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gosi, Pompeu Fabra University, Spain Sridhar Mahadevan, University of Massachusetts, Amherst,

USA Shie Mannor, McGill University, Canada and Technion, Israel Chris Meek, Microsoft Re-

search, USA Marina Meila, University of Washington, USA Mehryar Mohri, New York Uni-

versity, USA Manfred Opper, Technical University of Berlin, Germany Una-May O’Reilly,

Massachusetts Institute of Technology, USA Ronald Parr, Duke University, USA Joelle Pineau,

McGill University, Canada Saharon Rosset, IBM TJ Watson Research Center, USA John Shawe-
Taylor, Southampton University, UK Xiaotong Shen, University of Minnesota, USA Yoram
Singer, Google, Inc., USA Peter Spirtes, Carnegie Mellon University, USA Ingo Steinwart, Los

Alamos National Laboratory, USA Ben Taskar, University of Pennsylvania, USA Lyle Ungar,

University of Pennsylvania, USA Nicolas Vayatis, Ecole Normale Supérieure de Cachan, France

Ulrike von Luxburg, MPI for Biological Cybernetics, Germany Martin J. Wainwright, University

of California at Berkeley, USA Manfred Warmuth, University of California at Santa Cruz, USA

Stefan Wrobel, Fraunhofer IAIS and University of Bonn, Germany Bin Yu, University of California

at Berkeley, USA Tong Zhang, Rutgers University, USA Hui Zou, University of Minnesota, USA

JMLR-MLOSS Editors
Mikio L. Braun, Technical University of Berlin, Germany Geoffrey Holmes, University of Waikato,

New Zealand Cheng Soon Ong, MPI for Biological Cybernetics, Germany Sören Sonnenburg,
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Stéphane Gaı̈ffas, Guillaume Lecué
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Grégoire Montavon, Mikio L. Braun, Klaus-Robert Müller



2583 Theoretical Analysis of Bayesian Matrix Factorization
Shinichi Nakajima, Masashi Sugiyama

2649 Bayesian Co-Training
Shipeng Yu, Balaji Krishnapuram, Rómer Rosales, R. Bharat Rao
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Abstract

Standard statistical models of language fail to capture one of the most striking properties of natural
languages: the power-law distribution in the frequencies of word tokens. We present a framework
for developing statistical models that can generically produce power laws, breaking generative mod-
els into two stages. The first stage, the generator, can be any standard probabilistic model, while the
second stage, the adaptor, transforms the word frequencies of this model to provide a closer match
to natural language. We show that two commonly used Bayesian models, the Dirichlet-multinomial
model and the Dirichlet process, can be viewed as special cases of our framework. We discuss two
stochastic processes—the Chinese restaurant process and its two-parameter generalization based
on the Pitman-Yor process—that can be used as adaptors in our framework to produce power-law
distributions over word frequencies. We show that these adaptors justify common estimation proce-
dures based on logarithmic or inverse-power transformations of empirical frequencies. In addition,
taking the Pitman-Yor Chinese restaurant process as an adaptor justifies the appearance of type
frequencies in formal analyses of natural language and improves the performance of a model for
unsupervised learning of morphology.

Keywords: nonparametric Bayes, Pitman-Yor process, language model, unsupervised

1. Introduction

It is important for models used in unsupervised learning to be able to describe the gross statisti-
cal properties of the data they are intended to learn from, otherwise these properties may distort
inferences about the parameters of the model. One of the most striking statistical properties of nat-

c©2011 Sharon Goldwater, Thomas L. Griffiths and Mark Johnson.
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ural languages is that the distribution of word frequencies is closely approximated by a power law.
That is, the probability that a word w will occur with frequency nw in a sufficiently large corpus is
proportional to n−gw . This observation—usually attributed to Zipf (1932), though it enjoys a long
and detailed history (Mitzenmacher, 2004)—stimulated intense research in the 1950s (e.g., Simon,
1955) but has largely been ignored in modern machine learning and computational linguistics.

By developing models that can generically exhibit power laws, it may be possible to improve
methods for identifying structure in linguistic data. In particular, postulating a separate mechanism
within the model that accounts for the skewed distribution of word frequencies takes the burden of
explaining this distribution off the other components of the model, effectively reducing the frequen-
cies of those words. Such “damping” of word frequencies can often be desirable. It is commonly
observed in applications of statistical natural language processing that reducing the counts of word
tokens, typically by taking their logarithms or inverse powers, can improve performance (Salton and
Buckley, 1988).

An extreme version of damping frequencies forms part of a tension exhibited by formal ap-
proaches to natural language: whether explanations should be based upon the distinct types of words
that languages exhibit, or the frequencies with which tokens (instances) of those words occur. One
place where this tension manifests is in accounts of morphology (the substructure of words), where
formal linguists develop accounts of why particular words appear in the lexicon (e.g., Pierrehum-
bert, 2003), while computational linguists focus on statistical models of the frequencies of tokens of
those words (e.g., Hakkani-Tür et al., 2002). The same tension arises in various areas of statistical
natural language processing and related fields. For example, one of the most successful forms of
smoothing used in statistical language models, Kneser-Ney smoothing, explicitly interpolates be-
tween type and token frequencies (Ney et al., 1994; Kneser and Ney, 1995; Chen and Goodman,
1998). Information retrieval systems can also differ in whether they use binary vectors indicating
the presence or absence of words in a document or a full vector of word frequencies (Baeza-Yates
and Ribeiro-Neto, 1999), and the same distinction appears in machine learning methods applied to
text (e.g., Blei et al., 2003; Thibaux and Jordan, 2007).

In this paper, we present a framework for developing generative models for language that pro-
duce power-law distributions. Our framework is based upon the idea of specifying these models
in terms of two components: a generator, an underlying generative model for words which need
not (and usually does not) produce a power-law distribution, and an adaptor, which transforms the
stream of words produced by the generator into one whose frequencies obey a power-law distribu-
tion. This framework is extremely general: any generative model for language can be used as a
generator, with the power-law distribution being produced as the result of making an appropriate
choice for the adaptor.

Adopting this two-stage framework divides responsibility for the appearance of the tokens in
the corpus between the generator and the adaptor, with only a subset of the tokens being produced
by the generator. The parameters of the generator will be estimated based only on the tokens for
which the generator is considered responsible, rather than on the full set of tokens in the corpus.
By explaining away the presence of some of the tokens, the adaptor effectively damps the word
counts used to estimate the parameters of the generator. Estimation of these parameters will thus
be affected by assumptions about the form of the adaptor. We consider several adaptor-generator
pairs, focusing especially on the Chinese restaurant process (Aldous, 1985) and its two-parameter
generalization, derived from the Pitman-Yor process (Pitman, 1995; Pitman and Yor, 1997; Ishwaran
and James, 2003), as adaptors. We show that using these stochastic processes as adaptors can
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produce appropriate power-law distributions while implementing different forms of damping. We
also show that the Pitman-Yor generalization of the Chinese restaurant process can be used to justify
parameter estimation based purely on type frequencies, and demonstrate that using this adaptor
improves the performance of a simple two-stage model applied to learning morphology.

Our work contributes to a growing body of research on Bayesian approaches to modeling and
learning language. This paper is not the first to propose the use of the Chinese restaurant process or
Pitman-Yor process for modeling language, and some of the models we discuss have been used in
previous work by ourselves and others (Goldwater et al., 2006a; Teh, 2006b). However, considering
these models in greater depth allows us to make several novel contributions. First, we show how
the two-stage framework makes it possible to unify a variety of Bayesian models of language. This
unified picture offers us a way to concisely summarize existing Bayesian language models, and to
identify the mathematical relationships between these models. Second, we provide a quantitative
argument that these models are a good fit for language by virtue of the power-law distributions
they produce, detailing the differences between the distributions produced by different adaptors,
and discussing the use of different approximations. Third, we present new empirical studies that
provide insight into the practical effects of different approximations and parameter choices. Finally,
we expand on the idea, introduced by Goldwater et al. (2006a), that these models provide a way
to understand and model the relationship between linguistic types and tokens, and a mathematical
justification for commonly used smoothing and damping techniques.

In addition to considering the general properties of models developed in our two-stage frame-
work, we provide a detailed case study of applying this approach to an unsupervised learning prob-
lem: morphological segmentation. In this problem, the goal is to identify the meaningful compo-
nents from which words are comprised. This problem is challenging because natural languages
possess both regular and irregular morphology, with only a subset of words following regular mor-
phological rules. Linguists have long noted a strong relationship between frequency and regularity
in language, with irregular forms often being among the most frequent (Greenberg, 1966; Bybee,
1985). Without accounting for this fact, an unsupervised learning system is likely to be misled by
the very frequent irregular forms, and fail to appropriately model the regular patterns that are needed
to account for infrequent forms, which will comprise most unseen data. We show that the two-stage
framework proposed here can explain the relationship between frequency and regularity and thus
leads to better learning of regular patterns.

The morphological segmentation task is a good example of a situation where appropriately
modeling word frequencies can significantly affect the outcome of unsupervised learning. While
we explore this case in detail, the goal of this paper is not to develop state-of-the-art models for any
particular application. Rather, we hope to strengthen intuitions and insights into how nonparametric
Bayesian models of language behave in general, in order to give other researchers a better sense of
when these tools may be helpful and how to use them. We consider other promising applications of
this approach, and ways in which it can be extended, in Section 9.

The plan of the paper is as follows. Section 2 summarizes related work. Section 3 discusses
stochastic processes that can produce power-law distributions and introduces the generic two-stage
modeling framework. Section 4 presents models based on the Chinese restaurant process and
Pitman-Yor Chinese restaurant process, stochastic processes from nonparametric Bayesian statis-
tics that produce power-law distributions. Section 5 shows how some other Bayesian language
models can be viewed as special cases of our two-stage framework. Section 6 examines some of the
consequences of using the adaptors introduced in Section 4: Section 6.1 discusses the implications
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of using these models for estimation of the parameters of the generator, Section 6.2 shows that es-
timation based on type and token frequencies are special cases of a two-stage language model, and
Section 6.3 uses these results to provide a novel justification for the use of Kneser-Ney smoothing.
Section 7 describes a two-stage model for unsupervised learning of the morphological structure of
words, and Section 8 presents the results of some experiments with this model demonstrating that its
performance improves as we move from estimation based upon tokens to types. Section 9 discusses
additional applications and extensions of our approach, and Section 10 concludes.

2. Related Work

Our two-stage approach fits within a more general trend of using Bayesian models for linguistic
data. Previous work has used Bayesian models in two ways: to understand and justify approaches
to smoothing, or as a method of unsupervised structure discovery and learning. Since we will touch
upon both of these topics in this paper, we now present a brief review of related work in each area.

Smoothing methods are schemes for regularizing empirical estimates of the probabilities of
words, with the goal of improving the predictive performance of language models. The simplest
kind of smoothing involves adding a small constant to the empirical frequencies of words prior
to normalizing those frequencies (Chen and Goodman, 1998). This approach can be shown to be
equivalent to Bayesian estimation of a multinomial distribution using a Dirichlet prior (MacKay
and Peto, 1994), a method that has more recently evolved into the use of compound Dirichlet-
multinomial models for text (Elkan, 2006; Madsen et al., 2005). The observation of a correspon-
dence between smoothing methods and Bayesian inference has been used to define more complex
smoothing schemes based on hierarchical Bayesian models (MacKay and Peto, 1994). The con-
nection between Pitman-Yor processes and Kneser-Ney smoothing is one instance of this broader
correspondence, and was independently pointed out by Teh (2006a,b) following our own work on
this topic (Goldwater et al., 2006a). More recently, Wood and Teh (2008, 2009) have developed
more sophisticated cross-domain smoothing models by combining multiple hierarchical Pitman-
Yor processes.

Another strand of work on Bayesian models of language aims to improve unsupervised (or
semi-supervised) learning of linguistic structure. Much of this work can be traced back to the latent
Dirichlet allocation (LDA) model and related work on document clustering and topic modeling by
Blei and colleagues (Blei et al., 2002, 2003, 2004). While LDA takes a bag-of-words approach
to language modeling, recent research in the computational linguistics community has focused on
using similar Bayesian techniques to develop models of linguistic structure with more sophisticated
intra- and inter-word dependencies. For example, Goldwater et al. (2006b) presented a model based
on the hierarchical Dirichlet process (Teh et al., 2005) to identify word boundaries in unsegmented
text. This model is very similar to the hierarchical Pitman-Yor language model described in Section
6.3 as well as in Teh (2006a). Finkel et al. (2007) and Liang et al. (2007) introduced models for
learning better syntactic categories for parsing by extending the idea of the infinite hidden Markov
model (Beal et al., 2002; Teh et al., 2005) to probabilistic context-free grammars (PCFGs) and
dependency trees. Johnson et al. (2007) described a different kind of infinite Bayesian model for
learning grammatical structure, the adaptor grammar, which is more directly based on the two-
stage framework presented here. An adaptor grammar can be seen as a two-stage model in which
the generator is a PCFG. Adaptor grammars have since been used for learning word segmentation,
syllable structure, and morphology in English and Sesotho (Johnson et al., 2007; Johnson, 2008a,b),
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as well as for named-entity clustering (Elsner et al., 2009). They have also been extended by Cohn
et al. (2009), Post and Gildea (2009), and O’Donnell et al. (2009), who independently proposed
very similar generalizations of the adaptor grammar for learning tree substitution grammars.

Finally, although this paper focuses primarily on the general Bayesian framework rather than
the specific application to morphological learning that we discuss in Sections 7 and 8, it is worth
mentioning a few other notable approaches to the unsupervised learning of morphology. Probably
the most well-known systems are Linguistica (Goldsmith, 2001, 2006) and Morfessor (Creutz and
Lagus, 2004, 2005), both of which are based on probabilistic models using maximum a posteriori
estimation, and are freely available for download. A number of other systems use more heuristic
approaches; Goldsmith (2001) provides a thorough review. An interesting recent approach uses
sentence-aligned multilingual texts to perform simultaneous morphological segmentation on multi-
ple languages (Snyder and Barzilay, 2008). The Bayesian model used in that work can be viewed
as an extension of the word segmentation model of Goldwater et al. (2006b) described above.

3. The Two-stage Approach

The key idea behind our two-stage framework is to divide the process of generating text into two
parts, one of which is sufficient to produce a power-law distribution over word frequencies. In this
section we briefly review mechanisms that give rise to power-law distributions and then formally
define our framework.

3.1 Producing Power-law Distributions

Assume we want to generate a sequence of n outcomes, z= (z1, . . . ,zn), with each outcome zi being
drawn from a set of (possibly unbounded) size K. Many of the stochastic processes that produce
power laws are based upon the principle of preferential attachment, where the probability that the
ith outcome, zi, takes on a particular value k depends upon the frequency of k in z−i = (z1, . . . ,zi−1)
(Mitzenmacher, 2004). For example, the number of links pointing to a given web page is sometimes
modeled as a power-law distribution, which can be explained by assuming that new web pages are
more likely to include links to already-popular pages (Mitzenmacher, 2004). An early preferential
attachment process, due to Simon (1955), chooses zi according to

P(zi = k |z−i) = a
1
K
+(1−a)

n(z−i)k

i−1

where n(z−i)k is the number of times k occurs in z−i, and 0< a< 1 is a parameter of the process. This
“rich-get-richer” process means that a few outcomes appear with very high frequency in z, while
most outcomes appear with low frequency—the key attribute of a power-law distribution. In this
case, the power law has parameter g= 1/(1−a).

One problem with this kind of model is that different permutations of the outcomes z have dif-
ferent probabilities. While this may be appropriate for some settings, the assumption of a temporal
ordering restricts the contexts in which such models can be applied. In particular, it is much more
restrictive than the assumption of independent sampling that underlies most statistical language
models. Consequently, we will focus on a different preferential attachment scheme, based upon the
two-parameter species sampling model (Pitman, 1995; Pitman and Yor, 1997) known as the Pitman-
Yor process (Ishwaran and James, 2003). We will refer to this scheme as the Pitman-Yor Chinese
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restaurant process (PYCRP), as it is a generalization of the more widely known Chinese restaurant
process (CRP; Aldous, 1985). Under these schemes, outcomes follow a power-law distribution, but
remain exchangeable: the probability of a set of outcomes is not affected by their ordering (Aldous,
1985). In addition to its theoretical benefits, the property of exchangeability has practical value in
permitting the use of standard sampling algorithms for inference. We return to discussion of the
CRP and PYCRP in Section 4 after introducing the basic conceptual framework of the two-stage
language model.

3.2 The Generator and Adaptor

In our two-stage modeling framework, a sequence of word tokens w= (w1, . . . ,wn) is generated as
follows:

1. Generate a sequence of lexical items ��� = (�1, . . . , �K) from some probability distribution Pϕ
parameterized by ϕ. For example, (�1, . . . , �4) = (the, dog, a, the). We refer to Pϕ as the
lexicon generator (or simply generator). Note that our use of the term lexical item is non-
standard. Ignoring homophony, a lexicon normally contains one instance of each word type.
Here, Pϕ is a discrete distribution and the lexical items are generated independently, so the
same word type may occur more than once in ���.1 In the remainder of the paper, we use lexical
item to refer to the items produced by the generator, word type to refer to unique wordforms,
and word or token to refer to word tokens.

2. Generate a sequence of integers z = (z1, . . . ,zn) with 1 ≤ zi ≤ K, where zi = k indicates
that wi = �k (that is, zi is the index of the lexical item corresponding to wi). For exam-
ple, (z1, . . . ,z9) = (1,2,1,1,3,1,1,4,3), so that, in combination with (�1, . . . , �4) from above,
(w1, . . . ,w9) = (the, dog, the, the, a, the, the, the, a). The integers z are assumed to be
generated by some stochastic process Pγ with one or more parameters γ. We refer to this
process as the adaptor.

We use the notation TwoStage(Pγ,Pϕ) to refer to a two-stage model with adaptor Pγ and generator
Pϕ. A graphical model illustrating the dependencies between the variables in this framework is
shown in Figure 1.

The two-stage modeling framework is very general: many different distributions could be used
for the generator and adaptor. However, given the discussion above, it is sensible to assume that
Pγ is chosen so that the frequencies with which different integer outcomes are produced follow a
power-law distribution. In this case, when Pϕ is a distribution with infinite support, the power-law
distribution over integers produced in Step 2 will result in a power-law distribution over the fre-
quencies in the final sequence of words. Thus, the adaptor “adapts” the word frequencies produced
by the generator to fit a power-law distribution. Different choices for the generator model will allow
different kinds of linguistic structure to be learned. Here, we show that morphological structure can
be learned using a generator that produces words by choosing a stem and suffix and concatenating
them together. In other work, we have used different generators to discover word boundaries in
unsegmented text (Goldwater et al., 2006b; Johnson, 2008a) and to infer tree substitution grammars
from parsed corpora or strings (Cohn et al., 2010).

