 πi(β̂){1−πi(β̂)}/n, where πi(β) is as in Example 2.

Example 9 (Log-linear models: oracle inequalities) Consider counting data with yi ∈ {0,1,2, ...}.

In log-linear models, it is assume that

Eβ(yi) = eθi , θi = xiβ, 1 ≤ i ≤ n.
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This becomes a GLM with the average negative Poisson log-likelihood function

!(β) = ψ(β)− z′β, ψ(β) =
n

∑
i=1

exp(xiβ)− log(yi!)

n
, z = X ′y/n.

In this model, ψ0(t) = et , so that the Lipschitz condition (24) holds with M1 = 1 and η∗ = ∞.

Although (30) is not useful with c0 = ∞, (29) can be used in Theorem 9.

4. Adaptive and Multistage Methods

We consider in this section an adaptive Lasso and its repeated applications, with weights recursively

generated from a concave penalty function. This approach appears to provide the most appealing

choice of weights both from heuristic and theoretical standpoints. The analysis here uses the results

in Section 3 and an idea in Zhang (2010b).

We first consider adaptive Lasso and provide conditions under which it improves upon its initial

estimator. Let ρλ(t) be a concave penalty function with ρ̇λ(0+) = λ, where ρ̇λ(t) = (∂/∂t)ρλ(t).
The maximum concavity of the penalty is

κ = sup
0<t1<t2

|ρ̇λ(t2)− ρ̇λ(t1)|
t2 − t1

. (33)

Let C (ξ,S) be the cone in (9). Let φ0(b) be a quasi star-shaped function and define

F2(ξ,S;φ0) = inf
{eφ0(b)∆(β∗+b,β∗)

|bS|2|b|2
: 0 -= b ∈ C (ξ,S),φ0(b)≤ η∗

}
. (34)

This quantity is an !2 version of the GIF in (14). The analysis in Section 3 can be used to find lower

bounds for (34) in the same way simply by taking φ(b) = |b|2 and replacing |bS|1 with |bS|2. For

example, in generalized linear models (13) satisfying the Lipschitz condition (24), the derivation of

(25) yields

F2(ξ,S;M| · |2)≥ inf
b∈C (ξ,S),|b|2=1

n

∑
i=1

M2ψ̈0(xiβ∗)

n|bS|2
min

( |xib|
M1

,
(xib)2

M2

)
.

Given 0 < ε0 < 1, the components of the error vector z− ψ̇(β∗) are sub-Gaussian if for all 0 ≤ t ≤
σ
√
(2/n) log(4p/ε0),

Pβ∗

{
|(z− ψ̇(β∗)) j|≥ t

}
≤ 2e−nt2/(2σ2). (35)

This condition holds for all GLM when the components of Xβ∗ are uniformly in the interior of the

natural parameter space for the exponential family.

Theorem 14 Let κ be as in (33), S0 = { j : β∗
j -= 0}, λ0 > 0, 0 < η < 1, 0 < γ0 < 1/κ, A > 1, and

ξ ≥ (A+1−κγ0)/(A−1). Let φ0 be a quasi star-shaped function, F(ξ,S;φ0,φ0) be the GIF in (14),

and F2(ξ,S;φ0) its !2-version in (34). Suppose

λ0{1+A/(1−κγ0)}≤ F(ξ,S;φ0,φ0)ηe−η, F∗ ≤ F2(ξ,S;φ0), (36)
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for all S ⊇ S0 with |S \ S0| ≤ !∗. Let β̃ be an initial estimator of β and β̂ be the weighted Lasso in

(2) with weights ŵ j = ρ̇λ(|β̃ j|)/λ and penalty level λ = Aλ0/(1−κγ0). Then,

|β̂−β∗|2 ≤
eη

F∗

{
|ρ̇λ(|β∗

S0
|)|2 + |{z− ψ̇(β∗)}S0 |2 +

(
κ+

1

γ0A
−

κ

A

)
|β̃−β∗|2

}

in the event {|(β̃ − β)Sc
0
|22 ≤ γ2

0λ2!∗}∩ {|z − ψ̇(β∗)|∞ ≤ λ0}. Moreover, if (35) holds and λ0 =

σ
√
(2/n) log(2p/ε0) with 0 < ε0 < 1, then Pβ∗

{
|z− ψ̇(β∗)|≥ λ0

}
≤ ε0.

Theorem 14 raises the possibility that β̂ improves β̃ under proper conditions. Thus it is desirable

to repeatedly apply this adaptive Lasso in the following way,

β̂(k+1) = argmin
β

{
!(β)+

p

∑
j=1

ρ̇λ(β̂
(k)
j )|β j|

}
, k = 0,1, . . . . (37)

Such multistage algorithms have been considered in the literature (Fan and Li, 2001; Zou and Li,

2008; Zhang, 2010b). As discussed in Remark 16 below, it is beneficial to use a concave penalty

ρλ in (37). Natural choices of ρλ include the smoothly clipped absolute deviation and minimax

concave penalties (Fan and Li, 2001; Zhang, 2010a).

Theorem 15 Let {κ,S0,λ0,η,γ0,A,ξ,!∗,λ} be the same as Theorem 14. Let β̂(0) be the unweighted

Lasso with ŵ j = 1 in (2) and β̂(!) be the !-th iteration of the recursion (37) initialized with β̂(0). Let

ξ0 = (λ+λ0)/(λ−λ0). Suppose (36) holds and

eη{1+(1−κγ0)/A}/F(ξ0,S0;φ0, | · |2)≤ γ0

√
!∗. (38)

Define r0 = (eη/F∗){κ+1/(γ0A)−κ/A}. Suppose r0 < 1. Then,

|β̂(!)−β∗|2 ≤
|ρ̇λ(|β∗

S0
|)|2 + |{z− ψ̇(β∗)}S0 |2

e−ηF∗(1− r0)/(1− r!0)
+

r!0eηλ{1+(1−κγ0)/A}
F(ξ0,S0;φ0, | · |2)

(39)

in the event

{
|z− ψ̇(β∗)|∞ ≤ λ0

}
∩
{ |ρ̇λ(|β∗

S0
|)|2 + |{z− ψ̇(β∗)}S0 |2
e−ηF∗(1− r0)

≤ γ0λ
√
!∗
}
. (40)

Moreover, if (35) holds and λ0 = σ
√

(2/n) log(4p/ε0) with 0 < ε0 < 1, then the intersection of

the events (40) and {|{z− ψ̇(β∗)}S0 |2 ≤ n−1/2σ
√

2|S0| log(4|S0|/ε0)} happens with at least Pβ∗

probability 1− ε0, provided that

|ρ̇λ(|β∗
S0
|)|2 +n−1/2σ

√
2|S0| log(4|S0|/ε0)}

e−ηF∗(1− r0)
≤

γ0Aλ0

√
!∗

1−κγ0
.

Remark 16 Define R(0) = λeη{1+(1−κγ0)/A}/F(ξ0,S0;φ0, | · |2) and

R(∞) =
|ρ̇λ(|β∗

S0
|)|2 + |{z− ψ̇(β∗)}S0 |2
e−ηF∗(1− r0)

, R(!) = (1− r!0)R
(∞) + r!0R(0).
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It follows from (39) that R(!) is an upper bound of |β̂(!)−β∗|2 under proper conditions. This im-

plies |β̂(!)−β∗| ≤ 2R(∞) after ! = | logr0|−1 log(R(∞)/R(0)) iterations of the recursion (37). Under

condition (35),

Eβ∗R(∞) ≤ {|ρ̇λ(|β∗
S0
|)|2 +2σ

√
|S0|/n}eη/{F∗(1− r0)}.

Since ρλ(t) is concave in t, |ρ̇λ(|β∗
S0
|)|2 ≤ ρ̇λ(0+)|S0|1/2 = λ|S0|1/2. This component of Eβ∗R(∞)

matches the noise inflation due to model selection uncertainty since λ 8 λ0 = σ
√
(2/n) log(p/ε0).

This noise inflation diminishes when min j∈S0 |β∗
j |≥ γλ and ρ̇λ(t) = 0 for |t|≥ γλ, yielding the super-

efficient Eβ∗R(∞) ≤ {2σ
√
|S0|/n}eη/{F∗(1− r0)} without the log p factor. The risk bound R(∞) is

comparable with those for concave penalized least squares in linear regression (Zhang, 2010a).

Remark 17 For log(p/n)8 log p, the penalty level λ in Theorems 14 and 15 are comparable with

the best proven results and of the smallest possible order in linear regression. For log(p/n)9 log p,

the proper penalty level is expected to be of the order σ
√
(2/n) log(p/|S0|) under a vectorized sub-

Gaussian condition which is slightly stronger than (35). This refinement for log(p/n) 9 log p is

beyond the scope of this paper.

5. Selection Consistency

In this section, we provide a selection consistency theorem for the !1 penalized convex minimization

estimator, including both the weighted and unweighted cases. Let ‖M‖∞ = max|u|∞≤1 |Mu|∞ be the

!∞-to-!∞ operator norm of a matrix M.

Theorem 18 Let ψ̈(β) = !̈(β) be the Hessain of the loss in (1), β̂ be as in (2), β∗ be a target vector,

z∗k be as in (5), Ω0 in (6), S ⊇ { j : β∗
j -= 0} and F(ξ,S;φ0,φ) as in (14).

(i) Let 0 < η ≤ η∗ ≤ 1, B∗
0 = {β : φ0(β−β∗)≤ η,βSc = 0} and Sβ = { j : β j -= 0}. Suppose

sup
β∈B∗

0

∣∣Ŵ−1
Sc ψ̈Sc,Sβ

(β){ψ̈Sβ
(β)}−1ŴSβ

sgn(βSβ
)
∣∣
∞
≤ κ0 < 1 (41)

sup
β∈B∗

0

∥∥Ŵ−1
Sc ψ̈Sc,Sβ

(β){ψ̈Sβ
(β)}−1

∥∥
∞
≤ κ1. (42)

Then, { j : β̂ j -= 0}⊆ S in the event

Ω∗
1 = Ω0 ∩

{
|ŵS|∞λ+ z∗0 ≤ ηe−ηF(0,S;φ0,φ0), κ1z∗0 + z∗1 < (1−κ0)λ

}
. (43)

(ii) Let 0 < η ≤ η∗ ≤ 1 and B0 = {β : φ0(β−β∗) ≤ η,sgn(β) = sgn(β∗)}. Suppose (41) and (42)

hold with B∗
0 replaced by B0. Then, sgn(β̂) = sgn(β∗) in the event

Ω∗
1 ∩

{
sup

β∈B0

∥∥{ψ̈S(β)}−1
∥∥

∞

(
|ŵS|∞λ+ z∗0

)
< min

j∈S
|β∗

j |
}
. (44)

(iii) Suppose conditions of Theorem 9 hold for the GLM. Then, the conclusions of (i) and (ii)

hold under the respective conditions if F(0,S;φ0,φ0) is replaced by F∗(ξ,S;M2| · |2) or F∗(ξ,S)
or κ2

∗(ξ,S)/(M3|S|) with the respective φ0 in Theorem 9.
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For ŵ j = 1, this result is somewhat more specific in the radius η for the uniform irrepresentable

condition (41), compared with a similar extension of the selection consistency theory to the graphi-

cal Lasso by Ravikumar et al. (2008). In linear regression (10), ψ̈(β) = Σ = X ′X/n does not depend

on β, so that Theorem 18 with the special w j = 1 matches the existing selection consistency theory

for the unweighted Lasso (Meinshausen and Bühlmann, 2006; Tropp, 2006; Zhao and Yu, 2006;

Wainwright, 2009). We discuss below the !1 penalized logistic regression as a specific example.

Example 10 (Logistic regression: selection consistency) Suppose w j = 1 = |x j|22/n where x j are

the columns of X. If (43) and (44) hold with z∗0 and z∗1 replaced by
√
(log(p/ε0))/(2n), then the

respective conclusions of Theorem 18 hold with at least probability 1− ε0 in Pβ∗ .

6. The Sparsity of the Lasso and SRC

The results in Sections 2, 3, and 4 are concerned with prediction and estimation properties of β̂,

but not dimension reduction. Theorem 18 (i) and (iii) provide dimension reduction under !∞-type

conditions (41) and (42). In this section, we provide upper bounds for the dimension of β̂ under

conditions of a weaker !2 type. For this purpose, we introduce

κ+(m) = sup
|B|=m

{
λmax

(
W−2

B

∫ 1

0
ψ̈B(β

∗+ tb)dt
)

: B∩S = /0,b ∈ C (ξ,S),φ0(b)≤ η∗
}

(45)

as a restricted upper eigenvalue, where λmax(M) is the largest eigenvalue of matrix M, B⊆ {1, . . . , p},

and ψ̈B(β) and WB are the restrictions of the Hessian of (1) and the weight operator

W = diag(w1, . . . ,wp) to RB.

Theorem 19 Let β∗ be a target vector, S ⊇ { j : β∗
j -= 0}, β̂ be the weighted Lasso estimator (2), and

z∗k be the !∞-noise level as in (5). Let 0 ≤ η∗ ≤ 1, φ1,S(b) = |bS|1/|S|, φ0 be a quasi star-shaped

function, and F(ξ,S;φ0,φ) be the GIF in (14). Then, in the event (15),

#{ j : β̂ j -= 0, j -∈ S}< d1 = min
{

m ≥ 1 :
m

κ+(m)
>

eηξ2|S|
F(ξ,S;φ0,φ1,S)

}
.

It follows from the Cauchy-Schwarz inequality that κ+(m) is sub-additive, κ+(m1 + m2) ≤
κ+(m1)+κ+(m2), so that m/κ+(m) is non-decreasing in m. For GLM, lower bounds for the GIF

and probability upper bounds for z∗k can be found in Subsection 3.2. For S = { j : β∗
j -= 0}. Theorem

19 gives an upper bound for the false negative.

In linear regression, upper bounds for the false negative of the Lasso or concave penalized LSE

can be found in Zhang and Huang (2008) and Zhang (2010a) under a sparse Riesz condition (SRC).

We now extend their results to the Lasso for the more general convex minimization problem (1).

For this purpose, we strengthen (18) to

e−φ0(b)Σ∗ ≤ ψ̈(β∗+b)≤ eφ0(b)Σ∗, ∀ b ∈ C (ξ,S), φ0(b)≤ η∗, (46)

and assume the following SRC: for certain constants {c∗,c∗}, integer d∗, 0<α< 1, 0< η≤ η∗ ≤ 1,

all A ⊃ S with |A|= d∗, and all u ∈ RA with |u|= 1,

c∗ ≤ 〈u, ψ̈A(β
∗)u〉 ≤ c∗,

|S|
2(1−α)

(e2ηc∗

c∗
+1−2α

)
≤ d∗. (47)
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Theorem 20 Let β̂ be the Lasso estimator (2) with w j = 1 for all j, β∗ be a target vector, S ⊇
{ j : β∗

j -= 0}, and z∗k be the !∞-noise level as in (5). Let φ0 be a quasi star-shaped function, and

F(ξ,S;φ0,φ) be the GIF in (14). Suppose (46) and (47) hold. Let d1 be the integer satisfying

d1 −1 ≤ |S|(e2ηc∗/c∗ −1)/(2−2α)< d1. Then,

#{ j : β̂ j -= 0, j -∈ S}< d1

when z∗0 +ξz∗1 ≤ (ξ−1)λ, λ+ z∗0 ≤ ηe−ηF(ξ,S;φ0,φ0), and

max
A⊃S,|A|≤d1

|(Σ∗)
−1/2
A !̇A(β

∗)|2 ≤ e−ηαλ
√

d1/c∗.

Theorems 19 and 20 use different sets of conditions to derive dimension bounds since different

analytical approaches are used. These sets of conditions do not imply each other. In the most

optimistic case, the SRC (47) allows d∗ = d1 + |S| to be arbitrary close to |S| when e2ηc∗/c∗ ≈ 1,

while Theorem 19 requires d1 ≥ |S| when κ+(m) ≥ 1 and F(ξ,S;φ0,φ1,S) ≤ 1 (always true for Σ∗

with 1 in the diagonal).

7. Discussion

In this paper, we studied the estimation, prediction, selection and sparsity properties of the weighted

and adaptive !1-penalized estimators in a general convex loss formulation. We also studied concave

regularization in the form of recursive application of adaptive !1-penalized estimators.

We applied our general results to several important statistical models, including linear regression

and generalized linear models. For linear regression, we extend the existing results to weighted and

adaptive Lasso. For the GLMs, the !q,q ≥ 1 error bounds for a general q ≥ 1 for the GLMs are

not available in the literature, although !1 and !2 bounds have been obtained under different sets

of conditions respectively in van de Geer (2008) and ]citeNegahbanRWY10. Our fixed-sample

analysis provides explicit definition of constant factors in an explicit neighborhood of a target. Our

oracle inequalities yields even sharper results for multistage recursive application of adaptive Lasso

based on a suitable concave penalty. The results on the sparsity of the solution to the !1-penalized

convex minimization problem is based on a new approach.

An interesting aspect of the approach taken in this paper in dealing with general convex losses

such as those for the GLM is that the conditions imposed on the Hessian naturally “converge” to

those for the linear regression as the convex loss “converges” to a quadratic form.

A key quantity used in the derivation of the results is the generalized invertibility factor (14),

which grow out of the idea of the !2 restricted eigenvalue but improves upon it. The use of GIF

yields sharper bounds on the estimation and prediction errors. This was discussed in detail in the

context of linear regression in Ye and Zhang (2010).

We assume that the convex function ψ(·) is twice differentiable. Although this assumption is

satisfied in many important and widely used statistical models, it would be interesting to extend the

results obtained in this paper to models with less smooth loss functions, such as those in quantile

regression and support vector machine.
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Appendix A.

Proof of Lemma 1. Since ψ̇(β̂)− ψ̇(β∗) = z− ψ̇(β∗)−g, (3) implies

∆(β̂,β∗) =
〈
β̂,z− ψ̇(β∗)

〉
−λ|Ŵ β̂|1 −

〈
β∗,z− ψ̇(β∗)−g

〉

and |g j|≤ ŵ jλ. Thus, (7) follows from |(z− ψ̇(β∗) j|≤ ŵ jλ and ŵ j ≤ w j in S in Ω0.

For (8), we have hSc = β̂Sc and β∗
Sc = 0, so that in Ω0 (3) gives

∆(β̂,β∗) =
〈
β̂Sc ,{z− ψ̇(β∗)}Sc

〉
−λ|ŴSc β̂Sc |1 −

〈
hS,{z− ψ̇(β∗)−g}S

〉

≤ |WSc β̂Sc |1(z∗1 −λ)+
〈
hS,gS −{z− ψ̇(β∗)}S

〉

≤ |WSc β̂Sc |1(z∗1 −λ)+ |hS|1(z∗0 + |wS|∞λ).

This gives (8). Since ∆(β̂,β∗)> 0, h∈C (ξ,S) when (|wS|∞λ+z∗0)/(λ−z∗1)≤ ξ. For j -∈ S, h j(ψ̇(β+

h)− ψ̇(β)) j = β̂ j(z− ψ̇(β∗)−g) j ≤ |β̂ j|(w jλ−g j)≤ 0. !

Proof of Theorem 4. Let h = β̂−β∗. Since ψ(β) is a convex function,

t−1∆(β∗+ th,β∗) =
∂

∂t

{
ψ(β∗+ th)− t

〈
h, ψ̇(β∗)

〉}

is an increasing function of t. For 0 ≤ t ≤ 1 and in the event Ω1, (8) implies

t−1∆(β∗+ th,β∗)≤ ∆(h+β∗,β∗)< (|wS|∞λ+ z∗0)|hS|1.

By (9) and (14), F(ξ,S;φ0,φ0) ≤ ∆(β∗ + th,β∗)eφ0(th)/{t|hS|1φ0(th)} for φ0(th) ≤ η∗. Thus, for

φ0(th)≤ min{η∗,φ0(h)} and in the event Ω1,

φ0(th)e
−φ0(th) ≤

∆(β∗+ th,β∗)

t|hS|1F(ξ,S;φ0,φ0)
<

|wS|∞λ+ z∗0
F(ξ,S;φ0,φ0)

≤ ηe−η.

If η∗ < φ0(h), the above inequality at φ0(th) = η∗ would give η∗e−η∗
< ηe−η, which contradicts to

η ≤ η∗ ≤ 1. Thus, η∗ ≥ φ0(h) and φ0(th)e−φ0(th) ≤ ηe−η for all 0 ≤ t ≤ 1. This implies φ0(h) ≤
η ≤ η∗. Another application of (8) yields

φ(h)≤
∆(β∗+h,β∗)eφ0(h)

F(ξ,S;φ0,φ)|hS|1
≤

(|wS|∞λ+ z∗0)e
η

F(ξ,S;φ0,φ)
.

We obtain (17) by applying (16) with φ = φ1,S to the right-hand side of (8). !
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Proof of Lemma 8. (i) Since ψ̇(β) = ∑n
i=1 xiψ̇0(xiβ)/n by (23),

Eβ exp
{ n

σ2
〈b,z− ψ̇(β)〉

}
= exp

[ n

∑
i=1

ψ0(xi(β+b))−ψ0(xiβ)− (xib)ψ̇0(xiβ)

σ2

]

= exp
[ n

∑
i=1

∫ 1

0

(xib)2ψ̈0(xi(β+ tb))

σ2
(1− t)dt

]
. (48)

This and (24) imply that for M1|Xb|∞ ≤ η0,

Eβ∗ exp
{ n

σ2
〈b,z− ψ̇(β∗)〉

}
≤ exp

[neη0〈b,Σ∗b〉
2σ2

]
. (49)

Since maxk=0,1 z∗k/λk = max j t
−1
j |z j − ψ̇ j(β∗)| by (5),

Pβ∗

{
max
k=0,1

z∗k/λk > 1
}

≤
p

∑
j=1

Pβ∗

{
|z j − ψ̇ j(β

∗)|> t j

}

≤
p

∑
j=1

Eβ∗ exp
{ n

σ2
b j|z j − ψ̇ j(β

∗)|−
n

σ2
b jt j

}

with b j = e−η0t j/Σ∗
j j. Since M1 maxi j |xi j|b j ≤ η0, (49) gives

Pβ∗

{
max
k=0,1

z∗k/λk > 1
}
≤

p

∑
j=1

2exp
(
−

ne−η0t2
j

2σ2Σ∗
j j

)
.

(ii) If (30) holds, we simply replace ψ̈0(xi(β+ tb)) by c0 in (48). The rest is simpler and omitted. !

Proof of Theorem 9. (i) Since F∗(ξ,S;φ) in (25) is a lower bound of F(ξ,S;φ0,φ) in (14), (32)

follows from Theorem 4 with φ0(b) = M2|b|2. The probability statement follows from Lemma 8.

(ii) Since (18) holds for the φ0(b) in (26), we are allowed to use F∗(ξ,S) = F0(ξ,S;φ0) in Corollary

7. The condition η∗ = ∞ is used since φ0(b) does not control M1|Xb|∞. (iii) We are also allowed to

use φ0(b) = M3|bS|1 in (28) due to M1|Xb|∞ ≤ φ0(b). !

Proof of Theorem 14. Let h = β̂− β∗, w j = ŵ j and S = { j : |β̂ j| > γ0λ}∪ S0. For j -∈ S, w j =

ρ̇λ(|β̃ j|)/λ ≥ {ρ̇λ(0+)−κγ0λ}/λ = 1−κγ0, so that z∗1 = |W−1
Sc {z− ψ̇(β∗)}Sc |∞ ≤ λ0/(1−κγ0) =

λ/A. We also have z∗0 ≤ |z− ψ̇(β∗)|∞ ≤ λ0 = (1−κγ0)λ/A. Since |ŵ|∞ ≤ 1, these bounds for z∗0 and

z∗1 yield

|ŵS|∞λ+ z∗0
λ− z∗1

≤
λ+(1−κγ0)λ/A

λ−λ/A
=

A+1−κγ0

A−1
≤ ξ.

Thus, since |g j|≤ ŵ jλ in (8), Lemma 1 provides

h ∈ C (ξ,S), ∆(β∗+h,β∗)≤ |hS|2
(
|ŵS|2λ+ |{z− ψ̇(β∗)}S|2

)

Since |S\S0|≤ |(β̃−β∗)Sc
0
|22/(γ2

0λ2)≤ !∗, we have by (36)

|wS|∞λ+ z∗0 ≤ λ+λ0 = λ0{1+A/(1−κγ0)}≤ F(ξ,S;φ0,φ0)ηe−η.
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Thus, φ0(h)≤ η by (16), so that by (34) and (36) ,

e−ηF∗|hS|2|h|2 ≤ ∆(β∗+h,β∗)≤ |hS|2
(
|ŵS|2λ+ |{z− ψ̇(β∗)}S|2

)
.

Since |hS|= 0 implies h = 0 for h ∈ C (ξ,S), we find

e−ηF∗|h|2 ≤ |ŵS|2λ+ |{z− ψ̇(β∗)}S|2. (50)

Since ŵ jλ = ρ̇λ(|β̃ j|)≤ ρ̇λ(|β∗
j |)+κ|β̃ j −β∗

j |, we have

|ŵS|2λ ≤ |ρ̇λ(|β∗
S0
|)|2 +κ|β̃−β∗|2.

Since |z− ψ̇(β∗)|∞ ≤ λ0 = (1−κγ0)λ/A and |β̃ j −β∗
j |= |β̃ j|≥ γ0λ for j ∈ S\S0,

|{z− ψ̇(β∗)}S|2 ≤ |{z− ψ̇(β∗)}S0 |2 + |S\S0|1/2(1−κγ0)λ/A

≤ |{z− ψ̇(β∗)}S0 |2 + |β̃−β∗|2(1−κγ0)/(γ0A).

Inserting the above inequalities into (50), we find that

e−ηF∗|β̂−β∗|2 ≤ |ρ̇λ(|β∗
S0
|)|2 + |{z− ψ̇(β∗)}S0 |2 +

(
κ+

1

γ0A
−

κ

A

)
|β̃−β∗|2.

The probability statement follows directly from (35) with the union bound. "
Proof of Theorem 15. Let R(!) be as in Remark 16. For |z− ψ̇(β∗)|∞ ≤ λ0, (16) of Theorem 4

gives |β̂(0)−β∗|2 ≤ eη(λ+λ0)/F(ξ0,S0;φ0, | · |2) = R(0). Under conditions (38) and (40), we have

R(!) ≤ γ0λ
√
!∗ for all ! ≥ 0. We prove (39) by induction. We have already proved (39) for ! = 0.

For ! ≥ 1, we let β̃ = β̂(!−1) and apply Theorem 14: |β̂(!)−β∗|2 ≤ (1− r0)R(∞) + r0R(!−1) = R(!).

The probability statement follows directly from (35) with the union bound. "
Proof of Theorem 18. Let z̃ = z− ψ̇(β∗) and λ be fixed. Consider

β̂(λ, t) = argmin
β

{
ψ(β)−〈β, ψ̇(β∗)+ tz̃〉+ tλ

p

∑
j=1

ŵ j|β j| : βSc = 0
}

(51)

as an artificial path for 0 ≤ t ≤ 1. For each t, the KKT conditions for β̂(λ, t) are

gS(λ, t) = tλŴSuS(λ, t), u j(λ, t)

{
= sgn(β̂ j(λ, t)) ∀β̂ j(λ, t) -= 0

∈ [−1,1], ∀ j ∈ S,

where g(λ, t) =−ψ̇(β̂(λ, t))+ ψ̇(β∗)+ tz̃. Since (51) is constrained to βSc = 0 and both the error z̃

and the penalty level λ are scaled with t, Theorem 4 with ξ = 0 yields

φ0

(
β̂(λ, t)−β∗)≤ ηt → 0 with ηte

−ηt = tηe−η, ∀ 0 < t ≤ 1. (52)

Let St = { j : β̂ j(λ, t) -= 0}. Applying the differentiation operator D = (∂/∂t) to the KKT condi-

tions, we find that almost everywhere in t,

(Dg)St (λ, t) = z̃St − ψ̈St (β̂(λ, t)){(Dβ̂)(λ, t)}St = λŴSt uSt (λ, t).
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It follows that

(Dβ̂)St (λ, t) = {ψ̈St (β̂(λ, t))}
−1{z̃St −λŴSt uSt (λ, t)} (53)

and with an application of the chain rule,

(Dg)Sc(λ, t) = z̃Sc − ψ̈Sc,St (β̂(λ, t)){ψ̈St (β̂(λ, t))}
−1{z̃St −λŴSt uSt (λ, t)}.

Since g(λ, t) is almost differentiabe and β̂(λ,0+) = β∗, we have g(λ,0+) = 0 and

gSc(λ,1−) =
∫ 1

0

[
z̃Sc − ψ̈Sc,St (β̂(λ, t)){ψ̈St (β̂(λ, t))}

−1{z̃St −λŴSt uSt (λ, t)}
]
dt.

Thus, (52), (41), and (42) imply

|Ŵ−1
Sc gSc(λ,1−)|∞ ≤ |Ŵ−1

Sc z̃Sc |∞ +κ1|z̃S|∞ +κ0λ|uSt (λ, t)|∞,

which is smaller than λ in the event in (43). Thus, since ψ̈S(β̂(λ,1−)) is of full rank, β̂(λ,1−) is

the unique solution of the KKT conditions (3) for β̂. This completes the proof of part (i).

For part (ii), we observe that (44) implies S = { j : β∗
j -= 0}. Since β̂(λ,0+) = β∗, there exists

t1 > 0 such that uS(λ, t) = sgn(β∗
S) for all 0 < t < t1. By (52), β̂(λ, t) ∈ B0 for 0 < t < t1. It follows

from (53) and (44) that

|(Dβ̂)S(λ, t)|∞ ≤
∥∥{ψ̈St (β̂(λ, t))}

−1
∥∥

∞
|z̃S −λŴS sgn(β∗

S)|∞ < min
j∈S

|β∗
j |− ε1

for 0 < t < t1 and some ε1 > 0. Since β̂(λ,0+)= β∗, this implies |β̂S(λ, t)−β∗
S|∞ < min j∈S |β∗

j |−ε1

for all 0 < t < t1 ∧1. It follows that sgn(β̂(λ, t)) = sgn(β∗) for 0 < t ≤ 1 by the continuity of β̂(λ, t)
in t, that is, t1 = 1. Consequently, conditions (41), and (42) are only needed for the smaller class B0

in the proof of part (i). This gives β̂(λ,1) = β̂ and completes the proof of part (ii).

Finally, in part (iii), F0(ξ,S;φ0,φ0) is simply replaced by its lower bounds with the respective

φ0. "
Proof of Theorem 19. Suppose the event Ω1 in (15) happens, so that ŵ j ≥ w j for j -∈ S and the

conclusion of Theorem 4 hold. Let h = β̂−β∗ and Σ̂ =
∫ 1

0 ψ̈(β∗+ xh)dx. It follows from (1) that

Σ̂h = ψ̇(β∗+h)− ψ̇(β∗) = !̇(β̂)− !̇(β∗). By the KKT conditions (3),

|(Σ̂h) j|= |(!̇(β̂)− !̇(β∗)) j|≥ ŵ jλ− z j ≥ w j(λ− z∗1)> 0, j -∈ S.

Let B ⊆ { j -∈ S : β̂ j -= 0} with |B|≤ d1. It follows from Theorem 4 that φ0(h)≤ η ≤ η∗, so that (45)

implies max|u|2=1 |(W−1Σ̂1/2u)B|22 = λmax(W
−2
B Σ̂B)≤ κ+(d1). Thus, by the definition of ∆(β,β∗) in

(4),

(λ− z∗1)
2|B|≤ |(W−1Σ̂h)B|22 ≤ κ+(d1)〈h, Σ̂h〉= κ+(d1)∆(β

∗+h,β∗).

This and the prediction bound in Theorem 4 yield

|B|≤
κ+(d1)∆(β∗+h,β∗)

(λ− z∗1)
2

≤
κ+(d1)eη(|wS|∞λ+ z∗0)

2|S|
(λ− z∗1)

2F(ξ,S;φ0,φ1,S)
≤

κ+(d1)eηξ2|S|
F(ξ,S;φ0,φ1,S)

< d1.
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Since all subsets B ⊆ { j -∈ S : β̂ j -= 0} with |B| ≤ d1 satisfies |B| < d1, it must hold that #{ j -∈ S :

β̂ j -= 0}< d1. !

Proof of Theorem 20. Let z̃ = z− ψ̇(β∗) = −!̇(β∗) and β̂(λ, t) be the artificial estimator in (51)

with ŵ j = 1, and h(λ, t) = β̂(λ, t)−β∗. Let λ∗ ≤ λ∗ be penalty levels satisfying

[λ∗,λ
∗]⊆ ∩0<t≤1

{
λ : φ0

(
h(λ, t)

)
≤ η,h(λ, t) ∈ C (ξ,S),

∣∣(Σ∗)−1/2z̃
∣∣
2
≤

αλ
√

d1

eη
√

c∗

}
. (54)

We pick such an interval [λ∗,λ∗] containing the penalty level λ of concern in the theorem. This is

allowed by Lemma 1 and Theorem 4. We first prove the stronger conclusion

max
λ∗≤λ≤λ∗

max
0<t≤1

#{ j : β̂ j(λ, t) -= 0, j -∈ S}< d1 (55)

under the additional assumption

min
λ∗≤λ≤λ∗

min
0<t≤1

#{ j : β̂ j(λ, t) -= 0, j -∈ S}≤ d1. (56)

Let g(λ, t) = tz̃+ ψ̇(β∗)− ψ̇(β̂(λ, t)) be the negative gradient at β̂(λ, t) in (51). By the KKT

conditions for (51), sgn(β̂ j(λ, t±)) -= 0 implies |g(λ, t)| = tλ. Thus, (56) implies the existence of

λ ∈ [λ∗,λ∗], t1 ∈ (0,1], and A1 ⊂ {1, . . . , p} satisfying

{
j : sgn(β̂ j(λ, t1)) -= 0

}
∪S ⊆ A1 ⊆

{
j : |g(λ, t1)|= t1λ

}
∪S, |A1|≤ d1 + |S|. (57)

Moreover, if maxλ∗≤λ≤λ∗ max0<t≤1 #{ j : β̂ j(λ, t) -= 0, j -∈ S}≥ d1, then by the continuity of β̂(λ, t),
it would be possible to restrict (57) to |A1|= d1+ |S| with some different λ ∈ [λ∗,λ∗] and t1 ∈ (0,1].
Therefore, it suffices to deny this possibility by proving |A1|< d1 + |S| based on (57) and (54). Let

A0 = A1 \S. We prove |A0|< d1, which is equivalent to |A1|< d1 + |S|.
Let v(A) = (v jI{ j ∈ A}, j ∈ A1)′ ∈RA1 and vA = (v j, j ∈ A)′ ∈RA for all vectors v = (v1, . . . ,vp)′.

Let h = h(λ, t1), Σ̂ =
∫ 1

0 ψ̈(β∗+xh)dx, and g = g(λ, t1) = t1z̃+ ψ̇(β∗)− ψ̇(β∗+h) = t1z̃− Σ̂h. Since

hAc
1
= 0, Σ̂−1

A1
g(A1) = t1Σ̂−1

A1
z̃A1 − Σ̂−1

A1
(Σ̂h)A1 = t1Σ̂−1

A1
z̃A1 −hA1 . Thus, since g j = t1λsgn(h j) for j ∈ A0

by the KKT conditions,

〈
g(A0), Σ̂

−1
A1

g(A1)

〉
= t1

〈
g(A0), Σ̂

−1
A1

z̃A1

〉
−
〈
g(A0),hA1

〉
≤ t1

〈
g(A0), Σ̂

−1
A1

z̃A1

〉
.

Since |Σ̂−1/2
A1

g(A0)|
2
2 + |Σ̂−1/2

A1
g(A1)|

2
2 = |Σ̂−1/2

A1
g(S)|22 +2〈g(A0), Σ̂

−1
A1

g(A1)〉, we have

|Σ̂−1/2
A1

g(A0)|
2
2 + |Σ̂−1/2

A1
g(A1)|

2
2 ≤ |Σ̂−1/2

A1
g(S)|22 +2t1|Σ̂

−1/2
A1

g(A0)|2|Σ̂
−1/2
A1

z̃A1 |2.

By (54) and (46), |Σ̂−1/2
A1

z̃A1 |2 ≤ eη/2|(Σ∗
A1
)−1/2z̃A1 |2 ≤ αλ

√
|A0|/(c∗eη), so that

(1−α)|Σ̂−1/2
A1

g(A0)|
2
2 + |Σ̂−1/2

A1
g(A1)|

2
2 ≤ |Σ̂−1/2

A1
g(S)|22 +αt2

1 λ2|A0|/(c∗eη).

Moreover, since |A1|≤ d1+ |S|≤ d∗, it follows from (54), (46), and (47) that the eigenvalues of Σ̂A1

all lie in the interval c∗e−η and c∗eη. Thus, since gA0 = t1λsgn(β̂A0),

(1−α)t2
1 λ2|A0|

c∗eη
+

t2
1 λ2|A0|+ |gS|22

c∗eη
≤

|gS|22
c∗e−η

+
αt2

1 λ2|A0|
c∗eη

.
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Since |g|∞ ≤ t1λ, the above inequality gives by algebra the dimension bound

|A0|≤
(e2ηc∗/c∗ −1

2−2α

) |gS|22
t2
1 λ2

≤
(e2ηc∗/c∗ −1

2−2α

)
|S|< d1.

This proves (55) under the additional assumption (56).

Now we prove (56). In the special case of φ0(b) = 0, the condition on λ in (54) is monotone so

that we are allowed to pick λ∗ = ∞. Since β̂(λ,1) = 0 for very large λ, (56) holds automatically for

φ0(b) = 0. By (46), this special case is equivalent to linear regression since the Hessian does not

depend on β. The difference of the general model (1) from linear regression is that the condition

λ+z∗0 ≤ ηe−ηF(ξ,S;φ0,φ0), which excludes large λ, is needed to prove φ0(h(λ, t))≤ η by Theorem

4. To overcome this difficulty, we consider very small t > 0. Let b = (β−β∗)/t. By (51),

t−1
{

β̂(λ, t)−β∗}= argmin
b

{
ψ(β∗+ tb)−〈tb, ψ̇(β∗)+ tz̃〉+ tλ|β∗+ tb|1

}

= argmin
b

{∫ 1

0
(1− x)

〈
tb, ψ̈(β∗+ xtb)tb

〉
dx− t2〈b, z̃〉+ tλ|β∗+ tb|1

}

= argmin
b

{∫ 1

0
(1− x)

〈
b, ψ̈(β∗+ xtb)b

〉
dx−〈b, z̃〉+λ|β∗/t +b|1

}
.

Let S0 = { j : β∗
j -= 0}. Since λ|β∗/t + b|1 − λ|β∗|1/t → λ〈sgn(β∗),b〉+ λ|bSc

0
|1 as t → 0+,

t−1
{

β̂(λ, t)−β∗} converges (along a subsequence if necessary) to

b̂(λ) = argmin
b

{
2−1

〈
b, ψ̈(β∗)b

〉
−〈b, z̃〉+λ〈sgn(β∗),b〉+λ|bSc

0
|1
}
.

Moreover, since z̃− ψ̈(β∗)b̂(λ) is the negative gradient at b̂(λ), we have

{ j : |g j(λ, t)|= tλ, j -∈ S}→ { j -∈ S :
(
z̃− ψ̈(β∗)b̂(λ)

)
j
= λsgn(b̂ j(λ))}. (58)

Since this limit does not depend on φ0(·), the dimension bound (55) in the special case of linear

regression implies that the right-hand side of (58) contains a smaller number of elements than d1.

This gives (56) in the general case by (58) and completes the proof. "
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Abstract

There is growing body of learning problems for which it is natural to organize the parameters into
a matrix. As a result, it becomes easy to impose sophisticated prior knowledge by appropriately
regularizing the parameters under some matrix norm. This work describes and analyzes a system-
atic method for constructing such matrix-based regularization techniques. In particular, we focus on
how the underlying statistical properties of a given problem can help us decide which regularization
function is appropriate.

Our methodology is based on a known duality phenomenon: a function is strongly convex with
respect to some norm if and only if its conjugate function is strongly smooth with respect to the
dual norm. This result has already been found to be a key component in deriving and analyzing
several learning algorithms. We demonstrate the potential of this framework by deriving novel
generalization and regret bounds for multi-task learning, multi-class learning, and multiple kernel
learning.

Keywords: regularization, strong convexity, regret bounds, generalization bounds, multi-task
learning, multi-class learning, multiple kernel learning

1. Introduction

As we tackle more challenging learning problems, there is an increasing need for algorithms that

efficiently impose more sophisticated forms of prior knowledge. Examples include: the group

Lasso problem (for “shared” feature selection across problems), multiple kernel learning, multi-

class prediction, and multi-task learning. A central question here is to understand the performance

of such algorithms in terms of the attendant complexity restrictions imposed by the algorithm. Such

analyses often illuminate the nature in which our prior knowledge is being imposed.

The predominant modern machine learning method for imposing complexity restrictions is

through regularizing a vector of parameters. Much work has gone into understanding the relation-

ship between the nature of the regularization and the implicit prior knowledge imposed, particular

c©2012 Sham M. Kakade, Shai Shalev-Shwartz and Ambuj Tewari.
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for the case of regularization with !2 and !1 norms (where the former is more tailored to rotational

invariance and margins, while the latter is more suited to sparsity—see Ng, 2004). When dealing

with more complex problems, we need systematic tools for designing more complicated regular-

ization schemes. This work examines regularization based on group norms and spectral norms of

matrices. We analyze the performance of such regularization methods and provide general hints for

choosing a regularization function based on the underlying statistical properties of a given problem.

In particular, we use a recently developed methodology, based on the notion of strong con-

vexity, for designing and analyzing the regret or generalization ability of a wide range of learning

algorithms (see, e.g., Shalev-Shwartz, 2007 and Kakade et al., 2008). In fact, most of our efficient

algorithms (both in the batch and online settings) impose some complexity control via the use of

some strictly convex penalty function either explicitly via a regularizer or implicitly in the design

of an online update rule. Central to understanding these algorithms is the manner in which these

penalty functions are strictly convex, that is, the behavior of the “gap” by which these convex func-

tions lie above their tangent planes, which is strictly positive for strictly convex functions. Here,

the notion of strong convexity provides one means to characterize this gap in terms of some general

norm rather than just the standard Euclidean norm.

The importance of strong convexity can be understood using the duality between strong con-

vexity and strong smoothness. Strong smoothness measures how well a function is approximated

at some point by its linearization obtained from a first-order Taylor expansion. Linear functions

are easy to manipulate (e.g., because of the linearity of expectation). Hence, if a function is suf-

ficiently smooth we can more easily control its behavior. We further distill the analysis given by

Shalev-Shwartz (2007) and Kakade et al. (2008): based on the strong-convexity/smoothness duality,

we derive a key inequality which seamlessly enables us to design and analyze a family of learning

algorithms.

Our focus in this work is on learning with matrices. We characterize a number of matrix based

regularization functions, of recent interest, as being strongly convex functions. This immediately

allows us to derive learning algorithms by relying on the family of learning algorithms mentioned

previously. Specifying the general performance bounds for the specific matrix based regularization

method, we are able to systematically decide which regularization function is more appropriate

based on underlying statistical properties of a given problem.

1.1 Our Contributions

This paper has a two-fold aim. First, we want to provide a unified framework for obtaining regret

and generalization error bounds for algorithms based on strongly convex regularizers. We hope that

it lets us view a large amount of previous work in this area from a unified perspective. Whether we

have succeeded in our attempt or not is for the reader to judge. Second, we want to demonstrate that

the proposed framework is also capable to generating some novel results.

Contributions towards the first aim include the following.

• We show how the framework based on strong convexity/strong smoothness duality (see Shalev-

Shwartz, 2007; Kakade et al., 2008) provides a methodology for analyzing matrix based learn-

ing methods, which are of much recent interest. These results reinforce the usefulness of this

framework in providing both learning algorithms, and their associated complexity analysis.

For this reason, we further distill the analysis given by Shalev-Shwartz (2007) and Kakade
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et al. (2008). We emphasize a key inequality which immediately enables us to design and

analyze a family of learning algorithms.

• We provide template algorithms (both in the online and batch settings) for a number of ma-

chine learning problems of recent interest, which use matrix parameters. In particular, we

provide a simple derivation of generalization/mistake bounds for: (i) online and batch multi-

task learning using group or spectral norms, (ii) online multi-class categorization using group

or spectral norms, and (iii) multiple kernel learning.

For the expert reader, who may want to jump directly to novel results, we summarize the new

results below.

• We generalize recent results of Juditsky and Nemirovski (2008) to obtain a general result on

the strong convexity/strong smoothness of certain group norms (Theorem 13).

• For the case of multi-class learning, we describe and analyze a new “group perceptron” al-

gorithm (Algorithm 3) and show that with a shared structure between classes, this algorithm

can significantly outperform previously proposed multi-class perceptron algorithms (Corol-

lary 24).

• Our unified analysis simplifies previous analyses of recently proposed algorithms. For ex-

ample, the generality of this framework allows us to simplify the proofs of previously pro-

posed regret bounds for online multi-task learning (e.g., Cavallanti et al., 2008; Agarwal et al.,

2008). Moreover, our multi-task guarantees (Corollaries 20 and 22) are valid for “heteroge-

nous” tasks also: one task might be a regression task using squared loss, another might be

a classification task using logistic loss and yet another task might be using hinge loss for

classification.

• Bounds that follow immediately from our analysis are sometimes much sharper than previous

results. For instance, Theorem 25 improves upon the bounds for multiple kernel learning

given by Lanckriet et al. (2004) and Srebro and Ben-David (2006).

1.2 Related Work

We first discuss related work on learning with matrix parameters and then discuss the use of strong

convexity in learning.

1.2.1 MATRIX LEARNING

This is growing body of work studying learning problems in which the parameters can be orga-

nized as matrices. Several examples are multi-class categorization (Crammer and Singer, 2000),

multi-task and multi-view learning (Cavallanti et al., 2008; Agarwal et al., 2008), and online PCA

(Warmuth and Kuzmin, 2006). It was also studied under the framework of group Lasso (Yuan and

Lin, 2006; Obozinski et al., 2010; Bach, 2008).

In the context of learning vectors (rather than matrices), the study of the relative performance

of different regularization techniques based on properties of a given task dates back to Littlestone

(1988) and Kivinen and Warmuth (1997). In the context of batch learning, it was studied by several

authors (e.g., see Ng, 2004).
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We also note that much of the work on multi-task learning for regression is on union support

recovery—a setting where the generative model specifies a certain set of relevant features (over all

the tasks), and the analysis here focuses on the conditions and sample sizes under which the union

of the relevant features can be correctly identified (e.g., Obozinski et al., 2010; Lounici et al., 2009).

Essentially, this is a generalization of the issue of identifying the relevant feature set in the standard

single task regression setting, under !1-regularized regression. In contrast, our work focuses on the

agnostic setting of just understanding the sample size needed to obtain a given error rate (rather

than identifying the relevant features themselves). The use of interesting matrix norms like group

norms and Schatten norms in the context of multi-task learning appears in the work of Argyriou

et al. (2008).

We also discuss related work on kernel learning in Section 6. Our analysis here uses the equiv-

alence between kernel learning and group Lasso (as noted by Bach, 2008).

1.2.2 STRONG CONVEXITY/STRONG SMOOTHNESS

The notion of strong convexity takes its roots in optimization. Zalinescu (2002) attributes it to a

paper of Polyak in the 1960s. Relatively recently, its use in machine learning has been two fold: in

deriving regret bounds for online algorithms and generalization bounds in batch settings.

The duality of strong convexity and strong smoothness was first used by Shalev-Shwartz and

Singer (2006) and Shalev-Shwartz (2007) in the context of deriving low regret online algorithms.

Here, once we choose a particular strongly convex penalty function, we immediately have a family

of algorithms along with a regret bound for these algorithms that is in terms of a certain strong

convexity parameter. A variety of algorithms (and regret bounds) can be seen as special cases.

A similar technique, in which the Hessian is directly bounded, is described by Grove et al.

(2001) and Shalev-Shwartz and Singer (2007). Another related approach involved bounding a Breg-

man divergence (Kivinen and Warmuth, 1997, 2001; Gentile, 2003) (see Cesa-Bianchi and Lugosi,

2006 for a detailed survey). The Bregman approach also implicitly relies on exploiting the strong

convexity of the underlying Bregman function. Two canonical functions here are: 1
2‖ ·‖

2
2, which is

strongly convex w.r.t. !2 norm, and negative entropy, which is strongly convex w.r.t. !1 norm. These

lead to additive and multiplicative updates respectively. Another interesting application of the very

same duality is for deriving and analyzing boosting algorithms (Shalev-Shwartz and Singer, 2008).

More recently, Kakade et al. (2008) showed how to use the very same duality for bounding the

Rademacher complexity of classes of linear predictors. That the Rademacher complexity is closely

related to Fenchel duality was shown in Meir and Zhang (2003), and the work by Kakade et al.

(2008) made the further connection to strong convexity. Again, under this characterization, a num-

ber of generalization and margin bounds (for methods which use linear prediction) are immediate

corollaries, as one only needs to specify the strong convexity parameter from which these bounds

easily follow (see Kakade et al., 2008 for details).

The concept of strong smoothness (essentially a second order upper bound on a function) has

also been in play in a different literature: the analysis of the concentration of martingales in smooth

Banach spaces (Pinelis, 1994; Pisier, 1975). This body of work seeks to understand the concen-

tration properties of a random variable ‖Xt‖, where Xt is a (vector valued) martingale and ‖ · ‖ is a

smooth norm, say an Lp-norm.

Recently, Juditsky and Nemirovski (2008) used the fact that a norm is strongly convex if and

only if its conjugate is strongly smooth. This duality was useful in deriving concentration properties
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of a random variable ‖M‖, where now M is a random matrix. The norms considered here were the

(Schatten) Lp-matrix norms and certain “block” composed norms (such as the ‖ ·‖2,q norm).

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we describe a general family of learning

algorithms. In particular, after presenting the duality of strong-convexity/strong-smoothness, we

isolate an important inequality (Corollary 4) and show that this inequality alone seamlessly yields

regret bounds in the online learning model and Rademacher bounds (that leads to generalization

bounds in the batch learning model). We further highlight the importance of strong convexity to

matrix learning applications by drawing attention to families of strongly convex functions over

matrices. Next, in Section 3 we show how the obtained bounds can be used for systematically

choosing an adequate prior knowledge (i.e., regularization) based on properties of the given task.

We then turn to describe the applicability of our approach to more complex prediction problems.

In particular, we study multi-task learning (Section 4), multi-class categorization (Section 5), and

kernel learning (Section 6). Naturally, many of the algorithms we derive have been proposed before.

Nevertheless, our unified analysis enables us to simplify previous analyzes, understand the merits

and pitfalls of different schemes, and even derive new algorithms/analyses.

2. Preliminaries and Techniques

In this section we describe the necessary background. Most of the results below are not new and

are based on results by Shalev-Shwartz (2007), Kakade et al. (2008), and Juditsky and Nemirovski

(2008). Nevertheless, we believe that the presentation given here is simpler and slightly more gen-

eral.

Our results are based on basic notions from convex analysis and matrix computation. The reader

not familiar with some of the objects described below may find short explanations in Appendix A.

2.1 Notation

We consider convex functions f : X →R∪{∞}, where X is a Euclidean vector space equipped with

an inner product 〈·, ·〉. We denote R∗ = R∪ {∞}. The subdifferential of f at x ∈ X is denoted by

∂ f (x). The Fenchel conjugate of f is denoted by f ". Given a norm ‖ ·‖, its dual norm is denoted by

‖ ·‖". We say that a convex function f is V -Lipschitz w.r.t. a norm ‖ ·‖ if for all x,x′ ∈ X we have

| f (x)− f (x′)|≤V‖x− x′‖. Of particular interest are p-norms, ‖x‖p = (∑i |xi|p)1/p.

When dealing with matrices, we consider the vector space X = Rm×n of real matrices of size

m× n and the vector space X = Sn of symmetric matrices of size n× n, both equipped with the

inner product, 〈X,Y〉 := Tr(X-Y). Given a matrix X, the vector σ(X) is the vector that contains

the singular values of X in a non-increasing order. For X ∈ Sn, the vector λ(X) is the vector that

contains the eigenvalues of X arranged in non-increasing order.

2.2 Strong Convexity–Strong Smoothness Duality

Recall that the domain of f : X → R∗ is {x : f (x) < ∞} (allowing f to take infinite values is the

effective way to restrict its domain to a proper subset of X ). We first define strong convexity.
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Definition 1 A function f : X → R∗ is β-strongly convex w.r.t. a norm ‖ · ‖ if for all x,y in the

relative interior of the domain of f and α ∈ (0,1) we have

f (αx+(1−α)y)≤ α f (x)+(1−α) f (y)− 1
2 βα(1−α)‖x− y‖2.

We now define strong smoothness. Note that a strongly smooth function f is always finite.

Definition 2 A function f : X → R is β-strongly smooth w.r.t. a norm ‖ · ‖ if f is everywhere

differentiable and if for all x,y we have

f (x+ y)≤ f (x)+ 〈∇ f (x),y〉+ 1
2 β‖y‖2.

The following theorem states that strong convexity and strong smoothness are dual properties.

Recall that the biconjugate f "" equals f if and only if f is closed and convex.

Theorem 3 (Strong Convexity/Strong Smoothness Duality) Assume that f is a closed and convex

function. Then f is β-strongly convex w.r.t. a norm ‖ ·‖ if and only if f " is 1
β -strongly smooth w.r.t.

the dual norm ‖ ·‖".

Subtly, note that while the domain of a strongly convex function f may be a proper subset of X
(important for a number of settings), its conjugate f " always has a domain which is X (since if f "

is strongly smooth then it is finite and everywhere differentiable). The above theorem can be found,

for instance, in Zalinescu (2002) (see Corollary 3.5.11 on p. 217 and Remark 3.5.3 on p. 218). In

the machine learning literature, a proof of one direction (strong convexity ⇒ strong smoothness)

can be found in Shalev-Shwartz (2007). We could not find a proof of the reverse implication in a

place easily accessible to machine learning researchers. So, a self-contained proof is provided in

the appendix.

The following direct corollary of Theorem 3 is central in proving both regret and generalization

bounds.

Corollary 4 If f is β strongly convex w.r.t. ‖ · ‖ and f "(0) = 0, then, denoting the partial sum

∑ j≤i v j by v1:i, we have, for any sequence v1, . . . ,vn and for any u,

n

∑
i=1

〈vi,u〉− f (u)≤ f "(v1:n)≤
n

∑
i=1

〈∇ f "(v1:i−1),vi〉+
1

2β

n

∑
i=1

‖vi‖2
" .

Proof The first inequality is Fenchel-Young and the second follows from an easy induction and the

definition of smoothness.

2.3 Implications of Strong-convexity / Strong-smoothness Duality

We consider two well-known learning models.

• Online convex optimization: Let W be a convex set. Online convex optimization is a two

player repeated game. On round t of the game, the learner (first player) should choose wt ∈
W and the environment (second player) responds with a convex function over W , that is,

lt : W → R. The goal of the learner is to minimize its regret defined as:

1

n

n

∑
t=1

lt(wt)− min
w∈W

1

n

n

∑
t=1

lt(w) .
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• Batch learning of linear predictors: Let D be a distribution over X ×Y which is unknown.

The goal is to learn a prediction rule from X to Y . The prediction rule we use is based on

a linear mapping x /→ 〈w,x〉, and the quality of the prediction is assessed by a loss function

l(〈w,x〉 ,y). Our primary goal is to find w that has low risk (a.k.a. generalization error),

defined as L(w) = E[l(〈w,x〉 ,y)], where expectation is with respect to D . To do so, we can

sample n i.i.d. examples from D and observe the empirical risk, L̂(w) = 1
n ∑n

i=1 l(〈w,xi〉 ,yi).
The goal of the learner is to find ŵ with a low excess risk defined as:

L(ŵ)− min
w∈W

L(w) ,

where W is a set of vectors that forms the comparison class.

We now seamlessly provide learning guarantees for both models based on Corollary 4. We start

with the online convex optimization model.

2.3.1 REGRET BOUND FOR ONLINE CONVEX OPTIMIZATION

Algorithm 1 provides one common algorithm (online mirror descent) which achieves the following

regret bound. It is one of a family of algorithms that enjoy the same regret bound (see Shalev-

Shwartz, 2007). Note that successfully implementing the algorithm requires the ability to efficiently

compute the subgradient ∂lt of the loss function and the gradient mapping ∇ f ".

Theorem 5 (Regret) Suppose Algorithm 1 is used with a function f that is β-strongly convex w.r.t.

a norm ‖ · ‖ on W and that f "(0) = 0. Suppose the loss functions lt are convex and V -Lipschitz

w.r.t. the dual norm ‖ ·‖". Then, the algorithm run with any positive η enjoys the regret bound,

T

∑
t=1

lt(wt)−min
u∈W

T

∑
t=1

lt(u)≤
maxu∈W f (u)

η
+

ηV 2T

2β
.

Proof Apply Corollary 4 to the sequence −ηv1, . . . ,−ηvT to get, for all u,

−η
T

∑
t=1

〈vt ,u〉− f (u)≤−η
T

∑
t=1

〈vt ,wt〉+
1

2β

T

∑
t=1

‖ηvt‖2
" .

Using the fact that lt is V -Lipschitz, we get ‖vt‖" ≤ V . Plugging this into the inequality above and

rearranging gives, ∑T
t=1 〈vt ,wt −u〉 ≤ f (u)

η + ηV 2T
2β . By convexity of lt , lt(wt)− lt(u) ≤ 〈vt ,wt−u〉.

Therefore, ∑T
t=1 lt(wt)−∑T

t=1 lt(u) ≤ f (u)
η + ηV 2T

2β . Since the above holds for all u ∈W the result

follows.

Remark 6 The result above assumes strong convexity and derives an O(
√

T ) rate (once we opti-

mize over η). It seems that strong convexity is required to get such rates in general. In particular,

when the “weight vector” comes from an infinite dimensional normed space with norm ‖ · ‖ and

the functions lt are 1-Lipschitz w.r.t. the dual norm ‖ ·‖", a necessary and sufficient condition for a

O(
√

T ) regret rate is that the Martingale type of the dual space is 2. Moreover, this last condition is

equivalent to the existence of a strongly convex function in the original normed space. For details,

we refer the interested reader to the work of Sridharan and Tewari (2010).
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Algorithm 1 Online Mirror Descent

w1← ∇ f "(0)
for t = 1 to T do

Play wt ∈W
Receive lt and pick vt ∈ ∂lt(wt)
wt+1← ∇ f " (−η∑t

s=1 vt)
end for

2.3.2 GENERALIZATION BOUND FOR THE BATCH MODEL VIA RADEMACHER COMPLEXITY

Let T = (x1, . . . ,xn) ∈ X n be the examples in a training set obtained by sampling i.i.d. examples

from D . For a class of real valued functions F ⊆RX , define its Rademacher complexity on T to be

RT (F ) := E

[
sup
f∈F

1

n

n

∑
i=1

εi f (xi)

]
.

Here, the expectation is over εi’s, which are i.i.d. Rademacher random variables, that is, P(εi =
−1) = P(ε1 =+1) = 1

2 . It is well known that bounds on Rademacher complexity of a class imme-

diately yield generalization bounds for classifiers picked from that class (assuming the loss function

is Lipschitz). Recently, Kakade et al. (2008) proved Rademacher complexity bounds for classes

consisting of linear predictors using strong convexity arguments. We now give a quick proof of

their main result using Corollary 4. This proof is essentially the same as their original proof but

highlights the importance of Corollary 4.

Theorem 7 (Generalization) Let f be a β-strongly convex function w.r.t. a norm ‖ · ‖ and assume

that f "(0) = 0. Let X = {x : ‖x‖" ≤ X} and W = {w : f (w)≤ fmax}. Consider the class of linear

functions, F = {x /→ 〈w,x〉 : w ∈W }. Then, for any data set T ∈ X n, we have

RT (F )≤ X

√
2 fmax

βn
.

Proof Let λ > 0. Apply Corollary 4 with u = w and vi = λεixi to get,

sup
w∈W

n

∑
i=1

〈w,λεixi〉 ≤
λ2

2β

n

∑
i=1

‖εixi‖2
"+ sup

w∈W

f (w)+
n

∑
i=1

〈∇ f "(v1:i−1),εixi〉

≤
λ2X2n

2β
+ fmax +

n

∑
i=1

〈∇ f "(v1:i−1),εixi〉 .

Now take expectation on both sides. The left hand side is nλRT (F ) and the last term on the right

hand side becomes zero. Dividing throughout by nλ, we get, RT (F )≤ λX2

2β + fmax

nλ . Optimizing over

λ gives us the result.

Combining the above with the contraction lemma and standard Rademacher based generaliza-

tion bounds (see, e.g., Bartlett and Mendelson, 2002; Kakade et al., 2008) we obtain the following

result.
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Corollary 8 Let f be a β-strongly convex function w.r.t. a norm ‖ ·‖ and assume that f "(0) = 0. Let

X = {x : ‖x‖" ≤ X} and W = {w : f (w)≤ fmax}. Let l be an ρ-Lipschitz scalar loss function and

let D be an arbitrary distribution over X ×Y . Then, the algorithm that receives n i.i.d. examples

and returns ŵ that minimizes the empirical risk, L̂(w), satisfies

E

[
L(ŵ)− min

w∈W
L(w)

]
≤ 2ρX

√
2 fmax

βn
,

where expectation is with respect to the choice of the n i.i.d. examples.

We note that it is also easy to obtain a generalization bound that holds with high probability, but for

simplicity of the presentation we stick to expectations.

2.4 Strongly Convex Matrix Functions

Before we consider strongly convex matrix functions, let us recall the following result about strong

convexity of vector !q norm. Its proof is standard and can be found, for example, in the work of

Shalev-Shwartz (2007).

Lemma 9 Let q ∈ [1,2]. The function f : Rd → R defined as f (w) = 1
2‖w‖

2
q is (q− 1)-strongly

convex with respect to ‖ ·‖q over Rd.

We mainly use the above lemma to obtain results with respect to the norms ‖ ·‖2 and ‖ ·‖1. The

case q = 2 is straightforward. Obtaining results with respect to ‖ · ‖1 is slightly more tricky since

for q = 1 the strong convexity parameter is 0 (meaning that the function is not strongly convex). To

overcome this problem, we shall set q to be slightly more than 1, for example, q= ln(d)/(ln(d)−1).
For this choice of q, the strong convexity parameter becomes q−1 = 1/(ln(d)−1)≥ 1/ ln(d) and

the value of p corresponding to the dual norm is p = (1−1/q)−1 = ln(d). Note that for any x ∈Rd

we have

‖x‖∞ ≤ ‖x‖p ≤ (d‖x‖p
∞)

1/p = d1/p‖x‖∞ = e‖x‖∞ ≤ 3‖x‖∞ .

Hence the dual norms are also equivalent up to a factor of 3: ‖w‖1 ≥ ‖w‖q ≥ ‖w‖1/3. The above

lemma therefore implies the following corollary.

Corollary 10 The function f : Rd → R defined as f (w) = 1
2‖w‖

2
q for q = ln(d)

ln(d)−1
is 1/(3ln(d))-

strongly convex with respect to ‖ ·‖1 over Rd.

We now consider two families of strongly convex matrix functions.

2.4.1 SCHATTEN q-NORMS

The first result we need is the counterpart of Lemma 9 for the q-Schatten norm defined as ‖X‖S(q) :=
‖σ(X)‖q (see Argyriou et al., 2010 for some recent work involving general Schatten norms). This

extremely useful result can be found in Ball et al. (1994). The proof there uses complex analysis.

We are not aware of an elementary proof.

Theorem 11 (Schatten matrix functions) Let q ∈ [1,2]. The function F : Rm×n → R defined as

F(X) = 1
2‖σ(X)‖2

q is (q− 1)-strongly convex w.r.t. the q-Schatten norm ‖X‖S(q) := ‖σ(X)‖q over

Rm×n.
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As above, choosing q to be lnm′

ln(m′)−1
for m′ = min{m,n} gives the following corollary.

Corollary 12 The function F : Rm×n → R defined as F(W) = 1
2‖W‖

2
S(q) for q = ln(m′)

ln(m′)−1
is

1/(3ln(m′))-strongly convex with respect to ‖ ·‖S(1) over Rm×n.

2.4.2 GROUP NORMS

Let X = (X1X2 . . .Xn) be a m×n real matrix with columns Xi ∈Rm. Given two (vector) norms ‖ ·‖r

and ‖ ·‖p, we can define a new norm ‖X‖r,p as

‖X‖r,p := ‖(‖X1‖r, . . . ,‖Xn‖r)‖p .

That is, we apply ‖ ·‖r to each column of X to get a vector in Rn to which we apply the norm ‖ ·‖p

to get the value of ‖X‖r,p. It is easy to check that this is indeed a norm. The dual of ‖ ·‖r,p is ‖ ·‖s,t

where 1/r+1/s = 1 and 1/p+1/t = 1. The following theorem, which appears in a slightly weaker

form in the work of Juditsky and Nemirovski (2008), provides us with an easy way to construct

strongly convex group norms. We provide a proof in the appendix which is much simpler than that

of Juditsky and Nemirovski (2008) and is completely “calculus free”.

Theorem 13 (Group Norms) Let Ψ,Φ be absolutely symmetric norms on Rm,Rn. Let Φ2 ◦√ :

Rn→ R∗ denote the following function,

(Φ2 ◦√)(x) := Φ2(
√

x1, . . . ,
√

xn) . (1)

Suppose, (Φ2 ◦√) is a norm on Rn. Further, let the functions Ψ2 and Φ2 be σ1- and σ2-smooth

w.r.t. Ψ and Φ respectively. Then, ‖ ·‖2
Ψ,Φ is (σ1 +σ2)-smooth w.r.t. ‖ ·‖Ψ,Φ.

The condition that the function defined in (1) be a norm may appear strange but in fact it already

occurs in the matrix analysis literature. Norms satisfying it are called quadratic symmetric gauge

functions (or Q-norms) (Bhatia, 1997, p. 89). It is easy to see that ‖ · ‖p for p ≥ 2 is a Q-norm.

Now using strong convexity/strong smoothness duality and the discussion preceding Corollary 10,

we get the following corollary.

Corollary 14 The function F :Rm×n→R defined as F(W)= 1
2‖W‖

2
2,q for q= ln(n)

ln(n)−1
is 1/(3ln(n))-

strongly convex with respect to ‖ ·‖2,1 over Rm×n.

2.5 Putting it All Together

Combining Lemma 9 and Corollary 10 with the bounds given in Theorem 5 and Corollary 8 we

obtain the following two corollaries.

Corollary 15 Let W = {w ∈ Rd : ‖w‖1 ≤W} and let l1, . . . , ln be a sequence of convex functions

that are X-Lipschitz w.r.t. ‖ · ‖∞. Then, online mirror descent run with f (w) = 1
2‖w‖

2
q for q =

ln(d)/(ln(d)−1) achieves the following regret bound:

1

n

n

∑
t=1

lt(wt)− min
w∈W

1

n

n

∑
t=1

lt(w) ≤ X W

√
3ln(d)

n
.
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Corollary 16 Let W = {w : ‖w‖1 ≤W} and let X = {x ∈ Rd : ‖x‖∞ ≤ X}. Let l be an ρ-Lipschitz

scalar loss function and let D be an arbitrary distribution over X ×Y . Then, any minimizer ŵ of

the empirical risk

L̂(w) =
1

n

n

∑
i=1

l(〈w,xi〉 ,yi)

satisfies

E

[
L(ŵ)− min

w∈W
L(w)

]
≤ 2ρX W

√
3ln(d)

n
.

Results of the same flavor can be obtained for learning matrices. For simplicity, we present the

following two corollaries only for the online model, but it is easy to derive their batch counterparts.

Corollary 17 Let W = {W ∈ Rk×d : ‖W‖2,1 ≤W} and let l1, . . . , ln be a sequence of functions

that are X-Lipschitz w.r.t. ‖ · ‖2,∞. Then, online mirror descent run with f (W) = 1
2‖W‖

2
2,q for

q = ln(d)/(ln(d)−1) achieves the following regret bound:

1

n

n

∑
t=1

lt(Wt)− min
W∈W

1

n

n

∑
t=1

lt(W) ≤ X W

√
3ln(d)

n
.

Corollary 18 Let W = {W ∈ Rk×d : ‖W‖S(1) ≤W} and let l1, . . . , ln be a sequence of functions

that are X-Lipschitz w.r.t. ‖ · ‖S(∞). Then, online mirror descent run with f (W) = 1
2‖W‖

2
S(q) for

q = ln(k′)/(ln(k′)−1) achieves the following regret bound:

1

n

n

∑
t=1

lt(Wt)− min
W∈W

1

n

n

∑
t=1

lt(W) ≤ X W

√
3ln(k′)

n
,

where k′ = min{k,d}.

Remark 19 The gradient mapping W /→ ∇ f "(W) that is needed to run the online mirror descent

algorithm can be easily computed both for the group norm ( f (W) = 1
2‖W‖

2
r,p) and Schatten norm

( f (W) = 1
2‖W‖

2
S(q)) cases. In the latter case, a singular value decomposition of W will be needed

(see Theorem 30 in the Appendix).

3. Matrix Regularization

We are now ready to demonstrate the power of the general techniques we derived in the previous

section. Consider a learning problem (either online or batch) in which X is a subset of a matrix

space (of dimension k× d) and we would like to learn a linear predictor of the form X /→ 〈W,X〉
where W is also a matrix of the same dimension. The loss function takes the form l(〈W,X〉 ,y) and

we assume for simplicity that l is 1-Lipschitz with respect to its first argument. For example, l can

be the absolute loss, l(a,y) = |a− y|, or the hinge-loss, l(a,y) = max{0,1− ya}.

For the sake of concreteness, let us focus on the batch learning setting, but we note that the

discussion below is relevant to the online learning model as well. Our prior knowledge on the

learning problem is encoded by the definition of the comparison class W that we use. In particular,
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all the comparison classes we use take the form W = {W : ‖W‖ ≤W}, where the only difference

is what norm do we use. We shall compare the following four classes:

W1,1 = {W : ‖W‖1,1 ≤W1,1} , W2,2 = {W : ‖W‖2,2 ≤W2,2} ,
W2,1 = {W : ‖W‖2,1 ≤W2,1} , WS(1) = {W : ‖W‖S(1) ≤WS(1)} .

Let us denote X∞,∞ = supx∈X ‖X‖∞,∞. We define X2,2,X2,∞,XS(∞) analogously. Applying the

results of the previous section to these classes we obtain the bounds given in Table 1 where for

simplicity we ignore constants.

class W1,1 W2,2 W2,1 WS(1)

bound W1,1 X∞,∞

√
ln(kd)

n W2,2 X2,2

√
1
n W2,1 X2,∞

√
ln(d)

n WS(1) XS(∞)

√
ln(min{d,k})

n

Table 1: List of bounds for learning with matrices. For simplicity we ignore constants.

Let us now discuss which class should be used based on prior knowledge on properties of the

learning problem. We start with the well known difference between W1,1 and W2,2. Note that

both of these classes ignore the fact that W is organized as a k× d matrix and simply refer to W

as a single vector of dimension kd. The difference between W1,1 and W2,2 is therefore the usual

difference between !1 and !2 regularization. To understand this difference, suppose that W is some

matrix that performs well on the distribution we have. Then, we should take the radius of each class

to be the minimal possible while still containing W, namely, either ‖W‖1,1 or ‖W‖2,2. Clearly,

‖W‖2,2 ≤ ‖W‖1,1 and therefore in terms of this term there is a clear advantage to use the class

W2,2. On the other hand, X2,2 ≥ X∞,∞. We therefore need to understand which of these inequalities

is more important. Of course, in general, the answer to this question is data dependent. However,

we can isolate properties of the distribution that can help us choose the better class.

One useful property is sparsity of either X or W. If X is assumed to be s sparse (i.e., it has

at most s non-zero elements), then we have X2,2 ≤
√

sX∞,∞. That is, for a small s, the difference

between X2,2 and X∞,∞ is small. In contrast, if X is very dense and each of its entries is bounded

away from zero, for example, X ∈ {±1}k×d , then ‖X‖2,2 =
√

kd‖X‖∞,∞. The same arguments are

true for W. Hence, with prior knowledge about the sparsity of X and W, we can guess which of the

bounds will be smaller.

Next, we tackle the more interesting cases of W2,1 and WS(1). For the former, recall that we first

apply !2 norm on each column of W and then apply !1 norm on the obtained vector of norm values.

Similarly, to calculate ‖X‖2,∞ we first apply !2 norm on columns of X and then apply !∞ norm on

the obtained vector of norm values. Let us now compare W2,1 to W1,1. Suppose that the columns

of X are very sparse. Therefore, the !2 norm of each column of X is very close to its !∞ norm. On

the other hand, if some of the columns of W are dense, then ‖W‖2,1 can be order of
√

k smaller

than ‖W‖1,1. In that case, the class W2,1 is preferable over the class W1,1. As we show later, this

is the case in multi-class problems, and we shall indeed present an improved multi-class algorithm

that uses the class W2,1. Of course, in some problems, columns of X might be very dense while

columns of W can be sparse. In such cases, using W1,1 is better than using W2,1.
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Now lets compare W2,1 to W2,2. Similarly to the previous discussion, choosing W2,1 over W2,2

makes sense if we assume that the vector of !2 norms of columns, (‖W1‖2, . . . ,‖Wd‖2), is sparse.

This implies that we assume a “group”-sparsity pattern of W, that is, each column of W is either the

all zeros column or is dense. This type of grouped-sparsity has been studied in the context of group

Lasso and multi-task learning (Argyriou et al., 2008). Indeed, we present bounds for multi-task

learning that relies on this assumption. Without the group-sparsity assumption, it might be better to

use W2,2 over W2,1.

Finally, we discuss when it makes sense to use WS(1) (see Srebro et al., 2005 for one of the early

applications of this norm in machine learning). Recall that ‖W‖S(1) = ‖σ(W)‖1, where σ(W) is the

vector of singular values of W, and ‖X‖S(∞) = ‖σ(X)‖∞. Therefore, the class WS(1) should be used

when we assume that the spectrum of W is sparse while the spectrum of X is dense. This means

that the prior knowledge we employ is that W is of low rank while X is of high rank. Note that W2,2

can be defined equivalently as WS(2). Therefore, the difference between WS(1) and W2,2 is similar

to the difference between W1,1 and W2,2 just that instead of considering sparsity properties of the

elements of W and X we consider sparsity properties of the spectrum of W and X.

In the next sections we demonstrate how to apply the general methodology described above in

order to derive a few generalization and regret bounds for problems of recent interest.

4. Multi-task Learning

Suppose we are simultaneously solving k-multivariate prediction problems, where each learning

example is of the form (X,y) where X ∈ X ⊆ Rk×d is a matrix of example vectors with examples

from different tasks sitting in rows of X, and y ∈Rk are the responses for the k problems. To predict

the k responses, we learn a matrix W ∈Rk×d such that Diag(W-X) is a good predictor of y. In this

section, we denote row j of W by w j. The predictor for the jth task is therefore w j. The quality of

a prediction
〈
w j,x j

〉
for the j’th task is assessed by a loss function l j : R×Y j→ R. The total loss

of W on an example (X,y) is defined to be the sum of the individual losses,

l(W,X,y) =
k

∑
j=1

l j(
〈
w j,x j

〉
,y j) .

This formulation allows us to mix regression and classification problems and even use different loss

functions for different tasks. Such “heterogeneous” multi-task learning has attracted recent attention

(Yang et al., 2009).

If the tasks are related, then it is natural to use regularizers that “couple” the tasks together so

that similarities across tasks can be exploited. Considerations of common sparsity patterns (same

features relevant across different tasks) lead to the use of group norm regularizers (i.e., using the

comparison class W2,1 defined in the previous section) while rank considerations (the w j’s lie in a

low dimensional linear space) lead to the use of unitarily invariant norms as regularizers (i.e., the

comparison class is WS(1)).

We now describe online and batch multi-task learning using various matrix norms.
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Algorithm 2 Online Multi-task Mirror Descent

W1← ∇ f "(0)
for t = 1 to T do

Predict using Wt ∈W ⊆ Rk×d

Receive Xt ∈ Rk×d , yt ∈ Rk

Pick Vt whose row j is v
j
t = (l j)′

(〈
w

j
t ,x

j
t

〉
,y j

t

)
x

j
t

Wt+1← ∇ f " (−η∑t
s=1 Vt)

end for

4.1 Online Multi-task Learning

In the online model, on round t the learner first uses Wt to predict the vector of responses and then

it pays the cost

lt(Wt) = l(Wt ,Xt ,yt) =
k

∑
j=1

l j
(〈

w
j
t ,x

j
t

〉
,y j

t

)
.

Let Vt ∈ Rk×d be a sub-gradient of lt at Wt . It is easy to verify that the j’th row of Vt , denoted

v
j
t , is a sub-gradient of l j

(〈
w

j
t ,x

j
t

〉
,y j

t

)
at w

j
t . Assuming that l j is ρ-Lipschitz with respect to its

first argument, we obtain that v
j
t = τ j

t x
j
t for some τ j

t ∈ [−ρ,ρ]. In other words, Vt = Diag(τt)Xt .

It is easy to verify that ‖Vt‖r,p ≤ ρ‖X‖r,p for any r, p ≥ 1. In addition, since any Schatten norm is

sub-multiplicative we also have that ‖Vt‖S(∞) ≤ ‖Diag(τt)‖S(∞) ‖Xt‖S(∞) ≤ ρ‖Xt‖S(∞).

Algorithm 2 is simply the instantiation of Algorithm 1 for the multi-task setting. Using f (W)
to be one of the functions 1

2‖W‖
2
q1,q1

, 1
2‖W‖

2
2,2, 1

2‖W‖
2
2,q2

, 1
2‖W‖

2
S(q3)

, for appropriate choices1 of

q1,q2,q3, we obtain the following result.

Corollary 20 Let W1,1,W2,2,W2,1,WS(1) be the classes defined in Section 3 and let X∞,∞, X2,2

,X2,∞, XS(∞) be the radii of X w.r.t. the corresponding dual norms. Then, Algorithm 2 achieves with

regret bounds given in Table 1 (ignoring constants).

Let us now discuss few implications of these bounds,2 and for simplicity assume that k < d.

Recall that each column of X represents the value of a single feature for all the tasks. As discussed

in the previous section, if the matrix X is dense and if we assume that W is sparse, then using the

class W1,1 is better than using W2,2. Such a scenario often happens when we have many irrelevant

features and only are few features that can predict the target reasonably well. Concretely, suppose

that X∈ {0,1}k×d and that it typically has sx non-zero values. Suppose also that there exists a matrix

W that predicts the targets of the different tasks reasonably well and has sw non-zero values. Then,

the bound for W1,1 is order of sw

√
ln(dk)/n while the bound for W2,2 is order of

√
sw sx/n. Thus,

W1,1 will be better if sw < sx/ ln(dk).
Now, consider the class W2,1. Let us further assume the following. The non-zero elements

of W are grouped into sg columns and are roughly distributed evenly over those columns; The

non-zeros of X are roughly distributed evenly over the columns. Then, the bound for W2,1 is

1. The choices are q1 = ln(kd)/(ln(kd)−1), q2 = ln(d)/(ln(d)−1), q3 = ln(k′)/(ln(k′)−1) where k′ = min{k,d}.

2. We should alert the reader that the discussion here is based on upper bounds on the regret. While we have made the

best effort to derive the tightest bounds we could, our understanding would have a firmer foundation if we also had

matching lower bounds.
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sg

√
(sw/sg)(sx/d) ln(d)/n =

√
sg sw (sx/d) ln(d)/n. This bound will be better than the bound of

W2,2 if sg ln(d)< d and will be better than the bound of W1,1 if sgsx/d < sw. We see that there are

scenarios in which the group norm is better than the non-grouped norms and that the most adequate

class depends on properties of the problem and our prior beliefs on a good predictor W.

As to the bound for WS(1), it is easy to verify that if the rows of W sits in a low dimensional

subspace then the spectrum of W will be sparse. Similarly, the value of ‖X‖S(∞) depends on the

maximal singular value of X, which is likely to be small if we assume that all the “energy” of X is

spread over its entire spectrum. In such cases, WS(1) can be the best choice. This is an example of

a different type of prior knowledge on the problem.

4.2 Batch Multi-task Learning

In the batch setting, we see a data set T = ((X1,y1), . . . ,(Xn,yn)) consisting of i.i.d. samples drawn

from a distribution D over X ×Y . In the k-task setting, X ⊆ Rk×d . Analogous to the single task

case, we define the risk and empirical risk of a multi-task predictor W ∈ Rk×d as:

L̂(W) :=
1

n

n

∑
i=1

k

∑
j=1

l j
(〈

w j,X j
i

〉
,y j

i

)
,

L(W) := E(X,y)∼D

[
k

∑
j=1

l j
(〈

w j,X j
〉
,y j

)
]
.

Let W be some class of matrices, and define the empirical risk minimizer,

Ŵ := argminW∈W L̂(Ŵ) .

To obtain excess risk bounds for Ŵ, we need to consider the k-task Rademacher complexity

R k
T (W ) := E

[
sup

W∈W

1

n

n

∑
i=1

k

∑
j=1

ε j
i

〈
w j,X j

i

〉]
,

because, assuming each l j is ρ-Lipschitz, we have the bound

E

[
L(Ŵ)− min

W∈W
L(W)

]
≤ ρE

[
R k

T (W )
]
.

This bound follows easily from standard results, such as the Lipschitz contraction inequality (Bartlett

and Mendelson, 2002), and Theorem 8 of Maurer (2006). We can use matrix strong convexity to

give the following k-task Rademacher bound.

Theorem 21 (Multi-task Generalization) Suppose F(W) ≤ fmax for all W ∈W for a function F

that is β-strongly convex w.r.t. some (matrix) norm ‖ · ‖. If the norm ‖ · ‖" is invariant under sign

changes of the rows of its argument matrix then, for any data set T , we have, R k
T (W )≤ X

√
2 fmax

βn
,

where X is an upper bound on ‖Xi‖".
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Proof We can rewrite R k
T (W ) as

E

[
sup

W∈W

1

n

n

∑
i=1

k

∑
j=1

ε j
i

〈
w j,X j

i

〉]
= E

[
sup

W∈W

1

n

k

∑
j=1

〈
w j,

n

∑
i=1

ε j
i X

j
i

〉]

= E

[
sup

W∈W

1

n

〈
W,

n

∑
i=1

X̃i

〉]
,

where X̃i ∈ Rk×d is defined by X̃
j
i = ε j

i X
j
i and we have switched to a matrix inner product in the

last line. By the assumption on the dual norm ‖ · ‖", ‖X̃i‖" = ‖Xi‖" ≤ X . Now using Corollary 4

and proceeding as in the proof of Theorem 7, we get, for any λ > 0, R k
T (W ) ≤

(
fmax

λn
+ λX2

2β

)
.

Optimizing over λ proves the theorem.

Note that both group (r, p)-norms and Schatten-p norms satisfy the invariance under row flips

mentioned in the theorem above. Thus, we get the following corollary.

Corollary 22 Let W1,1,W2,2,W2,1,WS(1) be the classes defined in Section 3 and let X∞,∞, X2,2,

X2,∞, XS(∞) be the radii of X w.r.t. the corresponding dual norms. Then, the (expected) excess multi-

task risk of the empirical multi-task risk minimizer Ŵ satisfies the same bounds as given in Table

1.

5. Multi-class Learning

In this section we consider multi-class categorization problems. We focus on the online learning

model. On round t, the online algorithm receives an instance xt ∈ Rd and is required to predict

its label as a number in {1, . . . ,k}. Following the construction of Crammer and Singer (2000), the

prediction is based on a matrix Wt ∈ Rk×d and is defined as the index of the maximal element of

the vector Wtxt . We use the hinge-loss function adapted to the multi-class setting. That is,

lt(Wt) = max
r

(1[r 6=yt ]− (
〈
w

yt
t ,xt

〉
−〈wr

t ,xt〉)) = max
r

(1[r 6=yt ]− (
〈
W,Xr,yt

t

〉
)) ,

where X
r,yt
t is a matrix with xt on the y’th row, −xt on the r’th row, and zeros in all other elements.

It is easy to verify that lt(Wt) upper bounds the zero-one loss, that is, if the prediction of Wt is r

then lt(Wt)≥ 1[r 6=yt ].

A sub-gradient of lt(Wt) is either a matrix of the form −X
r,yt
t or the all zeros matrix. Note that

each column of X
r,yt
t is very sparse (contains only two elements). Therefore,

‖Xr,yt
t ‖∞,∞ = ‖xt‖∞ , ‖Xr,yt

t ‖2,2 =
√

2‖xt‖2 ,

‖Xr,yt
t ‖2,∞ =

√
2‖xt‖∞ , ‖Xr,yt

t ‖S(∞) =
√

2‖xt‖2 .

Based on this fact, we can easily obtain the following result.

Corollary 23 Let W1,1,W2,2,W2,1,WS(1) be the classes defined in Section 3 and let X2 =maxt ‖xt‖2

and X∞ = maxt ‖xt‖∞. Then, there exist online multi-class learning algorithms with regret bounds

given by the following table.
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class W1,1 W2,2 W2,1 WS(1)

bound W1,1 X∞

√
ln(kd)

n W2,2 X2

√
1
n W2,1 X∞

√
ln(d)

n WS(1) X2

√
ln(min{d,k})

n

Let us now discuss the implications of this bound. First, if X2 ≈ X∞, which will happen if

instance vectors are sparse, then W1,1 and W2,1 will be inferior to W2,2. In such a case, using WS(1)

can be competitive if W sits in a low dimensional space so that ‖W‖S(1) ≈ ‖W‖2,2. Using WS(1)

in such a case was previously suggested by Amit et al. (2007), who observed that empirically, the

class WS(1) performs better than W2,2 when there is a shared structure between classes. They only

gave empirical results and our analysis given in Corollary 23 provides a first rigorous regret bound

for their algorithm. Unfortunately, our bound for WS(1) is not better than the bound for W2,2 even in

the low rank case. Explaining the empirical success of the trace-norm based multi-class algorithm

thus remains a challenging open question.

Second, if X2 is much larger than X∞, and if columns of W share common sparsity pattern,

then W2,1 can be factor of
√

k better than W1,1 and factor of
√

d better than W2,2. To demonstrate

this, let us assume that each vector xt is in {±1}d and it represents experts advice of d experts.

Therefore, X2 =
√

d X∞. Next, assume that a combination of the advice of s8 d experts predicts

very well the correct label (e.g., the label is represented by the binary number obtained from the

advice of s = log(k) experts). In that case, W will be a matrix such that all of its columns will be 0

except s columns which will take values in {±1}. The bounds for W1,1,W2,2, and W2,1 in that case

become (proportional to) ks
√

ln(kd),
√

ksd, and s
√

k ln(d) respectively. That is, W2,1 is a factor of√
k better than W1,1 and a factor of

√
d/s better than W2,2 (ignoring logarithmic terms). The class

WS(1) will also have a dependent on
√

d in such a case and thus it will be much worse than W2,2

when d is large.

For concreteness, we now use our result for deriving a group multi-class perceptron algorithm.

To the best of our knowledge, this algorithm is new, and based on the discussion above, it should

outperform both the multi-class perceptron of Crammer and Singer (2000) as well as the vanilla

application of the p-norm perceptron framework of Gentile (2003) and Grove et al. (2001) for

multi-class categorization.

The algorithm is a specification of the general online mirror descent procedure (Algorithm 1)

with f (W) = 1
2‖W‖

2
2,r, r = ln(d)/(ln(d)−1), and with a conservative update (i.e., we ignore rounds

on which no prediction mistake has been made). Recall that the Fenchel dual function is f "(V) =
1
2‖V‖

2
2,p where p = (1−1/r)−1 = ln(d). The (i, j) element of the gradient of f " is

(∇ f "(V))i, j =
‖V j‖p−2

2

‖V‖p−2
2,p

Vi, j . (2)

To analyze the performance of Algorithm 3, let I ⊆ [n] be the set of rounds on which the al-

gorithm made a prediction mistake. Note that the above algorithm is equivalent (in terms of the

number of mistakes) to an algorithm that performs the update Vt+1 = Vt +ηUt for any η (see Gen-

tile, 2003). Therefore, we can apply our general online regret bound (Corollary 17) on the sequence

of examples in I we obtain that for any W,

∑
t∈I

lt(Wt)−∑
t∈I

lt(W) ≤ X∞ ‖W‖2,1

√
6ln(d) |I| .
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Algorithm 3 Group Multi-class Perceptron

p = logd

V1 = 0 ∈ Rk×d

for t = 1, . . . ,T do

Set Wt = ∇ f "(Vt) (as defined in (2))

Receive xt ∈ Rd

ŷt = argmaxr∈[k] (Wtxt)r

Predict ŷt and receive true label yt

Ut ∈ Rk×d is the matrix with xt in the ŷt row and −xt in the yt row

Update: Vt+1 = Vt −Ut

end for

Recall that lt(Wt) upper bounds the zero-one error and therefore the above implies that

|I|−∑
t∈I

lt(W) ≤ X∞ ‖W‖2,1

√
6ln(d) |I| .

Solving for |I| gives us the following result.

Corollary 24 The number of mistakes Algorithm 3 will make on any sequence of examples for

which ‖xt‖∞ ≤ X∞ is upper bounded by

min
W

∑
t

lt(W)+X∞ ‖W‖2,1

√
3ln(d) ∑

t

lt(W)+3X2
∞ ‖W‖2

2,1 ln(d) .

6. Kernel Learning

We briefly review the kernel learning setting first explored in Lanckriet et al. (2004). Let X be an

input space and let T = (x1, . . . ,xn) ∈ X n be the training data set. Kernel algorithms work with the

space of linear functions, {
x /→

n

∑
i=1

αiK(xi,x) : αi ∈ R

}
.

In kernel learning, we consider a kernel family K and consider the class,
{

x /→
n

∑
i=1

αiK(xi,x) : K ∈K , αi ∈ R

}
.

In particular, we can choose a finite set {K1, . . . ,Kk} of base kernels and consider the convex com-

binations, K +
c =

{
∑k

j=1 µ jKj : µ j ≥ 0, ∑k
j=1 µ j = 1

}
. This is the unconstrained function class. In

applications, one constrains the function class in some way. The class considered by Lanckriet et al.

(2004) is

FK +
c
=

{
x /→

n

∑
i=1

αiK(xi, ·) : K =
k

∑
j=1

µ jKj, µ j ≥ 0,
k

∑
j=1

µ j = 1, α-K(T )α≤ 1/γ2

}
(3)

where γ > 0 is a margin parameter and K(T )i, j = K(xi,x j) is the Gram matrix of K on the data set

T .
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Theorem 25 (Kernel learning) Consider the class FK +
c

defined in (3). Let Kj(x,x)≤B for 1≤ j≤ k

and x ∈ X . Then, RT (FK +
c
)≤ e

√
B logk

γ2n
.

The proof follows directly from the equivalence between kernel learning and group Lasso (Bach,

2008), and then applying our bound on the class W2,1. For completeness, we give a rigorous proof

in the appendix.

Note that the dependence on the number of base kernels, k, is rather mild (only logarithmic)—

implying that we can learn a kernel as a (convex) combination of a rather large number of base

kernels. Also, let us discuss how the above improves upon the prior bounds provided by Lanckriet

et al. (2004) and Srebro and Ben-David (2006) (neither of which had logarithmic k dependence).

The former proves a bound of O
(√

Bk
γ2n

)
which is quite inferior to our bound. We cannot com-

pare our bound directly to the bound of Srebro and Ben-David (2006) as they do not work with

Rademacher complexities. However, if one compares the resulting generalization error bounds,

then their bound is O




√

k log n3B

γ2k
+ B

γ2 log γn√
B

log nB

γ2

n



 and ours is O
(√

B logk
γ2n

)
. If k ≥ n, their bound is

vacuous (while ours is still meaningful). If k ≤ n, our bound is better.

Finally, we note that recently Ying and Campbell (2009) devoted a dedicated effort to derive

a result similar to Theorem 25 using a Rademacher chaos process of order two over candidate

kernels. In contrast to their proof, our result seamlessly follows from the general framework of

deriving bounds using the strong-convexity/strong-smoothness duality.
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Appendix A. Convex Analysis and Matrix Computation

We briefly recall some key definitions from convex analysis that are useful throughout the paper (for

details, see any of the several excellent references on the subject, for example, Borwein and Lewis,

2006; Rockafellar, 1970).

A.1 Convex Analysis

We consider convex functions f : X → R∪ {∞}, where X is a Euclidean vector space equipped

with an inner product 〈·, ·〉. We denote R∗ = R∪{∞}. Recall that the subdifferential of f at x ∈ X ,

denoted by ∂ f (x), is defined as ∂ f (x) := {y ∈ X : ∀z, f (x+ z) ≥ f (x) + 〈y,z〉}. The Fenchel

conjugate f " : X → R∗ is defined as f "(y) := supx∈X 〈x,y〉− f (x).

We also deal with a variety of norms in this paper. Recall that given a norm ‖ ·‖ on X , its dual

norm is defined as ‖y‖" := sup{〈x,y〉 : ‖x‖ ≤ 1}. An important property of the dual norm is that

the Fenchel conjugate of the function 1
2‖x‖

2 is 1
2‖y‖

2
".
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The definition of Fenchel conjugate implies that for any x,y, f (x) + f "(y) ≥ 〈x,y〉, which is

known as the Fenchel-Young inequality. An equivalent and useful definition of the subdifferential

can be given in terms of the Fenchel conjugate: ∂ f (x) = {y ∈ X : f (x)+ f ∗(y) = 〈x,y〉}.

A.2 Convex Analysis of Matrix Functions

We consider the vector space X = Rm×n of real matrices of size m×n and the vector space X = Sn

of symmetric matrices of size n× n, both equipped with the inner product, 〈X,Y〉 := Tr(X-Y).
Recall that any matrix X ∈ Rm×n can be decomposed as X = UDiag(σ(X))V where σ(X) denotes

the vector (σ1,σ2, . . .σl) (l = min{m,n}), where σ1 ≥ σ2 ≥ . . .≥ σl ≥ 0 are the singular values of

X arranged in non-increasing order, and U ∈ Rm×m,V ∈ Rn×n are orthogonal matrices. Also, any

matrix X ∈ Sn can be decomposed as, X = UDiag(λ(X))U- where λ(X) = (λ1,λ2, . . .λn), where

λ1≥ λ2≥ . . .≥ λn are the eigenvalues of X arranged in non-increasing order, and U is an orthogonal

matrix. Two important results relate matrix inner products to inner products between singular (and

eigen-) values

Theorem 26 (von Neumann) Any two matrices X ,Y ∈ Rm×n satisfy the inequality

〈X,Y〉 ≤ 〈σ(X),σ(Y)〉 .

Equality holds above, if and only if, there exist orthogonal U,V such that

X = UDiag(σ(X))V, Y = UDiag(σ(Y))V .

Theorem 27 (Fan) Any two matrices X,Y ∈ Sn satisfy the inequality

〈X,Y〉 ≤ 〈λ(X),λ(Y)〉 .

Equality holds above, if and only if, there exists orthogonal U such that

X = UDiag(λ(X))U-, Y = UDiag(λ(Y))U- .

We say that a function g : Rn → R∗ is symmetric if g(x) is invariant under arbitrary permuta-

tions of the components of x. We say g is absolutely symmetric if g(x) is invariant under arbitrary

permutations and sign changes of the components of x.

Given a function f : Rl → R∗, we can define a function f ◦σ : Rm×n→ R∗ as,

( f ◦σ)(X) := f (σ(X)) .

Similarly, given a function g : Rn→ R∗, we can define a function g◦λ : Sn→ R∗ as,

(g◦λ)(X) := g(λ(X)) .

This allows us to define functions over matrices starting from functions over vectors. Note that

when we use f ◦σ we are assuming that X = Rm×n and for g ◦λ we have X = Sn. The following

result allows us to immediately compute the conjugate of f ◦σ and g◦λ in terms of the conjugates

of f and g respectively.
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Theorem 28 (Lewis, 1995) Let f : Rl → R∗ be an absolutely symmetric function. Then,

( f ◦σ)" = f " ◦σ .

Let g : Rn→ R∗ be a symmetric function. Then,

(g◦λ)" = g" ◦λ .

Proof Lewis (1995) proves this for singular values. For the eigenvalue case, the proof is entirely

analogous to that in Lewis (1995), except that Fan’s inequality is used instead of von Neumann’s

inequality.

Using this general result, we are able to define certain matrix norms.

Corollary 29 (Matrix norms) Let f : Rl → R∗ be absolutely symmetric. Then if f = ‖ ·‖ is a norm

on Rl then f ◦σ = ‖σ(·)‖ is a norm on Rm×n. Further, the dual of this norm is ‖σ(·)‖".

Let g : Rn→ R∗ be symmetric. Then if g = ‖ ·‖ is a norm on Rn then g◦λ = ‖λ(·)‖ is a norm

on Sn. Further, the dual of this norm is ‖λ(·)‖".

Another nice result allows us to compute subdifferentials of f ◦σ and g◦λ (note that elements in

the subdifferential of f ◦σ and g◦λ are matrices) from the subdifferentials of f and g respectively.

Theorem 30 (Lewis, 1995) Let f : Rl → R∗ be absolutely symmetric and X ∈ Rm×n. Then,

∂( f ◦σ)(X) = {UDiag(µ)V- : µ ∈ ∂ f (σ(X))U,V orthogonal, X = UDiag(σ(X))V-} .

Let g : Rn→ R∗ be symmetric and X ∈ Sn. Then,

∂(g◦λ)(X) = {UDiag(µ)U- : µ ∈ ∂g(λ(X))U orthogonal, X = UDiag(λ(X))U-} .

Proof Again, Lewis (1995) proves the case for singular values. For the eigenvalue case, again,

the proof is identical to that in Lewis (1995), except that Fan’s inequality is used instead of von

Neumann’s inequality.

Appendix B. Technical Proofs

We now provide the proofs omitted from the main body of the paper.

B.1 Proof of Theorem 3

First, (Shalev-Shwartz, 2007, Lemma 15) yields one half of the claim ( f strongly convex ⇒ f "

strongly smooth). It is left to prove that f is strongly convex assuming that f " is strongly smooth.

For simplicity assume that β = 1. Denote g(y) = f "(x+y)− ( f "(x)+ 〈∇ f "(x),y〉). By the smooth-

ness assumption, g(y) ≤ 1
2‖y‖

2
". This implies that g"(a) ≥ 1

2‖a‖
2 because of (Shalev-Shwartz and
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Singer, 2008, Lemma 19) and that the conjugate of half squared norm is half squared of the dual

norm. Using the definition of g we have

g"(a) = sup
y
〈y,a〉−g(y)

= sup
y
〈y,a〉− ( f "(x+ y)− ( f "(x)+ 〈∇ f "(x),y〉))

= sup
y
〈y,a+∇ f "(x)〉− f "(x+ y)+ f "(x)

= sup
z
〈z− x,a+∇ f "(x)〉− f "(z)+ f "(x)

= f (a+∇ f "(x))+ f "(x)−〈x,a+∇ f "(x)〉

where we have used that f "" = f , in the last step. Denote u = ∇ f "(x). From the equality in Fenchel-

Young (e.g., Shalev-Shwartz and Singer, 2008, Lemma 17) we obtain that 〈x,u〉= f "(x)+ f (u) and

thus

g"(a) = f (a+u)− f (u)−〈x,a〉 .

Combining with g"(a)≥ 1
2‖a‖

2, we have

f (a+u)− f (u)−〈x,a〉 ≥
1

2
‖a‖2 , (4)

which holds for all a,x, with u = ∇ f "(x).
Now let us prove that for any point u′ in the relative interior of the domain of f that if x ∈ ∂ f (u′)

then u′ = ∇ f "(x). Let u := ∇ f "(x) and we must show that u′ = u. By Fenchel-Young, we have that

〈x,u′〉= f "(x)+ f (u′), and, again by Fenchel-Young (and f "" = f ), we have 〈x,u〉= f "(x)+ f (u).
We can now apply (4) to obtain:

0 = 〈x,u〉− f (u)−
(〈

x,u′
〉
− f (u′)

)
,

= f (u′)− f (u)−
〈
x,u′ −u

〉
≥

1

2
‖u′ −u‖2 ,

which implies that u′ = ∇ f "(x).
Next, let u1,u2 be two points in the relative interior of the domain of f , let α ∈ (0,1), and let

u=αu1+(1−α)u2. Let x∈ ∂ f (u) (which is non-empty3). We have that u=∇ f "(x), by the previous

argument. Now we are able to apply (4) twice, once with a = u1−u and once with a = u2−u (and

both with x) to obtain

f (u1)− f (u)−〈x,u1−u〉 ≥
1

2
‖u1−u‖2

f (u2)− f (u)−〈x,u2−u〉 ≥
1

2
‖u2−u‖2 .

Finally, summing up the above two equations with coefficients α and 1−α we obtain that f is

strongly convex.

3. The set ∂ f (u) is not empty for all u in the relative interior of the domain of f . See the relative max formula in (Borwein

and Lewis, 2006, page 42) or (Rockafellar, 1970, page 253). If u is not in the interior of f , then ∂ f (u) is empty. But,

a function is defined to be essentially strictly convex if it is strictly convex on any subset of {u : ∂ f (u) 6= /0}. The last

set is called the domain of ∂ f and it contains the relative interior of the domain of f , so we are fine here.
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B.2 Proof of Theorem 13

Note that an equivalent definition of σ-smoothness of a function f w.r.t. a norm ‖ ·‖ is that, for all

x,y and α ∈ [0,1], we have

f (αx+(1−α)y)≥ α f (x)+(1−α) f (y)−
1

2
σα(1−α)‖x− y‖2 .

Let X,Y ∈ Rm×n be arbitrary matrices with columns Xi and Yi respectively. We need to prove

‖(1−α)X+αY‖2
Ψ,Φ ≥ α‖X‖2

Ψ,Φ +(1−α)‖Y‖2
Ψ,Φ−

1

2
(σ1 +σ2)α(1−α)‖X−Y‖2

Ψ,Φ . (5)

Using smoothness of Ψ and that Φ is a Q-norm, we have,

‖(1−α)X+αY‖2
Ψ,Φ = (Φ2 ◦√)(. . . ,Ψ2(αXi +(1−α)Yi), . . .)

≥ (Φ2 ◦√)(. . . ,αΨ2(Xi)+(1−α)Ψ2(Yi)

−
1

2
σ1α(1−α)Ψ2(Xi−Yi), . . .)

≥ (Φ2 ◦√)(. . . ,αΨ2(Xi)+(1−α)Ψ2(Yi), . . .)

−
1

2
σ1α(1−α)(Φ2 ◦√)(. . . ,Ψ2(Xi−Yi), . . .)

= Φ2(. . . ,
√

αΨ2(Xi)+(1−α)Ψ2(Yi), . . .)

−
1

2
σ1α(1−α)‖X−Y‖2

Ψ,Φ . (6)

Now, we use that, for any x,y≥ 0 and α ∈ [0,1], we have
√

αx2 +(1−α)y2 ≥ αx+(1−α)y. Thus,

we have

Φ2(. . . ,
√

αΨ2(Xi)+(1−α)Ψ2(Yi), . . .)

≥Φ2(. . . ,αΨ(Xi)+(1−α)Ψ(Yi), . . .)

≥ αΦ2(. . . ,Ψ(Xi), . . .)+(1−α)Φ2(. . . ,Ψ(Yi), . . .)

−
1

2
σ2α(1−α)Φ2(. . . ,Ψ(Xi)−Ψ(Yi), . . .)

≥ α‖X‖2
Ψ,Φ +(1−α)‖Y‖2

Ψ,Φ−
1

2
σ2α(1−α)Φ2(. . . ,Ψ(Xi−Yi), . . .)

= α‖X‖2
Ψ,Φ +(1−α)‖Y‖2

Ψ,Φ−
1

2
σ2α(1−α)‖X−Y‖2

Ψ,Φ .

Plugging this into (6) proves (5).

B.3 Proof of Theorem 25

Let H j be the RKHS of Kj, H j =
{

∑l
i=1 αiKj(x̃i, ·) : l > 0, x̃i ∈ X , α ∈ Rl

}
equipped with the inner

product 〈
l

∑
i=1

αiKj(x̃i, ·),
m

∑
j=1

α′iKj(x̃
′
j, ·)

〉

H j

= ∑
i, j

αiα
′
jKj(x̃i, x̃

′
j).
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Consider the space H = H1× . . .×Hk equipped with the inner product

〈#u,#v〉 :=
k

∑
i=1

〈ui,vi〉Hi
.

For #w ∈H , let ‖ ·‖2,1 be the norm defined by

‖#w‖2,1 =
k

∑
i=1

‖wi‖Hi
.

It is easy to verify that FK +
c
⊆ Fr where

Fr := {x /→
〈
#w,#φ(x)

〉
: #w ∈H , ‖#w‖2,1 ≤ 1/γ} ,

and
#φ(x) = (K1(x, ·), . . . ,Kk(x, ·)) ∈H .

Since ‖Kj(x, ·)‖H j
≤
√

B, we also have ‖#φ(x)‖2,s ≤ k1/s
√

B for any x ∈ X . The claim now follows

directly from the results we derived in Section 2.
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Abstract

Confidence-weighted online learning is a generalization of margin-based learning of linear classi-
fiers in which the margin constraint is replaced by a probabilistic constraint based on a distribution
over classifier weights that is updated online as examples are observed. The distribution captures a
notion of confidence on classifier weights, and in some cases it can also be interpreted as replacing
a single learning rate by adaptive per-weight rates. Confidence-weighted learning was motivated
by the statistical properties of natural-language classification tasks, where most of the informa-
tive features are relatively rare. We investigate several versions of confidence-weighted learning
that use a Gaussian distribution over weight vectors, updated at each observed example to achieve
high probability of correct classification for the example. Empirical evaluation on a range of text-
categorization tasks show that our algorithms improve over other state-of-the-art online and batch
methods, learn faster in the online setting, and lead to better classifier combination for a type of
distributed training commonly used in cloud computing.

Keywords: online learning, confidence prediction, text categorization

1. Introduction

While online learning is among the oldest approaches to machine learning, starting with the percep-

tron algorithm (Rosenblatt, 1958), it is still one of the most popular and and successful for many

practical tasks. In online learning, algorithms operate in rounds, whereby the algorithm is shown a

single example for which it must first make a prediction and then update its hypothesis once it has

seen the correct label. While predictions traditionally take the form of either positive or negative

labels (binary classification), algorithms have been extended to a variety of multi-class, regression,

ranking and structured prediction problems. By operating one example at a time, online methods

are fast, simple, make few assumptions about the data, and perform fairly well across many domains

and tasks. For those reasons, online methods are often favored for large data problems, and they are

also a natural fit for systems that learn from interaction with a user or another system. In addition to

c©2012 Koby Crammer, Mark Dredze and Fernando Pereira.
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their nice empirical properties, online algorithms have been analyzed in the mistake bound model

(Littlestone, 1989), which supports both theoretical and empirical comparisons of performance.

Cesa-Bianchi and Lugosi (2006) provide an in-depth analysis of online learning algorithms.

Much of the machine learning in natural-language processing (NLP) is based on linear clas-

sifiers over very high dimension sparse representations of the input trained on large training sets.

These properties make online learning a natural choice. Extensions of online learning to structured

problems (Collins, 2002; McDonald et al., 2004) achieved some of the best results in structured

tasks such as part-of-speech tagging (Collins, 2002; Shen et al., 2007), text segmentation (McDon-

ald et al., 2005a), noun-phrase chunking (Collins, 2002), parsing (McDonald et al., 2005b; Carreras

et al., 2008), and machine translation (Chiang et al., 2008). Popular online methods for those tasks

include the perceptron (Rosenblatt, 1958), passive-aggressive (Crammer et al., 2006a) and expo-

nentiated gradient (Globerson et al., 2007).

Online learning algorithms are typically used as blackboxes in NLP, without consideration of

the peculiarities of natural language. Feature representations of text for tasks from spam filtering

to parsing need to capture the variety of words, word combinations, and word attributes in the text,

yielding very high-dimensional feature vectors, even though most of the features are absent in most

texts. Nevertheless, those many rare features are very informative about the examples that contain

them; indeed, features that occur frequently are typically less informative, hence the common use of

stop-lists of frequent words such as function words, and of tf-idf term weighting.1 In Figure 1, we

show the most predictive features for a simple NLP classification task and their frequency in data.

Notice that while some predictive features are very common, most are relatively rare, indicating that

modeling even infrequent features may be useful for learning. Therefore, it is worth investigating

whether learning algorithms for linear classifiers could be improved to take advantage of these

particularities of natural language data.

The foregoing motivation led us to propose confidence-weighted (CW) learning, a class of online

learning methods that maintain a probabilistic measure of confidence in each weight. Less confident

weights are updated more aggressively than more confident ones. Weight confidence is formalized

with a Gaussian distribution over weight vectors, which is updated for each new training example

so that the probability of correct classification for that example under the updated distribution meets

a specified confidence. The result is an algorithm with superior classification accuracy over state-

of-the-art online and batch baselines, faster learning, and new classifier combination methods for

parallel training.

While our motivation for CW learning is from observations about NLP problems, the approach

makes no assumptions about the input space and can be applied to other machine learning problems

(Ma et al., 2009).

This paper brings together two types of confidence-weighted algorithms originally introduced

by Dredze et al. (2008) and Crammer et al. (2008). In addition to a unified presentation, we include

alternative formulations of the diagonal covariance algorithms along with empirical results. We also

include further empirical evidence of the strength of these methods and an analysis of algorithmic

behavior on NLP problems.

1. We note that data sparsity is different from model sparsity. Sparsifying regularizers, such as those that constrain

the L1 norm of weight vectors (Andrew and Gao, 2007; Gao et al., 2007). are often proposed to remove redundant

features in very high-dimensional data, but they are complementary to the methods we present here to learn better in

the presence of many rare but relevant features.
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Figure 1: The top quartile of negative (left) and positive (right) features as ranked by mutual infor-

mation with the label for sentiment data (described in Section 7). The x-axis is their (log)

rank by mutual information and the y-axis is their total (log) count in the data. While

some very frequent features are useful for predicting the label (high on the curve) there

are a large number of low frequency features (low on the curve) that are still useful for

learning. A sparse model would likely remove these low frequency features despite their

predictive value.

We begin with a discussion of the motivating particularities of natural language data. We then

introduce the confidence-weighted framework. From this framework we derive two types of al-

gorithm following different formulations of the main constraint, each with a full covariance and

several diagonalized versions. A series of experiments shows CW learning’s empirical benefits and

an analysis reveals how algorithmic properties manifest themselves empirically. We conclude with

a discussion of related work.

2. Characteristics of NLP Data

Extensive experience with building classifiers for a wide range of language processing tasks shows

that correct classification requires many specific features, including the presence at specified po-

sitions of particular words, affixes, or word combinations (such as bigrams) in the example to be

classified. An individual example has a very small fraction of those features, but collectively, ex-

amples to be classified may involve a very large number of features (106 − 109), most of which

only occur in a few examples. The vector representation of the typical example is a very sparse high
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dimensional vector where only a small fraction of elements is nonzero, and feature frequencies have

a heavy-tailed distribution (Figure 1).

Online algorithms do well with large numbers of features and examples, but they are not de-

signed specifically for very sparse examples with a heavy-tailed feature frequency distribution. This

can have a detrimental effect on learning. Typical linear classifier training algorithms update the

weights of binary features only when they occur. The result is many updates for frequent features

and few updates for rare features. Similarly, features that occur early in the data stream take more

responsibility for correct prediction than those observed later. The result is a model that could have

good weight estimates for common features but inaccurate weights for the great majority of features,

which occur relatively rarely.

An illustrative case arises in sentiment classification. In this task, a product review is represented

as n-grams and the goal is to label the review as being positive or negative about the product.

Consider a positive review that simply read “I liked this author.” An online update would increase

the weight of both “liked” and “author.” Since both are common words, over several examples the

algorithm would converge to the correct values, a positive weight for “liked” and zero weight for

“author.” Now consider a slightly modified negative example: “I liked this author, but found the

book dull.” Since “dull” is a rare feature, the algorithm has a poor estimate of its weight. An update

would decrease the weight of both “liked” and “dull.” The algorithm does not know that “dull” is

rare and the changed behavior is likely caused by the poorly estimated rare feature (“dull”) instead

of the well estimated common feature (“liked.”) An algorithm that maintains no information about

the relative frequency or of second order information about features would attribute equal negative

weight to both “liked” and “dull”, which slows convergence.

This example demonstrates how a lack of memory for previous examples—a property that al-

lows online learning—can hurt learning. A simple solution is to augment an online algorithm with

additional information, a memory of past examples. Specifically, the algorithm can maintain a con-

fidence value for each feature weight. For example, assuming binary features, the algorithm could

keep a count of the number of times each feature has been observed or how many times each weight

has been updated. The larger the count, the more confidence we have in the weight of that feature.

These estimates are then used to influence weight updates. Instead of equally updating every feature

weight for the on-features of an example, the update favors changing low-confidence weights more

aggressively than high-confidence ones. At each update, the confidence in the weights of observed

features is increased, which will focus the update on the low confidence weights. In the example

above, the update would decrease the weight of “dull” but make only a small change to “liked” since

the algorithm already has a good estimate of this weight.

In the next section, we use this motivation from language data to present a new family of learning

algorithms that associate a confidence value with each weight. For now, we wish to dispel two

potential misinterpretations of the preceding very informal argument. First, while our approach is

motivated by learning with sparse binary features with a heavy-tailed frequency distribution, the

algorithms do not depend on those assumptions. Second, our notion of weight confidence is based

on a probabilistic interpretation of passive-aggressive online learning, which differs from the more

familiar Bayesian learning for linear classifiers. Nevertheless, analogously to Bayesian learning,

it can be used to provide a useful notion of prediction confidence through a margin distribution

(Dredze and Crammer, 2008a,b; Dredze et al., 2010).

A summary of the notation used throughout this paper appears in Table 1.
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xi Example on round i

ŷi Prediction on round i

yi Label on round i

wi Weight vector on round i

µi The mean of the distribution on round i

Σi The covariance matrix of the distribution on round i

mi Margin on round i

vi Margin variance on round i

η Confidence level

φ The free parameter for CW, defined as φ = Φ−1 (η)

Table 1: A reference table for notation used throughout the paper.

3. Online Learning of Linear Classifiers

Online algorithms operate in rounds, where each round corresponds to a single example. On round

i the algorithm receives an example xi ∈Rd to which it applies its current prediction rule to produce

a prediction ŷi ∈ {−1,+1} (for binary classification). It then receives the true label yi ∈ {−1,+1}
and suffers a loss !(yi, ŷi), which in this work will be the zero-one loss: !(yi, ŷi) = 1 if yi $= ŷi and

!(yi, ŷi) = 0 otherwise. The algorithm then updates its prediction rule and proceeds to the next

round. For online evaluations, error is reported as the total loss ! on the training data and in batch

evaluations, error is reported on held out data.

As is common in linear classification, our prediction rules are linear threshold functions

fw(x) : fw(x) = sign(x ·w) .

Two functions fw and fcw are the same for non-negative c. Thus, we can identify fw with w, which

we will do in what follows.

The signed margin of an example (x,y) with respect to a specific classifier w is defined to be

y(w · x). The sign of the margin is positive iff the classifier w correctly predicts the true label y.

The absolute value of the margin |y(w · x)| = |w · x| can be thought of as the confidence 2 in the

prediction, with larger positive values corresponding to more confident correct predictions. We

denote the margin at round i by mi = yi(wi · xi).
A variety of linear classifier training algorithms, including the perceptron and linear support

vector machines, restrict w to be a linear combination of the input examples. Online algorithms of

that kind typically have updates of the form

wi+1 = wi +αiyixi , (1)

for some non-negative coefficients αi.

In this paper we focus on passive-aggressive (PA) updates (Crammer et al., 2006a) for linear

classifiers. After predicting with wi on the ith round and receiving the true label yi, the algorithm

2. Note that we use the term “confidence” here as is commonly used in the literature to refer to the size of the margin.

This should not be confused with the idea of weight confidence used in this work. In fact, while margin size is

often taken as prediction confidence, such as in active learning (Tong and Koller, 2001), this interpretation is open to

debate.
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updates the prediction function such that the example (xi,yi) will be classified correctly with a fixed

margin (which can always be scaled to 1):

wi+1 = min
w

1

2
‖wi −w‖2

s.t. yi(w · xi)≥ 1 . (2)

The general form of this problem is to enforce some learning constraints, in this case a prediction

margin on the example, while minimizing the divergence to the current weights, which are assumed

to be good since they encapsulate all previously observed examples. Solving this problem leads to

an update of the form given by (1) with coefficient αi defined on each round as:

αi =
max{1− yi (wi · xi),0}

‖xi‖2
, (3)

Like the perceptron, this is a mistake driven update, whereby αi > 0 iff the learning condition was

not met, ie. the example was not classified with a margin of at least 1. Note that the numerator of

(3) is the hinge loss, which is zero only if the example is classified with a margin of 1. In practice,

slack variables are introduced for non-separable data, restricting (3) as max{αi,C}, for some free

parameter C.

Crammer et al. (2006a) provide a theoretical analysis of algorithms of this form, which have

been shown to work well in a variety of applications (McDonald et al., 2004, 2005a; Chiang et al.,

2008).

4. Distributions over Classifiers

Following the motivation of Section 2, we need a notion of confidence for the weight vector w

maintained by an online learner for linear classifiers. Before any examples are seen, all of the

weights in w are equally uncertain. As examples are observed, the confidence in the weights of

features that are often active should increase faster than the confidence in the weights of rarely seen

features.

Our concrete implementation of this idea is to represent the state of the learner with a probabil-

ity density over w, specifically a Gaussian distribution N (µ,Σ) with mean µ ∈ Rd and covariance

matrix Σ ∈ Rd×d . The values µp and Σp,p represent knowledge of and confidence in the weight of

feature p. The smaller Σp,p, the more confidence we have in the mean weight value µp. Each covari-

ance term Σp,p′ captures our knowledge of the interaction between features p and p′. The Gaussian

distribution naturally matches our intuition for confidence, as the covariance of the distribution is

inversely proportional to our confidence: the smaller the determinant of the covariance, the less we

expect the true weight value to deviate from the current estimate. This Gaussian representation is

illustrated in Figure 2, which shows a Gaussian distribution over two-dimensional weight vectors.

The black line represents an example x = (0.5,1), y = +1, which divides the space between clas-

sifiers that correctly classify this point (blue crosses below) and those that classify it incorrectly

(green dots above).

In the CW model, the traditional signed margin y(w · x) becomes a univariate Gaussian random

variable M, where the mean of the distribution is the signed margin,

M ∼ N
(

y(µ · x),x*Σx
)

. (4)
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Figure 2: Gaussian distribution over two-dimensional weight vectors. Points above the black line

(green dots) incorrectly classify the example ((0.5,1),+1) and points below the line (blue

crosses) classify it correctly. The density around a point is proportional to its relative

weight. The black circle marks the mean of the Gaussian.

There are several ways to make predictions in this framework. A Gibbs predictor samples from

the distribution a single weight vector w, which is equivalent to drawing a margin value using (4),

and takes its sign as the prediction. Other alternatives use averaging rather than sampling. For

example, we can use the average weight vector E [w] = µ, as is done in Bayes point machines (Her-

brich et al., 2001), which use a single weight vector to approximate a distribution. Alternatively, we

can use the average margin E [M]. These two approaches are equivalent by linearity of expectation,

E [w · x] = µ · x. Another approach estimates E [sign(M)] from many draws of w for fixed µ,Σ, and

x. Since the sign function attains only two values (−1 or +1) this is equivalent to computing the

probability of a correct prediction (not a large margin prediction), given by

Pr [M ≥ 0] = Prw∼N (µ,Σ) [y(w · x)≥ 0] .

When possible we omit the explicit dependence on the distribution parameters and simply write

Pr [y(w · x)≥ 0]. If the probability is larger than half, then the (weighted) majority votes for y =+1,

otherwise, for y =−1. Note that from the discussion below this prediction rule is equivalent to the

previous two. Conceptually, it is useful to think of prediction as drawing a weight vector w from the

distribution, ie. w ∼ N (µ,Σ), and predicting the label according to the sign of w ·x. However, as we

said above, the average of many such draws is equivalent to the simple prediction rule sign(µ · x),
which we will use in what follows.

5. Learning Confidence-Weighted Classifiers

In the previous section we formalized our confidence-weighted learning framework in terms of

Gaussian distributions over weight vectors. In this section we discuss how to learn such distribu-

tions.
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CW is an online learning algorithm, so on round i the algorithm receives example xi for which

it issues a prediction ŷi.
3 The algorithm predicts ŷi as sign(µi · xi), which is equivalent to averaging

the predictions of many sampled weight vectors from the distribution. On being presented with the

label yi, the algorithm adjusts the distribution to enforce a learning condition. Following the intuition

underlying the PA algorithms of Crammer et al. (2006a), we require that an update achieves both a

large margin on the example and minimizes the change in weights. In this case, a large prediction

margin is formalized as ensuring that the probability of a correct prediction for training example i

is no smaller than the confidence level η ∈ [0,1]:

Pr [yi (w · xi)≥ 0]≥ η .

Minimization of weight changed is enforced by finding a new distribution closest in the KL di-

vergence4 sense to the current distribution N (µi,Σi). Thus, on round i, the algorithm updates the

distribution by solving the following optimization problem:

(µi+1,Σi+1) = min DKL (N (µ,Σ) ‖N (µi,Σi)) (5)

s.t. Pr [yi (w · xi)≥ 0]≥ η . (6)

This update can be understood as a probabilistic counterpart of the PA objective (2).

We now develop both the objective and the constraint of this optimization problem following

Boyd and Vandenberghe (2004, page 158). We start with the objective (5) and write the KL diver-

gence between two Gaussians as

DKL (N (µ0,Σ0) ‖N (µ1,Σ1)) =

1

2

(

log

(

detΣ1

detΣ0

)

+Tr
(

Σ−1
1 Σ0

)

+(µ1 −µ0)
* Σ−1

1 (µ1 −µ0)−d

)

.

We now proceed with the constraint in (6). As noted above, under the distribution N (µ,Σ), the

margin for (xi,yi) has a Gaussian distribution with mean

mi = yi (µi · xi) , (7)

and variance

σ2
i = vi = x*i Σixi . (8)

Thus the probability of a wrong classification is

Pr [M ≤ 0] = Pr

[

M−m

σ
≤

−m

σ

]

.

Since (M−m)/σ is a normally distributed random variable, the above probability equals Φ(−m/σ),
where

Φ(u) =
1√
2π

∫ u

−∞
e−v2

dv ,

3. For a related batch formulation of CW learning, see recent work of Crammer et al. (2009b).

4. DKL (p(x)‖q(x)) =
∫

p(x) log
(

p(x)
q(x)

)

dx.
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is the cumulative Gaussian distribution. Thus we can rewrite (6) as

−m

σ
≤ Φ−1 (1−η) =−Φ−1 (η) .

Substituting m and σ by their definitions and rearranging terms we obtain

yi(µ · xi)≥ φ
√

x*i Σxi ,

where φ = Φ−1 (η). To conclude the update rule solves the following optimization problem:

(µi+1,Σi+1) = argmin
µ,Σ

1

2
log

(

detΣi

detΣ

)

+
1

2
Tr
(

Σ−1
i Σ
)

+
1

2
(µi −µ)* Σ−1

i (µi −µ)

s.t. yi(µ · xi)≥ φ
√

x*i Σxi . (9)

Conceptually, this is a large-margin constraint, where the value of the margin requirement depends

on the example xi via a quadratic form.

Unfortunately, this constraint is not convex in Σ since the term
√

x*i Σxi is concave in Σ. We

propose two alternatives to obtain a convex constraint: linearization (Section 5.1) and change of

variables (Section 5.2). Additionally, we propose few alternatives to solve the learning optimization

problem restricted to diagonal matrices in Section 6.

5.1 Linearization of the Constraint

In out first approach to obtain a convex problem we simply linearize the constraint of (9) by omitting

the square root to obtain the revised optimization problem.

(µi+1,Σi+1) = argmin
1

2
log

(

detΣi

detΣ

)

+
1

2
Tr
(

Σ−1
i Σ
)

+
1

2
(µi −µ)* Σ−1

i (µi −µ)

s.t. yi(µ · xi)≥ φ
(

x*i Σxi

)

. (10)

We call this formulation var, since we have replaced the standard deviation in the constraint with

the variance. This formulation was introduced by Dredze et al. (2008). The following lemma

summarizes the solution of this formulation,

Lemma 1 The optimal solution of this form is,

µi+1 = µi +αyiΣixi

Σ−1
i+1 = Σ−1

i +2αφxix
*
i ,

where the value of the parameter α (a Lagrange multiplier) is given by

αi = max







0,
−(1+2φmi)+

√

(1+2φmi)
2 −8φ(mi −φvi)

4φvi







.

where mi = yi (µi · xi) (see (7)) and vi = x*i Σixi (see (8)).

The derivation appears in Section 5.1.1 below. The resulting algorithm is shown in Figure 1,

where the update uses (11) and (13) to update the distribution with coefficients βi ((15)) and αi

(max{(18),0}.)

1899



CRAMMER, DREDZE AND PEREIRA

Algorithm 1 Binary CW Online Algorithm. The two versions of the Confidence-Weighted algo-

rithm: (1) linearization and (2) change of variables. The numbers in parentheses refer to equations

in the text, where more detail can be found.

Input: η ∈ [0.5,1]
Initialize:

µ1 = 0 , Σ1 = I,
φ = Φ−1(η) , φ′ = 1+φ2/2 , φ′′ = 1+φ2 .

for i = 1,2 . . . do

Receive a training example xi ∈ Rd

Compute Gaussian margin distribution mi ∼ N
(

µi · xi,x*i Σixi

)

Receive true label yi

Suffer loss !i = 1 iff yiE [sign(mi)]≤ 0

Compute Update:

• Define: mi = yi (µi · xi) (7) vi = x*i Σixi (8)

• Linearization:

αi = max







0,
−(1+2φmi)+

√

(1+2φmi)
2 −8φ(mi −φvi)

4φvi







(18)

βi =
2αiφ

1+2αφvi
(15)

• Change of Variables:

v+i =





−αviφ+
√

α2v2
i φ2 +4vi

2





2

(28)

αi = max







0,
−miφ′+

√

m2
i

φ4

4 + viφ2φ′′

viφ′′







(31)

βi =
αiφ

√

v+i + viαiφ
(27)

Update

µi+1 = µi +αiyiΣixi (11,20)

Σi+1 = Σi −βiΣixix
*
i Σi (14,25)

end for

Output: Final µ and Σ
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5.1.1 DERIVATION OF LEMMA 1

The optimization objective is convex in µ and Σ simultaneously and the constraint became linear,

so any convex optimization solver van be used to solve this problem. The Lagrangian for this

optimization is

L =
1

2
log

(

detΣi

detΣ

)

+
1

2
Tr
(

Σ−1
i Σ
)

+
1

2
(µi −µ)* Σ−1

i (µi −µ)

+α
(

−yi (µ · xi)+φ
(

x*i Σxi

))

.

Taking partial derivatives, we know that at the optimum, we must have

∂

∂µ
L = Σ−1

i (µ−µi)−αyixi = 0 .

Assuming Σi is non-singular and rearranging terms we get

µi+1 = µi +αyiΣixi . (11)

At the optimum, we must also have

∂

∂Σ
L =−

1

2
Σ−1 +

1

2
Σ−1

i +φαxix
*
i = 0 , (12)

and solving for Σ−1 we obtain

Σ−1
i+1 = Σ−1

i +2αφxix
*
i . (13)

Before proceeding, we observe that (13) computes Σ−1
i+1 as the sum of a rank-one positive semi-

definite (PSD) matrix and Σ−1
i . Thus, if Σ−1

i is PSD, so are Σ−1
i+1 and Σi+1 thus Σi is indeed non-

singular, as assumed above. The update guarantees that the eigenvalues of the inverse-covariance

matrix always increase.

Finally, we compute the inverse of (13) using the Woodbury identity (Petersen and Pedersen,

2008, Equation 135) and get

Σi+1 =
(

Σ−1
i +2αφxix

*
i

)−1

= Σi −Σixi

(

1

2αφ
+ x*i Σixi

)−1

x*i Σi

= Σi −Σixi
2αφ

1+2αφvi
x*i Σi

= Σi −βiΣixix
*
i Σi , (14)

where

vi = x*i Σixi

βi =
2αφ

1+2αφvi
. (15)
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The KKT conditions for the optimization imply that the either α = 0, and no update is needed, or

the constraint in (10) is an equality after the update. Substituting (11) and (14) into the equality

version of (10), we obtain

yi (xi · (µi +αyiΣixi)) = φ
(

x*i

(

Σi −Σixiβix
*
i Σi

)

xi

)

. (16)

Rearranging terms we get

yi (xi ·µi)+αx*i Σixi = φx*i Σixi −φv2
i βi . (17)

Substituting (7), (8), and (15) into (17) we obtain

mi +αvi = φvi −φv2
i

2αφ

1+2αφvi
.

We multiply both sides by 1+2αφvi and get

(mi +αvi)(1+2αφvi) = φvi (1+2αφvi)−2αφ2v2
i .

Rearranging the terms we obtain,

0 = mi +αvi +2αφvimi +2α2φv2
i −φvi

= α2
(

2φv2
i

)

+αvi (1+2φmi)+(mi −φvi) .

The above equality is a quadratic equation in α. Its smaller root is always negative and thus is not a

valid Lagrange multiplier. Let γi be its larger root:

γi =
−(1+2φmi)+

√

(1+2φmi)
2 −8φ(mi −φvi)

4φvi
. (18)

The constraint (10) is satisfied before the update if mi −φvi ≥ 0. If 1+2φmi ≤ 0, then mi ≤ φvi and

from (18) we have that γi > 0. If, instead, 1+2φmi ≥ 0, then, again by (18), we have

γi > 0

⇔
√

(1+2φmi)
2 −8φ(mi −φvi)> (1+2φmi)

⇔ mi < φvi .

From the KKT conditions, either αi = 0 or (10) is satisfied as an equality. In the later case, (16)

holds, and thus αi = γi > 0, which concludes the derivation of the lemma.

5.2 Change of Variables

While linearization yielded a closed form convex solution to our optimization, it required approxi-

mating the constraint. We now proceed with the second alternative of obtaining a convex optimiza-

tion problem by a change of variables, which allows us to achieve an exact convex update.
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Since Σ is positive-semidefinite (PSD) it can be written as the square of another PSD matrix5 ϒ:

Σ = ϒ2 , ϒ =
√

Σ .

Substituting in (9) gives the revised optimization problem

(µi+1,ϒi+1) = argmin
1

2
log

(

detϒ2
i

detϒ2

)

+
1

2
Tr
(

ϒ−2
i ϒ2

)

+
1

2
(µi −µ)* ϒ−2

i (µi −µ)

s.t. yi (µ · xi)≥ φ‖ϒxi‖
ϒ is PSD . (19)

Note that, the objective is convex since − logdetϒ2 = −2logdetϒ which is well defined since ϒ is

PSD. The constraint is a second-order cone inequality and therefore convex.

We call this formulation stdev, since we have maintained the standard deviation in the con-

straint. This formulation was introduced by Crammer et al. (2008).

Standard optimization techniques can solve the convex program (19), but these methods can be

slow. Instead, as before we derive a closed-form solution which we summarize in the following

lemma:

Lemma 2 The optimal solution of this form is,

µi+1 = µi +αyiΣixi

Σi+1 = Σi −βΣixix
*
i Σi ,

where

β =
αφ

√

v+i + viαφ
, v+i = x*i Σi+1xi .

and the value of the parameter α (a Lagrange multiplier) is given by

α = max







0,
1

vi

−miφ′+
√

m2
i

φ4

4 + viφ2φ′′

φ′′







.

where mi = yi (µi · xi) (see (7)), vi = x*i Σixi (see (8)), and for simplicity we define φ′ = 1+φ2/2 , φ′′ =
1+φ2.

The resulting algorithm is shown in Figure 1.

5.2.1 DERIVATION OF LEMMA 2

The Lagrangian for (19) is

L =
1

2
log

(

detϒ2
i

detϒ2

)

+
1

2
Tr
(

ϒ−2
i ϒ2

)

+
1

2
(µi −µ)* ϒ−2

i (µi −µ)+α(−yi (µ · xi)+φ‖ϒxi‖) .

5. We use a decomposition in terms of PSD matrices because it yields a convex optimization problem. In general, a

PSD matrix Σ can be written as Σ = AA*, which is not convex because it is rotation-invariant. Alternatively, any

symmetric S matrix can be used Σ = S2, but this is not convex either, since it is invariant to reflections.

1903



CRAMMER, DREDZE AND PEREIRA

At the optimum, it must be that

∂

∂µ
L = ϒ−2

i (µ−µi)−αyixi = 0 .

Therefore, if ϒi is non-singular, the update for the mean is

µi+1 = µi +αyiϒ
2
i xi . (20)

At the optimum, we must also have

∂

∂ϒ
L =−ϒ−1 +

1

2
ϒ−2

i ϒ+
1

2
ϒϒ−2

i +αφ
xix

*
i ϒ

2
√

x*i ϒ2xi

+αφ
ϒxix

*
i

2
√

x*i ϒ2xi

= 0 . (21)

Defining the matrix

C = ϒ−2
i +αφ

xix
*
i

√

x*i ϒ2xi

, (22)

we get

∂

∂ϒ
L =−ϒ−1 +

1

2
ϒC+

1

2
Cϒ = 0

at the optimum. From this, it follows easily that at the optimum

ϒ =C− 1
2 .

Substituting (22) into this equation, we obtain the update

ϒ−2
i+1 = ϒ−2

i +αφ
xix

*
i

√

x*i ϒ2
i+1xi

.

Conveniently, the final form of the updates can be expressed in terms of the covariance matrix:6

µi+1 = µi +αyiΣixi (23)

Σ−1
i+1 = Σ−1

i +αφ
xix

*
i

√

x*i Σi+1xi

. (24)

As before we observe that if Σ−1
i is PSD, so are Σ−1

i+1 and Σi+1 with monotonically decreasing

eigenvalues. Thus Σi is indeed non-singular, as assumed above.

6. Furthermore, writing the Lagrangian of (10) and solving it would yield the same solution as Equations (23,24). Thus

the optimal solution of both (10) and (19) are the same.
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It remains to determine the value of the Lagrange multiplier α. As before we compute the

inverse of (24) using the Woodbury identity (Petersen and Pedersen, 2008) to get,

Σi+1 =



Σ−1
i +αφ

xix
*
i

√

x*i Σi+1xi





−1

= Σi −Σixi





√

x*i Σi+1xi

αφ
+ x*i Σixi





−1

x*i Σi

= Σi −Σixi





αφ
√

x*i Σi+1xi + x*i Σixiαφ



x*i Σi

= Σi −βiΣixix
*
i Σi . (25)

where we define

v+i = x*i Σi+1xi , (26)

and

βi =
αiφ

√

v+i + viαiφ
. (27)

Multiplying (25) by x*i (left) and xi (right) we get

v+i = vi − vi





αφ
√

v+i + viαφ



vi ,

which is equivalent to

v+i

√

v+i + v+i viαφ = vi

√

v+i + v2
i αφ− v2

i αφ

= vi

√

v+i .

Dividing both sides by
√

v+i , we obtain

v+i +
√

v+i viαφ− vi = 0 ,

which can be solved for v+i to obtain

√

v+i =
−αviφ+

√

α2v2
i φ2 +4vi

2
. (28)

The KKT conditions for the optimization imply that either α = 0 and no update is needed, or the

constraint (19) is an equality after the update.
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Using the equality version of (19) and Equations (23,25,26,28) we obtain

mi +αvi = φ
−αviφ+

√

α2v2
i φ2 +4vi

2
, (29)

which can be rearranged into the following quadratic equation in α:

α2v2
i

(

1+φ2
)

+2αmivi

(

1+
φ2

2

)

+
(

m2
i − viφ

2
)

= 0 .

The smaller root of this equation is always negative and thus not a valid Lagrange multiplier. We

use the following abbreviations for writing the larger root γi,

φ′ = 1+φ2/2 ; φ′′ = 1+φ2 .

The larger root is then

γi =
−miviφ′+

√

m2
i v2

i φ′2 − v2
i φ′′
(

m2
i − viφ2

)

v2
i φ′′ . (30)

The constraint (19) is satisfied before the update if mi −φ
√

vi ≥ 0. If mi ≤ 0, then mi ≤ φ
√

vi and

from (30) we have that γi > 0. If instead mi ≥ 0, then, again by (30), we have

γi > 0

⇔ miviφ
′ <
√

m2
i v2

i φ′2 − v2
i φ′
(

m2
i − viφ2

)

⇔ mi < φvi .

From the KKT conditions, either αi = 0 or (10) is satisfied as an equality, so (29) holds and αi =
γi > 0.

The solution of (30) satisfies the KKT conditions, that is either αi ≥ 0 or the constraint of (10) is

satisfied before the update with the weights µi and Σi. We obtain the final form of αi by simplifying

(30) together with last comment and get,

αi = max







0,
1

vi

−miφ′+
√

m2
i

φ4

4 + viφ2φ′′

φ′′







. (31)

6. Diagonal Covariance Matrices

So far we have said nothing about the covariance matrix Σ, which grows quadratically in the number

of features. Since our intended applications are NLP tasks, computing the full matrix Σ is computa-

tionally infeasible. Additionally, even though we initialize the matrix to be diagonal (Figure 1), after

applying the updates rule of either (14) (linearization/var) or (25) (change of variables/stdev), we

may obtain a full covariance matrix, as we subtract from Σi a rank-one matrix proportional to the

outer product of Σx. Therefore, successful applications to NLP problems require a restriction on the

size of the matrix Σ.
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In this section, we reduce the size of Σ by restriction to a diagonal-covariance matrix.7 We

discuss two main approaches, each of which can be applied to either the linearization or the change

of variables formulations. In Section 6.1 we show two ways to use the full-covariance updates

discussed above and add a diagonalization step. In Section 6.2 we take an alternative approach and

re-develop the update step assuming an explicit diagonal representation of the covariance matrix.

6.1 Approximate Diagonal Update

Both updates above (linearization or change-of-variables) share the same form when updating the

covariance matrix ((14) or (25))

Σi+1 = Σi −βiΣixix
*
i Σi . (32)

Our diagonalization step will define the final matrix to be a diagonal matrix with its non-zero ele-

ments equals to the diagonal elements of (32). Formally we get,

Σi+1 = diag
(

Σi −βiΣixix
*
i Σi

)

= diag(Σi)− diag
(

βiΣixix
*
i Σi

)

= Σi −βi diag
(

Σixix
*
i Σi

)

,

where the last equality follows since we assume that Σi is diagonal and

diag(A) =

{

Ap,p′ p = p′

0 p $= p′
.

A naı̈ve implementation of the diagonal operator takes Θ(d2) time and space. An efficient

implementation first defines zi = Σixi and then sets,

(

Σi+1

)

p,p
=
(

Σi

)

p,p
−βi

[

(

zi

)

p

]2

for p = 1, . . . ,d .

We refer to this diagonalization scheme as L2 since it is equivalent to a projection of the full matrix

onto the set of diagonal matrices using the Euclidean norm.

We note in passing that since the diagonalization operator and the inverse operator are not com-

mutative, we can first diagonalize the inverse of the covariance matrix and then invert the result.

Concretely we start from the update of the inverse-covariance,

Σ−1
i+1 = Σ−1

i +ηixix
*
i ,

where

ηi = 2αiφ ,

for the linearization approach ( (13) ) and

ηi =
αiφ

√

x*i Σi+1xi

,

7. There are other possible choices for reducing the matrix size, such as enforcing a sparse block diagonal matrix. We

select diagonalization since it is the most straightforward reduction and yields a first order model. See a recent paper

by Ma et al. (2010) for low rank options.
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for the change of variables approach ((24)). We first diagonalize the inverse-covariance and get

Σ−1
i+1 = diag

(

Σ−1
i +ηixix

*
i

)

= diag
(

Σ−1
i

)

+ diag
(

ηixix
*
i

)

= Σ−1
i +ηi diag

(

xix
*
i

)

.

As before we implement the update efficiently by writing

(

Σ−1
i+1

)

p,p
=
(

Σ−1
i

)

p,p
+ηi

[

(

xi

)

p

]2

for p = 1, . . . ,d ,

or in terms of the covariance matrix

(

Σi+1

)

p,p
=

1

1
(

Σi

)

p,p

+ηi

[

(

xi

)

p

]2
for p = 1, . . . ,d .

We refer to this diagonalization scheme as KL since it is equivalent to a projection of the full matrix

onto the set of diagonal matrices using the Kullback-Leibler (KL) divergence.

6.2 Exact Diagonal Update

An alternative to the approximate formulation is to explicitly maintain a diagonal and develop a

corresponding update. We now assume that the matrix Σ is diagonal. We denote by Σi,(p) the rth

diagonal element of the matrix Σi, and by xi,(p) the rth element of xi. We start with the first alternative

above where we used linearization. We follow the derivation of Section 5.1 until (11). Proceeding

with derivation of (12), but only for the diagonal elements indexed by p we get,

∂

∂Σ(p)
L =−

1

2Σ(p)
+

1

2Σi,(p)
+φαx2

i,(p) = 0 for p = 1, . . . ,d ,

Solving for Σ(p) we get

Σi+1,(p) =
Σi,(p)

1+2αΣi,(p)φx2
i,(p)

.

Following the logic presented after (15) we get that at the optimum we have

yi (xi · (µi +αyiΣixi)) = φ∑
p

x2
i,(p)

Σi,(p)

1+2αΣi,(p)φx2
i,(p)

.

Substituting (7) and (8) and rearranging the terms we get the constraint

f (α) = 0 ,

where we defined

f (α) = mi +αvi −∑
r

Σi,(p)φx2
i,(p)

1+2αΣi,(p)φx2
i,(p)

. (33)
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We will analyze (33) after developing its equivalent for the second alternative above where we

perform a change of variables. As above we denote by ϒi,(p) the rth diagonal element of the matrix

ϒi. We follow the derivation of Section 5.2 until (20). Proceeding with derivation of (21), but only

for the diagonal elements indexed by r we get

∂

∂ϒ(p)
L =−ϒ−1

(p) +ϒ−2
i,(p)ϒ(p) +αφ

x2
i,(p)ϒ(p)
√

x*i ϒ2xi

= 0 .

Rearranging the terms we get

1

ϒ2
(p)

=
1

ϒ2
i,(p)

+αφ
x2

i,(p)
√

x*i ϒ2xi

.

Thus,

ϒ2
(p) =

ϒ2
i,(p)

√

x*i ϒ2xi
√

x*i ϒ2xi +αφx2
i,(p)ϒ

2
i,(p)

.

Multiplying both sides by x2
i,(p) and summing over r we get

x*i ϒ2xi = ∑
r

x2
i,(p)ϒ

2
(p) =

√

x*i ϒ2xi ∑
r

x2
i,(p)ϒ

2
i,(p)

√

x*i ϒ2xi +αφx2
i,(p)ϒ

2
i,(p)

.

Finally, we obtain
√

x*i ϒ2xi = ∑
r

x2
i,(p)ϒ

2
i,(p)

√

x*i ϒ2xi +αφx2
i,(p)ϒ

2
i,(p)

.

As before we employ the KKT conditions which state that when α > 0 we have

mi +αvi = φ
√

x*i ϒ2xi .

Substituting in the last equality we get

√

x*i ϒ2xi = ∑
r

φx2
i,(p)ϒ

2
i,(p)

mi +αvi +αφ2x2
i,(p)ϒ

2
i,(p)

.

We use again the KKT conditions and get that the optimal value αi+1 is the solution of g(α) = 0 for

g(α) = mi +αvi −∑
r

φ2x2
i,(p)ϒ

2
i,(p)

mi +αvi +αφ2x2
i,(p)ϒ

2
i,(p)

. (34)

The function g(α) defined in (34) and the function f (α) defined in (33) are both of the form

h(α) = mi +αvi −∑
r

ar

b+ crα
,

where vi,ar,cr ≥ 0. The only difference is that b = 1 > 0 in (33) and b = mi in (34). Nevertheless,

the optimal value of α satisfies h(αi) = 0. The following lemma summarizes few properties of both

functions:
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Lemma 3 Assume that vi > 0 and let Li = max{0,−mi/vi}. Both (33) and (34) have the following

properties:

1. Their value at Li is non-positive, that is f (Li)≤ 0 ,g(Li)≤ 0.

2. They are strictly-increasing for α ≥ Li

3. For each function there exists a value Ui such that their value at Ui is positive, f (Ui) >
0 ,g(Ui)> 0

Proof For the first property we consider two cases mi ≥ 0 and mi < 0. We start with the first case

and thus Li = 0. Thus, f (0) = mi −∑r Σi,(p)φx2
i,(p) = mi −φvi < 0, where the last ineqluaity follows

since we assume that the constraint of (10) does not hold. Also, g(0) = mi − 1
mi

∑r φ2x2
i,(p)ϒ

2
i,(p) =

mi − φ2 vi

mi
< 0 since we assumed that the constraint of (19) does not hold. When mi < 0 we have

Li =−mi/vi > 0. In this case (33) becomes,

f (Li) =−∑
r

Σi,(p)φx2
i,(p)

1+2LiΣi,(p)φx2
i,(p)

≤ 0 ,

since Σi,(p)φx2
i,(p) ≥ 0. Similarly,

g(Li) =−∑
r

φ2x2
i,(p)ϒ

2
i,(p)

Liφ2x2
i,(p)ϒ

2
i,(p)

=−
d

Li
< 0 .

The second property of strictly-increasing follows immediately since vi > 0 and since for both

functions the denominator of each term in the sum over p is an increasing function in α which

is non-negative in the range α ≥ Li. Finally, the last property follows directly from the second

property.

The lemma states that for each of f and g there is exactly one αi (possibly different for each function)

such that f (αi) = 0 and g(αi) = 0, but it does not provide an expression for computing αi explicitly

such as in Lemma 1. However, it further tells us that for each function the value of αi is in the

interval [Li,Ui]. A value not far from αi up to an accuracy of ε can be found using binary search in

time proportional to [(Ui −Li) log(1/ε)].
We conclude this section by computing a possible value Ui for each function and start with (33).

Note that ai =max{0,−2mi/vi} satisfies mi+(ai/2)vi ≥ 0. Thus, bi =maxr

{(

2dΣi,(p)φx2
i,(p)

)

/vi

}

satisfies bivi/(2d)−Σi,(p)φx2
i,(p)/

(

1+2αΣi,(p)φx2
i,(p)

)

≥ 0 for p = 1 . . .d. Therefore setting Ui =

max{ai,bi} satisfies f (Ui) ≥ 0 as desired. Finally, note that Ui ≥ Li since ai ≥ Li by construction.

For (34) we use the same definition of ai but define bi = maxr

{(

2dϒ2
i,(p)φ

2x2
i,(p)

)

/vi

}

and Ui =

max{ai,bi}. By a similar argument we have g(Ui)> 0 and Li ≤Ui.

To summarize, as opposed to the full covariance case, in the exact diagonal case we do not

compute the value of αi explicitly, but use a binary-search algorithm to efficiently find a good

approximation for the optional solution.
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7. Evaluation

In this section we evaluate diagonalized versions of the CW algorithm on a range of binary classifi-

cation problems for NLP tasks. We compare our methods against each other and against competitive

online and batch learning algorithms.

We selected a range of 5 tasks and created 17 binary classification problems. We begin with a

description of each task.

7.1 20 Newsgroups

The 20 Newsgroups corpus contains approximately 20,000 newsgroup messages, partitioned across

20 different newsgroups.8 The data set is a popular choice for binary and multi-class text classifi-

cation as well as unsupervised clustering. Following common practice, we created binary problems

from the data set by creating binary decision problems of choosing between two similar groups.

Our groups are:

• comp: comp.sys.ibm.pc.hardware vs. comp.sys.mac.hardware

• sci: sci.electronics vs. sci.med

• talk talk.politics.guns vs. talk.politics.mideast

Each message was represented as a binary bag-of-words. For each problem we selected 1800 ex-

amples balanced between the two labels.

7.2 Reuters

The Reuters Corpus Volume 1 (RCV1-v2/LYRL2004) contains over 800,000 manually categorized

newswire stories (Lewis et al., 2004). Each article contains one or more labels describing its gen-

eral topic, industry and region. We created the following binary decision tasks from the labeled

documents:

• Insurance: Life (I82002) vs. Non-Life (I82003)

• Business Services: Banking (I81000) vs. Financial (I83000)

• Retail Distribution: Specialist Stores (I65400) vs. Mixed Retail (I65600).

These distinctions involve neighboring categories so they are fairly hard to make. Details on doc-

ument preparation and feature extraction are given by Lewis et al. (2004). For each problem we

selected 2000 examples using a bag-of-words representation with binary features. Each problem

contains a balanced mixture of examples from each label.

7.3 Sentiment

We used a larger version of the sentiment multi-domain data set of Blitzer et al. (2007) used in

Dredze et al. (2010).9 This data consists of product reviews from 7 Amazon domains (apparel,

book, dvd, electronics, kitchen, music, video). The goal in each domain is to classify a product

8. Corpus can be found at http://people.csail.mit.edu/jrennie/20Newsgroups/.

9. Data set can be found at http://www.cs.jhu.edu/˜mdredze/datasets/sentiment/.
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review as either positive or negative. Feature extraction creates unigram and bigram features using

counts following Blitzer et al. (2007). For the apparel domain we used all 1940 examples and for

all other domains we used 2000 examples. Each problem contains a balanced mixture of example

labels.

7.4 Spam

We include a spam classification problem as a sample problem from the space of email classification

tasks. We chose spam since it is a widely studied problem with several publicly available data sets.

We selected the 2006 ECML/PKDD Discovery Challenge spam data set (Bickel, 2006) and use the

provided representations (bag-of-words). The goal is to classify an email (bag-of-words) as either

spam or ham (not-spam). This corpus contains two data sets: task A, which has three users, and

task B, which has 15 users. We use the three users from task A since it has more training examples.

For each user we select 2000 examples.

7.5 Pascal

The PASCAL large scale learning challenge workshop provided several large scale binary data

sets.10 We selected the NLP task, which is a Webspam filtering problem. Each example is the text

from a web page. The task is to classify a webpage as either spam or ham. We used the default

format provided by the workshop and selected 2000 examples.

7.6 USPS

The USPS data set contains examples of all 10 digits as part of a digit recognition task (OCR) (Hull,

1994). We created binary tasks by pairing each digit with another in order: 0/9, 1/2, 3/4, 5/6, 7/8.

We used the standard value of each pixel in the image, as well as the product of all the pixel pairs

in the image (bi-grams.)

Each data set was randomly divided for 10-fold cross validation experiments. Classifier param-

eters (φ) and the number of training iterations (up to 10) were tuned for each classification task on a

single randomized run over the data. Results are reported for each problem as the average accuracy

over the 10 folds. Statistical significance is computed using McNemar’s test.

7.7 Results

We start by comparing the performance of the diagonalized CW algorithms: var (linearization)

against stdev (change of variables), approximate against exact diagonalization, and for approxi-

mate updates, KL against L2. All six algorithm combinations were run on the data sets described

above. The average test error on all data sets is shown in Table 2. For each method, we summarize

its overall performance by computing its mean rank among all the other algorithm: if an algorithm

has a mean rank of 1 then on average across all data sets it achieved the lowest error on average,

whereas a rank of 6 indicates that it ranked 6th in error on average across all tests.

Starting with the KL methods for var and stdev, the stdev method does slightly better, a result

shown in Crammer et al. (2008). Comparing the two methods for diagonalization (KL vs. L2), while

L2 does slightly better for var (the best overall), the KL method appears to be more stable overall,

10. Data sets can be found at http://largescale.first.fraunhofer.de/workshop/.
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Figure 3: Accuracy on test data after each iteration on six data sets.

achieving the best or closest to best results for the var and stdev methods. In comparison, the exact

methods do worse than the approximations. To understand these results, we examine some learning

curves from several of the online experiments in Figure 7.6 and in Figure 7.6, which show accuracy

on test data after each iteration. In many of these plots, the exact method does very well after the first

iteration, surpassing the performance of the approximate methods. However, after the first iteration

the exact method stops improving while the approximate methods continue to improve. By finding

a solution that exactly achieves the constraint, exact produces a more aggressive algorithm that

learns faster but overfits (Figure 5). In contrast, the approximate solutions do not fully enforce the

constraint on each update but this slower learning reduces overfitting and improves generalization

error over several iterations.
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Figure 4: Accuracy on test data after each iteration on the six Amazon data sets.

We next compare the results from our approximation diagonalization CW methods to other pop-

ular online learning algorithms (Table 3). We evaluated the perceptron (Rosenblatt, 1958), passive-

aggressive (Crammer et al., 2006a), stochastic gradient descent (Zhang, 2004; Blitzer et al., 2007)

and a diagonalized second order perceptron (Cesa-Bianchi et al., 2005), all of which perform well

for NLP problems. In every experiment, a CW method improved over all of the online learning

baselines.

As discussed above, online algorithms are attractive even for batch learning because of their

simplicity and ability to operate on extremely large data sets. In the batch setting, these algorithms

are run several times over the training data, which yields slower performance than single pass learn-

ing (Carvalho and Cohen, 2006). While we have shown that CW improves on accuracy, it also learns

faster than other baselines, requiring fewer iterations over the training data. Such behavior can be
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var stdev

Task KL L2 Exact KL L2 Exact

Sentiment Apparel 12.53 12.47 14.79 13.66 13.51 14.28

Books 16.90 17.30 19.60 16.25 22.35 15.25

DVD 17.45 17.05 19.05 17.60 18.30 16.95

Electronics 14.95 15.40 16.65 14.75 20.95 15.50

Kitchen 13.75 13.65 15.30 15.40 15.40 14.25

Music 17.15 17.55 19.90 17.75 17.85 19.35

Video 21.75 18.55 25.85 22.50 19.00 23.60

ECML Spam A 2.65 1.45 3.10 0.75 4.15 0.80

Spam B 1.35 1.20 2.65 1.00 1.10 1.05

Spam C 1.50 1.40 3.40 1.50 3.55 1.35

Reuters Retail 10.55 18.80 18.75 10.25 11.05 11.05

Business 16.35 15.35 17.10 16.45 16.80 17.20

Insurance 8.20 9.15 10.20 8.55 9.55 10.10

20 News Comp 6.69 5.61 8.59 6.79 16.64 6.90

Sci 2.44 2.74 3.20 3.04 13.35 3.10

Talk 0.86 0.43 2.43 0.27 8.38 1.14

Pascal Webspam 3.55 3.10 3.85 2.95 3.10 5.35

Mean Rank 2.53 2.35 5.29 2.47 4.53 3.59

Table 2: Average Error of all variants of confidence-weighted algorithms presented in this paper

over 17 binary text classification tasks. The best score for each data set is set in bold. The

mean rank is the average rank of each algorithm across data sets, ranging from 1 (best) to

6.

seen in Figure 7.6 and Figure 7.6, which shows test error after each training iteration for CW and

PA. While CW clearly improves over PA, it converges very quickly, reaching near best performance

on the first iteration. In contrast, PA benefits from multiple iterations over the data; its performance

changes significantly from the first to fifth iteration. The plot also illustrates exact’s behavior, which

initially beats PA but does not improve. In fact, on eleven of the twelve data sets, var-Exact beats

PA on the first iteration.

7.8 Batch Learning

While online algorithms are widely used, batch algorithms are still preferred for many tasks. Batch

algorithms can make global learning decisions by examining the entire data set, an ability beyond

online algorithms. In general, when batch algorithms can be applied they perform better. We

compare CW to three standard batch algorithms: naı̈ve Bayes (default configuration in MALLET

McCallum, 2002), maximum entropy classification (default configuration in MALLET McCallum,

2002) and support vector machines (LibSVM Chang and Lin, 2001). Classifier parameters (Gaus-

sian prior for maxent and C for SVM) were tuned as for the online methods.

Results for batch learning are shown in table Table 4. As expected, the batch methods tend to do

better than the online methods (perceptron, PA, and SGD). However, in 13 out of 17 tasks the CW
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var stdev

Task KL L2 KL L2 Per PA SOP SGD

Sentiment Apparel 12.53 12.47 13.66 13.51 17.84 13.35 17.42 13.76

Books 16.90 17.30 ∗16.25 22.35 23.10 18.45 19.75 18.60

DVD 17.45 ∗17.05 ∗17.60 18.30 20.45 20.95 20.55 18.70

Electronics 14.95 15.40 "14.75 "20.95 18.65 17.45 20.20 16.00

Kitchen "13.75 ∗13.65 15.40 15.40 16.65 15.20 21.20 16.00

Music 17.15 17.55 17.75 17.85 22.35 19.40 21.80 18.20

Video 21.75 18.55 22.50 19.00 21.50 18.90 21.90 19.25

ECML Spam A 2.65 1.45 "0.75 4.15 3.20 1.40 4.20 2.30

Spam B 1.35 "1.20 ∗1.00 1.10 3.00 2.40 1.95 2.80

Spam C 1.50 "1.40 "1.50 3.55 3.65 2.10 2.90 2.15

Reuters Retail †10.55 18.80 †10.25 †11.05 19.60 17.50 19.45 14.30

Business 16.35 15.35 16.45 16.80 19.00 16.15 21.80 15.45

Insurance 8.20 9.15 8.55 9.55 11.35 12.35 10.15 9.35

20 News Comp 6.69 †5.61 6.79 †16.64 10.30 8.65 10.45 7.88

Sci †2.44 †2.74 ∗3.04 †13.35 6.70 8.06 4.67 4.06

Talk 0.86 ∗0.43 †0.27 †8.38 3.24 1.57 2.59 1.19

Pascal Webspam 3.55 3.10 "2.95 3.10 7.60 3.90 5.05 3.50

USPS 0 vs 9 0.56 0.56 0.56 0.56 0.37 0.93 0.75 0.56

1 vs 2 1.73 0.87 0.87 4.33 1.73 0.65 2.38 42.86

3 vs 4 1.37 1.09 1.09 1.09 0.82 1.09 2.73 45.36

5 vs 6 0.91 0.91 1.52 1.52 4.24 0.91 3.03 48.48

7 vs 8 2.24 2.24 1.92 2.24 2.56 1.60 4.15 53.04

Table 3: Average Error of approximate-diagonal confidence-weighted algorithms and four other

online algorithms: The perceptron algorithm (Per), the passive-aggressive (PA) algorithm,

the second order perceptron (SOP) and stochastic gradient decent evaluated using 17 bi-

nary text classification tasks. The best score for each data set is set in bold. Statistical

significance measured by McNemar’s test indicates when a CW algorithm is statistically

significant (" p = 0.05, ∗ p = 0.01, † p = 0.001) from each of the four baselines (percep-

tron, PA, SOP, SGD).

algorithm beats all of the batch methods. The much faster and simpler online algorithm performs

better than the slower more complex batch methods.

The speed advantage of online methods in the batch setting can be seen in Table 5, which shows

the average training time in seconds for a single experiment (fold) for a representative selection of

CW algorithms and some of the baselines. The online times include the multiple iterations selected

for each online learning experiment. The differences between the online and batch algorithms are

striking. While CW performs better than the batch methods, it is also much faster, while being

equivalent in speed to the other online methods. For webspam data, which contains many features,

an SVM takes over 1.5 minutes to train while the CW algorithms take between 1-2 seconds.

We also evaluated the effects of commonly used techniques for online and batch learning, in-

cluding averaging and TFIDF features; they did not improve results so details are omitted. Although
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var stdev

Task KL L2 KL L2 NB Maxent SVM

Sentiment Apparel 12.53 12.47 13.66 13.51 12.63 13.56 13.92

Books 16.90 17.30 "16.25 †22.35 18.40 18.05 18.25

DVD 17.45 17.05 17.60 18.30 21.00 18.00 19.60

Electronics 14.95 15.40 "14.75 †20.95 17.05 15.85 16.25

Kitchen "13.75 13.65 15.40 15.40 15.00 15.25 15.50

Music 17.15 17.55 17.75 17.85 18.65 17.90 18.25

Video 21.75 18.55 22.50 19.00 22.95 18.40 18.80

ECML Spam A "2.65 1.45 "0.75 4.15 3.70 1.30 1.75

Spam B 1.35 1.20 "1.00 1.10 4.20 1.55 1.90

Spam C 1.50 1.40 1.50 †3.55 1.40 1.35 1.40

Reuters Retail ∗10.55 "18.80 †10.25 ∗11.05 16.55 12.55 12.90

Business 16.35 15.35 16.45 16.80 20.00 15.85 15.60

Insurance 8.20 9.15 8.55 9.55 11.80 9.10 9.75

20 News Comp 6.69 5.61 6.79 †16.64 5.56 7.82 7.67

Sci "2.44 "2.74 3.04 †13.35 1.42 3.40 3.86

Talk 0.86 "0.43 +0.27 †8.38 0.97 1.03 1.24

Pascal Webspam 3.55 "3.10 +2.95 "3.10 19.10 6.05 3.85

USPS 0 vs 9 0.56 0.56 0.56 0.56 1.12 33.02 0.56

1 vs 2 1.73 0.87 0.87 4.33 1.52 42.86 0.65

3 vs 4 1.37 1.09 1.09 1.09 1.91 45.36 0.55

5 vs 6 0.91 0.91 1.52 1.52 3.03 48.48 0.61

7 vs 8 2.24 2.24 1.92 2.24 2.56 53.04 0.96

Table 4: Average Error of approximate-diagonal confidence-weighted algorithms and three batch

algorithms: Naı̈ve Bayes (NB), Maximum entropy classifier (Maxent) and support vector

machine (SVM) evaluated using 17 binary text classification tasks. The best score for each

data set is set in bold. Statistical significance measured by McNemar’s test indicates when

a CW algorithm is statistically significant (" p = 0.05, ∗ p = 0.01, † p = 0.001) from each

of the three baselines (NB, Maxent, SVM).

the above data sets are balanced with respect to labels, we also evaluated the methods on variant

data sets with unbalanced label distributions, and still saw similar benefits from the CW methods.

7.9 Large Data Sets

Online algorithms are especially attractive in tasks where training data exceeds available main mem-

ory or in streaming settings where training examples cannot be saved. In both of these settings, a

single sequential pass over the data is highly preferred to multiple passes common in batch training

cases. So far, we have shown that CW algorithms are more aggressive than other online algorithms,

an advantage when the algorithm is limited to a single pass. The results is both higher performance

and fewer training iterations. The question we now answer is whether this advantage is maintained

in large data settings.
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Task variance KL variance Exact Perceptron PA Maxent SVM

Apparel 0.2 0.2 0.1 0.04 1 11

Books 0.1 0.8 0.1 0.1 6 25

DVD 0.1 0.9 0.1 0.04 6 22

Electronics 0.1 0.4 0.1 0.03 2 17

Kitchen 0.1 0.6 0.1 0.1 2 14

Music 0.1 0.5 0.1 0.1 4 19

Video 0.3 0.7 0.1 0.2 6 24

Spam A 0.03 0.2 0.1 0.8 3 3

Spam B 0.04 0.2 0.1 0.1 3 3

Spam C 0.1 0.2 0.04 0.04 1 2

Retail 0.1 0.1 0.03 0.03 0.6 4

Business 0.1 0.3 0.1 0.02 0.3 5

Insurance 0.1 0.2 0.1 0.02 0.8 4

Comp 0.04 0.2 0.1 0.2 2 11

Sci 0.1 0.3 0.1 0.04 2 7

Talk 0.1 0.3 0.1 0.1 4 7

Webspam 1 2 3 1 12 103

Table 5: Training times in seconds for a single training run (averaged over 10 trials.)

We selected two large data sets for evaluation. The combined product reviews for all the domains

by Blitzer et al. (2007) yield one million sentiment examples. While most reviews were from the

book domain, the reviews are taken from a wide range of Amazon product types and are mostly

positive. From the Reuters corpus, we created a one vs. all classification task for the Corporate

topic label, yielding 804,411 examples of which 381,325 are labeled corporate. For the two data

sets, we created four random splits each with 10,000 test examples and the remaining examples

saved for training. Parameters were optimized by training on 5,000 randomly chosen examples. We

evaluated the CW var-KL algorithm and the passive-aggressive algorithm using a single pass over

this data.

The results are shown as horizontal lines in Figure 6. For the Sentiment data, CW maintains

over a 1% lead when compared to PA. On the Reuters data, the results are reversed with PA having

the advantage. The difference between these behaviors may be related to the different feature rep-

resentations used by each data set. The Reuters data contains 288,062 unique features, for a feature

to document ratio of 0.36. In contrast, the sentiment data contains 13,460,254 unique features, a

feature to document ratio of 13.33. This means that Reuters features will occur several times during

training while many sentiment features only once. This may give CW an advantage on Sentiment.

It is also possible that CW over-fits the Reuters data, something that will be observed in the next set

of experiments below.

7.10 Distributed Training

While faster learning over a data stream is important, not all large data sets can be processed by

a single processor. Therefore, we looked at the case where many processors are available, each

with easy access to a fraction of the training data, but where communication between processors
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Figure 5: The trained model’s accuracy on the training data for fifteen of the data sets for the exact

diagonal and L2 diagonal approximation Stdev methods. Points above the line indicate

that the exact algorithm obtained a higher training accuracy than the L2 diagonal method.

Observe that the exact method almost always obtains a higher training accuracy, and

is nearly 100% in every case. Coupled with the results on test data, which are worse

for the exact methods, these results indicate that the exact method overfits the training

data. These results are typical when comparing the exact algorithms against the diagonal

approximations.

is limited. In this setting, we would like an algorithm where individual processors train models on

their easily accessible data, and then they combine their models. While this often does not perform

as well as a single model trained on all of the data, it is a cost-effective way of learning from very

large training sets.

One simple approach is to combine many trained models by averaging their weights (McDonald

et al., 2010). However, averaging models trained in parallel assumes that each model has an equally

accurate estimate of the model weights. This is obviously not the case where different processors

saw different portions of the data, made different updates, or saw features that other processors did

not. Rather than taking an average over all models, CW provides a confidence value for each weight,

allowing for a more intelligent combination of weights from multiple models.

Since each model is a Gaussian distribution over weights, combining multiple trained CW clas-

sifiers is equivalent to combining multiple Gaussian distributions. Specifically, we compute the

combined model by finding the Gaussian that minimizes the total divergence to the set C of Gaus-

sian distributions (individually trained classifiers) for some divergence operator D:

min
µ,Σ

∑
c∈C

D((µ,Σ)||(µc,Σc)),

If D is the Euclidean distance, then this is just the average of the individual models. However, we

can instead rely on the variance estimates of each Gaussian by choosing the KL divergence for D.
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Figure 6: Results for Reuters (800k) and Sentiment (1000k) averaged over 4 runs. Horizontal lines

show the test accuracy of a model trained on the entire training set. Vertical bars show

the performance of n (10, 50, 100) classifiers trained on disjoint sections of the data as

the average performance, uniform combination, or weighted combination.

This minimization leads to the following weighted combination of individual model means:

µ =

(

∑
c∈C

Σ−1
c

)−1

∑
c∈C

Σ−1
c µc Σ−1 = ∑

c∈C

Σ−1
c .

We evaluate classifier combination by training n (10, 50, 100) models by dividing the example

stream into n disjoint parts and report the average performance of each of the n classifiers (average),

the combined classifier from taking the average of the n sets of weights (L2) and the combination

using the KL divergence on the test data across 4 randomized runs.

Average accuracy on the test sets are reported in Figure 6. As stated above, the PA single

model achieves higher accuracy for Reuters, possibly because of the low feature to document ratio.

However, combining 10 CW classifiers achieves the best performance. For sentiment, combining

10 classifiers beats PA but is not as good as a single CW model. In every case, combining the

classifiers improves over each model individually. On sentiment, the KL combination improves

over the L2 combination and in Reuters the models are equivalent. For comparison, we show the

accuracy on the test data for a single run on the CW Variance KL model on sentiment data Figure 7.

When trained on all of the data and distributed across 10 machines, the classifier loses 1% of its

performance which, using Figure 7 as a guide, corresponds to using 22% of the training data.

Finally, we computed the actual run time of both PA and CW on the large data sets to compare

the speed of each model. While CW is more complex, requiring more computation per example,

the actual speed is comparable to PA; in all tests the run time of the two algorithms was indistin-

guishable.

8. Related Work

The idea of using weight-specific variable learning rates has a long history in neural-network learn-

ing (Sutton, 1992), although we do not know of a previous model that specifically models confidence

in a way that takes into account the frequency of features.
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Figure 7: Results from CW Variance KL run on the large scale Sentiment data (1000k) averaged

over 4 runs. Accuracy on test data is measured every 10k training examples to demon-

strate the improvement with increases in training data.

Online additive algorithms have a long history, from the perceptron (Rosenblatt, 1958) to more

recent methods (Kivinen and Warmuth, 1997; Crammer et al., 2006b). Our update has a more

general form, in which the input vector xi is linearly transformed using the covariance matrix, both

rotating the input and assigning weight specific learning rates.

The second order perceptron (SOP) (Cesa-Bianchi et al., 2005) demonstrated that second-order

techniques can improve first-order online methods. Both SOP and CW maintain second-order in-

formation. SOP is mistake driven while CW is passive-aggressive. SOP uses the current example in

the correlation matrix for prediction while CW updates after prediction. A variant of stdev similar

to SOP follows from our derivation if we fix the Lagrange multiplier in (20) to a predefined value

αi = α, omit the square root, and use a gradient-descent optimization step. Fundamentally, CW

algorithms have a probabilistic motivation, while the SOP is geometric: replace the ball around an

example with a refined ellipsoid. Shivaswamy and Jebara (2007) used a similar motivation in batch

learning.

Ensemble learning shares the idea of combining multiple classifiers. Gaussian process classifi-

cation (GPC) maintains a Gaussian distribution over weight vectors (primal) or over regressor val-

ues (dual). Our algorithm uses a different update criterion than the standard GPC Bayesian updates

(Rasmussen and Williams, 2006, Chapter 3), avoiding the challenge of approximating posteriors.

Bayes point machines (Herbrich et al., 2001) maintain a collection of weight vectors consistent with

the training data, and use the single linear classifier which best represents the collection. Concep-

tually, the collection is a non-parametric distribution over the weight vectors. Its online version

(Harrington et al., 2003) maintains a set of weight vectors that are updated simultaneously. The rel-

evance vector machine (Tipping, 2001) incorporates probability into the dual formulation of SVMs.

As in our work, the dual parameters are random variables distributed according to a diagonal Gaus-

sian with example specific variance. The weighted-majority (Littlestone and Warmuth, 1994) algo-

rithm and later improvements (Cesa-Bianchi et al., 1997) combine the output of multiple arbitrary
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classifiers, maintaining a multinomial distribution over the experts. We assume linear classifiers as

experts and maintain a Gaussian distribution over their weight vectors.

With the growth of available data there is an increasing need for algorithms that process train-

ing data very efficiently. A similar approach to ours is to train classifiers incrementally (Bordes

and Bottou, 2005). The extreme case is to use each example once, without repetitions, as in the

multiplicative update method of Carvalho and Cohen (2006).

In Bayesian modeling, we note few approaches that use parameterized distributions over weight

vectors. Borrowing concepts from support vector machines, Jaakkola et al. (1999) developed maxi-

mum entropy discrimination, which models the generation of examples with one generative model

for each class. The model consisted of distributions over the weights and over margin thresholds.

They used Bayesian prediction and set the weights using the maximum-entropy principle. In a

more recent approach, Minka et al. (2009) proposed using additional virtual vectors to allow more

expressive power beyond Gaussian prior and posterior.

Passing the output of a linear model through a logistic function has a long-history in the statis-

tical literature, and is extensively covered in many textbooks (e.g., Hastie et al., 2001). Platt (1998)

used similar ideas to convert the output of a support vector machine into probabilistic quantities.

Since the conference versions of this work were published, a few algorithms reminiscent of CW

were proposed. Duchi et al. (2010) and McMahan and Streeter (2010) proposed to replace the stan-

dard Euclidean distance in stochastic gradient decent with general Mahalanobis distance defined

by the second order information, captured by the instantaneous second order moment. Crammer

et al. (2009a) proposed to replace the hard constraint enforced by the CW algorithm with a relaxed

version, formulated using an additional term in the objective function. They call their algorithm

AROW for adaptive regularization of weight vectors. Orabona and Crammer (2010) proposed later

a framework for online learning, which contains an algorithm close to AROW as a special case, as

well as other new algorithms. From a different perspective, Crammer and Lee (2010) proposed a

microscopic view for learning, that tracks individual weight-vectors as opposed only to their macro-

scopic quantities, such as mean and covariance. Their algorithm has similar update form as CW

((11) and (13)), yet with different rates.

Finally, Shivaswamy and Jebara (2010b,a) proposed to use second order information, or the

variance in the batch setting where an iid distribution over the examples is assumed. Their algorithm

both maximizes the (average) margin and at the same time minimizes its variance. Note, that they

do not maintain a distribution over weight vectors, and the probability space is induced using the

distribution over training examples.

9. Conclusion

We have presented confidence-weighted linear classifiers, a new learning method designed for NLP

problems based on the notion of weight confidence. The algorithm maintains a distribution over

weight vectors; online updates both improve the weight estimates and reduce the distribution’s

variance. Our method improves over both online and batch methods and learns faster on over a

dozen NLP data sets. Additionally, our new algorithms allow more intelligent classifier combination

techniques, yielding improved performance in distributed learning.
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Abstract

In reinforcement learning an agent uses online feedback from the environment in order to adaptively
select an effective policy. Model free approaches address this task by directly mapping environmen-
tal states to actions, while model based methods attempt to construct a model of the environment,
followed by a selection of optimal actions based on that model. Given the complementary advan-
tages of both approaches, we suggest a novel procedure which augments a model free algorithm
with a partial model. The resulting hybrid algorithm switches between a model based and a model
free mode, depending on the current state and the agent’s knowledge. Our method relies on a novel
definition for a partially known model, and an estimator that incorporates such knowledge in or-
der to reduce uncertainty in stochastic approximation iterations. We prove that such an approach
leads to improved policy evaluation whenever environmental knowledge is available, without com-
promising performance when such knowledge is absent. Numerical simulations demonstrate the
effectiveness of the approach on policy gradient and Q-learning algorithms, and its usefulness in
solving a call admission control problem.

Keywords: reinforcement learning, temporal difference, stochastic approximation, markov deci-
sion processes, hybrid model based model free algorithms

1. Introduction

In Reinforcement Learning (RL) an agent attempts to improve its performance over time at a given

task, based on continual interaction with the (usually unknown) environment, (Bertsekas and Tsit-

siklis, 1996; Sutton and Barto, 1998). This improvement takes place by modifying the action se-

lection policy, based on feedback from the environment and prior knowledge available to the agent.

Formally, RL is often phrased as the problem of finding a mapping, the so called policy, from the

environment’s states to the agent’s actions that maximizes a given functional of a reward function.

Most RL algorithms can be classified into either model based (also termed indirect) or model

free (direct) approaches (Sutton and Barto, 1998; Bertsekas and Tsitsiklis, 1996). In the former

setting, taking its inspiration from the field of Adaptive Control (Kumar, 1985), the agent maintains

an explicit model of the environmental dynamics, typically in the form of a Markov Decision Pro-

cess (MDP), while interacting with it. Based on this model, a planning problem is solved where

techniques from Dynamic Programming (Bertsekas, 2006) are applied in order to find the optimal

policy function. On the other hand, within the model free setting, the agent does not try to build a

model of the MDP, but rather attempts to find the optimal policy by directly mapping environmental

c©2012 Aviv Tamar, Dotan Di Castro and Ron Meir.
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states to actions. In this sense, no model of the environmental dynamics is required. While it can be

shown that both approaches, under mild conditions, asymptotically reach the same optimal policy

on typical MDP’s, it is known that each approach possesses distinct merits. Model based meth-

ods often make better use of a limited amount of experience and thus achieve a better policy with

fewer environmental interactions. On the other hand, model free methods are simpler, require less

computational resources, and are not affected by biases in the design (or estimation) of the model.

The view taken in this work is that this dichotomy between algorithmic approaches, although

popular, is not necessarily desirable. As an example, consider a scenario where some parts of the

environment are known in advance, but computational resources are limited, restricting the use of

proper model based approaches. In this case, a hybrid approach may allow us to benefit from using

parts of the model in the algorithm, without sacrificing its simplicity, thus striking a balance between

the merits of each approach. Surprisingly, the concept of combining model free and model based

algorithms has received very little attention in the RL literature, and theoretical guarantees to its

advantages are lacking.

In this work we pursue such a hybrid approach applicable to cases where partial model infor-

mation is available in a specific form which we term partially known MDP. We provide a method

for integrating such information into RL algorithms of the Stochastic Approximation (SA) type

(Kushner and Yin, 2003; Borkar, 2008). This class of online model free algorithms includes many

standard RL approaches that have been used effectively in practice (e.g., Tesauro, 1995; Crites and

Barto, 1996). The method we propose reduces uncertainty in the algorithm trajectory, thereby im-

proving its performance. Our theoretical analysis focuses on a particular model free algorithm -

the well known TD(0) policy evaluation algorithm, and we prove that our hybrid method leads to

improved performance, as long as sufficiently accurate partial knowledge is available. The effec-

tiveness and generality of our method is further demonstrated in two numerical simulations. In the

first, we apply it to a policy gradient type algorithm, and investigate its performance in randomly

generated MDPs. In the second, we consider a call admission control problem. As it turns out, our

partially known MDP definition is a natural choice for describing plausible partial knowledge in

such problems, and performance improvement is demonstrated for a Q-learning algorithm.

1.1 A High-Level Sketch of the Method

Online SA algorithms attempt to optimize some parameter of the system, using “noise corrupted”

system measurements as a data stream for an iterative optimization process. These algorithms deal

with noise by making only small changes to the parameters at each step, so that over many iterations

the noise averages out, and the parameters asymptotically follow a mean trajectory. Intuitively, any

prior knowledge about the system should reduce our uncertainty about its behavior and thus enable

some noise reduction. In this work we propose a method that reduces the noise at each step. We

do this by observing that the update at each step can be viewed as a simple estimate of the mean

update. Using the partially known MDP we propose an improved estimator, thereby reducing the

noise variance. A key property of our estimator is that it is unbiased, thus it preserves the algorithm’s

mean trajectory. This assures us that the overall function of the algorithm will remain intact, while

the reduction in noise variance gives reason to expect an improvement in performance.
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1.2 Related Work

One difficulty of RL is coping with the stochasticity inherent to RL algorithms. In this work we de-

fine a partially known MDP, and use this partial knowledge to improve the asymptotic performance

of stochastic approximation type algorithms. Our method is novel, and specifically deals with this

difficulty. We note that a different notion of a partially known MDP was used by Kearns and Singh

(2002) and Brafman and Tennenholtz (2003) to tackle a different difficulty of RL - the ‘exploration

exploitation’ tradeoff. Thus, the partial model which we use only to reduce stochastic fluctuations

may further be used to explore or exploit more efficiently. On the other hand, the advantage of our

approach is that it is general, and may be easily applied to a large class of model free algorithms.

When a full model of state transitions is available, applying our method to Q-learning results in

an algorithm known as Real Time Dynamic Programming (RTDP) (Barto et al., 1995). Thus, the

method presented in this work may be viewed as a bridge between the model free Q-Learning and

the model based RTDP.

In Section 4 we analyze the asymptotic fluctuations in a fixed step TD(0) algorithm with a partial

model. A similar analysis of TD(0) without partial model was given by Dayan and Sejnowski (1994)

for a decreasing step size and without explicit convergence rate results, and by Konda (2002) using a

similar technique to bound the convergence rate. Singh and Dayan (1998) provided update equations

for the MSE of TD(0), which we use as a measure of convergence rate, though their equations were

only solvable by simulation. This work presents explicit values of the asymptotic MSE.

On a slightly different note, an early approach towards a hybrid model based - model free RL

algorithm is the Dyna architecture (Sutton, 1990), in which interactions with the environment are

used both for a direct policy update, using a model free RL algorithm, and for an update of an

environmental model. This model is then used to generate simulated trajectories which are fed to

the same model free algorithm for further policy improvement. In a more recent work by Abbeel

et al. (2006), a hybrid approach is proposed that combines policy search on an inaccurate model,

with policy evaluations in the real environment. Finally, we note that the idea of combining model

based and model free approaches has been proposed in the context of animal and human learning,

suggesting an explanation for behavioral choice experiments (Daw et al., 2005). To the best of our

knowledge, our work presents the first formal proof of the advantage of a hybrid algorithm over a

standard model free algorithm.