1. The assumption of independence between lexical items is not strictly necessary, but is mathematically and computa-
tionally convenient. An example of a more complex distribution over lexical items that enforces uniqueness is given
in Brent (1999).

2340



TWO-STAGE LANGUAGE MODELS

wi

�kzi

n

K

Adaptor Generator

ϕγ

Figure 1: A graphical model representation of the two-stage language modeling framework. Ar-
rows indicate dependencies between variables, and solid-line boxes indicate replicated
portions of the model, with the number of copies shown in the lower right hand corner.
Variables associated with the generator are on the right; those associated with the adaptor
are on the left. Depending on the application, the words wi may or may not be directly
observed.

4. Chinese Restaurant Processes as Adaptors

While any stochastic process that results in a power-law distribution over word frequencies can be
used as an adaptor, the choice of adaptor will have significant implications for the resulting model.
In this section, we discuss two stochastic processes that are particularly suitable as adaptors in the
two-stage framework: the Chinese restaurant process (Aldous, 1985; Pitman, 1995; Griffiths, 2006)
and the Pitman-Yor Chinese restaurant process (Pitman, 1995; Pitman and Yor, 1997; Ishwaran
and James, 2003). Both the CRP and PYCRP are used in nonparametric Bayesian statistics, with
the more widely known CRP arising as the distribution over the sizes of mixture components in
infinite mixture models (Rasmussen, 2000). We review the definitions of these processes, discuss
the properties that make them useful as adaptors, and define the two-stage models that result from
using CRP or PYCRP adaptors.

4.1 The Chinese Restaurant Process

The Chinese restaurant process is a simple stochastic process that can be described using the analogy
of a restaurant with an infinite number of tables, each of which has an infinite seating capacity.
Customers enter the restaurant one at a time, and choose a table at which to sit. The probability
of choosing an occupied table is proportional to the number of people already sitting there, and the
probability of choosing an unoccupied table is proportional to some constant parameter α. That is,
if zi is the index of the table chosen by the ith customer, then

P(zi = k |z−i,α) =

⎧⎨⎩ n
(z−i)
k

i−1+α 1≤ k ≤ K(z−i)
α

i−1+α k = K(z−i)+1

2341



GOLDWATER, GRIFFITHS AND JOHNSON

2
9+α
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Figure 2: An illustration of the Chinese restaurant process, reproduced from Goldwater et al.
(2009). Black dots indicate the number of customers sitting at each table for the ex-
ample case z−10 = (1,2,1,1,3,1,1,4,3). Below each table is P(z10 = k |z−10). Note that
the number of customers at each table—and thus P(z10 = k |z−10), the probability distri-
bution over the next customer—would remain the same for any ordering of the integers
in z−10. This is the property of exchangeability.

where z−i is the seating arrangement of the previous i− 1 customers, n
(z−i)
k is the number of cus-

tomers already assigned to table k by z−i, K(z−i) is the total number of occupied tables in z−i, and
α ≥ 0 is a parameter of the process determining how “spread out” the customers become. Higher
values of αmean that more new tables will be occupied relative to the number of customers, leading
to a more uniform distribution of customers across tables. The first customer by definition sits at
the first table, so this distribution is well-defined even when α= 0. See Figure 2 for an illustration.

Under this model, the probability of a particular sequence of table assignments for n customers
is given by

P(z |α) = 1 ·
n

∏
i=2

P(zi |z−i,α)

=

(
n

∏
i=2

1
i−1+α

)(
αK(z)−1

)(K(z)

∏
k=1

(n(z)k −1)!

)

=
Γ(1+α)
Γ(n+α)

·αK(z)−1 ·
K(z)

∏
k=1

(n(z)k −1)! (1)

where the Gamma function is defined as Γ(x) =
∫ ∞
0 u

x−1e−udu for x> 0, and is a generalized facto-
rial function: Γ(x) = (x−1)! for positive integer x, and Γ(x) = (x−1)Γ(x−1) for any x> 0.2

It is easy to see that any reordering of the table assignments in z will result in the same factors
in Equation 1, so the CRP is exchangeable.3 As the number of customers becomes large, the CRP
produces a power-law distribution over the number of customers seated at each table, where the
power-law exponent g is equal to 1 (Arratia et al., 1992).

2. It is more standard to see the joint distribution of table assignments in the CRP given as P(z) = Γ(α)
Γ(n+α) ·α

K(z) ·

∏
K(z)
k=1 (n

(z)
k −1)!. This distribution is derived from the Dirichlet process (see Section 5.2), which is defined only for

α > 0, and is equivalent to Equation 1 in that case. We use the distribution in Equation 1 because it is defined also
for α= 0, which is a possible (if uninteresting) parameter value in the CRP.

3. When considering exchangeability, the table assignments should be viewed as partitioning the integers 1, . . . , i into
equivalence classes. The requirement that zi ∈ 1, . . . ,max(zi−1)+1 ensures there is a 1-to-1 mapping between equiv-
alence classes and the set of integers in z.
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The preceding paragraphs indicate how the CRP can be used to create a power-law distribution
over integers, but to create a distribution over words we need to combine it with a lexicon generator
to make a full two-stage model. For expository purposes, we continue to use the generic lexicon
generator Pϕ, a distribution parameterized by ϕ, so the full model is TwoStage(CRP(α),Pϕ). This
model can be viewed as a restaurant in which each table is labeled with a lexical item produced by
Pϕ. Each customer represents a word token, so that the number of customers at a table corresponds
to the frequency of the lexical item labeling that table. A new word token is generated by seating
a new customer, producing either a new token of an existing lexical item (if the customer sits at an
existing table: in this case the new token will have the same word type as the lexical item labeling
that table) or the first token of a new lexical item (if the customer sits at a new table: in this case a
new label is generated using Pϕ, and all later customers at this table will be additional tokens of the
same word type).

Under this model, the probability that the ith token in a sequence takes on the value w, given the
previous labels and table assignments, can be found by summing over all the existing tables labeled
with w, plus a possible new table labeled with w:

P(wi = w |z−i,���(z−i),α,ϕ)

=
K(z−i)

∑
k=1

P(wi = w |zi = k, �k)P(zi = k |z−i,α)

+P(wi = w |zi = K(z−i)+1,ϕ)P(zi = K(z−i)+1 |z−i,α)

=
K(z−i)

∑
k=1

I(�k = w)
n(z−i)k

i−1+α
+Pϕ(w)

α
i−1+α

=
n(w−i)
w +αPϕ(w)
i−1+α

(2)

where ���(z−i) are the labels of all the tables in z−i, I(.) is an indicator function taking on the value 1
when its argument is true and 0 otherwise, and n(w−i)

w is the number of previous occurrences of the
word type w in w−i (that is, the number of customers that z−i assigns to tables labeled with w). This
distribution is illustrated in Figure 3.

The probability of an entire sequence of words P(w |α,ϕ) can be found by marginalizing out ���
and z from the joint distribution P(w,z,��� |α,ϕ). Note that unless �zi = wi for all i, P(w,z,��� |α,ϕ) =
0, so we need only sum over cases where �zi = wi for all i. In this situation, P(w,z,��� |α,ϕ) =
P(z,��� |α,ϕ) = P(z |α)Pϕ(���),4 so we can compute the desired distribution as

P(w |α,ϕ) = ∑
z,���

P(z |α)Pϕ(���)

= ∑
z,���

Γ(1+α)
Γ(n+α)

αK(z)−1
K(z)

∏
k=1

(
Pϕ(�k)(n

(z)
k −1)!

)
(3)

where the sums range only over those ��� and z such that �zi = wi for all i.

4. We use Pϕ(���) rather than the equivalent P(��� |ϕ) for consistency with our notation for the generator probability of an
individual lexical item Pϕ(�); both Pϕ(���) and P(��� |ϕ) represent the probability of producing lexical items ��� using the
generator parameterized by ϕ. Note that in contrast, P(w |ϕ) �= Pϕ(w), as the latter requires that all tokens in w are
produced by the generator, whereas the former does not.
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. . .the dog a the

Figure 3: An illustration of the two-stage restaurant, adapted from Goldwater et al. (2009). In this
example, (�1, . . . , �4) = (the, dog, a, the) and z−10 = (1,2,1,1,3,1,1,4,3). Each label
�k is shown on table k. Black dots indicate the number of occurrences of each label
in w−10 = (the, dog, the, the, a, the, the, the, a). Under this seating arrangement,

P(w10 = the) =
6+αPϕ(the)

9+α , P(w10 = dog) =
1+αPϕ(dog)

9+α , P(w10 = a) =
2+αPϕ(a)
9+α , and

for any other word w, P(w10 = w) = αPϕ(w)
9+α .

Notice that the distribution over words given in Equation 2 leads to an alternative way of viewing
the TwoStage(CRP(α),Pϕ) model, as a cache model. Under this view, each word is generated in
one of two ways: from a cache of previously occurring lexical items (with probability n

n+α if we use
the CRP adaptor) or as a novel lexical item (with probability α

n+α ). Items from the cache are chosen
with probability proportional to the number of times they have occurred before in w. Novel items
are chosen according to the probability distribution of the lexicon generator (which means that,
strictly speaking, they are not always “novel”—that is, novel word types—since the generator may
produce duplicates). This interpretation clarifies the significance of the parameters α and Pϕ. Prior
expectations regarding the probability of encountering a novel lexical item are reflected in the value
of α, so lower values of α will lead to an expectation of fewer lexical items (and word types) during
inference. Prior expectations about the relative probabilities of different novel items are reflected
in Pϕ, so the choice of generator determines the kinds of lexical items that are likely to be inferred
from the data. If the generator is a distribution over an infinite number of items, the cache model
makes it clear that the number of different word types that will be observed in a finite corpus is not
fixed in advance. Rather, new word types can be generated “on the fly” from an infinite supply. In
general, the number of different word types observed in a corpus will slowly grow as the size of the
corpus grows.

4.2 The Pitman-Yor Generalization

For much of this paper, we will be focusing on an adaptor based on the Pitman-Yor process. This
adaptor is a generalization of the CRP, defined as

P(zi = k |z−i,a,b) =

⎧⎨⎩
n
(z−i)
k −a
i−1+b 1≤ k ≤ K(z−i)

K(z−i)a+b
i−1+b k = K(z−i)+1

(4)

where 0 ≤ a < 1 and b ≥ 0 are parameters of the process. As in the CRP, z1 = 1 by definition.
When a= 0 and b= α, this process reduces to the CRP, so we refer to it as the Pitman-Yor Chinese
restaurant process (PYCRP). Like the CRP, the PYCRP is exchangeable and produces a power-law
distribution on the number of customers seated at each table. In this case, the power-law exponent g
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Pitman−Yor process (a = 1, b = 0.8)

Figure 4: Simulating power laws in natural language, illustrated using Zipf plots. The Zipf plot
displays the log frequency of a word as a function of the log of the rank of that fre-
quency (i.e., the number of words with frequency greater than or equal to that word).
A power-law distribution in word frequency, with the probability of a frequency of nw
proportional to n−gw , results in a straight line on the plot with slope 1/(g− 1). Here,
the left-hand plot shows the distribution of word frequencies in sections 0-20 from the
Penn Wall Street Journal treebank, while the right-hand plot shows the distribution of the
number of customers at each table produced by 500,000 draws from the PYCRP with
parameters a = 0.8 and b = 1. Both plots have a slope of roughly −1.25, corresponding
to a power-law distribution with exponent γ= 1.8.

is equal to 1+a (Pitman, 2006), which includes the g≈ 1.8 seen for natural languages (see Figure
4). We defer further discussion of the significance of the parameters a and b to Section 6.2.

Under the PYCRP, the probability of a particular seating arrangement z is

P(z |a,b) = 1 ·
n

∏
i=2

P(zi |z−i,a,b)

=

(
n

∏
i=2

1
i−1+b

)(
K(z)−1

∏
k=1

(ka+b)

)⎛⎝K(z)

∏
k=1

n(z)k −1

∏
i=1

(i−a)

⎞⎠
=

Γ(1+b)
Γ(n+b)

(
K(z)−1

∏
k=1

(ka+b)

)(
K(z)

∏
k=1

Γ(n(z)k −a)

Γ(1−a)

)
.

As with the CRP, we can define a generic two-stage model with a PYCRP adaptor by assuming a
generator Pϕ parameterized by ϕ. Under this TwoStage(PYCRP(a,b),Pϕ) model, the probability of
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generating word w given the seating arrangement and label assignments of the previous words is

P(wi = w |z−i,���(z−i),a,b,ϕ)

=
K(z−i)

∑
k=1

P(wi = w |zi = k, �k)P(zi = k |z−i,a,b)

+P(wi = w |zi = K(z−i)+1,ϕ)P(zi = K(z−i)+1 |z−i,a,b)

=
K(z−i)

∑
k=1

I(�k = w)
n(z−i)k −a

i−1+b
+Pϕ(w)

K(z−i)a+b
i−1+b

=
n(w−i)
w −Kw(z−i)a+(K(z−i)a+b)Pϕ(w)

i−1+b
(5)

where Kw(z−i) is the number of tables labeled with w in z−i. The joint distribution of a sequence of
words w is given by

P(w |a,b,ϕ) = ∑
z,���

P(z |a,b)Pϕ(���)

= ∑
z,���

Γ(1+b)
Γ(n+b)

(
K(z)−1

∏
k=1

(ka+b)

)(
K(z)

∏
k=1

Pϕ(�k)
Γ(n(z)k −a)

Γ(1−a)

)
(6)

where, as in Equation 3, the sums are over only those ��� and z such that �zi = wi for all i.

5. Relationship to Other Models

The two-stage framework outlined in the previous sections has three special cases that correspond
to models that have previously been used in computational linguistics and statistics: the Dirichlet-
multinomial model, the Dirichlet process, and the two-parameter Poisson-Dirichlet process. In each
of the following subsections, we first present the relevant equivalency, and then show that it holds.

5.1 The Dirichlet-multinomial Model

Proposition 1 A TwoStage(CRP(α),Multinomial(ϕ)) model is equivalent to a
Dirichlet(αϕ)-multinomial model.

As mentioned in Section 1, several researchers have proposed Bayesian language models based
on the Dirichlet-multinomial model (MacKay and Peto, 1994; Madsen et al., 2005), also known as
the Dirichlet compound multinomial model (Elkan, 2006). In this model, words are drawn from a
multinomial distribution:

wi |θ ∼ Multinomial(θ)

where θ= (θ1, . . . ,θK). That is, for a corpus w= (w1, . . . ,wn) made up of a finite lexicon of words
(�1, . . . , �K), P(wi = �k |θ) = θk and P(w |θ) = ∏K

k=1θ
nk
k , where nk is the number of occurrences

of �k in w. In addition, the parameters θ are themselves drawn from a Dirichlet distribution with
hyperparameters β= (β1, . . . ,βK):

θ |β ∼ Dirichlet(β).
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The Dirichlet distribution is defined as

P(θ |β) = c
K

∏
k=1

θβk−1k

with c =
Γ(∑K

k=1βk)

∏K
k=1Γ(βk)

where βk > 0. It is conjugate to the multinomial, meaning that the posterior distribution over the
parameters θ given a corpus w takes on the same parametric form as the prior—specifically, a
Dirichlet distribution with parameters nk+βk, where nk is the number of occurrences of outcome k
in w:

P(θ |w,β) ∝ P(w |θ)P(θ |β)

∝
K

∏
k=1

θnkk
K

∏
k=1

θβk−1k

=
K

∏
k=1

θnk+βk−1k .

Due to the conjugacy of the Dirichlet and multinomial distributions, it is easy to compute the
predictive distribution of wi conditioned on the values of the previously observed words w−i and the
hyperparameters β:

P(wi = j |w−i,β) =
∫
Δ
P(wi = j |θ)P(θ |w−i,β)dθ

=
Γ(n+∑K

k=1βk)

∏K
k=1Γ(nk+βk)

∫
Δ
θ
n j+β j
j ∏

k �= j

θnk+βk−1k dθ

=
Γ(n+∑K

k=1βk)

∏K
k=1Γ(nk+βk)

·
Γ(n j+β j+1)∏ j �=kΓ(nk+βk)

Γ(n+∑K
k=1βk+1)

=
n j+β j

n+∑K
k=1βk

(7)

where all counts are with respect to w−i, and Δ indicates the probability simplex: the set of values
for θ>= 0 such that ∑k θk = 1. The third line can be derived using elementary calculus and the def-
inition of the Gamma function, but can also be seen to hold by noting that the Dirichlet distribution
must sum to 1, and therefore ∫

Δ

K

∏
k=1

θβk−1k dθ=
∏K
k=1Γ(βk)

Γ(∑K
k=1βk)

holds for any positive values of βk. Comparing Equation 7 to Equation 2 reveals that the Dirichlet-
multinomial model is a special case of our two-stage framework, with a CRP adaptor and a finite
generator distribution. In particular, a TwoStage(CRP(α),Multinomial(ϕ)) model is equivalent to
a Dirichlet-multinomial model with β= αϕ.
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5.2 The Dirichlet Process

Proposition 2 A TwoStage(CRP(α),Pϕ) model (where Pϕ has infinite support) is equivalent to a
DP(α,Pϕ) model.

The Dirichlet process (DP; Ferguson, 1973), used in nonparametric Bayesian statistics, can be
seen as an infinite-dimensional analogue of the symmetric Dirichlet distribution (a Dirichlet dis-
tribution where all βi are equal).5 Whereas each sample from a Dirichlet distribution returns a
distribution θ over a finite set of outcomes, each sample from a Dirichlet process returns a distri-
bution G over a countably infinite set of outcomes. The Dirichlet process has two parameters. The
base distribution, G0, (which may be discrete or continuous) determines the probability that any
particular outcome will be in the support of G. The concentration parameter, α, determines the
variance in the probabilities of those outcomes under G.

Typically, the Dirichlet process is used as a prior in infinite mixture models (Lo, 1984; Escobar
and West, 1995; Neal, 2000; Rasmussen, 2000), where the concentration parameter determines the
relative size of each mixture component, and the base distribution determines the probable param-
eters for the component distributions. Instead, we can use the Dirichlet process to define a simple
language model as follows:

G |α,Pϕ ∼ DP(α,Pϕ),

wi |G ∼ G

where DP(α,Pϕ) refers to a Dirichlet process with concentration parameter α and base distribution
G0 = Pϕ. The corresponding graphical model can be seen in Figure 5. Just as we integrated out the
θ parameters of the Dirichlet-multinomial model, we can integrate out the distribution G to obtain
the following predictive distribution over words (Blackwell and MacQueen, 1973):

wi |w−i,α,Pϕ ∼
1

i−1+α

i−1

∑
j=1

δ(wj)+
α

i−1+α
Pϕ

where δ(wj) is a point mass at wj. Rewriting the predictive distribution as a probability mass
function reveals that the DP(α,Pϕ) model is equivalent to a TwoStage(CRP(α),Pϕ) model:

P(wi = w |w−i,α,Pϕ) =
n(w−i)
w +αPϕ(w)
i−1+α

.

Note that although G assigns probability to a countably infinite set of outcomes, the predictive
distribution can be computed using only the frequencies of previous items and the base distribution
Pϕ.

It is worth pointing out that this DP language model can still technically be viewed as a mixture
model, although a degenerate one. Each lexical item corresponds to a separate mixture component
parameterized by its label �k and with a 0/1 likelihood function: P(wi |�zi) = I(wi = �zi). Thus,
every data point in a single mixture component is identical. As a result, the potential applications of
two-stage models and infinite mixture models are somewhat different. Infinite mixture models are

5. Specifically, as described by Neal (2000), the predictive distribution of a Dirichlet process mixture model can be
obtained by taking the limit as k goes to infinity of a k-component finite mixture model with a symmetric Dirichlet
prior.
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Pϕα

G

wi
n

Figure 5: A graphical representation of the Dirichlet process language model.

more appropriate when the base distribution is a simple parameterized distribution (e.g., a Gaussian)
and the clusters are expected to have some variability, whereas two-stage models are intended for
cases where the base distribution may be more complex (e.g., a PCFG) but there is no variability
between data points in a single cluster. An interesting area for future work lies in combining these
two features to create models with complex base distributions as well as variability in the output of
each cluster.

5.3 The Pitman-Yor Process

Proposition 3 A TwoStage(PYCRP(a,b),Pϕ) model (where Pϕ has infinite support) is equivalent to
a PYP(a,b,Pϕ) model.

Above, we described the Dirichlet process as the infinite dimensional analogue of the Dirichlet
distribution. Another way of defining the Dirichlet process, which leads to the Pitman-Yor process
as a generalization, is through the “stick-breaking” construction (Sethuraman, 1994). Recall that
the distribution G produced by the Dirichlet process has two parts: a countably infinite set of pos-
sible outcomes drawn from the base distribution G0, and weights assigned to those outcomes. The
stick-breaking construction describes the distribution of these weights. Under this construction, we
define a sequence of random variables (V1,V2, . . .), each following a Beta(1,α) distribution. The
distribution of the weights from the Dirichlet process is the same as the distribution of the set of
random variables in which the kth variable is defined to be ∏k−1

j=1(1−Vj)Vk. Intuitively, this is the
distribution we obtain over portions of a stick of length 1 when we break that stick into two pieces
with sizes proportional to (V1, 1−V1), then break the remainder into proportions (V2, 1−V2), and
so forth.

The stick-breaking construction for the Dirichlet process has just one parameter, α, but can
be generalized through the introduction of a second parameter to define a new distribution, the
Pitman-Yor process (PYP; Pitman, 1995; Pitman and Yor, 1997; Ishwaran and James, 2003). The
stick-breaking construction for this two-parameter distribution is similar to that given above, ex-
cept Vj is drawn from a Beta(1− a, ja+ b) distribution. Integrating over the weights in the two-
parameter stick-breaking construction gives a predictive distribution that is similar to that of the
Dirichlet process. More specifically, if we use z = (z1, . . . ,zn) to index the possible outcomes,
we obtain the predictive distribution given in Equation 4, that is, the PYCRP. The relationship
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between the PYCRP and the Pitman-Yor process is thus analogous to that between the CRP and
the Dirichlet process: the PYCRP is the discrete distribution on partitions obtained by integrating
over a distribution (the Pitman-Yor process) with weights generated from the two-parameter stick-
breaking process. Therefore, just as TwoStage(CRP(α),Pϕ) is equivalent to DP(α,Pϕ), we have
that TwoStage(PYCRP(a,b),Pϕ) is equivalent to PYP(a,b,Pϕ).

6. Effects of the Adaptor on Frequencies

We have now defined the two-stage modeling framework, shown that several Bayesian language
models proposed elsewhere can be viewed as special cases of this framework, and presented two
adaptors that generate power-law distributions over words. In this section, we consider how using
these adaptors affects estimates of the parameters of the generator—the process that produces the
underlying lexicon. In doing this, we return to our second motivating concern: the issue of how
we might explain the damping of word frequencies, with the extreme case being reconciliation of
models based on unique word types with those based on the observed frequencies of word tokens.
We first discuss the general implications of using the CRP and PYCRP for estimating the parame-
ters of the generator. We then explain how, in a TwoStage(PYCRP(a,b),Pϕ) language model, the
parameters of the PYCRP determine whether the parameters of the generator will be inferred based
on word types, tokens, or some interpolation between the two. Finally, we show that this Pitman-
Yor language model provides a principled explanation for the combination of token counts and type
counts found in Kneser-Ney smoothing (Ney et al., 1994; Kneser and Ney, 1995).

6.1 Impact of the Adaptor on Frequencies used for Estimation

By introducing an adaptor into our model, we provide a route by which word tokens can appear in
a corpus without having been directly produced by the generator. As a consequence, any estimate
of the parameters of the generator will be based only on those tokens for which the generator is
considered responsible, which will be a subset of the tokens in the corpus. The adaptor will thus have
the effect of damping the frequencies from which the parameters of the generator are estimated, with
the nature of this damping depending on the properties of the adaptor. In particular, we will show
that using the CRP or PYCRP as adaptors is approximately equivalent to estimating the generator
parameters from log transformed or inverse-power transformed token counts, respectively.

We can see how the choice of adaptor affects the frequencies used for estimating the parameters
ϕ of the generator by considering how to estimate ϕ from the observed corpus w.6 In general, the
parameters of generators can be estimated using Markov chain Monte Carlo methods, as we demon-
strate in Section 7. Here, we will present some general results characterizing how the frequencies
used in estimation are damped by using the CRP or PYCRP as an adaptor.

For either maximum-likelihood or Bayesian estimation, the relationship between ϕ and the cor-
pusw is characterized by the likelihood P(w |ϕ) (where we suppress the conditioning on the adaptor
parameters α or (a,b) here and in the remainder of this section). As noted in Section 4, the likeli-
hood can be expressed as

P(w|ϕ) =∑
z,���

P(z)Pϕ(���) (8)

6. Under the interpretation of this model as a Pitman-Yor process mixture model, this is analogous to estimating the
base measure G0 in a Dirichlet process mixture model (e.g., Neal, 2000).
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where the sum ranges over those z,��� pairs that generate w.
Equation 8 makes it clear that the likelihood is affected not only by ϕ but also by P(z). Neverthe-

less, we can still make some basic statements about the relationship betweenw and ϕ by considering
the properties of the model as a whole. First, notice that the total frequency nw of each word type
w, as obtained by summing the counts on all tables labeled with that type, will equal the frequency
of w in the corpus w. Second, all that matters for the estimation of ϕw (the parameter(s) associated
with word type w) is the number of tables labeled with w, since this value is equal to the number of
times we have drawn w from the generator—all other instances of w are produced by the adaptor.
Thus, we can gain insight into how estimates of ϕ are likely to be affected by the choice of adaptor
by considering how the adaptor affects the relationship between the frequency of a word type and
the number of tables labeled with that type.

The analysis given in the previous paragraph suggests that we want to compute the expected
number of tables labeled with a given word type under different adaptors. This expectation can
be computed from the posterior distribution on z and ��� given w, which can be decomposed as
P(z,��� |w) = P(��� |z,w)P(z |w). Note that P(��� |z,w) is equal to one if z and w are consistent with ���,
and zero otherwise, so we can compute P(z,��� |w) by computing P(z |w) subject to this consistency
constraint, that is, such that for each word type w, the appropriate nw tokens of w are of type w.
In order to simplify the mathematics, in the rest of this section we assume that each lexical item
� j produced by the generator is independent and identically distributed (i.i.d.) given ϕ. That is, if
���= (�1, . . . , �K), then

Pϕ(���) =
K

∏
�=1

Pϕ(� j).

First, we consider the CRP adaptor. In this case, we can obtain a good approximation to the
expectation of the number of tables over the posterior distribution. The posterior distribution is
exchangeable, so we can calculate the distribution over the number of lexical entries for a given
word type w by imagining that the nw instances of w are the first nw tokens in our corpus. The
posterior probability distribution for the seating assignment of the ith token is

P(zi = k |wi = w,z−i,���(z−i),ϕ) =
P(zi = k,wi = w |z−i,���(z−i),ϕ)

P(wi = w |z−i,���(z−i),ϕ)

where

P(zi = k,wi = w |z−i,���(z−i),ϕ) =

⎧⎨⎩ n
(z−i)
k

i−1+α · I(�k = w) 1≤ k ≤ K(z−i)
α

i−1+α ·Pϕ(w) k = K(z−i)+1

and the denominator is given by Equation 2. Dividing through yields

P(zi = k |wi = w,z−i,���(z−i),ϕ) =

⎧⎪⎨⎪⎩
n
(z−i)
k

n
(w−i)
w +αPϕ(w)

· I(�k = w) 1≤ k ≤ K(z−i)

α

n
(w−i)
w +αPϕ(w)

·Pϕ(w) k = K(z−i)+1
(9)

which we can now use to calculate the expected number of occupied tables (i.e., lexical entries)
for a word type that occurs nw times. Taking wi = w for i = 1, . . . ,nw means that Pϕ(w) is fixed
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for all nw decisions, and αPϕ(w) simply becomes a constant. Inspection of Equation 9 reveals
that the posterior distribution on seating assignments for all tokens of type w is given by the
CRP with parameter αPϕ(w) and a total of nw customers. As Antoniak (1974) showed, the ex-
pected number of occupied tables in this case is αPϕ(w)∑

nw
i=1 1/(αPϕ(w)+ i−1), or approximately

αPϕ(w) log
nw+αPϕ(w)
αPϕ(w)

= O(log(nw)).
Unfortunately, we cannot apply a similar analysis for use of the PYCRP adaptor. While the CRP

treats each word type independently (that is, ignoring dependencies in the generator, in a CRP the
number of tables associated with a word type is independent of the number of tables associated with
other word types), this is not true for the PYCRP. As with the CRP, the probabilities defined by the
generator multiply with the terms of the PYCRP when we generate a new table, so that

P(zi = k |wi = w,z−i,���(z−i),ϕ) ∝

{
(n(z−i)k −a) · I(�k = w) 1≤ k ≤ K(z−i)

(K(z−i)a+b) ·Pϕ(w) k = K(z−i)+1.
(10)

However, this distribution does not take the form of another PYCRP. We can only say that the
probability of choosing a new table under this distribution is bounded above by the probability
of choosing a new table under a PYCRP with parameters a and bPϕ(w). Ignoring the effect of
the number of tables associated with other word types, we expect the number of tables to be less
than the number produced by simply running a PYCRP(a,bPϕ(w)) over the nw tokens of w. The
expectation of the number of tables occupied after seating nw customers increases as O(naw) for the
PYCRP (Teh, 2006a), providing an upper bound on the number of tables we should expect a word
with frequency nw to produce when the PYCRP is used as an adaptor.7

These results provide a rough heuristic for understanding how using the CRP and the PYCRP as
adaptors damps the frequencies from which the parameters of the generator are estimated: using the
CRP and PYCRP as adaptors will be approximately equivalent to estimation from log and inverse-
power transformed frequencies respectively. To evaluate the accuracy of these approximations, we
conducted an experiment using a corpus derived from sections 0-20 from the Penn Wall Street
Journal treebank (Marcus et al., 1993). The corpus consisted of 30,114 unique word types, with a
total of 831,190 tokens. We then examined the parameter estimates produced by several two-stage
models, varying both the generator and the adaptor.

In all models, the generator was taken to be a multinomial distribution over the full vocabulary,
with a symmetric Dirichlet(β) prior. This generator was used because it is relatively generic, since
any distribution over a discrete set ultimately grounds out in a multinomial, and because it allows
us to parametrically explore the consequences of varying the strength of the prior. We used three
different kinds of prior, corresponding to different settings of the hyperparameters: β= 0.001,β= 1,
and β→∞. With β= 0.001, the prior prefers sparse multinomial distributions, which means that the
number of tables assigned to w has a strong effect on the resulting estimate of ϕw: word types with
many tables will tend to have high ϕw, while the sparse prior will push the estimated parameters
for the remaining word types closer to zero. With β = 1, the prior is uniform over multinomials,
which provides some regularization of the resulting estimates towards the uniform distribution. With
β→ ∞, the prior forces the estimated parameters to be the uniform distribution over all word types,
so the number of tables assigned to any given word type has no effect on the estimates. Note that
the i.i.d. generator assumption made above only holds when β→ ∞.

7. We recently became aware of work by Buntine and Hutter (2010), in which the expected number of occupied tables
in the PYCRP is derived. In future work, we hope to include this result in our analysis.
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We combined these three generators with a total of fifteen different adaptors. For each generator,
five models used a CRP adaptor with α = {1,10,100,1000,10000} and ten others used a PYCRP
adaptor with a = {0.1,0.2, . . . ,1.0} and b = 1. For each combination of generator and adaptor,
a Markov chain Monte Carlo (MCMC) algorithm was used to calculate the expected number of
occupied tables (from which the corresponding multinomial parameters were estimated) for each
word in the corpus. Details of this algorithm are provided in Appendix A. Figure 6 displays the
results: the expected number of occupied tables is shown, plotted as black dots, as a function of
nw for all combinations of generators and adaptors. To produce the figure, words were binned by
frequency using bins that were uniform on a log scale, and the posterior mean of the number of
occupied tables per word was averaged within bins.

Figure 6 also shows as gray lines the number of tables predicted by the heuristic approximations
described above. The predictions for the CRP (left column) assume that the number of tables is
equal to αPϕ(w)∑

nw
i=1 1/(αPϕ(w)+ i− 1), using the appropriate value of α but taking Pϕ(w) to be

uniform over all words. The result is accurate when Pϕ(w) is constrained to be uniform (row (c);
β→∞), but underestimates the number of tables for high frequency words when Pϕ(w) is itself more
sensitive to the number of tables (rows (a) and (b); β= 0.001 or 1). The predictions for the PYCRP
(right column) assume that the number of tables is equal to naw, and provide a good approximate
upper bound on the number of tables, with the actual numbers being closer to this upper bound
when Pϕ(w) is free to become higher for high-frequency words (row (a)). In general, the heuristic
of the number of tables increasing as O(naw) seems more accurate when nw is small.

The influence of the prior on the number of tables per word under the two-stage model with
PYCRP adaptor can be understood in terms of how the prior affects the difference between the pos-
terior distribution on the number of tables and the simpler PYCRP we use to approximate it. The
approximation PYCRP always assigns a higher probability to new tables than the posterior distribu-
tion, but the difference between the two for a word w will depend on the value of Pϕ(w), since the
approximation assumes the probability of a new table is proportional to K(z−i)a+bPϕ(w), while the
true probability is proportional to K(z−i)aPϕ(w)+ bPϕ(w). With a prior that allows the number of
tables to have a strong influence on Pϕ(w) (row (a)), the most frequent words will tend to have much
larger values of Pϕ(w) than the less frequent words, so the difference between the approximation
and the true distribution for the most frequent words will not be very great. However, when Pϕ(w)
is constrained to be more uniform (rows (b) and (c)), the difference between the approximation and
the true distribution for frequent words is much larger, so the approximation is bad.

A surprising feature of the PYCRP models is the nonmonotonic relationship between nw and
the true number of tables occupied by w, which is noticeable with higher values of a (except a= 1)
in the bottom two plots on the right. This behavior is due to a confluence of factors, which include
both the high value of a and the very large number of tables required to account for all the words
in the corpus (a result of the large number of word types). Under these circumstances, when the
total number of tokens of w is small, it is not possible to have a table with enough tokens of w
so that the probability of placing another token of w on that table is much higher than placing the
token on a new table.8 Thus, the posterior distribution over the number of tables for w will be

8. Empirically, the total number of tables K inferred by our sampler is around 65,000, so the posterior probabil-
ity of assigning a token of w to a new table with a = .9, b = 1, and uniform Pϕ(w) is roughly proportional to

((65,000)(0.9)+ 1) 1
30,114 ≈ 2, wheras the probability of assigning w to an old table is proportional to n(z−i)k − 0.9,

which is actually less than two unless there are already more than two tokens on the old table. Even with five tokens
already on the old table, the probability of using the old table is only about twice that of using the new table.
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Figure 6: Mean number of occupied tables as a function of word frequency (nw) under models of the
text of sections 0-20 of the Penn Wall Street Journal treebank. The three rows of panels
correspond to multinomial generators with Dirichlet(β) priors and (a) β= 0.001, (b) β=
1, and (c) β→ ∞. Each row shows the results of using the CRP (left) and PYCRP (right)
as adaptors. All axes are on a log scale. Black dots and error bars show the empirical
means and standard errors computed using MCMC; gray lines indicate approximations
described in the text. The left-hand column shows results for the CRP with parameter
α = {1,10,100,1000,10000} (from bottom to top; results for the first three are nearly
identical and lie on top of each other in the graphs). The right-hand column shows results
for the PYCRP with b= 1 and a= {0.1,0.2, . . . ,1.0} (from bottom to top).
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relatively uniform, and the average number of inferred tables will be large relative to the size of nw.
However, as nw increases, it becomes possible to cluster the tokens so as to place a larger number
on each table. There is a bigger win in probability for inferring a configuration with fewer tables
when nw is large, because this situation implies that more of the tokens were generated from old
tables with many existing tokens, which have much higher probability than tables with zero or even
a handful of existing tokens. Note that when Pϕ is uniform (i.e., low for all words, as in row (c)), the
probability of a new table is quickly outweighed by the probability of an existing table even with
low counts. However, when β is small so that Pϕ is estimated to be higher for more frequent words,
the nonmonotonicity is not observed until nw becomes much larger.