1.3 Organization

This paper is organized as follows. In Section 2 we describe our estimator in the context of estimat-

ing the expectation of a random variable. This allows us to derive all its important properties without

the notational burden of the SA setting. In Section 3 we describe the RL environment and introduce

the partially known MDP. We then describe a method that integrates it in model free SA algorithms.

Our main results are in Section 4, in which we analyze how our proposed method influences the

algorithm’s overall performance. Focusing on TD(0), we show that improvement in performance

is achieved. In Section 5 we investigate the effects of inaccuracies in the partial model, and extend

our results to inaccurate partially known MDP’s. In Section 6 we demonstrate through simulation

the applicability of our method to other model free RL algorithms. We conclude and discuss future

work in Section 7.
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2. Estimation of a Random Variable Mean with Partial Knowledge

Our method of using partial knowledge in an SA algorithm is based on constructing a better esti-

mator for the mean update at each step. In this section we describe our estimator in the context

of estimating the mean of a random variable. This allows us to derive all its important properties

without the notational burden of the SA setting. The results we derive will then easily transfer to

the more complicated SA setting.

Let X be a random variable over a finite and discrete set Ω and let P(ω)! Pr(X = ω) denote the

probability distribution of X . Since P(ω) contains all the information about X , a natural definition

for partial knowledge in this setting is information regarding some of its attributes. In particular, we

assume that for an a-priori given subset of Ω, the ratios between the probability distribution values

are provided. Denote by K this set for which the ratios of P are known,1

K !







ω : ω ∈ Ω s.t.
P(ω)

∑
ω′∈K

P(ω′)
is known







. (1)

We refer to K as the partial knowledge set. Suppose we are given one sample of X , denoted by x,

and we wish to estimate (without bias) the expectation µ = E [X ]! ∑ω∈Ω ωP(ω). Our estimator can

be any function of x, and of values and probability ratios in the partial knowledge set K.

The Maximum Likelihood (ML) estimator of µ is derived by first using x to generate the ML esti-

mate of the complete probability distribution P̂(ω), and then calculating the expectation ∑ω ωP̂(ω).
For a given known set K, let PK (ω) denote the set of all probability distributions P(ω) that satisfy

the ratios in (1). If the observed sample x is not in K, then the ML estimate for the probability

distribution P̂(ω;x /∈ K) is given by

P̂(ω;x /∈ K) = argmax
P(ω)∈PK(ω)

P(x) = δx,ω, (2)

where δx,ω is Kronecker’s delta. Conversely, if x is in K, the ML estimate P̂(ω;x ∈ K) is

P̂(ω;x ∈ K) = argmax
P(ω)∈PK(ω)

P(x) =
1K

ωP(ω)

∑
ω′∈K

P(ω′)
, (3)

where 1K
ω denotes the indicator function that equals 1 if ω ∈ K and 0 otherwise. Letting K̄

denote the complement of the set K, combining (2) and (3) gives the ML estimate for the probability

distribution P̂(ω)

P̂(ω;x) = 1K

x

1K
ωP(ω)

∑
ω′∈K

P(ω′)
+1K̄

x δx,ω. (4)

By taking an expectation of (4), we derive the ML estimate for µ given the partial knowledge, which

we denote by µ̂K

µ̂K (x) = 1K

x ·
E [X ·1K

X ]

E [1K
X ]

+1K̄

x · x. (5)

1. Note that knowledge of the exact probability distribution values is a special case of this definition.
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Note that (5) uses the partial knowledge in a very intuitive way. It ‘replaces’ samples in the

known set with their weighted average, which by (1) is known. An important property of the esti-

mator µ̂K is that it is unbiased, as expressed in the following Lemma.

Lemma 1 The estimator µ̂K is unbiased, namely E [µ̂K] = µ.

Proof By direct calculation

E [µ̂K] = E [1K

X ] ·
E [X ·1K

X ]

E [1K
X ]

+E
[

1K̄

X ·X
]

= E
[

X
(

1K

X +1K̄

X

)]

= E [X ] .

In the following Lemma the Mean Squared Error (MSE) of µ̂K is computed. Let P(K) =∑ω∈K P(ω),
and let PK (ω) denote the probability measure over the known set K, namely

PK (ω)! 1K

ωP(ω)/P(K) .

Denote by EK [·] and VarK [·] the expectation and variance under the probability measure PK .

Lemma 2 The MSE of µ̂K is E
[

(µ̂K −µ)2
]

= Var [X ]−P(K) ·VarK [X ] .

Proof Observe that for any function f (·)

EK

[

( f (X)−µ)2
]

= EK

[

( f (X)−EK f (X)+EK f (X)−µ)2
]

= VarK f (X)+(EK [ f (X)]−µ)2 , (6)

where the cross terms in the second equality vanish.

Next, we have

E [µ̂K (X)−µ]2 = E
[

(

1K

X +1K̄

X

)

(µ̂K (X)−µ)2
]

= P(K)EK

[

(µ̂K (X)−µ)2
]

+E
[

1K̄

X (X −µ)2
]

= P(K)(EK [X ]−µ)2 +E
[

1K̄

X (X −µ)2
]

= P(K)
(

EK

[

(X −µ)2
]

−VarK [X ]
)

+E
[

1K̄

X (X −µ)2
]

= E
[

(X −µ)2
]

−P(K) ·VarK [X ] ,

where in the fourth equality we used (6) with f (X) = X .

One could disregard the partial knowledge altogether, and choose to use the sample x itself as an

unbiased estimate for µ. Denote this estimator, which will be referred to as the sample estimator, by

µ̂(x) = x. (7)

When no partial information is available, µ̂ seems like the most reasonable choice (actually, it can

be shown that µ̂ is the only unbiased estimator in that case). It is easy to see that the MSE of µ̂ is

1931



TAMAR, DI CASTRO AND MEIR

Var [X ], and from Lemma 2 we deduce that when the cardinality of the known set satisfies |K|> 1,

and P(K) > 0, the MSE of µ̂K is smaller than that of µ̂. In parameter estimation parlance, we say

that µ̂K dominates µ̂ (Schervish, 1995).

As will be shown in the next section, the update at each iteration of an SA algorithm can be seen

as the estimation of an expected update direction. This estimation is based on one sample, obtained

through observation of the system dynamics at that step, and the estimator used is just µ̂. When

partial knowledge of these dynamics is available, we propose to use µ̂K instead, and benefit from its

reduced variance.

An appropriate question at this point is whether a better estimator than µ̂K exists. We refer the

interested reader to appendix A, where we show that µ̂K is admissible. For the following discussion

however, the results of Lemmas 1 and 2 suffice.

3. A Stochastic Approximation Algorithm with Partial Model Knowledge

In this section we describe our method of endowing a model free RL algorithm with partial model

knowledge. We start with some general definitions of the RL environment and SA algorithms. Then,

we consider a situation where partial knowledge of the environment model is available. Based on

the estimator developed in the previous section, we propose a general form of SA algorithms that

incorporate such knowledge.

3.1 Preliminaries

We describe the notation used throughout the paper, the RL environment, and the stochastic approx-

imation method.

3.1.1 NOTATION

Throughout the rest of the paper the following notation is used. All vectors are column vectors, and

(·)T denotes the transpose operator. The product A◦B denotes the element-wise product (Hadamard

product) of A and B. Tr [·] is the trace of a matrix. The cardinality of a set K is denoted by |K|, and its

complement by K̄. Unless noted otherwise, a subscript of a variable denotes time. The i-th element

of a vector A is denoted by [A]i or A(i), depending on the context. The (i, j) element of a matrix B

is denoted by [B]i j.

3.1.2 RL ENVIRONMENT

We consider an agent interacting with an unknown environment, modeled by an MDP in discrete

time with a finite state set X and action set U. Each selected action u∈U at a state x∈X determines

a stochastic transition to the next state y ∈ X with a probability Pu(y|x).
For each state x the agent receives a corresponding deterministic reward r(x), which is bounded

by rmax, and depends only on the current state.2 The agent maintains a policy function, µθ(u|x),
parametrized by a vector θ∈RL, mapping a state x into a probability distribution over the actions U.

Under policy µθ, the environment and the agent induce a Markovian transition matrix, denoted by

Pµθ , which we assume to be ergodic.3 This Markovian transition matrix has a stationary distribution

2. Generalizing the results presented here to state-action rewards is straightforward. Generalization to stochastic rewards

is also possible by considering mean rewards.

3. That is, aperiodic, recurrent, and irreducible.
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over the state space X , denoted by πµθ . Let Πµθ ∈ R|X |×|X | be a diagonal matrix where its elements

are Πµθ = diag(πµθ). Our goal is to optimize θ with respect to some performance criteria. The

tuning of θ is performed online in the following fashion. At time n, the current parameter value

equals θn and the agent is in state xn. It then chooses an action un according to µθn
(u|xn), observes

xn+1, and updates θn+1 according to some protocol.

3.1.3 STOCHASTIC APPROXIMATION

Stochastic approximation methods (Kushner and Yin, 2003; Borkar, 2008) are a class of iterative

stochastic algorithms, to which many model free RL algorithms belong (Bertsekas and Tsitsiklis,

1996). Analysis of SA methods has received considerable attention over the past few decades,

and many analysis techniques are available. In particular, the ODE approach introduced by Ljung

(1977), is a widely used method for investigating the asymptotic behavior of SA iterates. The

algorithms that we deal with in this paper are all cast in the following SA form,4

θn+1 = θn + εnF (θn,xn,un,xn+1) , (8)

where {εn} are positive step sizes. The key idea of the technique is the following. Iterate (8) can

be decomposed into a deterministic function of the current state, action and parameter, denoted by

g(θn,xn,un), and a martingale difference noise term δMn,

θn+1 = θn + εn (g(θn,xn,un)+δMn) , (9)

where g(θn,xn,un) ! E [F (θ,xn,un,xn+1)|θn,xn,un], δMn ! F (θn,xn,un,xn+1)− g(θn,xn,un), and

the expectation is taken over the next state xn+1.

Suppose that the effect of the martingale difference noise weakens due to repeated averaging,

and further assume that there exists a continuous function ḡ(θ) such that 1
m

m+n−1

∑
i=n

g(θ,xi,ui) →

ḡ(θ) w.p.1as m,n → ∞.5 Consider the following ordinary differential equation (ODE)

dθ/dt = ḡ(θ). (10)

Then, a typical result of the ODE method in the SA setup suggests that the asymptotic limits of

(8) and (10) are identical. Another aspect of SA relates to the rate of convergence of such iterates

(Kushner and Yin, 2003), an issue that will be elaborated on later.

3.1.4 A NOTE ON TYPES OF CONVERGENCE

The type of convergence to the asymptotic limit depends primarily on the step size used. Let θ∗

denote an asymptotically stable fixed point of (10), and assume that it is unique. Then, for a suitably

decreasing step size, convergence w.p. 1 of θn to θ∗ can be established. For a constant step size, θn

can be shown to converge weakly to a random variable centered on θ∗. In the following we use the

term convergence ambiguously, and the precise definition should be inferred from the context. For a

detailed and rigorous discussion of the types of convergence in SA the reader is referred to Kushner

and Yin (2003).

4. This is not the most general SA form, but one that is cast to the RL setup.

5. Note that for stationary policies, the strong law of large numbers for Markov chains may be used to write ḡ explicitly

ḡ(θ) = E [g(θ,x,u)|θ] = ∑x∈X πµθ (x)∑u∈U µθ(u|x)g(θ,x,u).
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3.2 Partial Model Based Algorithm

A key observation obtained from examining Equations (8-9), is that F (θn,xn,un,xn+1) in the SA

algorithm is just the sample estimator (7) of g(θn,xn,un), the mean update at each step. The esti-

mation variance in this case stems from the stochastic transition from xn to xn+1. In the following

we assume that we have, prior to running the algorithm, some information about these transitions

in the form of partial transition probability ratios. Similarly to Section 2, define the known set for

state x and action u as

Kx,u !











y : y ∈ X s.t.
Pu(y|x)

∑
y′∈Kx,u

Pu(y′|x)
is known











. (11)

We refer to the known sets for all states and actions as the partially known MDP.

It is clear that definition (11) is motivated by the theoretical results presented in Section 2, and

at this point it may well be questioned whether such a definition has any use in practice. We refer

the concerned reader to Section 6, where it is shown that in certain problems definition (11) arises

as the natural representation of partial model knowledge.

Denote by 1K
n+1 an indicator function that equals 1 if {xn+1} belongs to Kxn,un and 0 otherwise.

Based on the estimator introduced in Section 2, we propose the following update rule for the tunable

parameter, denoted by θK , which we refer to as the Integrated Partial Model (IPM) iteration

θK

n+1 = θK

n + εn

(

1K

n+1FK

n +1K̄

n+1F (θK

n,xn,un,xn+1)
)

, (12)

where, abusing notation, FK
n = FK

n (θK
n,xn,un), and

FK

n !

∑
y∈Kxn,un

Pun(y|xn)F (θK
n,xn,un,y)

∑
y∈Kxn,un

Pun(y|xn)
. (13)

Similarly to (9), iterate (12) can also be decomposed into a mean function gK (θK
n,xn,un) and a

martingale difference noise δMK
n

θK

n+1 = θK

n + εn (g
K (θK

n,xn,un)+δMK

n) ,

and by Lemma 1 we have gK(θ,x,u) = g(θ,x,u). Similarly, defining ḡK (θ) = E [gK (θ,x,u)|θ] we

get that ḡK (θ) = ḡ(θ), and we reach the following important conclusion, which is summarized as a

theorem.

Theorem 3 The IPM iteration defined in (12) leads to the same characteristic ODE dθ/dt = ḡ(θ)
as the regular SA iteration (8).

Since the asymptotic behavior of the SA iterate (8) is governed by its ODE, Theorem 3 assures

us that using the IPM iteration (12) does not change this behavior, and thus the function of the

algorithm remains intact. If (8) can be shown to converge to some limit point, iterate (12) can be

shown to converge to the same limit. Furthermore, from Lemma 2 we have that if the partially

known MDP is not null, then on each iteration the variance of the noise term is reduced. This gives

us reason to expect an improvement in the overall performance of the algorithm.
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3.3 Step Size Considerations

As it turns out, the improvement in performance attained by the IPM iteration is heavily influenced

by the step size used. This can be intuitively explained using the following example. Let {zi} be a

sequence of i.i.d. bounded random variables, with mean µz and variance σ2
z . Consider the following

SA iteration

θn+1 = θn + εn (zn+1 −θn) .

For a decreasing step size of the form εn = 1/(n+ 1), the value of θn is simply the empirical

average, which converges w.p. 1 to µz. As a performance measure, consider the MSE defined by

E‖θn −µz‖2, which equals σ2
z/n. Integration of partial knowledge based on (12) in this case is

equivalent to averaging variables with the same mean but with a reduced variance, and the MSE still

approaches zero at a rate O(1/n). On the other hand, when the step size is constant, θn converges

in mean to µz, but the MSE converges to a non-zero value which, intuitively, is proportional6 to the

variance σ2
z . Any variance reduction in this case would thus prove valuable.

The use of a constant step size, though clearly undesirable in the preceding example, is quite

common in RL applications, as it allows the iterates to quickly reach a neighborhood of the desired

solution, and can cope with time varying environments. In the following discussion, we shall thus

focus our analysis on algorithms with a constant step size.

4. TD(0) with Partial Model Knowledge

In this section we apply our IPM method of Equation (12) to the well known model free algorithm

Temporal Difference (TD(0); Sutton and Barto, 1998). The simplicity of TD(0) allows us to math-

ematically characterize its performance in terms of convergence rate, and to quantify the impact

of using the IPM method on it. The mathematical results we derive specifically for TD(0) are also

characteristic of more complex algorithms, as will be shown in subsequent sections.

4.1 Definitions

Throughout this section, we assume that the agent’s policy µ is deterministic and fixed, mapping a

specific action to each state, denoted by u(x).

4.1.1 VALUE FUNCTION ESTIMATION

Letting 0 < γ < 1 denote a discount factor, define the value function for state x under policy µ as the

expected discounted return when starting from state x and executing policy µ

V µ(x)! E

[

∞

∑
t=0

γt r(xt)

∣

∣

∣

∣

∣

x0 = x

]

.

Since in this section the policy µ is constant, from now on we omit the superscript µ in V µ (x), and

the subscript µ in Pµ , πµ, and Πµ.

The value function is a vector of size |X |. When the state space is large, Function Approximation

(FA) is often used to find an approximation to the value function in a subspace of size L< |X |. Linear

6. A precise value is given in the next section.
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FA is implemented as follows. Given a set of |X | linearly independent basis vectors φ(x) ∈ RL, the

goal is to find an approximation to V (x), denoted by V̂ (x,θ) and defined as

V̂ (x,θ) = φ(x)T θ.

Note that the tunable parameter θ in this case is a vector of L linear weights. In vector form we

write V̂ (θ) = Φθ, where Φ ∈ R|X |×L is a matrix composed of rows of basis vectors.

Define the Temporal Difference (TD) at time n as

dn ! r (xn)+ γφ(xn+1)
T θn −φ(xn)

T θn.

For some small step size ε, the fixed step TD(0) algorithm updates θ online in the following manner,

θn+1 = θn + εdnφ(xn) . (14)

This is an SA algorithm as defined in (8), and its associated ODE is (Bertsekas and Tsitsiklis, 1996,

Lemma 6.5)
dθ

dt
= b+Aθ. (15)

where

A ! ΦT Π(γP− I)Φ, (16)

b ! ΦT Πr.

Equation (15) is linear and has a fixed point θ∗ that satisfies

Aθ∗ =−b.

Furthermore, the eigenvalues of A all have a negative real part (Bertsekas and Tsitsiklis, 1996,

Lemma 6.6b), and therefore θ∗ is a unique and stable fixed point.

4.1.2 INTEGRATED PARTIAL MODEL TD(0)

We now use the method developed in Section 3 to integrate a partial model into the TD(0) algorithm.

Since the policy is deterministic we drop the u subscript in the known set definition. Using (12) and

(13) we define IPM-TD(0)

θK

n+1 = θK

n + εdK

n φ(xn) ,

dK

n ! r (xn)+ γ
(

1K

n+1FK

n +1K̄

n+1φ(xn+1)
T θK

n

)

−φ(xn)
T θK

n, (17)

FK

n !

∑
y∈Kxn

P(y|xn)φ(y)T θK
n

∑
y∈Kxn

P(y|xn)
.

Using Theorem 3 we conclude that the IPM-TD(0) iterates have the same characteristic ODE as

the TD(0) iterates of Equation (14), and therefore converge to the same fixed point θ∗ of (15).

After establishing that the asymptotic trajectory (or, in other words the algorithmic ‘function’)

of the algorithm remains intact, we shall now investigate whether adding the partial knowledge can

be guaranteed to improve performance.
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4.2 Performance Improvement Proof

In this section we prove that the performance of the IPM-TD(0) iteration is superior in terms of

asymptotic MSE to regular TD(0). The formal approach we follow here may be carried out for

other SA algorithms as well, though the expressions involved may become more complicated.

Recall that the asymptotic limit point of both regular TD(0) and IPM-TD(0) is θ∗. A natural

performance measure in this case is the asymptotic MSE defined by

lim
n→∞

E‖θn −θ∗‖2 .

The remainder of this section is devoted to showing that integrating a partial model reduces the

asymptotic MSE, namely

lim
n→∞

E‖θK

n −θ∗‖2 < lim
n→∞

E‖θn −θ∗‖2 ,

whenever the known set K is not null.

By Lemma 2, at each iteration step we are guaranteed (as long as our partial model is not null)

a reduction in the noise variance. This clearly indicates that some improvement in the asymptotic

MSE can be expected, but a precise quantification of this is more complicated. A powerful tool for

this task is the rate of convergence theory for SA (or a ‘limit theorem for fluctuations’, as termed by

Borkar, 2008). In their treatment of rate of convergence, Kushner and Yin (2003, p. 315) discuss

the properties of the sequence

ρn ! (θn −θ∗)/
√

ε. (18)

Application of their Theorem 10.1.3 to the TD(0) iteration results in the following theorem.

Theorem 4 The sequence ρn converges in distribution, as ε → 0 and n → ∞ such that nε → ∞,7

to a normally distributed random variable, which is the stationary distribution of the stochastic

differential equation

dU = AUdt +dW. (19)

A is defined in (16), and W is a Wiener process with covariance matrix Σ = Σ0 +Σ1 +ΣT
1 where

Σ0 = lim
n→∞

E
[

(dnφ(xn))(dnφ(xn))
T
∣

∣

∣
θn = θ∗

]

, (20)

Σ1 =
∞

∑
j=1

lim
n→∞

E
[

(dnφ(xn))(dn+jφ(xn+j))
T
∣

∣

∣
θn = θn+j = θ∗

]

.

For the IPM iteration (17) we have ΣK
0,Σ

K
1 where dK

n replaces dn in (20).

The proof of Theorem 4 consists of verifying a lengthy set of technical assumptions required for

Theorem 10.1.3 of Kushner and Yin (2003), and is fully described in Appendix E.

The stationary solution to (19) is normally distributed with zero mean and covariance R, which

can be easily computed (Papoulis and Pillai, 2002, §9.2) by observing that (19) describes Gaussian

white noise filtered through a linear system, leading to

R = lim
t→∞

eAt







t∫

0

e−AsΣ
(

e−As
)T

ds







(

eAt
)T

. (21)

7. We retain this assumption on ε and n in the sequel.
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Let {λi}L
i=1 denote the eigenvalues of A, which all have a negative real part (Bertsekas and Tsitsiklis,

1996, Lemma 6.6b), and let Γ be its diagonalizing matrix, that is, ,A = ΓΛΓ−1 where Λ is diagonal.

Also, define a matrix χ ∈ RL×L such that [χ]i j =−1/(λi +λ j). The limit in (21) can be written as

R = lim
t→∞

Γ







t∫

0

eΛ(t−s)Γ−1Σ
(

Γ−1
)T

eΛ(t−s)ds







ΓT . (22)

Note that the term in the curly brackets in (22) is a matrix, with its (i, j)th component equal to

t∫

0

eλi(t−s)
[

Γ−1Σ
(

Γ−1
)T
]

i, j
eλ j(t−s)ds

=
[

Γ−1Σ
(

Γ−1
)T
]

i, j
(λi +λ j)

−1
(

−1+ e(λi+λ j)t
)

.

Substituting in (22) and taking the limit gives

R = Γ
(

χ◦
(

Γ−1Σ
(

Γ−1
)T
))

ΓT ,

and using (18) and Theorem 4, the limit of the MSE is

E‖θn −θ∗‖2 → εTr
[

Γ
(

χ◦
(

Γ−1Σ
(

Γ−1
)T
))

ΓT
]

. (23)

The difference in MSE between the original iterate (14) and the IPM iterate (17) lies in the

difference between Σ0,ΣK
0 and Σ1,ΣK

1. We now derive explicit expressions for these matrices. In

the following, for clarity we adopt the following notation. Let x′ denote the state following x. Let

P(Kx) = ∑x′∈Kx
P(x′|x), and let PKx (x

′) denote the probability measure over the known transitions

from state x, namely

PKx

(

x′
)

!

{

P(x′|x)/P(Kx) i f x′ ∈ Kx

0 i f x′ /∈ Kx
.

Denote by EK [ f (x′)|x], VarK [ f (x′)|x], and CovK [ f (x′)|x] the expectation, variance, and covariance

matrix of some function f of x′ given that the current state is x, under the probability measure PKx .

Lemma 5 We have Σ0 = ΣK
0 + γ2∑

x
[π]x φ(x)VarK

[

φ(x′)T θ∗
∣

∣x
]

φ(x)T .

Proof See Appendix B.

In order to simplify calculations, in the remainder of the analysis we deal with a table based algo-

rithm.

Assumption 6 The algorithm is table based, namely Φ = I.

Under the table based assumption, the temporal difference terms at subsequent times are not corre-

lated, leading to the following result.

Proposition 7 Under assumption 6 we have Σ1 = ΣK
1 = 0.
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Proof For a table based case, θ∗ satisfies Bellman’s equation for a fixed policy (Bertsekas and

Tsitsiklis, 1996)

θ∗ (x) = r (x)+ γE
[

θ∗ (x′
)∣

∣x
]

. (24)

Now, for every j we have

E
[

(dnφ(xn))(dn+jφ(xn+j))
T
∣

∣

∣
θn = θn+j = θ∗

]

= E [(r (xn)+ γθ∗ (xn+1)−θ∗ (xn))(r (xn+ j)+ γθ∗ (xn+ j+1)−θ∗ (xn+ j))]

= E
[

E
[

(r (xn)+ γθ∗ (xn+1)−θ∗ (xn))(r (xn+ j)+ γθ∗ (xn+ j+1)−θ∗ (xn+ j))
∣

∣xn, . . . ,xn+ j

]]

= 0,

where the last equation follows from (24). Thus, in the expression for Σ1, every element in the sum

is zero. For ΣK
1 we can use Lemma 1 to obtain the same result.

Generalizing these results to the FA case involves analysis of the correlations in Σ1,ΣK
1 and is de-

ferred to future work. Nevertheless, we provide numerical simulations with FA that demonstrate

similar behavior to the table based case.

Let ∆Σ denote the diagonal matrix defined by

∆Σ ! Σ0 −ΣK

0

= γ2∑
x

[π]x φ(x)P(Kx)VarK

[

φ(x′)T θ∗∣
∣x
]

φ(x)T .

Substituting Φ = I gives a simple expression for the diagonal elements of ∆Σ

[∆Σ]xx = γ2 [π]x P(Kx)VarK

[

θ∗ (x′
)∣

∣x
]

.

Note that ∆Σ has no negative elements. We are interested in the difference in asymptotic MSE,

which, based on (23) is given by

δMSE = E‖θn −θ∗‖2 −E‖θK

n −θ∗‖2
(25)

→ ε ·Tr
[

Γ
(

χ◦
(

Γ−1∆Σ

(

Γ−1
)T
))

ΓT
]

.

If the known set is not null, then δMSE is positive (it can be seen as the asymptotic MSE of an iterate

with the same matrix A, but with ∆Σ instead of Σ0, which by definition is positive), and thus the

algorithm’s performance improves. We summarize this result in the following theorem.

Theorem 8 Consider the table based online TD(0) iterate for θn described by (14) with Φ = I, and

the IPM-TD(0) iterate for θK
n described by (17) with the same requirement on Φ. Assuming that

there is at least one state x ∈ X such that P(Kx)VarK [θ∗ (x′)|x] > 0, then the asymptotic MSE of

the iterates satisfy lim
n→∞

E‖θK
n −θ∗‖2 = lim

n→∞
E‖θn −θ∗‖2 − δMSE, where δMSE is given in (25), and

δMSE > 0.

Theorem 8 therefore assures us that the reduction in noise variance at each step, guaranteed by

Lemma 2, translates into a reduction in the overall error of the algorithm. Note that the simple

dependence of the MSE on ε allows for a different interpretation of the performance in terms of

convergence rate - for some desired MSE, the partial knowledge allows us to use a larger step size

ε, and thus converge faster. This issue will also be demonstrated in simulation.
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We comment on a decreasing step size. For a step size of the form εn = 1/nα, 0.5 < α ≤ 1, a

similar analysis can be performed with ρn defined as ρn = nα/2 (θn −θ∗). In this case, θn converges

to θ∗ w.p. 1, and the MSE decreases to zero at a rate O
(

n−α/2
)

. Integrating a partial model in

this case will reduce fluctuations in the converging path of the system. The performance gain of

integrating a partial model is therefore more pronounced when the step size is constant.

4.3 Numerical Simulations of IPM-TD(0)

We conclude this section with a demonstration of the performance of the IPM-TD(0) algorithm, and

a comparison with the theory established above.8

Our simulations are on a set of abstract randomly constructed MDP’s termed Generalized Aver-

age Reward Non-stationary Environment Test-bench or in short GARNET (Bhatnagar et al., 2007).

GARNET MDP’s comprise a class of randomly constructed finite MDP’s serving as a test-bench for

RL algorithms. A GARNET MDP is characterized in our case by four parameters and is denoted by

GARNET(|X | , |U| ,B,σ). The parameter |X | is the number of states in the MDP, |U| is the number

of actions, B is the branching factor of the MDP, that is, the number of uniformly distributed non-

zero entries in each line of the MDP’s transition matrices, and the reward in each state is normally

distributed with variance σ. For each GARNET MDP we also construct a ‘partially known’ MDP

characterized by a parameter pK , 0 ≤ pK ≤ 1 such that each transition in the original MDP is known

w.p. pK . The value of pK therefore indicates our level of knowledge about the MDP, ranging from

no knowledge at all (pK = 0) up to knowing the complete MDP (pK = 1).

For a GARNET(10,5,10,1) MDP, a random deterministic policy was chosen and its value func-

tion was evaluated using algorithm (17). The error ‖θK
n −θ∗‖2, averaged over 500 different runs

with the same initial conditions, is plotted in Figure 1 (left) for different values of pK . The asymp-

totic MSE was calculated using (23) and is shown for comparison. In Figure 1 (middle), the step

size for an iteration with partial knowledge was set such that the asymptotic MSE would match that

of the iteration without partial knowledge. As can be seen, this caused the IPM iteration to converge

faster.

For the next simulation a linear FA was used, with basis vectors φ(x) ∈ {0,1}L, where the

number of nonzero values in each φ(x) is l. The nonzero values were chosen uniformly at random,

with any two states having different feature vectors. Figure 1 (right) shows the error ‖θK
n −θ∗‖2for

a GARNET(30,5,10,1) MDP, where we used linear FA with L = 10 and l = 2. As can be seen, the

behavior observed in the tabular case is characteristic of the FA case as well.

5. Inaccuracy of the Partial Model

Until now, we have assumed that our partial model contained accurate probability ratios. Obviously,

such a strong assumption is not realistic, and in any practical situation our partial knowledge would

contain some degree of error. In this section we consider the effect of inaccuracies in the partial

model on the performance of the IPM-TD(0) method. Specifically, our goal is to show that if the

inaccuracy in the partially known model is small enough, then an improvement in performance over

regular TD(0) can still be guaranteed, and we seek bounds on the error in the algorithm induced by

the inaccuracy in the model. Before we go into mathematical detail we first describe our conceptual

approach.

8. The code for generating the results presented here can be found at the author’s web site.
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Figure 1: TD(0) with a Partial Model. Left : MSE of Table Based IPM-TD(0) on a GAR-

NET(10,5,10,1) MDP with a deterministic random policy, for different values of pK . Step

size is ε = 0.2. Dashed lines show the asymptotic MSE calculated by (23). Middle : MSE

of Table Based IPM-TD(0) on a GARNET(10,5,10,1) MDP with a deterministic random

policy. For pK = 0 (black-solid) a step size ε = 0.15 was used, and the asymptotic MSE

was calculated using (23) (black-dashed). For pK = 0.5 (red-solid) a step size was calcu-

lated (using (23)) such that its asymptotic MSE would equal that of pK = 0. Right : MSE

of linear FA IPM-TD(0) on a GARNET(30,5,10,1) MDP with a deterministic random

policy, for different values of pK . Step size is ε = 0.15. The linear FA parameters are

L = 10 and l = 2. A discount factor of γ = 0.7 was used in all simulations. All results are

averaged over 500 different runs with the same initial conditions. Error bars display the

standard error of the mean; for clarity of presentation the bars are displayed only for the

last iteration.

A key point in the analysis of IPM-TD(0) in Section 4 was that since the estimator µ̂K in (5) is

unbiased, then the ODE of the stochastic approximation does not change, and asymptotically the

algorithm concentrates around its fixed point which is the true value function. This is no longer

valid when the partial model is not accurate, as the inaccuracy induces a bias in µ̂K . Since we use

the estimator at every time step, this bias may accumulate, and the crucial question here is how it

affects the algorithm asymptotically, and whether it can be guaranteed that small model errors do

not cause a large deviation from the true value function.

The improvement in performance of IPM-TD(0) relied on the variance reduction property of µ̂K .

We shall see that if the inaccuracy in the partial model is small enough, then this property can still

be guaranteed.

Thus, our analysis consists of investigating the bias and the variance of IPM-TD(0) with an

inaccurate model. As we have done earlier, we first describe some results in the context of estimating

the mean of a random variable, and later extend the results to the MDP setting.

5.1 Estimation of a Random Variable Mean

Consider the definitions of Section (2), and let
{

P̂(ω)
}

ω∈Ω
denote inaccurate probabilities, obtained

by some means. For some ε > 0 we define an ε−known set Kε by

Kε !
{

ω : ω ∈ Ω s.t.
∣

∣P̂Kε (ω)−PKε (ω)
∣

∣< ε
}

, (26)
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where the probability measures P̂Kε and PKε are defined by P̂Kε (ω)! P̂(ω)/ ∑
ω′∈Kε

P̂(ω′) and PKε (ω)!

P(ω)/ ∑
ω′∈Kε

P(ω′), respectively. Also denote by ÊKε [·] and V̂arKε [·] the expectation and variance

under the measure P̂Kε , and by EKε [·] and VarKε [·] the expectation and variance under the measure

PKε .

We motivate the definition of the ε−known set with an example. Let
{

xi
}n

i=1
denote i.i.d. sam-

ples of X . For some set K ⊂ Ω let P̂K (ω) denote the count ratios in K

P̂K (ω) =















n

∑
i=1

1(xi=ω)
n

∑
i=1

1(xi∈K)
for ω ∈ K

0 else

,

where 1 is the indicator function. It can be shown that P̂K (ω) is an unbiased estimate of PK (ω),
and by the law of large numbers we have that for large n, the difference

∣

∣P̂K (ω)−PK (ω)
∣

∣ is small.

Furthermore, for a finite n, Chernoff type bounds can be used to bound this difference with high

probability by some small ε, motivating definition (26).

An estimator for µ that uses the ε−known set is derived by plugging Kε instead of K in (5)

µ̂Kε (x) = 1K
ε

x ÊKε [X ]+1K̄
ε

x x. (27)

Note that since the known set is not accurate, the estimator (27) is no longer unbiased. The following

theorem, which we prove in Appendix C, bounds the bias and variance of µ̂Kε (x).

Theorem 9 The bias of µ̂Kε (x) satisfies

|E [µ̂Kε (X)]−E [X ]|≤ εP(Kε) ∑
x∈Kε

|x| .

The variance of µ̂Kε (x) satisfies

Var [µ̂Kε (X)] ≤ Var [X ]−P(Kε) ·VarKε [X ] (28)

+εP(Kε)



ε

(

∑
x∈Kε

|x|

)2

+2

(

∑
x∈Kε

|x|

)

|EKε [X ]−E [X ]|



 .

5.2 Error Bound for IPM-TD(0)

We now derive asymptotic error bounds for IPM-TD(0) with a constant stepsize ε̃, when the partial

model is inaccurate. We treat only the table based algorithm

θn+1 (xn) = θn (xn)+ ε̃dK

n , (29)

dK

n ! r (xn)+ γ
(

1K
ε

n+1ÊKε
xn
[θn(xn+1)|xn]+1K̄

ε

n+1θn(xn+1)
)

−θn(xn),

where ÊKε
xn
[θn(xn+1)|xn] denotes expectation under the probability measure in the ε−known set Kε

xn

Kε
x !











y : y ∈ X s.t.

∣

∣

∣

∣

∣

∣

∣

P̂(y|x)
∑

y′∈Kε
x

P̂(y′|x)
−

P(y|x)
∑

y′∈Kε
x

P(y′|x)

∣

∣

∣

∣

∣

∣

∣

< ε











. (30)
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The ODE for (29) can be written as

dθ

dt
= Π(r+(γ(P+δP)− I)θ) , (31)

where

δPi j =















(

∑
k∈K

ε
i

P(k| i)

)





P̂( j|i)
∑

k∈Kε
i

P̂( k|i) −
P( j|i)

∑
k∈Kε

i

P( k|i)



 , j ∈ Kε
i ,

0, j /∈ Kε
i .

(32)

Recalling that the true value function satisfies θ∗ = (I − γP)−1 r, the asymptotic limit point of

the ODE (31) is denoted by θ∗+δθ , and satisfies

θ∗+δθ = (I − γ(P+δP))−1 r. (33)

In the next subsection we show how to bound the error term δθ.

5.2.1 A BOUND ON THE BIAS

We would like to bound the term δθ, which is the error in the value function, and can be seen as

the total bias induced by the IPM method with the inaccurate model. Note that (33) describes a

perturbed linear system (Horn and Johnson, 1985, §5). Using tools for dealing with such systems,

we can bound the error as presented in the following theorem.

Theorem 10 Let Kε
max denote the cardinality of the largest ε−known set Kε

x ,

Kε
max = max

x
|Kε

x | , (34)

and let ε satisfy ε < 1−γ
γKε

max
. Then the maximal error in the ODE limit is bounded by

‖δθ‖∞

‖θ∗‖∞

≤
κ

1−κ ·
(

Kε
maxε

1−γ

)

(

Kε
maxε

1− γ

)

, (35)

where κ satisfies

κ ≤
1+ γ

1− γ
. (36)

Proof For a matrix norm ‖·‖p, if
∥

∥

∥
(I − γP)−1

∥

∥

∥

p
‖γδP‖p < 1 we have (Horn and Johnson, 1985,

5.8.8)
‖δθ‖p

‖θ∗‖p

≤
κ(I − γP)

1−κ(I − γP)
(

‖γδP‖p /‖I − γP‖p

)

‖γδP‖p

‖I − γP‖p

, (37)

where κ is the matrix condition number κ(A) =
∥

∥A−1
∥

∥

p
‖A‖p. We now bound each of the terms on

the right hand side of (37). We use the norm ‖·‖∞ which is induced by the max vector norm, and

can be alternatively defined (Horn and Johnson, 1985, 5.6.5) as the maximum row sum matrix norm

‖δP‖∞ ! max
i

∑
j

∣

∣Pi j

∣

∣ . (38)
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From this definition, (32), (34), and (30), it is clear that

‖γδP‖∞ < γKε
maxε. (39)

Theorem 5.6.9 in Horn and Johnson (1985) asserts that for any matrix norm we have

‖A‖ ≥ ρ(A) ,

where ρ(A) is the spectral radius of A

ρ(A)! max{|λ| : λ is an eigenvalue of A} .

For the matrix I − γP we have

ρ(I − γP)> 1− γ,

since P is stochastic and thus its largest eigenvalue is 1. Using (39) we therefore have

‖γδP‖∞

‖I − γP‖∞

≤
γKε

maxε

1− γ
.

We now bound κ(I − γP) = ‖I − γP‖∞

∥

∥

∥
(I − γP)−1

∥

∥

∥

∞
. First, by the triangle equality we have

‖I − γP‖∞ ≤ ‖I‖∞ + γ‖P‖∞ = 1+ γ, (40)

since P is a stochastic matrix and by definition (38) we have ‖P‖∞ = 1. Next we have by definition

of the induced norm
∥

∥

∥
(I − γP)−1

∥

∥

∥

∞
= max

‖r‖∞=1

∥

∥

∥
(I − γP)−1 r

∥

∥

∥

∞
≤

1

1− γ
, (41)

since (I − γP)−1 r can be seen as the value function associated with a reward vector r, which can

have a maximum value of rmax/(1− γ). From (40) and (41) we have

κ(I − γP)≤
1+ γ

1− γ
.

All is left is to verify that
∥

∥

∥
(I − γP)−1

∥

∥

∥

∞
‖γδP‖∞ < 1. Using (39) and (41) this is satisfied if

ε <
1− γ

γKε
max

.

The bound in (35) can be simplified when ε is small, as described in the following corollary.

Corollary 11 For small enough ε we have

‖δθ‖∞

‖θ∗‖∞

≤
Kε

maxε(1+ γ)

(1− γ)2
+O

(

ε2
)

.

Proof Substitute (36) in (35), where for small ε we have ε/
(

1− κKε
maxε

1−γ

)

= ε+O
(

ε2
)

.

The bounds in Theorem 10 and Corollary 11 show that the accumulated bias induced by the model

inaccuracies is linear in ε, but also in Kε
max, thus it is preferred to keep the ε−known set for each

state relatively small, as each element in the set contributes to an accumulated error. Note that the

term 1/(1− γ)2 is a consequence of the fact that the estimation bias for each state now accumulates

over a whole trajectory.
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5.2.2 A BOUND ON THE VARIANCE

We shall now bound the variance of IPM-TD(0). We follow directly the analysis of Section 4 for

IPM-TD(0) with an accurate model, and note that the only difference9 is in the calculation for the

term ΣK
ε

0 , which, using (33), becomes

[

ΣK
ε

0

]

xx
= E

[

(dK

n )
2
∣

∣

∣
θ = θ∗+δθ,xn = x

]

= γ2Var
[(

1K
ε

n+1ÊKε
xn
[ [θ∗+δθ] (xn+1)|xn]+1K̄

ε

n+1 [θ
∗+δθ] (xn+1)

)∣

∣

∣
xn = x

]

.

In the following we focus on bounding the term on the right hand side, and show sufficient condi-

tions under which
[

ΣK
ε

0

]

xx
< [Σ0]xx for every x ∈ |X |. For notational simplicity, we drop the depen-

dence on x, and treat a single random variable taking values in {[θ∗+δθ]i}
|X |
i=1, with the appropriate

probabilities P(x′|x). Thus, we need to bound

γ−2
[

ΣK
ε

0

]

xx
= Var

[

1K
ε
ÊKε [θ∗+δθ]+1K̄

ε
(θ∗+δθ)

]

, (42)

and compare to [Σ0]xx. The following theorem, which is proved in Appendix D, bounds γ−2
[

ΣK
ε

0

]

xx
.

Theorem 12 Let bx ! ∑
x∈Kε

x

|[θ∗]x|, and cx !
∣

∣EKε
x
[θ∗]−E [θ∗]

∣

∣, and assume that max{δθ}≤ η. Then

the elements of the diagonal matrix ΣK
0 satisfy

γ−2
[

ΣK
ε

0

]

xx
≤ γ−2 [Σ0]xx −P(Kε

x ) ·VarKε
x
[θ∗]+η2 +2ηγ−1

√

[Σ0]xx

+εP(Kε
x )
(

εb2
x (1−P(Kε

x ))+2bxcx

)

. (43)

Using our previous bound on the bias we have the following corollary.

Corollary 13 For small enough ε we have

γ−2
(

[Σ0]xx −
[

ΣK
ε

0

]

xx

)

≥ P(Kε
x ) ·VarKε

x
[θ∗]

−ε
Kε

max (1+ γ)‖θ∗‖∞

(1− γ)2

(

Kε
maxε(1+ γ)‖θ∗‖∞

(1− γ)2
+

2

γ

√

[Σ0]xx

)

−εP(Kε
x )
(

εb2
x (1−P(Kε

x ))+2bxcx

)

.

Proof Apply Corollary 11 to bound η in Theorem 12.

The following corollary translates the previously established bounds to a performance improvement

guarantee.

Corollary 14 For a small enough ε an improvement in the asymptotic MSE of IPM-TD(0) can be

guaranteed.

9. Note that the ΣK
ε

1 term is still zero, for the same reasons described in Section 4 .
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Proof By Corollary 13 ε can be chosen such that for every x we have

[

ΣK
ε

0

]

xx
< [Σ0]xx ,

thus we can follow the development of the performance improvement proof in Section 4 and

conclude that the sequence (θK
n −θ∗)/

√
ε̃ converges in distribution to a Gaussian centered on δθ

and with a covariance R̂, which is smaller than R (as defined in Section 4). Since we can use

Theorem 10 to also bound the bias δθ, we can choose ε small enough such that asymptotically

E‖θK
n −θ∗‖2 < E‖θn −θ∗‖2.

To conclude, from Theorem 10 and Theorem 12 we see that for small enough ε, we get a small bias

and a reduction in the variance. The specific terms in the bounds can be used to find a suitable ε
that guarantees a performance improvement. If the probabilities P̂ are obtained empirically from

a trajectory of the MDP, then a Chernoff type bound can be used to further bound the number of

observations required for a desired ε. This issue is beyond the scope of this paper.

6. Numerical Experiments

In this section, the performance improvement obtained by the IPM method is demonstrated on two

different model free RL algorithms,10 and two different problems. Our goal is to demonstrate both

the generality of the method, and its usefulness in practical applications. Generality is demonstrated

by application of the method to two very different RL algorithms - policy gradient and Q-learning.

The only common feature to these two algorithms is their representation as a stochastic approxi-

mation. Together with the theory presented in previous sections, these results suggest that the IPM

method can be applied succesfully to a wide variety of RL algorithms. The usefulness of the method

is demonstrated in the solution of a call admission control problem. In this problem, it is shown that

values of the partially known MDP (11) capture meaningful physical quantities of the problem,

thus, (11) may be seen as the natural representation for partial knowledge in such problems. The

performance improvement obtained by the IPM method suggests that it may be used succesfully in

practice.

6.1 IPM Q-Learning for Admission Control

In this section we consider the call admission control problem for a single link, which arises when

a telecommunication provider wants to sell the limited bandwidth of the link to different types of

customers so as to maximize expected long term revenue. In this scenario, the customers differ in

their bandwidth demand, the price they pay for its usage, and the frequency of their requests.

When the link is empty, it is reasonable that every customer request should be accepted, as it

generates some revenue. On the other hand, when the link is almost full, a clever policy might decide

to save the available bandwidth for the more profitable requests, at the expense of rejecting the less

profitable ones. Thus, it is clear that a good policy should take into account both the bandwidth

demand and profit of each request type, and its arrival frequency. When some of these quantities

are not known in advance, a learning policy may be employed. Specifically, in the following we

consider a case where these quantities are known only for some of the request types, which will

naturally lead to the use of a partial model in the learning algorithm. Such a scenario can occur

10. The code for generating the results presented here can be found at the author’s web site.
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when, for example, new customers are added to a system, or when some of the request types have

features that change in time.11

One approach to designing an admission policy is to formulate the problem as an MDP, for

which an optimal policy is well defined, and solve it using RL approaches, as has been done by

Marbach et al. (1998) and Marbach and Tsitsiklis (1998). In the following we present this ap-

proach, and show that in this problem our partially known MDP definition emerges as a very natural

representation for partial model knowledge.

6.1.1 PROBLEM FORMULATION

Consider a service provider with a bandwidth of B units, which supports a finite set {1,2, ...,M}
of different service types. Each service type is characterized by its bandwidth demand b(m), its

call arrival rate α(m), and its average holding time 1/β(m), where we assume that the calls arrive

according to independent Poisson processes, and that the holding times are exponentially and inde-

pendently distributed. Whenever a call of type m arrives, the controller can decide whether to accept

or reject it, and if it is accepted and enough bandwidth is available, an immediate reward c(m) is

recieved. The objective is to find an admission controller (policy) that maximizes the average return.

This problem can be represented by an MDP as follows.

6.1.2 STATE SPACE, CONTROLS, AND REWARD

The configuration of the link is denoted by s = (s(1) , . . . ,s(M)), where s(m)∈ {0,1,2, . . .} denotes

the number of customers of type m currently using the link. Transitions between different configura-

tions are triggered by events which we denote by ω = {ω(1) , . . . ,ω(M)}, where ω(m) = 1 if a new

customer of type m requests service, ω(m) = −1 if a customer of type m departs from the system,

and ω(m) = 0 otherwise. The state x of the system consists of the link configuration together with

the event which triggered a transition,

x = (s,ω) ,

and the complete state space is given by

X =
{

x = (s,ω)|∑s(m)b(m)≤ B, ∑ |ω(m)|≤ 1 and ω(m)< 0 only if s(m)> 0
}

.

The possible controls are to accept or reject a call, denoted by u ∈ {ua,ur}, respectively, and the

immediate reward is

r (x,u) =

{

c(m) if u = ua, ω(m) = 1, (s+ω,ω) ∈ X ,

0 else.

The goal is to find the optimal policy with respect to the the average reward

η = E[r(x)].

11. We note that a learning policy may be required even when the model is fully known, as finding the optimal policy is

often an intractable problem. This ’fully known’ scenario may be seen as a special case of the following presentation.
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6.1.3 TRANSITION PROBABILITIES

In order to transform the continuous time process into discrete transitions between events, a uni-

formization technique (Gallager, 1995, §6.4) is used. Define z to be the maximal transition rate,

given by

z = max
x∈X

{

M

∑
m=1

(α(m)+ s(m)β(m))

}

. (44)

For a state x = (s,ω), the probability that the next event is an arrival of a call of type m is equal to

α(m)/z. The probability for a departure of a call of type m is β(m)s(m)/z. By normalization, the

probability that in the next event nothing happens is 1−
M

∑
m=1

(α(m)+ s(m)β(m))/z.

6.1.4 PARTIALLY KNOWN MDP

For this problem, a natural definition for partial model knowledge is through the arrival and depar-

ture rates α,β, namely

MK ! {m : m ∈ 1, . . . ,M s.t. α(m) ,β(m) are known} .

As an example where such partial knowledge arises in practice, consider a case where new jobs

(with unknown rates) are added to an existing system (with previously known rates). Note that

generally, the values in MK do not suffice for calculating z in (44), hence the transition probabilities

of the MDP are not known. Nevertheless, the key point here is that in the ratios between transition

probabilities, the z terms cancel out, therefore the partial MDP definition (11) can be satisfied. In

particular, letting i ∈ MK , we have

P(arrival of type i)

∑
j∈MK

P(arrival of type j)
=

α(i)

∑
j∈MK

α( j)
,

and similar expressions hold for probabilities of departures.

6.1.5 IPM Q-LEARNING

The model free RL algorithm we use for this problem is a variant of the popular Q-Learning al-

gorithm for average return.12 For each state-action pair, a Q value is maintained, and updated

according to

Qn+1 (xn,un) = Qn (xn,un)+ εn

(

r (xn,un)+max
u′

Qn

(

xn+1,u
′)−Qn (xn,un)−

1

|X | |U|∑x,u
Qn (x,u)

)

.

(45)

The greedy deterministic policy u(x) w.r.t. the Q values at time n is

u(x) = argmax
u′

Qn

(

x,u′
)

.

Update (45) is an SA, and was shown to converge (Abounadi et al., 2001) under suitable step sizes

εn to a fixed point Q∗, such that the greedy policy w.r.t. Q∗ is optimal. Applying the IPM method in

12. This is also known as relative value iteration.
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Call Type m 1 2 3 4

α(m) 1.8 1.4 1.6 1.4

β(m) 0.4 0.7 0.5 0.4

b(m) 1 1 1 1

c(m) 1.4 1 1.6 1

Table 1: Call Types

this case simply amounts to replacing max
u′

Qn (xn+1,u′) in (45) with

1K

n+1 ·
∑

y∈Kxn,un

Pun(y|xn)max
u′

Qn (y,u′)

∑
y∈Kxn,un

Pun(y|xn)
+1K̄

n+1 ·max
u′

Qn

(

xn+1,u
′) . (46)

We now report on the results of using IPM Q-learning for optimizing a call admission control policy.

6.1.6 RESULTS

In our experiments, we consider a link with a bandwidth of 7 units, and 4 call types. The parameters

for each call are summarized in Table 1, and the size of the state space in this configuration is

|X | = 2490. IPM Q-Learning was run with initial values Q0 (x,u) = r (x,u) and a step size εn =
γ0/(γ1 + vn (xn,un)) , where vn (x,u) denotes the number of visits to the state action pair (x,u) up to

time n. The values of γ0,γ1 were manually tuned for optimal performance, and set to γ0 = γ1 = 40.
The action selection policy while learning was ε−greedy, with ε = 0.1. The partial model for each

experiment is represented by a single parameter k, such that the arrival and departure rates of all

calls of type m ≤ k are known. Figure 2 shows the average reward η as a function of iteration. As

can be seen, incorporation of partial model knowledge by the IPM method resulted in a significant

performance improvement.

6.2 IPM Policy Gradient

In this experiment simulations were performed on randomly generated MDP’s, as described in

Section 4.3. In the experiments, the agent maintains a stochastic policy function parametrized by

θ ∈ RL·|U|, and given by

µθ(u|x) = eθT ξ(x,u)/∑
u′

eθT ξ(x,u′),

where the state-action feature vectors ξ(x,u) ∈ {0,1}L·|U| are constructed from the state features

φ(x) defined in Section 4.3 as follows

ξ(x,u)! (0, ...(L× (u−1)zeros),φ(x),0, ...(L× (|U|−u)zeros))T .

The agent’s goal is to find the parameter θ which maximizes the average reward η = E[r(x)]. Policy

Gradient algorithms achieve this goal by estimating the gradient w.r.t. θ of the average reward, ∇θη,

and performing a stochastic gradient ascent on the parameters to reach a local maximum. One such

algorithm was proposed by Marbach and Tsitsiklis (1998). At time n we update the parameter vector

θ and a scalar λ which is an estimate of η,
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Figure 2: IPM Q-Learning for Admission control. Implementation of IPM Q-Learning, (45) and

(46), for the call admission control problem of Table 1. Average reward of the greedy

policy is plotted vs. iteration number for different values of k. Results are averaged over

100 different runs with the same initial conditions. Error bars display the standard error

of the mean; for clarity of presentation the bars are displayed only for the last iteration.

θn+1 = θn + ε(r (xn)−λn)zn, (47)

λn+1 = λn + ε′ (r (xn)−λn) , (48)

where ε and ε′ are step sizes, and ε′ < ε. We then simulate a transition to the next state, and update

the vector z by

zn+1 = zn +Lxn,un (θn) ,

where Lxn,un (θn) is the likelihood ratio Lx,u (θ) = ∇θ logµθ(u|x). Every time a predefined recurrent

state of the MDP is visited, zn+1 is reset to zero.

Denote by 1K
n an indicator function that equals 1 if xn belongs to Kxn−1,un−1 and 0 otherwise.

Incorporating partial knowledge into the algorithm using (12) simply amounts to replacing r (xn) in

(47-48) with

1K

n ·
∑

y∈Kxn−1,un−1

Pun−1(y|xn−1)r (y)

∑
y∈Kxn−1,un−1

Pun−1(y|xn−1)
+1K̄

n · r (xn) .

We simulated the policy gradient algorithm on a GARNET(30,5,10,1) MDP. The state features

were constructed as described in Section 4.3 with L = 10, l = 2. Figure 3 shows the average reward

η as a function of iteration. These results indicate that the variance reduction in each iteration

(guaranteed by Lemma 2) resulted, on average, in a better estimation of the gradient ∇θη, and

therefore a better policy at each step.

7. Discussion and Future Work

Generally, when devising a solution to a difficult problem, one should incorporate into it all reliably

available information. Model free RL algorithms typically operate without explicit knowledge of
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Figure 3: Policy Gradient with a Partial Model. Implementation of the algorithm described in

Section 6.2 on a GARNET(30,5,10,1) MDP, with step size parameters ε = 0.03 and

ε′ = 0.003. The linear FA parameters are L = 10 and l = 2. Average reward is plotted

vs. iteration number for different values of pK . Results are averaged over 500 different

runs with the same initial conditions. Error bars display the standard error of the mean;

for clarity of presentation the bars are displayed only for the last iteration.

the underlying environment, and therefore, when such knowledge is available, using these algo-

rithms ‘out of the box’ is clearly suboptimal. In this work we have presented a general method

of integrating partial environmental knowledge into a large class of model free algorithms. Our

method improves the asymptotic behavior of the algorithm, and at each iteration reduces the esti-

mation variance due to the uncertainty in the environment. We have proved mathematically (for

TD(0)) and demonstrated in simulation (for Policy Gradient and Q-learning) an improvement in the

algorithm’s overall performance.

From a more conceptual point of view, we have shown that two distinct approaches to RL,

the model free and the model based approaches, can be combined in such a way that gains from

their respective merits. From this perspective, this work is just a first step towards a theoretical

understanding of the combination of different RL approaches.

A few issues are in need of further investigation.

In this work we have not addressed the question of how the partially known model can be

acquired. A number of possibilities come to mind. In a transfer learning or tutor learning settings,

the partial model can come from an expert who has exact knowledge of a model that is partially

similar. In a multi-agent setting with communication, information about different parts of the model

can be gathered independently by each of the agents, and combined to create a partial model of the

environment.

An interesting possibility is to simultaneously gather information while adapting the policy

using some model free algorithm. Using the SA algorithm (8), at the time of the n’th update of θ, we

have already encountered a state-action trajectory of size n. Can we use this trajectory to construct

an estimated partial MDP model, use it as in algorithm (12), and guarantee an improvement in

the algorithm’s performance? This should be done with caution, since using the same trajectory

for updating the parameter and the estimated model may cause overfitting. To see this consider

the following example. Let {xi} be a sequence of normally distributed i.i.d. random variables with
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mean m, and assume that our goal is to estimate m. A natural approach is to use the empirical mean

given by θn =
1
n ∑n

i=1xi, which can also be calculated recursively using the following SA iterate

θn+1 = θn +
1

n+1
(xn+1 −θn) , (49)

θ0 = 0.

One may hope, that by the time of the n’th update of θ we could use the n− 1 values of xi already

observed to build a partial model for xn, and similarly to (12), use it to manipulate (49) in such a

way that guarantees a performance improvement (in the estimation of m). However, it is known

that for a normal distribution, the empirical mean is also the minimum variance unbiased estimator

for m (Schervish, 1995). Our manipulation of (49) would therefore either add bias or increase the

variance. Though this issue deserves careful analysis, we note that when a constant step size is

used, the major influences on the current value of the parameter are the most recent measurements,

thus older samples can be safely used to construct a partial model, mitigating the severity of this

problem.

Finally, we note that the IPM method adds to the algorithm a computational cost of O(Kmax)
evaluations of F (θn,xn,un,xn+1) at each iteration. In our experiments, this cost proved to be neg-

ligible in comparison to the computational cost of the simulator. However, if the computation of

F (θn,xn,un,xn+1) is demanding, one may face a tradeoff between the performance of the resulting

policy and the computational cost of obtaining it.
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Appendix A. Admissibility of µ̂K

In this section, based on the definitions of Section 2, we address the following issue. Can a better

estimator than µ̂K (x) be found?

Since the MSE of any estimator, within a non-Bayesian setting, depends on the unknown µ,

comparison of different estimators is a difficult task. A popular comparison framework is that

of admissible estimators (Schervish, 1995). For a given known set K, an estimator is said to be

admissible if there is no other estimator that achieves a smaller MSE for every distribution in PK (ω).
Clearly, admissibility is a desirable property for an estimator, since an inadmissible estimator is

guaranteed to be sub-optimal. The next theorem states that µ̂K is admissible.

Theorem 15 The estimator µ̂K of (5) is admissible.

Proof Let P̃(ω) ∈ PK (ω) be defined as

P̃(ω) =
1K

ωP(ω)

∑
ω′∈K

P(ω′)
.

For X ∼ P̃(ω) it is clear that µ̂K (x) = E [X ] for all x, therefore E [µ̂K (X)−µ]2 = 0, and no other

estimator achieves a smaller MSE in this case.
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Appendix B. Proof of Lemma 5

Proof By the ergodicity of the Markov chain the joint probability for subsequent states is

lim
n→∞

P(xn,xn+1) = P(xn+1|xn) [π]xn
.

Now, observe that

E
[

(dnφ(xn))(dnφ(xn))
T
∣

∣

∣
θn = θ∗,xn

]

= Cov [dnφ(xn)|θn = θ∗,xn]+E [ (dnφ(xn))|θn = θ∗,xn]E [ (dnφ(xn))|θn = θ∗,xn]
T

= γ2φ(xn)Cov
[

φ(xn+1)
T θ∗∣
∣xn

]

φ(xn)
T

+E [dnφ(xn)|θn = θ∗,xn]E [dnφ(xn)|θn = θ∗,xn]
T ,

where the second equality follows from

Cov [dnφ(xn)|θn,xn] = Cov
[

dnφ(xn)− r (xn)+φ(xn)
T θn

∣

∣θn,xn

]

,

since adding constants does not change the covariance. Using Lemma 1 and Lemma 2 we derive an

expression for the IPM iteration

E
[

(dK

n φ(xn))(d
K

n φ(xn))
T
∣

∣

∣
θn = θ∗,xn

]

= γ2φ(xn)
(

Cov
[

φ(xn+1)
T θ∗∣
∣xn

]

−P(Kx)CovK

[

φ(xn+1)
T θ∗∣
∣xn

])

φ(xn)
T

+E [dK

n φ(xn)|θn = θ∗,xn]E [dK

n φ(xn)|θn = θ∗,xn]
T

= E
[

(dnφ(xn))(dnφ(xn))
T
∣

∣

∣
θn = θ∗,xn

]

− γ2φ(xn)P(Kx)CovK

[(

φ(xn+1)
T θ∗)∣

∣xn

]

φ(xn)
T .

We therefore have that

Σ0 = lim
n→∞

E
[

(dnφ(xn))(dnφ(xn))
T
∣

∣

∣
θn = θ∗

]

= lim
n→∞

E
[

E
[

(dnφ(xn))(dnφ(xn))
T
∣

∣

∣
θn = θ∗,xn

]]

= ∑
x

[π]x E
[

(dnφ(xn))(dnφ(xn))
T
∣

∣

∣
θn = θ∗,xn

]

= ΣK

0 + γ2∑
x

[π]x φ(x)P(Kx)CovK

[

φ(x′)T θ∗∣
∣x
]

φ(x)T

= ΣK

0 + γ2∑
x

[π]x φ(x)P(Kx)VarK

[

φ(x′)T θ∗∣
∣x
]

φ(x)T .

Appendix C. Proof of Theorem 9

Proof First, observe that

∣

∣ÊKε [X ]−EKε [X ]
∣

∣=

∣

∣

∣

∣

∣

∑
x∈Kε

x
(

P̂Kε (x)−PKε (x)
)

∣

∣

∣

∣

∣

≤ ε ∑
x∈Kε

|x| . (50)
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Using (50) a simple bound on the bias of µ̂Kε is derived

|E [µ̂Kε (X)]−E [X ]| =

∣

∣

∣

∣

∣

∑
x∈Kε

P(x)
(

ÊKε [X ]− x
)

∣

∣

∣

∣

∣

= P(Kε)
∣

∣ÊKε [X ]−EKε [X ]
∣

∣≤ εP(Kε) ∑
x∈Kε

|x| .

We now derive a bound on the MSE of µ̂Kε .

E
[

(µ̂Kε (X)−E [X ])2
]

= ∑
x∈Kε

P(x)
(

ÊKε [X ]−E [X ]
)2

+ ∑
x∈K̄ε

P(x)(x−E [X ])2

= P(Kε)
(

ÊKε [X ]−EKε [X ]+EKε [X ]−E [X ]
)2

+ ∑
x∈K̄ε

P(x)(x−E [X ])2

≤ Var [X ]−P(Kε) ·VarKε [X ]

+P(Kε)





(

ε ∑
x∈Kε

|x|

)2

+2ε

(

∑
x∈Kε

|x|

)

|EKε [X ]−E [X ]|





where in the inequality in the third line we used (50) and Lemma 2. We see that we have an

improvement in MSE terms if

(

ε ∑
x∈Kε

|x|
)2

+ 2ε

(

∑
x∈Kε

|x|
)

|EKε [X ]−E [X ]| < VarKε [X ], which is

always satisfied as ε → 0. Similarly, for the variance we have

E
[

(µ̂Kε (X)−E [µ̂Kε (X)])2
]

= E
[

(µ̂Kε (X)−E [X ])2
]

− (E [µ̂Kε (X)]−E [X ])2

≤ Var [X ]−P(Kε) ·VarKε [X ]

+P(Kε)





(

ε ∑
x∈Kε

|x|

)2

+2ε

(

∑
x∈Kε

|x|

)

|EKε [X ]−E [X ]|



 .

Appendix D. Proof of Theorem 12

Note that without the δθ terms in (42), the bound on the variance for a random variable (28) could

be used to compare [ΣK
0]xx with [Σ0]xx. For small δθ, the difference in the variance should be small,

as is proved in the following Lemma, which we first motivate with a simple example.

Let X ∈ {1,2} and X ′ ∈ {1+η,2+η} be two random variables satisfying P(X =1)=P(X ′=1+η)
and P(X = 2) = P(X ′ = 2+η). We expect that for small η, the difference between Var [X ] and

Var [X ′] should also be small.

Lemma 16 Let X ∼ P(·) be a random variable over a finite set {Ωi}N
i=1, where Ωi ∈ R. Let X ′ ∼

P(·) be a random variable over a finite set {Ω′
i}

N
i=1, such that |Ωi −Ω′

i| < η, i = 1, . . . ,N. The

variance of X ′ satisfies

Var
[

X ′]≤ Var [X ]+η2 +2η
√

Var [X ].
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Proof First we have

Var
[

X ′]= E
[

(

X ′ −E
[

X ′])2
]

≤ E
[

(

X ′ −E [X ]
)2
]

,

since

E
[

(

X ′ −E [X ]
)2
]

= Var
[

X ′]+
(

E
[(

X ′ −E [X ]
)])2

.

Next we have

E
[

(

X ′ −E [X ]
)2
]

= ∑
x′

P
(

x′
)(

x′ −E [X ]
)2
,

but since |Ωi −Ω′
i|< η, ∀i then by the triangle equality we have |x′ −E [X ]|≤ |x−E [X ]|+η, so we

have

E
[

(

X ′ −E [X ]
)2
]

≤ ∑
x

P(x)(|x−E [X ]|+η)2

= Var [X ]+η2 +2η∑
x

P(x) |x−E [X ]|

≤ Var [X ]+η2 +2η
√

Var [X ],

where in the last inequality we used Cauchy–Schwartz under the expectation inner product:

〈|x−E [X ]| ,1〉2 ≤ 〈|x−E [X ]| , |x−E [X ]|〉〈1,1〉= Var [X ] .

We now combine the result of Lemma 16 and the bound on the variance developed for the random

variable (28) to prove Theorem 12.

Proof (of Theorem 12) First, we use Lemma 16 to bound (42)

Var
[

1K
ε
ÊKε [θ∗+δθ]+1K̄

ε
(θ∗+δθ)

]

≤ Var
[

1K
ε
ÊKε [θ∗]+1K̄

ε
(θ∗)

]

+η2 +
2η

γ

√

Var [θ∗],

and substitute [Σ0]xx = γ2Var [θ∗]. We now use (28) to bound Var
[

1K
ε
ÊKε [θ∗]+1K̄

ε
(θ∗)

]

, which re-

sults in (43).

Appendix E. Proof of Theorem 4

As stated before, Theorem 4 is a consequence of Theorem 10.1.3 in Kushner and Yin (2003), for

which a long set of assumptions is required. For the sake of clarity, this section is organized as fol-

lows. We first present a constrained version of the IPM-TD(0) algorithm and show that it converges

weakly to a unique point. We then present some definitions needed for Theorem 10.1.3 in Kushner

and Yin (2003), followed by an explicit statement of the theorem, without the required assumptions.

Finally, we present the assumptions one by one, and prove that they are indeed fulfilled.
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E.1 Constrained Algorithm

An important issue in the analysis of an SA algorithm (8) is the boundedness of the iterates. For

many convergence results, a required condition is that the sequence θn be bounded almost surely.

This condition is not trivial, and there are several approaches to satisfying it. One simple approach

is to truncate the iterate θn when it leaves some prespecified constraint set denoted by H (Kushner

and Yin, 2003). This will be done by introducing a ‘correction’ term Zn

θn+1 = θn + εF (θn,xn,un,xn+1)+ εZn, (51)

where εZn is the vector of shortest Euclidean length needed to take θn + εF (θn,xn,un,xn+1) back

to the constraint set H if it is not in H. Respectively, the correction term needs to be added to the

associated ODE
dθ

dt
= ḡ(θ)+ zt , (52)

where zt maintains θ in H. Recall the unconstrained ODE for TD(0) (15), and its fixed point θ∗.

Since in TD(0) θ∗ is bounded by the maximal value of the MDP rmax/(1− γ), we can choose H to

be large enough such that θ∗ ∈ H. The following Lemma guarantees that in this case, the additional

zt term in (52) does not change the ODE’s unique fixed point.

Lemma 17 Assuming θ∗ ∈ H, the constrained ODE for IPM-TD(0) with linear function approxi-

mation dθ/dt = b+Aθ+ zt , with b,A,zt defined in Section 4.1, has a unique and asymptotically

stable fixed point θ∗, which satisfies Aθ∗ =−b.

Proof Consider as a Lyapunov function the Euclidean distance to θ∗, V (θ) = (θ−θ∗)T (θ−θ∗).
For the unconstrained ODE (10), we have13 V̇ (θ) = θT

(

A+AT
)

θ, and since A is negative def-

inite we have V̇ (θ) < 0, and V (θ) is a valid Lyapunov function. Let V̇H (θ) correspond to the

constrained ODE. Since θ∗ is in H, by the geometric definition of the correction terms, we have

V̇H (θ)≤ V̇ (θ)< 0, therefore V is also valid for the constrained ODE (52).

We now state a convergence theorem that relates between the limit point of the ODE (52) and the

asymptotic behavior of algorithm (51). The assumptions needed for this theorem are satisfied by

default, by the definition of our RL environment and algorithm, and are thus omitted.

Let θ(t) denote the piece-wise constant continuous time interpolation θn, where θ(t) = θn on

the time interval [nε,nε+ ε) for t ≥ 0 and θ(t) = θ0 for t < 0. Similarly define Z (t) as the piece-wise

constant continuous time interpolation of Zn.

Theorem 18 (Theorem 8.2.2 in Kushner and Yin, 2003) Consider algorithm (51). For any non

decreasing sequence of integers qε, for each sub-sequence of {θ(εqε + ·) ,Z (εqε + ·)} ,ε > 0, there

exist a further sub-sequence and a process (θ(·) ,Z (·)) such that

(θ(εqε + ·) ,Z (εqε + ·))⇒ (θ(·) ,Z (·))

as ε → 0 through the convergent sub-sequence, where

θ(t) = θ(0)+

t∫

0

ḡ(θ(s))ds+Z (t) . (53)

Let εqε → ∞ as ε → 0. Then, for almost all ω, the path θ(ω, ·) lies in a limit set of (53).

13. See derivation in the proof of 20.3.3.

1956



INTEGRATING A PARTIAL MODEL INTO MODEL FREE RL

E.2 Definitions

The following technical definitions are required for the convergence result.

Let DL (−∞,∞) (and DL [0,∞), respectively) denote the L−fold product space of real valued

functions on the interval (−∞,∞) (resp. on [0,∞)) that are right continuous and have left-hand

limits, with the Skorohod topology used.14

Let {qε} be a sequence of non-negative integers. In order to investigate the asymptotic behavior

we will examine θ(εqε + ·), where εqε → ∞. We also demand ε(qε − pε) → ∞ where pε are non

decreasing and non-negative integers used in assumption 20.3.

Define the normalized error process

Un = (θqε+n −θ∗)/
√

ε,

and let Uε (·) denote its piecewise constant right continuous interpolation, with interpolation inter-

vals ε, on [0,∞). Define W ε (·) on (−∞,∞) by

W ε (t) =



















√
ε

qε+t/ε−1

∑
i=qε

F (θ∗,xi,ui,xi+1) , t ≥ 0

−
√

ε
qε+t/ε−1

∑
i=qε

F (θ∗,xi,ui,xi+1) , t < 0

(54)

E.3 A Theorem on Fluctuations in SA

Theorem 19 (10.1.3 in Kushner and Yin, 2003) Consider algorithm (51) and let assumption 20

hold. Then the sequence {Uε (·) ,W ε (·)} converges weakly in DL [0,∞)×DL (−∞,∞) to a limit

denoted by {U (·) ,W (·)}, and

dU = AUdt +dW,

where the matrix A is defined in 20.8, W (·) is a Wiener process with covariance matrix Σ
described in 20.5, and U (·) is stationary.

Theorem 4 is a direct consequence of Theorem 19, with n = ω(1/ε) satisfying the requirement on

qε.

E.4 Assumptions for Theorem 19

The set of assumptions 20 which we describe in the following is designed to fit a wide variety of

algorithms, and are thus quite complicated. The IPM-TD(0) algorithm with which we are concerned

is a very simple case of this theorem, as it is linear, bounded, and stationary, and the Markovian state

transitions are ergodic, and defined over a finite state space.15 Moreover, many of the assumptions

that follow are used in order to reduce a more complicated algorithm to these simpler settings, and

to show that the residual that remains is small in some sense. Thus, many complicated terms in the

assumptions just vanish, and some assumptions are true by default.

14. See Kushner and Yin (2003, p. 228, 238) for more details on DL.

15. In Borkar (2008) a simpler result regarding fluctuations with a fixed step size is given, albeit for a martingale differ-

ence noise scenario. The Markovian state dependent noise in our case requires the more complicated approach of

Kushner and Yin (2003).
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Assumption 20 The following holds16

1.
{

F (θn,xn,un,xn+1) I{|θn−θ∗|≤ρ}
}

is uniformly integrable for small ρ > 0.

Proof F (θn,xn,un,xn+1) is uniformly integrable since on every sample path θn is bounded

(by the constraint), r (xn) is bounded by rmax and φ(xn) is also bounded by definition. Since

this is true for every sample path, F (θn,xn,un,xn+1) I{|θn−θ∗|≤ρ} is uniformly integrable for all

ρ.

2. There is a sequence of non-negative and non decreasing integers Nε such that θ(εNε + ·)
converges weakly to the process with constant value θ∗ strictly inside the constraint set.

Proof By the weak convergence Theorem 18, choosing Nε such that εNε →∞, and by Lemma

17, we have that IPM-TD(0) converges weakly to the process with constant value θ∗ strictly

inside the constraint set.

3. There are non decreasing and non-negative integers pε (that can be taken to be greater than

Nε) such that
{

(θpε+n −θ∗)/
√

ε;ε > 0,n ≥ 0
}

is tight.

Proof For the proof of this assumption we use Theorem 10.5.2 in Kushner and Yin (2003),

which we now state.

Theorem 21 (10.5.2 in Kushner and Yin, 2003) Assume the constrained algorithm 51 with

constraint set H, where θ∗ is in the interior of H. Assume that 20.2 and 20.3.1-20.3.7 hold in

H. Then there are pε < ∞ such that
{

(θpε+n −θ∗)/
√

ε; ε > 0, n ≥ 0
}

is tight.

3.1 θ∗ is a globally asymptotically stable (in the sense of Lyapunov) point of the ODE dθ/dt =
ḡ(θ)+ zt .

Proof This is satisfied by Lemma 17.

3.2 The non-negative and continuously differentiable function V (·) is a Lyapunov function for

the ODE. The second order partial derivatives are bounded and |∇θV (θ)|2 ≤ K1 (V (θ)+1),
where K1 is an arbitrary positive number.

Proof Choose V to be of the form V (θ) = (θ−θ∗)T (θ−θ∗). As was in the proof of Lemma

17, V is a valid Lyapunov function. The second order partial derivatives are zero, and

∇θV (θ) = 2(θ−θ∗)

16. We exclude assumptions which are true by definition of our RL settings.
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|∇θV (θ)|2 = 4 |θ−θ∗|2 = 4V (θ) .

3.3 There is a λ > 0 such that V T
θ (θ) ḡ(θ)≤−λV (θ)

Proof Recalling from (15) and (16) that ḡ(θ) = b+Aθ, we have

1

2

(

(∇θV (θ))T ḡ(θ)+
(

(∇θV (θ))T ḡ(θ)
)T
)

= (θ−θ∗)T (b+Aθ)+(b+Aθ)T (θ−θ∗)

= (θ−θ∗)T b+bT (θ−θ∗)

+(θ−θ∗)T Aθ+θT AT (θ−θ∗)

= (θ−θ∗)T b+bT (θ−θ∗)

+(θ−θ∗)T (A+AT
)

(θ−θ∗)

+(θ−θ∗)T Aθ∗+θ∗T AT (θ−θ∗)

= (θ−θ∗)T (b+Aθ∗)+(b+Aθ∗)T (θ−θ∗)

+(θ−θ∗)T (A+AT
)

(θ−θ∗)

= (θ−θ∗)T (A+AT
)

(θ−θ∗) .

Let λ′ denote the largest eigenvalue of A+AT . We have that (θ−θ∗)T (A+AT
)

(θ−θ∗) ≤
λ′ (θ−θ∗)T (θ−θ∗), and

(∇θV (θ))T ḡ(θ) = (θ−θ∗)T (A+AT
)

(θ−θ∗)≤ λ′V (θ) .

3.4 For each K > 0, sup
n

E |F (θn,xn,un,xn+1)|2 I{|θn−θ∗|≤K} ≤ K1E [V (θn)+1], where K1 does not

depend on K.

Proof

Satisfying this requirement is immediate, since F (θn,xn,un,xn+1) is bounded on every sample

path. This follows from the fact that on every sample path θn is bounded (by the constraint),

r (xn) is bounded by rmax and φ(xn) is also bounded by definition.

3.5 The sum Γn (θ) = ε
∞
∑

i=n
(1− ε)i−n En [g(θ,xi,ui)− ḡ(θ)], where En denotes expectation condi-

tioned on the history up to time n, is well defined in that the sum of the norms of the summands

is integrable for each θ, and E |Γn (θn)|2 = O
(

ε2
)

.

Proof From Lemma 6.7 in Bertsekas and Tsitsiklis (1996) (which relies on the exponential

mixing time of Markov chains) we have that |En [g(θ,xi,ui)− ḡ(θ)]| ≤ cρi−n |θ| for some
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c > 0 and ρ < 1. This gives

∣

∣

∣

∣

∣

∞

∑
i=n

(1− ε)i−n En [g(θ,xi,ui)− ḡ(θ)]

∣

∣

∣

∣

∣

≤
∞

∑
i=n

|En [g(θ,xi,ui)− ḡ(θ)]|

≤
∞

∑
i=n

cρi−n |θ|

=
c |θ|
1−ρ

,

and

E |Γn (θn)|2 ≤ ε2E

∣

∣

∣

∣

c |θn|
1−ρ

∣

∣

∣

∣

2

=
ε2c

1−ρ
|θ∗|2

= O
(

ε2
)

.

3.6 E |Γn+1 (θn+1)−Γn+1 (θn)|2 = O
(

ε2
)

.

Proof

We have

Γn+1 (θn+1)−Γn+1 (θn)

= ε
∞

∑
i=n+1

(1− ε)i−n−1 En+1 [g(θn+1,xi,ui)− ḡ(θn+1)]

−ε
∞

∑
i=n+1

(1− ε)i−n−1 En+1 [g(θn,xi,ui)− ḡ(θn)]

= ε
∞

∑
i=n+1

(1− ε)i−n−1 En+1 [g(θn+1,xi,ui)−g(θn,xi,ui)− (ḡ(θn+1)− ḡ(θn))] .

Using the triangle inequality

|Γn+1(θn+1)−Γn+1(θn)|≤

ε
∞

∑
i=n+1

(1− ε)i−n−1 |En+1[g(θn+1,xi,ui)−g(θn,xi,ui)−(ḡ(θn+1)−ḡ(θn))]|

By the linearity of g, ḡ, and since θn is bounded, we have that|g(θn+1,xi,ui)−g(θn,xi,ui)|<
kε for some k, and |ḡ(θn+1)− ḡ(θn)|< k̄ε for some k̄. We therefore have :

|En+1 [g(θn+1,xi,ui)−g(θn,xi,ui)]|≤ En+1 [|g(θn+1,xi,ui)−g(θn,xi,ui)|]< kε,
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and similarly

|En+1 [ḡ(θn+1)− ḡ(θn)]|< k̄ε.

Now

|Γn+1 (θn+1)−Γn+1 (θn)| ≤ ε2
(

k+ k̄
)

∞

∑
i=n+1

(1− ε)i−n−1

= ε
(

k+ k̄
)

,

and

|Γn+1 (θn+1)−Γn+1 (θn)|2 ≤ ε2
∣

∣k+ k̄
∣

∣

2

= O
(

ε2
)

.

3.7 Let θH denote the projection of θ onto H. Then for all θ, V
(

θH
)

≤V (θ).

Proof This assumption was shown to hold in the proof of Lemma 17.

4. For a small ρ > 0, and any sequence ε → ∞ and n → ∞ such that θn → θ∗ in probability,

E
[

|δMn −δMn (θ
∗)|2 I{|θn−θ∗|≤ρ}

]

→ 0.

Proof Recall that we have

δMn = E [dK

n φ(xn)|xn,un]−dK

n φ(xn)

= γ∑
y

Pun (y|xn)φ(y)T θnφ(xn)

−γ






1K

n+1

∑
y∈Kxn,un

Pun (y|xn)φ(y)T

∑
y∈Kxn,un

Pun (y|xn)
+1K̄

n+1φ(xn+1)
T






θnφ(xn)

= γ





∑
y

Pun (y|xn)φ(y)T −1K

n+1

∑
y∈Kxn,un

Pun (y|xn)φ(y)T

∑
y∈Kxn,un

Pun (y|xn)
−1K̄

n+1φ(xn+1)
T






θnφ(xn) .

The difference δMn −δMn (θ∗) can therefore be written as

δMn −δMn (θ
∗) = a(xn)

T (θn −θ∗)b(xn) ,

where a and b are vector valued functions of xn. By the Cauchy–Schwarz inequality, for every

xn

|δMn −δMn (θ
∗)|≤ |a(xn)| |θn −θ∗| |b(xn)| ,
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and since the state space is finite, a and b are bounded, therefore there exists some constant k

such that for every xn

|a(xn)| |b(xn)|≤ k,

and we have that

E
[

|δMn −δMn (θ
∗)|2 I{|θn−θ∗|≤ρ}

]

≤ k2 |θn −θ∗|2 → 0.

5. The sequence of processes W (·) defined on (−∞,∞) by (54) converges weakly in DL (−∞,∞)
to a Wiener process W (·), with covariance matrix Σ.

Proof

For the proof of this assumption we use Theorem 10.6.2 in Kushner and Yin (2003),which we

now state.

Theorem 22 (10.6.2 in Kushner and Yin, 2003) Assume 20.5.1-20.5.4. Then {W (·)} defined

in (54) converges weakly to a Wiener process with covariance matrix Σ = Σ0 +Σ1 +ΣT
1 .

5.1 The following equations hold:

lim
N→∞

sup
n

E

∣

∣

∣

∣

∣

∞

∑
j=n+N

E
(

F (θ∗,x j,u j,x j+1)
∣

∣xn,un

)

∣

∣

∣

∣

∣

= 0,

lim
N→∞

sup
n

E

∣

∣

∣

∣

∣

∞

∑
i=n+N

E(F (θ∗,xn,un,xn+1)F (θ∗,xi,ui,xi+1)|xn,un)
T

∣

∣

∣

∣

∣

= 0.

Proof

Since the transition probabilities at step j converge to the steady state transition probabilities

(a property of ergodic Markov chains) exponentially fast in j, and since at the steady state

E(F (θ∗,x,u,x′))≡ ḡ(θ∗) = 0, we have that for some ρ < 1 and some vector c

∣

∣E
(

F (θ∗,x j,u j,x j+1)
∣

∣xn,un

)∣

∣< cρ j−n,

therefore for every n

lim
N→∞

∣

∣

∣

∣

∣

∞

∑
j=n+N

E
(

F (θ∗,x j,u j,x j+1)
∣

∣xn,un

)

∣

∣

∣

∣

∣

≤ lim
N→∞

c
∞

∑
j=N

ρ j

= lim
N→∞

cρN

1−ρ
= 0.
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The same goes for the covariance, since there exists some ρ′ < 1 and some matrix c′ such that

E(F (θ∗,xn,un,xn+1)F (θ∗,xi,ui,xi+1)|xn,un)
T < c′ρ′i−n.

5.2 The sets
{

|F (θ∗,xn,un,xn+1)|2
}

and

{

∣

∣

∣

∣

∞
∑
j=i

E
(

F (θ∗,x j,u j,x j+1)
∣

∣xi,ui

)

∣

∣

∣

∣

2
}

are uniformly in-

tegrable.

Proof As was shown before, F (θ∗,xn,un,xn+1) is bounded, and therefore
{

|F (θ∗,xn,un,xn+1)|2
}

is uniformly integrable. Also, as was shown in the proof of A5.1, for every i
∣

∣

∣

∣

∣

∞

∑
j=i

E
(

F (θ∗,x j,u j,x j+1)
∣

∣xi,ui

)

∣

∣

∣

∣

∣

≤
c

1−ρ
,

which is bounded, and therefore

{

∣

∣

∣

∣

∞
∑
j=i

E
(

F (θ∗,x j,u j,x j+1)
∣

∣xi,ui

)

∣

∣

∣

∣

2
}

is uniformly integrable.

5.3 There is a matrix Σ0 such that

1

m

n+m−1

∑
j=n

E
[

F (θ∗,x j,u j,x j+1)F (θ∗,x j,u j,x j+1)
T
∣

∣

∣
xn,un

]

−Σ0 → 0

in probability as n,m → ∞.

Proof

Since the Markov chain is ergodic, by the law of large numbers this is satisfied by defining

Σ0 = lim
n→∞

E
[

F (θ∗,xn,un,xn+1)F (θ∗,xn,un,xn+1)
T
]

.

5.4 There is a matrix Σ1 such that

1

m

n+m−1

∑
j=n

∞

∑
k= j+1

E
[

F (θ∗,x j,u j,x j+1)F (θ∗,xk,uk,xk+1)
T
∣

∣

∣
xn,un

]

−Σ1 → 0

in probability as n,m → ∞.

Proof

Since the Markov chain is ergodic, by the law of large numbers this is satisfied by defining

Σ1 =
∞

∑
j=1

lim
n→∞

E
[

F (θ∗,xn,un,xn+1)F (θ∗,xn+ j,un+ j,xn+ j+1)
T
]

.
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6. g(·,x,u) is continuously differentiable for each x,u, and can be expanded as

g(θ,x,u) = g(θ∗,x,u)+ [∇θg(θ∗,x,u)]T (θ−θ∗)+ [y(θ,x,u)]T (θ−θ∗) ,

where

[y(θ,x,u)]T (θ−θ∗) =
∫ 1

0
[∇θg(θ∗+ s(θ−θ∗) ,x,u)−∇θg(θ∗,x,u)]ds, (55)

and if δ → 0 as ε → 0 and n → ∞, then

E |y(θn,xn,un)| I{|θn−θ∗|≤δ} → 0

as ε → 0 and n → ∞.

Proof Recall that for IPM-TD(0)

g(θ,x,u) =

(

r (x)+

(

γ∑
y

Pu (y|x)φ(y)T −φ(x)T

)

θ

)

φ(x) ,

which is linear in θ and thus can be expanded as

g(θ,x,u) =

(

r (x)+

(

γ∑
y

Pu (y|x)φ(y)T −φ(x)T

)

(θ−θ∗+θ∗)

)

φ(x)

= g(θ∗,x,u)+

(

γ∑
y

Pu (y|x)φ(y)T −φ(x)T

)

(θ−θ∗)φ(x)

= g(θ∗,x,u)+ [∇θg(θ∗,x,u)]T (θ−θ∗) .

Since ∇θg(θ,x,u) does not depend on θ, the integral in (55) is zero and y(θ,x,u) = 0, thus

the assumption is satisfied.

7. The set {∇θg(θ∗,xn,un)} is uniformly integrable.

Proof As was shown above, ∇θg(θ∗,xn,un) is clearly bounded, and therefore uniformly in-

tegrable.

8. There is a Hurwitz matrix A such that

1

m

n+m+1

∑
j=n

[

E
[

∇θgT (θ∗,x j,u j)
∣

∣xn,un

]

−A
]

→ 0

in probability as ε → 0 and n,m → ∞.
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Proof We have,

∇θgT (θ∗,x,u) = φ(x)

(

γ∑
y

Pu (y|x)φ(y)−φ(x)

)T

.

Recall our definition of A

A ! ΦT Πµ (γPµ − I)Φ.

Then, by the law of large numbers, we have

1

m

n+m+1

∑
j=n

[

E
[

∇θgT (θ∗,xi,ui)
∣

∣xn,un

]

−A
]

→ 0.

As was stated before, it can be shown (Bertsekas and Tsitsiklis, 1996, Lemma 6.6b) that the

eigenvalues of A all have a negative real part, therefore A is Hurwitz.
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Abstract

Jstacs is an object-oriented Java library for analysing and classifying sequence data, which emerged
from the need for a standardized implementation of statistical models, learning principles, classi-
fiers, and performance measures. In Jstacs, these components can be used, combined, and extended
easily, which allows for a direct comparison of different approaches and fosters the development of
new components. Jstacs is especially tailored to biological sequence data, but is also applicable to
general discrete and continuous data. Jstacs is freely available at http://www.jstacs.de under
the GNU GPL license including an API documentation, a cookbook, and code examples.

Keywords: machine learning, statistical models, Java, bioinformatics, classification

1. Introduction

During the last years, machine learning techniques have gained an increasing importance in many

fields of science including bioinformatics and computational biology. A plethora of new or im-

proved statistical models, learning principles, and classification approaches has evolved.

∗. Both authors contributed equally.
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One critical step in assessing their relevance is the comparison to existing methods. Such direct

comparisons are hampered, if the approaches compared are implemented in stand-alone applications

or web-servers or if different performance measures are being used. In addition, the same building

blocks, such as statistical models or evaluation of performance measures, are implemented repeat-

edly, which induces an unnecessary implementation overhead slowing down scientific progress.

These observations lead to the development of Jstacs as an object-oriented open-source library.

In contrast to other libraries like JavaML (Abeel et al., 2009) or Shogun (Sonnenburg et al., 2010),

Jstacs focuses on statistical models and statistical learning principles. Similar to JavaML, Jstacs is

mainly targeted at developers who want to use the library in their own code.

In a typical Jstacs application for sequence classification, a user first chooses appropriate statis-

tical models for the data of the different classes. One then combines these models to a classifier,

chooses a learning principle for learning the parameters of this classifier, and learns this classifier

on training data. Finally, one uses the classifier for predicting class labels for previously unseen

data. For assessing the performance of the classifier, one can choose an evaluation schema like

cross-validation and choose different performance measures.

At each of these steps, one may use a statistical model, classifier, learning principle, evaluation

schema, or performance measure existing in Jstacs, or implement and use new ones. At each level,

Jstacs defines interfaces and abstract classes to standardize and ease development, and to achieve

modularity. Thus, a replacement of one component does not require a modification of other parts.

Jstacs has been applied to diverse biological problems such as prediction of transcription factor

binding sites and splice sites, de-novo motif discovery, analysis of gene expression and Array-CGH

data, and classification based on flow cytometry data.

In the following section, we describe the general structure, essential interfaces, and abstract

classes of Jstacs. In a case study, we show how these can be used for building a problem-specific

application.

2. The Jstacs Library

In Jstacs, data representation is organized at three levels: alphabets, sequences, and data sets. The

most prevalent alphabet in Jstacs is the DNAAlphabet, while more general implementations can be

used for instance to define a three-letter amino acid alphabet. Sequences are defined using such

alphabets, while DataSets comprise a collection of sequences over the same alphabet. DataSets

are constructed either from an existing array of sequences or from a file. The latter is the standard

way of loading data into Jstacs. In addition, DataSets can be sampled from statistical models.

On the algorithmic side, Jstacs is organized around two central types depicted in Figure 1:

the abstract class AbstractClassifier and the interface StatisticalModel, including two sub-

interfaces TrainableStatisticalModel and DifferentiableStatisticalModel abbreviated

as TrainSM and DiffSM, respectively. For these interfaces, Jstacs provides abstract classes with

standard implementations of many of the specified methods to reduce implementation effort as well

as factory classes enabling user-friendly creation of many standard models.

TrainableStatisticalModels provide methods for training the parameters of the model from

one data set. For example, this can be accomplished generatively by analytic parameter estimation.

Current implementations include inhomogeneous and homogeneous Markov models, Bayesian net-

works, hidden Markov models, and mixture models accepting any TrainableStatisticalModel

as mixture components.
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abstract

Abstract-

Classifier

abstract

Abstract-

ScoreBased-

Classifier
TrainSM-

Based-
Classifier

GenDisMix-
Classifier

enum

Learning-
Principle

abstract

Classifier-

AssessmentKFoldCross-
Validation

Repeated-
HoldOut-

Experiment

interface

StatisticalModel

interface

Trainable-

StatisticalModel
abstract

Abstract-

Trainable-

StatisticalModel

Bayesian-
Network-
TrainSM

Higher-
OrderHMM Mixture-

TrainSM

interface

Differentiable-

StatisticalModel
abstract

Abstract-

Differentiable-

StatisticalModel

Bayesian-
Network-
DiffSM

Extended-
ZOOPS-
DiffSMMixture-

DiffSM

Performance-

Measure-

ParameterSet

abstract

Abstract-

Performance-

Measure AucROC

Sensitivity-
ForFixed-
Specificity

Figure 1: Part of the class structure of Jstacs. The interfaces are colored red, abstract classes

blue, enums orange, and concrete classes green without preceeding modifier. Continu-

ous transitions represent inheritance, where arrows indicate the direction of inheritance.

Arrows with diamond heads represent usage of a type in the class at the arrow head.

In contrast, DifferentiableStatisticalModels provide methods tailored to numerical opti-

mization like the computation of gradients with respect to their parameters. Jstacs provides several

DifferentiableStatisticalModels including Markov models, Bayesian networks, and mix-

tures of DifferentiableStatisticalModels. In addition, a ZOOPS1 model for de-novo motif

discovery is implemented in ExtendedZOOPSDiffSM, which will be the topic of the case study.

AbstractClassifiers provide methods for learning internal StatisticalModels on train-

ing data from different classes and for classifying new input sequences. The TrainSMBased-

Classifier trains each of the provided TrainableStatisticalModels separately on the data

set for the corresponding class. The GenDisMixClassifier performs a simultaneous numerical

parameter estimation for the enclosed DifferentiableStatisticalModel, for instance by max-

imum supervised posterior (MSP) (Grünwald et al., 2002; Cerquides and de Mántaras, 2005), or a

unified learning principle (GenDisMix) (Keilwagen et al., 2010).

ClassifierAssessments can be used for assessing the performance of any

AbstractClassifier, for example by k-fold cross validation or repeated holdout sampling. Here,

the user may choose one or multiple performance measures such as sensitivity, precision, or the

areas under the receiver operating characteristic and precision-recall curve.

3. Case Study

In this section, we describe how we used Jstacs for developing Dispom, a new application for de-

novo motif discovery (Keilwagen et al., 2011). Existing approaches for de-novo motif discovery

1. ZOOPS abbreviates Zero or one occurrence per sequence.
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ExtendedZOOPSDiffSM

motif

model
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model
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model
GenDisMix

Classifier
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⇒
ExtendedZOOPSDiffSM

Strand

DiffSM

Markov

Model

DiffSM

Homoge-

neousMM

DiffSM

Mix-

tureDDSM

Uniform

DDSM

Skew

Normal

LikeDDSM

Homoge-

neousMM

DiffSM

GenDisMix

Classifier

maximum

supervised

posterior

Figure 2: Structure of Dispom within Jstacs. The left side illustrates, how modules can be plugged

into the core structure. The right side shows the concrete classes used in the application.

differ in the employed learning principle and in the capability of learning the positional preference

of motif occurrences. However, prior to Dispom, no approach existed for learning the motif and the

positional preference simultaneously using a discriminative learning principle. The general structure

of Dispom in Jstacs is depicted on the left side of Figure 2, where each white piece represents a slot

that can be filled with implementations of interfaces defined in Jstacs.

The motif, flanking, and background model are DifferentiableStatisticalModels, the po-

sition distribution is a DurationDiffSM, and the learning principle is a value from an enum type. In

the Dispom application illustrated on the right side of Figure 2, we use an inhomogeneous Markov

model of order 0 with a mixture over the DNA-strands as motif model. We use homogeneous

Markov models of order 0 for both the flanking and background model. All of these models existed

before we started developing Dispom. We use a mixture of a skew normal and a uniform distribution

as position distribution, and the discriminative MSP learning principle.

This modular structure allowed for an easy adaption to other problems like challenge 2 of

DREAM52 on protein binding microarray data, where we simply increased the orders of the motif,

flanking, and background model, and extended the learning principle to a weighted variant of the

MSP principle. These minimal changes were all that was needed for developing a novel application

for the analysis of protein binding microarrays and a successful performance in the challenge.
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Abstract

The varying-coefficient model is flexible and powerful for modeling the dynamic changes of re-
gression coefficients. It is important to identify significant covariates associated with response
variables, especially for high-dimensional settings where the number of covariates can be larger
than the sample size. We consider model selection in the high-dimensional setting and adopt differ-
ence convex programming to approximate the L0 penalty, and we investigate the global optimality
properties of the varying-coefficient estimator. The challenge of the variable selection problem
here is that the dimension of the nonparametric form for the varying-coefficient modeling could
be infinite, in addition to dealing with the high-dimensional linear covariates. We show that the
proposed varying-coefficient estimator is consistent, enjoys the oracle property and achieves an op-
timal convergence rate for the non-zero nonparametric components for high-dimensional data. Our
simulations and numerical examples indicate that the difference convex algorithm is efficient using
the coordinate decent algorithm, and is able to select the true model at a higher frequency than the
least absolute shrinkage and selection operator (LASSO), the adaptive LASSO and the smoothly
clipped absolute deviation (SCAD) approaches.

Keywords: coordinate decent algorithm, difference convex programming, L0- regularization,
large-p small-n, model selection, nonparametric function, oracle property, truncated L1 penalty

1. Introduction

High-dimensional data occur very frequently and are especially common in biomedical studies in-

cluding genome studies, cancer research and clinical trials, where one of the important scientific

interests is in dynamic changes of gene expression, long-term effects for treatment, or the progres-

sion of certain diseases.

We are particularly interested in the varying-coefficient model (Hastie and Tibshirani, 1993;

Ramsay and Silverman, 1997; Hoover et al., 1998; Fan and Zhang, 2000; Wu and Chiang, 2000;

Huang, Wu and Zhou, 2002, 2004; Qu and Li, 2006; Fan and Huang, 2005; among others) as it is

powerful for modeling the dynamic changes of regression coefficients. Here the response variables

are associated with the covariates through linear regression, but the regression coefficients can vary

and are modeled as a nonparametric function of other predictors.

c©2012 Lan Xue and Annie Qu.
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In the case where some of the predictor variables are redundant, the varying-coefficient model

might not be able to produce an accurate and efficient estimator. Model selection for significant pre-

dictors is especially critical when the dimension of covariates is high and possibly exceeds the sam-

ple size, but the number of nonzero varying-coefficient components is relatively small. This is be-

cause even a single predictor in the varying-coefficient model could be associated with a large num-

ber of unknown parameters involved in the nonparametric functions. Inclusion of high-dimensional

redundant variables can hinder efficient estimation and inference for the non-zero coefficients.

Recent developments in variable selection for varying-coefficient models include Wang, Li and

Huang (2008) and Wang and Xia (2009), where the dimension of candidate models is finite and

smaller than the sample size. Wang, Li and Huang (2008) considered the varying-coefficient model

in a longitudinal data setting built on the SCAD approach (Fan and Li, 2001; Fan and Peng, 2004),

and Wang and Xia (2009) proposed the use of local polynomial regression with an adaptive LASSO

penalty. For the high-dimensional case when the dimension of covariates is much larger than the

sample size, Wei, Huang and Li (2011) proposed an adaptive group LASSO approach using B-spline

basis approximation. The SCAD penalty approach has the advantages of unbiasedness, sparsity and

continuity. However, the SCAD approach involves non-convex optimization through local linear

or quadratic approximations (Hunter and Li, 2005; Zou and Li, 2008), which is quite sensitive to

the initial estimator. In general, the global minimum is not easily obtained for non-convex function

optimization. Kim, Choi and Oh (2008) have improved SCAD model selection using the difference

convex (DC) algorithm (An and Tao, 1997; Shen et al., 2003). Still, the existence of global opti-

mality for the SCAD has not been investigated for the case that the dimension of covariates exceeds

the sample size. Alternatively, the adaptive LASSO and the adaptive group LASSO approaches are

easier to implement due to solving the convex optimization problem. However, the adaptive LASSO

algorithm requires the initial estimators to be consistent, and such a requirement could be difficult

to obtain in high-dimensional settings.

Indeed, obtaining consistent initial estimators of the regression parameters is more difficult than

the model selection problem when the dimension of covariates exceeds the sample size, since if

the initial estimator is already close to the true value, then performing model selection is much less

challenging. So far, most model selection algorithms rely on consistent LASSO estimators as initial

values. However, the irrepresentable assumption (Zhao and Yu, 2006) to obtain consistent LASSO

estimators for high-dimensional data is unlikely to be satisfied, since most of the covariates are

correlated. When the initial consistent estimators are no longer available, the adaptive LASSO and

the SCAD algorithm based on either local linear or quadratic approximations are likely to fail.

To overcome the aforementioned problems, we approximate the L0 penalty effectively as the L0

penalty is considered to be optimal for achieving sparsity and unbiasedness, and is optimal even for

the high-dimensional data case. However, the challenge of L0 regularization is computational diffi-

culty due to its non-convexity and non-continuity. We use a newly developed truncated L1 penalty

(TLP, Shen, Pan and Zhu, 2012) for the varying-coefficient model which is piecewise linear and

continuous to approximate the non-convex penalty function. The new method intends to overcome

the computational difficulty of the L0 penalty while preserving the optimality of the L0 penalty. The

key idea is to decompose the non-convex penalty function by taking the difference between two

convex functions, thereby transforming a non-convex problem into a convex optimization problem.

One of the main advantages of the proposed approach is that the minimization process does not

depend on the initial estimator, which could be hard to obtain when the dimension of covariates is

high. In addition, the proposed algorithm for the varying-coefficient model is computationally effi-
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cient. This is reflected in that the proposed model selection performs better than existing approaches

such as SCAD in the high-dimensional case, based on our simulation and as applied to HIV AIDs

data, with a much higher frequency of choosing the correct model. The improvement is especially

significant when the dimension of covariates is much higher than the sample size.

We derive model selection consistency for the proposed method and show that it possesses the

oracle property when the dimension of covariates exceeds the sample size. Note that the theo-

retical derivation of asymptotic properties and global optimality results are rather challenging for

varying-coefficient model selection, as we are dealing with an infinite dimension of the nonpara-

metric component in addition to the high-dimensional covariates. In addition, the optimal rate

of convergence for the non-zero nonparametric components can be achieved in high-dimensional

varying-coefficient models. The theoretical techniques applied in this project are innovative as

there is no existing theoretical result on global optimality for high-dimensional model selection in

the varying-coefficient model framework.

The paper is organized as follows. Section 2 provides the background of varying-coefficient

models. Section 3 introduces the penalized polynomial spline procedure for selecting varying-

coefficient models when the dimension of covariates is high, provides the theoretical properties

for model selection consistency and establishes the relationship between the oracle estimator and

the global and local minimizers. Section 4 provides tuning parameter selection, and the coordinate

decent algorithm for model selection implementation. Section 5 demonstrates simulations and a data

example for high-dimensional data. The last section provides concluding remarks and discussion.

2. Varying-coefficient Model

Let (Xi,Ui,Yi) , i = 1, . . . ,n, be random vectors that are independently and identically distributed

as (X,U,Y ), where X = (X1, . . . ,Xd)
T and a scalar U are predictor variables, and Y is a response

variable. The varying-coefficient model (Hastie and Tibshirani, 1993) has the following form:

Yi =
d

∑
j=1

β j (Ui)Xi j + εi, (1)

where Xi j is the jth component of Xi, β j (·)’s are unknown varying-coefficient functions, and εi is a

random noise with mean 0 and finite variance σ2. The varying-coefficient model is flexible in that the

responses are linearly associated with a set of covariates, but their regression coefficients can vary

with another variable U . We will call U the index variable and X the linear covariates. In practice,

some of the linear covariates may be irrelevant to the response variable, with the corresponding

varying-coefficient functions being zero almost surely. The goal of this paper is to identify the

irrelevant linear covariates and estimate the nonzero coefficient functions for the relevant ones.

In many applications, such as microarray studies, the total number of the available covariates d

can be much larger than the sample size n, although we assume that the number of relevant ones

is fixed. In this paper, we propose a penalized polynomial spline procedure in variable selection

for the varying-coefficient model where the number of linear covariates d is much larger than n.

The proposed method is easy to implement and fast to compute. In the following, without loss of

generality, we assume there exists an integer d0 such that 0 < E
[
β2

j (U)
]
< ∞ for j = 1, . . . ,d0, and

E
[
β2

j (U)
]
= 0 for j = d0, . . . ,d. Furthermore, we assume that only the first d0 covariates in X are

relevant, and that the rest of the covariates are redundant.

1975



XUE AND QU

3. Model Selection in High-dimensional Data

In our estimation procedure, we first approximate the smooth functions
{

β j (·)
}d

j=1
in (1) by poly-

nomial splines. Suppose U takes values in [a,b] with a < b. Let υ j be a partition of the interval

[a,b], with Nn interior knots

υ j =
{

a = υ j,0 < υ j,1 < · · ·< υ j,Nn < υ j,Nn+1 = b
}
.

Using υ j as knots, the polynomial splines of order p + 1 are functions which are p-degree (or

less) of polynomials on intervals [υ j,i,υ j,i+1), i = 0, . . . ,Nn −1, and [υ j,Nn ,υ j,Nn+1], and have p−1

continuous derivatives globally. We denote the space of such spline functions by ϕ j. The advantage

of polynomial splines is that they often provide good approximations of smooth functions with only

a small number of knots.

Let
{

B jl (·)
}Jn

l=1
be a set of B-spline bases of ϕ j with Jn = Nn + p+1. Then for j = 1, . . . ,d,

β j (·)≈ s j (·) =
Jn

∑
l=1

γ jlB jl (·) = γT
j B j (·) ,

where γ j = (γ j1, . . . ,γ jJn)
T is a set of coefficients, and B j (·) = (B j1 (·) , . . . ,B jJn (·))

T are B- spline

bases. The standard polynomial spline method (Huang, Wu and Zhou, 2002) estimates the coeffi-

cient functions
{

β j (·)
}d

j=1
by spline functions which minimize the sum of squares

(
β̃1, . . . , β̃d

)
= argmin

s j∈ϕ j, j=1,...,d

1

2n

n

∑
i=1

[

Yi −
d

∑
j=1

s j (Ui)Xi j

]2

.

Equivalently, in terms of B-spline basis, it estimates γ =
(
γT

1 , . . . ,γ
T
d

)T
by

γ̃=
(
γ̃T

1 , . . . , γ̃
T
d

)T
= argmin

γ j, j=1,...,d

1

2n

n

∑
i=1

[

Yi −
d

∑
j=1

γT
j Zi j

]2

, (2)

where Zi j = B j (Ui)Xi j = (B j1 (Ui)Xi j, . . . ,B jJn (Ui)Xi j)
T . However, the standard polynomial spline

approach fails to reduce model complexity when some of the linear covariates are redundant, and

furthermore is not able to obtain parameter estimation when the dimension of model d is larger than

the sample size n. Therefore, to perform simultaneous variable selection and model estimation, we

propose minimizing the penalized sum of squares

Ln (s) =
1

2n

n

∑
i=1

[

Yi −
d

∑
j=1

s j (Ui)Xi j

]2

+λn

d

∑
j=1

pn

(∥∥s j

∥∥
n

)
, (3)

where s = s(·) = (s1 (·) , . . . ,sd (·))
T , and

∥∥s j

∥∥
n
=
(

∑n
i=1 s2

j (Ui)X2
i j/n
)1/2

is the empirical norm. In

terms of the B-spline basis, (3) is equivalent to

Ln (γ) =
1

2n

n

∑
i=1

[

Yi −
d

∑
j=1

γT
j Zi j

]2

+λn

d

∑
j=1

pn

(∥∥γ j

∥∥
Wj

)
, (4)

1976



HIGH-DIMENSIONAL VARYING COEFFICIENT MODELS

where
∥∥γ j

∥∥
Wj

=
√

γT
j W jγ j with W j =

n

∑
i=1

Zi jZ
T
i j/n. The formulation (3) is quite general. In

particular, for a linear model with β j (u) = β j and the linear covariates being standardized with

∑n
i=1 Xi j/n = 0 and ∑n

i=1 X2
i j/n = 1 for j = 1, . . . ,d, (3) reduces to a family of variable selection

methods for linear models with the penalty pn

(∥∥s j

∥∥
n

)
= pn

(∣∣β j

∣∣) . For instance, the L1 penalty

pn (|β|) = |β| results in LASSO (Tibshirani, 1996), and the smoothly clipped absolute deviation

penalty results in SCAD (Fan and Li, 2001). In this paper, we consider a rather different approach

for the penalty function such that

pn (β) = p(β,τn) = min(|β|/τn,1) , (5)

which is called a truncated L1−penalty (TLP) function, as proposed in Shen, Pan and Zhu (2012).

In (5), the additional tuning parameter τn is a threshold parameter determining which individual

components are to be shrunk towards to zero, or not. As pointed out by Shen, Pan and Zhu (2012),

the TLP corrects the bias of the LASSO induced by the convex L1-penalty and also reduces the

computational instability of the L0-penalty. The TLP is able to overcome the computation difficulty

for solving non-convex optimization problems by applying difference convex programming, which

transforms non-convex problems into convex optimization problems. This leads to significant com-

putational advantages over its smooth counterparts, such as the SCAD (Fan and Li, 2001) and the

minimum concavity penalty (MCP, Zhang, 2010). In addition, the TLP works particularly well for

high-dimensional linear regression models as it does not depend on initial consistent estimators of

coefficients, which could be difficult to obtain when d is much larger than n. In this paper, we will

investigate the local and global optimality of the TLP for variable selection in varying-coefficient

models in the high-dimensional case when d % n, and n goes to infinity.

Here we obtain γ̂ by minimizing Ln (γ) in (4). As a result, for any u∈[a,b], the estimators of the

unknown varying-coefficient functions in (1) are given as

β̂ j (u) =
Jn

∑
l=1

γ̂ jlB jl (u) , j = 1, . . . ,d. (6)

Let γ̃(o)= (̃γ1, . . . , γ̃d0 ,0, . . . ,0)
T

be the oracle estimator with the first d0 elements being the stan-

dard polynomial estimator (2) of the true model consisting of only the first d0 covariates. The

following theorems establish the asymptotic properties of the proposed estimator. We only state the

main results here and relegate the regularity conditions and proofs to the Appendix.

Theorem 1 Let An (λn,τn) be the set of local minima of (4). Under conditions (C1-C7) in the

Appendix, the oracle estimator is a local minimizer with probability tending to 1, that is,

P
(

γ̃(o) ∈ An (λn,τn)
)
→ 1,

as n → ∞.

Theorem 2 Let γ̂ = (̂γ1, . . . , γ̂d) T be the global minima of (4). Under conditions (C1-C6), (C8) and

(C9) in the Appendix, the estimator by minimizing (4) enjoys the oracle property, that is,

P
(

γ̂ = γ̃(o)
)
→ 1,

as n → ∞.

1977



XUE AND QU

Theorem 1 guarantees that the oracle estimator must fall into the local minima set. Theorem 2,

in addition, provides sufficient conditions such that the global minimizer by solving the non-convex

objective function in (4) is also the oracle estimator.

In addition to the results of model selection consistency, we also establish the oracle property for

the non-zero components of the varying-coefficients. For any u∈[a,b], let β̂(1) (u) =(
β̂1 (u) , . . . , β̂d0 (u)

)
T be the estimator of the first d0 varying-coefficient functions which are non-

zero and are defined in (6) with γ̂ being the global minima of (4). Theorem 3 establishes the asymp-

totic normality of β̂(1) (u) with the optimal rate of convergence.

Theorem 3 Under conditions (C1) - (C6), (C8) and (C9) given in the Appendix, and if

limNn logNn/n = 0, then for any u ∈ [a,b],

{
V
(

β̂(1) (u)
)}−1/2(

β̂(1) (u)−β
(1)
0 (u)

)
→ N(0,I)

in distribution, where β
(1)
0 (u) = (β01 (u) , . . . ,β0d0 (u))

T , I is a d0 ×d0 identity matrix, and

V
(

β̂(1) (u)
)
= B(1) (u)

(
n

∑
i=1

A
(1)T
i A

(1)
i

)−1

B(1) (u) = Op (Nn/n) ,

in which B(1) (u) =
(

BT
1 (u) , . . . ,B

T
d0
(u)
)T

, and A
(1)
i =

(
BT

1 (Ui)Xi1, . . . ,BT
d0
(Ui)Xid0

)T
with

BT
j (Ui)Xi j = (B j1 (Ui)Xi j, . . . ,B jJn (Ui)Xi j) .

4. Implementation

In this section, we extend the difference convex (DC) algorithm of Shen, Pan and Zhu (2012) to

solve the nonconvex minimization in (4) for varying-coefficient models. In addition, we provide the

tuning parameter selection criteria.

4.1 An Algorithm

The idea of the DC algorithm is to decompose a non-convex object function into a difference be-

tween two convex functions. Then the final solution is obtained iteratively by minimizing a se-

quence of upper convex approximations of the non-convex objective function. Specifically, we

decompose the penalty in (5) as pn (β) = pn1 (β)− pn2 (β) , where pn1 (β) = |β|/τn and pn2 (β) =
max(|β|/τn −1,0) . Note that both pn1 (·) and pn2 (·) are convex functions. Therefore, we can de-

compose the non-convex objective function Ln (γ) in (4) as a difference between two convex func-

tions,

Ln (γ) = Ln1 (γ)−Ln2 (γ) ,

where

Ln1 (γ) =
1

2n

n

∑
i=1

[

Yi −
d

∑
j=1

γT
j Zi j

]2

+λn

d

∑
j=1

pn1

(∥∥γ j

∥∥
Wj

)
,

Ln2 (γ) = λn

d

∑
j=1

pn2

(∥∥γ j

∥∥
Wj

)
.
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Let γ̂(0) be an initial value. From our experience, the proposed algorithm does not rely on initial

consistent estimators of coefficients so we have used γ̂(0) = 0 in the implementations. At iteration

m, we set L
(m)
n (γ), an upper approximation of Ln (γ), equal to

Ln1 (γ)−

[

Ln2

(
γ̂(m−1)

)
+λn

d

∑
j=1

(∥∥γ j

∥∥
Wj

−
∥∥∥γ̂

(m−1)
j

∥∥∥
Wj

)
p
′

n2

(∥∥∥γ̂
(m−1)
j

∥∥∥
Wj

)]

≈
1

2n

n

∑
i=1

[

Yi −
d

∑
j=1

γT
j Zi j

]2

+
λn

τn

d

∑
j=1

∥∥γ j

∥∥
Wj

I

(∥∥∥γ̂
(m−1)
j

∥∥∥
Wj

≤ τn

)

−Ln2

(
γ̂(m−1)

)
+

λn

τn

d

∑
j=1

∥∥∥γ̂
(m−1)
j

∥∥∥
Wj

I

(∥∥∥γ̂
(m−1)
j

∥∥∥
Wj

> τn

)

,

where p
′

n2

(∥∥∥γ̂
(m−1)
j

∥∥∥
Wj

)

= 1
τn

I(
∥∥∥γ̂

(m−1)
j

∥∥∥
Wj

> τn) is the subgradient of pn2. Since the last two terms

of the above equation do not depend on γ, therefore at iteration m,

γ̂(m)= argmin
γ j, j=1,...,d





1

2n

n

∑
i=1

[

Yi −
d

∑
j=1

γT
j Zi j

]2

+
d

∑
j=1

λn j

∥∥γ j

∥∥
Wj




 , (7)

where λn j =
λn

τn
I

(∥∥∥γ̂
(m−1)
j

∥∥∥
Wj

≤ τn

)

. Then it reduces to a group lasso with component-specific

tuning parameter λn j. It can be solved by applying the coordinate-wise descent (CWD) algorithm

as in Yuan and Lin (2006). To be more specific, let Z∗
i j = W

−1/2
j Zi j and γ∗j = W

1/2
j γ j. Then the

minimization problem in (7) reduces to

γ̂∗(m) = argmin
γ∗j , j=1,...,d





1

2n

n

∑
i=1

[

Yi −
d

∑
j=1

γ∗T
j Z∗

i j

]2

+λn j

d

∑
j=1

∥∥γ∗j
∥∥

2




 . (8)

Then the CWD algorithm minimizes (8) in each component while fixing the remaining components

at their current value. For the jth component, γ̂
∗(m)
j is updated by

γ
∗(m)
j =

(

1−
λn j∥∥S j

∥∥
2

)

+

S j, (9)

where S j = Z∗T
j

(
Y−Z∗γ

∗(m)
− j

)
with γ

∗(m)
− j =

(
γ
∗(m)T
1 , . . . ,γ

∗(m)T
j−1 ,0T ,γ

∗(m)T
j+1 , . . . ,γ

∗(m)T
d

)T
,

Z∗
j =
(

Z∗
1 j, . . . ,Z

∗
n j

)T
,Z∗ =

(
Z∗

1, . . . ,Z
∗
d

)
and (x)+ = xI{x≥0}. The solution to (8) can therefore be

obtained by iteratively applying Equation (9) to j = 1, . . . ,d until convergence.
The above algorithm is piece-wise linear and therefore it is computationally efficient. The

penalty part in (7) only involves a large L2-norm of the varying-coefficient function, implying that

there is no shrinkage for the non-zero components with a large magnitude of coefficients. In addi-

tion, the above algorithm can capture weak signals of varying-coefficients, and meanwhile is able to
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obtain the sparsest solution through tuning the additional thresholding parameters τn. The involve-

ment of the additional tuning of τn makes the TLP a flexible optimization procedure.

The minimization in (4) can achieve the global minima if the leading convex function can be ap-

proximated, and it is called the outer approximation method (Breiman and Cutler, 1993). However,

it has a slower convergence rate. Here we approximate the trailing convex function with fast com-

putation, and it leads to a good local minimum if it is not global (Shen, Pan and Zhu, 2012). It can

achieve the global minimizer if it is combined with the branch-and-bound method (Liu, Shen and

Wong, 2005), which searches through all the local minima with an additional cost in computation.

This contrasts to the SCAD or adaptive LASSO approaches which are based on local approxima-

tion. Achieving the global minimum is particularly important if the dimension of covariates is high,

as the number of possible local minima increases dramatically as p increases. Therefore, any local

approximation algorithm which relies on initial values likely fails.

4.2 Tuning Parameter Selection

The performance of the proposed spline TLP method crucially depends on the choice of tuning

parameters. One needs to choose the knot sequences in the polynomial spline approximation and

λn, τn in the penalty function. For computation convenience, we use equally spaced knots with the

number of interior knots Nn = [n1/(2p+3)], and select only λn, τn. A similar strategy for knot selection

can also be found in Huang, Wu and Zhou (2004), and Xue, Qu and Zhou (2010). Let θn = (λn,τn)
be the parameters to be selected. For faster computation, we use K-fold cross-validation to select

θn, with K = 5 in the implementation. The full data T is randomly partitioned into K groups of

about the same size, denoted as Tv , for v = 1, . . . ,K. Then for each v, the data T −Tv is used for

estimation and Tv is used for validation. For any given θn, let β̂
(v)
j (·,θn) be the estimators of β j (·)

using the training data T −Tv for j = 1, . . . ,d. Then the cross-validation criterion is given as

CV(θn) =
K

∑
v=1

∑
i∈Tv

{

Yi −
d

∑
j=1

β̂
(v)
j (Ui,θn)Xi j

}2

.

We select θ̂n by minimizing CV(θn).

5. Simulation and Application

In this section, we conduct simulation studies to demonstrate the finite sample performance of the

proposed method. We also illustrate the proposed method with an analysis of an AIDS data set. The

total average integrated squared error (TAISE) is evaluated to assess estimation accuracy. Let β̂(r) be

the estimator of a nonparametric function β in the r-th (1 ≤ r ≤ R) replication and {um}
ngrid

m=1 be the

grid points where β̂(r) is evaluated. We define AISE
(

β̂
)
= 1

R ∑R
r=1

1
ngrid

∑
ngrid

m=1

{
β(um)− β̂(r) (um)

}2
,

and TAISE=∑d
l=1 AISE

(
β̂l

)
. Let S and S0 be the selected and true index sets containing significant

variables, respectively. We say S is correct if S = S 0; S overfits if S0⊂ S but S0 -= S ; and S underfits

if S0 -⊂ S . In all simulation studies, the total number of simulations is 500.
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5.1 Simulated Example

We consider the following varying-coefficient model

Yi =
d

∑
j=1

β j (Ui)Xi j + εi, i = 1, . . . ,200, (10)

where the index variables Ui are generated from a Uniform [0,1], and the linear covariates Xi are

generated from a multivariate normal distribution with mean 0 and Cov(Xi j,Xi j
′ ) = 0.5| j− j

′
|, the

noises εi are generated from a standard normal distribution, and the coefficient functions are of the

forms

β1 (u) = sin(2πu) , β2 (u) = (2u−1)2 +0.5, β3 (u) = exp(2u−1)−1,

and β j (u) = 0 for j = 4, . . . ,d. Therefore only the first three covariates are relevant for predicting

the response variable, and the rest are null variables and do not contribute to the model prediction.

We consider the model (10) with d = 10, 100, 200, or 400 to examine the performance of model

selection and estimation when d is smaller than, close to, or exceeds the sample size.

We apply the proposed varying-coefficient TLP with a linear spline. The simulation results

based on the cubic spline are not provided here as they are quite similar to those based on the

linear spine. The tuning parameters are selected using the five-fold cross-validation procedure as

described in Section 4.2. We compare the TLP approach to a penalized spline procedure with

the SCAD penalty, the group LASSO (LASSO) and the group adaptive LASSO (AdLASSO) as

described in Wei, Huang and Li (2011). For the SCAD penalty, the first order derivative of pn (·) in

(4) is given as p
′

n (θ) = I (θ ≤ λn)+
(aλn−θ)+
(a−1)λn

I (θ > λn), and we set a = 3.7 as in Fan and Li (2001).

For all procedures, we select the tuning parameters using a five-fold cross-validation procedure for

fair comparison. To assess the estimation accuracy of the penalized methods, we also consider

the standard polynomial spline estimations of the oracle model (ORACLE). The oracle model only

contains the first three relevant variables and is only available in simulation studies where the true

information is known.

Table 1 summarizes the simulation results. It gives the relative TAISEs (RTAISE) of the penal-

ized spline methods (TLP, SCAD, LASSO, AdLASSO) to the ORACLE estimator. It also reports

the percentage of correct fitting(C), underfitting(U) and overfitting(O) over 200 simulation runs for

the penalized methods. When d = 10, the performance of the TLP, SCAD, LASSO and AdLASSO

are comparable, with TLP being slightly better the rest. But as the dimension d increases, Table 1

clearly shows that the TLP outperforms the other procedures. The percentage of correct fitting for

SCAD, LASSO and AdLASSO decreases significantly more when d increases, while the perfor-

mance of the TLP is relatively stable as d increases. For example, when d = 400, the correct fitting

is 82.5% for TLP versus 58.5% for SCAD, 18% for LASSO, and 59.5% for AdLASSO in the linear

spline. In addition, SCAD, LASSO and AdLASSO also tend to over-fit the model when d increases,

for example, when d = 400, the over-fitting rate is 37% for SCAD, 81% for LASSO, and 39.5% for

AdLASSO versus 14.5% for TLP in the linear spline.

In terms of estimation accuracy, Table 1 shows that the RTAISE of the TLP is close to 1 when

d is small. This indicates that the TLP can estimate the nonzero components as accurately as the

oracle. But RTAISE increases as d increases, since variable selection becomes more challenging

as d increases. Figure 1 plots the typical estimated coefficient functions from ORACLE, TLP and

SCAD using linear splines (p = 1) when d = 100. The typical estimated coefficient functions are
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Penalty d RTAISE C U O

TLP 10 1.049 0.925 0.005 0.070

SCAD 1.051 0.875 0.010 0.125

LASSO 1.080 0.640 0.000 0.360

AdLASSO 1.061 0.895 0.000 0.105

TLP 100 1.230 0.890 0.030 0.080

SCAD 1.282 0.710 0.030 0.260

LASSO 1.391 0.410 0.000 0.590

AdLASSO 1.283 0.720 0.000 0.280

TLP 200 1.404 0.895 0.035 0.070

SCAD 1.546 0.705 0.035 0.260

LASSO 1.856 0.330 0.015 0.655

AdLASSO 1.509 0.710 0.015 0.275

TLP 400 1.715 0.825 0.030 0.145

SCAD 1.826 0.585 0.045 0.370

LASSO 2.364 0.180 0.010 0.810

AdLASSO 1.879 0.595 0.010 0.395

Table 1: Simulation results for model selection based on various penalty functions: Relative total

averaged integrated squared errors (RTAISEs) and the percentages of correct-fitting (C),

under-fitting (U) and over-fitting (O) over 200 replications.

those with TAISE being the median of the 200 TAISEs from the simulations. Also plotted are the

point-wise 95% confidence intervals from the ORACLE estimation, with the point-wise lower and

upper bounds being the 2.5% and 97.5% sample quantiles of the 200 ORACLE estimates. Figure 1

shows that the proposed TLP method estimates the coefficient functions reasonably well. Compared

with the SCAD, LASSO and AdLASSO, the TLP method gives better estimation in general, which

is consistent with the RTAISEs reported in Table 1.

5.2 Application to AIDS Data

In this subsection, we consider the AIDs data in Huang, Wu and Zhou (2004). The data set consists

of 283 homosexual males who were HIV positive between 1984 and 1991. Each patient was sched-

uled to undergo measurements related to their disease at a semi-annual base visit, but some of them

missed or rescheduled their appointments. Therefore, each patient had different measurement times

during the study period. It is known that HIV destroys CD4 cells, so by measuring CD4 cell counts

and percentages in the blood, patients can be regularly monitored for disease progression. One of

the study goals is to evaluate the effects of cigarette smoking status (Smoking), with 1 as smoker

and 0 as nonsmoker; pre-HIV infection CD4 cell percentage (Precd4); and age at HIV infection

(age), on the CD4 percentage after infection. Let ti j be the time in years of the jth measurement

for the ith individual after HIV infection, and yi j be the CD4 percentage of patient i at time ti j. We

consider the following varying-coefficient model

yi j = β0(ti j)+β1(ti j)Smoking+β2(ti j)Age+β3(ti j)Precd4+ εi j. (11)
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Figure 1: Simulated example: Plots of the estimated coefficient functions for (a) β1(u), (b) β2(u)
and (c) β3(u) based on Oracle, SCAD, TLP, LASSO and AdLASSO approaches using

linear spline when d = 100. In each plot, also plotted are the true curve and the point-

wise 95% confidence intervals from the ORACLE estimation.
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We apply the proposed penalized cubic spline (p = 3) with TLP, SCAD, LASSO and Adaptive

LASSO penalties to identify the non-zero coefficient functions. We also consider the standard

polynomial spline estimation of the coefficient functions. All four procedures selected two non-

zero coefficient functions β0(t) and β3(t), indicating that Smoking and Age have no effect on the

CD4 percentage. Figure 2 plots the estimated coefficient functions from the standard cubic spline,

SCAD, TLP, LASSO and Adaptive LASSO approaches. For the standard cubic spline estimation,

we also calculated the 95% point-wise bootstrap confidence intervals for the coefficient functions

based on 500 bootstrapped samples.
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Figure 2: AIDs data: Plots of the estimated coefficient functions using standard cubic spline (line),

penalized cubic spline with TLP (dotted), SCAD (dashed), LASSO (dotdash), Adaptive

LASSO (long dash) penalties, together with the point-wise 95% bootstrap confidence

intervals from the standard cubic spline estimation.
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In this example, the dimension of the linear covariates is rather small. In order to evaluate a

more challenging situation with higher dimension of d, we introduced an additional 100 redundant

linear covariates, which are artificially generated from a Uniform [0,1] distribution independently.

We then apply the penalized spline with TLP, SCAD, LASSO or Adaptive LASSO penalties to the

augmented data set. We repeated this procedure 100 times. For the three observed variables in

model (11), all four procedures always select the Precd4 and never select Smoking and Age. For the

100 artificial covariates, the TLP selects at least one of these artificial covariates only 8 times, while

LASSO, Adaptive LASSO, and SCAD select 28, 27, and 42 times respectively. Clearly, LASSO,

Adaptive LASSO and SCAD tend to overfit the model and select many more null variables in this

data example. Note that our analysis does not incorporate the dependent structure of the repeated

measurements. Using the dependent structure of correlated data for high-dimensional settings will

be further investigated in our future research.

6. Discussion

We propose simultaneous model selection and parameter estimation for the varying-coefficient

model in high-dimensional settings where the dimension of predictors exceeds the sample size.

The proposed model selection approach approximates the L0 penalty effectively, while overcom-

ing the computational difficulty of the L0 penalty. The key idea is to decompose the non-convex

penalty function by taking the difference between two convex functions, therefore transforming a

non-convex problem into a convex optimization problem. The main advantage is that the minimiza-

tion process does not depend on the initial consistent estimators of coefficients, which could be

hard to obtain when the dimension of covariates is high. Our simulation and data examples confirm

that the proposed model selection performs better than the SCAD in the high-dimensional case.

The model selection consistency property is derived for the proposed method. In addition, we

show that it possesses the oracle property when the dimension of covariates exceeds the sample

size. Note that the theoretical derivation of asymptotic properties and global optimality results are

rather challenging for varying-coefficient model selection, as the dimension of the nonparametric

component is also infinite in addition to the high-dimensional covariates.

Shen, Pan and Zhu (2012) provide stronger conditions under which a local minimizer can also

achieve the objective of a global minimizer through the penalized truncated L1 approach. The

derivation is based on the normality assumption and the projection theory. For the nonparametric

varying-coefficient model, these assumptions are not necessarily satisfied and the projection prop-

erty cannot be used due to the curse of dimensionality. In general, whether a local minimizer can

also hold the global optimality property for the high-dimensional varying-coefficient model requires

further investigation. Nevertheless, the DC algorithm yields a better local minimizer compared to

the SCAD, and can achieve the global minimum if it is combined with the branch-and-bound method

(Liu, Shen and Wong, 2005), although this might be more computationally intensive.
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Appendix A. Assumptions

To establish the asymptotic properties of the spline TLP estimators, we introduce the following

notation and technical assumptions. For a given sample size n, let Yn = (Y1, . . . ,Yn)
T , Xn =

(X1, . . . ,Xn)
T and Un = (U1 . . . ,Un)

T . Let Xn j be the j-th column of Xn. Let ‖·‖2 be the usual

L2 norm for functions and vectors and C p ([a,b]) be the space of p-times continuously differ-

entiable functions defined on [a,b]. For two vectors of the same length a = (a1, . . . ,ad)
T and

b = (b1, . . . ,bd)
T , denote a ◦ b = (a1b1, . . . ,adbd)

T . For any scalar function g(·) and a vector

a = (a1, . . . ,ad)
T , we denote g(a) = (g(a1) , . . . ,g(ad))

T .

(C1) The number of relevant linear covariates d0 is fixed and there exists β0 j (·) ∈ Cp [a,b] for

some p ≥ 1 and j = 1, . . . ,d0, such that E (Y |X,U) =
d0

∑
j=1

β0 j (U)Xj. Furthermore there exists

a constant c1 > 0 such that min1≤ j≤d0 E
[
β2

0 j (U)
]
> c1.

(C2) The noise ε satisfies E (ε) = 0, V (ε) = σ2 < ∞, and its tail probability satisfies P(|ε|> x)≤
c2 exp

(
−c3x2

)
for all x ≥ 0 and for some positive constants c2 and c3.

(C3) The index variable U has a compact support on [a,b] and its density is bounded away from 0

and infinity.

(C4) The eigenvalues of matrix E
(
XXT |U = u

)
are bounded away from 0 and infinity uniformly

for all u ∈ [a,b].

(C5) There exists a constant c > 0 such that
∣∣Xj

∣∣< c with probability 1 for j = 1, . . . ,d.

(C6) The d sets of knots denoted as υ j =
{

a = υ j,0 < υ j,1 < · · ·< υ j,Nn < υ j,Nn+1 = b
}
, j = 1, . . . ,d,

are quasi-uniform, that is, there exists c4 > 0, such that

max
j=1,...,d

max
(
υ j,l+1 −υ j,l, l = 0, . . . ,Nn

)

min(υ j,l+1 −υ j,l, l = 0, . . . ,Nn)
≤ c4.

(C7) The tuning parameters satisfy

τn

λn

√
log(Nnd)

nNn
+

τnN
−(p+2)
n

λn
= o(1)

Nn log(Nnd)

n
+ τn = o(1).

(C8) The tuning parameters satisfy

log(Nnd)Nn

nλn
+

n

log(Nnd)N
2p+3
n

= o(1)

nλn

log(Nnd)dNn
+

d log(n)τ2
n

λn
= o(1).
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(C9) For any subset A of {1, . . . ,d}, let

∆n (A) = min
β j∈ϕ j, j∈A

∥∥∥∥∥∑
j∈A

β j (Un)◦Xn j − ∑
j∈A0

β0 j (Un)◦Xn j

∥∥∥∥∥

2

2

.

We assume that the model (1) is empirically identifiable in the sense that,

lim
n→∞

min
{
(log(Nnd)Nnd)−1 ∆n (A) : A -= A0, |A|≤ αd0

}
= ∞,

where α > 1 is a constant, |A| denotes the cardinality of A, and A0 ={1, . . . ,d0}.

The above conditions are commonly assumed in the polynomial spline and variable selection

literature. Conditions similar to (C1) and (C2) are also assumed in Huang, Horowitz and Wei (2010).

Conditions similar to (C3)-(C6) can be found in Huang, Wu and Zhou (2002) and are needed for

estimation consistency even when the dimension of linear covariates d is fixed. Conditions (C7) and

(C8) are two different sets of conditions on tuning parameters for the local and global optimality of

the spline TLP, respectively. Condition (C9) is analogous to the “degree-of-separation” condition

assumed in Shen, Pan and Zhu (2012), and is weaker than the sparse Riesz condition assumed in

Wei, Huang and Li (2011).

Appendix B. Outline of Proofs

To establish the asymptotic properties of the proposed estimator, we first investigate the properties

of spline functions for high-dimensional data in Lemmas 4-5 and properties of the oracle spline esti-

mators of the coefficient functions in Lemma oracle. The approximation theory for spline functions

(De Boor, 2001) plays a key role in these proofs. When the true model is assumed to be known, it re-

duces to the estimation of the the varying-coefficient model with fixed dimensions. The asymptotic

properties of the resulting oracle spline estimators of the coefficient functions have been discussed

in the literature.Specifically, Lemma 6 follows directly from Theorems 2 and 3 of Huang, Wu and

Zhou (2004).

To prove Theorem 1, we first provide the sufficient conditions for a solution to be a local min-

imizer for the object function by differentiating the objective function through regular subdifferen-

tials. We then establish Theorem 1 by showing that the oracle estimator satisfies those conditions

with probability approaching 1. In Theorem 2, we show that the oracle estimator minimizes the

objective function globally with probability approaching 1, thereby establishing that the oracle esti-

mator is also the global optimizer. This is accomplished by showing that the sum of the probabilities

of all the other misspecified solutions minimizing the objective function converges to zero as n→∞.

Appendix C. Technical Lemmas

For any set A ⊂ {1, . . . ,d}, we denote β̃(A) the standard polynomial spline estimator of the model A,

that is, β̃
(A)
j = 0 if j /∈ A, and

(
β̃
(A)
j , j ∈ A

)
= argmin

s j∈ϕ j

1

2n

n

∑
i=1

[

Yi − ∑
j∈A

s j (Ui)Xi j

]2

. (12)
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In particular, β̃(o) = β̃(A0), with A0 = {1, . . . ,d0} being the standard polynomial spline estimator of

the oracle model.

We first investigate the property of splines. Here we use B-spline basis in the proof, but the

results still hold true for other choices of basis. For any s(1) (u) =
(

s
(1)
1 (u) , . . . ,s

(1)
d (u)

)T
and

s(2) (u) =
(

s
(2)
1 (u) , . . . ,s

(2)
d (u)

)T
with each s

(1)
j (u) ,s

(2)
j (u) ∈ S j, define the empirical inner product

as
〈

s(1),s(2)
〉

n
=

1

n

n

∑
i=1

(
d

∑
j=1

s
(1)
j (Ui)Xi j

)(
d

∑
j=1

s
(2)
j (Ui)Xi j

)

,

and theoretical inner product as

〈
s(1),s(2)

〉
= E

[(
d

∑
j=1

s
(1)
j (U)Xj

)(
d

∑
j=1

s
(2)
j (U)Xj

)]

.

Denote the induced empirical and theoretical norms as ‖·‖n and ‖·‖ respectively. Let ‖g‖∞ =
supx∈[a,b] g(u) be the supremum norm.

Lemma 4 For any s j (u) ∈ ϕ j, write s j (u) = ∑
Jn

l=1 γ jlB jl (u) for γ j = (γ j1, . . . ,γ jJn)
T . Let

γ =
(
γT

1 , . . . ,γ
T
d

)T
and s(u) = (s1 (u) , . . . ,sd (u))

T . Then there exist constants 0 < c ≤C such that

c‖γ‖2
2 /Nn ≤ ‖s‖2 ≤C‖γ‖2

2 /Nn.

Proof: Note that

‖s‖2 = E




(

d

∑
j=1

s j (U)Xj

)2


= E
[
sT (U)XXT s(U)

]

= E
[
sT (U)E

{
XXT |U

}
s(U)

]
.

Therefore by (C4), there exist 0 < c1 ≤ c2, such that

c1E
[
sT (U)s(U)

]
≤ ‖s‖2 ≤ c2E

[
sT (U)s(U)

]
,

in which, by properties of B-spline basis functions, there exist 0 < c∗1 ≤ c∗2, such that

c∗1

d

∑
j=1

∥∥γ j

∥∥2

2
/Nn ≤ E

[
sT (U)s(U)

]
=

d

∑
j=1

E
[
s2

j (U)
]
≤ c∗2

d

∑
j=1

∥∥γ j

∥∥2

2
/Nn.

The conclusion follows by taking c = c1c∗1, and C = c2c∗2.
For any A ⊂ {1, . . . ,d}, let |A| be the cardinality of A. Denote ZA = (Z j, j ∈ A) and DA =

ZT
AZA/n. Let ρmin (DA) and ρmax (DA) be the minimum and maximum eigenvalues of DA respec-

tively.

Lemma 5 Suppose that |A| is bounded by a fixed constant independent of n and d. Then under

conditions (C3)-(C5), one has

c1/Nn ≤ ρmin (DA)≤ ρmax (DA)≤ c2/Nn,

for some constants c1,c2 > 0.
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Proof: Without loss of generality, we assume A = {1, . . . ,k} for some constant k which does not

depend on n nor d. Note that for any γA = (γ j, j ∈ A), the triangular inequality gives

γT
ADAγA =

1

n

∥∥∥∥∥∑
j∈A

Z jγ j

∥∥∥∥∥

2

2

≤
2

n ∑
j∈A

∥∥Z jγ j

∥∥2

2
= 2 ∑

j∈A

γT
j D jγ j,

where D j = ZT
j Z j/n. By Lemma 6.2 of Zhou, Shen and Wolfe (1998), there exist constants c3,c4 >

0 c3/Nn ≤ ρmin (D j) ≤ ρmax (D j) ≤ c4/Nn. Therefore γT
ADAγA ≤ 2c4γT

AγA/Nn. That is ρmax (DA) ≤
2c4/Nn = c2/Nn. The lower bound follows from Lemma A.5 in Xue and Yang (2006) with d2 = 1.

Now we consider properties of the oracle spline estimators of the coefficient functions when the

true model is known. That is, β̂(o) =
(

β̂
(o)
1 , . . . , β̂

(o)
d0
,0, . . . ,0

)
is the polynomial spline estimator of

coefficient functions knowing only that the first d0 covariates are relevant. That is

(
β̂
(o)
1 , . . . , β̂

(o)
d0

)T
= argmin

s j∈ϕ j

n

∑
i=1

[

Yi −
d0

∑
j=1

s j (Ui)Xi j

]2

.

Lemma 6 Suppose conditions (C1)-(C6) hold. If limNn logNn/n = 0, then for j = 1, . . . ,d0,

E
(

β j (U)− β̂
(o)
j (U)

)2
= Op

(
Nn

n
+N

−2(p+1)
n

)
,

1

n

n

∑
i=1

(
β j (Ui)− β̂

(o)
j (Ui)

)2
= Op

(
Nn

n
+N

−2(p+1)
n

)
,

and {
V
(

β̂(o,1) (u)
)}−1/2(

β̂(o,1) (u)−β(1) (u)
)
→ N(0,I)

in distribution, where β̂(o,1) (u) =
(

β̂
(o)
1 (u) , . . . , β̂

(o)
d0

(u)
)T

, and β(1) (u) = (β1 (u) , . . . ,βd0 (u))
T ,

and

V
(

β̂(o,1) (u)
)
= B(1) (u)

(
n

∑
i=1

A
(1)T
i A

(1)
i

)−1

B(1) (u) = Op (Nn/n) ,

where B(1) (u) =
(

BT
1 (u) , . . . ,B

T
d0
(u)
)T

, and A
(1)
i =

(
BT

1 (Ui)Xi1, . . . ,BT
d0
(Ui)Xid0

)T
in which

BT
j (Ui)Xi j = (B j1 (Ui)Xi j, . . . ,B jJn (Ui)Xi j) .

Proof: It follows from Theorems 2 and 3 of Huang, Wu and Zhou (2004).

Lemma 7 Suppose conditions (C1)-(C6) hold. Let Tjl =
√

Nn/n
n

∑
i=1

B jl (Ui)Xi jεi, for j = 1, . . . ,d,

and l = 1, . . . ,Jn. Let Tn = max1≤ j≤d,1≤l≤Jn

∣∣Tjl

∣∣ . If Nn log(Nnd)/n → 0, then

E (Tn) = O
(√

log(Nnd)
)
.
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Proof: Let m2
jl =

n

∑
i=1

B2
jl (Ui)X2

i j, and m2
n = max1≤ j≤d,1≤l≤Jn

m2
jl . By condition (C2) and the max-

imal inequality for gaussian random variables, there exists a constant C1 > 0 such that

E (Tn) = E

(
max

1≤ j≤d,1≤l≤Jn

∣∣Tjl

∣∣
)
≤C1

√
Nn/n

√
log(Nnd)E (mn) . (13)

Furthermore, by the definition of B-spline basis and (C5), there exists a C2 > 0, such that for each

1 ≤ j ≤ d,1 ≤ l ≤ Jn,
∣∣B2

jl (Ui)X2
i j

∣∣≤C2, and E
[
B2

jl (Ui)X2
i j

]
≤C2N−1

n .

As a result,
n

∑
i=1

E
[
B2

jl (Ui)X2
i j −E

(
B2

jl (Ui)X2
i j

)]2
≤ 4C2nN−1

n ,

and

max
1≤ j≤d,1≤l≤Jn

Em2
jl = max

1≤ j≤d,1≤l≤Jn

n

∑
i=1

E
(
B2

jl (Ui)X2
i j

)
≤C2nN−1

n . (14)

Then by Lemma A.1 of Van de Geer (2008), one has

E

(
max

1≤ j≤d,1≤l≤Jn

∣∣m2
jl −Em2

jl

∣∣
)

= E

(

max
1≤ j≤d,1≤l≤Jn

∣∣∣∣∣

n

∑
i=1

B2
jl (Ui)X2

i j −E
(
B2

jl (Ui)X2
i j

)
∣∣∣∣∣

)

≤
√

2C2nN−1
n log(Nnd)+4log(2Nnd) . (15)

Therefore (14) and (15) give that

Em2
n ≤ max

1≤ j≤d,1≤l≤Jn

Em2
jl +E

(
max

1≤ j≤d,1≤l≤Jn

∣∣m2
jl −Em2

jl

∣∣
)

≤ C2nN−1
n +

√
2C2nN−1

n log(Nnd)+4log(2Nnd) .

Furthermore, Emn ≤
√

Em2
n ≤

(√
2C2nN−1

n log(Nnd)+4log(2dNn)+C2nN−1
n

)1/2

. Together with

(13) and Nn log(Nnd)/n → 0, one has

E (Tn) ≤ C1

√
Nn/n

√
log(Nnd)

(√
2C2nN−1

n log(Nnd)+4log(2Nnd)+C2nN−1
n

)1/2

= O
(√

log(Nnd)
)
.

Lemma 8 Suppose conditions (C1)-(C7) hold. Let Z j = (Z1 j, . . . ,Zn j)
T ,Y =(Y1, . . . ,Yn)

T , and

Z(1) = (Z1, . . . ,Zd0) . Then

P

(∥∥∥∥
1

n
ZT

j

(
Y−Z(1)γ̂

(o,1)
)∥∥∥∥

Wj

>
λn

τn
, ∃ j = d0 +1, . . . ,d

)

→ 0.
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Proof: By the approximation theory (de Boor 2001, p. 149), there exist a constant c > 0 and

spline functions s0
j = ∑

Jn

l=1 γ0
jlB jl (t) ∈ S j, such that

max
1≤ j≤d0

∥∥β j − s0
j

∥∥
∞
≤ cN

−(p+1)
n . (16)

Let δi=∑
d0
j=1

[
β j (Ui)− s0

j (Ui)
]

Xi j, δ =(δ1, . . . ,δn)
T , and ε =(ε1, . . . ,εn)

T . Then one has

ZT
j

(
Y−Z(1)γ̂

(o,1)
)
= ZT

j HnY = ZT
j Hnε+ZT

j Hnδ,

where Hn = I−Z(1)

(
ZT
(1)Z(1)

)−1
ZT
(1). By Lemma 7, there exists a c > 0 such that

E

(
max

d0+1≤ j≤d

∥∥ZT
j Hnε

∥∥
Wj

)
≤ c
√

n log(Nnd)/Nn.

Therefore by Markov’s inequality, one has

P

(∥∥ZT
j Hnε

∥∥
Wj

>
nλn

2τn
, ∃ j = d0 +1, . . . ,d

)
= P

(
max

d0+1≤ j≤d

∥∥ZT
j Hnε

∥∥
Wj

>
nλn

2τn

)

≤
2cτn

λn

√
log(Nnd)

nNn
→ 0, (17)

as n → ∞, by condition (C7). On the other hand, let ρ j and ρHn be the largest eigenvalue of ZT
j Z j/n

and Hn. Then Lemma (5) entails that maxd0+1≤ j≤d ρ j = Op (1/Nn) . Together with (16) and condi-

tion (C7), one has

max
d0+1≤ j≤d

1

n

∥∥ZT
j Hnδ

∥∥
Wj

≤ (nNn)
−1/2√ max

d0+1≤ j≤d
ρ jρHn

‖δ‖2

= Op

(
N
−(p+1)
n /Nn

)
= op

(
λn

2τn

)
. (18)

Then the lemma follows from (17) and (18) and by noting that

P

(∥∥∥∥
1

n
ZT

j

(
Y−Z(1)γ̂

(o,1)
)∥∥∥∥

Wj

>
λn

τn
, ∃ j = d0 +1, . . . ,d

)

≤ P

(
max

d0+1≤ j≤d

1

n

∥∥ZT
j Hnε

∥∥
Wj

>
λn

2τn

)
+P

(
max

d0+1≤ j≤d

1

n

∥∥ZT
j Hnδ

∥∥
Wj

>
λn

2τn

)
.

Appendix D. Proof of Theorem 1

For notation simplicity, let Z∗
i j = W

−1/2
j Zi j and γ∗j = W

1/2
j γ j. Then the minimization problem in (4)

becomes

Ln (γ
∗) =

1

2n

n

∑
i=1

[

Yi −
d

∑
j=1

γ∗T
j Z∗

i j

]2

+λn

d

∑
j=1

pn

(∥∥γ∗j
∥∥

2

)
.

1991



XUE AND QU

For i = 1, . . . ,n, and j = 1, . . . ,d, write Z∗
i =

(
Z∗T

i1 , . . . ,Z∗T
id

)T
, γ∗ =

(
γ∗T

1 , . . . ,γ∗T
d

)T
and c∗j (γ

∗) =

− 1
n

n

∑
i=1

Z∗
i j

(
Yi −Z∗T

i γ∗
)
. Differentiate Ln (γ∗) with respect to γ∗j through regular subdifferentials, we

obtain the local optimality condition for Ln (γ∗) as c∗j (γ
∗)+ λn

τn
ζ j = 0, where ζ j = γ∗j/

∥∥∥γ∗j

∥∥∥
2

if 0 <
∥∥∥γ∗j

∥∥∥
2
< τn; ζ j = {γ∗j ,

∥∥∥γ∗j

∥∥∥
2
≤ 1} if

∥∥∥γ∗j

∥∥∥
2
= 0;ζ j = 0, if

∥∥∥γ∗j

∥∥∥
2
> τn; and ζ j = /0, if

∥∥∥γ∗j

∥∥∥
2
= τn,

where /0 is an empty set. Therefore any γ∗ that satisfies

c∗j (γ
∗) = 0,

∥∥γ∗j
∥∥> τn for j = 1, . . . ,d0.

∥∥c∗j (γ
∗)
∥∥

2
≤

λn

τn
,

∥∥γ∗j
∥∥= 0 for j = d0 +1, . . . ,d,

is a local minimizer of Ln (γ∗). Or equivalently, any γ that satisfies

c j (γ) = 0,
∥∥γ j

∥∥
Wj

> τn for j = 1, . . . ,d0. (19)

∥∥c j (γ)
∥∥

Wj

≤
λn

τn
,

∥∥γ j

∥∥
Wj

= 0 for j = d0 +1, . . . ,d, (20)

is a local minimizer of Ln (γ) , in which c j (γ) =− 1
n

n

∑
i=1

Zi j

(
Yi −ZT

i γ
)
. Therefore it suffices to show

that γ̂(o) satisfies (19) and (20).

For j = 1, . . . ,d0, c j

(
γ̂(o)
)
= 0 trivially by the definition of γ̂(o). On the other hand, conditions

(C1), (C7) and Lemma 6 give that

lim
n→∞

P

(∥∥∥γ̂
(o)
j

∥∥∥
Wj

> τn, j = 1, . . . ,d0

)
= 1.

Therefore γ̂(o) satisfies (19). For (20), note that, by definition γ̂
(o)
j = 0, for j = d0 + 1, . . . ,d. Fur-

thermore, for j = d0 +1, . . . ,d,

c j

(
γ̂(o)
)
=−

1

n
ZT

j

(
Y−Z(1)γ̂

(o,1)
)
.

By Lemma 8,

P

(∥∥∥c j

(
γ̂(o)
)∥∥∥

Wj

>
λn

τn
, ∃ j = d0 +1, . . . ,d

)
→ 0.

Therefore γ̂
(o)
j also satisfies (20) with probability approaching to 1. As a result, γ̂(o) is a local mini-

mum of Ln (γ) with probability approaching to 1.

Appendix E. Proof of Theorem 2

Note that for any γ =
(
γT

1 , . . . ,γ
T
d

)T
, one can write

Ln (γ) =
1

2n

n

∑
i=1

[

Yi −
d

∑
j=1

γT
j Zi j

]2

+λn

d

∑
j=1

min

(∥∥γ j

∥∥
Wj

/τn,1

)

=
1

2n

n

∑
i=1

[

Yi −
d

∑
j=1

γT
j Zi j

]2

+λn |A|+
λn

τn
∑
j∈Ac

∥∥γ j

∥∥
Wj

,
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where A = A(γ) =

{
j :
∥∥γ j

∥∥
Wj

≥ τn

}
, Ac =

{
j :
∥∥γ j

∥∥
Wj

< τn

}
, and |A| denotes the cardinality of

A. For a given set A, let γ̃(A) be the coefficient from the standard polynomial spline estimation of

the model A as defined in (12). Then for a = λn/
(
dτ2

n logn
)
+1 > 1, one has

Ln (γ)−λn |A|

=
1

2n

n

∑
i=1

[

Yi − ∑
j∈A

γT
j Zi j − ∑

j∈Ac

γT
j Zi j

]2

+
λn

τn
∑
j∈Ac

∥∥γ j

∥∥
Wj

≥
a−1

2an

n

∑
i=1

[

Yi − ∑
j∈A

γT
j Zi j

]2

−
a−1

2n

n

∑
i=1

[

∑
j∈Ac

γT
j Zi j

]2

+
λn

τn
∑
j∈Ac

∥∥γ j

∥∥
Wj

≥
a−1

2an

n

∑
i=1

[

Yi −
d

∑
j=1

γ̃
(A)T
j Zi j

]2

−
d (a−1)

2n

n

∑
i=1

∑
j∈Ac

(
γT

j Zi j

)2
+

λn

τn
∑
j∈Ac

∥∥γ j

∥∥
Wj

≥
a−1

2an

n

∑
i=1

[

Yi −
d

∑
j=1

γ̃
(A)T
j Zi j

]2

+

(
λn

τn
−

a−1

2
dτn

)
∑
j∈Ac

∥∥γ j

∥∥
Wj

.

Note that λn

τn
− a−1

2 dτn > 0 for sufficiently large n by the definition of a. Therefore,

Ln (γ)≥
a−1

2an

n

∑
i=1

[

Yi −
d

∑
j=1

γ̃
(A)T
j Zi j

]2

+λn |A| . (21)

Let Γ1 = {A : A ⊂ {1, . . . ,d} ,A0 ⊂ A, and A -= A0} be the set of overfitting models and

Γ2 = {A : A ⊂ {1, . . . ,d} ,A0 -⊂ A and A -= A0} be the set of underfitting models. For any γ, A(γ)
must fall into one of Γ j, j = 1,2. We now show that

∑
A∈Γ j

P

(
min

γ:A(γ)=A
Ln (γ)−Ln

(
γ̃(o)
)
≤ 0

)
→ 0,

as n → ∞, for j = 1,2.

Let Z(A) = (Z j, j ∈ A) and Hn (A) = Z(A)
[
ZT (A)Z(A)

]−1
Z(A) . Let E =(ε1, . . . ,εn)

T ,

Y =(Y1, . . . ,Yn)
T , m(Xi,Ui) = ∑d

j=1 β j (Ui)Xi j and M =(m(X1,U1) , . . . ,m(Xn,Un))
T . Lemma 6

entails that P

(

min j=1,...,d0

∥∥∥γ̃
(o)
j

∥∥∥
Wj

≥ τn

)

→ 1, as n → ∞. Therefore it follows from (21) that, with

probability approaching to one,

2n
{

Ln (γ)−Ln

(
γ̃(o)
)
−λn (|A|−d0)

}

≥ −YT (Hn (A)−Hn (A0))Y−
1

a
YT (In −Hn (A))Y

= −ET (Hn (A)−Hn (A0))E−MT (Hn (A)−Hn (A0))M

−2ET (Hn (A)−Hn (A0))M−
1

a
YT (In −Hn (A))Y

= −ET (Hn (A)−Hn (A0))E+ In1 + In2 + In3.
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Let r(A) and r(A0) be the ranks of Hn (A) and Hn (A0) respectively, and In = In1+In2+In3. Also note

that if Tm ∼ χ2
m, then the Cramer-Chernoff bound gives that P(Tm − m > km) ≤ exp{

−m
2 (k− log(1+ k))

}
for some constant k > 0. Then one has,

P
{

Ln (γ)−Ln

(
γ̃(o)
)
< 0
}

= P
{

ET (Hn (A)−Hn (A0))E >In +2nλn (|A|−d0)
}

= P
{

χ2
r(A)−r(A0)

> In +2nλn (|A|−d0)
}

≤ exp

{
−

r(A)− r (A0)

2

[
In +2nλn (|A|−d0)

r(A)− r (A0)
−1− log

In +2nλn (|A|−d0)

r(A)− r (A0)

]}

≤ exp

{
−

r(A)− r (A0)

2

[
In +2nλn (|A|−d0)

r(A)− r (A0)
−1

]
1+ c

2

}
(22)

for some 0 < c < 1. To bound (22), we consider the following two cases. Case 1 (overfitting):

A = A(γ) ∈ Γ1. Let k = |A|−d0. By the spline approximation theorem (de Boor, 2001), there exist

spline functions s j ∈ϕ j and constant c such that max1≤ j≤d0

∥∥β j − s j

∥∥
∞
≤ cN

−(p+1)
n . Let m∗ (X,U) =

d0

∑
j=1

s j (U)Xj, and M∗ = (m∗ (X1,U1) , . . . ,m∗ (Xn,Un))
T . Then by the definition of projection

1

n
MT (In −Hn (A0))M ≤ ‖m−m∗‖2

n ≤ cd0N
−2(p+1)
n .

Similarly, one can show 1
n MT (In −Hn (A))M ≤c |A|N

−2(p+1)
n . Therefore, by condition (C8)

In1 = MT (In −Hn (A))M−MT (In −Hn (A0))M ≤ ckN
−2(p+1)
n n = op (k log(dNn)Nn) .

Furthermore, the Cauchy-Schwartz inequality gives that,

|In2| ≤ 2

√
ET (Hn (A)−Hn (A0))E

√
MT (Hn (A)−Hn (A0))M

= Op

(
k
√

log(dNn)NnnN
−(p+1)
n

)
= op (k log(dNn)Nn) .

Finally In3 =− 1
a YT (In −Hn (A))Y =op (k log(dNn)Nn) , since a → ∞ as n → ∞ by condition (C8).

Therefore, In = In1 + In2 + In3 = op (k log(dNn)Nn) . As a result, (22) gives that,

∑
A(γ)∈Γ1

P

(
min

γ
Ln (γ)−Ln

(
γ̃(o)
)
≤ 0

)

≤
d−d0

∑
k=1

(
d −d0

k

)
exp

{
−

r(A)− r (A0)

2

[
In +2nλnk

r(A)− r (A0)
−1

]
1+ c

2

}

≤
d−d0

∑
k=1

dk exp

{
−

1+ c

4
[In +2nλnk− (r(A)− r (A0))]

}

=
d−d0

∑
k=1

exp

{
−

1+ c

4
[In +2nλnk− (r(A)− r (A0))]+ k logd

}
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in which 2nλnk is the dominated term inside of the exponential under condition (C8). Therefore,

∑
A(γ)∈Γ1

P

(
min

γ
Ln (γ)−Ln

(
γ̃(o)
)
≤ 0

)

≤
d−d0

∑
k=1

exp

{
−

nλnk

2

}
= exp

{
−

nλn

2

} 1− exp
(
− n(d−d0)λn

2

)

1− exp
(
− nλn

2

) → 0 (23)

as n → ∞, by condition (C8).

Case 2 (underfitting): A = A(γ) ∈ Γ2. Note that,

In1 = MT (In −Hn (A))M−MT (In −Hn (A0))M =I
(1)
n1 − I

(2)
n1 ,

in which

I
(1)
n1 = MT (In −Hn (A))M ≥∆n (A) .

Therefore for any γ with A0 -⊂ A and |A|≤ αd0 where α > 1 is a constant as given in condition (C9),

the empirically identifiable condition entails that, (log(Nnd)Nnd)−1 I
(1)
n1 → ∞,as n → ∞. On the

other hand, similar arguments for Case 1 give that I
(2)
n1 = Op

(
d0N

−2(p+1)
n n

)
= op (log(Nnd)Nnd) ,

and In2 + In3 = Op (log(Nnd)Nnd). Therefore I
(1)
n1 is the dominated term in In. As a result, together

with (22), one has

P
{

Ln (γ)−Ln

(
γ̃(o)
)
< 0
}
≤exp

{

−
1+ c

4

[
I
(1)
n1

2
+2nλn (|A|−d0)− (r(A)− r (A0))

]}

.

Furthermore, note that for n large enough,

2nλn (|A|−d0)− (r(A)− r (A0)) ≥ (2nλn −Nn − p−1)(|A|−d0)

≥ nλn (|A|−d0)≥−nλnd0 = o(log(Nnd)Nnd)

by assumption (C8). Therefore I
(1)
n1 is the dominated term inside of the exponential. Thus, when n

is large enough, one has,

P
{

Ln (γ)−Ln

(
γ̃(o)
)
< 0
}
≤exp

{

−
I
(1)
n1

8

}

≤exp

{
−

∆n (A)

8

}
. (24)

For any γ with A0 -⊂ A and |A| > αd0, we show that, In = L1 (A)+L2 (A)+L3 (A), where L1 (A) =
− 1

a (E−(a−1)(In −Hn (A))M)T (In −Hn (A))(E−(a−1)(In −Hn (A))M) ,
L2 (A) = (a−1)MT (In −Hn (A))M, and

L3 (A) =−MT (In −Hn (A0))M−2ET (In −Hn (A0))M.

Here, −aL1 (A)/σ2 follows a noncentral χ2 distribution with the degree of freedom n−min(r (A) ,n)
and noncentral parameter (a−1)MT (In −Hn (A))M/σ2. Furthermore, as in Case 1, one can show
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that L3 (A) = op (log(dNn)Nnd0) .Therefore L2 (A) is the dominated term in In, by noting that a → ∞
by assumption (C8). Thus, for n sufficiently large,

P
{

Ln (γ)−Ln

(
γ̃(o)
)
< 0
}

≤ exp

{
−

1+ c

4
[In +2nλn (|A|−d0)− (r(A)− r (A0))]

}

≤ exp

{
−

1+ c

4
[2nλn (|A|−d0)− (r(A)− r (A0))]

}
. (25)

Therefore, (24) and (25) give that,

∑
A(γ)∈Γ2

P

(
min

γ
Ln (γ)−Ln

(
γ̃(o)
)
≤ 0

)

≤
[αd0]

∑
i=1

d0−1

∑
j=0

(
d0

j

)(
d −d0

i− j

)
exp

{
−

min∆n (A)

8

}

+
d

∑
i=[αd0]+1

d0−1

∑
j=0

(
d0

j

)(
d −d0

i− j

)
exp

{
−

1+ c

4
[2nλn (i−d0)− (r(A)− r (A0))]

}

= II1 + II2,

where, by noting that
(

a
b

)
≤ ab for any two integers a,b > 0,

II1 ≤
[αd0]

∑
i=1

d0−1

∑
j=0

d
j
0 (d −d0)

i− j exp

(
−

min∆n (A)

8

)

≤ (Nnd)−Nnd/8 d
[αd0]
0 (d −d0)

[αd0] [αd0]d0 → 0,

as n → ∞, since d0 is fixed and Nn → ∞. Furthermore,

II2 ≤
d

∑
i=[αd0]+1

d0−1

∑
j=0

(
d0

j

)(
d −d0

i− j

)
exp

{
−

1+ c

4
[2nλn (i−d0)− (r(A)− r (A0))]

}

≤
d

∑
i=[αd0]+1

d0−1

∑
j=0

d
j
0 (d −d0)

i− j exp

{
−

nλn (i−d0)

4

}

≤
d

∑
i=[αd0]+1

d0 exp

{
−

nλn (i−d0)

4
+ i log(d)

}
→ 0,

as n → ∞, by assumption (C8). Therefore, as n → ∞,

∑
A∈Γ2

P

(
min

γ:A(γ)=A
Ln (γ)−Ln

(
γ̃(o)
)
≤ 0

)
→ 0. (26)

Note that for the global minima γ̂ of (4), one has

P
(

γ̂ -= γ̃(o)
)
≤

2

∑
j=1

∑
A∈Γ j

P

(
min

γ:A(γ)=A
Ln (γ)−Ln

(
γ̃(o)
)
≤ 0

)
.

Therefore, Theorem 2 follows from (23) and (26).
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Appendix F. Proof of Theorem 3

Theorem 3 follows immediately from Lemma 6 and Theorem 2.
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Abstract

Recently, Yuan et al. (2010) conducted a comprehensive comparison on software for L1-regularized
classification. They concluded that a carefully designed coordinate descent implementation CDN is
the fastest among state-of-the-art solvers. In this paper, we point out that CDN is less competitive
on loss functions that are expensive to compute. In particular, CDN for logistic regression is much
slower than CDN for SVM because the logistic loss involves expensive exp/log operations.

In optimization, Newton methods are known to have fewer iterations although each iteration
costs more. Because solving the Newton sub-problem is independent of the loss calculation, this
type of methods may surpass CDN under some circumstances. In L1-regularized classification,
GLMNET by Friedman et al. is already a Newton-type method, but experiments in Yuan et al.
(2010) indicated that the existing GLMNET implementation may face difficulties for some large-
scale problems. In this paper, we propose an improved GLMNET to address some theoretical and
implementation issues. In particular, as a Newton-type method, GLMNET achieves fast local con-
vergence, but may fail to quickly obtain a useful solution. By a careful design to adjust the effort for
each iteration, our method is efficient for both loosely or strictly solving the optimization problem.
Experiments demonstrate that our improved GLMNET is more efficient than CDN for L1-regularized
logistic regression.

Keywords: L1 regularization, linear classification, optimization methods, logistic regression,
support vector machines

1. Introduction

Logistic regression and support vector machines (SVM) are popular classification methods in ma-

chine learning. Recently, L1-regularized logistic regression and SVM are widely used because they

can generate a sparse model. Given a set of instance-label pairs (xi,yi), i = 1, . . . , l, xi ∈ Rn, yi ∈
{−1,+1}, an L1-regularized classifier solves the following unconstrained optimization problem:

min
w

f (w), (1)

where

f (w)≡ ‖w‖1 +L(w),

c©2012 Guo-Xun Yuan, Chia-Hua Ho and Chih-Jen Lin.
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‖ ·‖1 denotes the 1-norm, and L(w) indicates training losses

L(w)≡C
l

∑
i=1

ξ(w;xi,yi). (2)

For logistic regression and L2-loss SVM, we have the following loss functions.

ξlog(w;x,y) = log(1+ e−ywT x) and

ξsvm(w;x,y) = max(0,1− ywT x)2.
(3)

The regularization term ‖w‖1 is used to avoid overfitting the training data. The user-defined param-

eter C > 0 is used to balance regularization and loss terms. Different from the 2-norm regularization,

the 1-norm regularization gives a sparse solution of (1).

It is difficult to solve (1) because ‖w‖1 is not differentiable. Many optimization approaches

have been proposed and an earlier comparison is by Schmidt et al. (2009). Recently, Yuan et al.

(2010) made a comprehensive comparison among state-of-the-art algorithms and software for L1-

regularized logistic regression and SVM. For L1-regularized logistic regression, they compared

CDN (Yuan et al., 2010), BBR (Genkin et al., 2007), SCD (Shalev-Shwartz and Tewari, 2009), CGD

(Tseng and Yun, 2009), IPM (Koh et al., 2007), BMRM (Teo et al., 2010), OWL-QN (Andrew and

Gao, 2007). Lassplore (Liu et al., 2009), TRON (Lin and Moré, 1999), and GLMNET (Friedman

et al., 2010). Other existing approaches include, for example, Shevade and Keerthi (2003), Lee

et al. (2006) and Shi et al. (2010). Yuan et al. (2010) conclude that carefully designed coordinate

descent (CD) methods perform better than others for large sparse data (e.g., document data). As a

result, their CD method (called CDN) was included in a popular package LIBLINEAR as the solver

of L1-regularized logistic regression.

However, we point out in Section 2 that CDN becomes inefficient if the loss function is expensive

to compute. An example is L1-regularized logistic regression, where exp/log operations are more

expensive than other basic operations. We investigate this problem in detail to show that CDN suffers

from frequent loss-function computation.

In Section 3, we show that for expensive loss functions, Newton-type methods are more suit-

able. A Newton method needs not compute the loss function when finding the Newton direction,

which is the most time consuming part. Based on this point, we attempt to obtain an appropriate

Newton-type method for L1-regularized logistic regression. We introduce an existing Newton-type

algorithm GLMNET (Friedman et al., 2010). In Yuan et al.’s comparison, GLMNET, although in-

ferior to CDN, performs reasonably well. However, GLMNET failed to train some large-scale data

used in their experiments. In Sections 4 and 5, we improve GLMNET in theoretical and practical

aspects, respectively. We call the improved method newGLMNET. Based on the modification in

Section 4, we establish the asymptotic convergence of newGLMNET. By a careful design in Section

5 to adjust the effort for each iteration, newGLMNET is efficient for both loosely and strictly solving

the optimization problem. Note that our discussion in Sections 2–4 is generic to all differentiable

loss functions, although the focus is on logistic regression.

Experiments in Section 6 show that newGLMNET is more efficient than CDN, which was consid-

ered the state of the art for L1-regularized logistic regression. In particular, newGLMNET is much

faster for dense problems. While logistic regression is an example of problems with expensive

loss functions, to check the situation of cheap loss functions, in Section 7, we extend newGLM-

NET to solve L2-loss SVM. Experiments show that, contrary to logistic regression, CDN is slightly
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better. Therefore, our investigation in this work fully demonstrate that expensive loss functions

need a different design of training algorithms from that of cheap loss functions. Section 8 con-

cludes this work. A supplementary file including additional analysis and experiments is available at

http://www.csie.ntu.edu.tw/˜cjlin/papers/l1_glmnet/supplement.pdf.

Because the proposed newGLMNET is faster for logistic regression, we replace the CDN solver

in the package LIBLINEAR with newGLMNET after version 1.8. This paper is an extension of an

earlier conference paper (Yuan et al., 2011). In addition to a thorough reorganization of the main

results, more analysis and theoretical results are included.

2. Coordinate Descent (CD) Method and Its Weakness

CD is a commonly-used optimization approach by iteratively solving one-variable sub-problems.

For L1-regularized classification, past works (e.g., Genkin et al., 2007; Yuan et al., 2010) have

shown that CD methods can quickly obtain a useful model. In this section, we first discuss a specific

CD method called CDN (Yuan et al., 2010) and follow by showing its weakness.

2.1 CDN

At the kth iteration, a CD method cyclically selects a dimension j ∈ {1,2, . . . ,n} and solves the

following one-variable sub-problem.

min
d

f (wk, j +de j)− f (wk, j), (4)

where

f (wk, j +de j)− f (wk, j) = ‖wk, j +de j‖1−‖w
k, j‖1 +L(wk, j +de j)−L(wk, j).

In (4), we define

wk, j ≡ [wk+1
1 , . . . ,wk+1

j−1,w
k
j, . . . ,w

k
n]

T (5)

and the indicator vector

e j ≡ [0, . . . ,0
︸ ︷︷ ︸

j−1

,1,0, . . . ,0]T .

Let wk = wk,1 = wk−1,n+1 at the beginning of each iteration. If d is an optimal solution of (4), then

wk, j is updated to wk, j+1 by

w
k, j+1
t =

{

w
k, j
t +d if t = j,

w
k, j
t otherwise.

For logistic regression, the one-variable sub-problem (4) does not have a closed-form solution, so

Yuan et al. (2010) approximately solve it using the second-order approximation of L(wk, j−de j)−
L(wk, j).

min
d

∇ jL(w
k, j)d +

1

2
∇2

j jL(w
k, j)d2 + |wk

j +d|− |wk
j|. (6)

For logistic regression,

∇L(w) =C
l

∑
i=1

(τ(yiw
T xi)−1)yixi and ∇2L(w) =CXT DX , (7)

2001



YUAN, HO AND LIN

Algorithm 1 CDN framework in Yuan et al. (2010). Some implementation details are omitted.

1. Given w1.

2. For k = 1,2,3, . . . // iterations

• For j = 1,2,3, . . . ,n // n CD steps

– Compute the optimum d of sub-problem (6) by (9).

– Find the step size λ̄ by (10).

– wk, j+1← wk, j + λ̄de j.

where τ(s) is the derivative of the logistic loss function log(1+ es):

τ(s) =
1

1+ e−s
,

D ∈ Rl×l is a diagonal matrix with

Dii = τ(yiw
T xi)

(

1− τ(yiw
T xi)

)

, (8)

and

X ≡






xT
1
...

xT
l




 ∈ Rl×n.

It is well known that (6) has a simple closed-form solution

d =













−
∇ jL(wk, j)+1

∇2
j jL(w

k, j)
if ∇ jL(wk, j)+1≤ ∇2

j jL(w
k, j)wk, j

j ,

−
∇ jL(wk, j)−1

∇2
j jL(w

k, j)
if ∇ jL(wk, j)−1≥ ∇2

j jL(w
k, j)wk, j

j ,

−w
k, j
j otherwise.

(9)

Because (9) considers a Newton direction, Yuan et al. (2010) refer to this setting as CDN (CD

method using one-dimensional Newton directions). For convergence, Yuan et al. follow Tseng and

Yun (2009) to apply a line search procedure. The largest step size λ ∈ {βi | i = 0,1, . . .} is found

such that λd satisfies the following sufficient decrease condition.

f (wk, j +λde j)− f (wk, j)≤ σλ
(

∇ jL(w
k, j)d + |wk

j +d|− |wk
j|
)

, (10)

where 0 < β < 1 and 0 < σ < 1 are pre-specified parameters.

The basic structure of CDN is in Algorithm 1. To make CDN more efficient, Yuan et al. have

considered some implementation tricks, but details are omitted here.

We discuss the computational complexity of CDN. While solving (6) by (9) takes a constant

number of operations, calculating ∇ jL(wk, j) and ∇2
j jL(w

k, j) for constructing the sub-problem (6)

is expensive. From (7), we need O(nl) operations for obtaining wT xi,∀i. A common trick to make

CD methods viable for classification problems is to store and maintain wT xi,∀i. Yuan et al. (2010)

store ewT xi instead and update the values by

ewT xi ← ewT xi · eλ̄dxi j ,∀i, (11)
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Data set exp/log Total

epsilon 64.25 (73.0%) 88.18

webspam 72.89 (66.6%) 109.39

Table 1: Timing analysis of the first CD cycle of CDN. Time is in seconds.

where λ̄ is the step size decided by the line search procedure and d is the optimal solution of (6). If

ewT xi ,∀i are available, the evaluation of ∇ jL(wk, j) and ∇2
j jL(w

k, j) in (6) and f (wk, j +λde j) in the

sufficient decrease condition (10) takes O(l) operations. Therefore, with n CD steps in one iteration,

the complexity of each iteration is:

n · (1+ # steps of line search) ·O(l). (12)

For sparse data, in (11), only ewT xi with xi j += 0 needs to be updated. Then, n ·O(l) in Equation (12)

can be reduced to O(nnz), where nnz is the total number of non-zero elements in X (i.e., training

data). In Algorithm 1, one CD iteration contains n CD steps to update w1, . . . ,wn as a cycle. This

concept of CD cycles will be frequently used in our subsequent analysis and experiments.

2.2 Weakness of CDN

Although CDN is reported as the best method in the comparison by Yuan et al. (2010), for the same

data set, CDN’s training time for logistic regression is more than L2-loss SVM. Motivated from this

observation, we point out that CDN suffers from expensive exp/log operations of logistic regression.

In Table 1, we conduct an experiment on two data sets, epsilon and webspam.1 We check the

proportion of time for exp/log operations in the first CD cycle of CDN. The results clearly show that

exp/log operations dominate the training time. We present results of more data sets in Section 6 and

have similar observations.

Exp/log operations occur in two places (11) and (10), each of which costs O(l). From (12), we

can see that the complexity of exp/log operations is the same as that of all operations.2 Because each

exp/log is much more expensive than a basic operation like multiplication, a significant portion of

running time is spent on exp/log operations.

3. GLMNET: A Method that Less Frequently Computes the Loss Function

Based on the observation in Section 2, to reduce the number of exp/log operations, we should

consider methods which less frequently compute the loss function. In this section, we identify such

methods and present one of them named GLMNET.

3.1 Algorithms that may Have Less Loss Computation

For logistic regression, exp/log operations occur in computing the function, gradient, and Hessian

of the loss. To avoid frequent exp/log operations, we hope an optimization method could conduct

enough basic (e.g., multiplication or division) operations between two function, gradient, or Hessian

1. Details of the data sets are in Section 6.1.

2. For binary-valued data, only eλ̄dxi j becomes eλ̄d in (11), so O(nl) exp/log operations can be reduced to O(n). This

has been pointed out in Huang et al. (2010).
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evaluations. However, these basic operations should also be useful for minimizing the optimization

problem. We find that methods involving second-order approximation of f (w) may fulfill the re-

quirements. At the kth iteration, consider the following sub-problem to find a direction d:

min
d

qk(d), (13)

where

qk(d)≡ ∇L(wk)T d+
1

2
dT Hkd+‖wk +d‖1−‖w

k‖1,

and Hk is either ∇2L(wk) or its approximation. Then, w is updated by

wk+1← wk +d. (14)

Between two iterations, Hk and ∇ f (wk) are constants, so (13) is a quadratic program without in-

volving exp/log operations. Further, (13) is not a trivial sub-problem to solve.

If Hk = ∇2L(wk), we have a Newton-type method that usually enjoys a small number of itera-

tions. At each iteration, obtaining ∇ f (wk) and ∇2 f (wk) via (8) requires at least O(nl) operations

because of calculating ∑l
i=1(τ(yiw

T x)−1)yixi. However, the number of exp/log operations is only

O(l). With the cost of solving the sub-problem (13), the total cost of one iteration is at least O(nl),
but only a small portion, O(l), is for exp/log computation. This situation is much better than CDN,

which requires O(nl) exp/log operations in O(nl) overall operations. An existing Newton-type

method for L1-regularized classification is GLMNET by Friedman et al. (2010). We will discuss its

details in Section 3.2.3

Note that CDN also applies second-order approximation for solving the one-variable sub-problem

(4). However, once a variable is changed in CDN, the gradient and Hessian become different. In

contrast, for GLMNET, gradient and Hessian remain the same while (13) is being solved. The reason

is that GLMNET applies second-order approximation on the whole objective function f (w). Such

differences explain why GLMNET needs less exp/log computation than CDN.

If we use an approximate Hessian as Hk, the analysis of O(l) exp/log operations versus at

least O(nl) total operations per iteration still holds.4 However, because minimizing qk(d) in (13)

becomes easier, exp/log operations may play a more important role in the whole procedure. In the

extreme situation, Hk is a constant diagonal matrix, so we have a gradient descent method. Existing

approaches of using such Hk include ISTA (Daubechies et al., 2004), FISTA (Beck and Teboulle,

2009), and others.

For L2-regularized logistic regression, Chang et al. (2008) have pointed out that Newton meth-

ods less frequently conduct exp/log operations than CD methods, but they did not conduct detailed

analysis and comparisons.

3.2 GLMNET

We pointed out in Section 3.1 that GLMNET is an existing Newton-type method for L1-regularized

classification. At each iteration, it solves the sub-problem (13) with Hk = ∇2L(wk) and updates

3. The GLMNET code by Friedman et al. (2010) supports using an approximate Hessian matrix, but here we consider

only the case of using the exact Hessian matrix.

4. We assume that obtaining an approximation of ∇2 f (wk) requires no more than O(l) exp/log operations.
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Algorithm 2 Basic framework of GLMNET (Friedman et al., 2010) for L1-regularized logistic re-

gression.

1. Given w1.

2. For k = 1,2,3, . . .
• Compute ∇L(wk) and ∇2L(wk) by (7).

• Obtain dk by solving sub-problem (13) by CD with certain stopping condition.

• wk+1 = wk +dk.

w by (14). Although many optimization methods can be applied to solve the sub-problem (13),

Friedman et al. (2010) consider a cyclic coordinate descent method similar to CDN in Section 2.1.

Indeed, it is simpler than CDN because (13) is only a quadratic problem. We use dp to denote the

CD iterates (cycles) for solving (13). Each CD cycle is now considered as an inner iteration of

GLMNET. Sequentially, dp’s values are updated by minimizing the following one-variable function.

qk(d
p, j + ze j)−qk(d

p, j)

= |wk
j +d

p
j + z|− |wk

j +d
p
j |+∇ jq̄k(d

p, j)z+
1

2
∇2

j jq̄k(d
p, j)z2, (15)

where the definition of dp, j is similar to wk, j of CDN in (5)

dp, j ≡ [dp−1
1 ,dp−1

2 , . . . ,dp−1
j−1 ,d

p
j , . . . ,d

p
n ]

T ,

and dp = dp,1 = dp−1,n+1. Further,

q̄k(d)≡ ∇L(wk)T d+
1

2
(d)T ∇2L(wk)d

represents the smooth terms of qk(d) and plays a similar role to L(w) for (1). We have

∇ jq̄k(d
p, j) = ∇ jL(w

k)+(∇2L(wk)dp, j) j and

∇2
j jq̄k(d

p, j) = ∇2
j jL(w

k).
(16)

Equation (15) is in the same form as (6), so it can be easily solved by (9). Because the one-variable

function is exactly minimized, line search is not required in the CD procedure. The basic structure

of GLMNET is in Algorithm 2.

Because an iterative procedure (CD method) is used to solve the sub-problem (13), GLMNET

contains two levels of iterations. A suitable stopping condition for the inner level is very important.

In Section 5.2, we will discuss GLMNET’s stopping conditions and make some improvements.

We analyze GLMNET’s complexity to confirm that it less frequently conducts exp/log opera-

tions. At each CD step, most operations are spent on calculating ∇ jq̄k(dp, j) and ∇2
j jq̄k(dp, j) in

(16). Note that ∇2
j jq̄k(dp, j) = ∇2

j jL(w
k),∀ j can be pre-calculated before the CD procedure. For

∇ jq̄k(dp, j), the first term ∇ jL(wk) can also be pre-calculated. With (7), the second term is

(∇2L(wk)dp, j) j =C
n

∑
t=1

l

∑
i=1

XT
ji DiiXitd

p, j
t =C

l

∑
i=1

XT
ji Dii(Xdp, j)i.
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One cycle of n CD steps CDN GLMNET

Total # of operations dense data O(nl) O(nl)
sparse data O(nnz) O(nnz)

# exp/log operations dense data O(nl) ≤ O(l)
sparse data O(nnz) ≤ O(l)

Table 2: A comparison between CDN and GLMNET on the number of exp/log operations in one CD

cycle. We assume that in (12), the number of line search steps of CDN is small (e.g., one

or two). Note that in GLMNET, exp/log operations are needed in the beginning/end of an

outer iteration. That is, they are conducted once every several CD cycles. We make each

CD cycle to share the cost in this table even though a CD cycle in GLMNET involves no

exp/log operations.

If Xdp, j (i.e., xT
i dp, j,∀i) is maintained and updated by

(Xdp, j+1)i← (Xdp, j)i +Xi jz, ∀i, (17)

then calculating ∇ jq̄k(d) costs O(l) operations.5 Therefore, the CD method for (13) requires

O(nl) operations for one inner iteration (cycle) of n CD steps. (18)

The complexity of GLMNET is thus

#outer iters× (O(nl)+#inner iters×O(nl)),

where the first O(nl) is for obtaining items such as ∇ f (wk) before solving (13). We then compare

the number of exp/log operations in CDN and GLMNET. Because they both use CD, we check in

Table 2 that relative to the total number of operations of one CD cycle, how many exp/log operations

are needed. Clearly, CDN’s O(nl) exp/log operations are much more than GLMNET’s O(l). The

difference becomes smaller for sparse data because CDN’s O(nl) is reduced by O(nnz). From this

analysis, we expect that CDN suffers from many slow exp/log operations if data are dense and n is

not small. This result will be clearly observed in Section 6.

Although our analysis indicates that GLMNET is superior to CDN in terms of the number of

exp/log operations, experiments in Yuan et al. (2010) show that overall GLMNET is slower. The

final local convergence of GLMNET is fast, but it often spends too much time in early iterations.

Therefore, contrary to CDN, GLMNET does not quickly obtain a useful model. Further, GLMNET

failed to solve two large problems in the experiment of Yuan et al. (2010) and its theoretical conver-

gence is not guaranteed. In the next two sections, we will propose an improved GLMNET to perform

faster than CDN for logistic regression.

4. newGLMNET: An Improved GLMNET

As mentioned in Section 3.2, GLMNET lacks theoretical convergence properties. In this section,

we modify GLMNET to be a special case of a class of methods by Tseng and Yun (2009), so the

asymptotic convergence immediately follows. We refer to the improved algorithm as newGLMNET.

5. This is like how ewT xi , ∀i are handled in Section 2.1.
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The framework by Tseng and Yun (2009) for L1-regularized problems is a generalized coordi-

nate descent method. At each iteration, it selects some variables for update based on certain criteria.

An extreme situation is to update one variable at a time, so CDN in Section 2 is a special case. The

other extreme is to update all variables at an iteration. In this situation, Tseng and Yun’s method

considers a quadratic approximation the same as (13). However, for the convergence, they required

Hk in (13) to be positive definite. From (7), if X’s columns are independent, then ∇2L(wk) is posi-

tive definite. To handle the situation that ∇2L(wk) is only positive semi-definite, we slightly enlarge

the diagonal elements by defining

Hk ≡ ∇2L(wk)+νI , (19)

where ν > 0 is a small value and I ∈ Rn×n is an identity matrix.

In addition, for convergence Tseng and Yun (2009) require that line search is conducted. After

obtaining an optimal solution d of (13), the largest step size λ ∈ {βi | i = 0,1, . . .} is found such that

λd satisfies the following sufficient decrease condition.

f (wk +λd)− f (wk) (20)

≤ σλ
(

∇L(wk)T d+ γdT Hkd+‖wk +d‖1−‖w
k‖1

)

,

where 0 < β < 1, 0 < σ < 1, and 0 ≤ γ < 1. GLMNET does not conduct line search, so function

values of its iterations may not be decreasing. In newGLMNET we use (20) with γ = 0.

If the sub-problem (13) is exactly solved, we prove that because all conditions needed in Tseng

and Yun (2009, Theorems 1(e) and 3) are satisfied, line search is guaranteed to stop after a finite

number of step sizes. Further, for asymptotic convergence, we have that any limit point of {wk}
generated by newGLMNET is an optimal solution of (1); see the proof in Appendix A. For local

convergence rate, we prove in Appendix B that if the loss function L(w) is strictly convex,6 then the

objective function value converges at least linearly.

If we know that L(w) is strictly convex beforehand, we can directly use Hk = ∇2L(wk) without

adding νI . The same explanation in Appendix A implies both the finite termination of line search

and the asymptotic convergence. In this situation, we can obtain a better local quadratic conver-

gence. See details in the supplementary document, in which we modify the proof in Hsieh et al.

(2011) for L1-regularized Gaussian Markov random field.

4.1 Cost of Line Search

GLMNET does not conduct line search because of the concern on its cost. Interestingly, by the

following analysis, we show that line search in newGLMNET introduces very little extra cost. For

each step size λ tried in line search, we must calculate f (wk+λd). A direct implementation requires

O(nl) operations to obtain (wk+λd)T xi, ∀i= 1, . . . , l. If e(w
k)T xi ,∀i are available, we need only O(l)

by using Xd maintained by (17).

e(w
k+λd)T xi = e(w

k)T xi · eλ(Xd)i . (21)

Thus, the cost for finding f (wk +λd) is reduced to O(n+ l), where O(n) comes from calculating

‖wk +λd‖1. After the last λ is obtained in line search, we have e(w
k+1)T xi = e(w

k+λd)T xi ,∀i for the

next iteration. If only a small number of λ’s are tried, then the O(n+ l) cost is negligible because

the whole iteration costs at least O(nl) from earlier discussion.

6. For situations such as n > l, L(wk) is not strictly convex.
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Discussion in Section 3 indicated that in every O(nl) operations, GLMNET needs a much smaller

amount of exp/log operations than CDN. We will show that a similar situation occurs for the line-

search operations of newGLMNET and CDN. Note that line search is used in different places of

the two methods. For CDN, at each CD step for updating one variable, line search is needed. In

contrast, in newGLMNET, we conduct line search only in the end of an outer iteration. Following

the discussion in Section 2.1 and this section, for each step size λ tried in line search of CDN and

newGLMNET, the cost is O(l) and O(n+ l), respectively. If we distribute the line search cost of

newGLMNET to its inner CD cycles, we have that, for the same λ in one CD cycle,7 CDN costs

O(nl) and newGLMNET costs no more than O(n+ l). This difference is similar to that of exp/log

operations discussed in Section 3.

Because of CDN’s high cost on line search, Yuan et al. (2010) develop the following trick. By

deriving an upper-bound function δ(λ) such that

f (wk, j +λde j)− f (wk, j)≤ δ(λ), ∀λ≥ 0, (22)

they check first if

δ(λ)≤ σλ(∇ jL(w
k, j)d + |wk

j +d|− |wk
j|). (23)

This trick, used for each step size λ, is particularly useful if the above inequality holds at λ = 1. If

δ(λ) can be calculated in O(1), the O(l) cost for line search at a CD step is significantly reduced to

O(1). More details about this upper-bound function can be found in Fan et al. (2008, Appendix G).

In Section 6.2, we will conduct experiments to investigate the line search cost of CDN and

newGLMNET.

5. Implementation Issues of newGLMNET

Besides theoretical issues discussed in Section 4, in this section, we discuss some implementation

techniques to make newGLMNET an efficient method in practice.

5.1 Random Permutation of One-variable Sub-problems

To solve the sub-problem (13), a conventional CD method sequentially updates variables d1,d2, . . . ,
dn. Many past works (e.g., Chang et al., 2008; Hsieh et al., 2008; Yuan et al., 2010) have experi-

mentally indicated that using a random order leads to faster convergence. We adapt this strategy in

the CD procedure of newGLMNET to solve sub-problem (13).

5.2 An Adaptive Inner Stopping Condition

GLMNET contains two levels of iterations. An “outer iteration” corresponds to the process from

wk to wk+1, while the “inner” level consists of CD iterations for solving (13). For an algorithm

involving two levels of iterations, the stopping condition of the inner iterations must be carefully

designed. A strict inner stopping condition may cause the algorithm to take a prohibitive amount of

time at the first outer iteration. Alternatively, a loose inner condition leads to an inaccurate solution

of (13) and possibly lengthy outer iterations. GLMNET terminates the CD procedure by checking if

d is still significantly changed. That is, in the pth CD cycle to update d
p
1 , . . . ,d

p
n , the corresponding

7. For simplicity, we assume that this λ is tried in all n CD steps of the cycle.
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changes z1, . . . ,zn satisfy

max
j
(∇2

j jL(w
k) · z2

j)≤ εin, (24)

where εin is the inner stopping tolerance. For the outer stopping condition, similarly, GLMNET

checks if w is still significantly changed. Let wk+1 = wk + dk. GLMNET stops if the following

condition holds:

max
j
(∇2

j jL(w
k+1) · (dk

j )
2)≤ εout, (25)

where εout is the outer stopping tolerance. GLMNET uses the same value for inner and outer tol-

erances; that is, εin = εout. We find that if users specify a small εout, a huge amount of time may

be needed for the first outer iteration. This observation indicates that the inner tolerance must be

carefully decided.

For newGLMNET, we propose an adaptive inner stopping condition. The design principle is

that in the early stage, newGLMNET should behave like CDN to quickly obtain a reasonable model,

while in the final stage, newGLMNET should achieve fast local convergence by using Newton-like

directions. In the pth inner iteration p, we assume that dp,1, . . . ,dp,n are sequentially generated and

from dp, j to dp, j+1, the jth element is updated. We propose the following inner stopping condition.

n

∑
j=1

|∇S
jqk(d

p, j)|≤ εin, (26)

where ∇Sq(d) is the minimum-norm subgradient at d.

∇S
jq(d)≡









∇ jq̄(d)+1 if w j +d j > 0,

∇ jq̄(d)−1 if w j +d j < 0,

sgn(∇ jq̄(d))max(|∇ jq̄(d)|−1,0) if w j +d j = 0.

From standard convex analysis,

∇qS(d) = 0 if and only if d is optimal for (13). (27)

Note that we do not need to calculate the whole ∇Sqk(dp, j). Instead, ∇S
jqk(dp, j) is easily available

via ∇ jq̄k(dp, j) in (16).

If at one outer iteration, the condition (26) holds after only one cycle of n CD steps, then we

reduce εin by

εin← εin/4. (28)

That is, the program automatically adjusts εin if it finds that too few CD steps are conducted for

minimizing qk(d). Therefore, we can choose a large εin in the beginning.

We use an outer stopping condition similar to (26).

n

∑
j=1

|∇S
j f (wk)|≤ εout. (29)

Like (27), ∇S f (w) = 0 is an optimality condition for (1). In (29), we choose 1-norm instead of

∞-norm because 1-norm is not determined by extreme values in ∇S
j f (wk), j = 1, . . . ,n. In (7),

∇ jL(w) can be seen as a function of xi j,∀i. It is expected that |∇S
j f (w)| is relatively large if the jth
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column of X has a larger norm than other columns. If using ∞-norm, the stopping condition may be

dominated by a large |∇S
j f (w)|; therefore, under a given εout, the total number of iterations may be

quite different for two feature-wisely norm-varying X’s. In contrast, the sum of violations should

be less sensitive to the different numeric ranges of X’s columns.

5.3 A Two-level Shrinking Scheme

Shrinking is a common technique to heuristically remove some variables during the optimization

procedure.8 That is, some w’s elements are conjectured to be already optimal, so a smaller opti-

mization problem is solved. GLMNET applies this technique on the sub-problem (13) by selecting a

working set J ⊂ {1, . . . ,n}. Sub-problem (13) becomes

min
d

qk(d) subject to d j = 0, ∀ j /∈ J. (30)

More precisely, at the kth iteration, GLMNET conducts the following loop to sequentially solve some

smaller sub-problems.

While (TRUE)

• Conduct one cycle of n CD steps. Let J include indices of d’s elements that still need to be

changed.

• If (24) holds, then break.

• Use CD to solve a sub-problem with the working set J until (24) holds.

The way to choose J in the above procedure is by checking if z = 0 is optimal for minz qk(d+ze j)−
qk(d).

For newGLMNET, we propose a heuristic shrinking scheme following its two-level structure: the

outer level removes some w’s elements so that a smaller sub-problem (13) similar to (30) is solved;

the inner level is applied to remove elements in d so that (13) becomes an even smaller sub-problem.

For each level, our setting is related to the shrinking implementation of CDN; see Yuan et al. (2010,

Section 4.1.2).

In the beginning of each outer iteration, we remove w j if

wk
j = 0 and −1+

Mout

l
< ∇ jL(w

k)< 1−
Mout

l
, (31)

where

Mout ≡max
(∣
∣∇S

1 f (wk−1)
∣
∣ , . . . ,

∣
∣∇S

n f (wk−1)
∣
∣

)

.

The conditions in (31) come from the optimality condition that an optimal solution w∗ of (1) satisfies

−1 < ∇ jL(w
∗)< 1 implies w∗j = 0.

Therefore, we conjecture that variables satisfying (31) are already optimal. Mout in (31) is used to

adjust the shrinking scheme from a conservative setting in the beginning to an aggressive setting in

the end. Our shrinking implementation differs from GLMNET’s in several aspects. First, by using

∇ f (wk) that is available in the beginning of the kth iteration, we do not conduct a special cycle of n

CD steps in GLMNET for selecting variables. Note that ∇S f (wk) can be easily obtained via ∇L(wk)

8. Shrinking is widely used in solving SVM optimization problems; see, for example, Joachims (1998) and Chang and

Lin (2011).
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Algorithm 3 Overall procedure of newGLMNET

• Given w1, εin, and εout. Choose a small positive number ν. Choose β ∈ (0,1), γ ∈ [0,1), and

σ ∈ (0,1).
• Let Mout← ∞.

• For k = 1,2,3, . . . // outer iterations

1. Let J← {1, . . . ,n}, M← 0, and M̄← 0.

2. For j = 1, . . . ,n
2.1. Calculate Hk

j j, ∇ jL(wk) and ∇S
j f (wk).

2.2. If wk
j = 0 and |∇ jL(wk)|< 1−Mout/l // outer-level shrinking

J← J\{ j}.

Else

M←max(M, |∇S
j f (wk)|) and M̄← M̄+ |∇S

j f (wk)|.
3. If M̄ ≤ εout

return wk.

4. Let Mout←M.

5. Get d and update εin by solving sub-problem (13) by Algorithm 4.

6. Compute λ = max{1,β,β2, . . .} such that λd satisfies (20).

7. wk+1 = wk +λd.

and is used for obtaining Mout of the next iteration.9 Second, (31) shrinks only zero elements and

uses an interval slightly smaller than (−1,1). Thus, newGLMNET is less aggressive than GLMNET

in removing variables.

For the inner shrinking scheme of newGLMNET, assume the previous CD cycle contains points

dp−1,1,. . . , dp−1,|Jp|, where elements in the set Jp = { j1, . . . , j|Jp|} were updated. Because Jp corre-

sponds to the remained variables, at the current cycle, sequentially j ∈ Jp is checked. An element j

is removed if

wk
j +d

p,t
j = 0 and −1+

Min

l
< ∇ jq̄k(d

p,t)< 1−
Min

l
, (32)

where t is the iteration index of the current cycle and

Min ≡max
(∣
∣∇S

j1
qk(d

p−1,1)
∣
∣ , . . . ,

∣
∣
∣∇S

j|Jp|
qk(d

p−1,|Jp|)
∣
∣
∣

)

.

If (32) does not hold, element j remains.10 After the set Jp has been processed, a smaller subset

Jp+1 is obtained and we move to the next CD cycle.11

The overall procedure of newGLMNET with two-level shrinking is shown in Algorithms 3 and

4. For theoretical properties, if the subproblem (13) is exactly solved, for any given outer stopping

tolerance, newGLMNET terminates in finite iterations. Further, any limit point of {wk} is an optimal

solution. More details are in the supplementary document.

5.4 The Overall Procedure of newGLMNET

We use Algorithms 3 to illustrate the overall procedure of newGLMNET. Steps 1–4 are for outer-

level shrinking and the stopping condition. In particular, in Step 2.2, M is used to calculate Mout

9. If k = 1, ∇S f (wk−1) is not available. We set Mout = ∞, so no variables are shrunk at the first outer iteration.

10. Note that in (32), t = 1, . . . , |Jp+1| instead of 1, . . . , |Jp|.
11. Similar to the way to initialize Mout, for the first CD cycle, we set Min = ∞.

2011



YUAN, HO AND LIN

Algorithm 4 Inner iterations of newGLMNET with shrinking

• Given working set J, initial solution d, inner stopping condition εin, and a small positive

number ν from the outer problem.

• Let Min← ∞, T ← J, and d← 0.

• For p = 1,2,3, . . . ,1000 // inner iterations

1. Let m← 0 and m̄← 0.

2. For j ∈ T

– Let ∇2
j jq̄k(d) = Hk

j j. Calculate ∇ jq̄k(d) and ∇S
jqk(d).

– If wk
j +d j = 0 and |∇ jq̄k(d)|< 1−Min/l // inner-level shrinking

T ← T\{ j}.

Else

m←max(m, |∇S
jqk(d)|) and m̄← m̄+ |∇S

jqk(d)|.
d j← d j + argminz qk(d+ze j)−qk(d).

3. If m̄≤ εin

– If T = J // inner stopping

break.

Else // active set reactivation

T ← J and Min← ∞.

Else

– Min← m.

• If p = 1, then εin← εin/4.

in (31) for the outer-level shrinking, while M̄ is for calculating ∑n
j=1 |∇

S
j f (w)| in the outer stopping

condition (29). Step 5 obtains the Newton direction by a CD method, where details are shown in

Algorithm 4. Step 6 then conducts line search.

In Algorithm 4, besides the stopping condition (26), we set 1,000 as the maximal number of CD

cycles. Some ill-conditioned sub-problem (13) may take lengthy inner CD iterations to satisfy (26),

so a maximal number must be set. In the beginning of Algorithm 4, the working set J is obtained

from outer-level shrinking. Subsequently, in the inner CD iterations, J is further shrunk; see the

set T in Algorithm 4. Because each CD cycle goes through only elements in T , the inner stopping

condition (26) is also calculated using T . To ensure that sub-problem (13) with the working set J

has been accurately solved, if (26) holds on T , we reset T to J; see Step 3 of Algorithm 4. That

is, the inner iterations terminate only if the condition (26) holds on J or the maximal number of

iterations is reached. This way of resetting T to J has been used in LIBSVM (Chang and Lin, 2011,

Section 5.1).

In (28), we reduce the inner stopping tolerance εin if the stopping condition (26) holds after one

CD cycle. This is implemented in the last step of Algorithm 4.

6. Experiments on L1-regularized Logistic Regression

We investigate the performance of CDN, GLMNET, and newGLMNET on L1-regularized logistic

regression. All these methods can be easily extended to solve logistic regression with a bias term b:

min
w,b

‖w‖1 +C
l

∑
i=1

log(1+ e−yi(wT xi+b)). (33)
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Data set
#data

#features
#nnz in #nnz per Sparsity

train test training instance C (%)

KDD2010-b 19,264,097 748,401 29,890,095 566,345,888 29 0.5 97.4

rcv1 541,920 135,479 47,236 39,625,144 73 4 76.9

yahoo-japan 140,963 35,240 832,026 18,738,315 133 4 99.0

yahoo-korea 368,444 92,110 3,052,939 125,190,807 340 4 99.1

news20 15,997 3,999 1,355,191 7,281,110 455 64 99.1

epsilon 400,000 100,000 2,000 800,000,000 2,000 0.5 44.9

webspam 280,000 70,000 16,609,143 1,043,724,776 3,727 64 99.9

gisette 6,000 1,000 5,000 29,729,997 4,955 0.25 72.9

Table 3: Data statistics, the parameter C selected after cross validation, and the model spar-

sity (%). Data sets are sorted by the number of nonzero elements per instance in the

training data. We conduct five-fold cross validation on the training set to select C in
{

2k | k =−4,−3, . . . ,6
}

. The model sparsity is the percentage of the number of zeros

in the final model w. #nnz denotes the number of nonzero elements.

Because the GLMNET implementation solves (33) instead of (1), in our comparison, (33) is used.

We do not consider other methods because in Yuan et al. (2010), CDN is shown to be the best for

sparse data.

Programs used in this paper are available at

http://www.csie.ntu.edu.tw/˜cjlin/liblinear/exp.html.

6.1 Data Sets and Experimental Settings

We use eight data sets in our experiments. Five of them (news20, rcv1, yahoo-japan, yahoo-korea,

and webspam) are document data sets, where news20 is a collection of news documents, rcv1 is an

archive of manually categorized news stories from Reuters, yahoo-japan and yahoo-korea are doc-

ument data from Yahoo!, and webspam includes web pages represented in trigram. The other three

data sets come from different learning problems: gisette is a handwriting digit recognition problem

from NIPS 2003 feature selection challenge; epsilon is an artificial data set for Pascal large scale

learning challenge in 2008; KDD2010-b includes student performance prediction data for a tutoring

system and is used for the data mining competition KDD Cup 2010. Each instance in document data

sets is normalized to a unit vector. For non-document data, features of gisette are linearly scaled

to the [−1,1] interval. Features of epsilon are scaled to N(0,1) and each instance is normalized to

a unit vector. Except yahoo-japan and yahoo-korea, all data sets and their detailed information are

publicly available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.

We prepare training and testing sets for each problem. For gisette and KDD2010-b, we use their

original training and test sets. For others, we randomly split data to one fifth for testing and the

remaining for training.

We choose the parameter C in (33) by five-fold cross validation on the training set. All methods

then solve (33) with the best C to obtain the model for prediction. Table 3 shows the statistics and

the best C of all data sets. We can clearly see that two data sets (epsilon and gisette) are very dense,

while others are sparse.

2013



YUAN, HO AND LIN

Next, we describe software information and parameter settings in our experiments.

• CDN: this coordinate descent method is described in Section 2.1. In the line search procedure, we

use σ = 0.01 and β = 0.5. The C/C++ implementation is included in LIBLINEAR (version 1.7),

which is available at http://www.csie.ntu.edu.tw/˜cjlin/liblinear/oldfiles; see the

implementation document (Fan et al., 2008) for more details.

• GLMNET: this method is described in Section 3.2. GLMNET is implemented in Fortran with an R

interface. The source code (version 1.5.3) is available at http://cran.r-project.org/web/

packages/glmnet/. GLMNET uses the regularization parameter λ = 1/(Cl) instead of C. We

ensure that the equivalent settings have been made in our experiments.

• newGLMNET: this improved GLMNET is described in Sections 4 and 5. For the positive definite-

ness of Hk, we set ν = 10−12 in (19). To check the sufficient decrease condition (20), we use

β = 0.5, γ = 0, and σ = 0.01. We choose the initial εin = ‖∇S f (w1)‖1. The C/C++ implementa-

tion is included in LIBLINEAR (version 1.8).

GLMNET offers an option to find a solution path {wC1 , . . . , wC∗} of an increasing parameter

sequence {C1, . . . ,C∗}. It applies a warm start technique so that the optimal solution of the previous

Ci−1 is used as the initial point for the current Ci. The number of outer iterations should be small

because of using a more accurate initial point. GLMNET authors suggest that finding a solution path

may be faster than solving a single optimization problem under a fixed C (Friedman et al., 2010,

Section 2.5). We refer to this approach as GLMNETpath and include it for comparison. By their

default setting, we consider a parameter sequence of length 100 starting from the smallest C1 such

that wC1 = 0. Given our desired parameter C∗, a geometric sequence is generated by a fixed ratio

between successive C values.

We set the initial w1 = 0 for all methods. All experiments are conducted on a 64-bit ma-

chine with Intel Xeon 2.0GHz CPU (E5504), 4MB cache, and 32GB main memory. We use GNU

C/C++/Fortran compilers and the optimization flag is properly set.

6.2 Running Time Comparison

We begin with checking the change of function values along the running time in Figure 1. Given a

stopping tolerance for running a solver, we can obtain a pair of (training time, function value). Using

a decreasing sequence of the stopping tolerances, we obtain several pairs and then draw a curve.12

The x-axis in Figure 1 is the log-scaled training time and the y-axis is the relative difference to the

optimal function value:
f (w)− f ∗

f ∗
,

where w is the solution under the specified tolerance and f ∗ is the optimal function value. Because

f ∗ is not available, we obtain an approximation by running newGLMNET with a small stopping

tolerance

εout = ε ·
min(#pos,#neg)

l
·‖∇S f (w1)‖1, (34)

12. For GLMNET and newGLMNET, the tolerance means the outer tolerance εout in (25). Ranges of εout values used

for GLMNET and newGLMNET differ because their stopping conditions are not the same. Note that for GLMNET,

εout is not directly specified by users; instead, it is the product between a user-specified value and a constant. For

GLMNETpath, under any given εout, a sequence of problems (1) is solved.
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(g) webspam
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Figure 1: L1-regularized logistic regression: relative difference to the optimal function value versus

training time. Both x-axis and y-axis are log-scaled. GLMNET and GLMNETpath failed

to generate some results because of either memory problems or lengthy running time.
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Figure 2: L1-regularized logistic regression: testing accuracy versus training time (log-scaled).
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where ε = 10−8, and #pos and #neg indicate the numbers of positive and negative labels in the

training set, respectively. The horizontal dotted line in Figure 1 indicates the relative function

difference by running CDN using LIBLINEAR’s default stopping tolerance with ε = 0.01 in (34).

The point where a method’s curve passes this horizontal line roughly indicates the time needed to

obtain an accurate enough solution.

From Figure 1, if the optimization problem is loosely solved using a large εout, CDN is faster

than newGLMNET and GLMNET. This result is reasonable because CDN uses a greedy setting to

sequentially update variables. In contrast, in each outer iteration, newGLMNET uses only a fixed Hk.

If using a smaller εout, newGLMNET surpasses CDN and achieves fast local convergence. For dense

data (epsilon and gisette), newGLMNET is always better than CDN. Take epsilon as an example. In

Figure 1(f), to reach the horizontal dotted line, newGLMNET is ten times faster than CDN. This huge

difference is expected following the analysis on the number of exp/log operations in Sections 2 and

3.

From results above the horizontal lines in Figure 1, we see that newGLMNET is faster than

GLMNET in the early stage. Recall that GLMNET sets εin = εout, while newGLMNET uses an adaptive

setting to adjust εin. Because a large εin is considered in the beginning, newGLMNET can compete

with CDN in the early stage by loosely solving (13). We use an example to further illustrate the

importance to properly choose εin. By running GLMNET with the default εout = 10−6 on news20

and rcv1, the training time is 20.10 and 758.82 seconds, respectively. The first outer iteration already

takes 6.99 seconds on news20 and 296.87 on rcv1. A quick fix is to enlarge the initial εin, but the

local convergence in the later stage may be slow. A better inner stopping condition should be

adaptive like ours so that the sub-problem (13) can be solved properly at each outer iteration.

In Figure 1, GLMNET and GLMNETpath failed to generate some results because of either mem-

ory problems or lengthy running time. This indicates that a careful implementation is very important

for large-scale problems. We also observe that GLMNETpath is not faster than GLMNET. Another

drawback of GLMNETpath is that it is hard to quickly obtain an approximate solution. That is,

regardless of εout specified, a sequence of problems (1) is always solved.

We further check the relationship between the testing accuracy and the training time. The com-

parison result, shown in Figure 2, is similar to that in Figure 1.

In summary, because of the proposed adaptive inner stopping condition, newGLMNET takes

both advantages of fast approximation in the early stage like CDN and of fast local convergence in

the final stage like GLMNET.

6.3 Analysis on Line Search

Recall in Section 4 we added a line search procedure in newGLMNET. To check if line search costs

much in newGLMNET, we report the average number of line search steps per outer iteration in Table

4. Clearly, in all cases, λ = 1 satisfies the sufficient decrease condition (20), so conducting line

search to ensure the convergence introduces very little cost. As a comparison, we also, respectively,

show the average numbers of updated variables and line search steps per cycle of CDN in the first

and second columns of the same table. Note that because a shrinking technique is applied to CDN,

the number of updated variables in one cycle is much smaller than the number of features. We see

that the number of line search steps is very close to the number of updated variables in a CD cycle.

Therefore, in most cases, (10) holds when λ = 1. Although line search in both CDN and newGLM-

NET often succeeds at the first step size λ = 1, from Section 4.1, their numbers of operations are
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Data set

CDN newGLMNET

#variables in #λ tried in # δ(λ) successfully #λ tried in an

a CD cycle line search applied in (23) outer iteration

KDD2010-b 630,455 630,588 622,267 1

rcv1 11,396 11,398 449 1

yahoo-japan 8,269 8,270 922 1

yahoo-korea 27,103 27,103 1,353 1

news20 6,395 6,396 2,413 1

epsilon 1,130 1,130 0 1

webspam 17,443 17,444 3,389 1

gisette 1,121 1,121 0 1

Table 4: Logistic regression: the average number of line search steps per CD cycle of CDN and per

outer iteration of newGLMNET. The data are collected by running CDN and newGLMNET

using the best C and the default stopping condition of LIBLINEAR.

very different. The O(nl) cost of CDN can be significantly reduced due to shrinking, but is still more

expensive than O(n+ l) of newGLMNET.

In Section 4.1, we mentioned an O(1)-cost upper-bound function δ(λ) to efficiently check (10)

in line search of CDN. In Table 4, we further report the average number of line search steps in a

CD cycle where this check is successfully applied. We see that the trick is particularly effective

on KDD2010-b; however, it helps in a limited manner on other data sets. For KDD2010-b, in addi-

tion to a small nnz/l, the faster line search is another possible reason why CDN is comparable to

newGLMNET; see Figure 1(a). For gisette and epsilon, the trick is not useful because the assumption

xi j ≥ 0, ∀i, j needed for deriving the upper-bound function does not hold.

6.4 Effect of Exp/log Operations

In Sections 2–3, we pointed out the difference between CDN’s O(nnz) and newGLMNET’s O(l)
exp/log operations per CD cycle. Figures 1–2 confirm this result because newGLMNET is much

faster for the two dense data (epsilon and gisette). We further extend Table 1 to compare the running

time of the first CD cycle in Table 5. For easy comparison, we deliberately sort data sets in all tables

of this section by nnz/l, which is the average number of non-zero values per instance. We expect

the ratio of time spent on exp/log operations gradually increases along with nnz/l, although this is

not very clearly observed in Table 5. The reason might be either that the number of data sets used

is small or other data characteristics affect the running time.

6.5 Approximate Exponential Operations for CDN

Because CDN suffers from slow exp/log operations, we tried to use the approximate exponentiation

proposed by Schraudolph (1999). However, we failed to speed up CDN because of erroneous nu-

merical results. One of the several possible reasons is that when d in (11) is small, the approximate

exp(dxi j) is inaccurate. The inaccurate exp(dxi j) makes | log(1+ e−wT x · e−dxi j)− log(1+ e−wT x)|
have a large relative error because the correct value is near zero with small d. We may encounter this

problem when calculating the function value difference needed by the sufficient decrease condition
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Data set
CDN newGLMNET

exp/log Total exp/log Total

KDD2010-b 21.72 (30.7%) 70.80 3.88 (6.9%) 56.50

rcv1 4.61 (73.8%) 6.25 0.12 (5.3%) 2.20

yahoo-japan 1.47 (70.9%) 2.08 0.03 (4.2%) 0.71

yahoo-korea 10.65 (66.3%) 16.06 0.08 (1.2%) 6.66

news20 0.21 (27.3%) 0.76 0.003 (0.5%) 0.60

epsilon* 64.25 (73.0%) 88.18 0.08 (0.7%) 11.62

webspam 72.89 (66.6%) 109.39 0.06 (0.1%) 41.10

gisette* 1.66 (66.8%) 2.49 0.002 (0.6%) 0.27

Table 5: Timing analysis of the first cycle of n CD steps. Time is in seconds. (*: dense data)

(10). In our experiment, the function-value difference using approximate exp/log operations tend

to be larger than the correct value; therefore, it is hard to find a step size λ̄ satisfying (10). Conse-

quently, if d is small when the current wk is near the optimal solution, line search terminates with

a very small step size λ̄ and results in bad convergence. Furthermore, because we update ewT x by

(11), the error is accumulated. Schraudolph (1999, Section 5) has mentioned that the approximation

may not be suitable for some numerical methods due to error amplification. We also tried differ-

ent reformulation of log(1+ e−wT x · e−dxi j)− log(1+ e−wT x), but still failed to use an approximate

exponential function.

6.6 Effect of Shrinking

Our investigation contains two parts. First, we investigate the effect of newGLMNET’s two levels

of shrinking by presenting results of only inner or outer level. Secondly, we compare the shrinking

strategies of GLMNET and newGLMNET. Because these two implementations differ in many places,

for a fair comparison, we modify newGLMNET to apply GLMNET’s shrinking strategy. The com-

parison results are presented in Figure 3. We can clearly see that all shrinking implementations are

better than the one without shrinking.

Results in Figure 3 show that the outer-level shrinking is more useful than the inner-level shrink-

ing. We suspect that the difference is due to that in the CD procedure for sub-problem (13), the

(inner-level) shrinking is done in a sequential manner. Thus, not only is Min not calculated based

on the gradient at the same point, but also variables are not removed together. In contrast, for the

outer-level shrinking, Mout is calculated by the gradient at wk−1 and all variables are checked to-

gether. Therefore, the outer-level shrinking is a more integrated setting for checking and removing

variables. The same explanation may also apply to the result that shrinking is slightly more effective

for newGLMNET than CDN; see Yuan et al. (2010, Figure 9) and Figure 3 here.

Regarding GLMNET’s shrinking strategy, it performs slightly better than the inner-level shrink-

ing of newGLMNET, but is worse than both the outer-level and the two-level settings.

7. Using newGLMNET to Solve Problems with Cheap Loss Functions

The analysis and experiments in previous sections have shown that newGLMNET is more efficient

than CDN for logistic regression. However, it is not clear if newGLMNET is superior when a loss
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Figure 3: Effect of two-level shrinking. “Inner only” (“Outer only”) indicates that only inner-level

(outer-level) shrinking is conducted.
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function can be calculated cheaply. In this section, we consider the L2-loss function in Equation (3)

and investigate the performance of newGLMNET in comparison with CDN. The CDN algorithm for

L2-loss SVM has been developed in Fan et al. (2008, Appendix F) and Yuan et al. (2010, Section

7).

We briefly describe how to apply newGLMNET to solve L2-loss SVM. The objective function

can be written as

f (w)≡ ‖w‖1 +C ∑
i∈I(w)

bi(w)2,

where

bi(w)≡ 1− yiw
T xi and I(w)≡ {i | bi(w)> 0}.

Similar to (2), we define

L(w)≡C ∑
i∈I(w)

bi(w)2.

The gradient of L(w) is

∇L(w) =−2C ∑
i∈I(w)

bi(w)yixi. (35)

Different from logistic loss, L(w) is not twice differentiable. Following Mangasarian (2002) and

Yuan et al. (2010), we consider the following generalized Hessian:

∇2L(w) = 2CXT DX , (36)

where D ∈ Rl×l is a diagonal matrix with

Dii =

{

1 if bi(w)> 0,

0 otherwise.

At the kth outer iteration, newGLMNET solves a quadratic sub-problem

min
d

qk(d), (37)

where

qk(d)≡ ‖w
k +d‖1−‖w

k‖1 + q̄k(d),

q̄k(d)≡ ∇L(wk)T d+
1

2
dT Hkd and Hk ≡ ∇2L(wk)+νI .

To minimize (37), we also use a CD procedure to sequentially minimize one-variable functions at

each inner iteration p.

qk(d
p, j + ze j)−qk(d

p, j) (38)

= |wk
j +d

p
j + z|− |wk

j +d
p
j |+∇ jq̄k(d

p, j)z+
1

2
∇2

j jq̄k(d
p, j)z2,

where from (35) and (36),

∇ jq̄k(d
p, j) = ∇ jL(w

k)+(Hkdp, j) j

=−2C ∑
i∈I(wk)

bi(w
k)yixi j +2C ∑

i∈I(wk)

(XT ) jiDii(Xdp, j)i +νd
p
j and

∇2
j jq̄k(d

p, j) = ∇2
j jL(w

k)+ν = 2C ∑
i∈I(wk)

x2
i j +ν.
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The CD procedure is almost the same as the one described in Section 3.2 for logistic regression. The

function in (38) can be exactly minimized by (9) and line search is not needed. Moreover, Xdp, j is

maintained by (17), so the cost per CD cycle is the same as that shown in (18).

7.1 Line Search and Asymptotic Convergence

At every outer iteration, after d is obtained by solving sub-problem (37), we need a line search

procedure to find the maximal λ ∈ {βi | i = 0,1, . . .} such that (20) is satisfied. Following the

discussion in Section 4.1, the computational bottleneck is on calculating (wk +λd)T xi,∀i. Similar

to the trick in Equation (21), we maintain bi(wk), ∀i to save the cost. In line search, we use

bi(w
k +βtd) = 1− yi(w

k +βt−1d)T xi +(βt−1−βt)yi(Xd)i

= bi(w
k +βt−1d)+(βt−1−βt)yi(Xd)i

for calculating f (wk +βtd). The last bi(wk +βtd) is passed to the next outer iteration as bi(wk+1).
In Appendix C, we prove that newGLMNET for L2-loss SVM is an example of Tseng and Yun’s

framework, so the finite termination of line search holds and any limit point of {wk} is an optimal

solution.

7.2 Comparison with CDN

The analysis in Section 2 indicates that CDN needs more exp/log operations than newGLMNET. Ex-

periments in Section 6.4 confirm this analysis by showing that CDN is much slower than newGLM-

NET on dense data. However, the situation for L2-loss SVM may be completely different because

exp/log operations are not needed. Without this advantage, whether newGLMNET can still compete

with CDN is an interesting question. We will answer this question by experiments in Section 7.3.

Following the analysis in Section 4.1, the cost of line search is still much different between

CDN and newGLMNET for L2-loss SVM. For each cycle of n CD steps, the O(nl) cost is required in

CDN, while less than O(n+ l) is required in newGLMNET. For the high cost of line search in CDN,

Yuan et al. (2010) also find out an upper-bound function like (22), which can be obtained in O(1);
see Fan et al. (2008, Appendix F) for more details. If this trick succeeds at λ = 1 in every CD step

of a cycle, then the O(nl) cost is reduced to O(l). In Section 7.3, we check if this trick is useful.

7.3 Experiments

We compare CDN and newGLMNET under a similar experimental setting to that for logistic regres-

sion. Different from (33), we solve L2-loss SVM without a bias term b.13

We plot the relative difference to the optimal function value in Figure 4. The reference f ∗ is

obtained by running newGLMNET with a strict stopping tolerance εout = 10−8. Figure 5 presents the

testing accuracy along training time. We can clearly see that CDN is much faster than newGLMNET

in the early stage. While newGLMNET still enjoys fast local convergence, it catches up with CDN

only in the very end of the training procedure. This result is consistent with our analysis in Section

7.2 showing that newGLMNET loses the advantages of taking fewer exp/log operations.

In Table 6, we analyze the line search procedure by a setting like Table 4. Similar results

are observed: the sufficient decrease condition (20) always holds when λ = 1 for newGLMNET;

13. Earlier we solved problem (33) in order to compare with the GLMNET implementation by Friedman et al..
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Figure 4: L1-regularized L2-loss SVM: relative difference to the optimal function value versus

training time. Both x-axis and y-axis are log-scaled.
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Figure 5: L1-regularized L2-loss SVM: testing accuracy versus training time (log-scaled).
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Data set

CDN newGLMNET

#variables in #λ tried in # δ(λ) successfully #λ tried in an

a CD cycle line search applied in (23) outer iteration

KDD2010-b 246,318 248,151 124,175 1

rcv1 13,350 13,384 1,251 1

yahoo-japan 10,286 10,289 4,931 1

yahoo-korea 31,265 31,270 25,711 1

news20 7,688 7,838 1,461 1

epsilon 1,136 1,137 501 1

webspam 8,165 8,312 361 1

gisette 1,145 1,145 76 1

Table 6: L2-loss SVM: the average number of line search steps per CD cycle of CDN and newGLM-

NET. The data are collected by running CDN and newGLMNET using the best C and the

default stopping tolerance.

moreover, for CDN, λ = 1 is successful almost all the time. One difference is that the trick of using

an upper-bound function in CDN is slightly more effective for L2-loss SVM than logistic regression.

8. Discussions and Conclusions

In newGLMNET, a CD method is applied to solve the sub-problem (13). Using the property that CD

involves simple and cheap updates, we carefully adjust the stopping condition for sub-problems.

Then, newGLMNET is competitive with a CD method like CDN in the early stage, but becomes a

Newton method in the end. This design is similar to “truncated Newton” methods in optimization.

While CD seems to be a very good choice for solving the sub-problem, whether there are better

alternatives is an interesting future issue.

In Section 5, we proposed several implementation techniques for newGLMNET. For shrinking,

we consider thresholds Mout/l and Min/l in (31) and (32), respectively. These values are heuristi-

cally chosen. While it is difficult to find an optimal setting for all data sets, we hope to investigate

if the current thresholds are suitable.

Some recent works such as El Ghaoui et al. (2010) and Tibshirani et al. (2011) proposed rules

to cheaply eliminate features prior to the L1 training. Preliminary results in the supplementary

document show that training is more efficient if we can remove some zero variables beforehand.

How to efficiently and correctly identify these variables before training is an interesting future topic.

In our newGLMNET implementation, the sub-problem (13) is approximately solved by CD.

However, so far we only establish the convergence results of newGLMNET under the assumption

that the sub-problem (13) is exactly solved. In the future, we will strive to address this issue.

In this work, we point out that a state-of-the-art algorithm CDN for L1-regularized logistic re-

gression suffers from frequent exp/log operations. We then demonstrate that Newton-type methods

can effectively address this issue. By improving a Newton-type method GLMNET in both theoretical

and practical aspects, the proposed newGLMNET is more efficient than CDN for logistic regression.

The difference is huge for dense data. However, if a loss function is cheap to compute (e.g., L2 loss),
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CDN is still competitive. Based on this research work, we have replaced CDN with newGLMNET as

the solver of L1-regularized logistic regression in the software LIBLINEAR.
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Appendix A. Convergence of newGLMNET for L1-regularized Logistic Regression

We have explained that newGLMNET is in the framework of Tseng and Yun (2009). Thus, it is

sufficient to check conditions needed for their convergence result.

To have the finite termination of the line search procedure, Tseng and Yun (2009, Lemma 5)

require that there exists Λ > 0 such that

‖∇L(w1)−∇L(w2)‖ ≤ Λ‖w1−w2‖, ∀w1,w2 ∈ Rn (39)

and

Hk . 0. (40)

Note that “A. B” indicates that A−B is positive definite.

Because L(w) is twice differentiable,

‖∇L(w1)−∇L(w2)‖ ≤ ‖∇
2L(w̃)‖‖w1−w2‖,

where w̃ is between w1 and w2. Furthermore, ‖∇2L(w̃)‖ is bounded:

‖∇2L(w̃)‖=C‖XT D(w̃)X‖ ≤C‖XT‖‖X‖. (41)

Note that D(w̃) is the diagonal matrix defined in (8) though here we denote it as a function of

w. The inequality in (41) follows from that all D(w̃)’s components are smaller than one. Thus,

Equation (39) holds with Λ = C‖XT‖‖X‖. For (40), Hk / νI . 0 because we add νI to ∇2L(wk)
and ∇2L(wk) is positive semi-definite. With (39) and (40), the line search procedure terminates in

finite steps.

For the asymptotic convergence, Tseng and Yun (2009) further assume that there exist positive

constants λmin and λmax such that

λminI 0 Hk 0 λmaxI , ∀k. (42)

Since Hk = ∇2L(wk)+νI , clearly we can set λmin = ν. For the upper bound, it is sufficient to prove

that the level set is bounded. See the proof in, for example, Yuan et al. (2010, Appendix A).

Following Theorem 1(e) in Tseng and Yun (2009), any limit point of {wk} is an optimum of (1)

with logistic loss.
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Appendix B. Linear Convergence of newGLMNET for L1-regularized Logistic
Regression

To apply the linear convergence result in Tseng and Yun (2009), we show that L1-regularized logis-

tic regression satisfies the conditions in their Theorem 3 if the loss term L(w) is strictly convex (and

therefore w∗ is unique).

From Appendix A, we know L1-regularized logistic regression has the following properties.

1. ∇L(w) is Lipschitz continuous; see (39).

2. The level set is compact, and hence the optimal solution w∗ exists.

3. λminI 0 Hk 0 λmaxI , ∀k; see (42).

In addition to the above three conditions, Tseng and Yun (2009, Theorem 3) require that for all

ζ≥minw f (w), there exists T > 0,ε > 0, such that

T‖dI (w)‖ ≥ ‖w−w∗‖, ∀w ∈ {w | f (w)≤ ζ and ‖dI (w)‖ ≤ ε}, (43)

where dI (w) is the solution of (13) at w with H = I (Tseng and Yun, 2009, Assumption 2). We

prove (43) by following the approach in Tseng and Yun (2009, Theorem 4).

To simplify the notation, we denote dI ≡ dI (w). For all ζ > 0, we show that there exists T > 0

so that (43) is satisfied for all w with f (w) ≤ ζ. That is, a stronger result independent of ε is

obtained. We assume w is in the level set {w | f (w)≤ ζ} in the following proof. Because dI is the

solution of (13) with H = I , by checking the optimality condition,14 dI is also an optimal solution

of

min
d

(∇L(w)+dI )
T d+‖w+d‖1.

Therefore,

(∇L(w)+dI )
T dI +‖w+dI‖1 ≤ (∇L(w)+dI )

T (w∗ −w)+‖w∗‖1. (44)

Besides, because w∗ minimizes f (w), the following inequality holds for all w and δ ∈ (0,1).

L(w∗+δ(w−w∗))−L(w∗)

δ
+‖w‖1−‖w

∗‖1 (45)

≥
L(w∗+δ(w−w∗))−L(w∗)+‖w∗+δ(w−w∗)‖1−‖w∗‖1

δ
(46)

=
f (w∗+δ(w−w∗))− f (w∗)

δ
≥ 0,

where (46) is from the convexity of ‖ ·‖1. Take δ→ 0 and replace w with w+dI in (45). We get

0≤ ∇L(w∗)T (w+dI −w∗)+‖w+dI‖1−‖w
∗‖1. (47)

Adding (44) to (47) yields

(∇L(w)−∇L(w∗))T (w−w∗)+‖dI‖
2 ≤ (∇L(w∗)−∇L(w))T dI +dT

I (w
∗ −w). (48)

14. For example, the minimal-norm subgradients of the two objective functions are the same at dI .
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Because the level set {w | f (w) ≤ ζ} is compact, a strictly convex L(w) is strongly convex in the

level set. That is, there exists an m > 0 such that

(∇L(w)−∇L(w∗))T (w−w∗)≥ m‖w−w∗‖2, ∀w ∈ {w | f (w)≤ ζ}.

Then we can relax (48) to

m‖w−w∗‖2 ≤ m‖w−w∗‖2 +‖dI‖
2 ≤ Λ‖w−w∗‖‖dI‖+‖dI‖‖w−w∗‖,

where Λ is the Lipschitz constant in (39). Dividing both sides by m‖w−w∗‖ generates

‖w−w∗‖ ≤
Λ+1

m
‖dI‖.

Then T = (Λ+ 1)/m satisfies condition (43). Therefore, all conditions in Tseng and Yun (2009,

Theorem 3) are satisfied, so linear convergence is guaranteed.

Appendix C. Convergence of newGLMNET for L1-regularized L2-loss SVM

Similar to Appendix A, we only check the conditions required by Tseng and Yun (2009). To have the

finite termination of line search, we need Equations (39) and (40), while for asymptotic convergence,

we need Equation (42). Following the same explanation in Appendix A, we easily have (39) and

(42). For (40), which means that ∇L(w) is globally Lipschitz continuous, a proof is in, for example,

Mangasarian (2002, Section 3). Therefore, any limit point of {wk} is an optimum of (1) with L2

loss by Theorem 1(e) in Tseng and Yun (2009).

Further, if the L2-loss function L(w) is strictly convex, (43) is satisfied with L2 loss following

the proof in Appendix B. Hence, {wk} converges to the unique optimum solution at least linearly.
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Abstract

In this paper we propose a novel framework for the construction of sparsity-inducing priors. In
particular, we define such priors as a mixture of exponential power distributions with a generalized
inverse Gaussian density (EP-GIG). EP-GIG is a variant of generalized hyperbolic distributions,
and the special cases include Gaussian scale mixtures and Laplace scale mixtures. Furthermore,
Laplace scale mixtures can subserve a Bayesian framework for sparse learning with nonconvex
penalization. The densities of EP-GIG can be explicitly expressed. Moreover, the corresponding
posterior distribution also follows a generalized inverse Gaussian distribution. We exploit these
properties to develop EM algorithms for sparse empirical Bayesian learning. We also show that
these algorithms bear an interesting resemblance to iteratively reweighted !2 or !1 methods. Finally,
we present two extensions for grouped variable selection and logistic regression.

Keywords: sparsity priors, scale mixtures of exponential power distributions, generalized inverse
Gaussian distributions, expectation-maximization algorithms, iteratively reweighted minimization
methods

1. Introduction

In this paper we are concerned with sparse supervised learning problems over a training data set

X = {(xi,yi)}n
i=1. The point of departure for our work is the traditional formulation of supervised

learning as a regularized optimization problem:

min
b

{

L(b;X )+Pλ(b)
}

,

where b denotes the model parameter vector, L(·) a loss function that penalizes data misfit, Pλ(·)
a regularization term penalizing model complexity, and λ > 0 a tuning parameter balancing the

relative significance of the loss function and the penalty.

Variable selection is a fundamental problem in the high-dimensional learning setting, and is

closely tied to the notion that the data-generating mechanism can be described using a sparse rep-

resentation. In supervised learning scenarios, the problem is to obtain sparse estimates for the

regression vector b. Given that it is NP-hard to use the !0 penalty (that is, the number of the

c©2012 Zhihua Zhang, Shusen Wang, Dehua Liu and Michael I. Jordan.
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nonzero elements of b) (Weston et al., 2003), attention has focused on use of the !1 penalty (Tib-

shirani, 1996). But in addition a number of studies have emphasized the advantages of nonconvex

penalties—such as the bridge penalty and the log-penalty—for achieving sparsity (Fu, 1998; Fan

and Li, 2001; Mazumder et al., 2011).

The regularized optimization problem can be cast into a maximum a posteriori (MAP) frame-

work. This is done by taking a Bayesian decision-theoretic approach in which the loss function

L(b;X ) is based on the conditional likelihood of the response yi and the penalty Pλ(b) is associated

with a prior distribution for b. For example, the least-squares loss function is associated with a

Gaussian likelihood, while there exists duality between the !1 penalty and the Laplace prior.

The MAP framework provides us with Bayesian underpinnings for the sparse estimation prob-

lem. This has led to Bayesian versions of the lasso, which are based on expressing the Laplace prior

as a scale-mixture of a Gaussian distribution and an exponential density (Andrews and Mallows,

1974; West, 1987). Figueiredo (2003) and Kiiveri (2008) presented a Bayesian lasso based on the

Expectation-Maximization (EM) algorithm. Caron and Doucet (2008) considered EM-based esti-

mation with normal-gamma or normal-inverse-gaussian priors. In recent work, Polson and Scott

(2011) proposed using generalized hyperbolic distributions, variance-mean mixtures of Gaussians

with generalized inverse Gaussian densities, devising EM algorithms via data augmentation method-

ology. Lee et al. (2010) referred to such methods as “quasi-Bayesian.” Related empirical-Bayesian

sparse learning methods have been developed by Tipping (2001).

Recently, Park and Casella (2008) and Hans (2009) proposed full Bayesian lasso models based

on Gibbs sampling. Further work by Griffin and Brown (2010a) involved the use of a family of

normal-gamma priors as a generalization of the Bayesian lasso. This prior has been also used by

Archambeau and Bach (2009) to develop sparse probabilistic projections. In the work of Carvalho

et al. (2010), the authors proposed horseshoe priors which are a mixture of normal distributions and

a half-Cauchy density on the positive reals with a scale parameter. Kyung et al. (2010) conducted

in-depth performance analysis of Bayesian lassos.

There has also been work on nonconvex penalties within a Bayesian framework. Zou and Li

(2008) derived their local linear approximation (LLA) algorithm by combining the EM algorithm

with an inverse Laplace transformation. In particular, they showed that the bridge penalty can be

obtained by mixing the Laplace distribution with a stable distribution. Other authors have shown

that the prior induced from the log-penalty has an interpretation as a scale mixture of Laplace

distributions with an inverse gamma density (Cevher, 2009; Garrigues and Olshausen, 2010; Lee

et al., 2010; Armagan et al., 2011). Additionally, Griffin and Brown (2010b) devised a family of

normal-exponential-gamma priors for a Bayesian adaptive lasso (Zou, 2006). Polson and Scott

(2010, 2012) provided a unifying framework for the construction of sparsity priors using Lévy

processes.

In this paper we develop a novel framework for constructing sparsity-inducing priors. Gen-

eralized inverse Gaussian (GIG) distributions (Jørgensen, 1982) are conjugate with respect to an

exponential power (EP) distribution (Box and Tiao, 1992)—an extension of Gaussian and Laplace

distributions. Accordingly, we propose a family of distributions that we refer to as EP-GIG. In

particular, we define EP-GIG distributions as scale mixtures of EP distributions with a GIG density,

and derive their explicit densities. EP-GIG distributions can be regarded as a variant of generalized

hyperbolic distributions, and include Gaussian scale mixtures and Laplacian scale mixtures as spe-

cial cases. The Gaussian scale mixture is a class of generalized hyperbolic distributions (Polson and

Scott, 2011) and its special cases include normal-gamma distributions (Griffin and Brown, 2010a)
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as well as the Laplacian distribution. The generalized double Pareto distribution (Cevher, 2009;

Armagan et al., 2011; Lee et al., 2010) and the bridge distribution inducing the !1/2 bridge penalty

(Zou and Li, 2008) are special cases of Laplacian scale mixtures. In Appendix B, we devise a set of

new EP-GIG priors.

Since GIG priors are conjugate with respect to EP distributions, it is feasible to apply EP-GIG

to Bayesian sparse learning. Although it has been illustrated that fully Bayesian sparse learning

methods based on Markov chain Monte Carlo sampling work well, our main focus is on a quasi-

Bayesian approach. Our goal is to explore the relationship between MAP estimators and classical

regularized estimators. In particular, using the fact that EP-GIG distributions are scale mixtures of

exponential power distributions, we devise EM algorithms for finding a sparse MAP estimate of b.

When we set the exponential power distribution to be the Gaussian distribution, the resulting EM

algorithm is closely related to the iteratively reweighted !2 minimization methods in Daubechies

et al. (2010); Chartrand and Yin (2008) and Wipf and Nagarajan (2010). When we employ the

Laplace distribution as a special exponential power distribution, we obtain an EM algorithm which

is identical to the iteratively reweighted !1 minimization method in Candès et al. (2008).

We also develop hierarchical Bayesian approaches for grouped variable selection (Yuan and Lin,

2007) and penalized logistic regression by using EP-GIG priors. We apply our proposed EP-GIG

priors in Appendix B to conduct experimental analysis. The experimental results validate that the

proposed EP-GIG priors which induce nonconvex penalties are potentially feasible and effective

in sparsity modeling. Finally, we would like to highlight that our work offers several important

theoretical insights as follows.

1. Theorem 2 establishes a limiting relationship of EP-GIG distributions with the corresponding

EP distributions, an extension of the classical limiting relationship between the t-distribution

and Gaussian distribution as the degree of freedom approaches infinity. Theorem 5 proves

that an exponential power distribution of order q/2 (q > 0) can be represented a scale mixture

of exponential power distributions of order q with a gamma mixing density.

2. The first part of Theorem 6 shows that GIG is conjugate with respect to EP, while the second

part then offers theoretical support for relating EM algorithms with iteratively reweighted

minimization methods under our framework.

3. Theorem 7 shows that the negative log EP-GIG can induce a class of sparsity penalties, in

particular an interesting class of nonconvex penalties. Theorem 9 gives convergence analysis

for the EM algorithm. Finally, Theorem 10 establishes the oracle properties of the sparse

estimator based on Laplace scale mixture priors.

The paper is organized as follows. A brief review of exponential power distributions and gener-

alized inverse Gaussian distributions is given in Section 2. Section 3 presents EP-GIG distributions

and some of their properties, Section 4 develops our EM algorithm for Bayesian sparse learning,

and Section 5 discusses the relationship between the EM and iteratively reweighted minimization

methods. In Section 6 we conduct our experimental evaluations. Finally, we conclude our work in

Section 7, defer all proofs to Appendix A, and provide several new sparsity priors in Appendix B.
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2. Preliminaries

Before presenting EP-GIG priors for sparse modeling of regression vector b, we review the expo-

nential power (EP) and generalized inverse Gaussian (GIG) distributions.

2.1 Exponential Power Distributions

A univariate random variable b ∈R is said to follow an EP distribution if the density is specified by

p(b) =
η−1/q

2
q+1

q Γ( q+1
q )

exp(−
1

2η
|b−u|q) =

q

2

(2η)−
1
q

Γ( 1
q)

exp(−
1

2η
|b−u|q),

with η > 0. In the literature (Box and Tiao, 1992), it is typically assumed that q ≥ 1. However, it is

possible to relax this assumption into q > 0, which will be useful for our purposes. Moreover, we

will only consider the setting that u = 0.

The distribution is denoted by EP(b|u,η,q). There are two classical special cases: the Gaussian

distribution arises when q = 2 (denoted N(b|u,η)) and the Laplace distribution arises when q = 1

(denoted L(b|u,η)). As for the case that q < 1, the corresponding density induces a bridge penalty

for b. We thus refer to it as the bridge distribution.

2.2 Generalized Inverse Gaussian Distributions

We first let G(η|τ,θ) denote the gamma distribution whose density is

p(η) =
θτ

Γ(τ)
ητ−1 exp(−θη), τ,θ > 0,

and IG(η|τ,θ) denote the inverse gamma distribution whose density is

p(η) =
θτ

Γ(τ)
η−(1+τ) exp(−θη−1), τ,θ > 0.

We now consider the GIG distribution. The density of the GIG distribution is defined as

p(η) =
(α/β)γ/2

2Kγ(
√

αβ)
ηγ−1 exp(−(αη+βη−1)/2), η > 0,

where Kγ(·) represents the modified Bessel function of the second kind with the index γ. We denote

this distribution by GIG(η|γ,β,α). It is well known that its special cases include the gamma dis-

tribution G(η|γ,α/2) when β = 0 and γ > 0, the inverse gamma distribution IG(η|− γ,β/2) when

α = 0 and γ < 0, the inverse Gaussian distribution when γ =−1/2, and the hyperbolic distribution

when γ = 0. Please refer to Jørgensen (1982) for details.

Note in particular that the pdf of the inverse Gaussian GIG(η|−1/2,β,α) is

p(η) =
( β

2π

)1/2
exp(

√

αβ)η− 3
2 exp(−(αη+βη−1)/2), β > 0,

and the pdf of GIG(η|1/2,β,α) is

p(η) =
( α

2π

)1/2
exp(

√

αβ)η− 1
2 exp(−(αη+βη−1)/2), α > 0.
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Note moreover that GIG(η|−1/2,β,0) and GIG(η|1/2,0,α) degenerate to IG(η|1/2,β/2) and

G(η|1/2,α/2), respectively.

We now present an alternative expression for the GIG density that is interesting. Let ψ =
√

αβ
and φ =

√

α/β. We can rewrite the density of GIG(η|γ,β,α) as

p(η) =
φγ

2Kγ(ψ)
ηγ−1 exp(−ψ(φη+(φη)−1)/2), η > 0. (1)

Let us consider that the case γ = 0. Furthermore, letting ψ → 0, we can see that p(η) ∝ 1/η, an

improper prior. Note that this improper prior can regarded as the Jeffreys prior because the Fisher

information of EP(b|0,η) with respect to η is η−2/q. Finally, we present some useful limiting

properties of GIG distributions in Appendix A.2.

3. EP-GIG Distributions

We now develop a family of distributions by mixing the exponential power EP(b|0,η,q) with the

generalized inverse Gaussian GIG(η|γ,β,α). The marginal density of b is thus defined by

p(b) =
∫ +∞

0
EP(b|0,η,q)GIG(η|γ,β,α)dη.

We refer to this distribution as the EP-GIG and denote it by EGIG(b|α,β,γ,q). The density can be

obtained via direct calculations. We have:

Theorem 1 Let b ∼ EGIG(b|α,β,γ,q). Then its density is

p(b) =
K γq−1

q
(
√

α(β+|b|q))

2
q+1

q Γ( q+1
q )Kγ(

√

αβ)

α1/(2q)

βγ/2
[β+|b|q](γq−1)/(2q). (2)

The following theorem establishes an important relationship between an EP-GIG distribution

and the underlying EP distribution. It is an extension of the classical relationship of a t-distribution

with the Gaussian distribution. The proof can be directly obtained from Proposition 19 in Ap-

pendix A.2.

Theorem 2 We have the following asymptotic relationships:

(1) limγ→+∞EGIG(b|γα,β,γ,q) = EP(b|0,2/α,q);

(2) limγ→−∞EGIG(b|α,−γβ,γ,q) = EP(b|0,β/2,q).

(3) limψ→+∞EGIG(b|α,β,γ,q) = EP(b|0,φ,q) where ψ =
√

αβ and φ =
√

α/β ∈ (0,∞).

EP-GIG distributions can be regarded as variants of generalized hyperbolic distributions

(Jørgensen, 1982), because when q= 2 EP-GIG distributions are generalized hyperbolic distributions—

a class of Gaussian scale mixtures. However, EP-GIG becomes a class of Laplace scale mixtures

when q = 1. Note that when 0 < q < 2 an EP distribution is a class of Gaussian scale mixtures

(West, 1987; Lange and Sinsheimer, 1993), which implies that EP-GIG can also be represented as
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a class of Gaussian scale mixtures. However, the difficulty with such a representation is that the

corresponding mixing prior is usually not analytically available.

In Appendix B we present several new concrete EP-GIG distributions, obtained from particular

settings of γ and q. We now consider the two special cases in which the mixing density is either a

gamma distribution or an inverse gamma distribution. This yields two special EP-GIG distributions:

exponential power-gamma distributions and exponential power-inverse gamma distributions.

3.1 Generalized t Distributions

We first consider an important family of EP-GIG distributions which are scale mixtures of exponen-

tial power EP(b|u,η,q) with inverse gamma IG(η|τ/2,τ/(2λ)). Following the terminology of Lee

et al. (2010), we refer them as generalized t distributions and denote them by GT(b|u,τ/λ,τ/2,q).
Specifically, the density of the generalized t is

p(b) =
∫

EP(b|u,η,q)IG(η|τ/2,τ/(2λ))dη =
q

2

Γ( τ
2+

1
q)

Γ( τ
2)Γ(

1
q)

(λ

τ

)
1
q
(

1+
λ

τ
|b−u|q

)−( τ
2+

1
q )
, (3)

where τ > 0, λ > 0 and q > 0. Clearly, when q = 2 the generalized t distribution becomes to a

t-distribution. Moreover, when τ = 1, it is the Cauchy distribution.

On the other hand, when q = 1, Cevher (2009) and Armagan et al. (2011) called the resulting

distributions generalized double Pareto distributions (GDP). The densities are given as follows:

p(b) =
∫ ∞

0
L(b|0,η)IG(η|τ/2,τ/(2λ))dη =

λ

4

(

1+
λ|b|

τ

)−(τ/2+1)
, λ > 0,τ > 0.

Furthermore, consider τ = 1, such that η ∼ IG(η|1/2,1/(2λ)). We obtain

p(b) =
λ

4
(1+λ|b|)−3/2.

It is well known that the limit of the t-distribution as τ → ∞ is the normal distribution. We find

that we are able to extend this property to the generalized t distribution. In particular, we have the

following theorem, which is a corollary of the first part of Theorem 2.

Corollary 3 Let the generalized t distribution be defined in (3). Then, for λ > 0 and q > 0,

lim
τ→∞

GT(b|u,τ/λ,τ/2,q) = EP(b|u,1/λ,q).

Thus, as a special case of Corollary 3 for q = 1, we have

lim
τ→∞

GT(b|u,τ/λ,τ/2,1) = L(b|u,1/λ).

3.2 Exponential Power-Gamma Distributions

The density of the exponential power-gamma distribution is defined by

p(b|γ,α) =
∫ ∞

0
EP(b|0,η,q)G(η|γ,α/2)dη =

α
qγ+1

2q |b|
qγ−1

2

2
qγ+1

q Γ( q+1
q )Γ(γ)

Kγ− 1
q
(
√

α|b|q),γ,α > 0.
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We denote the distribution by EG(b|α,γ,q). The density of the normal-gamma distribution (Griffin

and Brown, 2010a) is

p(b|γ,α) =
∫ ∞

0
N(b|0,η)G(η|γ,α/2)dη =

α
2γ+1

4 |b|γ− 1
2

2γ− 1
2
√

πΓ(γ)
Kγ− 1

2
(
√

α|b|), γ,α > 0.

As an application of the second part of Theorem 2 in this case, we can obtain the following theorem.

Corollary 4 Let EG(b|λγ,γ/2,q) =
∫ ∞

0 EP(b|0,η,q)G(η|γ/2,λγ/2)dη with λ > 0. Then

lim
γ→∞

EG(b|λγ,γ/2,q) = EP(b|0,1/λ,q).

It is easily seen that when we let γ = 1, the normal-gamma distribution degenerates to the

Laplace distribution L(b|0,α−1/2/2). In addition, when q = 1 and γ = 3/2, which implies that

[b|η]∼ L(b|0,η) and η ∼ G(η|3/2,α/2), we have

p(b|α) =
α

4
exp(−

√

α|b|) =
∫ +∞

0
L(b|0,η)G(η|3/2,α/2)dη. (4)

Obviously, the current exponential power-gamma distribution is identical to exponential power dis-

tribution EP(b|0,α−1/2/2,1/2), a bridge distribution with q = 1/2. Interestingly, we can extend

this relationship between the Gaussian and Laplace as well as between the Laplace and 1/2-bridge

to the general case. That is,

Theorem 5 Let γ = 1
2 +

1
q . Then,

EP(b|0,α−1/2/2,q/2) =
qα1/q

4Γ(2/q)
exp(−

√

α|b|q) =
∫ +∞

0
EP(b|0,η,q)G(η|γ,α/2)dη.

This theorem implies that a q/2−bridge distribution can be represented as a scale mixture of

q−bridge distributions. A class of important settings are q = 21−m and γ = 1
2 +

1
q = 1+2m

2 where

m is any nonnegative integer.

3.3 Conditional Priors, Marginal Priors and Posteriors

We now study the posterior distribution of η conditioning on b. It is immediate that the posterior

distribution follows GIG(η|(γq−1)/q,(β+ |b|q),α). This implies that GIG distributions are conju-

gate with respect to the EP distribution. We note that in the cases γ = 1/2 and q = 1, as well as γ = 0

and q = 2, the posterior distribution is GIG(η|−1/2,(β+ |b|q),α). In the cases γ = 3/2 and q = 1,

as well as γ = 1 and q = 2, the posterior distribution is GIG(η|1/2,(β+ |b|q),α). When γ = −1/2

and q = 1, or γ =−1 and q = 2, the posterior distribution is GIG(η|−3/2,(β+ |b|q),α).
Additionally, we have the following theorem.

Theorem 6 Suppose that b|η ∼ EP(b|0,η,q) and η ∼ GIG(η|γ,β,α). Then

(i) b ∼ EGIG(b|α,β,γ,q) and η|b ∼ GIG(η|(γq−1)/q,(β+ |b|q),α).

(ii)
∂−log p(b)

∂|b|q = 1
2 E(η−1|b) = 1

2

∫
η−1 p(η|b)dη.

When − log p(b) is used as a penalty in supervised sparse learning, iteratively reweighted !1 or

!2 methods are generally used for solving the resulting optimization problem. We will see that

Theorem 6 implies a relationship between an iteratively reweighted method and an EM algorithm,

which is presented in Section 4.

2037



ZHANG, WANG, LIU AND JORDAN

3.4 Duality between Priors and Penalties

Since there is duality between a prior and a penalty, we are able to construct a penalty from p(b); in

particular, − log p(b) corresponds to a penalty. For example, let p(b) be defined as in (7) or (8) (see

Appendix B). It is then easily checked that − log p(b) is concave in |b|. Moreover, if p(b) is given

in (4), then − log p(b) induces the !1/2 penalty |b|1/2. In fact, we have the following theorem.

Theorem 7 Let p(b) be the EP-GIG density given in (2). If − log p(b) is regarded as a function of

|bq|, then − d log(p(b))
d|b|q is completely monotone on (0,∞). Furthermore, when 0 < q ≤ 1, − log(p(b))

is concave in |b| on (0,∞); namely, − log(p(b)) defines a class of nonconvex penalties for b.

Here a function φ(z) on (0,∞) is said to be completely monotone (Feller, 1971) if it possesses

derivatives φ(n) of all orders and

(−1)nφ(n)(z)≥ 0, z > 0.

Theorem 7 implies that the first-order and second-order derivatives of − log(p(b)) with respect to

|b|q are nonnegative and nonpositive, respectively. Thus, − log(p(b)) is concave and nondecreasing

in |b|q on (0,∞). Additionally, |b|q for 0 < q ≤ 1 is concave in |b| on (0,∞). Consequently, when

0 < q ≤ 1, − log(p(b)) is concave in |b| on (0,∞). In other words, − log(p(b)) with 0 < q ≤ 1

induces a nonconvex penalty for b.

Figure 1 depicts several penalties graphically; these are obtained from the special priors in

Appendix B. It is readily seen that the fist three penalty functions are concave in |b| on (0,∞).
In Figure 2, we also illustrate the penalties induced from the 1/2-bridge scale mixture priors (see

Examples 7 and 8 in in Appendix B), generalized t priors and EP-Gamma priors. Again, we see

that the two penalties induced from the 1/2-bridge mixture priors are concave in |b| on (0,∞). This

agrees with Theorem 7.

4. Quasi-Bayesian Sparse Learning Methods

In this section we apply EP-GIG priors to quasi-Bayesian sparse learning. Suppose we are given a

set of training data {(xi,yi) : i = 1, . . . ,n}, where the xi ∈ Rp are the input vectors and the yi are the

corresponding responses. Moreover, we assume that ∑n
i=1 xi = 0 and ∑n

i=1 yi = 0. We now consider

the following linear regression model:

y = Xb+ ε,

where y = (y1, . . . ,yn)T is the n×1 response vector, X = [x1, . . . ,xn]T is the n×p input matrix, and

ε is a Gaussian error vector N(ε|0,σIn). We aim to estimate the vector of regression coefficients

b = (b1, . . . ,bp)T under a MAP framework.

4.1 Bayesian Sparse Regression

We place an EP-GIG prior on each of the elements of b. That is,

p(b|σ) =
p

∏
j=1

EGIG(b j|σ−1α,σβ,γ,q).

Using the property that the EP-GIG distribution is a scale mixture of exponential power distribu-

tions, we devise an EM algorithm for the MAP estimation of b. For this purpose, we define a
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Figure 1: Penalty functions induced from exponential power-generalized inverse gamma (EP-GIG)

priors in which α = 1.

hierarchical model:

[y|b,σ]∼ N(y|Xb,σIn),

[b j|η j,σ]
ind∼ EP(b j|0,ση j,q),

[η j|γ,β,α]
iid∼ GIG(η j|γ,β,α),

p(σ) = Constant.

According to Section 3.3, we have

[η j|b j,σ,α,β,γ]∼ GIG
(

η j

∣

∣(γq−1)/q, β+σ−1|b j|q, α
)

.

Given the tth estimates (b(t),σ(t)) of (b,σ), the E-step of EM calculates

Q(b,σ|b(t),σ(t))! log p(y|b,σ)+
p

∑
j=1

∫
log p[b j|η j,σ]p(η j|b

(t)
j ,σ(t),α,β,γ)dη j

∝ −
n

2
logσ−

1

2σ
(y−Xb)T (y−Xb)−

p

q
logσ

−
1

2σ

p

∑
j=1

|b j|q
∫

η−1
j p(η j|b

(t)
j ,σ(t),α,β,γ)dη j.
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(c) GT (or GDP) (q = 1 and λ = 1)
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(d) GT (q = 2 and λ = 1)
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(e) EG (q = 1 and λ = 1)
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Figure 2: Penalty functions induced from 1/2-bridge scale mixture priors, exponential power-

inverse gamma (or generalized t, GT) priors and exponential power-gamma (EG) priors.

Here we omit some terms that are independent of parameters σ and b. In fact, we only need to

calculate E(η−1
j |b(t)j ,σ(t)) in the E-step. It follows from Proposition 16 (see Appendix A) that

w
(t+1)
j ! E(η−1

j |b(t)j ,σ(t)) =
α1/2

[

β+|b(t)j |q/σ(t)
]1/2

K(γq−q−1)/q

(

√

α[β+|b(t)j |q/σ(t)]
)

K(γq−1)/q

(

√

α[β+|b(t)j |q/σ(t)]
)

. (5)

There do not exist analytic computational formulae for arbitrary modified Bessel functions Kν.

Thus, in general we need to resort to a numerical approximation of the Bessel function. Fortunately,

however, when γ and q take the special values in Appendix B, we have closed-form expressions for
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(γ,q) γ = 1
2 ,q = 1 γ = 3

2 ,q = 1 γ = 0,q = 2 γ = 1,q = 2

w j =
1+
√

α(β+σ−1|b j |)
β+σ−1|b j |

√

α
β+σ−1|b j |

1+
√

α(β+σ−1b2
j )

β+σ−1b2
j

√

α
β+σ−1b2

j

Table 1: E-steps of EM for different settings of γ and q. Here we omit superscripts “(t)”.

the corresponding Bessel functions and thus for the w j. In particular, we have from Proposition 17

(see Appendix A) that

w
(t+1)
j =



























[

σ(t)α

σ(t)β+|b(t)j |q

]1/2
(γq−1)/q = 1/2,

σ(t)+[σ(t)α(σ(t)β+|b(t)j |q)]1/2

σ(t)β+|b(t)j |q
(γq−1)/q =−1/2,

3σ(t)

σ(t)β+|b(t)j |q
+ σ(t)α

σ(t)+[σ(t)α(σ(t)β+|b(t)j |q)]1/2
(γq−1)/q =−3/2.

In Table 1 we list these cases with different settings of γ and q.

The M-step maximizes Q(b,σ|b(t),σ(t)) with respect to (b,σ). In particular, we have:

b(t+1) = argmin
b

(y−Xb)T (y−Xb)+
p

∑
j=1

w
(t+1)
j |b j|q,

σ(t+1) =
q

qn+2p

{

(y−Xb(t+1))T (y−Xb(t+1))+
p

∑
j=1

w
(t+1)
j |b(t+1)

j |q
}

.

4.2 A Hierarchy for Grouped Variable Selection

In the hierarchy specified previously each b j is assumed to have distinct scale η j. We can also let

several b j share a common scale parameter, thereby obtaining a Bayesian approach to group sparsity

(Yuan and Lin, 2007). We next briefly describe this approach.

Let Il for l = 1, . . . ,g be a partition of I = {1,2, . . . , p}; that is, ∪g
j=1I j = I and I j ∩ Il = /0 for

j ,= l. Let pl be the cardinality of Il , and bl = {b j : j ∈ Il} denote the subvectors of b, for l = 1, . . . ,g.

The hierarchy is then specified as

[y|b,σ]∼ N(y|Xb,σIn),

[b j|ηl,σ]
iid∼ EP(b j|0,σηl,q), j ∈ Il

[ηl|γl,β,α]
ind∼ GIG(ηl|γl,β,α), l = 1, . . . ,g.

Moreover, given σ, the bl are conditionally independent. By integrating out ηl , the marginal density

of bl conditional on σ is then

p(bl|σ) =
K γl q−pl

q
(
√

α(β+σ−1‖bl‖q
q))

[

2
q+1

q σ
1
q Γ( q+1

q )
]pl Kγl

(
√

αβ)

αpl/(2q)

βγl/2

[

β+σ−1‖bl‖q
q

](γlq−pl)/(2q)
,

which implies bl is non-factorial. The posterior distribution of ηl on bl is then GIG(ηl| γlq−pl

q , β+

σ−1‖bl‖q
q, α).
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In this case, the iterative procedure for (b,σ) is given by

b(t+1) = argmin
b

(y−Xb)T (y−Xb)+
g

∑
l=1

w
(t+1)
l ‖bl‖q

q,

σ(t+1) =
q

qn+2p

{

(y−Xb(t+1))T (y−Xb(t+1))+
g

∑
l=1

w
(t+1)
l ‖b

(t+1)
l ‖q

q

}

,

where for l = 1, . . . ,g,

w
(t+1)
l =

α1/2

[

β+‖b
(t)
l ‖q

q/σ(t)
]1/2

K γl q−q−pl
q

(
√

α[β+‖b
(t)
l ‖q

q/σ(t)])

K γl q−pl
q

(
√

α[β+‖b
(t)
l ‖q

q/σ(t)])
.

Recall that there is usually no analytic computation for w
(t+1)
l . However, setting γl such that γlq−pl

q =
1
2 or γlq−pl

q =− 1
2 yields an analytic computation. As a result, we have

w
(t+1)
j =















[

σ(t)α

σ(t)β+‖b
(t)
l ‖q

q

]1/2
(γlq−pl)/q = 1/2,

σ(t)+
[

σ(t)α(σ(t)β+‖b
(t)
l ‖q

q)
]1/2

σ(t)β+‖b
(t)
l ‖q

q

(γlq−pl)/q =−1/2.

Figure 3 depicts the hierarchical models in Section 4.1 and 4.2. It is clear that when g = p and

p1 = · · ·= pg = 1, the models are identical.

α β γ

ηj

bj

y X

σ

p

(a) independent

α β

γl

ηj

bj

y X

σ

pl
g

(b) grouped

Figure 3: Graphical representations.

4.3 Extensions to Logistic Regression

Another extension is the application to penalized logistic regression for classification. We consider

a binary classification problem in which y ∈ {0,1} now represents the label of the corresponding
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input vector x. In the logistic regression model the expected value of yi is given by

P(yi = 1|xi) =
1

1+ exp(−xT
i b)

! πi.

In this case σ = 1 and the log-likelihood function becomes

log p(y|b) =
n

∑
i=1

[yi logπi +(1−yi) log(1−πi)].

Given the tth estimate b(t) of b, the E-step of EM calculates

Q(b|b(t))! log p(y|b)+
p

∑
j=1

∫
log p[b j|η j]p(η j|b

(t)
j ,α,β,γ)dη j

∝
n

∑
i=1

[yi logπi +(1−yi) log(1−πi)]−
1

2

p

∑
j=1

w
(t+1)
j |b j|q.

As for the M-step, a feasible approach is to first obtain a quadratic approximation to the log-

likelihood function based on its second-order Taylor series expansion at the current estimate b(t) of

the regression vector b. We accordingly formulate a penalized linear regression model. In particular,

the M-step solves the following optimization problem

b(t+1) = argmin
b∈Rp

(ỹ−Xb)T W(ỹ−Xb)+
p

∑
j=1

w
(t+1)
j |b j|q,

where ỹ, the working response, is defined by ỹ = Xb(t) +W−1(y−π), W is a diagonal matrix with

diagonal elements πi(1−πi), and π = (π1, . . . ,πn)T . Note that here the π are evaluated at b(t).

5. Iteratively Re-weighted !q Methods

We employ a penalty induced from the EP-GIG prior EGIG(b|α0,β0,γ,q). Let

R(|b|q)!
γq−1

2q
log(β0+|b|q)− logK γq−1

q
(
√

α0(β0+|b|q)) ∝ − logEGIG(b|α0,β0,γ,q).

Then the penalized regression problem is

min
b

{

F(b)!
1

2
‖y−Xb‖2

2 +λ
p

∑
j=1

R(|b j|q)
}

,

which can be solved via an iteratively reweighted !q method. Given the tth estimate b(t) of b, the

method considers the first-order Taylor approximation of R(|b j|q) w.r.t. |b j|q at |b(t)j |q and solves

the following problem

min
b

{

Q(b|b(t))!
1

2
‖y−Xb‖2

2 +λ
p

∑
j=1

[

R(|b(t)j |q)+ω
(t+1)
j (|b j|q − |b(t)j |q)

]

}

,
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which is equivalent to

min
b

1

2
‖y−Xb‖2

2 +λ
p

∑
j=1

ω
(t+1)
j |b j|q.

Here ω
(t+1)
j =

∂R(|b j|q)
∂|b j|q

∣

∣

∣

b j=b
(t)
j

. It follows from Theorem 6-(ii) that

ω j =
1

2

√
α0

√

β0 + |b j|q
K γq−1

q −1
(
√

α0(β0 + |b j|q))

K γq−1
q
(
√

α0(β0+|b j|q))
. (6)

5.1 Relationship between EM and Iteratively Re-weighted Methods

Under certain conditions, Zou and Li (2008) established a relationship between their LLA algorithm

and an EM algorithm by using an inverse Laplace transformation. In particular, calculating weights

in the former is equivalent to calculating the E-step in the latter. In our case, furthermore, Theorem 6

shows the weights are equal to the expectations involved in the corresponding EM algorithm up to

the constant 1/2.

We pursue this relationship here, focusing on the relationship of the EM algorithm in Section 4.1

with the iteratively reweighted !q method proposed above. Letting α0 = α/σ, β0 = βσ and λ = σ,

we immediately see that 2ω j’s in (6) are equal to w j’s in (5). This implies the iteratively reweighted

minimization method is identical to the EM algorithm given in Section 4.1. When q = 2, the EM

algorithm is identical to the reweighted !2 method and corresponds to a local quadratic approxi-

mation (Fan and Li, 2001; Hunter and Li, 2005). When q = 1, the EM algorithm is reweighted !1

minimization and corresponds to an LLA.

In particular, when we set γ = 1 and q = 2, the EM algorithm is the same as one studied by

Daubechies et al. (2010). This implies that the reweighted !2 method of Daubechies et al. (2010)

can be equivalently viewed as an EM algorithm based on our proposed EP-GIG in Example 5 of

Appendix B. When the EM algorithm is based on our proposed EP-GIG prior in Example 4 of

Appendix B (i.e., γ = 1 and q = 2), we obtain the combination of the reweighted !2 method of

Daubechies et al. (2010) and the reweighted !2 method of Chartrand and Yin (2008).

When γ = 3
2 and q = 1, the EM algorithm (see Table 1) is equivalent to a reweighted !1 method,

which in turn has a close connection with the reweighted !2 method of Daubechies et al. (2010).

Additionally, the EM algorithm based on γ = 1
2 and q = 1 (see Table 1) can be regarded as the

combination of the above reweighted !1 method and the reweighted !1 of Candès et al. (2008). In-

terestingly, the EM algorithm based on the EP-GIG priors given in Examples 7 and 8 of Appendix B

(i.e., γ = 3
2 and q = 1

2 or γ = 5
2 and q = 1

2 ) corresponds a reweighted !1/2 method.

In is also worth mentioning that in Appendix C we present EP-Jeffreys priors. Using this prior,

we can establish the close relationship of the adaptive lasso of Zou (2006) with an EM algorithm.

In particular, when q = 1, the EM algorithm based on the Jeffreys prior is equivalent to the adaptive

lasso.

5.2 Convergence Analysis

Owing to the equivalence between the iteratively reweighted !q method and the EM algorithm, we

investigate convergence analysis based on the iteratively reweighted !q method. Using the previous

notation, we have the following theorem.
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Lemma 8 Let {b(t) : 0,1,2, . . .} be a sequence defined by the the iteratively reweighted !q method.

Then

F(b)≤ Q(b|b(t)) and only F(b(t)) = Q(b(t)|b(t)).

Furthermore,

F(b(t+1))≤ F(b(t))

with equality if and only if b(t+1) = b(t).

It follows from Theorem 7 that
∂R(|b|q)

∂|b|q < 0. Thus, R(|b|q) is strictly concave in |b|q. Accordingly,

the lemma is proven. Since F(b(t)) ≥ 0, this lemma shows that F(b(t)) converges monotonically

to some F∗ ≥ 0. In fact, the iteratively reweighted !q method enjoys the same convergence as the

standard EM algorithm (Dempster et al., 1977; Wu, 1983). Let A(b(t)) be the set of values of b that

minimize Q(b|b(t)) over Ω⊂Rp and S be the set of stationary points of F in the interior of Ω. From

the Zangwill global convergence theorem (Wu, 1983; Sriperumbudur and Lanckriet, 2009) we have

that

Theorem 9 Let {b(t)} be an iterative sequence generated by b(t+1) ∈ A(b(t)). Suppose that (i)

A(b(t)) is closed over the complement of S and that (ii)

F(b(t+1))< F(b(t)) for all b(t) ,∈ S .

Then all the limit points of {b(t)} are stationary points of F(b) and F(b(t)) converges monotonically

to F(b∗) for some stationary point b∗.

5.3 Oracle Properties

We now study the oracle property of our sparse estimator based on Laplace scale mixture priors. For

this purpose, following the setup of Zou and Li (2008), we assume two conditions: (1) yi = xT
i b∗+εi

where ε1, . . . ,εn are i.i.d errors with mean 0 and variance σ2; (2) XT X/n → C where C is a positive

definite matrix. Let A = { j : b∗j ,= 0}. Without loss of generality, we assume that A = {1,2, . . . , p0}
with p0 < p. Thus, partition C as

[

C11 C12

C21 C22

]

,

where C11 is p0×p0. Additionally, let b∗
1 = {b∗j : j ∈ A} and b∗

2 = {un j : j /∈ A}.

We in particular consider the following one-step sparse estimator:

b
(1)
n = argmin

b
(y−Xb)T (y−Xb)+λn

p

∑
j=1

|b j|
Qγ−1(αn(βn + |b(0)j |))

Qγ−1(αn(βn +1))
,

where Qν(z) = Kν−1(
√

z)/(
√

zKv(
√

z)) and b(0) = (b
(0)
1 , . . . ,b

(0)
p )T is a root-n-consistent estimator

of b∗. The following theorem shows that this estimator has the oracle property. That is,

Theorem 10 Let b
(1)
n1 = {b

(1)
n j : j ∈ A} and An = { j : b

(1)
n j ,= 0}. Suppose that λn → ∞, λn/

√
n → 0,

αn/n → c1 and αnβn → c2, or that λn/n1/4 → ∞, λn/
√

n → 0, αn/
√

n → c1 and αnβn → c2. Here

c1,c2 ∈ (0,∞). Then b
(1)
n satisfies the following properties:

(1) Consistency in variable selection: limn→∞ P(An = A) = 1.

(2) Asymptotic normality:
√

n(b
(1)
n1 −b∗

1)→d N(0,σ2C−1
11 ).
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6. Experimental Studies

In this paper our principal purpose has been to provide a new hierarchical framework within which

we can construct sparsity-inducing priors and EM algorithms. In this section we conduct an experi-

mental investigation of particular instances of these EM algorithms. In particular, we study the cases

in Table 1. We also studied two EM algorithms based on the generalized t priors, that is, the ex-

ponential power-inverse gamma priors (see Section 3.1). For simplicity of presentation, we denote

them by “Method 1,” “Method 2,” “Method 3,” “Method 4,” “Method 5,” “Method 6,” and “Method

7,” respectively. Table 2 lists their EP-GIG prior specifications (the notation is the same as in Sec-

tion 3). As we see, using the EP-GIG priors given in Examples 7 and 8 (see Appendix B) yields

EM algorithms with closed-form E-steps. However, the corresponding M-steps are a weighted !1/2

minimization problem, which is not efficiently solved. Thus, we did not implement such EM algo-

rithms.

For Method 1, Method 2, Method 3, Method 5 and Method 6, we fix α = 1 and σ(0) = 1, and use

the cross validation method to select β. In Method 4 and Method 7, the parameter λ was selected by

using cross validation. In addition, we implemented the lasso, the adaptive lasso (adLasso) and the

SCAD-based method for comparison. For the lasso, the adLasso and the reweighted !1 problems

in the M-step, we solved the optimization problems by a coordinate descent algorithm (Mazumder

et al., 2011).

Method 1 Method 2 Method 3 Method 4

EGIG(b|σ−1,σβ, 1
2 ,1) EGIG(b|σ−1,σβ, 3

2 ,1) EGIG(b|σ−1,σβ,− 1
2 ,1) GT(b|0, σ

λ ,
1
2 ,1)

(q = 1, γ = 1
2 ) (q = 1, γ = 3

2 ) (q = 1, γ =− 1
2 ) (q = 1, τ = 1)

Method 5 Method 6 Method 7 AdLasso

EGIG(b|σ−1,σβ,0,2) EGIG(b|σ−1,σβ,1,2) GT(b|0, σ
λ ,

1
2 ,2) ∝ exp(−|b|1/2)

(q = 2, γ = 0) (q = 2, γ = 1) (q = 2, τ = 1) (q = 1
2 )

Table 2: The EP-GIG specifications of the algorithms.

Recall that Method 1, Method 2, Method 3, Method 4 and AdLasso in fact work with the

nonconvex penalties. In particular, Method 1, Method 2 and Method 3 are based on the Laplace

scale mixture priors proposed in Appendix B. Method 4 is based on the GDP prior by Armagan

et al. (2011) and Lee et al. (2010), and we employed the !1/2 penalty in the adLasso. Thus, this

adLasso is equivalent to the EM algorithm which given in Appendix D. Additionally, Method 5 and

Method 6 are based on the Gaussian scale mixture priors given in Appendix B, and Method 7 is

based on the Cauchy prior. In Appendix C we present an EM algorithm based on the EP-Jeffreys

prior. This algorithm can be also regarded as an adaptive lasso with weights 1/|b(t)j |. Since the

performance of the algorithms is same to that of Method 4, we did not include the results with this

prior. We also did not report the results with the Gaussian scale mixture given in Example 6 of

Appendix B, because they are almost identical to those with Method 5 or Method 6.

6.1 Reconstruction on Simulation Data

We first evaluate the performance of each method on the simulated data which were used in Fan

and Li (2001) and Zou (2006). Let b = (3,1.5,0,0,2,0,0,0)T , xi
iid∼ N(0,Σ) with Σi j = 0.5|i− j|, and
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y0 = Xb. Then Gaussian noise ε ∼ N(0,δ2In) is added to y0 to form the response vector y = y0 +ε.

Let b̂ denote the sparse solution obtained from each method which takes X and y as inputs and

responses. Mean square error (MSE) ‖y0 −Xb̂‖2
2/n is used to measure reconstruction accuracy,

and the number of zeros in b̂ is employed to evaluate variable selection accuracy. If a method is

accurate, the number of “correct” (C) zeros should be 5 and “incorrect” (IC) should be 0.

For each pair (n, δ), we generate 10,000 data sets. In Table 3 we report the numbers of correct

and incorrect zeros as well as the average and standard deviation of MSE on the 10,000 data sets.

From Table 3 we see that the nonconvex penalization methods (Methods 1, 2, 3 and 4) yield the best

results in terms of reconstruction accuracy and sparsity recovery. It should be pointed out that since

the weights are defined as 1/|b(t)j |1/2 in the adLasso method, the method suffers from numerical

instability. In addition, Methods 5, 6 and 7 are based on reweighted !2 minimization, so they do not

naturally produce sparse estimates. To achieve sparseness, they have to delete small coefficients.

MSE(±STD) C IC MSE (±STD) C IC MSE (±STD) C IC

n = 60, δ = 3 n = 120, δ = 3 n = 120, δ = 1
METHOD 1 0.699(±0.63) 4.66 0.08 0.279(±0.26) 4.87 0.01 0.0253(± 0.02) 5.00 0.00
METHOD 2 0.700(±0.63) 4.55 0.07 0.287(±0.30) 4.83 0.02 0.0256(±0.03) 4.99 0.00
METHOD 3 0.728(±0.60) 4.57 0.08 0.284(±0.28) 4.93 0.00 0.0253(±0.02) 5.00 0.00
METHOD 4 0.713(±0.68) 4.78 0.12 0.281(±0.26) 4.89 0.01 0.0255(±0.03) 5.00 0.00

METHOD 5 1.039(±0.56) 0.30 0.00 0.539(±0.28) 0.26 0.00 0.0599(±0.03) 0.77 0.00
METHOD 6 0.745(±0.66) 1.36 0.00 0.320(±0.26) 1.11 0.00 0.0262(±0.02) 4.96 0.00
METHOD 7 0.791(±0.57) 0.20 0.00 0.321(±0.28) 0.42 0.00 0.0265(±0.02) 2.43 0.00

SCAD 0.804(±0.59) 3.24 0.02 0.364(±0.30) 3.94 0.00 0.0264(±0.03) 4.95 0.00
ADLASSO 0.784(±0.57) 3.60 0.04 0.335(±0.27) 4.83 0.01 0.0283(±0.02) 4.82 0.00
LASSO 0.816(±0.53) 2.48 0.00 0.406(±0.26) 2.40 0.00 0.0450(±0.03) 2.87 0.00
RIDGE 1.012(±0.50) 0.00 0.00 0.549(±0.27) 0.00 0.00 0.0658(±0.03) 0.00 0.00

Table 3: Results on the simulated data sets.

6.2 Regression on Real Data

We apply the methods to linear regression problems and evaluate their performance on three data

sets: Pyrim and Triazines (both obtained from UCI Machine Learning Repository) and the biscuit

data set (the near-infrared (NIR) spectroscopy of biscuit doughs) (Breiman and Friedman, 1997).

For Pyrim and Triazines data sets, we randomly held out 70% of the data for training and used the

remainder for test. We repeat this process 10 times, and report the mean and standard deviation of

the relative errors defined as
1

ntest

ntest

∑
i=1

∣

∣

∣

∣

y(xi)−ỹ(xi)

y(xi)

∣

∣

∣

∣

,

where y(xi) is the target response for the test input xi, and ỹ(xi) is the prediction value computed

from a regression method. For the NIR data set, we use the supplied training and test sets: 39

instances for training and the remaining 31 for test (Breiman and Friedman, 1997). Since each

response of the NIR data includes 4 attributes (“fat,” “sucrose,” “flour” and “water”), we treat the

data as four regression data sets; namely, the input instances and each-attribute responses constitute

one data set.
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The results are listed in Table 4. We see that the four new methods outperform the adaptive lasso

and lasso in most cases. In particular, Methods 1, 2, 3 and 4 (the nonconvex penalization) yield the

best performance over the first two data sets, and Methods 5, 6 and 7 are the best on the NIR

data sets. This implies that nonconvex penalization outperforms convex penalization in sparsity,

but not always in classification accuracy. The reason is that sparsity is not always in concert with

classification accuracy.

PYRIM TRIAZINES NIR(FAT) NIR(SUCROSE) NIR(FLOUR) NIR(WATER)

METHOD 1 0.1342(±0.065) 0.2786(±0.083) 0.0530 0.0711 0.0448 0.0305
METHOD 2 0.1363(±0.066) 0.2704(±0.075) 0.0556 0.0697 0.0431 0.0312
METHOD 3 0.1423(±0.072) 0.2792(±0.081) 0.0537 0.0803 0.0440 0.0319
METHOD 4 0.1414(±0.065) 0.2772(±0.081) 0.0530 0.0799 0.0448 0.0315

METHOD 5 0.1381(±0.065) 0.2917(±0.089) 0.0290 0.0326 0.0341 0.0210
METHOD 6 0.2352(±0.261) 0.3364(±0.079) 0.0299 0.0325 0.0341 0.0208
METHOD 7 0.1410(±0.065) 0.3109(±0.110) 0.0271 0.0423 0.0277 0.0279

SCAD 0.1419(±0.064) 0.2807(±0.079) 0.0556 0.0715 0.0467 0.0352
ADLASSO 0.1430(±0.064) 0.2883(±0.080) 0.0533 0.0803 0.0486 0.0319
LASSO 0.1424(±0.064) 0.2804(±0.079) 0.0608 0.0799 0.0527 0.0340

Table 4: Relative error of each method on the three data sets. The numbers of instances (n) and

numbers of features (p) of each data set are: n = 74 and p = 27 in Pyrim, n = 186 and

p = 60 in Triazines, and n = 70 and p = 700 in NIR.

6.3 Experiments on Group Variable Selection

Here we use p = 32 with 8 groups, each of size 4. Let β1:4 = (3,1.5,2,0.5)T , β9:12 = β17:20 =
(6,3,4,1)T , β25:28 = (1.5,0.75,1,0.25)T with all other entries set to zero, while X, y0, and y are

defined in the same way as in Section 6.1. If a method is accurate, the number of “correct” (C) zeros

should be 16 and “incorrect” (IC) should be 0. Results are reported in Table 5.

6.4 Experiments on Classification

In this subsection we apply our hierarchical penalized logistic regression models in Section 4.3 to bi-

nary classification problems on five real-world data sets: Ionosphere, Spambase, Sonar, Australian,

and Heart from UCI Machine Learning Repository and Statlog. Table 6 gives a brief description of

these five data sets.

In the experiments, the input matrix X∈Rn×p is normalized such that ∑n
i=1 xi j = 0 and ∑n

i=1 x2
i j =

n for all j = 1, · · · , p. For each data set, we randomly choose 70% for training and the rest for test.

We repeat this process 10 times and report the mean and the standard deviation of classification

error rate. The results in Table 7 are interesting; in most cases Methods 1, 2, 3 and 4 based on the

nonconvex penalties outperform the other methods in both accuracy and sparsity.

2048



EP-GIG PRIORS AND APPLICATIONS IN BAYESIAN SPARSE LEARNING

MSE(±STD) C IC MSE (±STD) C IC MSE (±STD) C IC

n = 60, δ = 3 n = 120, δ = 3 n = 120, δ = 1
METHOD 1′ 2.531(±1.01) 15.85 0.31 1.201(±0.45) 16.00 0.14 0.1335(±0.048) 15.72 0.01
METHOD 2′ 2.516(±1.06) 15.87 0.28 1.200(±0.43) 15.97 0.10 0.1333(±0.047) 15.87 0.00
METHOD 3′ 2.445(±0.96) 15.88 0.54 1.202(±0.43) 15.98 0.25 0.1301(±0.047) 16.00 0.01
METHOD 4′ 2.674(±1.12) 15.40 0.30 1.220(±0.45) 15.79 0.49 0.1308(±0.047) 16.00 0.00

METHOD 5′ 2.314(±0.90) 5.77 0.04 1.163(±0.41) 7.16 0.03 0.1324(±0.047) 16.00 0.01
METHOD 6′ 2.375(±0.92) 10.18 0.04 1.152(±0.41) 15.56 0.03 0.1322(±0.047) 16.00 0.00
METHOD 7′ 2.478(±0.97) 9.28 0.05 1.166(±0.41) 14.17 0.03 0.1325(±0.047) 15.96 0.00

GLASSO 2.755(±0.92) 5.52 0.00 1.478(±0.48) 3.45 0.00 0.1815(±0.058) 3.05 0.00
ADLASSO 3.589(±1.10) 11.36 2.66 1.757(±0.56) 11.85 1.42 0.1712(±0.058) 14.09 0.32
LASSO 3.234(±0.99) 9.17 1.29 1.702(±0.52) 8.53 0.61 0.1969(±0.060) 8.03 0.05

Table 5: Results on the simulated data sets.

Ionosphere Spambase Sonar Australian Heart

n 351 4601 208 690 270

p 33 57 60 14 13

Table 6: The description of data sets. Here n: the numbers of instances; p: the numbers of features.

IONOSPHERE SPAMBASE SONAR AUSTRALIAN HEART

METHOD 1 9.91(±2.19) 7.54(±0.84) 18.71(±5.05) 12.46(±2.08) 13.83(±3.33)

METHOD 2 10.19(±2.03) 7.47(±0.85) 19.19(±5.18) 12.56(±2.06) 14.20(±3.50)

METHOD 3 10.00(±1.95) 7.58(±0.83) 19.03(±4.35) 12.61(±2.15) 14.32(±3.60)

METHOD 4 10.66(±1.94) 7.61(±0.83) 21.65(±5.11) 12.65(±2.14) 13.95(±3.49)

METHOD 5 11.51(±3.77) 8.78(±0.41) 21.61(±5.70) 12.03(±1.74) 13.21(±3.14)

METHOD 6 11.51(±3.72) 8.86(±0.41) 21.94(±5.85) 13.24(±2.22) 14.57(±3.38)

METHOD 7 11.70(±4.06) 9.49(±0.33) 22.58(±5.84) 14.11(±2.48) 13.46(±3.10)

SCAD 10.47(±2.06) 7.58(±0.83 21.94(±5.60) 12.66(±2.08) 13.83(±3.43)

!1/2 10.09(±1.67) 7.51(±0.86) 20.00(±5.95) 12.56(±2.15) 14.20(±3.78)

!1 10.47(±1.96) 7.57(±0.83) 21.61(±5.11) 12.66(±2.15) 13.95(±3.49)

Table 7: Misclassification rate (%) of each method on the five data sets.

7. Conclusions

In this paper we have proposed a family of sparsity-inducing priors that we call exponential power-

generalized inverse Gaussian (EP-GIG) distributions. We have defined the EP-GIG family as a

mixture of exponential power distributions with a generalized inverse Gaussian (GIG) density. EP-

GIG are extensions of Gaussian scale mixtures and Laplace scale mixtures. As a special example

2049



ZHANG, WANG, LIU AND JORDAN

of the EP-GIG framework, the mixture of Laplace with GIG can induce a family of nonconvex

penalties. In Appendix B, we have presented five new EP-GIG priors which can induce nonconvex

penalties.

Since GIG distributions are conjugate with respect to the exponential power distribution, EP-

GIG are natural for Bayesian sparse learning. In particular, we have developed hierarchical Bayesian

models and devised EM algorithms for finding sparse solutions. We have also shown how this

framework can be applied to grouped variable selection and logistic regression problems. Our

experiments have shown that the proposed EP-GIG priors giving rise to nonconvex penalties are

potentially feasible and effective in sparsity modeling.
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Appendix A. Proofs

We first present some mathematical preliminaries that will be needed.

A.1 Mathematical Preliminaries

The first three of the following lemmas are well known, so we omit their proofs.

Lemma 11 Let limν→∞ a(ν) = a. Then limν→∞

(

1+ a(ν)
ν

)ν
= exp(a).

Lemma 12 (Stirling Formula) limν→∞
Γ(ν)

(2π)1/2νν−1/2 exp(−ν)
= 1.

Lemma 13 Assume z > 0 and ν > 0. Then

lim
ν→∞

Kν(ν1/2z)

π1/22ν−1/2ν(ν−1)/2z−ν exp(−ν)exp(−z2/4)
= 1.

Proof Consider the integral representation of Kν(ν1/2z) as

Kν(ν
1/2z) = π−1/22ννν/2zνΓ

(

ν+
1

2

)

∫ ∞

0
(t2 +νz2)−ν− 1

2 cos(t)dt

= π−1/22νν−(ν+1)/2z−(ν+1)Γ
(

ν+
1

2

)

∫ ∞

0

cos(t)

(1+ t2/(νz2))ν+ 1
2

cos(t)dt.

Thus, we have

lim
ν→∞

Kν(ν1/2z)

π−1/22νν−(ν+1)/2z−(ν+1)Γ
(

ν+ 1
2

) = lim
ν→∞

∫ ∞

0

cos(t)

(1+ t2/(νz2))ν+ 1
2

cos(t)dt

=
∫ ∞

0
cos(t)exp(−t2/z2)dt.
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We now calculate the integral
∫ ∞

0 cos(t)exp(−t2/z2)dt for z > 0. We denote this integral by φ(z)
and let u = t/z. Hence,

φ(z) = z

∫ ∞

0
exp(−u2)cos(uz)du = z f (z),

where f (z) =
∫ ∞

0 exp(−u2)cos(uz)du. Note that

f ′(z) =−
∫ ∞

0
exp(−u2)sin(uz)udu =

1

2

∫ ∞

0
sin(uz)d exp(−u2)

=−
z

2

∫ ∞

0
exp(−u2)cos(uz)du =−

z

2
f (z),

which implies that f (z) =C exp(−z2/4) where C is a constant independent of z. We calculate f (1)
to obtain C. Since

C = lim
z→+0

f (z) = lim
z→+0

∫ ∞

0
e−u2

cos(uz)du =
∫ ∞

0
e−u2

du =

√
π

2
,

we have φ(z) =
√

π
2 zexp(−z2/4). Subsequently,

lim
ν→∞

Kν(ν1/2z)

π−1/22νν−(ν+1)/2z−(ν+1)Γ
(

ν+ 1
2

) =

√
π

2
zexp(−z2/4).

On the other hand, it follows from Lemmas 11 and 12 that

lim
ν→∞

Γ(ν+1/2)

(2π)1/2νν exp(−ν)
= lim

ν→∞

Γ(ν+1/2)√
2πνν[1+1/(2ν)]ν exp(−ν)exp(−1/2)

= 1.

Thus,

lim
ν→∞

Kν(ν1/2z)

π
1
2 2ν− 1

2 ν
ν−1

2 z−ν exp(−ν)exp(− z2

4 )
= 1.

Lemma 14 The modified Bessel function of the second kind Kγ(u) satisfies the following properties:

(1) Kγ(u) = K−γ(u);

(2) Kγ+1(u) = 2 γ
u Kγ(u)+Kγ−1(u);

(3) K1/2(u) = K−1/2(u) =
√

π
2u exp(−u);

(4)
∂Kγ(u)

∂u
=− 1

2(Kγ−1(u)+Kγ+1(u)) =−Kγ−1(u)− γ
u Kγ(u) =

γ
u Kγ(u)−Kγ+1(u).

(5) For γ ∈ (−∞,+∞), Kγ(u)∼
√

π
2u exp(−u) as u →+∞.

Lemma 15 Let Qν(z) = Kν−1(
√

z)/(
√

zKν(
√

z)) where ν ∈ R and z > 0. Then, Qν is completely

monotone.
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Proof When ν ≥ 0, the result was proved by Grosswald (1976). Thus, we only need to consider the

case in which ν < 0. In this case, we let ν =−τ where τ > 0. Thus,

Qν =
K−τ−1(

√
z)

√
zK−τ(

√
z)

=
Kτ+1(

√
z)

√
zKτ(

√
z)

=
2τ

z
+

Kτ−1(
√

z)
√

zKτ(
√

z)
,

which is obviously completely monotone.

The following proposition of the GIG distribution can be found in Jørgensen (1982).

Proposition 16 Let η be distributed according to GIG(η|γ,β,α) with α > 0 and β > 0. Then

E(ην) =
(β

α

)ν/2 Kγ+ν(
√

αβ)

Kγ(
√

αβ)
.

We are especially interested in the cases that γ = 1/2, γ = −1/2, γ = 3/2 and γ = −3/2. For

these cases, we have the following results.

Proposition 17 Let α > 0 and β > 0.

(1) If η is distributed according to GIG(η|1/2,β,α), then

E(η) =
1+

√

αβ

α
, E(η−1) =

√

α

β
.

(2) If η is distributed according to GIG(η|−1/2,β,α), then

E(η) =

√

β

α
, E(η−1) =

1+
√

αβ

β
.

(3) If η is distributed according to GIG(η|3/2,β,α), then

E(η) =
3

α
+

β

1+
√

αβ
, E(η−1) =

α

1+
√

αβ
.

(4) If η is distributed according to GIG(η|−3/2,β,α), then

E(η) =
β

1+
√

αβ
, E(η−1) =

3

β
+

α

1+
√

αβ
.

Proof It follows from Lemma 14 that K3/2(u) =
1+u

u K1/2(u) =
1+u

u K−1/2(u).
We first consider the case that η ∼ GIG(η|1/2,β,α). Consequently, E(η−1) = α/β and

E(η) =
(β

α

)1/2 K 3
2
(
√

αβ)

K 1
2
(
√

αβ)
=
(β

α

)1/2 1+
√

αβ
√

αβ
=

1+
√

αβ

α
.
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As for the case that η ∼ GIG(η|−3/2,β,α), it follows from Proposition 16 that

E(η) =
(β

α

)1/2 K−1/2(
√

αβ)

K−3/2(
√

αβ)
=

β

1+
√

αβ

and

E(η−1) =
(β

α

)−1/2 K−5/2(
√

αβ)

K−3/2(
√

αβ)
=

3

β
+

α

1+
√

αβ
.

Likewise, we have the second and third parts.

A.2 Some Limiting Properties of GIG Distributions

An interesting property of the gamma and inverse gamma distributions is given as follows.

Proposition 18 Let λ > 0. Then

(1) limτ→∞ G(η|τ,τλ) = δ(η|1/λ).

(2) limτ→∞ IG(η|τ,τ/λ) = δ(η|1/λ).

Here δ(η|a) is the Dirac delta function; namely,

δ(η|a) =
{

∞ if η = a,
0 otherwise.

Proof Note that

lim
τ→∞

G(η|τ,τλ) = lim
τ→∞

(τλ)τ

Γ(τ)
ητ−1 exp(−τλη)

= lim
τ→∞

(τλ)τ

(2π)
1
2 ττ− 1

2 exp(−τ)
ητ−1 exp(−τλη) (Use the Stirling Formula)

= lim
τ→∞

τ
1
2

(2π)
1
2 η

(λη)τ

exp((λη−1)τ)
.

Since lnu ≤ u−1 for u > 0, with equality if and only if u = 1, we can obtain the proof.

The second part follows similarly.

As an extension of Proposition 18, we have the limiting property of GIG as follows.

Proposition 19 Let γ ∈ R, α > 0 and β > 0. Then

(1) limγ→+∞GIG(η|γ,β,γα) = δ(η|2/α).

(2) limγ→−∞GIG(η|γ,−γβ,α) = δ(η|β/2).

(3) limψ→+∞GIG(η|γ,β,α) = δ(η|φ) where ψ =
√

αβ and φ =
√

α/β ∈ (0,∞).
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Proof Using Lemma 13,

lim
γ→+∞

GIG(η|γ,β,γα) = lim
γ→+∞

γγ/2(α/β)γ/2

2Kγ(
√

γαβ)
ηγ−1 exp(−(γαη+βη−1)/2)

= lim
ν→+∞

αγ exp(αβ
4 )exp(−βη−1/2)

π
1
2 2γ+ 1

2 γ−
1
2

ηγ−1 exp(−γ(αη/2−1))

= lim
γ→+∞

η−1γ
1
2 exp(αβ

4 )

(2π)
1
2 exp(βη−1/2)

(αη/2)γ exp(−γ(αη/2−1))

= δ(η|2/α).

Again since lnu ≤ u−1 for u > 0, with equality if and only if u = 1, we can obtain the proof of Part

(1).

Let τ =−γ. We have

lim
γ→−∞

GIG(η|γ,−γβ,α) = lim
τ→+∞

GIG(η|− τ,τβ,α)

= lim
τ→+∞

(α/(τβ))−τ/2

2Kτ(
√

ταβ)
η−τ−1 exp(−(αη+ τβη−1)/2),

due to the fact that K−τ(
√

ταβ) = Kτ(
√

ταβ). Accordingly, we also have the second part.

Finally, based on (1) and Lemma 14, we have that

lim
ψ→+∞

p(η) = lim
ψ→+∞

ψ1/2

√
2π

1

exp( ψ
2φη(φη−1)2)

= δ(η|φ).

A.3 The Proof of Theorem 5

With the setting that γ = 1
2 +

1
q , we have

∫ ∞

0
EP(b|0,η,q)G(η|γ,α/2)dη =

α
1
q+

1
4 |b|

q
4

2
2
q+

1
2 Γ( q+1

q )Γ( 1
2 +

1
q)

K1/2(
√

α|b|q)

=
α

1
q+

1
4 |b|

q
4

2
2
q+

1
2 2−

2
q
√

π 2
q Γ( 2

q)

2−1/2
√

π

(α|b|q)1/4
exp(−

√

α|b|q)

=
qα1/q

4Γ( 2
q)

exp(−
√

α|b|q) = EP(b|0,α−1/2/2,q/2).

Here we use the fact that Γ( q+1
q )Γ( 1

2+
1
q) = 21−2( 1

2+
1
q )
√

πΓ(1+ 2
q) = 2−

2
q
√

π 2
q Γ( 2

q).
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A.4 The Proof of Theorem 6

The first part is immediate. We consider the proof of the second part. It follows from Lemma 14

that

∂− log p(b)

∂|b|q
=

K γq−1
q −1

(
√

α(β+ |b|q))+ (γq−1)/q√
α(β+|b|q)

K γq−1
q
(
√

α(β+ |b|q))

K γq−1
q
(
√

α(β+ |b|q))
1

2

α
√

α(β+ |b|q)

−
γq−1

2q

1

β+ |b|q

=
1

2

√
α

√

β+ |b|q
K γq−1

q −1
(
√

α(β+ |b|q))

K γq−1
q
(
√

α(β+ |b|q))
=

1

2
E(η−1|b).

due to that η|b ∼ GIG(η|(γq−1)/q,
√

β+ |b|q,α).

A.5 The Proof of Theorem 7

For notational simplicity, we let z = |bq|, ν = γq−1
q and φ(z) = ∂−log p(b)

∂|b|q . According to the above

proof, we have

φ(z) =
α

2

1
√

α(β+ z)

Kν−1(
√

α(β+ z))

Kν(
√

α(β+ z))
.

It then follows from Lemma 15 that φ(z) is completely monotone.

A.6 The Proof of Theorem 10

Let b
(1)
n = b∗+ u√

n
and

û = argmin
u

{

Ψ(u) :=
∥

∥

∥
y−X(b∗+

u√
n
)
∥

∥

∥

2
+λn

p

∑
j=1

ω
(0)
j |b∗j+

u j√
n
|
}

,

where

ω
(0)
j =

√

αnβn +αn
√

αn(βn + |b(0)j |)

Kγ−2(
√

αn(βn + |b(0)j |))

Kγ−1(
√

αn(βn+|b(0)j |))

Kγ−1(
√

αn(βn +1))

Kγ−2(
√

αn(βn+1))
.

Consider that

Ψ(u)−Ψ(0) = uT (
1

n
XT X)u−2

εT X√
n

u+λn

p

∑
j=1

ω
(0)
j

{

∣

∣b∗j+
u j√

n

∣

∣−|b∗j |
}

.

We know that XT X/n → C and XT ε√
n
→d N(0,σ2C). We thus only consider the third term of the

right-hand side of the above equation. Since αnβn → c1 and αn → ∞ (note that αn/n → c2 > 0

implies αn →+∞), we have

Kγ−1(
√

αn(βn +1))

Kγ−2(
√

αn(βn+1))
→ 1.
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If b∗j = 0, then
√

n(|b∗j +
u j√

n
|− |b∗j |) = |u j|. And since

√
nb

(0)
j = Op(1), we have αn|b

(0)
j | =

(αn/
√

n)
√

n|b(0)j | = Op(1). Hence, Qγ−1(αn(βn + |b(0)j |)) converges to a positive constant in prob-

ability. As a result, we obtain

λnω
(0)
j√

n
→p→ ∞.

due to
√

αnβn +αn√
n

Kγ−1(
√

αnβn +αn)

Kγ−2(
√

αnβn +αn)
→

√
c2.

If b∗j ,= 0, then ω
(0)
j →p

1
√

|b(0)j |
> 0 and

√
n(|b∗j +

u j√
n
|− |b∗j |)→ u jsgn(b∗j). Thus λn

ω
(0)
j√
n

√
n(|b∗j+

u j√
n
|−

|b∗j |)→p 0. The remaining parts of the proof can be immediately obtained via some slight modifi-

cations to that in Zou (2006) or Zou and Li (2008).

Appendix B. Several Special EP-GIG Distributions

We now present eight other important concrete EP-GIG distributions, obtained from particular set-

tings of γ and q.

B.1 Example 1

We first discuss the case that q = 1 and γ = 1/2. That is, we employ the mixing distribution of

L(b|0,η) with GIG(η|1/2,β,α). In this case, since

K 1
2−1(

√

α(β+|b|)) = K−1/2(
√

α(β+|b|)) =
(π/2)1/2

(α(β+|b|))1/4
exp(−

√

α(β+|b|))

and

K1/2(
√

αβ) =
(π/2)1/2

(αβ)1/4
exp(−

√

αβ),

we obtain the following pdf for EGIG(b|α,β,1/2,1):

p(b) =
α1/2

4
exp(

√

αβ)(β+|b|)−1/2 exp(−
√

α(β+|b|)). (7)

B.2 Example 2

The second special EP-GIG distribution is based on the setting of q = 1 and γ = 3/2. Since

K3/2(u) =
u+1

u
K1/2(u) =

u+1

u

(π/2)1/2

u1/2
exp(−u),

we obtain that the pdf of GIG(η|3/2,β,α) is

p(η|α,β,3/2) =
α3/2

√
2π

exp(
√

αβ)
√

αβ+1
η

1
2 exp(−(αη+βη−1)/2)

and that the pdf of EGIG(b|α,β,3/2,1) is

p(b) =
αexp(

√

αβ)

4(
√

αβ+1)
exp(−

√

α(β+|b|)). (8)
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B.3 Example 3

We now consider the case that q = 1 and γ = −1/2. In this case, we have EGIG(b|α,β,−1/2,1)
which is a mixture of L(b|0,η) with density GIG(η|−1/2,β,α). The density of

EGIG(b|α,β,−1/2,1) is

p(b) =
β1/2 exp(

√

αβ)

4(β+ |b|)3/2
(1+

√

α(β+ |b|))exp(−
√

α(β+ |b|)).

B.4 Example 4

The fourth special EP-GIG distribution is EGIG(b|α,β,0,2); that is, we let q = 2 and γ = 0. In

other words, we consider the mixture of the Gaussian distribution N(b|0,η) with the hyperbolic

distribution GIG(η|β,α,0). We now have

p(b) =
1

2K0(
√

αβ)
√

β+b2
exp(−

√

α(β+b2)).

B.5 Example 5

In the fifth special case we set q = 2 and γ = 1; that is, we consider the mixture of the Gaussian

distribution N(b|0,η) with the generalized inverse Gaussian GIG(η|1,β,α). The density of the

corresponding EP-GIG distribution EGIG(b|α,β,1,2) is

p(b) =
1

2K1(
√

αβ)β1/2
exp(−

√

α(β+b2)).

B.6 Example 6

The final special case is based on the settings q = 2 and γ =−1. In this case, we have

p(b) =
∫ ∞

0
N(b|0,η)GIG(η|−1,β,α)dη =

(β/α)1/2

2K1(
√

αβ)

1+
√

α(β+b2)

exp(
√

α(β+b2))
(β+b2)−

3
2 .

B.7 Example 7

We are also interested EP-GIG with q = 1/2, that is, a class of bridge scale mixtures. In this and

next examples, we present two special cases. First, we set q = 1/2 and γ = 3/2. That is,

p(b) =
∫ ∞

0
EP

(

b|0,η,1/2
)

GIG
(

η|3/2,β,α
)

dη =
α

3
2 exp(

√

αβ)

24(1+
√

αβ)

exp(−
√

α(β+|b|1/2))

(β+|b| 1
2 )

1
2

.

B.8 Example 8

In this case we set q = 1/2 and γ = 5/2. We now have

p(b) =
∫ ∞

0
EP(b|0,η,1/2)GIG(η|5/2,β,α)dη =

α2 exp(
√

αβ)

24(3+3
√

αβ+αβ)
exp

(

−
√

α(β+|b|1/2)
)

.
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Appendix C. EP-Jeffreys Priors

We first consider the definition of EP-Jeffreys prior, which the mixture of EP(b|0,η,q) with the

Jeffreys prior 1/η. It is easily verified that

p(b) ∝
∫

EP(b|0,η,q)η−1dη =
q

2
|b|−1

and that [η|b]∼ IG(η|1/q, |b|q/2). In this case, we obtain

E(η−1|b) =
1

2q
|b|−q.

On the other hand, the EP-Jeffreys prior induces penalty log |b| for b. Moreover, it is immedi-

ately calculated that

d log |b|
|b|q

!
1

q
|b|−q = 2E(η−1|b).

As we can see, our discussions here present an alternative derivation for the adaptive lasso (Zou,

2006). Moreover, we also obtain the relationship of the adaptive lasso with an EM algorithm.

Using the EP-Jeffreys prior, we in particular define a hierarchical model:

[y|b,σ]∼ N(y|Xb,σIn),

[b j|η j,σ]
ind∼ EP(b j|0,ση j,q),

[η j]
ind
∝ η−1

j ,

p(σ) = “Constant”.

It is easy to obtain that

[η j|b j,σ]∼ IG
(

η j

∣

∣1/q, σ−1|b j|q/2
)

.

Given the tth estimates (b(t),σ(t)) of (b,σ), the E-step of EM calculates

w
(t+1)
j ! E(η−1

j |b(t)j ,σ(t)) =
2σ(t)

q|b(t)j |q
.

The M-step maximizes Q(b,σ|b(t),σ(t)) with respect to (b,σ). In particular, it is obtained as fol-

lows:

b(t+1) = argmin
b

(y−Xb)T (y−Xb)+
p

∑
j=1

w
(t+1)
j |b j|q,

σ(t+1) =
q

qn+2p

{

(y−Xb(t+1))T (y−Xb(t+1))+
p

∑
j=1

w
(t+1)
j |b(t+1)

j |q
}

.
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Appendix D. The Hierarchy with the Bridge Prior Given in (4)

Using the bridge prior in (4) yields the following hierarchical model:

[y|b,σ]∼ N(y|Xb,σIn),

[b j|η j,σ]
ind∼ L(b j|0,ση j),

[η j]
ind
∝ G(η j|3/2,α/2),

p(σ) = “Constant”.

It is easy to obtain that

[η j|b j,σ]∼ GIG
(

η j

∣

∣1/2, σ−1|b j|,α
)

.

Given the tth estimates (b(t),σ(t)) of (b,σ), the E-step of EM calculates

w
(t+1)
j ! E(η−1

j |b(t)j ,σ(t)) =

√

√

√

√

ασ(t)

|b(t)j |
.

The M-step maximizes Q(b,σ|b(t),σ(t)) with respect to (b,σ). That is,

b(t+1) = argmin
b

(y−Xb)T (y−Xb)+
p

∑
j=1

w
(t+1)
j |b j|q,

σ(t+1) =
q

qn+2p

{

(y−Xb(t+1))T (y−Xb(t+1))+
p

∑
j=1

w
(t+1)
j |b(t+1)

j |q
}

.
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Abstract

Pattern is a package for Python 2.4+ with functionality for web mining (Google + Twitter +
Wikipedia, web spider, HTML DOM parser), natural language processing (tagger/chunker, n-gram
search, sentiment analysis, WordNet), machine learning (vector space model, k-means clustering,
Naive Bayes + k-NN + SVM classifiers) and network analysis (graph centrality and visualization).
It is well documented and bundled with 30+ examples and 350+ unit tests. The source code is
licensed under BSD and available from http://www.clips.ua.ac.be/pages/pattern.

Keywords: Python, data mining, natural language processing, machine learning, graph networks

1. Introduction

The World Wide Web is an immense collection of linguistic information that has in the last decade
gathered attention as a valuable resource for tasks such as machine translation, opinion mining and
trend detection, that is, “Web as Corpus” (Kilgarriff and Grefenstette, 2003). This use of the WWW
poses a challenge since the Web is interspersed with code (HTML markup) and lacks metadata
(language identification, part-of-speech tags, semantic labels).

“Pattern” (BSD license) is a Python package for web mining, natural language processing, ma-
chine learning and network analysis, with a focus on ease-of-use. It offers a mash-up of tools often
used when harnessing the Web as a corpus, which usually requires several independent toolkits
chained together in a practical application. Several such toolkits with a user interface exist in the
scientific community, for example ORANGE (Demšar et al., 2004) for machine learning and GEPHI

(Bastian et al., 2009) for graph visualization. By contrast, PATTERN is more related to toolkits such
as NLTK (Bird et al., 2009), PYBRAIN (Schaul et al., 2010) and NETWORKX (Hagberg et al., 2008),
in that it is geared towards integration in the user’s own programs. Also, it does not specialize in
one domain but provides general cross-domain functionality.

The package aims to be useful to both a scientific and a non-scientific audience. The syntax is
straightforward. Function names and parameters were so chosen as to make the commands self-
explanatory. The documentation assumes no prior knowledge. We believe that PATTERN is valuable
as a learning environment for students, as a rapid development framework for web developers, and
in research projects with a short development cycle.

©2012 Tom De Smedt and Walter Daelemans.
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Figure 1: Example workflow. Text is mined from the web and searched by syntax and semantics.
Sentiment analysis (positive/negative) is performed on matching phrases.

2. Package Overview

PATTERN is organized in separate modules that can be chained together, as shown in Figure 1.
For example, text from Wikipedia (pattern.web) can be parsed for part-of-speech tags (pattern.en),
queried by syntax and semantics (pattern.search), and used to train a classifier (pattern.vector).

pattern.web Tools for web data mining, using a download mechanism that supports caching,
proxies, asynchronous requests and redirection. A SearchEngine class provides a uniform API
to multiple web services: Google, Bing, Yahoo!, Twitter, Wikipedia, Flickr and news feeds us-
ing FEED PARSER (packages.python.org/feedparser). The module includes an HTML parser based
on BEAUTIFUL SOUP (crummy.com/software/beautifulsoup), a PDF parser based on PDFMINER

(unixuser.org/ euske/python/pdfminer), a web crawler, and a webmail interface.

pattern.en Fast, regular expressions-based shallow parser for English (identifies sentence con-
stituents, e.g., nouns, verbs), using a finite state part-of-speech tagger (Brill, 1992) extended with a
tokenizer, lemmatizer and chunker. Accuracy for Brill’s tagger is 95% and up. A parser with higher
accuracy (MBSP) can be plugged in. The module has a Sentence class for parse tree traversal,
functions for singularization/pluralization (Conway, 1998), conjugation, modality and sentiment
analysis. It comes bundled with WORDNET3 (Fellbaum, 1998) and PYWORDNET.

pattern.nl Lightweight implementation of pattern.en for Dutch, using the BRILL-NL language
model (Geertzen, 2010). Contributors are encouraged to read the developer documentation on how
to add support for other languages.

pattern.search N-gram pattern matching algorithm for Sentence objects. The algorithm uses
an approach similar to regular expressions. Search queries can include a mixture of words, phrases,
part-of-speech-tags, taxonomy terms (e.g., pet = dog, cat or goldfish) and control characters (e.g.,
+ = multiple, * = any, () = optional) to extract relevant information.

pattern.vector Vector space model using a Document and a Corpus class. Documents are lem-
matized bag-of-words that can be grouped in a sparse corpus to compute TF-IDF, distance metrics
(cosine, Euclidean, Manhattan, Hamming) and dimension reduction (Latent Semantic Analysis).
The module includes a hierarchical and a k-means clustering algorithm, optimized with the k-
means++ initialization algorithm (Arthur and Vassilvitskii, 2007) and triangle inequality (Elkan,
2003). A Naive Bayes, a k-NN, and a SVM classifier using LIBSVM (Chang and Li, 2011) are
included, with tools for feature selection (information gain) and K-fold cross validation.
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pattern.graph Graph data structure using Node, Edge and Graph classes, useful (for example)
for modeling semantic networks. The module has algorithms for shortest path finding, subgraph par-
titioning, eigenvector centrality and betweenness centrality (Brandes, 2001). Centrality algorithms
were ported from NETWORKX. The module has a force-based layout algorithm that positions nodes
in 2D space. Visualizations can be exported to HTML and manipulated in a browser (using our
canvas.js helper module for the HTML5 Canvas2D element).

pattern.metrics Descriptive statistics functions. Evaluation metrics including a code profiler,
functions for accuracy, precision and recall, confusion matrix, inter-rater agreement (Fleiss’ kappa),
string similarity (Levenshtein, Dice) and readability (Flesch).

pattern.db Wrappers for CSV files and SQLITE and MYSQL databases.

3. Example Script

As an example, we chain together four PATTERN modules to train a k-NN classifier on adjectives
mined from Twitter. First, we mine 1,500 tweets with the hashtag #win or #fail (our classes), for
example: “$20 tip off a sweet little old lady today #win”. We parse the part-of-speech tags for
each tweet, keeping adjectives. We group the adjective vectors in a corpus and use it to train the
classifier. It predicts “sweet” as WIN and “stupid” as FAIL. The results may vary depending on what
is currently buzzing on Twitter.

The source code is shown in Figure 2. Its size is representative for many real-world scenarios,
although a real-world classifier may need more training data and more rigorous feature selection.

from pattern.web import Twitter

from pattern.en import Sentence, parse

from pattern.search import search

from pattern.vector import Document, Corpus, KNN

corpus = Corpus()

for i in range(1,15):

for tweet in Twitter().search('#win OR #fail', start=i, count=100):

p = '#win' in tweet.description.lower() and 'WIN' or 'FAIL'

s = tweet.description.lower()

s = Sentence(parse(s))

s = search('JJ', s) # JJ = adjective

s = [match[0].string for match in s]

s = ' '.join(s)

if len(s) > 0:

corpus.append(Document(s, type=p))

classifier = KNN()

for document in corpus:

classifier.train(document)

print classifier.classify('sweet') # yields 'WIN'

print classifier.classify('stupid') # yields 'FAIL'd

Figure 2: Example source code for a k-NN classifier trained on Twitter messages.
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4. Case Study

As a case study, we used PATTERN to create a Dutch sentiment lexicon (De Smedt and Daelemans,
2012). We mined online Dutch book reviews and extracted the 1,000 most frequent adjectives.
These were manually annotated with positivity, negativity, and subjectivity scores. We then en-
larged the lexicon using distributional expansion. From the TWNC corpus (Ordelman et al., 2007)
we extracted the most frequent nouns and the adjectives preceding those nouns. This results in a
vector space with approximately 5,750 adjective vectors with nouns as features. For each annotated
adjective we then computed k-NN and inherited its scores to neighbor adjectives. The lexicon is
bundled into PATTERN 2.3.

5. Documentation

PATTERN comes bundled with examples and unit tests. The documentation contains a quick overview,
installation instructions, and for each module a detailed page with the API reference, examples of
use and a discussion of the scientific principles. The documentation assumes no prior knowledge,
except for a background in Python programming. The unit test suite includes a set of corpora for
testing accuracy, for example POLARITY DATA SET V2.0 (Pang and Lee, 2004).

6. Source Code

PATTERN is written in pure Python, meaning that we sacrifice performance for development speed
and readability (i.e., slow clustering algorithms). The package runs on all platforms and has no
dependencies, with the exception of NumPy when LSA is used. The source code is annotated with
developer comments. It is hosted online on GitHub (github.com) using the Git revision control
system. Contributions are welcomed.

The source code is released under a BSD license, so it can be incorporated into proprietary
products or used in combination with other open source packages such as SCRAPY (web mining),
NLTK (natural language processing), PYBRAIN and PYML (machine learning) and NETWORKX (net-
work analysis). We provide an interface to MBSP FOR PYTHON (De Smedt et al., 2010), a robust,
memory-based shallow parser built on the TIMBL machine learning software. The API’s for the
PATTERN parser and MBSP are identical.
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Abstract

In sequential decision problems in an unknown environment, the decision maker often faces a
dilemma over whether to explore to discover more about the environment, or to exploit current
knowledge. We address the exploration-exploitation dilemma in a general setting encompassing
both standard and contextualised bandit problems. The contextual bandit problem has recently
resurfaced in attempts to maximise click-through rates in web based applications, a task with sig-
nificant commercial interest.

In this article we consider an approach of Thompson (1933) which makes use of samples from
the posterior distributions for the instantaneous value of each action. We extend the approach by
introducing a new algorithm, Optimistic Bayesian Sampling (OBS), in which the probability of
playing an action increases with the uncertainty in the estimate of the action value. This results in
better directed exploratory behaviour.

We prove that, under unrestrictive assumptions, both approaches result in optimal behaviour
with respect to the average reward criterion of Yang and Zhu (2002). We implement OBS and
measure its performance in simulated Bernoulli bandit and linear regression domains, and also
when tested with the task of personalised news article recommendation on a Yahoo! Front Page
Today Module data set. We find that OBS performs competitively when compared to recently
proposed benchmark algorithms and outperforms Thompson’s method throughout.

Keywords: multi-armed bandits, contextual bandits, exploration-exploitation, sequential alloca-
tion, Thompson sampling

1. Introduction

In sequential decision problems in an unknown environment, the decision maker often faces a

dilemma over whether to explore to discover more about the environment, or to exploit current

knowledge. We address this exploration-exploitation dilemma in a general setting encompass-
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ing both standard bandit problems (Gittins, 1979; Sutton and Barto, 1998; Auer et al., 2002) and

contextual-bandit problems (Graepel et al., 2010; Li et al., 2010; Auer, 2002; Yang and Zhu, 2002).

This dilemma has traditionally been solved using either ad hoc approaches like ε-greedy or softmax

action selection (Sutton and Barto, 1998, Chapter 2) or computationally demanding lookahead ap-

proaches such as Gittins indices (Gittins, 1979) which provably satisfy an optimality criterion with

respect to cumulative discounted reward. However, the lookahead approaches become intractable

in all but the simplest settings and the ad hoc approaches are generally perceived to over-explore,

despite providing provably optimal long term average reward.

In recent years, Upper Confidence Bound (UCB) methods have become popular (Lai and Rob-

bins, 1985; Kaelbling, 1994; Agrawal, 1995; Auer et al., 2002), due to their low computational cost,

ease of implementation and provable optimality with respect to the rate of regret accumulation.

In this article we consider an approach of Thompson (1933) which uses posterior distributions

for the instantaneous value of each action to determine a probability distribution over the available

actions. Thompson considered only Bernoulli bandits, but in general the approach is to sample a

value from the posterior distribution of the expected reward of each action, then select the action

with the highest sample from the posterior. Since in our generalised bandit setting the samples

are conditioned on the regressor, we label this technique as Local Thompson Sampling (LTS). The

technique is used by Microsoft in selecting adverts to display during web searches (Graepel et al.,

2010), although no theoretical analysis of Thompson sampling in contextual bandit problems has

been carried out.

When these posterior samples are represented as a sum of exploitative value and exploratory

value, it becomes clear that LTS results in potentially negative exploratory values. This motivates a

new algorithm, Optimistic Bayesian Sampling (OBS), which is based on the LTS algorithm, which

is modified by replacing negative exploratory value with a zero value.

We prove that, under unrestrictive assumptions, both approaches result in optimal behaviour in

the long term consistency sense described by Yang and Zhu (2002). These proofs use elementary

and coupling techniques.

We also implement LTS and OBS and measure their performance in simulated Bernoulli bandit

and linear regression domains, and also when tested with the task of personalised news article

recommendation on the the Yahoo! Front Page Today Module User Click Log Data Set (Yahoo!

Academic Relations, 2011). We find that LTS displays competitive performance, a view shared by

Chapelle and Li (2011), and also that OBS outperforms LTS throughout.

1.1 Problem Formulation

An agent is faced with a contextual bandit problem as considered by Yang and Zhu (2002). The

process runs for an infinite sequence of time steps, t ∈ T = {1,2, . . .}. At each time step, t, a

regressor, xt ∈ X , is observed. An action choice, at ∈ A , A = {1, . . . ,A},A < ∞, is made and a

reward rt ∈ R is received.

The contextual bandit framework considered assumes that reward can be expressed as

rt = fat (xt)+ zt,at

where the zt,a are zero mean random variables with unknown distributions and fa : X → R is an

unknown continuous function of the regressor specific to action a. The stream of regressors xt is

assumed not to be influenced by the actions or the rewards, and for simplicity we assume that these
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are drawn independently from some fixed distribution on X .1 For our actions to be comparable,

we assume that ∀a ∈ A ,∀t ∈ T ,∀x ∈ X , fa(x)+ zt,a is supported on the same set, S . Furthermore to

avoid boundary cases we assume that ∀a ∈ A

sup
x∈X

fa(x)< supS . (1)

In situations where the zt,a have unbounded support, S =R, and (1) is vacuous if X is compact. The

condition is meaningful in situations where S is compact, such as if rewards are in {0,1}.

Definition 1 The optimal expected reward function, f ∗ : X → R, is defined by

f ∗(x) = max
a∈A

fa(x).

A minimal requirement for any sensible bandit algorithm is the average reward convergence crite-

rion of Yang and Zhu (2002), which identifies whether a sequence of actions receives, asymptot-

ically, rewards that achieve this optimal expected reward. Hence the main theoretical aim in this

article is to prove under mild assumptions that LTS and OBS constructs a sequence of actions such

that
∑t

s=1 fas(xs)

∑t
s=1 f ∗(xs)

a.s.
→ 1 as t → ∞. (2)

The choice of action at is based on the current and past regressors, {x1, . . . ,xt}, past action

choices, {a1, . . . ,at−1}, and past rewards, {r1, . . . ,rt−1}. Denote Ĩ1 = /0 and, for all times {t ∈ T :

t ≥ 2}, denote

Ĩt = (x1, . . . ,xt−1,r1, . . . ,rt−1,a1, . . . ,at−1).

Furthermore denote all of the prior information available as I0 and also all the information available

at time t as It (= I0 ∪ Ĩt).

Definition 2 The policy,
(

πt(·)
)

t∈T
, is a sequence of conditional probability mass functions where

πt(a) = P(at = a|It ,xt). At each time step t, the policy maps It and xt to a probability mass function

giving the probability of each action being selected.

The policy is constructed in advance of the process, using only I0, and is the function used to map

It and xt to action selection probabilities for each of the actions.

Note also that, under a Bayesian approach, the information sets It result in posterior distributions

for quantities of potential interest. In particular I0 defines the assumed functional forms of the fa,

and a prior distribution over the assumed space of functions, which is then updated as information

is received, resulting in a Bayesian regression procedure for estimating the reward functions fa, and

hence a posterior distribution and expectation of fa(xt) conditional on the information set It ∪{xt}.

We do not however formulate an exact probability model of how regressors are sampled, rewards

are drawn and inference is carried out. Instead we rely on Assumptions 1–5 placed on the Bayesian

regression framework, given in Section 3, that will be satisfied by standard models for the xt , rt and

prior information I0. In particular, randomness resulting from the regressor and reward sequences

are controlled through these assumptions, whereas our proofs control the randomness due to the

1. Note that this assumption of iid sampling from X is only used in the latter part of the proof of Theorem 1. In

fact an ergodicity condition on the convergence of sample averages would suffice, but would increase the notational

complexity of the proofs.
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action selection method. A useful framework to keep in mind is one in which regressors are drawn

independently from a distribution on a compact Euclidean space X , each zt,a is a Gaussian random

variable independent of all other random variables, and the prior information I0 includes that each

fa is a linear function, and a prior distribution over the parameters of these functions; we revisit this

model in Section 4.2 to demonstrate how this framework does indeed ensure that all the Assumptions

are satisfied. However much more general frameworks will also result in our Assumptions being

satisfied, and restricting to a particular probability model at this point will unnecessarily restrict the

analysis.

1.2 Algorithm Motivation

The choice of algorithm presented in this article is motivated by both infinite and finite time consid-

erations. The first subsection of this section describes desirable infinite time properties for an algo-

rithm that are of importance in proving optimality condition (2). The second subsection describes,

in a heuristic manner, desirable finite time properties to help understanding of the motivation behind

our choice of algorithm, as opposed to the many other algorithms that also satisfy the infinite time

requirements.

1.2.1 INFINITE TIME CONSIDERATIONS

In conventional interpretations of similar problems (Littman, 1996; Singh et al., 2000; Sutton and

Barto, 1998), there are two major aspects of generating a policy. The first is developing an evaluation

scheme and the second an action selection scheme.

So that the agent can evaluate actions, a regression procedure is used to map the current regressor

and the history It to value estimates for the actions. Denote the agent’s estimated value of action

a at time t when regressor x is presented as f̂t,a(x). Since f̂t,a is intended to be an estimate of fa,

it is desirable that the evaluation procedure is consistent, that is, ∀a ∈ A ,∀x ∈ X , f̂t,a(x)− fa(x)
converges in some sense to 0 as nt,a → ∞, where nt,a is the number of times action a has been

selected up to time t. Clearly such convergence will depend on the sequence of regressor values

presented. However consistency of evaluation is not the focus of this work, so will be assumed

where necessary and the evaluation procedure used for all algorithms compared in the numerical

experiments in §4 will be the same. The main focus of this work is on the action selection side of

the problem.

Once action value estimates are available, the agent must use an action selection scheme to

decide which action to play. So that the consistency of estimation is achieved, it is necessary that

the action selection ensures that every action is selected infinitely often. In this work, we consider

algorithms generating randomised policies as a way of ensuring infinite exploration is achieved.

In addition to consistent evaluation and infinite exploration, it is also necessary to exploit the

obtained information. Hence the action selection method should be greedy in the limit, that is, the

policy πt is designed such that

∑
a∈argmaxa∈A f̂t,a(xt)

πt(a)→ 1 as t → ∞.

These considerations result in the consideration of GLIE (greedy in the limit with infinite ex-

ploration) policies, for which action selection is greedy in the limit and also guarantees infinite

2072



OPTIMISTIC BAYESIAN SAMPLING

exploration (Singh et al., 2000). We combine a GLIE policy with consistent evaluation to achieve

criterion (2).

1.2.2 FINITE TIME CONSIDERATIONS

As well as convergence criterion (2), our choice of algorithm is also motivated by informal finite

time considerations, since many algorithms for which (2) holds are perceived to explore more than

is desirable. We note that formal optimality criteria are available, such as expected cumulative dis-

counted reward (Gittins, 1979) and rate of regret accumulation (Auer et al., 2002). However an

analysis of Thompson sampling under these criteria has proved elusive, and our heuristic approach

inspires a modification of Thompson sampling which compares favourably in numerical experi-

ments (see Section 4). In this section, we discuss the short term heuristics.

In particular, consider the methodology of evaluating both an exploitative value estimate and an

‘exploratory bonus’ at each time step for each action, and then acting greedily based on the sums

of exploitative and exploratory values (Meuleau and Bourgine, 1999). An action’s exploitative

value estimate corresponds to the expected immediate reward (i.e., expected reward for the current

timestep) from selecting the action, given information obtained so far, and therefore the posterior

expectation of expected immediate reward is the appropriate exploitative action value estimate.

Definition 3 Let pa(· |It ,xt) denote the posterior distribution of fa(xt) given It and xt , and let QTh
t,a

be a random variable with distribution pa(· |It ,xt). The exploitative value, f̂t,a(xt), of action a at

time t is defined by

f̂t,a(xt) = E(QTh
t,a |It ,xt).

Thompson (1933) suggests selecting action at with probability equal to the probability that at is

optimal, given It (there is no regressor in Thompson’s framework). This principle has recently been

used by Graepel et al. (2010), who implement the scheme by sampling, for each a, QTh
t,a from the

posterior distribution pa(· |It ,xt) and selecting an action that maximises QTh
t,a. This corresponds to

using an exploratory value f̃ Th
t,a (xt) :=QTh

t,a− f̂t,a(xt) which is sampled from the posterior distribution

of the error in the exploitative action value estimate at the current regressor. We name this scheme

Local Thompson Sampling (LTS), where ‘local’ makes reference to the fact that action selection

probabilities are the probabilities that each action is optimal at the current regressor. Under mild

assumptions on the posterior expectation and error distribution approximations used, one can show

that Local Thompson Sampling guarantees that convergence criterion (2) holds (see Theorem 1).

However the exploratory value f̃ Th
t,a (xt) under LTS has zero conditional expectation given It and

xt (by Definition 3) and can take negative values. Both of these properties are undesirable if one as-

sumes that information is useful for the future. One consequence of this is that, in regular situations,

the probability of selecting an action â∗t ∈ argmaxa∈A f̂t,a(xt) decreases as the posterior variance of

fâ∗t (xt)− f̂t,â∗t (xt) increases, that is, if the estimate for an action with the highest exploitative value

has a lot of uncertainty then it is less likely to be played than if the estimate had little uncertainty.

To counteract this feature of LTS, we introduce a new procedure, Optimistic Bayesian Sampling

(OBS) in which the exploratory value is given by

f̃t,a(xt) = max(0, f̃ Th
t,a (xt)− f̂t,a(xt)).

This exploratory value has positive conditional expectation given It and xt and cannot take negative

values. The exploratory bonus results in increased selection probabilities for uncertain actions, a
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desirable improvement when compared to LTS. In §3, we show that OBS satisfies the convergence

criterion (2) under mild assumptions. Furthermore, simulations described in §4 indicate that the

OBS algorithm does indeed outperform LTS, confirming the intuition above.

1.3 Related Work

There are three broad classes of exploration approach: undirected, myopic and belief-lookahead

(Asmuth et al., 2009). In undirected exploration, the action selection distribution depends only on

the values of the exploitative action value estimates. Examples of undirected exploration include

ε-greedy and softmax action selection (see Chapter 2 of Sutton and Barto, 1998). In general, the

short term performance of undirected methods is restricted by the fact that estimate uncertainty is

not considered.

At the other end of the spectrum, in belief-lookahead methods, such as those suggested by

Gittins (1979), a fully Bayesian approach is incorporated in which the action yielding the highest

expected cumulative reward over the remainder of the process is selected,2 thereby considering ex-

ploitative and exploratory value both directly and simultaneously and providing the optimal decision

rule according to the specific criterion of maximising expected cumulative discounted reward. Ac-

cording to Wang et al. (2005),“in all but trivial circumstances, there is no hope of exactly following

an optimal action selection strategy”. Furthermore, even when it is possible to evaluate the optimal

decision rule, “the optimal solutions are typically hard to compute, rely on artificial discount factors

and fail to generalise to realistic reward distributions” (Scott, 2010). There is also the issue of ‘in-

complete learning’; Brezzi and Lai (2000) showed that, for standard bandit problems, Gittins’ index

rule samples only one action infinitely often and that this action is sub-optimal with positive prob-

ability. If the modelling assumptions and posterior approximations used are accurate, then this is a

price worth paying in order to maximise expected cumulative discounted reward. However, if the

posterior approximation method admits a significant error, then it may be that a too heavy reliance

is placed on early observations. For these reasons, Gittins-type rules are rarely useful in practice.

In myopic methods, the uncertainty of action value estimates is taken into account, although the

impact of action selections on future rewards is not considered directly. The exploratory component

of myopic methods aims to reduce the uncertainty at the current regressor without explicitly con-

sidering future reward. By reducing uncertainty at each point presented as a regressor, uncertainty

is reduced globally ‘in the right places’ without considering the regressor distribution. Myopic ac-

tion selection can be efficient, easy to implement and computationally cheap. The LTS and OBS

methods presented in this paper are myopic methods. The other main class of myopic methods

are the upper confidence bound methods, which are now popular in standard and contextual bandit

applications, and in some settings can be proved to satisfy an optimality criterion with respect to

the rate of accumulation of regret (for an overview, and definitions of various notions of regret, see

Cesa-Bianchi and Lugosi, 2006).

Inspired by the work of Lai and Robbins (1985) and Agrawal (1995), Auer et al. (2002) proposed

a myopic algorithm, UCB1, for application in standard bandit problems. The exploratory value at

time t for action a, which we denote f̃t,a, takes the simple form

f̃t,a =

√

2log(t −1)

nt,a
.

2. Note that this is only meaningful in the case of discounted rewards or if the time sequence is finite.
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Infinite exploration is guaranteed by the method, since the exploratory value grows in periods

in which the associated action is not selected. Moreover, Auer et al. (2002) prove that the ex-

pected finite-time regret is logarithmically bounded for bounded reward distributions, matching the

(asymptotically) optimal rate derived by Lai and Robbins (1985) uniformly over time. Auer et al.

(2002) also propose a variant of UCB1, named UCB-Tuned, which incorporates estimates of the

reward variances, and show it to outperform UCB1 in simulations, although no theoretical results

are given for the variant.

Two recently-proposed variants of the UCB1 algorithm are the MOSS (Minimax Optimal Strat-

egy in the Stochastic case) algorithm (Audibert and Bubeck, 2010) and the UCB-V algorithm (Au-

dibert and Bubeck, 2009). The MOSS algorithm is defined for finite problems with known horizon

|T |, but the ‘doubling trick’ described in §2.3 of Cesa-Bianchi and Lugosi (2006) can be used if the

horizon is not known. MOSS differs from UCB1 by replacing the log(t −1) term in the exploratory

value with log
(

|T |
|A |nt,a

)

and hence selecting intensively drawn actions less often. The UCB-V al-

gorithm incorporates estimates of reward variance in a similar way to the UCB-Tuned algorithm.

The UCB-Tuned, MOSS and UCB-V algorithms provide suitable benchmarks for comparison in

Bernoulli bandit problems.

Another class of ‘UCB-type’ algorithms was proposed initially by Lai and Robbins (1985),

with a recent theoretical analysis by Garivier and Cappé (2011). The evaluation of action values

involves constrained maximisation of Kullback-Leibler divergences. The primary purpose of the

KL-UCB algorithm is to address the non-parametric problem although parametric implementation is

discussed and optimal asymptotic regret bounds are proven for Bernoulli rewards. In the parametric

case, a total action value corresponds to the highest posterior mean associated with a posterior

distribution that has KL divergence less than a pre-defined term increasing logarithmically with

time. A variant of KL-UCB, named KL-UCB+ is also proposed by Garivier and Cappé (2011) and

is shown to outperform KL-UCB (with respect to expected regret) in simulated Bernoulli reward

problems. Both algorithms also serve as suitable benchmarks for comparison in Bernoulli bandit

problems.

For contextual bandit problems, Interval estimation (IE) methods, such as those suggested by

Kaelbling (1994), Pavlidis et al. (2008) and Li et al. (2010) (under the name LinUCB), have become

popular. They are UCB-type methods in which actions are selected greedily based on the upper

bound of a confidence interval for the exploitative value estimate at a fixed significance level. The

exploratory value used in IE methods is the difference between the upper bound and the exploitative

value estimate. The width of the confidence interval at a particular point in the regressor space is

expected to decrease the more times the action is selected.

There are numerous finite-time analyses of the contextual bandit problem. The case of lin-

ear expected reward functions provides the simplest contextual setting and examples of finite-time

analyses include those of the SupLinRel and SupLinUCB algorithms by Auer (2002) and Chu et al.

(2011) respectively, in which high probability regret bounds are established. The case of gener-

alised linear expected rewards is considered by Filippi et al. (2010), proving high probability regret

bounds for the GLM-UCB algorithm. Slivkins (2011) provides an example of finite-time analysis

of contextual bandits in a more general setting, in which a regret bound is proved for the Contextual

Zooming algorithm under the assumptions that the joint regressor and action space is a compact

metric space and the reward functions are Lipschitz continuous over the aforementioned space.

On the other hand, very little is known about the theoretical properties of Thompson sampling.

The only theoretical studies of Thompson sampling that we are aware of are by Granmo (2008)
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and Agrawal and Goyal (2011). The former work considers only the two-armed non-contextual

Bernoulli bandit and proves that Thompson sampling (the Bayesian Learning Automaton, in their

terminology) converges to only pulling the optimal action with probability one. The latter work con-

siders the K-armed non-contextual Bernoulli bandit and proves an optimal rate of regret (uniformly

through time) for Thompson sampling. In this work, we focus on proving convergence criterion (2)

for the LTS and OBS algorithms in a general contextual bandit setting in §3 and perform numerical

experiments in §4 to illustrate the finite time properties of the algorithms.

2. Algorithms

In this section, we describe explicitly how the action selection is carried out at each decision instant

for both the LTS and the OBS algorithms.

At each time t, the LTS algorithm requires a mechanism that can, for each action a ∈ A , be

used to sample from the posterior distribution of fa(xt) given regressor xt and information set It .

Recall that the density of this distribution is denoted as pa(·|It ,xt) and a random variable from the

distribution as QTh
t,a.

Algorithm 1 Local Thompson Sampling (LTS)

Input: Posterior distributions {pa(·|It ,xt) : a ∈ A}
for a = 1 to A do

Sample QTh
t,a ∼ pa(·|It ,xt)

end for

Sample at uniformly from argmaxa∈A QTh
t,a

As in the case of the LTS algorithm, at each time t, the OBS algorithm requires a mechanism that

can, for each action a∈A , be used to sample from the posterior distribution of fa(xt) given regressor

xt and information set It . Additionally, the OBS algorithm requires a mechanism for evaluating

exploitative value f̂t,a(xt), where exploitative value is taken to be the posterior expectation of fa(xt)
given It and xt .

Algorithm 2 Optimistic Bayesian Sampling (OBS)

Input: Posterior distributions {pa(·|It ,xt) : a ∈ A}
for a = 1 to A do

Sample QTh
t,a ∼ pa(·|It ,xt)

Evaluate f̂t,a(xt) = E(QTh
t,a|It ,xt)

Set Qt,a = max(QTh
t,a, f̂t,a(xt))

end for

Sample at uniformly from argmaxa∈A Qt,a

3. Analysis

Theoretical properties of the LTS and OBS algorithms are analysed in this section. In particular,

we focus on proving convergence in the sense of (2) under mild assumptions on the posterior dis-

tributions and expectations used. Regret analysis would provide useful insight into the finite time
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properties of the LTS and OBS algorithms. However, we consider the problem in a general setting

and impose only weak constraints on the nature of the posterior distributions used to sample action

values, making the type of regret analysis common for UCB methods difficult, but allowing the

convergence result to hold for a wide class of bandit settings and posterior approximations.

3.1 LTS Algorithm Analysis

We begin our convergence analysis by showing that the LTS algorithm explores all actions infinitely

often, thus allowing a regression procedure to estimate all the functions fa. In order to do this we

need to make some assumptions.

To guarantee infinite exploration, it is desirable that the posterior distributions, pa(·|·, ·), gen-

erating the LTS samples are supported on (infS ,supS), a reasonable assumption in many cases.

We make the weaker assumption that each sample can be greater than (or less than) any value in

(infS ,supS) with positive probability. For instance, this assumption is satisfied by any distribution

supported on (infS , infS +δ1)∪ (supS −δ2,supS) for δ1,δ2 > 0.

It is also desirable that the posterior distributions remain fixed in periods of time in which

the associated action is not selected, also a reasonable assumption if inference is independent for

different actions. We make the weaker assumption that, in such periods of time, a lower bound exists

for the probability that the LTS sample is above (or below) any value in (infS ,supS). Formally, we

make the following assumption:

Assumption 1 Let a ∈ A be an arbitrary action, let T be an arbitrary time, let IT be an arbitrary

history to time T , and let M ∈ (infS ,supS). There exists an ε > 0 depending on a, T , IT and M

such that for all t > T , all histories

It = IT ∪{xT , . . . ,xt−1,rT , . . . ,rt−1,aT , . . . ,at−1}

such that as *= a for s ∈ {T, . . . , t −1}, and all xt ∈ X

P(QTh
t,a > M|It ,xt)> ε

and

P(QTh
t,a < M|It ,xt)> ε.

Along with Assumption 1, we also assume that the posterior distributions concentrate on func-

tions of the regressor bounded away from supS as their associated actions are selected infinitely

often. Formally, we assume that:

Assumption 2 For each action a ∈ A , there exist a function ga : X → (infS ,supS) such that

(i)
[

QTh
t,a −ga(xt)

] P
→ 0 as nt,a → ∞,

(ii) supx∈X ga(x)< supS .

We do not take ga = fa since this allows us to prove infinite exploration even when our regression

framework does not support the true functions (e.g., when I0 supports only linear functions, but the

true fa are actually non-linear functions). Furthermore, the second condition, when combined with

Assumption 1, ensures that over periods in which action a is not selected there is a constant lower

2077



MAY, KORDA, LEE AND LESLIE

bound on the probability that either the LTS or OBS algorithms sample a QTh
t,a value greater than any

gã(x).
Although there is an apparent tension between Assumption 1 and Assumption 2(i), note that

Assumption 1 applies to the support of the posterior distributions for periods in which associated

actions are not selected, whereas Assumption 2(i) applies to the limits of the posterior distributions

as their associated actions are selected infinitely often.

Lemma 2 shows that, if Assumption 1 and 2 hold, then the proposed algorithm does guarantee

infinite exploration. The lemma is important as it can be combined with Assumption 2 to imply

that, for all a ∈ A ,
[

QTh
t,a −ga(xt)

] P
→ 0 as t → ∞

since ∀a ∈ A ,nt,a → ∞ as t → ∞. The proof of Lemma 2 relies on the following lemma (Corollary

5.29 of Breiman, 1992):

Lemma 1 (Extended Borel-Cantelli Lemma). Let It be an increasing sequence of σ-fields and let

Vt be It+1-measurable. Then
{

ω :
∞

∑
t=0

P(Vt |It) = ∞

}

= {ω : ω ∈Vt infinitely often}

holds with probability 1.

Lemma 2 If Assumption 1 and 2 hold, then the LTS algorithm exhibits infinite exploration with

probability 1, that is,

P

(

⋃

a∈A

{nt,a → ∞ as t → ∞}

)

= 1.

Proof Fix some arbitrary k ∈ {2, . . . ,A}. Assume without loss of generality that actions in A inf =
{k, . . . ,A} are selected infinitely often and actions in Afin = {1, . . . ,k−1} are selected finitely often.

By Assumption 2 and the infinite exploration of actions in A inf, we have that for all actions ainf ∈
A inf there exists a function gainf : X → (infS ,supS) such that

[

QTh
t,ainf −gainf(xt)

] P
→ 0 as t → ∞.

Therefore, for fixed δ > 0, there exists a finite random time, Tδ, that is the earliest time in T such

that for all actions ainf ∈ A inf we have

P
(

|QTh
t,ainf −gainf(xt)|< δ

∣

∣

∣
It ,xt , t > Tδ

)

> 1−δ. (3)

Note that, by Assumption 2, we can choose δ to be small enough that such that for all actions a ∈ A

and regressors x ∈ X ,

ga(x)+δ < supS . (4)

Since all actions in Afin are selected finitely often, there exists some finite random time Tf that

is the earliest time in T such that no action in Afin is selected after Tf . Let T = max{Tδ,Tf }. From

(4) and Assumption 1 we have that for each afin ∈ Afin\1 there exists an εafin > 0 such that

P

(

QTh
t,afin < max

a∈A
ga(xt)+δ

∣

∣

∣
It ,xt , t > T

)

> εafin , (5)
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and also that there exists an ε1 > 0 such that

P

(

QTh
t,1 > max

a∈A
ga(xt)+δ

∣

∣

∣
It ,xt , t > T

)

> ε1. (6)

Define the events:

G
δ
t,a =

{

QTh
t,a > max

a∈A
ga(xt))+δ

}

,

Gδ
t,a =

{

QTh
t,a < max

a∈A
ga(xt)+δ

}

,

Gδ
t,a =

{

|QTh
t,a −ga(xt)|< δ

}

.

Then the LTS action selection rule implies that

G
δ
t,1 ∩

(

⋂

afin∈Afin\1

Gδ
t,afin

)

∩

(

⋂

ainf∈A inf

Gδ
t,ainf

)

⊂ {at = a},

so that

P(at = 1|It ,xt ,T > t)≥ P

(

G
δ
t,1 ∩

(

⋂

afin∈Afin\1

Gδ
t,afin

)

∩

(

⋂

ainf∈A inf

Gδ
t,ainf

)

∣

∣

∣

∣

It ,xt , t > T

)

. (7)

The set {G
δ
t,1,G

δ
t,a,G

δ
t,b : a = 2, . . . ,k− 1,b = k, . . . ,A} is a conditionally independent set of events

given It and xt . Therefore, by (3), (5) and (6), we have

P

(

G
δ
t,1 ∩

(

⋂

afin∈Afin\1

Gδ
t,afin

)

∩

(

⋂

ainf∈A inf

Gδ
t,ainf

)

∣

∣

∣

∣

It ,xt , t > T

)

> εk−1(1−δ)A−k+1 (8)

where ε = minafin∈Afin εafin . Combining (7) and (8), it follows that

P(at = 1|It ,xt , t > T )> εk−1(1−δ)A−k+1

so that

∑
t∈T

P(at = 1|It ,xt)≥
∞

∑
t=T+1

P(at = 1|It ,xt)

=
∞

∑
t=T+1

P(at = 1|It ,xt , t > T )

>
∞

∑
t=T+1

εk−1(1−δ)A−k+1 = ∞

since T is almost surely finite. Hence, by Lemma 1, {at = 1} occurs infinitely often almost surely,

contradicting the assumption that 1 ∈ Afin. Since action 1 was chosen arbitrarily from the set Afin,
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any action in Afin would cause a contradiction. Therefore, Afin = /0, that is, every action is selected

infinitely often almost surely.

When we return to the notion of exploitative value estimates f̂t,a(xt) and hence the concept of a

greedy action, then we wish to ascertain whether the algorithm is greedy in the limit. Assumption

2 only implies that the sum of exploitative and exploratory values tends to a particular function of

the regressor and not that the exploratory values tend to zero. Although a minor point, the infinite

exploration, given by Assumption 1 and 2, needs to be complemented with an assumption that the

exploitative value estimates are converging to the same limit as the sampled values QTh
t,a in order

to prove that the policy generated by the LTS algorithm is GLIE. This assumption is not used in

proving that the LTS algorithm generates policies satisfying convergence criterion (2) but is used

for the equivalent proof for the OBS algorithm (see §3.2).

Assumption 3 For all actions a ∈ A

[

f̂t,a(xt)−ga(xt)
] P
→ 0 as nt,a → ∞

for ga defined as in Assumption 2.

Lemma 3 If Assumptions 1, 2 and 3 hold, then the LTS algorithm policy is GLIE.

Proof For any a ∈ A , since

f̃ Th
t,a = QTh

t,a − f̂t,a(xt),

Assumptions 2 and 3 give

f̃ Th
t,a (xt)

P
→ 0 as nt,a → ∞. (9)

Since Assumptions 1 and 2 are satisfied, infinite exploration is guaranteed by Lemma 2. This infinite

exploration and (9) imply that ∀a ∈ A

f̃ Th
t,a (xt)

P
→ 0 as t → ∞. (10)

Let us denote the set

A∗
t = argmax

a∈A

f̂t,a(xt).

By splitting value samples into exploitative and exploratory components we have

P

(

at ∈ A∗
t

∣

∣It ,xt

)

= P

(

max
a∈A∗

t

QTh
t,a > max

a∈A\A∗
t

QTh
t,a

∣

∣

∣
It ,xt

)

= P

(

max
a∈A

f̂t,a(xt)+max
a∈A∗

t

f̃ Th
t,a (xt)> max

a∈A\A∗
t

[

f̂t,a(xt)+ f̃ Th
t,a (xt)

]∣

∣

∣
It ,xt

)

≥ P

(

max
a∈A

f̂t,a(xt)− max
a∈A\A∗

t

f̂t,a(xt)> 2max
a∈A

∣

∣ f̃ Th
t,a (xt)

∣

∣

∣

∣

∣
It ,xt

)

a.s.
→ 1 as t → ∞,

since the right hand side of the last inequality converges in probability to 0 by (10) and

max
a∈A

f̂t,a(xt)> max
a∈A\A∗

t

f̂t,a(xt)
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by definition of A∗
t . Hence, the action selection is greedy in the limit. Lemma 2 ensures infinite

exploration, so the policy is GLIE.

We have shown we can achieve a GLIE policy even when we do not have consistent regression.

However, to ensure the convergence condition (2) is satisfied we need to assume consistency, that

is, that the functions ga (to which the QTh
t,a converge) are actually the true functions fa.

Assumption 4 For all actions a ∈ A and regressors x ∈ X ,

ga(x) = fa(x).

The following Theorem is the main convergence result for the LTS algorithm. Its proof uses the

fact that, under the specified assumptions, Lemma 2 implies that, for all actions a ∈ A ,

[

QTh
t,a − fa(xt)

] P
→ 0 as t → ∞.

We then use a coupling argument (dealing with the dependence in the action selection sequence) to

prove that the LTS algorithm policy satisfies convergence criterion (2).

Theorem 1 If Assumptions 1, 2 and 4 hold, then the LTS algorithm will produce a policy satisfying

convergence criterion (2).

Proof Recall that the optimal expected reward function is defined by f ∗(x) = maxa∈A fa(x). Fix

some arbitrary δ > 0. Denote the event

Eδ
t =

{

f ∗(xt)− fat (xt)< 2δ
}

so that Eδ
t is the event that true expected reward for the action selected at time t is within 2δ of the

optimal expected reward at time t.

The first part of the proof consists of showing that

P(Eδ
t |It ,xt)

a.s.
→ 1 as t → ∞.

From Assumptions 2 and 4, and the infinite exploration guaranteed by Lemma 2, ∀a ∈ A

[

QTh
t,a − fa(xt)

] P
→ 0 as t → ∞.

Therefore there exists a finite random time, Tδ, that is the earliest time in T such that ∀a ∈ A

P

(

|QTh
t,a − fa(xt)|< δ

∣

∣

∣

∣

∣

It ,xt , t > Tδ

)

> 1−δ (11)

so that, after Tδ, all sampled QTh
t,a values are within δ of the true values with high probability.

Define the events

Fδ
t,a = {|QTh

t,a − fa(xt)|< δ}.
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Then {Fδ
t,a : a ∈ A} is a conditionally independent set of events given It and xt , so that

P

( ⋂

a∈A

Fδ
t,a|It ,xt , t > Tδ

)

= ∏
a∈A

P(Fδ
t,a|It ,xt , t > Tδ)> (1−δ)A (12)

using inequality (11).

Note that, for any a∗t ∈ argmaxa∈A fa(xt),
⋂

a∈A

Fδ
t,a ⊂ {QTh

t,a∗t
> f ∗(xt)−δ} (13)

and, for any a′ ∈ {a ∈ A : f ∗(xt)− fa(xt)> 2δ},
⋂

a∈A

Fδ
t,a ⊂ {QTh

t,a′ < f ∗(xt)−δ}. (14)

Since argmaxa∈A fa(xt) is non-empty and the action selection rule is greedy on the QTh
t,a, statements

(13) and (14) give ⋂

a∈A

Fδ
t,a ⊂ { f ∗(xt)− fat (xt)< 2δ}= Eδ

t .

and so

P

(

⋂

a∈A

Fδ
t,a|It ,xt

)

≤ P(Eδ
t |It ,xt). (15)

Inequalities (12) and (15) imply that

P(Eδ
t |It ,xt , t > Tδ)> (1−δ)A.

The condition above holds for arbitrarily small δ so that ∀x ∈ X

P(Eδ
t |It ,xt)

a.s.
→ 1 as t → ∞. (16)

This concludes the first part of the proof. We have shown that the probability that the action

selected at time t has a true expected reward that is within 2δ of that of the action with the highest

true expected reward at time t tends to 1 as t → ∞. We now face the difficulty that the strong law of

large numbers cannot be used directly to establish a lower bound on limt→∞
1
t ∑t

s=1 fas(xs) since the

expected reward sequence
(

fas(xs)
)

s∈T
is a sequence of dependent random variables.

The result may be proved using a coupling argument. We will construct an independent se-

quence of actions bs that are coupled with as, but for which we can apply the strong law of large

numbers to fbs
(xs). By relating the expected reward for playing the bs sequence to that of the as

sequence we will show that the as sequence satisfies the optimality condition (2).

Fix some arbitrary ε > 0, define the sets

Aε
t = {a ∈ A : f ∗(xt)− fa(xt)< 2ε},

and let U1,U2, . . . be a sequence of independent and identically distributed U [0,1] random variables.

The construction of Eε
s and Aε

s implies that Eε
s ⇔ {as ∈ Aε

s }. So, by conditioning on the event

{as ∈ Aε
s } and using the LTS action selection rule, it follows that as can be expressed as

as =

{

argmaxa∈Aε
s

QTh
s,a if Us < P(Eε

s |Is,xs)
argmaxa∈A\Aε

s
QTh

s,a if Us > P(Eε
s |Is,xs)
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with ties resolved using uniform sampling.

We similarly define bs based on the Us as

bs =

{

argmina∈Aε
s

fa(xs) if Us < 1− ε

argmina∈A fa(xs) if Us > 1− ε,

again, with ties resolved using uniform sampling. Note that, since the Us and xs are independent

and identically distributed, the bs are independent and identically distributed, and so is the sequence

fbs
(xs).
Note that by (16) there exists a finite random time

Sε = sup

{

t < ∞ : P(Eε
t |It ,xt)< 1− ε

}

.

By considering the definition of Sε, it follows that

{s > Sε}∩{Us < 1− ε}⊂ {Us < P(Eε
s |Is,xs)}

⊂

{

as ∈ argmax
a∈Aε

s

QTh
s,a

}

⊂ {as ∈ Aε
s }

⊂
{

fas(xs)≥ min
b∈Aε

s

fb(xs)
}

. (17)

Also, it is the case that

{Us < 1− ε}=
{

bs ∈ argmin
b∈Aε

s

fb(xs)
}

⊂
{

fbs
(xs) = min

b∈Aε
s

fb(xs)
}

. (18)

Combining (17) and (18), we have that

{s > Sε}∩{Us < 1− ε}⊂
{

fas(xs)≥ fbs
(xs)
}

. (19)

Note also that

{Us > 1− ε}⊂
{

fbs
(xs) = min

a′∈A
fa′(xs)≤ fas(xs)

}

. (20)

It follows from (19), (20) and the definition of f ∗ that

{s > Sε}⊂ { f ∗(xs)≥ fas(xs)≥ fbs
(xs)}

and so
1

t

t

∑
s=Sε

f ∗(xs)≥
1

t

t

∑
s=Sε

fas(xs)≥
1

t

t

∑
s=Sε

fbs
(xs). (21)

We will now use inequality (21) to prove the result. The definition of bs implies that

{Us < 1− ε}⊂ {bs ∈ Aε
s }.

By considering the definition of Aε
s , it follows that

{Us < 1− ε}⊂ { fbs
(xs)> f ∗(xs)−2ε}. (22)

Since
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• Sε is finite

• the Us are independent and identically distributed

• the fbs
(xs) are independent and identically distributed

we can use the strong law of large numbers and (22) to get

lim
t→∞

[

1

t

t

∑
s=Sε

fbs
(xs)

]

= EU×X fbs
(xs)

= P(Us < 1− ε)EX [ fbs
(xs)|Us < 1− ε]+P(Us > 1− ε)EX [ fbs

(xs)|Us > 1− ε]

> (1− ε)
(

EX f ∗(·)−2ε
)

+ εEX [ fbs
(xs)|Us > 1− ε], (23)

where EU×X denotes expectation taken with respect to the joint distribution of Ut and xt and EX

denotes expectation taken with respect to the distribution of xt (note that both distributions are the

same for all values of t).

By the strong law of large numbers, we get

lim
t→∞

[

1

t

t

∑
s=Sε

f ∗(xs)

]

= EX f ∗(·). (24)

Since (21), (23) and (24) hold, we have that

EX f ∗(·)≥ lim
t→∞

[

1

t

t

∑
s=Sε

fas(xs)

]

≥ lim
t→∞

[

1

t

t

∑
s=Sε

fbs
(xs)

]

> (1− ε)
(

EX f ∗(·)−2ε
)

+ εEX [ fbs
(xs)|Us > 1− ε].

This holds for arbitrarily small ε, hence

lim
t→∞

[

1

t

t

∑
s=Sε

fas(xs)

]

= EX f ∗(·). (25)

It is the case that

lim
t→∞

1

t

t

∑
s=1

fas(xs) = lim
t→∞

1

t

Sε−1

∑
s=1

fas(xs)+ lim
t→∞

1

t

t

∑
s=Sε

fas(xs)

= 0+ lim
t→∞

[

1

t

t

∑
s=Sε

fas(xs)

]

(26)

as t → ∞ since Sε is finite and fas(xs)≤ supx∈X fa∗(x)< ∞.

Since both (25) and (26) hold, it is true that

lim
t→∞

[

1

t

t

∑
s=1

fas(xs)

]

= EX f ∗(·) = lim
t→∞

[

1

t

t

∑
s=1

f ∗(xs)

]

.
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Hence
∑t

s=1 fas(xs)

∑t
s=1 f ∗(xs)

a.s.
→ 1 as t → ∞.

3.2 OBS Algorithm Analysis

We analyse the OBS algorithm in a similar way to the LTS algorithm. In order to prove infinite

exploration for the OBS algorithm, we must make an additional assumption on the exploitative

value estimates. We assume that exploitative values are less than supS by a constant for all regressor

values during periods of time in which their associated actions are not selected. This allows us to

make statements similar to inequality (5) in the proof of Lemma 2, however relating to OBS samples

rather than LTS samples.

Assumption 5 Let a ∈ A be an arbitrary action, let T be an arbitrary time, and let IT be an

arbitrary history to time T . There exists a δ > 0 depending on a, T , and IT such that for all t > T ,

all histories It = IT ∪{xT , . . . ,xt−1,rT , . . . ,rt−1,aT , . . . ,at−1} such that as *= a for s ∈ {T, . . . , t −1},

and all x ∈ X ,

supS − f̂t,a(x)> δ.

We now show that the OBS algorithm explores all actions infinitely often. Assumptions 2 and 3

imply that, for any action a ∈ A ,

[

Qt,a −ga(xt)
] P
→ 0 as nt,a → ∞

so that OBS samples associated with actions assumed to be selected infinitely often can be treated in

the same way as LTS samples are in the proof of Lemma 2. The only slight difference in the proof

comes in the treatment of samples associated with actions assumed to be selected finitely often,

although Assumption 5 ensures that the logic is similar.

Lemma 4 If Assumption 1, 2, 3 and 5 hold, then the OBS algorithm exhibits infinite exploration

with probability 1.

Proof Since Qt,a = max(QTh
t,a, f̂t,a(xt)), Assumption 2 and 3 give that ∀a ∈ A inf

[

Qt,a −ga(xt)
] P
→ 0 as t → ∞.

Let T and δ be defined as in Lemma 2 (with the QTh
t,a replaced by Qt,a). In the proof of Lemma 2,

g∗(xt) := maxa∈A ga(xt)+δ is used as a target for samples associated with actions in afin ∈ A\1 to

fall below and the sample associated with action 1 to fall above. The assumptions do not restrict

from occurring the event that there exists an action a in Afin\1 such that, for all t > T , f̂t,a(xt) >
g∗(xt), thus making it impossible for Qt,a to fall below g∗(xt). However, Assumption 5 can be used

to imply that there exists a δ1 > 0 such that ∀afin ∈ Afin and ∀t > T

f̂t,afin(xt)< supS −δ1. (27)
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Assumption 1 and inequality (27) then imply that, for all actions afin ∈Afin\1, there exists an εafin > 0

such that

P

(

Qt,afin < max(g∗(xt),supS −δ1)
∣

∣It ,xt , t > T
)

> εafin

and also that there exists an ε1 > 0 such that

P

(

Qt,1 > max(g∗(xt),supS −δ1)
∣

∣It ,xt , t > T
)

> ε1.

The proof then follows in a similar manner to that of Lemma 2, with the QTh
t,a replaced by Qt,a.

In the case of the LTS algorithm, it is not necessary for the generated policy to be GLIE for

Theorem 1 to hold. Assumptions are only made on total action value estimates, that is, the sum

of exploitative and exploratory value, and it is not necessary that the exploratory value converges

to zero. Exploitative value estimates are not used explicitly for the LTS algorithm and Lemma

3 is included in this work for completeness. In the case of the OBS algorithm, it is important

that Assumption 3 holds so that the policy is GLIE, since exploitative values are used explicitly.

The total action value can be equal to the exploitative value estimate so it is important that the

exploitative estimate converges to the same value as the LTS samples. Obviously, this would hold

if the posterior expectation is used as we suggest, however our framework allows for the use any

functions of the regressor satisfying Assumptions 3 and 5 when implementing the OBS algorithm

and the convergence result will still hold.

Lemma 5 If Assumption 1, 2, 3 and 5 hold, then the OBS algorithm policy is GLIE.

Proof The proof is similar to that of Lemma 3, replacing f̃ Th
t,a with f̃t,a, replacing QTh

t,a with Qt,a and

using the fact that

f̃t,a(xt) = max(0, f̃ Th
t,a (xt)).

Under Assumptions 1–5, we have that the LTS samples, QTh
t,a, and the exploitative values, f̂t,a(xt)

are consistent estimators of the true expected rewards, fa(xt) and that infinite exploration is guar-

anteed by Lemma 4. Therefore, we have that the OBS samples, Qt,a converge in probability to the

true expected rewards, fa(xt), as t → ∞. We can therefore prove that the OBS algorithm satisfies

convergence criterion (2) using a similar method to that used for the proof of Theorem 1.

Theorem 2 If Assumptions 1–5 hold, then the OBS algorithm will produce a policy satisfying con-

vergence criterion (2).

Proof By Assumption 2, 3 and 4 and the infinite exploration guaranteed by Lemma 4, we have that

∀a ∈ A
[

Qt,a − fa(xt)
] P
→ 0 as t → ∞

since Qt,a = max(QTh
t,a, f̂t,a(xt)). The remainder of the proof follows as in the case of Theorem 1

(replacing QTh
t,a with Qt,a).
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4. Case Studies

In this section, we aim to validate claims made in §1.2 regarding the short term performance of the

OBS algorithm by means of simulation. We use the notion of cumulative pseudo-regret (Filippi

et al., 2010) to assess the performance of an algorithm. The cumulative pseudo-regret measures the

expected difference between the reward the algorithm receives and the reward that would be received

if the regression functions were known in advance so that an optimal arm can be chosen on every

timestep; it is a standard measure of finite-time performance of a bandit algorithm. Our definition

differs slightly from that of Filippi et al. (2010) since we do not restrict attention to generalised

linear bandits.

Definition 4 The cumulative (pseudo) regret, RT , at time T is given by

RT =
T

∑
t=1

[

f ∗(xt)− fat (xt)
]

.

We compare the performance of OBS to that of LTS and various recently proposed action se-

lection methods in simulated Bernoulli bandit and linear regression problem settings in §4.1 and

§4.2 respectively. We also consider a real-world version of the problem using data that relates to

personalised news article recommendation, the Yahoo! Front Page Today Module User Click Log

Data Set (Yahoo! Academic Relations, 2011). Graepel et al. (2010) suggest using LTS to deal with

the exploration-exploitation dilemma in a similar sponsored search advertising setting. We compare

the OBS performance to that of LTS on the Yahoo! data and obtain results indicating that OBS

performs better in the short term.

4.1 Bernoulli Bandit

In the multi-armed Bernoulli bandit problem, there is no regressor present. If the agent chooses

action a on any timestep then a reward of 1 is received with probability pa and 0 with probability

1− pa. For each action a, the probability pa can be estimated by considering the frequency of

success observed in past selections of the action. The agent needs to explore in order to learn the

probabilities of success for each action, so that the action yielding the highest expected reward can

be identified. The agent needs to exploit what has been learned in order to maximise expected

reward. The multi-armed Bernoulli bandit problem presents a simple example of the exploration-

exploitation dilemma, and has therefore been studied extensively.

4.1.1 PROBLEM CONSIDERED

In this case, we let the prior information, I0, consist of the following:

• The number of actions, A.

• (∀a ∈ A)(∀t ∈ T )
{

fa(xt) = pa

}

for pa ∈ (0,1) unknown.

• ∀a,∀t,zt,a =

{

−pa with probability 1− pa,
1− pa with probability pa.

• For each action a ∈ A , the prior distribution of fa is Beta(1,1) (or equivalently U(0,1)).
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4.1.2 LTS AND OBS IMPLEMENTATION

Let r̃τ,a denote the value of the reward received on the timestep where action a was picked for the

τth time. For arbitrary a ∈ A define

st,a =
nt,a

∑
τ=1

r̃τ,a.

Posterior expectations (using flat priors, as indicated by I0) can be evaluated easily, so we define

exploitative value as

f̂t,a :=
st,a +1

nt,a +2
.

The posterior distribution of pa given It has a simple form. We sample

QTh
t,a ∼ Beta(st,a +1,nt,a − st,a +1).

and set

Qt,a = max(QTh
t,a, f̂t,a).

4.1.3 CONVERGENCE

In this section, we check explicitly that Assumptions 1–5 are satisfied in this Bernoulli bandit set-

ting, therefore proving that the LTS and OBS algorithms generate policies satisfying convergence

criterion (2).

Lemma 6 The LTS total value estimate, QTh
t,a, satisfies Assumption 1, for all a ∈ A .

Proof Let a∈A , T > 0, IT and M ∈ (0,1) be arbitrary. For any t > T and It = IT ∪{rT , . . . ,rt−1,aT ,
. . . ,at−1} with as *= a for s ∈ {T, . . . , t −1}, the posterior distribution of fa given It will be the same

as the posterior distribution of fa given IT (since no further information about fa is contained in It).

Let

ε :=
1

2
min

{

P(QTh
T,a < M |IT ),P(Q

Th
T,a > M |IT )

}

.