Overall, the theoretical and empirical results presented in this section suggest that our two-stage
approach can provide a way to justify the use of logarithmic and inverse-power frequency damping
in text processing applications. More significantly, this justification explains why adopting these
schemes improves performance: it compensates for the kind of “rich-get-richer” processes that
produce power-law distributions in natural language.

6.2 Types and Tokens

The most extreme kind of frequency damping is throwing away all but a single instance of each
word type, and only keeping track of the unique word types that appear in the corpus. Just as we
can explain other forms of frequency damping in terms of our two-stage framework, we can show
that the TwoStage(PYCRP(a,b),Pϕ) model provides a justification for the role of word types in
formal analyses of natural language. We will now show that estimation schemes based upon type
and token frequencies are special cases of the Pitman-Yor language model, corresponding to the
extreme values of the parameter a. Values of a between these extremes identify estimation methods
that interpolate between types and tokens.

Recall the joint distribution over words defined by the TwoStage(PYCRP(a,b),Pϕ)model (from
Equation 6):

P(w |ϕ) = ∑
z,���

Γ(1+b)
Γ(n+b)

(
K(z)−1

∏
k=1

(ka+b)

)(
K(z)

∏
k=1

Pϕ(�k)
Γ(n(z)k −a)

Γ(1−a)

)

where the sum ranges over those z and ��� that generate w. When b= 0, this equation reduces to

P(w |ϕ) = ∑
z,���

Γ(1)
Γ(n)

·aK(z)−1(K(z)−1)! ·
K(z)

∏
k=1

Pϕ(�k)
Γ(n(z)k −a)

Γ(1−a)

= ∑
z,���

(K(z)−1)!
(n−1)!

·aK(z)−1 ·
K(z)

∏
k=1

Pϕ(�k)
Γ(n(z)k −a)

Γ(1−a)
. (11)

The distribution P(w |ϕ) determines how the data w influence estimates of ϕ, so we will consider
how P(w |ϕ) changes under different limits of a.

When a→ 0, the aK(z)−1 term in Equation 11 causes the sum over (z,���) to be dominated by the
partition of customers with the smallest value of K(z), that is, the fewest number of tables. Since
seating arrangements are restricted so that �zi = wi, the dominant arrangement contains exactly one
table, and one occurrence of Pϕ(w), per word type w. Therefore estimates of ϕ will be based on
word types.

2355



GOLDWATER, GRIFFITHS AND JOHNSON

When a → 1, aK(z)−1 → 1. If nk = 1 then Γ(n(z)k −a)
Γ(1−a) = 1, but otherwise this term approaches

0. Therefore all terms in the sum approach 0 except for those where there is only a single token
assigned to each table. In this case, K(z) = n and �k = wk, which means that Pϕ is responsible
for generating all the word tokens in the data. Estimates of ϕ will consequently be based on word
tokens.

The extreme values of the a parameter in the PYCRP thus correspond to type-based inference
(a= 0) or token-based inference (a= 1), while choosing other values of a between 0 and 1 provides
a systematic way of smoothly interpolating between the type-based and token-based extremes.

6.3 Pitman-Yor Processes and Kneser-Ney Smoothing

In addition to justifying the role of types in formal analyses of language in general, using the PYCRP
as an adaptor to create a Pitman-Yor language model can provide an explanation of the assumptions
behind a specific scheme for combining token and type frequencies: Kneser-Ney smoothing. In this
section, we outline the relationship between Kneser-Ney smoothing and the PYCRP, showing that
the predictive distribution of the Kneser-Ney smoother can be viewed as an approximation to that
of the Pitman-Yor language model. This relationship was first pointed out in a conference paper
presenting preliminary versions of some of the results in this paper (Goldwater et al., 2006a), and
then independently identified by Teh (2006a,b), who expanded on this observation and presented the
first empirical comparisons of the two methods. We return to the results of empirical comparisons
briefly below.

The Kneser-Ney smoother estimates the probability that a word token will belong to a particular
type by combining type and token frequencies, and has proven particularly effective for n-gram
models (Ney et al., 1994; Kneser and Ney, 1995; Chen and Goodman, 1998). To use an n-gram
language model, we need to estimate the probability distribution over word types given a particular
history, that is, the n− 1 preceding tokens. Assume we are given a multiset w of N tokens that
all share a common history, and we want to predict the next token, wN+1, that will occur with that
history. For example, the history might be in the, with w = (house book way school house . . . ). (We
use a multiset rather than a vector because we care only about the counts of the word types in w,
not their ordering.) Assume that we also have H other multisets w(1), . . . ,w(H), each associated with
one of H other histories. The interpolated Kneser-Ney (IKN) smoother (Chen and Goodman, 1998)
makes the prediction

P(wN+1 = w |w) =
n(w)w − I(n(w)w > D)D

N
+
∑w′ I(n(w)w′ > D)D

N
∑h I(w ∈ w(h))

∑w′∑h I(w′ ∈ w(h))
(12)

where D is a “discount factor” specified as a parameter of the model, the sum over h includes w,
and we have suppressed the dependence on w(1), . . . ,w(H).

We can define a two-stage model that approximates the Kneser-Ney smoother by assuming that
eachw(h) is produced by a two-stage restaurant with a PYCRP adaptor (i.e., a separate restaurant for
each history), where all the restaurants share the same generator, parameterized by ϕ. We assume ϕ
is a multinomial distribution, which we estimate using maximum-likelihood estimation. Under this
model, the probability that token wN+1 takes on the value w given w and ϕ is

P(wN+1 = w |w,ϕ) =∑
z
P(wN+1 = w|w,z,ϕ)P(z|w,ϕ)
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where z is the seating assignment for w, and P(wN+1 = w|w,z,ϕ) is equivalent to P(wN+1 =
w|���(z),z,ϕ), given by Equation 5. Substituting in Equation 5 and assuming b= 0, this becomes

P(wN+1 = w |w,ϕ)

= ∑
z

nww −Kw(z)a+K(z)aPϕ(w)
N

P(z|w,ϕ)

= ∑
z

nwwP(z|w,ϕ)
N

−∑
z

Kw(z)aP(z|w,ϕ)
N

+∑
z

K(z)aPϕ(w)P(z|w,ϕ)
N

=
nww
N

−∑
z

Kw(z)aP(z|w,ϕ)
N

+∑
z

∑w′ Kw′(z)aPϕ(w)P(z|w,ϕ)
N

=
nww −Ez[Kw(z)]a

N
+
∑w′ Ez[Kw′(z)]a

N
Pϕ(w) (13)

where Ez[Kw(z)] = ∑zKw(z)P(z|w,ϕ), and Kw(z) is the number of tables with label w under the
seating assignment z. The other histories enter into this expression via ϕ. Since all the w(h) are
assumed to be produced from a single set of parameters ϕ, the maximum-likelihood estimate of
Pϕ(w) will approach

Pϕ(w) =
∑h I(w ∈ w(h))

∑w′∑h I(w′ ∈ w(h))

as a approaches 0, since only a single instance of each word type in each context will contribute to
the estimate of ϕ. Substituting this value of Pϕ(w) into Equation 13 reveals the correspondence to
the Kneser-Ney smoother (Equation 12). The only difference is that the constant discount factor D
is replaced by aEz[Kw(z)], which will increase slowly as nw increases.

Note that the formulation given above is very general in that we do not specify a particular gen-
erator model Pϕ. However, to complete the correspondence with IKN n-gram smoothing, we can
assume that the generator for the model that computes the distribution over word types conditioned
on a history of size n is another two-stage PYCRP model that computes probabilities conditioned
on histories of size n− 1. The recursion bottoms out with a uniform distribution over theW word
types in the vocabulary, P0(w) = 1/W . This hierarchical Pitman-Yor language model (Teh, 2006b)
is analogous to the hierarchical Dirichlet process introduced by Teh (2006a). Intuitively, we can
imagine a separate restaurant for each history of size n, where the counts in that restaurant cor-
respond to the distribution of word tokens given that history. If a customer sits at a new table in
one of these restaurants, the label on that table is distributed according to the counts in a “backoff”
restaurant with history size n−1. All restaurants with the same final n−1 history words will share
the same backoff restaurant.

As noted above, there are slight differences between the predictions of this Pitman-Yor language
model and IKN smoothing due to the replacement of the constant discount factor D in IKN with an
expression that increases as a function of nw. Interestingly, modified Kneser-Ney (MKN) smoothing
(Chen and Goodman, 1998) also replaces the single constant D in IKN with a small set of D values
that increase as a function of nw (Chen and Goodman 1998 use three values, for nw = 1, 2, and 3
or more). MKN was introduced by Chen and Goodman (1998) as an alternative to IKN that was
shown to work better in practice. So it has been known for a number of years that increasing D with
nw seems to provide better predictions, and initial experiments with the Pitman-Yor language model
(Teh, 2006a,b) did not show improvements over MKN (although they did show improvements over
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IKN). However, these experiments were performed on a relatively small corpus of text (16 million
words of newswire). More recently, Huang and Renals (2010) developed a parallel approximate
training algorithm for the Pitman-Yor language model and performed a more thorough set of ex-
periments comparing IKN, MKN, and the Pitman-Yor language model within a speech recognition
system. The models were trained on a large corpus of conversational speech (200 million words)
and evaluated on perplexity and word error rate. The Pitman-Yor model achieved the best results
on both measures, and gains over the other two models became larger as corpus size increased. So
although empirical investigation was sufficient to develop a very close approximation to the Pitman-
Yor language model, discovery of the true model has nevertheless led to better language models in
practice.

7. Types and Tokens in Modeling Morphology

Our attempt to develop statistical models of language that generically produce power-law distribu-
tions was motivated by the possibility that models that account for this statistical regularity might be
able to learn linguistic information better than those that do not. Our two-stage language modeling
framework allows us to create exactly these sorts of models, with the generator producing individual
lexical items, and the adaptor producing the power-law distribution over words. In this section, we
show that adding a PYCRP adaptor to a simple generative model for morphology can vastly im-
prove unsupervised learning of the morphological structure of English, and we explore the effects
of varying the PYCRP parameters in this task. Morphology provides a particularly interesting case
for testing our model, as it is one context in which formal linguists focus on accounting for the
appearance of word types (e.g., Pierrehumbert, 2003), while computational linguists have typically
developed supervised models based on the token frequencies of those words (e.g., Hakkani-Tür
et al., 2002). Interestingly, previous work on unsupervised learning of morphology often ignores
token frequencies, instead using word types as input (Goldsmith, 2001, 2006; Snover and Brent,
2003; Monson et al., 2004).9 This fact suggests that the additional information provided by to-
ken frequencies may actually be harmful for learning morphology using standard models. Indeed,
the results we report below support this hypothesis; we provide some possible explanations in the
Section 8.1.2, where we discuss the results of our first set of experiments.

Previous morphology learning models have sidestepped the problems presented by token fre-
quencies by simply ignoring them and using only a list of unique word types as input instead. It
is worth reiterating here that our own two-stage model can be made to behave equivalently: with
appropriate values of the PYCRP parameters (specifically, a= b= 0), our two-stage model assigns
every token of the same word type to the same table, so that the parameters of the generator model
(here, the morphology model) are inferred based on a list of unique word types. The result is equiv-
alent to that of a model consisting only of the generator, where the input is a list of word types,
as in the systems mentioned above. However, our full two-stage model is more flexible than these
other systems. First, by choosing different adaptor parameters, different damping regimes can be
achieved. Although these too could be simulated through different preprocessing schemes (e.g.,
taking logs of token frequencies rather than removing frequencies entirely), our model is more

9. Descriptions of Goldsmith’s Linguistica system (Goldsmith, 2001, 2006) do not mention that frequencies are dis-
carded before analysis. However, the version of the program we downloaded from http://humanities.uchicago.
edu/faculty/goldsmith produced the same results when run on a full corpus as when run on a list of the unique
word types in the corpus.
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promising precisely because it can achieve the effects of damping while leaving the actual input
frequencies unchanged. Thus, unlike previous models, ours can be used to learn directly from a
corpus without preprocessing. This makes it possible to extend the model to incorporate additional
information available from the corpus but not from a word list, such as contextual information. The
experiments presented here are intended only to explore the effects of different parameter values,
and do not take immediate advantage of this difference between our model and previous unsuper-
vised systems. However, recent work using adaptor grammars has suggested some ways in which
context can be incorporated into models based on the two-stage framework, for example by learning
collocations between words at the same time as sub-word units (Johnson, 2008a; Johnson and Gold-
water, 2009). Another example of using contextual information might be a hidden Markov model
for part-of-speech tagging, where the standard multinomial emission distributions could be replaced
with our morphology model, so that the learned part-of-speech classes would be informed both by
corpus context and morphological structure. It is difficult to see how this kind of joint learning could
take place in a probabilistic model requiring one instance of each word type as input.

7.1 A Lexicon Generator for Morphology

Many languages contain words built up of smaller units of meaning, or morphemes. These units
can contain lexical information (as stems) or grammatical information (as affixes). For example, the
English word walked can be parsed into the stem walk and the past-tense suffix -ed. Knowledge of
morphological structure enables language learners to understand and produce novel wordforms, and
is important for many natural language processing tasks in morphologically rich languages (Collins
et al., 1999; Larkey et al., 2002; Cowan and Collins, 2005; Koehn and Hoang, 2007).

As a basic model of morphology, we assume that each word consists of a single stem and
(possibly empty) suffix, and belongs to some inflectional class. Each class is associated with a stem
distribution and a suffix distribution. We assume that stems and suffixes are independent given the
class, so the joint probability of generating a particular class c, stem t, and suffix f is defined as

P(c, t, f ) = P(c)P(t |c)P( f |c)

where the distributions on the right hand side are all assumed to be multinomial, generated from
symmetric Dirichlet priors with hyperparameters κ,τ, and φ respectively. So far, we have been
assuming that the generator in a two-stage model is a distribution over lexical items that are strings.
However, in this morphology model, the generator produces analyses of strings (class, stem, suffix),
rather than the strings themselves. We will therefore distinguish between the label �k on each table,
which we continue to assume is a string, and the analysis of that label A(�k), which is an object
produced by the generator. We can, if we wish, compute the probability of a label regardless of its
analysis as

P(�) = ∑
(c,t, f )

I(�= t. f )P(c)P(t |c)P( f |c)

where t. f is the concatenation of t and f , and I(.) is an indicator function taking on the value 1
when its argument is true, and 0 otherwise.

Our generator model for morphology is inspired by the model described by Goldsmith (2001),
and is intended to encode two basic linguistic intuitions. The first is that different morphological
classes contain different sets of stems and suffixes. Also, although stems and suffixes are not truly
independent even within a morphological class, morphological boundaries do tend to coincide with
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points of low predictability in a string of phonemes or characters (Harris, 1955). That is, there is
greater independence between stems and suffixes than between other possible substrings. Another
way of looking at this is that, if we know that, for example, past and present tense verbs are each
relatively common, then if we see a particular verb very frequently in the past tense, we would
expect to see it very frequently in the present tense as well (Yarowsky and Wicentowski, 2000).

We also note two important differences between our model and that of Goldsmith. First, Gold-
smith’s model is recursive (i.e., a word stem can be further split into a smaller stem plus suffix),
which makes it better able to deal with complex morphology than the model presented here. How-
ever, the simplifying assumption of a single stem and suffix per word is often sufficient for English
inflectional morphology. We emphasize that our primary goal here is to illustrate the effects of the
generator-adaptor framework rather than to develop a state-of-the-art morphology learning system.

The second difference between Goldsmith’s model and our own is that Goldsmith’s model as-
sumes that all occurrences of each word type have the same analysis. The model here allows differ-
ent tokens with the same observed form to have different analyses when a> 0 or b> 0. This feature
could be important for representing homonymous words with different morphological analyses.

7.2 Gibbs Sampler

Our goal in defining this morphology model is to be able to automatically infer the morphological
structure of a language. Since our model is exchangeable, this can be done using Gibbs sampling,
a standard Markov chain Monte Carlo method (Gilks et al., 1996). In Markov chain Monte Carlo,
variables in the model are repeatedly sampled, with each sample conditioned on the current values of
all other variables in the model. This process defines a Markov chain whose stationary distribution
is the posterior distribution over model variables given the input data.

Rather than sampling all the variables in our two-stage model simultaneously, our Gibbs sampler
alternates between sampling the variables in the generator and those in the adaptor (here, a PYCRP).
Our algorithm iterates over the following two steps, as illustrated in Figure 7:

1. Fix the assignment z of words to tables, and sample a new morphological analysis A(�k) for
the label on each table.

2. Fix the morphological analyses A(���) of the labels, and sample a new table assignment zi for
each word token wi.

In Step 1, we compute the probability distribution over analyses of the current label A(�k) con-
ditioned on the analyses of all other labels A(���−k):

P(A(�k) = (c, t, f ) |A(���−k),κ,τ,φ)

∝ I(�k = t. f ) ·P(c, t, f |A(���−k),κ,τ,φ)

= I(�k = t. f ) ·P(c |c−i,z,κ) ·P(t | t−i,c,z,τ) ·P( f | f−i,c,z,φ)

= I(�k = t. f ) ·
mc+κ
m+κC

·
mt,c+ τ
mc+ τT

·
mf ,c+φ
mc+φF

(14)

where the notation x−i is now used to indicate (x1, . . . ,xi−1,xi+1, . . . ,xn) (by exchangeability, we can
nevertheless treat xi as though it is the last of the n variables when computing probabilities); C,T ,
and F are the total possible number of classes, stems, and suffixes; and mx is the number of tables in
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(a)

k =

t = walk

f = ed

t = walkt = jump t = wa t = greet t = wa

1 2 34 5 7 89 6

c= 1

f = ed

c= 1

f = NULL

c= 1

f = lks f = ed

c= 1 c= 2

f = lked

2 3 4 5 61

i=

c= 1

(b)
A(�1) = (1,NULL,walked)) |A(���−1),κ,τ,φ) ∝

5+κ
6+2κ

·
τ

5+21τ
·

φ
5+25φ

A(�1) = (1,w,alked)) |A(���−1),κ,τ,φ) ∝
5+κ
6+2κ

·
τ

5+21τ
·

φ
5+25φ

A(�1) = (1,wa,lked)) |A(���−1),κ,τ,φ) ∝
5+κ
6+2κ

·
1+ τ
5+21τ

·
φ

5+25φ
. . .

A(�1) = (2,wa,lked)) |A(���−1),κ,τ,φ) ∝
1+κ
6+2κ

·
1+ τ
1+21τ

·
1+φ
1+25φ

. . .