We then have that

P(QTh
t,a > M|It)> ε

and

P(QTh
t,a < M|It)> ε.

Lemma 7 The LTS total value estimate, QTh
t,a, satisfies Assumptions 2–4, for all a ∈ A .

Proof Posterior expectations are given by

f̂t,a : =
st,a +1

nt,a +2

=
1+∑

nt,a

τ=1 r̃τ,a

nt,a +2
.
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Using the strong law of large numbers, we then have

lim
nt,a→∞

f̂t,a = lim
nt,a→∞

∑
nt,a

τ=1 r̃τ,a

nt,a
= E(rt |at = a) = pa = fa. (28)

Therefore, it is the case that

E(QTh
t,a|It) = f̂t,a

a.s.
→ fa as nt,a → ∞. (29)

By considering the variance of the LTS samples, we get

Var(QTh
t,a|It) =

(st,a +1)(nt,a − st,a +1)

(nt,a +2)2(nt,a +3)

<
(nt,a +2)2

(nt,a +2)2(nt,a +3)

=
1

(nt,a +3)
a.s.
→ 0 as nt,a → ∞. (30)

From (29) and (30), we then have ∀a ∈ A

QTh
t,a

P
→ fa as nt,a → ∞. (31)

Note that since fa = pa < 1 for each a ∈ A , and |A | < ∞, convergence result (31) shows that As-

sumptions 2 and 4 hold and convergence results (31) and (28) combined show that Assumption 3

holds.

Lemma 8 The exploitative value estimate, f̂t,a, satisfies Assumption 5, for all a ∈ A .

Proof Let a ∈ A , T > 0 and IT be arbitrary. For any t > T and It = IT∪ {rT , . . . ,rt−1,aT , . . . ,at−1}
with as *= a for s ∈ {T, . . . , t −1},

nt,a = nT,a and st,a = sT,a.

Therefore

f̂t,a =
sT,a +1

nT,a +2
≤

nT,a +1

nT,a +2
< 1−

1

nT,a +2
= supS−

1

nT,a +2
,

so that the assumption is satisfied with δ = 1
nT,a+2 .

Proposition 1 Within the described Bernoulli bandit setting convergence criterion (2) is satisfied

when the LTS or the OBS algorithm is used.

Proof Assumptions 1–5 hold, so the proof follows directly from Theorems 1 and 2.
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4.1.4 EXPERIMENTAL RESULTS

We parameterise a Bernoulli problem of the described form with a vector of probabilities, (p1, . . . ,
pA), corresponding to the expected rewards for the actions in A . We simulate the problem in four en-

vironments with parameters (0.8,0.9), (0.8,0.8,0.8,0.9), (0.45,0.55) and (0.45,0.45,0.45,0.55).
It is well known that the variance of a Bernoulli random variable is maximised when the associated

probability of success is 0.5. We choose to consider the four environments mentioned to provide

‘low variance’ and ‘high variance’ versions of the problem and to investigate the effect of increasing

the number of actions.

For each problem environment, the process is run for 8000 independent trials. A time window

of T = {1, . . . ,5000} is considered on each trial. A trial consists of sampling the potential rewards

rt,a ∼ Bernoulli(pa) for each t ∈ T and a ∈ A and running all algorithms on the same set of po-

tential rewards, whilst recording the regret incurred. We compare the performance of the LTS and

OBS algorithms to that of UCB-Tuned, MOSS, UCB-V, KL-UCB and KL-UCB+ in each of the

four simulated environments. The UCB-Tuned and MOSS algorithms are implemented exactly as

described by Auer et al. (2002) and Audibert and Bubeck (2010) respectively.3 The UCB-V algo-

rithm is implemented as described by Audibert et al. (2007), with exploration function and tuning

constants set to the ‘natural values’ suggested.4 The KL-UCB and KL-UCB+ algorithms are imple-

mented as described by Garivier and Cappé (2011), with constant c = 0, as used in their numerical

experiments.

The results of the simulations are summarised in Figures 1–4. The left hand plots show cumu-

lative regret averaged over the trials. The right hand plots show boxplots indicating the distribution

of final cumulative regret over trials. We consider cumulative regret averaged over trials since this

provides an estimate for the expected cumulative regret, E(RT ), where the expectation is taken with

respect to the regressor sequence and the reward and action sequences under the proposed algo-

rithm, a much more meaningful measure than the cumulative regret incurred over any one trial. We

plot the average cumulative regret on a logarithmic timescale, so that one can get an indication as to

whether an algorithm has a optimal rate of regret.

We first note that, in the cases considered, the MOSS and UCB-V algorithms perform relatively

poorly, despite proven regret guarantees. The left hand plots in Figures 1 and 2 indicate that the

KL-UCB+ algorithm has the best performance (in terms of expected regret) for the ‘low variance’

problem environments, whereas Figures 3 and 4 indicate that the UCB-Tuned algorithm has the

best performance in the ‘high variance’ problem environments. Both the OBS and LTS algorithms

display highly competitive performance in all cases considered, with the OBS algorithm consistently

outperforming the LTS algorithm, as predicted in Section 1.2. It is also indicated that increasing

the number of actions from 2 to 4 widens this performance gap between OBS and LTS. There

3. We implement the MOSS algorithm with the time horizon known. We note that the algorithm can be run without

knowledge of the horizon using the ‘doubling trick’ (Cesa-Bianchi and Lugosi, 2006), whereby the horizon used in the

algorithm is originally set to 2 and then doubled whenever t exceeds the assumed horizon. In preliminary numerical

experiments, the version using knowledge of the time horizon slightly outperformed (with respect to averaged final

cumulative regret) the ‘doubling trick’ version in of all problem environments tested, so we choose to use the former

in comparisons.

4. For the UCB-V algorithm, we use exploration function Et = log t and constant c = 1/6, in the notation of Audibert

et al. (2007). In preliminary numerical experiments, this version outperformed the version used in the numerical

experiments section of Audibert and Bubeck (2009) (with c = 1 instead) in all four problem environments tested, and

so is used for comparisons.
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Figure 1: Performance of various algorithms in Bernoulli bandit simulation with parameters (p1, p2) =
(0.8,0.9). Left: Cumulative regret averaged over trials. Right: Distribution of cumulative re-
gret at time t = 5000. Results based on 8000 independent trials.

is no method tested that outperforms OBS in all four problems and the OBS algorithm displays

performance that is never far from the leading algorithm.

The boxplots on the right hand side of the Figures 1–4 indicate that LTS, OBS, UBC-tuned and

(to a lesser extent) KL-UCB+ are all ‘risky’ algorithms, when compared to the others. If one was

risk-averse, then the KL-UCB, MOSS and UCBV algorithms are suitable options.5 It is also worth

noting that the regret distribution associated with the OBS algorithm seems to have a fatter upper tail

than the LTS algorithm but the LTS algorithm has more variance near the median (which is higher

than the OBS median in the four cases considered). A theoretical analysis on the concentration of

regret for the OBS and LTS algorithms is desirable so that this can be investigated further, although

we leave this to future work.

Finally, in Figure 5, we present plots of the reward ratio (2) through time, for the first 100 trials

of the first experimental condition, in order to demonstrate actual results proved in the theoretical

part of the paper. The ‘almost sure’ nature of the convergence of this quantity is observed, in that on

some runs there is a period to begin with in which the ratio ‘sticks’ before asymptoting towards 1,

whereas most runs converge quickly towards the asymptote. An identical phenomenon is observed

in the other experimental conditions.

5. Note that Audibert and Bubeck (2009) give theoretical results on the concentration of the regret incurred by the

UCB-V algorithm, as well as on its expectation.
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Figure 2: Performance in Bernoulli bandit simulation with parameters (0.8,0.8,0.8,0.9). Note that the
curves for the OBS algorithm and the KL-UCB+ algorithm are virtually coincident.

4.2 Linear Regression

In this case, we study a form of the problem in which the expected reward for each action is a linear

function of an observable scalar regressor and the reward noise terms are normally distributed. The

learning task becomes that of estimating both the intercept and slope coefficients for each of the

actions, so that the action yielding the highest expected reward given the regressor can be identi-

fied. The exploration-exploitation dilemma is inherent due to uncertainty in regression coefficient

estimates caused by the reward noise.

4.2.1 PROBLEM CONSIDERED

In this case, we let the prior information, I0, consist of the following:

• The number of actions, A = 4.

• (∀t ∈ T )
{

xt ∼U(−0.5,0.5)
}

.

• (∀a ∈ A)(∀t ∈ T )
{

fa(xt) = β1,a +β2,axt

}

for β1,a,β2,a ∈ R unknown.

• (∀a ∈ A)(∀t ∈ T )
{

zt,a ∼ N(0,σ2
a)
}

for σa ∈ R unknown.

• (∀a ∈ A){The (improper) prior distributions for β1,a and β2,a are flat over R}.

• (∀a ∈ A){The (improper) prior distribution of σ2
a is flat over R+}.
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Figure 3: Performance in Bernoulli bandit simulation with parameters (0.45,0.55). Note that the curves for
the OBS algorithm and the KL-UCB+ algorithm are virtually coincident.
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Figure 4: Performance in Bernoulli bandit simulation with parameters (0.45,0.45,0.45,0.55).
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Figure 5: Convergence of the ratio (2) in the first 100 Bernoulli bandit simulations with parameters
(p1, p2) = (0.8,0.9).

4.2.2 LTS AND OBS IMPLEMENTATION

Denote estimators at time t of the parameters ba and σa for a = 1, . . . ,A as b̂t,a and σ̂t,a respectively,

where ba = (β1,a,β2,a)T . For all a ∈ A , denote Tt,a = {τ ∈ {1, . . . , t − 1} : aτ = a} and the nt,a-

vectors of regressors and rewards observed at time steps in Tt,a as xt,a and rt,a respectively. Denote

the nt,a ×2 matrix formed by the concatenation of 1nt,a and xt,a as Xt,a, where 1nt,a is the nt,a-vector

with every component equal to 1. Let b̂t,a be given by the least squares equation

b̂t,a := (XT
t,aXt,a)

−1XT
t,art,a.

Let us also denote xt = (1,xt)T . Posterior expectations (using flat priors, as indicated by I0) can be

evaluated easily, so we define exploitative value as

f̂t,a(xt) := xT
t b̂t,a.

Let σ̂t,a be given by

σ̂t,a :=

√

1

nt,a −2
(rt,a −Xt,ab̂t,a)T (rt,a −Xt,ab̂t,a)

and let Ut,a ∼ tnt,a−2. We define the LTS exploratory value as

f̃ Th
t,a (xt) :=

[

σ̂t,a

√

xT
t (X

T
t,aXt,a)−1xt

]

Ut,a. (32)
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The LTS total value is given by

QTh
t,a(xt) = f̂t,a(xt)+ f̃ Th

t,a (xt).

The OBS total value is given by

Qt,a(xt) = max(QTh
t,a, f̂t,a(xt)).

Note that if nt,a ∈ {0,1,2} then the posterior distribution of fa(xt) is improper. In these situations,

we sample values from N(0,103) to obtain QTh
t,a.

4.2.3 CONVERGENCE

In this section, we check explicitly that Assumptions 1–5 are satisfied in this linear regression set-

ting, therefore proving that the LTS and OBS algorithms generate policies satisfying convergence

criterion (2).

Lemma 9 The LTS total value estimate, QTh
t,a, satisfies Assumption 1, for all a ∈ A .

Proof Let a∈A , T > 0, IT and M ∈R be arbitrary. For any t > T and It = IT ∪{rT , . . . ,rt−1,aT , . . . ,
at−1} with as *= a for s ∈ {T, . . . , t − 1}, the posterior distribution of ba and σ2

a given It will be the

same as that given IT (since no further information about fa is contained in It). In particular for each

regressor x, f̂t,a(x) = f̂T,a(x), and f̃ Th
t,a (x) has the same distribution given It as it did given IT . Define

ε :=
1

2
min

x∈[−0.5,0.5]
min

{

P( f̃ Th
T,a(x)< M− f̂T,a(x) |IT ),P( f̃ Th

T,a(x)< M− f̂T,a(x) |IT )
}

.

Since QTh
t,a = f̂t,a(xt)+ f̃ Th

t,a (xt), we then have that

P(QTh
t,a > M|It)> ε

and

P(QTh
t,a < M|It)> ε.

Lemma 10 (taken from Eicker, 1963) is used to prove the consistency of the least squares esti-

mators of the regression coefficients.

Lemma 10 The least squares estimators b̂t,a, t = 2,3, . . . converge in probability to ba as nt,a → ∞
if and only if λmin(XT

t,aXt,a) → ∞ as nt,a → ∞, where λmin(XT
t,aXt,a) is the smallest eigenvalue of

XT
t,aXt,a.

Lemma 11 The exploitative value estimate f̂t,a(xt)
P
→ fa(xt) as nt,a → ∞.

Proof Let x̃i,a denote the value of the regressor presented on the timestep where action a was picked

for the ith time.

XT
t,aXt,a =





nt,a ∑
nt,a

i=1 x̃i,a

∑
nt,a

i=1 x̃i,a ∑
nt,a

i=1 x̃2
i,a



 .
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The smallest eigenvalue is given by

λmin =
nt,a

2

[

∑
nt,a

i=1 x̃2
i,a

nt,a
+1−

√

√

√

√

(

∑
nt,a

i=1 x̃2
i,a

nt,a
+1

)2

−4

(

∑
nt,a

i=1 x̃2
i,a

nt,a
−

(

∑
nt,a

i=1 x̃i,a
)2

n2
t,a

)

]

.

Therefore, since VarX > 0, we have that

lim
nt,a→∞

λmin = lim
nt,a→∞

nt,a

2

[

EX2 +1−
√

(

EX2 +1
)2

−4VarX

]

= ∞.

Using Lemma 10, we then have

[

b̂t,a −ba

]

P
→ 0 as nt,a → ∞.

Multiplying on the left by xT then gives

[

f̂t,a(xt)− fa(xt)
]

P
→ 0 as nt,a → ∞.

Lemma 12 The LTS total value estimate, QTh
t,a, satisfies Assumptions 2–4, for all a ∈ A .

Proof To prove this lemma, we need to show that f̃t,a(xt)
P
→ 0 as nt,a → ∞ for all actions a ∈ A . In

order to do this, we consider each component in the product that forms f̃t,a(xt) (see (32)). Firstly,

we consider Ut,a. It is a well known (as is described in Zwillinger, 2000) that

Ut,a
D
→ N(0,1) as nt,a → ∞. (33)

Next, we consider σ̂t,a. Using the facts that b̂t,a
P
→ ba as nt,a → ∞, zt,a = rt − fa(xt) and E[zt,a] = 0

we have that

σ̂t,a :=

√

1

nt,a −2
(rt,a −Xt,ab̂t,a)T (rt,a −Xt,ab̂t,a)

P
→

√

1

nt,a −2
(rt,a −Xt,aba)T (rt,a −Xt,aba) as nt,a → ∞

a.s.
→
√

E[z2
t,a] as nt,a → ∞

=
√

Var[zt,a]+ [E[zt,a]]2

=
√

Var[zt,a] = σa. (34)
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Finally, let us consider xT
t (X

T
t,aXt,a)−1xt . We start by looking at the determinant of XT

t,aXt,a. We have

that

detXT
t,aXt,a = n2

t,a

(

1

nt,a

nt,a

∑
i=1

x̃2
i,a −

( 1

nt,a

nt,a

∑
i=1

x̃i,a

)2
)

a.s.
→ n2

t,a

(

E[x2
t ]−E[xt ]

2
)

as nt,a → ∞

= n2
t,aVar[xt ]. (35)

Using the standard formula for inverting a 2×2 matrix, we get

xT
t (X

T
t,aXt,a)

−1xt =
1

detXT
t,aXt,a

(

nt,a

∑
i=1

x̃2
i,a −2xt

nt,a

∑
i=1

x̃i,a + x2
t nt,a

)

=
1

detXT
t,aXt,a

(

nt,a

[ 1

nt,a

nt,a

∑
i=1

x̃2
i,a −

( 1

nt,a

nt,a

∑
i=1

x̃i,a

)2]

+
1

nt,a

(
nt,a

∑
i=1

x̃i,a

)2
−2xt

nt,a

∑
i=1

x̃i,a + x2
t nt,a

)

=
1

nt,a
+

1

detXT
t,aXt,a

(

1

nt,a

(
nt,a

∑
i=1

x̃i,a

)2
−2xt

nt,a

∑
i=1

x̃i,a + x2
t nt,a

)

=
1

nt,a
+

1

detXT
t,aXt,a

(

nt,a

[( 1

nt,a

nt,a

∑
i=1

x̃i,a

)2
−2

1

nt,a
xt

nt,a

∑
i=1

x̃i,a + x2
t

]

)

=
1

nt,a
+

1

detXT
t,aXt,a

(

nt,a

[ 1

nt,a

nt,a

∑
i=1

x̃i,a − xt

]2
)

. (36)

Using (35), (36) and the facts that Var[xt ]> 0 and both xt and E[xt ] are bounded, we have that

xT
t (X

T
t,aXt,a)

−1xt
a.s.
→

1

nt,a
+

[

E[xt ]− xt

]2

nt,aVar[xt ]
a.s.
→ 0 as nt,a → ∞. (37)

Equations (33), (34) and (37) imply that f̃ Th
t,a (xt)

P
→ 0 as nt,a → ∞. Therefore, since QTh

t,a = f̂t,a(xt)+

f̃ Th
t,a (xt), Lemma 11 gives us that

QTh
t,a − fa(xt)→ 0 as nt,a → ∞,

satisfying Assumptions 2 and 4. This same holds for f̂t,a(xt), hence Assumption 3 is satisfied too.

Lemma 13 The exploitative value estimate, f̂t,a(xt), satisfies Assumption 5, for all a ∈ A .

Proof Let a ∈ A , and T > 0 be arbitrary. For any t > T and It = IT ∪ {rT , . . . ,rt−1,
aT , . . . ,at−1} with as *= a for s ∈ {T, . . . , t − 1}, the regression coefficients b̂t,a are equal to b̂T,a.

Hence

max
x∈[−0.5,0.5]

f̂t,a(x) = max
x∈[−0.5,0.5]

f̂T,a(x).
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The Assumption then follows by noting that S = R.

Proposition 2 Within the described linear regression setting convergence criterion (2) is satisfied

when the LTS or the OBS algorithm is used.

Proof Assumptions 1–5 hold, so the proof follows directly from Theorems 1 and 2.

4.2.4 EXPERIMENTAL RESULTS

The process is run for 10000 independent trials. A time window of T = {1, . . . ,5000} is considered

on each trial. The regression coefficients for the actions are set to (β1,a,β2,a) = (0,1),(0,−1),
(−0.1,0),(0.1,0) for a = 1,2,3,4 respectively. The resulting expected reward functions are plotted

in Figure 6. For each trial:

• ∀t ∈ T sample xt ∼ U(−0.5,0.5)

• ∀a ∈ A and ∀t ∈ T sample zt,a ∼ N(0,σ2
a) with σa = 0.5

• ∀a ∈ A and ∀t ∈ T evaluate potential reward rt,a = β1,a +β2,axt + zt,a

• record the regret incurred using various action selection methods.

We compare the performance of LTS and OBS to an interval estimation method (or LinUCB, in

the terminology of Li et al., 2010) similar to that described in Pavlidis et al. (2008). However we

use the posterior distribution of the mean to evaluate the upper confidence bound rather than using

the predictive distribution. Specifically, the action selection rule used is given by

at = argmax
a∈A

[

f̂t,a(xt)+ σ̂t,a

√

xT
t (X

T
t,aXt,a)−1xt

]

t1− λ
100 ,nt,a−2

where tγ,n denotes the quantile function of Student’s t distribution with n degrees of freedom evalu-

ated at γ. This ensures that the value estimates are consistent, that is, the value estimates converge

to the true expected reward as associated actions are selected infinitely often. We implement the IE

method with parameter values λ = 0.01, λ = 5 and λ = 25.

The results of the simulation can be seen in Figures 7 and 8. Figure 7 (left) shows cumulative

regret averaged over the trials. The OBS algorithm displays the best performance (with respect to

cumulative regret averaged over trials) in the problem considered, and this performance is signifi-

cantly better than that of the LTS algorithm. It is also clear that the IE method performance is highly

sensitive to parameter choice. The best parameter choice in this case is λ = 5, however, it is not

clear how this parameter should be chosen based on the prior information provided. In general, if

λ is ‘too high’, then too much emphasis is put on short term performance and if λ is ‘too low’ then

too much emphasis is put on long term performance. This is indicated by the curves for the λ = 25

and λ = 0.01 methods respectively. Figure 7 (right) shows boxplots indicating the distribution of

final cumulative regret over trials. It is indicated that the IE methods become riskier as the signifi-

cance parameter used is increased and that the significance parameter provides a way of trading off

median efficiency and risk. The only method to compete with OBS on cumulative regret averaged
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Figure 6: The expected reward functions for the 4 actions in linear regression simulation.

over trials is the λ = 5 IE method, however the OBS final regret distribution is more concentrated

than the λ = 5 IE method. In Figure 8, we present plots of the reward ratio (2) through time, for

the first 100 experiments, in order to demonstrate actual results proved in the theoretical part of the

paper. Although convergence of the ratio has not occurred after the 5000 iterations, it is clear that

the ratio is improving over time.

4.3 Web-Based Personalised News Article Recommendation

We now consider the problem of selecting news articles to recommend to internet users based on

information about the users. In our framework, the recommendation choice corresponds to an action

selection and the user information corresponds to a regressor. The objective is to recommend an

article that has the highest probability of being clicked.

We test the performance of the LTS and OBS algorithms on a real-world data set, the Yahoo!

Front Page Today Module User Click Log Data Set (Yahoo! Academic Relations, 2011). A similar

study is performed by Chapelle and Li (2011). However we consider multiple trials over a short

time horizon, as opposed to Chapelle and Li’s single trial over the full data set, to investigate the

short term performance of the algorithms, and in particular to address the claim made in Section

1.2 regarding a potential short term benefit of using OBS over using LTS. It is necessary to average

results over multiple trials given the randomised nature of the OBS and LTS algorithms. We also test

the LinUCB algorithm of Li et al. (2010) with various parameter settings to provide a benchmark

for comparison.
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Figure 7: Performance of various algorithms in linear regression simulations. Left: Cumulative

regret averaged over trials. Right: Distribution of cumulative regret at t = 5000. Results

based on 10000 independent trials.
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4.3.1 USE OF DATA SET

The data set describes approximately 36M instances of news articles being recommended to inter-

net users on the Yahoo! Front Page Today Module at random times in May 2009. The form and

collection of the data set are both described in detail by Li et al. (2010). For each recommendation,

the data contains information concerning which article was recommended, whether the recommen-

dation was clicked and a feature vector describing the user. The recommended articles are chosen

uniformly at random from a dynamic pool of about 20 choices, with articles being added and re-

moved at various points of the process. The user features, xt , are given as vectors of length 6 with

one component fixed to 1, and are constructed as described by Li et al. (2010). The reward is defined

to be 1 if the recommendation is clicked and 0 otherwise.

The use of past data presents a problem in evaluating a decision-making algorithm. Specifically,

within the data a random article is recommended on each instance, which might well be different to

the article that the decision-making algorithm selects during testing. This problem can be avoided

by implementing the unbiased offline evaluator procedure of Li et al. (2011). Under this procedure,

if the action selected by the algorithm does not match the action selected in the data point, the

current data point, and subsequent data points, are ignored until a data point which matches user

data and action selection occurs. The observed reward from this data point is then awarded to the

algorithm, and the user data from the next recommendation instance in the data is used in the next

evaluation step.

4.3.2 ALGORITHM IMPLEMENTATION

The LTS and OBS algorithms are implemented using the logistic regression model of Chapelle and

Li (2011). It is assumed that there is an unknown weight vector, wa, for each article a ∈ A such that

P(rt = 1|at = a,xt = x) = (1+ exp(−wT
a x))−1.

Approximate posterior distributions for each wa are estimated to be Gaussian with mean and vari-

ance updates as described in Algorithm 3 of Chapelle and Li (2011). For our numerical experiment,

we set the unspecified regularisation parameter of Chapelle and Li (2011) to 100. The LTS algo-

rithm can easily be implemented by sampling weight vectors from the posteriors and selecting the

article with the weight vector forming the highest scalar product with the current user feature vector.

The OBS algorithm can easily be implemented by also considering posterior means of these scalar

products. We also test the LinUCB algorithm, as implemented by Chapelle and Li (2011), with

parameter α set to each of 0.5, 1 and 2.

4.3.3 NUMERICAL EXPERIMENTS

As previously mentioned, our focus is short term performance averaged over numerous trials. We

focus on the case of only 4 articles, and therefore remove all instances outwith these 4 articles from

the data set. On each of 2,500 trials, we run each of the 5 algorithms until 5,000 interactions are

accepted using data from the start of the supplied data set (Yahoo! Academic Relations, 2011); we

use only data from the start of the data set to avoid confounding the algorithm evaluations with the

non-stationarity of the data.

The concept of regret is difficult to use as a performance measure in this setting, since there is no

true model given for comparison. We instead consider the percentage of past timesteps resulting in

clicks, otherwise known as the click-through rate (CTR), and percentage benefit of OBS over LTS
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Figure 9: Normalised Click Through Rate through time for various algorithms. Results averaged

over 2,500 independent trials.

with respect to CTR. Again, to avoid issues of non-stationarity, we normalise all CTRs by dividing

by the CTR achieved (on these four articles) in the original data set.

The results of the experiment can be found in Figures 9 and 10. Figure 9 shows the normalised

CTR for all 5 algorithms, averaged over all 2500 runs. It is clear that the performance of the

LinUCB algorithm is sensitive to parameter choice; the version with parameter set to 1 performs

much better than the version set to 0.5, and it is not clear in advance of implementing the algorithm

which parameter will be optimal. As a caveat on these results, it is worth noting that the portion of

the data set used for each trial is the same, and also that the LinUCB algorithms are deterministic

given past information (except in the case of a tie in action values), so it is hard to extrapolate

general results relating to the performance of LinUCB algorithms. Furthermore Chapelle and Li

(2011) explain that the performance of the LinUCB algorithm degrades significantly with increasing

feedback delay, while the LTS and OBS algorithms are more robust to the delay, so the strong

performance of the highest-performing LinUCB algorithm in this experiment should not be taken

as conclusive evidence of high real-world performance. Unfortunately it is not possible to produce

plots comparable to Figures 5 and 8 in this case since the true optimal actions are not known.

Figure 10 shows the difference in performance of OBS and LTS, expressed as a percentage of LTS

performance, averaged over all 2500 runs. It is clear that the OBS algorithm outperforms the LTS

algorithm across the time period considered, validating the intuition in Section 1.2. The short term

improvement is small, but in many web-based application, a small difference in performance can be

significant (Graepel et al., 2010).
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Figure 10: OBS CTR as a percentage improvement of LTS CTR through time. Results averaged

over 2,500 independent trials.

5. Discussion

The assumptions made for the theoretical results in Section 3 are mild in the sense that one would

expect them to hold if the true posterior distributions and expectations are used. It is worth noting

that convergence criterion (2) is satisfied even when approximations to the posterior distributions

and expectations for the fa(xt) are used with the LTS and OBS algorithms, so long as the relevant

assumptions are satisfied. Hence, convergence is guaranteed for a large class of algorithms.

We have seen that both the LTS and the OBS algorithms are easy to implement in the cases

considered. They are also computationally cheap and robust to the use of posterior approximations,

when compared to belief-lookahead methods, such as Gittins indices. The simulation results for

the OBS algorithm are very encouraging. In every case, the OBS algorithm outperformed the LTS

algorithm and performed well compared to recent benchmarks.
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Abstract

The lasso is an important method for sparse, high-dimensional regression problems, with efficient
algorithms available, a long history of practical success, and a large body of theoretical results
supporting and explaining its performance. But even with the best available algorithms, finding the
lasso solutions remains a computationally challenging task in cases where the number of covariates
vastly exceeds the number of data points.

Marginal regression, where each dependent variable is regressed separately on each covariate,
offers a promising alternative in this case because the estimates can be computed roughly two orders
faster than the lasso solutions. The question that remains is how the statistical performance of the
method compares to that of the lasso in these cases.

In this paper, we study the relative statistical performance of the lasso and marginal regression
for sparse, high-dimensional regression problems. We consider the problem of learning which
coefficients are non-zero. Our main results are as follows: (i) we compare the conditions under
which the lasso and marginal regression guarantee exact recovery in the fixed design, noise free
case; (ii) we establish conditions under which marginal regression provides exact recovery with
high probability in the fixed design, noise free, random coefficients case; and (iii) we derive rates
of convergence for both procedures, where performance is measured by the number of coefficients
with incorrect sign, and characterize the regions in the parameter space recovery is and is not
possible under this metric.

In light of the computational advantages of marginal regression in very high dimensional prob-
lems, our theoretical and simulations results suggest that the procedure merits further study.

Keywords: high-dimensional regression, lasso, phase diagram, regularization

1. Introduction

Consider a regression model,

Y = Xβ+ z, (1)

with response Y = (Y1, . . . ,Yn)T , n× p design matrix X , coefficients β = (β1, . . . ,βp)T , and noise

variables z = (z1, . . . ,zn)T . A central theme in recent work on regression is that sparsity plays a

c©2012 Christopher R. Genovese, Jiashun Jin, Larry Wasserman and Zhigang Yao.
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critical role in effective high-dimensional inference. Loosely speaking, we call the model sparse

when most of β’s components equal 0, and we call it high dimensional when p # n.

An important problem in this context is variable selection: determining which components of β
are non-zero. For general β, the problem is underdetermined, but recent results have demonstrated

that under particular conditions on X , to be discussed below, sufficient sparsity of β allows (i) exact

recovery of β in the noise-free case (Tropp, 2004) and (ii) consistent selection of the non-zero

coefficients in the noisy-case (Chen et al., 1998; Cai et al., 2010; Candés and Tao, 2007; Donoho,

2006; Donoho and Elad, 2003; Fan and Lv, 2008; Fuchs, 2005; Knight and Fu, 2000; Meinshausen

and Bühlmann, 2006; Tropp, 2004; Wainwright, 2006; Zhao and Yu, 2006; Zou, 2006). Many of

these results are based on showing that under sparsity constraints, the lasso—a convex optimization

procedure that controls the !1 norm of the coefficients—has the same solution as an (intractable)

combinatorial optimization problem that controls the number of non-zero coefficients.

Recent years, the lasso (Tibshirani, 1996; Chen et al., 1998) has become one of the main practi-

cal and theoretical tools for sparse high-dimensional variable selection problems. In the regression

problem, the lasso estimator is defined by

β̂lasso = argmin
β

‖Y −Xβ‖2
2 +λ‖β‖1, (2)

where ‖β‖1 = ∑ j |β j| and λ ≥ 0 is a tuning parameter that must be specified. The lasso gives rise

to a convex optimization problem and thus is computationally tractable even for moderately large

problems. Indeed, the LARS algorithm (Efron et al., 2004) can compute the entire solution path as

a function of λ in O(p3 + np2) operations. Gradient descent algorithms for the lasso are faster in

practice, but have the same computational complexity. The motivation for our study is that when p

is very large, finding the lasso solutions is computationally demanding.

Marginal regression, which is also called correlation learning, simple thresholding (Donoho,

2006), and sure screening (Fan and Lv, 2008), is an older and computationally simpler method

for variable selection in which the outcome variable is regressed on each covariate separately and

the resulting coefficient estimates are screened. To compute the marginal regression estimates for

variable selection, we begin by computing the marginal regression coefficients which, assuming X

has been standardized, are

α̂ ≡ XTY.

Then, we threshold α̂ using the tuning parameter t > 0:

β̂ j = α̂ j1{|α̂ j|≥ t}. (3)

The procedure requires O(np) operations, two orders faster than the lasso for p # n. This is a

decided advantage for marginal regression because the procedure is tractable for much larger prob-

lems than is the lasso. The question that remains is how the statistical performance of marginal

regression compares to that of the lasso. In this paper, we begin to address this question.

We study the relative performance of the lasso and marginal regression for variable selection

in three regimes: (a) exact variable selection in the noise-free and noisy cases with fixed design

and coefficients, (b) exact variable selection in the noise-free case with fixed design and random

coefficients, and (c) statistical variable selection in the noisy case where performance is measured

by the number of coefficients with incorrect sign. Our goal is to reopen the case for marginal

regression as a plausible alternative to the lasso for large problems. If marginal regression exhibits
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comparable statistical performance, theoretically and empirically, then its computational advantages

make it a good choice in practice. Put another way: for very high dimensional problems, marginal

regression only needs to tie to win.

Our main results are as follows:

• In the fixed design (X fixed), noise free (z = 0), and fixed effects (β fixed) case, both pro-

cedures guarantee exact reconstruction of |sgnβ| under distinct but generally overlapping

conditions.

We analyze these conditions and give examples where each procedure fails while the other

succeeds. The lasso has the advantage of providing exact reconstruction for a somewhat

larger class of coefficients, but marginal regression has a better tolerance for collinearity and

is easier to tune. These results are discussed in Sections 2.

• In the fixed design, noise free, and random effects (β random) case, we give conditions under

which marginal regression gives exact reconstruction of |sgnβ| with overwhelming probabil-

ity.

Our condition is closely related to both the Faithfulness condition (Spirtes et al., 1993; Mein-

shausen and Bühlmann, 2006) and the Incoherence condition (Donoho and Elad, 2003). The

latter depends only on X , making it easy to check in practice, but in controlling the worst

case it is quite conservative. The former depends on the unknown β but is less stringent. Our

condition strikes a compromise between the two. These results are discussed in Section 3.

• In the random design, noisy, random effects case, we obtain convergence rates of the two

procedures in Hamming distance between the sign vectors sgnβ and sgn β̂.

Under a stylized family of signals, we derive a new “phase diagram” that partitions the pa-

rameter space into regions in which (i) exact variable selection is possible (asymptotically);

(ii) reconstruction of most relevant variables, but not all, is possible; and (iii) successful vari-

able selection is impossible. We show that both the lasso and marginal regression, properly

calibrated, perform similarly in each region. These results are described in Section 4.

To support these theoretical results, we also present simulation studies in Section 5. Our simulations

show that marginal regression and the lasso perform similarly over a range of parameters in realistic

models. Section 6 gives the proofs of all theorems and lemmas in the order they appear.

Notation. For a real number x, let sgn(x) be -1, 0, or 1 when x < 0, x = 0, and x > 0; and for

vector u,v∈Rk, define sgn(u) = (sgn(u1), . . . ,sgn(uk))T , and let (u,v) be the inner product. We will

use ‖ · ‖, with various subscripts, to denote vector and matrix norms, and | · | to represent absolute

value, applied component-wise when applied to vectors. With some abuse of notation, we will write

minu (min |u|) to denote the minimum (absolute) component of a vector u. Inequalities between

vectors are to be understood component-wise as well.

Consider a sequence of noiseless regression problems with deterministic design matrices, in-

dexed by sample size n,

Y (n) = X (n)β(n). (4)

Here, Y (n) is an n×1 response vector, X (n) is an n× p(n) matrix and β(n) is a p(n)×1 vector, where

we typically assume p(n) # n. We assume that β(n) is sparse in the sense that it has s(n) nonzero

components where s(n) ) p(n). By rearranging β(n) without loss of generality, we can partition each
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X (n) and β(n) into “signal” and “noise” pieces, corresponding to the non-zero or zero coefficients,

as follows:

X (n) =
(

X
(n)
S ,X

(n)
N

)
β(n) =

(
βS

βN

)
.

Finally, define the Gram matrix C(n) = (X (n))T X (n) and partition this as

C(n) =

(
C
(n)
SS C

(n)
SN

C
(n)
NS C

(n)
NN

)

,

where of course C
(n)
NS = (C

(n)
SN )

T . Except in Sections 4–5, we suppose X (n) is normalized so that all

diagonal coordinates of C(n) are 1.

These (n) superscripts become tedious, so for the remainder of the paper, we suppress them

unless necessary to show variation in n. The quantities X , C, p, s, ρ, as well as the tuning parameters

λ (for the lasso; see (2)) and t (for marginal regression; see (3)) are all thus implicitly dependent on

n.

2. Noise-Free Conditions for Exact Variable Selection

We restrict our attention to a sequence of regression problems in which the signal (non-zero) com-

ponents of the coefficient vector have large enough magnitude to be distinguishable from zero.

Specifically, assume that βS ∈ M s
ρ for a sequence ρ(≡ ρ(n)) > 0 (and not converging to zero too

quickly) with

M k
a =

{
x = (x1, . . . ,xk)

T ∈ Rk : |x j|≥ a for all 1 ≤ j ≤ k
}
,

for positive integer k and a > 0. (We use Mρ to denote the space M s
ρ ≡ M s(n)

ρ(n) .)

We will begin by specifying conditions on C, ρ, λ, and t such that in the noise-free case, exact

reconstruction of β is possible for the lasso or marginal regression, for all coefficient vectors for

which the (non-zero) signal coefficients βS ∈ Mρ. These in turn lead to conditions on C, p, s, ρ,

λ, and t such that in the case of homoscedastic Gaussian noise, the non-zero coefficients can be

selected consistently, meaning that for all sequences β
(n)
S ∈ M s(n)

ρ(n) ≡ Mρ,

P

(∣∣∣sgn(β̂(n))
∣∣∣=
∣∣∣sgn(β(n))

∣∣∣
)
→ 1,

as n → ∞. (This property was dubbed sparsistency by Pradeep Ravikumar, 2007.) Our goal in

this section is to compare the conditions for the two procedures. We focus on the noise-free case,

although we comment on the noisy case briefly.

2.1 Exact Reconstruction Conditions for the Lasso in the Noise-Free Case

We begin by reviewing three conditions in the noise-free case that are now standard in the literature

on the lasso:

Condition E. The minimum eigenvalue of CSS is positive.

Condition I. max
∣∣CNSC−1

SS sgn(βS)
∣∣≤ 1.
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Condition J. min
∣∣βS − λC−1

SS sgn(βS)
∣∣> 0.

Because CSS is symmetric and non-negative definite, Condition E is equivalent to CSS being invert-

ible. Later we will strengthen this condition. Condition I is sometimes called the irrepresentability

condition; note that it depends only on sgnβ, a fact that will be important later.

For the noise-free case, Wainwright (2006, Lemma 1) proves that Conditions E, I, and J are

necessary and sufficient for exact reconstruction of the sign vector, that is, for the existence of a

lasso solution β̂ such that sgn β̂ = sgnβ. (See also Zhao and Yu, 2006). Note that this result is

stronger than correctly selecting the non-zero coefficients, as it gets the signs correct as well.

It will be useful in what follows to give strong forms of these conditions. Maximizing the left

side of Condition I over all 2s sign patterns gives ‖CNSC−1
SS ‖∞, the maximum-absolute-row-sum

matrix norm. It follows that Condition I holds for all βS ∈ Mρ if and only if ‖CNSC−1
SS ‖∞ ≤ 1.

Similarly, one way to ensure that Condition J holds over Mρ is to require that every component of

λC−1
SS sgn(βS) be less than ρ. The maximum component of this vector over Mρ equals λ‖C−1

SS ‖∞,

which must be less than ρ. A simpler relation, in terms of the smallest eigenvalue of CSS is

√
s

eigenmin(CSS)
=
√

s‖C−1
SS ‖2 ≥ ‖C−1

SS ‖∞ ≥ ‖C−1
SS ‖2 =

1

eigenmin(CSS)
,

where the inequality follows from the symmetry of CSS and standard norm inequalities. This yields

the following:

Condition E’. The minimum eigenvalue of CSS is no less than λ0 > 0, where λ0 does not

depend on n.

Condition I’. ‖CNSC−1
SS ‖∞ ≤ 1−η, for 0 < η < 1 small and independent of n.

Condition J’. λ <
ρ

‖C−1
SS ‖∞

. (Under Condition E’, we can instead use λ < ρ λ0√
s
.)

Theorem 1 In the noise-free case, Conditions E’ (or E), I’ (or I), and J’ imply that for all βS ∈ Mρ,

there exists a lasso solution β̂ with sgn(β̂) = sgn(β).

These conditions can be weakened in various ways, but we chose these because they transition

nicely to the noisy case. For instance, Wainwright (2006) shows that a slight extension of Conditions

E’, I’, and J’ gives sparsistency in the case of homoscedastic Gaussian noise.

2.2 Exact Reconstruction Conditions for Marginal Regression in the Noise-Free Case

As above, define α̂ = XTY and β̂ j = α̂ j1{|α̂ j| ≥ t}, 1 ≤ j ≤ p. Exact reconstruction for variable

selection requires that β̂ j -= 0 whenever β j -= 0, or equivalently |α̂ j| ≥ t whenever β j -= 0. In the

literature on causal inference (Spirtes et al., 1993), this assumption has been called faithfulness

and is also used in Bühlmann et al. (2009) and Fan and Lv (2008). The usual justification for this

assumption is that if β is selected at random from some distribution, then faithfulness holds with

high probability. Robins et al. (2003) has criticized this assumption because results which hold

under faithfulness cannot hold in any uniform sense. We feel that despite the lack of uniformity, it

is still useful to investigate results that hold under faithfulness, since as we will show, it holds with

high probabilty under weak conditions.
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By simple algebra, we have that

α̂ =

(
α̂S

α̂N

)
=

(
XT

S XSβS

XT
N XSβS

)
.

The following condition is thus required to correctly identify the non-zero coefficients:

Condition F. max |CNSβS| < min |CSSβS|. (5)

Because this is reminiscent of (although distinct from) the faithfulness condition mentioned above,

we will refer to Condition F as the Faithfulness Condition.

Theorem 2 Condition F is necessary and sufficient for exact reconstruction to be possible for some

t > 0 with marginal regression.

Unfortunately, as the next theorem shows, Condition F cannot hold for all βS ∈ Mρ. Applying

the theorem to CSS shows that for any ρ > 0, there exists a βS ∈ Mρ that violates equation (5).

Theorem 3 Let D be an s× s positive definite, symmetric matrix that is not diagonal. Then for any

ρ > 0, there exists a β ∈ M s
ρ such that min |Dβ|= 0.

Despite the seeming pessimism of Theorem 3, the result is not as grim as it seems. Since

Cβ ≡ XTY , the theorem says that if we fix X and let Y = Xβ range through all possible β ∈ M s
ρ ,

there exists a Y such that min |XTY |= 0. However, to mitigate the pessimism, note that once X and

Y are are observed, if we see that min |XTY |> 0, we can rule out the result of Theorem 3.

2.3 Comparison of the Conditions for Exact Recovery of Sign Vector in the Noise-Free Case

In this subsection, we use several simple examples to get insight into how the exact-recovery con-

ditions for the lasso and marginal regression compare. The examples illustrate the following points:

• (Examples 1 and 2) The conditions for the two procedures are generally overlapping.

• (Example 3) When CSS = I, the lasso conditions are relatively weaker.

• (Example 4) Although the conditions for marginal regression do not hold uniformly over any

Mρ, they have the advantage that they do not require invertibility of CSS and hence are less

sensitive to small eigenvalues.

The bottom line is that the two conditions appear to be closely related, and that there are cases where

each succeeds while the other fails.

Example 1. For s = 2, assume that

CSS =

(
1 ρ
ρ 1

)
, βS =

(
2

1

)
.

For a = (a1,a2) a row of CNS, Conditions I and J require that we choose λ > 0 small enough so that

|a1+a2|≤ 1+ρ, while Condition F requires |2a1+a2|≤ min{(2+ρ), |1+2ρ|}. For many choices

of ρ, both of these inequalities are satisfied (e.g., ρ = −0.75). Figure 1 shows the sets of (a1,a2)
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Figure 1: Let CSS and βS be as in Section 2.3 Example 2, where ρ = −0.75. For a row of CNS,

say, (a1,a2). The interior of the parallelogram and that of the hexagon are the regions of

(a1,a2) satisfying the conditions of the lasso and marginal regression, respectively; see

Example 1.

for which the respective conditions are satisfied. The two regions show significant overlap, and to

a large extent, the conditions continue to overlap as ρ and βS vary. Examples for larger s can be

constructed by letting CSS be a block diagonal matrix, where the size of each main diagonal block is

small. For each row of CNS, the conditions for the lasso and marginal regression are similar to those

above, though more complicated.

Example 2. In the special case where βS ∝ 1S, Condition I for the lasso becomes |CNSC−1
SS 1N | ≤

1N , where the inequality should be interpreted as holding component-wise, and the condition for

marginal regression (Condition F) is max{|CNS1S|} ≤ min{|CSS1S|}. Note that if in addition 1S is

an eigen-vector of CSS, then the two conditions are equivalent to each other. This includes but is not

limited to the case of s = 2.

Example 3. Fix n and consider the special case in which CSS = I. For the lasso, Condition E’

(and thus E) is satisfied, Condition J’ reduces to λ < ρ, and Condition I becomes ‖CNS‖ ≤ 1. Under

these conditions, the lasso gives exact reconstruction, but Condition F can fail. To see how, let

β̃ ∈ {−1,1}s be the vector such that max |CNSβ̃|= ‖CNS‖∞ and let ! be the index of the row at which

the maximum is attained, choosing the row with the biggest absolute element if the maximum is not

unique. Let u be the maximum absolute element of row ! of CNS with index j. Define a vector δ to

be zero except in component j, which has the value ρβ̃ j/(u‖CNS‖∞). Let β = ρβ̃+ρδ. Then,

|(CNSβ)!|= ρ

(
‖CNS‖∞ +

1

‖CNS‖∞

)
> ρ = min |βS|,

so Condition F fails.

On the other hand, suppose Condition F holds for all βS ∈ {−1,1}s. (It cannot hold for all

Mρ by Theorem 3). Then, for all βS ∈ {−1,1}s, max |CNSβS|≤ 1, which implies that ‖CNS‖∞ ≤ 1.
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Choosing λ < ρ, we have Conditions E’, I, and J’ satisfied, showing by Theorem 1 that the lasso

gives exact reconstruction. It follows that the conditions for the lasso are weaker in this case.

Example 4. For simplicity, assume that βS ∝ 1S, although the phenomenon to be described below

is not limited to this case. For 1 ≤ i ≤ s, let λi and ξi be the i-th eigenvalue and eigenvector of CSS.

Without loss of generality, we can take ξi to have unit !2 norm. By elementary algebra, there are

constants c1, . . . ,cs such that 1S = c1ξ1 + c2ξ2 + . . .+ csξs. It follows that

C−1
SS ·1S =

s

∑
i=1

ci

λi
ξi and CSS ·1S =

s

∑
i=1

(ciλi)ξi.

Fix a row of CNS, say, a = (a1, . . . ,as). Respectively, the conditions for the lasso and marginal

regression require

|(a,
s

∑
i=1

ci

λi
ξi)|≤ 1 and |(a,1S)|≤ |

s

∑
i=1

ciλiξi|. (6)

Without loss of generality, we assume that λ1 is the smallest eigenvalue of CSS. Consider the

case where λ1 is small, while all other eigenvalues have a magnitude comparable to 1. In this case,

the smallness of λ1 has a negligible effect on ∑s
i=1(ciλi)ξi, and so has a negligible effect on the

condition for marginal regression. However, the smallness of λ1 may have an adverse effect on the

performance of the lasso. To see the point, we note that ∑s
i=1

ci

λi
ξi ≈ c1

λ1
ξ1. Compare this with the

first term in (6). The condition for the lasso is roughly |(a,ξ1)| ≤ c1λ1, which is rather restrictive

since λ1 is small.

Figure 2 shows the regions in a = (a1,a2,a3), a row of CNS, where the respective exact recover

sequences hold for

CSS =




1 −1/2 c

−1/2 1 0

c 0 1



 .

To better visualize these regions, we display their 2-D section (i.e., setting the first coordinate of

a to 0). The Figures suggest that as λ1 gets smaller, the region corresponding to the lasso shrinks

substantially, while that corresponding to marginal regression remains the same.

While the examples in this subsection are low dimensional, they shed light on the high di-

mensional setting as well. For instance, the approach here can be extended to the following high-

dimensional model: (a) |sgn(β j)|
iid∼ Bernoulli(ε), (b) each row of the design matrix X are iid sam-

ples from N(0,Ω/n), where Ω is a p× p correlation matrix that is sparse in the sense that each row

of Ω has relatively few coordinates, and (c) 1 ) pε ) n ) p (note that pε is the expected number

of signals). Under this model, it can be shown that (1) CSS is approximately a block-wise diagonal

matrix where each block has a relatively small size, and outside these blocks, all coordinates of CSS

are uniformly small and have a negligible effect, and (2) each row of CNS has relatively few large

coordinates. As a result, the study on the exact reconstruction conditions for the lasso and marginal

regression in this more complicated model can be reduced to a low dimensional setting, like those

discussed here. And the point that there is no clear winner between the to procedures continues to

hold in greater generality.

2.4 Exact Reconstruction Conditions for Marginal Regression in the Noisy Case

We now turn to the noisy case of model (1), taking z to be N(0,σ2
n · In), where we assume that the

parameter σ2
n is known. The exact reconstruction condition for the lasso in the noisy case has been
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Figure 2: The regions sandwiched by two hyper-planes are the regions of a = (a1,a2,a3) satisfying

the respective exact-recovery conditions for marginal regression (MR, panel 1) and for the

lasso (panels 2–4). See Section 2.3 Example 4. Here, c = 0.5,0.7,0.85 and the smallest

eigenvalues of CSS are λ1(c) = 0.29,0.14,0.014. As c varies, the regions for marginal

regression remain the same, while the regions for the lasso get substantially smaller.

studied extensively in the literature (see for example Tibshirani, 1996). So in this section, we focus

on marginal regression. First, we consider a natural extension of Condition F to the noisy case:

Condition F′. max |CNSβS|+2σn

√
2log p < min |CSSβS|. (7)

Second, when Condition F’ holds, we show that with an appropriately chosen threshold t (see (3)),

marginal regression fully recovers the support with high probability. Finally, we discuss how to

determine the threshold t empirically.

Condition F’ implies that it is possible to separate relevant variables from irrelevant variables

with high probability. To see this, let X = [x1,x2, . . . ,xp], where xi denotes the i-th column of X .

Sort |(Y,xi)| in the descending order, and let ri = ri(Y,X) be the ranks of |(Y,xi)| (assume no ties for

simplicity). Introduce

Ŝn(k) = Ŝn(k;X ,Y, p) = {i : ri(X ,Y )≤ k}, k = 1,2, . . . , p.

Recall that S(β) denotes the support of β and s = |S|. The following lemma says that, if s is known

and Condition F’ holds, then marginal regression is able to fully recover the support S with high

probability.

Lemma 4 Consider a sequence of regression models as in (4). If for sufficiently large n, Condition

F’ holds and p(n) ≥ n, then

lim
n→∞

P

(
Ŝn(s

(n);X (n),Y (n), p(n)) -= S(β(n))

)
= 0.
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Figure 3: Displayed are the 2-D sections of the regions in Figure 2, where we set the first coordinate

of a to 0. As c varies, the regions for marginal regression remain the same, but those for

the lasso get substantially smaller as λ1(c) decrease. x-axis: a2. y-axis: a3.

Lemma 4 is proved in Section 6. We remark that if both s and (p− s) tend to ∞ as n tends to ∞, then

Lemma 4 continues to hold if we replace 2σn

√
2log p in (7) by σn(

√
log(p− s)+

√
logs). See the

proof of the lemma for details.

The key assumption of Lemma 4 is that s is known so that we know how to set the threshold

t. Unfortunately, s is generally unknown. We propose the following procedure to estimate s. Fix

1 ≤ k ≤ p, let ik be the unique index satisfying rik(X ,Y ) = k. Let V̂n(k) = V̂n(k;X ,Y, p) be the linear

space spanned by xi1 ,xi2 , . . . ,xik , and let Ĥn(k) = Ĥn(k;X ,Y, p) be the projection matrix from Rn to

V̂n(k) (here and below, thêsign emphasizes the dependence of indices ik on the data). Define

δ̂n(k) = δ̂n(k;X ,Y, p) = ‖(Ĥn(k+1)− Ĥn(k))Y‖, 1 ≤ k ≤ p−1.

The term δ̂2
n(k) is closely related to the F-test for testing whether βik+1

-= 0. We estimate s by

ŝn = ŝn(X ,Y, p) = max

{
1 ≤ k ≤ p : δ̂n(k)≥ σn

√
2logn

}
+1

(in the case where δ̂n(k)< σn

√
2logn for all k, we define ŝn = 1).

Once ŝn is determined, we estimate the support S by

Ŝ(ŝn,X ,Y, p) = {ik : k = 1,2, . . . , ŝn}.

It turns out that under mild conditions, ŝn = s with high probability. In detail, suppose that the

support S(β) consists of indices j1, j2, . . . , js. Fix 1 ≤ k ≤ s. Let ṼS be the linear space spanned by

x j1 , . . . ,x js , and let ṼS,(−k) be the linear space spanned by x j1 , . . . ,x jk−1
,x jk+1

, . . . ,x js . Project β jk x jk

to the linear space ṼS ∩ Ṽ⊥
S,(−k). Let ∆n(k,β,X , p) be the !2 norm of the resulting vector (which can

be interpreted as the strength of the k-th signal after the collinearity between the k-th predictor and
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other predictors removed), and let

∆∗
n(β,X , p) = min

1≤k≤s
∆n(k,β,X , p).

The following theorem says that if ∆∗
n(β,X , p) is slightly larger than σn

√
2logn, then ŝn = s and

Ŝn = S with high probability. In other words, marginal regression fully recovers the support with

high probability. Theorem 5 is proved in Section 6.

Theorem 5 Consider a sequence of regression models as in (4). Suppose that for sufficiently large

n, Condition F’ holds, p(n) ≥ n, and

lim
n→∞

(
∆∗

n(β
(n),X (n), p(n))

σn
−
√

2logn

)
= ∞.

Then

lim
n→∞

P

(
ŝn(X

(n),Y (n), p(n)) -= s(n)
)
→ 0,

and

lim
n→∞

(
Ŝn(ŝn(X

(n),Y (n), p(n));X (n),Y (n),n, p(n)) -= S(β(n))

)
→ 0.

Theorem 5 says that the tuning parameter for marginal regression (i.e., the threshold t) can be set

successfully in a data driven fashion. In comparison, how to set the tuning parameter λ for the lasso

has been a longstanding open problem in the literature.

We briefly discuss the case where the noise variance σ2
n is unknown. The topic is addressed

in some of recent literature (e.g., Candés and Tao, 2007; Sun and Zhang, 2011). It is noteworthy

that in some applications, σ2
n can be calibrated during data collection and so it can be assumed as

known (Candés and Tao, 2007, Rejoinder). It is also noteworthy that in Sun and Zhang (2011),

they proposed a procedure to jointly estimate β and σ2
n using scaled lasso. The estimator was show

to be consistent with σ2
n in rather general situations, but unfortunately it is computationally more

expensive than either the lasso or marginal regression. How to find an estimator that is consistent

with σ2
n in general situations and has low computational cost remains an open problem, and we leave

the study to the future.

With that being said, we conclude this section by mentioning that both the lasso and marginal

regression have their strengths and weakness, and there is no clear winner between these two in

general settings. For a given data set, whether to use one or the other is a case by case decision,

where a close investigation of (X ,β) is usually necessary.

3. The Deterministic Design, Random Coefficient Regime

In this section, we study how generally the Faithfulness Condition holds. We approach this question

by modeling the coefficients β as random (the matrix X remains fixed) and deriving a condition (F”)

under which the Faithfulness Condition holds with high probability. The discussion in this section

is closely related to the work by Donoho and Elad (2003) on the Incoherence condition. Compared

to the Faithfulness Condition, the advantage of the Incoherence Condition is that it does not involve

the unknown support of β, so it is checkable in practice. The downside of the Incoherence Condition
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is that it aims to control the worst case so it is conservative. In this section, we derive a condition—

Condition F”—which can be viewed as a middle ground between the Faithfulness Condition and

the Incoherence Condition: it is not tied to the unknown support so it is more tractable than the

Faithfulness Condition, and it is also much less stringent than the Incoherence Condition.

In detail, we model β as follows. Fix ε ∈ (0,1), a > 0, and a distribution π, where

the support of π ⊂ (−∞,−a]∪ [a,∞). (8)

For each 1 ≤ i ≤ p, we draw a sample Bi from Bernoulli(ε). When Bi = 0, we set βi = 0. When

Bi = 1, we draw βi ∼ π. Marginally,

βi
iid∼ (1− ε)ν0 + επ, (9)

where ν0 denotes the point mass at 0. This models the case where we have no information on the

signals, so they appear at locations generated randomly. In the literature, it is known that the least

favorable distribution for variable selection has the form as in (9), where π is in fact degenerate. See

Candès and Plan (2009) for example.

We study for which quadruples (X ,ε,π,a) the Faithfulness Condition holds with high probabil-

ity. Recall that the design matrix X = [x1, . . . ,xp], where xi denotes the i-th column. Fix t ≥ 0 and

δ > 0. Introduce

gi j(t) = Eπ[e
tu·(xi,x j)]−1, ḡi(t) = ∑

j -=i

gi j(t),

where the random variable u ∼ π and (xi,x j) denotes the inner product of xi and x j. As before, we

have suppressed the superscript (n) for gi j(t) and ḡi(t). Define

An(δ,ε, ḡ) = An(δ,ε, ḡ;X ,π) = min
t>0

(
e−δt

p

∑
i=1

[eεḡi(t) + eεḡi(−t)]

)
,

where ḡ denotes the vector (ḡ1, . . . , ḡp)T . Note that 1+gi j(t) is the moment generating function of π
evaluated at the point (xi,x j)t. In the literature, it is conventional to use moment generating function

to derive sharp inequalities on the tail probability of sums of independent random variables. The

following lemma is proved in Section 6.

Lemma 6 Fix n, X, δ > 0, ε ∈ (0,1), and distribution π. Then

P(max |CNSβS|≥ δ)≤ (1− ε)An(δ,ε, ḡ;X ,π), (10)

and

P(max |(CSS − IS)βS|≥ δ)≤ εAn(δ,ε, ḡ;X ,π). (11)

Now, suppose the distribution π satisfies (8) for some a > 0. Take δ = a/2 on the right hand

side of (10)-(11). Except for a probability of An(a/2,ε, ḡ),

max |CNSβS|≤ a/2, min |CSSβS|≥ min |βS|−max |(CSS − I)βS|≥ a/2,

so max |CNSβS| ≤ min |CSSβS| and the Faithfulness Condition holds. This motivates the following

condition, where (a,ε,π) may depend on n.

Condition F′′. lim
n→∞

An(an/2,εn, ḡ
(n);X (n),πn) = 0.

The following theorem says that if Condition F” holds, then Condition F holds with high probability.
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Theorem 7 Consider a sequence of noise-free regression models as in (4), where the noise compo-

nent z(n) = 0 and β(n) is generated as in (9). Suppose Condition F” holds. Then as n tends to ∞,

except for a probability that tends to 0,

max |CNSβS|≤ min |CSSβS|.

Theorem 7 is the direct result of Lemma 6 so we omit the proof.

3.1 Comparison of Condition F” with the Incoherence Condition

Introduced in Donoho and Elad (2003) (see also Donoho and Huo, 2001), the Incoherence of a

matrix X is defined as

max
i-= j

|Ci j|,

where C = XT X is the Gram matrix as before. The notion is motivated by the study in recovering

a sparse signal from an over-complete dictionary. In the special case where X is the concatenation

of two orthonormal bases (e.g., a Fourier basis and a wavelet basis), maxi-= j |Ci j| measures how

coherent two bases are and so the term of incoherence; see Donoho and Elad (2003) and Donoho

and Huo (2001) for details. Consider Model (1) in the case where both X and β are deterministic,

and the noise component z = 0. The following results are proved in Chen et al. (1998), Donoho and

Elad (2003) and Donoho and Huo (2001).

• The lasso yields exact variable selection if s <
1+maxi -= j |Ci j|
2maxi -= j |Ci j| .

• Marginal regression yields exact variable selection if s < c
2maxi -= j |Ci j| for some constant c ∈

(0,1), and that the nonzero coordinates of β have comparable magnitudes (i.e., the ratio be-

tween the largest and the smallest nonzero coordinate of β is bounded away from ∞).

In comparison, the Incoherence Condition only depends on X so it is checkable. Condition F

depends on the unknown support of β. Checking such a condition is almost as hard as estimating

the support S. Condition F” provides a middle ground. It depends on β only through (ε,π). In

cases where we either have a good knowledge of (ε,π) or we can estimate them, Condition F” is

checkable (for literature on estimating (ε,π), see Jin, 2007 and Wasserman, 2006 for the case where

we have an orthogonal design, and Ji and Jin, 2012, Section 2.6 for the case where XT X is sparse

in the sense that each row of XT X has relatively few large coordinates. We note that even when

successful variable selection is impossible, it may be still possible to estimate (ε,π) well).

At the same time, the Incoherence Condition is conservative, especially when s is large. In fact,

in order for either the lasso or marginal regression to have an exact variable selection, it is required

that

max
i-= j

|Ci j|≤ O

(
1

s

)
,

In other words, all coordinates of the Gram matrix C need to be no greater than O(1/s). This is

much more conservative than Condition F.

However, we must note that the Incoherence Condition aims to control the worst case: it sets out

to guarantee uniform success of a procedure across all β under minimum constraints. In comparison,

Condition F aims to control a single case, and Condition F” aims to control almost all the cases in

a specified class. As such, Condition F” provides a middle ground between Condition F and the
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Incoherence Condition, applying more broadly than the former, while being less conservative than

the later.

Below, we use two examples to illustrate that Condition F” is much less conservative than

the Incoherence Condition. In the first example, we consider a weakly dependent case where

maxi-= j |Ci j| ≤ O(1/ log(p)). In the second example, we suppose the matrix C is sparse, but the

nonzero coordinates of C may be large.

3.1.1 THE WEAKLY DEPENDENT CASE

Suppose that for sufficiently large n, there are two sequence of positive numbers an ≤ bn such that

the support of πn is contained in [−bn,−an]∪ [an,bn], and that

bn

an
·max

i-= j
|Ci j|≤ c1/ log(p), c1 > 0 is a constant.

For k ≥ 1, denote the k-th moment of πn by

µ
(k)
n = µ

(k)
n (πn).

Introduce mn = mn(X) and v2
n = v2

n(X) by

mn(X) = pεn · max
1≤i≤p

{∣∣∣∣
1

p ∑
j -=i

Ci j

∣∣∣∣

}
, v2

n(X) = pεn · max
1≤i≤p

{
1

p ∑
j -=i

C2
i j

}
.

Corollary 3.1 Consider a sequence of regression models as in (4), where the noise component

z(n) = 0 and β(n) is generated as in (9). If there are constants c1 > 0 and c2 ∈ (0,1/2) such that

bn

an
·max

i-= j
{|Ci j|}≤ c1/ log(p(n)),

and

lim
n→∞

(
µ
(1)
n (πn)

an
mn(X

(n))

)
≤ c2, lim

n→∞

(
µ
(2)
n (πn)

a2
n

v2
n(X

(n)) log(p(n))

)
= 0, (12)

then

lim
n→∞

An(an/2,εn, ḡ
(n);X (n),πn) = 0,

and Condition F” holds.

Corollary 3.1 is proved in Section 6. For interpretation, we consider the special case where there is

a generic constant c > 0 such that bn ≤ can. As a result, µ
(1)
n /an ≤ c, µ

(2)
n /a2

n ≤ c2. The conditions

reduce to that, for sufficiently large n and all 1 ≤ i ≤ p,

|
1

p

p

∑
j -=i

Ci j|≤ O(
1

pεn
),

1

p

p

∑
j -=i

C2
i j = o(1/pεn).

Note that by (9), s = s(n) ∼ Binomial(p,εn), so s ≈ pεn. Recall that the Incoherence Condition is

max
i-= j

|Ci j|≤ O(1/s).

In comparison, the Incoherence Condition requires that each coordinate of (C− I) is no greater than

O(1/s), while Condition F” only requires that the average of each row of (C− I) is no greater than

O(1/s). The latter is much less conservative.
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3.1.2 THE SPARSE CASE

Let N∗
n (C) be the maximum number of nonzero off-diagonal coordinates of C:

N∗
n (C) = max

1≤i≤p
{Nn(i)}, Nn(i) = Nn(i;C) = #{ j : j -= i,Ci j -= 0}.

Suppose there is a constant c3 > 0 such that

lim
n→∞

(
− log(εnN∗

n (C))

log(p(n))

)
≥ c3. (13)

Also, suppose there is a constant c4 > 1 such that for sufficiently large n,

the support of πn is contained in [−c4an,an]∪ [an,c4an]. (14)

The following corollary is proved in Section 6.

Corollary 3.2 Consider a sequence of noise-free regression models as in (4), where the noise com-

ponent z(n) = 0 and β(n) is randomly generated as in (9). Suppose (13)-(14) hold. If there is a

constant δ > 0 such that

max
i-= j

|Ci j|≤ δ, and δ <
c3

2c4
,

then

lim
n→∞

An(an/2,εn, ḡ
(n);X (n),πn) = 0,

and Condition F” holds.

For interpretation, consider a special case where εn = p−ϑ. In this case, the condition reduces

to N∗
n (C)) pϑ−2c4δ. As a result, Condition F” is satisfied if each row of (C− I) contains no more

than pϑ−2c4δ nonzero coordinates each of which ≤ δ. Compared to the Incoherence Condition

maxi-= j |Ci j|≤ O(1/s) = O(p−ϑ), our condition is much weaker.

In conclusion, if we alter our attention from the worst-case scenario to the average scenario,

and alter our aim from exact variable selection to exact variable selection with probability ≈ 1,

then the condition required for success—Condition F”—is much more relaxed than the Incoherence

Condition.

4. Hamming Distance for the Gaussian Design and the Phase Diagram

So far, we have focused on exact variable selection. In many applications, exact variable selection

is not possible. Therefore, it is of interest to study the Type I and Type II errors of variable selection

(a Type I error is a misclassified 0 coordinate of β, and a Type II error is a misclassified nonzero

coordinate).

In this section, we use the Hamming distance to measure the variable selection errors. Back to

Model (1),

Y = Xβ+ z, z ∼ N(0, In), (15)

where without loss of generality, we assume σn = 1. As in the preceding section (i.e., (9)), we

suppose

βi
iid∼ (1− ε)ν0 + επ.
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For any variable selection procedure β̂ = β̂(Y ;X), the Hamming distance between β̂ and the true β
is

d(β̂|X) = d(β̂;ε,π|X) =
p

∑
j=1

Eε,π(Ez[1(sgn(β̂ j) -= sgn(β j))|X ]).

Note that by Chebyshev’s inequality,

P(non-exact variable selection by β̂(Y ;X))≤ d(β̂|X).

So a small Hamming distance guarantees exact variable selection with high probability.

How to characterize precisely the Hamming distance is a challenging problem. We approach

this by modeling X as random. Assume that the coordinates of X are iid samples from N(0,1/n):

Xi j
iid∼ N(0,1/n). (16)

The choice of the variance ensures that most diagonal coordinates of the Gram matrix C = XT X are

approximately 1. Let PX(x) denote the joint density of the coordinates of X . The expected Hamming

distance is then

d∗(β̂) = d∗(β̂;ε,π) =
∫

d(β̂;ε,π|X = x)PX(x)dx.

We adopt an asymptotic framework where we calibrate p and ε with

p = n1/θ, pεn = n(1−ϑ)/θ ≡ p1−ϑ, 0 < θ,ϑ < 1. (17)

This models a situation where p # n and the vector β gets increasingly sparse as n grows. Note that

the parameter ϑ calibrates the sparsity level of the signals. We assume πn in (9) is a point mass

πn = ντn . (18)

In the literature (e.g., Donoho and Jin, 2004; Meinshausen and Rice, 2006), this model was found

to be subtle and rich in theory. In addition, compare two experiments, in one of them πn = ντn , and

in the other the support of πn is contained in [τn,∞). Since the second model is easier for inference

than the first one, the optimal Hamming distance for the first one gives an upper bound for that for

the second one.

With εn calibrated as above, the most interesting range for τn is O(
√

2log p): when τn #√
2log p, exact variable selection can be easily achieved by either the lasso or marginal regres-

sion. When τn )
√

2log p, no variable selection procedure can achieve exact variable selection.

See, for example, Donoho and Jin (2004). In light of this, we calibrate

τn =
√

2(r/θ) logn ≡
√

2r log p, r > 0. (19)

Note that the parameter r calibrates the signal strength. With these calibrations, we can rewrite

d∗
n(β̂;ε,π) = d∗

n(β̂;εn,τn).

Definition 8 Denote L(n) by a multi-log term which satisfies that limn→∞(L(n) · nδ) = ∞ and that

limn→∞(L(n) ·n−δ) = 0 for any δ > 0.
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Figure 4: The regions as described in Section 4. In the region of Exact Recovery, both the lasso and

marginal regression yield exact recovery with high probability. In the region of Almost

Full Recovery, it is impossible to have large probability for exact variable selection, but

the Hamming distance of both the lasso and marginal regression ) pεn. In the region of

No Recovery, optimal Hamming distance ∼ pεn and all variable selection procedures fail

completely. Displayed is the part of the plane corresponding to 0 < r < 4 only.

We are now ready to spell out the main results. Define

ρ(ϑ) = (1+
√

1−ϑ)2, 0 < ϑ < 1.

The following theorem is proved in Section 6, which gives the lower bound for the Hamming dis-

tance.

Theorem 9 Fix ϑ ∈ (0,1), θ > 0, and r > 0 such that θ > 2(1 − ϑ). Consider a sequence of

regression models as in (15)-(19). As n → ∞, for any variable selection procedure β̂(n),

d∗
n(β̂

(n);εn,τn)≥

{
L(n)p1− (ϑ+r)2

4r , r ≥ ϑ,
(1+o(1)) · p1−ϑ, 0 < r < ϑ.

Let β̂mr be the estimate of using marginal regression with threshold

tn =

{
ϑ+r
2
√

r

√
2log p, if r > ϑ,

tn =
√

2r̃ log p, if r < ϑ,
(20)

where r̃ is some constant ∈ (ϑ,1) (note that in the case of r < ϑ, the choice of tn is not necessarily

unique). We have the following theorem.

Theorem 10 Fix ϑ ∈ (0,1), r > 0, and θ > (1−ϑ). Consider a sequence of regression models as

in (15)-(19). As p → ∞, the Hamming distance of marginal regression with the threshold tn given in
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(20) satisfies

d∗
n(β̂

(n)
mr ;εn,τn)≤

{
L(n)p1− (ϑ+r)2

4r , r ≥ ϑ,
(1+o(1)) · p1−ϑ, 0 < r < ϑ.

In practice, the parameters (ϑ,r) are usually unknown, and it is desirable to set tn in a data-driven

fashion. Towards this end, we note that our primary interest is in the case of r > ϑ (as when r < ϑ,

successful variable selection is impossible). In this case, the optimal choice of tn is (ϑ+ r)/(2r)τp,

which is the Bayes threshold in the literature. The Bayes threshold can be set by the approach of

controlling the local False Discovery Rate (Lfdr), where we set the FDR-control parameter as 1/2;

see Efron et al. (2001) for details.

Similarly, choosing the tuning parameter λn = 2(ϑ+r
2
√

r
∧
√

r)
√

2log p in the lasso, we have the

following theorem.

Theorem 11 Fix ϑ ∈ (0,1), r > 0, and θ > (1−ϑ). Consider a sequence of regression models as in

(15)-(19). As p → ∞, the Hamming distance of the lasso with the tuning parameter λn = 2tn where

tn is given in (20), satisfies

d∗
n(β̂

(n)
lasso;εn,τn)≤

{
L(n)p1− (ϑ+r)2

4r , r ≥ ϑ,
(1+o(1)) · p1−ϑ, 0 < r < ϑ.

The proofs of Theorems 10-11 are routine and we omit them.

Theorems 9-11 say that in the ϑ-r plane, we have three different regions, as displayed in Figure

4.

• Region I (Exact Recovery): 0 < ϑ < 1 and r > ρ(ϑ).

• Region II (Almost Full Recovery): 0 < ϑ < 1 and ϑ < r < ρ(ϑ).

• Region III (No Recovery): 0 < ϑ < 1 and 0 < r < ϑ.

In the Region of Exact Recovery, the Hamming distance for both marginal regression and the lasso

are algebraically small. Therefore, except for a probability that is algebraically small, both marginal

regression and the lasso give exact recovery.

In the Region of Almost Full Recovery, both the Hamming distance of marginal regression and

the lasso are much smaller than the number of relevant variables (which ≈ pεn). Therefore, almost

all relevant variables have been recovered. Note also that the number of misclassified irrelevant

variables is comparably much smaller than pεn. In this region, the optimal Hamming distance is

algebraically large, so for any variable selection procedure, the probability of exact recovery is

algebraically small.

In the Region of No Recovery, the Hamming distance ∼ pεn. In this region, asymptotically, it

is impossible to distinguish relevant variables from irrelevant variables, and any variable selection

procedure fails completely.

In practice, given a data set, one wishes to know that which of these three regions the true

parameters belong to. Towards this end, we note that in the current model, the coordinates of XTY

are approximately iid samples from the following two-component Gaussian mixture

(1− εp)φ(x)+ εnφ(x− τn),
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where φ(x) denotes the density of N(0,1). In principle, the parameters (εn,τn) can be estimated

(see the comments we made in Section 3.1 on estimating (ε,π)). The estimation can then be used

to determine which regions the true parameters belong to.

k = 4 k = 10

(a1, a2) lasso MR lasso MR

(0, 0) 0 0 0.8 3.8

(-0.85, 0.85) 0 4 0.6 10.4

(0.85, -0.85) 0 4 0.6 11.2

(-0.4, 0.8) 4 0 10 3.6

(0.4, -0.8) 4 0 10 4.8

Table 1: Comparison of the lasso and marginal regression for different choices of (a1,a2) and k.

The setting is described in Experiment 1a. Each cell displays the corresponding Hamming

error.

The results improve on those by Wainwright (2006). It was shown in Wainwright (2006) that

there are constants c2 > c1 > 0 such that in the region of {0 < ϑ < 1,r > c2}, the lasso yields exact

variable selection with overwhelming probability, and that in the region of {0 < ϑ < 1,r < c2}, no

procedure could yield exact variable selection. Our results not only provide the exact rate of the

Hamming distance, but also tighten the constants c1 and c2 so that c1 = c2 = (1+
√

1−ϑ)2. The

lower bound argument in Theorem 9 is based on computing the L1-distance. This gives better results

than in Wainwright (2006) which uses Fano’s inequality in deriving the lower bounds.

To conclude this section, we briefly comment on the phase diagram in two closely related set-

tings. In the first setting, we replace the identity matrix Ip in (16) by some general correlation matrix

Ω, but keep all other assumptions unchanged. In the second setting, we assume that as n → ∞, both

ratios pεp/n and n/p tend to a constant in (0,1), while all other assumptions remain the same. For

the first setting, it was shown in Ji and Jin (2012) that the phase diagram remains the same as in the

case of Ω = Ip, provided that Ω is sparse; see Ji and Jin (2012) for details. For the second setting,

the study is more more delicate, so we leave it to the future work.

5. Simulations and Examples

We conducted a small-scale simulation study to compare the performance of the lasso and marginal

regression. The study includes three different experiments (some have more than one

sub-experiments). In the first experiment, the rows of X are generated from N(0, 1
nC) where C

is a diagonal block-wise matrix. In the second one, we take the Gram matrix C = X ′X to be a

tridiagonal matrix. In the third one, the Gram matrix has the form of C = Λ+ aξξ′ where Λ is a

diagonal matrix, a > 0, and ξ is a p×1 unit-norm vector. Intrinsically, the first two are covered in

the theoretic discussion in Section 2.3, but the last one goes beyond that. Below, we describe each

of these experiments in detail.

Experiment 1. In this experiment, we compare the performance of the lasso and marginal re-

gression with the noiseless linear model Y = Xβ. We generate the rows of X as iid samples from
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k = 2 k = 7

Method (a2, a3) c = 0.5 c = 0.7 c = 0.85 c = 0.5 c = 0.7 c = 0.85

MR (0,0) 0 0 0 3 3.8 4.6

Lasso (0, 0) 0 0 2 0 0 7

MR (-0.4, -0.1) 1 1 1 5.4 5.8 5.4

Lasso (-0.4, -0.1) 0 0 2 0.4 2 7

MR (0.4, 0.1) 1 1.2 1.2 5.4 5.8 6

Lasso (0.4, 0.1) 0 0 2 1.2 1.4 7.6

MR (-0.5, -0.4) 2 2 2 9.6 7.8 7.6

Lasso (-0.5, -0.4) 1 0 2 3.6 0.2 7

MR (0.5, 0.4) 2 2 2 9.4 7.4 7.8

Lasso (0.5, 0.4) 1 0 2 3.4 0 7

Table 2: Comparison of the lasso and marginal regression for different choices of (c,a2,a3). The

setting is described in Experiment 1b. Each cell displays the corresponding Hamming

error.

N(0,(1/n)C), where C is a diagonal block-wise correlation matrix having the form

C =





Csub 0 0 . . .0
0 Csub 0 . . .0

. . . . . .
0 0 0 . . .Csub



 .

Fixing a small integer m, we take Csub to be the m×m matrix as follows:

Csub =

(
D aT

a 1

)
,

where a is an (m− 1)× 1 vector and D is an (m− 1)× (m− 1) matrix to be introduced below.

Also, fixing another integer k ≥ 1, according to the block-wise structure of C, we let β be the vector

(without loss of generality, we assume p is divisible by m)

β = (δ1uT ,δ2uT , . . . ,δp/muT )T ,

where u = (vT ,0) for some (m−1)×1 vector v and δi = 0 for all but k different i, where δi = 1.

The goal of this experiment is to investigate how the theoretic results in Section 2.3 shed light

on models with more practical interests. To see the point, note that when k ) n, the signal vector β
is sparse, and we expect to see that

X ′Xβ ≈Cβ, (21)

where the right hand side corresponds to the idealized model where X ′X = C. In this idealized

model, if we restrict our attention to any block where the corresponding δi is 1, then we have

exactly the same model as in Example 1 of Section 2.3, with CSS = D and βS = v. As a result, the

theoretic results discussed in Section 2.3 apply, at least when the approximation error in Equation

(21) is negligible. Experiment 1 contains two sub-experiments, Experiment 1a and 1b.
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Figure 5: Critical values of exact recovery for the lasso (dashed) and marginal regression (solid).

See Experiment 2 for the setting and the definition of critical value. For any given set of

parameters (ϑ,a,d), the method with a smaller critical value has the better performance

in terms of Hamming errors.

In Experiment 1a, we take (p,n,m) = (999,900,3). At the same time, for some numbers a1 and

a2, we set a, v, and D by

a = (a1,a2)
T , v = (2,1)T , D =

(
1 −.75

−.75 1

)
.

We investigate the experiment with two different values of k (k = 4 and k = 10) and five different

choices of (a1,a2): (0,0),±(−0.85,0.85), and ±(−0.4,0.8). When k = 4, we let δi = 1 if and only

if i ∈ {40,208,224,302}, and when k = 10, we let δi = 1 if and only if i ∈ {20,47,83,86,119,123,
141,250,252,281} (such indices are generated randomly; also, note that i are the indices for the

blocks, not the indices for the signals).
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Consider for a second the idealized case where X ′X =C (i.e., n is very large). If we restrict our

attention to any block of β where the corresponding δi is 1, the setting reduces to that of Example

1 of Section 2.3. In fact, in Figure 1, our first choice of (a1,a2) falls inside both the parallelogram

and hexagon, our next two choices fall inside the hexagon but outside the parallelogram, and our

last two choices fall outside the hexagon but inside the parallelogram. Therefore, at least when k

is sufficiently small (so that the setting can be well-approximated by that in the idealized case), we

expect to see that the lasso outperforms marginal regression with the second and the third choices,

and expect to see the other way around with the last two choices of (a1,a2). In the first choice, both

methods are expected to perform well.

We now investigate how well these expectations are met. For each combination of these parame-

ters, we generate data and compare the Hamming errors of the lasso and marginal regression, where

for each method, the tuning parameters are set ideally. The ‘ideal’ tuning parameter is obtained

through rigorous search from a range. The error rates over 10 repetitions are tabulated in Table 1.

More repetitions is unnecessary, partially because the standard deviations of the simulation results

are small, and partially because the program is slow (for that we need to choose the ‘ideal’ tuning

parameter through rigorous search. Take the lasso for example. For rigorous search of the ‘ideal’

tuning parameter, we need to run the glmnet R package many times).

The results suggest that the performances of each method are reasonably close to what are ex-

pected for the idealized model, especially in the case of k = 4. Take the cases (a1,a2) =
±(0.85,−0.85) for example. The lasso yields exact recovery, while marginal regression, in each of

the four blocks where the corresponding δi is 1, recovers correctly the stronger signal and mistak-

enly kills the weaker one. The situation is reversed in the cases where (a1,a2) =±(0.4,−0.8). The

discussion for the case of k = 10 is similar, but the approximation error in Equation (21) starts to

kick in.

In Experiment 1b, we take (p,n,m) = (900,1000,4). Also, for some numbers c, a2, and a3, we

set a, v, and D as

aT = (0,a2,a3)
T , v = (1,1,1)T , D =




1 −1/2 c

−1/2 1 0

c 0 1



 .

The primary goal of this experiment is to investigate how different choices of c affect the perfor-

mance of the lasso and marginal regression. To see the point, note that in the idealized situation

where X ′X = C, the model reduces to the one discussed in Figure 3, if we restrict our attention

to any block of β where δi = 1. The theoretic results in Example 4 of Section 2.3 predict that,

the performance of the lasso gets increasingly unsatisfactory as c increases, while that of marginal

regression stay more or less the same. At the same time, which of this method performs better

depends on (a2,a3,c), see Figure 3 for details.

We select two different k for experiment: k = 2 and k = 7. When k = 2, we let δi = 1 if and only

if i ∈ {60,139}, and when k = 7, we let δi = 1 if and only if i ∈ {34,44,58,91,100,183,229}. Also,

we investigate five different choices of (a2,a3): (0,0), (0,0),∓(0.4,0.1), and ∓(0.5,0.4), and three

different c: c = 0.5,0.7, and 0.85. For each combination of these parameters, we apply both the

lasso and marginal regression and obtain the Hamming errors of both methods, where similarly, the

tuning parameters for each method are set ideally. The error rates over 10 repetitions are tabulated

in Table 2. The results suggest that different choices of c have a major role over the lasso, but does
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not have a big influence over marginal regression. The results fit well with the theory illustrated in

Section 2.3; see Figure 3 for comparisons.

Experiment 2. In this experiment, we use the linear regression model Y = Xβ+ z where z ∼
N(0, In). We use a different criterion rather than the Hamming errors to compare two methods: with

the same parameter settings, the method that yields exact recovery in a larger range of parameters

is better. Towards this end, we take p = n = 500, and X = Ω1/2, where Ω is the p× p tridiagonal

matrix satisfying

Ω(i, j) = 1{i = j}+a ·1{|i− j|= 1},

and the parameter a ∈ (−1/2,1/2) so the matrix is positive definite. At the same time, we generate

β as follows. Let ϑ range between 0.25 and 0.75 with an increment of 0.25. For each ϑ, let s

be the smallest even number ≥ p1−ϑ. We then randomly pick s/2 indices i1 < i2 < .. . < is/2.

For parameters r > 0 and d ∈ (−1,1) to be determined, we let τ =
√

2r log p and let β j = τ if

j ∈ {i1, i2, . . . , is/2}, β j = dτ if j−1 ∈ {i1, i2, . . . , is/2}, and β j = 0 otherwise.

To gain insight on how two procedures perform in this setting, we consider the noiseless counter-

part for just a second. Without loss of generality, we assume that the minimum inter-distance of in-

dice i1, i2, . . . , ik ≥ 4. Let Ỹ = X ′Y . For any ik, 1≤ k ≤ s/2, if we restrict Ỹ to {ik−1, ik, ik+1, ik+2}
and call the resulting vector y, then

y = Aα,

where A is the 4 matrix satisfying A(i, j) = 1{i = j}+ a · 1{|i− j| = 1}, 1 ≤ i, j ≤ 4, and α is the

4×1 vector such that α1 = α4 = 0, α2 = τ, and α3 = dτ. In this simple model, the performance of

the lasso and marginal regression can be similarly analyzed as in Section 2.3.

Now, for each of the combination of (d,ϑ), we use the method of exhausting search to determine

the smallest r such that the lasso or marginal regression yields exact recovery with 50 repetition of

simulations, respectively (similarly, the tuning parameters of each method are set ideally). For each

method, we call the resultant value of r the critical value for exact recovery. For each ϑ and choices

of (a,d), we find the critical values for both methods. The results are summarized in Figure 5. For

a given triplet (ϑ,a,d), the method that gives a larger critical value is inferior to the one with a

smaller critical value (as the region of parameters where it yields exact recovery is smaller). Figure

5 suggests that the parameters (a,d) play an important role in determining the performance of the

lasso and marginal regression. For example, the performance of both procedures worsen when a

get larger. This is because that as a increases, the Gram matrix moves away from that the identity

matrix, and the problem of variable selection becomes increasingly harder. Also, the sign of a · d

plays an interesting role. For example, when a · d < 0, it is known that the marginal regression

faces a so-called challenge of signal cancellation (see for example Wasserman and Roeder, 2009).

It seems that the lasso handles signal cancellation better than does marginal regression. However,

when (a,d) range, there is no clear winner between two methods.

Experiment 3. So far, we have focused on settings where the regression problem can be de-

composed into many parallel small-size regression problems. While how to decompose remains

unknown, such insight is valuable, as we can always compare the performance of two methods over

each of these small-size regression problems using the theory developed in Section 2.3; the overall

performance of each method is then the sum of that on these small-size problems.

With that being said, in this experiment, we investigate an example where such a “decompo-

sition” does not exist or at least is non-obvious. Consider an experiment where Y = Xβ+ z, and
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z ∼ N(0, In). We take p = n and X = Ω1/2, where Ω is a correlation matrix having the form

Ω = Λ+aξξ′.

which is a rank one perturbation of the diagonal matrix Λ. Here, ξ is the p× 1 vector where its

p/2 even coordinates are 1, and the remaining coordinates are b, where a > 0 and b are parameters

calibrating the norm and direction of the rank one perturbation, respectively. Experiment 3 contains

two sub-experiments, 3a and 3b.

In Experiment 3a, we investigate how the choices of parameters (a,b) and the signal strength

affect the performance of the lasso and marginal regression. Let p = n = 3000, and let βi = τ when

i ∈ {k : k = 8×(!−1)+1,1≤ !≤ 150} and βi = 0 otherwise, where τ calibrates the signal strength.

For each of the four choices (a,b) = (0.01,0.3),(0.01,0.5),(0,0.5),(0.5,−0.1), we compare the

lasso and marginal regression for τ = 2,3, . . . ,8. The Hamming errors are shown in Figure 6. The

results suggest that the parameters (a,b) play a key role in the performance of both the lasso and

marginal regression. For example, when a increases, the performance of both methods worsen, due

to that the Gram matrix moves away from the identity matrix. Also, for relatively small a, it seems

that marginal regression outperforms the lasso (see Panel 1 and 2 of Figure 6).

In Experiment 3b, we take a different angle and investigate how the levels of the signal sparsity

affect the performance of the lasso and marginal regression. Consider a special case where where

b = 1. In this case, ξ reduces to the vector of ones, and the Gram matrix is an equi-correlation

matrix. This setting can be found in many literature on variable selection. Take n = p = 500. We

generate the coordinates of β from the mixing distribution of point mass at 0 and the point mass at

τ:

βi
iid∼ (1− ε)ν0 + εντ,

where ε calibrates the sparsity level and τ calibrates the signal strength (in this experiment, we take

τ = 5). In Figure 7, we plot the Hamming errors of 10 repetition versus the number of variables

retained (which can be thought of different choices of tuning parameters). Interestingly, it seems that

the performance of two methods are strikingly similar, with relatively small differences (one way or

the other) when the parameters (a,ε) are moderate (neither too close to 0 nor to 1). This is interesting

as when ρ is moderate, the design matrix X is significantly non-orthogonal. Additionally, the results

suggest that the sparsity parameter ε has a major influence over the relative performance of two

methods. When ε get larger (so the signals get denser), marginal regression tends to outperform the

lasso. The underlying reason is that when both the correlation and signals are positive, the strength

of individual signals are amplified due to correlation, and so have a positive effect on marginal

regression.

At the same time, it seems that the correlation parameter a also have a major effect over the

performance of two methods, and the error rate of both methods increase as a increases. How-

ever, somewhat surprisingly, the parameter a does not seem to have a major effect on the relative

performance of two methods.

We conclude this section by mentioning that from time to time, one would like to know for the

data at hand, which method is preferable. Generally, this is a hard problem, and generally, there is

no clear winner between the lasso and marginal regression. However, there are something can be

learned from these simulation examples.

First, the study in this section suggest an interesting perspective, which can be explained as

follows. Suppose that the Gram matrix is sparse in the sense that each row has relatively few large
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Figure 6: Comparison of Hamming errors by the lasso (dashed) and marginal regression (solid).

The setting is described in Experiment 3a.

coordinates, and that the signal is also sparse. It turns out two types of sparsity interact with each

other, and the large-scale regression problem reduces to many small-size regression models, each of

which is obtained by restricting the rows of X ′Y to a small set of indices. In general, each of such

of small-size regression models can be discussed in a similar fashion as those in Section 2.3. The

results of these small-size regression problems then decide which of these two methods outperform

the other. Take Experiment 1 for example. The performance of each method is determined by that

of applying the method block-wise to the regression problem. This echos our previous argument in

Section 2.3, where the relative performance of two methods for small-size problems are discussed

in detail. Second, it seems that the lasso is comparably more vulnerable to extreme correlation, as

discussed in Section 2.3 as well as in Example 1b. Last, it seems that in at least some examples,

marginal regression is more vulnerable to the so-called “signal cancellation”, which is illustrated in

Proposition 3 as well as Example 2 in this section.
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Figure 7: Comparison of Hamming errors by the lasso (dashed) and marginal regression (solid).

The x-axis shows the number of retained variables. The setting is described in Experiment

3b.

6. Proofs

This section contains the technical proofs of all theorems and lemmas of the preceding sections.

6.1 Proof of Theorem 3

First, let ki denote the number of non-zero diagonal entries in row i of D. Because D is symmetric

but not diagonal, at least two rows must have non-zero ki. Assume without loss of generality that

the rows and columns of D are arranged so that the rows with non-zero ki form the initial minor. It

follows that the initial minor is itself a positive definite symmetric matrix. And because any such

matrix A satisfies |Ai j|< maxk Dkk for j -= i, there exists a row i of D with ki > 0 and |Di j|< Dii for

any j -= i.
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Define β as follows:

β j =






ρDii

Di j
if j -= i and Di j -= 0

ρ if j -= i and Di j = 0

−kiρ if j = i..

Because |Di j|≤ Dii, this satisfies |β j|≥ ρ, so β ∈ M s
ρ . Moreover,

(Dβ)i = ∑
j

Di jβ j =−kiDiiρ+ ∑
j -=i

Di j -=0

ρDii

Di j
Di j = 0.

This proves the theorem.

6.2 Proof of Lemma 4

By the definition of Ŝn(s), it is sufficient to show that except for a probability that tends to 0,

max |XT
N Y |< min |XT

S Y |.

Since Y = Xβ+ z = XSβS + z, we have XT
N Y = XT

N (XSβS + z) = CNSβS + XT
N z. Note that xT

i z ∼
N(0,σ2

n). By Boolean algebra and elementary statistics,

P(max |XT
N z|> σn

√
2log p)≤ ∑

i∈N

P(|(xi,z)|≥ σn

√
2log p)≤

C√
log p

p− s

p
.

It follows that except for a probability of o(1),

max |XT
N Y |≤ max |CNSβS|+max |XT

N z|≤ max |CNSβS|+σn

√
2log p.

Similarly, except for a probability of o(1),

min |XT
S Y |≥ min |CSSβS|−max |XT

S z|≥ min |CSSβS|−σn

√
2log p.

Combining these gives the claim. !

6.3 Proof of Theorem 5

Once the first claim is proved, the second claim follows from Lemma 4. So we only show the first

claim. Write for short Ŝn(s) = Ŝn(s(n);X (n),Y (n), p(n)), s = s(n), and S = S(β(n)). All we need to

show is

lim
n→∞

P(ŝn -= s) = 0.

Introduce the event

Dn = {Ŝn(s) = S}.

It follows from Lemma 4 that

P(Dc
n)→ 0.

Write

P(ŝn -= s)≤ P(Dn)P(ŝn -= s|Dn)+P(Dc
n).
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It is sufficient to show limn→∞ P(ŝn -= s|Dn) = 0, or equivalently,

lim
n→∞

P(ŝn > s|Dn) = 0 and lim
n→∞

P(ŝn < s|Dn) = 0. (22)

Consider the first claim of (22). Write for short tn = σn

√
2logn. Note that the event {ŝn > s|Dn}

is contained in the event of ∪p−1
k=s {δ̂n(k)≥ tn|Dn}. Recalling P(Dc

n) = o(1),

P(ŝn > s)≤
p−1

∑
k=s

(δ̂(k)≥ tn|Dn)"
p−1

∑
k=s

P(δ̂n(k)≥ tn), (23)

where we say two positive sequences an " bn if limn→∞(an/bn)≤ 1.

Fix s ≤ k ≤ p− 1. By definitions, Ĥ(k+ 1)− Ĥ(k) is the projection matrix from Rn to V̂n(k+
1)∩ V̂n(k)⊥. So conditional on the event {V̂n(k+ 1) = V̂n(k)}, δn(k) = 0, and conditional on the

event {V̂n(k+1)! V̂n(k)}, δ2
n(k)∼ σ2

nχ2(1). Note that P(χ2(1)≥ 2logn) = o(1/n). It follows that

p−1

∑
k=s

P(δ̂n(k)≥ tn) =
p−1

∑
k=s

P(δ̂n(k)≥ tn|V̂n(k)! V̂n(k+1))P(V̂n(k)! V̂n(k+1))

= o(
1

n
)

p−1

∑
k=s

P(V̂n(k)! V̂n(k+1)). (24)

Moreover,

p−1

∑
k=s

P(V̂n(k)! V̂n(k+1)) =
p−1

∑
k=s

E[1(dim(V̂n(k+1))> dim(V̂n(k)))]

= E[
p−1

∑
k=s

1(dim(V̂n(k+1))> dim(V̂n(k)))].

Note that for any realization of the sequences V̂n(1), . . . ,V̂n(p), ∑
p−1
k=s 1(dim(V̂n(k+1))> dim(V̂n(k)))

≤ n. It follows that
p−1

∑
k=s

P(V̂n(k)! V̂n(k+1))≤ n. (25)

Combining (23)-(25) gives the claim.

Consider the second claim of (22). By the definition of ŝn, the event {ŝn < s|Dn)} is contained in

the event {δ̂n(s−1)< tn|Dn}. By definitions, δ̂n(s−1) = ‖(Ĥ(s)− Ĥ(s−1))Y‖, where ‖ ·‖= ‖ ·‖2

denotes the !2 norm. So all we need to show is

lim
n→∞

P(‖(Ĥ(s)− Ĥ(s−1))Y‖< tn|Dn) = 0. (26)

Fix 1 ≤ k ≤ p. Recall that ik denotes the index at which the rank of |(Y,xik)| among all

|(Y,x j)| is k. Denote X̃(k) by the n by k matrix [xi1 ,xi2 , . . . ,xik ], and denote β̃(k) by the k-vector

(βi1 ,βi2 , . . . ,βik)
T . Conditional on the event Dn, Ŝn(s) = S, and βi1 ,βi2 , . . . ,βis are all the nonzero

coordinates of β. So according to our notations,

Xβ = X̃(s)β̃(s) = X̃(s−1)β̃(s−1)+βisxis (27)
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Now, first, note that Ĥ(s)X̃(s) = X̃(s) and Ĥ(s−1)X̃(s−1) = X̃(s−1). Combine this with (27). It

follows from direct calculations that

(Ĥ(s)− Ĥ(s−1))Xβ = (I − Ĥ(s−1))xis . (28)

Second, since xis ∈ V̂n(s), (I − Ĥ(s))xis = 0. So

(I − Ĥs−1)xis = (I − Ĥ(s))xis +(Ĥ(s)− Ĥ(s−1))xis = (Ĥs − Ĥs−1)xis . (29)

Last, split xis into two terms, xis = x
(1)
is

+x
(2)
is

such that x
(1)
is

∈ V̂n(s−1) and x
(2)
is

∈ V̂n(s)∩(V̂n(s−1))⊥.

It follows that (Ĥ(s)− Ĥ(s−1))x
(1)
is

= 0, and so

(Ĥ(s)− Ĥ(s−1))xis = (Ĥ(s)− Ĥ(s−1))x
(2)
is
. (30)

Combining (28)-(30) gives

(Ĥ(s)− Ĥ(s−1))Xβ = (Ĥ(s)− Ĥ(s−1))x
(2)
is
.

Recall that Y = Xβ+ z, it follows that

(Ĥs − Ĥs−1)Y = (Ĥ(s)− Ĥ(s−1))(βisx
(2)
is

+ z). (31)

Now, take an orthonormal basis of Rn, say q̂1, q̂2, . . . , q̂n, such that q̂1 ∈ V̂n(s)∩ V̂n(s − 1)⊥,

q̂2, . . . , q̂s ∈ V̂n(s−1), and q̂s+1, . . . , q̂n ∈ V̂n(s)⊥. Recall that x
(2)
is

is contained in the one dimensional

linear space V̂n(s)∩V̂n(s−1)⊥, so without loss of generality, assume (x
(2)
is
, q̂1) = ‖x

(2)
is
‖. Denote the

square matrix [q̂1, . . . , q̂n] by Q̂. Let z̃= Q̂z and let z̃1 be the first coordinate of z̃. Note that marginally

z̃1 ∼ N(0,σ2
n). Over the event Dn, it follows from the construction of Q̂ and basic algebra that

‖(Ĥ(s)− Ĥ(s−1))(βisx
(2)
is

+ z)‖2 = (‖βisx
(2)
is
‖+ z̃1)

2. (32)

Combine (31) and (32),

‖(Ĥ(s)− Ĥ(s−1))Y‖2 = (‖βisx
(2)
is
‖+ z̃1)

2, over the event Dn.

As a result,

P(‖(Ĥ(s)− Ĥ(s−1))Y‖< tn|Dn) = P((‖βisx
(2)
is
‖+ z̃1)

2 < tn|Dn). (33)

Recall that conditional on the event Dn, Ŝn(s) = S. So by the definition of ∆∗
n = ∆n(β,X , p),

‖βisx
(2)
is
‖ ≥ ∆∗

n,

and

P((‖βisx
(2)
is
‖+ z̃1)

2 < tn|Dn)≤ P(‖βisx
(2)
is
‖+ z̃1 < tn|Dn)≤ P(∆∗

n + z̃1 < tn|Dn). (34)

Recalling that z̃1 ∼ N(0,σ2
n) and that P(Dc

n) = o(1),

P(∆∗
n + z̃1 < tn|Dn)≤ P(∆∗

n + z̃1 < tn)+o(1). (35)

Note that by the assumption of (∆∗
n

σn
−tn)→∞, P(∆∗

n+ z̃1 < tn) = o(1). Combining this with (34)-(35)

gives

P((‖βisx
(2)
is
‖+ z̃1)

2 < t2
n |Dn) = o(1). (36)

Inserting (36) into (33) gives (26). !
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6.4 Proof of Lemma 6

For 1 ≤ i ≤ p, introduce the random variable

Zi =
p

∑
j -=i

β j(xi,x j).

When Bi = 0, βi = 0, and so Zi = ∑
p
j=1 β j(xi,x j). By the definition of CNS,

max |CNSβS|= max
1≤i≤p

{(1−Bi) · |
p

∑
j=1

β j(xi,x j)|}= max
1≤i≤p

{(1−Bi)|Zi|}.

Also, recalling that the columns of matrix X are normalized such that (xi,xi) = 1, the diagonal

coordinates of (CSS − I) are 0. Therefore,

max |(CSS − I)βS|= max
1≤i≤p

{Bi · |∑
j -=i

β j(xi,x j)|}= max
1≤i≤p

{Bi · |Zi|}.

Note that Zi and Bi are independent and that P(Bi = 0) = (1− ε). It follows that

P(max |CNSβS|≥ δ)≤
p

∑
i=1

P(Bi = 0)P(|Zi|≥ δ|Bi = 0) = (1− ε)
p

∑
i=1

P(|Zi|≥ δ),

and

P(max |(CSS − I)βS|≥ δ)≤
p

∑
i=1

P(Bi = 1)P(|Zi|≥ δ|Bi = 1) = ε
p

∑
i=1

P(|Zi|≥ δ).

Compare these with the lemma. It is sufficient to show

P(|Zi|≥ δ)≤ e−δt [eεḡi(t) + eεḡi(−t)]. (37)

Now, by the definition of gi j(t), the moment generating function of Zi satisfies that

E[etZi ] = E[et ∑ j -=i β j(xi,x j)] = Π j -=i[1+ εgi j(t)].

Since 1+ x ≤ ex for all x, 1+ εgi j(t)≤ eεgi j(t), so by the definition of ḡi(t),

E[etZi ]≤ Π j -=ie
εgi j(t) = eεḡi(t).

It follows from Chebyshev’s inequality that

P(Zi ≥ δ)≤ e−δtE[etZi ]≤ e−δteεḡi(t). (38)

Similarly,

P(Zi <−δ)≤ e−δteεḡi(−t) (39)

Inserting (38)-(39) into (37) gives the claim. !
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6.5 Proof of Corollary 3.1

Choose a constant q such that q/2 − c2q > 1 and let tn = q log(p)/an. By the definition of

An(an/2,εn, ḡ), it is sufficient to show that for all 1 ≤ i ≤ p,

e−antn/2eεnḡi(tn) = o(1/p), e−antn/2eεnḡi(−tn) = o(1/p).

The proofs are similar, so we only show the first one. Let u be a random variable such that u ∼ πn.

Recall that the support of |u| is contained in [an,bn]. By the assumptions and the choice of tn, for all

fixed i and j -= i, |tnu(xi,x j)|≤ q log(p)(bn/an)|(xi,x j)|≤ c1q. Since ex −1 ≤ x+exx2/2, it follows

from Taylor expansion that

εnḡi(tn) = εn[e
tnu(xi,x j)−1]≤ εn ∑

j -=i

Eπn [tnu(xi,x j)+
ec1q

2
t2
n u2(xi,x j)

2].

By definitions of mn(X) and v2
n(X), εn ∑ j -=i Eπ[tnu(xi,x j)] = tnµ

(1)
n mn(X), and

εn ∑ j -=i Eπn [t
2
n u2(xi,x j)2] = t2

n µ
(2)
n v2

n(X). It follows from (12) that

εnḡi(tn)≤ q log(p) · [
µ
(1)
n

an
mn(X)+

ec1q

2

µ
(2)
n

a2
n

v2
n(X)q log(p)]" qc2 log(p).

Therefore,

e−antn/2eεnḡi(tn) ≤ e−[q/2−c2q+o(1)] log(p),

and claim follows by the choice of q. !

6.6 Proof of Corollary 3.2

Choose a constant q such that 2 < q < c3

c4δ . Let tn = anq log(p), and u be a random variable such

that u ∼ Πn. Similar to the proof of Lemma 3.1, we only show that

e−antn/2eεnḡi(tn) = o(1/p), for all 1 ≤ i ≤ p.

Fix i -= j. When (xi,x j) = 0, etu(xi,x j)−1= 0. When (xi,x j) -= 0, etnu(xi,x j)−1≤ etn(bn/an)δ ≤ ec4qδ log p.

Also, εnN∗
n ≤ e−[c3+o(1)] log(p). Therefore,

εnḡi(t)≤ εnN∗
n ec4qδ log(p) ≤ e−[c3−c4qδ+o(1)] log p.

By the choice of q, c3 − c4qδ > 0, so εnḡi(t) = o(1). It follows that

e−antn/2eεnḡi(tn) ≤ o(e−antn/2) = o(e−q log(p)/2),

which gives the claim by q > 2. !

6.7 Proof of Theorem 9

Write

X = [x1, X̃ ], β = (β1, β̃)
T .

Fix a constant c0 > 3. Introduce the event

Dn(c0) = {1T
S X̃T

S X̃S1S ≤ |S|[1+
√

|S|
n
(1+

√
2c0 log p)]2, for all S}.

The following lemma is proved in Section 6.7.1.
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Lemma 12 Fix c0 > 3. As p → ∞,

P(Dc
n(c0)) = o(1/p2).

Since dn(β̂|X) ≤ p for any variable selection procedure β̂, Lemma 12 implies that the overall con-

tribution of Dc
n to the Hamming distance d∗

n(β̂) is o(1/p). In addition, write

dn(β̂|X) =
p

∑
j=1

E[1(β̂ j -= β j)].

By symmetry, it is sufficient to show that for any realization of (X ,β) ∈ Dn(c0),

E[1(β̂ j -= β j)]≥

{
L(n)p−

(ϑ+r)2

4r , r ≥ ϑ,
p−ϑ, 0 < r < ϑ,

(40)

where L(n) is a multi-log term that does not depend on (X ,β).
We now show (40). Toward this end, we relate the estimation problem to the problem of testing

the null hypothesis of β1 = 0 versus the alternative hypothesis of β1 -= 0. Denote φ by the density

of N(0,1). Recall that X = [x1, X̃ ] and β = (β1, β̃)T . The joint density associated with the null

hypothesis is

f0(y) = f0(y;εn,τn,n|X)φ(y− X̃ β̃)dβ̃ = φ(y)
∫

eyT X̃ β̃−|X̃ β̃|2/2dβ̃,

and the joint density associated with the alternative hypothesis is

f1(y) = f1(y;εn,τn,n|X) =
∫

φ(y− τnx1 − X̃ β̃)dβ̃

= φ(y− τnx1)
∫

eyT X̃ β̃−|X̃ β̃|2/2e−τnxT
1 X̃ β̃dβ̃.

Since the prior probability that the null hypothesis is true is (1−εn), the optimal test is the Neyman-

Pearson test that rejects the null if and only if

f1(y)

f0(y)
≥

(1− εn)

εn
.

The optimal testing error is equal to

1−‖(1− εn) f0 − εn f1‖1.

Compared to (2), ‖ ·‖1 stands for the L1-distance between two functions, not the !1 norm of a vector.

We need to modify f1 into a more tractable form, but with negligible difference in L1-distance.

Toward this end, let Nn(β̃) be the number of nonzeros coordinates of β̃. Introduce the event

Bn = {|Nn(β̃)− pεn|≤
1

2
pεn}.

Let

an(y) = an(y;εn,τn|X) =

∫
(eyT X̃ β̃−|X̃ β̃|2/2)(e−τnxT

1 X̃ β̃) ·1{B}dβ̃∫
(e−yT X̃ β̃−|X̃ β̃|2/2) ·1{B}dβ̃

. (41)
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Note that the only difference between the numerator and the denominator is the term e−τnxT
1 X̃ β̃ which

≈ 1 with high probability. Introduce

f̃1(y) = an(y)φ(y− τnx1)
∫

eyT X̃ β̃−|X̃ β̃|2/2dβ̃.

The following lemma is proved in Section 6.7.2.

Lemma 13 As p→∞, there is a generic constant c> 0 that does not depend on y such that |an(y)−
1|≤ c log(p)p(1−ϑ)−θ/2 and ‖ f1 − f̃1‖1 = o(1/p).

We now ready to show the claim. Define Ωn = {y : an(y)φ(y− τnx1) ≥ φ(y)}. Note that by the

definitions of f0(y) and f̃1(y), y ∈ Ωn if and only if

εn f̃1(y)

(1− εn) f0(y)
≥ 1.

By Lemma 13,

|
∫

f̃1(y)dy−1|≤ ‖ f̃1 − f1‖1 ≤ o(1/p).

It follows from elementary calculus that

1−‖(1− εn) f0 − εn f̃1‖1 =
∫

Ωn

(1− εn) f0(y)dy+
∫

Ωc
n

εn f̃1(y)dy+o(1/p).

Using Lemma 13 again, we can replace f̃1 by f1 on the right hand side, so

1−‖(1− εn) f0 − εn f̃1‖1 =
∫

Ωn

(1− εn) f0(y)dy+
∫

Ωc
n

εn f1(y)dy+o(1/p).

At the same time, let δp = c log(p)p(1−ϑ)−θ/2 be as in Lemma 13, and let

t0 = t0(ϑ,r) =
ϑ+ r

2
√

r

√
2log p.

be the unique solution of the equation φ(t) = εnφ(t − τn). It follows from Lemma 13 that,

{τnxT y ≥ t0(1+δp)}⊂ Ωn ⊂ {τnxT
1 y ≥ t0(1−δp)}.

As a result, ∫
Ωn

f0(y)dy ≥
∫

τnxT
1 y≥t0(1+δp)

f0(y)≡ P0(τnxT
1 Y ≥ t0(1+δp)),

and ∫
Ωc

n

f1(y)dy ≥
∫

τnxT
1 y≤t0(1−δp)

f1(y)≡ P1(τnxT
1 Y ≤ t0(1−δp)).

Note that under the null, xT
1 Y = xT

1 X̃ β̃+ xT
1 z. It is seen that given x1, xT

1 z ∼ N(0, |x1|2), and |x1|2 =
1+O(1/

√
n). Also, it is seen that except for a probability of o(1/p), xT

1 X̃ β̃ is algebraically small.

It follows that

P0(τnxT
1 Y ≥ t0(1+δp))" Φ̄(t0) = L(n)p−

(ϑ+r)2

4r ,
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where Φ̄ = 1−Φ is the survival function of N(0,1). Similarly, under the alternative,

xT
1 y = τn(x1,x1)+ xT

1 X̃ β̃+ xT
1 z,

where (x1,x1) = 1+O(1/
√

n). So

εnP1(τnxT
1 y ≤ t0(1−δp))" Φ(t0 − τn) =

{
L(n)p−

(ϑ+r)2

4r , r ≥ ϑ,
L(n)p−ϑ, 0 < r < ϑ,

Combine these gives the theorem. !

6.7.1 PROOF OF LEMMA 12

It is seen that

P(Dc
n(c0))≤

p

∑
k=1

P

(
1T

S XT X1S ≥ k[1+

√
k

n
(1+

√
2c0 log p)]2, for all S with |S|= k

)
.

Fix k ≥ 1. There are
(

p
k

)
different S with |S| = k. It follows from Vershynin (2010, Lecture 9) that

except a probability of 2exp(−c0 log(p) · k) that the largest eigenvalue of XT
S XS is no greater than

[1+
√

k
n(1+

√
2c0 log p)]2. So for any S with |S|= k, it follows from basic algebra that

P(1T
S XT X1S ≥ k[1+

√
k

n
(1+

√
2c0 log p)]2)≤ 2exp(−c0 log(p) · k).

Combining these with
(

p
k

)
≤ pk gives

P(Dc
n(c0))≤ 2

p

∑
k=1

(
p

k

)
exp(−c0(log p)k)≤ 2

p

∑
k=1

exp(−(c0 −1) log(p)k).

The claim follows by c0 > 3. !

6.7.2 PROOF OF LEMMA 13

First, we claim that for any X in event Dn(c0),

|xT
1 X̃ β̃|≤ c log(p)(N(β̃)/

√
n), (42)

where c > 0 is a generic constant. Suppose Nn(β̃) = k and the nonzero coordinates of β̃ are

i1, i2, . . . , ik. Denote the (k + 1)× (k + 1) submatrix of XT X containing the 1st , (1+ i1)-th, . . .,
and (1+ ik)-th rows and columns by Uk+1. Let ξ1 be the (k+1)-vector with 1 on the first coordinate

and 0 elsewhere, let ξ2 be the (k+1)-vector with 0 on the first coordinate and 1 elsewhere. Then

xT
1 X̃ β̃ = τnξT

1 Uk+1ξ2 ≡ τnξT
1 (Uk+1 − Ik+1)ξ2.

Let (Uk+1 − Ik+1) = Qk+1Λk+1QT
k+1 be the orthogonal decomposition. By the definition of Dn(c0),

all eigenvalues of (Uk+1 − Ik+1) are no greater than (1+
√

c log(p)k/n)2 − 1 ≤
√

c log p
√

k/n in

absolute value. As a result, all diagonal coordinates of Λk+1 are no greater than
√

c log p
√

k/n
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in absolute value, and

‖ξT
1 (Uk+1 − Ik+1)ξ2‖ ≤ ‖ξT

1 Qk+1Λk+1‖ ·‖Qk+1ξ2‖ ≤
√

c log p
√

k/n‖ξT
1 Qk+1‖ ·‖Qk+1ξ2‖.

The claim follows from ‖ξT
1 Qk+1‖= 1 and ‖Qk+1ξ2‖=

√
k.

We now show the lemma. Consider the first claim. Consider a realization of X in the event

Dn(c0) and a realization of β̃ in the event Bn. By the definitions of Bn, Nn(β̃)≤ pεn +
1
2 pεn. Recall

that pεn = p1−ϑ, n = pθ. It follows that log(p)N(β̃)/
√

n ≤ c log(p)pεn/
√

n = c log(p)p1−ϑ−θ/2.

Note that by the assumption of (1−ϑ)< θ/2, the exponent is negative. Combine this with (42),

|e−τnxT
1 X̃ β̃ −1|≤ c log(p)(N(β̃)/

√
n), (43)

Now, note that in the definition of an(y) (i.e., (41)), the only difference between the integrand on the

top and that on the bottom is the term e−τnxT
1 X̃ β̃. Combine this with (43) gives the claim.

Consider the second claim. By the definitions of f̃1(y) and an(y),

f̃1(y) = an(y)φ(y− τnx1) ·
[∫

[eyT X̃ β̃−|X̃ β̃|2/21Bn ]dβ̃+
∫
[eyT X̃ β̃−|X̃ β̃|2/21Bc

n
]dβ̃

]

= φ(y− τnx1) ·
[∫

[eyT X̃ β̃−|X̃ β̃|2/2e−τnxT
1 X̃ β̃1Bc

n
]dβ̃+an(y)

∫
[eyT X̃ β̃−|X̃ β̃|2/21Bc

n
]dβ̃

]
.

By the definition of f1(y),

f1(y) = φ(y− τnx1) ·
[∫

[eyT X̃ β̃−|X̃ β̃|2/2e−τnxT
1 X̃ β̃1Bn ]dβ̃+

∫
[eyT X̃ β̃−|X̃ β̃|2/2e−τnxT

1 X̃ β̃1Bc
n
]dβ̃

]
.

Compare two equalities and recall that an(y)∼ 1 (Lemma 12),

‖ f1 − f̃1‖1 "
∫

φ(y− τnx1)[
∫
(eyT X̃ β̃−|X̃ β̃|2/2 + eyT X̃ β̃−|X̃ β̃|2/2e−τnxT

1 X̃ β̃)1Bc
n
dβ̃]dy

=
∫ ∫

φ(y− τnx1 − X̃ β̃)[eτnxT
1 X̃ β̃ +1]1Bc

n
dβ̃dy. (44)

Integrating over y, the last term is equal to
∫
[1+ eτnxT

1 X̃ β̃] ·1Bc
n
dβ̃.

At the same time, by (42) and the definition of Bc
n,

∫
[1+ eτnxT

1 X̃ β̃] ·1Bc
n
dβ̃ ≤ ∑

{k:|k−pεn|≥ 1
2 pεn}

[1+ ec log(p)k/
√

n]P(N(β̃) = k). (45)

Recall that pεn = p1−ϑ, n = pθ, and (1−ϑ) < θ/2. Using Bennett’s inequality for P(N(β̃) = k)
(e.g., Shorack and Wellner, 1986, Page 440), it follows from elementary calculus that

∑
{k:|k−pεn|≥ 1

2 pεn}
[1+ ec log(p)k/

√
n]P(N(β̃) = k) = o(1/p). (46)

Combining (44)–(46) gives the claim. !
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Abstract

This work explores the effects of relevant and irrelevant boolean variables on the accuracy of clas-
sifiers. The analysis uses the assumption that the variables are conditionally independent given the
class, and focuses on a natural family of learning algorithms for such sources when the relevant
variables have a small advantage over random guessing. The main result is that algorithms rely-
ing predominately on irrelevant variables have error probabilities that quickly go to 0 in situations
where algorithms that limit the use of irrelevant variables have errors bounded below by a positive
constant. We also show that accurate learning is possible even when there are so few examples that
one cannot determine with high confidence whether or not any individual variable is relevant.

Keywords: feature selection, generalization, learning theory

1. Introduction

When creating a classifier, a natural inclination is to only use variables that are obviously relevant

since irrelevant variables typically decrease the accuracy of a classifier. On the other hand, this

paper shows that the harm from irrelevant variables can be much less than the benefit from rele-

vant variables and therefore it is possible to learn very accurate classifiers even when almost all

of the variables are irrelevant. It can be advantageous to continue adding variables, even as their

prospects for being relevant fade away. We show this with theoretical analysis and experiments

using artificially generated data.

We provide an illustrative analysis that isolates the effects of relevant and irrelevant variables

on a classifier’s accuracy. We analyze the case in which variables complement one another, which

we formalize using the common assumption of conditional independence given the class label. We

focus on the situation where relatively few of the many variables are relevant, and the relevant

variables are only weakly predictive.1 Under these conditions, algorithms that cast a wide net can

succeed while more selective algorithms fail.

We prove upper bounds on the error rate of a very simple learning algorithm that may include

many irrelevant variables in its hypothesis. We also prove a contrasting lower bound on the error

1. Note that in many natural settings the individual variables are only weakly associated with the class label. This can

happen when a lot of measurement error is present, as is seen in microarray data.

c©2012 David P. Helmbold and Philip M. Long.
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of every learning algorithm that uses mostly relevant variables. The combination of these results

show that the simple algorithm’s error rate approaches zero in situations where every algorithm that

predicts with mostly relevant variables has an error rate greater than a positive constant.

Over the past decade or so, a number of empirical and theoretical findings have challenged the

traditional rule of thumb described by Bishop (2006) as follows.

One rough heuristic that is sometimes advocated is that the number of data points

should be no less than some multiple (say 5 or 10) of the number of adaptive parameters

in the model.

The Support Vector Machine literature (see Vapnik, 1998) views algorithms that compute apparently

complicated functions of a given set of variables as linear classifiers applied to an expanded, even

infinite, set of features. These empirically perform well on test data, and theoretical accounts have

been given for this. Boosting and Bagging algorithms also generalize well, despite combining large

numbers of simple classifiers, even if the number of such “base classifiers” is much more than the

number of training examples (Quinlan, 1996; Breiman, 1998; Schapire et al., 1998). This is despite

the fact that Friedman et al. (2000) showed the behavior of such classifiers is closely related to

performing logistic regression on a potentially vast set of features (one for each possible decision

tree, for example).

Similar effects are sometimes found even when the features added are restricted to the original

“raw” variables. Figure 1, which is reproduced from Tibshirani et al. (2002), is one example. The

curve labelled “te” is the test-set error, and this error is plotted as a function of the number of features

selected by the Shrunken Centroids algorithm. The best accuracy is obtained using a classifier that

depends on the expression level of well over 1000 genes, despite the fact that there are only a few

dozen training examples.

It is impossible to tell if most of the variables used by the most accurate classifier in Figure 1

are irrelevant. However, we do know which variables are relevant and irrelevant in synthetic data

(and can generate as many test examples as desired). Consider for the moment a simple algorithm

applied to a simple source. Each of two classes is equally likely, and there are 1000 relevant boolean

variables, 500 of which agree with the class label with probability 1/2 + 1/10, and 500 which

disagree with the class label with probability 1/2+ 1/10. Another 99000 boolean variables are

irrelevant. The algorithm is equally simple: it has a parameter β, and outputs the majority vote over

those features (variables or their negations) that agree with the class label on a 1/2+β fraction of

the training examples. Figure 2 plots three runs of this algorithm with 100 training examples, and

1000 test examples. Both the accuracy of the classifier and the fraction of relevant variables are

plotted against the number of variables used in the model, for various values of β.2 Each time, the

best accuracy is achieved when an overwhelming majority of the variables used in the model are

irrelevant, and those models with few (< 25%) irrelevant variables perform far worse. Furthermore,

the best accuracy is obtained with a model that uses many more variables than there are training

examples. Also, accuracy over 90% is achieved even though there are few training examples and the

correlation of the individual variables with the class label is weak. In fact, the number of examples

is so small and the correlations are so weak that, for any individual feature, it is impossible to

confidently tell whether or not the feature is relevant.

2. In the first graph, only the results in which fewer than 1000 features were chosen are shown, since including larger

feature sets obscures the shape of the graph in the most interesting region, where relatively few features are chosen.

2146



NECESSITY OF IRRELEVANT VARIABLES

Figure 1: This graph is reproduced from Tibshirani et al. (2002). For a microarray data set, the

training error, test error, and cross-validation error are plotted as a function both of the

number of features (along the top) included in a linear model and a regularization param-

eter ∆ (along the bottom).

Assume classifier f consists of a vote over n variables that are conditionally independent given

the class label. Let k of the variables agree with the class label with probability 1/2+ γ, and the

remaining n− k variables agree with the label with probability 1/2. Then the probability that f is

incorrect is at most

exp

(

−2γ2k2

n

)

(1)

(as shown in Section 3). The error bound decreases exponentially in the square of the number of

relevant variables. The competing factor increases only linearly with the number of irrelevant vari-

ables. Thus, a very accurate classifier can be obtained with a feature set consisting predominantly

of irrelevant variables.

In Section 4 we consider learning from training data where the variables are conditionally inde-

pendent given the class label. Whereas Equation (1) bounded the error as a function of the number

of variables n and relevant variables k in the model, we now use capital N and capital K for the total

number of variables and number of relevant variables in the data. The N −K irrelevant variables

are independent of the label, agreeing with it with probability 1/2. The K relevant variables either
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Figure 2: Left: Test error and fraction of irrelevant variables as a function of the number of features.

Right: Scatter plot of test error rates (vertical) against fraction of irrelevant variables

(horizontal).

agree with the label with probability 1/2+ γ or with probability 1/2− γ. We analyze an algorithm

that chooses a value β ≥ 0 and outputs a majority vote over all features that agree with the class

label on at least 1/2+β of the training examples (as before, each feature is either a variable or its

negation). Our Theorem 3 shows that if β ≤ γ and the algorithm is given m training examples, then

the probability that it makes an incorrect prediction on an independent test example is at most

(1+o(1))exp

(

−2γ2K

(

[1−8e−2(γ−β)2m − γ)]2+
1+8(N/K)e−2β2m + γ

))

,

where [z]+
def
= max{z,0}. (Throughout the paper, the “big Oh” and other asymptotic notation will be

for the case where γ is small, Kγ is large, and N/K is large. Thus the edge of the relevant features

and the fraction of features that are relevant both approach zero while the total number of relevant

features increases. If K is not large relative to 1/γ2, even the Bayes optimal classifier is not accurate.

No other assumptions about the relationship between the parameters are needed.)

When β≤ γ/2 and the number m of training examples satisfies m≥ c/γ2 for an absolute constant

c, we also show in Theorem 8 that the error probability is at most

(1+o(1))exp
(

−γ2K2/N
)

. (2)

If N = o(γ2K2), this error probability goes to zero. With only Θ(1/γ2) examples, an algorithm can-

not even tell with high confidence whether a relevant variable is positively or negatively associated

with the class label, much less solve the more difficult problem of determining whether or not a

variable is relevant. Indeed, this error bound is also achieved using β = 0, when, for each variable

Xi, the algorithm includes either Xi or its negation in the vote.3 Because bound (2) holds even when

β = 0, it can be achieved by an algorithm that does not use knowledge of γ or K.

3. To be precise, the algorithm includes each variable or its negation when β = 0 and m is odd, and includes both the

variable and its negation when m is even and the variable agrees with the class label exactly half the time. But, any

time both a variable and its negation are included, their votes cancel. We will always use the smaller equivalent model

obtained by removing such canceling votes.
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Our upper bounds illustrate the potential rewards for algorithms that are “inclusive”, using many

of the available variables in their classifiers, even when this means that most variables in the model

are irrelevant. We also prove a complementary lower bound that illustrates the potential cost when

algorithms are “exclusive”. We say that an algorithm is λ-exclusive if the expectation of the fraction

of the variables used in its model that are relevant is at least λ. We show that any λ-exclusive policy

has an error probability bounded below by λ/4 as K and N/K go to infinity and γ goes to 0 in such

a way that the error rate obtained by the more “inclusive” setting β = γ/2 goes to 0. In particular,

no λ-exclusive algorithm (where λ is a positive constant) can achieve a bound like (2).

Donoho and Jin (see Donoho and Jin, 2008; Jin, 2009) and Fan and Fan (2008), building on a

line of research on multiple hypotheses testing (see Abramovich et al., 2006; Addario-Berry et al.,

2010; Donoho and Jin, 2004, 2006; Meinshausen and Rice, 2006), performed analyses and simula-

tions using sources with elements in common with the model studied here, including conditionally

independent variables and a weak association between the variables and the class labels. Donoho

and Jin also pointed out that their algorithm can produce accurate hypotheses while using many

more irrelevant features than relevant ones. The main theoretical results proved in their papers de-

scribe conditions that imply that, if the relevant variables are too small a fraction of all the variables,

and the number of examples is too small, then learning is impossible. The emphasis of our theo-

retical analysis is the opposite: algorithms can tolerate a large number of irrelevant variables, while

using a small number of examples, and algorithms that avoid irrelevant variables, even to a limited

extent, cannot learn as effectively as algorithms that cast a wider net. In particular, ours is the first

analysis that we are aware of to have a result qualitatively like Theorem 13, which demonstrates the

limitations of exclusive algorithms.

For the sources studied in this paper, there is a linear classifier that classifies most random ex-

amples correctly with a large margin, that is, most examples are not close to the decision boundary.

The main motivation for our analysis was to understand the effects of relevant and irrelevant vari-

ables on generalization, but it is interesting to note that we get meaningful bounds in the extreme

case that m = Θ(1/γ2), whereas the margin-based bounds that we are aware of (such as Schapire

et al. 1998, Koltchinskii and Panchenko 2002, Dasgupta and Long 2003 and Wang et al. 2008) are

vacuous in this case. (Since these other bounds hold more generally, their overall strength is incom-

parable to our results.) Ng and Jordan (2001) showed that the Naive Bayes algorithm (which ignores

class-conditional dependencies) converges relatively quickly, justifying its use when there are few

examples. But their bound for Naive Bayes is also vacuous when m = Θ(1/γ2). Bickel and Levina

(2004) studied the case in which the class conditional distributions are Gaussians, and showed how

an algorithm which does not model class conditional dependencies can perform nearly optimally in

this case, especially when the number of variables is large. Bühlmann and Yu (2002) analyzed the

variance-reduction benefits of Bagging with primary focus on the benefits of the smoother classifier

that is obtained when ragged classifiers are averaged. As such it takes a different form than our

analysis.

Our analysis demonstrates that certain effects are possible, but how important this is depends

on how closely natural learning settings resemble our theoretical setting and the extent to which

our analysis can be generalized. The conditional independence assumption is one way to express

the intuitive notion that variables are not too redundant. A limit on the redundancy is needed for

results like ours since, for example, a collection of Θ(k) perfectly correlated irrelevant variables

would swamp the votes of the k relevant variables. On the other hand, many boosting algorithms

minimize the potential for this kind of effect by choosing features in later iterations that make
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errors on different examples then the previously chosen features. One relaxation of the conditional

independence assumption is to allow each variable to conditionally depend on a limited number r

of other variables, as is done in the formulation of the Lovasz Local Lemma (see Alon et al., 1992).

As partial illustration of the robustness of the effects analyzed here, we generalize upper bound (1)

to this case in Section 6.1. There we prove an error bound of c(r + 1)exp
(

−2γ2k2

n(r+1)

)

when each

variable depends on most r others. There are a number of ways that one could imagine relaxing

the conditional independence assumption while still proving theorems of a similar flavor. Another

obvious direction for generalization is to relax the strict categorization of variables into irrelevant

and (1/2+γ)-relevant classes. We believe that many extensions of this work with different coverage

and interpretability tradeoffs are possible. For example, our proof techniques easily give similar

theorems when each relevant variable has a probability between 1/2+γ/2 and 1/2+2γ of agreeing

with the class label (as discussed in Section 6.2). Most of this paper uses the cleanest and simplest

setting in order to focus attention on the main ideas.

We state some useful tail bounds in the next section, and Section 3 analyzes the error of simple

voting classifiers. Section 4 gives bounds on the expected error of hypotheses learned from training

data while Section 5 shows that, in certain situations, any exclusive algorithm must have high error

while the error of some inclusive algorithms goes to 0. In Section 6.1 we bound the accuracy

of voting classifiers under a weakened independence assumption and in Section 6.2 we consider

relaxation of the assumption that all relevant variables have the same edge.

2. Tail Bounds

This section gathers together the several tail bounds that will be used in various places in the anal-

ysis. These bounds all assume that U1,U2, . . . ,U! are ! independent {0,1}-valued random variables

and U = ∑!
i=1Ui. We start with some upper bounds.

• The Hoeffding bound (see Pollard, 1984):

P

[

1

!
U −E

(

1

!
U

)

≥ η

]

≤ e−2η2!. (3)

• The Chernoff bound see Angluin and Valiant, 1979; Motwani and Raghavan, 1995, and Ap-

pendix A.1. For any η > 0:

P[U > (1+η)E(U)]< exp

(

−(1+η)E(U) ln

(

1+η

e

))

. (4)

• For any 0 < δ ≤ 1 (see Appendix A.2):

P[U > 4E(U)+3ln(1/δ)]< δ. (5)

We also use the following lower bounds on the tails of distributions.

• If P[Ui = 1] = 1/2 for all i, η > 0, and !≥ 1/η2 then (see Appendix A.3):

P

[

1

!
U −

1

!
E(U)≥ η

]

≥
1

7η
√
!

exp
(

−2η2!
)

−
1√
!
. (6)
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• If P[Ui = 1] = 1/2 for all i, then for all 0 ≤ η ≤ 1/8 such that η! is an integer4 (see Ap-

pendix A.4):

P

[

1

!
U −

1

!
E(U)≥ η

]

≥
1

5
e−16η2!. (7)

• A consequence of Slud’s Inequality (1977) gives the following (see Appendix A.5). If 0 ≤
η ≤ 1/5 and P[Ui = 1] = 1/2+η for all i then:

P

[

1

!
U < 1/2

]

≥
1

4
e−5η2!. (8)

Note that the constants in the above bounds were chosen to be simple and illustrative, rather

than the best possible.

3. The Accuracy of Models Containing Relevant and Irrelevant Variables

In this section we analyze the accuracy of the models (hypotheses) produced by the algorithms in

Section 4. Each example is represented by a vector of N binary variables and a class designation.

We use the following generative model:

• a random class designation from {0,1} is chosen, with both classes equally likely, then

• each of K relevant variables are equal to the class designation with probability 1/2+ γ (or

with probability 1/2− γ), and

• the remaining N −K irrelevant variables are equal to the class label with probability 1/2;

• all variables are conditionally independent given the class designation.

Which variables are relevant and whether each one is positively or negatively correlated with

the class designations are chosen arbitrarily ahead of time.

A feature is either a variable or its complement. The 2(N −K) irrelevant features come from

the irrelevant variables, the K relevant features agree with the class labels with probability 1/2+ γ,

and the K misleading features agree with the class labels with probability 1/2− γ.

We now consider models M predicting with a majority vote over a subset of the features. We

use n for the total number of features in model M , k for the number of relevant features, and !
for the number of misleading features (leaving n− k− ! irrelevant features). Since the votes of a

variable and its negation “cancel out,” we assume without loss of generality that models include at

most one feature for each variable. Recall that [z]+
def
= max{z,0}.

Theorem 1 Let M be a majority vote of n features, k of which are relevant and ! of which are

misleading (and n− k− ! are irrelevant). The probability that M predicts incorrectly is at most

exp

(

−2γ2[k− !]2+
n

)

.

4. For notational simplicity we omit the floors/ceilings implicit in the use of this bound.
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Proof: If !≥ k then the exponent is 0 and the bound trivially holds.

Suppose k > !. Model M predicts incorrectly only when at most half of its features are correct.

The expected fraction of correct voters is 1/2+ γ(k−!)
n , so, for M ’s prediction to be incorrect, the

fraction of correct voters must be at least γ(k− !)/n less than its expectation. Applying (3), this

probability is at most

exp

(

−2γ2(k− !)2

n

)

.

!

The next corollary shows that even models where most of the features are irrelevant can be

highly accurate.

Corollary 2 If γ is a constant, k− ! = ω(
√

n) and k = o(n), then the accuracy of the model ap-

proaches 100% while its fraction of irrelevant variables approaches 1 (as n → ∞).

For example, the conditions of Corollary 2 are satisfied when γ = 1/4, k = 2n2/3 and != n2/3.

4. Learning

We now consider the problem of learning a model M from data. We assume that the algorithm

receives m i.i.d. examples generated as described in Section 3. One test example is independently

generated from the same distribution, and we evaluate the algorithm’s expected error: the prob-

ability over training set and test example that its model makes an incorrect prediction on the test

example (the “prediction model” of Haussler et al. 1994).

We define Mβ to be the majority vote5 of all features that equal the class label on at least 1/2+β
of the training examples. To keep the analysis as clean as possible, our results in this section apply

to algorithms that chose β as a function of the number of features N, the number of relevant features

K, the edge of the relevant features γ, and training set size m, and then predict with Mβ. Note that

this includes the algorithm that always choses β = 0 regardless of N, K, γ and m.

Recall that asymptotic notation will concern the case in which γ is small, Kγ is large, and N/K

is large.

This section proves two theorems bounding the expected error rates of learned models. One can

compare these bounds with a similar bound on the Bayes Optimal predictor that “knows” which

features are relevant. This Bayes Optimal predictor for our generative model is a majority vote of

the K relevant features, and has an error rate bounded by e−2γ2K (a bound as tight as the Hoeffding

bound).

Theorem 3 If 0 ≤ β ≤ γ, then the expected error rate of Mβ is at most

(1+o(1))exp

(

−2γ2K

(

[1−8e−2(γ−β)2m − γ]2+
1+8(N/K)e−2β2m + γ

))

.

Our proof of Theorem 3 starts with lemmas bounding the number of misleading, irrelevant, and

relevant features in Mβ. These lemmas use a quantity δ > 0 that will be determined later in the

analysis.

5. If Mβ is empty or the vote is tied then any default prediction, such as 1, will do.
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Lemma 4 With probability at least 1 − δ, the number of misleading features in Mβ is at most

4Ke−2(γ+β)2m +3ln(1/δ).

Proof: For a particular misleading feature to be included in Mβ, Algorithm A must overestimate the

probability that misleading feature equals the class label by at least β+γ. Applying (3), this happens

with probability at most e−2(β+γ)2m, so the expected number of misleading features in Mβ is at most

Ke−2(β+γ)2m. Since each misleading feature is associated with a different independent variable, we

can apply (5) with E(U)≤ Ke−2(β+γ)2m to get the desired result. !

Lemma 5 With probability at least 1 − 2δ, the number of irrelevant features in Mβ is at most

8Ne−2β2m +6ln(1/δ).

Proof: For a particular positive irrelevant feature to be included in Mβ, Algorithm A must overes-

timate the probability that the positive irrelevant feature equals the class label by β. Applying (3),

this happens with probability at most e−2β2m, so the expected number of irrelevant positive features

in Mβ is at most (N −K)e−2β2m.

All of the events that variables agree with the label, for various variables, and various examples,

are independent. So the events that various irrelevant variables are included in Mβ are independent.

Applying (5) with E(U) = (N −K)e−2β2m gives that, with probability at least 1−δ, the number of

irrelevant positive features in Mβ is at most 4(N −K)e−2β2m.

A symmetric analysis establishes the same bound on the number of negative irrelevant features

in Mβ. Adding these up completes the proof. !

Lemma 6 With probability at least 1− δ, the number of relevant features in Mβ is at least K −
4Ke−2(γ−β)2m −3ln(1/δ).

Proof: For a particular relevant feature to be excluded from Mβ, Algorithm A must underestimate

the probability that the relevant feature equals the class label by at least γ−β. Applying (3), this

happens with probability at most e−2(γ−β)2m, so the expected number of relevant variables excluded

from Mβ is at most Ke−2(γ−β)2m. Applying (5) as in the preceding two lemmas completes the proof.

!

Lemma 7 The probability that Mβ makes an error is at most

exp







−2γ2
[

K −8Ke−2(γ−β)2m −6ln(1/δ)
]2

+

K +8Ne−2β2m +6ln(1/δ)






+4δ.

for any δ > 0 and 0 ≤ β ≤ γ.

Proof: The bounds of Lemmas 4, 5, and 6 simultaneously hold with probability at least 1−4δ. Thus

the error probability of Mβ is at most 4δ plus the probability of error given that all three bounds hold.

Plugging the three bounds into Theorem 1, (and over-estimating the number n of variables in the
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model with K plus the bound of Lemma 5 on the number of irrelevant variables) gives a bound on

Mβ’s error probability of

exp







−2γ2
[

(K −4Ke−2(γ−β)2m −3ln(1/δ))− (4Ke−2(γ+β)2m +3ln(1/δ))
]2

+

K +8Ne−2β2m +6ln(1/δ)






(9)

when all three bounds hold. Under-approximating (γ+β)2 with (γ−β)2 and simplifying yields:

(9) ≤ exp







−2γ2
[

K −8Ke−2(γ−β)2m −6ln(1/δ)
]2

+

K +8Ne−2β2m +6ln(1/δ)






.

Adding 4δ completes the proof. !

We are now ready to prove Theorem 3.

Proof (of Theorem 3): Using

δ = exp

(

−
γK

6

)

in Lemma 7 bounds the probability that Mβ makes a mistake by

exp







−2γ2
[

K −8Ke−2(γ−β)2m − γK
]2

+

K +8Ne−2β2m + γK






+4exp

(

−
γK

6

)

< exp







−2γ2K
[

1−8e−2(γ−β)2m − γ
]2

+

1+ 8N
K e−2β2m + γ






+4exp

(

−
γK

6

)

. (10)

The first term is at least e−2γ2K , and

4exp

(

−
γK

6

)

= o
(

e−2γ2K
)

as γ → 0 and γK → ∞, so (10) implies the bound

(1+o(1))exp







−2γ2K
[

1−8e−2(γ−β)2m − γ
]2

+

1+ 8N
K e−2β2m + γ







as desired. !

The following theorem bounds the error in terms of just K, N, and γ when m is sufficiently large.

Theorem 8 Suppose algorithm A produces models Mβ where 0 ≤ β ≤ cγ for a constant c ∈ [0,1).

• Then there is a constant b (depending only on c) such that whenever m ≥ b/γ2 the error of

A’s model is at most (1+o(1))exp
(

− γ2K2

N

)

.
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• If m = ω(1/γ2) then the error of A’s model is at most (1+o(1))exp
(

−(2−o(1))γ2K2

N

)

.

Proof Combining Lemmas 4 and 6 with the upper bound of N on the number of features in Mβ as

in Lemma 7’s proof gives the following error bound on Mβ

exp







−2γ2
[

K −8Ke−2(γ−β)2m −6ln(1/δ)
]2

+

N






+2δ

for any δ > 0. Setting

δ = exp

(

−
γK

6

)

and continuing as in the proof of Theorem 3 gives the bound

(1+o(1))exp







−2γ2K2
[

1−2
(

4e−2(γ−β)2m + γ
)]2

+

N






. (11)

For the first part of the theorem, it suffices to show that the [· · · ]2+ term is at least 1/2. Recalling that

our analysis is for small γ, the term inside the [· · · ]+ of (11) is at least

1−8e−2(1−c)2γ2m −o(1).

When

m ≥
ln(32)

2(1− c)2γ2
, (12)

this term is at least 3/4−o(1), and thus its square is at least 1/2 for small enough γ, completing the

proof of the first part of the theorem.

To see the second part of the theorem, since m ∈ ω(1/γ2), the term of (11) inside the [· · · ]+ is

1−o(1).

By examining inequality (12), we see that the constant b in Theorem 8 can be set to ln(32)/2(1−
c)2.

Lemma 9 The expected number of irrelevant variables in Mβ is at least (N −K)e−16β2m.

Proof Follows from inequality (7).

Corollary 10 If K, N, and m are functions of γ such that

γ → 0,

K2/N ∈ ω(ln(1/γ)/γ2),

K = o(N) and

m = 2ln(32)/γ2

then if an algorithm outputs Mβ using a β in [0,γ/2], it has an error that decreases super-polynomially

(in γ), while the expected fraction of irrelevant variables in the model goes to 1.
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Note that Theorem 8 and Corollary 10 include non-trivial error bounds on the model M0 that

votes all N variables (for odd sample size m).

5. Lower Bound

Here we show that any algorithm with an error guarantee like Theorem 8 must include many ir-

relevant features in its model. The preliminary version of this paper (Helmbold and Long, 2011)

contains a related lower bound for algorithms that choose β as a function of N, K, m, and γ, and

predict with Mβ. Here we present a more general lower bound that applies to algorithms outputting

arbitrary hypotheses. This includes algorithms that use weighted voting (perhaps with L1 regular-

ization). In this section we

• set the number of features N, number of relevant features K, and sample size m as a functions

of γ in such a way that Corollary 10 applies, and

• prove a constant lower bound for these combinations of values that holds for “exclusive”

algorithms (defined below) when γ is small enough.

Thus, in this situation, “inclusive” algorithms relying on many irrelevant variables have error rates

going to zero while every “exclusive” algorithm has an error rate bounded below by a constant.

The proofs in this section assume that all relevant variables are positively correlated with the

class designation, so each relevant variable agrees with the class designation with probability 1/2+
γ. Although not essential for the results, this assumption simplifies the definitions and notation.6

We also set m = 2ln(32)/γ2. This satisfies the assumption of Theorem 8 when β ≤ γ/2 (see In-

equality (12)).

Definition 11 We say a classifier f includes a variable xi if there is an input (x1, ...,xN) such that

f (x1, ...,xi−1,xi,xi+1, ...,xN) (= f (x1, ...,xi−1,1− xi,xi+1, ...,xN).

Let V ( f ) be the set of variables included in f .

For a training set S, we will refer to the classifier output by algorithm A on S as A(S). Let R be

the set of relevant variables.

Definition 12 We say that an algorithm A is λ-exclusive7 if for every positive N, K, γ, and m, the

expected fraction of the variables included in its hypothesis that are relevant is at least λ, that is,

E

(

|V (A(S))∩R |
|V (A(S))|

)

≥ λ.

Our main lower bound theorem is the following.

6. The assumption that each relevant variable agrees with the class label with probability 1/2+ γ gives a special case of

the generative model described in Section 4, so the lower bounds proven here also apply to that more general setting.

7. The proceedings version of this paper (Helmbold and Long, 2011) used a different definition of λ-exclusive.
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Theorem 13 If

K =
1

γ2
exp
(

ln(1/γ)1/3
)

N = K exp
(

ln(1/γ)1/4
)

m =
2ln(32)

γ2

then for any constant λ > 0 and any λ-exclusive algorithm A, the error rate of A is lower bounded

by λ/4−o(1) as γ goes to 0.

Notice that this theorem provides a sharp contrast to Corollary 10. Corollary 10 shows that in-

clusive A using models Mβ for any 0≤ β≤ γ/2 have error rates that goes to zero super-polynomially

fast (in 1/γ) under the assumptions of Theorem 13.

The values of K and N in Theorem 13 are chosen to make the proof convenient, but other values

would work. For example, decreasing K and/or increasing N would make the lower bound part of

Theorem 13 easier to prove. There is some slack to do so while continuing to ensure that the upper

bound of Corollary 10 goes to 0.

As the correlation of variables with the label over the sample plays a central role in our analysis,

we will use the following definition.

Definition 14 If a variable agrees with the class label on 1/2+η of the training set then it has

(empirical) edge η.

The proof of Theorem 13 uses a critical value of β, namely β∗ = γ ln(N/K)/10ln(32), with the

property that both:

E
(

|Mβ∗ ∩R |
)

E
(

|Mβ∗ |
) → 0, (13)

E
(

|Mβ∗ ∩R |
)

∈ o(1/γ2) (14)

as γ → 0.

Intuitively, (13) means that any algorithm that uses most of the variables having empirical edge

at least β∗ cannot be λ-exclusive. On the other hand, (14) implies that if the algorithm restricts itself

to variables with empirical edges greater than β∗ then it does not include enough relevant variables

to be accurate. The proof must show that arbitrary algorithms frequently include either too many

irrelevant variables to be λ-exclusive or too few relevant ones to be accurate. See Figure 3 for some

useful facts about γ, m, and β∗.

To prove the lower bound, borrowing a technique from Ehrenfeucht et al. (1989), we will assume

that the K relevant variables are randomly selected from the N variables, and lower bound the error

with respect to this random choice, along with the training and test data. This will then imply that,

for each algorithm, there will be a choice of the K relevant variables giving the same lower bound

with respect only to the random choice of the training and test data. We will always use relevant

variables that are positively associated with the class label, agreeing with it with probability 1/2+γ.

Proof [of Theorem 13] Fix any learning algorithm A, and let A(S) be the hypothesis produced by

A from sample S. Let n(S) be the number of variables included in A(S) and let β(S) be the n(S)’th
largest empirical (w.r.t. S) edge of a variable.
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b = 2ln(32)

m =
b

γ2
=

2ln(32)

γ2

β∗ =
γ ln(N/K)

5b
=

γ ln(1/γ)1/4

10ln(32)

Figure 3: Some useful facts relating b, γ, m and β∗ under the assumptions of Theorem 13.

Let qγ be the probability that β(S) ≥ β∗ = γ ln(N/K)/10ln(32). We will show in Section 5.2

that if A is λ-exclusive then λ ≤ qγ +o(1) (as γ goes to 0). We will also show in Section 5.3 that the

expected error of A is at least qγ/4−o(1) as γ goes to 0. Therefore any λ-exclusive algorithm A has

an expected error rate at least λ/4−o(1) as γ goes to 0.

Before attacking the two parts of the proof alluded to above, we need a subsection providing

some basic results about relevant variables and optimal algorithms.

5.1 Relevant Variables and Good Hypotheses

This section proves some useful facts about relevant variables and good hypotheses. The first lemma

is a lower bound on the accuracy of a model in terms of the number of relevant variables.

Lemma 15 If γ ∈ [0,1/5] then any classifier using k relevant variables has an error probability at

least 1
4 e−5γ2k.

Proof: The usual Naive Bayes calculation (see Duda et al., 2000) implies that the optimal classifier

over a certain set V of variables is a majority vote over V ∩R . Applying the lower tail bound (8)

then completes the proof. !

Our next lemma shows that, given a sample, the probability that a variable is relevant (positively

correlated with the class label) is monotonically increasing in its empirical edge.

Lemma 16 For two variables xi and x j, and any training set S of m examples,

• P[xi relevant | S]> P[x j relevant | S] if and only if the empirical edge of xi in S is greater than

the empirical edge of x j in S, and

• P[xi relevant | S] = P[x j relevant | S] if and only if the empirical edge of xi in S is equal to the

empirical edge of x j in S.

Proof Since the random choice of R does not effect that marginal distribution over the labels, we

can generate S by picking the labels for all the examples first, then R , and finally the values of the

variables on all the examples. Thus if we can prove the lemma after conditioning on the values of

the class labels, then scaling all of the probabilities by 2−m would complete the proof. So, let us fix
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the values of the class labels, and evaluate probabilities only with respect to the random choice of

the relevant variables R , and the values of the variables.

Let

∆ = P[xi ∈ R |S]− P[x j ∈ R |S] .

First, by subtracting off the probabilities that both variables are relevant, we have

∆ = P
[

xi ∈ R ,x j (∈ R
∣

∣S
]

− P
[

xi (∈ R ,x j ∈ R
∣

∣S
]

.

Let ONE be the event that exactly one of xi or x j is relevant. Then

∆ = (P
[

xi ∈ R ,x j (∈ R
∣

∣S,ONE
]

− P
[

xi (∈ R ,x j ∈ R
∣

∣S,ONE
]

)P[ONE] .

So ∆ > 0 if and only if

∆′ def
= P

[

xi ∈ R ,x j (∈ R
∣

∣S,ONE
]

− P
[

xi (∈ R ,x j ∈ R
∣

∣S,ONE
]

> 0

(and similarly for ∆ = 0 if and only if ∆′ = 0). If Q is the distribution obtained by conditioning on

ONE, then

∆′ = Q
[

xi ∈ R ,x j (∈ R
∣

∣S
]

− Q
[

xi (∈ R ,x j ∈ R
∣

∣S
]

.

Let Si be the values of variable i in S, and define S j similarly for variable j. Let S′ be the values

of the other variables. Since we have already conditioned on the labels, after also conditioning on

ONE (i.e., under the distribution Q), the pair (Si,S j) is independent of S′. For each Si we have

P[Si | xi (∈ R ] = Q[Si | xi (∈ R ]. Furthermore, by symmetry,

Q
[

xi ∈ R ,x j (∈ R
∣

∣S′
]

= Q
[

xi (∈ R ,x j ∈ R
∣

∣S′
]

=
1

2
.

Thus, by using Bayes’ Rule on each term, we have

∆′ = Q
[

xi ∈ R ,x j (∈ R
∣

∣Si,S j,S
′]− Q

[

xi (∈ R ,x j ∈ R
∣

∣Si,S j,S
′]

=
Q
[

Si,S j

∣

∣xi ∈ R ,x j (∈ R ,S′
]

− Q
[

Si,S j

∣

∣xi (∈ R ,x j ∈ R ,S′
]

2Q[Si,S j|S′]

=
(1/2+ γ)mi(1/2− γ)m−mi − (1/2+ γ)m j(1/2− γ)m−m j

2m+1Q[Si,S j]
,

where mi and m j are the numbers of times that variables xi and x j agree with the label in sample S.

The proof concludes by observing that ∆′ is positive exactly when mi > m j and zero exactly when

mi = m j.

Because, in this lower bound proof, relevant variables are always positively associated with the

class label, we will use a variant of Mβ which only considers positive features.

Definition 17 Let Vβ be a vote over the variables with empirical edge at least β.

When there is no chance of confusion, we will refer to the set of variables in Vβ also as Vβ (rather

than V (Vβ)).
We now establish lower bounds on the probability of variables being included in Vβ (here β can

be a function of γ, but does not depend on the particular sample S).
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Lemma 18 If γ ≤ 1/8 and β ≥ 0 then the probability that a given variable has empirical edge at

least β is at least
1

5
exp
(

−16β2m
)

.

If in addition m ≥ 1/β2, then the probability that a given variable has empirical edge at least β is

at least
1

7β
√

m
exp
(

−2β2m
)

−
1√
m
.

Proof: Since relevant variables agree with the class label with probability 1/2+ γ, the probability

that a relevant variable has empirical edge at least β is lower bounded by the probability that an

irrelevant variable has empirical edge at least β. An irrelevant variable has empirical edge at least β
only when it agrees with the class on 1/2+β of the sample. Applying Bound (7), this happens with

probability at least 1
5 exp

(

−16β2m
)

. The second part uses Bound (6) instead of (7). !

We now upper bound the probability of a relevant variable being included in Vβ, again for β that

does not depend on S.

Lemma 19 If β ≥ γ, the probability that a given relevant variable has empirical edge at least β is

at most e−2(β−γ)2m.

Proof: Use (3) to bound the probability that a relevant feature agrees with the class label β−γ more

often than its expected fraction of times. !

5.2 Bounding λ-Exclusiveness

Recall that n(S) is the number of variables used by A(S), and β(S) is the edge of the variable

whose rank, when the variables are ordered by their empirical edges, is n(S). We will show

that: if A(S) is λ-exclusive, then there is reasonable probability that β(S) is at least the critical

value β∗ = γ ln(N/K)/5b. Specifically, if A is λ-exclusive, then, for any small enough γ, we have

P[β(S)≥ β∗]> λ/2.

Suppose, given the training set S, the variables are sorted in decreasing order of empirical edge

(breaking ties arbitrarily, say using the variable index). Let VS,k consist of the first k variables in

this sorted order, the “top k” variables.

Since for each sample S and each variable xi, the probability P
[

xi relevant
∣

∣S
]

decreases as the

empirical edge of xi decreases (Lemma 16), the expectation E

(

|VS,k ∩R |
|VS,k|

∣

∣

∣

∣

S

)

is non-increasing

with k.

Furthermore, Lemma 16 also implies that for each sample S, we have

E

(

|V (A(S))∩R |
|V (A(S))|

∣

∣

∣

∣

S

)

≤ E

( |VS,n(S)∩R |
|VS,n(S)|

∣

∣

∣

∣

S

)

.

Therefore, by averaging over samples, for each γ we have

E

(

|V (A(S))∩R |
|V (A(S))|

)

≤ E

( |VS,n(S)∩R |
|VS,n(S)|

)

. (15)
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Note that the numerators in the expectations are never greater than the denominators. We will

next give upper bounds on |Vβ∗ ∩R | and lower bounds on |Vβ∗ | that each hold with probability

1− γ.

The next step is a high-confidence upper bound on |Vβ∗ ∩R |. From Lemma 19, the probability

that a particular relevant variable is in Vβ∗ is at most (recall that m = b/γ2)

e−2(β∗−γ)2m = e−2b(β∗/γ−1)2

= exp



−2b

(

ln(1/γ)1/4

5b
−1

)2




= exp

(

−2ln(1/γ)1/2

25b
+

4ln(1/γ)1/4

5
−2b

)

< exp

(

−2ln(1/γ)1/2

25b
+

4ln(1/γ)1/4

5

)

.

Let prel = exp
(

−2ln(1/γ)1/2

25b + 4ln(1/γ)1/4

5

)

be this upper bound, and note that prel drops to 0 as γ

goes to 0, but a rate slower than γε for any ε. The number of relevant variables in Vβ∗ has a binomial

distribution with parameters K and p where p < prel. The standard deviation of this distribution is

σ =
√

K p(1− p)<
√

K p <
exp
(

ln(1/γ)1/3

2

)√
prel

γ
. (16)

Using the Chebyshev bound,

P[|X −E(X)|> aσ]≤
1

a2
(17)

with a = 1/
√

γ gives that

P

[

|Vβ∗ ∩R |−K p >
σ
√

γ

]

≤ γ,

P

[

|Vβ∗ ∩R |> K prel +
σ
√

γ

]

≤ γ. (18)

Since σ <
√

K p <
√

K prel by (16), we have σ
√

K prel < K prel. Substituting the values of K and

prel into the square-root yields

K prel > σ×
exp
(

ln(1/γ)1/3

2

)

exp
(

− ln(1/γ)1/2

25b + 2ln(1/γ)1/4

5

)

γ

> σ/
√

γ,

for small enough γ. Combining with (18), we get that

P
[

|Vβ∗ ∩R |> 2K prel

]

≤ γ (19)
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holds for small enough γ.

Using similar reasoning, we now obtain a lower bound on the expected number of variables in

Vβ∗ . Lemma 18 shows that, for each variable, the probability of the variable having empirical edge

β∗ is at least

1

7β∗√m
exp
(

−2β∗2m
)

−
1√
m

=
5
√

b

7ln(1/γ)1/4
exp

(

−2
ln(1/γ)1/2

25b

)

−
γ√
b

>

√
b

2ln(1/γ)1/4
exp

(

−2
ln(1/γ)1/2

25b

)

for sufficiently small γ. Since the empirical edges of different variables are independent, the proba-

bility that at least n variables have empirical edge at least β∗ is lower bounded by the probability of

at least n successes from the binomial distribution with parameters N and pirrel where

pirrel =

√
b

2ln(1/γ)1/4
exp

(

−2
ln(1/γ)1/2

25b

)

.

If, now, we define σ to be the standard deviation of this binomial distribution, then, like before,

σ =
√

N pirrel(1− pirrel)<
√

N pirrel, and

N pirrel/2 > σ
√

N pirrel/2

=
σ

2
×

exp((1/2)(ln(1/γ)1/4 + ln(1/γ)1/3))

γ
×

b1/4

√
2ln(1/γ)1/8

exp

(

−
ln(1/γ)1/2

25b

)

,

so that, for small enough γ, N pirrel/2 > σ/
√

γ. Therefore applying the Chebyshev bound (17) with

a = 1/
√

γ gives (for sufficiently small γ)

P

[

|Vβ∗ |<
N pirrel

2

]

≤ P
[

|Vβ∗ |< N pirrel −σ/
√

γ
]

< γ. (20)

Recall that

qγ = P[β(S)≥ β∗] = P
[

n(S)≤ |Vβ∗ |
]

.

If A is λ-exclusive then, using (15), we have

λ ≤ E

(

|V (A(S))∩R |)
|V (A(S))|

)

≤ E

( |VS,n(S)∩R |
|VS,n(S)|

)

≤ (1−qγ)E

( |VS,n(S)∩R |
|VS,n(S)|

∣

∣

∣

∣

|Vβ∗ |< n(S)

)

+qγ

≤ (1−qγ)E

( |Vβ∗ ∩R |
|Vβ∗ |

∣

∣

∣

∣

|Vβ∗ |< n(S)

)

+qγ

≤ (1−qγ)

(

2K prel

N pirrel/2
+2γ

)

+qγ

where we use the upper and lower bounds from Equations (19) and (20) that each hold with proba-

bility 1− γ. Note that the ratio
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2K prel

N pirrel/2
≤

2
eln(1/γ)1/3

γ2
exp

(

−2ln(1/γ)1/2

25b
+

4ln(1/γ)1/4

5

)

eln(1/γ)1/3
eln(1/γ)1/4

4γ2

√
b

ln(1/γ)1/4
exp

(

−2
ln(1/γ)1/2

25b

)

=

8ln(1/γ)1/4 exp

(

−2ln(1/γ)1/2

25b
+

4ln(1/γ)1/4

5

)

√
b eln(1/γ)1/4

exp

(

−2
ln(1/γ)1/2

25b

)

=

8ln(1/γ)1/4 exp

(

− ln(1/γ)1/4

5

)

√
b

which goes to 0 as γ goes to 0. Therefore,

λ ≤ E

(

|V (A(S))∩R |)
|V (A(S))|

)

≤ qγ +o(1)

which implies that,

qγ = P[β(S)≥ β∗]≥ λ−o(1)

as γ goes to 0.

5.3 Large Error

Call a variable good if it is relevant and its empirical edge is at least β∗ in the sample. Let p be

the probability that a relevant variable is good. Thus the number of good variables is binomially

distributed with parameters K and p. We have that the expected number of good variables is pK and

the variance is K p(1− p)< K p. By Chebyshev’s inequality, we have

P
[

# good vars ≥ K p+a
√

K p
]

≤ P
[

# good vars ≥ K p+a
√

K p(1− p)
]

≤
1

a2
, (21)

and setting a =
√

K p, this gives

P[# good vars ≥ 2K p]≤
1

K p
.

By Lemma 19, K p ≤ Ke−2(β∗−γ)2m = Ke−2b(ln(1/γ)1/4/5b−1)
2

, so

ln(K p)≤ lnK −2b

(

ln(1/γ)1/2

25b2
−

2ln(1/γ)1/4

5b
+1

)

,

ln(K p)≤ 2ln(1/γ)+ ln(1/γ)1/3 −2b

(

ln(1/γ)1/2

25b2
−

2ln(1/γ)1/4

5b
+1

)

.
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So for small enough γ,

ln(K p)≤ 2ln(1/γ)−
ln(1/γ)1/2

25b

and thus K p ∈ o(1/γ2).
So if K p > 1/γ, then with probability at least 1− γ, there are less than 2K p ∈ o(1/γ2) good

variables. On the other hand, if K p < 1/γ, then, setting a =
√

1/γ in bound (21) gives that the

probability that there are more than 2/γ good variables is at most γ. So in either case the probability

that there are more than 2
γ2 exp

(

− ln(1/γ)1/2/25b
)

good variables is at most γ (for small enough γ).

So if P[β(S)≥ β∗] ≥ qγ, then with probability at least qγ − γ algorithm A is using a hypothesis

with at most 2
γ2 exp

(

− ln(1/γ)1/2/25b
)

relevant variables. Applying Lemma 15 yields the following

lower bound on the probability of error:

(qγ − γ)
1

4
exp
(

−10exp
(

− ln(1/γ)1/2/25b
))

. (22)

Since the limit of (22) for small γ is qγ/4, this completes the proof of Theorem 13.

6. Relaxations of Some Assumptions

To keep the analysis clean, and facilitate the interpretation of the results, we have analyzed an

idealized model. In this section, we briefly consider the consequences of some relaxations of our

assumptions.

6.1 Conditionally Dependent Variables

Theorem 1 can be generalized to the case in which there is limited dependence among the variables,

after conditioning on the class designation, in a variety of ways. For example, suppose that there is

a degree-r graph G whose nodes are variables, and such that, conditioned on the label, each variable

is independent of all variables not connected to it by an edge in G. Assume that k variables agree

with the label with probability 1/2+ γ, and the n− k agree with the label with probability 1/2.

Let us say that a source like this has r-local dependence. Then applying a Chernoff-Hoeffding

bound for such sets of random variables due to Pemmaraju (2001), if r ≤ n/2, one gets a bound of

c(r+1)exp
(

−2γ2k2

n(r+1)

)

the probability of error.

6.2 Variables with Different Strengths

We have previously assumed that all relevant variables are equally strongly associated with the class

label. Our analysis is easily generalized to the situation when the strengths of associations fall in

an interval [γmin,γmax]. Thus relevant variables agree with the class label with probability at least

1/2+ γmin and misleading variables agree with the class label with probability at least 1/2− γmax.

Although a sophisticated analysis would take each variable’s degree of association into account, it

is possible to leverage our previous analysis with a simpler approach. Using the 1/2+ γmin and

1/2− γmax underestimates on the probability that relevant variables and misleading variables agree

with the class label leads to an analog of Theorem 1. This analog says that models voting n variables,

k of which are relevant and ! of which are misleading, have error probabilities bounded by

exp

(

−2[γmink− γmax!]2+
n

)

.
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We can also use the upper and lower bounds on association to get high-confidence bounds (like

those of Lemmas 4 and 6) on the numbers of relevant and misleading features in models Mβ. This

leads to an analog of Theorem 3 bounding the expected error rate of Mβ by

(1+o(1))exp







−2γ2
minK

[

1−4(1+ γmax/γmin)e−2(γmin−β)2m − γmin

]2

+

1+ 8N
K e−2β2m + γmin







when 0 ≤ β ≤ γ and γmax ∈ o(1). Note that γ in Theorem 3 is replaced by γmin here, and γmax only

appears in the 4(1+ γmax/γmin) factor (which replaces an “8” in the original theorem).

Continuing to mimic our previous analysis gives analogs to Theorem 8 and Corollary 10. These

analogs imply that if γmax/γmin is bounded then algorithms using small β perform well in the same

limiting situations used in Section 5 to bound the effectiveness of exclusive algorithms.

A more sophisticated analysis keeping better track of the degree of association between relevant

variables and the class label may produce better bounds. In addition, if the variables have varying

strengths then it makes sense to consider classifiers that assign different voting weights to the vari-

ables based on their estimated strength of association with the class label. An analysis that takes

account of these issues is a potentially interesting subject for further research.

7. Conclusions

We analyzed learning when there are few examples, a small fraction of the variables are relevant, and

the relevant variables are only weakly correlated with the class label. In this situation, algorithms

that produce hypotheses consisting predominately of irrelevant variables can be highly accurate

(with error rates going to 0). Furthermore, this inclusion of many irrelevant variables is essential.

Any algorithm limiting the expected fraction of irrelevant variables in its hypotheses has an error

rate bounded below by a constant. This is in stark contrast with many feature selection heuristics

that limit the number of features to a small multiple of the number of examples, or that limit the

classifier to use variables that pass stringent statistical tests of association with the class label.

These results have two implications on the practice of machine learning. First, they show that the

engineering practice of producing models that include enormous numbers of variables is sometimes

justified. Second, they run counter to the intuitively appealing view that accurate class prediction

“validates” the variables used by the predictor.
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Appendix A. Proofs of Tail Bounds

This appendix has the proofs of the tail bounds used in the paper.
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A.1 Proof of (4)

Equation 4.1 from Motwani and Raghavan (1995) is

P[U > (1+η)E(U)]<

(

eη

(1+η)1+η

)E(U)

and holds for independent 0-1 valued Ui’s each with (possibly different) probabilities pi =P(Ui = 1)
where 0 < pi < 1 and η > 0. Taking the logarithm of the RHS, we get

ln(RHS) = E(U)(η− (1+η) ln(1+η))

< E(U)(η+1− (1+η) ln(1+η))

= −E(U)(η+1)(ln(1+η)−1),

which implies (4).

A.2 Proof of (5)

Using (4) with η = 3+3ln(1/δ)/E(U) gives

P[U > 4E(U)+3ln(1/δ)]< exp

(

−(4E(U)+3lnδ) ln

(

4+3ln(1/δ)/E(U)

e

))

< exp

(

−(3ln(1/δ) ln

(

4

e

))

< exp(− ln(1/δ)) = δ

using the fact that ln(4/e)≈ 0.38 > 1/3.

A.3 Proof of (6)

The following is a straightforward consequence of the Berry-Esseen inequality.

Lemma 20 (see DasGupta, 2008, Theorem 11.1) Under the assumptions of Section 2 with each

P[Ui = 1] = 1/2, let:

Ti = 2(Ui −1/2),

T =

√

1

!

!

∑
i=1

Ti, and

Z be a standard normal random variable.

Then for all η, we have
∣

∣P[T > η]− P[Z > η]
∣

∣≤
1√
!
.

Lemma 21 (Feller, 1968, Chapter VII, section 1) If Z is a standard normal random variable and

x > 0, then
1√
2π

(

1

x
−

1

x3

)

e−x2/2 < P[Z > x]<
1√
2π

(

1

x

)

e−x2/2.
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Now, to prove (6), let M = 1
! ∑!

i=1(Ui− 1
2) and let Z be a standard normal random variable. Then

Lemma 20 implies that, for all κ
∣

∣

∣
P
[

2
√
!M > κ

]

− P[Z > κ]
∣

∣

∣
≤

1√
!
.

Using κ = 2η
√
!,

P[M > η]≥ P
[

Z > 2η
√
!
]

−
1√
!
. (23)

Applying Lemma 21, we get

P
[

Z > 2η
√
!
]

≥
1√
2π

(

1

2η
√
!
−
(

1

2η
√
!

)3
)

e−2η2!.

Since !≥ 1/η2, we get

P
[

Z > 2η
√
!
]

≥
1√
2π

(

1

2
−

1

8

)

1

η
√
!

e−2η2!

≥
1

7η
√
!

e−2η2!.

Combining with (23) completes the proof of (6). !

A.4 Proof of (7)

We follow the proof of Proposition 7.3.2 in Matoušek and Vondrak (2011, Page 46).

Lemma 22 For n even, let U1, . . . ,Un be i.i.d. RVs with P[U1 = 0] = P[U1 = 1] = 1/2 and U =∑n
i=1.

Then for integer t ∈ [0, n
8 ],

P
[

U ≥
n

2
+ t
]

≥
1

5
e−16t2/n.

Proof Let integer m = n/2.

P[U ≥ m+ t] = 2−2m
m

∑
j=t

(

2m

m+ j

)

≥ 2−2m
2t−1

∑
j=t

(

2m

m+ j

)

= 2−2m
2t−1

∑
j=t

(

2m

m

)

·
m

m+ j
·

m−1

m+ j−1
· · ·

m− j+1

m+1

≥
1

2
√

m

2t−1

∑
j=t

j

∏
i=1

(

1−
j

m+1

)

using
(

2m
m

)

≥ 22m/2
√

m

≥
t

2
√

m

(

1−
2t

m

)2t

≥
t

2
√

m
e−8t2/m since 1− x ≥ e−2x for 0 ≤ x ≤ 1/2.
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For t ≥ 1
2

√
m, the last expression is at least 1

4 e−16t2/n.

Note that P[U = m] = 2−2m
(

2m
m

)

≤ 1/
√

πm. Thus for 0 ≤ t < 1
2

√
m, we have

P[U ≥ m+ t]≥
1

2
− tP[U = m]

≥
1

2
−

1

2

√
m

1√
πm

≥
1

2
−

1

2
√

π
≈ 0.218 ≥

1

5
≥

1

5
e−162/n.

Thus the bound 1
5 e−16t2/n holds for all 0 ≤ t ≤ m/4.

A.5 Proof of (8)

The proof of (8) follows the proof of Lemma 5.1 in Anthony and Bartlett (1999). It uses the next

two lemmas.

Lemma 23 (Slud’s Inequality 1977) Let B be a binomial (!, p) random variable with p ≤ 1/2.

Then for !(1− p)≥ j ≥ !p,

P[B ≥ j]≥ P

[

Z ≥
j− !p

√

!p(1− p)

]

where Z is a standard normal random variable.

Lemma 24 (see Anthony and Bartlett, 1999, Appendix 1) If Z is a standard normal and x > 0

then

P[Z ≥ x]≥
1

2

(

1−
√

1− e−x2
)

.

Recall that in (8) U the sum of the ! i.i.d. boolean random variables, each of which is 1 with

probability 1
2 +η. Let B be a random variable with the binomial (!, 1

2 −η) distribution.

P

[

1

!
U < 1/2

]

= P[B ≥ !/2]

≥ P

[

N ≥
!/2− !(1/2−η)

√

!(1/2+η)(1/2−η)

]

Slud’s Inequality

= P

[

N ≥
2η

√
!

√

(1−4η2)

]

≥
1

2

(

1−

√

1− exp

(

−
4η2!

1−4η2

)

)

≥
1

4
exp

(

−
4η2!

1−4η2

)

since 1−
√

1− x > x/2

≥
1

4
exp
(

−5η2!
)

when η ≤ 1/5
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completing the proof of (8).
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Christian Gagné CHRISTIAN.GAGNE@GEL.ULAVAL.CA

Laboratoire de vision et systèmes numériques
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Abstract

DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. Its
design departs from most other existing frameworks in that it seeks to make algorithms explicit and
data structures transparent, as opposed to the more common black-box frameworks. Freely avail-
able with extensive documentation at http://deap.gel.ulaval.ca, DEAP is an open source
project under an LGPL license.

Keywords: distributed evolutionary algorithms, software tools

1. Introduction

Evolutionary Computation (EC) is a sophisticated field with very diverse techniques and mecha-

nisms, where even well designed frameworks can become quite complicated under the hood. They

thus strive to hide the implementation details as much as possible, by providing large libraries of

high-level functionalities, often in many different flavours. This is the black-box software model

(Roberts and Johnson, 1997). The more elaborate these boxes become, the more obscure they are,

and the less likely the commoner is to ever take a peek under the hood to consider making changes.

But using EC to solve real-world problems most often requires the customization of algorithms.

The DEAP (Distributed Evolutionary Algorithms in Python) framework is built over the Python

programming language that provides the essential glue for assembling sophisticated EC systems.

Its aim is to provide practical tools for rapid prototyping of custom evolutionary algorithms, where

every step of the process is as explicit (pseudocode like) and easy to read and understand as possible.

It also places a high value on both code compactness and code clarity.

2. Core Architecture

DEAP’s core is composed of two simple structures: a creator and a toolbox. The creator module

is a meta-factory that allows the run-time creation of classes via both inheritance and composition.

Attributes, both data and functions, can be dynamically added to existing classes in order to cre-
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ate new types empowered with user-specific EC functionalities. Practically speaking, this allows

the creation of genotypes and populations from any data structure such as lists, sets, dictionaries,

trees, etc. This creator concept is key to facilitating the implementation of any type of EA, in-

cluding genetic algorithms (Mitchell, 1998), genetic programming (Banzhaf et al., 1998), evolution

strategies (Beyer and Schwefel, 2002), covariance matrix adaptation evolution strategy (Hansen and

Ostermeier, 2001), particle swarm optimization (Kennedy and Eberhart, 2001), and many more.

The toolbox is a container for the tools (operators) that the user wants to use in his EA. The

toolbox is manually populated by the user with selected tools. For instance, if the user needs a

crossover in his algorithm, but has access to several crossover types, he will choose the one best

suited for his current problem, for example a uniform crossover “cxUniform”, and register it into

the toolbox using a generic “mate” alias. This way, he is able to build algorithms that are decoupled

from operator sets. If he later decides that some other crossover is better suited, his algorithm will

remain unchanged, he will only need to update the corresponding alias in the toolbox.

The core functionalities of DEAP are levered by several peripheral modules. The algorithms

module contains four classical EC algorithms: generational, (µ , λ), (µ+λ), and ask-and-tell (Col-

lette et al., 2010). These serve as a starting point for users to build their own custom EAs meeting

their specific needs. The tools module provides basic EC operators such as initializations, mutations,

crossovers, and selections. These operators can be directly added to a toolbox in order to be used

in algorithms. This module also contains a number of components that gather useful information

regarding the evolution: fitness statistics, genealogy, hall-of-fame for the best individuals encoun-

tered so far, and checkpointing mechanisms to allow evolution restart. A base module contains

some data structures frequently used in EC, but not implemented in standard Python (e.g., generic

fitness object). The last module named dtm, for Distributed Task Manager, offers distributed sub-

stitutes for common Python functions such as apply and map. DTM allows distribution of specific

parts of users’ algorithms by taking care of spawning and distributing sub-tasks across a cluster of

computers. It even balances the workload among workers to optimize the distribution efficiency.

To illustrate DEAP usage, we now present an example for multi-objective feature selection.

The individual is represented as a bit-string where each bit corresponds to a feature that can be se-

lected or not. The objective is to maximize the number of well-classified test cases and to minimize

the number of features used. Figure 1 shows how this problem can be solved using DEAP.

On line 2, the relevant DEAP modules are first imported. On line 3, a multi-objective fit-

ness class FitnessMulti is created. The first argument of the creator.create method defines the

name of the derived class, while the second argument specifies the inherited base class (in this case

base.Fitness). The third argument adds a new class attribute called weights, initialized with a tu-

ple that specifies a two-objective fitness, of which the first must be maximized (1.0), and the second

must be minimized (-1.0). Next, an Individual class is derived from the Python list and composed

with our newly created FitnessMulti object. After defining a proper evaluation function that re-

turns the fitness values (classification rate, number of selected features) (lines 6 and 7), a toolbox

object is created on line 9, and populated on lines 10 through 16 with aliases in order to initialize

individuals and population, and specify the variation operators (mate, mutate, and select) and the

fitness evaluation function (evaluate) used by the evolutionary loop. The toolbox register method

accepts a variable number of arguments. The first is the alias name, and the second the function that

we want to associate with this alias. All other arguments are passed to this function when the alias is

called. For instance, a call to toolbox.bit will in fact call random.randint with arguments 0 and 1,

and thus generate a random bit. On line 11, to initialize an individual assuming a 80 features selec-
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Figure 1: Multi-objective feature selection example with NSGA-II (Deb et al., 2002).

tion problem, this bit function is simply called n = 80 times repeatedly using the tools.initRepeat

method that accepts three arguments: a container, a function, and the number of times to repeat

initialization. Similarly, a population alias is defined to allow population initialization, in this case

with n = 100 individuals. Line 18 then proceeds with the allocation of a population of individuals

that have their fitness evaluated on line 19 by mapping the evaluation function to every element of

the population container. Lines 20 and 21 replace the individuals fitness with their newly computed

values. Finally, lines 23 through 28 show the evolutionary loop that uses the µ+λ strategy, where

µ = 100 parents (current population) are mixed with λ = 100 offspring (lambda line 24) for the

selection process (NSGA-II) to produce the next generation of k = 100 parents (line 28). The varOr

algorithm loops until it has generated λ offspring using either crossover (mate alias) with probability

cxpb, mutation (mutate alias) with probability mutpb, or reproduction.

Efficient distribution of specific parts of user algorithms is made possible by the dtm module.

For instance, in the previous examples, the only required changes in order to distribute the fitness

evaluation task on a cluster of computers are to import the dtm module and to replace the toolbox

default map function by its distributed dtm equivalent:

The map function calls (lines 19 and 25 in Figure 1) spawn sub-tasks of the evaluation function.

The task manager distributes these sub-tasks across the worker nodes, and automatically balances

the workload evenly among them.
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Framework Type Configuration Algorithm Example Total

ECJ 202 35 65 26 328

EO 43 n/a 67 68 178

Open BEAGLE 256 41 116 64 477

Pyevolve 42 n/a 336 25 378

inspyred 23 n/a 143 24 190

DEAP n/a n/a n/a 59 59

Table 1: Comparison of the number of lines needed to define different components of a OneMax

example with some major frameworks, as counted by cloc (http://cloc.sf.net).

Table 1 presents a comparison of the number of lines required by some of the most popular

frameworks to define different components of a OneMax example (without distribution). Columns

respectively indicate how many lines are required to define the bit-string type, to configure the

operators, to implement the generational algorithm and to execute the example. DEAP is the only

framework that allows the complete definition of the EA in less than one hundred lines of code.

Even though some frameworks may allow shorter expressions of standardized solutions, any needed

customization of type or algorithm can also force the user to dig deep into the framework to modify

perhaps hundreds of lines. We therefore assert that DEAP is superior to previous frameworks for

rapid prototyping of new algorithms and definition of custom types.

3. Conclusion

Current major EC frameworks generally do a good job of offering generic tools to solve hard prob-

lems using EAs. However, their implementation intricacies can also make them difficult to extend

for the commoner. Even experts can become overwhelmed when trying to implement specific fea-

tures. This paper introduced the DEAP framework that combines the flexibility and power of the

Python programming language with a clean and lean core of transparent EC components that both

facilitate rapid prototyping and testing of new EA ideas, and encourage creativeness through sim-

plicity and explicit algorithms. The DEAP core is implemented in 6 program files (Python modules)

with only 1653 lines of code. To these core lines, the DTM module adds another 2073 lines for

enabling the easy distribution of computationally intensive algorithm parts. The framework also

includes more than 35 application examples that add another 2448 lines of code, leading to an av-

erage ratio of core lines to example lines of 1.5, compared with 2.4 for inspyred, 3.4 for ECJ, 5.4

for Pyevolve, 5.5 for EO, and 16.3 for OpenBEAGLE. In other words, DEAP implements the 15

examples of OpenBEAGLE plus 20 more with 10 times less lines of code.
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Abstract

Prediction markets are used in real life to predict outcomes of interest such as presidential elections.
This paper presents a mathematical theory of artificial prediction markets for supervised learning
of conditional probability estimators. The artificial prediction market is a novel method for fusing
the prediction information of features or trained classifiers, where the fusion result is the contract
price on the possible outcomes. The market can be trained online by updating the participants’
budgets using training examples. Inspired by the real prediction markets, the equations that govern
the market are derived from simple and reasonable assumptions. Efficient numerical algorithms are
presented for solving these equations. The obtained artificial prediction market is shown to be a
maximum likelihood estimator. It generalizes linear aggregation, existent in boosting and random
forest, as well as logistic regression and some kernel methods. Furthermore, the market mechanism
allows the aggregation of specialized classifiers that participate only on specific instances. Experi-
mental comparisons show that the artificial prediction markets often outperform random forest and
implicit online learning on synthetic data and real UCI data sets. Moreover, an extensive evalua-
tion for pelvic and abdominal lymph node detection in CT data shows that the prediction market
improves adaboost’s detection rate from 79.6% to 81.2% at 3 false positives/volume.

Keywords: online learning, ensemble methods, supervised learning, random forest, implicit on-
line learning

1. Introduction

Prediction markets, also known as information markets, are forums that trade contracts that yield
payments dependent on the outcome of future events of interest. They have been used in the US
Department of Defense (Polk et al., 2003), health care (Polgreen et al., 2006), to predict presiden-
tial elections (Wolfers and Zitzewitz, 2004) and in large corporations to make informed decisions
(Cowgill et al., 2008). The prices of the contracts traded in these markets are good approximations
for the probability of the outcome of interest (Manski, 2006; Gjerstad and Hall, 2005). predic-
tion markets are capable of fusing the information that the market participants possess through the
contract price. For more details, see Arrow et al. (2008).

In this paper we introduce a mathematical theory for simulating prediction markets numerically
for the purpose of supervised learning of probability estimators. We derive the mathematical equa-
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tions that govern the market and show how can they be solved numerically or in some cases even
analytically. An important part of the prediction market is the contract price, which will be shown to
be an estimator of the class-conditional probability given the evidence presented through a feature
vector x. It is the result of the fusion of the information possessed by the market participants.

The obtained artificial prediction market turns out to have good modeling power. It will be
shown in Section 3.1 that it generalizes linear aggregation of classifiers, the basis of boosting
(Friedman et al., 2000; Schapire, 2003) and random forest (Breiman, 2001). It turns out that to
obtain linear aggregation, each market participant purchases contracts for the class it predicts, re-
gardless of the market price for that contract. Furthermore, in Sections 3.2 and 3.3 will be presented
special betting functions that make the prediction market equivalent to a logistic regression and a
kernel-based classifier respectively.

We introduce a new type of classifier that is specialized in modeling certain regions of the fea-
ture space. Such classifiers have good accuracy in their region of specialization and are not used
in predicting outcomes for observations outside this region. This means that for each observation,
a different subset of classifiers will be aggregated to obtain the estimated probability, making the
whole approach become a sort of ad-hoc aggregation. This is contrast to the general trend in boost-
ing where the same classifiers are aggregated for all observations.

We give examples of generic specialized classifiers as the leaves of random trees from a random
forest. Experimental validation on thousands of synthetic data sets with Bayes errors ranging from
0 (very easy) to 0.5 (very difficult) as well as on real UCI data show that the prediction market using
the specialized classifiers outperforms the random forest in prediction and in estimating the true
underlying probability.

Moreover, we present experimental comparisons on many UCI data sets of the artificial pre-
diction market with the recently introduced implicit online learning (Kulis and Bartlett, 2010) and
observe that the market significantly outperforms the implicit online learning on some of the data
sets and is never outperformed by it.

2. The Artificial Prediction Market for Classification

This work simulates the Iowa electronic market (Wolfers and Zitzewitz, 2004), which is a real
prediction market that can be found online at http://www.biz.uiowa.edu/iem/.

2.1 The Iowa Electronic Market

The Iowa electronic market (Wolfers and Zitzewitz, 2004) is a forum where contracts for future
outcomes of interest (e.g., presidential elections) are traded.

Contracts are sold for each of the possible outcomes of the event of interest. The contract price
fluctuates based on supply and demand. In the Iowa electronic market, a winning contract (that
predicted the correct outcome) pays $1 after the outcome is known. Therefore, the contract price
will always be between 0 and 1.

Our market will simulate this behavior, with contracts for all the possible outcomes, paying 1 if
that outcome is realized.
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2.2 Setup of the Artificial Prediction Market

If the possible classes (outcomes) are 1, ...,K, we assume there exist contracts for each class, whose
prices form a K-dimensional vector c = (c1, ...,cK)∈ ∆⊂ [0,1]K , where ∆ is the probability simplex
∆ = {c ∈ [0,1]K,∑K

k=1 ck = 1}.

Let Ω⊂RF be the instance or feature space containing all the available information that can be
used in making outcome predictions p(Y = k|x),x ∈Ω.

The market consists of a number of market participants (βm,φm(x,c)),m = 1, ...,M.

A market participant is a pair (β,φ(x,c)) of a budget β and a betting function φ(x,c) : Ω×∆→
[0,1]K,φ(x,c) =

(

φ1(x,c), ...,φK(x,c)
)

. The budget β represents the weight or importance of the
participant in the market. The betting function tells what percentage of its budget this participant
will allocate to purchase contracts for each class, based on the instance x ∈Ω and the market price
c. As the market price c is not known in advance, the betting function describes what the participant
plans to do for each possible price c. The betting functions could be based on trained classifiers
h(x) : Ω→ ∆,h(x) = (h1(x), ...,hK(x)),∑K

k=1 hk(x) = 1, but they can also be related to the feature
space in other ways. We will show that logistic regression and kernel methods can also be repre-
sented using the artificial prediction market and specific types of betting functions. In order to bet
at most the budget β, the betting functions must satisfy ∑K

k=1 φk(x,c))≤ 1.
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Figure 1: Betting function examples: a) Constant, b) Linear, c) Aggressive, d) Logistic. Shown are
φ1(x,1− c) (red), φ2(x,c) (blue), and the total amount bet φ1(x,1− c)+ φ2(x,c) (black
dotted). For a) through c), the classifier probability is h2(x) = 0.2.

Examples of betting functions include the following, also shown in Figure 1:

• Constant betting functions

φk(x,c) = φk(x)

for example based on trained classifiers φk(x,c) = ηhk(x), where η ∈ (0,1] is constant.

• Linear betting functions

φk(x,c) = (1− ck)h
k(x). (1)

• Aggressive betting functions

φk(x,c) = hk(x)











1 if ck ≤ hk(x)

0 if ck > hk(x)+ ε
hk(x)+ε−ck

ε otherwise

. (2)
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• Logistic betting functions:

φ1
m(x,1− c) = (1− c)(x+m− ln(1− c)/B),

φ2
m(x,c) = c(−x−m− lnc/B)

where x+ = xI(x > 0),x− = xI(x < 0) and B = ∑m βm.

The betting functions play a similar role to the potential functions from maximum entropy mod-
els (Berger et al., 1996; Ratnaparkhi et al., 1996; Zhu et al., 1998), in that they make a conversion
from the feature output (or classifier output for some markets) to a common unit of measure (energy
for the maximum entropy models and money for the market).

The contract price does not fluctuate in our setup, instead it is governed by Equation (4). This
equation guarantees that at this price, the total amount obtained from selling contracts to the partic-
ipants is equal to the total amount won by the winning contracts, independent of the outcome.

Equilibrium�
price �c�

from Price Equations�

...�

...�

Market participants�

h�m�(�x�)� β�m�
Betting function� Budget�Classifier�

h�
M�
(�x�)� β�

M�
Betting function� Budget�Classifier�

h�1�(�x�)� β�1�
Betting function� Budget�Classifier�

In
p

u
t 

�(�x
�,y

)�

Prediction�
Market�

Estimated probability�
p(y|�x�)=�c�

Figure 2: Online learning and aggregation using the artificial prediction market. Given feature
vector x, a set of market participants will establish the market equilibrium price c, which
is an estimator of P(Y = k|x). The equilibrium price is governed by the Price Equations
(4). Online training on an example (x,y) is achieved through Budget Update (x,y,c)
shown with gray arrows.

Algorithm 1 Budget Update (x,y,c)

Input: Training example (x,y), price c

for m = 1 to M do

Update participant m’s budget as

βm← βm−
K

∑
k=1

βmφk
m(x,c)+

βm

cy
φy

m(x,c) (3)

end for
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2.3 Training the Artificial Prediction Market

Training the market involves initializing all participants with the same budget β0 and presenting to
the market a set of training examples (xi,yi), i = 1, ...,N. For each example (xi,yi) the participants
purchase contracts for the different classes based on the market price c (which is not known yet)
and their budgets βm are updated based on the contracts purchased and the true outcome yi. After
all training examples have been presented, the participants will have budgets that depend on how
well they predicted the correct class y for each training example x. This procedure is illustrated in
Figure 2.

Algorithm 2 Prediction Market Training

Input: Training examples (xi,yi), i = 1, ...,N
Initialize all budgets βm = β0,m = 1, ...,M.
for each training example (xi,yi) do

Compute equilibrium price ci using Equation 4
Run Budget Update (xi,yi,ci)

end for

The budget update procedure subtracts from the budget of each participant the amounts it bets
for each class, then rewards each participant based on how many contracts it purchased for the
correct class.

Participant m purchased βmφk
m(x,c) worth of contracts for class k, at price ck. Thus the number

of contracts purchased for class k is βmφk
m(x,c)/ck. Totally, participant m’s budget is decreased

by the amount ∑K
k=1 βmφk

m(x,c) invested in contracts. Since participant m bought βmφy
m(x,c)/cy

contracts for the correct class y, he is rewarded the amount βmφy
m(x,c)/cy.

2.4 The Market Price Equations

Since we are simulating a real market, we assume that the total amount of money collectively
owned by the participants is conserved after each training example is presented. Thus the sum of all
participants’ budgets ∑M

m=1 βm should always be Mβ0, the amount given at the beginning. Since any
of the outcomes is theoretically possible for each instance, we have the following constraint:

Assumption 1 The total budget ∑M
m=1 βm must be conserved independent of the outcome y.

This condition transforms into a set of equations that constrain the market price, which we call
the price equations. The market price c also obeys ∑K

k=1 ck = 1.

Let B(x,c) = ∑M
m=1 ∑K

k=1 βmφk
m(x,c) be the total bet for observation x at price c. We have

Theorem 1 Price Equations. The total budget ∑M
m=1 βm is conserved after the Budget Update(x,y,c),

independent of the outcome y, if and only if ck > 0,k = 1, ...,K and

M

∑
m=1

βmφk
m(x,c) = ckB(x,c), ∀k = 1, ...,K. (4)

The proof is given in the Appendix.
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2.5 Price Uniqueness

The price equations together with the equation ∑K
k=1 ck = 1 are enough to uniquely determine the

market price c, under mild assumptions on the betting functions φk(x,c).
Observe that if ck = 0 for some k, then the contract costs 0 and pays 1, so there is everything to

win. In this case, one should have φk(x,c)> 0.
This suggests a class of betting functions φk(x,ck) depending only on the price ck that are con-

tinuous and monotonically non-increasing in ck. If all φk
m(x,ck),m = 1, ...,M are continuous and

monotonically non-increasing in ck with φk
m(x,0)> 0 then fk(ck) =

1
ck

∑M
m=1 βmφk

m(x,ck) is continu-
ous and strictly decreasing in ck as long as fk(ck)> 0.

To obtain conditions for price uniqueness, we use the following function

fk(ck) =
1

ck

M

∑
m=1

βmφk
m(x,ck),k = 1, ...,K.

Remark 2 If all fk(ck) are continuous and strictly decreasing in ck as long as fk(ck)> 0, then for

every n > 0, n≥ nk = fk(1) there is a unique ck = ck(n) that satisfies fk(ck) = n.

The proof is given in the Appendix.
To guarantee price uniqueness, we need at least one market participant to satisfy the following

Assumption 2 The total bet of participant (βm,φm(x,c)) is positive inside the simplex ∆, that is,

K

∑
j=1

φ j
m(x,c j)> 0, ∀c ∈ (0,1)K ,

K

∑
j=1

c j = 1. (5)

Then we have the following result, also proved in the Appendix.

Theorem 3 Assume all betting functions φk
m(x,ck),m = 1, ...,M,k = 1, ...,K are continuous, with

φk(x,0) > 0 and φk
m(x,c)/c is strictly decreasing in c as long as φk

m(x,c) > 0. If the betting

function φm(x,c) of least one participant with βm > 0 satisfies Assumption 2, then for the Bud-

get Update(x,y,c) there is a unique price c = (c1, ...,cK) ∈ (0,1)K ∩∆ such that the total budget

∑M
m=1 βm is conserved.

Observe that all four betting functions defined in Section 2.2 ( constant, linear, aggressive and
logistic) satisfy the conditions of Theorem 3, so there is a unique price that conserves the budget.

2.6 Solving the Market Price Equations

In practice, a double bisection algorithm could be used to find the equilibrium price, computing each
ck(n) by the bisection method, and employing another bisection algorithm to find n such that the
price condition ∑K

k=1 ck(n) = 1 holds. Observe that the n satisfying ∑K
k=1 ck(n) = 1 can be bounded

from above by

n = n
K

∑
k=1

ck(n) =
K

∑
k=1

ck(n) fk(ck(n)) =
K

∑
k=1

M

∑
m=1

βmφk
m(x,c)≤

M

∑
m=1

βm

because for each m, ∑K
k=1 φk

m(x,c)≤ 1.
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A potentially faster alternative to the double bisection method is the Mann Iteration (Mann,
1953) described in Algorithm 3. The price equations can be viewed as fixed point equation F(c) = c,
where F(c) = 1

n( f1(c), ..., fK(c)) with fk(c) =∑m
m=1 βmφk

m(x,ck). The Mann iteration is a fixed point
algorithm, which makes weighted update steps

ct+1 = (1−
1

t
)ct +

1

t
F(ct).

The Mann iteration is guaranteed to converge for contractions or pseudo-contractions. However,
we observed experimentally that it usually converges in only a few (up to 10) steps, making it about
100-1000 times faster than the double bisection algorithm. If, after a small number of steps, the
Mann iteration has not converged, the double bisection algorithm is used on that instance to compute
the equilibrium price. However, this happens on less than 0.1% of the instances.

Algorithm 3 Market Price by Mann Iteration

Initialize i = 1, ck =
1
K ,k = 1, ...,K

repeat

fk = ∑m βmφk
m(x,c)

n = ∑k fk

if n ,= 0 then

fk← fk

n

rk = fk− ck

ck← (i−1)ck+ fk

i

end if

i← i+1
until ∑k |rk|≤ ε or n = 0 or i > imax

2.7 Two-class Formulation

For the two-class problem, that is, K = 2, the budget equation can be simplified by writing c =
(1− c,c) and obtaining the two-class market price equation

(1− c)
M

∑
m=1

βmφ2
m(x,c)− c

M

∑
m=1

βmφ1
m(x,1− c) = 0. (6)

This can be solved numerically directly in c using the bisection method. Again, the solution is
unique if φk

m(x,ck),m = 1, ...,M,k = 1,2 are continuous, monotonically non-increasing and obey
condition (5). Moreover, the solution is guaranteed to exist if there exist m,m′ with βm > 0,βm′ > 0
and such that φ2

m(x,0)> 0,φ1
m′(x,1)> 0.

3. Relation to Existing Supervised Learning Methods

There is a large degree of flexibility in choosing the betting functions φm(x,c). Different betting
functions give different ways to fuse the market participants. In what follows we prove that by
choosing specific betting functions, the artificial prediction market behaves like a linear aggregator
or logistic regressor, or that it can be used as a kernel-based classifier.
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3.1 Constant Betting and Linear Aggregation

For markets with constant betting functions, φk
m(x,c) = φk

m(x) the market price has a simple analytic
formula, proved in the Appendix.

Theorem 4 Constant Betting. If all betting function are constant φk
m(x,c) = φk

m(x), then the equi-

librium price is

c =
∑M

m=1 βmφm(x)

∑M
m=1 ∑K

k=1 βmφk
m(x)

. (7)

Furthermore, if the betting functions are based on classifiers φk
m(x,c) = ηhk

m(x) then the equilibrium

price is obtained by linear aggregation

c =
∑M

m=1 βmhm(x)

∑M
m=1 βm

= ∑
m

αmhm(x).

This way the artificial prediction market can model linear aggregation of classifiers. Methods
such as Adaboost (Freund and Schapire, 1996; Friedman et al., 2000; Schapire, 2003) and Random
Forest (Breiman, 2001) also aggregate their constituents using linear aggregation. However, there
is more to Adaboost and Random Forest than linear aggregation, since it is very important how to
construct the constituents that are aggregated.

In particular, the random forest (Breiman, 2001) can be viewed as an artificial prediction market
with constant betting (linear aggregation) where all participants are random trees with the same
budget βm = 1,m = 1, ...,M.

We also obtain an analytic form of the budget update:

βm← βm−βm

K

∑
k=1

φk
m(x)+βm

φy
m(x)∑M

j=1 ∑K
k=1 β jφk

j(x)

∑M
j=1 β jφ

y
j(x)

which for classifier based betting functions φk
m(x,c) = ηhk

m(x) becomes:

βm← βm(1−η)+ηβm

h
y
m(x)∑M

j=1 β j

∑M
j=1 β jh

y
j(x)

.

This is a novel online update rule for linear aggregation.

3.2 Prediction Markets for Logistic Regression

A variant of logistic regression can also be modeled using prediction markets, with the following
betting functions

φ1
m(x,1− c) = (1− c)(x+m−

1

B
ln(1− c)),

φ2
m(x,c) = c(−x−m−

1

B
lnc)

where x+ = xI(x > 0),x− = xI(x < 0) and B = ∑m βm. The two class equation (6) becomes:

∑M
m=1 βmc(1− c)(xm− ln(1− c)/B+ lnc/B) = 0 so ln 1−c

c = ∑M
m=1 βmxm, which gives the logistic

regression model

p̂(Y = 1|x) = c =
1

1+ exp(∑M
m=1 βmxm)

.

2184



ARTIFICIAL PREDICTION MARKETS

The budget update equation βm ← βm − ηβm [(1− c)x+m + cx−m−H(c)/B] + ηβmuy(c) is ob-
tained, where u1(c) = x+m− ln(1− c)/B,u2(c) =−x−m− ln(c)/B.

Writing xβ = ∑M
m=1 βmxm, the budget update can be rearranged to

βm← βm−ηβm

(

xm−
xβ

B

)(

y−
1

1+ exp(xβ)

)

. (8)

This equation resembles the standard per-observation update equation for online logistic regres-
sion:

βm← βm−ηxm

(

y−
1

1+ exp(xβ)

)

, (9)

with two differences. The term xβ/B ensures the budgets always sum to B while the factor βm

makes sure that βm ≥ 0.
The update from Equation (8), like Equation (9) tries to increase |xβ|, but it does that subject

to constraints that βm ≥ 0,m = 1, ...,M and ∑M
m=1 βm = B. Observe also that multiplying β by a

constant does not change the decision line of the logistic regression.

3.3 Relation to Kernel Methods

Here we construct a market participant from each training example (xn,yn),n = 1, ...N, thus the
number of participants M is the number N of training examples. We construct a participant from

training example (xm,ym) by defining the following betting functions in terms of um(x) =
xT

mx
‖xm‖‖x‖ :

φym
m (x) = um(x)

+ =

{

um(x) if um(x)≥ 0

0 else
,

φ2−ym
m (x) =−um(x)

− =

{

0 if um(x)≥ 0

−um(x) else
.

(10)

Observe that these betting functions do not depend on the contract price c, so it is a constant market
but not one based on classifiers. The two-class price equation gives

c =
∑
m

βmφ2
m(x)

∑
m

βm(φ
1
m(x)+φ2

m(x))
=

∑
m

βm[ymum(x)−um(x)
−]

∑
m

βm|um(x)|

since it can be verified that φ2
m(x) = ymum(x)−um(x)− and φ1

m(x)+φ2
m(x) = |um(x)|.

The decision rule c > 0.5 becomes ∑m βmφ2
m(x) > ∑m βmφ1

m(x) or ∑m βm(φ2
m(x)− φ1

m(x)) > 0.

Since φ2
m(x)− φ1

m(x) = (2ym− 2)um(x) = (2ym− 2) xT
mx

‖xm‖‖x‖ (since in our setup ym ∈ {1,2}), we

obtain the SVM type of decision rule with αm = βm/‖xm‖:

h(x) = sgn(
M

∑
m=1

αm(2ym−3)xT
mx).

The budget update becomes in this case:

βm← βm−ηβm|um(x)|+ηβm
φy

m(x)

cy
.
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The same reasoning carries out for um(x)=K(xm,x) with the RBF kernel K(xm,x)= exp(−‖xm−
x‖2/σ2). In Figure 3, left, is shown an example of the decision boundary of a market trained online
with an RBF kernel with σ = 0.2 on 1000 examples uniformly sampled in the [−1,1]2 interval. In
Figure 3, right is shown the estimated probability p̂(y = 1|x).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0
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0.4

0.6

0.8

1

Figure 3: Left: 1000 training examples and learned decision boundary (right) for an RBF kernel-
based market from Equation (10) with σ = 0.1. Right: estimated probability function.

This example shows that the artificial prediction market is an online method with enough mod-
eling power to represent complex decision boundaries such as those given by RBF kernels through
the betting functions of the participants. It will be shown in Theorem 5 that the constant market
maximizes the likelihood, so it is not clear yet what can be done to obtain a small number of sup-
port vectors as in the online kernel-based methods (Bordes et al., 2005; Cauwenberghs and Poggio,
2001; Kivinen et al., 2004).

4. Prediction Markets and Maximum Likelihood

This section discusses what type of optimization is performed during the budget update from Equa-
tion (3). Specifically, we prove that the artificial prediction markets perform maximum likelihood
learning of the parameters by a version of gradient ascent.

Consider the reparametrization γ = (γ1, ...,γM) = (
√

β1, ...,
√

βM). The market price c(x) =
(c1(x), ...,cK(x) is an estimate of the class probability p(y = k|x) for each instance x ∈ Ω. Thus a
set of training observations (xi,yi), i = 1, ...,N, since p̂(y = yi|xi) = cyi(xi), the (normalized) log-
likelihood function is

L(γ) =
1

N

N

∑
i=1

ln p̂(y = yi|xi) =
1

N

N

∑
i=1

lncyi(xi). (11)

We will again use the total amount bet B(x,c) = ∑M
m=1 ∑K

k=1 βmφk
m(x,c) for observation x at

market price c.

We will first focus on the constant market φk
m(x,c) = φk

m(x), in which case B(x,c) = B(x) =
∑M

m=1 ∑K
k=1 βmφk

m(x). We introduce a batch update on all the training examples (xi,yi), i = 1, ...,N:

βm← βm +βm
η

N

N

∑
i=1

1

B(xi)

(

φyi
m(xi)

cyi(xi)
−

K

∑
k=1

φk
m(xi)

)

. (12)
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Equation (12) can be viewed as presenting all observations (xi,yi) to the market simultaneously
instead of sequentially. The following statement is proved in the Appendix

Theorem 5 ML for constant market. The update (12) for the constant market maximizes the

likelihood (11) by gradient ascent on γ subject to the constraint ∑M
m=1 γ2

m = 1. The incremental

update

βm← βm +βm
η

B(xi)

(

φyi
m(xi)

cyi(xi)
−

K

∑
k=1

φk
m(xi)

)

(13)

maximizes the likelihood (11) by constrained stochastic gradient ascent.

In the general case of non-constant betting functions, the log-likelihood is

L(γ) =
N

∑
i=1

logcyi(xi) =
N

∑
i=1

log
M

∑
m=1

γ2
mφyi

m(xi,c(xi))−
N

∑
i=1

log
K

∑
k=1

M

∑
m=1

γ2
mφk

m(xi,c(xi)). (14)

If we ignore the dependence of φk
m(xi,c(xi)) on γ in (14), and approximate the gradient as:

∂L(γ)

∂γ j
≈

N

∑
i=1

(

γ jφ
yi

j (xi,c(xi))

∑M
m=1 γ2

mφyi
m(xi,c(xi))

−
γ j ∑K

k=1 φk
j(xi,c(xi))

∑K
k=1 ∑M

m=1 γ2
mφk

m(xi,c(xi))

)

then the proof of Theorem 5 follows through and we obtain the following market update

βm← βm +βm
η

B(x,c)

[

φy
m(x,c)

cy
−

K

∑
k=1

φk
m(x,c)

]

, m = 1, ...,M. (15)

This way we obtain only an approximate statement in the general case

Remark 6 Maximum Likelihood. The prediction market update (15) finds an approximate max-

imum of the likelihood (11) subject to the constraint ∑M
m=1 γ2

m = 1 by an approximate constrained

stochastic gradient ascent.

Observe that the updates from (13) and (15) differ from the update (3) by using an adaptive step
size η/B(x,c) instead of the fixed step size 1.

It is easy to check that maximizing the likelihood is equivalent to minimizing an approximation
of the expected KL divergence to the true distribution

EΩ[KL(p(y|x),cy(x))] =
∫

Ω
p(x)

∫
Y

p(y|x) log
p(y|x)
cy(x)

dydx

obtained using the training set as Monte Carlo samples from p(x,y).
In many cases the number of negative examples is much larger than the positive examples, and

is desired to maximize a weighted log-likelihood

L(γ) =
1

N

N

∑
i=1

w(xi) lncyi(xi).
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This can be achieved (exactly for constant betting and approximately in general) using the weighted
update rule

βm← βm +ηw(x)
βm

B(x,c)

[

φy
m(x,c)

cy
−

K

∑
k=1

φk
m(x,c)

]

, m = 1, ...,M. (16)

The parameter η and the number of training epochs can be used to control how close the budgets
β are to the ML optimum, and this way avoid overfitting the training data.

An important issue for the real prediction markets is the efficient market hypothesis, which states
that the market price fuses in an optimal way the information available to the market participants
(Fama, 1970; Basu, 1977; Malkiel, 2003). From Theorem 5 we can draw the following conclusions
for the artificial prediction market with constant betting:

1. In general, an untrained market (in which the budgets have not been updated based on training
data) will not satisfy the efficient market hypothesis.

2. The market trained with a large amount of representative training data and small η satisfies
the efficient market hypothesis.

5. Specialized Classifiers

The prediction market is capable of fusing the information available to the market participants,
which can be trained classifiers. These classifiers are usually suboptimal, due to computational or
complexity constraints, to the way they are trained, or other reasons.

In boosting, all selected classifiers are aggregated for each instance x∈Ω. This can be detrimen-
tal since some classifiers could perform poorly on subregions of the instance space Ω, degrading
the performance of the boosted classifier. In many situations there exist simple rules that hold on
subsets of Ω but not on the entire Ω. Classifiers trained on such subsets Di ⊂ Ω, would have small
misclassification error on Di but unpredictable behavior outside of Di. The artificial prediction mar-
ket can aggregate such classifiers, transformed into participants that don’t bet anything outside of
their domain of expertise Di ⊂ Ω. This way, for different instances x ∈ Ω, different subsets of par-
ticipants will contribute to the resulting probability estimate. We call these specialized classifiers

since they only give their opinion through betting on observations that fall inside their domain of
specialization.

Thus a specialized classifier with a domain D would have a betting function of the form:

φk(x,c) =

{

ϕk(x,c) if x ∈ D

0 else
. (17)

This idea is illustrated on the following simple 2D example of a triangular region, shown in
Figure 4, with positive examples inside the triangle and negatives outside. An accurate classifier for
that region can be constructed using six market participants, one for each half-plane determined by
each side of the triangle.

Three of these classifiers correspond to the three half planes that are outside the triangle. These
participants have 100% accuracy in predicting the observations, all negatives, that fall in their half
planes and don’t bet anything outside of their half planes. The other three classifiers are not very
good, and will have smaller budgets. On an observation that lies outside of the triangle, one or two
of the high-budget classifiers will bet a large amount on the correct prediction and will drive the
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Figure 4: A perfect classifier can be constructed for the triangular region above from a market of six
specialized classifiers that only bid on a half-plane determined by one side of the triangle.
Three of these specialized classifiers have 100% accuracy while the other three have low
accuracy. Nevertheless, the market is capable of obtaining 100% overall accuracy.

output probability. When an observation falls inside the triangle, only the small-budget classifiers
will participate but will be in agreement and still output the correct probability. Evaluating this
market on 1000 positives and 1000 negatives showed that the market obtained a prediction accuracy
of 100%.

There are many ways to construct specialized classifiers, depending on the problem setup. In
natural language processing for example, a specialized classifier could be based on grammar rules,
which work very well in many cases, but not always.

We propose two generic sets of specialized classifiers. The first set are the leaves of the random
trees of a random forest while the second set are the leaves of the decision trees trained by adaboost.
Each leaf f is a rule that defines a domain D f = {x ∈ Ω, f (x) = 1} of the instances that obey that
rule. The betting function of this specialized classifier is given in Equation (17) where ϕk

f (x,c) is

based on the associated classifier hk
f (x) = n f k/n f , obtaining constant, linear and aggressive versions.

Here n f k is the number of training instances of class k that obey rule f and n f = ∑k n f k. By the way
the random trees are trained, usually n f = n f k for some k.

In Friedman and Popescu (2008) these rules were combined using a linear aggregation method
similar to boosting. One could also use other nodes of the random tree, not necessarily the leaves,
for the same purpose.

It can be verified using Equation (7) that constant specialized betting is the linear aggregation
of the participants that are currently betting. This is different than the linear aggregation of all the
classifiers.

6. Related Work

This work borrows prediction market ideas from Economics and brings them to Machine Learning
for supervised aggregation of classifiers or features in general.

Related work in Economics. Recent work in Economics (Manski, 2006; Perols et al., 2009; Plott
et al., 2003) investigates the information fusion of the prediction markets. However, none of these
works aims at using the prediction markets as a tool for learning class probability estimators in a
supervised manner.
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Some works (Perols et al., 2009; Plott et al., 2003) focus on parimutuel betting mechanisms for
combining classifiers. In parimutuel betting contracts are sold for all possible outcomes (classes)
and the entire budget (minus fees) is divided between the participants that purchased contracts for
the winning outcome. Parimutuel betting has a different way of fusing information than the Iowa
prediction market.

The information based decision fusion (Perols et al., 2009) is a first version of an artificial
prediction market. It aggregates classifiers through the parimutuel betting mechanism, using a loop
that updates the odds for each outcome and takes updated bets until convergence. This insures a
stronger information fusion than without updating the odds. Our work is different in many ways.
First our work uses the Iowa electronic market instead of parimutuel betting with odds-updating.
Using the Iowa model allowed us to obtain a closed form equation for the market price in some
important cases. It also allowed us to relate the market to some existing learning methods. Second,
our work presents a multi-class formulation of the prediction markets as opposed to a two-class
approach presented in Perols et al. (2009). Third, the analytical market price formulation allowed
us to prove that the constant market performs maximum likelihood learning. Finally, our work
evaluates the prediction market not only in terms of classification accuracy but also in the accuracy
of predicting the exact class conditional probability given the evidence.

Related work in Machine Learning. Implicit online learning (Kulis and Bartlett, 2010) presents
a generic online learning method that balances between a “conservativeness” term that discourages
large changes in the model and a “correctness” term that tries to adapt to the new observation.
Instead of using a linear approximation as other online methods do, this approach solves an implicit
equation for finding the new model. In this regard, the prediction market also solves an implicit
equation at each step for finding the new model, but does not balance two criteria like the implicit
online learning method. Instead it performs maximum likelihood estimation, which is consistent and
asymptotically optimal. In experiments, we observed that the prediction market obtains significantly
smaller misclassification errors on many data sets compared to implicit online learning.

Specialization can be viewed as a type of reject rule (Chow, 1970; Tortorella, 2004). However,
instead of having a reject rule for the aggregated classifier, each market participant has his own
reject rule to decide on what observations to contribute to the aggregation. ROC-based reject rules
(Tortorella, 2004) could be found for each market participant and used for defining its domain of
specialization. Moreover, the market can give an overall reject rule on hopeless instances that fall
outside the specialization domain of all participants. No participant will bet for such an instance
and this can be detected as an overall rejection of that instance.

If the overall reject option is not desired, one could avoid having instances for which no classi-
fiers bet by including in the market a set of participants that are all the leaves of a number of random
trees. This way, by the design of the random trees, it is guaranteed that each instance will fall into
at least one leaf, that is, participant, hence the instance will not be rejected.

A simplified specialization approach is taken in delegated classifiers (Ferri et al., 2004). A first
classifier would decide on the relatively easy instances and would delegate more difficult examples
to a second classifier. This approach can be seen as a market with two participants that are not
overlapping. The specialization domain of the second participant is defined by the first participant.
The market takes a more generic approach where each classifier decides independently on which
instances to bet.

The same type of leaves of random trees (i.e., rules) were used by Friedman and Popescu (2008)
for linear aggregation. However, our work presents a more generic aggregation method through the
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prediction market, with linear aggregation as a particular case, and we view the rules as one sort of
specialized classifiers that only bid in a subdomain of the feature space.

Our earlier work (Lay and Barbu, 2010) focused only on aggregation of classifiers and did
not discuss the connection between the artificial prediction markets and logistic regression, kernel
methods and maximum likelihood learning. Moreover, it did not include an experimental compari-
son with implicit online learning and adaboost.

Two other prediction market mechanisms have been recently proposed in the literature. The
first one (Chen and Vaughan, 2010; Chen et al., 2011) has the participants entering the market
sequentially. Each participant is paid by an entity called the market maker according to a predefined
scoring rule. The second prediction market mechanism is the machine learning market (Storkey,
2011; Storkey et al., 2012), dealing with all participants simultaneously. Each market participant
purchases contracts for the possible outcomes to maximize its own utility function. The equilibrium
price of the contracts is computed by an optimization procedure. Different utility functions result
in different forms of the equilibrium price, such as the mean, median, or geometric mean of the
participants’ beliefs.

7. Experimental Validation

In this section we present experimental comparisons of the performance of different artificial predic-
tion markets with random forest, adaboost and implicit online learning (Kulis and Bartlett, 2010).

Four artificial prediction markets are evaluated in this section. These markets have the same
classifiers, namely the leaves of the trained random trees, but differ either in the betting functions or
in the way the budgets are trained as follows:

1. The first market has constant betting and equal budgets for all participants. We proved in
Section 3.1 that this is a random forest (Breiman, 2001).

2. The second market has constant betting based on specialized classifiers (the leaves of the
random trees), with the budgets initialized with the same values like the market 1 above, but
trained using the update equation (13). Thus after training it will be different from market 1.

3. The third market has linear betting functions (1), for which the market price can be computed
analytically only for binary classification. The market is initialized with equal budgets and
trained using Equation (15).

4. The fourth market has aggressive betting (2) with ε = 0.01 and the market price computed
using the Mann iteration Algorithm 3. The market is initialized with equal budgets and trained
using Equation (15). The value ε = 0.01 was chosen for simplicity; a better choice would be
to obtain it by cross-validation.

For each data set, 50 random trees are trained on bootstrap samples of the training data. These
trained random trees are used to construct the random forest and the other three markets described
above. This way only the aggregation capabilities of the different markets are compared.

The budgets in the markets 2-4 described above are trained on the same training data using the
update equation (15) which simplifies to (13) for the constant market.

A C++ implementation of these markets can be found at the following address: http://stat.
fsu.edu/˜abarbu/Research/PredMarket.zip.
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7.1 Case Study

We first investigate the behavior of three markets on a data set in terms of training and test error as
well as loss function. For that, we chose the satimage data set from the UCI repository (Blake and
Merz, 1998) since it has a supplied test set. The satimage data set has a training set of size 4435
and a test set of size 2000.

The markets investigated are the constant market with both incremental and batch updates, given
in Equations (13) and (12) respectively, the linear and aggressive markets with incremental updates
given in (15). Observe that the η in Equation (13) is not divided by N (the number of observations)
while the η in (12) is divided by N. Thus to obtain the same behavior the η in (13) should be the η
from (12) divided by N. We used η = 100/N for the incremental update and η = 100 for the batch
update unless otherwise specified.
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Figure 5: Experiments on the satimage data set for the incremental and batch market updates. Left:
The training error vs. number of epochs. Middle: The test error vs. number of epochs.
Right: The negative log-likelihood function vs. number of training epochs. The learning
rates are η = 100/N for the incremental update and η = 100 for the batch update unless
otherwise specified.

In Figure 5 are plotted the misclassification errors on the training and test sets and the negative
log-likelihood function vs. the number of training epochs, averaged over 10 runs. From Figure 5
one could see that the incremental and batch updates perform similarly in terms of the likelihood
function, training and test errors. However, the incremental update is preferred since it is requires
less memory and can handle an arbitrarily large amount of training data. The aggressive and constant
markets achieve similar values of the negative log likelihood and similar training errors, but the
aggressive market seems to overfit more since the test error is larger than the constant incremental
(p-value< 0.05). The linear market has worse values of the log-likelihood, training and test errors
(p-value< 0.05).

7.2 Evaluation of the Probability Estimation and Classification Accuracy on Synthetic Data

We perform a series of experiments on synthetic data sets to evaluate the market’s ability to predict
class conditional probabilities P(Y |x). The experiments are performed on 5000 binary data sets with
50 levels of Bayes error

E =
∫

min{p(x,Y = 0), p(x,Y = 1)}dx,
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ranging from 0.01 to 0.5 with equal increments. For each data set, the two classes have equal
frequency. Both p(x|Y = k),k = 0,1 are normal distributions N (µk,σ2I), with µ0 = 0,σ2 = 1 and
µ1 chosen in some random direction at such a distance to obtain the desired Bayes error.

For each of the 50 Bayes error levels, 100 data sets of size 200 were generated using the bisection
method to find an appropriate µ1 in a random direction. Training of the participant budgets is done
with η = 0.1.

For each observation x, the class conditional probability can be computed analytically using the
Bayes rule

p∗(Y = 1|x) =
p(x|Y = 1)p(Y = 1)

p(x,Y = 0)+ p(x,Y = 1)
.

An estimation p̂(y = 1|x) obtained with one of the markets is compared to the true probability
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Figure 6: Left: Class probability estimation error vs problem difficulty for 5000 100D problems.
Right: Probability estimation errors relative to random forest. The aggressive and linear
betting are shown with box plots.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.02

0.04

0.06

0.08

0.1

0.12

Bayes Error Rate

M
is

cl
as

si
fic

at
io

n 
Er

ro
r

Aggressive bet
Constant bet
Random Forest
Linear bet

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e 
M

is
cl

as
si

fic
at

io
n 

Er
ro

r

Bayes Error Rate

Aggressive bet
Constant bet
Random Forest
Linear bet

Figure 7: Left: Misclassification error minus Bayes error vs problem difficulty for 5000 100D prob-
lems. Right: Misclassification errors relative to random forest. The aggressive betting is
shown with box plots.
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p∗(Y = 1|x) using the L2 norm

E( p̂, p∗) =
∫
( p̂(y = 1|x)− p∗(y = 1|x))2 p(x)dx

where p(x) = p(x,Y = 0)+ p(x,Y = 1).
In practice, this error is approximated using a sample of size 1000. The errors of the probability

estimates obtained by the four markets are shown in Figure 6 for a 100D problem setup. Also shown
on the right are the errors relative to the random forest, obtained by dividing each error to the corre-
sponding random forest error. As one could see, the aggressive and constant betting markets obtain
significantly better (p-value < 0.01) probability estimators than the random forest, for Bayes errors
up to 0.28. On the other hand, the linear betting market obtains probability estimators significantly
better (p-value < 0.01) than the random forest for Bayes error from 0.34 to 0.5.

We also evaluated the misclassification errors of the four markets in predicting the correct class,
for the same 5000 data sets. The difference between these misclassification errors and the Bayes
error are shown in Figure 7, left. The difference between these misclassification errors and the
random forest error are shown in Figure 7, right. We see that all markets with trained participants
predict significantly better (p-value < 0.01) than random forest for Bayes errors up to 0.3, and
behave similar to random forest for the remaining data sets.

7.3 Comparison with Random Forest on UCI Data Sets

In this section we conduct an evaluation on 31 data sets from the UCI machine learning repository
(Blake and Merz, 1998). The optimal number of training epochs and η are meta-parameters that
need to be chosen appropriately for each data set. We observed experimentally that η can take any
value up to a maximum that depends on the data set. In these experiments we took η = 10/Ntrain.
The best number of epochs was chosen by ten fold cross-validation.

In order to compare with the results in Breiman (2001), the training and test sets were randomly
subsampled from the available data, with 90% for training and 10% for testing. The exceptions are
the satimage, zipcode, hill-valley and pokerdata sets with test sets of size 2000,2007,606,106

respectively. All results were averaged over 100 runs.
We present two random forest results. In the column named RFB are presented the random

forest results from Breiman (2001) where each tree node is split based on a random feature. In the
column named RF we present the results of our own RF implementation with splits based on random
features. The leaf nodes of the random trees from our RF implementation are used as specialized
participants for all the markets evaluated.

The CB, LB and AB columns are the performances of the constant, linear and respectively
aggressive markets on these data sets.

Significant mean differences (α < 0.01) from RFB are shown with +,− for when RFB is worse
respectively better. Significant paired t-tests (Demšar, 2006) (α < 0.01) that compare the markets
with our RF implementation are shown with •,† for when RF is worse respectively better.

The constant, linear and aggressive markets significantly outperformed our RF implementation
on 22, 19 respectively 22 data sets out of the 31 evaluated. They were not significantly outperformed
by our RF implementation on any of the 31 data sets.

Compared to the RF results from Breiman (2001) (RFB), CB, LB and AB significantly outper-
formed RFB on 6,5,6 data sets respectively, and were not significantly outperformed on any data
set.
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Data Ntrain Ntest F K RFB RF CB LB AB

breast-cancer 683 – 9 2 2.7 2.5 2.4 2.4 2.4
sonar 208 – 60 2 18.0 16.6 14.1 •+ 14.2 •+ 14.1 •+
vowel 990 – 10 11 3.3 2.9 2.6 •+ 2.7 + 2.6 •+
ecoli 336 – 7 8 13.0 12.9 12.9 12.8 12.9
german 1000 – 24 2 26.2 25.5 24.9 •+ 25.1 24.9 •+
glass 214 – 9 6 21.2 23.5 22.2 • 22.4 22.2 •
image 2310 – 19 7 2.7 2.7 2.5 • 2.5 • 2.5 •
ionosphere 351 – 34 2 7.5 7.4 6.7 • 6.9 • 6.7 •
letter-recognition 20000 – 16 26 4.7 4.2 + 4.2 •+ 4.2 •+ 4.2 •+
liver-disorders 345 – 6 2 24.7 26.5 26.3 26.2 26.2
pima-diabetes 768 – 8 2 24.3 24.1 23.8 23.7 23.8
satimage 4435 2000 36 6 10.5 10.1 + 10.0 •+ 10.1 •+ 10.0 •+
vehicle 846 – 18 4 26.4 26.3 26.1 26.2 26.1
voting-records 232 – 16 2 4.6 5.3 4.2 • 4.2 • 4.2 •
zipcode 7291 2007 256 10 7.8 7.7 7.6 •+ 7.7 •+ 7.6 •+
abalone 4177 – 8 3 – 45.5 45.4 45.4 45.4
balance-scale 625 – 4 3 – 15.4 15.4 15.4 15.4
car 1728 – 6 4 – 2.8 2.0 • 2.2 • 2.0 •
connect-4 67557 – 42 3 – 19.6 19.3 • 19.4 • 19.5 •
cylinder-bands 277 – 33 2 – 22.7 20.9 • 21.1 • 20.9 •
hill-valley 606 606 100 2 – 46.9 45.8 • 46.3 • 45.8 •
isolet 1559 – 617 26 – 17.0 15.7 • 15.8 • 15.7 •
king-rook-vs-king 28056 – 6 18 – 15.6 15.4 • 15.4 • 15.4 •
king-rk-vs-k-pawn 3196 – 36 2 – 2.0 1.5 • 1.6 • 1.5 •
madelon 2000 – 500 2 – 46.1 45.2 • 45.3 • 45.2 •
magic 19020 – 10 2 – 12.0 11.9 • 11.9 • 11.9 •
musk 6598 – 166 2 – 3.7 3.5 • 3.6 • 3.5 •
poker 25010 106 10 10 – 43.2 43.1 • 43.1 • 43.1 •
SAheart 462 – 9 2 – 30.8 30.8 30.7 30.8
splice-junction 3190 – 59 3 – 18.9 17.7 • 18.2 • 17.7 •
yeast 1484 – 8 10 – 38.3 38.1 38.0 38.1

Table 1: The misclassification errors for 31 data sets from the UC Irvine Repository are shown in
percent (%).. The markets evaluated are our implementation of random forest (RF), and
markets with Constant (CB), Linear (LB) and respectively Aggressive (AB) Betting. RFB
contains the random forest results from Breiman (2001).
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7.4 Comparison with Implicit Online Learning on UCI Data Sets

We implemented the implicit online learning (Kulis and Bartlett, 2010) algorithm for classification
with linear aggregation. The objective of implicit online learning is to minimize the loss !(β) in a
conservative way. The conservativeness of the update is determined by a Bregman divergence

D(β,βt) = φ(β)−φ(βt)−〈∇φ(βt),β−βt〉

where φ(β) are real-valued strictly convex functions. Rather than minimize the loss function itself,
the function

ft(β) = D(β,βt)+ηt!(β)

is minimized instead. Here ηt is the learning rate. The Bregman divergence ensures that the optimal
β is not too far from βt . The algorithm for implicit online learning is as follows

β̃t+1 = argmin
β∈RM

ft(β)

βt+1 = argmin
β∈S

D(β, β̃t+1).

The first step solves the unconstrained version of the problem while the second step finds the nearest

feasible solution to the unconstrained minimizer subject to the Bregman divergence.
For our problem we use

!(β) =− log(cy(β))

where cy(β) is the constant market equilibrium price for ground truth label y. We chose the squared
Euclidean distance D(β,βt) = ‖β−βt‖2

2 as our Bregman divergence and learning rate ηt = 1/
√

t. To
ensure that c = ∑M

m=1 hmβm = Hβ is a valid probability vector, the feasible solution set is therefore
S = {β ∈ [0,1]M : ∑M

m=1 βm = 1}. This gives the following update scheme

β̃t+1 = βt +ηt
1

p
(Hy)T

βt+1 = argmin
β∈S

{

‖β− β̃t+1‖2
2

}

where Hy =
(

h
y
1, h

y
2, . . . , h

y
M

)

is the vector of classifier outputs for the true label y, q = Hyβt , r =

Hy(Hy)T and p = 1
2

(

q+
√

q2 +4ηt r
)

.

The results presented in Table 2 are obtained by 10 fold cross-validation. The cross-validation
errors were averaged over 10 different permutations of the data in the cross-validation folds.

The results from CB online and implicit online are obtained in one epoch. The results from
the CB offline and implicit offline columns are obtained in an off-line fashion using an appropriate
number of epochs (up to 10) to obtain the smallest cross-validated error on a random permutation
of the data that is different from the 10 permutations used to obtain the results.

The comparisons are done with paired t-tests and shown with ∗ and ‡ when the constant betting
market is significantly (α < 0.01) better or worse than the corresponding implicit online learning.
We also performed a comparison with our RF implementation, and significant differences are shown
with • and †.

Compared to RF, implicit online learning won 5-0, CB online won in 9-1 and CB offline won
12-0.

Compared to implicit online, which performed identical with implicit offline, both CB online
and CB offline won 9-0.
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Implicit CB Implicit CB
Data Set Ntrain Ntest F K RF

Online Online Offline Offline

breast-cancer 683 – 9 2 3.1 3.1 3 3.1 3
sonar 208 – 60 2 15.1 15.2 15.3 15.1 14.6
vowel 990 – 10 11 3.2 3.2 3.2 3.2 2.9 •∗
ecoli 336 – 7 8 13.7 13.7 13.6 13.7 13.6
german 1000 – 24 2 23.6 23.5 23.5 23.5 23.4
glass 214 – 9 6 21.4 21.4 21.3 21.4 21
image 2310 – 19 7 1.9 1.9 1.9 1.9 1.8 •
ionosphere 351 – 34 2 6.4 6.5 6.5 6.5 6.5
letter-recognition 20000 – 16 26 3.3 3.3 3.3 •∗ 3.3 3.3
liver-disorders 345 – 6 2 26.4 26.4 26.4 26.4 26.4
pima-diabetes 768 – 8 2 23.2 23.2 23.2 23.2 23.2
satimage 4435 2000 36 6 8.8 8.8 8.8 8.8 8.7 •
vehicle 846 – 18 4 24.8 24.7 24.9 24.7 24.9
voting-records 232 – 16 2 3.5 3.5 3.5 3.5 3.5
zipcode 7291 2007 256 10 6.1 6.1 6.2 6.1 6.2
abalone 4177 – 8 3 45.5 45.5 45.6 † 45.5 45.5
balance-scale 625 – 4 3 17.7 17.7 17.7 17.7 17.7
car 1728 – 6 4 2.3 2.3 1.8 •∗ 2.3 1.1 •∗
connect-4 67557 – 42 3 19.9 19.9 • 19.5 •∗ 19.9 • 18.2 •∗
cylinder-bands 277 – 33 2 21.4 21.3 21.2 21.3 20.8 •
hill-valley 606 606 100 2 43.8 43.7 43.7 43.7 43.7
isolet 1559 – 617 26 6.9 6.9 6.9 6.9 6.9
king-rk-vs-king 28056 – 6 18 21.6 21.6 • 19.6 •∗ 21.5 • 15.7 •∗
king-rk-vs-k-pawn 3196 – 36 2 1 1 0.7 •∗ 1 0.5 •∗
magic 19020 – 10 2 11.9 11.9 • 11.8 •∗ 11.9 • 11.7 •∗
madelon 2000 – 500 2 26.8 26.5 • 25.6 •∗ 26.4 • 21.6 •∗
musk 6598 – 166 2 1.7 1.7 • 1.6 •∗ 1.7 • 1 •∗
splice-junction-gene 3190 – 59 3 4.3 4.3 4.2 •∗ 4.3 4.1 •∗
SAheart 462 – 9 2 31.5 31.5 31.6 31.5 31.6
yeast 1484 – 8 10 37.3 37.3 37.3 37.3 37.3

Table 2: Comparison with Implicit Online Learning and random forest using 10-fold cross-
validation.
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7.5 Comparison with Adaboost for Lymph Node Detection

Finally, we compared the linear aggregation capability of the artificial prediction market with ad-
aboost for a lymph node detection problem. The system is setup as described in Barbu et al. (2012),
namely a set of lymph node candidate positions (x,y,z) are obtained using a trained detector. Each
candidate is segmented using gradient descent optimization and about 17000 features are extracted
from the segmentation result. Using these features, adaboost constructed 32 weak classifiers. Each
weak classifier is associated with one feature, splits the feature range into 64 bins and returns a
predefined value (1 or −1), for each bin.

Thus, one can consider there are M = 32×64 = 2048 specialized participants, each betting for
one class (1 or −1) for any observation that falls in its domain. The participants are given budgets
βi j, i= 1, ..,32, j = 1, ..,64 where i is the feature index and j is the bin index. The participant budgets
βi j, j = 1, ...,64 corresponding to the same feature i are initialized the same value βi, namely the
adaboost coefficient. For each bin, the return class 1 or −1 is the outcome for which the participant
will bet its budget.

The constant betting market of the 2048 participants is initialized with these budgets and trained
with the same training examples that were used to train the adaboost classifier.

The obtained constant market probability for an observation x = (x1, ...,x32) is based on the bin
indexes b = (b1(x1), ...,b32(x32):

p(y = 1|b) = ∑32
i=1 βi,bi

hi(bi)

∑32
i=1 βi,bi

.

An important issue is that the number Npos of positive examples is much smaller than the number
Nneg of negatives. Similar to adaboost, the sum of the weights of the positive examples should be
the same as the sum of weights of the negatives. To accomplish this in the market, we use the
weighted update rule Equation (16), with wpos =

1
Npos

for each positive example and wneg =
1

Nneg
for

each negative.
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Figure 8: Left: Detection rate at 3 FP/vol vs. number of training epochs for a lymph node detection
problem. Right: ROC curves for adaboost and the constant betting market with partic-
ipants as the 2048 adaboost weak classifier bins. The results are obtained with six-fold
cross-validation.
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The adaboost classifier and the constant market were evaluated for a lymph node detection
application on a data set containing 54 CT scans of the pelvic and abdominal region, with a total
of 569 lymph nodes, with six-fold cross-validation. The evaluation criterion is the same for all
methods, as specified in Barbu et al. (2012). A lymph node detection is considered correct if its
center is inside a manual solid lymph node segmentation and is incorrect if it not inside any lymph
node segmentation (solid or non-solid).

In Figure 8, left, is shown the training and testing detection rate at 3 false positives per volume
(a clinically acceptable false positive rate) vs the number of training epochs. We see the detection
rate increases to about 81% for epochs 6 to 16 epochs and then gradually decreases. In Figure 8,
right, are shown the training and test ROC curves of adaboost and the constant market trained with
7 epochs. In this case the detection rate at 3 false positives per volume improved from 79.6% for
adaboost to 81.2% for the constant market. The p-value for this difference was 0.0276 based on
paired t-test.

8. Conclusion and Future Work

This paper presents a theory for artificial prediction markets for the purpose of supervised learning
of class conditional probability estimators. The artificial prediction market is a novel online learning
algorithm that can be easily implemented for two class and multi class applications. Linear aggre-
gation, logistic regression as well as certain kernel methods can be viewed as particular instances of
the artificial prediction markets. Inspired from real life, specialized classifiers that only bet on sub-
sets of the instance space Ω were introduced. Experimental comparisons on real and synthetic data
show that the prediction market usually outperforms random forest, adaboost and implicit online
learning in prediction accuracy.

The artificial prediction market shows the following promising features:

1. It can be updated online with minimal computational cost when a new observation (x,y) is
presented.

2. It has a simple form of the update iteration that can be easily implemented.

3. For multi-class classification it can fuse information from all types of binary or multi-class
classifiers: for example, trained one-vs-all, many-vs-many, multi-class decision tree, etc.

4. It can obtain meaningful probability estimates when only a subset of the market participants
are involved for a particular instance x ∈ X . This feature is useful for learning on manifolds
(Belkin and Niyogi, 2004; Elgammal and Lee, 2004; Saul and Roweis, 2003), where the
location on the manifold decides which market participants should be involved. For example,
in face detection, different face part classifiers (eyes, mouth, ears, nose, hair, etc) can be
involved in the market, depending on the orientation of the head hypothesis being evaluated.

5. Because of their betting functions, the specialized market participants can decide for which
instances they bet and how much. This is another way to combine classifiers, different from
the boosting approach where all classifiers participate in estimating the class probability for
each observation.
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We are currently extending the artificial prediction market framework to regression and density
estimation. These extensions involve contracts for uncountably many outcomes but the update and
the market price equations extend naturally.

Future work includes finding explicit bounds for the generalization error based on the number
of training examples. Another item of future work is finding other generic types specialized partici-
pants that are not leaves of random or adaboost trees. For example, by clustering the instances x∈Ω,
one could find regions of the instance space Ω where simple classifiers (e.g., logistic regression, or
betting for a single class) can be used as specialized market participants for that region.
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Appendix A. Proofs

Proof [of Theorem 1] From Equation (3), the total budget ∑M
m=1 βm is conserved if and only if

M

∑
m=1

K

∑
k=1

βmφk
m(x,c) =

M

∑
m=1

βmφy
m(x,c)/cy. (18)

Denoting n=∑M
m=1 ∑K

k=1 βmφk
m(x,c), and since the above equation must hold for all y, we obtain that

Equation (4) is a necessary condition and also ck ,= 0,k = 1, ...,K, which means ck > 0,k = 1, ...,K.
Reciprocally, if ck > 0 and Equation (4) hold for all k, dividing by ck we obtain Equation (18).

Proof [of Remark 2] Since the total budget is conserved and is positive, there exists a βm > 0,
therefore ∑M

m=1 βmφk
m(x,0)> 0, which implies limck→0 fk(ck) = ∞. From the fact that fk(ck) is con-

tinuous and strictly decreasing, with limck→0 fk(ck) = ∞ and limck→1 fk(ck) = 0, it implies that for
every n > 0 there exists a unique ck that satisfies fk(ck) = n.

Proof [of Theorem 3] From Remark 2 we get that for every n ≥ nk,n > 0 there is a unique ck(n)
such that fk(ck(n)) = n. Moreover, following the proof of Remark 2 we see that ck(n) is continuous
and strictly decreasing on (nk,∞), with limn→∞ ck(n) = 0.

If maxk nk > 0, take n∗ = maxk nk. There exists k ∈ {1, ...,K} such that nk = n∗, so ck(n∗) = 1,
therefore ∑K

j=1 c j(n∗)≥ 1.

If maxk nk = 0 then nk = 0,k = 1, ...,K which means φk
m(x,1)= 0,k = 1, ...,K for all m with βm >

0. Let ak
m =min{c|φk

m(x,c) = 0}. We have ak
m > 0 for all k since φk

m(x,0)> 0. Thus limn→0+ ck(n) =
maxm ak

m ≥ ak
1, where we assumed that φ1(x,c) satisfies Assumption 2. But from Assumption 2

there exists k such that ak
1 = 1. Thus limn→0+ ∑K

k=1 ck(n)≥ ∑K
k=1 ak

1 > 1 so there exists n∗ such that

∑K
k=1 ck(n∗)≥ 1.

Either way, since ∑K
k=1 ck(n) is continuous, strictly decreasing, and since ∑K

k=1 ck(n∗) ≥ 1 and
limn→∞ ∑K

k=1 ck(n) = 0, there exists a unique n > 0 such that ∑K
k=1 ck(n) = 1. For this n, from The-
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orem 1 follows that the total budget is conserved for the price c = (c1(n), ...,cK(n)). Uniqueness
follows from the uniqueness of ck(n) and the uniqueness of n.

Proof [of Theorem 4] The price equations (4) become:

M

∑
m=1

βmφk
m(x) = ck

K

∑
k=1

M

∑
m=1

βmφk
m(x), ∀k = 1, ...,K.

which give the result from Equation (7).
If φk

m(x) = ηhk
m(x), using ∑K

k=1 hk
m(x) = 1, the denominator of Equation (7) becomes

K

∑
k=1

M

∑
m=1

βmφk
m(x) = η

M

∑
m=1

βm

K

∑
k=1

hk
m(x) = η

M

∑
m=1

βm

so

ck =
η∑M

m=1 βmhk
m(x)

η∑M
m=1 βm

= ∑
m

αmhk
m(x), ∀k = 1, ...,K.

Proof [of Theorem 5] For the current parameters γ = (γ1, ...,γM) = (
√

β1, ...,
√

βm) and an obser-
vation (xi,yi), we have the market price for label yi:

cyi(xi) =
M

∑
m=1

γ2
mφyi

m(xi)/(
M

∑
m=1

K

∑
k=1

γ2
mφk

m(xi)). (19)

So the log-likelihood is

L(γ) =
1

N

N

∑
i=1

logcyi(xi) =
1

N

N

∑
i=1

log
M

∑
m=1

γ2
mφyi

m(xi)−
1

N

N

∑
i=1

log
M

∑
m=1

K

∑
k=1

γ2
mφk

m(xi).

We obtain the gradient components:

∂L(γ)

∂γ j
=

1

N

N

∑
i=1

(

γ jφ
yi

j (xi)

∑M
m=1 γ2

mφyi
m(xi)

−
γ j ∑K

k=1 φk
j(xi)

∑M
m=1 ∑K

k=1 γ2
mφk

m(xi)

)

. (20)

Then from (19) we have ∑M
m=1 γ2

mφyi
m(xi) = B(xi)cyi(xi). Hence (20) becomes

∂L(γ)

∂γ j
=

γ j

N

N

∑
i=1

1

B(xi)

(

φyi

j (xi)

cyi(xi)
−

K

∑
k=1

φk
j(xi)

)

.

Write u j =
1
N ∑N

i=1
1

B(xi)

(

φ
yi
j (xi)

cyi
(xi)
−∑K

k=1 φk
j(xi)

)

, then ∂L(γ)
∂γ j

= γ ju j. The batch update (12) is β j ←

β j +ηβ ju j. By taking the square root we get the update in γ

γ j← γ j

√

1+ηu j = γ j + γ j(
√

1+ηu j−1) = γ j + γ j
ηu j

√

1+ηu j +1
= γ′j.
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We can write the Taylor expansion:

L(γ′) = L(γ)+(γ′ − γ)T ∇L(γ)+
1

2
(γ′ − γ)T H(L)(ζ)(γ′ − γ)

so

L(γ′) = L(γ)+
M

∑
j=1

γ ju j
ηγ ju j

√

1+ηu j +1
+η2A(η) = L(γ)+η

M

∑
j=1

γ2
ju

2
j

√

1+ηu j +1
+η2A(η)

where |A(η)| is bounded in a neighborhood of 0.

Now assume that ∇L(γ) ,= 0, thus γ ju j ,= 0 for some j. Then ∑M
j=1

γ2
j u

2
j√

1+ηu j+1
> 0 hence L(γ′)>

L(γ) for any η small enough.
Thus as long as ∇L(γ) ,= 0 the batch update (12) with any η sufficiently small will increase the

likelihood function.
The batch update (12) can be split into N per-observation updates of the form (13).
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J. Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine

Learning Research, 7:30, 2006.

A. Elgammal and C.S. Lee. Inferring 3d body pose from silhouettes using activity manifold learning.
In CVPR, 2004.

E.F. Fama. Efficient capital markets: A review of theory and empirical work. Journal of Finance,
pages 383–417, 1970.

C. Ferri, P. Flach, and J. Hernández-Orallo. Delegating classifiers. In ICML, 2004.

Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. In ICML, pages 148–156,
1996.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting.
Annals of Statistics, 28(2):337–407, 2000.

J.H. Friedman and B.E. Popescu. Predictive learning via rule ensembles. Ann. Appl. Stat., 2(3):
916–954, 2008.

S. Gjerstad and M.C. Hall. Risk aversion, beliefs, and prediction market equilibrium. Economic

Science Laboratory, University of Arizona, 2005.

J. Kivinen, AJ Smola, and RC Williamson. Online learning with kernels. IEEE Trans. on Signal

Processing, 52:2165–2176, 2004.

B. Kulis and P.L. Bartlett. Implicit online learning. In ICML, 2010.

N. Lay and A. Barbu. Supervised aggregation of classifiers using artificial prediction markets. In
ICML, 2010.

B.G. Malkiel. The efficient market hypothesis and its critics. The Journal of Economic Perspectives,
17(1):59–82, 2003.

W. R. Mann. Mean value methods in iteration. Proc. Amer. Math. Soc., 4:506–510, 1953.

C.F. Manski. Interpreting the predictions of prediction markets. Economics Letters, 91(3):425–429,
2006.

J. Perols, K. Chari, and M. Agrawal. Information market-based decision fusion. Management

Science, 55(5):827–842, 2009.

2203



BARBU AND LAY

C.R. Plott, J. Wit, and W.C. Yang. Parimutuel betting markets as information aggregation devices:
Experimental results. Economic Theory, 22(2):311–351, 2003.

P.M. Polgreen, F.D. Nelson, and G.R. Neumann. Use of prediction markets to forecast infectious
disease activity. Clinical Infectious Diseases, 44(2):272–279, 2006.

C. Polk, R. Hanson, J. Ledyard, and T. Ishikida. The policy analysis market: an electronic commerce
application of a combinatorial information market. In ACM Conf. on Electronic Commerce, pages
272–273, 2003.

A. Ratnaparkhi et al. A maximum entropy model for part-of-speech tagging. In Conf. on Empirical

Methods in Natural Language Processing, volume 1, pages 133–142, 1996.

L.K. Saul and S.T. Roweis. Think globally, fit locally: Unsupervised learning of low dimensional
manifolds. The Journal of Machine Learning Research, 4:119–155, 2003.

R.E. Schapire. The boosting approach to machine learning: An overview. Lect. Notes in Statistics,
pages 149–172, 2003.

A. Storkey. Machine learning markets. AISTATS, 2011.

A. Storkey, J. Millin, and K. Geras. Isoelastic agents and wealth updates in machine learning
markets. ICML, 2012.

F. Tortorella. Reducing the classification cost of support vector classifiers through an ROC-based
reject rule. Pattern Analysis & Applications, 7(2):128–143, 2004.

J. Wolfers and E. Zitzewitz. Prediction markets. Journal of Economic Perspectives, pages 107–126,
2004.

S.C. Zhu, Y. Wu, and D. Mumford. Filters, random fields and maximum entropy (FRAME): To-
wards a unified theory for texture modeling. International Journal of Computer Vision, 27(2):
107–126, 1998.

2204



Journal of Machine Learning Research 13 (2012) 2205-2231 Submitted 10/11; Revised 5/12; Published 7/12

Sign Language Recognition using Sub-Units

Helen Cooper H.M.COOPER@SURREY.AC.UK

Eng-Jon Ong E.ONG@SURREY.AC.UK

Nicolas Pugeault N.PUGEAULT@SURREY.AC.UK

Richard Bowden R.BOWDEN@SURREY.AC.UK

Centre for Vision Speech and Signal Processing

University of Surrey

Guildford. GU2 9PY UK

Editors: Isabelle Guyon and Vassilis Athitsos

Abstract

This paper discusses sign language recognition using linguistic sub-units. It presents three types
of sub-units for consideration; those learnt from appearance data as well as those inferred from
both 2D or 3D tracking data. These sub-units are then combined using a sign level classifier; here,
two options are presented. The first uses Markov Models to encode the temporal changes between
sub-units. The second makes use of Sequential Pattern Boosting to apply discriminative feature
selection at the same time as encoding temporal information. This approach is more robust to noise
and performs well in signer independent tests, improving results from the 54% achieved by the
Markov Chains to 76%.

Keywords: sign language recognition, sequential pattern boosting, depth cameras, sub-units,
signer independence, data set

1. Introduction

This paper presents several approaches to sub-unit based Sign Language Recognition (SLR) cul-

minating in a real time KinectTMdemonstration system. SLR is a non-trivial task. Sign Lan-

guages (SLs) are made up of thousands of different signs; each differing from the other by minor

changes in motion, handshape, location or Non-Manual Featuress (NMFs). While Gesture Recogni-

tion (GR) solutions often build a classifier per gesture, this approach soon becomes intractable when

recognising large lexicons of signs, for even the relatively straightforward task of citation-form, dic-

tionary look-up. Speech recognition was faced with the same problem; the emergent solution was

to recognise the subcomponents (phonemes), then combine them into words using Hidden Markov

Models (HMMs). Sub-unit based SLR uses a similar two stage recognition system, in the first stage,

sign linguistic sub-units are identified. In the second stage, these sub-units are combined together

to create a sign level classifier.

Linguists also describe SLs in terms of component sub-units; by using these sub-units, not only

can larger sign lexicons be handled efficiently, allowing demonstration on databases of nearly 1000

signs, but they are also more robust to the natural variations of signs, which occur on both an inter

and an intra signer basis. This makes them suited to real-time signer independent recognition as

described later. This paper will focus on 4 main sub-unit categories based on HandShape, Location,

Motion and Hand-Arrangement. There are several methods for labelling these sub-units and this

c©2012 Helen Cooper, Nicolas Pugeault, Eng-Jon Ong and Richard Bowden.
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Figure 1: Overview of the 3 types of sub-units extracted and the 2 different sign level classifiers

used.

work builds on both the Ha, Tab, Sig, Dez system from the BSL dictionary (British Deaf Associa-

tion, 1992) and The Hamburg Notation System (HamNoSys), which has continued to develop over

recent years to allow more detailed description of signs from numerous SLs (Hanke and Schmaling,

2004).

This paper presents a comparison of sub-unit approaches, focussing on the advantages and dis-

advantages of each. Also presented is a newly released Kinect data set, containing multiple users

performing signs in various environments. There are three different types of sub-units considered;

those based on appearance data alone, those which use 2D tracking data with appearance based

handshapes and those which use 3D tracking data produced by a KinectTMsensor. Each of these
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three sub-unit types is tested with a Markov model approach to combine sub-units into sign level

classifiers. A further experiment is performed to investigate the discriminative learning power of

Sequential Pattern (SP) Boosting for signer independent recognition. An overview is shown in

Figure 1.

2. Background

The concept of using sub-units for SLR is not novel. Kim and Waldron (1993) were among the

first adopters, they worked on a limited vocabulary of 13-16 signs, using data gloves to get accurate

input information. Using the work of Stokoe (1960) as a base, and their previous work in telecom-

munications (Waldron and Simon, 1989), they noted the need to break signs into their component

sub-units for efficiency. They continued this throughout the remainder of their work, where they

used phonemic recognition modules for hand shape, orientation, position and movement recogni-

tion (Waldron and Kim, 1994). They made note of the dependency of position, orientation and

motion on one another and removed the motion aspect allowing the other sub-units to compensate

(on a small vocabulary, a dynamic representation of position is equivalent to motion) (Waldron and

Kim, 1995).

The early work of Vogler and Metaxas (1997) borrowed heavily from the studies of sign lan-

guage by Liddell and Johnson (1989), splitting signs into motion and pause sections. Their later

work (Vogler and Metaxas, 1999), used parallel HMMs on both hand shape and motion sub-units,

similar to those proposed by the linguist Stokoe (1960). Kadir et al. (2004) took this further by

combining head, hand and torso positions, as well as hand shape, to create a system based on hard

coded sub-unit classifiers that could be trained on as little as a single example.

Alternative methods have looked at data driven approaches to defining sub-units. Yin et al.

(2009) used an accelerometer glove to gather information about a sign, they then applied discrimi-

native feature extraction and ‘similar state tying’ algorithms, to decide sub-unit level segmentation

of the data. Whereas Kong and Ranganath (2008) and Han et al. (2009) looked at automatic seg-

mentation of sign motion into sub-units, using discontinuities in the trajectory and acceleration to

indicate where segments begin and end. These were then clustered into a code book of possible

exemplar trajectories using either Dynamic Time Warping (DTW) distance measures Han et al. or

Principal Component Analysis (PCA) Kong and Ranganath.

Traditional sign recognition systems use tracking and data driven approaches (Han et al., 2009;

Yin et al., 2009). However, there is an increasing body of research that suggests using linguisti-

cally derived features can offer superior performance. Cooper and Bowden (2010) learnt linguistic

sub-units from hand annotated data which they combined with Markov models to create sign level

classifiers, while Pitsikalis et al. (2011) presented a method which incorporated phonetic transcrip-

tions into sub-unit based statistical models. They used HamNoSys annotations combined with the

Postures, Detentions, Transitions, Steady Shifts (PDTS) phonetic model to break the signs and an-

notations into labelled sub-units. These were used to construct statistical sub-unit models which

they combined via HMMs.

The frequent requirement of tracked data means that the KinectTMdevice has offered the sign

recognition community a short-cut to real-time performance. In the relatively short time since its

release, several proof of concept demonstrations have emerged. Ershaed et al. (2011) have focussed

on Arabic sign language and have created a system which recognises isolated signs. They present

a system working for 4 signs and recognise some close up handshape information (Ershaed et al.,
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2011). At ESIEA they have been using Fast Artificial Neural Networks to train a system which

recognises two French signs (Wassner, 2011). This small vocabulary is a proof of concept but it is

unlikely to be scalable to larger lexicons. It is for this reason that many sign recognition approaches

use variants of HMMs (Starner and Pentland, 1997; Vogler and Metaxas, 1999; Kadir et al., 2004;

Cooper and Bowden, 2007). One of the first videos to be uploaded to the web came from Zafrulla

et al. (2011) and was an extension of their previous CopyCat game for deaf children (Zafrulla et al.,

2010). The original system uses coloured gloves and accelerometers to track the hands. By tracking

with a KinectTM, they use solely the upper part of the torso and normalise the skeleton according to

arm length (Zafrulla et al., 2011). They have an internal data set containing 6 signs; 2 subject signs,

2 prepositions and 2 object signs. The signs are used in 4 sentences (subject, preposition, object)

and they have recorded 20 examples of each. Their data set is currently single signer, making

the system signer dependent, while they list under further work that signer independence would

be desirable. By using a cross validated system they train HMMs (Via the Georgia Tech Gesture

Toolkit Lyons et al., 2007) to recognise the signs. They perform 3 types of tests, those with full

grammar constraints achieving 100%, those where the number of signs is known achieving 99.98%

and those with no restrictions achieving 98.8%.

2.1 Linguistics

Sign language sub-units can be likened to speech phonemes, but while a spoken language such as

English has only 40-50 phonemes (Shoup, 1980), SLs have many more. For example, The Dictio-

nary of British Sign Language/English (British Deaf Association, 1992) lists 57 ‘Dez’ (HandShape),

36 ‘Tab’ (Location), 8 ‘Ha’ (Hand-Arrangement), 28 ‘Sig’ (Motion) (plus 4 modifiers, for example,

short and repeated) and there are two sets of 6 ‘ori’ (Orientation), one for the fingers and one for

the palm.

HamNoSys uses a more combinatorial approach to sub-units. For instance, it lists 12 basic

handshapes which can be augmented using finger bending, thumb position and openeness charac-

teristics to create a single HandShape sub-unit. These handshapes are then combined with palm

and finger orientations to describe the final hand posture. Motion sub-units can be simple linear

directions, known as ‘Path Movements’ these can also be modified by curves, wiggles or zigzags.

Motion sub-units can also be modified by locations, for example, move from A to B with a curved

motion or move down beside the nose.

In addition, whereas spoken phonemes are broadly sequential, sign sub-units are parallel, with

some sequential elements added where required. This means that each of the 57 British Sign Lan-

guage (BSL) HandShape options can (theoretically) be in any one of the 36 BSL Orientation combi-

nations. In practice, due to the physical constraints of the human body, only a subset of comfortable

combinations occur, yet this subset is still considerable.

An advantage of the parallel nature of sub-units, is that they can be recognised independently

using different classifiers, then combined at the word level. The reason this is advantageous is that

Location classifiers need to be spatially variant, since they describe where a sign happens. Hand-

Arrangement should be spatially invariant but not rotationally variant, since they describe positional

relationships between the hands. While Motion are a mixture of spatially, temporally, rotationally

and scale variant sub-units since they describe types of motion which can be as generic as ‘hands

move apart’ or more specific such as ‘hand moves left’. Therefore each type of sub-unit can be

recognised by classifiers incorporating the correct combination of invariances. This paper presents
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three methods for extracting sub-units; learnt appearance based (Section 3), hard coded 2D tracking

based (Section 4) and hard coded 3D tracking based (Section 5).

3. Learning Appearance Based Sub-units

The work in this section learns a subset of each type of sub-unit using AdaBoost from hand labelled

data. As has been previously discussed, not all types of sub-units can be detected using the same

type of classifier. For Location sub-units, there needs to be correlation between where the motion

is happening and where the person is; to this end spatial grid features centred around the face of

the signer are employed. For Motion sub-units, the salient information is what type of motion is

occurring, often regardless of its position, orientation or size. This is approached by extracting

moment features and using Binary Patterns (BPs) and additive classifiers based on their changes

over time. Hand-Arrangement sub-units look at where the hands are in relation to each other, so

these are only relevant for bi-manual signs. This is done using the same moment features as for

Motion but this time over a single frame, as there is no temporal context required. All of these

sub-unit level classifiers are learnt using AdaBoost (Freund and Schapire, 1995). The features used

in this section require segmentation of the hands and knowledge of where the face is. The Viola

Jones face detector (Viola and Jones, 2001) is used to locate the face. Skin segmentation could be

used to segment the hands, but since sub-unit labels are required this work uses the data set from the

work of Kadir et al. (2004) for which there is an in-house set of sub-unit labels for a portion of the

data. This data set was created using a gloved signer and as such a colour segmentation algorithm

is used in place of skin segmentation.

(a) The grid applied over the signer

(b) On Right Shoulder (c) Lower Face/Chin

Figure 2: Grid features for two stage classification. (a) shows an example of the grid produced from

the face dimensions while (b) and (c) show grid features chosen by boosting for two of

the 18 Location sub-units. The highlighted box shows the face location and the first and

second features chosen, are shown in black and grey respectively.
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3.1 Location Features

In order that the sign can be localised in relation to the signer, a grid is applied to the image,

dependent upon the position and scale of the face detection. Each cell in the grid is a quarter of

the face size and the grid is 10 rectangles wide by 8 deep, as shown in Figure 2a. These values are

based on the signing space of the signer. However, in this case, the grid does not extend beyond

the top of the signers head since the data set does not contain any signs which use that area. The

segmented frame is quantised into this grid and a cell fires if over 50% of its pixels are made up of

glove/skin. This is shown in Equation 1 where Rwc is the weak classifier response and Λskin(x,y) is

the likelihood that a pixel contains skin. f is the face height and all the grid values are relative to

this dimension.

Rwc =











1 if f 2

8 <
x2

∑
i=x1

y2

∑
j=y1

(Λskin(i, j)> 0),

0 otherwise.

Where x1,y1,x2,y2 are given by

∀Gx,∀Gy























x1 = Gx f ,

x2 = (Gx +0.5) f ,

y1 = Gy f ,

y2 = (Gy +0.5) f ,

given Gx = {−2.5,−2,−1.5 . . .2},

Gy = {−4,−3.5,−3 . . .0}. (1)

For each of the Location sub-units, a classifier was built via AdaBoost to combine cells which fire

for each particular sub-unit, examples of these classifiers are shown in Figures 2b and (c). Note

how the first cell to be picked by the boosting (shown in black) is the one directly related to the

area indicated by the sub-unit label. The second cell chosen by boosting either adds to this location

information, as in Figure 2b, or comments on the stationary, non-dominant hand, as in Figure 2c.

Some of the sub-units types contain values which are not mutually exclusive, this needs to

be taken into account when labelling and using sub-unit data. The BSL dictionary (British Deaf

Association, 1992) lists several Location sub-units which overlap with each other, such as face and

mouth or nose. Using boosting to train classifiers requires positive and negative examples. For best

results, examples should not be contaminated, that is, the positive set should not contain negatives

and the negative set should not contain positives. Trying to distinguish between an area and its sub-

areas can prove futile, for example, the mouth is also on the face and therefore there are likely to

be false negatives in the training set when training face against mouth. The second stage, sign-level

classification does not require the sub-unit classifier responses to be mutually exclusive. As such a

hierarchy can be created of Location areas and their sub-areas. This hierarchy is shown in Figure 3;

a classifier is trained for each node of the tree, using examples which belong to it, or its children,

as positive data. Examples which do not belong to it, its parent or its child nodes provide negative

data.

This eliminates false negatives from the data set and avoids confusion. In Figure 3 the ringed

nodes show the sub-units for which there exist examples. Examples are labelled according to this
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hierarchy, for example, face, face lower or face lower mouth which makes finding children and

parents easier by using simple string comparisons.

Figure 3: The three Location sub-unit trees used for classification. There are three separate trees,

based around areas of the body which do not overlap. Areas on the leaves of the tree are

sub-areas of their parent nodes. The ringed labels indicate that there are exact examples

of that type in the data set.

3.2 Motion and Hand-Arrangement Moment Feature Vectors

For Hand-Arrangement and Motion, information regarding the arrangement and motion of the hands

is required. Moments offer a way of encoding the shapes in an image; if vectors of moment values

per frame are concatenated, then they can encode the change in shape of an image over time.

There are several different types of moments which can be calculated, each of them displaying

different properties. Four types were chosen to form a feature vector, m: spatial, mab, central, µab,

normalised central, µ̄ab and the Hu set of invariant moments (Hu, 1962) H1-H7. The order of a

moment is defined as a+ b. This work uses all moments, central moments and normalised central

moments up to the 3rd order, 10 per type, (00, 01, 10, 11, 20, 02, 12, 21, 30, 03). Finally, the

Hu set of invariant moments are considered, there are 7 of these moments and they are created by

combining the normalised central moments, see Hu (1962) for full details, they offer invariance to

scale, translation, rotation and skew. This gives a 37 dimensional feature vector, with a wide range

of different properties.

Rwc =

{

1 if Twc < Mi,t ,

0 otherwise.

(2)

Since spatial moments are not invariant to translation and scale, there needs to be a common point

of origin and similar scale across examples. To this end, the spatial moments are treated in a similar
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way to the spatial features in Section 3.1, by centring and scaling the image about the face of

the signer before computation. For training Hand-Arrangement, this vector is used to boost a set

of thresholds for individual moments, mi on a given frame t, Equation 2. For Motion, temporal

information needs to be included. Therefore the video clips are described by a stack of these vectors,

M, like a series of 2D arrays, as shown in Figure 4(a) where the horizontal vectors of moments are

concatenated vertically, the lighter the colour, the higher the value of the moment on that frame.

(a) BP example (b) Concatenated Moment Vector

Figure 4: Moment vectors and Binary Patterns for two stage classification. (b) A pictorial descrip-

tion of moment vectors (normalised along each moment type for a selection of examples),

the lighter the colour the larger the moment value. (a) BP, working from top to bottom an

increase in gradient is depicted by a 1 and a decrease or no change by a 0.

3.3 Motion Binary Patterns and Additive Classifiers

As has been previously discussed, the Motion classifiers are looking for changes in the moments

over time. By concatenating feature vectors temporally as shown in Figure 4(b), these spatio-

temporal changes can be found. Component values can either increase, decrease or remain the

same, from one frame to the next. If an increase is described as a 1 and a decrease or no change is

described as a 0 then a BP can be used to encode a series of increases/decreases. A temporal vec-

tor is said to match the given BP if every ‘1’ accompanies an increase between concurrent frames

and every ‘0’ a decrease/‘no change’. This is shown in Equation 3 where Mi,t is the value of the

component, Mi, at time t and bpt is the value of the BP at frame t.

Rwc = ||max
∀t

(BP(Mi,t))|−1|,

BP(Mi,t) = bpt −d(Mi,t ,Mi,t+1),

d(Mi,t ,Mi,t+1) =

{

0 if Mi,t ≤ Mi,t+1,

1 otherwise.
(3)

See Figure 5 for an example where feature vector A makes the weak classifier fire, whereas feature

vector B fails, due to the ringed gradients being incompatible.

Discarding all magnitude information would possibly remove salient information. To retain this

information, boosting is also given the option of using additive classifiers. These look at the average
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magnitude of a component over time. The weak classifiers are created by applying a threshold, Twc,

to the summation of a given component, over several frames. This threshold is optimised across the

training data during the boosting phase. For an additive classifier of size T , over component mi, the

response of the classifier, Rwc, can be described as in Equation 4.

Rwc =











1 if Twc ≤
T

∑
t=0

Mi,t ,

0 otherwise.

(4)

Boosting is given all possible combinations of BPs, acting on each of the possible components.

The BPs are limited in size, being between 2 and 5 changes (3 - 6 frames) long. The additive

features are also applied to all the possible components, but the lengths permitted are between 1

and 26 frames, the longest mean length of Motion sub-units. Both sets of weak classifiers can be

temporally offset from the beginning of an example, by any distance up to the maximum distance

of 26 frames.

Figure 5: An example of a BP being used to classify two examples. A comparison is made between

the elements of the weak classifiers BP and the temporal vector of the component being

assessed. If every ‘1’ in the BP aligns with an increase in the component and every ‘0’

aligns with a decrease or ‘no change’ then the component vector is said to match (e.g.,

case A). However if there are inconsistencies as ringed in case B then the weak classifier

will not fire.

Examples of the classifiers learnt are shown in Figure 6, additive classifiers are shown by boxes,

increasing BPs are shown by pale lines and decreasing ones by dark lines. When looking at a

sub-unit such as ‘hands move apart’ (Figure 6a), the majority of the BP classifiers show increasing

moments, which is what would be expected, as the eccentricity of the moments is likely to increase

as the hands move apart. Conversely, for ‘hands move together’ (Figure 6b), most of the BPs are

decreasing.

Since some Motion sub-units occur more quickly than others, the boosted classifiers are not all

constrained to being equal in temporal length. Instead, an optimal length is chosen over the training

set for each individual sub-unit. Several different length classifiers are boosted starting at 6 frames
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(a) hands move apart (b) Hands move together

Figure 6: Boosted temporal moments BP and additive Motion classifiers. The moment vectors are

stacked one frame ahead of another. The boxes show where an additive classifier has been

chosen, a dark line shows a decreasing moment value and a pale line an increasing value.

long, increasing in steps of 2 and finishing at 26 frames long. Training classification results are

then found for each sub-unit and the best length chosen to create a final set of classifiers, of various

lengths suited to the sub-units being classified.

4. 2D Tracking Based Sub-Units

Unfortunately, since the learnt, appearance based, sub-units require expertly annotated data they are

limited to data sets with this annotation. An alternative to appearance based features is given by

tracking. While tracking errors can propagate to create sub-unit errors, the hand trajectories offer

significant information which can aid recognition. With the advances of tracking systems and the

real-time solution introduced by the KinectTM, tracking is fast becoming an option for real-time,

robust recognition of sign language. This section works with hand and head trajectories, extracted

from videos by the work outlined by Roussos et al. (2010). The tracking information is used to

extract Motion and Location information. HandShape information is extracted via Histograms of

Gradients (HOGs) on hand image patches and learnt from labels using random forests. The labels

are taken from the linguistic representations of Sign Gesture Mark-up Language (SiGML) (Elliott

et al., 2001) or HamNoSys (Hanke and Schmaling, 2004).1

4.1 Motion Features

In order to link the x,y co-ordinates obtained from the tracking to the abstract concepts used by sign

linguists, rules are employed to extract HamNoSys based information from the trajectories. The

approximate size of the head is used as a heuristic to discard ambient motion (that less than 0.25

the head size) and the type of motion occurring is derived directly from deterministic rules on the

1. Note that conversion between the two forms is possible. However while HamNoSys is usually presented as a font for

linguistic use, SiGML is more suited to automatic processing.

2214



SIGN LANGUAGE RECOGNITION USING SUB-UNITS

(a) Single handed (b) Bimanual: Synchronous (c) Bimanual: Together/Apart

Figure 7: Motions detected from tracking

x and y co-ordinates of the hand position. The types of motions encoded are shown in Figure 7,

the single handed motions are available for both hands and the dual handed motions are orientation

independent so as to match linguistic concepts.

4.2 Location Features

Similarly the x and y co-ordinates of the sign location need to be described relative to the signer

rather than in absolute pixel positions. This is achieved via quantisation of the values into a code-

book based on the signer’s head position and scale in the image. For any given hand position (xh,yh)
the quantised version (x′h,y

′
h) is achieved using the quantisation rules shown in Equation 5, where

(x f ,y f ) is the face position and (w f ,h f ) is the face size.

x′ = (xh − x f )/w f ,

y′ = (yh − y f )/h f . (5)

Due to the limited size of a natural signing space, this gives values in the range of y′ ∈ {0..10} and

x′ ∈ {0..8} which can be expressed as a binary feature vector of size 36, where the x and y positions

of the hands are quantised independently.

4.3 HandShape Features

While just the motion and location of the signs can be used for recognition of many examples, it has

been shown that adding the handshape can give significant improvement (Kadir et al., 2004). HOG

descriptors have proven efficient for sign language hand shape recognition (Buehler et al., 2009) and

these are employed as the base feature unit. In each frame, the signer’s dominant hand is segmented

using the x,y position and a skin model. These image patches are rotated to their principal axis

and scaled to a square, 256 pixels in size. Examples of these image patches are shown in Figure 8

beside the frame from which they have been extracted. HOGs are calculated over these squares at

a cell size of 32 pixels square with 9 orientation bins and with 2x2 overlapping blocks, these are

also shown in Figure 8. This gives a feature vector of 1764 histogram bins which describes the

appearance of a hand.
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Figure 8: Example HOGs extracted from a frame

4.4 HandShape Classifiers

This work focusses on just the 12 basic handshapes, building multi-modal classifiers to account for

the different orientations. A list of these handshapes is shown in Figure 9.

ceeall cee12 cee12open finger2 finger23 finger2345

(153) (200) (107) (4077) (686) (2708)

finger23- fist flat pinch12 pinch12open pinchall

spread (749) (2445) (4612) (571) (845) (830)

Figure 9: The base handshapes (Number of occurrences in the data set)

Unfortunately, linguists annotating sign do so only at the sign level while most sub-units occur

for only part of a sign. Also, not only do handshapes change throughout the sign, they are made

more difficult to recognise due to motion blur. Using the motion of the hands, the sign can be split

into its component parts (as in Pitsikalis et al., 2011), that are then aligned with the sign annotations.

These annotations are in HamNoSys and have been prepared by trained experts, they include the

sign breakdown but not the temporal alignment. The frames most likely to contain a static handshape

(i.e., those with limited or no motion) are extracted for training.

Note that, as shown in Figure 10, a single SiGML class (in this case ‘finger2’) may contain

examples which vary greatly in appearance, making visual classification an extremely difficult task.
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Figure 10: A variety of examples for the HamNoSys/SiGML class ‘finger2’.

The extracted hand shapes are classified using a multi-class random forest. Random forests were

proposed by Amit and Geman (1997) and Breiman (2001). They have been shown to yield good

performance on a variety of classification and regression problems, and can be trained efficiently

in a parallel manner, allowing training on large feature vectors and data sets. In this system, the

forest is trained from automatically extracted samples of all 12 handshapes in the data set, shown

in Figure 9. Since signs may have multiple handshapes or several instances of the same handshape,

the total occurrences are greater than the number of signs, however they are not equally distributed

between the handshape classes. The large disparities in the number of examples between classes

(see Figure 9) may bias the learning, therefore the training set is rebalanced before learning by

selecting 1,000 random samples for each class, forming a new balanced data set. The forest used

consists of N = 100 multi-class decision trees Ti, each of which is trained on a random subset of

the training data. Each tree node splits the feature space in two by applying a threshold on one

dimension of the feature vector. This dimension (chosen from a random subset) and the threshold

value are chosen to yield the largest reduction in entropy in the class distribution. This recursive

partitioning of the data set continues until a node contains a subset of examples that belong to one

single class, or if the tree reaches a maximal depth (set to 10). Each leaf is then labelled according

to the mode of the contained samples. As a result, the forest yields a probability distribution over

all classes, where the likelihood for each class is the proportion of trees that voted for this class.

Formally, the confidence that feature vector x describes the handshape c is given by:

p[c] =
1

N ∑
i<N

δc(Ti(x)),

where N is the number of trees in the forest, Ti(x) is the leaf of the ith tree Ti into which x falls, and

δc(a) is the Kronecker delta function (δc(a) = 1 iff. c = a, δc(a) = 0 otherwise).

The performance of this hand shape classification on the test set is recorded on Table 1, where

each row corresponds to a shape, and each column corresponds to a predicted class (empty cells

signify zero). Lower performance is achieved for classes that are more frequent in the data set. The

more frequently a handshape occurs in the data set the more orientations it is likely to be used in.

This in turn makes the appearance of the class highly variable; see, for example, Figure 10 for the

case of ‘finger2’—the worst performing case. Also noted is the high confusion between ‘finger2’

and ‘fist’ most likely due to the similarity of these classes when the signer is pointing to themselves.

The handshape classifiers are evaluated for the right hand only during frames when it is not in

motion. The sign recognition system is evaluated using two different encodings for the detected

hand shapes. As will be described in Section 6, the next stage classifier requires inputs in the

form of binary feature vectors. Two types of 12 bit binary feature vector can be produced from

the classifier results. The first method applies a strict Winner Takes All (WTA) on the multi-class

forest’s response: the class with the highest probability is set to one, and the others to zero. For
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handshape predictions

flat 0.35 0.19 0.09 0.03 0.08 0.06 0.03 0.06 0.06 0.01 0.03 0.01

fist 0.03 0.69 0.02 0.04 0.11 0.05 0.02 0.03 0.02

finger2345 0.16 0.19 0.36 0.02 0.03 0.05 0.06 0.02 0.03 0.06 0.01

finger2 0.02 0.33 0.07 0.31 0.11 0.05 0.02 0.03 0.02 0.04

pinchall 0.03 0.09 0.04 0.01 0.65 0.11 0.01 0.01 0.04

pinch12 0.02 0.20 0.01 0.02 0.13 0.56 0.01 0.01 0.01 0.02

finger23 0.05 0.17 0.04 0.02 0.05 0.04 0.54 0.01 0.07 0.01

pinch12open 0.03 0.12 0.07 0.01 0.15 0.04 0.01 0.56 0.01

cee12 0.01 0.05 0.01 0.03 0.04 0.01 0.82 0.01

cee12open 0.01 0.99

finger23spread 0.01 0.15 0.02 0.06 0.01 0.05 0.02 0.65

ceeall 0.01 0.08 0.03 0.08 0.01 0.02 0.01 0.01 0.77

Table 1: Confusion matrix of the handshape recognition, for all 12 classes.

every non-motion frame, the vector contains a true value in the highest scoring class. The second

method applies a fixed threshold (τ = 0.25) on the confidences provided by the classifier for each

of the 12 handshapes classes. Handshapes that have a confidence above threshold (p[c]> τ) are set

to one, and the others to zero. This soft approach carries the double advantage that a) the feature

vector may encode the ambiguity between handshapes, which may itself carry information, and b)

may contain only zeros if confidences in all classes are small.

5. 3D Tracking Based Sub-Units

With the availability of the KinectTM, real-time tracking in 3D is now a realistic option. Due to this,

this final sub-unit section expands on the previous tracking sub-units to work in 3D. The tracking is

obtained using the OpenNI framework (Ope, 2010) with the PrimeSense tracker (Pri, 2010). Two

types of features are extracted, those encoding the Motion and Location of the sign being performed.

5.1 Motion Features

Again, the focus is on linear motion directions, as with the sub-units described in Section 4.1, but

this time with the z axis included. Specifically, individual hand motions in the x plane (left and

right), the y plane (up and down) and the z plane (towards and away from the signer). This is

augmented by the bi-manual classifiers for ‘hands move together’, ‘hands move apart’ and ‘hands

move in sync’, again, these are all now assessed in 3D. The approximate size of the head is used

as a heuristic to discard ambient motion (that less than 0.25 the head size) and the type of motion

occurring is derived directly from deterministic rules on the x,y,z co-ordinates of the hand position.

The resulting feature vector is a binary representation of the found linguistic values. The list of 17

motion features extracted is shown in Table 2.

5.2 Location Features

Whereas previously, with 2D tracking, a coarse grid is applied, in this section the skeleton returned

by the PrimeSense tracker can now be leveraged. This allows signer related locations to be described

with higher confidence. As such, the location features are calculated using the distance of the

dominant hand from skeletal joints. A feature will fire if the dominant hand is closer than Hhead/2

of the joint in question. A list of the 9 joints considered is shown in Table 2 and displayed to scale
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Locations
Motions

Right or Left Hand Bi-manual

head left ∆x > λ in sync

neck right ∆x <−λ |δ(L,R)|< λ
torso up ∆y > λ and

L shoulder down ∆y <−λ FR = FL

L elbow towards ∆z > λ together

L hand away ∆z <−λ ∆(δ(L,R))<−λ
L hip

none
∆L < λ apart

R shoulder ∆R < λ ∆(δ(L,R))> λ
R hip

Table 2: Table listing the locations and hand motions included in the feature vectors. The conditions

for motion are shown with the label. Where x,y,z is the position of the hand, either left (L)

or right (R), ∆ indicates a change from one frame to the next and δ(L,R) is the Euclidean

distance between the left and right hands. λ is the threshold value to reduce noise and

increase generalisation, this is set to be a quarter the head height. FR and FL are the

motion feature vectors relating to the right and left hand respectively.

in Figure 11. While displayed in 2D, the regions surrounding the joints are actually 3D spheres.

When the dominant hand (in this image shown by the smaller red dot) moves into the region around

a joint then that feature will fire. In the example shown, it would be difficult for two features to

fire at once. When in motion, the left hand and elbow regions may overlap with other body regions

meaning that more than one feature fires at a time.

Figure 11: Body joints used to extract sign locations

6. Sign Level classification

Each of the different sub-unit classifier sets is now combined with a sign-level classifier. The groups

of binary feature vectors are each concatenated to create a single binary feature vector F = ( fi)D
i=1
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per frame, where fi ∈ {0,1} and D is the number of dimensions in the feature vector. This feature

vector is then used as the input to a sign level classifier for recognition. By using a binary approach,

better generalisation is obtained. This requires far less training data than approaches which must

generalise over both a continuous input space as well as the variability between signs (e.g., HMMs).

Two sign level classification methods are investigated. Firstly, Markov models which use the feature

vector as a whole and secondly Sequential Patten Boosting which performs discriminative feature

selection.

6.1 Markov Models

HMMs are a proven technology for time series analysis and recognition. While they have been

employed for sign recognition, they have issues due to the large training requirements. Kadir et al.

(2004) overcame these issues by instead using a simpler Markov model when the feature space is

discrete. The symbolic nature of linguistic sub-units means that the discrete time series of events

can be modelled without a hidden layer. To this end a Markov chain is constructed for each sign

in a lexicon. An ergodic model is used and a Look Up Table (LUT) employed to maintain as little

of the chain as is required. Code entries not contained within the LUT are assigned a nominal

probability. This is done to avoid otherwise correct chains being assigned zero probabilities if noise

corrupts the input signal. The result is a sparse state transition matrix, Pω(Ft |Ft−1), for each word ω
giving a classification bank of Markov chains. During creation of this transition matrix, secondary

transitions can be included, where Pω(Ft |Ft−2). This is similar to adding skip transitions to the left-

right hidden layer of a HMM which allows deletion errors in the incoming signal. While it could

be argued that the linguistic features constitute discrete emission probabilities; the lack of a doubly

stochastic process and the fact that the hidden states are determined directly from the observation

sequence, separates this from traditional HMMs which cannot be used due to their high training

requirements. During classification, the model bank is applied to incoming data in a similar fashion

to HMMs. The objective is to calculate the chain which best describes the incoming data, that is,

has the highest probability that it produced the observation F . Feature vectors are found in the LUT

using an L1 distance on the binary vectors. The probability of a model matching the observation

sequence is calculated as

P(ω|s) = υw

l

∏
t=1

Pω(Ft |Ft−1),

where l is the length of the word in the test sequence and υω is the prior probability of a chain

starting in any one of its states. In this work, without grammar, ∀ω,υω = 1.

6.2 SP Boosting

One limitation of Markov models is that they encode exact series of transitions over all features

rather than relying only on discriminative features. This leads to reliance on user dependant fea-

ture combinations which if not replicated in test data, will result in poor recognition performance.

Sequential Patterns (SPs), on the other hand, compare the input data for relevant features and ig-

nore the irrelevant features. A SP is a sequence of discriminative itemsets (i.e., feature subsets) that

occur in positive examples and not negative examples (see Figure 12). We define an itemset T as

the dimensions of the feature vector F = ( fi)D
i=1 that have the value of 1: T ⊂ {1, ...,D} is a set of
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integers where ∀t ∈ T, ft = 1. Following this, we define a SP T of length |T| as: T = (Ti)
|T|
i=1, where

Ti is an itemset.

In order to use SPs for classification, we first define a method for detecting SPs in an input

sequence of feature vectors. To this end, firstly let T be a SP we wish to detect. Suppose the given

feature vector input sequence of |F| frames is F = (Ft)
|F|
t=1, where Ft is the binary feature vector

defined in Section 6. We firstly convert F into the SP I = (It)
|F|
t=1, where It is the itemset of feature

vector Ft . We say that the SP T is present in I if there exists a sequence (βi)
|T|
i=1, where βi < β j when

i < j and ∀i = {1, ..., |T|},Ti ⊂ Iβi
. This relationship is denoted with the ⊂S operator, that is, T ⊂S I.

Conversely, if the sequence (βi)
|T|
i=1 does not exist, we denote it as T (⊂S I.

From this, we can then define a SP weak classifier as follows: Let T be a given SP and I be an

itemset sequence derived from some input binary vector sequence F . A SP weak classifier, hT(I),
can be constructed as follows:

hT(I) =

{

1, if T ⊂S I,

−1, if T (⊂S I.

A strong classifier can be constructed by linearly combining a number (S) of selected SP weak

classifiers in the form of:

H(I) =
S

∑
i=1

αih
Ti
i (I).

The weak classifiers hi are selected iteratively based on example weights formed during training.

In order to determine the optimal weak classifier at each Boosting iteration, the common approach

is to exhaustively consider the entire set of candidate weak classifiers and finally select the best

weak classifier (i.e., that with the lowest weighted error). However, finding SP weak classifiers

corresponding to optimal SPs this way is not possible due to the immense size of the SP search

space. To this end, the method of SP Boosting is employed (Ong and Bowden, 2011). This method

poses the learning of discriminative SPs as a tree based search problem. The search is made efficient

by employing a set of pruning criteria to find the SPs that provide optimal discrimination between

the positive and negative examples. The resulting tree-search method is integrated into a boosting

framework; resulting in the SP-Boosting algorithm that combines a set of unique and optimal SPs

for a given classification problem. For this work, classifiers are built in a one-vs-one manner and

the results aggregated for each sign class.

7. Appearance Based Results

This section of work uses the same 164 sign data set as Kadir et al. (2004) and therefore a direct

comparison can be made between their hard coded tracking based system and the learnt sub-unit

approach using detection based sub-units. For this work, extra annotation was required as Kadir

et al. (2004) used only sign boundaries. 7410 Location examples, 322 Hand-Arrangement examples

and 578 Motion were hand labelled for training sub-unit classifiers. The data set consists of 1640

examples (ten of each sign). Signs were chosen randomly rather than picking specific examples

which are known to be easy to separate. The sub-unit classifiers are built using only data from four of

the ten examples of each sign and the word level classifier is then trained on five examples (including

the four previously seen by the sub-unit classifiers) leaving five completely unseen examples for
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(a) Feature vector (b) SP

Figure 12: Pictorial description of SPs. (a) shows an example feature vector made up of 2D motions

of the hands. In this case the first element shows ‘right hand moves up’, the second ‘right

hand moves down’ etc. (b) shows a plausible pattern that might be found for the sign

‘bridge’. In this sign the hands move up to meet each other, they move apart and then

curve down as if drawing a hump-back bridge.

testing purposes. The second stage classifier is trained on the previously used four training examples

plus one other, giving five training examples per sign. The results are acquired from the five unseen

examples of each of the 164 signs. This is done for all six possible combinations of training/test

data. Results are shown in Table 3 alongside the results from Kadir et al. (2004). The first three

columns show the results of combining each type of appearance sub-unit with the second stage

sign classifier. Unsurprisingly, none of the individual types contains sufficient information to be

able to accurately separate the data. However, when combined, the appearance based classifiers

learnt from the data are comparable to the hard coded classifiers used on perfectly tracked data.

The performance drops by only 6.6 Percentage Points (pp), from 79.2% to 72.6% whilst giving the

advantage of not needing the high quality tracking system.

Figure 13, visually demonstrates the sub-unit level classifiers being used with the second stage

classifier. The output from the sub-unit classifiers are shown on the right hand side in a vector

format on a frame by frame basis. It shows the repetition of features for the sign ‘Box’. As can be

seen there is a pattern in the vector which repeats each time the sign is made. It is this repetition

which the second stage classifier is using to detect signs.

8. 2D Tracking Results

The data set used for these experiments contains 984 Greek Sign Language (GSL) signs with 5 ex-

amples of each performed by a single signer (for a total of 4920 samples). The handshape classifiers

are learnt on data from the first 4 examples of each sign. The sign level classifiers are trained on the

same 4 examples, the remaining sign of each type is reserved for testing.
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Minimum (%) 31.6 30.7 28.2 68.7 76.1

Maximum (%) 35.0 32.2 30.5 74.3 82.4

Std Dev 0.9 0.4 0.6 1.5 2.1

Mean (%) 33.2 31.7 29.4 72.6 79.2

Table 3: Classification performance of the appearance based two-stage detector. Using the appear-

ance based sub-unit classifiers. Kadir et al. (2004) results are included for comparison

purposes.

Figure 13: Repetition of the appearance based sub-unit classifier vector. The band down the right

hand side of the frame shows the sub-unit level classifier firing patterns for the last 288

frames, the vector for the most recent frame is at the bottom. The previous video during

the 288 frames shows four repetitions of the sign ‘Box’.

Table 4 shows sign level classification results. It is apparent from these results, that out of the

independent vectors, the location information is the strongest. This is due to the strong combination

of a detailed location feature vector and the temporal information encoded by the Markov chain.

Shown also is the improvement afforded by using the handshape classifiers with a threshold

vs a WTA implementation. By allowing the classifiers to return multiple possibilities more of the

data about the handshape is captured. Conversely, when none of the classifiers is confident, a ‘null’

response is permitted which reduces the amount of noise. Using the non-mutually exclusive version

of the handshapes in combination with the motion and location, the percentage of signs correctly
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Motion 25.1%

Location 60.5%

HandShape 3.4%

All: WTA 52.7%

All: Thresh 68.4%

All + Skips (P(Ft |Ft−2)) 71.4%

Table 4: Sign level classification results using 2D tracked features and the Markov Models. The

first three rows show the results when using the features independently with the Markov

chain (The handshapes used are non-mutually exclusive). The next three rows give the

results of using all the different feature vectors. Including the improvement gained by

allowing the handshapes to be non-mutually exclusive (thresh) versus the WTA option.

The final method is the combination of the superior handshapes with the location, motion

and the second order skips.

Markov Chains SPs

Top 1 Top 4 Top 1 Top 4

recall 71.4% 82.3% 74.1% 89.2%

Table 5: Comparison of recall results on the 2D tracking data using both Markov chains and SPs

returned is 68.4%. By including the 2nd order transitions whilst building the Markov chain there is

a 3 pp boost to 71.4%.

This work was developed for use as a sign dictionary, within this context, when queried by a

video search, the classification would not return a single response. Instead, like a search engine,

it should return a ranked list of possible signs. Ideally the target sign would be close to the top of

this list. To this end we show results for 2 possibilities; The percentage of signs which are correctly

ranked as the first possible sign (Top 1) and the percentage which are ranked in the top 4 possible

signs.

This approach is applied to the best sub-unit features above combined with either the Markov

Chains or the SP trees. The results of these tests are shown in Table 5. When using the the same

combination of sub-unit features as found to be optimal with the Markov Chains, the SP trees are

able to improve on the results by nearly 3 pp, increasing the recognition rate from 71.4% to 74.1%.

A further improvement is also found when expanding the search results list, within the top 4 signs

the recall rate increases from 82.3% to 89.2%.

9. 3D Tracking Results

While the KinectTMwork is intended for use as a live system, quantitative results can be obtained

by the standard method of splitting pre-recorded data into training and test sets. The split between

test and training data can be done in several ways. This work uses two versions, the first to show

results on signer dependent data, as is often used, the second shows performance on unseen signers,

a signer independent test.
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Test
Markov Models SP-Boosting

Top 1 Top 4 Top 1 Top 4

In
d
ep

en
d
en

t

1 56% 80% 72% 91%

2 61% 79% 80% 98%

3 30% 45% 67% 89%

4 55% 86% 77% 95%

5 58% 75% 78% 98%

6 63% 83% 80% 98%

Mean 54% 75% 76% 95%

StdDev 12% 15% 5% 4%

Dependent
79% 92% 92% 99.90%

Mean

Table 6: Results across the 20 sign GSL data set.

9.1 Data Sets

Two data sets were captured for training; The first is a data set of 20 GSL signs, randomly chosen and

containing both similar and dissimilar signs. This data includes six people performing each sign an

average of seven times. The signs were all captured in the same environment with the KinectTMand

the signer in approximately the same place for each subject. The second data set is larger and more

complex. It contains 40 Deutsche Gebärdensprache - German Sign Language (DGS) signs, chosen

to provide a phonetically balanced subset of HamNoSys phonemes. There are 15 participants each

performing all the signs 5 times. The data was captured using a mobile system giving varying view

points.

9.2 GSL Results

Two variations of tests were performed; firstly the signer dependent version, where one example

from each signer was reserved for testing and the remaining examples were used for training. This

variation was cross-validated multiple times by selecting different combinations of train and test

data. Of more interest for this application however, is signer independent performance. For this

reason the second experiment involves reserving data from a subject for testing, then training on the

remaining signers. This process is repeated across all signers in the data set. The results of both the

Markov models and the Sequential Patten Boosting applied to the basic 3D features are shown in

Table 6.

As is noted in Section 6.2, while the the Markov models perform well when they have training

data which is close to the test data, they are less able to generalise. This is shown by the dependent

results being high, average 92% within the top 4, compared to the average independent result which

is 17 pp lower at 75%. It is even more noticeable when comparing the highest ranked sign only,

which suffers from a drop of 25 pp, going from 79% to 54%. When looking at the individual results

of the independent test it can be seen that there are obvious outliers in the data, specifically signer 3

(the only female in the data set), where the recognition rates are markedly lower. This is reflected in

statistical analysis which gives high standard deviation across the signers in both the top 1 and top

4 rankings when using the Markov Chains.
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Subject Dependent Subject Independent

Top 1 Top 4 Top 1 Top 4

Min 56.7% 90.5% 39.9% 74.9%

Max 64.5% 94.6% 67.9% 92.4%

StdDev 1.9% 1.0% 8.5% 5.2%

Mean 59.8% 91.9% 49.4% 85.1%

Table 7: Subject Independent (SI) and Subject Dependent (SD) test results across 40 signs in the

DGS data set.

When the SP-Boosting is used, again the dependant case produces higher results, gaining nearly

100% when considering the top 4 ranked signs. However, due to the discriminative feature selection

process employed; the user independent case does not show such marked degradation, dropping just

4.9 pp within the top 4 signs, going from 99.9% to 95%. When considering the top ranked sign the

reduction is more significant at 16 pp, from 92% to 76%, but this is still a significant improvement

on the more traditional Markov model. It can also be seen that the variability in results across signers

is greatly reduced using SP-Boosting, whilst signer 3 is still the signer with the lowest percentage

of signs recognised, the standard deviation across all signs has dropped to 5% for the first ranked

signs and is again lower for the top 4 ranked signs.

9.3 DGS Results

The DGS data set offers a more challenging task as there is a wider range of signers and environ-

ments. Experiments were run in the same format using the same features as for the GSL data set.

Table 7 shows the results of both the dependent and independent tests. As can be seen with the

increased number of signs the percentage accuracy for the first returned result is lower than that of

the GSL tests at 59.8% for dependent and 49.4% for independent. However the recall rates within

the top 4 ranked signs (now only 10% of the data set) are still high at 91.9% for the dependent tests

and 85.1% for the independent ones. Again the relatively low standard deviation of 5.2% shows that

the SP-Boosting is picking the discriminative features which are able to generalise well to unseen

signers.

As can be seen in the confusion matrix (see Figure 14), while most signs are well distinguished,

there are some signs which routinely get confused with each other. A good example of this is the

three signs ‘already’, ‘Athens’ and ‘Greece’ which share very similar hand motion and location but

are distinguishable by handshape which is not currently modelled on this data set.

10. Discussion

Three different approaches to sub-unit feature extraction have been compared in this paper. The

first based on appearance only, the latter two on tracking. The advantage of the first approach is

that it doesn’t depend on high quality tracking for good results. However, it would be easily con-

fused via cluttered backgrounds or short sleeves (often a problem with sign language data sets). The

other advantage of the appearance based classification is that it includes information not available
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Figure 14: Aggregated confusion matrix of the first returned result for each subject independent

test on the DGS data set.

by trajectories alone, thus encoding information about handshape within the moment based clas-

sifiers. While this may aid classification on small data sets it makes it more difficult to de-couple

the handshape from the motion and location sub-units. This affects the generalisation ability of the

classifiers due to the differences between signers.

Where 2D tracking is available, the results are superior in general to the appearance based

results. This is shown in the work by Kadir et al. (2004), who achieve equivalent results on the

same data using tracking trajectories when compared to the appearance based ones presented here.

Unfortunately, it is not always possible to accurately track video data and this is why it is still valid

to examine appearance based approaches. The 2D tracking Location sub-features presented here

are based around a grid, while this is effective in localising the motion it is not as desirable as

the HamNoSys derived features used in the improved 3D tracking features. The grid suffers from

boundary noise as the hands move between cells. This noise causes problems when the features

are used in the second stage of classification. With the 3D features this is less obvious due to them

being relative to the signer in 3D and therefore the locations are not arbitrarily used by the signer

in the same way as the grid is. For example if a signer puts their hands to their shoulders, this

will cause multiple cells of the grid to fire and it may not be the same one each time. When using

3D, if the signer puts their hands to their shoulders then the shoulder feature fires. This move from

an arbitrary grid to consciously decided body locations reduces boundary effect around significant

areas in the signing space.

This in turn leads to the sign level classifiers. The Markov chains are very good at recognising

signer dependent, repetitive motion, in these cases they are almost on a par with the SPs. However,

they are much less capable of managing signer independent classification as they are unable to

distinguish between the signer accents and the signs themselves and therefore over-fit the data.
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Instead the SPs look for the discriminative features between the examples, ignoring any signer

specific features which might confuse the Markov Chains.

11. Conclusions

This work has presented three approaches to sub-unit based sign recognition. Tests were conducted

using boosting to learn three types of sub-units based on appearance features, which are then com-

bined with a second stage classifier to learn word level signs. These appearance based features offer

an alternative to costly tracking.

The second approach uses a 2D tracking based set of sub-units combined with some appearance

based handshape classifiers. The results show that a combination of these robust, generalising fea-

tures from tracking and learnt handshape classifiers overcomes the high ambiguity and variability

in the data set to achieve excellent recognition performance: achieving a recognition rate of 73% on

a large data set of 984 signs.

The third and final approach translates these tracking based sub-units into 3D, this offers user

independent, real-time recognition of isolated signs. Using this data a new learning method is

introduced, combining the sub-units with SP-Boosting as a discriminative approach. Results are

shown on two data sets with the recognition rate reaching 99.9% on a 20 sign multi-user data set and

85.1% on a more challenging and realistic subject independent, 40 sign test set. This demonstrates

that true signer independence is possible when more discriminative learning methods are employed.

In order to strengthen comparisons within the SLR field the data sets created within this work have

been released for use within the community.

12. Future Work

The learnt sub-units show promise and, as shown by the work of Pitsikalis et al. (2011), there are

several avenues which can be explored. However, for all of these directions, more linguistically

annotated data is required across multiple signers to allow the classifiers to discriminate between

the features which are signer specific and those which are independent. In addition, handshapes

are a large part of sign, while the work on the multi-signer depth data set has given good results,

handshapes should be included in future work using depth cameras. Finally, the recent creation

of a larger, multi-signer data set has set the ground work in place for better quantitative analysis.

Using this data in the same manner as the DGS40 data set should allow bench-marking of Kinect

sign recognition approaches, both for signer dependent and independent recognition. Appearance

only techniques can also be verified using the Kinect data set where appropriate as the RGB images

are also available though they are not used in this paper. Though it should be noted that this is an

especially challenging data set for appearance techniques due to the many varying backgrounds and

subjects.
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Abstract

Latent Dirichlet allocation (LDA) is an important hierarchical Bayesian model for probabilistic
topic modeling, which attracts worldwide interests and touches on many important applications in
text mining, computer vision and computational biology. This paper introduces a topic modeling
toolbox (TMBP) based on the belief propagation (BP) algorithms. TMBP toolbox is implemented
by MEX C++/Matlab/Octave for either Windows 7 or Linux. Compared with existing topic mod-
eling packages, the novelty of this toolbox lies in the BP algorithms for learning LDA-based topic
models. The current version includes BP algorithms for latent Dirichlet allocation (LDA), author-
topic models (ATM), relational topic models (RTM), and labeled LDA (LaLDA). This toolbox is
an ongoing project and more BP-based algorithms for various topic models will be added in the
near future. Interested users may also extend BP algorithms for learning more complicated topic
models. The source codes are freely available under the GNU General Public Licence, Version 1.0
at https://mloss.org/software/view/399/.

Keywords: topic models, belief propagation, variational Bayes, Gibbs sampling

1. Introduction

The past decade has seen rapid development of latent Dirichlet allocation (LDA) (Blei et al., 2003)

for solving topic modeling problems because of its elegant three-layer graphical representation as

well as two efficient approximate inference methods such as Variational Bayes (VB) (Blei et al.,

2003) and collapsed Gibbs Sampling (GS) (Griffiths and Steyvers, 2004). Both VB and GS have

been widely used to learn variants of LDA-based topic models until our recent work (Zeng et al.,

2011) reveals that there is yet another learning algorithm for LDA based on loopy belief propagation

(BP). The basic idea of BP is inspired by the collapsed GS algorithm, in which the three-layer LDA

can be interpreted as being collapsed into a two-layer factor graph (Kschischang et al., 2001). The

sum-product BP algorithm operates on the factor graph (Bishop, 2006). Extensive experiments

confirm that BP is faster and more accurate than both VB and GS, and thus is a strong candidate for

becoming the standard topic modeling algorithm. For example, we show how to learn three typical

variants of LDA-based topic models, such as author-topic models (ATM) (Rosen-Zvi et al., 2004),

relational topic models (RTM) (Chang and Blei, 2010), and labeled LDA (LaLDA) (Ramage et al.,

2009) using BP based on the novel factor graph representations (Zeng et al., 2011).

We have implemented the topic modeling toolbox called TMBP by MEX C++ in the Mat-

lab/Octave interface based on VB, GS and BP algorithms. Compared with other topic modeling

c©2012 Jia Zeng.
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packages,1234567 the novelty of this toolbox lies in the BP algorithms for topic modeling. This

paper introduces how to use this toolbox for basic topic modeling tasks.

2. Belief Propagation for Topic Modeling

Given a document-word matrix x = {xw,d} (xw,d is the number of word counts at the index {w,d})

with word indices 1 ≤ w ≤ W in the vocabulary and document indices 1 ≤ d ≤ D in the corpus,

the probabilistic topic modeling task is to allocate topic labels z = {zk
w,d},z

k
w,d ∈ {0,1},∑K

k=1 zk
w,d =

1,1≤ k ≤K to partition the nonzero elements xw,d $= 0 into K topics (provided by the user) according

to three topic modeling rules:

1. Co-occurrence: the different word indices w in the same document d tend to have the same

topic label.

2. Smoothness: the same word indices w in the different documents d tend to have the same

topic label.

3. Clustering: all word indices w do not tend to be associated with the same topic label.

Based on the above rules, recent approximate inference methods compute the marginal distribution

of topic label µw,d(k) = p(zk
w,d = 1) called message, and estimate parameters using the iterative EM

(Bishop, 2006) algorithm according to the maximum-likelihood criterion. The major difference

among these inference methods lies in the message update equation. VB updates messages by com-

plicated digamma functions, which cause bias and slow down message updating (Zeng et al., 2011).

GS updates messages by topic labels randomly sampled from the message in the previous iteration.

The sampling process does not keep all uncertainty encoded in the previous message. In contrast,

BP directly uses the previous message to update the current message without sampling. Similar

ideas have also been proposed within the approximate mean-field framework (Asuncion, 2010) as

the zero-order approximation of the collapsed VB (CVB0) algorithm (Asuncion et al., 2009). While

proper settings of hyperparameters can make the topic modeling performance comparable among

different inference methods (Asuncion et al., 2009), we still advocate the BP algorithms because of

their ease of use and fast speed. Table 1 compares the message update equations among VB, GS

and BP. Compared with BP, VB uses the digamma function Ψ in message update, and GS uses the

discrete count of sampled topic labels n−i
w,d based on word tokens rather than word index in mes-

sage update. The Dirichlet hyperparameters α and β can be viewed as the pseudo-messages. The

notations −w and −d denote all word indices except w and all document indices except d, and −i

denotes all word tokens except the current word token i. More details can be found in our work

(Zeng et al., 2011, 2012a).

Because VB and GS have been widely used for learning different LDA-based topic models, it

is easy to develop the corresponding BP algorithms for learning these LDA-based topic models by

1. See http://www.cs.princeton.edu/˜blei/lda-c/index.html.

2. See http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm.

3. See http://nlp.stanford.edu/software/tmt/tmt-0.3/.

4. See http://CRAN.R-project.org/package=lda.

5. See http://mallet.cs.umass.edu/.

6. See http://www.arbylon.net/projects/.

7. See http://CRAN.R-project.org/package=topicmodels.
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Inference methods Message update equations

VB µw,d(k) ∝
exp[Ψ(x·,dµ·,d(k)+α)]

exp[Ψ(∑k[x·,dµ·,d(k)+α])] ×
xw,·µw,·(k)+β

∑w[xw,·µw,·(k)+β]

GS µw,d,i(k) ∝
n−i
·,d(k)+α

∑k[n
−i
·,d(k)+α]

×
n−i

w,·(k)+β

∑w[n
−i
w,·(k)+β]

BP µw,d(k) ∝
x−w,dµ−w,d(k)+α

∑k[x−w,dµ−w,d(k)+α] ×
xw,−dµw,−d(k)+β

∑w[xw,−dµw,−d(k)+β]

Table 1: Comparison of message update equations (Zeng et al., 2011).

either removing the digamma function in the VB or without sampling from the posterior probability

in the GS algorithm. For example, we show how to develop the corresponding BP algorithms for

two typical LDA-based topic models such as ATM and RTM (Zeng et al., 2011).

3. An Example of Using TMBP

TMBP toolbox contains source codes for learning LDA based on VB, GS, and BP (Zeng et al.,

2011, 2012a,b,c), learning author-topic models (ATM) (Rosen-Zvi et al., 2004) based on GS and

BP, learning relational topic models (RTM) (Chang and Blei, 2010) and labeled LDA (Ramage

et al., 2009) using BP. Implementation details can be found in “readme.pdf”, which is distributed

with the software. Here, we present a demo for the synchronous BP algorithm. After installation,

we run demo1.m in the Octave/Matlab environment. The results (the training perplexity at every 10

iterations and the top five words in each of ten topics) are printed on the screen:

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
The sBP Algo r i t hm

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
I t e r a t i o n 10 of 500 : 1041 .620873

. . .

. . .

I t e r a t i o n 490 of 500 : 741 .946849

E l a p s e d t ime i s 13 .246747 s e c o n d s .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Top f i v e words i n each of t e n t o p i c s by sBP

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
d e s i g n sys tem r e a s o n i n g c a s e knowledge

model models b a y e s i a n d a t a markov

g e n e t i c problem s e a r c h a l g o r i t h m s programming

a l g o r i t h m l e a r n i n g number f u n c t i o n model

l e a r n i n g p a p e r t h e o r y knowledge examples

l e a r n i n g c o n t r o l r e i n f o r c e m e n t p a p e r s t a t e

model v i s u a l r e c o g n i t i o n sys tem p a t t e r n s

r e s e a r c h r e p o r t t e c h n i c a l g r a n t u n i v e r s i t y

ne twork n e u r a l n e t w o r k s l e a r n i n g i n p u t

d a t a d e c i s i o n t r a i n i n g a l g o r i t h m c l a s s i f i c a t i o n
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Abstract

A supervised topic model can use side information such as ratings or labels associated with doc-
uments or images to discover more predictive low dimensional topical representations of the data.
However, existing supervised topic models predominantly employ likelihood-driven objective func-
tions for learning and inference, leaving the popular and potentially powerful max-margin principle
unexploited for seeking predictive representations of data and more discriminative topic bases for
the corpus. In this paper, we propose the maximum entropy discrimination latent Dirichlet alloca-
tion (MedLDA) model, which integrates the mechanism behind the max-margin prediction models
(e.g., SVMs) with the mechanism behind the hierarchical Bayesian topic models (e.g., LDA) un-
der a unified constrained optimization framework, and yields latent topical representations that are
more discriminative and more suitable for prediction tasks such as document classification or re-
gression. The principle underlying the MedLDA formalism is quite general and can be applied
for jointly max-margin and maximum likelihood learning of directed or undirected topic models
when supervising side information is available. Efficient variational methods for posterior inference
and parameter estimation are derived and extensive empirical studies on several real data sets are
also provided. Our experimental results demonstrate qualitatively and quantitatively that MedLDA
could: 1) discover sparse and highly discriminative topical representations; 2) achieve state of the
art prediction performance; and 3) be more efficient than existing supervised topic models, espe-
cially for classification.

Keywords: supervised topic models, max-margin learning, maximum entropy discrimination,
latent Dirichlet allocation, support vector machines

1. Introduction

Probabilistic latent aspect models such as the latent Dirichlet allocation (LDA) model (Blei et al.,

2003) have recently gained much popularity for stratifying a large collection of documents by pro-

jecting every document into a low dimensional space spanned by a set of bases that capture the

semantic aspects, also known as topics, of the collection. An LDA model posits that each document

is an admixture of latent topics, of which each topic is represented as a unique unigram distribution

c©2012 Jun Zhu, Amr Ahmed and Eric P. Xing.
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over a given vocabulary. The document-specific admixture proportion vector θθθ, also known as the

topic vector, is modeled as a latent Dirichlet random variable, and can be regarded as a low dimen-

sional representation of the document in a topical space. This low dimensional representation can

be used for downstream tasks such as classification, clustering, or merely as a tool for structurally

visualizing the otherwise unstructured document collection.

The original LDA is an unsupervised model and is typically built on a discrete bag-of-words

representation of input contents, which can be text documents (Blei et al., 2003), images (Fei-Fei

and Perona, 2005), or even network entities (Airoldi et al., 2008). However, in many practical ap-

plications, we can easily obtain useful side information besides the document or image contents.

For example, when online users post their reviews for products or restaurants, they usually associate

each review with a rating score or a thumb-up/thumb-down opinion; web sites or pages in the pub-

lic Yahoo! Directory1 can have their categorical labels; and images in the LabelMe (Russell et al.,

2008) database are organized by a visual ontology and additionally each image is associated with a

set of annotation tags. Furthermore, there is an increasing trend towards using online crowdsourc-

ing services (such as Amazon Mechanical Turk2) to collect large collections of labeled data with a

reasonably low price (Snow et al., 2008). Such side information often provides useful high-level or

direct summarization of the content, but it is not directly used in the original LDA or models alike to

influence topic inference. One would expect that incorporating such information into latent aspect

modeling could guide a topic model towards discovering secondary or non-dominant, albeit seman-

tically more salient statistical patterns (Chechik and Tishby, 2002) that may be more interesting or

relevant to the user’s goal, such as prediction on unlabeled data.

To explore this potential, developing new topic models that appropriately capture side infor-

mation mentioned above has recently gained increasing attention. Representative attempts include

supervised topic model (sLDA) (Blei and McAuliffe, 2007), which captures real-valued document

rating as a regression response; multi-class sLDA (Wang et al., 2009), which directly captures dis-

crete labels of documents as a classification response; and discriminative LDA (DiscLDA) (Lacoste-

Julien et al., 2008), which also performs classification, but with a mechanism different from that of

sLDA. All these models focus on the document-level side information such as document categories

or review rating scores to supervise model learning. More variants of supervised topic models can

be found in a number of applied domains, such as the aspect rating model (Titov and McDonald,

2008) for predicting ratings for each aspect of a hotel and the credit attribution model (Ramage

et al., 2009) that associates each word with a label. In computer vision, several supervised topic

models have been designed for understanding complex scene images (Sudderth et al., 2005; Fei-Fei

and Perona, 2005; Li et al., 2009). Mimno and McCallum (2008) also proposed a topic model for

considering document-level meta-data, for example, publication date and venue of a paper.

It is worth pointing out that among existing supervised topic models for incorporating side infor-

mation, there are two classes of approaches, namely, downstream supervised topic model (DSTM)

and upstream supervised topic model (USTM). In a DSTM the response variable is predicted based

on the latent representation of the document, whereas in an USTM the response variable is being

conditioned on to generate the latent representation of the document. Examples of USTM3 include

DiscLDA and the scene understanding models (Sudderth et al., 2005; Li et al., 2009), whereas

1. Yahoo directory can be found at http://dir.yahoo.com/.

2. Amazon Mechanical Turk can be found at https://www.mturk.com/.

3. The model presented by Mimno and McCallum (2008) is also an upstream model for incorporating document meta-

features.
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sLDA is an example of DSTM. Another distinction between existing supervised topic models is

the training criterion, or more precisely, the choice of objective function in the optimization-based

learning. The sLDA model is trained by maximizing the joint likelihood of the content data (e.g.,

text or image) and the responses (e.g., labeling or rating), whereas DiscLDA is trained by maximiz-

ing the conditional likelihood of the responses given contents. To the best of our knowledge, all the

existing supervised topic models are trained by optimizing a likelihood-based objective; the highly

successful margin-based objectives such as the hinge loss commonly used in discriminative models

such as SVMs have never been employed.

In this paper, we propose maximum entropy discrimination latent Dirichlet allocation (MedLDA),

a supervised topic model leveraging the maximum margin principle for making more effective use

of side information during estimation of latent topical representations. Unlike existing supervised

topic models mentioned above, MedLDA employs an arguably more discriminative max-margin

learning technique within a probabilistic framework; and unlike the commonly adopted two-stage

heuristic which first estimates a latent topic vector for each document using a topic model and then

feeds them to another downstream prediction model, MedLDA integrates the mechanism behind the

max-margin prediction models (e.g., SVMs) with the mechanism behind the hierarchical Bayesian

topic models (e.g., LDA) under a unified constrained optimization framework. It employs a com-

posite objective motivated by a tradeoff between two components—the negative log-likelihood of

an underlying topic model which measures the goodness of fit for document contents, and a measure

of prediction error on training data. It then seeks a regularized posterior distribution of the predic-

tive function in a feasible space defined by a set of expected margin constraints generalized from the

SVM-style margin constraints. The resultant inference problem is intractable; to circumvent this,

we relax the original objective by using a variational upper bound of the negative log-likelihood

and a surrogate convex loss function that upper bounds the training error. Our proposed approach

builds on earlier developments in maximum entropy discrimination (MED) (Jaakkola et al., 1999;

Jebara, 2001) and partially observed maximum entropy discrimination Markov network (PoMEN)

(Zhu et al., 2008), but is significantly different and more powerful. In MedLDA, because of the

influence of both the likelihood function over content data (e.g., text or image) and margin con-

straints induced by the side information, the discovery of latent topics is therefore coupled with the

max-margin estimation of model parameters. This interplay can yield latent topical representations

that are more discriminative and more suitable for supervised prediction tasks, as we demonstrate

in the experimental section.

In fact, the methodology we develop in this paper generalizes beyond learning topic models; it

can be applied to perform max-margin learning for various types of graphical models, including di-

rected Bayesian networks, for example, LDA, sLDA and topic models with different priors such as

the correlated topic models (Blei and Lafferty, 2005), and undirected Markov networks, for example,

exponential family harmoniums (Welling et al., 2004) and replicated softmax (Salakhutdinov and

Hinton, 2009) (See Section 4 for an extensive discussion). In this paper, we focus on the scenario of

downstream supervised topic models, and we present several concrete examples of MedLDA that

build on the original LDA to learn “discriminative topics” that allow more salient topic proportion

vector θθθ to be inferred for every document, evidenced by a significant improvement of accuracy of

both regression and classification of documents based on the θθθ resulted from MedLDA, over the

θθθ resulted from either the vanilla unsupervised LDA or even sLDA and alike. We also present an

efficient and easy-to-implement variational approach for inference under MedLDA, with a running

time comparable to that of an unsupervised LDA and lower than other likelihood-based supervised

2239



ZHU, AHMED AND XING

D
N

WdnZdnd k K
D

N
WdnZdnd

Yd , 2

k K

Figure 1: Graphical illustration of (Left) unsupervised LDA (Blei et al., 2003); and (Right) super-

vised LDA (Blei and McAuliffe, 2007).

LDAs. This advantage stems from the fact that MedLDA can directly optimize a margin-based loss

instead of a likelihood-based one, and thereby avoids dealing with the normalization factor resul-

tant from a full probabilistic generative formulation (e.g., sLDA), which generally makes learning

harder.

The remainder of this paper is structured as follows. Section 2 introduces the preliminaries that

are needed to present MedLDA. Section 3 presents MedLDA models for both regression and clas-

sification, together with efficient variational algorithms. Section 4 discusses the generalization of

MedLDA to other topic models. Section 5 presents empirical studies of MedLDA. Finally, Section

6 concludes this paper with future research directions discussed. Part of the materials of this paper

build on conference proceedings presented earlier in Zhu et al. (2009); Zhu and Xing (2010).

2. Preliminaries

We begin with a brief overview of the fundamentals of topic models, support vector machines, and

the maximum entropy discrimination formulism (Jaakkola et al., 1999), which constitute the major

building blocks of the proposed MedLDA model.

2.1 Unsupervised and Supervised Topic Models

Latent Dirichlet allocation (LDA) (Blei et al., 2003) is a hierarchical Bayesian model that projects

a text document into a latent low dimensional space spanned by a set of automatically learned

topical bases. Each topic is a multinomial distribution over M words in a given vocabulary. Let

w = (w1, . . . ,wN) denote the vector of words appearing in a document (for notation simplicity,

we suppress the indexing subscript of N and assume that all documents have the same length N);

assume the number of topics to be an integer K, where K can be manually specified by a user or via

cross-validation; and let βββ = [βββ1, . . . ,βββK ] denote the M×K matrix of topic distribution parameters,

of which each βββk parameterizes a topic-specific multinomial word distribution. Under an LDA, the

likelihood of a document d corresponds to the following generative process:

1. Draw a topic mixing proportion vector θθθd according to a K-dimensional Dirichlet prior:

θθθd |ααα ∼ Dir(ααα);

2. For the n-th word in document d, where 1 ≤ n ≤ N,

(a) draw a topic assignment zdn according to θθθd : zdn|θθθd ∼ Mult(θθθd);

(b) draw the word instance wdn according to zdn: wdn|zdn,βββ ∼ Mult(βββzdn
),
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where zdn is a K-dimensional indicator vector (i.e., only one element is 1; all others are 0), an

instance of the topic assignment random variable Zdn. With a little abuse of notations, we use βββzdn

to denote the topic that is selected by the non-zero element of zdn.

According to the above generative process, an unsupervised LDA defines the following joint

distribution for a corpus D that contains D documents:

p({θθθd ,zd},W|ααα,βββ) =
D

∏
d=1

p(θθθd |ααα)
( N

∏
n=1

p(zdn|θθθd)p(wdn|zdn,βββ)
)

,

where W ! {w1; · · · ;wD} denotes all the words in D , and zd ! {zd1; · · · ;zdN}. To estimate the

unknown parameters (ααα,βββ), and to infer the posterior distributions of latent variables {θθθd ,zd}, an

EM procedure is developed to maximize the marginal data likelihood4 p(W|ααα,βββ). As we have

stated, θθθd represents the mixing proportion over K topics for document d, which can be treated as

a low-dimensional representation of the document. Moreover, since the posterior of zdn represents

the probability distribution that word n is assigned to one of the K topics; the average topic assign-

ment z̄d ! 1
N ∑n zdn can also be treated as a representation of the document, as commonly done in

downstream supervised topic models (Blei and McAuliffe, 2007; Wang et al., 2009).

Due to intractability of the likelihood p(W|ααα,βββ), approximate inference algorithms based on

variational (Blei et al., 2003) or Markov Chain Monte Carlo (MCMC) (Griffiths and Steyvers, 2004)

methods have been widely used for parameter estimation and posterior inference under LDA. We

focus on variational inference in this paper. The following variational bound for unsupervised LDA

will be used later. Let q({θθθd ,zd}) represent a variational distribution that approximates the true

model posterior p({θθθd ,zd}|ααα,βββ,W), one can derive a variational bound Lu(q;ααα,βββ) for the likeli-

hood under unsupervised LDA:

Lu(q;ααα,βββ) !−Eq[log p({θθθd ,zd},W|ααα,βββ)]−H (q({θθθd ,zd})) (1)

≥− log p(W|ααα,βββ),

where H (q) ! −Eq[logq] is the entropy of q. By making some independence assumption (e.g.,

mean field) about q, Lu(q) can be efficiently optimized (Blei et al., 2003).

As we have stated, the unsupervised LDA described above does not use side information for

learning topics and inferring topic vectors θθθ. In order to consider side information appropriately for

discovering more predictive representations, supervised topic models (sLDA) (Blei and McAuliffe,

2007) introduce a response variable Y to LDA for each document, as shown in Figure 1. For

regression, where y ∈ R, the generative process of sLDA is similar to LDA, but with an additional

step—draw a response variable: y|zd,ηηη,δ2 ∼ N (ηηη(z̄d ,δ2) for each document d, where ηηη is the

regression weight vector and δ2 is a noise variance parameter. Then, the joint distribution of sLDA

is:

p({θθθd ,zd},y,W|ααα,βββ,ηηη,δ2) =
D

∏
d=1

p(θθθd |ααα)
( N

∏
n=1

p(zdn|θθθd)p(wdn|zdn,βββ)
)

p(yd |ηηη
(z̄d ,δ

2), (2)

4. We restrict ourselves to treat βββ as unknown parameters, as done in Blei and McAuliffe (2007) and Wang et al. (2009).

Extension to a Bayesian treatment of βββ (i.e., by putting a prior over βββ and inferring its posterior) can be easily done

both in LDA as shown in the literature (Blei et al., 2003) and in the MedLDA proposed here based on the regularized

Bayesian inference framework (Zhu et al., 2011b). But a systematical discussion is beyond the scope of this paper.
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where y ! {y1; · · · ;yD}. In this case, the joint likelihood is p(y,W|ααα,βββ,ηηη,δ2). Given a new docu-

ment, the prediction is the expected response value

ŷ ! E[Y |w,ααα,βββ,ηηη,δ2] = ηηη(
E[Z̄|w,ααα,βββ,δ2], (3)

where the average topic assignment random variable Z̄ ! 1
N ∑n Zn (z̄ is an instance of Z̄), and the ex-

pectation is taken with respect to the posterior distribution of Z ! {Z1; · · · ;ZN}. However, exact in-

ference is again intractable, and one can use the following variational upper bound L s(q;ααα,βββ,ηηη,δ2)
for supervised sLDA for approximate inference:

L s(q;ααα,βββ,ηηη,δ2) !−Eq[log p({θθθd ,zd},y,W|ααα,βββ,ηηη,δ2)]−H (q({θd,zd})) (4)

≥− log p(y,W|ααα,βββ,ηηη,δ2).

By changing the model of generating Y , sLDA can deal with other types of response variables,

such as discrete ones for classification (Wang et al., 2009) using the multi-class logistic regression

p(y|ηηη,z) =
exp(ηηη(

y z̄)

∑y′ exp(ηηη(
y′ z̄)

, (5)

where ηηηy is the parameter vector associated with class label y. However, posterior inference in an

sLDA classification model can be more challenging than that in the sLDA regression model. This is

because the non-Gaussian probability distribution in Equation (5) is highly nonlinear of ηηη and z and

its normalization factor can make the topic assignments of different words in the same document

strongly coupled. Variational methods were successfully used to approximate the normalization

factor (Wang et al., 2009), but they can be computationally expensive as we shall demonstrate in the

experimental section.

DiscLDA (Lacoste-Julien et al., 2008) is yet another supervised topic model for classification.

DiscLDA is an upstream supervised topic model and as such the unknown parameter is the transfor-

mation matrix that is used to generate the document latent representations conditioned on the class

label; and this transformation matrix is learned by maximizing the conditional marginal likelihood

of the text given class labels.

This progress notwithstanding, to the best of our knowledge, current developments of super-

vised topic models have been solely built on a likelihood-driven probabilistic inference paradigm.

The arguably sometimes more powerful max-margin based techniques widely used in learning dis-

criminative models have not been exploited to learn supervised topic models. The main goal of this

paper is to systematically investigate how the max-margin principe can be exploited inside a topic

model to learn topics that are better at discriminating documents than current likelihood-driven

learning achieves while retaining semantic interpretability as the later allows. For this purpose, be-

low we briefly review the max-margin principle underlying a major technique built on this principle,

the support vector machines.

2.2 Support Vector Machines

Max-margin methods, such as support vector machines (SVMs) (Vapnik, 1998) and max-margin

Markov networks (M3N) (Taskar et al., 2003), have been successfully applied to a wide range of

discriminative problems such as document categorization and handwritten character recognition. It

has been shown that such methods enjoy strong generalization guarantees (Vapnik, 1998; Taskar

2242



MEDLDA: MAXIMUM MARGIN SUPERVISED TOPIC MODELS

et al., 2003). Depending on the nature of the response variable, the max-margin principle can be

exploited in both classification and regression. Below we use document rating prediction as an

example to recapitulate the ideas behind support vector regression (SVR) (Smola and Schölkopf,

2003), which we will shortly leverage to build our first instance of max-margin topic model.

Let D = {(x1,y1), · · · ,(xD,yD)} be a training set, where x ∈ X are inputs such as document-

feature vectors, and y ∈ R are response values such as user ratings. Using SVR, one obtains a

function h(x) ∈ F that makes at most ε deviation from the true response value y for each training

example, and at the same time is as flat as possible. One common choice of the function family F
is linear functions, that is, h(x;ηηη) = ηηη(f(x), where f = { f1, · · · , fI} is a vector of feature functions

fi : X → R, and ηηη is the corresponding weight vector. Formally, the linear SVR finds an optimal

linear function by solving the following constrained optimization problem:

P0(SVR) : min
ηηη,ξξξ,ξξξ∗

1

2
‖ηηη‖2

2 +C
D

∑
d=1

(ξd +ξ∗d)

∀d, s.t. :







yd −ηηη(f(xd) ≤ ε+ξd

−yd +ηηη(f(xd) ≤ ε+ξ∗d
ξd ,ξ∗d ≥ 0

,

where ‖ηηη‖2 !
√

ηηη(ηηη is the !2-norm; ξξξ and ξξξ∗ are slack variables that tolerate some errors in the

training data; ε is a precision parameter; and C is a positive regularization constant. Problem P0

can be equivalently formulated as a regularized empirical loss minimization, where the loss is the

so-called ε-insensitive loss (Smola and Schölkopf, 2003).

Under a standard SVR, P0 is a quadratic programming (QP) problem and can be easily solved

in a Lagrangian dual formulation. Samples with non-zero lagrange multipliers are called support

vectors, as in the SVM classification model. There exist several free packages for solving standard

SVR, such as SVM-light (Joachims, 1999). We will use these methods as a sub-routine in our

proposed approach, as we will detail in the sequel.

2.3 Maximum Entropy Discrimination

To unite the principles behind topic models and SVR, namely, Bayesian inference and max-margin

learning, we employ a formalism known as maximum entropy discrimination (MED) (Jaakkola

et al., 1999; Jebara, 2001), which learns a distribution of all possible regression/classification models

that belong to a particular parametric family, subject to a set of margin-based constraints. For

instance, the MED regression model, or simply MEDr, learns a distribution q(ηηη) through solving

the following optimization problem:

P1(MEDr) : min
q(ηηη),ξξξ,ξξξ∗

KL(q(ηηη)‖p0(ηηη))+C
D

∑
d=1

(ξd +ξ∗d)

∀d, s.t. :







yd −E[ηηη](f(xd) ≤ ε+ξd

−yd +E[ηηη](f(xd) ≤ ε+ξ∗d
ξd ,ξ∗d ≥ 0

,

where p0(ηηη) is a prior distribution over the parameters and KL(p‖q)!Ep[log(p/q)] is the Kullback-

Leibler (KL) divergence.
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As studied in Jebara (2001), this MED problem leads to an entropic-regularized posterior dis-

tribution of the SVR coefficients, q(ηηη); and the resultant predictor ŷ = Eq(ηηη)[h(x;ηηη)] enjoys several

nice properties and subsumes the standard SVR as special cases when the prior p0(η) is standard

normal (Jebara, 2001). Moreover, as shown in Zhu and Xing (2009); Zhu et al. (2011a), with dif-

ferent choices of the prior over ηηη, such as a sparsity-inducing Laplace or a nonparametric Dirichlet

process, the resultant q(ηηη) can exhibit a wide variety of characteristics and are suitable for diverse

utilities such as feature selection or learning complex non-linear discriminating functions. Finally,

the recent developments of the maximum entropy discrimination Markov network (MaxEnDNet)

(Zhu and Xing, 2009) and partially observed MaxEnDNet (PoMEN) (Zhu et al., 2008) have ex-

tended the basic MED to the much broader scenarios of learning structured prediction functions

with or without latent variables.

To apply the MED idea to learn a supervised topic model, a major difficulty is the presence

of heterogeneous latent variables in the topic models, such as the topic vector θθθ and topic indica-

tor Z. In the sequel, we present a novel formalism called maximum entropy discrimination LDA

(MedLDA) that extends the basic MED to make this possible, and at the same time discovers latent

discriminating topics present in the study corpus based on available discriminant side information.

3. MedLDA: Maximum Margin Supervised Topic Models

Now we present a new class of supervised topic models that explicitly employ labeling information

in the context of document classification or regression, under a unified statistical framework that

jointly optimizes over the cross entropy between a user supplied model prior and the aimed model

posterior, and over the margin of ensuing predictive tasks based on the learned model. This is

to contrast conventional heuristics that first learn a topic model, and then independently train a

classifier such as SVM using the per-document topic vectors resultant from the first step as inputs.

In such a heuristic, the document labels are never able to influence the way topics can be learned,

and the per-document topic vectors are often found to be not strongly predictive (Xing et al., 2005).

3.1 Regressional MedLDA

We first consider the scenario where the numerical-valued rating of documents in the corpus is

available, and our goal is to learn a supervised topic model specialized at predicting the rating of

new documents through a regression function. We call this model a Regressional MedLDA, or

simply, MedLDAr.

Instead of learning a point estimate of regression coefficient ηηη as in sLDA or SVR, we take

the more general Bayesian-style (i.e., an averaging model) approach as in MED and learn a joint

distribution5 q(ηηη,z) in a max-margin manner. For prediction, we take a weighted average over all

the possible models (represented by ηηη) and latent topical representations z, or more precisely, an

expectation of the prediction over q(ηηη,z), which is similar to that in Equation (3), but now over both

ηηη and Z, rather than only over Z:

ŷ ! E[Y |w,ααα,βββ,δ2] = E[ηηη(Z̄|w,ααα,βββ,δ2]. (6)

Now, the question underlying the prediction rule (6) is how we can devise an appropriate objec-

tive function as well as constraints to learn a q(·) that leverages both the max-margin principle (for

5. In principle, we can perform Bayesian-style estimation for other parameters, like δ2. For simplicity, we only consider

ηηη as a random variable in this paper.
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strong predictivity) and the topic model architecture (for topic discovery). Below we begin with a

simple reformulation of the sLDA that makes this possible.

3.1.1 MAX-MARGIN TRAINING OF SLDA

Without loss of generality, we let q(ηηη,z) =
∫

θθθ q(ηηη)q(z,θθθ|ηηη), where q(ηηη) is the learned distribution

of the predictive regression coefficient, and q(z,θθθ|ηηη) is the learned distribution of the topic elements

of the documents analogous to an sLDA-style topic model, but estimated from a different learning

paradigm that leverages margin-based supervised training. As reviewed in Section 2.1, two good

templates for q(z,θθθ|ηηη) can be the original LDA or sLDA. For brevity, here we present a regres-

sional MedLDA that uses the supervised sLDA as the underlying topic model. As we shall see in

Section 3.2 and Appendix B, the underlying topic model can also be an unsupervised LDA.

Let p0(ηηη) denote a prior distribution of ηηη, then MedLDAr defines a joint distribution

p(ηηη,{θθθd ,zd},y,W|ααα,βββ,δ2) = p0(ηηη)p({θθθd ,zd},y,W|ααα,βββ,ηηη,δ2),

where the second factor has the same form as Equation (2) for sLDA, except that now ηηη is a random

variable and follows a prior p0(ηηη). Accordingly, the likelihood p(y,W|ααα,βββ,δ2) is an expectation of

the likelihood of sLDA under p0(ηηη), which makes it even harder than in sLDA to directly optimize.

Therefore, we choose to optimize a variational upper bound of the log-likelihood. We will discuss

other approximation methods in Section 4.

Let q(ηηη,{θθθd ,zd}) be a variational approximation to the posterior p(ηηη,{θθθd ,zd}|ααα,βββ,δ2,y,W).
Then, an upper bound6 Lbs(q;ααα,βββ,δ2) of the negative log-likelihood is

Lbs(q;ααα,βββ,δ2) !−Eq[log p(ηηη,{θθθd ,zd},y,W|ααα,βββ,δ2)]−H (q(ηηη,{θθθd ,zd}))

= KL(q(ηηη)‖p0(ηηη))+Eq(ηηη)[L
s]. (7)

We can see that the bound is also an expectation of sLDA’s variational bound L s in Equation (4). To

derive Equation (7), we should note that the variational distribution for sLDA is “conditioned on” its

model parameters, which include ηηη. Similarly, the distribution q in Lbs depends on the parameters

(ααα,βββ,δ2). For notation clarity, we have omitted the explicit dependence on parameters in variational

distributions.

Based on the MED principle and the variational bound in Equation (7), we define the learning

problem of MedLDAr as follows:

P2(MedLDAr) : min
q,ααα,βββ,δ2,ξξξ,ξξξ∗

Eq(ηηη)[L
s(q;ααα,βββ,δ2)]+KL(q(ηηη)‖p0(ηηη))+C

D

∑
d=1

(ξd +ξ∗d)

∀d, s.t. :







yd −E[ηηη(Z̄d ] ≤ ε+ξd

−yd +E[ηηη(Z̄d ] ≤ ε+ξ∗d
ξd,ξ∗d ≥ 0,

where ξξξ,ξξξ∗ are slack variables, and ε is a precision parameter as in SVR. The margin constraints

in P2 are of the same form as those in P0, but in an expectation version because both the topic

assignments Z and parameters ηηη are latent random variables in MedLDAr.

6. “bs” stands for “Bayesian Supervised”.

2245



ZHU, AHMED AND XING

It is easy to verify that at the optimum, at most one of ξd and ξ∗d can be non-zero and ξd +ξ∗d =
max(0, |yd −E[ηηη(Z̄d ]|−ε), which is known as ε-insensitive loss (Smola and Schölkopf, 2003), that

is, if the current prediction ŷ as in Equation (6) does not deviate from the true response value too

much (i.e., less than ε), there is no loss; otherwise, a linear loss will be penalized. Mathemati-

cally, problem P2 can be equivalently written as a loss minimization problem without using slack

variables:

min
q,ααα,βββ,δ2

Lbs(q;ααα,βββ,δ2)+C
D

∑
d=1

max(0, |yd −E[ηηη(Z̄d ]|− ε), (8)

where the variational bound Lbs plays two roles—regularization and maximum likelihood estima-

tion. Specifically, as shown in Equation (7), Lbs decomposes into two parts. The first part of

KL-divergence is an entropic regularizer for q(ηηη); and the second term is an expected bound of the

data likelihood, as we have discussed. Therefore, problem P2 is a joint maximum margin learning

and maximum likelihood estimation (with appropriate regularization), and the two components are

coupled by sharing latent topic assignments Z and parameters ηηη.

The rationale underlying MedLDAr is that: by minimizing an integrated objective function, we

aim to find a latent topical representation and a document-rating prediction function which, on one

hand, can predict accurately on unseen data with a sufficient margin, and on the other hand, can

explain the data well (i.e., minimizing a variational bound of the negative log-likelihood). The max-

margin learning and topic discovery procedure are coupled together via the constraints, which are

defined on the expectations of model parameters ηηη and latent topical assignments Z. This interplay

will yield a topical representation that could be more suitable for prediction tasks, as explained

below and verified in experiments.

3.1.2 VARIATIONAL APPROXIMATION ALGORITHM FOR MEDLDAr

Minimizing Lbs is intractable. Here, we use mean field methods (Jordan et al., 1999) widely em-

ployed in fitting LDA and sLDA to efficiently obtain an approximate q for problem P2. Specifically,

we assume that q is a fully factorized mean-field approximation to p:

q(ηηη,{θθθd ,zd}) = q(ηηη)
D

∏
d=1

q(θθθd |γγγd)
N

∏
n=1

q(zdn|φφφdn),

where γγγd is a K-dimensional vector of Dirichlet parameters and each φφφdn parameterizes a multino-

mial distribution over K topics. It is easy to verify that:

E[Zdn] = φφφdn, and E[ηηη(Z̄d ] = E[ηηη]((
1

N

N

∑
n=1

φφφdn).

Now, we develop a coordinate descent algorithm to solve the equivalent “unconstrained” for-

mulation (8). The algorithm is outlined in Algorithm 1 and detailed below.

(1) Solve for (ααα,βββ,δ2) and q(ηηη): When q({θθθd ,zd}) is fixed, this substep (in an equivalent con-

strained form) is to solve

min
q(ηηη),ααα,βββ,δ2,ξξξ,ξξξ∗

Eq(ηηη)[L
s(q;ααα,βββ,δ2)]+KL(q(ηηη)‖p0(ηηη))+C

D

∑
d=1

(ξd +ξ∗d) (9)
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Algorithm 1 Variational MedLDAr

1: Input: corpus D = {(y,W)}, constants C and ε, and topic number K.

2: Output: Dirichlet parameters γγγ, posterior distribution q(ηηη), parameters ααα, βββ and δ2.

3: repeat

4: for d = 1 to D do

5: Update γγγd as in Equation (13).

6: for n = 1 to N do

7: Update φφφdn as in Equation (14).

8: end for

9: end for

10: Solve the dual problem D2 to get q(ηηη), µ̂µµ and µ̂µµ∗.

11: Update βββ using Equation (10), and update δ2 using Equation (11). Optimize ααα with gradient

descent or fix ααα as 1/K times the ones vector.

12: until convergence

∀d, s.t. :















yd −E[ηηη(Z̄d ]≤ ε+ξd , (µd)
−yd +E[ηηη(Z̄d ]≤ ε+ξ∗d , (µ∗d)

ξd ≥ 0, (vd)
ξ∗d ≥ 0, (v∗d),

where {µd ,µ∗d,vd,v∗d} are lagrange multipliers. Since the margin constraints are not dependent

on (ααα,βββ,δ2), we can solve for them using the same procedure as in sLDA, when q(ηηη) and

q({θθθd ,zd}) are given. Specifically, for ααα, the same gradient descent method as in Blei et al.

(2003) can be applied; for βββ, the update equations are the same as for sLDA:

βkw ∝
D

∑
d=1

N

∑
n=1

I(wdn = w)φk
dn, (10)

where I(·) is an indicator function that equals to 1 if the condition holds; otherwise 0; and for

δ2, the update rule is similar as that of sLDA but in an expected version, because ηηη is a random

variable:

δ2 =
1

D

(

y(y−2y(E[A]E[ηηη]+E[ηηη(
E[A(A]ηηη]

)

, (11)

where E[ηηη(E[A(A]ηηη] = tr(E[A(A]E[ηηηηηη(]), and A is a D×K matrix whose rows are the vectors

Z̄(
d .

Solving for q(ηηη) can be done using Lagrangian methods, but it is a bit more delicate. For

brevity, we postpone the details of this step after we have finished presenting the overall proce-

dure. We denote the optimum lagrange multipliers by (µ̂µµ, µ̂µµ∗) and the optimum slack variables

by (ξ̂ξξ, ξ̂ξξ
∗
).

(2) Solve for q({θθθd ,zd}): By fixing q(ηηη) and (ααα,βββ,δ2), this substep (in an equivalent constrained

form) is to solve

min
q({θθθd ,zd}),ξξξ,ξξξ

∗
Eq(ηηη)[L

s(q;ααα,βββ,δ2)]+C
D

∑
d=1

(ξd +ξ∗d) (12)
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∀d, s.t. :







yd −E[ηηη(Z̄d ]≤ ε+ξd

−yd +E[ηηη(Z̄d ]≤ ε+ξ∗d
ξd,ξ∗d ≥ 0,

Since the constraints are not dependent on γγγd and q(ηηη) is also not directly connected with θθθd ,

we get the same update rule for γγγd as in sLDA:

γγγd = ααα+
N

∑
n=1

φφφdn. (13)

For q(zd), in theory, we can do the optimization to get the optimal solution of φφφ and the corre-

sponding optimal lagrange multipliers. But the full optimization would be expensive, especially

considering that this sub-step is within the most inner iteration loop and it would be performed

for many times. Here, we adopt an approximation strategy, which performs a single step update

of φφφ, rather than a full optimization. Note that this one-step approximation could lead to a slight

increase of the objective function during the iterations. Our empirical studies show that this

increase is usually within an acceptable range. More specifically, we fix (ξξξ,ξξξ∗) at (ξ̂ξξ, ξ̂ξξ
∗
) (the

optimum solution of the previous step) and set the lagrange multipliers to be (µ̂µµ, µ̂µµ∗). Then, we

have the closed-form update equation7

φφφdn ∝ exp
(

E[logθθθd |γγγd ]+ log p(wdn|βββ) +
yd

Nδ2
E[ηηη]−

2E[ηηη(φφφd,−nηηη]+E[ηηη◦ηηη]

2N2δ2

+
E[ηηη]

N
(µ̂d − µ̂∗d)

)

, (14)

where φφφd,−n ! ∑i/=n φφφdi; ηηη ◦ηηη is the element-wise product; and the result of exponentiating a

vector is a vector of the exponentials of its corresponding components. Note that the first two

terms in the exponential are the same as those in LDA.

Remark 1 From the update rule of φφφ in Equation (14), we can see that the essential differences

between MedLDAr and sLDA lie in the last three terms in the exponential of φφφdn. Firstly, the third

and fourth terms are similar to those of sLDA, but in an expected version since we are learning the

distribution q(ηηη) instead of a point estimate of ηηη. The second-order expectations E[ηηη(φφφd,−nηηη] and

E[ηηη◦ηηη] mean that the co-variances of ηηη (See Corollary 3 for an example) affect the distribution over

topics. This makes our approach significantly different from a point estimation method, like sLDA,

where no expectations or co-variances are involved in updating φφφdn. Secondly, the last term is from

the max-margin regression formulation. For a document d, which lies on the decision boundary, that

is, a support vector, either µd or µ∗d is non-zero, and the last term biases φφφdn towards a distribution

that favors a more accurate prediction on the document. Moreover, the last term is fixed for words

in the document and thus will directly affect the latent representation of the document, that is, γγγd.

Therefore, the latent representation θθθd inferred under MedLDAr can be more suitable for supervised

prediction tasks. Our empirical studies further verify this, as we shall see in Section 5.

7. Before we update φφφ, (µ̂µµ, µ̂µµ∗) and (ξ̂ξξ, ξ̂ξξ
∗
) satisfy the optimal conditions (e.g., KKT conditions) of problem (12). So,

they are the initially optimal solutions. But after we have updated φφφ, the KKT conditions do not hold. This is the

reason why our strategy of not updating (µµµ,µµµ∗) and (ξξξ,ξξξ∗) could lead to a slight increase of the objective function.
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Now, we turn to the sub-step of solving for q(ηηη), as well as the slack variables and lagrange

multipliers. Specifically, we have the following result.

Proposition 2 For MedLDAr, the optimum solution of q(ηηη) has the form:

q(ηηη) =
p0(ηηη)

Z
exp

(

ηηη(
D

∑
d=1

(µ̂d − µ̂∗d +
yd

δ2
)E[Z̄d]−ηηη(E[A(A]

2δ2
ηηη
)

,

where E[A(A] = ∑D
d=1E[Z̄dZ̄(

d ], and E[Z̄dZ̄(
d ] =

1
N2 (∑

N
n=1 ∑m/=n φφφdnφφφ(

dm +∑N
n=1 diag{φφφdn}). The

lagrange multipliers (µ̂µµ, µ̂µµ∗) are the solution of the dual problem of (9):

D2 : max
µµµ,µµµ∗

− logZ − ε
D

∑
d=1

(µd +µ∗d)+
D

∑
d=1

yd(µd −µ∗d)

∀d, s.t. : µd ,µ
∗
d ∈ [0,C].

Proof (sketch) By setting the partial derivative of the Lagrangian functional over q(ηηη) equal to zero,

we can get the solution of q(ηηη). Plugging q(ηηη) into the Lagrangian functional and solving for the

optimal (vd ,v∗d) and (ξd,ξ∗d) as in the standard SVR to get the box constraints, we get the dual prob-

lem.

In MedLDAr, we can choose different priors to introduce some regularization effects. For the

standard normal prior, we have the following corollary:

Corollary 3 Assume the prior p0(ηηη) = N (0, I), where I is the identity matrix, then the optimum

solution of q(ηηη) is

q(ηηη) = N (λλλ,Σ),

where λλλ = Σ(∑D
d=1(µ̂d − µ̂∗d +

yd

δ2 )E[Z̄d]) is the mean and Σ = (I + 1/δ2E[A(A])−1 is a K ×K co-

variance matrix. The dual problem D2 is now:

max
µµµ,µµµ∗

−
1

2
ωωω(Σωωω− ε

D

∑
d=1

(µd +µ∗d)+
D

∑
d=1

yd(µd −µ∗d) (15)

∀d, s.t. : µd ,µ
∗
d ∈ [0,C],

where ωωω = ∑D
d=1(µd −µ∗d +

yd

δ2 )E[Z̄d].

In the above Corollary, computation of Σ can be done robustly through Cholesky decomposition

of δ2I +E[A(A], an O(K3) procedure. Another example is the Laplace prior, which can lead to a

shrinkage effect (Zhu and Xing, 2009) that is useful in sparse problems. In this paper, we focus

on the normal prior and extension to the Laplace prior can be done similarly as in Zhu and Xing

(2009). For the standard normal prior, the dual optimization problem is a QP problem and can be

solved with any standard QP solvers, although they may not be so efficient. To leverage recent

developments in learning support vector regression models, we first prove the following corollary:

2249



ZHU, AHMED AND XING

Corollary 4 Assume the prior p0(ηηη) = N (0, I), then the mean λλλ of q(ηηη) in problem (9) is the

optimum solution of the following problem:

min
λλλ,ξξξ,ξξξ∗

1

2
λλλ(Σ−1λλλ−λλλ((

D

∑
d=1

yd

δ2
E[Z̄d])+C

D

∑
d=1

(ξd +ξ∗d) (16)

∀d, s.t. :











yd −λλλ(
E[Z̄d]≤ ε+ξd

−yd +λλλ(
E[Z̄d]≤ ε+ξ∗d
ξd,ξ∗d ≥ 0

Proof See Appendix A for details.

The above primal form can be re-formulated as a standard SVR problem. Specifically, we do

Cholesky decomposition Σ−1 = U(U , where U is an upper triangular matrix with strict positive

diagonal entries. Let ννν = ∑D
d=1

yd

δ2E[Z̄d], and we define λλλ′ = U(λλλ−Σννν); y′d = yd −ννν(ΣE[Z̄d]; and

xd = (U−1)(E[Z̄d]. Then, the above primal problem in Corollary 4 can be re-formulated as the

following standard form:

min
λλλ′,ξξξ,ξξξ∗

1

2
‖λλλ′‖2

2 +C
D

∑
d=1

(ξd +ξ∗d) (17)

∀d, s.t. :







y′d − (λλλ′)(xd ≤ ε+ξd

−y′d +(λλλ′)(xd ≤ ε+ξ∗d
ξd,ξ∗d ≥ 0

.

Then, we can solve the standard SVR problem using existing algorithms, such as the working

set selection algorithm implemented in SVM-light (Joachims, 1999), to get the dual parameters8 µ̂µµ

and µ̂µµ∗ (as well as slack variables ξ̂ξξ and ξ̂ξξ
∗
), which are needed to infer φφφ as defined in (14), and the

primal parameters λλλ′
which we use to get λλλ by doing a reverse transformation since λλλ′ =U(λλλ−Σννν)

as defined above. The other lagrange multipliers, which are not explicitly involved in topic inference

and estimation of q(ηηη), are solved according to KKT conditions.

3.2 Classificational MedLDA

Now, we present the MedLDA classification model, of which the discrete labels of the documents

are available, and our goal is to learn a supervised topic model specialized at predicting the labels

of new documents through a discriminant function. We call this model a Classificational MedLDA,

or simply, MedLDAc.

Denoting the discrete response variable by Y , for brevity, we only consider the multi-class

classification, where y takes values from a finite set C ! {1,2, · · · ,J}. The binary case, where

C ! {+1,−1}, can be easily defined based on a binary SVM and the optimization problem can be

solved similarly. For classification, if the latent topic assignments z ! {z1; · · · ;zN} of all the words

in a document are given, we define the latent linear discriminant function

F(y,z,ηηη;w) = ηηη(
y z̄,

8. Not all existing solvers return the dual parameters µ̂µµ and µ̂µµ∗. SVM-light is one nice package that provides both primal

parameters λλλ′ and the dual parameters. Note that the above transformation from (16) to (17) is done in the primal

form and does not affect the solution of dual parameters of (15).
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where z̄ ! 1/N ∑n zn, the same as in the case of MedLDA regression model; ηηηy is a class-specific

K-dimensional parameter vector associated with class y; and ηηη is a |C |K-dimensional vector by

stacking the elements of ηηηy. Equivalently, F can be written as F(y,z,ηηη;w) = ηηη(f(y, z̄), where

f(y, z̄) is a feature vector whose components from (y− 1)K + 1 to yK are those of the vector z̄ and

all the others are 0.

However, we cannot directly use the latent function F(y,z,ηηη;w) to make prediction for an ob-

served input w of a document because the topic assignments z are hidden variables. Here, we also

treat ηηη as a random vector and consider the general case to learn a distribution of q(ηηη). In order to

deal with the uncertainty of z and ηηη, similar to MedLDAr, we take the expectation over q(ηηη,z) and

define the effective discriminant function

F(y;w) = E[F(y,Z,ηηη;w)] = E[ηηη(f(y, Z̄)|ααα,βββ,w],

where Z ! {Z1; · · · ;ZN} is the set of topic assignment random variables and Z̄ ! 1/N ∑n Zn is the

average topic assignment random variable as defined before. Then, the prediction rule for multi-

class classification is naturally

ŷ = argmax
y∈C

F(y;w) = argmax
y∈C

E[ηηη(f(y, Z̄)|ααα,βββ,w]. (18)

Our goal here is to learn an optimal set of parameters (ααα,βββ) and distribution q(ηηη). As in

MedLDAr, we have the option of using either a supervised sLDA (Wang et al., 2009) or an unsuper-

vised LDA as a building block of MedLDAc to discover latent topical representations. However, as

we have discussed in Section 2.1 and shown by Wang et al. (2009) as well as Section 5.3.1, inference

under sLDA can be harder and slower because the probability model of discrete Y in Equation (5) is

highly nonlinear over ηηη and Z, both of which are latent variables in our case, and its normalization

factor strongly couples the topic assignments of different words in the same document. Therefore,

in this paper we focus on the case of using an LDA that only models the likelihood of document

contents W but not document label Y as the underlying topic model to discover latent represen-

tations Z. Even with this likelihood model, document labels can still influence topic learning and

inference because they induce margin constraints pertinent to the topical distributions. As we shall

see, the resultant MedLDA classification model can be easily and efficiently learned by using exist-

ing high-performance SVM solvers. Moreover, since the goal of max-margin learning is to directly

minimize a hinge loss (i.e., an upper bound of the empirical loss), we do not need a normalized

distribution model for response variables Y .

3.2.1 MAX-MARGIN LEARNING OF LDA FOR CLASSIFICATION

The LDA component inside the MedLDAc defines a likelihood function p(W|ααα,βββ) over the cor-

pus D , which is known to be intractable. Therefore, we choose to optimize its variational bound

Lu(q;ααα,βββ) in Equation (1), which facilitates efficient approximation algorithms. The integrated

problem of discovering latent topical representations and learning a distribution of classifiers is

defined as follows:

P3(MedLDAc) : min
q,q(ηηη),ααα,βββ,ξξξ

Lu(q;ααα,βββ)+KL(q(ηηη)||p0(ηηη))+
C

D

D

∑
d=1

ξd

∀d, y ∈ C , s.t. :

{

E[ηηη(∆fd(y)]≥ ∆!d(y)−ξd

ξd ≥ 0,
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where q denotes the variational distribution q({θθθd ,zd}); ∆!d(y) is a non-negative cost function (e.g.,

0/1 cost as typically used in SVMs) that measures how different the prediction y is from the true

class label yd ; ∆fd(y) ! f(yd , Z̄d)− f(y, Z̄d); and ξξξ are slack variables.9 It is typically assumed that

∆!d(yd) = 0, that is, no cost for a correct prediction. Finally,

E[ηηη(∆fd(y)] = F(yd ;wd)−F(y;wd)

is the “expected margin” by which the true label yd is favored over a prediction y.

Note that we have taken a full expectation to define F(y;w), instead of taking the mode as

done in latent SVMs (Felzenszwalb et al., 2010; Yu and Joachims, 2009), because expectation is a

nice linear functional of the distributions under which it is taken, whereas taking the mode involves

the highly nonlinear argmax function for discrete Z, which could lead to a harder inference task.

Furthermore, due to the same reason to avoid dealing with a highly nonlinear discriminant function,

we did not adopt the method in Jebara (2001) either, which uses log-likelihood ratio to define the

discriminant function when considering latent variables in MED. Specifically, in our case, the max-

margin constraints of the standard MED would be

∀d, ∀y ∈ C , log
p(yd |wd,ααα,βββ)

p(y|wd,ααα,βββ)
≥ ∆!d(y)−ξd,

which are highly nonlinear due to the complex form of the marginal likelihood p(y|wd,ααα,βββ) =∫
θθθd

∑zd
p(y,θθθd ,zd|wd ,ααα,βββ). Our linear expectation operator is an effective tool to deal with latent

variables in the context of maximum margin learning. In fact, besides the present work, we have

successfully applied this operator to other challenging settings of learning latent variable structured

prediction models with nontrivial dependence structures among output variables (Zhu et al., 2008)

and learning nonparametric Bayesian models (Zhu et al., 2011b,a). These expected margin con-

straints also make MedLDAc fundamentally different from the mixture of conditional max-entropy

models (Pavlov et al., 2003), where constraints are based on moment matching, that is, empirical

expectations of features equal to their model expectations.

By setting ξξξ to their optimum solutions, that is, ξd = maxy(∆!d(y)−E[ηηη(∆fd(y)]), we can

rewrite problem P3 in the form of regularized empirical loss minimization

min
q,q(ηηη),ααα,βββ

Lu(q;ααα,βββ)+KL(q(ηηη)||p0(ηηη))+CR (q,q(ηηη)), (19)

where

R (q,q(ηηη))!
1

D

D

∑
d=1

max
y∈C

(∆!d(y)−E[ηηη(∆fd(y)])

is an upper bound of the training error of the prediction rule in Equation (18) and C is again the

regularization constant. However, different from MedLDAr, which uses a Bayesian supervised

sLDA as the underlying likelihood model, here the variational bound Lu does not contain a cross-

entropy term on q(ηηη) for its regularization (as in Lbs in Equation (7)). Therefore, we include the

KL-divergence in problem P3 as an explicit entropic regularizer for the distribution q(ηηη).

9. Since multi-class SVM is a special case of max-margin Markov networks, we follow the common conventions and

use the same notations as in structured max-margin methods (Taskar et al., 2003; Joachims et al., 2009).
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The rationale underlying MedLDAc is similar to that of MedLDAr, that is, we want to find latent

topical representations q({θθθd ,zd}) and a model parameter distribution q(ηηη) which on one hand tend

to predict as accurate as possible on training data, while on the other hand tend to explain the data

well. The two parts are closely coupled by the expected margin constraints.

3.2.2 VARIATIONAL ALGORITHM FOR MEDLDAc

As in MedLDAr, we make the fully-factorized mean field assumption that

q({θθθd ,zd}) =
D

∏
d=1

q(θθθd |γγγd)
N

∏
n=1

q(zdn|φφφdn),

where γγγd and φφφdn are variational parameters, having the same meaning as in MedLDAr. Then, we

have E[ηηη(f(y, Z̄d)] = E[ηηη](f(y,1/N ∑N
n=1 φφφdn). We develop a similar coordinate descent algorithm

to solve the “unconstrained” formulation in (19). Since the constraints in P3 are not on γγγ, ααα or βββ,

their update rules are the same as in the case of MedLDAr and we omit the details here. Below,

we explain the optimization over q({zd}) and q(ηηη) and show the insights of the max-margin topic

model.

Optimize over q(ηηη): As in the case of regression, we have the following solution:

Corollary 5 When (ααα,βββ) and q({θθθd ,zd}) are fixed, the optimum solution q(ηηη) of MedLDAc in

problem P3 has the form:

q(ηηη) =
1

Z
p0(ηηη)exp

(

ηηη((
D

∑
d=1

∑
y∈C

µ̂
y
dE[∆fd(y)])

)

,

where the lagrange multipliers µ̂µµ are the optimum solution of the dual problem:

D3 : max
µµµ
− logZ +

D

∑
d=1

∑
y∈C

µ
y
d∆!d(y)

∀d, s.t. :∑
y∈C

µ
y
d ∈ [0,

C

D
],

Again, we can choose different priors in MedLDAc for different regularization effects. We consider

the normal prior in this paper. For the standard normal prior p0(ηηη) = N (0, I), we can get: q(ηηη)
is a normal with a shifted mean, that is, q(ηηη) = N (λλλ, I), where λλλ = ∑D

d=1 ∑y∈C µ
y
dE[∆fd(y)], and

the dual problem D3 thus becomes the same as the dual problem of a standard multi-class SVM

(Crammer and Singer, 2001):

max
µµµ

−
1

2
‖

D

∑
d=1

∑
y∈C

µ
y
dE[∆fd(y)]‖

2
2 +

D

∑
d=1

∑
y∈C

µ
y
d∆!d(y) (20)

∀d, s.t. : ∑
y∈C

µ
y
d ∈ [0,

C

D
].

The primal form of problem (20) is

min
λλλ,ξξξ

1

2
‖λλλ‖2

2 +
C

D

D

∑
d=1

ξd

∀d, ∀y ∈ C , s.t. :

{

λλλ(
E[∆fd(y)]≥ ∆!d(y)−ξd

ξd ≥ 0.
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Optimize over q({zd}): again, since q is fully factorized, we can perform the optimization on

each document separately. We have

φφφdn ∝ exp
(

E[logθθθd |γγγd ]+ log p(wdn|βββ)+
1

N ∑
y∈C

µ̂
y
dE[ηηηyd

−ηηηy]
)

, (21)

where we can see that the first two terms in Equation (21) are the same as in unsupervised LDA

(Blei et al., 2003), and the last term is due to the max-margin formulation of P3 and reflects our in-

tuition that the discovered latent topical representation is influenced by the margin constraints. For

those examples that are on the decision boundary, that is, support vectors, their associated lagrange

multipliers are non-zero and thus the last term acts as a regularizer that biases the model towards

discovering latent representations that tend to make more accurate prediction on these difficult ex-

amples. Moreover, this term is fixed for words in the document and thus will directly affect the

latent representation of the document (i.e., γγγd) and therefore leads to a discriminative latent repre-

sentation. As we shall see in Section 5, such an estimate is more suitable for the classification task:

for instance, MedLDAc needs much fewer support vectors than the max-margin classifiers that are

built on raw text or the topical representations discovered by LDA.

The above formulation of MedLDAc has a slack variable associated with each document. This

is known as the n-slack formulation (Joachims et al., 2009). Another equivalent formulation, which

can be more efficiently solved, is the so called 1-slack formulation. The 1-slack MedLDAc can be

written as follows

P4(1-slack MedLDAc) : min
q,q(ηηη),ααα,βββ,ξ

Lu(q)+KL(q(ηηη)||p0(ηηη))+Cξ

∀(ȳ1, · · · , ȳD), s.t. :

{

1
D ∑D

d=1E[ηηη
(∆fd(ȳd)] ≥

1
D ∑D

d=1 ∆!d(ȳd)−ξ
ξ ≥ 0.

By using the above developed variational algorithm and the cutting plane algorithm for solving the

1-slack as well as n-slack multi-class SVMs (Joachims et al., 2009), which is implemented in the

SVMstruct package,10 we can solve the 1-slack or n-slack MedLDAc model efficiently, as we shall

see in Section 5.3.1. SVMstruct provides the solutions of the primal parameters λλλ as well as the dual

parameters µµµ, which are needed to do inference.

4. MedTM: A General Framework

We have presented two variants of MedLDA for discovering predictive latent topical representations

of documents, as well as learning discriminating topics from the corpus; and we have shown that

the underlying topic model that defines data likelihood can be either a supervised or an unsuper-

vised LDA. In fact, the likelihood component of MedLDA can be any other form of generative topic

model, such as correlated topic models (Blei and Lafferty, 2005), or latent space Markov random

fields, such as exponential family harmoniums (Welling et al., 2004; Xing et al., 2005; Chen et al.,

2010). The same principle can also be applied to upstream latent topic models, which have been

widely used in computer vision applications (Sudderth et al., 2005; Fei-Fei and Perona, 2005; Zhu

et al., 2010). In this section, we formulate a general framework of applying the max-margin princi-

ple to learn discriminative latent topic models when supervising side information is available, and

we discuss more insights on developing approximate inference algorithms.

10. SVMstruct can be found at http://svmlight.joachims.org/svm\_multiclass.html.
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Formally, a maximum entropy discrimination topic model (MedTM) consists of two components—

an underlying topic model that fits observed data and a MED max-margin model that performs

prediction. In an MedTM, we distinguish two types of latent variables—we use ϒ to denote the

parameters of the model pertaining to the prediction task (e.g., ηηη in sLDA), and H to denote the

topic assignment and mixing variables (e.g., z and θθθ). Let Ψ denote the parameters of the under-

lying topic model (e.g., the Dirichlet parameter ααα and topics βββ). Then, p(D|Ψ) is the marginal

data likelihood of the corpus D , which may or may not include the supervising side information

depending on choice of specific form of the underlying topic model.

As discussed before, for a general topic model, p(D|Ψ) is intractable, therefore a generic vari-

ational method can be employed. Let q(ϒ,H) be a variational distribution to approximate the pos-

terior p(ϒ,H|D,Ψ). By the properties of KL-divergence, the following equality holds if we do not

make any restricting assumption of q(ϒ,H)

− log p(D|Ψ) = min
q(ϒ,H)

(

−Eq(ϒ,H)[log p(ϒ,H,D|Ψ)]−H (q(ϒ,H))
)

= min
q(ϒ,H)

(

Eq(ϒ)

[

−Eq(H|ϒ)[log p(H,D|Ψ,ϒ)]−H (q(H|ϒ))
]

+KL(q(ϒ)‖p0(ϒ))
)

,

where p0(ϒ) is the prior distribution of ϒ. Let us define

L t(q(H|ϒ);Ψ,ϒ)!−Eq(H|ϒ)[log p(H,D|Ψ,ϒ)]−H (q(H|ϒ)).

Then, L t(q(H|ϒ);Ψ,ϒ) is the variational bound of the data likelihood associated with the underlying

topic model. For instance, when the underlying topic model is supervised sLDA, L t reduces to L s,

as we discussed in Equation (7). When the underlying topic model is unsupervised LDA, the corpus

D only contains document contents, and p(H,D|Ψ,ϒ) = p(H,D|Ψ). The reduction of L t to Lu

needs a simplifying assumption that q(ϒ,H) = q(ϒ)q(H) (in fact, much stricter assumptions on q

are usually needed to make the learning of MedLDAc tractable).

Mathematically, we define MedTM as solving the following entropic-regularized problem:

P5(MedTM) : min
q(ϒ,H),Ψ,ξξξ

Eq(ϒ)

[

L t(q(H|ϒ);Ψ,ϒ)
]

+KL(q(ϒ)‖p0(ϒ))+U(ξξξ)

s.t. : q(ϒ,H) satisfies the expected margin constraints.

where U is a convex function over slack variables, such as U(ξξξ) = C
D ∑d ξd in MedLDAc. As

we have discussed in Section 3.2.1, by using the linear expectation operator, our expected margin

constraints are different from and simpler than those derived using a log-likelihood ratio function in

the standard MED with latent variables (Jebara, 2001).

This formulation allows efficient approximate inference to be developed. In general, the diffi-

culty of solving the optimization problem of MedTM lies in two aspects. First, the data likelihood

or its equivalent variational form as involved in the objective function is generally intractable to

compute if we do not make any restricting assumption about q(ϒ,H). Second, the posterior infer-

ence (e.g., in LDA) as required in evaluating the margin constraints is generally intractable. Based

on recent developments on learning latent topic models, two commonly used approaches can be ap-

plied to get an approximate solution to P5(MedTM), namely, Markov Chain Monte Carlo (MCMC)

(Griffiths and Steyvers, 2004) and variational (Blei et al., 2003; Teh et al., 2006) methods. For

variational methods, which are our focus in this paper, we need to make some additional restricting
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assumptions, such as the commonly used mean field assumption, about the distribution q(ϒ,H).
Then, P5 can be efficiently solved with a coordinate descent procedure, similar to what we have

done for MedLDAr and MedLDAc. For MCMC methods, the difference lies in sampling from the

distribution q(ϒ,H) under margin constraints—evaluating the expected margin constraints is easy

once we obtain samples from the posterior. Several approaches were proposed to deal with the

problem of sampling from a distribution under some constraints such as Schofield (2007), Griffiths

(2002), Rodriguez-Yam et al. (2004) and Damien and Walker (2001) to name a few, and we plan to

investigate their suitability to our case in the future.

Finally, based on the recent extensions of MED to the structured prediction setting (Zhu and

Xing, 2009; Zhu et al., 2008), the basic principle of MedLDA can be similarly extended to perform

structured prediction, where multiple response variables are predicted simultaneously and thus their

mutual dependencies can be exploited to achieve globally consistent and optimal predictions. Like-

lihood based structured prediction latent topic models have been developed in different scenarios,

such as image annotation (He and Zemel, 2008) and statistical machine translation (Zhao and Xing,

2007). Extension of MedLDA to the structured prediction setting could provide a promising alter-

native for such problems.

5. Experiments

In this section, we provide qualitative as well as quantitative evaluation of MedLDA on topic esti-

mation, document classification and regression. For MedLDA and other topic models (except Dis-

cLDA whose implementation details are explained in footnote 14), we optimize the K-dimensional

Dirichlet parameters ααα using the Newton-Raphson method (Blei et al., 2003). For initialization, we

set φφφ to be uniform and each topic βββk to be a uniform distribution plus a very small random noise,

and the posterior mean of ηηη to be zero. We have published our implementation on the website:

http://www.ml-thu.net/∼jun/software.html. In all the experimental results, by default, we also report

the standard deviation for a topic model with five randomly initialized runs.

5.1 Topic Estimation

We begin with an empirical assessment of topic estimation by MedLDA on the 20 Newsgroups data

set with a standard list of stop words11 removed. The data set contains about 20,000 postings in

20 related categories. We compare with unsupervised LDA.12 We fit the data set to a 110-topic

MedLDAc model, which exploits the supervising category information, and a 110-topic unsuper-

vised LDA, which ignores category information.