A(�1) = (2,walked,NULL)) |A(���−1),κ,τ,φ) ∝
1+κ
6+2κ

·
τ

1+21τ
·

φ
1+25φ

(c) P(z1 = 1 |wi = w,z−i,���(z−i),ϕ,a,b) ∝ 2−a

P(z1 = 6 |wi = w,z−i,���(z−i),ϕ,a,b) ∝ 1−a

P(z1 = 7 |wi = w,z−i,���(z−i),ϕ,a,b) ∝ (6a+b)Pϕ(walked)

Figure 7: An example illustrating our Gibbs sampler. In this example, the corpus w = (walked,
jumped, walk, walked, walks, jumped, greeted, walked, walked), and initially z =
(1, 2, 3, 1, 4, 2, 5, 6, 1). (a) illustrates the current seating arrangement, with numbers
above each table indicating the indices i of customers seated there and the number below
each table indicating the index k of the table. The morphological analysis associated with
each table is also shown. T and F for this corpus (the total number of possible stems and
suffixes) are 21 and 25, and we let C = 2. To complete a full Gibbs iteration, we first
resample the analyses, and then the table assignments. In this case, we start by removing
the current analysis of walked on table 1 (and its associated counts), and computing the
probability of each of the 14 possible new analyses, as shown in (b). We sample from this
distribution, replace the new analysis on table 1 (incrementing the associated counts), and
repeat for the remaining five tables. Then, we sample new values for z1 . . .z9 in a similar
fashion. (c) shows the computations for z1, which is restricted to taking on the values 1,
6, or 7 (a new table) because only these tables may be labeled with walked.
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A(���−z) whose label includes x. (We use m to distinguish these counts over labels from the n counts
over tokens.) The last line is obtained by integrating over the multinomial parameters for the classes,
stems, and suffixes as in Equation 7; for example, P(c |c−i,z,κ) =

∫
P(c |θc)P(θc |c−i,z,κ)dθc

where θc are the parameters of the multinomial distribution over classes.
In the experiments presented here, C is fixed empirically and T and F are determined for each

set of input data by computing the number of possible segmentations of the words in the data into
stems and suffixes (i.e., determining all the prefix and suffix strings for those words; the empty
string is considered as a possible stem as well as a possible suffix).

In Step 2 of our sampler, we compute the distribution over table assignments zi for the ith word
token using Equation 10, repeated below with the conditioning adaptor parameters included:

P(zi = k |wi = w,z−i,���(z−i),a,b,ϕ) ∝

{
(n(z−i)k −a) · I(�k = w) 1≤ k ≤ K(z−i)

(K(z−i)a+b) ·Pϕ(w) k = K(z−i)+1

where Pϕ(w) is found using Equation 14 by summing over all possible analyses.
Note that in Step 2, tables may appear or disappear, which will cause the label counts to change.

When a table is removed, the class, stem, and suffix counts of its label are decremented. When a
new table is added, a morphological analysis is chosen at random according to Equation 14, and the
appropriate counts are incremented.

8. Experiments

In this section, we use the simple morphology model defined above as an example to demonstrate
that applying an appropriate adaptor can significantly improve the learning of linguistic structure.
We also examine how the choice of parameters in the PYCRP affects learning behavior. We perform
two experiments, one using verbs in standard written form from a corpus of newspaper text, and the
other using all words from a corpus of phonemically transcribed child-directed speech. In each
experiment, evaluations were performed on a single sample taken after 1000 iterations of our Gibbs
sampler, withC = 6 classes, κ= .5 and τ= φ= .001.10 For the PYCRP parameters, we fixed b= 0
and experimented with values of a between 0 and 1.11

8.1 Experiment 1: Verbs

We begin by describing the data and evaluation method used in this experiment, followed by the
experimental results.

8.1.1 DATA AND EVALUATION

We prepared a data set consisting of English verbs in written form from the PennWall Street Journal
treebank (Marcus et al., 1993), a corpus of hand-tagged and parsed text from theWall Street Journal.
Using the part-of-speech tags, we extracted all the verbs from sections 0-21 of the corpus, which
yielded 137,997 tokens belonging to 7,761 types. This list of verbs served as the input to the

10. Although we fixed the values for the hyperparameters in our experiments, all of our models can be extended to
include prior distributions over the hyperparameters. In that case the hyperparameter values can be inferred by
sampling. (West, 1992).

11. Technically, setting a= 0 and b= 0 leads to undefined results, but algorithmically one can simulate lima→0 by using
exactly one table for each word type, which is what we did.

2362



TWO-STAGE LANGUAGE MODELS

morphological segmentation system. In this data set, the total number of unique prefix strings T is
22,396, and the total number of unique suffix strings F is 21,544.

To create a gold standard for evaluation, we automatically segmented each verb in the input
corpus using heuristics based on its part-of-speech tag and spelling. For example, verbs tagged as
VBD (past tense) or VBN (past participle) and ending in -ed were assigned a morpheme boundary
before the -ed, while most verbs tagged as VBZ (third person present singular) and ending in -s were
assigned a boundary before the -s. (The VBZ forms does and goes, as well as forms ending in -xes
or -ches, such as mixes, were assigned a boundary before -es instead.) Potentially irregular forms
such as past participles ending in -n were examined by hand to ensure correct segmentation.

It is important to note that any choice of segmentation will lead to some inconsistencies due
to spelling rules that insert or delete characters before certain endings. The segmentation we used
prefers consistency among suffixes rather than stems when there is a conflict. That is, suffixes will
be the same across words such as jump.ed and stat.ed, or jump.s and state.s, but the stems in stat.ed
and state.s will be different.

Given the gold standard analysis for each word and a sample analysis from our algorithm, seg-
mentation accuracy was computed in two different ways. First, for each word type, the most fre-
quent suffix for that type (in the sampled hypothesis) was determined and counted once to evaluate
the proportion of types with each suffix. Second, since different tokens of the same type may be
assigned different analyses, the proportion of word tokens with each suffix is also displayed. This
analysis gives more weight to the results of frequent words, and also takes into account any uncer-
tainty in the model (although in fact less than 1.5% of types have multiple analyses for any value of
a).

8.1.2 RESULTS

As a model for learning morphology, our generator by itself is not very effective. Only 55.4% of
word types and 62.2% of word tokens are segmented correctly. For comparison, baseline accuracy
for a system that always leaves words unsegmented is 30.7% for types and 57.1% for tokens. It turns
out that for most words, the segmentation identified by the generator model is actually the same as
the unsegmented baseline, as illustrated in Figure 8. In other words, the model simply memorizes
full words rather than splitting off (non-empty) suffixes. This is particularly true of frequent words,
which is why token accuracy is so similar for the baseline and the generator model.

One might expect that the sparse Dirichlet priors used in our generator, which encourage fewer
total stems and suffixes overall, would push the system towards a more parsimonious solution (i.e.,
fewer complete memorized wordforms). We know that the priors do have some effect, because the
maximum-likelihood solution for this model is the baseline described above, with each word left
unsegmented. However, even with much stronger Dirichlet priors than the ones reported here, the
performance of the generator model alone is underwhelming. The reason is twofold. First, our
generator model assumes complete independence between stem and suffix probabilities given the
class of the word. In reality, stem and suffix probabilities are not completely independent (e.g.,
announce tends to occur more often with -ed than does head). As the amount of data for a particular
verb accumulates, any deviation from independence becomes more apparent, and the model resolves
this by memorizing entire words rather than segmenting them. This tendency is compounded by
a second factor, which is that the most frequent words in the data are almost all irregular (e.g.,
rise/rose). Since our model deals only with segmentation, irregular words must be analyzed as
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Figure 8: Confusion matrices for the morphological generator model alone (equivalent to the two-
stage morphology model with a= 1) on the verb data set. The area of a square at location
(i, j) is proportional to the number of word types (left) or tokens (right) with true suffix i
and found suffix j.

having empty suffixes. This raises the overall probability of empty suffixes, making the model less
likely to propose non-empty suffixes even when these are appropriate.

These issues may seem particular to our very simple model, or to the problem of morphological
learning in English. However, we would argue that they are far more general. While it is true
that English verbal morphology is notorious for its large number of irregular verbs, irregularity is
found to varying degrees across all languages and types of linguistic structure. For example, in
English, idiomatic expressions such as X has got it made or X is fit to be tied12 can be viewed
as syntactically irregular forms, in the sense that they both use the passive construction but have
no corresponding active version. And, like other idioms, they also have irregular (that is, non-
compositional) semantics. Importantly, the relationship between frequency and regularity observed
in the current experiment (i.e., that irregular forms tend to be the most frequent) seems to be a
very general property of language (Greenberg, 1966; Bybee, 1985). Together with the power-law
distribution of linguistic forms, this fact implies that irregular forms will often dominate the input
to statistical learning systems, which in turn may cause significant problems for an unsupervised
model that does not take these facts into account.

One solution to these problems would be to simply change the input by removing repeated
tokens of each type, that is, to present the system with only a list of unique word types. As discussed
in the introduction to this section, many previous morphology learning systems have taken this
approach. Instead, we address the problem by applying our two-stage framework, adding a PYCRP
adaptor to our generator model. With this approach, we find that for a wide range of a, from 0 up
to about 0.6 or 0.7, results are stable and considerably better than when using the generator model
alone (or, equivalently, the 2-stage model with a= 1). Accuracy scores are shown in Figure 9, and
confusion matrices for the model with a= 0.6 are shown in Figure 10. Given our discussion above,
it should be no surprise that the better performance is due to the system finding more non-empty

12. These examples are due to Jackendoff (2002).

2364



TWO-STAGE LANGUAGE MODELS

0 0.2 0.4 0.6 0.8 1
50

60

70

80

90

Value of a

P
er

ce
nt

 c
or

re
ct

 

 

types
tokens

Figure 9: Percentage of verb types and tokens assigned the gold standard analysis.
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Figure 10: Confusion matrices for the 2-stage morphology model with a= 0.6.

suffixes overall. This is illustrated both in the confusion matrices and in Figure 11, which shows
the true distribution of words with each suffix and the distribution found by the two-stage system
for various values of a. Again, we see that the distribution is stable for 0 ≤ a ≤ 0.7. For a > 0.7,
empty suffixes begin to take over, causing performance to drop. Figure 12 indicates that the average
number of tables per word type for a ≤ .7 rises slowly from one to about four, whereas higher
values of a cause a sharp increase in the average number of tables per type, up to almost 18. It is
this increase that seems to be problematic for learning.

Finally, we provide a summary of the final sample in each of two runs of our sampler, with
a = 0.1 and a = 0.6, in Table 1. An interesting feature seen in Table 1(b) is that the system has
created a separate class for verbs with irregular past tense forms (second from the top). Also, in both
runs, the system frequently hypothesizes analyses in which stem identity is kept constant across
forms (as in stat.e, stat.ing, stat.ed, stat.es), whereas the gold standard maintains suffix identity
(state, stat.ing, stat.ed, state.s). This leads the system to assume -e and -es suffixes where the gold
standard has NULL and -s, and to place stems ending in e in separate classes from the other stems.
This kind of problem is common to many morphological learning systems, and cannot be solved
with a purely concatenative approach to morphology. It is also worth noting that, if the goal is
to achieve a segmentation with the fewest total number of stems plus suffixes (minimizing storage
cost) then the choice of segmentation taken by the system is actually better than the gold standard,
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Figure 11: Results of the two-stage morphology learner for various values of a on the verb data set.
The proportion of word types (top) and tokens (bottom) found with each suffix is shown,
along with the distribution of suffixes in the gold standard.
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since the total number of distinct stems plus suffixes is smaller. Only a few extra suffixes must be
included to avoid near duplication of a large number of stems.

The primary remaining source of error that can be seen in the confusion matrices comes from
wordforms analyzed as containing no suffix, where actually some non-empty suffix was present. In
most cases, these were words where only a single inflected form was present in the data, so there
was no reason for the system to postulate a complex analysis.

8.2 Experiment 2: Child-directed Speech

Experiment 1 used a corpus of verbs in orthographic form as input data, partly because learning
English verbs is a standard task for computational models of morphology, and partly because this
choice of corpus makes it possible to evaluate against a gold standard. However, using a single part
of speech is a gross oversimplification of the learning problem. We therefore performed a second
experiment using a corpus of phonemically transcribed child-directed speech, as described below.

8.2.1 DATA

The original source of the data used in this experiment was the Brown corpus (Brown, 1973) from
the CHILDES database (MacWhinney and Snow, 1985), which contains transcribed parent-child
interactions from long-term observational studies on three English-learning children. We extracted
all the words spoken by caretakers, and converted the representations of these from standard written
form to phonemic form using a phonemic dictionary.13 Variations in pronunciation indicated in the
original transcriptions (e.g., going vs. goin’) were preserved as much as possible in the phonemic
forms (go1N, go1n),14 and many non-words (e.g., hm) were also retained, making this corpus some-
what noisy. There are a total of 369,443 word tokens in the corpus belonging to 6,807 types. The
total number of unique prefix strings T is 14,639, and the total number of unique suffix strings F
is 16,313. Since there is no gold standard for this corpus, our evaluation is qualitative, based on
examining the output of the algorithm.

8.2.2 RESULTS

Qualitatively, the results of varying the PYCRP parameter a are similar for this data set and the
corpus of English verbs. Table 2 shows that as a increases, the number of different suffixes found
decreases, and the proportion of word types analyzed with empty suffixes increases. As an indicator
of the effect on other suffixes, the proportion of words found to contain the most common non-
empty suffix z is also shown. As in the verb corpus, the highest values of a lead to analyses with
almost no interesting morphological structure, while for lower values, many words are found to
contain non-empty suffixes.

An interesting difference between the results from the two corpora is noticeable for the lowest
values of a. In the verb corpus, results were very similar for values of a ≤ .7. Here, there is a
more graded effect, and for a ≤ .2 the system actually produces too many different suffix types.
Examining the output of the system with a = 0 (summarized in Table 3) illustrates the problem.
Five of the classes are reasonable: three contain primarily nouns, with possible suffixes NULL and

13. We thank James Morgan and the Metcalf Infant Research Lab at Brown University for providing the phonemic
dictionary for this corpus.

14. We use typewriter font to indicate phonemic symbols. The phonemic alphabet used in this data set is provided in
Appendix B.
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(a) a= 0.1

Tables Stems Suffixes
1473 advis 9 ed 499

rang 8 ing 371
eliminat 8 e 255
pass 8 NULL 177
settl 8 es 171
compar 8
. . .

1936 remov 13 ed 615
assum 10 e 539
enabl 9 ing 480
produc 9 es 296
continu 9 en 6
prov 8
. . .

1333 represent 9 NULL 612
back 9 ed 305
contend 8 ing 250
list 8 s 166
maintain 8
walk 8
. . .

1255 see 13 NULL 650
adjust 12 ed 228
yield 10 ing 217
want 9 s 148
limit 8 n 12
fill 8
. . .

1319 total 13 NULL 674
work 10 ed 255
respond 9 ing 244
add 9 s 146
equal 8
shift 8
. . .

1531 open 11 NULL 715
ask 9 ed 337
fund 8 ing 285
turn 8 s 194
reflect 8
demand 8
. . .

(b) a= 0.6

Tables Stems Suffixes
2684 reach 44 NULL 1240

discuss 42 ed 859
push 42 ing 466
match 38 es 70
learn 37 s 49
talk 35
. . .

4127 say 138 NULL 3697
think 96 s 267
see 91 ing 132
know 70 ting 15
keep 63 n 13
find 60 th 3
. . .

3672 includ 113 ed 1485
increas 111 e 1003
requir 73 ing 849
involv 68 es 335
reduc 66
indicat 64
. . .

4351 us 182 ed 1712
continu 110 e 1293
mov 81 ing 933
provid 68 es 413
fac 67
receiv 63
. . .

4268 offer 97 NULL 1851
add 78 ed 1084
report 73 ing 872
boost 66 s 461
start 56
follow 56
. . .

3902 reflect 76 NULL 1601
help 68 ed 1204
develop 64 ing 721
show 61 s 375
consider 55 -sorting 1
allow 52
. . .

Table 1: Sample solutions for the WSJ verb corpus with (a) a= .1 and (b) a= .6, with boundaries
initialized at random. The number of tables assigned to each class is shown in column 1,
followed by the most frequent stems and suffixes in that class, and their table counts.
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a Suffix types % NULL % -z
0 78 58.0 10.2
.1 76 64.1 9.6
.2 40 73.8 8.8
.3 17 80.8 7.7
.4 17 84.9 6.6
.5 13 88.0 5.4
.6 12 90.5 4.8
.7 13 94.3 2.9
.8 10 99.6 2.2
.9 12 98.7 0.8
1 11 99.8 0.2

Table 2: Effects of varying the parameter a on the results from the Bernstein-Ratner-Morgan corpus.
Columns show the total number of suffix types found, percentage of word types with empty
suffixes, and percentage of word types with the suffix -z.

-z, and two contain large numbers of verbs with a variety of inflectional and derivational suffixes
(including allomorphic and phonetic variants). The final class, however, contains a set of words
that are phonologically rather than morphosyntactically similar. In particular, the words dominating
this class are very short (mostly monosyllabic) and consist of common sequences of phonemes.
Among these words, the hypothesized “stems” consist of the initial consonant(s) and vowel of a
syllable, and the “suffixes” are the final consonant(s), or occasionally a second syllable. Rather than
morphological structure, the system has discovered phonological structure.

Interestingly, as the value of a is increased, the system’s tendency to split words into half-
syllables decreases faster than its tendency to split words at morpheme boundaries. Moving from
a = 0 to a = .3 reduces the number of hypothesized suffix types from 78 to 17 (those found in the
noun and verb classes in Table 3, plus -n, -6n, -l, -&d, and -1nz) and reduces the percentage
of words with non-empty suffixes by 54%, but only reduces the percentage of words with the -z
suffix by 25%. All six classes in this condition correspond roughly to either nouns or verbs. We
hypothesize that adding just a small amount of frequency information (with a = .3, the sampled
solution contained 12,463 tables, versus 6,807 with a = 0) is enough for the system to realize that
half-syllables do not have the same kind of near-independence between “stem” and “suffix” that true
stem-suffix words do. Unfortunately, since there is no gold standard for this corpus, we don’t know
the true percentage of morphologically complex types, or types with the -z suffix. In future work,
it would be useful to perform a more detailed analysis of a representative sample of the corpus to
get a better sense of the accuracy of the system and the kinds of errors it makes.

8.3 Discussion

Our two experiments demonstrate how the PYCRP adaptor can be used within our two-stage frame-
work to interpolate between type and token frequencies in a model for learning non-trivial linguistic
structure. Our results suggest that, for induction of regular morphology, statistics derived from the
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Tables Stems Suffixes Tables Stems Suffixes
915 gArti 2 NULL 777 1212 jAmp 6 NULL 736

barbar6 2 z 138 fOl 6 z 153
kIC1n 2 spIl 6 1N 83
kro 2 slip 6 s 64
k&m6l 2 kUk 6 d 49
TIN 2 yEl 5 1n 38
Cer 2 f9t 5 i 32
skQt 2 r9d 5 6r 25
pIkC6r 2 sp&Nk 5 t 16
nobadi 2 pIk 5 6l 16
bAt6rfl9 2 tep 5
b&nded 2 tArn 5
. . . . . .

867 EvribAdi 2 NULL 761 1437 ple 9 NULL 687
notbUk 2 z 106 muv 8 1N 170
lEp6rd 2 kQnt 7 1n 98
fAn6l 2 slIp 7 z 97
pl&n 2 klin 7 6r 79
wUd 2 tiC 6 d 65
brAD6r 2 wOk 6 s 59
r&mbl6r 2 mark 6 t 57
duti 2 rol 6 i 53
kartun 2 dr9v 6 6z 45
f9rm6n 2 rAb 6 6rz 27
dorbEl 2 k&ri 6
. . . . . .

862 kUS6n 2 NULL 735 1514 NULL 22 NULL 255
p6tuny6 2 z 127 p& 19 t 89
meri6n 2 & 19 n 84
DEm 2 bi 18 z 73
pEns1l 2 hI 16 d 72
pep6r 2 e 16 l 65
bAlb 2 pE 15 r 52
fom 2 ste 15 k 44
stAf1n 2 t9 15 p 41
b9s1k6l 2 dI 15 s 40
hEv6n 2 w9 14 ni 38
tEl6fon 2 bE 14 nz 36
. . . . . . . . .

Table 3: Sample solution for the Brown-Morgan corpus with a = 0. For each class, the number of
tables assigned to that class is shown in column 1, followed by the most frequent stems
and suffixes in that class, with their table counts. Note that since a= 0, table counts in this
case are equal to type counts.
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lexicon are more useful than statistics derived from corpus frequencies. This result agrees with the
previous computational work of Albright and Hayes (2003), and supports the conclusions of Bybee
(2001). It also justifies the use of word lists in many previous morphological learning systems (Plaut
and Gonnerman, 2000; Regier et al., 2001; Snover and Brent, 2003). Interestingly, our experiments
also suggest that partially damping corpus frequencies may be as effective, or perhaps even more
effective, than fully damping frequencies (i.e., using only lexical statistics).

Of course, the experiments described here are limited in scope. The evidence against token-
based learning of morphology would be stronger if additional experiments were performed with a
larger variety of data from multiple languages, and if more detailed analysis were undertaken on
the output from the Brown-Morgan corpus of child-directed speech. It would also be desirable to
extend our model to account for more complex morphology, since the limitation to a single stem
and suffix is inadequate to account for the morphology of most languages (including English, if
derivational as well as inflectional morphology is considered). However, we emphasize that our fo-
cus here was not to develop a state-of-the-art morphological induction system, but rather to explore
the consequences of using the PYCRP adaptor and its different parameter settings. We found that,
with appropriate parameter settings, our model was sufficient to identify common suffixes in both
corpora, and distinguish roughly between noun stems and verb stems in the Brown-Morgan corpus.

We have proposed that there are two main reasons that using the PYCRP adaptor to damp corpus
frequencies yields better morphological segmentations than learning directly from corpus frequen-
cies. First, the generator model assumes that stems and suffixes are independent given the morpho-
logical class, but this assumption is only approximately correct. Damping corpus frequencies brings
the assumptions of the model and the data more in line, whereas using full corpus frequencies pro-
vides more evidence that stems and suffixes are not truly independent and therefore should not be
split. Second, the most frequent words in any language tend to be irregular, and due to the power-
law distribution of word frequencies, these words strongly dominate the corpus statistics. The effect
of these suffix-less words is so strong that, despite a prior preference for solutions with fewer stems
and suffixes, the system learns that most words should have no suffix. This causes many regular
forms to go unsegmented.

Finally, we note that there are other important connections between our two-stage model and
psycholinguistic theories of morphological processing. One question of concern to many psycholin-
guists is the extent to which morphologically complex words are stored and processed as single lex-
ical units, as opposed to being decomposed into individual morphemes (Alegre and Gordon, 1999;
Hay, 2001; Hay and Baayen, 2005). Our model provides an answer to this question, predicting
specific testable relationships between word frequency, statistical independence of stem and suffix,
and the probability of decomposition. While a thorough examination of these predictions and a
comparison to behavioral data is beyond the scope of this paper, we note that an extension of our
model (described further in the following section) has produced promising preliminary results in
this area (O’Donnell, in preparation).

9. Further Applications and Extensions

The morphological segmentation model considered in the preceding sections illustrates how differ-
ent assumptions about word frequency can result in different conclusions about the latent structure
expressed in linguistic data. However, the potential of the two-stage approach to modeling language
lies in its generality, with any existing probabilistic model of language potentially acting as a gen-
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erator that can be combined with different adaptors. In this section, we consider how the two-stage
framework can be applied to some other popular probabilistic models, how it can be extended to
work with other kinds of linguistic structure, and how the challenges of scaling to larger corpora
that arise with these applications and extensions can be addressed.

9.1 Applying the Two-stage Framework to Other Models

While the tension between types and tokens has been most explicit in computational linguistics, sim-
ilar issues arise in other areas of research involving the analysis of text. For example, information
retrieval systems typically represent documents in one of two ways: as a binary vector indicating
which words appear in the document, or as a vector of word frequency counts (Baeza-Yates and
Ribeiro-Neto, 1999). These two kinds of representations have different strengths and weaknesses,
with the basic issue being that multiple occurrences of a word in a document do carry some infor-
mation about the relevance of that document to a query, but not in a way that increases linearly with
the number of instances. As a consequence, information retrieval systems typically make use of
some kind of scheme for damping word frequencies.

Our two-stage framework provides a way to define an adaptive damping scheme for information
retrieval models that have a probabilistic interpretation, such as the naı̈ve Bayes classifier. In the
standard naı̈ve Bayes classifier, each class is assumed to be associated with a multinomial distribu-
tion over words, and the words that appear in each document are assumed to be drawn independently
from that distribution. This model can be used as the generator for a two-stage model, with an adap-
tor such as the PYCRP being used to guarantee that the resulting word frequency distribution has
statistical properties closer to natural language. This is essentially the model used in our analysis in
Section 6.1, where we show that multinomial generators estimated using this model are similar to
those that damp word frequencies. Evidence that this approach should lead to good empirical results
comes from the work of Elkan (2006), who used a Dirichlet compound multinomial model (which
is a special case of our framework, as noted above) to improve performance on several information
retrieval tasks.

More complex machine learning models that have been applied to text also face a choice be-
tween representing documents in terms of types or tokens. For example, latent Dirichlet allocation
(Blei et al., 2003) treats each document as a “bag of words”, represented by a vector of word fre-
quencies, as does its nonparametric analogue based on the hierarchical Dirichlet process (Teh et al.,
2005). In contrast, a recent hierarchical nonparametric Bayesian model based on the beta process
treats documents as binary vectors of word types (Thibaux and Jordan, 2007). It is straightforward
to define a two-stage model in which LDA is used as a generator, which would provide a way
to automatically interpolate between these two extremes. Probabilistic inference in this model is
comparable in computational complexity to the Gibbs sampling scheme commonly used with LDA
(Griffiths and Steyvers, 2004): to return to the restaurant metaphor used above, while a new random
variable is introduced for each word indicating the table from which it is drawn, the number of
random variables that need to be sampled in the LDA model scales with the total number of tables
rather than the total number of words.

9.2 Extending the Framework to Other Linguistic Structures

We argued briefly above that the tendency of irregular forms to dominate corpus statistics is not
specific to the problem addressed here, but can be expected to occur in many linguistic learning
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tasks. Similarly, nearly all probabilistic models used for language learning (most notably, hidden
Markov models and PCFGs) encode strong independence assumptions similar to those in our mor-
phology generator model. Thus, we extrapolate from the results of our experiments to suggest that
using the PYCRP or other power-law adaptors in combination with more standard models as gen-
erators may be able to improve unsupervised learning in many areas of language. Indeed, in other
recent work we have developed several two-stage models for learning linguistic structure, achieving
results comparable to, and in some cases better than, the best existing systems. For example, adap-
tor grammars (Johnson et al., 2007) combine a PYCRP adaptor with a PCFG generator to create
a model for learning linguistic tree structures without the strong independence assumptions made
by a standard PCFG. The adaptor effectively caches entire subtrees so that frequent structures can
be reused, and will be assigned probabilities that are higher than the product of the PCFG rules
that would be needed to create them anew. Although PCFGs are typically associated with syntactic
constituency structure, they can also be used to express other types of linguistic relationships, and
adaptor grammars have been used to learn word segmentation, syllable structure, morphology, de-
pendency parses, and named-entity clusters (Johnson et al., 2007; Johnson, 2008a,b; Johnson and
Goldwater, 2009; Cohen et al., 2010; Elsner et al., 2009). In fact, it is even possible to express the
standard LDA model using the adaptor grammar framework (Johnson, 2010).

In addition to adaptor grammars, the two-stage framework provides the basis of another recent
model for learning trees, independently introduced by Cohn et al. (2009), Post and Gildea (2009),
and O’Donnell et al. (2009).15 This model can be viewed as a generalization of the adaptor grammar.
In an adaptor grammar, all trees produced by the generator are complete, with terminal symbols at
all leaf nodes. In contrast, the model presented by the authors above allows the generator to pro-
duce incomplete tree fragments or elementary trees, with either terminal or non-terminal symbols
as leaves. It therefore instantiates a nonparametric Bayesian model of tree-substitution grammar
(Joshi, 2003). So far, the model has been used in NLP research to induce tree-substitution gram-
mars from parsed sentences (Cohn et al., 2009; Post and Gildea, 2009) and to induce dependency
structure from strings (Cohn et al., 2010). It has also shown promise as a model of human language
processing, with applications to children’s acquisition of syntax (O’Donnell et al., 2009) and adult
morphological processing (O’Donnell, in preparation).

9.3 Strategies for Scaling to Larger Corpora

Using the two-stage framework with adaptors based on the CRP introduces a potentially challenging
problem of probabilistic inference. In these models, each word is associated with a random variable
indicating its source (or the table from which it was generated, under the restaurant analogy). The
number of random variables in the model thus grows linearly with the number of words. While this
is not unusual for probabilistic models of language that involve latent variables (for example, LDA
has the same property), it means that alternatives to the simple Gibbs sampling algorithm we used in
our morphological segmentation example will need to be developed in order to apply these models
to large corpora of the kind used in modern machine learning and computational linguistics. There
are three strategies for dealing with this scaling problem: using the two-stage framework to justify
heuristic approximations but not explicitly performing inference, exploring parallelization schemes,

15. There are actually very slight differences in formulation between the model introduced by O’Donnell et al. (2009)
and the other two, but they are conceptually similar.
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and applying approximate inference techniques such as variational inference. We consider these
options in turn.

Part of the motivation for our detailed treatment of the relationship between our two-stage frame-
work and existing smoothing methods was to point out that these highly successful methods can be
viewed as heuristic approximations to a model that makes reasonable assumptions about the struc-
ture of natural language. Kneser-Ney smoothing approximates a simple application of our two-stage
framework, suggesting that it might be possible to derive similar heuristic approximations for more
complex models. Some very simple approximations are the minimal and maximal schemes dis-
cussed by Cowans (2006) and Wallach (2008) in relation to other Bayesian language models. These
make the respective assumptions that only one token of each type is drawn from the base distribu-
tion, or that all tokens of each type are drawn from the base distribution. However, the prospect of
developing better approximations to more complex models seems promising, especially given recent
results on the approximate and asymptotic properties of discrete models based on the Pitman-Yor
process (e.g., Teh, 2006a; Buntine and Hutter, 2010). One strategy for applying two-stage models
to large corpora may thus be to avoid performing inference explicitly, and instead derive approxi-
mations based on these results.

A second strategy is parallelization. As noted above, the property that makes probabilistic
inference potentially problematic in two-stage models—the number of latent variables increasing
linearly with the number of words in a corpus—is shared with other probabilistic models such as
LDA. Parallelization has proven to be an effective strategy for applying models such as LDA to very
large corpora (e.g., Newman et al., 2009). Recent work has already examined how parallelization
can be used to increase the scale of the corpora on which language models based on the Pitman-Yor
process can be applied, making it possible to use these models on a corpus containing 200 million
words (Huang and Renals, 2010).

Finally, variational inference presents a third avenue for developing two-stage models that can
be applied to large corpora, trading the stochastic approximation produced by Gibbs sampling for
a deterministic approximation to the posterior distribution over the latent variables in the model.
Recent work has focused on applying this strategy with adaptor grammars, which can be used to
express many two-stage models as noted above. This work suggests that variational inference may
yield a different pattern of scaling in the computational cost of using these models, making it more
plausible that they can be applied to large corpora (Cohen et al., 2010).

10. Conclusion

In this paper we have introduced a framework for developing statistical models of language that
breaks those models into two stages: one stage in which a basic set of lexical items is generated,
and one stage in which the frequencies of those items are adapted to match the statistical structure
of natural language. This two-stage framework solves two basic problems for statistical models
of language: defining models that can generically exhibit power-law frequency distributions, and
understanding how the observed frequencies of words should be damped when estimating param-
eters. Surprisingly, our work shows that these two problems are directly related, with damping of
frequencies falling naturally out of our framework when we take into account the possibility that
a secondary “rich-get-richer” process might be responsible for the power-law distribution in word
frequencies.
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More generally, the framework we have introduced in this paper illustrates how ideas from
nonparametric Bayesian statistics can be valuable in the context of computational linguistics. The
key innovation in nonparametric Bayesian statistics is the idea of defining models with potentially
infinite complexity, allowing the structures recovered by those models to grow as more data are
observed. In many ways, computational linguistics is the ideal application of this idea, since larger
corpora always bring with them new vocabulary items, new constituents, and new constructions to
be incorporated into a model. Recent work provides many other examples suggesting that nonpara-
metric Bayesian statistics and natural language may be well suited to one another (Beal et al., 2002;
Liang et al., 2007; Goldwater et al., 2006a,b; Teh et al., 2005; Teh, 2006a,b; Cohn et al., 2010) and
we anticipate that this relationship will continue to be fruitful.

Acknowledgments

This paper expands on work that was presented at the Neural Information Processing Systems con-
ference (Goldwater et al., 2006a). TLG was supported by National Science Foundation grant num-
ber BCS-0631518 and the DARPA CALO project. MJ was supported by NSF awards 0544127 and
0631667.

Appendix A. Details of Table Count Approximation Experiments

The generator used in this model was assumed to be a multinomial distribution over 30,114 word
types, with ϕ being the probabilities assigned to these types. Estimation of ϕ was performed using
Markov chain Monte Carlo. Taking a symmetric Dirichlet(β) prior over ϕ, the posterior distribution
over ϕ given w and a particular value of z and ��� is Dirichlet with hyperparametersmw+β, where mw

is the number of lexical items corresponding to the word type w (ie. the number of tables on which w
appears). The mean probability of w under this distribution is proportional tomw+β. Consequently,
we can compute the posterior mean of ϕ by drawing samples of z and ��� from P(z,���|w), computing
the mean probability of each word typew given each of these samples, and then averaging the results
across samples.

To draw samples from P(z,���|w) we used a Gibbs sampling procedure very similar to that used
with the morphology model in the main text. Since the lexical items had no internal analyses, it was
only necessary to sample the table assignment zi for each word token in the corpus in each sweep
of sampling. This was done by drawing a value from the distribution

P(zi = z|z−i,w,���(z−i)) ∝

{
I(�z = wi)(n

(z−i)
z −a) 1≤ z≤ K(z−i)

P(�z = wi)(K(z−i)a+b) z= K(z−i)+1

where z−i is all z but zi, n
(z−i)
z is the number of times z occurs in z−i, K(z−i) is the number of unique

values in z−i, and a and b are the parameters of the PYCRP adaptor (the CRP adaptor was simulated
by taking a= 0, in which case b plays the same role as α). P(�z = wi) was obtained by integrating
over the posterior distribution on ϕ given z−i and ���(z−i), namely (mwi +β)/∑w(mw+β).

A total of 1000 sweeps of sampling were conducted for each adaptor, and the posterior mean
of ϕ was computed for each sweep, which involved finding the mean number of lexical entries for
each word type w. These values where then averaged over the last 500 iterations, discarding the
initial sweeps to allow convergence of the Markov chain. The results shown in Figure 6 are thus
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the posterior mean of the number of lexical entries assigned to each word type given the corpus
w, and provide an indication of how word frequency translates into the frequencies from which the
generator is estimated in this model.

Appendix B. Phonemic Symbols

The following ASCII characters are used in the phonemic transcriptions in the Brown-Morgan cor-
pus, which was used as input to the morphological learner in Section 8.2.

Consonants
ASCII Example ASCII Example

D THe k Cut
N siNG l Lamp
S SHip m Man
T THin n Net
Z aZure p Pipe
C CHip r Run
b Boy s Sit
d Dog t Toy
f Fox v View
g Go w We
h Hat y You
j Jump z Zip

Vowels
ASCII Example ASCII Example

& thAt e bAY
1 hopelEss i bEE
6 About o bOAt
7 bOY u bOOt
9 flY
A bUt
E bEt
I bIt
O lAW
Q bOUt
U pUt
a hOt
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Abstract
We present a breadth-oriented collection of cross-platform command-line tools for researchers in
machine learning called Waffles. The Waffles tools are designed to offer a broad spectrum of func-
tionality in a manner that is friendly for scripted automation. All functionality is also available in a
C++ class library. Waffles is available under the GNU Lesser General Public License.

Keywords: machine learning, toolkits, data mining, C++, open source

1. Introduction

Although several open source machine learning toolkits already exist (Sonnenburg et al., 2007),
many of them implicitly impose requirements regarding how they can be used. For example, some
toolkits require a certain platform, language, or virtual machine. Others are designed such that
tools can only be connected together with a specific plug-in, filter, or signal/slot architecture. Un-
fortunately, these interface differences create difficulty for those who have become familiar with a
different methodology, and for those who seek to use tools from multiple tookits together. Toolkits
that use a graphical interface may be convenient for performing common experiments, but become
cumbersome when the user wishes to use a tool in a manner that was not foreseen by the interface
designer, or to automate common and repetitive tasks.