Figure 2 shows the 2D embedding of the inferred topic proportions θθθ (approximated by the in-

ferred variational posterior means) by MedLDAc and LDA using the t-SNE stochastic neighborhood

embedding (van der Maaten and Hinton, 2008) method, where each dot represents a document and

each color-shape pair represents a category. Visually, the max-margin based MedLDAc produces a

better grouping and separation of the documents in different categories. In contrast, unsupervised

LDA does not produce a well separated embedding, and documents in different categories tend to

mix together. Intuitively, a well-separated representation is more discriminative for document cat-

egorization. This is further empirically supported in Section 5.2. Note that a similar embedding

11. Stop word list can be found at http://mallet.cs.umass.edu/.

12. We implemented LDA based on the public variational inference code by Dr. David Blei, using same data structures

as MedLDA for fair comparison.
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Figure 2: t-SNE 2D embedding of the topical representation by: MedLDAc (above) and unsuper-

vised LDA (below). The mapping between each index and category name can be found

in: http://people.csail.mit.edu/jrennie/20Newsgroups/.
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Class MedLDA LDA Average θ per class

comp.graphics

T 69 T 11 T 80 T 59 T 104 T 31

image graphics db image ftp card

jpeg image key jpeg pub monitor

gif data chip color graphics dos

file ftp encryption file mail video

color software clipper gif version apple

files pub system images tar windows

bit mail government format file drivers

images package keys bit information vga

format fax law files send cards

program images escrow display server graphics

sci.electronics

T 32 T 95 T 46 T 30 T 84 T 44

ground audio source power water sale

wire output rs ground energy price

power input time wire air offer

wiring signal john circuit nuclear shipping

don chip cycle supply loop sell

current high low voltage hot interested

circuit data dixie current cold mail

neutral mhz dog wiring cooling condition

writes time weeks signal heat email

work good face cable temperature cd

politics.mideast

T 30 T 40 T 51 T 42 T 78 T 47

israel turkish israel israel jews armenian

israeli armenian lebanese israeli jewish turkish

jews armenians israeli peace israel armenians

arab armenia lebanon writes israeli armenia

writes people people article arab turks

people turks attacks arab people genocide

article greek soldiers war arabs russian

jewish turkey villages lebanese center soviet

state government peace lebanon jew people

rights soviet writes people nazi muslim

misc.forsale

T 109 T 110 T 84 T 44 T 94 T 49

sale drive mac sale don drive

price scsi apple price mail scsi

shipping mb monitor offer call disk

offer drives bit shipping package hard

mail controller mhz sell writes mb

condition disk card interested send drives

interested ide video mail number ide

sell hard speed condition ve controller

email bus memory email hotel floppy

dos system system cd credit system

Figure 3: Top topics under each class as discovered by the MedLDA and LDA models.

was presented by Lacoste-Julien et al. (2008), where the transformation matrix in their model is

pre-designed. The results of MedLDAc in Figure 2 are automatically learned.

It is also interesting to examine the discovered topics and their relevance to class labels. In

Figure 3 we show the top topics in four example categories as discovered by both MedLDAc and

LDA. Here, the semantic meaning of each topic is represented by the first 10 high probability words.

To visually illustrate the discriminative power of the latent representations, that is, the topic

proportion vector θθθ of documents, we illustrate and compare the per-class distribution over topics

for each model at the right side of Figure 3. This distribution is computed by averaging the expected

topic vector of the documents in each class. We can see that MedLDAc yields sharper, sparser and

fast decaying per-class distributions over topics. For the documents in different categories, we
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Figure 4: The average entropy of θθθ over documents of different topic models on 20 Newsgroups

data.

can see that their per-class average distributions over topics are very different, which suggests that

the topical representations by MedLDAc have a good discrimination power. Also, the sharper and

sparser representations by MedLDAc can result in a simpler max-margin classifier (e.g., with fewer

support vectors), as we shall see in Section 5.2.1. All these observations suggest that the topical

representations discovered by MedLDAc have a better discriminative power and are more suitable

for prediction tasks (Please see Section 5.2 for prediction performance). This behavior of MedLDAc

is in fact due to the regularization effect enforced over φφφ as shown in Equation (21). On the other

hand, LDA seems to discover topics that model the fine details of documents, possibly at the cost

of achieving weaker discrimination power (i.e., it discovers different variations of the same topic

which results in a flat per-class distribution over topics). For instance, in the class comp.graphics,

MedLDAc mainly models documents in this class using two salient, discriminative topics (T69 and

T11) whereas LDA results in a much flatter distribution. Moreover, in the cases where LDA and

MedLDAc discover comparably the same set of topics in a given class (like politics.mideast and

misc.forsale), MedLDAc results in a sharper low dimensional representation.

A quantitative measure for the sparsity or sharpness of the distributions over topics is the en-

tropy. We compute the entropy of the inferred topic proportion for each document and take the

average over the corpus. Here, we compare MedLDAc with unsupervised LDA, supervised sLDA

for multi-class classification (multi-sLDA)13 (Wang et al., 2009) and DiscLDA14 (Lacoste-Julien

13. We thank the authors for providing their implementation, on which we made necessary slight modifications, for

example, improving the time efficiency and optimizing ααα.

14. DiscLDA is a conditional model that uses class-specific topics and shared topics. Since the code is not publicly

available, we implemented an in-house version by following the same strategy in the original paper and share K1

topics across classes and allocate K0 topics to each class, where K1 = 2K0, and we varied K0 = {1,2, · · ·}. We should

note here that Lacoste-Julien et al. (2008); Lacoste-Julien (2009) gave an optimization algorithm for learning the

topic structure (i.e., a transformation matrix), however since the code is not available, we resorted to one of the fixed

splitting strategies mentioned in the paper. Moreover, for the multi-class case, the authors only reported results using

the same fixed splitting strategy we mentioned above. For the number of iterations for training and inference, we

followed Lacoste-Julien (2009). Moreover, following Lacoste-Julien (2009) and personal communication with the

first author, we used symmetric Dirichlet priors on βββ and θθθ, and set the Dirichlet parameters at 0.01 and 0.1/(K0+K1),
respectively.
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et al., 2008). For DiscLDA, as in the original paper, we fix the transformation matrix and set it

to be diagonally sparse. We use the standard training/testing split15 to fit the models on training

data and infer the topic distributions on testing documents. Figure 4 shows the average entropy

of different models on testing documents when different topic numbers are chosen. For DiscLDA,

we set the class-specific topic number K0 = 1,2,3,4,5 and correspondingly K = 22,44,66,88,110.

We can see that MedLDAc yields the smallest entropy, which indicates that the probability mass

is concentrated on quite a few topics, consistent with the observations in Figure 3. In contrast, for

unsupervised LDA, the probability mass is more uniformly distributed on many topics (again con-

sistent with Figure 3), which results in a higher entropy. For DiscLDA, although the transformation

matrix is designed to be diagonally sparse, the distributions over the class-specific topics and shared

topics are flat. Therefore, the entropy is also high. Using automatically learned transition matrices

might improve the sparsity of DiscLDA.

5.2 Prediction Accuracy

In this subsection, we provide a quantitative evaluation of MedLDA on prediction performance for

both document classification and regression.

5.2.1 CLASSIFICATION

We perform binary and multi-class classification on the 20 Newsgroup data set. To obtain a baseline,

we first fit all the data to an LDA model, and then use the latent representation of the training16

documents as features to build a binary or multi-class SVM classifier. We denote this baseline by

LDA+SVM.

Binary Classification: As Lacoste-Julien et al. (2008) did, the binary classification is to distin-

guish postings of the newsgroup alt.atheism and the postings of the group talk.religion.misc. The

training set contains 856 documents with a split of 480/376 over the two categories, and the test

set contains 569 documents with a split of 318/251 over the two categories. Therefore, the naı̈ve

baseline that predicts the most frequent category for all test documents has accuracy 0.672.

We compare the binary MedLDAc with supervised LDA, DiscLDA, LDA+SVM, and the stan-

dard binary SVM built on raw text features. For supervised LDA, we use both the regression model

(sLDA) (Blei and McAuliffe, 2007) and the multi-class classification model (multi-sLDA) (Wang

et al., 2009). For the sLDA regression model, we fit it using the binary representation (0/1) of the

classes, and use a threshold 0.5 to make prediction. For MedLDAc, to see whether a second-stage

max-margin classifier can improve the performance, we also build a method of MedLDAc+SVM,

similar to LDA+SVM. For DiscLDA, we fix the transition matrix. Automatically learning the tran-

sition matrix can yield slightly better results, as reported by Lacoste-Julien (2009). For all the above

methods that use the class label information, they are fit ONLY on the training data.

We use the SVM-light (Joachims, 1999), which provides both primal and dual parameters, to

build SVM classifiers and to estimate the posterior mean of ηηη in MedLDAc. The parameter C is

chosen via 5 fold cross-validation during training from {k2 : k = 1, · · · ,8}. For each model, we run

the experiments for 5 times and take the average as the final results. The prediction accuracy of

different models with respect to the number of topics is shown in Figure 5(a). For DiscLDA, we

15. Split can be found at http://people.csail.mit.edu/jrennie/20Newsgroups/.

16. We use the training/testing split in http://people.csail.mit.edu/jrennie/20Newsgroups/.

2260



MEDLDA: MAXIMUM MARGIN SUPERVISED TOPIC MODELS

0 5 10 15 20 25 30 35 40
0.55

0.6

0.65

0.7

0.75

0.8

0.85

# Topics

Ac
cu

ra
cy

MedLDAc

MedLDAc+SVM
DiscLDA
multi−sLDA
sLDA
LDA+SVM
SVM

(a)

10 20 30 40 50 60 70 80 90 100 110 120
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

# Topics

Ac
cu

ra
cy

MedLDAc

multi−sLDA
DiscLDA
LDA+SVM
SVM

(b)

Figure 5: Classification accuracy of different models for: (a) binary and (b) multi-class classifica-

tion on the 20 Newsgroup data.

follow Lacoste-Julien et al. (2008) to set K = 2K0 +K1, where K0 is the number of class-specific

topics and K1 is the number of shared topics, and K1 = 2K0. Here, we set K0 = 1, · · · ,8,10.

We can see that the max-margin MedLDAc performs better than the likelihood-based down-

stream models, include multi-sLDA, sLDA, and the baseline LDA+SVM. The best performances of

the two discriminative models (i.e., MedLDAc and DiscLDA) are comparable. However, MedLDAc

is easier to learn and faster in testing, as we shall see in Section 5.3.2. Moreover, the different ap-

proximate inference algorithms used in MedLDAc (i.e., variational approximation) and DiscLDA

(i.e., Monte Carlo sampling methods) can also make the performance different. In our alterna-

tive implementation using collapsed variational inference (Teh et al., 2006) method for MedLDAc

(preliminary results in preparation for submission), we were able to achieve slightly better results.

However, the collapsed variational method is much more expensive. Finally, since MedLDAc al-

ready integrates the max-margin principle into its training, our conjecture is that the combination

of MedLDAc and SVM does not further improve the performance much on this task. We believe

that the slight differences between MedLDAc and MedLDAc+SVM are due to the tuning of regu-

larization parameters. For efficiency, we do not change the regularization constant C during training

MedLDAc. The performance of MedLDAc would be improved if we select a good C in different

iterations because the data representation is changing.

Multi-class Classification: We perform multi-class classification on 20 Newsgroups with all the

20 categories. The data set has a balanced distribution over the categories. For the test set, which

contains 7505 documents in total, the smallest category has 251 documents and the largest category

has 399 documents. For the training set, which contains 11269 documents, the smallest and the

largest categories contain 376 and 599 documents, respectively. Therefore, the naı̈ve baseline that

predicts the most frequent category for all the test documents has the classification accuracy 0.0532.

We compare MedLDAc with LDA+SVM, multi-sLDA, DiscLDA, and the standard multi-class

SVM built on raw text. We use the SVMstruct package with a cost function as ∆!d(y) ! !I(y /= yd)
to solve the sub-step of learning q(ηηη) and build the SVM classifiers for LDA+SVM. The parameter

! is selected with 5 fold cross-validation.17 The average results as well as standard deviations over

17. The traditional 0/1 cost does not yield the best results. In most cases, the selected !’s are around 16.
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Figure 6: (a) Sensitivity to the cost parameter ! for the MedLDAc; and (b) the number of support

vectors for n-slack multi-class SVM, LDA+SVM, and n-slack MedLDAc. For MedLDAc,

we show both the number of support vectors at the final iteration and the average number

during training.

5 randomly initialized runs are shown in Figure 5(b). For DiscLDA, we use the same equation as in

Lacoste-Julien et al. (2008) to set the number of topics and set K0 = 1, · · · ,5. We can see that all the

supervised topic models discover more predictive topical representations for classification, and the

discriminative max-margin MedLDAc and DiscLDA perform comparably, slightly better than the

standard multi-class SVM (about 0.013± 0.003 improvement in accuracy). However, as we have

stated and will show in Section 5.3.2, MedLDAc is faster in testing than DiscLDA. As we shall see

shortly, MedLDAc needs much fewer support vectors than standard SVM.

Figure 6(a) shows the multi-class classification accuracy on the 20 Newsgroups data set for

MedLDAc with 70 topics. We show the results with ! manually set at 1,4,8,12, · · · ,32. We can see

that although the default 0/1-cost works well for MedLDAc, we can get better accuracy if we use

a larger cost for penalizing wrong predictions. The performance is quite stable when ! is set to be

larger than 8. The reason why ! affects the performance is that ! as well as C control: 1) the scale of

the posterior mean of ηηη and the Lagrangian multipliers µµµ, whose dot-product regularizes the topic

mixing proportions in Equation (21); and 2) the goodness of fit of the MED large-margin classifier

on the data (see Joachims et al., 2009, for another practical example that uses 0/!-cost, where ! is

set at 100). For practical reasons, we only try a small subset of candidate C values in parameter

search, which can also influence the difference on performance in Figure 6(a). Performing very

careful parameter search on C could possibly shrink the difference. Finally, for a small ! (e.g., 1

for the standard 0/1-cost), we usually need a large C in order to obtain good performance. But our

empirical experience with SVMstruct shows that the multi-class SVM with a larger C (and smaller

!) is typically more expensive to train than the SVM with a larger ! (and smaller C). That is one

reason why we choose to use a large !.

Figure 6(b) shows the number of support vectors for MedLDAc, LDA+SVM, and the multi-class

SVM built on raw text features, which are high-dimensional (∼60,000 dimension for 20 Newsgroup

data) and sparse. Here we consider the traditional n-slack formulation of multi-class SVM and n-

slack MedLDAc using the SVMstruct package, where a support vector corresponds to a document-

label pair. For MedLDAc and LDA+SVM, we set K = 70. For MedLDAc, we report both the number

of support vectors at the final iteration and the average number of support vectors over all iterations.
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We can see that both MedLDAc and LDA+SVM generally need much fewer support vectors than the

standard SVM on raw text. The major reason is that both MedLDAc and LDA+SVM uses a much

lower dimensional and more compact representation for each document. Moreover, MedLDAc

needs (about 4 times) fewer support vectors than LDA+SVM. This could be because MedLDAc

make use of both text contents and the supervising class labels in the training data and its estimated

topics tend to be more discriminative when being used to infer the latent topical representations

of documents, that is, using these latent representations by MedLDAc, the documents in different

categories are more likely to be well-separated, and therefore the max-margin classifier is simpler

(i.e., needs fewer support vectors). This observation is consistent with what we have observed on the

per-class distributions over topics in Figure 3. Finally, we observed that about 32% of the support

vectors in MedLDAc are also the support vectors in multi-class SVM on the raw features.

5.2.2 REGRESSION

We first evaluate MedLDAr on the movie review data set used by Blei and McAuliffe (2007), which

contains 5006 documents and comprises 1.6M words, with a 5000-term vocabulary chosen by tf-idf.

The data set was compiled from the one provided by Pang and Lee (2005). As Blei and McAuliffe

(2007) did, we take logs of the response values to make them approximately normal. We compare

MedLDAr with unsupervised LDA, supervised sLDA, MedLDAr
p—a MedLDA regression model

which uses unsupervised LDA as the underlying topic model (Please see Appendix B for details),

and the linear SVR that uses the empirical word frequency as input features. For LDA, we use

its low dimensional representation of documents as input features to a linear SVR and denote this

method by LDA+SVR. The evaluation criterion is predictive R2 (pR2), which is defined as one minus

the mean squared error divided by the data variance (Blei and McAuliffe, 2007), specifically,

pR2 = 1−
∑D

d=1(yd − ŷd)2

∑D
d=1(yd − ȳ)2

,

where yd and ŷd are the true and estimated response values of document d, respectively; and ȳ is the

mean of true response values on the whole data set. When we report pR2, by default it is computed

on the testing data set. Note that the naı̈ve baseline that predicts the mean response value for all

documents (i.e., ∀d, ŷd = ȳ) will have 0 on pR2. Any method that have a positive pR2 performs

better than the naı̈ve baseline.

Figure 7 shows the average results as well as standard deviations over 5 randomly initialized

runs, together with the per-word likelihood. For MedLDA and SVR, we fix the precision ε = 1e−3

and select C via cross-validation during training. We can see that the supervised MedLDA and

sLDA can get better results than unsupervised LDA, which ignores supervised responses during

discovering topical representations, and the linear SVR regression model. By using max-margin

learning, MedLDAr can get slightly better results than the likelihood-based sLDA, especially when

the number of topics is small (e.g., ≤ 15). Indeed, when the number of topics is small, the latent

representation of sLDA alone does not result in a highly separable problem, thus the integration

of max-margin training helps in discovering a more discriminative latent representation using the

same number of topics. In fact, the number of support vectors (i.e., documents that have at least

one non-zero lagrange multiplier) decreases dramatically at T = 15 and stays nearly the same for

T > 15, which with reference to Equation (14) explains why the relative improvement over sLDA

decreased as T increases. This behavior suggests that MedLDAr can discover more predictive latent

structures for difficult, non-separable regression problems.
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Figure 7: Predictive R2 (left) and per-word likelihood (right) of different models on the movie re-

view data set.

For the two variants of MedLDA regression models, we can see an obvious improvement of

MedLDAr over MedLDAr
p. This is because for MedLDAr

p, the update rule of φ does not have the

third and fourth terms of Equation (14). Those terms make the max-margin estimation and latent

topic discovery attached more tightly.

We also build another real data set of hotel review rating18 by randomly crawling hotel reviews

from TripAdvisor,19 where each review is associated with a global rating score and five aspect rating

scores for the aspects20—Value, Rooms, Location, Cleanliness, and Service. This data set is very

interesting and can be used for many data mining tasks, for example, extracting the textual mentions

of each aspect. Also, the rich features in reviews can be exploited to discover interesting latent

structures with a conditional topic model (Zhu and Xing, 2010). In these experiments, we focus on

predicting the global rating scores for reviews. To avoid too short and too long reviews, we only keep

those reviews whose character length is between 1500 and 6000. On TripAdvisor, the global ratings

rank from 1 to 5. We randomly select 1000 reviews for each rating and the data set consists of 5000

reviews in total. We uniformly partition it into training and testing sets. By removing a standard list

of stopping words and those terms whose count frequency is less than 5, we build a dictionary with

12000 terms. Similarly, we take logarithm to make the response approximately normal. Figure 8(a)

shows the predictive R2 of different methods. Here, we also compare with the hidden topic Markov

model (HTMM) (Gruber et al., 2007), which assumes the words in the same sentence have the same

topic assignment. We use HTMM to discover latent representations of documents and use SVR to

do regression. On this data set, we see a clear improvement of the supervised MedLDAr compared

to sLDA. The performance of unsupervised LDA (with a combination with SVR) is generally very

unstable. The HTMM is more robust but its performance is worse than those of the supervised

topic models. Finally, a linear SVR on empirical word frequency achieves a pR2 of about 0.56,

comparable to the best performance that can be achieved by MedLDAr.

Figure 8(b) shows the number of support vectors for MedLDAr, the standard SVR built on

empirical word frequency, and the two-stage approach LDA+SVR. For MedLDAr, we report both

18. The data set is available at http://www.ml-thu.net/˜jun/ReviewData.htm.

19. TripAdvisor can be found at http://www.tripadvisor.com/.

20. The website is subject to change. Our data set was built in December, 2009.
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Figure 8: (a) Predictive R2 of different models on the hotel review data set; and (b) the number of

support vectors for SVR, LDA+SVR, and MedLDAr. For MedLDAr, we show both the

number of support vectors at the final iteration and the average number during training.

the number of support vectors at the last iteration and the average number of support vectors during

training. Here, we set K = 10 for LDA and MedLDAr. Again, we can see that MedLDAr needs

fewer support vectors than SVR and LDA+SVR. In contrast, LDA+SVR needs about the same

number of support vectors as SVR. This observation suggests that the topical representations by

the supervised MedLDAr are more suitable for learning a simple max-margin predictor, which is

consistent with what we have observed in the classification case.

5.2.3 WHEN AND WHY SHOULD MEDLDA BE PREFERRED TO SVM? A DISCUSSION AND

SIMULATION STUDY

The above results show that the MedLDA classification model works comparably or slightly better

than the SVM classifiers built on raw input features; and for the two regression problems, MedLDA

outperforms the support vector regression model (i.e., SVR) on one data set while they are compa-

rable on the other data set. These results raise the question “when should we choose MedLDA?”

Our answers are as follows.

First of all, MedLDA is a topic model. Besides making prediction on unseen data, one major

function of MedLDA is that it can discover semantic patterns underlying complex data, and facil-

itate dimensionality reduction (and compression) of data. In contrast, SVM models are more like

black box machines which take raw input features and find good decision boundaries or regression

curves; but they are incapable of discovering or considering hidden structures of complex data, and

performing dimensionality reduction.21 Our main goal of including SVM/SVR into our compari-

son of predictive accuracy is indeed to demonstrate that dimensionality reduction and information

extraction from raw data via MedLDA does not cause serious loss (if at all) predictive information,

which is not the case for many alternative probabilistic or non-probabilistic information extractors

21. Some strategies like sparse feature selection can be incorporated to make an SVM more interpretable in the original

feature space. But this is beyond the scope of this paper.
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(e.g., LDA or LSI). As an integration of SVM with LDA, MedLDA performs both predictive and

exploratory tasks simultaneously. So, the first selection rule is: if we want to disclose some un-

derlying patterns and extract a lower dimensional semantic-preserving representation of raw data

besides doing prediction, MedLDA should be preferred to SVM.

Second, even if our goal is focusing on prediction performance, MedLDA should also be consid-

ered as one competitive alternative. As shown in the above experiments, our simulation experiments

below, as well as the follow-up works (Yang et al., 2010; Wang and Mori, 2011; Li et al., 2011),

depending on the data and problems, max-margin supervised topic models can outperform SVM

models, or they are comparable if no gains on predictive performance are obtained. There are sev-

eral possible reasons for the comparable (not dramatically superior) classification performance we

obtained on the 20 Newsgroups data:

(1) The fully factorized mean field inference method could potentially lead to inaccurate estimates.

We have tried more sophisticated inference methods such as collapsed variational inference and

collapsed Gibbs sampling,22 both of which could lead to superior prediction performance (e.g.,

about 4 percent improvement over SVM on multi-class classification accuracy);

(2) The much lower dimensional topical representations could be too compact, compared to the

original high-dimensional inputs. A clever combination (e.g., concatenation with appropriate

re-scaling of different features) of the discovered latent topical representations and the original

input features could potentially improve the performance, as demonstrated in Wang and Mori

(2011) for image classification.

To further substantiate the claimed advantages of MedLDA over SVM for admixed (i.e., multi-

topical) data such as text and image, we conduct some simulation experiments to empirically study

when MedLDA can perform well. We generate the observed word counts from an LDA model

with K topics. The Dirichlet parameters are ααα = (1, . . . ,1). For the topics, we randomly draw

βkn ∝ Beta(1,1), where ∝ means that we need to normalize βββk to be a distribution over the terms in

a given vocabulary. We consider three different settings of binary classification with a vocabulary of

500 terms. The document lengths for each setting are randomly draw from a Poisson distribution,

whose mean parameter is L, that is,

∀d, Nd ∼ Poisson(L).

(1) Setting 1: We set K = 40. We randomly draw the class label for document d from a distribution

model

p(yd = 1|θθθd) =
1

1+ exp{−ηηη(θθθd}
, where ηηηk ∼ N (0,0.1).

In other words, the class labels are solely influenced by the latent topic representations. There-

fore, the true model that generates the labeled data follows the assumptions of sLDA and

MedLDA. We set L = 25,50,150,300,500.

(2) Setting 2: We set K = 150. We randomly draw the class label for document d from a distribution

model

p(yd = 1|θθθd) =
1

1+ exp{−(ηηη(
1 θθθd +ηηη(

2 wd)}
, where ηηηi j ∼ N (0,0.1), i = 1,2.

22. Sampling methods for MedLDA can be developed by using Lagrangian methods. But a full discussion on this topic

is beyond the scope.
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In other words, the true model that generates the labeled data does not follow the assumptions

of sLDA. The class labels are influenced by the observed word counts. In fact, due to the law

of conservation of belief (i.e., the total probability mass of a distribution must sum to one), the

influence of θθθ would be generally weaker than that of w in determining the true class labels. We

set L = 50,100,150,200,250.

(3) Setting 3: Similar as in setting 2, but we improve the influence of θθθ on class labels by using

larger weights ηηη1. Specifically, we sample the weights

ηηη1 j ∼ K ×N (0,0.1) and ηηη2 j ∼ N (0,0.1).

We set L = 50,100,150,200,250,300,350.

In summary, the first two settings generally represent two extremes where the true model matches

the assumptions of MedLDA or SVM, while Setting 3 is somewhat in the middle place between

Setting 1 and Setting 2. Since the synthetic words do not have real meanings, below we focus on

presenting the prediction performance, rather than visualizing the discovered topic representations.

Figure 9 shows the classification accuracy of MedLDAc, the SVM classifiers built on word

counts, and the MedLDAc models using both θθθ and word counts to learn classifiers23 at each itera-

tion step of solving for q(ηηη). We can see that for Setting 1, where the true model that generates the

data matches the assumptions of MedLDA (and sLDA models too) well, we can achieve significant

improvements compared to the SVM classifiers built on raw input word counts for all settings with

various average document lengths. In contrast, for Setting 2, where the true model largely violates

the assumptions of MedLDA (in fact, it matches the assumptions of SVM well), we generally do not

have much improvements. But still, we can have comparable performance. For the middle ground

in Setting 3, we have mixed results. When the average document length is small (e.g., ≤ 250), which

means the influence of word counts on class labels is weak, MedLDAc can improve a lot over SVM.

But when the influence of word counts gets bigger (e.g., L ≥ 300), using the low dimensional topic

representations tends to be insufficient to get good performance. Translating to empirical text anal-

ysis, MedLDA will be particularly helpful when analyzing short texts, such as abstracts, reviews,

users comments, and user status updates, which are nowadays the dominant forms of user texts on

social media.

In all the three settings, we can see that a naı̈ve combination of both latent topic representations

and input word counts could improve the performance in some cases, or at least it will produce

comparable performance with the better model between MedLDAc and SVM. Finally, comparing

the three settings, we can see that for Setting 2, since the true class labels heavily depend on the

input word counts, increasing the average document length L generally improves the classification

performance of all models. In other words, the classification problems become easier because of

more discriminant information is provided as L increases. In contrast, we do not have the similar

observations in the other two settings because the true labels are heavily (or solely in Setting 1)

determined by θθθ, whose dimensionality is fixed.

The last reason that we think MedLDA should be considered as an important novel development

with one root being from SVM because it presents one of the first successful attempts, in the partic-

ular context of Bayesian topic models, towards pushing forward the interface between max-margin

learning and Bayesian generative modeling. As further demonstrated in others’ work (Yang et al.,

23. We simply concatenate the two types of features without considering the scale difference.

2267



ZHU, AHMED AND XING

L=25 L=50 L=150 L=300 L=500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Average Document Length

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy
SVM
MedLDAc

MedLDAc + Features

(a)

L=50 L=100 L=150 L=200 L=250
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Average Document Length

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

SVM
MedLDAc

MedLDAc + Features

(b)

L=50 L=100 L=150 L=200 L=250 L=300 L=350
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Average Document Length

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy

SVM
MedLDAc

MedLDAc + Features

(c)

Figure 9: Classification accuracy of different methods in (a) Setting 1; (b) Setting 2; and (c) Setting

3.

2010; Wang and Mori, 2011; Li et al., 2011) as well as our recent work on regularized Bayesian

inference (Zhu et al., 2011b,a), the max-margin principle can be a fruitful addition to “regularize”

the desired posterior distributions of Bayesian models for performing better prediction in a broad

range of scenarios, such as image annotation, classification, multi-task learning, etc.

5.3 Time Efficiency

In this section, we report empirical results on time efficiency in training and testing. All the follow-

ing results are achieved on a standard desktop with a 2.66GHz Intel processor. We implement all

the models in C++ language, without any special optimization of the code.

5.3.1 TRAINING TIME

Figure 10 shows the average training time of different models together with standard deviations on

both binary and multi-class classification tasks with 5 randomly initialized runs. Here, we do not

compare with DiscLDA because learning the transition matrix is not fully implemented by Lacoste-
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Figure 10: Training time (CPU seconds in log-scale) of different models with respect to the number

of topics for both (Left) binary and (Right) multi-class classification.

Julien (2009), but we will compare the testing time with it. From the results, we can see that for

binary classification, MedLDAc is more efficient than multi-class sLDA and is comparable with

LDA+SVM. The slowness of multi-class sLDA is because the normalization factor in the distribu-

tion model of y strongly couples the topic assignments of different words in the same document.

Therefore, the posterior inference is slower than that of unsupervised LDA and MedLDAc which

uses unsupervised LDA as the underlying topic model. For the sLDA regression model, it takes even

more training time because of the mismatch between its normal assumption and the non-Gaussian

binary response variables, which prolongs the E-step. In contrast, MedLDAc does not have such a

normal assumption.

For multi-class classification, the training time of MedLDAc is mainly dependent on solving

a multi-class SVM problem. Here, we implemented both 1-slack and n-slack versions of multi-

class SVM (Joachims et al., 2009) for solving the sub-problem of estimating q(ηηη) and Lagrangian

multipliers in MedLDAc. As we can see from Figure 10, the MedLDAc with 1-slack SVM as the

sub-solver can be very efficient, comparable to unsupervised LDA+SVM. The MedLDAc with n-

slack SVM solvers is about 3 times slower. Similar to the binary case, for the multi-class supervised

sLDA (Wang et al., 2009), because of the normalization factor in the category probability model

(i.e., a softmax function), the posterior inference on different topic assignment variables (in the

same document) are strongly correlated. Therefore, the inference is (about 10 times) slower than

that on unsupervised LDA and MedLDAc which takes an unsupervised LDA as the underlying

topic model. For regression, the training time of MedLDAr is comparable to that of sLDA, while

MedLDAr
p is more efficient.

We also show the time spent on inference (i.e., E-step) and the ratio it takes over the total training

time for different models in Figure 11(a). We can clearly see that the difference between 1-slack
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Figure 11: (a) The inference time (CPU seconds in linear scale) and total training time for learning

different models, as well as the ratio of inference time over total training time. For

MedLDAc, we consider both the 1-slack and n-slack formulations; for LDA+SVM, the

SVM classifier is by default the 1-slack formulation; and (b) Testing time (CPU seconds

in log-scale) of different models with respect to the number of topics for multi-class

classification.

MedLDAc and n-slack MedLDAc is on the learning of SVMs (i.e., M-step). Both methods have

similar inference time. We can also see that for LDA+SVM and multi-sLDA, more than 95% of the

training time is spent on inference, which is very expensive for multi-sLDA. Note that LDA+SVM

takes a longer inference time than MedLDAc. This is because we use more data (both training and

testing) to learn unsupervised LDA. The SVM classifiers built on raw input word count features

are generally much more faster than all the topic models. For instance, it takes about 230 seconds

to train a 1-slack multi-class SVM on the 20 Newsgroups training data, or about 1000 seconds to

train a n-slack multi-class SVM on the same training set; both are faster than the fastest topic model

1-slack MedLDAc. This is reasonable because SVM classifiers do not spend time on inferring the

latent topic representations.

5.3.2 TESTING TIME

Figure 11(b) shows the average testing time with standard deviation on 20 Newsgroup testing data

with 5 randomly initialized runs. We can see that MedLDAc, multi-class sLDA and unsupervised

LDA are comparable in testing time, faster than that of DiscLDA. This is because all the three

models of MedLDAc, multi-class sLDA and LDA are downstream models (See the Introduction

for definition). In testing, they do exactly the same tasks, that is, to infer the overall latent topical

representation and do prediction with a linear model. Therefore, they have comparable testing

time. However, DiscLDA is an upstream model, for which the prediction task is done with multiple

times of doing inference to find the category-dependent latent topical representations. Therefore,

in principle, the testing time of an upstream topic model is about |C | times slower than that of its

downstream counterpart model, where C is the finite set of categories. The results in Figure 11(b)
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show that DiscLDA is roughly about 20 times slower than other downstream models. Of course, the

different inference algorithms can also make the testing time different.

6. Conclusions and Discussions

We have presented maximum entropy discrimination LDA (MedLDA), a supervised topic model

that uses the discriminative max-margin principle to estimate model parameters such as topic dis-

tributions underlying a corpus, and infer latent topical vectors of documents. MedLDA integrates

the max-margin principle into the process of topic learning and inference via optimizing one single

objective function with a set of expected margin constraints. The objective function is a tradeoff

between the goodness of fit of an underlying topic model and the prediction accuracy of the resul-

tant topic vectors on a max-margin classifier. We provide empirical evidence as well as theoretical

insights, which appear to demonstrate that this integration could yield predictive topical represen-

tations that are suitable for prediction tasks, such as regression and classification. We also present

a general formulation of learning maximum entropy discrimination topic models, which allows

any form of likelihood based topic models to be discriminatively trained. Although the general

max-margin framework can be approximately solved with different methods, we concentrate on de-

veloping efficient variational methods for MedLDA in this paper. Our empirical results on movie

review, hotel review and 20 Newsgroups data sets demonstrate that MedLDA is an attractive super-

vised topic model, which can achieve state of the art performance for topic discovery and prediction

accuracy while needs fewer support vectors than competing max-margin methods that are built on

raw text or the topical representations discovered by unsupervised LDA.

MedLDA represents the first step towards integrating the max-margin principle into supervised

topic models, and under the general MedTM framework presented in Section 4, several improve-

ments and extensions are in the horizon. Specifically, due to the nature of MedTM’s joint optimiza-

tion formulation, advances in either max-margin training or better variational bounds for inference

can be easily incorporated. For instance, the mean field variational upper bound in MedLDA can

be improved by using the tighter collapsed variational bound (Teh et al., 2006) that achieves re-

sults comparable to collapsed Gibbs sampling (Griffiths and Steyvers, 2004). Moreover, as the

experimental results suggest, incorporation of a more expressive underlying topic model enhances

the overall performance. Therefore, we plan to integrate and use other underlying topic models

like the fully generative sLDA model in the classification case. However, as we have stated, the

challenge in developing fully supervised MedLDA classification model lies in the hard posterior

inference caused by the normalization factor in the category distribution model. Finally, advance in

max-margin training would also results in more efficient training.
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Appendix A. Proof of Corollary 4

In this section, we prove the corollary 4.

Proof Since the variational parameters (γγγ,φφφ) are fixed when solving for q(ηηη), we can ignore the

terms in Lbs that do not depend on q(ηηη) and get the function

Lbs
[q(ηηη)]! KL(q(ηηη)‖p0(ηηη))−∑

d

Eq[log p(yd|Z̄d,ηηη,δ
2)]

= KL(q(ηηη)‖p0(ηηη))+
1

2δ2

(

Eq(ηηη)[ηηη
(
E[AA(]η−2ηηη(

D

∑
d=1

ydE[Z̄d]]
)

+ c,

where c is a constant that does not depend on q(ηηη).
Let U(ξξξ,ξξξ∗) =C ∑D

d=1(ξd +ξ∗d). Suppose (q0(ηηη),ξξξ0,ξξξ
∗
0) is the optimal solution of P1, then we

have: for any feasible (q(ηηη),ξξξ,ξξξ∗),

Lbs
[q0(ηηη)]

+U(ξξξ0,ξξξ
∗
0)≤ Lbs

[q(ηηη)] +U(ξξξ,ξξξ∗).

From Corollary 3, we conclude that the optimum predictive parameter distribution is q0(ηηη) =
N (λλλ0,Σ), where Σ = (I + 1/δ2E[A(A])−1 does not depend on q(ηηη). Since q0(ηηη) is also normal,

for any distribution24 q(ηηη) = N (λλλ,Σ), with several steps of algebra it is easy to show that

Lbs
[q(ηηη)] =

1

2
λλλ((I +

1

δ2
E[A(A])λλλ−λλλ((

D

∑
d=1

yd

δ2
E[Z̄d])+ c′ =

1

2
λλλ(Σ−1λλλ−λλλ((

D

∑
d=1

yd

δ2
E[Z̄d])+ c′,

where c′ is another constant that does not depend on λλλ.

Thus, we can get: for any (λλλ,ξξξ,ξξξ∗), where

(λλλ,ξξξ,ξξξ∗) ∈ {(λλλ,ξξξ,ξξξ∗) : yd −λλλ(
E[Z̄d]≤ ε+ξd; − yd +λλλ(

E[Z̄d]≤ ε+ξ∗d ; and ξξξ,ξξξ∗ ≥ 0 ∀d},

we have

1

2
λλλ(

0 Σ−1λλλ0 −λλλ(
0 (

D

∑
d=1

yd

δ2
E[Z̄d])+U(ξξξ0,ξξξ

∗
0)≤

1

2
λλλ(Σ−1λλλ−λλλ((

D

∑
d=1

yd

δ2
E[Z̄d])+U(ξξξ,ξξξ∗),

which means the mean of the optimum posterior distribution under a Gaussian MedLDA is achieved

by solving a primal problem as stated in the Corollary.

24. Although the feasible set of q(ηηη) in P1 is much richer than the set of normal distributions with the covariance matrix

Σ, Corollary 3 shows that the solution is a restricted normal distribution. Thus, it suffices to consider only these

normal distributions in order to learn the mean of the optimum distribution.
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Appendix B. Max-Margin Learning of the Vanilla LDA for Regression

In Section 3.1, we have presented the MedLDA regression model that uses supervised sLDA (Blei

and McAuliffe, 2007) to discover latent topic assignments Z and document-level topical represen-

tations θθθ. The same principle can be applied to perform joint maximum likelihood estimation and

max-margin training for unsupervised LDA (Blei et al., 2003), which does not directly model side

information such as user ratings y. In this section, we present this MedLDA model, which will be

referred to as MedLDAr
p. As in MedLDAc, we assume that the supervised side information y is

given, even though not included in the joint likelihood function defined in LDA.25

A naı̈ve approach to using unsupervised LDA for supervised prediction tasks (e.g., regression)

is a two-stage procedure: 1) using unsupervised LDA to discover the latent topical representations

of documents; and 2) feeding the low-dimensional topical representations into a regression model

(e.g., SVR) for training and testing. This de-coupled approach can be rather sub-optimal because the

side information of documents (e.g., rating scores of movie reviews) is not used in discovering the

low-dimensional representations and thus can result in a sub-optimal representation for prediction

tasks. Below, we present MedLDAr
p, which integrates an unsupervised LDA for discovering topics

with the SVR for regression. The inter-play between topic discovery and supervised prediction will

result in more discriminative latent topical representations, similar as in MedLDAr.

When the underlying topic model is unsupervised LDA, the likelihood is p(W|ααα,βββ), the same

as in MedLDAc. For regression, we apply the ε-insensitive support vector regression (SVR) (Smola

and Schölkopf, 2003) approach as before. Again, we learn a distribution q(ηηη). The prediction rule

is the same as in Equation (6). The integrated learning problem is

P6(MedLDAr
p) : min

q,q(ηηη),ααα,βββ,ξξξ,ξξξ∗
Lu(q;ααα,βββ)+KL(q(ηηη)||p0(ηηη))+C

D

∑
d=1

(ξd +ξ∗d)

∀d, s.t. :







yd −E[ηηη(Z̄d ] ≤ ε+ξd

−yd +E[ηηη(Z̄d ] ≤ ε+ξ∗d
ξd ,ξ∗d ≥ 0

,

where the KL-divergence is a regularizer that biases the estimate of q(ηηη) towards the prior. In

MedLDAr, this KL-regularizer is implicitly contained in the variational bound Lbs as shown in

Equation (7). The constrained problem is equivalent to the “unconstrained” problem by removing

slack variables:

min
q,q(ηηη),ααα,βββ

Lu(q;ααα,βββ)+KL(q(ηηη)||p0(ηηη))+C
D

∑
d=1

max(0, |yd −E[ηηη(Z̄d ]|− ε) (22)

Variational Algorithm: For MedLDAr
p, the unconstrained optimization problem (22) can be

similarly solved with a coordinate-descent algorithm as in the case of MedLDAr. Specifically, we

assume that q({θθθd ,zd}) = ∏D
d=1 q(θθθd |γγγd)∏N

n=1 q(zdn|φφφdn), where the variational parameters γγγ and

φφφ have the same meanings as in MedLDAr. Then, we alternately solve for each variable and get a

variational algorithm which is similar to that of MedLDAr.

25. One could argue that this design is unreasonable because with y one should only consider sLDA. But we study fitting

the vanilla LDA using y in an indirect way described below because of the popularity and historical importance of

this scheme in many applied domains.
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Solve for (ααα,βββ) and q(ηηη): the update rules of ααα and βββ are the same as in the MedLDAr. The

parameter δ2 is not used here. By using Lagrangian methods, we get that

q(ηηη) =
p0(ηηη)

Z
exp

(

ηηη(
D

∑
d=1

(µ̂d − µ̂∗d)E[Z̄d]
)

and the dual problem is the same as D2. Again, we can choose different priors to introduce some

regularization effects. For the standard normal prior: p0(ηηη)=N (0, I), the posterior is also a normal:

q(ηηη) = N (λλλ, I), where λλλ = ∑D
d=1(µ̂d − µ̂∗d)E[Z̄d] is the mean. This identity covariance matrix is

much simpler than the covariance matrix Σ as in MedLDAr, which depends on the latent topical

representation Z. Since I is independent of Z, the prediction model in MedLDAr
p is less affected by

the latent topical representations. Together with the simpler update rule (23), we can conclude that

the coupling between the max-margin estimation and the discovery of latent topical representations

in MedLDAr
p is looser than that of MedLDAr. The looser coupling will lead to inferior empirical

performance as we show in Section 5.2.

For the standard normal prior, the dual problem is a QP problem:

max
µµµ,µµµ∗

−
1

2
‖λλλ‖2

2 − ε
D

∑
d=1

(µd +µ∗d)+
D

∑
d=1

yd(µd −µ∗d)

∀d, s.t. : µd ,µ
∗
d ∈ [0,C],

Similarly, we can derive its primal form, which is as a standard SVR problem:

min
λλλ,ξξξ,ξξξ∗

1

2
‖λλλ‖2

2 +C
D

∑
d=1

(ξd +ξ∗d)

s.t. ∀d :











yd −λλλ(
E[Z̄d]≤ ε+ξd

−yd +λλλ(
E[Z̄d]≤ ε+ξ∗d
ξd,ξ∗d ≥ 0.

Now, we can leverage recent developments in support vector regression (e.g., the public SVM-light

package) to solve either the dual problem or the primal problem.

Solve for q({θθθd ,zd}): We have the same update rule for γγγ as in MedLDAr. By using the similar

one-step approximation strategy, we have:

φφφdn ∝ exp
(

E[logθθθd |γγγd ]+ log p(wdn|βββ)+
E[ηηη]

N
(µ̂d − µ̂∗d)

)

, (23)

Again, we can see that how the max-margin constraints in P6 regularize the procedure of discovering

latent topical representations through the last term in Equation (23). Specifically, for a document

d, which lies around the decision boundary, that is, a support vector, either µ̂d or µ̂∗d is non-zero,

and the last term biases φφφdn towards a distribution that favors a more accurate prediction on the

document. However, compared to Equation (14), we can see that Equation (23) is simpler and

does not have the complex third and fourth terms of Equation (14). This simplicity suggests that

the latent topical representation is less affected by the max-margin estimation (i.e., the prediction

model’s parameters).
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Abstract

Pairwise classification is the task to predict whether the examples a,b of a pair (a,b) belong to the
same class or to different classes. In particular, interclass generalization problems can be treated
in this way. In pairwise classification, the order of the two input examples should not affect the
classification result. To achieve this, particular kernels as well as the use of symmetric training sets
in the framework of support vector machines were suggested. The paper discusses both approaches
in a general way and establishes a strong connection between them. In addition, an efficient im-
plementation is discussed which allows the training of several millions of pairs. The value of these
contributions is confirmed by excellent results on the labeled faces in the wild benchmark.

Keywords: pairwise support vector machines, interclass generalization, pairwise kernels, large
scale problems

1. Introduction

To extend binary classifiers to multiclass classification several modifications have been suggested,

for example the one against all technique, the one against one technique, or directed acyclic graphs,

see Duan and Keerthi (2005), Hill and Doucet (2007), Hsu and Lin (2002), and Rifkin and Klautau

(2004) for further information, discussions, and comparisons. A more recent approach used in the

field of multiclass and binary classification is pairwise classification (Abernethy et al., 2009; Bar-

Hillel et al., 2004a,b; Bar-Hillel and Weinshall, 2007; Ben-Hur and Noble, 2005; Phillips, 1999;

Vert et al., 2007). Pairwise classification relies on two input examples instead of one and predicts

whether the two input examples belong to the same class or to different classes. This is of particular

advantage if only a subset of classes is known for training. For later use, a support vector machine

(SVM) that is able to handle pairwise classification tasks is called pairwise SVM.

A natural requirement for a pairwise classifier is that the order of the two input examples should

not influence the classification result (symmetry). A common approach to enforce this symmetry

is the use of selected kernels. For pairwise SVMs, another approach was suggested. Bar-Hillel

c©2012 Carl Brunner, Andreas Fischer, Klaus Luig and Thorsten Thies.
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et al. (2004a) propose the use of training sets with a symmetric structure. We will discuss both

approaches to obtain symmetry in a general way. Based on this, we will provide conditions when

these approaches lead to the same classifier. Moreover, we show empirically that the approach of

using selected kernels is three to four times faster in training.

A typical pairwise classification task arises in face recognition. There, one is often interested

in the interclass generalization, where none of the persons in the training set is part of the test

set. We will demonstrate that training sets with many classes (persons) are needed to obtain a good

performance in the interclass generalization. The training on such sets is computationally expensive.

Therefore, we discuss an efficient implementation of pairwise SVMs. This enables the training of

pairwise SVMs with several millions of pairs. In this way, for the labeled faces in the wild database,

a performance is achieved which is superior to the current state of the art.

This paper is structured as follows. In Section 2 we give a short introduction to pairwise clas-

sification and discuss the symmetry of decision functions obtained by pairwise SVMs. Afterwards,

in Section 3.1, we analyze the symmetry of decision functions from pairwise SVMs that rely on

symmetric training sets. The new connection between the two approaches for obtaining symme-

try is established in Section 3.2. The efficient implementation of pairwise SVMs is discussed in

Section 4. Finally, we provide performance measurements in Section 5.

The main contribution of the paper is that we show the equivalence of two approaches for obtain-

ing a symmetric classifier from pairwise SVMs and demonstrate the efficiency and good interclass

generalization performance of pairwise SVMs on large scale problems.

2. Pairwise Classification

Let X be an arbitrary set and let m training examples xi ∈ X with i ∈ M ! {1, . . . ,m} be given.

The class of a training example might be unknown, but we demand that we know for each pair

(xi,x j) of training examples whether its examples belong to the same class or to different classes.

Accordingly, we define yi j ! +1 if the examples of the pair (xi,x j) belong to the same class and

call it a positive pair. Otherwise, we set yi j !−1 and call (xi,x j) a negative pair.

In pairwise classification the aim is to decide whether the examples of a pair (a,b) ∈ X ×X

belong to the same class or not. In this paper, we will make use of pairwise decision functions

f : X ×X → . Such a function predicts whether the examples a,b of a pair (a,b) belong to the

same class ( f (a,b) > 0) or not ( f (a,b) < 0). Note that neither a,b need to belong to the set of

training examples nor the classes of a,b need to belong to the classes of the training examples.

A common tool in machine learning are kernels k : X ×X → . Let H denote an arbitrary real

Hilbert space with scalar product 〈·, ·〉. For φ : X → H ,

k(s, t)! 〈φ(s),φ(t)〉

defines a standard kernel.

In pairwise classification one often uses pairwise kernels K : (X ×X)× (X ×X)→ . In this

paper we assume that any pairwise kernel is symmetric, that is, it holds that

K((a,b),(c,d)) = K((c,d),(a,b))

for all a,b,c,d ∈ X , and that it is positive semidefinite (Schölkopf and Smola, 2001). For instance,

KD((a,b),(c,d))! k(a,c)+ k(b,d), (1)

KT ((a,b),(c,d))! k(a,c) · k(b,d) (2)
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are symmetric and positive semidefinite. We call KD direct sum pairwise kernel and KT tensor

pairwise kernel (cf. Schölkopf and Smola, 2001).

A natural and desirable property of any pairwise decision function is that it should be symmetric

in the following sense

f (a,b) = f (b,a) for all a,b ∈ X .

Now, let us assume that I ⊆ M ×M is given. Then, the pairwise decision function f obtained by a

pairwise SVM can be written as

f (a,b)! ∑
(i, j)∈I

αi jyi jK ((xi,x j),(a,b))+ γ (3)

with bias γ ∈ and αi j ≥ 0 for all (i, j) ∈ I. Obviously, if KD (1) or KT (2) are used, then the

decision function is not symmetric in general. This motivates us to call a kernel K balanced if

K((a,b),(c,d)) = K((a,b),(d,c)) for all a,b,c,d ∈ X

holds. Thus, if a balanced kernel is used, then (3) is always a symmetric decision function. For

instance, the following kernels are balanced

KDL((a,b),(c,d))!
1

2
(k(a,c)+ k(a,d)+ k(b,c)+ k(b,d)) , (4)

KT L((a,b),(c,d))!
1

2
(k(a,c)k(b,d)+ k(a,d)k(b,c)) , (5)

KML((a,b),(c,d))!
1

4
(k(a,c)− k(a,d)− k(b,c)+ k(b,d))2 , (6)

KT M((a,b),(c,d))! KT L((a,b),(c,d))+KML((a,b),(c,d)). (7)

Vert et al. (2007) call KML metric learning pairwise kernel and KT L tensor learning pairwise ker-

nel. Similarly, we call KDL, which was introduced in Bar-Hillel et al. (2004a), direct sum learning

pairwise kernel and KT M tensor metric learning pairwise kernel. For representing some balanced

kernels by projections see Brunner et al. (2011).

3. Symmetric Pairwise Decision Functions and Pairwise SVMs

Pairwise SVMs lead to decision functions of the form (3). As detailed above, if a balanced kernel

is used within a pairwise SVM, one always obtains a symmetric decision function. For pairwise

SVMs which use KD (1) as pairwise kernel, it has been claimed that any symmetric set of training

pairs leads to a symmetric decision function (see Bar-Hillel et al., 2004a). We call a set of training

pairs symmetric, if for any training pair (a,b) the pair (b,a) also belongs to the training set. In

Section 3.1 we prove the claim of Bar-Hillel et al. (2004a) in a more general context which includes

KT (2). Additionally, we show in Section 3.2 that under some conditions a symmetric training

set leads to the same decision function as balanced kernels if we disregard the SVM bias term γ.

Interestingly, the application of balanced kernels leads to significantly shorter training times (see

Section 4.2).
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3.1 Symmetric Training Sets

In this subsection we show that the symmetry of a pairwise decision function is indeed achieved by

means of symmetric training sets. To this end, let I ⊆ M ×M be a symmetric index set, in other

words if (i, j) belongs to I then ( j, i) also belongs to I. Furthermore, we will make use of pairwise

kernels K with

K((a,b),(c,d)) = K((b,a),(d,c)) for all a,b,c,d ∈ X . (8)

As any pairwise kernel is assumed to be symmetric, (8) holds for any balanced pairwise kernel. Note

that there are other pairwise kernels that satisfy (8), for instance for the kernels given in Equations 1

and 2.

For IR, IN ⊆ I defined by IR ! {(i, j) ∈ I|i = j} and IN ! I \ IR let us consider the dual pairwise

SVM
min

α
G(α)

s. t. 0 ≤ αi j ≤C for all (i, j) ∈ IN

0 ≤ αii ≤ 2C for all (i, i) ∈ IR

∑
(i, j)∈I

yi jαi j = 0.

(9)

with

G(α)!
1

2 ∑
(i, j),(k,l)∈I

αi jαklyi jyklK((xi,x j),(xk,xl))− ∑
(i, j)∈I

αi j.

Lemma 1 If I is a symmetric index set and if (8) holds, then there is a solution α̂ of (9) with

α̂i j = α̂ ji for all (i, j) ∈ I.

Proof By the theorem of Weierstrass there is a solution α∗ of (9). Let us define another feasible

point α̃ of (9) by

α̃i j ! α∗
ji for all (i, j) ∈ I.

For easier notation we set Ki j,kl ! K((xi,x j),(xk,xl)). Then,

2G(α̃) = ∑
(i, j),(k,l)∈I

α∗
jiα

∗
lkyi jyklKi j,kl −2 ∑

(i, j)∈I

α∗
ji.

Note that yi j = y ji holds for all (i, j) ∈ I. By (8) we further obtain

2G(α̃) = ∑
(i, j),(k,l)∈I

α∗
jiα

∗
lky jiylkKji,lk −2 ∑

(i, j)∈I

α∗
ji = 2G(α∗).

The last equality holds since I is a symmetric training set. Hence, α̃ is also a solution of (9). Since

(9) is convex (cf. Schölkopf and Smola, 2001),

αλ
! λα∗+(1−λ)α̃

solves (9) for any λ ∈ [0,1]. Thus, α̂! α1/2 has the desired property.

Note that a result similar to Lemma 1 is presented by Wei et al. (2006) for Support Vector Re-

gression. They, however, claim that any solution of the corresponding quadratic program has the

described property.
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Theorem 2 If I is a symmetric index set and if (8) holds, then any solution α of the optimization

problem (9) leads to a symmetric pairwise decision function f : X ×X → .

Proof For any solution α of (9) let us define gα : X ×X → by

gα(a,b)! ∑
(i, j)∈I

αi jyi jK((xi,x j),(a,b)).

Then, the obtained decision function can be written as fα(a,b) = gα(a,b)+ γ for some appropriate

γ ∈ . If α1 and α2 are solutions of (9) then gα1 = gα2 can be derived by means of convex opti-

mization theory. According to Lemma 1 there is always a solution α̂ of (9) with α̂i j = α̂ ji for all

(i, j) ∈ I. Obviously, such a solution leads to a symmetric decision function fα̂. Hence, fα is a

symmetric decision function for all solutions α.

3.2 Balanced Kernels vs. Symmetric Training Sets

Section 2 shows that one can use balanced kernels to obtain a symmetric pairwise decision function

by means of a pairwise SVM. As detailed in Section 3.1 this can also be achieved by symmet-

ric training sets. Now, we show in Theorem 3 that the decision function is the same, regardless

whether a symmetric training set or a certain balanced kernel is used. This result is also of practical

value, since the approach with balanced kernels leads to significantly shorter training times (see the

empirical results in Section 4.2).

Suppose J is a largest subset of a given symmetric index set I satisfying

((i, j) ∈ J∧ j -= i) ⇒ ( j, i) /∈ J.

Now, we consider the optimization problem

min
β

H(β)

s. t. 0 ≤ βi j ≤ 2C for all (i, j) ∈ J

∑
(i, j)∈J

yi jβi j = 0

(10)

with

H(β)!
1

2 ∑
(i, j),(k,l)∈J

βi jβklyi jyklK̂i j,kl − ∑
(i, j)∈J

βi j

and

K̂i j,kl !
1

2

(

Ki j,kl +Kji,kl

)

, (11)

where K is an arbitrary pairwise kernel. Obviously, K̂ is a balanced kernel. For instance, if K = KD

(1) then K̂ = KDL (4) or if K = KT (2) then K̂ = KT L (5). The assumed symmetry of K yields

K̂i j,kl = K̂i j,lk = K̂ ji,kl = K̂ ji,lk = K̂kl,i j = K̂lk,i j = K̂kl, ji = K̂lk, ji. (12)

Note that (12) holds not only for kernels given by (11) but for any balanced kernel.
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Theorem 3 Let the functions gα : X ×X → and hβ : X ×X → be defined by

gα(a,b)! ∑
(i, j)∈I

αi jyi jK((xi,x j),(a,b)),

hβ(a,b)! ∑
(i, j)∈J

βi jyi jK̂((xi,x j),(a,b)),

where I is a symmetric index set and J is defined as above. Additionally, let K fulfill (8) and K̂ be

given by (11). Then, for any solution α∗ of (9) and for any solution β∗ of (10) it holds that gα∗ = hβ∗ .

Proof By means of convex optimization theory it can be derived that gα is the same function for

any solution α. The same holds for hβ and any solution β. Hence, due to Lemma 1 we can assume

that α∗ is a solution of (9) with α∗
i j = α∗

ji. For JR ! IR and JN ! J \ JR we define β̄ by

β̄i j !

{

α∗
i j +α∗

ji if (i, j) ∈ JN ,
α∗

ii if (i, j) ∈ JR.

Obviously, β̄ is a feasible point of (10). Then, by (11) and by α∗
i j = α∗

ji we obtain for

(i, j) ∈ JN : β̄i jK̂i j,kl =
β̄i j

2
(Ki j,kl +Kji,kl) =

α∗
i j +α∗

ji

2

(

Ki j,kl +Kji,kl

)

= α∗
i jKi j,kl +α∗

jiKji,kl ,

(i, i) ∈ JR : β̄iiK̂ii,kl =
β̄ii

2
(Kii,kl +Kii,kl) = α∗

iiKii,kl .

(13)

Then, yi j = y ji implies

hβ̄ = gα∗ . (14)

In a second step we prove that β̄ is a solution of problem (10). By using ykl = ylk, the symmetry

of K, (13), (12), and the definition of β̄ one obtains

2G(α∗)+2 ∑
(i, j)∈I

α∗
i j

= ∑
(i, j)∈I

α∗
i jyi j

(

∑
(k,l)∈JN

ykl

(

α∗
klKi j,kl +α∗

lkKi j,lk
)

+ ∑
(k,k)∈JR

ykkα∗
kkKi j,kk

)

= ∑
(i, j)∈JN∪JR

α∗
i jyi j ∑

(k,l)∈J

β̄klyklK̂i j,kl + ∑
(i, j)∈JN

α∗
jiy ji ∑

(k,l)∈J

β̄klyklK̂ ji,kl

= ∑
(i, j)∈JN

β̄i jyi j ∑
(k,l)∈J

β̄klyklK̂i j,kl + ∑
(i,i)∈JR

β̄iiyii ∑
(k,l)∈J

β̄klyklK̂ii,kl

= 2H(β̄)+2 ∑
(i, j)∈J

β̄i j.

Then, the definition of β̄ implies

G(α∗) = H(β̄). (15)
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Now, let us define ᾱ by

ᾱi j !







β∗
i j/2 if (i, j) ∈ JN ,

β∗
ji/2 if ( j, i) ∈ JN ,
β∗

ii if (i, j) ∈ JR.

Obviously, ᾱ is a feasible point of (9). Then, by (8) and (11) we obtain for

(k, l) ∈ JN : ᾱklKi j,kl + ᾱlkKi j,lk =
β∗

kl

2
(Ki j,kl +Ki j,lk) = β∗

klK̂i j,kl,

(k,k) ∈ JR : ᾱkkKi j,kk =
β∗

kk

2
(Ki j,kk +Ki j,kk) = β∗

kkK̂i j,kk.

This, (12), and ykl = ylk yield

2H(β∗)+2 ∑
(i, j)∈J

β∗
i j

= ∑
(i, j)∈J

β∗
i jyi j

(

∑
(k,l)∈JN

β∗
klykl

1

2

(

K̂i j,kl + K̂ ji,kl

)

+ ∑
(k,k)∈JR

β∗
kkykk

1

2

(

K̂i j,kk + K̂ ji,kk

)

)

=
1

2 ∑
(i, j)∈J

β∗
i jyi j

(

∑
(k,l)∈I

ᾱklykl

(

Ki j,kl +Kji,kl

)

)

.

Then, the definition of ᾱ provides β∗
i j = ᾱi j + ᾱ ji for (i, j) ∈ JN and ᾱi j = ᾱ ji. Thus,

2H(β∗)+2 ∑
(i, j)∈J

β∗
i j = ∑

(i, j)∈I

ᾱi jyi j

(

∑
(k,l)∈I

ᾱklyklKi j,kl

)

= 2G(ᾱ)+2 ∑
(i, j)∈I

ᾱi j

follows. This implies G(ᾱ) = H(β∗). Now, let us assume that β̄ is not a solution of (10). Then,

H(β∗)< H(β̄) holds and, by (15), we have

G(α∗) = H(β̄)> H(β∗) = G(ᾱ).

This is a contradiction to the optimality of α∗. Hence, β̄ is a solution of (10) and hβ∗ = hβ̄ follows.

Then, with (14) we have the desired result.

4. Implementation

One of the most widely used techniques for solving SVMs efficiently is the sequential minimal

optimization (SMO) (Platt, 1999). A well known implementation of this technique is LIBSVM

(Chang and Lin, 2011). Empirically, SMO scales quadratically with the number of training points

(Platt, 1999). Note that in pairwise classification the training points are the training pairs. If all

possible training pairs are used, then the number of training pairs grows quadratically with the

number m of training examples. Hence, the runtime of LIBSVM would scale quartically with m.

In Section 4.1 we discuss how the costs for evaluating pairwise kernels, which can be expressed

by standard kernels, can be drastically reduced. In Section 3 we discussed that one can either use

balanced kernels or symmetric training sets to enforce the symmetry of a pairwise decision function.

Additionally, we showed that both approaches lead to the same decision function. Section 4.2

compares the needed training times of the approach with balanced kernels and the approach with

symmetric training sets.
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4.1 Caching the Standard Kernel

In this subsection balanced kernels are used to enforce the symmetry of the pairwise decision func-

tion. Kernel evaluations are crucial for the performance of LIBSVM. If we could cache the whole

kernel matrix in RAM we would get a huge increase of speed. Today, this seems impossible for sig-

nificantly more than 125,250 training pairs as storing the (symmetric) kernel matrix for this number

of pairs in double precision needs approximately 59GB. Note that training sets with 500 training

examples already result in 125,250 training pairs. Now, we describe how the costs of kernel eval-

uations can be drastically reduced. For example, let us select the kernel KT L (5) with an arbitrary

standard kernel. For a single evaluation of KT L the standard kernel has to be evaluated four times

with vectors of X . Afterwards, four arithmetic operations are needed.

It is easy to see that each standard kernel value is used for evaluating many different elements

of the kernel matrix. In general, it is possible to cache the standard kernel values for all training

examples. For example, to cache the standard kernel values for 10,000 examples one needs 400MB.

Thus, each kernel evaluation of KT L costs four arithmetic operations only. This does not depend on

the chosen standard kernel.

Table 1 compares the training times with and without caching the standard kernel values. For

these measurements examples from the double interval task (cf. Section 5.1) are used where each

class is represented by 5 examples, KT L is chosen as pairwise kernel with a linear standard kernel, a

cache size of 100MB is selected for caching pairwise kernel values, and all possible pairs are used

for training. In Table 1a the training set of each run consists of m = 250 examples of 50 classes with

different dimensions n. Table 1b shows results for different numbers m of examples of dimension

n = 500. The speedup factor by the described caching technique is up to 100.

Dimension Standard kernel

n of (time in mm:ss)

examples not cached cached

200 2:08 0:07

400 4:31 0:07

600 6:24 0:07

800 9:41 0:08

1000 11:27 0:09

(a) Different dimensions n of examples

Number Standard kernel

m of (time in hh:mm)

examples not cached cached

200 0:04 0:00

400 1:05 0:01

600 4:17 0:02

800 12:40 0:06

1000 28:43 0:13

(b) Different numbers m of examples

Table 1: Training time with and without caching the standard kernel

4.2 Balanced Kernels vs. Symmetric Training Sets

Theorem 3 shows that pairwise SVMs which use symmetric training sets and pairwise SVMs with

balanced kernels lead to the same decision function. For symmetric training sets the number of

training pairs is nearly doubled compared to the number in the case of balanced kernels. Simulta-

neously, (11) shows that evaluating a balanced kernel is computationally more expensive compared

to the corresponding non balanced kernel.
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Table 2 compares the needed training time of both approaches. There, examples from the double

interval task (cf. Section 5.1) of dimension n = 500 are used where each class is represented by 5

examples, KT and its balanced version KT L with linear standard kernels are chosen as pairwise

kernel, a cache size of 100MB is selected for caching the pairwise kernel values, and all possible

pairs are used for training. It turns out, that the approach with balanced kernels is three to four times

faster than using symmetric training sets. Of course, the technique of caching the standard kernel

values as described in Section 4.1 is used within all measurements.

Number m Symmetric training set Balanced kernel

of examples (t in hh:mm)

500 0:03 0:01

1000 0:46 0:17

1500 3:26 0:56

2000 9:44 2:58

2500 23:15 6:20

Table 2: Training time for symmetric training sets and for balanced kernels

5. Classification Experiments

In this section we will present results of applying pairwise SVMs to one synthetic data set and to

one real world data set. Before we come to those data sets in Sections 5.1 and 5.2 we introduce Klin
T L

and K
poly
T L . Those kernels denote KT L (5) with linear standard kernel and homogenous polynomial

standard kernel of degree two, respectively. The kernels Klin
ML, K

poly
ML , Klin

T M , and K
poly
T M are defined

analogously. In the following, detection error trade-off curves (DET curves cf. Gamassi et al., 2004)

will be used to measure the performance of a pairwise classifier. Such a curve shows for any false

match rate (FMR) the corresponding false non match rate (FNMR). A special point of interest of

such a curve is the (approximated) equal error rate (EER), that is the value for which FMR=FNMR

holds.

5.1 Double Interval Task

Let us describe the double interval task of dimension n. To get such an example x ∈ {−1,1}n one

draws i, j,k, l ∈ so that 2 ≤ i ≤ j, j+2 ≤ k ≤ l ≤ n and defines

xp !

{

1 p ∈ {i, . . . , j}∪{k, . . . , l},
−1 otherwise.

The class c of such an example is given by c(x)! (i,k). Note that the pair ( j, l) does not influence

the class. Hence, there are (n−3)(n−2)/2 classes.

For our measurements we selected n= 500 and tested all kernels in (4)–(7) with a linear standard

kernel and a homogenous polynomial standard kernel of degree two, respectively. We created a test

set consisting of 750 examples of 50 classes so that each class is represented by 15 examples. Any

training set was generated in such a way that the set of classes in the training set is disjoint from the
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Figure 1: DET curves for double interval task

set of classes in the test set. We created training sets consisting of 50 classes and different numbers

of examples per class. For training all possible training pairs were used.

We observed that an increasing number of examples per class improves the performance inde-

pendently of the other parameters. As a trade-off between the needed training time and performance

of the classifier, we decided to use 15 examples per class for the measurements. Independently of

the selected kernel, a penalty parameter C of 1,000 turned out to be a good choice. The kernel KDS

led to a bad performance regardless of the standard kernel chosen. Therefore, we omit results for

KDS.

Figure 1a shows that an increasing number of classes in the training set improves the perfor-

mance significantly. This holds for all kernels mentioned above. Here, we only present results for

Klin
ML and K

poly
T M . Figure 1b shows the DET curves for different kernels where the training set consists

of 200 classes. In particular, any of the pairwise kernels which uses a homogeneous polynomial of

degree 2 as standard kernel leads to better results than its corresponding counterpart with a linear

standard kernel. For FMRs smaller than 0.07 K
poly
T M leads to the best results, whereas for larger

FMRs the DET curves of K
poly
ML ,K poly

T L , and K
poly
T M intersect.

5.2 Labeled Faces in the Wild

In this subsection we will present results of applying pairwise SVMs to the labeled faces in the

wild (LFW) data set (Huang et al., 2007). This data set consists of 13,233 images of 5,749 persons.

Several remarks on this data set are in order. Huang et al. (2007) suggest two protocols for perfor-

mance measurements. Here, the unrestricted protocol is used. This protocol is a fixed tenfold cross

validation where each test set consists of 300 positive pairs and 300 negative pairs. Moreover, any

person (class) in a training set is not part of the corresponding test set.

There are several feature vectors available for the LFW data set. For the presented measurements

we mainly followed Li et al. (2012) and used the scale-invariant feature transform (SIFT)-based

feature vectors for the funneled version (Guillaumin et al., 2009) of LFW. In addition, the aligned

images (Wolf et al., 2009) are used. For this, the aligned images are cropped to 80×150 pixels and

are then normalized by passing them through a log function (cf. Li et al., 2012). Afterwards, the
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Figure 2: DET curves for LFW data set

local binary patterns (LBP) (Ojala et al., 2002) and three-patch LBP (TPLBP) (Wolf et al., 2008)

are extracted. In contrast to Li et al. (2012), the pose is neither estimated nor swapped and no PCA

is applied to the data. As the norm of the LBP feature vectors is not the same for all images we

scaled them to Euclidean norm 1.

For model selection, the View 1 partition of the LFW database is recommended (Huang et al.,

2007). Using all possible pairs of this partition for training and for testing, we obtained that a penalty

parameter C of 1,000 is suitable. Moreover, for each used feature vector, the kernel K
poly
T M leads to

the best results among all used kernels and also if sums of decision function values belonging to

SIFT, LBP, and TPLBP feature vectors are used. For example, Figure 2a shows the performance

of different kernels, where the decision function values corresponding to SIFT, LBP, and TPLBP

feature vectors are added up.

Due to the speed up techniques presented in Section 4 we were able to train with large numbers

of training pairs. However, if all pairs were used for training, then any training set would consist of

approximately 50,000,000 pairs and the training would still need too much time. Hence, whereas

in any training set all positive training pairs were used, the negative training pairs were randomly

selected in such a way that any training set consists of 2,000,000 pairs. The training of such a model

took less than 24 hours on a standard PC. In Figure 2b we present the average DET curves obtained

for K
poly
T M and feature vectors based on SIFT, LBP, and TPLBP. Inspired by Li et al. (2012), we

determined two further DET curves by adding up the decision function values. This led to very good

results. Furthermore, we concatenated the SIFT, LBP, and TPLBP feature vectors. Surprisingly, the

training of some of those models needed longer than a week. Therefore, we do not present these

results.

In Table 3 the mean equal error rate (EER) and the standard error of the mean (SEM) obtained

from the tenfold cross validation are provided for several types of feature vectors. Note, that many

of our results are comparable to the state of the art or even better. The current state of the art can be

found on the homepage of Huang et al. (2007) and in the publication of Li et al. (2012). If only SIFT-

based feature vectors are used, then the best known result is 0.125± 0.0040 (EER ± SEM). With

2289



BRUNNER, FISCHER, LUIG AND THIES

pairwise SVMs we achieved the same EER but a slightly higher SEM 0.1252±0.0062. If we add up

the decision function values corresponding to the LBP and TPLBP feature vectors, then our result

0.1210± 0.0046 is worse compared to the state of the art 0.1050± 0.0051. One possible reason

for this fact might be that we did not swap the pose. Finally, for the added up decision function

values corresponding to SIFT, LBP and TPLBP feature vectors, our performance 0.0947± 0.0057

is better than 0.0993±0.0051. Furthermore, it is worth noting that our standard errors of the mean

are comparable to the other presented learning algorithms although most of them use a PCA to

reduce noise and dimension of the feature vectors. Note that the results of the commercial system

are not directly comparable since it uses outside training data (for reference see Huang et al., 2007).

SIFT LBP TPLBP L+T S+L+T CS

Pairwise Mean EER 0.1252 0.1497 0.1452 0.1210 0.0947 -

SVM SEM 0.0062 0.0052 0.0060 0.0046 0.0057 -

State of Mean EER 0.1250 0.1267 0.1630 0.1050 0.0993 0.0870

the Art SEM 0.0040 0.0055 0.0070 0.0051 0.0051 0.0030

Table 3: Mean EER and SEM for LFW data set. S=SIFT, L=LBP, T=TPLBP, +=adding up decision

function values, CS=Commercial system face.com r2011b

6. Final Remarks

In this paper we suggested the SVM framework for handling large pairwise classification problems.

We analyzed two approaches to enforce the symmetry of the obtained classifiers. To the best of

our knowledge, we gave the first proof that symmetry is indeed achieved. Then, we proved that for

each parameter set of one approach there is a corresponding parameter set of the other one such that

both approaches lead to the same classifier. Additionally, we showed that the approach based on

balanced kernels leads to shorter training times.

We discussed details of the implementation of a pairwise SVM solver and presented numerical

results. Those results demonstrate that pairwise SVMs are capable of successfully treating large

scale pairwise classification problems. Furthermore, we showed that pairwise SVMs compete very

well for a real world data set.

We would like to underline that some of the discussed techniques could be transferred to other

approaches for solving pairwise classification problems. For example, most of the results can be

applied easily to One Class Support Vector Machines (Schölkopf et al., 2001).
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T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution gray-scale and rota-

tion invariant texture classification with local binary patterns. In IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 24(7):971–987, 2002. URL

http://www.cse.oulu.fi/MVG/Downloads/LBPMatlab (August 2011).

P. J. Phillips. Support vector machines applied to face recognition. In M. S. Kearns, S. A. Solla, and

D. A. Cohn, editors, Advances in Neural Information Processing Systems 11, pages 803–809.

MIT Press, 1999.

J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In

B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods: Support

Vector Learning, pages 185–208. MIT Press, 1999.

R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of Machine Learning

Research, 5:101–141, 2004.

B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond. MIT Press, 2001.

B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the support

of a high-dimensional distribution. Neural Computations, 13(7):1443–1471, 2001.

J. P. Vert, J. Qiu, and W. Noble. A new pairwise kernel for biological network inference with support

vector machines. BMC Bioinformatics, 8(Suppl 10):S8, 2007.

L. Wei, Y. Yang, R. M. Nishikawa, and M. N. Wernick. Learning of perceptual similarity from

expert readers for mammogram retrieval. In Proceedings of the IEEE International Symposium

on Biomedical Imaging (ISBI), pages 1356–1359. IEEE, 2006.

L. Wolf, T. Hassner, and Y. Taigman. Descriptor based methods in the wild. In Faces in Real-Life

Images Workshop at the European Conference on Computer Vision (ECCV ’08), 2008. URL

http://www.openu.ac.il/home/hassner/projects/Patchlbp (August 2011).

L. Wolf, T. Hassner, and Y. Taigman. Similarity scores based on background samples. In Proceed-

ings of the 9th Asian Conference on Computer Vision (ACCV ’09), volume 2, pages 88–97, 2009.

2292



Journal of Machine Learning Research 13 (2012) 2293-2337 Submitted 7/11; Revised 4/12; Published 8/12

High-Dimensional Gaussian Graphical Model Selection: Walk

Summability and Local Separation Criterion

Animashree Anandkumar A.ANANDKUMAR@UCI.EDU

Electrical Engineering and Computer Science

University of California, Irvine

Irvine, CA 92697

Vincent Y. F. Tan TANYFV@I2R.A-STAR.EDU.SG

Data Mining Department

Institute for Infocomm Research

Singapore

Electrical and Computer Engineering, National University of Singapore

Furong Huang FURONGH@UCI.EDU

Electrical Engineering and Computer Science

University of California, Irvine

Irvine, CA 92697

Alan S. Willsky WILLSKY@MIT.EDU

Stochastic Systems Group

Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

Cambridge, MA 02139

Editor: Martin Wainwright

Abstract

We consider the problem of high-dimensional Gaussian graphical model selection. We identify
a set of graphs for which an efficient estimation algorithm exists, and this algorithm is based on
thresholding of empirical conditional covariances. Under a set of transparent conditions, we es-
tablish structural consistency (or sparsistency) for the proposed algorithm, when the number of
samples n = Ω(J−2

min log p), where p is the number of variables and Jmin is the minimum (absolute)
edge potential of the graphical model. The sufficient conditions for sparsistency are based on the
notion of walk-summability of the model and the presence of sparse local vertex separators in the
underlying graph. We also derive novel non-asymptotic necessary conditions on the number of
samples required for sparsistency.

Keywords: Gaussian graphical model selection, high-dimensional learning, local-separation prop-
erty, walk-summability, necessary conditions for model selection

1. Introduction

Probabilistic graphical models offer a powerful formalism for representing high-dimensional dis-

tributions succinctly. In an undirected graphical model, the conditional independence relationships

among the variables are represented in the form of an undirected graph. Learning graphical models

using its observed samples is an important task, and involves both structure and parameter estima-

c©2012 Animashree Anandkumar, Vincent Tan, Furong Huang and Alan Willsky.
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tion. While there are many techniques for parameter estimation (e.g., expectation maximization),

structure estimation is arguably more challenging. High-dimensional structure estimation is NP-

hard for general models (Karger and Srebro, 2001; Bogdanov et al., 2008) and moreover, the num-

ber of samples available for learning is typically much smaller than the number of dimensions (or

variables).

The complexity of structure estimation depends crucially on the underlying graph structure.

Chow and Liu (1968) established that structure estimation in tree models reduces to a maximum

weight spanning tree problem and is thus computationally efficient. However, a general charac-

terization of graph families for which structure estimation is tractable has so far been lacking. In

this paper, we present such a characterization based on the so-called local separation property in

graphs. It turns out that a wide variety of (random) graphs satisfy this property (with probability

tending to one) including large girth graphs, the Erdős-Rényi random graphs (Bollobás, 1985) and

the power-law graphs (Chung and Lu, 2006), as well as graphs with short cycles such as the small-

world graphs (Watts and Strogatz, 1998) and other hybrid/augmented graphs (Chung and Lu, 2006,

Ch. 12). The small world and augmented graphs are especially relevant for modeling data from

social networks. Note that these graphs can simultaneously possess many short cycles as well as

large node degrees (growing with the number of nodes), and thus, we can incorporate a wide class

of graphs for high-dimensional estimation.

Successful structure estimation also relies on certain assumptions on the parameters of the

model, and these assumptions are tied to the specific algorithm employed. For instance, for convex-

relaxation approaches (Meinshausen and Bühlmann, 2006; Ravikumar et al., 2011), the assumptions

are based on certain incoherence conditions on the model, which are hard to interpret as well as ver-

ify in general. In this paper, we present a set of transparent conditions for Gaussian graphical model

selection based on walk-sum analysis (Malioutov et al., 2006). Walk-sum analysis has been previ-

ously employed to analyze the performance of loopy belief propagation (LBP) and its variants in

Gaussian graphical models. In this paper, we demonstrate that walk-summability also turns out to

be a natural criterion for efficient structure estimation, thereby reinforcing its importance in charac-

terizing the tractability of Gaussian graphical models.

1.1 Summary of Results

Our main contributions in this work are threefold. We propose a simple local algorithm for Gaussian

graphical model selection, termed as conditional covariance threshold test (CMIT) based on a set of

conditional covariance thresholding tests. Second, we derive sample complexity results for our al-

gorithm to achieve structural consistency (or sparsistency). Third, we prove a novel non-asymptotic

lower bound on the sample complexity required by any learning algorithm to succeed. We now

elaborate on these contributions.

Our structure learning procedure is known as the Conditional Covariance Test1 (CMIT) and is

outlined in Algorithm 1. Let CMIT(xn;ξn,p,η) be the output edge set from CMIT given n i.i.d.

samples xn, a threshold ξn,p (that depends on both p and n) and a constant η ∈ N, which is related

to the local vertex separation property (described later). The conditional covariance test proceeds

1. An analogous test is employed for Ising model selection in Anandkumar et al. (2012b) based on conditional mutual

information. We later note that conditional mutual information test has slightly worse sample complexity for learning

Gaussian models.
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Algorithm 1 Algorithm CMIT(xn;ξn,p,η) for structure learning using samples xn.

Initialize Ĝn
p = (V, /0).

For each i, j ∈V , if

min
S⊂V\{i, j}

|S|≤η

|Σ̂(i, j|S)|> ξn,p, (1)

then add (i, j) to Ĝn
p.

Output: Ĝn
p.

in the following manner. First, the empirical absolute conditional covariances2 are computed as

follows:

Σ̂(i, j|S) := Σ̂(i, j)− Σ̂(i,S) Σ̂
−1
(S,S) Σ̂(S, j),

where Σ̂(·, ·) are the respective empirical variances. Note that Σ̂
−1
(S,S) exists when the number of

samples satisfies n > |S| (which is the regime under consideration). The conditional covariance is

thus computed for each node pair (i, j) ∈V 2 and the conditioning set which achieves the minimum

is found, over all subsets of cardinality at most η; if the minimum value exceeds the threshold ξn,p,

then the node pair is declared as an edge. See Algorithm 1 for details.

The computational complexity of the algorithm is O(pη+2), which is efficient for small η. For

the so-called walk-summable Gaussian graphical models, the parameter η can be interpreted as an

upper bound on the size of local vertex separators in the underlying graph. Many graph families

have small η and as such, are amenable to computationally efficient structure estimation by our

algorithm. These include Erdős-Rényi random graphs, power-law graphs and small-world graphs,

as discussed previously.

We establish that the proposed algorithm has a sample complexity of n = Ω(J−2
min log p), where p

is the number of nodes (variables) and Jmin is the minimum (absolute) edge potential in the model.

As expected, the sample complexity improves when Jmin is large, that is, the model has strong edge

potentials. However, as we shall see, Jmin cannot be arbitrarily large for the model to be walk-

summable. We derive the minimum sample complexity for various graph families and show that

this minimum is attained when Jmin takes the maximum possible value.

We also develop novel techniques to obtain necessary conditions for consistent structure estima-

tion of Erdős-Rényi random graphs and other ensembles with non-uniform distribution of graphs.

We obtain non-asymptotic bounds on the number of samples n in terms of the expected degree and

the number of nodes of the model. The techniques employed are information-theoretic in nature

(Cover and Thomas, 2006). We cast the learning problem as a source-coding problem and develop

necessary conditions which combine the use of Fano’s inequality with the so-called asymptotic

equipartition property.

Our sufficient conditions for structural consistency are based on walk-summability. This char-

acterization is novel to the best of our knowledge. Previously, walk-summable models have been

extensively studied in the context of inference in Gaussian graphical models. As a by-product of

our analysis, we also establish the correctness of loopy belief propagation for walk-summable Gaus-

sian graphical models Markov on locally tree-like graphs (see Section 5 for details). This suggests

2. Alternatively, conditional independence can be tested via sample partial correlations which can be computed via

regression or recursion. See Kalisch and Bühlmann (2007) for details.
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that walk-summability is a fundamental criterion for tractable learning and inference in Gaussian

graphical models.

1.2 Related Work

Given that structure learning of general graphical models is NP-hard (Karger and Srebro, 2001;

Bogdanov et al., 2008), the focus has been on characterizing classes of models on which learning

is tractable. The seminal work of Chow and Liu (1968) provided an efficient implementation of

maximum-likelihood structure estimation for tree models via a maximum weighted spanning tree

algorithm. Error-exponent analysis of the Chow-Liu algorithm was studied (Tan et al., 2011a, 2010)

and extensions to general forest models were considered by Tan et al. (2011b) and Liu et al. (2011).

Learning trees with latent (hidden) variables (Choi et al., 2011) have also been studied recently.

For graphical models Markov on general graphs, alternative approaches are required for struc-

ture estimation. A recent paradigm for structure estimation is based on convex relaxation, where an

estimate is obtained via convex optimization which incorporates an !1-based penalty term to encour-

age sparsity. For Gaussian graphical models, such approaches have been considered in Meinshausen

and Bühlmann (2006) and Ravikumar et al. (2011) and d’Aspremont et al. (2008), and the sample

complexity of the proposed algorithms have been analyzed. A major disadvantage in using convex-

relaxation methods is that the incoherence conditions required for consistent estimation are hard to

interpret and it is not straightforward to characterize the class of models satisfying these conditions.

An alternative to the convex-relaxation approach is the use of simple greedy local algorithms

for structure learning. The conditions required for consistent estimation are typically more trans-

parent, albeit somewhat restrictive. Bresler et al. (2008) propose an algorithm for structure learning

of general graphical models Markov on bounded-degree graphs, based on a series of conditional-

independence tests. Abbeel et al. (2006) propose an algorithm, similar in spirit, for learning factor

graphs with bounded degree. Spirtes and Meek (1995), Cheng et al. (2002), Kalisch and Bühlmann

(2007) and Xie and Geng (2008) propose conditional-independence tests for learning Bayesian

networks on directed acyclic graphs (DAG). Netrapalli et al. (2010) proposed a faster greedy algo-

rithm, based on conditional entropy, for graphs with large girth and bounded degree. However, all

the works (Bresler et al., 2008; Abbeel et al., 2006; Spirtes and Meek, 1995; Cheng et al., 2002;

Netrapalli et al., 2010) require the maximum degree in the graph to be bounded (∆ = O(1)) which

is restrictive. We allow for graphs where the maximum degree can grow with the number of nodes.

Moreover, we establish a natural tradeoff between the maximum degree and other parameters of the

graph (e.g., girth) required for consistent structure estimation.

Necessary conditions for consistent graphical model selection provide a lower bound on sample

complexity and have been explored before by Santhanam and Wainwright (2008) and Wang et al.

(2010). These works consider graphs drawn uniformly from the class of bounded degree graphs

and establish that n = Ω(∆k log p) samples are required for consistent structure estimation, in an

p-node graph with maximum degree ∆, where k is typically a small positive integer. However,

a direct application of these methods yield poor lower bounds if the ensemble of graphs has a

highly non-uniform distribution. This is the case with the ensemble of Erdős-Rényi random graphs

(Bollobás, 1985). Necessary conditions for structure estimation of Erdős-Rényi random graphs were

derived for Ising models by Anandkumar et al. (2012b) based on an information-theoretic covering

argument. However, this approach is not directly applicable to the Gaussian setting. We present a

novel approach for obtaining necessary conditions for Gaussian graphical model selection based on
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the notion of typicality. We characterize the set of typical graphs for the Erdős-Rényi ensemble and

derive a modified form of Fano’s inequality and obtain a non-asymptotic lower bound on sample

complexity involving the average degree and the number of nodes.

We briefly also point to a large body of work on high-dimensional covariance selection under

different notions of sparsity. Note that the assumption of a Gaussian graphical model Markov on

a sparse graph is one such formulation. Other notions of sparsity include Gaussian models with

sparse covariance matrices, or having a banded Cholesky factorization. Also, note that many works

consider covariance estimation instead of selection and in general, estimation guarantees can be

obtained under less stringent conditions. See Lam and Fan (2009), Rothman et al. (2008), Huang

et al. (2006) and Bickel and Levina (2008) for details.

1.3 Paper Outline

The paper is organized as follows. We introduce the system model in Section 2. We prove the main

result of our paper regarding the structural consistency of conditional covariance thresholding test in

Section 3. We prove necessary conditions for model selection in Section 4. In Section 5, we analyze

the performance of loopy belief propagation in Gaussian graphical models. Section 7 concludes the

paper. Proofs and additional discussion are provided in the appendix.

2. Preliminaries and System Model

We now provide an overview of Gaussian graphical models and the problem of structure learning

given samples from the model.

2.1 Gaussian Graphical Models

A Gaussian graphical model is a family of jointly Gaussian distributions which factor in accordance

to a given graph. Given a graph G = (V,E), with V = {1, . . . , p}, consider a vector of Gaussian

random variables X = [X1,X2, . . . ,Xp]T , where each node i ∈V is associated with a scalar Gaussian

random variable Xi. A Gaussian graphical model Markov on G has a probability density function

(pdf) that may be parameterized as

fX(x) ∝ exp

[
−

1

2
xT JGx+hT x

]
, (2)

where JG is a positive-definite symmetric matrix whose sparsity pattern corresponds to that of the

graph G. More precisely,

JG(i, j) = 0 ⇐⇒ (i, j) /∈ G.

The matrix JG is known as the potential or information matrix, the non-zero entries J(i, j) as the

edge potentials, and the vector h as the potential vector. A model is said to be attractive if Ji, j ≤ 0

for all i (= j. The form of parameterization in (2) is known as the information form and is related to

the standard mean-covariance parameterization of the Gaussian distribution as

µ = J−1h, Σ= J−1,

where µ := E[X] is the mean vector and Σ := E[(X−µ)(X−µ)T ] is the covariance matrix.
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We say that a jointly Gaussian random vector X with joint pdf f (x) satisfies local Markov

property with respect to a graph G if

f (xi|xN (i)) = f (xi|xV\i)

holds for all nodes i ∈V , where N (i) denotes the set of neighbors of node i ∈V and, V \ i denotes

the set of all nodes excluding i. More generally, we say that X satisfies the global Markov property,

if for all disjoint sets A,B ⊂V , we have

f (xA,xB|xS) = f (xA|xS) f (xB|xS).

where set S is a separator3 of A and B The local and global Markov properties are equivalent for

non-degenerate Gaussian distributions (Lauritzen, 1996).

Our results on structure learning depend on the precision matrix J. Let

Jmin := min
(i, j)∈G

|J(i, j)|, Jmax := max
(i, j)∈G

|J(i, j)|, Dmin := min
i

J(i, i).

Intuitively, models with edge potentials which are “too small” or “too large” are harder to learn than

those with comparable potentials. Since we consider the high-dimensional case where the number

of variables p grows, we allow the bounds Jmin, Jmax, and Dmin to potentially scale with p.

The partial correlation coefficient between variables Xi and Xj, for i (= j, measures their con-

ditional covariance given all other variables. These are computed by normalizing the off-diagonal

values of the information matrix, that is,

R(i, j) :=
Σ(i, j|V \{i, j})√

Σ(i, i|V \{i, j})Σ( j, j|V \{i, j})
=−

J(i, j)√
J(i, i)J( j, j)

. (3)

For all i ∈V , set R(i, i) = 0. We henceforth refer to R as the partial correlation matrix.

An important sub-class of Gaussian graphical models of the form in (19) are the walk-summable

models (Malioutov et al., 2006). A Gaussian model is said to be α-walk summable if

‖R‖ ≤ α < 1,

where R := [|R(i, j)|] denotes the entry-wise absolute value of the partial correlation matrix R and

‖ ·‖ denotes the spectral or 2-norm of the matrix, which for symmetric matrices, is given by the

maximum absolute eigenvalue.

In other words, walk-summability means that an attractive model formed by taking the abso-

lute values of the partial correlation matrix of the Gaussian graphical model is also valid (i.e., the

corresponding potential matrix is positive definite). This immediately implies that attractive mod-

els form a sub-class of walk-summable models. For detailed discussion on walk-summability, see

Section A.1.

2.2 Tractable Graph Families

We consider the class of Gaussian graphical models Markov on a graph Gp belonging to some en-

semble G(p) of graphs with p nodes. We consider the high-dimensional learning regime, where both

3. A set S ⊂V is a separator for sets A and B if the removal of nodes in S partitions A and B into distinct components.
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p and the number of samples n grow simultaneously; typically, the growth of p is much faster than

that of n. We emphasize that in our formulation the graph ensemble G(p) can either be deterministic

or random—in the latter, we also specify a probability measure over the set of graphs in G(p). In the

setting where G(p) is a random-graph ensemble, let PX,G denote the joint probability distribution

of the variables X and the graph G ∼ G(p), and let fX|G denote the conditional (Gaussian) density

of the variables Markov on the given graph G. Let PG denote the probability distribution of graph

G drawn from a random ensemble G(p). We use the term almost every (a.e.) graph G satisfies a

certain property Q if

lim
p→∞

PG[G satisfies Q ] = 1.

In other words, the property Q holds asymptotically almost surely4 (a.a.s.) with respect to the

random-graph ensemble G(p). Our conditions and theoretical guarantees will be based on this

notion for random graph ensembles. Intuitively, this means that graphs that have a vanishing prob-

ability of occurrence as p → ∞ are ignored.

We now characterize the ensemble of graphs amenable for consistent structure estimation under

our formulation. To this end, we define the concept of local separation in graphs. See Fig. 1 for an

illustration. For γ ∈ N, let Bγ(i;G) denote the set of vertices within distance γ from i with respect

to graph G. Let Hγ,i := G(Bγ(i)) denote the subgraph of G spanned by Bγ(i;G), but in addition, we

retain the nodes not in Bγ(i) (and remove the corresponding edges). Thus, the number of vertices in

Hγ,i is p.

Definition 1 (γ-Local Separator) Given a graph G, a γ-local separator Sγ(i, j) between i and j,

for (i, j) /∈ G, is a minimal vertex separator5 with respect to the subgraph Hγ,i. In addition, the

parameter γ is referred to as the path threshold for local separation.

In other words, the γ-local separator Sγ(i, j) separates nodes i and j with respect to paths in G of

length at most γ. We now characterize the ensemble of graphs based on the size of local separators.

Definition 2 ((η,γ)-Local Separation Property) An ensemble of graphs satisfies (η,γ)-local sep-

aration property if for a.e. Gp in the ensemble,

max
(i, j)/∈Gp

|Sγ(i, j)|≤ η. (4)

We denote such a graph ensemble by G(p;η,γ).

In Section 3, we propose an efficient algorithm for graphical model selection when the under-

lying graph belongs to a graph ensemble G(p;η,γ) with sparse local separators (i.e., small η, for η
defined in (4)). We will see that the computational complexity of our proposed algorithm scales as

O(pη+2). We now provide examples of several graph families satisfying (4).

4. Note that the term a.a.s. does not apply to deterministic graph ensembles G(p) where no randomness is assumed, and

in this setting, we assume that the property Q holds for every graph in the ensemble.

5. A minimal separator is a separator of smallest cardinality.
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j

a b c d

i

S(i, j)

Figure 1: Illustration of l-local separator set S(i, j;G, l) for the graph shown above with l = 4. Note

that N (i) = {a,b,c,d} is the neighborhood of i and the l-local separator set S(i, j;G, l) =
{a,b}⊂ N (i;G). This is because the path along c connecting i and j has a length greater

than l and hence node c /∈ S(i, j;G, l).

2.2.1 EXAMPLE 1: BOUNDED-DEGREE

We now show that the local-separation property holds for a rich class of graphs. Any (deterministic

or random) ensemble of degree-bounded graphs GDeg(p,∆) satisfies (η,γ)-local separation property

with η = ∆ and arbitrary γ ∈ N. If we do not impose any further constraints on GDeg, the computa-

tional complexity of our proposed algorithm scales as O(p∆+2) (see also Bresler et al., 2008 where

the computational complexity is comparable). Thus, when ∆ is large, our proposed algorithm and

the one in Bresler et al. (2008) are computationally intensive. Our goal in this paper is to relax

the usual bounded-degree assumption and to consider ensembles of graphs G(p) whose maximum

degrees may grow with the number of nodes p. To this end, we discuss other structural constraints

which can lead to graphs with sparse local separators.

2.2.2 EXAMPLE 2: BOUNDED LOCAL PATHS

Another sufficient condition6 for the (η,γ)-local separation property in Definition 2 to hold is that

there are at most η paths of length at most γ in G between any two nodes (henceforth, termed as the

(η,γ)-local paths property). In other words, there are at most η−1 number of overlapping7 cycles

of length smaller than 2γ.

In particular, a special case of the local-paths property described above is the so-called girth

property. The girth of a graph is the length of the shortest cycle. Thus, a graph with girth g satisfies

(η,γ)-local separation property with η = 1 and γ = g/2. Let GGirth(p;g) denote the ensemble of

graphs with girth at most g. There are many graph constructions which lead to large girth. For

example, the bipartite Ramanujan graph (Chung, 1997, p. 107) and the random Cayley graphs

(Gamburd et al., 2009) have large girths.

6. For any graph satisfying (η,γ)-local separation property, the number of vertex-disjoint paths of length at most γ
between any two non-neighbors is bounded above by η, by appealing to Menger’s theorem for bounded path lengths

(Lovász et al., 1978). However, the property of local paths that we describe above is a stronger notion than having

sparse local separators and we consider all distinct paths of length at most γ and not just vertex disjoint paths in the

formulation.

7. Two cycles are said to overlap if they have common vertices.
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The girth condition can be weakened to allow for a small number of short cycles, while not

allowing for typical node neighborhoods to contain short cycles. Such graphs are termed as locally

tree-like. For instance, the ensemble of Erdős-Rényi graphs GER(p,c/p), where an edge between

any node pair appears with a probability c/p, independent of other node pairs, is locally tree-like.

The parameter c may grow with p, albeit at a controlled rate for tractable structure learning. We

make this more precise in Example 3 in Section 3.1. The proof of the following result may be found

in Anandkumar et al. (2012a).

Proposition 3 (Random Graphs are Locally Tree-Like) The ensemble of Erdős-Rényi graphs

GER(p,c/p) satisfies the (η,γ)-local separation property in (4) with

η = 2, γ ≤
log p

4logc
. (5)

Thus, there are at most two paths of length smaller than γ between any two nodes in Erdős-Rényi

graphs a.a.s, or equivalently, there are no overlapping cycles of length smaller than 2γ a.a.s. Simi-

lar observations apply for the more general scale-free or power-law graphs (Chung and Lu, 2006;

Dommers et al., 2010). Along similar lines, the ensemble of ∆-random regular graphs, denoted

by GReg(p,∆), which is the uniform ensemble of regular graphs with degree ∆ has no overlapping

cycles of length at most Θ(log∆−1 p) a.a.s. (McKay et al., 2004, Lemma 1).

2.2.3 EXAMPLE 3: SMALL-WORLD GRAPHS

The previous two examples showed local separation holds under two different conditions: bounded

maximum degree and bounded number of local paths. The former class of graphs can have short

cycles but the maximum degree needs to be constant, while the latter class of graphs can have a large

maximum degree but the number of overlapping short cycles needs to be small. We now provide

instances which incorporate both these features: large degrees and short cycles, and yet satisfy the

local separation property.

The class of hybrid graphs or augmented graphs (Chung and Lu, 2006, Ch. 12) consists of

graphs which are the union of two graphs: a “local” graph having short cycles and a “global”

graph having small average distances. Since the hybrid graph is the union of these local and global

graphs, it has both large degrees and short cycles. The simplest model GWatts(p,d,c/p), first studied

by Watts and Strogatz (1998), consists of the union of a d-dimensional grid and an Erdős-Rényi

random graph with parameter c. It is easily seen that a.e. graph G ∼ GWatts(p,d,c/p) satisfies

(η,γ)-local separation property in (4), with

η = d +2, γ ≤
log p

4logc
.

Similar observations apply for more general hybrid graphs studied in Chung and Lu (2006, Ch. 12).

Thus, we see that a wide range of graphs satisfy the property of having sparse local separators,

and that it is possible for graphs with large degrees as well as many short cycles to have this property.

2.2.4 COUNTER-EXAMPLE: DENSE GRAPHS

While the above examples illustrate that a large class of graphs satisfy the local separation criterion,

there indeed exist graphs which do not satisfy it. Such graphs tend to be “dense”, that is, the
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number of edges scales super-linearly in the number of nodes. For instance, the Erdős-Rényi graphs

GER(p,c/p) in the dense regime, where the average degree scales as c = Ω(p2). In this regime,

the node degrees as well as the number of short cycles grow with p. However, there is no simple

decomposition into a local and a global graph with desirable properties, as in the previous example

of small world graphs. Thus, the size of the local separators also grows with p in this case. Such

graphs are hard instances for our framework.

3. Guarantees for Conditional Covariance Thresholding

We now characterize conditions under which the underlying Markov structure can be recovered

successfully under conditional covariance thresholding.

3.1 Assumptions

(A1) Sample Scaling Requirements: We consider the asymptotic setting where both the number

of variables (nodes) p and the number of samples n tend to infinity. We assume that the

parameters (n, p,Jmin) scale in the following fashion:8

n = Ω(J−2
min log p). (6)

We require that the number of nodes p → ∞ to exploit the local separation properties of the

class of graphs under consideration.

(A2) α-Walk-summability: The Gaussian graphical model Markov on Gp ∼G(p) is α-walk summable

a.a.s., that is,

‖RGp‖ ≤ α < 1, a.e. Gp ∼ G(p), (7)

where α is a constant (i.e., not a function of p), R := [|R(i, j)|] is the entry-wise absolute value

of the partial correlation matrix R and ‖·‖ denotes the spectral norm.

(A3) Local-Separation Property: We assume that the ensemble of graphs G(p;η,γ) satisfies the

(η,γ)-local separation property with η,γ satisfying:

η = O(1), JminD−1
minα−γ = ω(1), (8)

where α is given by (7) and Dmin := mini J(i, i) is the minimum diagonal entry of the potential

matrix J.

(A4) Condition on Edge-Potentials: The minimum absolute edge potential of an α-walk summable

Gaussian graphical model satisfies

Dmin(1−α) min
(i, j)∈Gp

J(i, j)

K(i, j)
> 1+δ, (9)

for almost every Gp ∼ G(p), for some δ > 0 (not depending on p) and9

K(i, j) := ‖J(V \{i, j},{i, j})‖2,

8. The notations ω(·), Ω(·) refer to asymptotics as the number of variables p → ∞.

9. Here and in the sequel, for A,B ⊂V , we use the notation J(A,B) to denote the sub-matrix of J indexed by rows in A

and columns in B.
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is the spectral norm of the submatrix of the potential matrix J, and Dmin := mini J(i, i) is the

minimum diagonal entry of J. Intuitively, (9) limits the extent of non-homogeneity in the

model and the extent of overlap of neighborhoods. Moreover, this assumption is not required

for consistent graphical model selection when the model is attractive (Ji, j ≤ 0 for i (= j).10

(A5) Choice of threshold ξn,p: The threshold ξn,p for graph estimation under CMIT algorithm is

chosen as a function of the number of nodes p, the number of samples n, and the minimum

edge potential Jmin as follows:

ξn,p = O(Jmin), ξn,p = ω

(
αγ

Dmin

)
, ξn,p = Ω

(√
log p

n

)

, (10)

where α is given by (7), Dmin := mini J(i, i) is the minimum diagonal entry of the potential

matrix J, and γ is the path-threshold (4) for the (η,γ)-local separation property to hold.

Assumption (A1) stipulates how n, p and Jmin should scale for consistent graphical model se-

lection, that is, the sample complexity. The sample size n needs to be sufficiently large with respect

to the number of variables p in the model for consistent structure reconstruction. Assumptions

(A2) and (A4) impose constraints on the model parameters. Assumption (A3) restricts the class of

graphs under consideration. To the best of our knowledge, all previous works dealing with graphi-

cal model selection, for example, Meinshausen and Bühlmann (2006), Ravikumar et al. (2011), also

impose some conditions for consistent graphical model selection. Assumption (A5) is with regard

to the choice of a suitable threshold ξn,p for thresholding conditional covariances. In the sequel, we

compare the conditions for consistent recovery after presenting our main theorem.

3.1.1 EXAMPLE 1: DEGREE-BOUNDED ENSEMBLES

To gain a better understanding of conditions (A1)–(A5), consider the ensemble of graphs GDeg(p;∆)
with bounded degree ∆ ∈ N. It can be established that for the walk-summability condition in (A2)

to hold,11 we require that for normalized precision matrices (J(i, i) = 1),

Jmax = O

(
1

∆

)
.

See Section A.2 for detailed discussion. When the minimum potential achieves the bound (Jmin =
Θ(1/∆)), a sufficient condition for (A3) to hold is given by

∆αγ = o(1), (11)

where γ is the path threshold for the local-separation property to hold according to Definition 2.

Intuitively, we require a larger path threshold γ, as the degree bound ∆ on the graph ensemble

increases.

Note that (11) allows for the degree bound ∆ to grow with the number of nodes as long as

the path threshold γ also grows appropriately. For example, if the maximum degree scales as

∆ = O(poly(log p)) and the path-threshold scales as γ = O(log log p), then (11) is satisfied. This

implies that graphs with fairly large degrees and short cycles can be recovered successfully using

our algorithm.

10. The assumption (A5) rules out the possibility that the neighbors are marginally independent. See Section B.3 for

details.

11. We can provide improved bounds for random-graph ensembles. See Section A.2 for details.
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3.1.2 EXAMPLE 2: GIRTH-BOUNDED ENSEMBLES

The condition in (11) can be specialized for the ensemble of girth-bounded graphs GGirth(p;g) in a

straightforward manner as

∆α
g
2 = o(1), (12)

where g corresponds to the girth of the graphs in the ensemble. The condition in (12) demonstrates

a natural tradeoff between the girth and the maximum degree; graphs with large degrees can be

learned efficiently if their girths are large. Indeed, in the extreme case of trees which have infinite

girth, in accordance with (12), there is no constraint on node degrees for successful recovery and

recall that the Chow-Liu algorithm (Chow and Liu, 1968) is an efficient method for model selection

on tree distributions.

3.1.3 EXAMPLE 3: ERDŐS-RÉNYI AND SMALL-WORLD ENSEMBLES

We can also conclude that a.e. Erdős-Rényi graph G ∼ GER(p,c/p) satisfies (8) when

c = O(poly(log p)) under the best-possible scaling of Jmin subject to the walk-summability con-

straint in (7) (i.e., Jmin achieves the upper bound).

This is because it can be shown that Jmin = O(1/
√

∆) for walk-summability in (7) to hold. See

Section A.2 for details. Noting that a.a.s., the maximum degree ∆ for G ∼ GER(p,c/p) satisfies

∆ = O

(
log p logc

log log p

)
,

from Bollobás (1985, Ex. 3.6) and γ = O( log p
logc ) from (5). Thus, the Erdős-Rényi graphs are

amenable to successful recovery when the average degree c = O(poly(log p)). Similarly, for the

small-world ensemble GWatts(p,d,c/p), when d = O(1) and c = O(poly(log p)), the graphs are

amenable for consistent estimation.

3.2 Consistency of Conditional Covariance Thresholding

Assuming (A1)–(A5), we now state our main result. The proof of this result and the auxiliary

lemmata for the proof can be found in Sections B and Section C.

Theorem 4 (Structural consistency of CMIT) For structure learning of Gaussian graphical mod-

els Markov on a graph Gp ∼ G(p;η,γ), CMIT(xn;ξn,p,η) is consistent for a.e. graph Gp. In other

words,

lim
n,p→∞

n=Ω(J−2
min log p)

P [CMIT({xn};ξn,p,η) (= Gp] = 0

Remarks:

1. Consistency guarantee: The CMIT algorithm consistently recovers the structure of Gaussian

graphical models asymptotically, with probability tending to one, where the probability mea-

sure is with respect to both the random graph (drawn from the ensemble G(p;η,γ) and the

samples (drawn from ∏n
i=1 f (xi|G)).
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2. Analysis of sample complexity: The above result states that the sample complexity for the

CMIT (n = Ω(J−2
min log p)), which improves when the minimum edge potential Jmin is large.12

This is intuitive since the edges have stronger potentials in this case. On the other hand,

Jmin cannot be arbitrarily large since the α-walk-summability assumption in (7) imposes an

upper bound on Jmin. The minimum sample complexity (over different parameter settings) is

attained when Jmin achieves this upper bound. See Section A.2 for details. For example, for

any degree-bounded graph ensemble G(p,∆) with maximum degree ∆, the minimum sample

complexity is n = Ω(∆2 log p), that is, when Jmin = Θ(1/∆), while for Erdős-Rényi random

graphs, the minimum sample complexity can be improved to n = Ω(∆ log p), that is, when

Jmin = Θ(1/
√

∆).

3. Comparison with Ravikumar et al. (2011): The work by Ravikumar et al. (2011) employs an

!1-penalized likelihood estimator for structure estimation in Gaussian graphical models. Un-

der the so-called incoherence conditions, the sample complexity is n = Ω((∆2 + J−2
min) log p).

Our sample complexity in (6) is the same in terms of its dependence on Jmin, and there is no

explicit dependence on the maximum degree ∆. Moreover, we have a transparent sufficient

condition in terms of α-walk-summability in (7), which directly imposes scaling conditions

on Jmin. It is an open question if the models satisfying incoherence conditions are walk-

summable or viceversa. However, for random graph models, we can obtain better guarantees

in terms of average degrees while the incoherence conditions are based on maximum degree in

the graph. We also present experimental comparison between this method and our developed

method in Section 6.

4. Comparison with Meinshausen and Bühlmann (2006): The work by

Meinshausen and Bühlmann (2006) considers !1-penalized linear regression for neighbor-

hood selection of Gaussian graphical models and establish a sample complexity of n=Ω((∆+
J−2

min) log p). We note that our guarantees allow for graphs which do not necessarily satisfy the

conditions imposed by Meinshausen and Bühlmann (2006). For instance, the assumption of

neighborhood stability (assumption 6 in Meinshausen and Bühlmann, 2006) is hard to ver-

ify in general, and the relaxation of this assumption corresponds to the class of models with

diagonally-dominant covariance matrices. Note that the class of Gaussian graphical mod-

els with diagonally-dominant covariance matrices forms a strict sub-class of walk-summable

models, and thus satisfies assumption (A2) for the theorem to hold. Thus, Theorem 4 ap-

plies to a larger class of Gaussian graphical models compared to Meinshausen and Bühlmann

(2006). Furthermore, the conditions for successful recovery in Theorem 4 are arguably more

transparent.

5. Local vs. Global Conditions for Success: The conditions required for the success of our

methods as well as the !1 penalized MLE of Ravikumar et al. (2011) are global, meaning

that the entire model (i.e., all the parameters) need to satisfy the specified conditions for

recovering the entire graph. It does not appear straightforward to characterize local conditions

for successful recovery under our formulation, that is, when our algorithm may succeed in

recovering some parts of the graph, but not others. On the other hand, the !1 penalized

neighborhood selection method of Meinshausen and Bühlmann (2006) provides a separate

12. Note that the sample complexity also implicitly depends on walk-summability parameter α through (8).
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set of conditions for recovery of each neighborhood in the graph. However, as discussed

above, these conditions appear stronger and more opaque than our conditions.

6. Comparison with Ising models: Our above result for learning Gaussian graphical models

is analogous to structure estimation of Ising models subject to an upper bound on the edge

potentials (Anandkumar et al., 2012b), and we characterize such a regime as a conditional

uniqueness regime. Thus, walk-summability is the analogous condition for Gaussian models.

Proof Outline: We first analyze the scenario when exact statistics are available. (i) We establish that

for any two non-neighbors (i, j) /∈ G, the minimum conditional covariance in (1) (based on exact

statistics) does not exceed the threshold ξn,p. (ii) Similarly, we also establish that the conditional

covariance in (1) exceeds the threshold ξn,p for all neighbors (i, j) ∈ G. (iii) We then extend these

results to empirical versions using concentration bounds.

3.2.1 PERFORMANCE OF CONDITIONAL MUTUAL INFORMATION TEST

We now employ the conditional mutual information test, analyzed in Anandkumar et al. (2012b)

for Ising models, and note that it has slightly worse sample complexity than using conditional co-

variances. Using the threshold ξn,p defined in (10), the conditional mutual information test CMIT is

given by the threshold test

min
S⊂V\{i, j}

|S|≤η

Î(Xi;Xj|XS)> ξ2
n,p,

and node pairs (i, j) exceeding the threshold are added to the estimate Ĝn
p. Assuming (A1)–(A5),

we have the following result.

Theorem 5 (Structural consistency of CMIT) For structure learning of the Gaussian graphical

model on a graph Gp ∼ G(p;η,γ), CMIT(xn;ξn,p,η) is consistent for a.e. graph Gp. In other

words,

lim
n,p→∞

n=Ω(J−4
min log p)

P [CMIT({xn};ξn,p,η) (= Gp] = 0

The proof of this theorem is provided in Section C.3.

Remarks:

1. For Gaussian random variables, conditional covariances and conditional mutual information

are equivalent tests for conditional independence. However, from above results, we note that

there is a difference in the sample complexity for the two tests. The sample complexity of

CMIT is n = Ω(J−4
min log p) in contrast to n = Ω(J−2

min log p) for CMIT. This is due to faster

decay of conditional mutual information on the edges compared to the decay of conditional

covariances. Thus, conditional covariances are more efficient for Gaussian graphical model

selection compared to conditional mutual information.

4. Necessary Conditions for Model Selection

In the previous sections, we proposed and analyzed efficient algorithms for learning the structure of

Gaussian graphical models Markov on graph ensembles satisfying local-separation property. In this

section, we study the problem of deriving necessary conditions for consistent structure learning.
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! ! !

Xm ∼ Pm(x)
Encoder

M ∈ [2mR]

Decoder
X̂m

Figure 2: The canonical source coding problem. See Chapter 3 in Cover and Thomas (2006).

For the class of degree-bounded graphs GDeg(p,∆), necessary conditions on sample complexity

have been characterized before (Wang et al., 2010) by considering a certain (limited) set of ensem-

bles. However, a naı̈ve application of such bounds (based on Fano’s inequality (Cover and Thomas,

2006, Ch. 2)) turns out to be too weak for the class of Erdős-Rényi graphs GER(p,c/p), where the

average degree13 c is much smaller than the maximum degree.

We now provide necessary conditions on the sample complexity for recovery of Erdős-Rényi

graphs. Our information-theoretic techniques may also be applicable to other ensembles of random

graphs. This is a promising avenue for future work.

4.1 Setup

We now describe the problem more formally. A graph G is drawn from the ensemble of Erdős-Rényi

graphs G ∼ GER(p,c/p). The learner is also provided with n conditionally i.i.d. samples Xn :=
(X1, . . . ,Xn) ∈ (X p)n (where X = R) drawn from the conditional (Gaussian) product probability

density function (pdf) ∏n
i=1 f (xi|G). The task is then to estimate G, a random quantity. The estimate

is denoted as Ĝ := Ĝ(Xn). It is desired to derive tight necessary conditions on n (as a function of c

and p) so that the probability of error

P
(p)
e := P(Ĝ (= G)→ 0 (13)

as the number of nodes p tends to infinity. Note that the probability measure P in (13) is associated

to both the realization of the random graph G and the samples Xn.

The task is reminiscent of source coding (or compression), a problem of central importance in

information theory (Cover and Thomas, 2006)—we would like to derive fundamental limits associ-

ated to the problem of reconstructing the source G given a compressed version of it Xn (Xn is also

analogous to the “message”). However, note the important distinction; while in source coding, the

source coder can design both the encoder and the decoder, our problem mandates that the code is

fixed by the conditional probability density f (x|G). We are only allowed to design the decoder. See

comparisons in Figs. 2 and 3.

4.2 Necessary Conditions for Exact Recovery

To derive the necessary condition for learning Gaussian graphical models Markov on sparse Erdős-

Rényi graphs G ∼ GER(p,c/p), we assume that the strict walk-summability condition with param-

eter α, according to (7). We are then able to demonstrate the following:

Theorem 6 (Weak Converse for Gaussian Models) For a walk-summable Gaussian graphical

model satisfying (7) with parameter α, for almost every graph G ∼ GER(p,c/p) as p → ∞, in order

13. The techniques in this section are applicable when the average degree (c) of GER(p,c/p) ensemble is a function of p,

for example, c = O(poly(log p)).
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! ! !

G ∼ GER(p, c
p)

n

∏
i=1

f (xi|G)

Xn ∈ (Rp)n

Decoder
Ĝ

Figure 3: The estimation problem is analogous to source coding: the “source” is G ∼ GER(p, c
p),

the “message” is Xn ∈ (Rp)n and the “decoded source” is Ĝ. We are asking what the

minimum “rate” (analogous to the number of samples n) are required so that Ĝ = G with

high probability.

for P
(p)
e → 0, we require that

n ≥
2

p log2

[
2πe

(
1

1−α +1
)]
(

p

2

)
Hb

(
c

p

)
(14)

for all p sufficiently large.

The proof is provided in Section D.1. By expanding the binary entropy function, it is easy to see

that the statement in (14) can be weakened to the necessary condition:

n ≥
c log2 p

log2

[
2πe

(
1

1−α +1
)] .

The above condition does not involve any asymptotic notation, and also demonstrates the depen-

dence of the sample complexity on p,c and α transparently. Finally, the dependence on α can be

explained as follows: any α-walk-summable model is also β-walk-summable for all β > α. Thus,

the class of β-walk-summable models contains the class of α-walk-summable models. This results

in a looser bound in (14) for larger α.

4.3 Necessary Conditions for Recovery with Distortion

In this section, we generalize Theorem 6 to the case where we only require estimation of the under-

lying graph up to a certain edit distance: an error is declared if and only if the estimated graph Ĝ

exceeds an edit distance (or distortion) D of the true graph. The edit distance d :Gp×Gp →N∪{0}
between two undirected graphs G = (V,E) and G = (V,E ′) is defined as d(G,G′) := |E1E ′|, where

1 denotes the symmetric difference between the edge sets E and E ′. The edit distance can be

regarded as a distortion measure between two graphs.

Given an positive integer D, known as the distortion, suppose we declare an error if and only if

d(G,G′)> D, then the probability of error is redefined as

P
(p)
e := P(d(G, Ĝ(Xn))> D). (15)

We derive necessary conditions on n (as a function of p and c) such that the probability of error (15)

goes to zero as p → ∞. To ease notation, we define the ratio

β := D/

(
p

2

)
. (16)

Note that β may be a function of p. We do not attempt to make this dependence explicit. The

following corollary is based on an idea propounded by Kim et al. (2008) among others.
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Corollary 7 (Weak Converse for Discrete Models With Distortion) For P
(p)
e → 0, we must have

n ≥
2

p log2

[
2πe

(
1

1−α +1
)]
(

p

2

)[
Hb

(
c

p

)
−Hb (β)

]
(17)

for all p sufficiently large.

The proof of this corollary is provided in Section D.7. Note that for (17) to be a useful bound,

we need β < c/p which translates to an allowed distortion D < cp/2. We observe from (17) that

because the error criterion has been relaxed, the required number of samples is also reduced from

the corresponding lower bound in (14).

4.4 Proof Techniques

Our analysis tools for deriving necessary conditions for Gaussian graphical model selection are

information-theoretic in nature. A common and natural tool to derive necessary conditions (also

called converses) is to resort to Fano’s inequality (Cover and Thomas, 2006, Chapter 2), which

(lower) bounds the probability of error P
(p)
e as a function of the equivocation or conditional entropy

H(G|Xn) and the size of the set of all graphs with p nodes. However, a direct and naı̈ve application

Fano’s inequality results in a trivial lower bound as the set of all graphs, which can be realized by

GER(p,c/p) is, loosely speaking, “too large”.

To ameliorate such a problem, we employ another information-theoretic notion, known as typi-

cality. A typical set is, roughly speaking, a set that has small cardinality and yet has high probability

as p → ∞. For example, the probability of a set of length-m sequences is of the order ≈ 2mH (where

H is the entropy rate of the source) and hence those sequences with probability close to this value

are called typical. In our context, given a graph G, we define the d̄(G) to be the ratio of the number

of edges of G to the total number of nodes p. Let Gp denote the set of all graphs with p nodes. For

a fixed ε > 0, we define the following set of graphs:

T
(p)

ε :=

{
G ∈Gp :

∣∣∣∣
d̄(G)

c
−

1

2

∣∣∣∣≤
ε

2

}
.

The set T
(p)

ε is known as the ε-typical set of graphs. Every graph G ∈ T
(p)

ε has an average number

of edges that is c
2 ε-close in the Erdős-Rényi ensemble. Note that typicality ideas are usually used

to derive sufficient conditions in information theory (Cover and Thomas, 2006) (achievability in

information-theoretic parlance); our use of both typicality for graphical model selection as well as

Fano’s inequality to derive converse statements seems novel. Indeed, the proof of the converse of

the source coding theorem in Cover and Thomas (2006, Chapter 3) uses only Fano’s inequality. We

now summarize the properties of the typical set.

Lemma 8 (Properties of T
(p)

ε ) The ε-typical set of graphs has the following properties:

1. P(T
(p)

ε )→ 1 as p → ∞.

2. For all G ∈ T
(p)

ε , we have14

exp2

[
−
(

p

2

)
Hb

(
c

p

)
(1+ ε)

]
≤ P(G)≤ exp2

[
−
(

p

2

)
Hb

(
c

p

)]
.

14. We use the notation exp2( ·) to mean 2( ·).
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3. The cardinality of the ε-typical set can be bounded as

(1− ε)exp2

[(
p

2

)
Hb

(
c

p

)]
≤ |T (p)

ε |≤ exp2

[(
p

2

)
Hb

(
c

p

)
(1+ ε)

]

for all p sufficiently large.

The proof of this lemma can be found in Section D.2. Parts 1 and 3 of Lemma 8 respectively say that

the set of typical graphs has high probability and has very small cardinality relative to the number of

graphs with p nodes |Gp|= exp2(
(

p
2

)
). Part 2 of Lemma 8 is known as the asymptotic equipartition

property: the graphs in the typical set are almost uniformly distributed.

5. Implications on Loopy Belief Propagation

An active area of research in the graphical model community is that of inference—that is, the task

of computing node marginals (or MAP estimates) through efficient distributed algorithms. The

simplest of these algorithms is the belief propagation15 (BP) algorithm, where messages are passed

among the neighbors of the graph of the model. It is known that belief propagation (and max-

product) is exact on tree models, meaning that correct marginals are computed at all the nodes

(Pearl, 1988). On the other hand on general graphs, the generalized version of BP, known as loopy

belief propagation (LBP), may not converge and even if it does, the marginals may not be correct.

Motivated by the twin problems of convergence and correctness, there has been extensive work on

characterizing LBP’s performance for different models. As a by-product of our previous analysis

on graphical model selection, we now show the asymptotic correctness of LBP on walk-summable

Gaussian models when the underlying graph is locally tree-like.

5.1 Background

The belief propagation (BP) algorithm is a distributed algorithm where messages (or beliefs) are

passed among the neighbors to draw inferences at the nodes of a graphical model. The computa-

tion of node marginals through naı̈ve variable elimination (or Gaussian elimination in the Gaussian

setting) is prohibitively expensive. However, if the graph is sparse (consists of few edges), the com-

putation of node marginals may be sped up dramatically by exploiting the graph structure and using

distributed algorithms to parallelize the computations.

For the sake of completeness, we now recall the basic steps in LBP, specific to Gaussian graph-

ical models. Given a message schedule which specifies how messages are exchanged, each node

j receives information from each of its neighbors (according to the graph), where the message,

mt
i→ j(x j), from i to j, in t th iteration is parameterized as

mt
i→ j(x j) := exp

[
−

1

2
∆Jt

i→ jx
2
j +∆ht

i→ jx j

]
.

Each node i prepares message mt
i→ j(x j) by collecting messages from neighbors of the previous

iteration (under parallel iterations), and computing

Ĵi\ j(t) = J(i, i)+ ∑
k∈N (i)\ j

∆Jt−1
k→i, ĥi\ j(t) = h(i)+ ∑

k∈N (i)\ j

∆hk→i(t),

15. The variant of the belief propagation algorithm which computes the MAP estimates is known as the max-product

algorithm.
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where

∆Jt
i→ j =−J( j, i)Ĵ−1

i\ j
(t)J( j, i), ∆ht

i→ j =−J( j, i)Ĵ−1
i\ j

(t)ĥk→i(t).

5.2 Results

Let ΣLBP(i, i) denote the variance at node i at the LBP fixed point.16 Without loss of generality, we

consider the normalized version of the precision matrix

J = I−R,

which can always be obtained from a general precision matrix via normalization. We can then renor-

malize the variances, computed via LBP, to obtain the variances corresponding to the unnormalized

precision matrix.

We consider the following ensemble of locally-tree like graphs. Consider the event that the

neighborhood of a node i has no cycles up to graph distance γ, given by

Γ(i;γ,G) := {Bγ(i;G) does not contain any cycles}.

We assume a random graph ensemble G(p) such that for a given node i ∈V , we have

P[Γc(i;γ,G)] = o(1). (18)

Proposition 9 (Correctness of LBP) Given an α-walk-summable Gaussian graphical model on

a.e. locally tree-like graph G ∼ G(p;γ) with parameter γ satisfying (18), we have

|ΣG(i, i)−ΣLBP(i, i)|
a.a.s.
= O(max(αγ,P[Γc(i;γ,G)])).

The proof is given in Section B.4.

Remarks:

1. The class of Erdős-Rényi random graphs, G ∼ GER(p,c/p) satisfies (18), with

γ = O(log p/ logc) for a node i ∈V chosen uniformly at random.

2. Recall that the class of random regular graphs G ∼ GReg(p,∆) have a girth of O(log∆−1 p).
Thus, for any node i ∈V , (18) holds with γ = O(log∆−1 p).

6. Experiments

In this section we present some experimental results on real and synthetic data. We implement

the proposed CMIT method as well the convex relaxation methods, namely, the !1 penalized maxi-

mum likelihood estimate (MLE) (Ravikumar et al., 2011) and !1 penalized neighborhood selection

(Meinshausen and Bühlmann, 2006). We measure the performance of methods using the notion

of the edit distance between the true and estimated graphs (for synthetic data). We also compare

the penalized likelihood scores of the estimated models using the notion of Bayesian information

criterion (BIC) for both synthetic and real data. We implement the proposed CMIT method in

MATLAB and the convex relaxation methods using the YALMIP package.17 We also used CON-

TEST18 to generate the synthetic graphs. The data sets, software code and results are available at

http://newport.eecs.uci.edu/anandkumar.

16. Convergence of LBP on walk-summable models has been established by Malioutov et al. (2006).

17. YALMIP is available at http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Main.Download.

18. CONTEST is at http://www.maths.strath.ac.uk/research/groups/numerical_analysis/contest.
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6.1 Data Sets

Synthetic data: In order to evaluate the performance of our algorithm in terms of error in reconstruct-

ing the graph structure, we generated samples from Gaussian graphical models for different graphs.

These include a single cycle graph with p = 80 nodes, an Erdős-Rényi (ER) graph G ∼ GER(p,c/p)
with average degree c = 1.2 and Watts-Strogatz model GWatts(p,d,c/p) with degree of local graph

d = 2 and average degree of the global graph c = 1.2. Given the graph structure G, we generate

the potential matrix JG whose sparsity pattern corresponds to that of G. We set the diagonal el-

ements in JG to unity and nonzero off-diagonal entries are picked uniformly19 from [0,0.1]. We

set the potential vector h to be 0 without loss of generality. We let the number of samples be

n ∈ {102,5×102,103,5×103,104}. Note that for synthetic data, we know η, the size of local sep-

arators for non-neighboring node pairs in the graph, and we incorporate it in the implementation of

the CMIT algorithm. We present edit distance results for CMIT and the above mentioned convex

relaxation methods for different thresholds and regularization parameters.20

Foreign exchange data: We consider monthly trends of foreign exchange rates21 of 19 curren-

cies22 with respect to the US dollar from 10/1/1983 to 02/1/2012. We evaluate the BIC score for

models estimated using our algorithm under different thresholds ξn,p and different sizes of the local

separator sets η, and compared it with the convex relaxation methods under different regularization

parameters.

6.2 Performance Criteria

The BIC score has been extensively used to enable tradeoff between data fitting and model com-

plexity (Schwarz, 1978). We use a modified version of the BIC score proposed for high-dimensional

data sets (Foygel and Drton, 2010) as the performance criterion for model fitting. Given n samples

xn := [x1, . . . ,xn], and parameters θ,

BIC(xn;θ) :=
n

∑
k=1

log f (xk;θ)−0.5|E| logn−2|E| log p,

where |E| is the number of edges in the Markov graph and θ is the set of parameters characterizing

the model. It has been observed elsewhere (Liu et al., 2009) that the BIC score tends to overselect

the edges leading to dense graphs, and thus, we impose a hard threshold on the number of edges

(both for our method and for convex relaxation methods), and select the model with the best BIC

score. For the foreign exchange data, we limited the number of edges to 100, while for synthetic

data, we limited it to 100 for cycle and Erdős-Rényi (ER) graphs and to 200 for the Watts-Strogatz

model. We note that alternatively, the thresholds/regularization parameters can be selected via cross

validation or other mechanisms, see Liu et al. (2009) for details.

19. The choice of parameters and graphs result in valid models in our experiments, that is, the potential matrix is positive

definite.

20. For the convex relaxation methods in Ravikumar et al. (2011) and Meinshausen and Bühlmann (2006), the regular-

ization parameter denotes the weight associated with the !1 term.

21. Data set available at http://research.stlouisfed.org/fred2/categories/15/downloaddata.

22. The European countries which switched to Euro are not considered in our analysis.
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Graph n CMIT !1 MLE !1 Nbd

Cycle 102 1.0000 1.0000 1.0000

ER 102 1.0000 1.0000 1.0000

WS 102 1.0000 1.0000 1.0000

Cycle 103 0.95 0.9875 0.9000

ER 103 0.6825 1.1087 1.0000

WS 103 0.8580 0.9520 0.8063

Cycle 104 0.4125 0.3875 0.3625

ER 104 0.3273 0.3469 0.5435

WS 104 0.3252 0.3313 0.2688

Table 1: Normalized edit distance under CMIT, !1 penalized MLE and !1 penalized neighborhood

selection on synthetic data from graphs listed above, where n denotes the number of sam-

ples.

6.3 Experimental Outcomes

Synthetic data: We compare the performance of our method CMIT with convex relaxation methods

for synthetic data as described earlier. We evaluate the normalized edit distance (normalized with

respect to the number of edges), since we know the ground truth for synthetic data and present the

results in Table 1 for CMIT, !1 penalized MLE and !1 penalized neighborhood selection. methods.

The results are also presented in figures 7a, 7b and 7c. We note that CMIT has better edit distance

performance and BIC scores compared to !1 penalized MLE in most cases, and similar performance

compared to the !1 penalized neighborhood selection.

Foreign exchange data: We evaluate the BIC scores under our algorithm CMIT with differ-

ent values of η (the constraint on the size of subsets used for conditioning)23 and threshold ξn,p.

We present the results in Table 2, where for each value of η, we present the threshold ξn,p which

achieves the best BIC score under the sparsity constraint. We also present the regularization param-

eters for convex relaxation methods with the best BIC. The estimated graphs are shown in figures

4 and 5. We note that while CMIT distributes the edges fairly uniformly across the nodes, the !1

penalized MLE tends to cluster all the edges together between the “dominant” variables leading

to a densely connected component and several isolated nodes. We observe from the reconstructed

graphs that geography plays a crucial role in the foreign exchange trends. In Fig.4 recovered us-

ing the CMIT method, we note that among Asian countries India and S. Korea are high degree

nodes and are connected to countries which are geographically close (e.g., Sri Lanka for India, and

Australia, Thailand, Taiwan and China for S. Korea). On the other hand, the !1 method outputs

a densely connected graph where such geographical relationships are missing. Thus, we see that

in the experiments, the proposed CMIT method tends to enforce local sparsity in the graph, while

the !1 method of Ravikumar et al. (2011) enforces global sparsity, and tends to cluster the edges

together. On the other hand, the !1 penalized neighborhood selection (Meinshausen and Bühlmann,

2006) is better than the MLE in distributing the edges across all the nodes, but carries this out to a

lesser extent than our method.

23. The BIC score for η = 0 is too low and we do not present it in our results. This implies that there is dependence

between the variables.
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Thres.(CMIT) η LL-train×107 LL-test×107 BIC-train×107 BIC-test×107 |E|
0.5 1 -2.9521 -7.4441 -2.9522 -7.4442 23

0.5 2 -3.2541 -8.5923 -3.2541 -8.5923 8

0.01 3 -2.9669 -7.3773 -2.9670 -7.3774 19

0.001 4 -2.9653 -7.3674 -2.9654 -7.3675 25

0.0005 5 -3.2901 -8.8396 -3.3068 -8.8397 24

0.0005 6 -3.2921 -8.8466 -3.2921 -8.8467 18

Thres.(!1 MLE) − LL-train×107 LL-test×107 BIC-train×107 BIC-test×107 |E|
6.5803 − -2.5831 -6.3167 -2.5832 -6.3167 28

Thres.(!1 Nbd) − LL-train×107 LL-test×107 BIC-train×107 BIC-test×107 |E|
13.1606 − -2.7971 -6.9630 -2.7972 -6.9631 26

Table 2: Experimental outcome for CMIT, !1 penalized MLE and !1 penalized neighborhood selec-

tion for different thresholds/regularization parameters and size of conditioning sets η for

foreign exchange data. |E| denotes the number of edges.

India

Japan

S. Korea

Sri Lanka Canada

China

Sweden

S. Africa

Taiwan

Thailand

Australia
New

Zealand

UK
Hong
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Denmark

Malaysia

Norway
Switzerland

Singapore

Figure 4: Graph estimate under CMIT algorithm for foreign exchange data set for η = 4, see Ta-

ble 2.

7. Conclusion

In this paper, we adopted a novel and a unified paradigm for graphical model selection. We pre-

sented a simple local algorithm for structure estimation with low computational and sample com-

plexities under a set of mild and transparent conditions. This algorithm succeeds on a wide range of

graph ensembles such as the Erdős-Rényi ensemble, small-world networks etc. We also employed

novel information-theoretic techniques for establishing necessary conditions for graphical model

selection.

2314



HIGH-DIMENSIONAL GAUSSIAN GRAPHICAL MODEL SELECTION
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Figure 5: Graph estimate under !1 penalized MLE for foreign exchange data set. See Table 2.
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Figure 6: Graph estimate under !1 penalized neighborhood selection method for foreign exchange

data set. See Table 2.
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(b) Erdös-Rényi
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(c) Watts-Strogatz

Figure 7: CMIT, !1 penalized MLE and !1 penalized neighborhood selection methods.
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Appendix A. Walk-summable Gaussian Graphical Models

We first provide an overview of the notion of walk-summability for Gaussian graphical models.

A.1 Background on Walk-Summability

We now recap the properties of walk-summable Gaussian graphical models, as given by (7). For

details, see Malioutov et al. (2006). For simplicity, we first assume that the diagonal of the potential

matrix J is normalized (J(i, i) = 1 for all i ∈ V ). We remove this assumption and consider general

unnormalized precision matrices in Section B.2. Consider splitting the matrix J into the identity

matrix and the partial correlation matrix R, defined in (3):

J = I−R. (19)

The covariance matrix Σ of the graphical model in (19) can be decomposed as

Σ= J−1 = (I−R)−1 =
∞

∑
k=0

Rk, ‖R‖< 1, (20)

using Neumann power series for the matrix inverse. Note that we require that ‖R‖ < 1 for (20) to

hold, which is implied by walk-summability in (7) (since ‖R‖ ≤ ‖R‖).

We now relate the matrix power Rl to walks on graph G. A walk w of length l ≥ 0 on graph G is

a sequence of nodes w := (w0,w1, . . . ,wl) traversed on the graph G, that is, (wk,wk+1) ∈ G. Let |w|
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denote the length of the walk. Given matrix RG supported on graph G, let the weight of the walk be

φ(w) :=
|w|

∏
k=1

R(wk−1,wk).

The elements of the matrix power Rl are given by

Rl(i, j) = ∑
w:i

l→ j

φ(w), (21)

where i
l→ j denotes the set of walks from i to j of length l. For this reason, we henceforth refer to

R as the walk matrix.

Let i → j denote all the walks between i and j. Under the walk-summability condition in (7),

we have convergence of ∑w:i→ j φ(w), irrespective of the order in which the walks are collected, and

this is equal to the covariance Σ(i, j).
In Section A.3, we relate walk-summability in (7) to the notion of correlation decay, where the

effect of faraway nodes on covariances can be controlled and the local-separation property of the

graphs under consideration can be exploited.

A.2 Sufficient Conditions for Walk-summability

We now provide sufficient conditions and suitable parameterization for walk-summability in (7) to

hold. The adjacency matrix AG of a graph G with maximum degree ∆G satisfies

λmax(AG)≤ ∆G,

since it is dominated by a ∆-regular graph which has maximum eigenvalue of ∆G. From Perron-

Frobenius theorem, for adjacency matrix AG, we have λmax(AG) = ‖AG‖, where ‖AG‖ is the spec-

tral radius of AG. Thus, for RG supported on graph G, we have

α := ‖RG‖= O(Jmax∆) ,

where Jmax := maxi, j |R(i, j)|. This implies that

Jmax = O

(
1

∆

)

to have α < 1, which is the requirement for walk-summability.

When the graph G is a Erdős-Rényi random graph, G ∼ GER(p,c/p), we can provide better

bounds. When G ∼ GER(p,c/p), we have Krivelevich and Sudakov (2003), that

λmax(AG) = (1+o(1))max(
√

∆G,c),

where ∆G is the maximum degree and AG is the adjacency matrix. Thus, in this case, when c=O(1),
we require that

Jmax = O

(√
1

∆

)

,

for walk-summability (α< 1). Note that when c=O(poly(log p)), w.h.p. ∆Gp =Θ(log p/ log log p)
(Bollobás, 1985, Ex. 3.6).
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A.3 Implications of Walk-Summability

Recall that ΣG denotes the covariance matrix for Gaussian graphical model on graph G and that

JG = Σ
−1
G with JG = I − RG in (19). We now relate the walk-summability condition in (7) to

correlation decay in the model. In other words, under walk-summability, we can show that the

effect of faraway nodes on covariances decays with distance, as made precise in Lemma 10.

Let Bγ(i) denote the set of nodes within γ hops from node i in graph G. Denote Hγ;i j :=G(Bγ(i)∩
Bγ( j)) as the induced subgraph of G over the intersection of γ-hop neighborhoods at i and j and

retaining the nodes in V \{Bγ(i)∩Bγ( j)}. Thus, Hγ;i j has the same number of nodes as G. We first

make the following simple observation: the (i, j) element in the γth power of walk matrix, R
γ
G(i, j), is

given by walks of length γ between i and j on graph G and thus, depends only on subgraph24 Hγ;i j,

see (21). This enables us to quantify the effect of nodes outside Bγ(i)∩Bγ( j) on the covariance

ΣG(i, j).
Define a new walk matrix RHγ;i j such that

RHγ;i j(a,b) =

{
RG(a,b), a,b ∈ Bγ(i)∩Bγ( j),

0, o.w.

In other words, RHγ;i j is formed by considering the Gaussian graphical model over graph Hγ;i j. Let

ΣHγ;i j denote the corresponding covariance matrix.25

Lemma 10 (Covariance Bounds Under Walk-summability) For any walk-summable Gaussian

graphical model (α := ‖RG‖< 1), we have26

max
i, j

|ΣG(i, j)−ΣHγ;i j(i, j)|≤ αγ 2α

1−α
= O(αγ). (22)

Thus, for walk-summable Gaussian graphical models, we have α := ‖RG‖ < 1, implying that

the error in (22) in approximating the covariance by local neighborhood decays exponentially with

distance. Parts of the proof below are inspired by Dumitriu and Pal (2009).

Proof: Using the power-series in (20), we can write the covariance matrix as

ΣG =
γ

∑
k=0

Rk
G +EG,

where the error matrix EG has spectral radius

‖EG‖ ≤
‖RG‖γ+1

1−‖RG‖
,

from (20). Thus,27 for any i, j ∈V ,

|ΣG(i, j)−
γ

∑
k=0

Rk
G(i, j)|≤

‖RG‖γ+1

1−‖RG‖
. (23)

24. Note that Rγ(i, j) = 0 if Bγ(i)∩Bγ( j) = /0.

25. When Bγ(i)∩Bγ( j) = /0 meaning that graph distance between i and j is more than γ, we obtain ΣHγ;i j
= I.

26. The bound in (22) also holds if Hγ;i j is replaced with any of its supergraphs.

27. For any matrix A, we have maxi, j |A(i, j)|≤ ‖A‖.
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Similarly, we have

|ΣHγ;i j(i, j)−
γ

∑
k=0

Rk
Hγ;i j

(i, j)|≤
‖RHγ;i j‖

γ+1

1−‖RHγ;i j‖
(a)
≤

‖RG‖γ+1

1−‖RG‖
, (24)

where for inequality (a), we use the fact that

‖RHγ;i j‖ ≤ ‖RHγ;i j‖ ≤ ‖RG‖,

since Hγ;i j is a subgraph28 of G.

Combining (23) and (24), using the triangle inequality, we obtain (22). !

We also make some simple observations about conditional covariances in walk-summable mod-

els. Recall that RG denotes matrix with absolute values of RG, and RG is the walk matrix over graph

G. Also recall that the α-walk summability condition in (7), is ‖RG‖ ≤ α < 1.

Proposition 11 (Conditional Covariances under Walk-Summability) Given a walk-summable

Gaussian graphical model, for any i, j ∈V and S ⊂V with i, j /∈ S, we have

Σ(i, j|S) = ∑
w:i→ j

∀k∈w,k/∈S

φG(w). (25)

Moreover, we have

sup
i∈V

S⊂V\i

Σ(i, i|S)≤ (1−α)−1 = O(1). (26)

Proof: We have, from Rue and Held (2005, Thm. 2.5),

Σ(i, j|S) = J−1
−S,−S;G(i, j),

where J−S,−S;G denotes the submatrix of potential matrix JG by deleting nodes in S. Since sub-

matrix of a walk-summable matrix is walk-summable, we have (25) by appealing to the walk-sum

expression for conditional covariances.

For (26), let ‖A‖∞ denote the maximum absolute value of entries in matrix A. Using mono-

tonicity of spectral norm and the fact that ‖A‖∞ ≤ ‖A‖, we have

sup
i∈V

S⊂V,i/∈V

Σ(i, i|S)≤ ‖J−1
−S,−S;G‖= (1−‖R−S,−S;G‖)−1

≤ (1−‖R−S,−S;G‖)−1 ≤ (1−‖RG‖)−1 = O(1).

!

Thus, the conditional covariance in (25) consists of walks in the original graph G, not passing

through nodes in S.

28. When two matrices A and B are such that |A(i, j)|≥ |B(i, j)| for all i, j, we have ‖A‖ ≥ ‖B‖.
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Appendix B. Graphs with Local-Separation Property

We now provide bounds on conditional covariance for walk-summable matrices.

B.1 Conditional Covariance between Non-Neighbors: Normalized Case

We now provide bounds on the conditional covariance for Gaussian graphical models Markov on a

graph G ∼ G(p;η,γ) satisfying the local-separation property (η,γ), as per Definition 2.

Lemma 12 (Conditional Covariance Between Non-neighbors) For a walk-summable Gaussian

graphical model, the conditional covariance between non-neighbors i and j, conditioned on Sγ, the

γ-local separator between i and j, satisfies

max
j/∈N (i)

Σ(i; j|Sγ) = O(‖RG‖γ).

Proof: In this proof, we abbreviate Sγ by S for notational convenience. The conditional covariance

is given by the Schur complement, that is, for any subset A such that A∩S = /0,

Σ(A|S) = Σ(A,A)−Σ(A,S)Σ(S,S)−1Σ(S,A). (27)

We use the notation ΣG(A,A) to denote the submatrix of the covariance matrix ΣG, when the

underlying graph is G. As in Lemma 10, we may decompose ΣG as follows:

ΣG =ΣHγ +Eγ,

where Hγ is the subgraph spanned by γ-hop neighborhood Bγ(i), and Eγ is the error matrix. Let Fγ

be the matrix such that

ΣG(S,S)
−1 =ΣHγ(S,S)

−1 +Fγ.

We have ΣHγ(i, j|S) = 0, where ΣHγ(i, j|S) denotes the conditional covariance by considering the

model given by the subgraph Hγ. This is due to the Markov property since i and j are separated by

S in the subgraph Hγ.

Thus using (27), the conditional covariance on graph G can be bounded as

ΣG(i, j|S) = O(max(‖Eγ‖,‖Fγ‖)).

By Lemma 10, we have ‖Eγ‖ = O(‖RG‖γ). Using Woodbury matrix-inversion identity, we also

have ‖Fγ‖= O(‖RG‖γ). !

B.2 Extension to General Precision Matrices: Unnormalized Case

We now extend the above analysis to general precision matrices J where the diagonal elements are

not assumed to be identity. Denote the precision matrix as

J = D−E,

where D is a diagonal matrix and E has zero diagonal elements. We thus have that

Jnorm := D−0.5JD−0.5 = I−R,
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where R is the partial correlation matrix. This also implies that

J = D0.5JnormD0.5.

Thus, we have that

Σ= D−0.5
ΣnormD−0.5, (28)

where Σnorm := J−1
norm is the covariance matrix corresponding to the normalized model. When the

model is walk-summable, that is, ‖R‖ ≤ α < 1, we have that Σnorm = ∑k≥0 Rk.

We now use the results derived in the previous sections involving the normalized model

(Lemma 10 and Lemma 12) to obtain bounds for general precision matrices.

Lemma 13 (Covariance Bounds for General Models) For any walk-summable Gaussian graph-

ical model (α := ‖RG‖< 1), we have the following results:

1. Covariance Bounds: The covariance entries upon limiting to a subgraph Hγ;i j for any i, j ∈V

satisfies

max
i, j

|ΣG(i, j)−ΣHγ;i j(i, j)|≤
αγ

Dmin

2α

1−α
= O

(
αγ

Dmin

)
, (29)

where Dmin := mini D(i, i) = mini J(i, i).

2. Conditional Covariance between Non-neighbors: The conditional covariance between non-

neighbors i and j, conditioned on Sγ, the γ-local separator between i and j, satisfies

max
j/∈N (i)

Σ(i; j|Sγ) = O

(
αγ

Dmin

)
, (30)

where Dmin := mini D(i, i) = mini J(i, i).

Proof: Using (28) and Lemma 10, we have (29). Similarly, it can be shown that for any S ⊂
V \{i, j}, i, j ∈V ,

Σ(i, j|S) = D−0.5Σnorm(i, j|S)D−0.5,

where Σnorm(i, j|S) is the conditional covariance corresponding to the model with normalized pre-

cision matrix. From Lemma 12, we have (30). !

B.3 Conditional Covariance between Neighbors: General Case

We provide a lower bound on conditional covariance among the neighbors for the graphs under

consideration. Recall that Jmin denotes the minimum edge potentials. Let

K(i, j) := ‖J(V \{i, j},{i, j})‖2,

where J(V \{i, j},{i, j}) is a sub-matrix of the potential matrix J.

Lemma 14 (Conditional Covariance Between Neighbors) For an α-walk summable Gaussian

graphical model satisfying

Dmin(1−α) min
(i, j)∈Gp

J(i, j)

K(i, j)
> 1+δ, (31)
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for some δ > 0 (not depending on p), where Dmin := mini J(i, i), we have

|ΣG(i, j|S)|= Ω(Jmin),

for any (i, j) ∈ G such that j ∈ N (i) and any subset S ⊂V with i, j /∈ S.

Proof: First note that for attractive models,

ΣG(i, j|S)
(a)
≥ΣG1(i, j|S)
(b)
=

−J(i, j)

J(i, i)J( j, j)− J(i, j)2
= Ω(Jmin),

where G1 is the graph consisting only of edge (i, j). Inequality (a) arises from the fact that in

attractive models, the weights of all the walks are positive, and thus, the weight of walks on G1

form a lower bound for those on G (recall that the covariances are given by the sum-weight of walks

on the graphs). Equality (b) is by direct matrix inversion of the model on G1.

For general models, we need further analysis. Let A = {i, j} and B = V \ {S∪A}, for some

S ⊂V \A. Let Σ(A,A) denote the covariance matrix on set A, and let J̃(A,A) :=Σ(A,A)−1 denote

the corresponding marginal potential matrix. We have for all S ⊂V \A

J̃(A,A) = J(A,A)−J(A,B)J(B,B)−1J(B,A).

Recall that ‖A‖∞ denotes the maximum absolute value of entries in matrix A.

‖J(A,B)J(B,B)−1J(B,A)‖∞

(a)
≤‖J(A,B)J(B,B)−1J(B,A)‖
(b)
≤‖J(A,B)‖2‖J(B,B)−1‖

=
‖J(A,B)‖2

λmin(J(B,B))
,

(c)
≤

K(i, j)2

Dmin(1−α)

where inequality (a) arises from the fact that the !∞ norm is bounded by the spectral norm, (b)

arises from sub-multiplicative property of norms and (c) arises from walk-summability property.

Inequality (b) is from the bound on edge potentials and α-walk summability of the model and since

K(i, j)≥ ‖J(A,B)‖. Assuming (31), we have

|J̃(i, j)|> Jmin −
‖J(A,B)‖2

Dmin(1−α)
= Ω(Jmin).

Since

ΣG(i, j|S) =
−J̃(i, j)

J̃(i, i)J̃( j, j)− J̃(i, j)2
,

we have the result. !
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B.4 Analysis of Loopy Belief Propagation

Proof of Proposition 9: From Lemma 10 in Section A.3, for any α-walk-summable Gaussian

graphical model, we have, for all nodes i ∈V conditioned on the event Γ(i;γ,G),

|ΣG(i, i)−ΣLBP(i, i)|= O(‖RG‖γ).

This is because conditioned on Γ(i;γ,G), it is shown that the series expansions based on walk-sums

corresponding to the variances ΣHγ;i j(i, i) and ΣLBP(i, i) are identical up to length γ walks, and the

effect of walks beyond length γ can be bounded as above. Moreover, for a sequence of α-walk-

summable, we have Σ(i, i)≤ M for all i ∈V , for some constant M and similarly ΣLBP(i, j)≤ M′ for

some constant M′ since it is obtained by the set of self-avoiding walks in G. We thus have

E [|ΣG(i, i)−ΣLBP(i, i)|]≤
[
O(‖RG‖γ)+P[Γc(i;γ)]

]
= o(1),

where E is over the expectation of ensemble G(p). By Markov’s inequality,29 we have the result. !

Appendix C. Sample-based Analysis

We now extend our analysis to the setting where we have access to samples instead of exact statistics.

C.1 Concentration of Empirical Quantities

For our sample complexity analysis, we recap the concentration result by Ravikumar et al. (2011,

Lemma 1) for sub-Gaussian matrices and specialize it to Gaussian matrices.

Lemma 15 (Concentration of Empirical Covariances) For any p-dimensional Gaussian random

vector X = [X1, . . . ,Xp], the empirical covariance obtained from n samples satisfies

P
[
| Σ̂(i, j)−Σ(i, j)|> ε

]
≤ 4exp

[
−

nε2

3200M2

]
, (32)

for all ε ∈ (0,40M) and M := maxi Σ(i, i).

This translates to bounds for empirical conditional covariance.

Corollary 16 (Concentration of Empirical Conditional Covariance) For a walk-summable

p-dimensional Gaussian random vector X = [X1, . . . ,Xp], we have

P



 max
i(= j

S⊂V,|S|≤η

| Σ̂(i, j|S)−Σ(i; j|S)|> ε



≤ 4pη+2 exp

(
−

nε2

K

)
, (33)

where K ∈ (0,∞) is a constant which is bounded when ‖Σ‖∞ is bounded, for all ε ∈ (0,40M) with

M := maxi Σ(i, i), and n ≥ η.

29. By Markov’s inequality, for a non-negative random variable X , we have P[X > δ] ≤ E[X ]/δ. By choosing δ =
ω(E[X ]), we have the result.
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Proof: For a given i, j ∈V and S ⊂V with η ≤ n, using (27),

P
[
| Σ̂(i, j|S)−Σ(i; j|S)|> ε

]
≤ P

[(
| Σ̂(i, j)−Σ(i; j)|> ε

)

⋃

k∈S

(
| Σ̂(i,k)−Σ(i;k)|> K′ε

)]

,

where K′ is a constant which is bounded when ‖Σ‖∞ is bounded. Using Lemma 15, we have the

result. !

C.2 Proof of Theorem 4

We are now ready to prove Theorem 4. We analyze the error events for the conditional covariance

threshold test CMIT. For any (i, j) /∈ Gp, define the event

F1(i, j;{xn},Gp) :=
{
|Σ̂(i, j|S)|> ξn,p

}
,

where ξn,p is the threshold in (10) and S is the γ-local separator between i and j (since the minimum

in (1) is achieved by the γ-local separator). Similarly for any edge (i, j) ∈ Gp, define the event that

F2(i, j;{xn},Gp) :=
{
∃S ⊂V : |S|≤ η, |Σ̂(i, j|S)|< ξn,p

}
.

The probability of error resulting from CMIT can thus be bounded by the two types of errors,

P[CMIT({xn};ξn,p) (= Gp]≤ P




⋃

(i, j)∈Gp

F2(i, j;{xn},Gp)





+P




⋃

(i, j)/∈Gp

F1(i, j;{xn},Gp)



 (34)

For the first term, applying union bound for both the terms and using the result (33) of Lemma 15,

P




⋃

(i, j)∈Gp

F2(i, j;{xn},Gp)



= O

(
pη+2 exp

[
−

n(Cmin(p)−ξn,p)2

K2

])
(35)

where

Cmin(p) := inf
(i, j)∈Gp

S⊂V,i, j/∈S
|S|≤η

|Σ(i, j|S)|= Ω(Jmin) , ∀ p ∈ N,

from (37). Since ξn,p = o(Jmin), (35) is o(1) when n > L log p/J2
min, for sufficiently large L (depend-

ing on η and M). For the second term in (34),

P




⋃

(i, j)/∈Gp

F1(i, j;{xn},Gp)



= O

(
pη+2 exp

[
−

n(ξn,p −Cmax(p))2

K2

])
, (36)

where

Cmax(p) := max
(i, j)/∈Gp

|Σ(i, j|S)|= O

(
αγ

Dmin

)
.

For the choice of ξn,p in (10), (36) is o(1) and this completes the proof of Theorem 4.
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C.3 Conditional Mutual Information Thresholding Test

We now analyze the performance of conditional mutual information threshold test. We first note

bounds on conditional mutual information.

Proposition 17 (Conditional Mutual Information) Under the assumptions (A1)–(A5), we have

that the conditional mutual information among non-neighbors, conditioned on the γ-local sepa-

ration satisfies

max
(i, j)/∈G

I(Xi;Xj|XSγ) = O(α2γ),

and the conditional mutual information among the neighbors satisfy

min
(i, j)∈G

S⊂V\{i, j}

I(Xi;Xj|XS) = Ω(J2
min). (37)

Proof: The conditional mutual information for Gaussian variables is given by

I(Xi;Xj|XS) =−
1

2
log
[
1−ρ2(i, j|S)

]
,

where ρ(i, j|S) is the conditional correlation coefficient, given by

ρ(i, j|S) :=
Σ(i, j|S)√

Σ(i, i|S)Σ( j, j|S)
.

From (26) in Proposition 11, we have Σ(i, i|S) = O(1) and thus, the result holds. !

We now note the concentration bounds on empirical mutual information.

Lemma 18 (Concentration of Empirical Mutual Information) For any p-dimensional Gaussian

random vector X = [X1, . . . ,Xp], the empirical mutual information obtained from n samples satisfies

P(|Î(Xi;Xj)− I(Xi;Xj)|> ε)≤ 24exp

(
−

nMε2

204800L2

)
, (38)

for some constant L which is finite when ρmax := maxi(= j |ρ(i, j)| < 1, and all ε < ρmax, and for

M := maxi Σ(i, i).

Proof: The result on empirical covariances can be found in Ravikumar et al. (2011, Lemma

1). The result in (38) will be shown through a sequence of transformations. First, we will bound
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P(|ρ̂(i, j)−ρ(i, j)|> ε). Consider,

P(|ρ̂(i, j)−ρ(i, j)|> ε)

= P

(∣∣∣∣∣
Σ̂(i, j)

(Σ̂(i, i)Σ̂( j, j))1/2
−

Σ(i, j)

(Σ(i, i)Σ( j, j))1/2

∣∣∣∣∣> ε

)

= P





∣∣∣∣∣∣
Σ̂(i, j)

Σ(i, j)

(
Σ(i, i)

Σ̂(i, i)

Σ( j, j)

Σ̂( j, j)

)1/2

−1

∣∣∣∣∣∣
>

ε

|ρ(i, j)|





(a)
≤P

(
Σ̂(i, j)

Σ(i, j)
>

(
1+

ε

|ρ(i, j)|

)1/3
)

+P

(
Σ̂(i, j)

Σ(i, j)
<

(
1−

ε

|ρ(i, j)|

)1/3
)

+ . . .

+P

(
Σ(i, i)

Σ̂(i, i)
>

(
1+

ε

|ρ(i, j)|

)2/3
)

+P

(
Σ(i, i)

Σ̂(i, i)
<

(
1−

ε

|ρ(i, j)|

)2/3
)

+ . . .

+P

(
Σ( j, j)

Σ̂( j, j)
>

(
1+

ε

|ρ(i, j)|

)2/3
)

+P

(
Σ( j, j)

Σ̂( j, j)
<

(
1−

ε

|ρ(i, j)|

)2/3
)

(b)
≤ P

(
Σ̂(i, j)

Σ(i, j)
> 1+

ε

8|ρ(i, j)|

)

+P

(
Σ̂(i, j)

Σ(i, j)
< 1−

ε

8|ρ(i, j)|

)

+ . . .

+P

(
Σ(i, i)

Σ̂(i, i)
> 1+

ε

3|ρ(i, j)|

)

+P

(
Σ̂(i, i)

Σ(i, i)
< 1−

ε

3|ρ(i, j)|

)

+ . . .

+P

(
Σ̂( j, j)

Σ( j, j)
> 1+

ε

3|ρ(i, j)|

)

+P

(
Σ̂( j, j)

Σ( j, j)
< 1−

ε

3|ρ(i, j)|

)

(c)
≤ 24exp

(
−

nMε2

204800|ρ(i, j)|2

)
(d)
≤ 24exp

(
−

nMε2

204800

)

where in (a), we used the fact that P(ABC > 1+δ)≤ P(A> (1+δ)1/3 or B> (1+δ)1/3 or C > (1+
δ)1/3) and the union bound, in (b) we used the fact that (1+δ)3 ≤ 1+8δ and (1+δ)−2/3 ≤ 1−δ/3

for δ = ε/|ρ(i, j)|< 1. Finally, in (c), we used the result in (32) and in (d), we used the bounds on

ρ < 1.

Now, define the bijective function I(|ρ|) :=−1/2log(1−ρ2). Then we claim that there exists a

constant L ∈ (0,∞), depending only on ρmax < 1, such that

|I(x)− I(y)|≤ L|x− y|, (39)

that is, the function I : [0,ρmax] → R+ is L = L(ρmax)-Lipschitz. This is because the slope of the

function I is bounded in the interval [0,ρmax]. Thus, we have the inclusion

{|Î(Xi;Xj)− I(Xi;Xj)|> ε}⊂ {|ρ̂(i, j)−ρ(i, j)|> ε/L} (40)

since if |Î(Xi;Xj)− I(Xi;Xj)|> ε it is true that L|ρ̂(i, j)−ρ(i, j)|> ε from (39). We have by mono-

tonicity of measure and (40) the desired result. !

We can now obtain the desired result on concentration of empirical conditional mutual informa-

tion.
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Lemma 19 (Concentration of Empirical Conditional Mutual Information) For a walk-summable

p-dimensional Gaussian random vector X = [X1, . . . ,Xp], we have

P



 max
i(= j

S⊂V\{i, j},|S|≤η

|Î(Xi;Xj|XS)− I(Xi;Xj|XS)|> ε



≤ 24pη+2 exp

(
−

nMε2

204800L2

)
,

for constants M,L ∈ (0,∞) and all ε < ρmax, where ρmax := max i(= j
S⊂V\{i, j},|S|≤η

|ρ(i, j|S)|.

Proof: Since the model is walk-summable, we have that maxi,S Σ(i, i|S) = O(1) and thus, the

constant M is bounded. Similarly, due to strict positive-definiteness we have ρmax < 1 even as

p → ∞, and thus, the constant L is also finite. The result then follows from union bound. !

The sample complexity for structural consistency of CMIT follows on lines of analysis for

CMIT.

Appendix D. Necessary Conditions for Model Selection

We now provide proofs for necessary conditions for model selection.

D.1 Necessary Conditions for Exact Recovery

We provide the proof of Theorem 6 in this section. We collect four auxiliary lemmata whose proofs

(together with the proof of Lemma 8) will be provided at the end of the section. For information-

theoretic notation, the reader is referred to Cover and Thomas (2006).

Lemma 20 (Upper Bound on Differential Entropy of Mixture) Let α < 1. Suppose asymptoti-

cally almost surely each precision matrix JG = I−RG satisfies (7), that is, that ‖RG‖ ≤ α for a.e.

G ∈ G(p). Then, for the Gaussian model, we have

h(Xn)≤
pn

2
log2

(
2πe

1−α

)
,

where recall that Xn|G ∼ ∏n
i=1 f (xi|G).

For the sake of convenience, we define the random variable:

W =

{
1 G ∈ T

(p)
ε

0 G /∈ T
(p)

ε

.

The random variable W indicates whether G ∈ T
(p)

ε .

Lemma 21 (Lower Bound on Conditional Differential Entropy) Suppose that each precision ma-

trix JG has unit diagonal. Then,

h(Xn|G,W )≥−
pn

2
log2(2πe).

2327



ANANDKUMAR, TAN, HUANG AND WILLSKY

Lemma 22 (Conditional Fano Inequality) In the above notation, we have

H(G|Xn,G ∈ T
(p)

ε )−1

log2(|T
(p)

ε |−1)
≤ P(Ĝ(Xn) (= G|G ∈ T

(p)
ε ).

Lemma 23 (Exponential Decay in Probability of Atypical Set) Define the rate function

K(c,ε) := c
2 [(1+ ε) ln(1+ ε)− ε]. The probability of the ε-atypical set decays as

P((T
(p)

ε )c) = P(G /∈ T
(p)

ε )≤ 2exp(−pK(c,ε)) (41)

for all p ≥ 1.

Note the non-asymptotic nature of the bound in (41). The rate function K(c,ε) satisfies

limε↓0 K(c,ε)/ε2 = c/4. We prove Theorem 6 using these lemmata.

Proof: Consider the following sequence of lower bounds:

pn

2
log2

(
2πe

1−α

)
(a)
≥ h(Xn)

(b)
≥ h(Xn|W )

= I(Xn;G|W )+h(Xn|G,W )

(c)
≥ I(Xn;G|W )−

pn

2
log2(2πe)

= H(G|W )−H(G|Xn,W )−
pn

2
log2(2πe), (42)

where (a) follows from Lemma 20, (b) is because conditioning does not increase differential en-

tropy and (c) follows from Lemma 21. We will lower bound the first term in (42) and upper bound

the second term in (42). Now consider the first term in (42):

H(G|W ) = H(G|W = 1)P(W = 1)+H(G|W = 0)P(W = 0)

(a)
≥H(G|W = 1)P(W = 1)

(b)
≥ H(G|G ∈ T

(p)
ε )(1− ε)

(c)
≥(1− ε)

(
p

2

)
Hb

(
c

p

)
, (43)

where (a) is because the entropy H(G|W = 0) and the probability P(W = 0) are both non-negative.

Inequality (b) follows for all p sufficiently large from the definition of W as well as Lemma 8 part

1. Statement (c) comes from fact that

H(G|G ∈ T
(p)

ε ) =− ∑
g∈T

(p)
ε

P(g|g ∈ T
(p)

ε ) log2 P(g|g ∈ T
(p)

ε )

≥− ∑
g∈T

(p)
ε

P(g|g ∈ T
(p)

ε )

[
−
(

p

2

)
Hb

(
c

p

)]
=

(
p

2

)
Hb

(
c

p

)
.
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We are now done bounding the first term in the difference in (42).

Now we will bound the second term in (42). First we will derive a bound on H(G|Xn,W = 1).
Consider,

P
(p)
e := P(Ĝ(Xn) (= G)

(a)
=P(Ĝ(Xn) (= G|W = 1)P(W = 1)+P(Ĝ(Xn) (= G|W = 0)P(W = 0)

≥ P(Ĝ(Xn) (= G|W = 1)P(W = 1)

(b)
≥ P(Ĝ(Xn) (= G|G ∈ T

(p)
ε )

(
1

1+ ε

)

(c)
≥

H(G|Xn,G ∈ T
(p)

ε )−1

log2 |T
(p)

ε |

(
1

1+ ε

)
, (44)

where (a) is by the law of total probability, (b) holds for all p sufficiently large by Lemma 8 part

1 and (c) is due to the conditional version of Fano’s inequality (Lemma 22). Then, from (44), we

have

H(G|Xn,W = 1)≤ P
(p)
e (1+ ε) log2 |T

(p)
ε |+1

≤ P
(p)
e (1+ ε)

(
p

2

)
Hb

(
c

p

)
+1. (45)

Define the rate function K(c,ε) := c
2 [(1+ ε) ln(1+ ε)− ε]. Note that this function is positive when-

ever c,ε > 0. In fact it is monotonically increasing in both parameters. Now we use (45) to bound

H(G|Xn,W ):

H(G|Xn,W ) = H(G|Xn,W = 1)P(W = 1)+H(G|Xn,W = 0)P(W = 0)

(a)
≤H(G|Xn,W = 1)+H(G|Xn,W = 0)P(W = 0)

(b)
≤ H(G|Xn,W = 1)+H(G|Xn,W = 0)(2e−pK(c,ε))

(c)
≤H(G|Xn,W = 1)+ p2(2e−pK(c,ε))

(d)
≤ P

(p)
e (1+ ε)

(
p

2

)
Hb

(
c

p

)
+1+2p2e−pK(c,ε), (46)

where (a) is because we upper bounded P(W = 1) by unity, (b) follows by Lemma 23, (c) follows

by upper bounding the conditional entropy by p2 and (d) follows from (45).

Substituting (43) and (46) back into (42) yields

pn

2
log2

[
2πe

(
1

1−α
+1

)]
≥ (1− ε)

(
p

2

)
Hb

(
c

p

)
−P

(p)
e (1+ ε)

(
p

2

)
Hb

(
c

p

)
−1−2p2e−pK(c,ε)

=

(
p

2

)
Hb

(
c

p

)[
(1− ε)−P

(p)
e (1+ ε)

]
−Θ(p2e−pK(c,ε)),

which implies that

n ≥
2

p log2

[
2πe

(
1

1−α +1
)]
(

p

2

)
Hb

(
c

p

)[
(1− ε)−P

(p)
e (1+ ε)

]
−Θ(pe−pK(c,ε)).
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Note that Θ(pe−pK(c,ε))→ 0 as p → ∞ since the rate function K(c,ε) is positive. If we impose that

P
(p)
e → 0 as p → ∞, then n has to satisfy (14) by the arbitrariness of ε > 0. This completes the proof

of Theorem 6. !

D.2 Proof of Lemma 8

Proof: Part 1 follows directed from the law of large numbers. Part 2 follows from the fact that

the Binomial pmf is maximized at its mean. Hence, for G ∈ T
(p)

ε , we have

P(G)≤
(

c

p

)cp/2(
1−

c

p

)(p
2)−cp/2

.

We arrive at the upper bound after some rudimentary algebra. The lower bound can be proved by

observing that for G ∈ T
(p)

ε , we have

P(G)≥
(

c

p

)cp(1+ε)/2(
1−

c

p

)(p
2)−cp(1+ε)/2

= exp2

[(
p

2

)
(

c

p
log2

c

p
)(1+ ε)+ [1− c(1+ ε)/p] log2(1−

c

p
)

]

≥ exp2

[(
p

2

)
(

c

p
log2

c

p
)(1+ ε)+(1+ ε)(1−

c

p
) log2(1−

c

p
)

]
.

The result in Part 2 follows immediately by appealing to the symmetry of the binomial pmf about

its mean. Part 3 follows by the following chain of inequalities:

1 = ∑
G∈Gn

P(G)≥ ∑
G∈T

(p)
ε

P(G)≥ ∑
G∈T

(p)
ε

exp2

[
−
(

p

2

)
Hb

(
c

p
(1+ ε)

)]

= |T (p)
ε |exp2

[
−
(

p

2

)
Hb

(
c

p

)
(1+ ε)

]
.

This completes the proof of the upper bound on |T (p)
ε |. The lower bound follows by noting that for

sufficiently large n, P(T
(p)

ε )≥ 1− ε (by Lemma 8 Part 1). Thus,

1− ε ≤ ∑
G∈T

(p)
ε

P(G)≤ ∑
G∈T

(p)
ε

exp2

[
−
(

p

2

)
Hb

(
c

p

)]
= |T (p)

ε |exp2

[
−
(

p

2

)
Hb

(
c

p

)]
.

This completes the proof. !

D.3 Proof of Lemma 20

Proof: Note that the distribution of X (with G marginalized out) is a Gaussian mixture model

given by ∑G∈Gp
P(G)N (0,J−1

G ). As such the covariance matrix of X is given by

ΣX = ∑
G∈Gp

P(G)J−1
G . (47)
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This is not immediately obvious but it is due to the zero-mean nature of each Gaussian probability

density function N (0,J−1
G ). Using (47), we have the following chain of inequalities:

h(Xn)≤ nh(X)

(a)
≤

n

2
log2 ((2πe)p det(ΣX))

=
n

2
[p log2(2πe)+ log2 det(ΣX)]

(b)
≤

n

2
[p log2(2πe)+ p log2 λmax(ΣX)]

=
n

2

[

p log2(2πe)+ p log2 λmax

(

∑
G∈Gp

P(G)J−1
G

)]

(c)
≤

n

2

[

p log2(2πe)+ p log2

(

∑
G∈Gp

P(G)λmax

(
J−1

G

)
)]

=
n

2

[

p log2(2πe)+ p log2

(

∑
G∈Gp

P(G)
1

λmin(JG)

)]

(d)
≤

n

2

[

p log2(2πe)+ p log2

(

∑
G∈Gp

P(G)
1

1−α

)]

=
pn

2
log2

(
2πe

1−α

)
,

where (a) uses the maximum entropy principle (Cover and Thomas, 2006, Chapter 13), that is, that

the Gaussian maximizes entropy subject to an average power constraint (b) uses the fact that the

determinant of ΣX is upper bounded by λmax(ΣX)n, (c) uses the convexity of λmax( ·) (it equals to

the operator norm ‖ · ‖2 over the set of symmetric matrices, (d) uses the fact that α ≥ ‖RG‖2 ≥
‖RG‖2 = ‖I−JG‖2 = λmax(I−JG) = 1−λmin(JG) a.a.s. This completes the proof. !
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D.4 Proof of Lemma 21

Proof: Firstly, we lower bound h(Xn|G,W = 1) as follows:

h(Xn|G) = ∑
g∈Gp

P(g)h(Xn|G = g)

(a)
= n ∑

g∈Gp

P(g)h(X|G = g)

(b)
=

n

2 ∑
g∈Gp

P(g) log2[(2πe)p det(J−1
g )]

=−
n

2 ∑
g∈Gp

P(g) log2[(2πe)p det(Jg)]

(c)
≥−

n

2 ∑
g∈Gp

P(g) log2[(2πe)p]

≥−
pn

2
log2(2πe),

where (a) is because the samples in Xn are conditionally independent given G = g, (b) is by the

Gaussian assumption, (c) is by Hadamard’s inequality

det(Jg)≤
p

∏
i=1

[Jg]ii = 1

and the assumption that each diagonal element of each precision matrix Jg = I−Rg is equal to 1

a.a.s. This proves the claim. !

D.5 Proof of Lemma 22

Proof: Define the “error” random variable

E =

{
1 Ĝ(Xn) (= G

0 Ĝ(Xn) = G
.

Now consider

H(E,G|Xn,W = 1) = H(E|Xn,W = 1)+H(G|E,Xn,W = 1) (48)

= H(G|Xn,W = 1)+H(E|G,Xn,W = 1). (49)

The first term in (48) can be bounded above by 1 since the alphabet of the random variable E is of

size 2. Since H(G|E = 0,Xn,W = 1) = 0, the second term in (48) can be bounded from above as

H(G|E,Xn,W = 1) = H(G|E = 0,Xn,W = 1)P(E = 0|W = 1)

+H(G|E = 1,Xn,W = 1)P(E = 1|W = 1)

≤ P(Ĝ(Xn) (= G|G ∈ T
(p)

ε ) log2(|T
(p)

ε |−1).

The second term in (49) is 0. Hence, we have the desired conclusion. !
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D.6 Proof of Lemma 23

Proof: The proof uses standard Chernoff bounding techniques but the scaling in p is somewhat

different from the usual Chernoff (Cramér) upper bound. For simplicity, we will use M :=
(

p
2

)
. Let

Yi, i = 1, . . . ,M be independent Bernoulli random variables such that P(Yi = 1) = c/p. Then the

probability in question can be bounded as

P(G /∈ T
(p)

ε ) = P

(∣∣∣∣∣
1

cp

M

∑
i=1

Yi −
1

2

∣∣∣∣∣>
ε

2

)

(a)
≤ 2P

(
1

cp

M

∑
i=1

Yi >
1+ ε

2

)

(b)
≤ 2E

[

exp

(

t
M

∑
i=1

Yi − pt
c

2
(1+ ε)

)]

(50)

= 2exp
(
−pt

c

2
(1+ ε)

) M

∏
i=1

E[exp(tYi)], (51)

where (a) follows from the union bound, (b) follows from an application of Markov’s inequality

with t ≥ 0 in (50). Now, the moment generating function of a Bernoulli random variable with

probability of success q is qet +(1−q). Using this fact, we can further upper bound (51) as follows:

P(G /∈ T
(p)

ε ) = 2exp

(
−pt

c

2
(1+ ε)+M ln(

c

p
et +(1−

c

p
)

)

(a)
≤ 2exp

(
−pt

c

2
(1+ ε)+

p(p−1)

2

c

p
(et −1)

)

≤ 2exp
(
−p
[
t
c

2
(1+ ε)−

c

2
(et −1)

])
, (52)

where in (a), we used the fact that ln(1+ z) ≤ z . Now, we differentiate the exponent in square

brackets with respect to t ≥ 0 to find the tightest bound. We observe that the optimal parameter is

t∗ = ln(1+ ε). Substituting this back into (52) completes the proof. !

D.7 Necessary Conditions for Recovery with Distortion

We now provide the proof for Corollary 7.

The proof of Corollary 7 follows from the following generalization of the conditional Fano’s

inequality presented in Lemma 22. This is a modified version of an analogous theorem in Kim et al.

(2008).

Lemma 24 (Conditional Fano’s Inequality (Generalization)) In the above notation, we have

H(G|Xn,G ∈ T
(p)

ε )−1− log2 L

log2(|T
(p)

ε |−1)
≤ P(d(G, Ĝ(Xn))> D|G ∈ T

(p)
ε ) (53)

where L =
(

p
2

)
Hb(β) and β is defined in (16).
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We will only provide a proof sketch of Lemma 24 since it is similar to Lemma 22. Proof: The

key to establishing (53) is to upper bound the cardinality of the set {G ∈Gp : d(G,G′)≤ D}, which

is isomorphic to {E ∈ Ep : |E1E ′| ≤ D}, where Ep is the set of all edge sets (with p nodes). For

this purpose, we order the node pairs in a labelled undirected graph lexicographically. Now, we

map each edge set E into a length-
(

p
2

)
bit-string s(E) ∈ {0,1}(

p
2). The characters in the string

s(E) indicate whether or not an edge is present between two node pairs. Define dH(s,s′) to be the

Hamming distance between strings s and s′. Then, note that

|E1E ′|= dH(s(E),s(E
′)) = dH(s(E)⊕ s(E ′),0) (54)

where ⊕ denotes addition in F2 and 0 denotes the all zeros string. The relation in (54) means that

the cardinality of the set {E ∈ En : |E1E ′| ≤ D} is equal to the number of strings of Hamming

weight less than or equal to D. With this realization, it is easy to see that

|{s ∈ {0,1}(
p
2) : dH(s,0)≤ D}|=

D

∑
k=1

((p
2

)

k

)
≤ 2(

p
2)Hb(D/(p

2)) = 2L.

By using the same steps as in the proof of Lemma 24 (or Fano’s inequality for list decoding), we

arrive at the desired conclusion. !
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Abstract

The second eigenvalue of the Laplacian matrix and its associated eigenvector are fundamental fea-
tures of an undirected graph, and as such they have found widespread use in scientific computing,
machine learning, and data analysis. In many applications, however, graphs that arise have sev-
eral local regions of interest, and the second eigenvector will typically fail to provide information
fine-tuned to each local region. In this paper, we introduce a locally-biased analogue of the second
eigenvector, and we demonstrate its usefulness at highlighting local properties of data graphs in a
semi-supervised manner. To do so, we first view the second eigenvector as the solution to a con-
strained optimization problem, and we incorporate the local information as an additional constraint;
we then characterize the optimal solution to this new problem and show that it can be interpreted
as a generalization of a Personalized PageRank vector; and finally, as a consequence, we show that
the solution can be computed in nearly-linear time. In addition, we show that this locally-biased
vector can be used to compute an approximation to the best partition near an input seed set in
a manner analogous to the way in which the second eigenvector of the Laplacian can be used to
obtain an approximation to the best partition in the entire input graph. Such a primitive is useful
for identifying and refining clusters locally, as it allows us to focus on a local region of interest in
a semi-supervised manner. Finally, we provide a detailed empirical evaluation of our method by
showing how it can applied to finding locally-biased sparse cuts around an input vertex seed set in
social and information networks.

Keywords: spectral graph partitioning, local spectral algorithms, Laplacian matrix, semi-supervised
learning, personalized pagerank
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1. Introduction

Spectral methods are popular in machine learning, data analysis, and applied mathematics due to

their strong underlying theory and their good performance in a wide range of applications. In the

study of undirected graphs, in particular, spectral techniques play an important role, as many fun-

damental structural properties of a graph depend directly on spectral quantities associated with ma-

trices representing the graph. Two fundamental objects of study in this area are the second smallest

eigenvalue of the graph Laplacian and its associated eigenvector. These quantities determine many

features of the graph, including the behavior of random walks and the presence of sparse cuts. This

relationship between the graph structure and an easily-computable quantity has been exploited in

data clustering, community detection, image segmentation, parallel computing, and many other ap-

plications.

A potential drawback of using the second eigenvalue and its associated eigenvector is that they

are inherently global quantities, and thus they may not be sensitive to very local information. For

instance, a sparse cut in a graph may be poorly correlated with the second eigenvector (and even

with all the eigenvectors of the Laplacian) and thus invisible to a method based only on eigenvec-

tor analysis. Similarly, based on domain knowledge one might have information about a specific

target region in the graph, in which case one might be interested in finding clusters only near this

prespecified local region, for example, in a semi-supervised manner; but this local region might be

essentially invisible to a method that uses only global eigenvectors. For these and related reasons,

standard global spectral techniques can have substantial difficulties in semi-supervised settings,

where the goal is to learn more about a locally-biased target region of the graph.

In this paper, we provide a methodology to construct a locally-biased analogue of the second

eigenvalue and its associated eigenvector, and we demonstrate both theoretically and empirically

that this localized vector inherits many of the good properties of the global second eigenvector.

Our approach is inspired by viewing the second eigenvector as the optimum of a constrained global

quadratic optimization program. To model the localization step, we modify this program by adding a

natural locality constraint. This locality constraint requires that any feasible solution have sufficient

correlation with the target region, which we assume is given as input in the form of a set of nodes

or a distribution over vertices. The resulting optimization problem, which we name LocalSpectral

and which is displayed in Figure 1, is the main object of our work.

The main advantage of our formulation is that an optimal solution to LocalSpectral captures

many of the same structural properties as the global eigenvector, except in a locally-biased setting.

For example, as with the global optimization program, our locally-biased optimization program has

an intuitive geometric interpretation. Similarly, as with the global eigenvector, an optimal solution

to LocalSpectral is efficiently computable. To show this, we characterize the optimal solutions of

LocalSpectral and show that such a solution can be constructed in nearly-linear time by solving a

system of linear equations. In applications where the eigenvectors of the graph are pre-computed

and only a small number of them are needed to describe the data, the optimal solution to our program

can be obtained by performing a small number of inner product computations. Finally, the optimal

solution to LocalSpectral can be used to derive bounds on the mixing time of random walks that start

near the local target region as well as on the existence of sparse cuts near the locally-biased target

region. In particular, it lower bounds the conductance of cuts as a function of how well-correlated

they are with the seed vector. This will allow us to exploit the analogy between global eigenvectors
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and our localized analogue to design an algorithm for discovering sparse cuts near an input seed set

of vertices.

In order to illustrate the empirical behavior of our method, we will describe its performance on

the problem of finding locally-biased sparse cuts in real data graphs. Subsequent to the dissemina-

tion of the initial technical report version of this paper, our methodology was applied to the problem

of finding, given a small number of “ground truth” labels that correspond to known segments in an

image, the segments in which those labels reside (Maji, Vishnoi, and Malik, 2011). This computer

vision application will be discussed briefly. Then, we will describe in detail how our algorithm for

discovering sparse cuts near an input seed set of vertices may be applied to the problem of exploring

data graphs locally and to identifying locally-biased clusters and communities in a more difficult-to-

visualize social network application. In addition to illustrating the performance of the method in a

practical application related to the one that initially motivated this work (Leskovec, Lang, Dasgupta,

and Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010), this social graph application will

illustrate how the various “knobs” of our method can be used in practice to explore the structure of

data graphs in a locally-biased manner.

Our method uses ideas from spectral graph theory; for a detailed introduction to this topic, see

Chung (1997). Recent theoretical work has focused on using spectral ideas to find good clusters

nearby an input seed set of nodes (Spielman and Teng, 2004; Andersen, Chung, and Lang, 2006;

Chung, 2007). These methods are based on running a number of local random walks around the

seed set and using the resulting distributions to extract information about clusters in the graph. This

line of work grew out of attempts to develop linear equation solvers that run in time nearly linear

in the number of edges in the graph (Spielman and Teng, 2004), and work subsequent to the initial

technical report version of this paper has provided implementations of these ideas (Koutis, Miller,

and Peng, 2010). The connections with our work described in this article remain to be explored.