Waffles is a collection of tools that seek to provide a wide diversity of useful operations in
machine learning and related fields without imposing unnecessary process or interface restrictions
on the user. This is done by providing simple command-line interface (CLI) tools that perform
basic tasks. The CLI is ideal for this purpose because it is well-established, it is available on most
common operating systems, and it is accessible through most common programming languages.
Since these tools perform operations at a fairly granular level, they can be used in ways not foreseen
by the interface designer.

As an example, consider an experiment involving the following seven steps:

1. Use cross-validation to evaluate the accuracy of a bagging ensemble of one-hundred decision
trees for classifying the lymph data set (available at http://MLData.org).

2. Separate this data set into a matrix of input-features and a matrix of output-labels.
3. Convert input-features to real-valued vectors by representing each nominal attribute as a cat-
egorical distribution over possible values.

4. Use principal component analysis to reduce the dimensionality of the feature-vectors.

©2011 Michael Gashler.
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5. Use cross-validation to evaluate the accuracy of the same model on the data with reduced
features.

6. Train the model using all of the reduced-dimensional data.
7. Visualize the model-space represented by the ensemble.

These seven operations can be performed withWaffles tools using the following CLI commands:

1. waffles learn crossvalidate lymph.arff bag 100 decisiontree end

2. waffles transform dropcolumns lymph.arff 18 > features.arff
waffles transform dropcolumns lymph.arff 0-17 > labels.arff

3. waffles transform nominaltocat features.arff > f real.arff

4. waffles dimred pca f real.arff 2 > f reduced.arff

5. waffles transform mergehoriz f reduced.arff labels.arff > all.arff
waffles learn crossvalidate all.arff bag 100 decisiontree end

6. waffles learn train all.arff bag 100 decisiontree end > ensemble.model

7. waffles plot model ensemble.model all.arff 0 1

The cross-validation performed in step 1 returns a predictive accuracy score of 0.781. Step 5
returns a predictive accuracy score of 0.705. The plot generated by step 7 is shown in Figure 1.

It is certainly conceivable that a graphical interface could be developed that would make it easy
to perform an experiment like this one. Such an interface might even provide some mechanism to
automatically perform the same experiment over an array of data sets, and using an array of differ-
ent models. If, however, the user needs to vary a parameter specific to the experiment, such as the
number of principal components, or a model-specific parameter, such as the number of trees in the
ensemble, the benefits of a graphical interface are quickly overcome by additional complexity. By
contrast, a simple script that calls CLI commands to perform machine learning operations can be
directly modified to vary any of the parameters. Additionally, the scripting method can incorporate
tools from other toolkits, or even custom-developed tools. Because nearly all programming lan-
guages can target CLI applications, there are few barriers to adding custom operations. Graphical
tools are unlikely to offer such flexibility.

Figure 1: The model-space visualization generated by the command in step 7.
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Figure 2: A partial screen shot of the Waffles Wizard tool displayed in a web browser.

2. Wizard

One significant reason many people prefer to use tools unified within a graphical interface over
scriptable CLI tools is that it can be cumbersome to remember which options are available with CLI
tools, and to remember how to construct a syntactically-correct command. We solve this problem
by providing a “Wizard” tool that guides the user through a series of forms to construct a command
that will perform the desired task. A screen shot of this tool (displayed in a web browser) is shown
in Figure 2.

Rather than execute the selected operation directly, as most GUI tools do, the Waffles Wizard
tool merely displays the CLI command that will perform the operation. The user may paste it
directly into a command shell to perform the operation immediately, or the user may choose to
incorporate it into a script. This gives the user the benefits of a GUI, without the undesirable
tendency to lock the user into an interface that is inflexible for scripted automation.

3. Capabilities

In order to hilight the capabilities of Waffles, we compare its functionality with that found in Weka
(Hall et al., 2009), which at the time of this writing is the most popular machine learning toolkit by
a significant margin. Our intent is not to persuade the reader to choose Waffles instead of Weka,
but rather to show that many useful capabilities can be gained by using Waffles in conjunction with
Weka, and other toolkits that offer a CLI.

One notable strength of Waffles is in unsupervised algorithms, particularly dimensionality re-
duction techniques. Waffles tools implement principal component analysis (PCA), isomap (Tenen-
baum et al., 2000), locally linear embedding (Roweis and Saul, 2000), manifold sculpting (Gashler
et al., 2011a), breadth-first unfolding, neuro-PCA, cycle-cut (Gashler et al., 2011b), unsupervised
backpropagation and temporal nonlinear dimensionality reduction (Gashler et al., 2011c). Of these,
only PCA is found in Weka. Waffles contains clustering techniques including k-means, k-medoids,
agglomerative clustering, and related transduction algorithms including agglomerative transduction,
and max-flow/min-cut transduction (Blum and Chawla, 2001).

Waffles provides some of the most-common supervised learning techniques, such as decision
trees, multi-layer neural networks, k-nearest neighbor, naive Bayes, and some less-common algo-
rithms, such as Mean-margin trees (Gashler et al., 2008). Waffles’ collection of supervised algo-
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rithms is much smaller than that of Weka, which implements more than 50 classification algorithms.
Waffles, however, provides an interface that offers several advantages in many situations. For ex-
ample, Weka requires the user to set up filters that convert data to types that each algorithm can
handle. Waffles automatically handles type conversion when an algorithm receives a type that it
is not implicitly designed to handle, while still permitting advanced users to specify custom filters.
TheWaffles algorithms also implicitly handle multi-dimensional labels. As some algorithm-specific
examples, the Waffles implementation of multi-layer perceptron provides the ability to use a diver-
sity of activation functions, and also supplies methods for training recurrent networks. The k-nearest
neighbor algorithm automatically supports acceleration structures and sparse training data, so it is
suitable for use with problems that require high scalability, such as document classification.

As was demonstrated in the first example in this paper, Waffles features a particularly convenient
mechanism for creating bagging ensembles. It also provides a diversity of collaborative filtering
algorithms and optimization techniques that are not found in Weka. Waffles also provides tools to
perform linear-algebraic operations, and various data-mining tools, including attribute selection and
several methods for visualization.

4. Architecture

The Waffles tools are organized into several executable applications. These include:

1. waffles wizard, a graphical command-building assistant,
2. waffles learn, a collection of supervised learning techniques and algorithms,
3. waffles transform, a collection of unsupervised data transformations,
4. waffles plot, tools related to visualization,
5. waffles dimred, tools for dimensionality reduction and attribute selection,
6. waffles cluster, tools for clustering data,
7. waffles generate, tools for sampling distributions, manifolds, etc.,
8. waffles recommend, tools related to collaborative filtering, and
9. waffles sparse, tools for learning with sparse matrices.

Each tool contained in each of these applications is implemented as a thin wrapper around
functionality in a C++ class library, called GClasses. This library is included with Waffles so that
any of the functionality available in the Waffles CLI tools can also be linked into C++ applications,
or into applications developed in other languages that are capable of linking with C++ libraries. The
entire Waffles project is licensed under the GNU Lesser General Public License (LGPL) version
2.1, and also later versions of the LGPL (http://www.gnu.org/licenses/lgpl.html). Also,
some components are additionally granted more permissive licenses. Waffles uses a minimal set of
dependency libraries, and is carefully designed to support cross-platform compatibility. It builds on
Linux (with g++), Windows (with Visual C++ Express Edition), OSX (with g++), and most other
common platforms. A new version of Waffles has been released approximately every six months
since it was first released to the public in 2005. The latest version can be downloaded from http:
//waffles.sourceforge.net. Full documentation for the CLI tools, including many examples,
and also documentation for developers seeking to link with the GClasses library can also be found
at that site. In order to augment the developer documentation, several demo applications are also
included with Waffles, showing how to build machine learning tools that link with functionality in
the GClasses library.
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Abstract
Over the last few years, two different notions of positive definite (pd) kernels—universal and
characteristic—have been developing in parallel in machine learning: universal kernels are pro-
posed in the context of achieving the Bayes risk by kernel-based classification/regression algo-
rithms while characteristic kernels are introduced in the context of distinguishing probability mea-
sures by embedding them into a reproducing kernel Hilbert space (RKHS). However, the relation
between these two notions is not well understood. The main contribution of this paper is to clarify
the relation between universal and characteristic kernels by presenting a unifying study relating
them to RKHS embedding of measures, in addition to clarifying their relation to other common
notions of strictly pd, conditionally strictly pd and integrally strictly pd kernels. For radial kernels
on Rd , all these notions are shown to be equivalent.
Keywords: kernel methods, characteristic kernels, Hilbert space embeddings, universal kernels,
strictly positive definite kernels, integrally strictly positive definite kernels, conditionally strictly
positive definite kernels, translation invariant kernels, radial kernels, binary classification, homo-
geneity testing

1. Introduction

Kernel methods have been popular in machine learning and pattern analysis for their superior per-
formance on a wide spectrum of learning tasks. They are broadly established as an easy way to
construct nonlinear algorithms from linear ones, by embedding data points into higher dimensional
reproducing kernel Hilbert spaces (RKHSs) (Schölkopf and Smola, 2002; Shawe-Taylor and Cris-
tianini, 2004). In the regularization approach to learning (Evgeniou et al., 2000), it is well known
that kernel-based algorithms (for classification/regression) generally invoke the representer theorem
(Kimeldorf and Wahba, 1970; Schölkopf et al., 2001) and learn a function in a RKHS that has the
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representation,
f := ∑

j∈Nn

c jk(·,x j), (1)

where Nn := {1,2, . . . ,n}, k : X × X → R is a symmetric positive definite (pd) kernel on some
arbitrary space, X and {c j : j ∈ Nn} ⊂ R are parameters typically obtained from training data,
{x j : j ∈ Nn} ⊂ X . As noted in Micchelli et al. (2006), one can ask whether the function, f in (1)
approximates any real-valued target function arbitrarily well as the number of summands increases
without bound. This is an important question to consider because if the answer is affirmative, then
the kernel-based learning algorithm can be consistent in the sense that for any target function, f �,
the discrepancy between f (which is learned from the training data) and f � goes to zero (in some
appropriate sense) as the sample size goes to infinity. Since the linear hull of {k(·,x) : x ∈ X} is
dense in the RKHS, H associated with k (Aronszajn, 1950), and assuming that the kernel-based
algorithm makes f “converge to an appropriate function” in H as n → ∞, the above question of
approximating f � arbitrarily well by f in (1) as n goes to infinity is equivalent to the question of
whether H is rich enough to approximate any f � arbitrarily well (such an RKHS is referred to as a
universal RKHS and the corresponding kernel as a universal kernel). Depending on the choice of X ,
the choice of target function space and the type of approximation, various notions of universality—
c-universality (Steinwart, 2001), cc-universality (Micchelli et al., 2006; Caponnetto et al., 2008),
c0-universality (Carmeli et al., 2010; Sriperumbudur et al., 2010a) and Lp-universality (Steinwart
and Christmann, 2008; Carmeli et al., 2010)—have been proposed and characterized in literature.

Recently, a seemingly related (to universality) notion of characteristic kernel has been proposed
and characterized (Fukumizu et al., 2004, 2008, 2009; Gretton et al., 2007; Sriperumbudur et al.,
2008, 2009, 2010b), which has found applications in testing for homogeneity (Gretton et al., 2007),
independence (Gretton et al., 2008), conditional independence (Fukumizu et al., 2008), to find the
most predictive subspace in regression (Fukumizu et al., 2004), etc. Formally, given the set of all
Borel probability measures defined on the topological space X , a measurable and bounded kernel, k
is said to be characteristic if

P �→
∫
X
k(·,x)dP(x), (2)

is injective, that is, P is embedded to a unique element,
∫
X k(·,x)dP(x) in H. The motivation to

consider such an embedding is that it provides a powerful and straightforward method of dealing
with higher-order statistics of random variables, which has been exploited in the above mentioned
applications. Gretton et al. (2007) related characteristic and universal kernels by showing that if k is
c-universal—see Section 2 for the definition—then it is characteristic. Besides this result, not much
is known or understood about the relation between universal and characteristic kernels.

The main contribution of this paper is to clarify the relation between universal and characteris-
tic kernels by presenting a unifying study relating them to RKHS embedding of measures (Suquet,
2009), in addition to clarifying their relation to other common notions of strictly pd, conditionally
strictly pd and integrally strictly pd kernels, which extends our preliminary study in Sriperumbudur
et al. (2010b, Section 3.4). This is done by first reviewing all the existing characterizations for uni-
versal and characteristic kernels, which is then used to clarify not only the relation between them
but also their relation to other notions of pd kernels (see Section 3). Since the existing characteri-
zations do not explain the complete relationship between all these various notions of pd kernels, we
raise open questions in Section 3 about the relationships to be clarified, which are then addressed in
Section 4 by deriving new results. In particular, in Section 4, we establish the relation between (a)
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c0-universality and RKHS embedding of finite signed Borel measures, (b) universal and integrally
strictly pd kernels, (c) characteristic and conditionally strictly pd kernels and (d) all the above men-
tioned notions when the pd kernel is radial on Rd . A summary of the relation between all these
notions of pd kernels is shown in Figure 1, which shows the equivalence between these notions for
radial kernels on Rd . Supplementary results are collected in appendices. Throughout the paper, we
assume X to be a Polish space,1 the reason for which is discussed in the paragraph following (3).

In the following section, we introduce the notation and collect all definitions that are used
throughout the paper.

2. Definitions and Notation

Let X be a topological space. C(X) denotes the space of all continuous real-valued functions on X .
Cb(X) is the space of all bounded, continuous real-valued functions on X . For a locally compact
Hausdorff space (examples include Rd , infinite discrete sets, topological manifolds, etc.), X , f ∈
C(X) is said to vanish at infinity if for every ε > 0 the set {x : | f (x)| ≥ ε} is compact.2 The class
of all continuous f on X which vanish at infinity is denoted asC0(X). The spacesCb(X) andC0(X)
are endowed with the uniform norm, ‖ ·‖u defined as ‖ f‖u := supx∈X | f (x)| for f ∈C0(X)⊂Cb(X).

Radon measure: A signed Radon measure μ on a Hausdorff space X is a Borel measure on X
satisfying

(i) μ(C)< ∞ for each compact subsetC ⊂ X ,

(ii) μ(B) = sup{μ(C) |C ⊂ B,C compact} for each B in the Borel σ-algebra of X .

μ is said to be finite if ‖μ‖ := |μ|(X) < ∞, where |μ| is the total-variation of μ. M+
b (X) denotes the

space of all finite Radon measures on X while Mb(X) denotes the space of all finite signed Radon
measures on X . The space of all Radon probability measures is denoted asM+

1 (X) := {μ∈M+
b (X) :

μ(X) = 1}. For μ∈Mb(X), the support of μ is defined as

supp(μ) = {x ∈ X | for any open setU such that x ∈U, |μ|(U) �= 0}. (3)

Mbc(X) denotes the space of all compactly supported finite signed Radon measures on X . We refer
the reader to Berg et al. (1984, Chapter 2) for a general reference on the theory of Radon measures.
If X is a Polish space, then by Ulam’s theorem, every finite Borel measure is Radon (Dudley, 2002,
Theorem 7.1.4). Therefore, for the simplicity of not requiring to distinguish between Borel and
Radon measures, throughout the paper, we assume X to be a Polish space.

Positive definite (pd), strictly pd, conditionally strictly pd and integrally strictly pd: A symmet-
ric function k : X ×X → R is called positive definite (pd) (resp. conditionally pd) if, for all n ∈ N

(resp. n≥ 2), α1, . . . ,αn ∈ R (resp. with ∑n
j=1α j = 0) and all x1, . . . ,xn ∈ X , we have

n

∑
l, j=1

αlα jk(xl,x j)≥ 0. (4)

1. A topological space (X ,τ) is called a Polish space if the topology τ has a countable basis and there exists a complete
metric defining τ. An example of a Polish space is Rd endowed with its usual topology.

2. LCH spaces have a rich supply of continuous functions that vanish outside compact sets—see Tietze extension theo-
rem (Folland, 1999, Theorem 4.34).
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Furthermore, k is said to be strictly pd (resp. conditionally strictly pd) if, for mutually distinct
x1, . . . ,xn ∈ X , equality in (4) only holds for α1 = · · ·= αn = 0.

A measurable, symmetric and bounded kernel, k is said to be integrally strictly pd if

∫ ∫
X
k(x,y)dμ(x)dμ(y)> 0,∀μ∈Mb(X)\{0}.

This definition is a generalization of integrally strictly positive definite functions on Rd (Stewart,
1976, Section 6):

∫∫
Rd k(x,y) f (x) f (y)dxdy > 0 for all f ∈ L2(Rd), which is the strictly positive

definiteness of the integral operator given by the kernel.
c-, cc-, c0- and Lp-universal kernels: A continuous pd kernel k on a compact Hausdorff space X

is called c-universal if the RKHS,H induced by k is dense in C(X) w.r.t. the uniform norm, that is,
for every function g ∈C(X) and all ε> 0, there exists an f ∈H such that ‖ f −g‖u ≤ ε (Steinwart,
2001).

A continuous pd kernel k on a Hausdorff space X is said to be cc-universal if the RKHS, H
induced by k is dense in C(X) endowed with the topology of compact convergence, that is, for any
compact set Z ⊂ X , for any g ∈C(Z) and all ε> 0, there exists an f ∈H|Z such that ‖ f −g‖u ≤ ε,
whereH|Z := { f |Z : f ∈H} is the restriction ofH to Z and f |Z is the restriction of f to Z (Carmeli
et al., 2010; Sriperumbudur et al., 2010a).

A pd kernel, k is said to be a c0-kernel if it is bounded with k(·,x) ∈C0(X), ∀x ∈ X , where X
is a locally compact Hausdorff (LCH) space. A c0-kernel on an LCH space, X is said to be c0-
universal if the RKHS, H induced by k is dense in C0(X) w.r.t. the uniform norm (Carmeli et al.,
2010; Sriperumbudur et al., 2010a).3

A measurable and bounded kernel, k defined on a Hausdorff space, X is said to be Lp-universal
if the RKHS,H induced by k is dense in Lp(X ,μ) w.r.t. the p-norm, defined as

‖ f‖p :=

(∫
X
| f (x)|p dμ(x)

)1/p
,

for all Borel probability measures, μ, defined on X and some p∈ [1,∞). Here Lp(X ,μ) is the Banach
space of p-integrable μ-measurable functions on X (Steinwart and Christmann, 2008).