Recent empirical work has used Personalized PageRank, a particular variant of a local random

walk, to characterize very finely the clustering and community structure in a wide range of very

large social and information networks (Andersen and Lang, 2006; Leskovec, Lang, Dasgupta, and

Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010). In contrast with previous methods,

our local spectral method is the first to be derived in a direct way from an explicit optimization

problem inspired by the global spectral problem. Interestingly, our characterization also shows

that optimal solutions to LocalSpectral are generalizations of Personalized PageRank, providing an

additional insight to why local random walk methods work well in practice.

In the next section, we will describe relevant background and notation; and then, in Section 3,

we will present our formulation of a locally-biased spectral optimization program, the solution of

which will provide a locally-biased analogue of the second eigenvector of the graph Laplacian.

Then, in Section 4 we will describe how our method may be applied to identifying and refining

locally-biased partitions in a graph; and in Section 5 we will provide a detailed empirical evaluation

of our algorithm. Finally, in Section 6, we will conclude with a discussion of our results in a

broader context.

2. Background and Notation

Let G= (V,E,w) be a connected undirected graph with n= |V | vertices and m= |E| edges, in which

edge {i, j} has weight wi j. For a set of vertices S ⊆V in a graph, the volume of S is vol(S)
def
= ∑i∈S di,

in which case the volume of the graph G is vol(G)
def
= vol(V ) = 2m. In the following, AG ∈ RV×V
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will denote the adjacency matrix of G, while DG ∈ RV×V will denote the diagonal degree matrix of

G, that is, DG(i, i) = di =∑{i, j}∈E wi j, the weighted degree of vertex i. The Laplacian of G is defined

as LG
def
= DG −AG. (This is also called the combinatorial Laplacian, in which case the normalized

Laplacian of G is LG
def
= D

−1/2
G LGD

−1/2
G .)

The Laplacian is the symmetric matrix having quadratic form xT LGx = 1
2 ∑i j∈E wi j(xi − x j)2,

for x ∈ RV . This implies that LG is positive semidefinite and that the all-one vector 1 ∈ RV is the

eigenvector corresponding to the smallest eigenvalue 0. For a symmetric matrix A, we will use

A & 0 to denote that it is positive semi-definite. Moreover, given two symmetric matrices A and

B, the expression A & B will mean A−B & 0. Further, for two n× n matrices A and B, we let

A◦B denote Tr (AT B). Finally, for a matrix A, let A+ denote its (uniquely defined) Moore-Penrose

pseudoinverse.

For two vectors x,y∈Rn, and the degree matrix DG for a graph G, we define the degree-weighted

inner product as xT DGy
def
= ∑n

i=1 xiyidi. Given a subset of vertices S ⊆ V , we denote by 1S the

indicator vector of S in RV and by 1 the vector in RV having all entries set equal to 1. We consider

the following definition of the complete graph Kn on the vertex set V : AKn

def
= 1

vol(G)DG11T DG. Note

that this is not the standard complete graph, but a weighted version of it, where the weights depend

on DG. With this scaling we have DKn = DG. Hence, the Laplacian of the complete graph defined

in this manner becomes LKn = DG − 1
vol(G)DG11T DG.

In this paper, the conductance φ(S) of a cut (S, S̄) is φ(S)
def
= vol(G) · |E(S,S̄)|

vol(S)·vol(S̄)
. A sparse cut,

also called a good-conductance partition, is one for which φ(S) is small. The conductance of the

graph G is then φ(G) = minS⊆V φ(S). Note that the conductance of a set S, or equivalently a cut

(S, S̄), is often defined as φ′(S) = |E(S, S̄)|/min{vol(S),vol(S̄)}. This notion is equivalent to that

φ(S), in that the value φ(G) thereby obtained for the conductance of the graph G differs by no more

than a factor of 2 times the constant vol(G), depending on which notion we use for the conductance

of a set.

3. The LocalSpectral Optimization Program

In this section, we introduce the local spectral optimization program LocalSpectral(G,s,κ) as a

strengthening of the usual global spectral program Spectral(G). To do so, we will augment

Spectral(G) with a locality constraint of the form (xT DGs)2 ≥ κ, for a seed vector s and a cor-

relation parameter κ. Both these programs are homogeneous quadratic programs, with optimization

variable the vector x ∈ RV , and thus any solution vector x is essentially equivalent to −x for the

purpose of these optimizations. Hence, in the following we do not differentiate between x and −x,

and we assume a suitable direction is chosen in each instance.

3.1 Motivation for the Program

Recall that the second eigenvalue λ2(G) of the Laplacian LG can be viewed as the optimum of

the standard optimization problem Spectral(G) described in Figure 1. In matrix terminology, the

corresponding optimal solution v2 is a generalized eigenvector of LG with respect to DG. For our

purposes, however, it is best to consider the geometric meaning of this optimization formulation.

To do so, suppose we are operating in a vector space RV , where the ith dimension is stretched by

a factor of di, so that the natural identity operator is DG and the inner product between two vectors
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min xT LGx

s.t. xT DGx = 1

(xT DG1)2 = 0

x ∈ R
V

min xT LGx

s.t. xT DGx = 1

(xT DG1)2 = 0

(xT DGs)2 ≥ κ

x ∈ R
V

Figure 1: Global and local spectral optimization programs. Left: The usual spectral program

Spectral(G). Right: Our new locally-biased spectral program LocalSpectral(G,s,κ). In

both cases, the optimization variable is the vector x ∈ Rn.

x and y is given by ∑i∈V dixiyi = xT DGy. In this representation, Spectral(G) is seeking the vector

x ∈ RV that is orthogonal to the all-one vector, lies on the unit sphere, and minimizes the Laplacian

quadratic form. Note that such an optimum v2 may lie anywhere on the unit sphere.

Our goal here is to modify Spectral(G) to incorporate a bias towards a target region which

we assume is given to us as an input vector s. We will assume (without loss of generality) that s

is properly normalized and orthogonalized so that sT DGs = 1 and sT DG1 = 0. While s can be a

general unit vector orthogonal to 1, it may be helpful to think of s as the indicator vector of one or

more vertices in V , corresponding to the target region of the graph. We obtain LocalSpectral(G,s,κ)
from Spectral(G) by requiring that a feasible solution also have a sufficiently large correlation with

the vector s. This is achieved by the addition of the constraint (xT DGs)2 ≥ κ, which ensures that

the projection of x onto the direction s is at least
√

κ in absolute value, where the parameter κ is

also an input parameter ranging between 0 and 1. Thus, we would like the solution to be well-

connected with or to lie near the seed vector s. In particular, as displayed pictorially in Figure 2,

x must lie within the spherical cap centered at s that contains all vectors at an angle of at most

arccos(
√

κ) from s. Thus, higher values of κ demand a higher correlation with s and, hence, a

stronger localization. Note that in the limit κ = 0, the spherical cap constituting the feasible region

of the program is guaranteed to include v2 and LocalSpectral(G,s,κ) is equivalent to Spectral(G).
In the rest of this paper, we refer to s as the seed vector and to κ as the correlation parameter for a

given LocalSpectral(G,s,κ) optimization problem. Moreover, we denote the objective value of the

program LocalSpectral(G,s,κ) by the number λ(G,s,κ).

3.2 Characterization of the Optimal Solutions of LocalSpectral

Our first theorem is a characterization of the optimal solutions of LocalSpectral. Although Local-

Spectral is a non-convex program (as, of course, is Spectral), the following theorem states that

solutions to it can be expressed as the solution to a system of linear equations which has a natu-

ral interpretation. The proof of this theorem (which may be found in Section 3.4) will involve a

relaxation of the non-convex program LocalSpectral to a convex semidefinite program (SDP), that

is, the variables in the optimization program will be distributions over vectors rather than the vec-

tors themselves. For the statement of this theorem, recall that A+ denotes the (uniquely defined)

Moore-Penrose pseudoinverse of the matrix A.

2343



MAHONEY, ORECCHIA, AND VISHNOI

1

s

v2

� �

Figure 2: (Best seen in color.) Pictorial representation of the feasible regions of the optimization

programs Spectral(G) and LocalSpectral(G,s,κ) that are defined in Figure 1. See the text

for a discussion.

Theorem 1 (Solution Characterization) Let s∈RV be a seed vector such that sT DG1= 0, sT DGs=
1, and sT DGv2 += 0, where v2 is the second generalized eigenvector of LG with respect to DG. In addi-

tion, let 1 > κ ≥ 0 be a correlation parameter, and let x! be an optimal solution to

LocalSpectral(G,s,κ). Then, there exists some γ ∈ (−∞,λ2(G)) and a c ∈ [0,∞] such that

x! = c(LG − γDG)
+DGs. (1)

There are several parameters (such as s, κ, γ, and c) in the statement of Theorem 1, and under-

standing their relationship is important: s and κ are the parameters of the program; c is a normaliza-

tion factor that rescales the norm of the solution vector to be 1 (and that can be computed in linear

time, given the solution vector); and γ is implicitly defined by κ, G, and s. The correct setting of γ
ensures that (sT DGx!)2 = κ, that is, that x! is found exactly on the boundary of the feasible region.

At this point, it is important to notice the behavior of x! and γ as κ changes. As κ goes to 1, γ tends

to −∞ and x! approaches s; conversely, as κ goes to 0, γ goes to λ2(G) and x! tends towards v2, the

global eigenvector. We will discuss how to compute γ and x!, given a specific κ, in Section 3.3.

Finally, we should note that there is a close connection between the solution vector x! and the

popular PageRank procedure. Recall that PageRank refers to a method to determine a global rank or

global notion of importance for a node in a graph such as the web that is based on the link structure

of the graph (Brin and Page, 1998; Langville and Meyer, 2004; Berkhin, 2005). There have been

several extensions to the basic PageRank concept, including Topic-Sensitive PageRank (Haveliwala,

2003) and Personalized PageRank (Jeh and Widom, 2003). In the same way that PageRank can be

viewed as a way to express the quality of a web page over the entire web, Personalized PageRank

expresses a link-based measure of page quality around user-selected pages. In particular, given a

vector s ∈ RV and a teleportation constant α > 0, the Personalized PageRank vector can be written

as prα,s =
(

LG + 1−α
α DG

)−1
DGs (Andersen, Chung, and Lang, 2006). By setting γ = − 1−α

α , the

optimal solution to LocalSpectral is proved to be a generalization of Personalized PageRank. In par-

ticular, this means that for high values of the correlation parameter κ, for which the corresponding

γ in Theorem 1 is negative, the optimal solution to LocalSpectral takes the form of a Personalized

PageRank vector. On the other hand, when γ ≥ 0, the optimal solution to LocalSpectral provides a
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smooth way of transitioning from the Personalized PageRank vector to the global second eigenvec-

tor v2.

3.3 Computation of the Optimal Solutions of LocalSpectral

Here, we discuss how to compute efficiently an optimal solution for LocalSpectral(G,s,κ), for a

fixed choice of the parameters G, s, and κ. The following theorem is our main result.

Theorem 2 (Solution Computation) For any ε > 0, a solution to LocalSpectral(G,s,κ) of value

at most (1+ ε) ·λ(G,s,κ) can be computed in time Õ(m/
√

λ2(G) · log(1/ε)) using the Conjugate Gra-

dient Method (Golub and Loan, 1996). Alternatively, such a solution can be computed in time

Õ(m log(1/ε)) using the Spielman-Teng linear-equation solver (Spielman and Teng, 2004).

Proof By Theorem 1, we know that the optimal solution x! must be a unit-scaled version of

y(γ) = (LG − γDG)+DGs, for an appropriate choice of γ ∈ (−∞,λ2(G)). Notice that, given a fixed γ,
the task of computing y(γ) is equivalent to solving the system of linear equations (LG−γDG)y=DGs

for the unknown y. This operation can be performed, up to accuracy ε, in time Õ(m/
√

λ2(G) · log(1/ε))
using the Conjugate Gradient Method, or in time Õ(m log(1/ε)) using the Spielman-Teng linear-

equation solver. To find the correct setting of γ, it suffices to perform a binary search over the

possible values of γ in the interval (−vol(G),λ2(G)), until (sT DGx)2 is sufficiently close to κ.

We should note that, depending on the application, other methods of computing a solution to

LocalSpectral(G,s,κ) might be more appropriate. In particular, if an eigenvector decomposition of

LG has been pre-computed, as is the case in certain machine learning and data analysis applications,

then this computation can be modified as follows. Given an eigenvector decomposition of LG as

LG = ∑n
i=2 λiD

1/2
G uiu

T
i D

1/2
G , then y(γ) must take the form

y(γ) = (LG − γDG)
+DGs =

n

∑
i=2

1

λi − γ
(sT D

1/2
G ui)

2,

for the same choice of c and γ, as in Theorem 1. Hence, given the eigenvector decomposition, each

guess y(γ) of the binary search can be computed by expanding the above series, which requires

a linear number of inner product computations. While this may yield a worse running time than

Theorem 2 in the worst case, in the case that the graph is well-approximated by a small number k

of dominant eigenvectors, then the computation is reduced to only k straightforward inner product

computations.

3.4 Proof of Theorem 1

We start with an outline of the proof. Although the program LocalSpectral(G,s,κ) is not convex,

it can be relaxed to the convex semidefinite program SDPp(G,s,κ) of Figure 3. Then, one can

observe that strong duality holds for this SDP relaxation. Using strong duality and the related

complementary slackness conditions, one can argue that the primal SDPp(G,s,κ) has a rank one

unique optimal solution under the conditions of the theorem. This implies that the optimal solution

of SDPp(G,s,κ) is the same as the optimal solution of LocalSpectral(G,s,κ). Moreover, combin-

ing this fact with the complementary slackness condition obtained from the dual SDPd(G,s,κ) of

Figure 3, one can derive that the optimal rank one solution is of the form promised by Theorem 1.
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minimize LG ◦X

s.t. LKn ◦X = 1

(DGs)(DGs)T ◦X ≥ κ

X & 0

maximize α+κβ

s.t. LG & αLKn +β(DGs)(DGs)T

β ≥ 0

α ∈ R

Figure 3: Left: Primal SDP relaxation of LocalSpectral(G,s,κ): SDPp(G,s,κ); for this primal, the

optimization variable is X ∈ RV×V such that X is symmetric and positive semidefinite.

Right: Dual SDP relaxation of LocalSpectral(G,s,κ): SDPd(G,s,κ); for this dual, the

optimization variables are α,β ∈ R. Recall that LKn

def
= DG − 1

vol(G)DG11T DG.

Before proceeding with the details of the proof, we pause to make several points that should

help to clarify our approach.

• First, since it may seem to some readers to be unnecessarily complex to relax LocalSpectral

as an SDP, we emphasize that the motivation for relaxing it in this way is that we would

like to prove Theorem 1. To prove this theorem, we must understand the form of the op-

timal solutions to the non-convex program LocalSpectral. Thus, in order to overcome the

non-convexity, we relax LocalSpectral to SDPp(G,s,κ) (of Figure 3) by “lifting” the rank-1

condition implicit in LocalSpectral. Then, strong duality applies; and it implies a set of suffi-

cient optimality conditions. By combining these conditions, we will be able to establish that

an optimal solution X! to SDPp(G,s,κ) has rank 1, that is, it has the form X! = x!x!T for

some vector x!; and thus it yields an optimal solution to LocalSpectral, that is, the vector x!.

• Second, in general, the value of a relaxation like SDPp(G,s,κ) may be strictly less than that

of the original program (LocalSpectral, in this case). Our characterization and proof will

imply that the relaxation is tight, that is, that the optimum of SDPp(G,s,κ) equals that of

LocalSpectral. The reason is that one can find a rank-1 optimal solution to SDPp(G,s,κ),
which then yields an optimal solution of the same value for LocalSpectral. Note that this also

implies that strong duality holds for the non-convex LocalSpectral, although this observation

is not needed for our proof.

That is, although it may be possible to prove Theorem 1 in some other way that does not involve

SDPs, we chose this proof since it is simple and intuitive and correct; and we note that Appendix

B in the textbook of Boyd and Vandenberghe (2004) proves a similar statement by the same SDP-

based approach.

Returning to the details of the proof, we will proceed to prove the theorem by establishing a

sequence of claims. First, consider SDPp(G,s,κ) and its dual SDPd(G,s,κ) (as shown in Figure 3).

The following claim uses the fact that, given X = xxT for x ∈ RV , and for any matrix A ∈ RV×V ,

we have that A ◦ X = xT Ax. In particular, LG ◦ X = xT LGx, for any graph G, and (xT DGs)2 =
xT DGssT DGx = DGssT DG ◦X .

Claim 1 The primal SDPp(G,s,κ) is a relaxation of the vector program LocalSpectral(G,s,κ).

Proof Consider a vector x that is a feasible solution to LocalSpectral(G,s,κ), and note that X = xxT

is a feasible solution to SDPp(G,s,κ).
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Next, we establish the strong duality of SDPp(G,s,κ). (Note that the feasibility conditions and

complementary slackness conditions stated below may not suffice to establish the optimality, in the

absence of this claim; hence, without this claim, we could not prove the subsequent claims, which

are needed to prove the theorem.)

Claim 2 Strong duality holds between SDPp(G,s,κ) and SDPd(G,s,κ).

Proof Since SDPp(G,s,κ) is convex, it suffices to verify that Slater’s constraint qualification

condition (Boyd and Vandenberghe, 2004) is true for this primal SDP. Consider X = ssT . Then,

(DGs)(DGs)T ◦ ssT = (sT DGs)2 = 1 > κ.

Next, we use this result to establish the following two claims. In particular, strong duality allows

us to prove the following claim showing the KKT-conditions, that is, the feasibility conditions and

complementary slackness conditions stated below, suffice to establish optimality.

Claim 3 The following feasibility and complementary slackness conditions are sufficient for a

primal-dual pair X!,α!,β! to be an optimal solution. The feasibility conditions are:

LKn ◦X! = 1,

(DGs)(DGs)T ◦X! ≥ κ,

LG −α!LKn −β!(DGs)(DGs)T & 0, and (2)

β! ≥ 0,

and the complementary slackness conditions are:

α!(LKn ◦X!−1) = 0,

β!((DGs)(DGs)T ◦X!−κ) = 0, and (3)

X! ◦ (LG −α!LKn −β!(DGs)(DGs)T ) = 0. (4)

Proof This follows from the convexity of SDPp(G,s,κ) and Slater’s condition (Boyd and Vanden-

berghe, 2004).

Claim 4 These feasibility and complementary slackness conditions, coupled with the assumptions

of the theorem, imply that X! must be rank 1 and β! > 0.

Proof Plugging in v2 in Equation (2), we obtain that vT
2 LGv2−α!−β!(vT

2 DGs)2 ≥ 0. But vT
2 LGv2 =

λ2(G) and β! ≥ 0. Hence, λ2(G)≥α!. Suppose α! = λ2(G). As sT DGv2 += 0, it must be the case that

β! = 0. Hence, by Equation (4), we must have X! ◦L(G) = λ2(G), which implies that X! = v2vT
2 ,

that is, the optimum for LocalSpectral is the global eigenvector v2. This corresponds to a choice of

γ = λ2(G) and c tending to infinity.

Otherwise, we may assume that α! < λ2(G). Hence, since G is connected and α! < λ2(G), LG−
α!LKn has rank exactly n−1 and kernel parallel to the vector 1. From the complementary slackness

condition (4) we can deduce that the image of X! is in the kernel of LG−α!LKn −β!(DGs)(DGs)T . If
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β! > 0, we have that β!(DGs)(DGs)T is a rank one matrix and, since sT DG1 = 0, it reduces the rank

of LG −α!LKn by one precisely. If β! = 0 then X! must be 0 which is not possible if SDPp(G,s,κ)
is feasible. Hence, the rank of LG −α!LKn − β!(DGs)(DGs)T must be exactly n− 2. As we may

assume that 1 is in the kernel of X!, X! must be of rank one. This proves the claim.

Now we complete the proof of the theorem. From the claim it follows that, X! = x!x!T where

x! satisfies the equation (LG −α!LKn − β!(DGs)(DGs)T )x! = 0. From the second complementary

slackness condition, Equation (3), and the fact that β! > 0, we obtain that (x!)T DGs =±
√

κ. Thus,

x! =±β!
√

κ(LG −α!LKn)
+DGs, as required.

4. Application to Partitioning Graphs Locally

In this section, we describe the application of LocalSpectral to finding locally-biased partitions in a

graph, that is, to finding sparse cuts around an input seed vertex set in the graph. For simplicity, in

this part of the paper, we let the instance graph G be unweighted.

4.1 Background on Global Spectral Algorithms for Partitioning Graphs

We start with a brief review of global spectral graph partitioning. Recall that the basic global graph

partitioning problem is: given as input a graph G = (V,E), find a set of nodes S ⊆V to solve

φ(G) = min
S⊆V

φ(S).

Spectral methods approximate the solution to this intractable global problem by solving the relaxed

problem Spectral(G) presented in Figure 1. To understand this optimization problem, recall that

xT LGx counts the number of edges crossing the cut and that xT DGx = 1 encodes a variance con-

straint; thus, the goal of Spectral(G) is to minimize the number of edges crossing the cut subject to

a given variance. Recall that for T ⊆ V , we let 1T ∈ {0,1}V be a vector which is 1 for vertices in

T and 0 otherwise. Then for a cut (S, S̄), if we define the vector vS
def
=

√

vol(S)·vol(S̄)
vol(G) ·

(

1S

vol(S) −
1S̄

volS̄

)

,

it can be checked that vS satisfies the constraints of Spectral and has objective value φ(S). Thus,

λ2(G)≤ minS⊆V φ(S) = φ(G).
Hence, Spectral(G) is a relaxation of the minimum conductance problem. Moreover, this pro-

gram is a good relaxation in that a good cut can be recovered by considering a truncation, that is,

a sweep cut, of the vector v2 that is the optimal solution to Spectral(G). (That is, for example,

consider each of the n cuts defined by the vector v2, and return the cut with minimum conductance

value.) This is captured by the following celebrated result often referred to as Cheeger’s Inequality.

Theorem 3 (Cheeger’s Inequality) For a connected graph G, φ(G)≤ O(
√

λ2(G)).

Although there are many proofs known for this theorem (see, e.g., Chung, 1997), a particularly

interesting proof was found by Mihail (1989); this proof involves rounding any test vector (rather

than just the optimal vector), and it achieves the same guarantee as Cheeger’s Inequality.

Theorem 4 (Sweep Cut Rounding) Let x be a vector such that xT DG1 = 0. Then there is a t for

which the set of vertices S := SweepCutt(x)
def
= {i : xi ≥ t} satisfies xT LGx

xT DGx
≥ φ2(S)/8.

It is the form of Cheeger’s Inequality provided by Theorem 4 that we will use below.
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4.2 Locally-Biased Spectral Graph Partitioning

Here, we will exploit the analogy between Spectral and LocalSpectral by applying the global ap-

proach just outlined to the following locally-biased graph partitioning problem: given as input a

graph G = (V,E), an input node u, and a positive integer k, find a set of nodes T ⊆V achieving

φ(u,k) = min
T⊆V :u∈T,vol(T )≤k

φ(T ).

That is, the problem is to find the best conductance set of nodes of volume no greater than k that

contains the input node v.

As a first step, we show that we can choose the seed set and correlation parameters s and κ such

that LocalSpectral(G,s,κ) is a relaxation for this locally-biased graph partitioning problem.

Lemma 5 For u ∈ V , LocalSpectral(G,v{u},1/k) is a relaxation of the problem of finding a mini-

mum conductance cut T in G which contains the vertex u and is of volume at most k. In particular,

λ(G,v{u},1/k)≤ φ(u,k).

Proof If we let x = vT in LocalSpectral(G,v{u},1/k), then vT
T LGvT = φ(T ), vT

T DG1 = 0, and

vT
T DGvT = 1. Moreover, we have that (vT

T DGv{u})
2 = du(2m−vol(T ))

vol(T )(2m−du)
≥ 1/k, which establishes the

lemma.

Next, we can apply Theorem 4 to the optimal solution for LocalSpectral(G,v{u},1/k) and obtain

a cut T whose conductance is quadratically close to the optimal value λ(G,v{u},1/k). By Lemma 5,

this implies that φ(T )≤ O(
√

φ(u,k)). This argument proves the following theorem.

Theorem 6 (Finding a Cut) Given an unweighted graph G = (V,E), a vertex u ∈V and a positive

integer k, we can find a cut in G of conductance at most O(
√

φ(u,k)) by computing a sweep cut of

the optimal vector for LocalSpectral(G,v{u},1/k). Moreover, this algorithm runs in nearly-linear

time in the size of the graph.

That is, this theorem states that we can perform a sweep cut over the vector that is the solution

to LocalSpectral(G,v{u},1/k) in order to obtain a locally-biased partition; and that this partition

comes with quality-of-approximation guarantees analogous to that provided for the global problem

Spectral(G) by Cheeger’s inequality.

Our final theorem shows that the optimal value of LocalSpectral also provides a lower bound

on the conductance of other cuts, as a function of how well-correlated they are with the input seed

vector. In particular, when the seed vector corresponds to a cut U , this result allows us to lower

bound the conductance of an arbitrary cut T , in terms of the correlation between U and T . The

proof of this theorem also uses in an essential manner the duality properties that were used in the

proof of Theorem 1.

Theorem 7 (Cut Improvement) Let G be a graph and s ∈ Rn be such that sT DG1 = 0, where DG

is the degree matrix of G. In addition, let κ ≥ 0 be a correlation parameter. Then, for all sets T ⊆V

such that κ′ def
= (sT DGvT )2, we have that

φ(T )≥
{

λ(G,s,κ) if κ ≤ κ′

κ′/κ ·λ(G,s,κ) if κ′ ≤ κ.
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Proof It follows from Theorem 1 that λ(G,s,κ) is the same as the optimal value of SDPp(G,s,κ)
which, by strong duality, is the same as the optimal value of SDPd(G,s,κ). Let α!,β! be the

optimal dual values to SDPd(G,s,κ). Then, from the dual feasibility constraint LG − α!LKn −
β!(DGs)(DGs)T & 0, it follows that

sT
T LGsT −α!sT

T LKnsT −β!(sT DGsT )
2 ≥ 0.

Notice that since sT
T DG1 = 0, it follows that sT

T LKnsT = sT
T DGsT = 1. Further, since sT

T LGsT = φ(T ),
we obtain, if κ ≤ κ′, that

φ(T )≥ α!+β!(sT DGsT )
2 ≥ α!+β!κ = λ(G,s,κ).

If on the other hand, κ′ ≤ κ, then

φ(T )≥ α!+β!(sT DGsT )
2 ≥ α!+β!κ ≥ κ′/κ · (α!+β!κ) = κ′/κ ·λ(G,s,κ).

Note that strong duality was used here.

Thus, although the relaxation guarantees of Lemma 5 only hold when the seed set is a single

vertex, we can use Theorem 7 to consider the following problem: given a graph G and a cut (T, T̄ )
in the graph, find a cut of minimum conductance in G which is well-correlated with T or certify that

there is none. Although one can imagine many applications of this primitive, the main application

that motivated this work was to explore clusters nearby or around a given seed set of nodes in data

graphs. This will be illustrated in our empirical evaluation in Section 5.

4.3 Our Geometric Notion of Correlation Between Cuts

Here we pause to make explicit the geometric notion of correlation between cuts (or partitions, or

sets of nodes) that is used by LocalSpectral, and that has already been used in various guises in

previous sections. Given a cut (T, T̄ ) in a graph G = (V,E), a natural vector in RV to associate

with it is its characteristic vector, in which case the correlation between a cut (T, T̄ ) and another

cut (U,Ū) can be captured by the inner product of the characteristic vectors of the two cuts. A

somewhat more refined vector to associate with a cut is the vector obtained after removing from

the characteristic vector its projection along the all-ones vector. In that case, again, a notion of

correlation is related to the inner product of two such vectors for two cuts. More precisely, given a

set of nodes T ⊆V , or equivalently a cut (T, T̄ ), one can define the unit vector sT as

sT (i) =

{
√

vol(T )vol(T̄ )/2m · 1/vol(T ) if i ∈ T

−
√

vol(T )vol(T̄ )/2m · 1/vol(T̄ ) if i ∈ T̄ .

That is, sT
def
=

√

vol(T )vol(T̄ )
2m

(

1T

vol(T ) −
1T̄

vol(T̄ )

)

, which is exactly the vector defined in Section 4.1. It

is easy to check that this is well defined: one can replace sT by sT̄ and the correlation remains the

same with any other set. Moreover, several observations are immediate. First, defined this way, it

immediately follows that sT
T DG1 = 0 and that sT

T DGsT = 1. Thus, sT ∈ SD for T ⊆ V , where we

denote by SD the set of vectors {x ∈ RV : xT DG1 = 0}; and sT can be seen as an appropriately

normalized version of the vector consisting of the uniform distribution over T minus the uniform
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distribution over T̄ .1 Second, one can introduce the following measure of correlation between two

sets of nodes, or equivalently between two cuts, say a cut (T, T̄ ) and a cut (U,Ū):

K(T,U)
def
= (sT DGsU)

2.

The proofs of the following simple facts regarding K(T,U) are omitted: K(T,U)∈ [0,1]; K(T,U) =
1 if and only if T =U or T̄ =U ; K(T,U) = K(T̄ ,U); and K(T,U) = K(T,Ū). Third, although we

have described this notion of geometric correlation in terms of vectors of the form sT ∈ SD that

represent partitions (T, T̄ ), this correlation is clearly well-defined for other vectors s ∈ SD for which

there is not such a simple interpretation in terms of cuts. Indeed, in Section 3 we considered the

case that s was an arbitrary vector in SD, while in the first part of Section 4.2 we considered the case

that s was the seed set of a single node. In our empirical evaluation in Section 5, we will consider

both of these cases as well as the case that s encodes the correlation with cuts consisting of multiple

nodes.

5. Empirical Evaluation

In this section, we provide an empirical evaluation of LocalSpectral by illustrating its use at finding

and evaluating locally-biased low-conductance cuts, that is, sparse cuts or good clusters, around

an input seed set of nodes in a data graph. We start with a brief discussion of a very recent and

pictorially-compelling application of our method to a computer vision problem; and then we discuss

in detail how our method can be applied to identify clusters and communities in a more heteroge-

neous and more difficult-to-visualize social network application.

5.1 Semi-Supervised Image Segmentation

Subsequent to the initial dissemination of the technical report version of this paper, Maji, Vishnoi,

and Malik (2011) applied our methodology to the problem of finding locally-biased cuts in a com-

puter vision application. Recall that image segmentation is the problem of partitioning a digital

image into segments corresponding to significant objects and areas in the image. A standard ap-

proach consists in converting the image data into a similarity graph over the the pixels and applying

a graph partitioning algorithm to identify relevant segments. In particular, spectral methods have

been popular in this area since the work of Shi and Malik (2000), which used the second eigenvector

of the graph to approximate the so-called normalized cut (which, recall, is an objective measure for

image segmentation that is practically equivalent to conductance). However, a difficulty in applying

the normalized cut method is that in many cases global eigenvectors may fail to capture important

local segments of the image. The reason for this is that they aggressively optimize a global objective

function and thus they tend to combine multiple segments together; this is illustrated pictorially in

the first row of Figure 4.

This difficulty can be overcome in a semi-supervised scenario by using our LocalSpectral method.

Specifically, one often has a small number of “ground truth” labels that correspond to known seg-

ments, and one is interested in extracting and refining the segments in which those labels reside. In

this case, if one considers an input seed corresponding to a small number of pixels within a target

1. Notice also that sT = −sT̄ . Thus, since we only consider quadratic functions of sT , we can consider both sT and sT̄

to be representative vectors for the cut (T, T̄ ).
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object, then LocalSpectral can recover the corresponding segment with high precision. This is il-

lustrated in the second row of Figure 4. This computer vision application of our methodology was

motivated by a preliminary version of this paper, and it was described in detail and evaluated against

competing algorithms by Maji, Vishnoi, and Malik (2011). In particular, they show that LocalSpec-

tral achieves a performance superior to that of other semi-supervised segmentation algorithms (Yu

and Shi, 2002; Eriksson, Olsson, and Kahl, 2007); and they also show how LocalSpectral can be

incorporated in an unsupervised segmentation pipeline by using as input seed distributions obtained

by an object-detector algorithm (Bourdev, Maji, Brox, and Malik, 2010).

Figure 4: The first row shows the input image and the three smallest eigenvectors of the Laplacian

of the corresponding similarity graph computed using the intervening contour cue (Maire,

Arbelaez, Fowlkes, and Malik, 2008). Note that no sweep cut of these eigenvectors re-

veals the leopard. The second row shows the results of LocalSpectral with a setting of

γ = −10λ2(G) with the seed pixels highlighted by crosshairs. Note how one can to re-

cover the leopard by using a seed vector representing a set of only 4 pixels. In addition,

note how the first seed pixel allows us to capture the head of the animal, while the other

seeds help reveal other parts of its body.

5.2 Detecting Communities in Social Networks

Finding local clusters and meaningful locally-biased communities is also of interest in the analysis

of large social and information networks. A standard approach to finding clusters and communities

in many network analysis applications is to formalize the idea of a good community with an “edge

counting” metric such as conductance or modularity and then to use a spectral relaxation to optimize

it approximately (Newman, 2006b,a). For many very large social and information networks, how-

ever, there simply do not exist good large global clusters, but there do exist small meaningful local

clusters that may be thought of as being nearby prespecified seed sets of nodes (Leskovec, Lang,

Dasgupta, and Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010). In these cases, a local

version of the global spectral partitioning problem is of interest, as was shown by Leskovec, Lang,

and Mahoney (2010). Typical networks are very large and, due to their expander-like properties, are

not easily-visualizable (Leskovec, Lang, Dasgupta, and Mahoney, 2008, 2009). Thus, in order to

illustrate the empirical behavior of our LocalSpectral methodology in a “real” network application
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related to the one that motivated this work (Leskovec, Lang, Dasgupta, and Mahoney, 2008, 2009;

Leskovec, Lang, and Mahoney, 2010), we examined a small “coauthorship network” of scientists.

This network was previously used by Newman (2006b) to study community structure in small social

and information networks.

Figure 5: The coauthorship network of Newman (2006b). This layout was obtained in the Pa-

jek (Batagelj and Mrvar, 2001) visualization software, using the Kamada-Kawai method

(Kamada and Kawai, 1989) on each component of a partition provided by LocalCut and

tiling the layouts at the end. Boxes show the two main global components of the network,

which are displayed separately in subsequent figures.

The corresponding graph G is illustrated in Figure 5 and consists of 379 nodes and 914 edges,

where each node represents an author and each unweighted edge represents a coauthorship rela-

tionship. The spectral gap λ2(G) = 0.0029; and a sweep cut of the eigenvector corresponding to

this second eigenvalue yields the globally-optimal spectral cut separating the graph into two well-

balanced partitions, corresponding to the left half and the right half of the network, as shown in

Figure 5. Our main empirical observations, described in detail in the remainder of this section, are

the following.

• First, we show how varying the teleportation parameter allows us to detect low-conductance

cuts of different volumes that are locally-biased around a prespecified seed vertex; and how

this information, aggregated over multiple choices of teleportation, can improve our under-

standing of the network structure in the neighborhood of the seed.

• Second, we demonstrate the more general usefulness of our definition of a generalized Per-

sonalized PageRank vector (where the γ parameter in Equation (1) can be γ ∈ (−∞,λ2(G)) by
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displaying specific instances in which that vector is more effective than the usual Personal-

ized PageRank (where only positive teleportation probabilities are allowed and thus where γ
must be negative). We do this by detecting a wider range of low-conductance cuts at a given

volume and by interpolating smoothly between very locally-biased solutions to LocalSpectral

and the global solution provided by the Spectral program.

• Third, we demonstrate how our method can find low-conductance cuts that are well-correlated

to more general input seed vectors by demonstrating an application to the detection of sparse

peripheral regions, for example, regions of the network that are well-correlated with low-

degree nodes. This suggests that our method may find applications in leveraging feature data,

which are often associated with the vertices of a data graph, to find interesting and meaningful

cuts.

We emphasize that the goal of this empirical evaluation is to illustrate how our proposed methodol-

ogy can be applied in real applications; and thus we work with a relatively easy-to-visualize example

of a small social graph. This will allow us to illustrate how the “knobs” of our proposed method

can be used in practice. In particular, the goal is not to illustrate that our method or heuristic vari-

ants of it or other spectral-based methods scale to much larger graphs—this latter fact is by now

well-established (Andersen and Lang, 2006; Leskovec, Lang, Dasgupta, and Mahoney, 2008, 2009;

Leskovec, Lang, and Mahoney, 2010).

5.2.1 ALGORITHM DESCRIPTION AND IMPLEMENTATION

We refer to our cut-finding algorithm, which will be used to guide our empirical study of finding

and evaluating cuts around an input seed set of nodes and which is a straightforward extension of

the algorithm referred to in Theorem 6, as LocalCut. In addition to the graph, the input parameters

for LocalCut are a seed vector s (e.g., corresponding to a single vertex v), a teleportation parameter

γ, and (optionally) a size factor c. Then, LocalCut performs the following steps.

• First, compute the vector x! of Equation (1) with seed s and teleportation γ.

• Second, either perform a sweep of the vector x!, for example, consider each of the n cuts

defined by the vector and return the the minimum conductance cut found along the sweep; or

consider only sweep cuts along the vector x! of volume at most c · kγ, where kγ = 1/κγ, that

contain the input vertex v, and return the minimum conductance cut among such cuts.

By Theorem 1, the vector computed in the first step of LocalCut, x!, is an optimal solution

to LocalSpectral(G,s,κγ) for some choice of κγ. (Indeed, by fixing the above parameters, the κ
parameter is fixed implicitly.) Then, by Theorem 6, when the vector x! is rounded (to, for example,

{−1,+1}) by performing the sweep cut, provably-good approximations are guaranteed. In addition,

when the seed vector corresponds to a single vertex v, it follows from Lemma 5 that x! yields a lower

bound to the conductance of cuts that contain v and have less than a certain volume kγ.

Although the full sweep-cut rounding does not give a specific guarantee on the volume of the

output cut, empirically we have found that it is often possible to find small low-conductance cuts

in the range dictated by kγ. Thus, in our empirical evaluation, we also consider volume-constrained

sweep cuts (which departs slightly from the theory but can be useful in practice). That is, we also

introduce a new input parameter, a size factor c > 0, that regulates the maximum volume of the

sweep cuts considered when s represents a single vertex. In this case, LocalCut does not consider
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all n cuts defined by the vector x!, but instead it considers only sweep cuts of volume at most c · kγ

that contain the vertex v. (Note that it is a simple consequence of our optimization characterization

that the optimal vector has sweep cuts of volume at most kγ containing v.) This new input parameter

turns out to be extremely useful in exploring cuts at different sizes, as it neglects sweep cuts of low

conductance at large volume and allows us to pick out more local cuts around the seed vertex.

In our first two sets of experiments, summarized in Sections 5.2.2 and 5.2.3, we used single-

vertex seed vectors, and we analyzed the effects of varying the parameters γ and c, as a function

of the location of the seed vertex in the input graph. In the last set of experiments, presented in

Section 5.2.4, we considered more general seed vectors, including both seed vectors that correspond

to multiple nodes, that is, to cuts or partitions in the graph, as well as seed vectors that do not

have an obvious interpretation in terms of input cuts. We implemented our code in a combination

of MATLAB and C++, solving linear systems using the Stabilized Biconjugate Gradient Method

(van der Vorst, 1992) provided in MATLAB 2006b. On this particular coauthorship network, and

on a Dell PowerEdge 1950 machine with 2.33 GHz and 16GB of RAM, the algorithm ran in less

than a few seconds.

5.2.2 VARYING THE TELEPORTATION PARAMETER

Here, we evaluate the effect of varying the teleportation parameter γ ∈ (−∞,λ2(G)), where recall

λ2(G) = 0.0029. Since it is known that large social and information networks are quite heteroge-

neous and exhibit a very strong “nested core-periphery” structure (Leskovec, Lang, Dasgupta, and

Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010), we perform this evaluation by con-

sidering the behavior of LocalCut when applied to three types of seed nodes, examples of which

are the highlighted vertices in Figure 5. These three nodes were chosen to represent three different

types of nodes seen in larger networks: a periphery-like node, which belongs to a lower-degree

and less expander-like part of the graph, and which tends to be surrounded by lower-conductance

cuts of small volume; a core-like node, which belongs to a denser and higher-conductance or more

expander-like part of the graph; and an intermediate node, which belongs to a regime between the

core-like and the periphery-like regions.

For each of the three representative seed nodes, we executed 1000 runs of LocalCut with c = 2

and γ varying by 0.001 increments. Figure 6 displays, for each of these three seeds, a plot of the

conductance as a function of volume of the cuts found by each run of LocalCut. We refer to this

type of plot as a local profile plot since it is a specialization of the network community profile plot

(Leskovec, Lang, Dasgupta, and Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010) to

cuts around the specified seed vertex. In addition, Figure 6 also plots several other quantities of

interest: first, the volume and conductance of the theoretical lower bound yielded by each run;

second, the volume and conductance of the cuts defined by the shortest-path balls (in squares and

numbered according to the length of the path) around each seed (which should and do provide

a sanity-check upper bound); third, next to each of the plots, we present a color-coded/grayscale

image of representative cuts detected by LocalCut; and fourth, for each of the cuts illustrated on the

left, a color-coded/grayscale triangle and the numerical value of −γ is shown on the right.

Several points about the behavior of the LocalCut algorithm as a function of the location of the

input seed node and that are illustrated in Figure 6 are worth emphasizing.

• First, for the core-like node, whose profile plot is shown in Figure 6(a), the volume of the

output cuts grows relatively smoothly as γ is increased (i.e., as −γ is decreased). For small
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(a) Selected cuts and profile plot for the core-like node.
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(b) Selected cuts and profiles plot for the intermediate node.
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(c) Selected cuts and profile plot for the periphery-like node.

Figure 6: Selected cuts and local profile plots for varying γ. The cuts on the left are displayed by

assigning to each vertex a color corresponding to the smallest selected cut in which the

vertex was included. Smaller cuts are darker, larger cuts are lighter; and the seed vertex

is shown slightly larger. Each profile plot on the right shows results from 1000 runs of

LocalCut, with c = 2 and γ decreasing in 0.001 increments starting at 0.0028. For each

color-coded/grayscale triangle, corresponding to a cut on the left, −γ is also listed.
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γ, for example, γ = −0.0463 or γ = −0.0207, the output cuts are forced to be small and

hence display high conductance, as the region around the node is somewhat expander-like.

By decreasing the teleportation, the conductance progressively decreases, as the rounding

starts to hit nodes in peripheral regions, whose inclusion only improves conductance (since

it increases the cut volume without adding many additional cut edges). In this case, this

phenomena ends at γ =−0.0013, when a cut of conductance value close to that of the global

optimum is found. (After that, larger and slightly better conductance cuts can still be found,

but, as discussed below, they require γ > 0.)

• Second, a similar interpretation applies to the profile plot of the intermediate node, as shown

in Figure 6(b). Here, however, the global component of the network containing the seed has

smaller volume, around 300, and a very low conductance (again, requiring γ > 0). Thus, the

profile plot jumps from this cut to the much larger eigenvector sweep cut, as will be discussed

below.

• Third, a more extreme case is that of the periphery-like node, whose profile plot is displayed

in Figure 6(c). In this case, an initial increase in γ does not yield larger cuts. This vertex

is contained in a small-volume cut of low conductance, and thus diffusion-based methods

get “stuck” on the small side of the cut. The only cuts of lower conductance in the net-

work are those separating the global components, which can only be accessed when γ > 0.

Hence, the teleportation must be greatly decreased before the algorithm starts outputting cuts

at larger volumes. (As an aside, this behavior is also often seen with so-called “whiskers”

in much larger social and information networks (Leskovec, Lang, Dasgupta, and Mahoney,

2008, 2009; Leskovec, Lang, and Mahoney, 2010).)

In addition, several general points that are illustrated in Figure 6 are worth emphasizing about

the behavior of our algorithm.

• First, LocalCut found low-conductance cuts of different volumes around each seed vertex,

outperforming the shortest-path algorithm (as it should) by a factor of roughly 4 in most

cases. However, the results of LocalCut still lie away from the lower bound, which is also a

factor of roughly 4 smaller at most volumes.

• Second, consider the range of the teleportation parameter necessary for the LocalCut algo-

rithm to discover the well-balanced globally-optimal spectral partition. In all three cases, it

was necessary to make γ positive (i.e., −γ negative) to detect the well-balanced global spec-

tral cut. Importantly, however, the quantitative details depend strongly on whether the seed is

core-like, intermediate, or periphery-like. That is, by formally allowing “negative teleporta-

tion” probabilities, which correspond to γ > 0, the use of generalized Personalized PageRank

vectors as an exploratory tool is much stronger than the usual Personalized PageRank (An-

dersen, Chung, and Lang, 2006; Andersen and Lang, 2006), in that it permits one to find a

larger class of clusters, up to and including the global partition found by the solution to the

global Spectral program. Relatedly, it provides a smooth interpolation between Personalized

PageRank and the second eigenvector of the graph. Indeed, for γ = 0.0028 ≈ λ2(G), LocalCut

outputs the same cut as the eigenvector sweep cut for all three seeds.

• Third, recall that, given a teleportation parameter γ, the rounding step selects the cut of

smallest conductance along the sweep cut of the solution vector. (Alternatively, if volume-
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constrained sweeps are considered, then it selects the cut of smallest conductance among

sweep cuts of volume at most c · kγ, where kγ is the lower bound obtained from the optimiza-

tion program.) In either case, increasing γ can lead LocalCut to pick out larger cuts, but it does

not guarantee this will happen. In particular, due to the local topology of the graph, in many

instances there may not be a way of slightly increasing the volume of a cut while slightly

decreasing its conductance. In those cases, LocalCut may output the same small sweep cut for

a range of teleportation parameters until a much larger, much lower-conductance cut is then

found. The presence such horizontal and vertical jumps in the local profile plot conveys use-

ful information about the structure of the network in the neighborhood of the seed at different

size scales, illustrating that the practice follows the theory quite well.

5.2.3 VARYING THE OUTPUT-SIZE PARAMETER

Here, we evaluate the effect of varying the size factor c, for a fixed choice of teleportation parameter

γ. (In the previous section, c was fixed at c = 2 and γ was varied.) We have observed that varying

c, like varying γ, tends to have the effect of producing low-conductance cuts of different volumes

around the seed vertex. Moreover, it is possible to obtain low-conductance large-volume cuts, even

at lower values of the teleportation parameter, by increasing c to a sufficiently large value. This

is illustrated in Figure 7, which shows the result of varying c with the core-like node as the seed

and −γ = 0.02. Figure 6(a) illustrated that when c = 2, this setting only yielded a cut of volume

close to 100 (see the red/darker triangle with −γ = 0.0207); but the yellow/lighter crosses in Fig-

ure 7 illustrate that by allowing larger values of c, better conductance cuts of larger volume can

be obtained.
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Figure 7: Selected cuts and local profile plots for varying c with the core-like node as the seed.

The cuts are displayed by assigning to each vertex a color corresponding to the small-

est selected cut in which the vertex was included. Smaller cuts are darker, larger are

lighter. The seed vertex is shown larger. The profile plot shows results from 1000 runs of

LocalCut, with varying c and −γ ∈ {0,0.01,0.02} .

While many of these cuts tend to have conductance slightly worse than the best found by varying

the teleportation parameter, the observation that cuts of a wide range of volumes can be obtained

with a single value of γ leaves open the possibility that there exists a single choice of teleportation
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parameter γ that produces good low-conductance cuts at all volumes simply by varying c. (This

would allow us to only solve a single optimization problem and still find cuts of different volumes.)

To address (and rule out) this possibility, we selected three choices of the teleportation parameter for

each of the three seed nodes, and then we let c vary. The resulting output cuts for the core-like node

as the seed are plotted in Figure 7. (The plots for the other seeds are similar and are not displayed.)

Clearly, no single teleportation setting dominates the others: in particular, at volume 200 the lowest-

conductance cut was produced with −γ = 0.02; at volume 400 it was produced with −γ = 0.01; and

at volume 600 with it was produced with γ = 0. The highest choice of γ = 0 performed marginally

better overall, recording lowest conductance cuts at both small and large volumes. That being said,

the results of all three settings roughly track each other, and cuts of a wide range of volumes were

able to be obtained by varying the size parameter c.

These and other empirical results suggest that the best results are achieved when we vary both

the teleportation parameter and the size factor. In addition, the use of multiple teleportation choices

have the side-effect advantage of yielding multiple lower bounds at different volumes.

5.2.4 MULTIPLE SEEDS AND CORRELATION

Here, we evaluate the behavior of LocalCut on more general seed vectors. We consider two examples—

for the first example, there is an interpretation as a cut or partition consisting of multiple nodes;

while the second example does not have any immediate interpretation in terms of cuts or partitions.

P aj ek

(a) Seed set of four seed nodes.

P aj ek

(b) A more general seed vector.

Figure 8: Multiple seeds and correlation. 8(a) shows selected cuts for varying γ with the seed vector

corresponding to a subset of 4 vertices lying in the periphery-like region of the network.

8(b) shows selected cuts for varying γ with the seed vertex equal to a normalized version

of the degree vector. In both cases, the cuts are displayed by assigning to each vertex a

color corresponding to the smallest selected cut in which the vertex was included. Smaller

cuts are darker, larger are lighter.

In our first example, we consider a seed vector representing a subset of four nodes, located

in different peripheral branches of the left half of the global partition of the the network: see the

four slightly larger (and darker) vertices in Figure 8(a). This is of interest since, depending on the

size-scale at which one is interested, such sets of nodes can be thought of as either “nearby” or “far

apart.” For example, when viewing the entire graph of 379 nodes, these four nodes are all close, in
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that they are all on the left side of the optimal global spectral partition; but when considering smaller

clusters such as well-connected sets of 10 or 15 nodes, these four nodes are much farther apart. In

Figure 8(a), we display a selection of the cuts found by varying the teleportation, with c = 2. The

smaller cuts tend to contain the branches in which each seed node is found, while larger cuts start

to incorporate nearby branches. Not shown in the color-coding/grayscale is that the optimal global

spectral partition is eventually recovered. Identifying peripheral areas that are well-separated from

the rest of the graph is a useful primitive in studying the structure of social networks (Leskovec,

Lang, Dasgupta, and Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010); and thus, this

shows how LocalCut may be used in this context, when some periphery-like seed nodes of the graph

are known.

In our second example, we consider a seed vector that represents a feature vector on the vertices

but that does not have an interpretation in terms of cuts. In particular, we consider a seed vector that

is a normalized version of the degree distribution vector. Since nodes that are periphery-like tend

to have lower degree than those that are core-like (Leskovec, Lang, Dasgupta, and Mahoney, 2008,

2009; Leskovec, Lang, and Mahoney, 2010), this choice of seed vector biases LocalCut towards cuts

that are well-correlated with periphery-like and low-degree vertices. A selection of the cuts found

on this seed vector when varying the teleportation with c = 2 is displayed in Figure 8(b). These cuts

partition the network naturally into three well-separated regions: a sparser periphery-like region

in darker colors, a lighter-colored intermediate region, and a white dense core-like region, where

higher-degree vertices tend to lie. Clearly, this approach could be applied more generally to find

low-conductance cuts that are well-correlated with a known feature of the node vector.

6. Discussion

In this final section, we provide a brief discussion of our results in a broader context.

6.1 Relationship to Local Graph Partitioning

Recent theoretical work has focused on using spectral ideas to find good clusters nearby an input

seed set of nodes (Spielman and Teng, 2004; Andersen, Chung, and Lang, 2006; Chung, 2007).

In particular, local graph partitioning—roughly, the problem of finding a low-conductance cut in a

graph in time depending only on the volume of the output cut—was introduced by Spielman and

Teng (2004). They used random walk based methods; and they used this as a subroutine to give a

nearly linear-time algorithm for outputting balanced cuts that match the Cheeger Inequality up to

polylog factors. In our language, a local graph partitioning algorithm would start a random walk at

a seed node, truncating the walk after a suitably chosen number of steps, and outputting the nodes

visited by the walk. This result was improved by Andersen, Chung, and Lang (2006) by performing

a truncated Personalized PageRank computation. These and subsequent papers building on them

were motivated by local graph partitioning (Chung, 2007), but they do not address the problem of

discovering cuts near general seed vectors, as do we, or of generalizing the second eigenvector of

the Laplacian. Moreover, these approaches are more operationally-defined, while ours is axiomatic

and optimization-based. For more details on these issues as well as the relationship between these

issues and implementing regularization implicitly via approximate computation, see Mahoney and

Orecchia (2011) and Mahoney (2012).
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6.2 Relationship to Empirical Work on Community Structure

Recent empirical work has used Personalized PageRank, a particular variant of a local random

walk, to characterize very finely the clustering and community structure in a wide range of very

large social and information networks (Andersen and Lang, 2006; Leskovec, Lang, Dasgupta, and

Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010). In particular, Andersen and Lang

used local spectral methods to identify communities in certain informatics graphs using an input

set of nodes as a seed set (Andersen and Lang, 2006). Subsequently, Leskovec, Lang, Dasgupta,

and Mahoney used related methods to characterize the small-scale and large-scale clustering and

community structure in a wide range of large social and information networks (Leskovec, Lang,

Dasgupta, and Mahoney, 2008, 2009; Leskovec, Lang, and Mahoney, 2010). Our optimization pro-

gram and empirical results suggest that this line of work can be extended to ask in a theoretically

principled manner much more refined questions about graph structure near prespecified seed vec-

tors.

6.3 Relationship to Cut-improvement Algorithms

Many recently-popular algorithms for finding minimum-conductance cuts, such as those in Khan-

dekar, Rao, and Vazirani (2006) and in Orecchia, Schulman, Vazirani, and Vishnoi (2008), use

as a crucial building block a primitive that takes as input a cut (T, T̄ ) and attempts to find a

lower-conductance cut that is well correlated with (T, T̄ ). This primitive is referred to as a cut-

improvement algorithm (Lang and Rao, 2004; Andersen and Lang, 2008), as its original purpose was

limited to post-processing cuts output by other algorithms. Recently, cut-improvement algorithms

have also been used to find low conductance cuts in specific regions of large graphs (Leskovec,

Lang, and Mahoney, 2010). Given a notion of correlation between cuts, cut-improvement algo-

rithms typically produce approximation guarantees of the following form: for any cut (C,C̄) that

is ε-correlated with the input cut, the cut output by the algorithm has conductance upper-bounded

by a function of the conductance of (C,C̄) and ε. This line of work has typically used flow-based

techniques. For example, Gallo, Grigoriadis, and Tarjan (1989) were the first to show that one can

find a subset of an input set T ⊆V with minimum conductance in polynomial time. Similarly, Lang

and Rao (2004) implement a closely related algorithm and demonstrate its effectiveness at refining

cuts output by other methods. Finally, Andersen and Lang (2008) give a more general algorithm

that uses a small number of single-commodity maximum-flows to find low-conductance cuts not

only inside the input subset T , but among all cuts which are well-correlated with (T, T̄ ). Viewed

from this perspective, our work may be seen as a spectral analogue of these flow-based techniques,

since Theorem 7 provides lower bounds on the conductance of other cuts as a function of how

well-correlated they are with the seed vector.

6.4 Alternate Interpretation of Our Main Optimization Program

There are a few interesting ways to view our local optimization problem of Figure 1 which would

like to point out here. Recall that LocalSpectral may be interpreted as augmenting the standard

spectral optimization program with a constraint that the output cut be well-correlated with the in-

put seed set. To understand this program from the perspective of the dual, recall that the dual of
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LocalSpectral is given by the following.

maximize α+βκ

s.t. LG & αLKn +βΩT

β ≥ 0,

where ΩT = DGsT sT
T DG. Alternatively, by subtracting the second constraint of LocalSpectral from

the first constraint, it follows that

xT
(

LKn −LKnsT sT
T LKn

)

x ≤ 1−κ.

It can be shown that

LKn −LKnsT sT
T LKn =

LKT

vol(T̄ )
+

LKT̄

vol(T )
,

where LKT is the DG-weighted complete graph on the vertex set T . Thus, LocalSpectral is clearly

equivalent to

minimize xT LGx

s.t. xT LKnx = 1

xT

(

LKT

vol(T̄ )
+

LKT̄

vol(T )

)

x ≤ 1−κ.

The dual of this program is given by the following.

maximize α−β(1−κ)

s.t. LG & αLKn −β

(

LKT

vol(T̄ )
+

LKT̄

vol(T )

)

β ≥ 0.

From the perspective of this dual, this can be viewed as “embedding” a combination of a complete

graph Kn and a weighted combination of complete graphs on the sets T and T̄ , that is, KT and KT̄ .

Depending on the value of β, the latter terms clearly discourage cuts that substantially cut into T or

T̄ , thus encouraging partitions that are well-correlated with the input cut (T, T̄ ).

6.5 Bounding the Size of the Output Cut

Readers familiar with the spectral method may recall that given a graph with a small balanced cut,

it is not possible, in general, to guarantee that the sweep cut procedure of Theorem 4 applied to the

optimal of Spectral outputs a balanced cut. One may have to iterate several times before one gets

a balanced cut. Our setting, building up on the spectral method, also suffers from this; we cannot

hope, in general, to bound the size of the output cut (which is a sweep cut) in terms of the correlation

parameter κ. This was the reason for considering volume-constrained sweep cuts in our empirical

evaluation.
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Abstract

Methods for learning decision rules are being successfully applied to many problem domains, in
particular when understanding and interpretation of the learned model is necessary. In many real
life problems, we would like to predict multiple related (nominal or numeric) target attributes si-
multaneously. While several methods for learning rules that predict multiple targets at once exist,
they are all based on the covering algorithm, which does not work well for regression problems. A
better solution for regression is the rule ensemble approach that transcribes an ensemble of decision
trees into a large collection of rules. An optimization procedure is then used to select the best (and
much smaller) subset of these rules and to determine their respective weights.

We introduce the FIRE algorithm for solving multi-target regression problems, which employs
the rule ensembles approach. We improve the accuracy of the algorithm by adding simple linear
functions to the ensemble. We also extensively evaluate the algorithm with and without linear
functions. The results show that the accuracy of multi-target regression rule ensembles is high.
They are more accurate than, for instance, multi-target regression trees, but not quite as accurate
as multi-target random forests. The rule ensembles are significantly more concise than random
forests, and it is also possible to create compact rule sets that are smaller than a single regression
tree but still comparable in accuracy.
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1. Introduction

In the most common machine learning setting, one predicts the value of a single target attribute,

categorical or numeric. A natural generalization of this setting is to predict multiple target attributes

simultaneously. The task comes in two slightly different flavors. In multi-target prediction (Blockeel

et al., 1998), all target attributes are (equally) important and predicted simultaneously with a single

model. Multi-task learning (Caruana, 1997), on the other hand, originally focused on a single target

attribute and used the rest for assistance only. Nowadays, however, multi-task models typically

predict each target attribute individually but with at least partially distinct models.

A typical example coming from the environmental sciences is the task of predicting species

distribution or community structure (Demšar et al., 2006), where we are interested in predicting the

abundances of a set of different species living in the same environment. These species represent the

target attributes, which might, but need not be related. Examples from other areas, ranging from

natural language processing to bioinformatics and medicine are also plentiful (Jeong and Lee, 2009;

Liu et al., 2010; Bickel et al., 2008).

With multiple targets, a typical solution is to create a collection of single-target models. Never-

theless, especially if we are interested in the interpretability of the model, the collection of single-

target models is more complex and harder to interpret than a single model that jointly predicts all

target attributes (Blockeel, 1998; Suzuki et al., 2001; Ženko and Džeroski, 2008). Furthermore,

learning several tasks together may increase the predictive performance for the individual tasks due

to inductive transfer, where the knowledge from one task is transfered to the other tasks (Piccart

et al., 2008; Kocev et al., 2007; Suzuki et al., 2001). An additional benefit of the multi-target mod-

els is that they are less likely to overfit the data than the corresponding collections of single-target

models (Blockeel, 1998; Caruana, 1997).

Rule sets, together with decision trees, are one of the most expressive and human readable model

representations. They are frequently used when an interpretable model is desired. The majority of

rule learning methods are based on the sequential covering algorithm (Michalski, 1969), originally

designed for learning ordered rule lists for binary classification domains. This is also the case with

the existing methods for learning multi-target rules (Ženko and Džeroski, 2008; Ženko, 2007). Un-

fortunately, on both single-target and multi-target regression problems, the accuracy of rule sets that

are learned by the sequential covering approach is considerably lower than that of other regression

methods, like for example, regression trees (for an empirical comparison see Ženko, 2007).

An alternative rule learning method that performs well also on (single-target) regression prob-

lems is the approach of rule ensembles (Friedman and Popescu, 2005, 2008; Dembczyński et al.,

2008). It creates a collection of rules and uses an optimization procedure with the purpose of finding

a small (and therefore interpretable) subset of rules. Optionally, rules can be combined with simple

linear functions of descriptive attributes.

In this paper, we introduce FIRE, an algorithm for multi-target regression based on the rule

ensembles approach. On one hand, we compare our approach with multi-target random forests

(Kocev et al., 2007), which yield good accuracy at the expense of (very) large models. On the other

hand, we compare it with multi-target regression trees (Blockeel et al., 1998) and multi-target model

trees (Appice and Džeroski, 2007), both of which give rise to small models of (only) moderate

accuracy. Our approach provides a solution that lies in between these two extremes: It produces

accurate multi-target regression models that are significantly more concise than random forests. In
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addition, the algorithm enables us to adjust the trade-off between the interpretability and accuracy

of the learned models as desired.

An early version of the FIRE algorithm has been presented in a conference paper (Aho et al.,

2009). However, the algorithm presented in this paper adds the ability to combine rules with simple

linear functions, which increases its accuracy. In addition, the paper improves several details of the

optimization procedure used. The new version stops the optimization if continuing seems unlikely

to be fruitful. Moreover, instead of choosing the step size for the optimization algorithm in an

ad-hoc manner, the choice is now made in a more sound manner as detailed in Appendix A.

Finally, the present paper includes a significantly extended empirical evaluation: We consider

a larger collection of data sets and methods with which our algorithm is compared, including the

latest rule ensemble methods (Dembczyński et al., 2008) and multi-target model trees (Appice and

Džeroski, 2007), which combine tree models and linear functions. In addition, we compare our

approach with a recent multi-task learning algorithm (Jalali et al., 2011).

The remainder of this article is organized as follows. Section 2 presents related work on multi-

target prediction, rule learning, and rule ensembles. The FIRE algorithm for learning multi-target

regression rule ensembles is introduced in Section 3. Section 4 describes the experimental evalua-

tion setting and Section 5 reports the results of the empirical evaluation. The last section concludes

and gives some directions for further research.

2. Related Work

In the multi-target prediction task, we are given a set of training examples E of the form (x,y),
where x = (x1,x2, . . . ,xK) is a vector of K descriptive attributes and y = (y1,y2, . . . ,yT ) is a vector

of T target attributes. Our task is to learn a model that, given a new unlabeled instance x, can predict

the values of all target attributes y simultaneously. Several standard learning methods such as neural

networks, decision trees, model trees, classification rules and random forests have been extended

towards multi-target prediction (Caruana, 1997; Blockeel et al., 1998; Appice and Džeroski, 2007;

Suzuki et al., 2001; Ženko and Džeroski, 2008; Kocev et al., 2007).

An approach related to multi-target learning is multi-task learning (Caruana, 1997; Argyriou

et al., 2008; Chapelle et al., 2010; Jalali et al., 2011; Rakotomamonjy et al., 2011; Parameswaran

and Weinberger, 2011). In multi-task learning, the aim is to solve multiple single-target learning

tasks (x,y)T
t=1 with different training sets Et (and in general with different descriptive attributes) at

the same time. Multi-task learning should be able to benefit from relationships between tasks, just

like multi-target prediction. The result of multi-task training is a distinct trained model f t(xt) for

each of the T tasks.

While it is true that multi-target and multi-task learning have some common background, there

are also some clear differences between them. The most obvious one is the number of trained mod-

els: a separate model for each of the tasks versus a single model trained for the entire problem.

Multi-target learning aims to predict the target features and explicitly describe their relationship

with the descriptive features. Moreover, it implicitly describes the relationships among the target

features. The multi-task model, on the other hand, does not specifically aim to describe the relation-

ships between the target features.

Multi-target learning implicitly captures the dependencies among the targets and represents

them in the single model generated. By going through this model, we can determine the effect

of the descriptive features on all the targets, and analyze the relationships, either linear or nonlinear,
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between targets (or groups of targets). In case the targets are related, we can obtain information

about these relationships.

To place our algorithm into a broader context, we include an up-to-date multi-task linear re-

gression algorithm as a reference in our experiments. Most of the multi-task algorithms are orig-

inally designed for classification purposes (Chapelle et al., 2010; Rakotomamonjy et al., 2011;

Parameswaran and Weinberger, 2011), but the method by Jalali et al. (2011) is readily suitable

for our regression tasks. The authors try to find a compromise between selecting important weights

for separate tasks and for all tasks together. That is, they are searching for both shared features and

features important for each task separately. The authors do this by using both separate elementwise

L1 and block L1/Lq regularization and alternate between the two during optimization. Here L1/Lq

is matrix regularization, with q > 1 in the latter case. Because of mixing up the two “clean” regu-

larization terms, Jalali et al. (2011) call their method “dirty”, therefore we refer to their algorithm

as DIRTY.

Since our method learns regression rules, it is closely related to rule learning (Flach and Lavrač,

2003). A method for learning multi-target rules has been recently developed (Ženko, 2007; Ženko

and Džeroski, 2008). It employs the standard covering approach (Michalski, 1969) and can learn

ordered or unordered rule sets for classification and regression domains. Its accuracy on classifi-

cation domains is comparable to other classification methods, such as (multi-target) decision trees.

However, on regression domains, the approach performs significantly worse than the alternatives

(Ženko, 2007).

An alternative approach to rule learning is called rule ensembles (Friedman and Popescu, 2005,

2008; Dembczyński et al., 2008). Strictly speaking, any set of (unordered) rules can be called a rule

ensemble, as for example, in Indurkhya and Weiss (2001). In this paper, however, a rule ensemble

is understood to be a set of unordered rules whose predictions are combined through weighted

voting, which is the approach introduced by the RULEFIT (Friedman and Popescu, 2005, 2008) and

REGENDER methods (Dembczyński et al., 2008).

The RULEFIT algorithm starts by generating a set of decision trees in much the same way as

ensembles are generated in methods like bagging (Breiman, 1996) and random forests (Breiman,

2001). Because such large ensembles are hard or even impossible to interpret, all the trees are

transcribed into a collection of rules, and an optimization procedure is used to select a small subset

of the rules and to determine their weights. As a result, we get a relatively small set of weighted

rules combined in a linear fashion. In addition to rules, we can also use descriptive attributes in the

linear combination if we add them to the initial set of rules, and likewise determine their weights

in the optimization step. The final prediction for a given example is obtained by a weighted voting

of all linear terms and those rules that apply (cover the example). The resulting model can thus be

written as:

ŷ = f (x) = w0 +
M

∑
i=1

wiri(x)+
K

∑
j=1

w(M+ j)x j

︸ ︷︷ ︸

optional

, (1)

where w0 is the baseline prediction, the first sum is the correction value obtained from the M rules,

and the second sum is the correction value obtained from the (optional) K linear terms. The rules

ri are functions, which have a value of 1 for all examples that they cover, and 0 otherwise. During

the learning phase, all the weights wi are optimized by a gradient directed optimization algorithm.

The linear terms part of the model is global, that is, it covers the entire example space. Note that
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this is different from model trees (Quinlan, 1992; Karalič, 1992; Wang and Witten, 1997), where we

may also have local linear models in tree leaves, where each such model only applies to the specific

examples covered by the leaf.

3. Learning Rule Based Ensembles for Multi-Target Regression

Our algorithm for learning rule based ensembles for multi-target regression problems (which we

call FIRE: Fitted rule ensembles) is greatly influenced by the RULEFIT method. The top level of

the FIRE algorithm is outlined in Algorithm 1. It starts by generating a set of diverse regression

trees. To add more diversity among the base models, the trees are converted to rules. Because linear

dependencies are known to be difficult to approximate with rules, we optionally add linear terms

(simple linear functions) of all numeric descriptive attributes to the collection.

FIRE then optimizes the weights of rules and linear terms with a gradient directed optimization

algorithm. This optimization procedure depends on a gradient threshold parameter τ; we repeat the

optimization for different values of τ in order to find a set of weights with the smallest validation

error. In the end, we remove all the rules and linear terms whose weights are zero.

Algorithm 1 The FIRE algorithm for learning rule ensembles for multi-target regression.

Input: training examples E

Output: rules and linear terms P with their weights W

1: D← GenerateSetOfTrees(E)
2: R← ConvertTreesToRules(D)
3: P← R∪LinearTerms(E) {Optional}
4: ERRmin← ∞
5: for τ = 1.0 to 0.0 with step do

6: (Wτ,ERRτ)← OptimizeWeights(P,E,τ)
7: if ERRτ < ERRmin then

8: (Wopt,ERRmin)← (Wτ,ERRτ)
9: else if ERRτ > threshold ·ERRmin then

10: break

11: end if

12: end for

13: (P,W )← RemoveZeroWeightedTerms(P,Wopt)
14: return (P,W )

The resulting rule ensemble is a vector function f; given an unlabeled example x it predicts a

vector ŷ consisting of the values of all target attributes:

ŷ = f(x) = w0avg+
M

∑
i=1

wiri(x)+
T

∑
t=1

K

∑
j=1

w(t, j)x(t, j)

︸ ︷︷ ︸

optional

. (2)

Note that this vector function is an extension of the scalar function (Equation 1) to the case of multi-

target regression. The first term in Equation 2 includes a constant vector avg, whose components

are the average values for each of the targets. The first sum is the contribution of the M rules: each

2371
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rule ri is a vector function that gives a constant prediction (for each of the targets), if it covers the

example x, or returns a zero vector otherwise. The double sum is the contribution of optional linear

terms. There is a term for each combination of a target and a numeric descriptive attribute, thus

the total number of linear terms is the number of numeric descriptive attributes K times the number

of target attributes T . A linear term x(t, j) is a vector that corresponds to the influence of the j-th

numerical descriptive attribute x j on the t-th target attribute; its t-th component is equal to x j, while

all other components are zero:

x(t, j) = (0, . . . , 0
t−1

,x j
t

, 0
t+1

, . . . ,0).

The values of all weights w are determined during the optimization phase, and our goal is to have

as many weights equal to zero as possible.

Example 1 Let the problem domain have eight descriptive attributes x = (x1, . . . ,x8) and three

target attributes y = (y1,y2,y3). A hypothetic rule ensemble that predicts all the target values of

this domain simultaneously could be:

ŷ = f(x) = 0.95(16.2,6.0,21.1)

+0.34 [ IF (x8 > 3.8)&(x6 > 7.2) THEN (15.9,36.2,14.4)]

+0.21 [ IF (x3 ≤ 12.1) THEN (6.3,50.0,−14.3)]

+0.80(x2,0,0)+0.11(0,0,x2)+0.17(0,x5,0)+0.22(0,0,x5)

= (15.4+0.80x2, 5.7+0.17x5, 20.0+0.11x2 +0.22x5)

+ [ IF (x8 > 3.8)&(x6 > 7.2) THEN (5.4,12.3,4.9)]

+ [ IF (x3 ≤ 12.1) THEN (1.3,10.5,−3.0)] .

It comprises a constant vector, two rules and four linear terms (of attributes x2 and x5), but can also

be simplified to a sum of a vector of linear equations and two rules.

So far, we have only briefly mentioned two important aspects of our algorithm, the generation of

the initial collection of trees, rules and linear terms, and the weight optimization procedure. We

describe each of them in detail in the next two subsections.

3.1 Generation of Base Models

The basic decision tree learning method used within the GenerateSetOfTrees procedure of FIRE

(Algorithm 1) is the predictive clustering tree learning method (Blockeel et al., 1998) that can learn

multi-target regression trees. As a starting point, we use the implementation of this paradigm within

the system CLUS (Blockeel and Struyf, 2002), which can learn multi-target regression trees (Struyf

and Džeroski, 2006). A set of diverse trees is generated with the multi-target implementation of the

random forest ensemble method (Kocev et al., 2007), modified to stop tree building when a given

tree depth limit is reached.

It is well known that variability of constituent base models is essential for good accuracy of

ensembles (Dietterich, 2000). In order to increase the tree (and, thus, rule) variability, we limit the

depth of a particular tree in a randomized fashion as suggested by Friedman and Popescu (2008).

The maximum depth of a tree generated in the m-th iteration (denoted as dm) is computed as follows.
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Let the number of terminal nodes tm of a tree m be a random variable tm = 2+'γ(, where γ is drawn

from an exponential distribution

Pr(γ) =
exp [−γ/(L̄−2)]

L̄−2
,

and the parameter L̄ is the average number of terminal nodes in all trees. The depth limit for a tree

m can now be computed as dm = )log2(tm)*, assuming that the root has a depth of 0. The average

number of terminal nodes L̄ of all trees is specified as a parameter to the algorithm. It should be

emphasized that the parameter L̄ only affects the average of all tree depth limits dm and thus trees

with larger depths can still be generated.1

All regression trees generated with the above procedure are transcribed into rules with the Con-

vertTreesToRules procedure. Each leaf of each tree is converted to a rule. The weights of these

rules are later computed with gradient directed optimization, as described in Section 3.3.

However, before optimizing the rule weights, it is necessary to normalize the predictions of the

rules. In order to equalize the importance of different rules and different targets we proceed in three

separate steps: First, we simply zero-center all the targets. Second, we scale each rule with a factor

that corresponds to the magnitude of the values predicted by the rule. This should equalize the effect

of the rules on the optimization process. Third, we normalize the differing scales of target spaces

away. This last step is in effect only during the optimization. The first and last steps of the process

are trivial and are also repeated in most other optimization processes. The normalization process

may seem overly complicated, but is necessary. In Appendix B, we describe in detail why it can not

be omitted or simplified to a single scaling step. Let us now describe the three normalization steps

in more detail.

In the first step, we zero-center all the rule target predictions by subtracting the average avg

from each of the original rule predictions r′′: r′ = r′′ −avg. The average avg contains the average

values of the target attributes on the learning set.

In the second, more complex, step, we scale the predicted values r′t of each target attribute t by

dividing them with a factor χ:

rt =
r′t
χ
. (3)

We choose χ so that it is related to both the largest predicted value of the rule r′ and to the standard

deviation σt of a target attribute t. In detail, the normalization factor χ in Equation 3 is of the form

χ =
r′m

2σm
.

Here the target index m ∈ {1, . . . , T} of the maximum target value r′m is defined by:

m = argmax
t

∣
∣
∣
∣

r′t
2σt

∣
∣
∣
∣
.

In this way, we make all the rules have an equal maximal target prediction value.

1. In our preliminary experiments, the results varied only slightly with different constant depth limits. In addition,

the optimal limit depended on the data set. Thus, a randomized limit seems like a natural choice. The algorithm

performance was not sensitive to the distribution shape or values. Moreover, we did not use tree pruning methods,

because they could reduce the diversity of the base models.
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Finally, the last step is normalization, which is in effect only during the optimization. In this

step, we equalize the scaling differences between different target attribute spaces. Our intention

is to use this normalization only temporarily, during optimization. Otherwise, the resulting model

would not be applicable to real world data anymore. As usual, we do this simply by dividing the

target attribute prediction values rt by twice their standard deviations 2σt :

r∗t =
rt

2σt
=

r′t
2σtχ

=
r′′t −avgt

2σtχ
.

We again refer to Appendix B for a detailed justification of the normalization process.

3.2 Optional Linear Terms

From Equation 2 we recall that, in addition to rules, we can also add linear terms to the rule ensem-

ble. As already mentioned, a single linear term is defined as

x′′(t, j) = (0, . . . , 0
t−1

, x′′j
t

, 0
t+1

, . . . , 0).

Linear terms are normalized in a similar way as rules. We again shift the linear terms by the

average x′′j of the j-th descriptive attribute x′(t, j) = (0, . . . , x′′j − x′′j , . . . , 0). However, we continue

by normalizing the terms to the target attribute scale

x(t, j) = x′(t, j)
σt

σ j
.

Linear terms normalized like this appear in the final rule ensemble model.

Analogously to the third stage of rule normalization we also scale the target dimension space

out temporarily:

x∗(t, j) =
x(t, j)

2σt
=

x′(t, j)

2σ j
.

This is, again, only intended to equalize the terms referring to different target attributes during the

optimization procedure. See Appendix B for details.

3.3 Gradient Descent Weight Optimization

The weights from Equation 2 are determined within the OptimizeWeights procedure presented in

Algorithm 2. The optimization problem that we address is typically formulated as:

argmin
w

∑
(x,y)∈E

L

(

w0avg+
M

∑
i=1

wiri(x)+
T

∑
t=1

K

∑
j=1

w(t, j)x(t, j),y

)

+λ
M

∑
i=1

|wi|α, (4)

where L is the loss function and the last term is the regularization part. The purpose of the regular-

ization part is to make as many weights equal to zero as possible, which means that the resulting

rule ensemble will be as small as possible.

The regularization part ∑M
i=1 |wi|α in Equation 4 forces the weights to be smaller and adds sta-

bility to the optimization procedure. Popular values for α include α = 2 (L2 or ridge regularization,

see Vapnik, 1995) and α = 1 (L1 or lasso regularization, see Tibshirani, 1996). The best suited
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Algorithm 2 The OptimizeWeights procedure for gradient directed optimization.

Input: base models P, training examples E and gradient threshold parameter τ
Output: weights W and an error estimate ERR

Constant: the gradient step size β

1: W0 = {0,0, . . . ,0}
2: (Et ,Ev)← SplitSet(E) {Training and validation}
3: for i = 0 to Maximum number of iterations do

4: if i is multiple of 100 then

5: ERRi← Error(Ev,P,Wi)
6: if ERRi > threshold ·min j<i ERR j then

7: break

8: else if ERRi < min j<i ERR j then

9: StoreWeights(Wi,ERRi)
10: end if

11: end if

12: G← ComputeGradients(Et ,P,Wi)
13: if Limit of allowed nonzero weights is reached then

14: G← {gk ∈ G|wk ∈Wi : wk -= 0}
15: end if

16: Gmax← {g j ∈ G| |g j|≥ τmaxk |gk|}
17: Wi+1←Wi−βGmax

18: end for

19: (W,ERR)←WeightsWithSmallestError(Ev,P)
20: return (W,ERR)

value depends on the data set and the user’s needs. We are interested in lasso type solutions be-

cause, as explained later, they result in models having some desired properties. Unfortunately, lasso

optimization is considered to be computationally complex and thus the methods that use it have a

tendency to be quite slow (Yuan et al., 2010). In our case, this is especially problematic, since the

multi-target setting increases the size of the optimization problem (the number of variables) signifi-

cantly. While lasso-like regularization in multi-task optimization has been under extensive research

recently (Argyriou et al., 2008; Jalali et al., 2011; Rakotomamonjy et al., 2011), its computational

complexity remains an issue of concern. For computational complexity reasons, we decided to

use a simple but efficient optimization procedure, which performs implicit adaptive regularization.

We aim for the same goals as explicit regularization, that is, minimizing the error and achieving a

sparse solution, but do not include an explicit regularization term in the optimized function. We

follow the approach of Friedman and Popescu (2004), where sparsity is achieved by allowing only a

small number of weights (all originally set to zero) to change. Below we describe our optimization

approach in detail.

Friedman and Popescu (2004) show, that for the gradient directed optimization, an effect very

similar to the effect of explicit regularization can also be achieved in a different and more efficient

way, without solving the optimization problem directly. They propose a gradient directed optimiza-
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tion method with squared loss

Lsqrd ( ft(x),yt) =
1

2
( ft(x)− yt)

2 ,

where ft(x) is the predicted value and yt is the true value. The square loss function is often used for

solving such optimization problems, but is only applicable to single-target problems.

If we want to use a similar gradient directed optimization algorithm for multi-target problems,

we have to define a suitable loss function that is convex. A typical solution is to take the above

squared loss function for each of the T target attributes and aggregate the per-target losses by taking

their average:

L(f(x),y) =
1

T

T

∑
t=1

Lsqrd ( ft(x),yt) . (5)

Such an aggregated loss function is convex and allows for efficient computation of the gradients.

Another possibility is, for example, the maximum value of the single-target loss functions. How-

ever, our preliminary experiments showed that this results in larger and less accurate models. In

addition, this loss function would result in a significantly slower algorithm because, in addition to

the gradients, we would also have to compute the loss function values for each target explicitly.

Instead of adding a regularization term to the optimization problem, we explicitly control the

number of weights that are changed during every optimization iteration in the following way. Let M

be the number of weights we are optimizing with a gradient method. Instead of allowing changes

to all the weights simultaneously, we only allow changes to the weights w j whose gradients g j have

a value above a threshold

|g j|≥ τ ·max
k

|gk|.

If τ = 0, we are changing all the weights during every iteration, resulting in a behavior similar to

ridge regularization (α = 2). On the other hand, if τ = 1, only one gradient during every iteration is

modified and the behavior is similar to lasso regularization (α = 1). In our case, lasso regularization

seems to be the best choice, because it has been shown to lead to many weights being set to zero

(Tibshirani, 1996), which means simpler and more interpretable models with fewer rules.

In practice it is hard to know in advance which value of τ will result in the most accurate model.

Both theoretical and experimental results suggest that different data sets are best suited by different

regularizations (Lounici et al., 2009; Rakotomamonjy et al., 2011). Thus, the most suitable value

of τ depends on the properties of the learning data. We overcome this problem by trying a set of

different values of τ (Algorithm 1, line 5) and estimating their accuracies on a separate internal

validation set Ev (Algorithm 2, line 19), which is the same for all τ values. In the end, the model

with the smallest validation error is selected.

Our aim is to efficiently learn a rule ensemble model that is both small and accurate. Therefore,

we start with a τ value that creates a small model, τ = 1, and then iteratively decrease the value of

τ until it reaches zero. We stop the loop if the validation error stops decreasing, since it is unlikely

that trying smaller values would result in a more accurate model.

It is possible that we are stopping in only a local optimum and the result can be a suboptimal

model. However, in practice, not evaluating the lower τ values does not seem to lower the accuracy

significantly. Also, this procedure is very effective, because most of the optimization time, namely

|E|(M+T K)2/2, is spent on computing the covariance matrix of weights. Here |E| is the learning

set size and M +T K the number of optimized weights. Nevertheless, we do not have to compute
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the covariances for zero weighted predictive terms. Thus, most of the resources are usually used for

optimization with lower values of τ. For example, in practice, the case τ = 0 seems to use at least

half of the computing time alone.

The complete optimization procedure OptimizeWeights is presented in Algorithm 2. It starts by

initializing all the weights to zero and splitting the entire learning set E into a learning set Et and an

internal validation set Ev. Within the loop, we iteratively compute the gradients gk for each of the

weights (line 12) and then change the selected weights w j in the most promising direction −Gmax

for a predefined step size β (line 17). The step size is an automatically computed constant, which is

based on the theoretically optimal step. See Appendix A for a more detailed description of the step

size computation.

In addition to this basic idea, there are some additional details. First, on every 100-th iteration

we stop the optimization if we are overfitting (lines 6–7), that is, if the validation error starts to

increase. Second, we can define a maximum number of nonzero weights in advance (lines 13–15),

which makes a suitable parameter for setting the accuracy-for-simplicity trade-off. An extensive

experimental evaluation of the algorithm’s performance is presented in the next two sections.

4. Experimental Setup

In the experimental evaluation, we investigate three different issues. First, we evaluate our algorithm

FIRE on single-target regression domains in order to show that our algorithm is also applicable

to standard regression problems and that its performance on such problems is comparable to the

performance of other tree and rule based regression methods. We compare FIRE with regression

trees (Breiman et al., 1984), random forests (Breiman, 2001), model trees (Quinlan, 1992; Karalič,

1992), the L1/Lq regularized multi-task regression algorithm DIRTY (Jalali et al., 2011), the rule

ensemble methods RULEFIT (Friedman and Popescu, 2005, 2008) and REGENDER (Dembczyński

et al., 2008). In the comparison, we focus on the accuracy and size of the learned models. The

model size is used to indicate the interpretability of the model.

Second, we evaluate FIRE on multi-target domains, that is, on the problems for which it was

designed in the first place. We compare it with three other multi-target variants of popular tree based

methods: regression trees (Blockeel et al., 1998), random forests (Kocev et al., 2007), and model

trees (Appice and Džeroski, 2007). In addition, we use the L1/Lq regularized multi-task regression

algorithm DIRTY (Jalali et al., 2011) for a reference. This is the main part of the evaluation since it

was designed to show how effective FIRE is when compared with other state-of-the-art multi-target

prediction methods. Again, we focus on the accuracy and size of the learned models.

As described in Section 3.3, FIRE has a parameter that can be used to limit the total number of

nonzero weights, that is, the number of rules and linear terms. We use this parameter in the third

part of the evaluation to investigate how the size of the rule ensemble influences its accuracy. The

preliminary experiments showed that, in some cases, we can significantly reduce the model size with

only a marginal decrease in accuracy. This is the reason that in both above mentioned evaluations we

also include results for FIRE models with an arbitrary limit of 30 rules and terms (denoted as “Max

30” in the results). Another optional setting of the FIRE (and RULEFIT) algorithm(s) is whether

to include linear terms in the model or not. We present both cases in all evaluation scenarios;

models with linear terms are denoted as “+ linear”. In the remainder of this section, we present the

algorithms and their parameter settings, evaluation methodology and data sets used in the empirical

evaluation.

2377
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4.1 Algorithms and Parameters

When generating the initial set of trees (Algorithm 1, line 1) we use 100 random trees with an

average depth of 3. The optimization procedure is run with the gradient threshold parameter τ values

ranging from 1 to 0 in 0.1 decrements (Algorithm 1, line 5). In the OptimizeWeights procedure,

the initial set E is split into 2/3 for training Et and 1/3 for validation Ev (Algorithm 2, line 2).

The maximum number of optimization iterations is 10,000. The threshold for detecting the error

increase (Algorithm 1, line 9 and Algorithm 2, line 6) is 1.1, the step size β (Algorithm 2, line 17) is

computed automatically based on the optimal step size as described in Appendix A. Our algorithm,

as well as the regression trees (Blockeel et al., 1998) and random forests (Kocev et al., 2007) used

in our experiments are implemented in the CLUS predictive clustering system (Blockeel and Struyf,

2002).2 All the parameters for regression trees and random forests are set to their default values;

regression trees use reduced error pruning, random forests consist of 100 trees.

For experiments with model trees, we use the multi-target implementation MTSMOTI by Appice

and Džeroski (2007) with the recommended settings: First we set the stopping criterion so that a

non-leaf node covers at least a tenth of the training set. Also for continuous attributes all the distinct

values are treated as candidate split thresholds for node tests. However, a value is not a candidate

threshold if it causes either child to cover less than 15 examples. Finally, the maximum number of

variables included in the regression model of a pruned leaf is set to 10. We report the pruned trees.

The implementation of MTSMOTI does not handle missing values, so we pre-process the data by

replacing them with averages or the most common labels.

Experiments with the rule ensemble methods RULEFIT and REGENDER were performed with

the original implementations by the authors and the settings that lead to the best performance in the

original papers (Friedman and Popescu, 2008, 2004; Dembczyński et al., 2008). For RULEFIT, we

use the Huber distance with a trimming factor of 0.9. The linear variable conditioning trimming

factor is set to 0.025, the average number of tree terminal nodes to 6, the maximum number of

rules to 5,000, the incentive factor for using fewer variables in tree based rules to the default value

3.0, the model memory parameter value to 0.01, and the sampling fraction for the trees to |E|/5.

The regularization parameter τ is chosen with full internal cross-validation. Hence, the used pa-

rameter τ value should be the best one, but may be slow to find. The maximum step size for the

gradient descent algorithm is set to the default of 0.01. The convergence factor is set to 1.1. For

a detailed analysis of the differences in the settings of RULEFIT and FIRE see Appendix C. The

number of rules for REGENDER is set to 200, the shrinkage amount to 0.5, the data is resampled

without replacement and missing values are not replaced, which is the default setting. Moreover,

the minimization technique is set to gradient descent with squared error loss.

For the multi-task learning algorithm DIRTY (Jalali et al., 2011) we slightly modified the original

R code by the authors. Recall that the multi-task problem domain consists of multiple single-target

learning tasks in the separate training sets Et : {(x,y) ∈ Et |t = 1 . . .T}. In our multi-target data

sets, however, the descriptive parts x of example sets are all the same: there is a single example

(x′,(y′t)
T
t=1) = (x,y′) ∈ E in the multi-target setting corresponding to a collection of instances

{(x′,y′t) ∈ Et |t = 1 . . .T} in the multi-task setting. In practice, we modified the code of DIRTY so

that it uses the same descriptive features x for all the tasks.

Otherwise we used the parameter values and methodology suggested by Jalali et al. (2011,

Appendix H) and by Ali Jalali in personal communication: For the optimization stopping crite-

2. Available at http://clus.sourceforge.net under the GNU General Public License.
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rion we set ε = 10−10. As in RULEFIT, we used internal 10-fold cross-validation for selecting

the best values for the regularization weights λb and λb. As suggested by Jalali et al. (2011,

Appendix H) we used the resulting matrices B and S of previous λ combination as the initial

weight matrices for the next combination. The tried λ values were of the form c
√

log(T K)/|E|,
where K is the number of descriptive attributes. For λb, the constant c has seven values cb ∈
{0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} and for λs similarly cs = cb

√
T for each value of cb. Thus,

we have 49 λ value pairs to try out. Finally, the descriptive features were normalized by scaling with

the maximum feature norm of the whole set: max j=1...K

√

∑(x,y)∈E x2
j , where x = (x1,x2, . . . ,xK).

Thus, each descriptive feature is shrank to the interval [−1,1].

4.2 Data Sets and Evaluation Methodology

The data sets used in the experiments, together with their properties are presented in Table 1.

Twenty-four single-target regression data sets are taken from the following data repositories: UCI

(Asuncion and Newman, 2011), Weka (2011), StatLib (2011), Delve (2011), and Torgo (2011). Pub-

licly available multi-target data sets, however, are scarce. In addition to a single public data set from

the UCI repository, we have collected ten previously analyzed data sets with the following refer-

ences: DS1 (Kampichler et al., 2000), DS2 (Karalič and Bratko, 1997), DS3 (Džeroski et al., 2006),

DS4 (Stojanova, 2009), DS5 (Džeroski et al., 2002), DS6 (Demšar et al., 2006), DS7 (Demšar et al.,

2005), DS8 (Džeroski et al., 2005), DS9 (Gjorgjioski et al., 2008), and DS10 (Džeroski et al., 2000).

The accuracy of the learned regression models is estimated for each target attribute by comput-

ing the relative root mean squared error (RRMSE). For a single-target model f (x) and an example

set E, RRMSE is computed as

RRMSE( f ,E) =

√
√
√
√

∑(x,y)∈E ( f (x)− y)2

∑(x,y)∈E (ȳ− y)2
,

where ȳ is the mean value of target attribute y over data set E. The size of tree based models

(regression trees, random forests, and MTSMOTI) is measured as the number of leaves in all the

trees. The size of rule ensemble models (FIRE, RULEFIT, and REGENDER) is measured as the

number of rules or the sum of the number of rules and linear terms, if linear terms are used.3 For

DIRTY, we present the number of nonzero weights (weight matrix support) as was done by Jalali

et al. (2011). All the above measures are estimated using 10-fold cross-validation, where the folds

for each data set are the same for all the algorithms.

To test whether any of the observed differences in accuracy and size between the algorithms are

significant, we followed the methodology suggested by Demšar (2006). First, we use the Friedman

test to check if there are any statistically significant differences between the compared algorithms.

If the answer is positive, we additionally use the Nemenyi post-hoc test to find out what these

differences are, and we present them by average ranks diagrams. These diagrams show all the

compared algorithms in the order of their average ranks; the best are on the right and the worst

are on the left side of the diagram. The algorithms that differ by less than a critical distance for a

3. These measurements were chosen because they relate quite naturally to the number of linear terms. For example,

with the total number of tests or conditions in trees and rules this would have been problematic. However, the results

were similar with both choices.
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DATA SET # EXS % MISS # NOM # NUM # TAR # ALL SOURCE

VALS ATTS ATTS ATTS ATTS

ABALONE 4,177 0.0 1 7 1 9 UCI

AILERONS 1,533 0.0 0 40 1 41 TORGO

AUTO-MPG 398 0.2 3 4 1 8 UCI

AUTO-PRICE 159 0.0 0 15 1 16 WEKA

BREAST CANCER 286 0.4 8 1 1 10 WEKA

CENSUS 22,784 0.0 0 8 1 9 DELVE

CLOUD 108 0.0 2 4 1 7 UCI

CPU ACTIVITY 8,192 0.0 0 12 1 13 DELVE

COMPUTER HW 209 0.0 1 6 1 8 UCI

DELTA-AILERONS 7,129 0.0 0 5 1 6 TORGO

DIABETES 43 0.0 0 2 1 3 TORGO

ECHOCARDIOGRAM 130 8.3 3 6 1 10 WEKA

HOUSING 506 0.0 1 12 1 14 UCI

HOUSING CA 20,640 0.0 0 8 1 9 STATLIB

KINEMATICS 8,192 0.0 0 8 1 9 DELVE

META-DATA 528 4.6 2 19 1 22 UCI

PBC 418 16.5 8 10 1 19 UCI

POLE TELECOMM 15,000 0.0 0 48 1 49 TORGO

PYRIMIDINES 74 0.0 0 27 1 28 TORGO

QUAKE 2,178 0.0 0 3 1 4 UCI

SENSORY 576 0.0 11 0 1 12 UCI

SERVO 167 0.0 4 0 1 5 UCI

STRIKE 625 0.0 1 5 1 7 UCI

VETERAN 137 0.0 4 3 1 8 UCI

COLLEMBOLAN 393 20.4 8 40 3 51 DS1
EDM 154 0.0 0 16 2 18 DS2
FOREST KRAS 60,607 0.0 0 160 11 171 DS3
FOREST SLIVNICA 6,219 0.0 0 149 2 151 DS4
META LEARNING 42 27.9 0 56 10 66 DS5
MICROARTHROPODS 1,944 0.1 0 142 3 145 DS6
SIGMEA REAL 817 0.0 0 4 2 6 DS7
SIGMEA SIMULATED 10,368 0.0 2 8 3 13 DS8
SOLAR FLARE 323 0.0 10 0 3 13 UCI

VEGETATION 29,679 0.0 0 64 11 75 DS9
WATER QUALITY 1,060 0.0 0 16 14 30 DS10

Table 1: Data sets used in the experimental evaluation and their properties. Please see the text for

source references.

p-value of 0.05 are connected with a horizontal bar and are not significantly different. We perform

such significance testing for both the RRMSE and model size metrics.

However, when testing the differences in RRMSE for multi-target data, we have two possibili-

ties. On one hand, we can treat each of the target attributes as an independent measurement. The

argument against this option is that target attributes within one data set are probably not independent

and as a result our test will show more significant differences than there actually are. On the other
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hand, we can compute the average over all targets within each data set and consider such averages

as independent measurements. The argument against the second option is that when computing av-

erages across all target attributes within a data set, we are actually “summing apples and oranges,”

and the resulting average is probably not a valid quantity. In the absence of a better solution, we

present the tests of RRMSE differences for both options. The results of the experimental evaluation

are presented in the next section.

5. Results

As already mentioned, we perform three groups of experiments. We evaluate FIRE first briefly

on single-target and then extensively on multi-target regression data sets. The latter is the most

important part, since it shows whether our generalization of rule ensembles towards multi-target

regression is successful. Next, we investigate the influence of the size of a rule ensemble on its

accuracy. Finally, we present the running times for all experiments.

5.1 Single-Target Regression

1234567891011

CD

Dirty

MTSMOTI

Tree

FIRE, Max 30

RegENDER

FIRE

FIRE + linear, Max 30

FIRE + linear

RuleFit

RuleFit + linear

Random forest

(a) RRMSE

1234567891011

CD

Random forest

FIRE + linear

FIRE

RegENDER

RuleFit

RuleFit + linear

FIRE, Max 30

FIRE + linear, Max 30

Tree

Dirty

MTSMOTI

(b) model size

Figure 1: Average ranks diagrams on single-target data for RRMSE (a) and model size (b). Better

algorithms are on the right-hand side, the ones that do not differ significantly by the

Nemenyi test (p-value = 0.05) are connected with a horizontal bar. CD is the critical

distance.
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On single-target data sets, we compare regression trees, random forests, linear regression (DIRTY),

model trees (MTSMOTI), and rule ensembles: four versions of FIRE, two versions of RULEFIT, and

REGENDER. For FIRE and RULEFIT, we include the experiments with and without linear terms.

Moreover, for FIRE we include experiments without any limitation on the model size, and experi-

ments with the maximum number of rules and linear terms set to 30.

The Friedman test shows that the RRMSEs are statistically different with a p-value = 6.2 ·10−14

and model sizes with a p-value < 2.2 · 10−16. The average ranks for all algorithms together with

the results of the Nemenyi test are given in Figure 1, separately for RRMSE and model size. The

better algorithms are the ones with higher ranks (with 1 being the highest rank) and are placed on

the right-hand side of the diagram. Algorithms whose ranks differ by less than a critical distance

(CD) are not statistically significantly different in performance with a p-value = 0.05.

From the RRMSE diagram (Figure 1a), we can see that random forests are the most accurate

method, followed by all the rule ensemble methods, MTSMOTI, regression trees and finally DIRTY,

which seems to perform poorly on single-target data. However, there are not many statistically

significant differences: Only random forests and DIRTY seem to be significantly different from part

of the main group. Random forests are better and DIRTY clearly worse. The statistical similarity is

somewhat surprising, considering that we have as many as 24 data sets. An intuitive reason for this

is, naturally, the homogeneous background of many of the algorithms.

Our unlimited FIRE versions and limited FIRE with linear terms are in the middle class. How-

ever, they are slightly outperformed by RULEFIT, which is very closely related to FIRE. Not sur-

prisingly, further experiments presented in Appendix C show that these differences are due to the

RULEFIT features not implemented in FIRE. We also notice that linear terms tend to increase the

accuracy of both versions of FIRE and RULEFIT. In particular, adding linear terms still yields ac-

curate models even when we limit the number of FIRE rules. In this case, linear terms seem to be

surprisingly effective, as they bring the limited FIRE of 30 terms to the same accuracy level with

much larger unlimited FIRE set of rules.

The diagram for model size (Figure 1b) shows that MTSMOTI and DIRTY create the smallest

models, while random forests are at the other extreme. Both unlimited FIRE versions seem to

generate models that are larger than the reference rule ensembles (RULEFIT and REGENDER), but

the differences are not significant. While the unlimited version of FIRE generates smaller models

than random forests, the difference in size is below the significance threshold. Also the sizes of

limited FIRE versions and individual regression trees seem to be very similar according to this

statistical test.

The detailed results are shown in Table 4 in Appendix D. Note the large size of random forest

models in comparison with all other algorithms. On average, the model size is 120,865 terminal

nodes. The accuracy of random forests clearly comes with the price of increased model size. The

detailed results also shed some light to the performance of limited FIRE with linear terms against

unlimited FIRE without them. In a pairwise comparison, the algorithm tie in the wins over data sets

(12 wins each) and the unlimited version has a slightly lower average accuracy. Thus, the result

can not be explained only with the nature of Nemenyi test lacking pairwise comparison. The two

algorithms really, surprisingly, seem to perform equally well while the unlimited FIRE creates much

larger models.

In sum, the results of this first part of the evaluation show that our rule ensemble method FIRE

performs well on single-target regression problems.
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5.2 Multi-Target Regression

12345678

CD

MTSMOTI

FIRE + linear, Max 30

FIRE, Max 30

Tree Dirty

FIRE

FIRE + linear

Random forest

(a) RRMSE, per target evaluation

12345678

CD

FIRE + linear, Max 30

MTSMOTI

FIRE, Max 30

Tree Dirty

FIRE

FIRE + linear

Random forest

(b) RRMSE, per data set target average evaluation

12345678

CD

Random forest

FIRE + linear

FIRE

Dirty FIRE + linear, Max 30

FIRE, Max 30

Tree

MTSMOTI

(c) size

Figure 2: Average ranks diagrams on multi-target data for RRMSE evaluated on separate targets

(a), on target averages within data sets (b) and model size (c). Better algorithms are on the

right-hand side, the ones that do not differ significantly by the Nemenyi test (p-value =
0.05) are connected with a horizontal bar. CD is the critical distance.

In the multi-target experiments, we use all the algorithms from the previous section that work

on multi-target data sets. These are regression trees, random forests, MTSMOTI, DIRTY, and the

same four versions of FIRE.

For multi-target data, the Friedman test shows that the RRMSE values of algorithms are sig-

nificantly different with a p-value < 2.2 · 10−16, if we treat each target separately, and with a

p-value = 2.1 · 10−4, if we compare target averages over each data set. The model sizes are dif-

ferent with a p-value = 1.2 ·10−11. The average ranks and results of the Nemenyi test are given in
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Figure 2 for RRMSE evaluated on separate targets (a), RRMSE evaluated on target averages within

data sets (b), and model size (c).

Looking at Figure 2(a), the general picture of algorithm ranking is similar to the one for single-

target prediction: random forests and both unlimited FIRE versions are more accurate than DIRTY,

regression trees, the limited versions of FIRE, and MTSMOTI. Due to a smaller critical distance, the

four more accurate algorithms are significantly better than the rest. Evaluation over target averages

within data sets (b) shows a similar picture, but because the sample size is smaller (11 data sets vs.

63 targets), the critical distance is larger and there are very few significant differences. The diagram

for size (c) is very similar to the single-target case: DIRTY, the limited FIRE, regression trees, and

MTSMOTI are significantly smaller than random forests.

In general, in the ranking of the algorithms according to their accuracy, the largest change

from the single-target to multi-target setting is that DIRTY now performs practically as well as the

unlimited FIRE without linear terms. Clearly, the moderately complex regularization of DIRTY does

not pay off for single-target prediction, but does pay off for multi-target prediction. Moreover, as

can be seen in the detailed results in Table 5 in Appendix D, the accuracy of DIRTY is sometimes

remarkably high in comparison to the accuracies of the other algorithms. However, the performance

is quite unstable and the algorithm performs poorly on several data sets. Apart from DIRTY, the

results follow the single-target case in a straightforward manner: larger and more complex models

are more accurate. In this sense, DIRTY is more or less an outlier—the model itself is simple but the

creation process is complicated. From this point of view, its behavior being unstable but sometimes

resulting in a very accurate model is intuitively understandable.

In addition, the linear terms do not seem to be as useful for the limited version of FIRE as for the

single-target prediction. Moreover, the limited FIRE version performs, rather surprisingly, relatively

much worse on multi-target data. Specifically, we notice this in comparison with regression trees,

which were one of the least accurate models for single-target data, but they are in the middle class

now. This is especially clear in per data set average evaluation and occurs in the pairwise comparison

with the limited FIRE (in per target evaluation 7 out of 11 wins and per data set average 34–36 out of

63 wins for regression trees). The detailed results in Appendix D show that regression trees tend to

win only when the size of the tree produced is much larger than the FIRE limit of 30. This suggests

that the limit is too strict for good accuracy in general. Additional examination shows that we need

a size limit of 60–80 for FIRE to overtake regression trees in terms of accuracy. The limit is, thus,

much higher than the one needed in single-target case.

Surprising results are also achieved with MTSMOTI, which seems to underachieve, given the

complexity of the model and the process of its induction. When we compare the results with the

ones introduced in the original article (Appice and Džeroski, 2007), we notice some differences.

Especially the common reference algorithm, multi-target regression tree, has radically improved

results in our experiments. After studying the issue, it seems that the implementation details of

the multi-target regression trees in CLUS have been modified causing the change in performance.

Thus, the reason for the lower relative performance of MTSMOTI is partly due to the change of the

performance of the most important reference algorithm. In our experiments, MTSMOTI model sizes

are similar to those reported in the original paper. The slight changes must be due to the differences

in data preprocessing and parameter values.

There are some additional interesting points in the detailed results. We note that while the differ-

ence in size between random forests and the unlimited FIRE versions is not statistically significant,

the average size of a random forest (276,075 terminal nodes) is more than 300 times larger than the
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average sizes of FIRE models. At the same time, the difference in average accuracy is small. When

both size and accuracy are taken into account, the unlimited version of FIRE with linear terms seems

to perform very well on multi-target regression problems.

We also notice that the average proportion of linear terms in the unlimited model is 24%, but

drops to only 5% if we limit the model size to 30. This, and more generally the effect of linear

terms on FIRE, is analyzed more in detail in Section 5.5. Nevertheless, it is also interesting that

the proportion of linear terms highly depends on the data set. This suggests that for some data sets,

using only rules is not enough for high accuracy. For example, FOREST SLIVNICA seem to be quite

linear in nature, because MTSMOTI, and DIRTY achieve very good accuracy with moderately small

models. On these data sets, the unlimited FIRE version with linear terms also seems to be better

than the one without. Both MTSMOTI and DIRTY, however, seem to perform much worse on some

other data sets (such as EDM).

5.3 Model Size Limitation

Experiments presented in the previous two subsections considered two size-related options for the

FIRE algorithm, one with the maximum model size set to 30, and one without any model size

restrictions. In this subsection, we present experiments with different values of the maximum model

size parameter, which show how this model size limit influences the accuracy of models. We use

the values of 10, 20, 30, 40, 50, 100, and ∞.

The average ranks diagrams comparing different maximum model size parameters are presented

in Figure 3. Diagram (a) shows the results on single-target data. While all the differences in RRMSE

are not significant, it is clear that increasing the model size improves the accuracy. Diagrams (b)

and (c) show the RRMSE on multi-target data for per-target evaluation and for per-data set target

average evaluation, respectively. Because of a larger sample, there are more significant differences

in (b) than in (c). However, what is common to both diagrams is the trend that smaller models are

also less accurate. The size limitation parameter can therefore be used as an accuracy-for-simplicity

(and interpretability) trade-off setting.

Another interesting conclusion that can be drawn from these diagrams is that while a model size

of 30 seems enough to get models that are not significantly less accurate than the unlimited models

for single-target domains, this is not the case for multi-target domains. This clearly depends on

the domain, the number of target attributes, and relations between them. The task of modeling a

multi-target domain is clearly harder than the task of modeling a single-target domain, and therefore

the corresponding models have to be more complex.

We also note that even if on single-target data linear terms always increase the accuracy of

FIRE substantially, the effect is more complicated in the multi-target case. Surprisingly, for smaller

size limit values (less than 30 terms and rules) the linear terms seem to decrease the accuracy.

Moreover, even for larger FIRE models the effect is next to negligible. The sole exception in this

is the unlimited version which clearly, although not significantly, benefits from the linear terms.

We could, thus, conclude that in the multi-target case any size limit removes the gain from linear

terms. On the other hand, for single-target case linear terms are always useful. We again refer to

Section 5.5 for a more detailed analysis on linear terms.
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Figure 3: The average ranks diagrams of FIRE with different model size limitations for RRMSE

on single-target data (a), on multi-target data evaluated on separate targets (b), and on

multi-target data evaluated on target averages within data sets (c). Better algorithms are

on the right side, the ones that do not differ significantly by the Nemenyi test (p-value =
0.05) are connected with a horizontal bar. CD is the critical distance.

2386



MULTI-TARGET REGRESSION WITH RULE ENSEMBLES

5.4 Running Times

The running times were measured with the GNU/Linux time command. The underlying environ-

ment was 64 bit Red Hat Linux with 4 processors of type 2.216 GHz Dual-Core AMD Opteron,

and 16 GB of memory. We ran the experiments 5 times, omitted the highest and lowest times and

took the average over the three remaining measurements. The regression trees, random forests and

FIRE are implemented in Java within the CLUS machine learning toolbox (Blockeel and Struyf,

2002). The REGENDER and MTSMOTI algorithms are also implemented in Java, while RULEFIT

and DIRTY are implemented in the R statistical language. For RULEFIT, the critical parts are imple-

mented in a binary library. For the unlimited FIRE version using linear terms, we also tried to partly

optimize the implementation: we implemented the most time critical part, that is, the optimization

part (Algorithm 2), as a C++ dynamic library for Java.

The results are shown in Table 2. The overall trend is that more accurate models take more time

to be generated. The FIRE, RULEFIT and DIRTY methods seem to be more time consuming. For

DIRTY, the data sets with multiple targets require heavier computing, while for a small number of

targets the algorithm is quite fast.

Adding linear terms in FIRE further increases the average time usage. However, the effect

depends on the data set. On some data sets, like SIGMEA REAL and CPU ACTIVITY, linear terms

increase the accuracy without increasing the running time.

Usually, however, adding more base models (rules and linear terms) to an ensemble also in-

creases the amount of computing needed. As mentioned in Section 3, the total number of added

linear terms is the number of numeric descriptive attributes times the number of target attributes.

This is probably a reason for the long running time of FIRE with linear terms and why the difference

between the two unlimited FIRE versions is greater for multi-target data sets than for single-target

ones. The large difference between the times of the unlimited versions of FIRE for data sets like

META LEARNING and AUTO-PRICE is caused by trying a different number of τ parameter values

for optimization (Algorithm 1, lines 9–10).

The limited FIRE versions use on average about a tenth of the time used by the unlimited ones.

The main reason for the decrease is that only a small portion of the covariance matrix is computed,

as discussed in Section 3.3. Moreover, only a small number of weights is changed during each

iteration.

By optimizing the implementation, we can surely decrease the time usage of FIRE: The un-

limited version with linear terms was one fourth faster even with the suboptimal Java/C++ library

solution shown in the rightmost column of Table 2. Nevertheless, as illustrated by the usually at

most moderate difference between FIRE and the probably much more optimized RULEFIT imple-

mentation on single-target problems, there might not be a lot of room for further optimization.

Nevertheless, we should be able to speed up FIRE by limiting the number of possibilities covered.

For example, we could try out a smaller number of τ values (Algorithm 1, line 5).
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5.5 Analysis on the Effect of Linear Terms on FIRE

In this section, we analyze the effect that linear terms have on the performance of FIRE. As noted

in Sections 5.2 and 5.3, small FIRE models do not seem to benefit from the linear terms in the

multi-target setting. In single-target domains and for unlimited FIRE, however, the effect is always

positive. Especially for the small size limited models in single-target case, the effect is very sig-

nificant as mentioned in Section 5.1. The reason for this phenomenon can be understood when we

remember the definition of the linear terms in the multi-target model:

x(t, j) = (0, . . . , 0
t−1

,x j
t

, 0
t+1

, . . . ,0).

The predictive power of a linear term clearly lowers with more targets and is the highest for

single-target data. This is due to the fact that a linear term gives prediction only to a single target

even if its effect on the ensemble size is the same as that of a rule. A rule, on the other hand, predicts

all the targets at once and, thus, has a higher effect on the loss function. That is, in case of limited

FIRE, each linear term occupies a slot of a rule but only has an effect corresponding to a proportion

of 1/T . In the unlimited FIRE we do not have such a contest between linear terms and rules during

the optimization and, thus, the negative effect of adding a linear term is negligible.

The numbers of rules and linear terms presented in Tables 4 and 5 (Appendix D) support this

line of reasoning. For the limited FIRE, the average number of linear terms lowers from 12% for

single-target to 5% for multi-target. For the unlimited version, the values are respectively 2% and

24%. For the limited FIRE, the optimization process does not consider linear terms helpful in the

multi-target case. Only a small number of linear terms is kept in the resulting model and they seem

to have a negligible or even a negative effect on the accuracy. Moreover, apart from the WATER

QUALITY data set, the data sets with most targets give rise to models with a greater portion of linear

terms. Apparently, with many targets we need more linear terms to achieve a similar effect.

The results with different size limitations in Section 5.3 give an interesting view on the effect

of linear terms on the models. In the multi-target case, only larger models benefit from adding the

linear terms. The effect is negative for smaller models. The threshold in our case seems to be around

the size limit of 50 terms. Clearly, these results further indicate that linear terms are of benefit only if

we already have enough rules to cover the predictive problem well enough. With smaller limitations,

they only take place away from the more powerful rules. However, for single-target rule ensembles

the linear terms seem to help all the time as seen in Figure 3. A similar effect can be assumed for

data sets with a small number of targets.

The issues presented above raise the question whether there is a better, more compressed way to

include linear terms in the ensemble. We could, for instance, have a random combination of target

dimensions covered for each linear term. It is an interesting question whether this would benefit

the multi-target rule ensembles in the same way as the (single dimension) linear terms benefit the

single-target rule ensembles.

We could also consider altering the normalization process for the linear terms described in

Section 3.2. To add more effect to the linear terms, we could simply multiply the single nonzero

prediction with the number of targets T . Intuitively this could bring the loss effect of a linear term

to a level approximately equal to that of a rule. Unfortunately, in our experiments (not presented

here) this seemed to stress linear terms too much and resulted in less accurate models.

Finally, it is not clear whether it is a good idea to count a linear term with the same weight as

a rule when the model size is considered. After all, multiple linear terms can be united as shown
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in Example 1 and are easier to interpret than a set of rules. This issue needs to be investigated in

further work.

5.6 Summary of the Experimental Results

In our experiments, we first evaluated FIRE on single-target domains in order to show that our im-

plementation of rule ensembles also works on standard regression problems. The results show that

all versions of FIRE have accuracy that is comparable to the accuracy of the reference algorithms.

The benefits of FIRE are even more evident when we take the model size into account: the most

accurate models, random forests, are much larger.

Second and more important, we evaluated FIRE on multi-target domains. The results are some-

what similar to the ones obtained on single-target domains: random forests and the unlimited FIRE

versions are more accurate than the limited FIRE, regression trees, and MTSMOTI. Nevertheless,

the multi-task algorithm DIRTY performed much better now, being ranked right after the unlimited

FIRE. As in the single-target case, the model size of MTSMOTI, regression trees, and the limited

FIRE versions are statistically significantly smaller than the model size of the most accurate algo-

rithms. Even though the difference in size between random forests and the unlimited FIRE is not

statistically significant, the average size of a random forest is more than 300 times larger than the av-

erage size of FIRE models (with and without linear terms). In addition, although DIRTY performed

well on average, its results were very unstable. Both the accuracy and computational resource usage

varied highly from one data set to another.

Overall, the unlimited FIRE achieves good balance between accuracy and simplicity. Although

it tends to generate somewhat less accurate models than the most accurate random forests, the size

difference is very large. Therefore, we believe that the unlimited FIRE with linear terms is a very

good choice for modeling multi-target regression problems.

Finally, the investigation of the influence of the maximum model size on the accuracy confirms

that this parameter can be successfully used to control the accuracy-for-simplicity trade-off. The

results show the general trend of larger models having better accuracy. The fact that the trend is more

evident in the multi-target domains can be attributed to multi-target tasks being more complicated

and demanding more complex models for maximal accuracy. In the case of linear terms, we can

conclude that for larger (50 terms or more) multi-target rule ensembles adding linear terms should in

general improve the accuracy. However, more importantly, we should rethink the way linear terms

are created and handled in the multi-target environment, trying to achieve as great a benefit in a

multi-target as in single-target setting.

6. Conclusions and Further Work

In many application areas there is a need for methods that can learn interpretable multi-target mod-

els, that is, models that predict several target attributes simultaneously. Rules are undoubtably one

of the most interpretable model types. We have adopted the rule ensemble approach and generalized

it to multi-target regression domains.

The initial implementation of our algorithm FIRE (Aho et al., 2009) was already able to learn

multi-target regression rule ensembles. In this work, we have extended it so that in addition to rules,

linear terms can also be added to the ensemble. The performance of the algorithm has also been sig-

nificantly improved by modifying the normalization and optimization steps. We also include a much

more in-depth experimental evaluation, including more data sets and more reference algorithms.
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Our implementation has a simple parameter for limiting the size (the number of rules and linear

terms) of the learned model. This enables us to trade accuracy for size (and interpretability) of

learned models. We evaluated our algorithm with two parameter values: One that limits the number

of rules to a maximum of 30, and one that has no size restrictions. We compared it with two other

existing rule ensembles approaches RULEFIT and REGENDER, and to other similar multi-target

prediction algorithms, namely regression trees, random forests, and model trees (MTSMOTI). In

addition, we compared our multi-target algorithm with a recent multi-task algorithm DIRTY. We

also investigated how the size limit and adding linear terms to the ensemble affect the accuracy.

In both, the single-target and multi-target settings, the unlimited FIRE with linear terms per-

formed well, especially when the model size is taken into account. The model size limitation pa-

rameter can be used to tune the accuracy-for-simplicity trade-off. In sum, FIRE achieves a good

balance of accuracy and simplicity in the context of multi-target regression.

Let us conclude with some ideas for further work. There are still some features of RULEFIT

that have not yet been added to FIRE. Thus, a natural direction for further work is to add these

features and study if they improve the performance of FIRE. This might include, for example, the

use of tree ensembles based on importance-sampling. FIRE uses the gradient descent method for

weight optimization and an ad-hoc approach to selecting the optimal τ value. We could combine

both optimization problems into a single one. However, such a combined problem might no longer

be convex and gradient descent optimization could get trapped in local optima. A possible solution

would be to use metaheuristic optimization methods, such as differential evolution or ant-colony

optimization instead.

On the other hand, it would be interesting to explore whether and how the recent multi-task

optimization methods can be adapted to the multi-target environment. Moreover, our experiments

suggest that we should further study the efficient application of linear terms to multi-target pre-

diction. Finally, the automated exploration of the accuracy-for-simplicity trade-off by selecting an

appropriate model size (the number of rules) deserves further attention.
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The work of B. Ženko and S. Džeroski was supported by the Slovenian Research Agency

(Grants P2-0103 and J2-2285), the European Commission (Grants ICT-2010-266722 and ICT-2011-

287713), and Operation no. OP13.1.1.2.02.0005 financed by the European Regional Development

Fund (85%) and the Ministry of Education, Science, Culture and Sport (15%).

Appendix A. Gradient Step Size

In this section, we present the reasoning behind the step size selection used in the FIRE gradient

descent optimization procedure (Algorithm 2, line 17).
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First of all, let us change the predictive function in Equation 2 to the following form:

f(x) = w0avg+
M

∑
i=1

wiri(x)+
J

∑
j=1

K

∑
k=1

w( j,k)x( j,k) =w
(

P T

1 , . . . ,P
T

J

)

.

Here J is the number of targets and each P T
j represents the predictions for the target dimension j:

P j =
(

avg j, r1(x) j, r2(x) j, . . .
[

x(1,1)

]

j
,
[

x(1,2)

]

j
, . . .

)

.

In our case, the loss function is presented by Equation 5 as

L(x;w) =
1

2J

J

∑
j

( f j(x)− y j)
2 =

1

2J

J

∑
j

(wP T

j − y j)
2.

Let us denote the weights by wk and the gradients by gk at the end of the iteration k (Algorithm 2,

at the beginning of line 17). The step we are taking to change the weight is defined by wk+1 =
wk−βgk, where β is the step size. Now, in the iteration k we want to minimize the one-dimensional

loss function over step size

Φ(β) = L(x;wk−βgk),

where

gT

k = ∂L/∂wk =
1

J

J

∑
j

(

wkP
T

j − y j

)

P T

j .

By finding the zero point of the derivative of the expected value

E Φ′(β) = E
1

J

J

∑
j

β(gkP
T

j )
2− (wkP

T

j − y j)gkP
T

j

we get the optimal step size β∗ for minimizing the loss function Φ during each iteration k:

β∗ =
E J‖gk‖2

E ∑J
j

(

gkP
T
j

)2
. (6)

Unfortunately, computing the precise value for each iteration is very costly. Thus, let us try to find

some approximation. By using the Cauchy-Schwarz inequality we get the following upper bound

for the numerator:

(gP T

j )
2 ≤ ggTP jP

T

j .

Now, noting that ‖g‖2 = 0 means a zero size step, we can write the following bound for the optimal

step size β∗:

β∗ ≥
J

E ∑J
j ‖P j(x)‖2

= βlow.

Because of the normalization explained in Section 3.1 and Appendix B, we know that during the

optimization avg = 1. Thus, we note that βlow ≤ 1 always holds for the bound.

We could start with step size 1 and reduce the step size in a logarithmic fashion so that after

a while we reach the lower bound. The optimal step size β∗ depends on the gradient as seen in

Equation 6. Reducing the step size like this would cause β to be near the optimal value most of time

and end below it. However, in practice it seems that using βlow as a step size gives good results.

Thus, we simply use this lower bound as a constant step size.
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Appendix B. Justification for the Normalization Process

In this section, we give reasons for the decisions of the normalization process described in Sec-

tion 3.1.

As we recall from Equation 2, our model is of the form

f(x) = w0avg+
M

∑
i=1

wiri(x)+
J

∑
j=1

K

∑
k=1

w( j,k)x( j,k).

The linear terms in the last sum are optional and we concentrate on the rules part first.

First we rationalize why the first step, centering, in normalization presented in Section 3.1 is

needed. We remember that our rules are transformed from a tree ensemble of form:

f(x) =
1

|D|

|D|

∑
i=1

di(x),

where |D| is the number of trees in the ensemble. Here each tree prediction di in the ensemble is

global in contrast to rule predictions ri being local. That is, the tree prediction functions di give a

prediction to all possible instances x, while rules predict only the subset they cover. Otherwise the

rule function ri equals zero. In other words, the tree prediction functions cover all the instances.

Initially, right after converting the trees to rules, we know that out of the M rules, exactly |D|
cover an arbitrary instance x. This consists of a rule from each of the trees in the tree ensemble. In

this case, we can simply take an average of the predictive functions to get the overall prediction:

f(x) =
1

|D|

M

∑
i=1

ri(x).

Now the rule predictions are used in the same scale in which they were created during the tree

ensemble training.

Nevertheless, this is problematic if we omit a part of the initial rule set as is done in normal-

ization. In this case, we do not know how many rules cover the given instance and, thus, can not

simply take average of the covering instances. A simple solution to this problem is to remove the

average offset that is included in all the predictions. That is, we replace each of the initial rules r′′

with a zero-centered rule r′, which is defined as

r′(x) =

{

r′′(x)−avg if x is covered and

0 otherwise.

Now we can define a rule set equivalent to the initial one with

1

nb. of covering rules

M

∑
i=1

r′′i (x)

=
nb. of covering rules

nb. of covering rules
avg+

M

∑
i=1

r′i(x) = avg+
M

∑
i=1

r′i(x).

This new form allows us to do the weight optimization freely without caring about the number of

covering rules:

f(x) = w0avg+
M

∑
i=1

wir
′
i(x).
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AHO, ŽENKO, DŽEROSKI AND ELOMAA

At the second stage of normalization, our aim is to equalize the rules with respect to the opti-

mization problem presented in Equation 4:

argmin
w

∑
(x,y)∈E

L(f(x),y)+λ
M

∑
i=1

|wi|α.

The optimization problem is not invariant to the scaling of rule predictions: If we scale the rule

predictions as r = br′;b > 1, the corresponding weight will not be simply decreased as w = w′/b,

because the regularization part on the right only includes weights and not rule predictions. As a

result, the rules with smaller (absolute) predicted values are penalized more during optimization

than the ones with larger predicted values. We would like to have all the rules and targets to have

equal initial importance.

The obvious approach of setting a constant value to the base model target predictions is sub-

optimal for multi-target problems. Let us illustrate this with an example. We are given two target

features y1,y2 that are highly inversely linearly dependent so that linear base model of type (1,−5)
would give high predictive accuracy. It is clear that setting 1 to the rule predictions for all targets

would discard all the discovered information on relations between the targets stored in the rules.

Thus, we choose to scale each rule r′(x) with a value that corresponds to its initial predictive

size χ(r′):

r =
r′

χ
. (7)

But how should we choose the exact value of χ?

To simplify the relations of target prediction ranges it is useful to bound the scaled predictions

to some closed interval, for example, [−1,1]. In this case χ should be related to the largest predicted

value of the rule r′. However, we also have to note the differing scales of the target attributes r′t . If

σt were the standard deviation of a normally distributed target attribute r′t , dividing a zero-centered

attribute by 2σt should put 95% of all values within the [−1,1] interval.

Thus, when target prediction r′m is the largest, we would use as the normalization factor χ in

Equation 7 the value

χ =
r′m

2σm
.

More in detail, the index m ∈ {1, . . . , T} of the maximum target value r′m of the rule r′ is defined

by:

m = argmax
t

∣
∣
∣
∣

r′t
2σt

∣
∣
∣
∣
.

This way we make all the rules have equal maximal target prediction. We can now also give a

strict bound to the predictions rt : By the definition of m, after this second stage of normalization

it holds that rm = 1 and |rt | = |σm/r′m r′t/σt | ≤ 1 for all other targets t. Alternative choices for the

normalization factor χ exist, but they may not behave as well in practice (Aho, 2012).

To sum up, at the second stage of normalization the target predictions rt in a certain rule r are

scaled by a factor χ that represents the the initial size of the predictive values of the particular rule.

Thus, this stage roughly equalizes the rules before the optimization phase and affects the rules of

the final model. After the two first normalization steps our rule predictions are of form:

r =
r′

χ
=

r′′ −avg

χ
.
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In addition to equalizing the initial importance of rules, we also have to equalize the effect of

differing target scales during the optimization. Otherwise, targets with large scales would dominate

the rule selection. This is done in the third stage of the normalization. However, clearly our intention

is to use this normalization only temporarily during optimization. Otherwise the resulting model

would not anymore be applicable to real world data. As usual, we do this simply by dividing the

target attribute prediction values rt by twice their standard deviations 2σt :

r∗t =
rt

2σt
=

r′t
2σtχ

=
r′′t −avgt

2σtχ
.

The rationalization on the normalization of the linear terms is similar to what was presented

here for the rules. Nevertheless, linear terms are global in nature.

We recall that single linear term is defined as

x(t, j) = (0, . . . , 0
t−1

, x j
t

, 0
t+1

, . . . , 0),

which depicts the influence of the descriptive attribute x j on the target attribute xt . We add linear

terms for all possible combinations of numeric descriptive attributes and target attributes.

Unlike rules, linear terms are affected by two attributes and, thus, two attribute space scales:

that of the j-th descriptive attribute space and that of t-th target space. In addition, linear terms

with their single nonzero coordinate are multi-target only in principle. There is no sense in scaling

with the maximum coordinate of linear terms as was done in the second normalization stage. These

differences have to be taken into account.

We again shift the linear terms by the average x′′j of the j-th descriptive attribute:

x′(t, j) = (0, . . . , x′′j − x′′j , . . . , 0).

Here x′′j is the original attribute x j value. However, we continue by normalizing the terms to the

target attribute scale

x(t, j) = x′(t, j)
σt

σ j
.

Here we note the effect of two separate attribute spaces. Linear terms normalized like this appear in

the final rule ensemble model.

However, analogously to the third stage of rule normalization we also scale the target dimension

space out temporarily:

x∗(t, j) =
x(t, j)

2σt
=

x′(t, j)

2σ j
.

This is, again, only intended to equalize the terms of different target attributes during the optimiza-

tion procedure.

In Aho et al. (2009) we externally normalized the data. It is worth noting that the normalization

process illustrated in Section 3.1 can not be trivially reduced to the external normalization. Let us

concentrate on a single-target model and denote with † the functions and weights that result from the

optimization process after external normalization. We now have the following form for the external
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normalization results:

f †(x†) = w†
0 avg† +

M

∑
i=1

w†
i r†

i (x
†)

avg†=0
=

M

∑
i=1

w†
i r†

i

(
1

2
(x−x)1σ−1

)

=
M

∑
i=1

w†
i Ii(x)

r′′i (x)−avg

2σi
=

M

∑
i=1

w†
i

2σi
r′i(x).

Here 1 is the coordinate-wise Hadamard product and σ−1 is a vector which consists of the inverses

of standard deviations: 1/σ. Moreover, the indicator function Ii equals 1 if r′i covers the instance and

zero otherwise. The third equality follows from the fact that our tree ensemble training algorithm is

invariant to scaling and behaves similarly with normalized and unprocessed data.

We notice that the form on last row can be expressed in the form of internal normalization

f (x) = w0 avg+
M

∑
i=1

wir
′
i(x)

only if avg = 0, that is, the data is originally zero-centered. We realize that a lacking term affects

the optimization of the remaining weights. Thus, in the general case transforming an externally

normalized model to an equivalent internally normalized one is not trivially possible.

Appendix C. Comparison to RULEFIT

In this appendix, we study the differences between the FIRE and RULEFIT methods used in the

experiments shown in Section 5.1. We used the RULEFIT settings that give the most accurate

models as recommended by Friedman and Popescu (2008, 2004): these settings are presented in

Section 4. However, an interesting question is prompted by the results in Section 5.1 and especially

by Figure 1(a): Why does FIRE behave so much worse than RULEFIT on the single-target data?

To what extent is this difference caused by the implementation and to what extent is it caused only

by the different parameter settings implemented? In this section, we try to find an answer to these

questions.

Figure 4 is analogous to Figure 1, the only difference is that now RULEFIT is using the parameter

settings very similar to FIRE. As assumed, the behavior of the two algorithms is now much more

alike. As seen in Figure 4(a), the accuracy of the unlimited FIRE versions is between those of the

RULEFIT models. Surprisingly, however, FIRE now seems to gain more from linear terms while

RULEFIT is more accurate without them.

There are several important RULEFIT features that could still be included in FIRE. The detailed

list of differences is presented in Table 3. The most important difference is in the way the initial

rule set is created. While FIRE (Algorithm 1, line 1) generates random forests, the best version of

RULEFIT uses the best performing ISLE (Friedman and Popescu, 2003) tree ensembles. The ma-

jor distinction here is that ISLE on each tree generation iteration takes into account the previously

generated ensemble members when inducing the new tree. In this sense random forests are mem-

oryless when compared with ISLE. As shown by Friedman and Popescu (2003), the difference in

performance between ISLE and random forests may be very significant.

Another major difference is the robustness of RULEFIT. The used loss function and the linear

terms are made robust against outliers. In addition, there are some minor differences. For example,

for the best version of RULEFIT the size of each tree ensemble is larger and, instead of only leaves,
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1234567891011

CD

Dirty

MTSMOTI

Tree

FIRE, Max 30

RegENDER

RuleFit + linear

FIRE

FIRE + linear, Max 30

FIRE + linear

RuleFit

Random forest

(a) RRMSE

1234567891011

CD

Random forest

FIRE + linear

FIRE

RegENDER

RuleFit

RuleFit + linear

FIRE, Max 30

FIRE + linear, Max 30

Tree

Dirty

MTSMOTI

(b) model size

Figure 4: Average ranks diagrams on single-target data with RULEFIT parameters similar to FIRE

for RRMSE (a) and model size (b). Better algorithms are on the right-hand side, the ones

that do not differ significantly by the Nemenyi test (p-value = 0.05) are connected with a

horizontal bar. CD is the critical distance.

all tree nodes are turned into rules. This is possible because rule predictions are always set to 1 in

the initial set of rules.

See Friedman and Popescu (2008, 2004) for more details about the parameter settings. We

can conclude that we should be able to still improve the accuracy of FIRE by implementing some

additional features present in RULEFIT.

Appendix D. Detailed Experimental Results

The detailed results discussed in Sections 5.1 and 5.2 are presented in Table 4 for single-target

problems and in Table 5 for multi-target problems. In the table, DIRTY size is presented in number

of nonzero weights as was done by Jalali et al. (2011). However, since small magnitude weights

may disturb the view, we here also report average sizes where weights having absolute value under a

threshold are removed. With thresholds c ·median(B+S) where c∈ {0, 0.01, 0.1, 0.3, 0.5}, we have

the sizes 10.4, 10.2, 9.5, 8.5, 7.6 in single-target and 293, 264, 228, 198, 178 in multi-target cases.

Thus, the amount of very small weights seems not to be very relevant. The amount of optimized

weights altogether was on average 12.6 in single-target and 336.7 in multi-target.
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BEST RULEFIT RULEFIT MOST FIRE

SETTING SIMILAR TO FIRE

LINEAR FUNC. TRIMMING 0.025 0.0 0.0

HUBER LOSS TRIMMING 0.9 (SQR LOSS) 1.0 (SQR LOSS) 1.0

MAX. NB OF RULES 5000 1000 ON AVG ≈700

MEAN MAX. NB. OF LEAVES 6 7 ≈7

INCENTIVE FACTOR 3∗ (NOT USED) 1.0 (NOT USED) 1.0

TREE MEMORY FACTOR 0.01 (NOT USED) 0.0 (NOT USED) 0.0

TREE SAMPLING FRACTION 1/5 1−1/e 1−1/e

GD VALID. SET SIZE 3-FOLD XVAL 1/3 1/3

GD STEP SIZE 0.01∗ 0.01∗ SEE APPENDIX A

Table 3: Setting differences for FIRE and RULEFIT in single-target experiments. The value is

marked with an asterisk if the best value of RULEFIT was not mentioned in the origi-

nal papers or if value similar to FIRE was not available. Default values were used in these

cases.
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ensembles. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, Proceedings

of the 25th International Conference on Machine Learning (ICML 2008), AICPS, pages 224–231.

ACM, 2008.
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Sašo Džeroski, Ljupčo Todorovski, and Hendrik Blockeel. Relational ranking with predictive clus-

tering trees. In Proceedings of the Workshop on Active Mining (in ICDM 2002), pages 9–15.

IEEE Computer Society, 2002.
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Mladenić, and Andrzej Skowron, editors, Proceedings of the 18th European Conference on Ma-

chine Learning (ECML 2007), LNCS, pages 624–631. Springer, 2007.

Qi Liu, Qian Xu, Vincent W. Zheng, Hong Xue, Zhiwei Cao, and Qiang Yang. Multi-task learning

for cross-platform siRNA efficacy prediction: an in-silico study. BMC Bioinformatics, 11(1):

181–196, 2010.

Karim Lounici, Massimiliano Pontil, Alexandre B. Tsybakov, and Sara A. van de Geer. Taking

advantage of sparsity in multi-task learning. In Proceedings of the 22nd Conference on Learning

Theory (COLT 2009), 2009.

Ryszard S. Michalski. On the quasi-minimal solution of the general covering problem. In Proceed-

ings of the Fifth International Symposium on Information Processing (FCIP 1969), volume A3,

Switching Circuits, pages 125–128, 1969.

2405
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Abstract

The investigation of directed acyclic graphs (DAGs) encoding the same Markov property, that is
the same conditional independence relations of multivariate observational distributions, has a long
tradition; many algorithms exist for model selection and structure learning in Markov equivalence
classes. In this paper, we extend the notion of Markov equivalence of DAGs to the case of interven-
tional distributions arising from multiple intervention experiments. We show that under reasonable
assumptions on the intervention experiments, interventional Markov equivalence defines a finer par-
titioning of DAGs than observational Markov equivalence and hence improves the identifiability of
causal models. We give a graph theoretic criterion for two DAGs being Markov equivalent under
interventions and show that each interventional Markov equivalence class can, analogously to the
observational case, be uniquely represented by a chain graph called interventional essential graph

(also known as CPDAG in the observational case). These are key insights for deriving a general-
ization of the Greedy Equivalence Search algorithm aimed at structure learning from interventional
data. This new algorithm is evaluated in a simulation study.

Keywords: causal inference, interventions, graphical model, Markov equivalence, greedy equiva-
lence search

1. Introduction

Directed acyclic graphs (or DAGs for short) are commonly used to model causal relationships be-

tween random variables; in such models, parents of some vertex in the graph are understood as

“causes”, and edges have the meaning of “causal influences”. The causal influences between ran-

dom variables imply conditional independence relations among them. However, those independence

relations, or the corresponding Markov properties, do not identify the corresponding DAG com-

pletely, but only up to Markov equivalence. To put it simple, the skeleton of an underlying DAG is

completely determined by its Markov property, whereas the direction of the arrows (which is cru-

cial for causal interpretation) is in general not encoded in the Markov property for the observational

distribution.

Interventions can help to overcome those limitations in identifiability. An intervention is re-

alized by forcing the value of one or several random variables of the system to chosen values,

destroying their original causal dependencies. The ensemble of both the observational and interven-

tional distributions can greatly improve the identifiability of the causal structure of the system, the

underlying DAG.

c©2012 Alain Hauser and Peter Bühlmann.
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This paper has two main contributions. The first one is an algorithmically tractable graphical

representation of Markov equivalence classes under a given set of interventions (possibly affecting

several variables) from which the identifiability of causal models can be read off. This is of general

interest for computation and algorithms dealing with structure (DAG) learning from an ensemble of

observational and interventional data such as MCMC. The second contribution is a generalization

of the Greedy Equivalence Search (GES) algorithm of Chickering (2002b), yielding an algorithm

called Greedy Interventional Equivalence Search (GIES) which can be used for regularized maxi-

mum likelihood estimation in such an interventional setting.

In Section 2, we establish a criterion for two DAGs being Markov equivalent under a given

intervention setting. We then generalize the concept of essential graphs, a graph theoretic represen-

tation of Markov equivalence classes, to the interventional case and characterize the properties of

those graphs in Section 3. In Section 4, we elaborate a set of algorithmic operations to efficiently

traverse the search space of interventional essential graphs and finally present the GIES algorithm.

An experimental evaluation thereof is given in Section 5. We postpone all proofs to Appendix B,

while Appendix A contains a review on graph theoretic concepts and definitions. An implementa-

tion of the GIES algorithm will be available in the next release of the R package pcalg (Kalisch

et al., 2012); meanwhile, a prerelease version is available upon request from the first author.

1.1 Related Work

The investigation of Markov equivalence classes of directed graphical models has a long tradi-

tion, perhaps starting with the criterion for two DAGs being Markov equivalent by Verma and

Pearl (1990) and culminating in the graph theoretic characterization of essential graphs (also called

CPDAGs, “completed partially directed acyclic graphs”) representing Markov equivalence classes

by Andersson et al. (1997). Several algorithms for estimating essential graphs from observational

data exist, such as the PC algorithm (Spirtes et al., 2000) or the Greedy Equivalence Search (GES)

algorithm (Meek, 1997; Chickering, 2002b); a more complete overview is given in Brown et al.

(2005) and Murphy (2001).

Different approaches to incorporate interventional data for learning causal models have been

developed in the past. The Bayesian procedures of Cooper and Yoo (1999) or Eaton and Murphy

(2007) address the problem of calculating a posterior (and also a likelihood) of an ensemble of ob-

servational and interventional data but do not address questions of identifiability or Markov equiv-

alence: allowing different posteriors for Markov equivalent models can be intended in Bayesian

methods (and realized by giving the corresponding models different priors). Since the number of

DAGs with p variables grows super-exponentially with p (Robinson, 1973), the computation of a

full posterior is intractable. For this reason, the mentioned Bayesian approaches are limited to com-

puting posterior probabilities for certain features of a DAG; such a feature could be an edge from a

vertex a to another vertex b, or a directed path from a to b visiting additional vertices. Approaches

based on active learning (He and Geng, 2008; Tong and Koller, 2001; Eberhardt, 2008) propose

an iterative line of action, estimating the essential graph with observational data in a first step and

using interventional data in a second step to orient beforehand unorientable edges. He and Geng

(2008) present a greedy procedure in which interventional data is uniquely used for deciding about

edge orientations; this is not favorable from a statistical point of view since interventional data can

also help to improve the estimation of the skeleton (or, more generally, the observational essential

graph). Tong and Koller (2001) avoid this problem by using a Bayesian framework, but do not
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address the issue of Markov equivalence therewith. Eberhardt et al. (2005) and Eberhardt (2008)

provide algorithms for choosing intervention targets that completely identify all causal models of p

variables uniformly, but neither address the question of partial identifiability under a limited number

of interventions nor provide an algorithm for learning the causal structure from data. Eberhardt et al.

(2010) present an algorithm for learning cyclic linear causal models, but focus on complete identi-

fiability; identifiability results for cyclic models only imply sufficient, but not necessary, conditions

for the identifiability of acyclic models.

Probably the most advanced result concerning identifiability of causal models under single-

variable interventions so far is given in the work of Tian and Pearl (2001). Although they do not

provide a characterization of equivalence classes as a whole (as this paper does), they present a

necessary and sufficient graph theoretic criterion for two models being indistinguishable under a set

of single-variable interventions as well as a learning algorithm based on the detection of changes in

marginal distributions.

2. Model

We consider p random variables (X1, . . . ,Xp) =: X which take values in some product measure space

(X ,A,µ) = (∏
p
i=1Xi,

⊗p
i=1Ai,

⊗p
i=1 µi) with Xi ⊂ R ∀ i. Each σ-algebra Ai is assumed to contain

at least two disjoint sets of positive measure to avoid pathologies, and X is assumed to have a strictly

positive joint density w.r.t. the measure µ on X . We denote the set of all positive densities on X by

M. For any subset of component indices A⊂ [p] := {1, . . . , p}, we use the notation XA := ∏a∈AXa,

XA := (Xa)a∈A and the convention X/0 ≡ 0. Lowercase symbols like xA represent a value in XA.

The model we are considering is built upon Markov properties with respect to DAGs. By con-

vention, all graphs appearing in the paper shall have the vertex set [p], representing the p random

variables X1, . . . ,Xp. Our notation and definitions related to graphs are summarized in Appendix

A.1.

2.1 Causal Calculus: A Short Review

We start by summarizing important facts and fixing our notation concerning Markov properties and

intervention calculus.

Definition 1 (Markov property; Lauritzen, 1996) Let D be a DAG. Then we say that a proba-

bility density f ∈M obeys the Markov property of D if f (x) = ∏
p
i=1 f (xi|xpaD(i)). The set of all

positive densities obeying the Markov property of D is denoted by M(D).

Definition 1 is the most straightforward translation of independence relations induced from

structural equations, the historical origin of directed graphical models (Wright, 1921). Related

notions like local and global Markov properties exist and are equivalent to the factorization property

of Definition 1 for positive densities (Lauritzen, 1996).

Definition 2 (Markov equivalence; Andersson et al., 1997) Let D1 and D2 be two DAGs. D1 and

D2 are called Markov equivalent (notation: D1 ∼ D2) if M(D1) =M(D2).

Theorem 3 (Verma and Pearl, 1990) Two DAGs D1 and D2 are Markov-equivalent if and only if

they have the same skeleton and the same v-structures.
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Directed graphical models allow for an obvious causal interpretation. For a density f that obeys

the Markov properties of some DAG D, we can think of a random variable Xa being the direct cause

of another variable Xb if a is a parent of b in D.

Definition 4 (Causal model) A causal model is a pair (D, f ), where D is a DAG on the vertex set

[p] and f ∈M(D) is a density obeying the Markov property of D: D is called the causal structure

of the model, and f the observational density.

Causality is strongly linked to interventions. We consider stochastic interventions (Korb et al.,

2004) modeling the effect of setting or forcing one or several random variables XI , where I ⊂ [p]
is called the intervention target, to the value of independent random variables UI , called inter-

vention variables. The joint product density of UI on XI , called level density, is denoted by f̃ .

Extending the do() operator (Pearl, 1995) to stochastic interventions, we denote the density of X

under such an intervention by f (x|doD(XI =UI)). Using truncated factorization and the assumption

of independent intervention variables, this interventional density can be written as

f (x | doD(XI =UI)) = ∏
i/∈I

f (xi|xpaD(i))∏
i∈I

f̃ (xi) . (1)

By denoting with I = /0 and using the convention f (x|do(X/0 =U/0)) = f (x), we also encompass the

observational case as an intervention target.

Definition 5 (Intervention graph) Let D = ([p],E) be a DAG with vertex set [p] and edge set E

(see Appendix A.1), and I ⊂ [p] an intervention target. The intervention graph of D is the DAG

D(I) = ([p],E(I)), where E(I) := {(a,b) | (a,b) ∈ E,b /∈ I}.

For a causal model (D, f ), an interventional density f (·|doD(XI =UI)) obeys the Markov property

of D(I): the Markov property of the observational density is inherited. Figure 1 shows an example

of a DAG and two corresponding intervention graphs.

As foreshadowed in the introduction, we are interested in causal inference based on data sets

originating from multiple interventions, that means from a set of the form S = {(I j, f̃ j)}J
j=1, where

I j ⊂ [p] is an intervention target and f̃ j a level density on XI j for 1 ≤ j ≤ J. We call such a set an

intervention setting, and the corresponding (multi)set of intervention targets I = {I j}J
j=1 a family

of targets. We often use the family of targets as an index set, for example to write a corresponding

intervention setting as S = {(I, f̃I)}I∈I .

We consider interventional data of sample size n produced by a causal model (D, f ) under an

intervention setting S = {(I, f̃I)}I∈I . We assume that the n samples X (1), . . . ,X (n) are independent,

and write them as usual as rows of a data matrix X. However, they are not identically distributed

1 2 3 4

5 6 7
(a) D

1 2 3 4

5 6 7

(b) D({4})

1 2 3 4

5 6 7

(c) D({3,5})

Figure 1: A DAG D and the corresponding intervention graphs D({4}) and D({3,5}).
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as they arise from different interventions. The interventional data set is fully specified by the pair

(T ,X),

T =







T (1)

...

T (n)






∈ In, X =







—X (1) —
...

—X (n) —






, (2)

where for each i∈ [n], T (i) denotes the intervention target under which the sample X (i) was produced.

This data set can potentially contain observational data as well, namely if /0 ∈ I. To summarize, we

consider the statistical model

X (1),X (2), . . . ,X (n) independent,

X (i) ∼ f
(

· | doD(X
(i)

T (i) =UT (i) )
)

, UT (i) ∼ f̃T (i) , i = 1, . . . ,n , (3)

and we assume that each target I ∈ I appears at least once in the sequence T .

2.2 Interventional Markov Equivalence: New Concepts and Results

An intervention at some target a ∈ [p] destroys the original causal influence of other variables of

the system on Xa. Interventional data thereof can hence not be used to determine the causal parents

of Xa in the (undisturbed) system. To be able to estimate at least the complete skeleton of a causal

structure (as in the observational case), an intervention experiment has to be performed based on a

conservative family of targets:

Definition 6 (Conservative family of targets) A family of targets I is called conservative if for all

a ∈ [p], there is some I ∈ I such that a /∈ I.

In this paper, we restrict our considerations to conservative families of targets; see Section 2.3 for a

more detailed discussion. Note that every experiment in which we also measure observational data

corresponds to a conservative family of targets.

If a family of targets I contains more than one target, interventional data as in Equation (3)

are not identically distributed. Whereas the distribution of observational data is determined by a

single density, we need tuples of densities as in the following definition to specify the distribution

of interventional data.

Definition 7 Let D be a DAG on [p], and let I be a family of targets. Then we define

MI(D) :=
{

( f (I))I∈I ∈M|I|
∣

∣ ∀ I ∈ I : f (I) ∈M(D(I)), and

∀ I,J ∈ I, ∀ a /∈ I∪ J : f (I)(xa|xpaD(a)) = f (J)(xa|xpaD(a))
}

.

Although the do() operator does not appear in Definition 7, the elements in MI(D) are exactly the

tuples ( f (·|doD(XI =UI)))I∈I that can be realized as interventional densities of some causal model

(D, f ). The first condition in the definition reflects the fact that an intervention at a target I gener-

ates a density obeying the Markov property of D(I); the second condition is a consequence of the

truncated factorization in Equation (1). These considerations are formalized in the following lemma

and motivate Definition 9 of interventional Markov equivalence in analogy to the observational case.

Note that for I = { /0}, Definition 7 equals its observational counterpart: M{ /0}(D) = M(D) (see

Definition 1).
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Lemma 8 Let D be a DAG on [p], and I a conservative family of targets.

(i) Let (D, f ) be a causal model (that is, f ∈M(D)), S = {(I, f̃I)}I∈I an intervention setting

and UI ∼ f̃I intervention variables for I ∈ I. Then, we have

(

f (· | do(XI =UI))
)

I∈I ∈MI(D) .

(ii) Let ( f (I))I∈I ∈MI(D). Then there is some positive density f ∈M(D) and an intervention

setting S = {(I, f̃I)}I∈I such that f (·|do(XI = UI)) = f (I)(·) for random variables UI with

density f̃I , for all I ∈ I.

Definition 9 (Interventional Markov equivalence) Let D1 and D2 be DAGs, and I a family of

targets. D1 and D2 are called I-Markov equivalent (notation: D1 ∼I D2) if MI(D1) =MI(D2).
The I-Markov equivalence class of a DAG D is denoted by [D]I .

Alternatively, we will also use the term “interventionally Markov equivalent” when it is clear which

family of targets is meant. For the simplest conservative family of targets, I = { /0}, we get back

Definition 2 for the observational case. We now generalize Theorem 3 for the interventional case in

order to get a purely graph theoretic criterion for interventional Markov equivalence of two given

DAGs, the main result of this section.

Theorem 10 Let D1 and D2 be two DAGs on [p], and I a conservative family of targets. Then, the

following statements are equivalent:

(i) D1 ∼I D2;

(ii) for all I ∈ I, D
(I)
1 ∼ D

(I)
2 (in the observational sense);

(iii) for all I ∈ I, D
(I)
1 and D

(I)
2 have the same skeleton and the same v-structures;

(iv) D1 and D2 have the same skeleton and the same v-structures, and D
(I)
1 and D

(I)
2 have the same

skeleton for all I ∈ I.

2.3 Discussion

Throughout this paper, we always assume the observational density f of a causal model to be strictly

positive. This assumption makes sure that the conditional densities in Equation (1) are well-defined.

The requirement of a strictly positive density can, however, be a restriction for example for discrete

models (where the density is with respect to the counting measure). In the observational case, the

notion of Markov equivalence remains the same when we also allow densities that are not strictly

positive (Lauritzen, 1996). We conjecture that the notion of interventional Markov equivalence

(Definition 9 and Theorem 10) also remains valid for such densities; corresponding proofs would,

however, require more caution to avoid the aforementioned problems with (truncated) factorization.

To illustrate the importance of a conservative family of targets for structure identification, let

us consider the simplest non-trivial example of a causal model with 2 variables X1 and X2. Under

observational data, we can distinguish two Markov equivalence classes: one in which the variables

are independent (represented by the empty DAG D0), and one in which they are not independent

(represented by the DAGs D1 := 1 2 and D2 := 1 2). D1 and D2 can be distinguished if we

can measure data from an intervention at one of the vertices in addition to observational data; this

experimental setting corresponds to the (conservative) family of targets I = { /0,{1}}. However, an
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1 2 3 4

5 6 7
(a) D

1 2 3 4

5 6 7
(b) D1

1 2 3 4

5 6 7
(c) D2

Figure 2: Three DAGs having equal skeletons and a single v-structure, 3 6 5, hence being

observationally Markov equivalent. For I = { /0,{4}}, we have D ∼I D1, but D )∼I D2

since the skeletons of D({4}) (Figure 1(b)) and D
({4})
2 do not coincide.

intervention at, say, X1 alone (that is, in the absence of observational data), corresponding to the

non-conservative family I = {{1}}, only allows a distinction between the models D2 and D0 on

the one hand (which do not show dependence between X1 and X2 under the intervention) and D1

on the other hand (which does show dependence between X1 and X2 under the intervention). Note

that the two indistinguishable models D0 and D2 do not even have the same skeleton, and that it

is impossible to determine the influence of X2 on X1 in the undisturbed system. In this setting, it

would be more natural to consider the intervened variable X1 as an external parameter rather than

a random variable of the system, and to perform regression to detect or determine the influence of

X1 on X2. Note, however, that full identifiability of the models does not require observational data;

interventions at X1 and X2 (corresponding to the conservative family I = {{1},{2}} in our notation)

are also sufficient.

Theorem 10 is of great importance for the description of Markov equivalence classes under

interventions. It shows that two DAGs which are interventionally Markov equivalent under some

conservative family of targets are also observationally Markov equivalent:

D1 ∼I D2⇒ D1 ∼ D2. (4)

This implication is not true anymore for non-conservative families of targets. This is an explanation

for the term “conservative”: a conservative family of targets yields a finer partitioning of DAGs into

equivalence classes compared to observational Markov equivalence, but it preserves the “borders”

of observational Markov equivalence classes. Figure 2 shows three DAGs that are observationally

Markov equivalent, but which fall into two different interventional Markov equivalence classes

under the family of targets I = { /0,{4}}.

Theorem 10 agrees with Theorem 3 of Tian and Pearl (2001) for single-variable interventions.

While we also make a statement about interventions at several variables, they prove their theorem

for perturbations of the system at single variables only, but for a wider class of perturbations called

mechanism changes that go beyond our notion of interventions. While an intervention destroys

the causal dependence of a variable from its parents (and hence replaces a conditional density by

a marginal one in the Markov factorization, see Equation (1)), a mechanism change (also known

as “imperfect” or “soft” interventions; see Eaton and Murphy, 2007) alters the functional form of

this dependence (and hence replaces a Markov factor by a different one which is still a conditional

distribution). The fact that Theorem 10 is true for mechanism changes on single variables motivates

the conjecture that it also holds for mechanism changes on several variables.
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3. Essential Graphs

Theorem 10 represents a computationally fast criterion for deciding whether two DAGs are interven-

tionally Markov equivalent or not. However, given some DAG D, it does not provide a possibility for

quickly finding all equivalent ones, and hence does not specify the equivalence class as a whole. In

this section, we give a characterization of graphs that uniquely represent an interventional Markov

equivalence class (Theorem 18). Our characterization of these interventional essential graphs is in-

spired by and similar to the one developed by Andersson et al. (1997) for the observational case and

allows for handling equivalence classes algorithmically. Furthermore, we present a linear time al-

gorithm for constructing a representative of the equivalence class corresponding to an interventional

essential graph (Proposition 16 and discussion thereafter), as well as a polynomial time algorithm

for constructing the interventional essential graph of a given DAG (Algorithm 1). Throughout this

section, I always stands for a conservative family of targets.

3.1 Definitions and Motivation

All DAGs in an I-Markov equivalence class share the same skeleton; however, arrow orientations

may vary between different representatives (Theorem 10). Varying and common arrow orientations

are represented by undirected and directed edges, respectively, in I-essential graphs.

Definition 11 (I-essential graph) Let D be a DAG. The I-essential graph of D is defined as

EI(D) :=
⋃

D′∈[D]I D′. (The union is meant in the graph theoretic sense, see Appendix A.1).

When the family of targets I in question is clear from the context, we will also use the term in-

terventional essential graph, while “observational essential graph” shall refer to the concept of

essential graphs as introduced by Andersson et al. (1997) in the observational case. Simply speak-

ing of “essential graphs”, we mean interventional or observational essential graphs in the following.

Definition 12 (I-essential arrow) Let D be a DAG. An edge a b ∈ D is I-essential in D if a

b ∈ D′ ∀ D′ ∈ [D]I .

An I-essential graph typically contains directed as well as undirected edges. Directed ones corre-

spond to arrows that are I-essential in every representative of the equivalence class; in other words,

I-essential arrows are those whose direction is identifiable. A first sufficient criterion for an edge

to be I-essential follows immediately from Lemma 47 (Appendix B.1).

Corollary 13 Let D be a DAG with a b ∈ D. If there is an intervention target I ∈ I such that

|{a,b}∩ I|= 1, then a b is I-essential.

The investigation of essential graphs has a long tradition in the observational case (Anders-

son et al., 1997; Chickering, 2002a). Due to increased identifiability of causal structures, Markov

equivalence classes shrink in the interventional case; Equation (4) implies EI(D)⊂ E{ /0}(D) for any

conservative family of targets I (see also Figure 8 in Section 5). Essential graphs, interventional as

well as observational ones, are mainly interesting because of two reasons:

• It is important to know which arrow directions of a causal model are identifiable and which

are not since arrow directions are relevant for the causal interpretation.
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1 2 3 4

5 6 7

(d)
(b)

(b)

(c)

Figure 3: A graph with six arrows. Four of them are strongly I-protected for any conservative

family of targets I (in parentheses: arrow configurations according to Definition 14).

Arrows 3 4 and 4 7 are strongly I-protected for I = { /0,{4}}, but not for I = { /0}.

• Markov equivalent DAGs encode the same statistical model. Hence the space of DAGs is

no suitable “parameter” or search space for statistical inference and computation. The natural

search space is given by the set of the equivalence classes, the objects that can be distinguished

from data. Essential graphs uniquely represent these equivalence classes and are efficiently

manageable in algorithms.

The characterization of I-essential graphs (Theorem 18) relies on the notion of strongly I-

protected arrows (Definition 14) which reproduces the corresponding definition of Andersson et al.

(1997) for I = { /0}; an illustration is given in Figure 3.

Definition 14 (Strong protection) Let G be a graph. An arrow a b ∈ G is strongly I-protected

in G if there is some I ∈ I such that |I∩{a,b}|= 1, or the arrow a b occurs in at least one of the

following four configurations as an induced subgraph of G:

(a): a b

c

(b): a b

c

(c): a b

c

(d): a b

c1

c2

We will see in Theorem 18 that every arrow of an I-essential graph (that is, every edge corre-

sponding to an I-essential arrow in the representative DAGs) is strongly I-protected. The config-

urations in Definition 14 guarantee the identifiability of the edge orientation between a and b: if

there is a target I ∈ I such that |I∩{a,b}|= 1, turning the arrow would change the skeleton of the

intervention graph D(I) (see also Corollary 13); in configuration (a), reversal would create a new

v-structure; in (b), reversal would destroy a v-structure; in (c), reversal would create a cycle; an

in (d) finally, at least one of the arrows between a and c1 or c2 must point away from a in each

representative, hence turning the arrow a b would create a cycle. We refer to Andersson et al.

(1997) for a more detailed discussion of the configurations (a) to (d).

3.2 Characterization of Interventional Essential Graphs

As in the observational setting, we can show that interventional essential graphs are chain graphs

with chordal chain components (see Appendix A.1). For the observational case I = { /0}, Proposi-

tions 15 and 16 below correspond to Propositions 4.1 and 4.2 of Andersson et al. (1997).

Proposition 15 Let D be a DAG on [p]. Then:

(i) EI(D) is a chain graph.
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(ii) For each chain component T ∈ T(EI(D)), the induced subgraph EI(D)[T ] is chordal.

Proposition 16 Let D be a DAG. A digraph D′ is acyclic and I-equivalent to D if and only if D′

can be constructed by orienting the edges of every chain component of EI(D) according to a perfect

elimination ordering.

This proposition is not only of theoretic, but also of algorithmic interest. According to the expla-

nation in Appendix A.2, perfect elimination orderings on the (chordal) chain components of EI(D)
can be generated with LexBFS (Algorithm 6); doing this for all chain components yields compu-

tational complexity O(|E|+ p), where E denotes the edge set of EI(D) (see Appendix A.2).

As an immediate consequence of Proposition 16, interventional essential graphs are in one-to-

one correspondence with interventional Markov equivalence classes. We will therefore also speak

about “representatives of I-essential graphs”, where we mean representatives (that is, DAGs) of

the corresponding equivalence class. Propositions 15 and 16 give the justification for the following

definition; note that in order to generate a representative of some I-essential graph, the family of

targets I need not be known.

Definition 17 Let G be the I-essential graph of some DAG. The set of representatives of G is

denoted by D(G):

D(G) :={D a DAG | D⊂ G,Du = Gu,D[T ] oriented according to some

perfect elimination ordering for each chain component T ∈ T(G)}.

Here, Du denotes the skeleton of D (Appendix A.1). We can now state the main result of this section,

a graph theoretic characterization of I-essential graphs. For the observational case I = { /0}, this

theorem corresponds to Theorem 4.1 of Andersson et al. (1997).

Theorem 18 A graph G is the I-essential graph of a DAG D if and only if

(i) G is a chain graph;

(ii) for each chain component T ∈ T(G), G[T ] is chordal;

(iii) G has no induced subgraph of the form a b c;

(iv) G has no line a b for which there exists some I ∈ I such that |I∩{a,b}|= 1;

(v) every arrow a b ∈ G is strongly I-protected.

The graph G of Figure 3 satisfies points (i) to (iii) of Theorem 18. For I = { /0,{4}}, it also

fulfills points (iv) and (v); in this case, it is the I-essential graph EI(D) of the DAG D of Figure

1(a) by Proposition 16.

3.3 Construction of Interventional Essential Graphs

In this section, we show that there is a simple way to construct the I-essential graph EI(D) of a DAG

D: we need to successively convert arrows that are not strongly I-protected into lines (Algorithm

1). By doing this, we get a sequence of partial I-essential graphs.

Definition 19 (Partial I-essential graph) Let D be a DAG. A graph G with D ⊂ G ⊂ EI(D) is

called a partial I-essential graph of D if a b c does not occur as an induced subgraph of G.
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The following lemma can be understood as a motivation for looking at such graphs. Note that due to

the condition G⊂ EI(D), and because G and EI(D) have the same skeleton, every arrow of EI(D)
is also present in G, hence statement (ii) below makes sense.

Lemma 20 Let D be a DAG. Then:

(i) D and EI(D) are partial I-essential graphs of D.

(ii) Let G be a partial I-essential graph of D. Every arrow a b∈ EI(D) is strongly I-protected

in G.

(iii) Let G be a partial I-essential graph of two DAGs D1 and D2. Then, D1 ∼I D2.

Algorithm 1 constructs the I-essential graph G from a partial I-essential graph of any DAG

D ∈ D(G). The algorithm is indeed valid and calculates EI(D), since the graph produced in each

iteration is a partial I-essential graph of D (Lemma 21), and the only partial I-essential graph that

has only strongly I-protected arrows is EI(D) (Lemma 22).

Lemma 21 Let D be a DAG and G a partial I-essential graph of D. Assume that a b ∈ G is not

strongly I-protected in G, and let G′ := G+(b,a) (that is, the graph we get by replacing the arrow

a b by a line a b; see Appendix A.1). Then G′ is also a partial I-essential graph of D.

Lemma 22 Let D be a DAG. There is exactly one partial I-essential graph of D in which every

arrow is strongly I-protected, namely EI(D).

To construct EI(D) from some DAG D = ([p],E), we must, in the worst case, execute the itera-

tion of Algorithm 1 for every arrow in the DAG; at each step, we must check every 4-tuple of vertices

to see whether some arrow occurs in configuration (d) of Definition 14. Therefore Algorithm 1 has

at most complexity O(|E| · p4); by exploiting the partial order -G on T(G) (see Appendix A.1),

more efficient implementations are possible. Note that some checks only need to be done once. If,

for example, an edge a b is part of a v-structure (configuration (b) of Definition 14), or if there is

some I ∈ I such that |I ∩ {a,b}| = 1 in the first iteration of Algorithm 1, this will also be the case

in every later iteration.

3.4 Example: Identifiability under Interventions

A simple example illustrates how much identifiability can be gained with a single intervention. We

consider a linear chain as observational essential graph:

G = E{ /0}(D) : 1 2 3 · · · p .

We can easily count the number of representatives of G using the following lemma.

Input : G: partial I-essential graph of some DAG D (not known)
Output: EI(D)
while ∃ a b ∈ G s.t. a b not strongly I-protected in G do

G← G+(b,a);

return G;

Algorithm 1: ReplaceUnprotected(I,G). Iterative construction of an I-essential graph
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Lemma 23 (Source lemma) Let G be a connected, chordal, undirected graph, and let D⊂ G be a

DAG without v-structures and with Du = G. Then D has exactly one source.

Proof Let σ be a topological ordering of D; then, σ(1) is a source, see Appendix A.1. It re-

mains to show that there is at most one such source. Assume, for the sake of contradiction,

that there are two different sources u and v. Since G is connected, there is a shortest u-v-path

γ = (a0 ≡ u,a1, . . . ,ak ≡ v). Let ai ai+1 ∈ D be the first arrow that points away from v in the

chain γ in D (note i≥ 1 since u a1 ∈ D by assumption). The v-structure ai−1 ai ai+1 is not

allowed as an induced subgraph of D, hence ai−1 and ai+1 must be adjacent in D and in G; however,

γ is then no shortest u-v-path, a contradiction.

For our linear chain G and any s ∈ [p], there is exactly one DAG D ∈D(G) that has the (unique)

source s, namely the DAG we get by orienting all edges of G away from s; other edge orientations

would produce a v-structure. We conclude G has p representatives.

Assume that the true causal model producing the data is (D, f ), and denote the source of D

by s ∈ [p]. Consider the conservative family of targets I = { /0,{v}} with v ∈ [p]. If v < s, the

interventional essential graph EI(D) is

1 2 . . . v+1 . . . p ,

and |D(EI(D))|= p−v by the same arguments as above; analogously, if v> s, we find |D(EI(D))|=
v−1. On the other hand, if v= s, all edges of D are strongly I-protected: those incident to s because

of the intervention target, all others because they are in configuration (a) of Definition 14; therefore,

we have EI(D) = D.

In the best case, all edge orientations in the chain can be identified by a single intervention,

while the observational essential graph E{ /0}(D) that is identifiable from observational data alone

contains p representatives. However, this needs an intervention at the a priori unknown source s.

Choosing the central vertex 2 p
2 3 as intervention target ensures that at least half of the edges become

directed in EI(D), independent of the position s of the source.

4. Greedy Interventional Equivalence Search

Different algorithms have been proposed to estimate essential graphs from observational data. One

of them, the Greedy Equivalence Search (GES) (Meek, 1997; Chickering, 2002b), is particularly

interesting because of two properties:

• It is score-based; it greedily maximizes some score function for given data over essential

graphs. It uses no tuning-parameter; the score function alone measures the quality of the

estimate. Chickering (2002b) chose the BIC score because of consistency; technically, any

score equivalent and decomposable function (see Definition 24) is adequate.

• It traverses the space of essential graphs which is the natural search space for model inference

(see Section 3). We will see in Section 5 that a greedy search over equivalence classes yields

much better estimation results than a naı̈ve greedy search over DAGs.

GES greedily optimizes the score function in two phases (Chickering, 2002b):
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• In the forward phase, the algorithm starts with the empty essential graph, G0 := ([p], /0). It

then sequentially steps from one essential graph Gi to a larger one, Gi+1, for which there are

representatives Di ∈ D(Gi) and Di+1 ∈ D(Gi+1) such that Di+1 has exactly one arrow more

than Di.

• In the backward phase, the sequence (Gi)i is continued by gradually stepping from one

essential graph Gi to a smaller one, Gi+1, for which there are representatives Di ∈ D(Gi) and

Di+1 ∈ D(Gi+1) such that Di+1 has exactly one arrow less than Di.

In both phases, the respective candidate with maximal score is chosen, or the phase is aborted if no

candidate scores higher than the current essential graph Gi.

We introduce in addition a new turning phase which proved to enhance estimation (see Section

5). Here, the sequence (Gi)i is elongated by gradually stepping from one essential graph Gi to a new

one with the same number of edges, denoted by Gi+1, for which there are representatives Di ∈D(Gi)
and Di+1 ∈ D(Gi+1) such that Di+1 can be constructed from Di by turning exactly one arrow. As

before, we choose the highest scoring candidate. Such a turning phase had already been proposed,

but not characterized or implemented, by Chickering (2002b).

Because GES is an optimization algorithm working on the space of observational essential

graphs, and because the characterization of interventional essential graphs is similar to that of ob-

servational ones (Theorem 18), GES can indeed be generalized to handle interventional data as well

by operating on interventional instead of observational essential graphs. We call this generalized

algorithm Greedy Interventional Equivalence Search or GIES. An overview is shown in Algorithm

2: the forward, backward and turning phase are repeatedly executed in this order until none of them

can augment the score function any more.

A naı̈ve search strategy would perhaps traverse the space of DAGs instead of essential graphs,

greedily adding, removing or turning single arrows from DAGs. It is well-known in the observa-

tional case that such an approach performs markedly worse than one accounting for Markov equiv-

alence (Chickering, 2002b; Castelo and Kočka, 2003), and we will see in our simulations (Section

5.2) that the same is true in the interventional case as long as few interventions are made. Ignoring

Markov equivalence cuts down the search space of successors at haphazard; since all DAGs in a

Markov equivalence class represent the same statistical model, there is no justification for consider-

ing neighbors (that is, DAGs that can be reached by adding, removing or turning an arrow) of one

of the representatives but not of the other ones.

GIES can be used with general score functions. It goes without saying that the chosen score

function should be a “reasonable” one which has favorable statistical properties such as consistency.

We denote the score of a DAG D given interventional data (T ,X) by S(D;T ,X), and we assume

that S is score equivalent, that is, it assigns the same score to I-equivalent DAGs; I always stands

for a conservative family of targets in this section. Furthermore, we require S to be decomposable.

Definition 24 A score function S is called decomposable if for each DAG D, S can be written as a

sum

S(D;T ,X) =
p

∑
i=1

s(i,paD(i);T ,X),

where the local score s depends on X only via X i and X paD(i), with X i denoting the ith column of

X and X paD(i) the submatrix of X corresponding to the columns with index in paD(i).
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Throughout the rest of this section, S always denotes a score equivalent and decomposable score

function. Such a score function needs only be evaluated at one single representative of some inter-

ventional Markov equivalence class. Indeed, a key ingredient for the efficiency of the observational

GES as well as our interventional GIES is an implementation that computes the greedy steps to

the next equivalence class in a local fashion without enumerating all corresponding DAG members.

Chickering (2002b) found a clever way to do that in the forward and backward phase of the obser-

vational GES. In Sections 4.1 and 4.2, we generalize his methods to the interventional case, and in

Section 4.3, we propose an efficient implementation of the new turning phase.

4.1 Forward Phase

A step in the forward phase of GIES can be formalized as follows: for an I-essential graph Gi, find

the next one Gi+1 := EI(Di+1), where

Di+1 := argmax
D′∈D+(Gi)

S(D′;T ,X), and

D+(Gi) := {D′ a DAG | ∃ an arrow u v ∈ D′ : D′ − (u,v) ∈ D(Gi)} .

If no candidate DAG D′ ∈ D+(Gi) scores higher than Gi, abort the forward phase.

We denote the set of candidate I-essential graphs by EEE+
I
(Gi) := {EI(D′) | D′ ∈ D+(Gi)}. In

the next proposition, we show that each graph G′ ∈ EEE+
I
(Gi) can be characterized by a triple (u,v,C),

where u v is the arrow that has to be added to a representative D of Gi in order to get a repre-

sentative D′ of G′, and C specifies the edge orientations of D within the chain component of v in

G.

Input : (T ,X): interventional data for family of targets I
Output: I-essential graph
G← ([p], /0);
repeat

DoContinue← FALSE;
repeat

Gold← G;
G← ForwardStep(G;T ,X) ; // See Algorithm 3

until Gold = G;
repeat

Gold← G;
G←BackwardStep(G;T ,X) ; // See Algorithm 4

if Gold )= G then DoContinue← TRUE;

until Gold = G;
repeat

Gold← G;
G←TurningStep(G;T ,X) ; // See Algorithm 5

if Gold )= G then DoContinue← TRUE;

until Gold = G;

until ¬DoContinue;

Algorithm 2: GIES(T ,X). Greedy Interventional Equivalence Search. The steps of the dif-

ferent phases of the algorithms are described in Algorithms 3–5.
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Proposition 25 Let G be an I-essential graph, let u and v be two non-adjacent vertices of G, and

let C ⊂ neG(v). Then there is a DAG D ∈ D(G) with {a ∈ neG(v) | a v ∈ D} = C such that

D′ := D+(u,v) ∈ D+(G) if and only if

(i) C is a clique in G[TG(v)];
(ii) N := neG(v)∩ adG(u)⊂C;

(iii) and every path from v to u in G has a vertex in C.

For given G, u, v and C determine D′ uniquely up to I-equivalence.

Note that points (i) and (ii) imply in particular that N is a clique in G[TG(v)]. Proposition 25 has

already been proven for the case of observational data (Chickering, 2002b, Theorem 15); it is not

obvious, however, to see that this characterization of a forward step is also valid for interventional

essential graphs, so we give a new proof in Appendix B.3 using the results developed in Sections 2

and 3.

The DAGs D and D′ in Proposition 25 only differ in the edge (u,v); v is the only vertex whose

parents are different in D and D′. Since the score function S is assumed to be decomposable, the

score difference between D and D′ can be expressed by the local score change at vertex v, as stated

in the following corollary.

Corollary 26 Let G, u, v, C, D and D′ be as in Proposition 25. The score difference ∆S :=
S(D′;T ,X)−S(D;T ,X) can be calculated as follows:

∆S = s(v,paG(v)∪C∪{u};T ,X)− s(v,paG(v)∪C;T ,X).

In the observational case, this corollary corresponds to Corollary 16 of Chickering (2002b).

Input : G = ([p],E): I-essential graph; (T ,X): interventional data for I
Output: G′ ∈ EEE+

I
(G), or G

∆Smax← 0;
2 foreach v ∈ [p] do

foreach u ∈ [p]\ adG(v) do
N← neG(v)∩ adG(u);
foreach clique C ⊂ neG(v) with N ⊂C do // Proposition 25(i) and (ii)

if ) ∃ path from v to u in G[[p]\C] then // Proposition 25(iii)

∆S← s(v,paG(v)∪C∪{u};T ,X)− s(v,paG(v)∪C;T ,X);
if ∆S > ∆Smax then

∆Smax← ∆S;
10 (umax,vmax,Cmax)← (u,v,C);

if ∆Smax > 0 then
σ← LexBFS((Cmax,vmax, . . .),E[TG(vmax)]);
Orient edges of G[TG(vmax)] according to σ;
Insert edge (umax,vmax) into G;
return ReplaceUnprotected(I,G) ; // See Algorithm 1

else return G;

Algorithm 3: ForwardStep(G;T ,X). One step of the forward phase of GIES.
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Figure 4: DAGs D, D′ and EI(D′) illustrating a possible forward step of GIES for the family of

targets I = { /0,{4}}, applied to the I-essential graph G of Figure 3 for the parameters

(u,v,C) = (4,2,{3}) (notation according to Proposition 25). In parentheses in Figure

(c): arrow configurations according to Definition 14; arrows incident to 4 are strongly

I-protected by the intervention target {4}.

The most straightforward way to construct an I-essential graph G′ ∈ EEE+
I
(G) characterized by

the triple (u,v,C) as defined in Proposition 25 would be to create a representative D ∈ D(G) by

orienting the edges of TG(v) as indicated by the set C, add the arrow u v to get D′, and finally

construct EI(D′) with Algorithm 1. The next lemma suggests a novel shortcut to this procedure: it

is sufficient to orient the edges of the chain component TG(v) only to get a partial I-essential graph

of D′ after adding the arrow u v.

Lemma 27 Let G, u, v, C, D and D′ be as in Proposition 25. Let H be the graph that we get by

orienting all edges of TG(v) as in D (leaving other chain components unchanged) and inserting the

arrow (u,v). Then H is a partial I-essential graph of D′.

Algorithm 3 shows our implementation of the forward phase of GIES, summarizing the results

of Proposition 25, Corollary 26 and Lemma 27. Figure 4 illustrates one forward step, applied to

the I-essential graph G (for I = { /0,{4}}) of Figure 3 and characterized by the triple (u,v,C) =
(4,2,{3}). Note that this triple is indeed valid in the sense of Proposition 25: {3} is clearly a clique

(point (i)), neG(2)∩ adG(4) = {3} (point (ii)), and there is no path from 2 to 4 in G[[p] \C] (point

(iii)).

4.2 Backward Phase

In analogy to the forward phase, one step of the backward phase can be formalized as follows: for

an I-essential graph Gi, find its successor Gi+1 := EI(Di+1), where

Di+1 := argmax
D′∈D−(Gi)

S(D′;X), and

D−(Gi) := {D′ a DAG | ∃ D ∈ D(Gi),u v ∈ D : D′ = D− (u,v)} .

If no candidate DAG D′ ∈ D+(Gi) scores higher than Gi, the backward phase is aborted.

Whenever we have some representative D ∈ D(G) of an I-essential graph G, we get a DAG

in D−(G) by removing any arrow of D. This is in contrast to the forward phase where we do not

necessarily get a DAG in D+(G) by adding an arbitrary arrow to D. By adding arrows, new directed

cycles could be created, something which is not possible by removing arrows. This is the reason

why the backward phase is generally simpler to implement than the forward phase.
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In Proposition 28 (corresponding to Theorem 17 of Chickering (2002b) for the observational

case), we show that we can, similarly to the forward phase, characterize an I-essential graph of

EEE−
I
(G) := {EI(D′) | D′ ∈ D−(G)} by a triple (u,v,C), where C is a clique in neG(v). As in the

forward phase, we see that the score difference of D and D′ is determined by the local score change

at the vertex v (Corollary 29), and that lines in chain components other than TG(v) remain lines in

G′ = EI(D′) (Lemma 30). Algorithm 4 summarizes the results of the propositions in this section.

Proposition 28 Let G = ([p],E) be an I-essential graph with (u,v) ∈ E (that is, u v ∈ G or

u v ∈ G), and let C ⊂ neG(v). There is a DAG D ∈ D(G) with u v ∈ D and {a ∈ neG(v) \
{u} | a v ∈ D}=C such that D′ := D− (u,v) ∈ D−(G) if and only if

(i) C is a clique in G[TG(v)];
(ii) C ⊂ N := neG(v)∩ adG(u).

Moreover, u, v and C determine D′ uniquely up to I-equivalence for a given G.

Corollary 29 Let G, u, v, C, D and D′ be as in Proposition 28. The score difference ∆S :=
S(D′;T ,X)−S(D;T ,X) is:

∆S = s(v,(paG(v)∪C)\{u};T ,X)− s(v,paG(v)∪C∪{u};T ,X).

In the observational case, this corresponds to Corollary 18 in Chickering (2002b). The analogue to

Lemma 27 for a computational shortcut in the forward phase reads as follows:

Lemma 30 Let G, u, v, C, D and D′ be as in Proposition 28. Let H be the graph that we get by

orienting all edges of TG(v) as in D and removing the arrow (u,v). Then H is a partial I-essential

graph of D′.

Input : G = ([p],E): I-essential graph; (T ,X): interventional data for I
Output: G′ ∈ EEE−

I
(G), or G

∆Smax← 0;
foreach v ∈ [p] do

foreach u ∈ neG(v)∪paG(v) do
N← neG(v)∩ adG(u);
foreach clique C ⊂ N do

∆S← s(v,(paG(v)∪C)\{u};T ,X)− s(v,paG(v)∪C∪{u};T ,X);
if ∆S > ∆Smax then

∆Smax← ∆S;
(umax,vmax,Cmax)← (u,v,C);

if ∆Smax > 0 then
if umax ∈ neG(vmax) then σ← LexBFS((Cmax,umax,vmax, . . .),E[TG(vmax)]);
else σ← LexBFS((Cmax,vmax, . . .),E[TG(vmax)]);
Orient edges of G[TG(vmax)] according to σ;
Remove edge (umax,vmax) from G;
return ReplaceUnprotected(I,G) ; // See Algorithm 1

else return G;

Algorithm 4: BackwardStep(G;T ,X). One step of the backward phase of GIES.
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1 2 3 4

5 6 7

(a) D

1 2 3 4

5 6 7

(b) D′

1 2 3 4

5 6 7

(b)

(b)
(b)

(b)

(b)

(c)

(c) EI(D
′)

Figure 5: DAGs D, D′ and EI(D′) illustrating a possible backward step of GIES for the family of

targets I = { /0,{4}}, applied to the I-essential graph G of Figure 3 for the parameters

(u,v,C) = (2,5, /0) (notation according to Proposition 28). Figure (c), in parentheses:

arrow configurations according to Definition 14.

A backward step of GIES is summarized in Algorithm 4 and illustrated in Figure 5. The triple

(u,v,C) = (2,5, /0) used there to characterize the backward step obviously fulfills the requirements

of Proposition 28.

4.3 Turning Phase

Finally, we characterize a step of the turning phase of GIES, in which we want to find the successor

Gi+1 := EI(Di+1) for an I-essential graph Gi by the rule

Di+1 := argmax
D′∈D!(Gi)

S(D′;T ,X), where

D!(Gi) :={D′ a DAG |D′ /∈ D(Gi), and ∃ an arrow u v ∈ D′ :

D′ − (u,v)+(v,u) ∈ D(Gi)} .

When the score cannot be augmented anymore, the turning phase is aborted. The additional con-

dition “D′ /∈ D(Gi)” is not necessary in the definitions of D+(Gi) and D−(Gi); when adding or

removing an arrow from a DAG, the skeleton changes, hence the new DAG is certainly not I-

equivalent to the previous one. However, when turning an arrow, the skeleton remains the same,

and the danger of staying in the same equivalence class exists.

Again, we are looking for an efficient method to find a representative D′ for each G′ ∈EEE!
I
(Gi) :=

{EI(D′) | D′ ∈ D!(Gi)}. It makes sense to distinguish whether the arrow that should be turned in

a representative D ∈ D(Gi) is I-essential or not. We start with the case where we want to turn an

arrow which is not I-essential.

Proposition 31 Let G be an I-essential graph with u v ∈ G, and let C ⊂ neG(v) \ {u}. Define

N := neG(v)∩ adG(u). Then there is a DAG D ∈ D(G) with u v ∈ D and {a ∈ neG(v) | a v ∈
D}=C such that D′ := D− (v,u)+(u,v) ∈ D!(G) if and only if

(i) C is a clique in G[TG(v)];
(ii) C \N )= /0;

(iii) C∩N separates C \N and N \C in G[neG(v)].

For a given G, u, v and C determine D′ up to I-equivalence.

2426



INTERVENTIONAL MARKOV EQUIVALENCE CLASSES OF DAGS

1 2 3 4

5 6 7

(a) D

1 2 3 4

5 6 7

(b) D′

1 2 3 4

5 6 7

(a)

(c)

(b)

(b)
(b)

(b)

(c)

(c) EI(D
′)

Figure 6: DAGs D, D′ and EI(D′) illustrating a possible turning step of GIES applied to the I-

essential graph G (I = { /0,{4}}) of Figure 3 for the parameters (u,v,C) = (5,2,{3})
(notation of Proposition 31). The arrow 2 5 is not I-essential in D. Figure (c): arrow

configurations in parentheses, see Definition 14.

There are now two vertices that have different parents in the DAGs D and D′, namely u and v; thus

the calculation of the score difference between D and D′ involves two local scores instead of one.

Corollary 32 Let G, u, v, C, D and D′ be as in Proposition 31. Then the score difference ∆S :=
S(D′;T ,X)−S(D;T ,X) can be calculated as follows:

∆S = s(v,paG(v)∪C∪{u};T ,X)+ s(u,paG(u)∪ (C∩N);T ,X)

− s(v,paG(v)∪C;T ,X)− s(u,paG(u)∪ (C∩N)∪{v};T ,X).

Lemma 33 Let G, u, v, C, D and D′ be as in Proposition 31. Let H be the graph that we get by

orienting all edges of TG(v) as in D and turning the arrow (v,u). Then H is a partial I-essential

graph of D′.

A possible turning step is illustrated in Figure 6, where a non-I-essential arrow (for I =
{ /0,{4}}) of a representative of the graph G of Figure 3 is turned. The step is characterized by

the triple (u,v,C) = (5,2,{3}) which satisfies the conditions of Proposition 31: {3} is obviously a

clique (point (i)), C\N =C since N = {1} (point (ii)), and C\N = {3} and N \C = {1} are separated

in G[neG(2)] (point (iii)). In contrast, the triple (u,v,C) = (5,2,{1}) fulfills points (i) and (iii) of

Proposition 31, but not point (ii). There is a DAG D ∈ D(G) with {a ∈ neG(2) | a 2 ∈ D}= {1},

and turning the arrow 2 5 in D yields another DAG D′ (that is, does not create a new cycle). This

new DAG D′, however, is I-equivalent to D, and hence not a member of D!(G) (see the discussion

above).

We now proceed to the case where an I-essential arrow of a representative of G is turned; here

there is no danger to remain in the same Markov equivalence class. The characterization of this case

is similar to the forward phase.

Proposition 34 Let G be an I-essential graph with u v ∈G, and let C ⊂ neG(v). Then there is a

DAG D ∈ D(G) with {a ∈ neG(v) | a v ∈ D} = C such that D′ := D− (v,u)+ (u,v) ∈ D!(G) if

and only if

(i) C is a clique;

(ii) N := neG(v)∩ adG(u)⊂C;

(iii) every path from v to u in G except (v,u) has a vertex in C∪neG(u).

Moreover, u, v and C determine D′ up to I-equivalence.
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Figure 7: Graphs G, D, D′ and EI(D′) illustrating a possible turning step of GIES for the family

of targets I = { /0,{4}} and the parameters (u,v,C) = (1,2,{3}) (notation of Proposition

34). The arrow 2 1 is I-essential in D. Figure (c): arrow configurations in parentheses,

see Definition 14.

Chickering (2002a) has already proposed a turning step for essential arrows in the observational

case; however, he did not provide necessary and sufficient conditions specifying all possible turning

steps as Proposition 34 does.

Lemma 35 Let G, u, v, C, D and D′ be as in Proposition 34, and let H be the graph that we get by

orienting all edges of TG(v) and TG(u) as in D and by turning the edge (v,u). Then H is a partial

I-essential graph of D′.

To construct a G′ ∈EEE!
I
(G) out of G, we must possibly orient two chain components of G instead

of one (Lemma 35). In the example of Figure 7, we see that it is indeed not sufficient to orient the

edges of TG(v) alone in order to get a partial I-essential graph of G′. The arrow 1 5 is not I-

essential in D, hence 5∈ TG(1). However, the same arrow is I-essential in D′ and hence also present

in EI(D′).
Despite the fact that we need to orient the edges of TG(v) and TG(u) to get a partial I-essential

graph of D′, EI(D′) is nevertheless determined by the orientation of edges adjacent to v (determined

by the clique C) alone. This comes from the fact that in D, defined as in Proposition 34, all arrows

of D[TG(u)] must point away from u.

Corollary 36 Let G, u, v, C, D and D′ be as in Proposition 34. Then the score difference ∆S :=
S(D′;T ,X)−S(D;T ,X) can be calculated as follows:

∆S = s(v,paG(v)∪C∪{u};T ,X)+ s(u,paG(u)\{v};T ,X)

−s(v,paG(v)∪C;T ,X)− s(u,paG(u);T ,X).

The entire turning step, for essential and non-essential arrows, is shown in Algorithm 5.

4.4 Discussion

Every step in the forward, backward and turning phase of GIES is characterized by a triple (u,v,C),
where u and v are different vertices and C is a clique in the neighborhood of v. To identify the

highest scoring movement from one I-essential graph G to a potential successor in EEE+
I
(G), EEE−

I
(G)

or EEE!
I
(G), respectively, one potentially has to examine all cliques in the neighborhood neG(v) of

all vertices v ∈ [p]. The time complexity of any (forward, backward or turning) step applied to an

I-essential graph G hence highly depends on the size of the largest clique in the chain components
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of G. By restricting GIES to I-essential graphs with a bounded vertex degree, the time complexity

of a step of GIES is polynomial in p; otherwise, it is in the worst case exponential. We believe,

however, that GIES is in practice much more efficient than this worst-case complexity suggests.

Some evidence for this claim is provided by the runtime analysis of our simulation study, see Section

5.2.

A heuristic approach to guarantee polynomial runtime of a greedy search has been proposed

by Castelo and Kočka (2003) for the observational case. Their Hill Climber Monte Carlo (HCMC)

algorithm operates in DAG space, but to account for Markov equivalence, the neighborhood of a

number of randomly chosen DAGs equivalent to the current one is scanned in each greedy step.

Input : G = ([p],E): I-essential graph; (T ,X): interventional data for I
Output: G′ ∈ EEE!

I
, or G

∆Smax← 0;
foreach v ∈ [p] do

foreach u ∈ neG(v) do // Consider arrows that are not I-essential for turning

N← neG(u)∩ adG(v);
foreach clique C ⊂ neG(v)\{u} do // Proposition 31(i)

if C \N )= /0 and {u,v} separates C and N \C in G[TG(v)] then
// Proposition 31(ii) and (iii)

∆S← s(v,paG(v)∪C∪{u};T ,X)+ s(u,paG(u)∪ (C∩N);T ,X);
∆S← ∆S− s(v,paG(v)∪C;T ,X)− s(u,paG(u)∪ (C∩N)∪{v};T ,X);
if ∆S > ∆Smax then

∆Smax← ∆S;
(umax,vmax,Cmax)← (u,v,C);

foreach u ∈ chG(v) do // Consider I-essential arrows for turning

N← neG(v)∩ adG(u);
foreach clique C ⊂ neG(v) with N ⊂C do // Proposition 34(i) and (ii)

if ) ∃ path from v to u in G[[p]\ (C∪neG(u))]− (v,u) then // Proposition 34(iii)

∆S← s(v,paG(v)∪C∪{u};T ,X)+ s(u,paG(u)\{v};T ,X);
∆S← ∆S− s(v,paG(v)∪C;T ,X)− s(u,paG(u);T ,X);
if ∆S > ∆Smax then

∆Smax← ∆S;
(umax,vmax,Cmax)← (u,v,C);

if ∆Smax > 0 then
if vmax umax ∈ G then

σu := LexBFS((umax, . . .),E[TG(umax)]);
Orient edges of G[TG(umax)] according to σ;
σv := LexBFS((Cmax,vmax, . . .),E[TG(vmax)]);

else σv := LexBFS((Cmax,vmax,umax, . . .),E[TG(vmax)]);
Orient edges of G[TG(vmax)] according to σv;
Turn edge (vmax,umax) in G;
return ReplaceUnprotected(I,G) ; // See Algorithm 1

else return G;

Algorithm 5: TurningStep(G;T ,X). One step of the turning phase of GIES.
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The equivalence class of the current DAG is explored by randomly turning “covered arrows”, that

is, arrows whose reversal does not change the Markov property. In our (interventional) notation, an

arrow is covered if and only if it is not strongly I-protected (Definition 14). By limiting the number

of covered arrow reversals, a polynomial runtime is guaranteed at the cost of potentially lowering the

probability of investigating a particular successor in EEE+
I
(G), EEE−

I
(G) or EEE!

I
(G), respectively. HCMC

hence enables a fine tuning of the trade-off between exploration of the search space and runtime, or

between greediness and randomness.

The order of executing the backward and the turning phase seems somewhat arbitrary. In the

analysis of the steps performed by GIES in our simulation study (Section 5.2), we saw that the

turning phase can generally only augment the score when very few backward steps were executed

before. For this reason, we believe that changing the order of the backward and the turning phase

would have little effect on the overall performance of GIES.

As already discussed by Chickering (2002b) for the observational case, caching techniques can

markedly speed up GES; the same holds for GIES. The basic idea is the following: in a forward

step, the algorithm evaluates a lot of triples (u,v,C) to choose the best one, (umax,vmax,Cmax) (lines

1 to 9 in Algorithm 3). After performing the forward move corresponding to (umax,vmax,Cmax),
many of the triples evaluated in the step before are still valid candidates for next step in the sense

of Proposition 25 and lead to the same score difference as before (see Corollary 26). Caching those

values avoids unnecessary reevaluation of possible forward steps. The same holds for the backward

and the turning phase; since the forward step is most frequently executed, a caching strategy in this

phase yields the highest speed-up though.

We emphasize that the characterization of “neighboring” I-essential graphs in EEE+
I
(G), EEE−

I
(G) or

EEE!
I
(G), respectively, by triples (u,v,C) is of more general interest for structure learning algorithms,

for example for the design of sampling steps of an MCMC algorithm. Also the beforementioned

HCMC algorithm could be extended to interventional data by generalizing the notion of “covered

arcs” using Definition 14.

The prime example of a score equivalent and decomposable score function is the Bayesian infor-

mation criterion (BIC) (Schwarz, 1978) which we used in our simulations (Section 5). It penalizes

the complexity of causal models by their number of free parameters (!0 penalization); this number

is the sum of free parameters of the conditional densities in the Markov factorization (Definition 1),

which explains the decomposability of the score. Using different penalties, for example, !2 penal-

ization, can lead to a non-decomposable score function. GIES can also be adapted to such score

functions; the calculation of score differences becomes computationally more expensive in this case

since it cannot be done in a local fashion as in Corollaries 26, 29, 32 and 36.

GIES only relies on the notion of interventional Markov equivalence, and on a score function

that can be evaluated for a given class of causal models. As we mentioned in Section 2.1, we

believe that interventional Markov equivalence classes remain unchanged for models that do not

have a strictly positive density. For this reason it should be safe to also apply GIES to such a model

class.

5. Experimental Evaluation

We evaluated the GIES algorithm on simulated interventional data (Section 5.2) and on in silico

gene expression data sets taken from the DREAM4 challenge (Marbach et al., 2010) (Section 5.3).
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In both cases, we restricted our considerations to Gaussian causal models as summarized in Section

5.1.

5.1 Gaussian Causal Models

Consider a causal model (D, f ) with a Gaussian density of the form N (0,Σ). The observational

Markov property of such a model translates to a set of linear structural equations

Xi =
p

∑
j=1

βi jXj + εi, εi
indep.
∼ N (0,σ2

i ), 1≤ i≤ p , (5)

where βi j = 0 if j /∈ paD(i). When the DAG structure D is known, the covariance matrix Σ can be

parameterized by the weight matrix

B := (βi j)
p
i, j=1 ∈ B(D) := {A = (αi j) ∈ R

p×p | αi j = 0 if j /∈ paD(i)}

that assigns a weight βi j to each arrow j i ∈ D, and the vector of error covariances σ2 :=
(σ2

1, . . . ,σ
2
p):

Σ = Cov(X) = ( −B)−1 diag(σ2)( −B)−T .

This is a consequence of Equation (5).

We always assume Gaussian intervention variables UI (see Section 2.1). In this case, not only

the observational density f is Gaussian, but also the interventional densities f (x | doD(XI = UI)).
An interventional data set (T ,X) as defined in Equation (2) then consists of n independent, but not

identically distributed Gaussian samples.

We use the Bayesian information criterion (BIC) as score function for GIES:

S(D;T ,X) := sup{!D(B,σ
2;T ,X) | B ∈ B(D),σ2 ∈ R

p
>0}−

kD

2
log(n) ,

where !D denotes the log-likelihood of the density in Equation (3):

!D(B,σ
2;T ,X) :=

n

∑
i=1

log f
(

X (i) | doD(X
(i)

T (i) =UT (i) )
)

(6)

=
n

∑
i=1

[

∑
j/∈T (i)

log f (X
(i)
j | X

(i)
paD( j))+ ∑

j∈T (i)

log f̃ (X
(i)
j )

]

= −
1

2

n

∑
i=1

∑
j/∈T (i)

[

logσ2
j +

1

σ2
j

(

X
(i)
j −B j X (i)

)2 ]

+C

= −
1

2

p

∑
j=1

[

|{i | j /∈ T (i)}| logσ2
j +

1

σ2
j

∑
i: j/∈T (i)

(

X
(i)
j −B j X (i)

)2 ]

+C ,

where the constant C is independent of the parameters (B,σ2) of the model. Since Gaussian causal

models with structure D are parameterized by B ∈ B(D) and σ2 ∈ R
p
>0, we have kD = p+ |E| free

parameters, where E denotes the edge set of D. It can be seen in Equation (6) that the maximum

likelihood estimator (MLE) (B̂, σ̂2), the maximizer of !D, minimizes the residual sum of squares

for the different structural equations; for more details we refer to Hauser and Bühlmann (2012).
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The DAG D̂ maximizing the BIC yields a consistent estimator for the true causal structure D in

the sense that P[D̂∼I D]→ 1 in the limit n→∞ as long as the true density f is faithful with respect

to D, that is, every conditional independence relation of f is encoded in the Markov property of D

(Hauser and Bühlmann, 2012). Note that the BIC score is even defined in the high-dimensional

setting p > n; however, we only consider low-dimensional settings here.

5.2 Simulations

We simulated interventional data from 4000 randomly generated Gaussian causal models as de-

scribed in Section 5.2.1. In Sections 5.2.2 and 5.2.3, we present our methods for evaluating GIES;

the results are discussed in Section 5.2.4. As a rough summary, GIES markedly beat the conceptu-

ally simpler greedy search over the space of DAGs as well as the original GES of Chickering (2002b)

ignoring the interventional nature of the simulated data sets. Its learning performance could keep

up with a provably consistent exponential time dynamic programming algorithm at much lower

computational cost.

5.2.1 GENERATION OF GAUSSIAN CAUSAL MODELS

For some number p of vertices, we randomly generated Gaussian causal models parameterized by

a structure D, a weight matrix B ∈ B(D) and a vector of error covariances σ2 ∈ R
p
>0 by a procedure

slightly adapted from Kalisch and Bühlmann (2007):

1. For a given sparseness parameter s ∈ (0,1), draw a DAG D with topological ordering

(1, . . . , p) and binomially distributed vertex degrees with mean s(p−1).

2. Shuffle the vertex indices of D to get a random topological ordering.

3. For each arrow j i∈D, draw β′i j ∼ U([−1,−0.1]∪ [0.1,1]) using independent realizations;

for other pairs of (i, j), set β′i j = 0 (see Equation (5)). This yields a weight matrix B′ =
(β′i j)

p
i, j=1 ∈ B(D) with positive as well as negative entries which are bounded away from 0.

4. Draw error variances σ′2i
i.i.d.
∼ U([0.5,1]).

5. Calculate the corresponding covariance matrix Σ′ = ( −B′)−1 diag(σ′2)( −B′)−T.

6. Set H := diag((Σ′11)
−1/2, . . . ,(Σ′pp)

−1/2), and normalize the weights and error variances as

follows:

B := HB′H−1, (σ2
1, . . . ,σ

2
p)

T := H2(σ′21 , . . . ,σ
′2
p )

T .

It can easily be seen that the corresponding covariance matrix fulfills

Σ = ( −B)−1 diag(σ2)( −B)−T = HΣ′H ,

ensuring the desired normalization Σii = 1 for all i.

Steps 1 and 3 are provided by the function randomDAG() of the R-package pcalg (Kalisch et al.,

2012).

We considered families of targets of the form I = { /0, I1, . . . , Ik}, where I1, . . . , Ik are k different,

randomly chosen intervention targets of size m; the target size m had values between 1 and 4.
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For a fixed sample size n, we produced approximately the same number of data samples for each

target in the family I by using a level density N ((2, . . . ,2),(0.2)2
m) in each case (see the model

in Equation (1)). With this choice and the aforementioned normalization of Σ, the mean values

of the intervention levels lay 2 standard deviations above the mean values of the observational

marginal distributions. In total, we considered 4000 causal models and simulated 128 observational

or interventional data sets from each of them by combining the following simulation parameters:

• (p,s) ∈ {(10,0.2),(20,0.1),(30,0.1),(40,0.1)} with 1000 DAGs each.

• k = 0,0.2p,0.4p, . . . , p for each value of p; the first setting is purely observational.

• m ∈ {1,2,4}.

• n ∈ {50,100,200,500,1000,2000,5000,10000}.

In addition, we generated causal models with p ∈ {50,100,200} (100 DAGs each) and p = 500 (20

DAGs) with an expected vertex degree of 4 (which corresponds to a sparseness parameter of s =
4/(p− 1)) and simulated 6 data sets for the parameters k = 0.4 and n ∈ {1000,2000,5000,10000,
20000,50000} from each of these models. We only used these additional data sets for the investi-

gation of the runtime of GIES.

5.2.2 ALTERNATIVE STRUCTURE LEARNING ALGORITHMS

We compare GIES with three alternative greedy search algorithms. The first one is the original GES

of Chickering (2002b) which regards the complete interventional data set as observational (that is,

ignores the list T of an interventional data set (T ,X) as defined in Equation (2)). The second one,

which we call GIES-NT (for “no turning”), is a variant of GIES that stops after the first forward

and backward phase and lacks the turning phase. The third algorithm, called GDS for “greedy DAG

search”, is a simple greedy algorithm optimizing the same score function as GIES, but working

on the space of DAGs instead of the space of I-essential graphs; GDS simply adds, removes or

turns arrows of DAGs in the forward, backward and turning phase, respectively. Furthermore,

for p ≤ 20, we compare with a dynamic programming (DP) approach proposed by Silander and

Myllymäki (2006), an algorithm that finds a global optimum of any decomposable score function

on the space of DAGs. Because of the exponential growth in time and memory requirements, we

could not calculate DP estimates for models with p ≥ 30 variables. For GDS and DP, we examine

the I-essential graph of the returned DAGs.

5.2.3 QUALITY MEASURES FOR ESTIMATED ESSENTIAL GRAPHS

The structural Hamming distance or SHD (Tsamardinos et al., 2006; we use the slightly adapted

version of Kalisch and Bühlmann, 2007) is used to measure the distance between an estimated I-

essential graph Ĝ and a true I-essential graph or DAG G. If A and Â denote the adjacency matrices

of G and Ĝ, respectively, the SHD between G and Ĝ reads

SHD(Ĝ,G) := ∑
1≤i< j≤p

(

1− {(Ai j=Âi j)∧(A ji=Â ji)}

)

.

The SHD between Ĝ and G is the sum of the numbers of false positives of the skeleton, false

negatives of the skeleton, and wrongly oriented edges. Those quantities are defined as follows. Two
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vertices which are adjacent in Ĝ but not in G count as one false positive, two vertices which are

adjacent in G but not in Ĝ as one false negative. Two vertices which are adjacent in both G and Ĝ,

but connected with different edge types (that is, by a directed edge in one graph, by an undirected

one in the other; or by directed edges with different orientations in both graphs) constitute a wrongly

oriented edge.

5.2.4 RESULTS AND DISCUSSION

As we mentioned in Section 3.1, the undirected edges in the I-essential graph EI(D) of some causal

structure D are the edges with unidentifiable orientation. The number of undirected edges in EI(D)
analyzed in the next paragraph is therefore a good measure for the identifiability of D. Later on, we

study the performance of GIES and compare it to the other algorithms mentioned in Section 5.2.2.

Identifiability under Interventions

In Figure 8, the number of non-I-essential arrows is plotted as a function of the number k of

non-empty intervention targets (k = |I|−1, see Section 5.2.1). With single-vertex interventions at

80% of the vertices, the majority of the DAGs used in the simulation are completely identifiable;

with target size m = 2 or m = 4, this is already the case for k = 0.6p or k = 0.4p, respectively. For

the small target sizes used, the identifiability under k targets of size m is similar to the identifiability

under k ·m single-vertex targets.

A certain prudence is advisable when interpreting Figure 8 since the number of orientable edges

also reflects the characteristics of the generated DAGs. Nevertheless, the plots show that the iden-
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Figure 8: Number of non-I-essential arrows as a function of the number k of intervention vertices.

In parentheses: number of outliers in the corresponding boxplot.
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Figure 9: SHD between I-essential graph Ĝ estimated from n = 1000 data points and true DAG

D as a function of the number k of single-vertex intervention targets. “Oracle estimates”

denote the respective true I-essential graph EI(D), the best possible estimate under some

family of targets I (see also Figure 8). DP estimates are missing in the two lower plots.

tifiability of causal models increases quickly even with few intervention targets. In regard of appli-

cations this is an encouraging finding since it illustrates that even a small number of intervention

experiments can strongly increase the identifiability of causal structures.

Performance of GIES

Figure 9 shows the structural Hamming distance between true DAG D and estimated I-essential

graph Ĝ for different algorithms as a function of the number k of intervention targets. Single-vertex

interventions are considered; for larger targets, the overall picture is comparable (data not shown).

In 10 out of 12 cases for p≤ 20, the median SHD values of GIES and DP estimates are equal; in the

remaining cases, too, GIES yields estimates of comparable quality—at much lower computational

costs.

In parallel with the identifiability, the estimates produced by the different algorithms improve for

growing k. This illustrates that interventional data arising from different intervention targets carry

more information about the underlying causal model than observational data of the same sample

size.

For complete interventions, that is, k = p, every DAG is completely identifiable and hence its

own I-essential graph. Therefore, GDS and GIES are exactly the same algorithm in this case. With

shrinking k, the performance of GDS compared to that of GIES gets worse. On the other hand,

GES coincides with GIES in the observational case (k = 0). For growing k, the estimation per-

formance of GES stays approximately constant; it can, as opposed to GIES, not make use of the

additional information coming from interventions. To sum up, both the price of ignoring interven-

tional Markov equivalence (GDS) and ignoring the interventional nature of the provided data sets

(GES) are apparent in Figure 9.
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Figure 10: SHD between estimated and true I-essential graph for different numbers k of interven-

tion targets of size m = 4 for the DAGs with p = 20 vertices. The abscissa denotes the

total sample size n. For example, a data set with n = 1000 and k = 4 consists of 200

observational samples and 200 interventional samples each arising from interventions at

four different targets, see Section 5.2.1.

The performance of GIES as a function of the sample size n is plotted in Figure 10 for the DAGs

with p = 20 vertices and intervention targets of size m = 4. The quality of the GIES estimates is

comparable to that of the DP estimates. The behavior of the SHD values for growing n is a strong

hint for the consistency of GIES in the limit n→∞ (note that the DP algorithm is consistent; Hauser

and Bühlmann, 2012). In contrast, the plots for k = 0 and k = 4 again reveal the weak performance

of GDS for small numbers of intervention vertices; the plots suggest that GDS, in contrast to GIES,

does not yield a consistent estimator of the I-essential graph due to being stuck in a bad local

optimum.

The most striking result in Figure 10 is certainly the fact that the estimation performance of

GES heavily decreases with growing n as long as the data is not observational (k > 0). This is

not an artifact of GES, but a problem of model-misspecification: running DP for an observational

model (that is, considering all data as observational as GES does) yields SHD values maximally

14% below that of GES (data not shown). For single-vertex interventions, the SHD values of the

GES estimates stay approximately constant with growing n; for target size m = 2, its SHD values

also increase, but not to the same extent as for m = 4.

In Figure 11, we compare the SHD between true and estimated I-essential graphs with p = 30

vertices for estimates produced by different greedy algorithms; other vertex numbers give a similar

picture. In most settings, GIES beats both GDS and GIES-NT. It combines both the advantage of

GIES-NT, using the space of interventional Markov equivalence classes as search space, and GDS,

the turning phase apparently reducing the risk of getting stuck in local maxima of the score function.
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Figure 11: Mean SHD between estimated and true I-essential graph for different greedy algorithms

as a function of n and k; data for DAGs with p = 30 and single-vertex interventions.

Shading: algorithm yielded significantly better estimates than one (") or two (") of its

competitors, respectively (paired t-test on a significance level of α = 5%).

Figure 12: False positives (FP) and false negatives (FN) of the skeleton and wrongly oriented edges

(WO; Section 5.2.3) of the GIES estimates compared to the true I-essential graphs with

p = 30 vertices; mean values as a function of k and n for single-vertex interventions.

Shading: ratio of each quantity and the SHD between estimated and true I-essential

graph (dark means a large contribution to the SHD).

As noted in Section 5.2.3, the SHD between true and estimated interventional essential graphs

can be written as the sum of false positives of the skeleton, false negatives of the skeleton and

wrongly oriented edges. Those numbers are shown in Figure 12, again for GIES estimates under

single-vertex interventions for DAGs with p = 30 vertices. False positives of the skeleton are the

main contribution to the SHD values. In 60% of the cases, especially for large n and small k,

wrongly oriented edges represent the second-largest contribution.

Runtime Analysis

All algorithms evaluated in this section were implemented in C++ and compiled into a library

using the GNU compiler g++ 4.6.1. The simulations—that is, the generation of data and the library

calls—were performed using R 2.13.1. All simulations were run on an AMD Opteron 8380 CPU

with 2.5 GHz and 2 GB RAM.
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Figure 13: Runtime of GIES and DP as a function of the vertex number.

Figure 13 shows the running times of GIES and DP as a function of the number p of ver-

tices. GDS had running times of the same order of magnitude as GIES; they were actually up

to 50% higher since we used a basic implementation of GDS compared to an optimized version

of GIES (running times of GDS are not plotted for this reason). The linearity of the GIES val-

ues in the log-log plot (see the solid line in Figure 13) indicate a polynomial time complexity of

the approximate order O(p2.8), in contrast to the exponential complexity of DP; note that GIES

also has an exponential worst case complexity (see Section 4.4). The multiple linear regression

log(t) = β0 +β1 log(p)+β2 log(|E|)+ε, where t denotes the runtime and E the edge set of the true

DAG, yields coefficients β̂1 = 1.01 and β̂2 = 0.94.

5.3 DREAM4 Challenge

We also measured the performance of GIES on synthetic gene expression data sets from the DREAM4

in silico challenge (Marbach et al., 2010; Prill et al., 2010). Our goal here was to evaluate predic-

tions of expression levels of gene knockout or knockdown experiments by cross-validation based

on the provided interventional data.

5.3.1 DATA

The DREAM4 challenge provides five data sets with an ensemble of interventional and observa-

tional data simulated from five biologically plausible, possibly cyclic gene regulatory networks with

10 genes (Marbach et al., 2009). The data set of each network consists of

• 11 observational measurements, simulated from random fluctuations of the system parameters

(resembling observational data measured in different individuals);

• 10 measurements from single-gene knockdowns, one knockdown per gene;

• 10 measurements from single-gene knockouts, one knockout per gene;

• five time series with 21 time points each, simulated from an unknown change of parameters

in the first half (corresponding to measurements under a perturbed chemical environment

having unknown effects on the gene regulatory network) and from the unperturbed system in

the second half.
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Figure 14: Standardized intervention levels in the different DREAM4 data sets. Data is scaled such

that the observational samples have empirical mean 0 and standard deviation 1.

Since our framework can not cope with uncertain interventions (that is, interventions with unknown

target), we only used the 50 observational measurements of the second half of the time series. Alto-

gether, we have, from each network, a total of 81 data points, 61 observational and 20 interventional

ones. We normalized the data such that the observational samples of each gene have mean 0 and

standard deviation 1. In this normalization, 95% of the intervention levels (that is, the expression

levels of knocked out or knocked down genes) lie between −8.37 and −0.62 with a mean of −3.30

(Figure 14).

5.3.2 METHODS

We used each interventional measurement (20 per network) as one test data point and predicted its

value from a network estimated with training data consisting either of the 80 remaining data points,

or the 61 observational measurements alone. We used GIES, GES and PC (Spirtes et al., 2000) to

estimate the causal models and evaluated the prediction accuracy by the mean squared error (MSE).

We will use abbreviations like “GES(80)” or “PC(61)” to denote GES estimates based on a training

set of size 80 or PC estimates based on an observational training set of size 61, respectively.

For a given DAG, we predicted interventional gene expression levels based on the estimated

structural equation model after replacing the structural equation of the intervened variable by a con-

stant one; see Section 5.1 for connection between Gaussian causal models and structural equations,

especially Equation (5). GES and PC regard all data as observational and yield an observational

essential graph. For those algorithms, we enumerated all representative DAGs of the estimated

equivalence class using the function allDags() of the R package pcalg (Kalisch et al., 2012), cal-

culated an expression level with each of them, and took the mean of those predictions. GIES(80)

yields a single DAG in each case since the 19 interventional measurements in the training data

ensure complete identifiability.

Furthermore, we used the evaluation script provided by the DREAM4 challenge to assess the

quality of our network predictions to those sent in to the challenge by participating teams. This

evaluation is based on the area under the ROC curve (AUROC) of the true and false positive rate of

the edge predictions.
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Figure 15: Upper row: MSE values of GIES and competitors; lower row: differences of MSE

values as defined in Equation (7); large values indicate a good performance of GIES.

(A) GIES(80), (B) PC(80), (C) PC(61), (D) GES(80), (E) GES(61). Numbers below the

boxplots: p-values of a one-sided sign test.

5.3.3 RESULTS

Figure 15 shows boxplots of MSE differences between GIES(80) and its competitors; that is, we

consider quantities of the form

∆MSEcomp := MSEcomp−MSEGIES(80), (7)

where comp stands for one of the competitors. Since the MSE differences showed a skewed distri-

bution in general, we used a sign test for calculating their p-values.

Except for one case (PC(61) in network 1), GIES(80) always yielded the best predictions of all

competitors. Although all data sets are dominated by observational data (61 observational measure-

ments versus 20 interventional ones), GIES can make use of the additional information carried by

interventional data points to rule out its observational competitors. On the other hand, the domi-

nance of observational data is probably one of the reasons for the fact that GIES does not outperform

the observational methods more clearly but has an overall performance which is comparable with

that of its competitors. Another reason could be the fact that the underlying networks used for data

generation are not acyclic as assumed by GIES. Interestingly, the winning margin of GIES in net-

work 5 was not smaller than in other networks although the corresponding data set has the smallest

intervention levels (in absolute values; see Figure 14).

29 teams participated in the DREAM4 challenge. Their AUROC values are available from the

DREAM4 website;1 adding our values gives a data set of 30 evaluations. Among those, our results

had overall rank 10, and ranks 8, 4, 21, 10 and 3, respectively, for networks 1 to 5. Except for net-

work 3, we could keep up with the best third of the participating teams despite the beforementioned

model misspecification given by the assumption of acyclicity, and despite the fact that we ignored

the time series structure and half of the time series data.

6. Conclusion

We gave a definition and a graph theoretic criterion for the Markov equivalence of DAGs under mul-

tiple interventions. We characterized corresponding equivalence classes by their essential graph,

1. DREAM4 can be found at http://wiki.c2b2.columbia.edu/dream/index.php/D4c2.
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defined as the union of all DAGs in an equivalence class in analogy to the observational case. Using

those essential graphs as a basis for the algorithmic representation of interventional Markov equiv-

alence classes, we presented a new greedy algorithm (including a new turning phase), GIES, for

learning causal structures from data arising from multiple interventions.

In a simulation study, we showed that the number of non-orientable edges in causal structures

drops quickly even with a small number of interventions; our description of interventional essential

graphs makes it possible to quantify the gain in identifiability. For a fixed sample size n, GIES

estimates got closer to the true causal structure as the number of intervention vertices grew. For

DAGs with p ≤ 20 vertices, the GIES algorithm could keep up with a consistent, exponential-time

DP approach maximizing the BIC score. It clearly beat GDS, a simple greedy search on the space of

DAGs, as well as GES which cannot cope with interventional data. Our novel turning phase proved

to be an improvement of GES even on observational data, as it was already conjectured by Chick-

ering (2002b). Applying GIES to synthetic data sets from the DREAM4 challenge (Marbach et al.,

2010), we got better predictions of gene expression levels of knockout or knockdown experiments

than with observational estimation methods.

The accurate structure learning performance of GIES in the limit of large data sets raises the

question whether GIES is consistent. Chickering (2002b) proved the consistency of GES on obser-

vational data. However, the generalization of his proof for GIES operating on interventional data is

not obvious since such data are in general not identically distributed.
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Appendix A. Graphs

In this appendix, we shortly summarize our notation (mostly following Andersson et al., 1997) and

basic facts concerning graphs. All statements about perfect elimination orderings that are used in

Sections 3 and 4 are listed or proven in Section A.2.

A.1 Definitions and Notation

A graph is a pair G = (V,E), where V is a finite set of vertices and E ⊂ E∗(V ) := (V ×V ) \
{(a,a)|a ∈ V} is a set of edges. We use graphs to denote causal relationships between random

variables X1, . . . ,Xp. To keep notation simple, we always assume V = {1,2, . . . , p} =: [p], in order

to represent each random variable by its index in the graph.

An edge (a,b) ∈ E with (b,a) ∈ E is called undirected (or a line), whereas an edge (a,b) ∈ E

with (b,a) /∈ E is called directed (or an arrow). Consequently, a graph G is called directed (or

undirected, resp.) if all its edges are directed (or undirected, resp.); a directed graph is also called
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digraph for short. We use the short-hand notation

a b ∈ G :⇔ (a,b) ∈ E ∧ (b,a) /∈ E,

a b ∈ G :⇔ (a,b) ∈ E ∧ (b,a) ∈ E,

a b ∈ G :⇔ (a,b) ∈ E ∨ (b,a) ∈ E.

A subgraph of some graph G is a graph G′= (V ′,E ′) with the property V ′ ⊂V , E ′ ⊂ E, denoted

by G′ ⊂G. For a subset A⊂V of the vertices of G, the induced subgraph on A is G[A] := (A,E[A]),
where E[A] := E∩(A×A). A v-structure (also called immorality by, for example, Lauritzen, 1996)

is an induced subgraph of G of the form a b c. The skeleton of a graph G is the undirected

graph Gu := (V,Eu), Eu := {(a,b) ∈ V ×V | a b ∈ G}. For two graphs G1 = (V,E1) and G2 =
(V,E2) on the same vertex set, we define the union and the intersection as G1∪G2 := (V,E1∪E2)
and G1 ∩G2 := (V,E1 ∩E2), respectively. For a graph G = (V,E) and (a,b) ∈ E∗(V ), we use the

shorthand notation G− (a,b) := (V,E \{(a,b)}) and G+(a,b) := (V,E ∪{(a,b)}).
The following sets describe the local environment of a vertex a in a graph G:

paG(a) := {b ∈V | b a ∈ G}, the parents of a,

chG(a) := {b ∈V | a b ∈ G}, the children of a,

neG(a) := {b ∈V | a b ∈ G}, the neighbors of a,

adG(a) := {b ∈V | a b ∈ G}, the vertices adjacent to a.

The subscripts “G” in the above definitions are omitted when it is clear which graph is meant. For

a set A⊂V of vertices, we generalize those definitions as follows:

paG(A) :=
⋃

a∈A

paG(a)\A, neG(A) :=
⋃

a∈A

neG(a)\A, etc.

The degree of a vertex a ∈V is defined as degG(a) := |adG(a)|.
For two distinct vertices a and b ∈ V , a chain of length k from a to b is a sequence of distinct

vertices γ = (a ≡ a0,a1, . . . ,ak ≡ b) such that for each i = 1, . . . ,k, either ai−1 ai ∈ G or ai−1

ai ∈ G; if for all i, (ai−1,ai) ∈ E (that is, ai−1 ai ∈ G or ai−1 ai ∈ G), the sequence γ is called

a path. If at least one edge ai−1 ai is directed in a path, the path is called directed, otherwise

undirected. A (directed) cycle is defined as a (directed) path with the difference that a0 = an. Paths

define a preorder on the vertices of a graph: a-G b :⇔ ∃ a path γ from a to b in G. Furthermore,

a≈G b :⇔ (a-G b)∧ (b-G a) is an equivalence relation on the set of vertices.

An undirected graph G = (V,E) is complete if all pairs of vertices are adjacent. A clique is a

subset of vertices C ⊂V such that G[C] is complete; a vertex a ∈V is called simplicial if ne(a) is a

clique. An undirected graph G is called chordal if every cycle of length k≥ 4 contains a chord, that

means two nonconsecutive adjacent vertices. For pairwise disjoint subsets A,B,S ⊂ V with A )= /0
and B )= /0, A and B are separated by S in G if every path from a vertex in A to a vertex in B contains

a vertex in S.

A directed acyclic graph, or DAG for short, is a digraph that contains no cycle. In the paper,

we mostly use the symbol D for DAGs, whereas arbitrary graphs are, as in this appendix, mostly

named G. Chain graphs can be viewed as something between undirected graphs and DAGs: a

graph G = (V,E) is a chain graph if it contains no directed cycle; undirected graphs and DAGs are
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1 2 3 4

5 6 7

Figure 16: A chain graph G with three chain components A = TG(1) = [1]≈G
= {1,2,3,5}, B =

TG(6) = {6} and C = TG(4) = {4,7}. The arrows induce the partial order A -G B,

A -G C. The graph is no chain graph anymore when we replace the arrow 3 4 by a

line since this would create a directed cycle: (3,7,4,3).

special cases of chain graphs. The equivalence classes in V w.r.t. the equivalence relation ≈G are

the connected components of G after removing all directed edges. We denote the quotient set of V

by T(G) := V/ ≈G, and its members T ∈ T(G) are called chain components of G. For a vertex

a ∈V , TG(a) stands for [a]≈G
. The preorder -G on V induces in a canonical way a partial order on

T(G) which we also denote by -G: TG(a)-G TG(b) :⇔ a-G b. An illustration is shown in Figure

16.

An ordering of a graph is a bijection [p]→V , hence, since we assume V = [p] here, a permu-

tation σ ∈ Sp. An ordering σ canonically induces a total order on V by the definition a ≤σ b :⇔
σ−1(a)≤ σ−1(b). An ordering σ = (v1, . . . ,vp) is called a perfect elimination ordering if for all i,

vi is simplicial in Gu[{v1, . . . ,vi}]. A graph G = (V,E) is a DAG if and only if the previously defined

preorder-G is a partial order; such a partial order can be extended to a total order (Szpilrajn, 1930).

Thus every DAG has at least one topological ordering, that is an ordering σ whose total order ≤σ

extends -G: a-G b⇒ a≤σ b. For σ ∈ Sp, a DAG D = ([p],E) is said to be oriented according to

σ if σ is a topological ordering of D. In a DAG D with topological ordering σ, the arrows point from

vertices with low to vertices with high ordered indices. The vertex σ(1) is a source, that means all

arrows point away from it.

A.2 Perfect Elimination Orderings

Perfect elimination orderings play an important role in the characterization of interventional Markov

equivalence classes of DAGs as well as in the implementation of the Greedy Interventional Equiv-

alence Search (GIES). In this section, we provide all results for this topic that are used as auxiliary

tools in the proofs of Sections 3 and 4.

Lemma 37 Let D = (V,E) be a DAG. D has no v-structures if and only if any topological ordering

of D is a perfect elimination ordering.

The proof of this lemma follows easily from the definitions of a v-structure and a perfect elimination

ordering. Moreover, if any topological ordering of a DAG is a perfect elimination ordering, this is

automatically the case for every topological ordering.

Proposition 38 (Rose, 1970) Let G = (V,E) be an undirected graph. Then G is chordal if and only

if it has a perfect elimination ordering.
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Input : An undirected graph G = (V,E)
Output: An ordering σ of the vertices V , called a LexBFS-ordering
Σ← (V ); // Initialize sequence Σ of vertex sets to contain the single set V in

the beginning

σ← (); // Initialize output sequence of vertices

3 while Σ )= /0 do
4 Remove a vertex a from the first set in the sequence Σ;

if first set of Σ is empty then remove first set from Σ;
Append a to σ;
Mark all sets of Σ as not visited;
foreach b ∈ neG(a) s.t. b ∈ S for some S ∈ Σ do

if S not visited then
Insert empty set T into Σ in front of S;
Mark S as visited;

else let T be the set preceding S in Σ;
13 Move b from S to T ;
14 if S = /0 then remove S from Σ;

Algorithm 6: LexBFS(V,E). Lexicographic breadth-first search in the so-called “partition-

ing paradigm” (Rose et al., 1976; Corneil, 2004)

Perfect elimination orderings of chordal graphs can be produced by a variant of the breadth-first

search algorithm, the so-called lexicographic breadth-first search (LexBFS; see Algorithm 6). The

term “lexicographic” reflects the fact that the algorithm visits edges in lexicographic order w.r.t. the

produced ordering σ.

Proposition 39 (Rose et al., 1976) Let G=(V,E) be an undirected chordal graph with a LexBFS-

ordering σ. Then σ is also a perfect elimination ordering on G.

Corollary 40 Let G be an undirected chordal graph with a LexBFS-ordering σ. A DAG D ⊂ G

with Du = G that is oriented according to σ has no v-structures.

Corollary 40 is a consequence of Lemma 37 and Proposition 39. According to this corollary,

LexBFS-orderings can be used for constructing representatives of essential graphs (see Propo-

sition 16). Corollary 40 as well as Algorithm 6 are therefore of great importance for the proofs and

algorithms of Sections 3 and 4.

Figure 17 shows an undirected chordal graph G and a DAG D that has the skeleton G and is

oriented according to a LexBFS-ordering σ of G. The functioning of Algorithm 6 when producing

a LexBFS-ordering on G is illustrated in Table 1. Note that the “sets” in Σ are written as tuples.

We use this notation to ensure that we can always remove the first (leftmost) vertex from the first

“set” of Σ (line 3 in Algorithm 6), and that we keep the relative order of vertices when moving

them from one set S to the preceding one, T , in Σ (line 12 in Algorithm 6). Throughout the text,

we always assume an implementation of Algorithm 6 in which the data structure used to represent

the “sets” in the sequence Σ guarantees this “first in, first out” (FIFO) behavior. In particular, the

start sequence (v1,v2, . . . ,vp) of the vertices in V provided to the algorithm determines the vertex

the LexBFS-ordering σ := LexBFS((v1, . . . ,vp),E) starts with: σ(1) = v1. It is often sufficient
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1 2 3 4

5 6 7
(a) G

1 2 3 4

5 6 7
(b) D

Figure 17: An undirected, chordal graph G = ([7],E) and the DAG D we get by orienting all edges

of G according to the ordering σ := LexBFS((6,3,1,2,4,5,7),E).

i Σ σ
0 ((6,3,1,2,4,5,7)) ()
1 ((3,2,5),(1,4,7)) (6)
2 ((2),(5),(4,7),(1)) (6,3)
3 ((5),(4,7),(1)) (6,3,2)
4 ((4,7),(1)) (6,3,2,5)
5 ((7),(1)) (6,3,2,5,4)
6 ((1)) (6,3,2,5,4,7)
7 () (6,3,2,5,4,7,1)

Table 1: State of the sequences Σ and σ after the ith run (i = 0, . . . ,7) of the while loop (lines 2 to

13) of Algorithm 6 applied to the graph G of Figure 17 with start order (6,3,1,2,4,5,7).

to specify the start order of LexBFS up to arbitrary orderings of some subsets of vertices. For a

set A = {a1, . . . ,ak}⊂V and an additional vertex v ∈V \A, for example, we use the notation

LexBFS((A,v,V \ (A∪{v})),E), or even LexBFS((A,v, . . .),E)

to denote a LexBFS-ordering produced from a start order of the form (a1, . . . ,ak,v, . . .), without

specifying the orderings of A and V \ (A∪{v}).
By using appropriate data structures (for example, doubly linked lists for the representation of Σ

and its sets, and a pointer at each vertex pointing to the set in Σ in which it is contained), Algorithm

6 has complexity O(|E|+ |V |) (Corneil, 2004).

For the rest of this section, we state further consequences of Lemma 37 and Proposition 39

which are relevant for the proofs of Sections 3 and 4.

Corollary 41 Let G = (V,E) be an undirected chordal graph, and let a b ∈G. There exist DAGs

D1 and D2 with D1,D2 ⊂ G and Du
1 = Du

2 = G without v-structures such that a b ∈ D1 and

a b ∈ D2.

Proof Set σ1 := LexBFS((a,V \{a}),E) and σ2 := LexBFS((b,V \{b}),E), and let D1 and D2

be two DAGs with skeleton G and oriented according to σ1 and σ2, resp. Then, by Corollary 40, D1

and D2 have the requested properties; in particular, all edges point away from a in D1, whereas all

edges point away from b in D2.
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Corollary 42 (Andersson et al., 1997) Let G = (V,E) be an undirected chordal graph, a ∈V and

C ⊂ ne(a). Then there is a DAG D⊂ G with Du = G and {b ∈ ne(a) | b a ∈ D}=C that has no

v-structures if and only if C is a clique.

Proof “⇒”: Assume that there are non-adjacent vertices b,c ∈C. Then, b a c is an induced

subgraph of G, and by construction, the same vertices occur in configuration b a c in D, which

means that D has a v-structure, a contradiction.

“⇐”: Let (c1, . . . ,ck) be an arbitrary ordering of C. Run LexBFS on a start order of the form

(c1, . . . ,ck,a, . . .). After the first run of the while loop (lines 2 to 13 of Algorithm 6), σ = (c1),
and the first set in the sequence Σ contains (C∪ {a}) \ {c1} as a subset (all vertices in this set are

adjacent to c1), in an unchanged order c2, . . . ,ck,a due to our FIFO convention. After the second

run of the while loop, σ = (c1,c2), and the first set in Σ contains (C∪{a})\{c1,c2}, and so on. In

the end, we get a LexBFS-ordering of the form σ = (c1, . . . ,ck,a, . . .). Orienting the edges of G

according to σ yields a DAG with the requested properties by Corollary 40.

ba

C
N

P

Figure 18: Configuration of vertices in Proposition 43.

Proposition 43 Let G = (V,E) be an undirected, chordal graph, a b ∈ G, and C ⊂ neG(a)\{b}
a clique. Let N := neG(a)∩neG(b), and assume that C∩N separates C \N and N \C in G[neG(a)]
(see Figure 18). Then there exists a DAG D⊂ G with Du = G such that

(i) D has no v-structures;

(ii) all edges in D[C∪{a}] point towards a;

(iii) all other edges of D point away from vertices in C∪{a} (in particular, a b ∈ D);

(iv) b d ∈ D for all d ∈ P := neG(b)\ (C∪{a}).

Proof Set σ := LexBFS((C,a,b, . . .),E), and let D be the DAG that we get by orienting the edges

of G according to σ. As in Corollary 42, properties (i) to (iii) are met.

It remains to show that b occurs before any d ∈ P in σ (that means b <σ d ∀ d ∈ P) in order that

D obeys property (iv). W.l.o.g., we can assume C = {1,2, . . . ,k}, a = k+1 and b = k+2. The start

order of the vertices for LexBFS is then (1,2, . . . , p). Due to the FIFO convention for the sets of

the sequence Σ in Algorithm 6, b always precedes any d ∈ P whenever they appear in the same set;

hence we only must show that the set containing b is never preceded by a set containing some d ∈ P

in Σ.

Suppose, for the sake of contradiction, that this is the case for some d ∈ P; name v1 := d. At the

beginning, b is in the same set as v1 in the sequence Σ; there is some vertex v2 that forces LexBFS

to move v1 into the set preceding the one containing b. A careful inspection of Algorithm 6 shows

that v2 is the vertex which is minimal w.r.t. ≤σ in

S(v1) := {v ∈V | v ∈ neG(v1)\neG(b),v <σ b}.
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If v2 > b (that is, if v2 /∈C∪{a} due to our convention), v2, as v1, always follows b whenever they

are in the same set in Σ. Therefore, v2 <σ b implies that there is some vertex v3 that moves v2 in the

set preceding the one of b in Σ during the execution of LexBFS; as before, we see that this is the

vertex which is minimal w.r.t. ≤σ in S(v2).
We can now continue to construct this sequence vi+1 := minS(vi) (always taking the minimum

w.r.t. ≤σ) until we find some vertex vm < b; this is a vertex in C∪ {a}. Even more, vm ∈ C \N,

since, by definition of S(vm−1), we only consider vertices that are not adjacent to b. We now have

constructed a path γ = (v1, . . . ,vm) of length m ≥ 2 in G such that v1 ∈ P, vi /∈ neG(b) ∀ i > 1,

vi > b ∀ i < m and vm ∈ C \N; furthermore, we have vm <σ . . . <σ v1 <σ b. The path γ can be

elongated to a cycle (a,v0 := b,v1,v2, . . . ,vm,a):

a b

v1

vm−1

vm

PC

We now claim that vi a ∈ G for all 0 ≤ i ≤ m. This is clearly the case for i = 0 and i = m by

construction. Assume, for the sake of contradiction, that there is some i, 0 < i < m, that is not

adjacent to a. Let r be the largest index smaller than i such that vr a ∈ G and s be the smallest

index larger than i such that vs a ∈ G. Then the following is an induced subgraph of G:

a

vr

vr+1

vs

Note that a chord between different vl’s, say, a chord of the form vl vl+h with h≥ 2, would violate

the minimality of vl+1 in the set S(vl). This means that G contains an induced cycle of length 4 or

more, contradicting the chordality.

This proves the claim that vi a ∈ G for all 0 ≤ i ≤ m, or, in other words, vi ∈ neG(a) for all

0≤ i≤ m. Hence v1 ∈ N \C, and γ is a path from N \C to C \N in G[neG(a)] that has no vertex in

C∩N, in contradiction with the assumption.

Proposition 44 Let G = (V,E) be a chain graph with chordal chain components that does not

contain a b c as an induced subgraph, and let D⊂G be a digraph with Du = Gu. D is acyclic

and has the same v-structures as G if and only if D[T ] is oriented according to a perfect elimination

ordering for each chain component T ∈ T(G).

Proof “⇒”: let T ∈ T(G). G[T ] obviously does not have any v-structures, hence D[T ] has no

v-structures, either. It follows from Lemma 37 that D[T ] must be oriented according to a perfect

elimination ordering.
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“⇐”: for each T ∈ T(G), D[T ] is acyclic by construction. Assume that D has some directed cycle

γ; this cycle must reach different chain components of G, so it contains at least one edge a b that

is also present in G. Because of D⊂ G and Du = Gu, γ is also a cycle in G; and since a b ∈ G, it

is even a directed cycle in G, a contradiction. So D is acyclic.

By construction, every v-structure in G is also present in D. Suppose that D has some v-structure

a b c that G has not. a, b and c cannot belong to the same chain component of G according to

Lemma 37. So, w.l.o.g., a b c must be an induced subgraph of G, contradicting the assump-

tion. Hence D and G have the same v-structures.

Appendix B. Proofs

In this appendix, the technically interested reader finds all proofs that were left out in Sections 2 to

4 for better readability.

B.1 Proofs for Section 2

We start with the proof of Lemma 8 which motivates Definition 7 by showing that, for some DAG D

and some (conservative) family of targets I, the elements of MI(D) are exactly the density tuples

that can be realized as interventional densities of a causal model with structure D. Note that we use

the conservativeness of I only in the proof of point (ii); it can even be proven without assuming

conservativeness, although the proof becomes harder.

Proof of Lemma 8

(i) f (x|do(XI =UI)) obeys the Markov property of D(I) (Section 2.1). Furthermore, for I,J ∈ I
and a /∈ I∪ J, we have

f (xa | xpaD(a);do(XI =UI)) = f (xa | xpaD(a)) = f (xa | xpaD(a);do(XJ =UJ))

by the truncated factorization of Equation (1).

(ii) Let a∈ [p]. Since I is conservative, there is some I ∈ I such that a /∈ I. Define ha(xa,xpaD(a)) :=

f (I)(xa|xpaD(a)). Note that, due to Definition 7, the function ha does not depend on the choice

of I.

Let f (x) :=∏
p
a=1 ha(xa,xpaD(a)); this is a positive density on X with f (xa|xpaD(a)) = ha(xa,xpaD(a)),

hence f ∈M(D) and (D, f ) is a causal model.

By defining level densities f̃I(xI) := ∏i∈I f (I)(xi), we can construct an intervention setting

S := {(I, f̃I)}I∈I with the requested properties.

The proof of the main result of Section 2, the graph theoretic criterion for two DAGs being

interventionally Markov equivalent (Theorem 10), requires additional lemmas.

Lemma 45 Let D be a DAG, I a family of targets and I ∈ I a target in this family. Define

M(I)(D) := { f (I) | ( f (J))J∈I ∈MI(D)} ,

the projection of MI(D) to the density component associated with the intervention target I. Then,

M(I)(D) =M(D(I)).

2448



INTERVENTIONAL MARKOV EQUIVALENCE CLASSES OF DAGS

Proof The inclusion “⊂” is immediately clear from Definition 7. It remains to show “⊃”.

Let f ∈M(D(I)). Since D(I) ⊂ D, f also obeys the Markov property of D; this means f ∈
M(D). Set f̃I(xI) := f (xI); since f ∈M(D(I)), the components of f̃I are independent. For J ∈ I,

J )= I, let f̃J be an arbitrary level density on XJ . By Lemma 8(i), we know that, for intervention

variables UJ ∼ f̃J (J ∈ I),

(

f (· | doD(XJ =UJ))
)

J∈I ∈MI(D) ,

hence f (· | doD(XI = UI)) ∈M(I)(D) by definition of M(I)(D). Moreover, by construction of f̃I ,

we have f (x | doD(XI =UI)) = f (x) and hence f ∈M(I)(D).

Lemma 46 Let D be a DAG, f ∈M(D), and A⊂ [p]. Then,

∏
a∈A

f (xa | xpa(a)) = f (xA | xpa(A)).

Proof Let σ ∈ Sp be a topological ordering of D. Then, for a ∈ A,

pa(a)⊂ pa(A)∪
[

A∩σ−1({1, . . . ,a−1})
]

(8)

holds: every b ∈ pa(a) either lies in Ac and hence in pa(A) by the definition given in Appendix A.1,

or in A∩σ−1({1, . . . ,a−1}) by the definition of a topological ordering.

Hence we conclude

f (xA | xpa(A)) = ∏
a∈A

f (xa | xA∩σ−1({1,...,a−1}),xpa(A)) = ∏
a∈A

f (xa | xpa(a));

the first equality is the usual factorization of a density, the second equality follows from the Markov

properties of f and Equation (8).

Lemma 47 Let I be a family of targets. Assume D1 and D2 are DAGs with the same skeleton and

the same v-structures such that D
(I)
1 and D

(I)
2 have the same skeleton for all I ∈ I. Moreover, let

a b ∈ D1. If there is some I ∈ I such that |I ∩ {a,b}| = 1, then the arrow is also present in D2:

a b ∈ D2.

Proof Since D1 and D2 have the same skeleton, we have at least a b ∈ D2. Suppose a b ∈ D2.

If a ∈ I, b /∈ I, a and b are adjacent in D
(I)
1 , but not in D

(I)
2 , hence D

(I)
1 and D

(I)
2 have a different

skeleton, a contradiction. On the other hand, if a /∈ I but b ∈ I, a and b are not adjacent in D
(I)
1 , but

in D
(I)
2 , a contradiction, too.

Proof of Theorem 10 (i)⇒ (ii): Let I ∈ I, and let M(I)(D1) and M(I)(D2) be defined as in Lemma

45. By Definition 9 of interventional Markov equivalence, it follows that M(I)(D1) = M(I)(D2);

hence M(D
(I)
1 ) =M(D

(I)
2 ) by Lemma 45.

(ii)⇒ (iii): this implication follows from Theorem 3.

2449



HAUSER AND BÜHLMANN

(iii) ⇒ (iv): Let a b ∈ D1 be an arrow. Since I is conservative, there is some I ∈ I such that

b /∈ I. For this I, a b ∈ D
(I)
1 , so a b ∈ D

(I)
2 by assumption and hence a b ∈ D2 because of

D
(I)
2 ⊂ D2. Similarly, we can show the implication a b ∈ D2 ⇒ a b ∈ D1, what proves that

D1 and D2 have the same skeleton.

It remains to show that D1 and D2 also have the same v-structures. Let a b c be a v-

structure of D1. There is some I ∈ I that does not contain b; a b c is then an induced subgraph

of D
(I)
1 and hence by assumption also of D

(I)
2 . By consequence, a b c is also an induced

subgraph of D2 since D2 has the same skeleton as D1. The argument is of course symmetric w.r.t.

exchanging D1 and D2.

(iv)⇒ (i): Let ( f (I))I∈I ∈MI(D1). By Lemma 8(ii), there is some density f ∈M(D1) and some

intervention setting S = {(I, f̃I)}I∈I such that f (I)(·) = f (·|doD1(XI = UI)) for random variables

UI ∼ f̃I , I ∈ I.

The truncated factorization in Equation (1) tells us

f (x | doD1(XI =UI)) = ∏
a/∈I

f (xa | xpaD1
(a))∏

a∈I

f̃I(xa) = f (x)∏
a∈I

f̃I(xa)

f (xa | xpaD1
(a))

= f (x)
f̃I(xI)

f (xI | xpaD1
(I))

. (9)

The last step uses Lemma 46.

We now claim that paD1
(I) = paD2

(I). Indeed, if b ∈ I and a ∈ paD1
(b)\ I, a b is an arrow in

D1 with |I∩{a,b}| = 1, hence a b ∈ D2 by Lemma 47 and therefore a ∈ paD2
(I); the argument

is symmetric w.r.t. exchanging D1 and D2. It follows that f (xI|xpaD1
(I)) = f (xI|xpaD2

(I)), and by

repeating the calculation in (9) for D2 instead of D1, we find f (x|doD1(XI =UI)) = f (x|doD2(XI =
UI)).

Since this equality is true for all I ∈ I, we have f (I)(·) = f (·|doD2(XI = UI)) for all I ∈ I, so

( f (I))I∈I ∈MI(D2) by Lemma 8(i), which proves MI(D1) ⊂MI(D2). The other direction is

completely analogous.

Points (i) to (iii) are even equivalent under non-conservative families of targets. The proof is

more difficult in this case though.

B.2 Proofs for Section 3

All statements of Section 3.2 are similar to analogous statements for the observational case devel-

oped by Andersson et al. (1997). Some of the proofs given there are even literally valid also for

our interventional setting; in such cases, we will not repeat them here, but just refer to the original

ones. However, in most cases, the generalization from the observational to the interventional case

is not obvious and requires adapted techniques presented in this section. Here, I always stands for

a conservative family of targets.

First, we show that for some DAG D, EI(D) is a chain graph (Proposition 15). For that purpose,

we define EI(D)∗ as the smallest chain graph containing EI(D). EI(D)∗ is obtained from EI(D)
by converting all arrows that are part of a directed cycle in EI(D) into lines (Andersson et al.,
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1997). We first state a couple of properties of EI(D) and EI(D)∗ (Lemma 48), and then show that

EI(D)∗ = EI(D) (Proposition 15).

Lemma 48 (adapted from Andersson et al., 1997) Let D be a DAG. Then:

(i) EI(D) has no induced subgraph of the form a b c.

(ii) If EI(D) has an induced subgraph of the form

a b

c

,

then there exist D1,D2 ∈ [D]I such that

a b

c

⊂ D1, a b

c

⊂ D2.

(iii) EI(D)∗ has the same v-structures as D (and hence as EI(D)).
(iv) EI(D) and EI(D)∗ do not have any undirected chordless k-cycle of length k ≥ 4.

(v) EI(D)∗ has no induced subgraph of the form a b c.

(vi) If two vertices a and b are adjacent in EI(D)∗ and there is some I ∈ I such that |I∩{a,b}|= 1,

then the edge between a and b is directed in EI(D) and EI(D)∗.

Proof Points (i) to (v) correspond to Facts 1 to 5 of Andersson et al. (1997) where these properties

were proven for observational essential graphs. A thorough inspection of the proofs given there

reveals that they only make use of the fact that two Markov equivalent DAGs have the same skeleton

and the same v-structures, which is also true in the interventional case by Theorem 10. Thanks

to this, the proofs of Andersson et al. (1997) can be literally used here. (Note that the inverse

implication also holds in the observational case, but not in the interventional one; see the discussion

after Theorem 10.)

It remains to prove point (vi). The edge between a and b in EI(D) is directed since the arrow

between a and b is I-essential in D by Corollary 13. It remains to show that the edge is also directed

in EI(D)∗, that is, to show that it is not part of a directed cycle in EI(D).
Let’s suppose, for the sake of contradiction, that the edge between a and b is part of a directed

cycle γ = (a,b ≡ b0,b1, . . . ,bk ≡ a) in EI(D). W.l.o.g., we can assume that a b ∈ EI(D), and

that γ is the shortest such cycle containing a directed edge with one end point in I and the other one

outside I.

Case 1: k = 2. Then γ is of the form

a b

b1

since two or three directed edges would imply the existence of a digraph with a cycle in the equiva-

lence class of D. By point (ii), there are DAGs D1 and D2 in [D]I such that

a b

b1

⊂ D1 , a b

b1

⊂ D2.

The condition |I∩{a,b}|= 1 leaves four possibilities:
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a) a ∈ I;b,b1 /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 ;

b) a,b1 ∈ I;b /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 ;

c) b ∈ I;a,b1 /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 ;

d) b,b1 ∈ I;a /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 .

In all four cases, (D
(I)
1 )u )= (D

(I)
2 )u, hence D1 )∼I D2, a contradiction.

Case 2: k≥ 3. Let i be the smallest index such that bi bi+1 ∈ EI(D) (there must be such an index,

otherwise γ would be a directed cycle in D).

Case 2.1: i = 0. Since a b b1 cannot be an induced subgraph of EI(D) by point (i), we must

have a b1 ∈ EI(D). More precisely, we must have a b1 ∈ EI(D), otherwise (a,b,b1,a) would

form a shorter directed cycle than γ, in contradiction to the assumption. This means that there exist

DAGs D1,D2 ∈ [D]I such that

a b

b1

⊂ D1, a b

b1

⊂ D2.

Again, the condition |I∩{a,b}|= 1 leaves four possibilities:

a) a ∈ I;b,b1 /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 ;

b) a,b1 ∈ I;b /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 ;

c) b ∈ I;a,b1 /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 ;

d) b,b1 ∈ I;a /∈ I: then, a b

b1

⊂ D
(I)
1 , a b

b1

⊂ D
(I)
2 .

Cases b) and c) are not compatible with the condition (D
(I)
1 )u = (D

(I)
2 )u. In cases a) and d), the

arrow a b1 is part of a directed cycle (a,b1,b2, . . . ,bk ≡ a), furthermore |I ∩ {a,b1}| = 1; this

contradicts the assumption of minimality of the larger cycle γ.
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Case 2.2: i ≥ 1. Since bi−1 bi bi+1 cannot be an induced subgraph of EI(D), we must have

bi−1 bi+1 ∈ EI(D). Either bi−1 bi+1 ∈ EI(D), that is

bi−1 bi

bi+1

⊂ EI(D) ,

which would imply the existence of a digraph with a directed 3-cycle in the equivalence class of

D, a contradiction. The other cases are bi−1 bi+1 ∈ EI(D) or bi−1 bi+1 ∈ EI(D) which would

mean that a b would be part of a shorter directed cycle (a,b≡ b0, . . . ,bi−1,bi+1, . . . ,bk ≡ a), con-

tradicting the assumption of minimality of the cycle γ.

Proof of Proposition 15 We only prove the first point; the second one is an immediate consequence

of Lemma 48(iv). We have to show that EI(D) = EI(D)∗, that means that

a b ∈ EI(D)∗ ⇒ a b ∈ EI(D) .

By Lemma 48(iv), all chain components of EI(D)∗ are chordal. Let D1 and D2 be two DAGs that

are obtained by orienting all chain components of EI(D)∗ according to some perfect elimination

ordering, such that a b ∈ D1 and a b ∈ D2; such orientations exist by Proposition 44 and

Corollary 41.

We now claim that D1 ∼I D2 by verifying the criteria of Theorem 10(iv); it then follows that

a b ∈ EI(D) because of D1∪D2 ⊂ EI(D):

• By Proposition 44, D1 and D2 have the same skeleton and the same v-structures.

• D
(I)
1 and D

(I)
2 have the same skeleton for all I ∈ I: suppose, for the sake of contradiction,

that (D
(I)
1 )u has some edge c d that (D

(I)
2 )u has not. W.l.o.g., we then have c d ∈ D1,

c d ∈ D2, c ∈ I, d /∈ I. But then c and d are adjacent in EI(D)∗ with |I∩{c,d}|= 1, hence

the edge between c and d must be oriented in EI(D)∗ by point (vi) of Lemma 48, and hence it

is not possible that this edge has two different orientations in D1 and D2 by their construction.

Proof of Proposition 16 “⇐”: By the construction of EI(D), we know that D ⊂ EI(D) and

Du = EI(D)u. Furthermore, D has the same v-structures as EI(D). Let D′ be another digraph that

is obtained by orienting all chain components of EI(D) according to a perfect elimination ordering;

by Proposition 44, D′ is acyclic and has the same v-structures as EI(D) and hence as D. It remains

to show that D(I) and D′(I) have the same skeleton for all I ∈ I; this can be done similarly to the

proof of Proposition 15.

“⇒”: let D′ be a DAG with D′ ∼I D. In particular, D′ and D have the same skeleton and the same

v-structures, so D′ also has the same skeleton and the same v-structures as EI(D). It follows, with

Proposition 44, that D′ is oriented according to a perfect elimination ordering on all chain compo-

nents of EI(D).

Lemma 49 Let D be a DAG and a b an I-essential arrow in D. Then a b is strongly I-

protected in EI(D).
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This lemma is an auxiliary result needed to prove Theorem 18. In its proof, we first show the weaker

statement that every I-essential arrow of D is I-protected in EI(D).

Definition 50 (Protection) Let G be a graph. An arrow a b ∈ G is I-protected in G if there is

some intervention target I ∈ I such that |I∩{a,b}|= 1, or paG(a) )= paG(b)\{a}.

This definition is again a generalization of the notion of protection of Andersson et al. (1997); for

I = { /0}, we gain back their definition. A strongly I-protected arrow (Definition 14) is also I-

protected. In a chain graph G, an arrow a b is I-protected if and only if there is some I ∈ I such

that |I ∩ {a,b}| = 1, or the arrow a b occurs in at least one subgraph of the form (a), (b), (c) in

the notation of Definition 14, or in a subgraph of the form (d’) (Andersson et al., 1997), where

(d’): a b

c

.

Proof of Lemma 49 As foreshadowed, we prove this lemma in two steps, corresponding to Facts

6 and 7 of Andersson et al. (1997): in a first step, we show that a b must be I-protected, in a

second step, we strengthen the result by showing that it must even be strongly I-protected. For

notational convenience, we abbreviate G := EI(D). We skip some steps of the proof that can be

literally copied from proofs in Andersson et al. (1997).

Suppose, for the sake of contradiction, that a b is not I-protected. Let D1 be a digraph that

is gained by orienting all chain components of G according to a perfect elimination ordering, where

the edges of TG(a) and TG(b) are oriented such that all edges point away from a or b, respectively.

Then D1 is acyclic and I-equivalent to D by Proposition 16.

Let D2 be another digraph, differing from D1 only by the orientation of the edge between a and

b. It can be shown that D2 is acyclic too (Andersson et al., 1997, proof of Fact 6). We now claim

that D1 ∼I D2:

• D1 and D2 clearly have the same skeleton.

• D1 and D2 have the same v-structures. Otherwise, there would be some v-structure c a b

in D2, or some v-structure a b c in D1. In both cases, this would imply paG(a) )=
paG(b) \ {a}, contradicting the assumption: in the first case, c /∈ TG(a) by construction (all

edges of TG(a) point away from a in D2), so c ∈ paG(a), but c /∈ paG(b); in the second case,

c ∈ paG(b), but c /∈ paG(a) by analogous arguments.

• (D
(I)
1 )u = (D

(I)
2 )u for all I ∈ I. Otherwise, there would be some I ∈ I such that the skeletons

of D
(I)
1 and D

(I)
2 differ in the edge between a and b. This could only happen if |I∩{a,b}|= 1,

in contradiction with the assumption.

Hence, since D1,D2 ∈ [D]I , we have D1∪D2 ⊂G and thus a b ∈G, a contradiction. This proves

that a b is I-protected in G.

In the second step, we show that a b is even strongly I-protected. If this was not the case,

a b would occur in configuration (d’) in G, but not in configuration (a), (b), (c) or (d) (see the

comment following Definition 50). Define Pa := {d ∈ TG(a) | d b ∈ G}. It can be shown that Pa

is a clique G[TG(a)] (Andersson et al., 1997, proof of Fact 7).

Let D1 be the DAG that we get by orienting all chain components of G according to a perfect

elimination ordering, such that, additionally,
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• all edges of D1[TG(b)] point away from b,

• all edges of D1[Pa] point towards a,

• and all other edges of D1[TG(a)] point away from a.

Such an orientation exists by Corollary 42. Let D2 be the digraph that we get by changing the

orientation of the edge a b in D1; as in the first part, it can be shown that D2 is acyclic (Andersson

et al., 1997, proof of Fact 7). Again, we claim that D1 ∼I D2:

• D1 and D2 clearly have the same skeleton.

• D1 and D2 have the same v-structures. Otherwise, there would be some v-structure d a b

in D2, or a v-structure a b d in D1. In the first case, d /∈ Pa (otherwise, d b ∈ G by

definition of Pa, and hence d b ∈ D2 since D2 ⊂ G), and d /∈ TG(a) \Pa by construction

(edges in TG(a)\Pa point away from a in D2), hence d a ∈G and a b is in configuration

(a) in G; in the second case, d /∈ TG(b) by construction (all edges of TG(b) point away from b

in D1), so a b is in configuration (b) (notation of Definition 14) in G. Both cases contradict

the assumption.

• Exactly as in the first part, (D
(I)
1 )u = (D

(I)
2 )u for all I ∈ I.

We can conclude that, since D1,D2 ∈ [D]I , D1∪D2 ⊂ G, so a b ∈ G, a contradiction.

Proof of Theorem 18 “⇒”: (i) and (ii) follow from Proposition 15, (iii) from Lemma 48(v), (iv)

from Corollary 13 and (v) from Lemma 49.

“⇐”: Consider the set D(G) of all DAGs that can be obtained by orienting the chain components

of G according to a perfect elimination ordering; we have
⋃

D(G)⊂G. On the other hand, for each

undirected edge a b ∈ G, there are DAGs D1 and D2 in D(G) such that a b ∈ D1, a b ∈ D2

(Corollary 41), hence G⊂
⋃

D(G). Together, we find G =
⋃

D(G).
We claim that D1 ∼I D2 for any two DAGs D1,D2 ∈ D(G):

• D1 and D2 have the same skeleton and the same v-structures by Proposition 44.

• (D
(I)
1 )u = (D

(I)
2 )u for all I ∈ I. Otherwise, there would be arrows a b∈D1, a b∈D2, and

some I ∈ I such that |I∩{a,b}|= 1; this would mean that a b∈G although |I∩{a,b}|= 1,

contradicting property (iv).

Let D ∈ D(G). We have shown that D(G)⊂ [D]I , hence G =
⋃

D(G)⊂ EI(D). It remains to show

that G⊃ EI(D).
Assume, for the sake of contradiction, that G has some arrow a b where EI(D) has an undi-

rected edge a b. According to property (v), a b is strongly I-protected in G. If there was some

I ∈ I such that |I∩{a,b}| = 1, the edge between a and b was also directed in EI(D) by Corollary

13, a contradiction. Hence a b occurs in G in one of the configurations depicted in Definition

14. Exactly as in the proof of Theorem 4.1 of Andersson et al. (1997), we can construct a contra-

diction for each of the four configurations. Although the proof given there can be used literally, we

reproduce it here since since we will use the following steps again in the proof of Lemma 22.
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We assume w.l.o.g. that TG(a) is minimal in

A := {T ∈ T(G)| ∃ a ∈ T,b ∈V (G) : a b ∈ G,a b ∈ EI(D)}

w.r.t. -G, and that TG(b) is minimal in

B := {T ∈ T(G)| ∃ a ∈ T (a),b ∈ T : a b ∈ G,a b ∈ EI(D)}.

Each configuration (a) to (d) of Definition 14 leads to a contradiction (c, c1 and c2 denote the vertices

involved in the respective configuration):

(a) Because of the minimality of TG(a), c a must be oriented in EI(D), hence c a b is an

induced subgraph of EI(D), contradicting Lemma 48(i).

(b) a b c is then a v-structure in D, hence it is also a v-structure in EI(D), that means

a b ∈ EI(D), a contradiction.

(c) Because of the minimality of TG(b), the edge between a and c must be oriented in EI(D), so

the vertices a, b and c are in one of the following configurations in EI(D):

a b

c

, a b

c

.

Both possibilities violate Proposition 15(i).

(d) The v-structure c1 b c2 of D is also a v-structure of EI(D), hence EI(D) has two directed

3-cycles (c1,b,a,c1) and (c2,b,a,c2), a contradiction.

Proof of Lemma 20

(i) This immediately follows from Theorem 18(iii).

(ii) Let a b be an arrow in EI(D); by Theorem 18(v), it is strongly I-protected in EI(D).
If there is some I ∈ I such that |I ∩ {a,b}| = 1, the arrow is by definition also strongly I-

protected in G. Otherwise, a b occurs in one of the configurations (a) to (d) of Definition

14 in EI(D). In configurations (a) to (c), the other arrows involved (a c; c b; or a c

and c b, resp.) are also present in G, hence a b is strongly I-protected in G by the same

configuration as in EI(D).
It remains to show that if a b is in configuration (d) in EI(D), it is also strongly I-protected

in G. In D, the vertices {a,c1,c2} as defined in Definition 14 can occur in one of the following

configurations:

c1 a c2, c1 a c2, c1 a c2.

The first and the third case are symmetric w.r.t. exchanging c1 and c2, hence we only consider

the first two. Table 2 lists all possible configurations for the vertices {a,c1,c2} in the graph

G according to the condition D ⊂ G ⊂ EI(D). There is only one possibility for the arrow

a b not to occur in one of the configurations (a) to (d) of Definition 14, and hence not being

strongly I-protected in G; however, the corresponding subgraph of {a,c1,c2}, c1 a c2,

is forbidden by Definition 19.

2456



INTERVENTIONAL MARKOV EQUIVALENCE CLASSES OF DAGS

(iii) According to Theorem 10, we have to check the following properties:

• D1 and D2 have the same skeleton, namely Du
1 = Du

2 = Gu.

• D1 and D2 have the same v-structures: let a b c be a v-structure in D1. This v-

structure is then also present in EI(D1). Because of D2 ⊂ G ⊂ EI(D1), we find it also

in G and in D2. The argument is completely symmetric w.r.t. exchanging D1 and D2.

• For all I ∈ I, D
(I)
1 and D

(I)
2 have the same skeleton: assume, for the sake of contradic-

tion, that there is some I ∈ I and an edge a b that is present in (D
(I)
1 )u, but not in

(D
(I)
2 )u. W.l.o.g., we can assume that a b ∈ D1, a b ∈ D2, a ∈ I, b /∈ I. Because

of Theorem 18(iv), we then have a b ∈ EI(D1) and a b ∈ EI(D2); however, this is

not compatible with the requirements G⊂ EI(D1) and G⊂ EI(D2).

Proof of Lemma 21 If a b ∈ EI(D), it would be strongly I-protected by Theorem 18(v), and

hence also strongly I-protected in G by Lemma 20(ii), contradicting the assumption. Therefore,

a b ∈ EI(D) and hence D⊂ G′ ⊂ EI(D).
Suppose that G′ contains an induced subgraph of the form c d e. Since G does not contain

such an induced subgraph, it must be of the form c a b or c b a in G′. In both cases,

a b is then strongly I-protected in G, either by configuration (a) or (b), a contradiction.

Proof of Lemma 22 Let D ⊂ G ⊂ EI(D) be a partial I-essential graph that only has strongly

I-protected arrows. We can literally use the second part of the proof of Theorem 18 to show

G⊃ EI(D); there, we only used the fact that every arrow in G is strongly I-protected.

B.3 Proofs for Section 4

Proof of Proposition 25 “⇒”:

(i) This claim follows from Corollary 42.

Induced subgraph of {a,c1,c2}. . . Configuration

. . . in D . . . in G of a b in G

c1 a c2 c1 a c2 (c)

c1 a c2 —

c1 a c2 (c)

c1 a c2 (d)

c1 a c2 c1 a c2 (c)

c1 a c2 (c)

c1 a c2 (c)

c1 a c2 (d)

Table 2: Possible configurations for the vertices {a,c1,c2} in the proof of Lemma 20(ii). The labels

in the last column refer to the configurations of Definition 14.
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(ii) Suppose that there is some vertex a ∈ N \C, that is a vertex a ∈ N with a v ∈ D. D′ would

have a directed cycle if u a ∈ D, so u a ∈ D. But then, u a v is a v-structure in D,

hence also in G, and consequently a /∈ neG(v), a contradiction.

(iii) Assume that γ = (v ≡ a0,a1, . . . ,ak ≡ u) is a shortest path from v to u in G that does not

intersect with C. We claim that γ is a directed path in D, which means that D′ has a directed

cycle, a contradiction.

Suppose that the claim is wrong, and let ai ai+1 ∈ D be the first edge of (the chain) γ
that points away from u in D; i ≥ 1 holds by the assumption that, in particular, a1 /∈ C.

ai−1 ai ai+1 cannot be an induced subgraph of D, otherwise it would also be present in G

and hence γ would not be a path in G. Hence ai−1 ai+1 ∈G; more precisely, ai−1 ai+1 ∈
G (and hence also in D), otherwise there would be a shorter path from v to u in G than γ that

does not intersect with C. Because γ is a path in G, ai−1, ai and ai+1 can occur in G only in

one of the following configurations:

ai−1 ai+1

ai

, ai−1 ai+1

ai

.

However, both graphs cannot be an induced subgraph of the chain graph G.

“⇐”: Since C is a clique in G[TG(v)], there is a DAG D ∈D(G) with {a ∈ neG(v) | a v ∈D}=C

by Proposition 44 and Corollary 42. It remains to show that D′ is a DAG.

Assume, for the sake of contradiction, that D′ has a directed cycle going through u v. The

return path from v to u, γ = (v≡ a0,a1, . . . ,ak ≡ u), must come from a path in G and must therefore,

by assumption, contain a vertex ai ∈C (i≥ 2). Since ai v ∈D by construction, this means that D

has a directed cycle (a0,a1, . . . ,ai,a0), a contradiction.

Uniqueness of EI(D′): Let D1,D2 ∈D(G) with {a ∈ neG(v) | a v ∈D1}= {a ∈ neG(v) | a v ∈
D2} =C, and set D′i := Di +(u,v), i = 1,2; we assume that D′1,D

′
2 ∈ D+(G). To prove D′1 ∼I D′2,

we have to check the following three points according to Theorem 10(iv):

• D′1 and D′2 obviously have the same skeleton.

• D′1 and D′2 have the same v-structures. We already know that D1 and D2 have the same v-

structures. Let’s assume, for the sake of contradiction, that (w.l.o.g.) D′1 has a v-structure

u v a that D′2 has not. In G, we must then have a line a v, hence a∈ neG(v). However,

the arrow between a and v would then have the same orientation in D1 and D2 by construction,

a contradiction.

• For all I ∈ I, D
′(I)
1 and D

′(I)
2 have the same skeleton. If this was not the case, there would be

some vertices a,b∈ [p] and some I ∈ I such that a b∈D′1, a b∈D′2 and |I∩{a,b}|= 1.

The arrow u v is part of D′1 and D′2 by construction, so the arrows between a and b must

be present in D1 and D2; however, D
(I)
1 and D

(I)
2 would then not have the same skeleton, a

contradiction.

Corollary 26 is an immediate consequence of Proposition 25 and the fact that we assume the

score function to be decomposable, so we skip the proof here.
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Proof of Lemma 27 Obviously, we have D′ ⊂ H. To show H ⊂ EI(D′), we look at some edge

a b∈G with a,b /∈ TG(v) and show that a b∈ EI(D′). W.l.o.g., we can assume that a b∈D.

By Corollary 41, there exists a D2 ∈ D(G) that has the same orientation of edges in TG(v), but

an orientation of edges in TG(a) such that a b ∈ D2. By Proposition 25, we know that D′2 :=
D2 +(u,v) is I-equivalent to D′, so in particular a b ∈ D′ ∪D′2 ⊂ EI(D′).

It remains to show that a b c does not occur as an induced subgraph of H. The inserted

arrow u v cannot be part of such a subgraph, since all other edges incident to v are oriented in

H by construction. Since G has no such subgraph either (Theorem 18), it could only appear in

H through one of the newly oriented edges of TG(v). This means that if H had an induced sub-

graph of the form a b c, the corresponding vertices would be in configuration a b c in G;

however, c∈ TG(v) then, and so the edge between b and c would be oriented in H, a contradiction.

Proof of Proposition 28 “⇒”:

(i) By Corollary 42, {a ∈ neG(v) | a v ∈ D} is a clique, hence every subset—in particular,

C—is a clique, too.

(ii) Assume that there is some a ∈C \ adG(u); then u ∈ neG(v), otherwise u v a would be

an induced subgraph of G. Nevertheless, a ∈C means that u v a is a v-structure in D,

which should hence also be present in G.

“⇐”: We only must prove the existence of the claimed D∈D(G), see the comment in the beginning

of Section 4.2. We distinguish two cases:

• u v ∈ G. The existence of the DAG D ∈ D(G) with the requested properties follows from

Corollary 42.

• u v ∈ G, hence u a ∈ G for all a ∈ N because G is a chain graph. Therefore, C∪{u} is

a clique in G[neG(v)], and the existence of the claimed D again follows from Corollary 42.

Uniqueness of EI(D′): Let D1,D2 ∈ D(G) with u v ∈ D1,D2 and {a ∈ neG(v) \ {u} | a v ∈
D1}= {a ∈ neG(v)\{u} | a v ∈D2}=C, and set D′i := Di− (u,v), i = 1,2. To prove D′1 ∼I D′2,

we have to check the following three points according to Theorem 10(iv):

• D′1 and D′2 have the same skeleton, namely Gu− (u,v)− (v,u).

• D′1 and D′2 have the same v-structures. Otherwise, w.l.o.g., D′1 would have a v-structure

a b c that D′2 has not. D1 and D2 have the same v-structures, so a b c is no

induced subgraph of D1; this implies a = u, c = v. Since D′2 does not have the v-structure

u b v, the vertices u, b and v must occur in configuration u b v or u b v in D′2
(the configuration u b v is not consistent with the acyclicity of D2). However, all edges

incident to v must have the same orientation in D′1 and D′2 by construction, a contradiction.

• Let I ∈ I. Because of (D
(I)
1 )u = (D

(I)
2 )u and (D

′(I)
i )u = (D

(I)
i )u− (u,v)− (v,u) for i = 1,2, we

have (D
′(I)
1 )u = (D

′(I)
2 )u.
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Corollary 29 follows quickly from Proposition 28, and the proof of Lemma 30 is very similar to

that of Lemma 27. Therefore we skip both proofs here and proceed with the proofs of Section 4.3.

Proof of Proposition 31 Note that we can write N = neG(v)∩ adG(u) = neG(v)∩neG(u) because

u v ∈ G and G is a chain graph.

“⇒”:

(i) This follows from Corollary 42.

(ii) D and D′ have the same skeleton; the same is true for D(I) and D′(I) for all I ∈ I. To see

the latter, assume that for some I ∈ I, the intervention graphs D(I) and D′(I) have a different

skeleton. Since D and D′ only differ in the orientation of the arrow between u and v, the

skeletons of D(I) and D′(I) can only differ in that u and v are adjacent in one of them and not

adjacent in the other one. However, this would imply that |I∩{u,v}|= 1, and hence the edge

between u and v would be directed in G by Theorem 18(iv), contradicting the assumption of

the proposition. Finally, D′ has at least all v-structures that D has by construction.

As a consequence D′ )∼I D if and only if D′ has more v-structures than D (Theorem 10). An

additional v-structure in D′ must be of the form u v a. The edge between v and a cannot

be directed in G, otherwise u v a would be an induced subgraph of G, which is forbidden

by Theorem 18(iii). Hence a ∈ neG(v), or, more precisely, a ∈C \N.

(iii) If N \C is empty, the statement is trivial. Otherwise, assume that there is some shortest path

γ = (a0,a1, . . . ,ak) from N \C to C \N in G[neG(v)] that has no vertex in C∩N.

By definition of C, ak v ∈ D; furthermore, u a0 ∈ D must hold, otherwise (v,a0,u,v)
would be a directed cycle in D′. Therefore, γ must not be a path from a0 to ak in D. Let

ai ai+1 be the first arrow in γ that points away from ak in D. If i = 0, u a0 a1 would

be a v-structure in D since a1 /∈ N: by assumption, a1 /∈ N∩C, and a1 /∈ N \C because of the

minimality of γ. Hence i > 0 (and k > 1) must hold, and ai−1 ai+1 in D and G, otherwise

there would be a v-structure in D. However, γ is not the shortest path with the requested

properties then, a contradiction.

“⇐”: From Proposition 43, we see that there exists a DAG D that has the requested properties,

and in which, in addition, {a ∈ neG(u) | a u ∈ D} = (C ∩N)∪ {v} (point (iv) of Proposition

43). The fact that D′ := D− (v,u)+ (u,v) )∼I D can be seen by an argument very similar to the

proof of point (ii) above; it remains to show that D has no v-u-path except (v,u). Suppose that

γ = (a0 ≡ v,a1, . . . ,ak ≡ u), k ≥ 2, is such a path. In particular, γ is then also a v-u-path in G, hence

γ lies completely in TG(v).
If k = 2, then a1 ∈N, and so the vertices u, v and a1 occur in one of the following configurations

in D by Proposition 43:

v u

a1

, v u

a1

.

Both configurations contradict the assumption that γ=(v,a1,u) forms a path in D. Thus we conclude

k ≥ 3, and we notice ak−1 ∈ neG(u) \ {v}. If ak−1 ∈ C, ak−1 v ∈ D, hence (a0,a1, . . . ,ak−1,a0)
would be a cycle in D. On the other hand, if ak−1 /∈C, we would have ak−1 u ∈ D, so γ would

not be a path in D.
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Uniqueness of EI(D′): Let D1,D2 ∈ D(G) with u v ∈ D1,D2 and {a ∈ neG(v) | a v ∈ D1} =
{a ∈ neG(v) | a v ∈ D2}=C, and set D′i := Di− (v,u)+(u,v), i = 1,2; we assume that D′1,D

′
2 ∈

D!(G). As in the proofs of Proposition 25, we can check that D′1 ∼I D′2:

• D′1 and D′2 obviously have the same skeleton.

• D1 and D2 have the same v-structures. If this does not hold for D′1 and D′2, (w.l.o.g.) D′1
must have a v-structure u v a that D′2 has not. Since u v a cannot be an induced

subgraph of G, a ∈ neG(v); however, the edges between v and its neighbors are oriented in

the same way in D′1 and D′2 by construction, a contradiction.

• For all I ∈ I, D
′(I)
1 and D

′(I)
2 have the same skeleton: this can be seen by an argument very

similar to that in the proof of Proposition 25.

Proof of Corollary 32 We have to show paD(v) = paG(v)∪C and paD(u) = paG(u)∪(C∩N)∪{v}.

The first identity is immediately clear. For the second identity, note that for any vertex a∈C∩N, the

arrow between a and u must be oriented as a u ∈ D because the other orientation would induce a

3-cycle. On the other hand, we have a u ∈ D for a ∈ N \C because a different orientation would

induce a 3-cycle in D′. Finally, we also have a u ∈ D for any a ∈ neG(u) \ (neG(v)∪ {v}) since

the other orientation would induce a v-structure v u a in D.

Lemma 33 can be proven very similarly as Lemma 27. Finally, we finish this proof section with

the proof of Proposition 34 characterizing a step of the turning phase of GIES for the case that we

turn an I-essential arrow in some representative D ∈ D(G). We will omit the proof of Lemma 35

since it can be proven similarly to Lemma 27.

Proof of Proposition 34 When v u ∈ G (that is, u and v lie in different chain components),

N = neG(v)∩ adG(u) = neG(v)∩paG(u) holds because G is a chain graph.

“⇒”:

(i) This point follows from Corollary 42.

(ii) If this was not true, D′ would have a cycle of the form (u,v,a,u) for some a ∈ N since N ⊂
paG(u).

(iii) Suppose that the path γ = (a0 ≡ v,a1, . . . ,ak ≡ u) is a shortest counterexample of a path with-

out vertex in C∪neG(u).
Assume that k = 2. Since u and v lie in different chain components, the vertices u, v and a1

can occur in one of the following configurations in G:

v u

a1

, v u

a1

, v u

a1

.

The first case implies the existence of a directed cycle in D′; in the second case, a1 ∈ N ⊂C,

in the third case, a1 ∈ neG(u).
Therefore k ≥ 3. In complete analogy to the proof of Proposition 25, we can show that γ is

also a v-u-path in D, hence D′ has a directed cycle, a contradiction.
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“⇐”: Let D ∈ D(G) be a DAG with {a ∈ neG(v) | a v ∈ D} = C and in which all edges of

D[TG(u)] point away from u; such a DAG exists by Corollary 42 and meets the requirements of

Proposition 34. It remains to show that D′ is acyclic, that means that D has no v-u-path except (v,u).
Suppose, for the sake of contradiction, that D has such a path γ = (a0 ≡ v,a1, . . . ,ak ≡ u). γ is

then also a v-u-path in G, hence there is, by assumption, some ai ∈C∪P. If ai ∈C, (a0,a1, . . . ,ai,a0)
would be a cycle in D; on the other hand, if ai ∈ P, (ai,ai+1, . . . ,ak,ai) would be a cycle in D, a

contradiction.

Uniqueness of EI(D′): The proof given for Proposition 31 is also valid here.

Proof of Corollary 36 The fact that paD(v) = paG(v)∪C is clear from Proposition 34; it remains

to show that paD(u) = paG(u). Any neighbor a of u must also be a child of v, otherwise G would

have a subgraph of the form v u a, which is forbidden by Theorem 18(iii). Hence a u ∈ D

for all a ∈ neG(u) since the other orientation would imply a directed cycle in D′.
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Abstract

We derive an upper bound on the local Rademacher complexity of !p-norm multiple kernel learn-
ing, which yields a tighter excess risk bound than global approaches. Previous local approaches
analyzed the case p = 1 only while our analysis covers all cases 1 ≤ p ≤ ∞, assuming the different
feature mappings corresponding to the different kernels to be uncorrelated. We also show a lower
bound that shows that the bound is tight, and derive consequences regarding excess loss, namely

fast convergence rates of the order O(n−
α

1+α ), where α is the minimum eigenvalue decay rate of the
individual kernels.

Keywords: multiple kernel learning, learning kernels, generalization bounds, local Rademacher
complexity

1. Introduction

Propelled by the increasing “industrialization” of modern application domains such as bioinformat-

ics or computer vision leading to the accumulation of vast amounts of data, the past decade expe-

rienced a rapid professionalization of machine learning methods. Sophisticated machine learning

solutions such as the support vector machine can nowadays almost completely be applied out-of-

the-box (Bouckaert et al., 2010). Nevertheless, a displeasing stumbling block towards the complete

automatization of machine learning remains that of finding the best abstraction or kernel (Schölkopf

et al., 1998; Müller et al., 2001) for a problem at hand.

In the current state of research, there is little hope that in the near future a machine will be able

to automatically engineer the perfect kernel for a particular problem (Searle, 1980). However, by

restricting to a less general problem, namely to a finite set of base kernels the algorithm can pick

∗. This is a longer version of a short conference paper entitled The Local Rademacher Complexity of !p-Norm MKL,

which is appearing in Advances in Neural Information Processing Systems 24 edited by J. Shawe-Taylor and R.S.

Zemel and P. Bartlett and F. Pereira and K.Q. Weinberger (2011).

†. Parts of the work were done while MK was at Learning Theory Group, Computer Science Division and Department

of Statistics, University of California, Berkeley, CA 94720-1758, USA.
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from, one might hope to achieve automatic kernel selection: clearly, cross-validation based model

selection (Stone, 1974) can be applied if the number of base kernels is decent. Still, the performance

of such an algorithm is limited by the performance of the best kernel in the set.

In the seminal work of Lanckriet et al. (2004) it was shown that it is computationally feasible to

simultaneously learn a support vector machine and a linear combination of kernels at the same time,

if we require the so-formed kernel combinations to be positive definite and trace-norm normalized.

Though feasible for small sample sizes, the computational burden of this so-called multiple kernel

learning (MKL) approach is still high. By further restricting the multi-kernel class to only contain

convex combinations of kernels, the efficiency can be considerably improved, so that ten thousands

of training points and thousands of kernels can be processed (Sonnenburg et al., 2006).

However, these computational advances come at a price. Empirical evidence has accumulated

showing that sparse-MKL optimized kernel combinations rarely help in practice and frequently are

to be outperformed by a regular SVM using an unweighted-sum kernel K = ∑m Km (Cortes et al.,

2008; Gehler and Nowozin, 2009), leading for instance to the provocative question “Can learning

kernels help performance?” (Cortes, 2009).

A first step towards a model of learning the kernel that is useful in practice was achieved in Kloft

et al. (2008), Cortes et al. (2009), Kloft et al. (2009) and Kloft et al. (2011), where an !q-norm, q≥ 1,

rather than an !1 penalty was imposed on the kernel combination coefficients. The !q-norm MKL is

an empirical minimization algorithm that operates on the multi-kernel class consisting of functions

f : x &→ 〈w,φk(x)〉 with ‖w‖k ≤ D, where φk is the kernel mapping into the reproducing kernel

Hilbert space (RKHS) Hk with kernel k and norm ‖.‖k, while the kernel k itself ranges over the set

of possible kernels
{

k = ∑M
m=1 θmkm

∣∣∣ ‖θ‖q ≤ 1, θ ≥ 0
}

.

In Figure 1, we reproduce exemplary results taken from Kloft et al. (2009, 2011) (see also

references therein for further evidence pointing in the same direction). We first observe that, as

expected, !q-norm MKL enforces strong sparsity in the coefficients θm when q = 1, and no sparsity

at all for q = ∞, which corresponds to the SVM with an unweighted-sum kernel, while intermediate

values of q enforce different degrees of soft sparsity (understood as the steepness of the decrease

of the ordered coefficients θm). Crucially, the performance (as measured by the AUC criterion) is

not monotonic as a function of q; q = 1 (sparse MKL) yields significantly worse performance than

q = ∞ (regular SVM with sum kernel), but optimal performance is attained for some intermediate

value of q. This is an empirical strong motivation to theoretically study the performance of !q-MKL

beyond the limiting cases q = 1 or q = ∞.

A conceptual milestone going back to the work of Bach et al. (2004) and Micchelli and Pontil

(2005) is that the above multi-kernel class can equivalently be represented as a block-norm regu-

larized linear class in the product Hilbert space H := H1 × · · ·×HM, where Hm denotes the RKHS

associated to kernel km, 1 ≤ m ≤ M. More precisely, denoting by φm the kernel feature mapping

associated to kernel km over input space X , and φ : x ∈ X &→ (φ1(x), . . . ,φM(x)) ∈ H , the class of

functions defined above coincides with

Hp,D,M =
{

fw : x &→ 〈w,φ(x)〉
∣∣ w = (w(1), . . . ,w(M)),‖w‖2,p ≤ D

}
, (1)

where there is a one-to-one mapping of q ∈ [1,∞] to p ∈ [1,2] given by p = 2q
q+1 (see Appendix A

for a derivation). The !2,p-norm is defined here as
∥∥w
∥∥

2,p :=
∥∥(‖w(1)‖k1 , . . . ,‖w(M)‖kM

)∥∥
p
=

(
∑M

m=1

∥∥w(m)
∥∥p

km

)1/p
; for simplicity, we will frequently write

∥∥w(m)
∥∥

2
=
∥∥w(m)

∥∥
km

.
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Figure 1: Splice site detection experiment in Kloft et al. (2009, 2011). LEFT: The Area under ROC

curve as a function of the training set size is shown. The regular SVM is equivalent to

q = ∞ (or p = 2). RIGHT: The optimal kernel weights θm as output by !q-norm MKL are

shown.

Clearly, the complexity of the class (1) will be greater than one that is based on a single kernel

only. However, it is unclear whether the increase is decent or considerably high and—since there is

a free parameter p—how this relates to the choice of p. To this end the main aim of this paper is to

analyze the sample complexity of the above hypothesis class (1). An analysis of this model, based

on global Rademacher complexities, was developed by Cortes et al. (2010). In the present work,

we base our main analysis on the theory of local Rademacher complexities, which allows to derive

improved and more precise rates of convergence.

1.1 Outline of the Contributions

This paper makes the following contributions:

• Upper bounds on the local Rademacher complexity of !p-norm MKL are shown, from which

we derive an excess risk bound that achieves a fast convergence rate of the order

O(M1+ 2
1+α

(
1

p∗ −1
)

n−
α

1+α ), where α is the minimum eigenvalue decay rate of the individual

kernels1 (previous bounds for !p-norm MKL only achieved O(M
1

p∗ n−
1
2 ).

• A lower bound is shown that besides absolute constants matches the upper bounds, showing

that our results are tight.

• The generalization performance of !p-norm MKL as guaranteed by the excess risk bound is

studied for varying values of p, shedding light on the appropriateness of a small/large p in

various learning scenarios.

1. That is, it ∃d > 0 and α > 1 such that for all m = 1, . . . ,M it holds λ
(m)
j ≤ d j−α, where λ

(m)
j is the jth eigenvalue of

the mth kernel (sorted in descending order).
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Furthermore, we also present a simple proof of a global Rademacher bound similar to the one

shown in Cortes et al. (2010). A comparison of the rates obtained with local and global Rademacher

analysis, respectively, can be found in Section 6.1.

1.2 Notation

For notational simplicity we will omit feature maps and directly view φ(x) and φm(x) as ran-

dom variables x and x(m) taking values in the Hilbert space H and Hm, respectively, where x =
(x(1), . . . ,x(M)). Correspondingly, the hypothesis class we are interested in reads Hp,D,M =

{
fw :

x &→ 〈w,x〉
∣∣ ‖w‖2,p ≤ D

}
. If D or M are clear from the context, we sometimes synonymously

denote Hp = Hp,D = Hp,D,M. We will frequently use the notation (u(m))M
m=1 for the element u =

(u(1), . . . ,u(M)) ∈ H = H1 × . . .×HM.

We denote the kernel matrices corresponding to k and km by K and Km, respectively. Note that

we are considering normalized kernel Gram matrices, that is, the i jth entry of K is 1
n k(xi,x j). We

will also work with covariance operators in Hilbert spaces. In a finite dimensional vector space, the

(uncentered) covariance operator can be defined in usual vector/matrix notation as Exx.. Since

we are working with potentially infinite-dimensional vector spaces, we will use instead of xx. the

tensor notation x⊗x∈HS(H ), which is a Hilbert-Schmidt operator H &→H defined as (x⊗x)u=
〈x,u〉x. The space HS(H ) of Hilbert-Schmidt operators on H is itself a Hilbert space, and the

expectation Ex⊗x is well-defined and belongs to HS(H ) as soon as E‖x‖2 is finite, which will

always be assumed (as a matter of fact, we will often assume that ‖x‖ is bounded a.s.). We denote

by J = Ex⊗x, Jm = Ex(m)⊗x(m) the uncentered covariance operators corresponding to variables

x, x(m); it holds that tr(J) = E‖x‖2
2 and tr(Jm) = E

∥∥x(m)
∥∥2

2
.

Finally, for p ∈ [1,∞] we use the standard notation p∗ to denote the conjugate of p, that is,

p∗ ∈ [1,∞] and 1
p +

1
p∗ = 1.

2. Global Rademacher Complexities in Multiple Kernel Learning

We first review global Rademacher complexities (GRC) in MKL. Let x1, . . . ,xn be an i.i.d. sample

drawn from P. The global Rademacher complexity is defined as

R(Hp) = E sup
fw∈Hp

〈w,
1

n

n

∑
i=1

σixi〉 (2)

where (σi)1≤i≤n is an i.i.d. family (independent of (xi) ) of Rademacher variables (random signs).

Its empirical counterpart is denoted by R̂(Hp) =
E
[
R(Hp)

∣∣x1, . . . ,xn

]
= Eσ sup fw∈Hp

〈w, 1
n ∑n

i=1 σixi〉. The interest in the global Rademacher com-

plexity comes from that if known it can be used to bound the generalization error (Koltchinskii,

2001; Bartlett and Mendelson, 2002).

In the recent paper of Cortes et al. (2010) it was shown using a combinatorial argument that the

empirical version of the global Rademacher complexity can be bounded as

R̂(Hp)≤ D

√
cp∗

2n

∥∥∥
(

tr(Km)
)M

m=1

∥∥∥
p∗
2

,

where c = 23
22 and tr(K) denotes the trace of the kernel matrix K.
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We will now show a quite short proof of this result, extending it to the whole range p∈ [1,∞], but

at the expense of a slightly worse constant, and then present a novel bound on the population version

of the GRC. The proof presented here is based on the Khintchine-Kahane inequality (Kahane, 1985)

using the constants taken from Lemma 3.3.1 and Proposition 3.4.1 in Kwapién and Woyczyński

(1992).

Lemma 1 (Khintchine-Kahane inequality). Let be v1, . . . ,vM ∈ H . Then, for any q ≥ 1, it holds

Eσ

∥∥
n

∑
i=1

σivi

∥∥q

2
≤
(

c
n

∑
i=1

∥∥vi

∥∥2

2

) q
2
,

where c = max(1,q∗ −1). In particular the result holds for c = q∗.

Proposition 2 (Global Rademacher complexity, empirical version). For any p ≥ 1 the empirical

version of global Rademacher complexity of the multi-kernel class Hp can be bounded as

∀t ≥ p : R̂(Hp)≤ D

√
t∗

n

∥∥∥
(

tr(Km)
)M

m=1

∥∥∥
t∗
2

.

Proof First note that it suffices to prove the result for t = p as trivially ‖x‖2,t ≤ ‖x‖2,p holds for all

t ≥ p and therefore R(Hp)≤ R(Ht).
We can use a block-structured version of Hölder’s inequality (cf. Lemma 15) and the Khintchine-

Kahane (K.-K.) inequality (cf. Lemma 1) to bound the empirical version of the global Rademacher

complexity as follows:

R̂(Hp)
def.
= Eσ sup

fw∈Hp

〈w,
1

n

n

∑
i=1

σixi〉

Hölder
≤ DEσ

∥∥∥
1

n

n

∑
i=1

σixi

∥∥∥
2,p∗

Jensen
≤ D

(
Eσ

M

∑
m=1

∥∥∥
1

n

n

∑
i=1

σix
(m)
i

∥∥∥
p∗

2

) 1
p∗

K.-K.
≤ D

√
p∗

n

( M

∑
m=1

( 1

n

n

∑
i=1

∥∥x(m)
i

∥∥2

2

︸ ︷︷ ︸
=tr(Km)

) p∗
2
) 1

p∗

= D

√
p∗

n

∥∥∥
(

tr(Km)
)M

m=1

∥∥∥
p∗
2

,

what was to show.

Note that there is a very good reason to state the above bound in terms of t ≥ p instead of solely

in terms of p: the Rademacher complexity R̂(Hp) is not monotonic in p and thus it is not always

the best choice to take t := p in the above bound. This can be readily seen, for example, for the

easy case where all kernels have the same trace—in that case the bound translates into R̂(Hp) ≤

D

√
t∗M

2
t∗

tr(K1)
n . Interestingly, the function x &→ xM2/x is not monotone and attains its minimum for
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x = 2logM, where log denotes the natural logarithm with respect to the base e. This has interesting

consequences: for any p ≤ (2logM)∗ we can take the bound R̂(Hp) ≤ D

√
e log(M) tr(K1)

n , which has

only a mild dependency on the number of kernels; note that in particular we can take this bound for

the !1-norm class R̂(H1) for all M > 1.

The above proof is very simple. However, computing the population version of the global

Rademacher complexity of MKL is somewhat more involved and to the best of our knowledge has

not been addressed yet by the literature. To this end, note that from the previous proof we obtain

R(Hp)≤ED
√

p∗/n
(

∑M
m=1

(
1
n ∑n

i=1

∥∥x(m)
i

∥∥2

2

) p∗
2
) 1

p∗ . We thus can use Jensen’s inequality to move the

expectation operator inside the root,

R(Hp)≤D
√

p∗/n
( M

∑
m=1

E
(1

n

n

∑
i=1

∥∥x(m)
i

∥∥2

2

) p∗
2

) 1
p∗
, (3)

but now need a handle on the p∗

2 -th moments. To this aim we use the inequalities of Rosenthal

(1970) and Young (e.g., Steele, 2004) to show the following Lemma.

Lemma 3 (Rosenthal + Young). Let X1, . . . ,Xn be independent nonnegative random variables sat-

isfying ∀i : Xi ≤ B < ∞ almost surely. Then, denoting Cq = (2qe)q, for any q ≥ 1
2 it holds

E

(
1

n

n

∑
i=1

Xi

)q

≤Cq

((B

n

)q
+
(1

n

n

∑
i=1

EXi

)q
)
.

The proof is defered to Appendix B. It is now easy to show:

Corollary 4 (Global Rademacher complexity, population version). Assume the kernels are uni-

formly bounded, that is, ‖k‖∞ ≤ B < ∞, almost surely. Then for any p ≥ 1 the population version of

global Rademacher complexity of the multi-kernel class Hp can be bounded as

∀t ≥ p : R(Hp,D,M)≤ D t∗
√

e

n

∥∥∥
(

tr(Jm)
)M

m=1

∥∥∥
t∗
2

+

√
BeDM

1
t∗ t∗

n
.

For t ≥ 2 the right-hand term can be discarded and the result also holds for unbounded kernels.

Proof As above in the previous proof it suffices to prove the result for t = p. From (3) we conclude

by the previous Lemma

R(Hp)≤ D

√
p∗

n

(
M

∑
m=1

(ep∗)
p∗
2

((B

n

) p∗
2
+
(
E

1

n

n

∑
i=1

∥∥x(m)
i

∥∥2

2

︸ ︷︷ ︸
=tr(Jm)

) p∗
2

)) 1
p∗

≤ Dp∗
√

e

n

∥∥∥
(

tr(Jm)
)M

m=1

∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n
,

where for the last inequality we use the subadditivity of the root function. Note that for p ≥ 2 it is

p∗/2 ≤ 1 and thus it suffices to employ Jensen’s inequality instead of the previous lemma so that

we come along without the last term on the right-hand side.

For example, when the traces of the kernels are bounded, the above bound is essentially determined

by O
(

p∗M
1

p∗
√

n

)
. We can also remark that by setting t = (log(M))∗ we obtain the bound R(H1) =

O
(

logM√
n

)
.
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2.1 Relation to Other Work

As discussed by Cortes et al. (2010), the above results lead to a generalization bound that improves

on a previous result based on covering numbers by Srebro and Ben-David (2006). Another recently

proposed approach to theoretically study MKL uses the Rademacher chaos complexity (RCC) (Ying

and Campbell, 2009). The RCC is actually itself an upper bound on the usual Rademacher com-

plexity. In their discussion, Cortes et al. (2010) observe that in the case p = 1 (traditional MKL),

the bound of Proposition 2 grows logarithmically in the number of kernels M, and claim that the

RCC approach would lead to a bound which is multiplicative in M. However, a closer look at the

work of Ying and Campbell (2009) shows that this is not correct; in fact the RCC also leads to a

logarithmic dependence in M when p = 1. This is because the RCC of a kernel class is the same as

the RCC of its convex hull, and the RCC of the base class containing only the M individual kernels

is logarithmic in M. This convex hull argument, however, only works for p = 1; we are unaware

of any existing work trying to estimate the RCC or comparing it to the above approach in the case

p > 1.

3. The Local Rademacher Complexity of Multiple Kernel Learning

We first give a gentle introduction to local Rademacher complexities in general and then present

the main result of this paper: a lower and an upper bound on the local Rademacher complexity of

!p-norm multiple kernel learning.

3.1 Local Rademacher Complexities in a Nutshell

Let x1, . . . ,xn be an i.i.d. sample drawn from P; denote by E the expectation operator corresponding

to P; let F be a class of functions mapping xi to R. Then the local Rademacher complexity is

defined as

Rr(F ) = E sup
f∈F :P f 2≤r

1

n

n

∑
i=1

σi f (xi) , (4)

where P f 2 := E( f (x))2. In a nutshell, when comparing the global and local Rademacher complex-

ities, that is, (2) and (4), we observe that the local one involves the additional constraint P f 2 ≤ r

on the (uncentered) “variance” of functions. It allows us to sort the functions according to their

variances and discard the ones with suboptimal high variance. We can do so by, instead of McDi-

armid’s inequality, using more powerful concentration inequalities such as Talagrand’s inequality

(Talagrand, 1995). Roughly speaking, the local Rademacher complexity allows us to consider the

problem at various scales simultaneously, leading to refined bounds. We will discuss this argument

in more detail now. Our presentation is based on Koltchinskii (2006).

First, note that the classical (global) Rademacher theory of Bartlett and Mendelson (2002) and

Koltchinskii (2001) gives an excess risk bound of the following form: ∃C > 0 so that with probabil-

ity larger then 1− exp(−t) it holds

∣∣P f̂ −P f ∗
∣∣≤C

(
R(F )+

√
t

n

)
=: δ , (5)

where f̂ := argmin f∈F
1
n ∑n

i=1 f (xi), f ∗ := argmin f∈F P f , and P f :=E f (x). We denote the bound’s

value by δ and observe that, remarkably, if we consider the restricted class
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Fδ := { f ∈ F : |P f −P f ∗| ≤ δ}, we have by (5) that f̂ ∈ Fδ (and trivially f ∗ ∈ Fδ). This is re-

markable and of significance because we can now state: with probability larger than 1− exp(−2t)
it holds

∣∣P f̂ −P f ∗
∣∣≤C

(
R(Fδ)+

√
t

n

)
. (6)

The striking fact about the above inequality is that it depends on the complexity of the restricted

class—no longer on the one of the original class; usually the complexity of the restricted class will

be smaller than the one of the original class. Moreover, we can again denote the right-hand side of

(6) by δnew and repeat the argumentation. This way, we can step by step decrease the bound’s value.

If the bound (seen as a function in δ) defines a contraction, the limit of this iterative procedure is

given by the fixed point of the bound.

This method has a serious limitation: although we can step by step decrease the Rademacher

complexity occurring in the bound, the term
√

t/n stays as it is and thus will hinder us from attaining

a rate faster than O(
√

1/n). It would be desirable to have the term shrinking when passing to

a smaller class Fδ. Can we replace the undesirable term by a more favorable one? And what

properties would such a term need to have?

One of the basic foundations of learning theory are concentration inequalities (e.g., Bousquet

et al., 2004). Even the most modern proof technique such as the fixed-point argument presented

above can fail if it is built upon an insufficiently precise concentration inequality. As mentioned

above, the stumbling block is the presence of the term
√

t/n in the bound (5). The latter is a

byproduct from the application of McDiarmid’s inequality (McDiarmid, 1989)—a uniform version

of Höffding’s inequality—,which is used in Bartlett and Mendelson (2002) and Koltchinskii (2001)

to relate the global Rademacher complexity with the excess risk.

The core idea now is that we can, instead of McDiarmid’s inequality, use Talagrand’s inequality

(Talagrand, 1995), which is a uniform version of Bernstein’s inequality. This gives

∣∣P f̂ −P f ∗
∣∣≤C

(
R(F )+σ(F )

√
t

n
+

t

n

)
=: δ . (7)

Hereby σ2(F ) := sup f∈F E f 2 is a bound on the (uncentered) “variance” of the functions considered.

Now, denoting the right-hand side of (7) by δ, we obtain the following bound for the restricted class:

∃C > 0 so that with probability larger then 1− exp(−2t) it holds

∣∣P f̂ −P f ∗
∣∣≤C

(
R(Fδ)+σ(Fδ)

√
t

n
+

t

n

)
. (8)

As above, we denote the right-hand side of (8) by δnew and repeat the argumentation. In general, we

can expect the variance σ2(Fδ) to decrease step by step and if, seen as a function of δ, the bound

defines a contraction, the limit is given by the fixed point of the bound.

It turns out that by this technique we can obtain fast convergence rates of the excess risk in the

number of training examples n, which would be impossible by using global techniques such as the

global Rademacher complexity or the Rademacher chaos complexity (Ying and Campbell, 2009),

which—we recall—is in itself an upper bound on the global Rademacher complexity.
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3.2 The Local Rademacher Complexity of MKL

In the context of !p-norm multiple kernel learning, we consider the hypothesis class Hp as defined

in (1). Thus, given an i.i.d. sample x1, . . . ,xn drawn from P, the local Rademacher complexity is

given by Rr(Hp) = Esup fw∈Hp:P f 2
w
≤r〈w, 1

n ∑n
i=1 σixi〉, where P f 2

w := E( fw(x))2.

We will need the following assumption for the case 1 ≤ p ≤ 2:

Assumption (A) (low-correlation). There exists a cδ ∈ (0,1] such that, for any m 2= m′ and wm ∈
Hm ,wm′ ∈ Hm′ , the Hilbert-space-valued variables x(1), . . . ,x(M) satisfy

cδ

M

∑
m=1

E

〈
wm,x

(m)
〉2

≤ E
( M

∑
m=1

〈
wm,x

(m)
〉)2

.

Since Hm,Hm′ are RKHSs with kernels km,km′ , if we go back to the input random variable

in the original space X ∈ X , the above property means that for any fixed t, t ′ ∈ X , the variables

km(X , t) and km′(X , t ′) have a low correlation. In the most extreme case, cδ = 1, the variables are

completely uncorrelated. This is the case, for example, if the original input space X is RM , the

original input variable X ∈ X has independent coordinates, and the kernels k1, . . . ,kM each act on

a different coordinate. Such a setting was considered in particular by Raskutti et al. (2010) in the

setting of !1-penalized MKL. We discuss this assumption in more detail in Section 6.3.

Note that, as self-adjoint, positive Hilbert-Schmidt operators, covariance operators enjoy dis-

crete eigenvalue-eigenvector decompositions J = Ex⊗ x = ∑∞
j=1 λ ju j ⊗u j and Jm = Ex(m) ⊗

x(m) = ∑∞
j=1 λ

(m)
j u

(m)
j ⊗u

(m)
j , where (u j) j≥1 and (u

(m)
j ) j≥1 form orthonormal bases of H and Hm,

respectively.

We are now equipped to state our main results:

Theorem 5 (Local Rademacher complexity, p ∈ [1,2] ). Assume that the kernels are uniformly

bounded (‖k‖∞ ≤ B < ∞) and that Assumption (A) holds. The local Rademacher complexity of the

multi-kernel class Hp can be bounded for any 1 ≤ p ≤ 2 as

∀t ∈ [p,2] : Rr(Hp)≤

√√√√16

n

∥∥∥∥

( ∞

∑
j=1

min
(

rM1− 2
t∗ ,ceD2t∗2λ

(m)
j

))M

m=1

∥∥∥∥
t∗
2

+

√
BeDM

1
t∗ t∗

n
.

Theorem 6 (Local Rademacher complexity, p ≥ 2). The local Rademacher complexity of the multi-

kernel class Hp can be bounded for any p ≥ 2 as

Rr(Hp)≤
√

2

n

∞

∑
j=1

min(r,D2M
2

p∗ −1λ j).

Remark 7. Note that for the case p = 1, by using t = (log(M))∗ in Theorem 5, we obtain the bound

Rr(H1)≤

√√√√16

n

∥∥∥∥

( ∞

∑
j=1

min
(

rM,e3D2(logM)2λ
(m)
j

))M

m=1

∥∥∥∥
∞

+

√
Be

3
2 D log(M)

n
,

for all M ≥ e2 (see below after the proof of Theorem 5 for a detailed justification).
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Remark 8. The result of Theorem 6 for p ≥ 2 can be proved using considerably simpler tech-

niques and without imposing assumptions on boundedness nor on uncorrelation of the kernels.

If in addition the variables (x(m)) are centered and uncorrelated, then the spectra are related

as follows : spec(J) =
⋃M

m=1 spec(Jm); that is, {λi, i ≥ 1} =
⋃M

m=1

{
λ
(m)
i , i ≥ 1

}
. Then one can

write equivalently the bound of Theorem 6 as Rr(Hp) ≤
√

2
n ∑M

m=1 ∑∞
j=1 min(r,D2M

2
p∗ −1λ

(m)
j ) =

√
2
n

∥∥∥
(

∑∞
j=1 min(r,D2M

2
p∗ −1λ

(m)
j )
)M

m=1

∥∥∥
1

. However, the main intended focus of this paper is on the

more challenging case 1 ≤ p ≤ 2 which is usually studied in multiple kernel learning and relevant

in practice.

Remark 9. It is interesting to compare the above bounds for the special case p = 2 with the ones

of Bartlett et al. (2005). The main term of the bound of Theorem 6 (taking t = p = 2) is then

essentially determined by O
(√

1
n ∑M

m=1 ∑∞
j=1 min

(
r,λ

(m)
j

))
. If the variables (x(m)) are centered and

uncorrelated, by the relation between the spectra stated in Remark 8, this is equivalently of order

O
(√

1
n ∑∞

j=1 min
(
r,λ j

))
, which is also what we obtain through Theorem 6, and coincides with the

rate shown in Bartlett et al. (2005).

Proof of Theorem 5 The proof is based on first relating the complexity of the class Hp with its

centered counterpart, that is, where all functions fw ∈ Hp are centered around their expected value.

Then we compute the complexity of the centered class by decomposing the complexity into blocks,

applying the no-correlation assumption, and using the inequalities of Hölder and Rosenthal. Then

we relate it back to the original class, which we in the final step relate to a bound involving the

truncation of the particular spectra of the kernels. Note that it suffices to prove the result for t = p

as trivially R(Hp)≤ R(Ht) for all p ≤ t.

STEP 1: RELATING THE ORIGINAL CLASS WITH THE CENTERED CLASS. In order to exploit

the no-correlation assumption, we will work in large parts of the proof with the centered class

H̃p =
{

f̃w
∣∣ ‖w‖2,p ≤ D

}
, wherein f̃w : x &→ 〈w, x̃〉, and x̃ := x−Ex. We start the proof by

noting that f̃w(x) = fw(x)− 〈w,Ex〉 = fw(x)−E〈w,x〉 = fw(x)−E fw(x), so that, by the

bias-variance decomposition, it holds that

P f 2
w = E fw(x)

2 = E( fw(x)−E fw(x))
2 +(E fw(x))

2 = P f̃ 2
w +

(
P fw

)2
. (9)

Furthermore we note that by Jensen’s inequality

∥∥Ex
∥∥

2,p∗ =

( M

∑
m=1

∥∥Ex(m)
∥∥p∗

2

) 1
p∗

=

( M

∑
m=1

〈
Ex(m),Ex(m)

〉 p∗
2

) 1
p∗

Jensen
≤

( M

∑
m=1

E
〈
x(m),x(m)

〉 p∗
2

) 1
p∗

=

√∥∥∥
(

tr(Jm)
)M

m=1

∥∥∥
p∗
2

(10)
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so that we can express the complexity of the centered class in terms of the uncentered one as follows:

Rr(Hp) = E sup
fw∈Hp,
P f 2

w
≤r

〈
w,

1

n

n

∑
i=1

σixi

〉

≤ E sup
fw∈Hp,
P f 2

w
≤r

〈
w,

1

n

n

∑
i=1

σix̃i

〉
+E sup

fw∈Hp,
P f 2

w
≤r

〈
w,

1

n

n

∑
i=1

σiEx
〉

Concerning the first term of the above upper bound, using (9) we have P f̃ 2
w ≤ P f 2

w , and thus

E sup
fw∈Hp,
P f 2

w
≤r

〈
w,

1

n

n

∑
i=1

σix̃i

〉
≤ E sup

fw∈Hp,
P f̃ 2

w
≤r

〈
w,

1

n

n

∑
i=1

σix̃i

〉
= Rr(H̃p).

Now to bound the second term, we write

E sup
fw∈Hp,
P f 2

w
≤r

〈
w,

1

n

n

∑
i=1

σiEx
〉
= E

∣∣∣∣∣
1

n

n

∑
i=1

σi

∣∣∣∣∣ sup
fw∈Hp,
P f 2

w
≤r

〈w,Ex〉

≤ sup
fw∈Hp,
P f 2

w
≤r

〈
w,Ex

〉


E

(
1

n

n

∑
i=1

σi

)2




1
2

=
√

n sup
fw∈Hp,
P f 2

w
≤r

〈w,Ex〉 .

Now observe finally that we have

〈w,Ex〉
Hölder
≤ ‖w‖2,p ‖Ex‖2,p∗

(10)
≤ ‖w‖2,p

√∥∥( tr(Jm)
)M

m=1

∥∥
p∗
2

as well as

〈w,Ex〉= E fw(x)≤
√

P f 2
w.

We finally obtain, putting together the steps above,

Rr(Hp)≤ Rr(H̃p)+n−
1
2 min

(√
r,D

√∥∥( tr(Jm)
)M

m=1

∥∥
p∗
2

)
(11)

This shows that we at the expense of the additional summand on the right hand side we can work

with the centered class instead of the uncentered one.

STEP 2: BOUNDING THE COMPLEXITY OF THE CENTERED CLASS. Since the (centered)

covariance operator Ex̃(m)⊗ x̃(m) is also a self-adjoint Hilbert-Schmidt operator on Hm, there exists

an eigendecomposition

Ex̃(m)⊗ x̃(m) =
∞

∑
j=1

λ̃
(m)
j ũ

(m)
j ⊗ ũ

(m)
j , (12)
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wherein (ũ
(m)
j ) j≥1 is an orthogonal basis of Hm. Furthermore, the no-correlation assumption (A)

entails Ex̃(l)⊗ x̃(m) = 0 for all l 2= m. As a consequence,

P f̃ 2
w = E( fw(x̃))

2 = E

( M

∑
m=1

〈
wm, x̃

(m)
〉)2

=
M

∑
l,m=1

〈
wl,
(
Ex̃(l)⊗ x̃(m)

)
wm

〉

(A)
≥ cδ

M

∑
m=1

〈
wm,

(
Ex̃(m)⊗ x̃(m)

)
wm

〉
=

M

∑
m=1

∞

∑
j=1

λ̃
(m)
j

〈
wm, ũ

(m)
j

〉2
(13)

and, for all j and m,

E

〈1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j

〉2
= E

1

n2

n

∑
i,l=1

σiσl

〈
x̃
(m)
i , ũ

(m)
j

〉〈
x̃
(m)
l , ũ

(m)
j

〉
σ i.i.d.
= E

1

n2

n

∑
i=1

〈
x̃
(m)
i , ũ

(m)
j

〉2

=
1

n

〈
ũ
(m)
j ,
( 1

n

n

∑
i=1

Ex̃
(m)
i ⊗ x̃

(m)
i

︸ ︷︷ ︸
=Ex̃(m)⊗x̃(m)

)
ũ
(m)
j

〉
=

λ̃
(m)
j

n
. (14)

Now, let h1, . . . ,hM be arbitrary nonnegative integers. We can express the local Rademacher

complexity in terms of the eigendecomposition (12) as follows

Rr(H̃p) = E sup
fw∈H̃p:P f̃ 2

w
≤r

〈
w,

1

n

n

∑
i=1

σix̃i

〉

= E sup
fw∈H̃p:P f̃ 2

w
≤r

〈(
w(m)

)M

m=1
,
(1

n

n

∑
i=1

σix̃
(m)
i

)M

m=1

〉

= E sup
fw∈H̃p:P f̃ 2

w
≤r

〈
w,
( ∞

∑
j=1

〈
1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

)M

m=1

〉

(")
= E sup

P f̃ 2
w
≤r

〈 ( hm

∑
j=1

√
λ̃
(m)
j 〈w(m), ũ

(m)
j 〉ũ(m)

j

)M

m=1
,

( hm

∑
j=1

√
λ̃
(m)
j

−1

〈
1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

)M

m=1

〉

+ E sup
fw∈H̃p

〈
w,
( ∞

∑
j=hm+1

〈
1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

)M

m=1

〉

C.-S., Jensen
≤ sup

P f̃ 2
w
≤r

[(
M

∑
m=1

hm

∑
j=1

λ̃
(m)
j 〈w(m), ũ

(m)
j 〉2

) 1
2

×

(
M

∑
m=1

hm

∑
j=1

(
λ̃
(m)
j

)−1
E
〈1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j

〉2

) 1
2
]

+ E sup
fw∈H̃p

〈
w,
( ∞

∑
j=hm+1

〈
1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

)M

m=1

〉
,
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where for (") we use the linearity of the scalar product, so that (13) and (14) yield

Rr(H̃p)
(13), (14)

≤

√
rc−1

δ ∑M
m=1 hm

n
+E sup

fw∈H̃p

〈
w,
( ∞

∑
j=hm+1

〈
1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

)M

m=1

〉

Hölder
≤

√
rc−1

δ ∑M
m=1 hm

n
+DE

∥∥∥∥
( ∞

∑
j=hm+1

〈
1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

)M

m=1

∥∥∥∥
2,p∗

.

STEP 3: KHINTCHINE-KAHANE’S AND ROSENTHAL’S INEQUALITIES. We can now use

the Khintchine-Kahane (K.-K.) inequality (see Lemma 1 in Appendix B) to further bound the right

term in the above expression as follows

E

∥∥∥∥
( ∞

∑
j=hm+1

〈
1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

)M

m=1

∥∥∥∥
2,p∗

Jensen
≤ E

( M

∑
m=1

Eσ

∥∥∥∥
∞

∑
j=hm+1

〈
1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

∥∥∥∥
p∗

Hm

) 1
p∗

K.-K.
≤
√

p∗

n
E

( M

∑
m=1

( ∞

∑
j=hm+1

1

n

n

∑
i=1

〈x̃(m)
i , ũ

(m)
j 〉2

) p∗
2

) 1
p∗

Jensen
≤

√
p∗

n

( M

∑
m=1

E

( ∞

∑
j=hm+1

1

n

n

∑
i=1

〈x̃(m)
i , ũ

(m)
j 〉2

) p∗
2

) 1
p∗

,

Note that for p ≥ 2 it holds that p∗/2 ≤ 1, and thus it suffices to employ Jensen’s inequality once

again in order to move the expectation operator inside the inner term. In the general case we need a

handle on the p∗

2 -th moments and to this end employ Lemma 3 (Rosenthal + Young), which yields

( M

∑
m=1

E

( ∞

∑
j=hm+1

1

n

n

∑
i=1

〈x̃(m)
i , ũ

(m)
j 〉2

) p∗
2

) 1
p∗

R+Y
≤

(
M

∑
m=1

(ep∗)
p∗
2

((B

n

) p∗
2
+
( ∞

∑
j=hm+1

1

n

n

∑
i=1

E〈x̃(m)
i , ũ

(m)
j 〉2

︸ ︷︷ ︸
=λ̃

(m)
j

) p∗
2

) ) 1
p∗

(∗)
≤

√√√√ep∗

(
BM

2
p∗

n
+

( M

∑
m=1

( ∞

∑
j=hm+1

λ̃
(m)
j

) p∗
2

) 2
p∗
)

=

√√√√ep∗

(
BM

2
p∗

n
+

∥∥∥∥∥

( ∞

∑
j=hm+1

λ̃
(m)
j

)M

m=1

∥∥∥∥∥
p∗
2

)

≤

√√√√ep∗

(
BM

2
p∗

n
+

∥∥∥∥∥

( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥∥
p∗
2

)
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where for (∗) we used the subadditivity of p∗
√
· and in the last step we applied the Lidskii-Mirsky-

Wielandt theorem which gives ∀ j,m : λ̃
(m)
j ≤ λ

(m)
j . Thus by the subadditivity of the root function

Rr(H̃p) ≤

√
rc−1

δ ∑M
m=1 hm

n
+D

√√√√ep∗2

n

(
BM

2
p∗

n
+

∥∥∥∥∥

( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥∥
p∗
2

)

=

√
rc−1

δ ∑M
m=1 hm

n
+

√√√√ep∗2D2

n

∥∥∥∥∥

( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n
. (15)

STEP 4: BOUNDING THE COMPLEXITY OF THE ORIGINAL CLASS. Now note that for all

nonnegative integers hm we either have

n−
1
2 min

(√
rc−1

δ ,D

√∥∥( tr(Jm)
)M

m=1

∥∥
p∗
2

)
≤

√√√√ep∗2D2

n

∥∥∥
( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥∥
p∗
2

(in case all hm are zero) or it holds

n−
1
2 min

(√
rc−1

δ ,D

√∥∥( tr(Jm)
)M

m=1

∥∥
p∗
2

)
≤

√
rc−1

δ ∑M
m=1 hm

n

(in case that at least one hm is nonzero) so that in any case we get

n−
1
2 min

(√
rc−1

δ ,D

√∥∥( tr(Jm)
)M

m=1

∥∥
p∗
2

)

≤

√
rc−1

δ ∑M
m=1 hm

n
+

√√√√ep∗2D2

n

∥∥∥∥∥

( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥∥
p∗
2

. (16)

Thus the following preliminary bound follows from (11) by (15) and (16):

Rr(Hp)≤

√
4rc−1

δ ∑M
m=1 hm

n
+

√√√√4ep∗2D2

n

∥∥∥∥∥

( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n
, (17)

for all nonnegative integers hm ≥ 0. We could stop here as the above bound is already the one that

will be used in the subsequent section for the computation of the excess loss bounds. However, we

can work a little more on the form of the bound to gain more insight on its properties—we will show

that it is related to the truncation of the spectra at the scale r.

STEP 5: RELATING THE BOUND TO THE TRUNCATION OF THE SPECTRA OF THE KERNELS.

To this end, notice that for all nonnegative real numbers A1,A2 and any a1,a2 ∈ Rm
+ it holds for all

q ≥ 1

√
A1 +

√
A2 ≤

√
2(A1 +A2) (18)

‖a1‖q +‖a2‖q ≤ 21− 1
q ‖a1 +a2‖q ≤ 2‖a1 +a2‖q (19)
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(the first statement follows from the concavity of the square root function and the second one is

proved in appendix B; see Lemma 17) and thus

Rr(Hp)

(18)
≤

√√√√8

(
rc−1

δ ∑M
m=1 hm

n
+

ep∗2D2

n

∥∥∥∥

( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥
p∗
2

)

+

√
BeDM

1
p∗ p∗

n

!1-to-! p∗
2

≤

√√√√8

n

(

rc−1
δ M

1− 2
p∗

∥∥∥∥
(

hm

)M

m=1

∥∥∥∥
p∗
2

+ ep∗2D2

∥∥∥∥

( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥
p∗
2

)

+

√
BeDM

1
p∗ p∗

n

(19)
≤

√√√√16

n

∥∥∥∥

(
rc−1

δ M
1− 2

p∗ hm + ep∗2D2
∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n
,

where to obtain the second inequality we applied that for all non-negative a∈RM and 0< q< p≤∞
it holds2

(!q-to-!p conversion) ‖a‖q = 〈1,aq〉
1
q

Hölder
≤

(
‖1‖(p/q)∗ ‖a

q‖p/q

)1/q
= M

1
q−

1
p ‖a‖p . (20)

Since the above holds for all nonnegative integers hm, it follows

Rr(Hp) ≤

√√√√16

n

∥∥∥∥

(
min
hm≥0

rc−1
δ M

1− 2
p∗ hm + ep∗2D2

∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n

=

√√√√16

n

∥∥∥∥

( ∞

∑
j=1

min
(

rc−1
δ M

1− 2
p∗ ,ep∗2D2λ

(m)
j

))M

m=1

∥∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n
,

which completes the proof of the theorem.

Proof of Remark 7 To see that Remark 7 holds notice that R(H1) ≤ R(Hp) for all p ≥ 1 and thus

by choosing p = (log(M))∗ the above bound implies

Rr(H1) ≤

√√√√16

n

∥∥∥∥

( ∞

∑
j=1

min
(

rc−1
δ M

1− 2
p∗ ,ep∗2D2λ

(m)
j

))M

m=1

∥∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n

! p∗
2

−to−!∞

≤

√√√√16

n

∥∥∥∥

( ∞

∑
j=1

min
(

rc−1
δ M,ep∗2M

2
p∗ D2λ

(m)
j

))M

m=1

∥∥∥∥
∞

+

√
BeDM

1
p∗ p∗

n

=

√√√√16

n

∥∥∥∥

( ∞

∑
j=1

min
(

rc−1
δ M,e3D2(logM)2λ

(m)
j

))M

m=1

∥∥∥∥
∞

+

√
Be

3
2 D(logM)

n
,

which completes the proof.

2. We denote by a
q the vector with entries a

q
i and by 1 the vector with entries all 1.
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Proof of Theorem 6.

The eigendecomposition Ex⊗x= ∑∞
j=1 λ ju j ⊗u j yields

P f 2
w = E( fw(x))

2 = E〈w,x〉2 =
〈
w,(Ex⊗x)w

〉
=

∞

∑
j=1

λ j

〈
w,u j

〉2
, (21)

and, for all j

E

〈1

n

n

∑
i=1

σixi,u j

〉2
= E

1

n2

n

∑
i,l=1

σiσl

〈
xi,u j

〉〈
xl ,u j

〉 σ i.i.d.
= E

1

n2

n

∑
i=1

〈
xi,u j

〉2

=
1

n

〈
u j,
( 1

n

n

∑
i=1

Exi ⊗xi

︸ ︷︷ ︸
=Ex⊗x

)
u j

〉
=

λ j

n
. (22)

Therefore, we can use, for any nonnegative integer h, the Cauchy-Schwarz inequality and a block-

structured version of Hölder’s inequality (see Lemma 15) to bound the local Rademacher complexity

as follows:

Rr(Hp) = E sup
fw∈Hp:P f 2

w
≤r

〈
w,

1

n

n

∑
i=1

σixi

〉

= E sup
fw∈Hp:P f 2

w
≤r

〈 h

∑
j=1

√
λ j〈w,u j〉u j,

h

∑
j=1

√
λ j

−1

〈
1

n

n

∑
i=1

σixi,u j〉u j

〉

+
〈
w,

∞

∑
j=h+1

〈
1

n

n

∑
i=1

σixi,u j〉u j

〉

C.-S., (21), (22)

≤
√

rh

n
+E sup

fw∈Hp

〈
w,

∞

∑
j=h+1

〈
1

n

n

∑
i=1

σixi,u j〉u j

〉

Hölder
≤

√
rh

n
+DE

∥∥∥∥
∞

∑
j=h+1

〈
1

n

n

∑
i=1

σixi,u j〉u j

∥∥∥∥
2,p∗

! p∗
2

−to−!2

≤
√

rh

n
+DM

1
p∗ −

1
2E

∥∥∥∥
∞

∑
j=h+1

〈
1

n

n

∑
i=1

σixi,u j〉u j

∥∥∥∥
H

Jensen
≤

√
rh

n
+DM

1
p∗ −

1
2

( ∞

∑
j=h+1

E〈
1

n

n

∑
i=1

σixi,u j〉2

︸ ︷︷ ︸
(22)
≤

λ j
n

) 1
2

≤
√

rh

n
+

√√√√D2M
2

p∗ −1

n

∞

∑
j=h+1

λ j.

Since the above holds for all h, the result now follows from
√

A+
√

B ≤
√

2(A+B) for all nonneg-

ative real numbers A,B (which holds by the concavity of the square root function):

Rr(Hp)≤
√

2

n
min

0≤h≤n

(
rh+D2M

2
p∗ −1

∞

∑
j=h+1

λ j

)
=

√
2

n

∞

∑
j=1

min(r,D2M
2

p∗ −1λ j).
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4. Lower Bound

In this subsection we investigate the tightness of our bound on the local Rademacher complexity of

Hp. To derive a lower bound we consider the particular case where variables x(1), . . . ,x(M) are i.i.d.

For example, this happens if the original input space X is RM, the original input variable X ∈ X has

i.i.d. coordinates, and the kernels k1, . . . ,kM are identical and each act on a different coordinate of

X .

Lemma 10. Assume that the variables x(1), . . . ,x(M) are centered and identically independently

distributed. Then, the following lower bound holds for the local Rademacher complexity of Hp for

any p ≥ 1:

Rr(Hp,D,M) ≥ RrM(H1,DM1/p∗ ,1).

Proof First note that since the x(i) are centered and uncorrelated, that

P f 2
w =

( M

∑
m=1

〈
wm,x

(m)
〉)2

=
M

∑
m=1

〈
wm,x

(m)
〉2
.

Now it follows

Rr(Hp,D,M) = E sup

w:
P f 2

w
≤ r

‖w‖2,p ≤ D

〈
w,

1

n

n

∑
i=1

σixi

〉

= E sup

w: ∑M
m=1

〈
w

(m) ,x(m)
〉2 ≤ r

‖w‖2,p ≤ D

〈
w,

1

n

n

∑
i=1

σixi

〉

≥ E sup

w:

∀m :
〈
w

(m) ,x(m)
〉2 ≤ r/M∥∥∥w(m)

∥∥∥
2,p

≤ D
∥∥∥w(1)

∥∥∥= · · ·=
∥∥∥w(M)

∥∥∥

〈
w,

1

n

n

∑
i=1

σixi

〉

= E sup

w:
∀m :

〈
w

(m) ,x(m)
〉2 ≤ r/M

∀m :
∥∥∥w(m)

∥∥∥
2
≤ DM

− 1
p

M

∑
m=1

〈
w(m),

1

n

n

∑
i=1

σix
(m)
i

〉

=
M

∑
m=1

E sup

w(m):

〈
w

(m) ,x(m)
〉2 ≤ r/M∥∥∥w(m)

∥∥∥
2
≤ DM

− 1
p

〈
w(m),

1

n

n

∑
i=1

σix
(m)
i

〉
,
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so that we can use the i.i.d. assumption on x(m) to equivalently rewrite the last term as follows:

Rr(Hp,D,M)
x(m) i.i.d.

≥ E sup

w(1):

〈
w

(1) ,x(1)
〉2 ≤ r/M∥∥∥w(1)

∥∥∥
2
≤ DM

− 1
p

〈
Mw(1),

1

n

n

∑
i=1

σix
(1)
i

〉

= E sup

w(1):

〈
Mw

(1) ,x(1)
〉2 ≤ rM

∥∥∥Mw
(1)
∥∥∥

2
≤ DM

1
p∗

〈
Mw(1),

1

n

n

∑
i=1

σix
(1)
i

〉

= E sup

w(1):

〈
w

(1) ,x(1)
〉2 ≤ rM

∥∥∥w(1)
∥∥∥

2
≤ DM

1
p∗

〈
w(1),

1

n

n

∑
i=1

σix
(1)
i

〉

= RrM(H1,DM1/p∗ ,1)

In Mendelson (2003) it was shown that there is an absolute constant c so that if λ(1) ≥ 1
n then for all

r ≥ 1
n it holds Rr(H1,1,1) ≥

√
c
n ∑∞

j=1 min(r,λ
(1)
j ). Closer inspection of the proof reveals that more

generally it holds Rr(H1,D,1) ≥
√

c
n ∑∞

j=1 min(r,D2λ
(1)
j ) if λ

(m)
1 ≥ 1

nD2 so that we can use that result

together with the previous lemma to obtain:

Theorem 11 (Lower bound). Assume that the kernels are centered and identically independently

distributed. Then, the following lower bound holds for the local Rademacher complexity of Hp.

There is an absolute constant c such that if λ(1) ≥ 1
nD2 then for all r ≥ 1

n and p ≥ 1,

Rr(Hp,D,M) ≥
√

c

n

∞

∑
j=1

min(rM,D2M2/p∗λ
(1)
j ). (23)

We would like to compare the above lower bound with the upper bound of Theorem 5. To this

end note that for centered identical independent kernels the upper bound reads

Rr(Hp)≤
√

16

n

∞

∑
j=1

min
(

rM,ceD2 p∗2M
2

p∗ λ
(1)
j

)
+

√
BeDM

1
p∗ p∗

n
,

which is of the order O
(√

∑∞
j=1 min

(
rM,D2M

2
p∗ λ

(1)
j

))
and, disregarding the quickly converging

term on the right hand side and absolute constants, again matches the upper bounds of the previous

section. A similar comparison can be performed for the upper bound of Theorem 6: by Remark 8

the bound reads

Rr(Hp)≤
√

2

n

∥∥∥
( ∞

∑
j=1

min(r,D2M
2

p∗ −1λ
(m)
j )
)M

m=1

∥∥∥
1
,

which for i.i.d. kernels becomes

√
2/n∑∞

j=1 min
(
rM,D2M

2
p∗ λ

(1)
j

)
and thus, besides absolute con-

stants, matches the lower bound. This shows that the upper bounds of the previous section are

tight.
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5. Excess Risk Bounds

In this section we show an application of our results to prediction problems, such as classification

or regression. To this aim, in addition to the data x1, . . . ,xn introduced earlier in this paper, let

also a label sequence y1, . . . ,yn ⊂ [−1,1] be given that is i.i.d. generated from a probability dis-

tribution. The goal in statistical learning is to find a hypothesis f from a pregiven class F that

minimizes the expected loss E l( f (x),y), where l : R2 &→ [−1,1] is a predefined loss function that

encodes the objective of the given learning/prediction task at hand. For example, the hinge loss

l(t,y) = max(0,1− yt) and the squared loss l(t,y) = (t − y)2 are frequently used in classification

and regression problems, respectively.

Since the distribution generating the example/label pairs is unknown, the optimal decision func-

tion

f ∗ := argmin
f∈F

E l( f (x),y)

can not be computed directly and a frequently used method consists of instead minimizing the

empirical loss,

f̂ := argmin
f∈F

1

n

n

∑
i=1

l( f (xi),yi).

In order to evaluate the performance of this so-called empirical risk minimization (ERM) algorithm

we study the excess loss,

P(l f̂ − l f ∗) := E l( f̂ (x),y)−E l( f ∗(x),y).

In Bartlett et al. (2005) and Koltchinskii (2006) it was shown that the rate of convergence of the

excess risk is basically determined by the fixed point of the local Rademacher complexity. For

example, the following result is a slight modification of Corollary 5.3 in Bartlett et al. (2005) that is

well-tailored to the class studied in this paper.3

Lemma 12. Let F be an absolute convex class ranging in the interval [a,b] and let l be a Lipschitz

continuous loss with constant L. Assume there is a positive constant F such that

∀ f ∈ F : P( f − f ∗)2 ≤ F P(l f − l f ∗). (24)

Then, denoting by r∗ the fixed point of

2FL R r

4L2
(F )

for all x > 0 with probability at least 1− e−x the excess loss can be bounded as

P(l f̂ − l f ∗)≤ 7
r∗

F
+

(11L(b−a)+27F)x

n
.

Note that condition (24) on the loss function is fulfilled, for example, when the kernel is uni-

formly bounded and the loss function is strongly convex and Lipschitz continuous on the domain

considered (Bartlett et al., 2006). This includes, for example, the squared loss as defined above, the

3. We exploit the improved constants from Theorem 3.3 in Bartlett et al. (2005) because an absolute convex class is

star-shaped. Compared to Corollary 5.3 in Bartlett et al. (2005) we also use a slightly more general function class

ranging in [a,b] instead of the interval [−1,1]. This is also justified by Theorem 3.3.
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logistic loss l(t,y) = ln(1+ exp(−yt)), and the exponential loss l(t,y) = exp(−yt). The case of

the hinge loss (see definition above) is more delicate, since it is not a strongly convex loss function.

In general, the hinge loss does not satisfy (24) on an arbitrary convex class F ; for this reason, there

is no direct, general “fast rate” excess loss analogue to the popular margin-radius bounds obtained

through global Rademacher analysis. Nevertheless, local Rademacher complexity analysis can still

be put to good use for algorithms based on the hinge loss. In fact, the hinge loss satisfies, under an

additional ”noise exponent condition” assumption, a restricted version of (24), namely, when f ∗ is

taken equal to the Bayes classifier. This can be used to study theoretically the behavior of penal-

ized ERM methods such as the support vector machine, and more precisely to obtain oracle-type

inequalities (this roughly means that the penalized ERM can be shown to pick a correct trade-off

of bias and estimation error, leading to fast convergence rates). In this sense, the local Rademacher

complexity bound we have presented here can in principle be plugged in into the SVM analysis of

Blanchard et al. (2008), directly replacing the local Rademacher analysis for a single kernel studied

there under setting (S1); see also Steinwart and Christmann (2008, Chapter 8) for a comparable

analysis. This more elaborate analysis does, however, not fall directly into the scope of the com-

parably simpler result of Lemma 12, which considers simple ERM over a fixed model, so that we

refer the reader to the references cited above for more details.

Lemma 12 shows that in order to obtain an excess risk bound on the multi-kernel class Hp it

suffices to compute the fixed point of our bound on the local Rademacher complexity presented in

Section 3. To this end we show:

Lemma 13. Assume that ‖k‖∞ ≤ B almost surely and assumption (A) holds; let p ∈ [1,2]. For the

fixed point r∗ of the local Rademacher complexity 2FLR r

4L2
(Hp) it holds

r∗ ≤ min
0≤hm≤∞

4c−1
δ F2 ∑M

m=1 hm

n
+8FL

√√√√ep∗2D2

n

∥∥∥∥

( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥
p∗
2

+
4
√

BeDFLM
1

p∗ p∗

n
.

Proof For this proof we make use of the bound (17) on the local Rademacher complexity. Defining

a =
4c−1

δ F2 ∑M
m=1 hm

n
and b = 4FL

√√√√ep∗2D2

n

∥∥∥∥

( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥
p∗
2

+
2
√

BeDFLM
1

p∗ p∗

n
,

in order to find a fixed point of (17) we need to solve for r =
√

ar+b, which is equivalent to solving

r2 − (a+ 2b)r+ b2 = 0 for a positive root. Denote this solution by r∗. It is then easy to see that

r∗ ≥ a+2b. Resubstituting the definitions of a and b yields the result.

We now address the issue of computing actual rates of convergence of the fixed point r∗ under the

assumption of algebraically decreasing eigenvalues of the kernel matrices, this means, we assume

∃dm : λ
(m)
j ≤ dm j−αm for some αm > 1. This is a common assumption and, for example, met for

finite rank kernels and convolution kernels (Williamson et al., 2001). Notice that this implies

∞

∑
j=hm+1

λ
(m)
j ≤ dm

∞

∑
j=hm+1

j−αm ≤ dm

∫ ∞

hm

x−αmdx = dm

[ 1

1−αm
x1−αm

]∞

hm

= −
dm

1−αm
h1−αm

m . (25)
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To exploit the above fact, first note that by !p-to-!q conversion

4c−1
δ F2 ∑M

m=1 hm

n
≤ 4F

√
c−1

δ F2M ∑M
m=1 h2

m

n2
≤ 4F

√
c−1

δ F2M
2− 2

p∗
∥∥(h2

m)
)M

m=1

∥∥
2/p∗

n2

so that we can translate the result of the previous lemma by (18), (19), and (20) into

r∗ ≤ min
0≤hm≤∞

8F

√√√√1

n

∥∥∥∥

(
c−1

δ F2M
2− 2

p∗ h2
m

n
+4ep∗2D2L2

∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥
p∗
2

+
4
√

BeDFLM
1

p∗ p∗

n
. (26)

Inserting the result of (25) into the above bound and setting the derivative with respect to hm to zero

we find the optimal hm as

hm =
(

4cδdmep∗2D2F−2L2M
2

p∗ −2
n
) 1

1+αm
.

Resubstituting the above into (26) we note that

r∗ = O

(√∥∥∥
(

n−
2αm

1+αm

)M

m=1

∥∥∥
p∗
2

)

so that we observe that the asymptotic rate of convergence in n is determined by the kernel with

the smallest decreasing spectrum (i.e., smallest αm). Denoting dmax := maxm=1,...,M dm, αmin :=

minm=1,...,M αm, and hmax :=
(
4cδdmaxep∗2D2F−2L2M

2
p∗ −2

n
) 1

1+αmin we can upper-bound (26) by

r∗ ≤ 8F

√
3−αmin

1−αmin
c−1

δ F2M2h2
maxn−2 +

4
√

BeDFLM
1

p∗ p∗

n

≤ 8

√
3−αmin

1−αmin
c−1

δ F2Mhmaxn−1 +
4
√

BeDFLM
1

p∗ p∗

n

≤ 16

√
e

3−αmin

1−αmin
c−1

δ (dmaxD2L2 p∗2)
1

1+αmin F
2αmin

1+αmin M
1+ 2

1+αmin

(
1

p∗ −1
)

n
− αmin

1+αmin

+
4
√

BeDFLM
1

p∗ p∗

n
. (27)

We have thus proved the following theorem, which follows by the above inequality, Lemma 12, and

the fact that our class Hp ranges in BDM
1

p∗ .

Theorem 14. Assume that ‖k‖∞ ≤ B, assumption (A) holds, and it ∃dmax > 0 and α := αmin > 1

such that for all m = 1, . . . ,M it holds λ
(m)
j ≤ dmax j−α. Let l be a Lipschitz continuous loss with

constant L and assume there is a positive constant F such that ∀ f ∈ F : P( f − f ∗)2 ≤ F P(l f − l f ∗).
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Then for all x > 0 with probability at least 1− e−x the excess loss of the multi-kernel class Hp can

be bounded for p ∈ [1, . . . ,2] as

P(l f̂ − l f ∗) ≤ min
t∈[p,2]

186

√
3−α

1−α
c

1−α
1+α

δ

(
dmaxD2L2t∗2) 1

1+α F
α−1
α+1 M1+ 2

1+α

(
1
t∗ −1
)

n−
α

1+α

+
47
√

BDLM
1
t∗ t∗

n
+

(22BDLM
1
t∗ +27F)x

n

We see from the above bound that convergence can be almost as slow as O
(

p∗M
1

p∗ n−
1
2

)
(if at

least one αm ≈ 1 is small and thus αmin is small) and almost as fast as O
(
n−1
)

(if αm is large for all

m and thus αmin is large). For example, the latter is the case if all kernels have finite rank and also

the convolution kernel is an example of this type.

Notice that we of course could repeat the above discussion to obtain excess risk bounds for the

case p ≥ 2 as well, but since it is very questionable that this will lead to new insights, it is omitted

for simplicity.

6. Discussion

In this section we compare the obtained local Rademacher bound with the global one, discuss related

work as well as the assumption (A), and give a practical application of the bounds by studying the

appropriateness of small/large p in various learning scenarios.

6.1 Global vs. Local Rademacher Bounds

In this section, we discuss the rates obtained from the bound in Theorem 14 for the excess risk and

compare them to the rates obtained using the global Rademacher complexity bound of Corollary 4.

To simplify somewhat the discussion, we assume that the eigenvalues satisfy λ
(m)
j ≤ d j−α (with

α > 1) for all m and concentrate on the rates obtained as a function of the parameters n,α,M,D
and p, while considering other parameters fixed and hiding them in a big-O notation. Using this

simplification, the bound of Theorem 14 reads

∀t ∈ [p,2] : P(l f̂ − l f ∗) = O
((

t∗D
) 2

1+α M1+ 2
1+α

(
1
t∗ −1
)

n−
α

1+α

)
(28)

(
and P(l f̂ − l f ∗) = O

((
D logM

) 2
1+α M

α−1
α+1
)

for p = 1
)
. On the other hand, the global Rademacher

complexity directly leads to a bound on the supremum of the centered empirical process indexed by

F and thus also provides a bound on the excess risk (see, e.g., Bousquet et al., 2004). Therefore,

using Corollary 4, wherein we upper bound the trace of each Jm by the constant B (and subsume it

under the O-notation), we have a second bound on the excess risk of the form

∀t ∈ [p,2] : P(l f̂ − l f ∗) = O
(

t∗DM
1
t∗ n−

1
2

)
. (29)

First consider the case where p ≥ (logM)∗, that is, the best choice in (28) and (29) is t = p. Clearly,

if we hold all other parameters fixed and let n grow to infinity, the rate obtained through the local

Rademacher analysis is better since α > 1. However, it is also of interest to consider what happens

when the number of kernels M and the !p ball radius D can grow with n. In general, we have a bound
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on the excess risk given by the minimum of (28) and (29); a straightforward calculation shows that

the local Rademacher analysis improves over the global one whenever

M
1
p

D
= O(

√
n).

Interestingly, we note that this “phase transition” does not depend on α (i.e., the “complexity” of

the individual kernels), but only on p.

If p ≤ (logM)∗, the best choice in (28) and (29) is t = (logM)∗. In this case taking the minimum

of the two bounds reads

∀p ≤ (logM)∗ : P(l f̂ − l f ∗)≤ O
(

min(D(logM)n−
1
2 ,
(
D logM

) 2
1+α M

α−1
1+α n−

α
1+α )

)
, (30)

and the phase transition when the local Rademacher bound improves over the global one occurs for

M

D logM
= O(

√
n).

Finally, it is also interesting to observe the behavior of (28) and (29) as α → ∞. In this case, it means

that only one eigenvalue is nonzero for each kernel, that is, each kernel space is one-dimensional.

In other words, in this case we are in the case of “classical” aggregation of M basis functions, and

the minimum of the two bounds reads

∀t ∈ [p,2] : P(l f̂ − l f ∗)≤ O
(

min(Mn−1, t∗DM
1
t∗ n−

1
2

)
. (31)

In this configuration, observe that the local Rademacher bound is O(M/n) and does not depend on

D, nor p, any longer; in fact, it is the same bound that one would obtain for the empirical risk mini-

mization over the space of all linear combinations of the M base functions, without any restriction on

the norm of the coefficients—the !p-norm constraint becomes void. The global Rademacher bound

on the other hand, still depends crucially on the !p norm constraint. This situation is to be compared

to the sharp analysis of the optimal convergence rate of convex aggregation of M functions obtained

by Tsybakov (2003) in the framework of squared error loss regression, which are shown to be

O

(

min

(
M

n
,

√
1

n
log

(
M√

n

)))

.

This corresponds to the setting studied here with D = 1, p = 1 and α → ∞, and we see that the

bound (30) recovers (up to log factors) in this case this sharp bound and the related phase transition

phenomenon.

6.2 Discussion of Related Work

We recently learned about independent, closely related work by Suzuki (2011), which has been

developed in parallel to ours. The setup considered there somewhat differs from ours: first of all,

it is required that the Bayes hypothesis is contained in the class w∗ ∈ H (which is not required in

the present work); second, the conditional distribution is assumed to be expressible in terms of the

Bayes hypothesis. Similar assumptions are also required in Bach (2008) in the context of sparse

recovery. Finally, the analysis there is carried out for the squared loss only, while ours holds more
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generally for, for example, strongly convex Lipschitz losses. However, a similarity to our setup is

that an algebraic decay of the eigenvalues of the kernel matrices is assumed for the computation of

the excess risk bounds and that a so-called incoherence assumption is imposed on the kernels, which

is similar to our Assumption (A). Also, we do not spell out the whole analysis for inhomogeneous

eigenvalue decays as Suzuki (2011) does—nevertheless, our analysis can be easily adapted to this

case at the expense of longer, less-readable bounds.

We now compare the excess risk bounds of Suzuki (2011) for the case of homogeneous eigen-

value decays, that is,

P(l f̂ − l f ∗) = O
((

D
) 2

1+α M
1+ 2

1+α

(
1

p∗ −1
)

n−
α

1+α

)
,

to the ones shown in this paper, that is, (28)—we thereby disregard constants and the O(n−1) terms.

Roughly speaking, the proof idea in Suzuki (2011) is to exploit existing bounds on the LRC of

single-kernel learning (Steinwart and Christmann, 2008) by combining Talagrand’s inequality (Ta-

lagrand, 1995) and the peeling technique (van de Geer, 2000). This way the Khintchine-Kahane,

which introduces a factor of (p∗)
2

1+α into our bounds, is avoided.

We observe that, importantly, both bounds have the same dependency in D, M, and n, although

being derived by a completely different technique. Regarding the dependency in p, we observe that

our bound involves a factor of (t∗)
2

1+α (for some t ∈ [p,2] that is not present in the bound of Suzuki

(2011). However, it can be easily shown that this factor is never of higher order than log(M) and

thus can be neglected:

1. If p ≤ (log(M))∗, then t = log(M) is optimal in our bound so that the term (t∗)
2

1+α becomes

(log(M))
2

1+α .

2. If p≥ (log(M))∗, then p∗ ≤ log(M) so that the term (t∗)
2

1+α is smaller equal than (log(M))
2

1+α .

We can thus conclude that, besides a logarithmic factor in M as well as constants and O(n−1) terms,

our bound coincides with the rate shown in Suzuki (2011).

6.3 Discussion of Assumption (A)

Assumption (A) is arguably quite a strong hypothesis for the validity of our results (needed for

1 ≤ p ≤ 2), which was not required for the global Rademacher bound. A similar assumption is also

made in the recent works of Suzuki (2011) and Koltchinskii and Yuan (2010). In the latter paper, a

related MKL algorithm using a mixture of an !1-type penalty and an empirical !2 penalty is studied

(this should not be confused with !p=1-norm MKL, which does not involve an empirical penalty and

which, for p= 1, is contained in the !p-norm MKL methodology studied in this paper). Koltchinskii

and Yuan (2010) derive bounds that depend on the “sparsity pattern” of the Bayes function, that is,

how many coefficients w∗
m are non-zero, using an Restricted Isometry Property (RIP) assumption.

If the kernel spaces are one-dimensional, in which case !1-penalized MKL reduces qualitatively

to standard lasso-type methods, this assumption is known to be necessary to grant the validity of

bounds taking into account the sparsity pattern of the Bayes function.4

4. We also mention another work by Raskutti et al. (2010), investigating the same algorithm as Koltchinskii and Yuan

(2010), but employing a somewhat more restrictive assumption on the uncorrelatedness of the kernels, which corre-

sponds to taking cδ = 1 in assumption (A).
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In the present work, our analysis stays deliberately “agnostic” (or worst-case) with respect to the

true sparsity pattern (in part because experimental evidence seems to point towards the fact that the

Bayes function is not strongly sparse); correspondingly it could legitimately be hoped that the RIP

condition, or Assumption (A), could be substantially relaxed. Considering again the special case of

one-dimensional kernel spaces and the discussion about the qualitatively equivalent case α → ∞ in

the previous section, it can be seen that Assumption (A) is indeed unnecessary for bound (31) to

hold, and more specifically for the rate of M/n obtained through local Rademacher analysis in this

case. However, as we discussed, what happens in this specific case is that the local Rademacher

analysis becomes oblivious to the !p-norm constraint, and we are left with the standard parametric

convergence rate in dimension M. In other words, with one-dimensional kernel spaces, the two con-

straints (on the L2(P)-norm of the function and on the !p block-norm of the coefficients) appearing

in the definition of local Rademacher complexity are essentially not active simultaneously. Unfor-

tunately, it is clear that this property is not true anymore for kernels of higher complexity (i.e., with

a non-trivial decay rate of the eigenvalues). This is a specificity of the kernel setting as compared

to combinations of a dictionary of M simple functions, and Assumption (A) was in effect used to

“align” the two constraints. To sum up, Assumption (A) is used here for a different purpose from

that of the RIP in sparsity analyses of !1 regularization methods; it is not clear to us at this point

if this assumption is necessary or if uncorrelated variables x(m) constitutes a “worst case” for our

analysis. We did not suceed so far in relinquishing this assumption for p ≤ 2, and this question

remains open.

Besides the work of Suzuki (2011), there is, up to our knowledge, no previous existing analysis

of the !p-MKL setting for p > 1; the recent works of Raskutti et al. (2010) and Koltchinskii and

Yuan (2010) focus on the case p = 1 and on the sparsity pattern of the Bayes function. A refined

analysis of !p-regularized methods in the case of combination of M basis functions was laid out by

Koltchinskii (2009), also taking into account the possible soft sparsity pattern of the Bayes function.

Extending the ideas underlying the latter analysis into the kernel setting is likely to open interesting

developments.

6.4 Analysis of the Impact of the Norm Parameter p on the Accuracy of !p-norm MKL

As outlined in the introduction, there is empirical evidence that the performance of !p-norm MKL

crucially depends on the choice of the norm parameter p (cf. Figure 1 in the introduction). The

aim of this section is to relate the theoretical analysis presented here to this empirically observed

phenomenon. We believe that this phenomenon can be (at least partly) explained on base of our

excess risk bound obtained in the last section. To this end we will analyze the dependency of the

excess risk bounds on the chosen norm parameter p. We will show that the optimal p depends

on the geometrical properties of the learning problem and that in general—depending on the true

geometry—any p can be optimal. Since our excess risk bound is only formulated for p ≤ 2, we will

limit the analysis to the range p ∈ [1,2].
To start with, first note that the choice of p only affects the excess risk bound in the factor (cf.

Theorem 14 and Equation (28))

νt := min
t∈[p,2]

(
Dpt∗

) 2
1+α M1+ 2

1+α

(
1
t∗ −1
)
.

So we write the excess risk as P(l f̂ − l f ∗) = O(νt) and hide all variables and constants in the O-

notation for the whole section (in particular the sample size n is considered a constant for the pur-
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Figure 2: 2D-Illustration of the three learning scenarios analyzed in this section: LEFT: A soft

sparse w∗; CENTER: an intermediate non-sparse w∗; RIGHT: an almost-uniformly

non-sparse w∗. Each scenario has a Bayes hypothesis w∗ with a different soft spar-

sity (parametrized by β). The colored lines show the smallest !p-ball containing the

Bayes hypothesis. We observe that the radii of the hypothesis classes depend on the

sparsity of w∗ and the parameter p.

poses of the present discussion). It might surprise the reader that we consider the term in D in the

bound although it seems from the bound that it does not depend on p. This stems from a subtle

reason that we have ignored in this analysis so far: D is related to the approximation properties of

the class, that is, its ability to attain the Bayes hypothesis. For a “fair” analysis we should take the

approximation properties of the class into account.

To illustrate this, let us assume that the Bayes hypothesis belongs to the space H and can be

represented by w∗; assume further that the block components satisfy ‖w∗
m‖2 = m−β, m = 1, . . . ,M,

where β ≥ 0 is a parameter parameterizing the “soft sparsity” of the components. For example,

the cases β ∈ {0.5,1,2} are shown in Figure 2 for M = 2 and assuming that each kernel has rank

1 (thus being isomorphic to R). If n is large, the best bias-complexity tradeoff for a fixed p will

correspond to a vanishing bias, so that the best choice of D will be close to the minimal value such

that w∗ ∈ Hp,D, that is, Dp = ||w∗||p. Plugging in this value for Dp, the bound factor νp becomes

νp := ‖w∗‖
2

1+α
p min

t∈[p,2]
t∗

2
1+α M1+ 2

1+α

(
1
t∗ −1
)
. (32)

We can now plot the value νp as a function of p for special choices of α, M, and β. We realized

this simulation for α = 2, M = 1000, and β ∈ {0.5,1,2}, which means we generated three learning

scenarios with different levels of soft sparsity parametrized by β. The results are shown in Figure 3.

Note that the soft sparsity of w∗ is increased from the left hand to the right hand side. We observe

that in the “soft sparsest” scenario (β = 2, shown on the left-hand side) the minimum is attained

for a quite small p = 1.2, while for the intermediate case (β = 1, shown at the center) p = 1.4 is

optimal, and finally in the uniformly non-sparse scenario (β = 2, shown on the right-hand side) the

choice of p = 2 is optimal (although even a higher p could be optimal, but our bound is only valid

for p ∈ [1,2]).

2490



ON THE CONVERGENCE RATE OF !p-NORM MKL

1.0 1.2 1.4 1.6 1.8 2.0

60
70

80
90

11
0

p

bo
un

d

(a) β = 2

1.0 1.2 1.4 1.6 1.8 2.0

40
45

50
55

60
65

p

bo
un

d
(b) β = 1

1.0 1.2 1.4 1.6 1.8 2.0

20
30

40
50

60

p

bo
un

d

(c) β = 0.5

Figure 3: Results of the simulation for the three analyzed learning scenarios (which were illustrated

in Figure 2). The value of the bound factor νt is plotted as a function of p. The minimum

is attained depending on the true soft sparsity of the Bayes hypothesis w∗ (parametrized

by β).

This means that if the true Bayes hypothesis has an intermediately dense representation, our

bound gives the strongest generalization guarantees to !p-norm MKL using an intermediate choice

of p. This is also intuitive: if the truth exhibits some soft sparsity but is not strongly sparse, we

expect non-sparse MKL to perform better than strongly sparse MKL or the unweighted-sum kernel

SVM.

6.5 An Experiment on Synthetic Data

We now present a toy experiment that is meant to check the validity of the theory presented in

the previous sections. To this end, we construct learning scenarios where we know the underlying

ground truth (more precisely, the !p-norm of the Bayes hypothesis) and check whether the param-

eter p that minimizes our bound coincides with the optimal p observed empirically, that is, when

applying !p-norm MKL to the training data. Our analysis is based on the proven synthetic data de-

scribed in Kloft et al. (2011) and being available from http://mldata.org/repository/data/

viewslug/mkl-toy/. For completeness, we summarize the experimental description and the em-

pirical results here. Note that we have extended the analysis to the whole range p ∈ [1,∞] (only

p ∈ [1,2] was studied in Kloft et al., 2011).

6.5.1 EXPERIMENTAL SETUP AND EMPIRICAL RESULTS

We construct six artificial data sets as described in Kloft et al. (2011), in which we vary the degree of

sparsity of the true Bayes hypothesis w. For each data set, we generate an n = 50-element, balanced

sample D = {(xi,yi)}n
i=1 from two d = 50-dimensional isotropic Gaussian distributions with equal

covariance matrices C = Id×d and equal, but opposite, means µ+ = ρ
‖w‖2

w and µ− =−µ+. Figure 4

shows bar plots of the w of the various scenarios considered. The components wi are binary valued;

hence, the fraction of zero components, which we define by sparsity(w) := 1 − 1
d ∑d

i=1 wi, is a

measure for the feature sparsity of the learning problem.
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Figure 4: Toy experiment: illustration of the experimental design. We study six scenarios differing

the sparsity of the Bayes hypothesis considered.

For each of the w we generate m = 250 data sets D1, . . . ,Dm fixing ρ = 1.75. Then, each

feature is input into a linear kernel and the resulting kernel matrices are multiplicatively normalized

as described in Kloft et al. (2011). Next, classification models are computed by training !p-norm

MKL for p = 1,4/3,2,4,∞ on each Di. Soft margin parameters C are tuned on independent 1,000-

elemental validation sets by grid search over C ∈
{

10i
∣∣ i=−4,−3.5, . . . ,0

}
(optimal Cs are attained

in the interior of the grid). The relative duality gaps were optimized up to a precision of 10−3. The

simulation is realized for n= 50. We report on test errors evaluated on 1,000-elemental independent

test sets.

The results in terms of test errors are shown in Figure 5 (top). As expected, !1-norm MKL

performs best and reaches the Bayes error in the sparsest scenario. In contrast, the vanilla SVM

using a uniform kernel combination performs best when all kernels are equally informative. The

non-sparse !4/3-norm MKL variants perform best in the balanced scenarios, that is, when the noise

level is ranging in the interval 64%-92%. Intuitively, the non-sparse !4/3-norm MKL is the most

robust MKL variant, achieving test errors of less than 12% in all scenarios. Tuning the sparsity

parameter p for each experiment, !p-norm MKL achieves low test error across all scenarios.

6.5.2 BOUND

We evaluate the theoretical bound factor (32) (simply setting α = 1) for the six learning scenarios

considered. To furthermore analyze whether the p that are minimizing the bound are reflected in

the empirical results, we compute the test errors of the various MKL variants again, using the setup

above except that we employ a local search for finding the optimal p. The results are shown in

Figure 5 (bottom). We observe a striking coincidence of the optimal p as predicted by the bound

and the p that worked best empirically: In the sparsest scenario (shown on the lower right-hand

side), the bound predicts p ∈ [1,1.14] to be optimal and indeed, in the experiments, all p ∈ [1,1.15]
performed best (and equally well) while p = 1.19, already has a slightly (but significantly) worse

test error—in striking match with our bounds. In the second sparsest scenario, the bound predicts

p = 1.25 and we empirically found p = 1.26. In the non-sparse scenarios, intermediate values

of p ∈ [1,2] are optimal (see Figure for details)—again we can observe a good accordance of the
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Figure 5: Toy experiment: empirical results (top) and theoretical bounds (bottom).

empirical and theoretical values. In the extreme case, that is, the uniform scenario, the bound

indicates a p that lies well beyond the valid interval of the bound (i.e., p > 2) and this is also what

we observe empirically: p ∈ [4,∞] worked best in our experiments.

6.5.3 SUMMARY AND DISCUSSION

We can conclude that the empirical results indicate the validity of our theory: the theoretical bounds

reflect the empirically observed optimal p in the idealized setup where we know the underlying

ground true, that is, the !p-norm of the Bayes hypothesis. We also observed that the optimality of

a particular p strongly depends on the geometry of the learning task: the sparsity of the underlying

Bayes hypothesis w. This raises the question into which scenarios practical applications fall. For

example, do we rather encounter a “sparse” or non-sparse scenario in bioinformatics? However, this

investigation is beyond the scope of this paper (see Chapter 5 in Kloft (2011) for an analysis aiming

in that direction).

2493



KLOFT AND BLANCHARD

The results of our analysis are especially surprising, when recalling the result of Suzuki (2011)

discussed in Section 6.2. For the setup of homogeneous eigenvalue decay of the kernels as consid-

ered in the toy experiment setup here, their bound is optimal for p = 1, regardless of the sparsity of

the Bayes hypothesis. This is counter-intuitive and in strong contrast to our empirical analysis on

synthetic data, where the optimality of a certain value of the norm parameter p crucially depends on

the sparsity of the Bayes hypothesis. At this point we have no explanation for this behavior and this

leaves an open issue for relating theory to empirical results. The analysis carried out in this paper

may serve as a starting point for subsequent analyses aiming in that direction.

7. Conclusion

We derived a sharp upper bound on the local Rademacher complexity of !p-norm multiple kernel

learning under the assumption of uncorrelated kernels. We also proved a lower bound that matches

the upper one and shows that our result is tight. Using the local Rademacher complexity bound,

we derived an excess risk bound that attains the fast rate of O(n−
α

1+α ), where α is the minimum

eigenvalue decay rate of the individual kernels.

In a practical case study, we found that the optimal value of that bound depends on the true

Bayes-optimal kernel weights. If the true weights exhibit soft sparsity but are not strongly sparse,

then the generalization bound is minimized for an intermediate p. This is not only intuitive but also

supports empirical studies showing that sparse MKL (p = 1) rarely works in practice, while some

intermediate choice of p can improve performance.

Of course, this connection is only valid if the optimal kernel weights are likely to be non-sparse

in practice. Indeed, related research points in that direction. For example, already weak connectivity

in a causal graphical model may be sufficient for all variables to be required for optimal predictions,

and even the prevalence of sparsity in causal flows is being questioned (e.g., for the social sciences

Gelman, 2010, argues that “There are (almost) no true zeros”).

Finally, we note that there seems to be a certain preference for sparse models in the scientific

community. However, previous MKL research has shown that non-sparse models may improve

quite impressively over sparse ones in practical applications. The present analysis supports this by

showing that the reason for this might be traced back to non-sparse MKL attaining better general-

ization bounds in non-sparse learning scenarios. We remark that this point of view is also supported

by related analyses.

For example, it was shown by Leeb and Pötscher (2008) in a fixed design setup that any sparse

estimator (i.e., satisfying the oracle property of correctly predicting the zero values of the true target

w∗) has a maximal scaled mean squared error (MSMSE) that diverges to ∞. This is somewhat

suboptimal since, for example, least-squares regression has a converging MSMSE. Although this

is an asymptotic result, it might also be one of the reasons for finding excellent (non-asymptotic)

results in non-sparse MKL. In another, recent study of Xu et al. (2008), it was shown that no sparse

algorithm can be algorithmically stable. This is noticeable because algorithmic stability is connected

with generalization error (Bousquet and Elisseeff, 2002).
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Appendix A. Relation of MKL to Block-Norm Formulation

For completeness, we show in this appendix the relation of kernel weights formulation of MKL to

block-norm formulation.

A.1 The Case p∈ [1,2]

We show that denoting w = (w(1), . . . ,w(M)), for any q ∈ [1,∞], the hypothesis class

{
f : x &→

M

∑
m=1

〈
wm,

√
θmφm(x)

〉 ∣∣ ‖w‖2 ≤ D, ‖θ‖q ≤ 1
}
, (33)

is identical to the block norm class

Hp,D,M =
{

f : x &→ 〈w,φ(x)〉
∣∣ ‖w‖2,p ≤ D

}
(34)

where p := 2q
q+1 . This is known since Micchelli and Pontil (2005). To this end, first we rewrite (33)

as

Hp,D,M =
{

f : x &→ 〈w,φ(x)〉
∣∣∣

M

∑
m=1

‖wm‖2
2

θm
≤ D2, ‖θ‖q ≤ 1

}
. (35)

However, solving

inf
θ

1

2

M

∑
m=1

‖wm‖2
2

θm
, s.t. ‖θ‖q ≤ 1

for fixed w > 0, the optimal θ is attained at

θm =
‖wm‖

2
q+1

2(
∑M

m′=1 ‖wm′‖
2q

q+1

2

)1/q
, ∀m = 1, . . . ,M.

Plugging the latter into (35), we obtain (34) with p = 2q
q+1 , which was to show.
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A.2 The Case p∈ ]2,∞]

Even if p > 2, we can obtain an alternative formulation of the block norm MKL problem, as

shown in Aflalo et al. (2011), by the definition of the dual norm ‖·‖∗ of a norm ‖·‖, that is,

‖x‖∗ = supy 〈x,y〉−‖y‖, it holds

‖w‖2
2,p =

∥∥∥
(
‖wm‖2

2

)M

m=1

∥∥∥
p/2

= sup
θ:‖θ‖(p/2)∗≤1

M

∑
m=1

θm ‖wm‖2
2 .

Thus defining q := (p/2)∗ we can obtain a learning-the-kernel MKL formulation from the above

equation. A difference to the case p < 2 lies in the kernel weights θm appearing in the nominator

instead of the denominator.

Appendix B. Lemmata and Proofs

The following result gives a block-structured version of Hölder’s inequality (e.g., Steele, 2004).

Lemma 15 (Block-structured Hölder inequality). Let x = (x(1), . . . ,x(m)), y = (y(1), . . . ,y(m)) ∈
H = H1 × · · ·×HM. Then, for any p ≥ 1, it holds

〈x,y〉 ≤ ‖x‖2,p‖y‖2,p∗ .

Proof By the Cauchy-Schwarz inequality (C.-S.), we have for all x,y ∈ H :

〈x,y〉 =
M

∑
m=1

〈x(m),y(m)〉
C.-S.
≤

M

∑
m=1

‖x‖2‖y‖2

=
〈
(‖x(1)‖2, . . . ,‖x(M)‖2),(‖y(1)‖2, . . . ,‖y(M)‖2)

〉
.

Hölder
≤ ‖x‖2,p‖y‖2,p∗

Proof of Lemma 3 (Rosenthal + Young) It is clear that the result trivially holds for 1
2 ≤ p ≤ 1

with Cq = 1 by Jensen’s inequality . In the case p ≥ 1, we apply Rosenthal’s inequality (Rosenthal,

1970) to the sequence X1, . . . ,Xn thereby using the optimal constants computed in Ibragimov and

Sharakhmetov (2001), that are, Cq = 2 (q ≤ 2) and Cq = EZq (q ≥ 2), respectively, where Z is a

random variable distributed according to a Poisson law with parameter λ = 1. This yields

E

(
1

n

n

∑
i=1

Xi

)q

≤Cq max

(
1

nq

n

∑
i=1

EX
q
i ,

(
1

n

n

∑
i=1

Xi

)q)

. (36)

By using that Xi ≤ B holds almost surely, we could readily obtain a bound of the form Bq

nq−1 on the

first term. However, this is loose and for q = 1 does not converge to zero when n → ∞. Therefore,
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we follow a different approach based on Young’s inequality (e.g., Steele, 2004):

1

nq

n

∑
i=1

EX
q
i ≤

(
B

n

)q−1
1

n

n

∑
i=1

EXi

Young

≤
1

q∗

(
B

n

)q∗(q−1)

+
1

q

(
1

n

n

∑
i=1

EXi

)q

=
1

q∗

(
B

n

)q

+
1

q

(
1

n

n

∑
i=1

EXi

)q

.

It thus follows from (36) that for all q ≥ 1
2

E

(
1

n

n

∑
i=1

Xi

)q

≤Cq

((B

n

)q
+
(1

n

n

∑
i=1

EXi

)q
)

,

where Cq can be taken as 2 (q ≤ 2) and EZq (q ≥ 2), respectively, where Z is Poisson-distributed. In

the subsequent Lemma 16 we show EZq ≤ (q+e)q. Clearly, for q≥ 1
2 it holds q+e≤ qe+eq= 2eq

so that in any case Cq ≤ max(2,2eq)≤ 2eq, which concludes the result.

We use the following Lemma gives a handle on the q-th moment of a Poisson-distributed random

variable and is used in the previous Lemma.

Lemma 16. For the q-moment of a random variable Z distributed according to a Poisson law with

parameter λ = 1, the following inequality holds for all q ≥ 1:

EZq def.
=

1

e

∞

∑
k=0

kq

k!
≤ (q+ e)q.

Proof We start by decomposing EZq as follows:

E
q =

1

e

(

0+
q

∑
k=1

kq

k!
+

∞

∑
k=q+1

kq

k!

)

=
1

e

(
q

∑
k=1

kq−1

(k−1)!
+

∞

∑
k=q+1

kq

k!

)

≤
1

e

(

qq +
∞

∑
k=q+1

kq

k!

)

(37)

(38)
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Note that by Stirling’s approximation it holds k! =
√

2πeτk k
(

k
e

)q
with 1

12k+1 < τk <
1

12k for all q.

Thus

∞

∑
k=q+1

kq

k!
=

∞

∑
k=q+1

1√
2πeτk k

ekk−(k−q)

=
∞

∑
k=1

1√
2πeτk+q(k+q)

ek+qk−k

= eq
∞

∑
k=1

1√
2πeτk+q(k+q)

(e

k

)k

(∗)
≤ eq

∞

∑
k=1

1√
2πeτk k

(e

k

)k

Stirling
= eq

∞

∑
k=1

1

k!

= eq+1

where for (∗) note that eτk k ≤ eτk+q(k+ q) can be shown by some algebra using 1
12k+1 < τk <

1
12k .

Now by (37)

EZq =
1

e

(
qq + eq+1

)
≤ qq + eq ≤ (q+ e)q,

which was to show.

Lemma 17. For any a,b ∈ Rm
+ it holds for all q ≥ 1

‖a‖q +‖b‖q ≤ 21− 1
q ‖a+b‖q ≤ 2‖a+b‖q .

Proof Let a = (a1, . . . ,am) and b = (b1, . . . ,bm). Because all components of a,b are nonnegative,

we have

∀i = 1, . . . ,m : a
q
i +b

q
i ≤

(
ai +bi

)q

and thus

‖a‖q
q +‖b‖q

q ≤ ‖a+b‖q
q . (39)

We conclude by !q-to-!1 conversion (see (20))

‖a‖q +‖b‖q =
∥∥(‖a‖q ,‖b‖q

)∥∥
1

(20)
≤ 21− 1

q
∥∥(‖a‖q ,‖b‖q

)∥∥
q
= 21− 1

q
(
‖a‖q

q +‖b‖q
q

) 1
q

(39)
≤ 21− 1

q ‖a+b‖q ,

which completes the proof.
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