We would like to stress that in the above definitions of universality, the assumptions on k ensure
that the associated RKHS,H is continuously included in the target space. Steinwart and Christmann
(2008, Lemma 4.28) showed that k is bounded and k(·,x) is continuous for all x ∈ X (X being a
topological space) if and only if every f ∈H is bounded and continuous. In addition, the inclusion
id : H →Cb(X) is continuous. Similarly, by modifying the proof of Lemma 4.28 in Steinwart and
Christmann (2008), it can be easily shown that k is bounded and k(·,x) ∈C0(X), ∀x ∈ X (X being
an LCH space) if and only if every f ∈ H is in C0(X), and the inclusion id : H → C0(X) can be
shown to be continuous (also see Carmeli et al., 2010, Proposition 2.2). Steinwart and Christmann
(2008, Theorem 4.26) showed that if k is measurable and bounded on a measurable space X , then

3. Note that cc-universality (resp. c-universality) deals with X being a non-compact (resp. compact) Hausdorff space,
whereas c0-universality requires X to be an LCH space. While X being Hausdorff ensures that it has an abundance of
compact subsets (as required in cc-universality), the stronger condition of X being an LCH space ensures that it has
an abundance of continuous functions that vanish outside compact sets (see footnote 2). In addition, this choice of
X being an LCH space ensures the existence of topological dual of C0(X) through the Riesz representation theorem,
which is required in the characterization of c0-universality. See Proposition 2 in Section 4 for details.
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H consists of p-integrable (w.r.t. any Borel probability measure, μ) functions and the inclusion
id : H → Lp(X ,μ) is continuous for some p ∈ [1,∞).

Characteristic kernel: A bounded measurable kernel, k is said to be characteristic if μ �→∫
X k(·,x)dμ(x) is injective, where μ is a Borel probability measure on X .
Translation invariant and Radial kernels on Rd: A pd kernel, k : Rd ×Rd → R is said to be

translation invariant if k(x,y) = ψ(x− y), where ψ is a pd function. If k is bounded and continuous,
then by Bochner’s theorem (Wendland, 2005, Theorem 6.6), ψ ∈Cb(Rd) is the Fourier transform of
Λ ∈M+

b (R
d), that is,

ψ(x) =
∫
Rd
e−

√
−1xTω dΛ(ω), x ∈ Rd . (5)

A bounded continuous kernel, k is said to be radial on Rd ×Rd if there exists ν ∈M+
b ([0,∞))

such that

k(x,y) =
∫
[0,∞)

e−t‖x−y‖
2
2 dν(t), x,y ∈ Rd . (6)

It is easy to see that a radial kernel is also bounded translation invariant on Rd (see Appendix
A). Examples of radial kernels include the Gaussian kernel, k(x,y) = e−σ‖x−y‖

2
2 , σ > 0; inverse

multiquadrics, k(x,y) = (c+‖x− y‖22)
−β, β> d/2, etc.

A continuous pd kernel is said to be translation invariant on Td := [0,2π)d if k(x,y) = ψ((x−
y)mod2π), where ψ ∈C(Td) is such that

ψ(x) = ∑
n∈Zd

Aψ(n)e
√
−1xT n, x ∈ Td , (7)

with Aψ : Zd → R+, Aψ(−n) = Aψ(n) and ∑n∈Zd Aψ(n)< ∞.

3. Relation Between Various Notions of Positive Definite Kernels Based on Known
Characterizations

In this section, we review existing results on the characterization of universal and characteristic
kernels, which are then used to clarify not only the relation between them but also their relation
to other notions like strictly pd, conditionally strictly pd and integrally strictly pd kernels. In Sec-
tion 3.1, we discuss various notions of universality, review all their existing characterizations and
then summarize the relation between them. In Section 3.2, we discuss and summarize the relation
between characteristic and universal kernels based on their existing characterizations. The relation
of universal and characteristic kernels to strictly pd, conditionally strictly pd and integrally strictly
pd kernels are summarized in Section 3.3. Since the existing characterizations do not explain the
complete relationship between all these various notions of pd kernels, we raise questions at the end
of each subsection that need to be addressed to obtain a complete understanding of the relationships
between all these notions. A summary of the relationships between various notions of pd kernels
based on the existing characterizations is shown in Figure 1.

Before proceeding further, we would like to highlight a possible confusion that can raise while
comparing these various notions of pd kernels. Suppose we would like to compare c0-universal
vs. characteristic kernels, that is, (a) Is a c0-universal kernel characteristic? (b) Is the converse true?
While (a) is a valid question, answering (b) trivially yields that characteristic kernels are not c0-
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Figure 1: Summary of the relations between various families of c0-kernels: The implications shown
without any reference are based on the review of existing results (see Section 3) while the
ones with a reference are based on new results derived in Section 4 that addresses the
open questions (A)–(G). The implications which are still open are shown with “?”.
X is an LCH space. The implications shown hold for any compact Hausdorff space,
X . When X = T and k is continuous and translation invariant on T—see (7)—then k
being characteristic implies it is strictly pd, which is shown as ♣. The implications
shown hold for bounded continuous translation invariant kernels on Rd—see (5). If ψ ∈
Cb(Rd)∩L1(Rd), then the implication shown as (♠) holds, that is, strictly pd kernels are
cc-universal. Otherwise, it is not clear whether the implication holds. Radial kernels
on Rd—see (6).
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universal. This is because k need not be a c0-kernel for it to be characteristic.4 Therefore, to make
a non-trivial comparison between characteristic and c0-universal kernels, it is important that we
assume k to be a c0-kernel before answering the questions in (a) and (b). In extending this reasoning
for the non-trivial comparison of any two notions of pd kernels, it is important to assume that k
satisfies the strongest possible condition. Therefore, in order to present a concise summary of the
relationships between these various notions, in Figure 1, we assume k to be a c0-kernel—this is the
strongest condition to be satisfied in order to compare all these notions of pd kernels.

3.1 Relation Between Various Notions of Universality

As mentioned before, a universal kernel is such that its corresponding RKHS, H is rich enough
to approximate any target function (belonging to some target space) arbitrarily well. Therefore,
depending on the choice of X , the choice of target space and the type of approximation, various
notions of universality—c, cc, c0 and Lp—have been proposed. In the following, we review the ex-
isting characterizations for all these notions of universal kernels and summarize the relation between
them.

c-universality: Steinwart (2001) proposed the notion of c-universality, wherein X is a compact
metric space with C(X) being the target space andH being dense in C(X) w.r.t. the uniform norm.
By applying the Stone-Weierstraß theorem (Folland, 1999, Theorem 4.45), Steinwart (2001, The-
orem 9) provided sufficient conditions for a kernel to be c-universal—a continuous kernel, k on a
compact metric space, X is c-universal if the following hold: (a) k(x,x)> 0, ∀x ∈ X , (b) there exists
an injective feature map Φ : X → �2 of k with Φ(x) = {Φn(x)}n∈N and (c) span{Φn : n ∈ N} is an
algebra—using which the Gaussian kernel is shown to be c-universal on every compact subset of
Rd . Micchelli et al. (2006, Proposition 1) related c-universality to the injective RKHS embedding
of finite signed Borel measures by showing that k is c-universal if and only if

μ �→
∫
X
k(·,x)dμ(x), μ∈Mb(X), (8)

is injective.
cc-universality: One limitation in the notion of universality considered by Steinwart (2001) is

that X is assumed to be compact, which excludes many interesting spaces, such as Rd and infi-
nite discrete sets. To overcome this limitation, Carmeli et al. (2010, Definition 4.1, Theorem 4.3)
and Sriperumbudur et al. (2010a) introduced the notion of cc-universality which can handle non-
compact Hausdorff spaces, X . Carmeli et al. (2010, Proposition 2.3, Theorems 4.3 and 4.4) showed
that a bounded continuous pd kernel, k is cc-universal if and only if the following embedding is
injective for all μ∈Mbc(X) and some p ∈ [1,∞):

f �→
∫
X
k(·,x) f (x)dμ(x), f ∈ Lp(X ,μ). (9)

In addition, Carmeli et al. (2010, Remark 4.1) showed that k being cc-universal is equivalent to it
being universal in the sense of Micchelli et al. (2006) and Caponnetto et al. (2008): for any compact
Z⊂X , the set K(Z) := span{k(·,y) : y∈ Z} is dense inC(Z) in the uniform norm, which is shown by

4. Let k1 be a characteristic kernel on R. Define k2(x,y) = 1 if x= y ∈R and k2(x,y) = 0 if x �= y ∈R. Clearly k2 is not
continuous and therefore k1+ k2 is not a c0-kernel, even if k1 is a c0-kernel. However, it is easy to verify that k1+ k2
is characteristic.
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Micchelli et al. (2006, Proposition 1) to be equivalent to the following embedding being injective:

μ �→
∫
Z
k(·,x)dμ(x), μ∈Mb(Z). (10)

Since (10) holds for any compact Z ⊂ X , the universality in the sense of Micchelli et al. and Capon-
netto et al. is equivalent to the following embedding being injective:

μ �→
∫
X
k(·,x)dμ(x), μ∈Mbc(X). (11)

Therefore, k being cc-universal is equivalent to the injectivity of (11)—in Section 4, we present
a more direct proof of this result (see Remark 3). It is clear from the definitions of c- and cc-
universality that these notions are equivalent when X is compact, which also follows from their
characterizations in (8) and (11).

As special cases, Micchelli et al. (2006, Propositions 14, Theorem 17) showed that a translation
invariant kernel on Rd is cc-universal if supp(Λ) is a uniqueness subset5 of Cd , while a radial kernel
on Rd is cc-universal if and only if supp(ν) �= {0}—see (5) and (6) for the definitions of Λ and ν.
Using these characterizations, many popular kernels on Rd are shown to be cc-universal (Micchelli
et al., 2006, Section 4): Gaussian, Laplacian, B2l+1-spline, sinc kernel, etc.

c0-universality: Although cc-universality solves the limitation of c-universality by handling
non-compact X , the topology of compact convergence considered in cc-universality is weaker than
the topology of uniform convergence, that is, a sequence of functions, { fn} ⊂C(X) converging to
f ∈ C(X) in the topology of uniform convergence ensures that they converge in the topology of
compact convergence but not vice-versa. So, the natural question to ask is whether we can charac-
terize H that are rich enough to approximate any f � on non-compact X in a stronger sense, that is,
uniformly, by some g ∈ H. Carmeli et al. (2010, Definition 2.2, Theorem 4.1) and Sriperumbudur
et al. (2010a) answered this through the notion of c0-universality, wherein X is an LCH space with
C0(X) being the target space andH being dense inC0(X) w.r.t. the uniform norm (note that a notion
of universality that is stronger than c0-universality can be defined by choosing X to be a Hausdorff
space, Cb(X) to be the target space andH being dense in Cb(X) w.r.t. the uniform norm. However,
this notion of universality does not enjoy a nice characterization as c0-universality—see (12) and
(13) for the characterization of c0-universality—and therefore, we did not include it in our study of
relationships between various notions of pd kernels. See Appendix C for details).

Carmeli et al. (2010, Theorem 4.1) showed that a c0-kernel k is c0-universal if and only if it is
Lp-universal, which by Proposition 2.3 and Theorem 4.2 of Carmeli et al. (2010) is equivalent to
the injectivity of the following embedding for all μ∈Mb(X) and some p ∈ [1,∞):

f �→
∫
X
k(·,x) f (x)dμ(x), f ∈ Lp(X ,μ). (12)

We provide an alternate characterization for c0-universality in Section 4 (see Proposition 2) that k is
c0-universal if and only if the following embedding is injective:

μ �→
∫
X
k(·,x)dμ(x), μ∈Mb(X). (13)

5. A subset S of Cd is a uniqueness set if an entire function on Cd vanishes on S then it is everywhere zero on Cd .
Non-empty interior is sufficient for a set to be a uniqueness set.
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As a special case, Carmeli et al. (2010, Proposition 5.6) showed that a translation invariant k on
Rd is c0-universal if and only if supp(Λ) =Rd . Examples of c0-universal kernels on Rd include the
Gaussian, Laplacian, B2l+1-spline, inverse multiquadrics, Matérn class, etc.

Summary: The following statements summarize the relation between various notions of univer-
sality, which are depicted in Figure 1.

• c- and cc-universality are related to the injective RKHS embedding of finite signed Borel
measures, as shown in (8) and (11).

• For c0-kernels defined on an LCH space X , c0-universality implies cc-universality, which fol-
lows from (9) and (12). The converse is however not true as a bounded continuous translation
invariant c0-kernel on Rd is c0-universal if and only if supp(Λ) = Rd while (supp(Λ))◦ �= /0
is sufficient for cc-universality, where A◦ represents the interior of A.

• When X is compact, then c-, cc- and c0-universality are equivalent.

• For an LCH space X , a c0-kernel is c0-universal if and only if it is Lp-universal.

• If k is a radial kernel on Rd , then k is cc-universal if and only if supp(ν) �= {0}.

Open questions: The following relationships need to be clarified, which we do in Section 4.

(A) As mentioned in the summary, c- and cc-universality are related to the injective RKHS em-
bedding of finite signed Borel measures. However, the relation between c0-universality and
the injective RKHS embedding of finite signed Borel measures as shown in (13) is not clear,
which we clarify in Section 4.1.

(B) For c0-kernels defined on an LCH space X (that is not compact), it is clear from the summary
that c0-universality implies cc-universality. Is there a case for which cc-universality implies
c0-universality? We address this in Section 4.3.

(C) While cc-universality is characterized for radial kernels on Rd , the characterization of c0-
universality for radial kernels is not known. In Section 4.3, we provide a characterization of
c0-universality for radial kernels onRd and then establish the relation between c0-universality
and cc-universality for such kernels.

3.2 Relation Between Characteristic and Universal Kernels

In this section, we comprehensively clarify the relation between various notions of universality and
characteristic kernels, based on already existing characterizations for characteristic kernels and the
results summarized in Section 3.1 for universal kernels.

c-universal kernels vs. Characteristic kernels: Gretton et al. (2007) related universal and char-
acteristic kernels by showing that if k is c-universal, then it is characteristic. In our preliminary
study in Sriperumbudur et al. (2010b, Section 3.4), we showed that the converse is not true: as
an example, a translation invariant kernel, k on Td ×Td is characteristic if and only if Aψ(0) ≥ 0,
Aψ(n)> 0, ∀n ∈ Zd+ while it is universal if and only if Aψ(n)> 0, ∀n ∈ Zd .

cc-universal kernels vs. Characteristic kernels: cc-universal kernels on a non-compact Haus-
dorff space need not be characteristic: for example, a bounded continuous translation invariant
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kernel on Rd is cc-universal if (supp(Λ))◦ �= /0 (see the summary of Section 3.1) while it is char-
acteristic if and only if supp(Λ) = Rd (Sriperumbudur et al., 2008, Theorem 7). Although, this
example shows that a bounded continuous translation invariant kernel on Rd is cc-universal if it is
characteristic, it is not clear whether such a relation holds on a general non-compact Hausdorff space
(not necessarily Rd). The following example shows that continuous kernels that are characteristic
on non-compact Hausdorff space, X also need not be cc-universal.

Example 1 Let X = N. Define k(x,y) = δxy, x,y ∈ X\{1}, k(x,1) = 0 for any x ∈ X, where δ
represents the Kronecker delta. Suppose μ= δ1 ∈ Mbc(X)\{0}, where δ j represents the Dirac
measure at j. Then ‖

∫
X k(·,x)dμ(x)‖

2
H
= ‖k(·,1)‖2

H
= k(1,1) = 0, which means there exists μ∈

Mbc(X)\{0} such that
∫
X k(·,x)dμ(x) = 0, that is, (11) is not injective and therefore k is not cc-

universal. However, k is characteristic as we show below.
Let P and Q be probability measures on X such that P = ∑ j∈N p jδ j, Q = ∑ j∈N q jδ j with p j ≥

0,q j ≥ 0 for all j ∈ N and ∑ j∈N p j = ∑ j∈N q j = 1. Consider

B :=
∥∥∥∫

X
k(·,x)d(P−Q)(x)

∥∥∥2
H

=
∥∥∥∑
j∈N

(p j−q j)k(·, j)
∥∥∥2
H

= ∑
l, j∈N

(pl−ql)(p j−q j)k(l, j)

= (p1−q1)
2k(1,1)+2(p1−q1) ∑

j∈N\{1}

(p j−q j)k( j,1)+ ∑
l, j∈N\{1}

(p j−q j)(pl−ql)k( j, l)

= ∑
j∈N\{1}

(p j−q j)
2.

Suppose B= 0, which means p j = q j, ∀ j ∈ N\{1}. Since ∑ j∈N p j = ∑ j∈N q j = 1, we have p1 = q1
and so P=Q, that is, (2) is injective and therefore k is characteristic.

c0-universal kernels vs. Characteristic kernels: Fukumizu et al. (2008, 2009) have shown that
a measurable and bounded kernel, k is characteristic if and only ifH+R (the direct sum ofH and
R is defined as H+R := { f + c : f ∈ H, c ∈ R}) is dense in Lp(X ,P) for all P ∈ M+

1 (X) and
for some p ∈ [1,∞). Using this, it is easy to see that if H is dense in Lp(X ,P) for all P ∈M+

1 (X)
and for some p ∈ [1,∞), then k is characteristic. Based on the results summarized in Section 3.1,
it is clear that for an LCH space, X , if k is c0-universal, which means k is Lp-universal, then H

is dense in Lp(X ,P) for all P ∈M+
1 (X) and for some p ∈ [1,∞) and therefore is characteristic. In

Section 4, we provide an alternate proof for this relation between c0-universal and characteristic
kernels by answering (A). Clearly, the converse is not true, that is, a c0-kernel that is characteristic
need not be c0-universal (see Proposition 4 and footnote 8). However, for bounded continuous
translation invariant kernels on Rd , the converse is true, that is, a translation invariant c0-kernel that
is characteristic6 is also c0-universal. This is because of the fact that a translation invariant kernel
on Rd is characteristic if and only if supp(Λ) =Rd (Sriperumbudur et al., 2008, Theorem 7), which
is also the same characterization summarized in Section 3.1 for c0-universal kernels.

Summary: The following statements summarize the relation between universal and characteris-
tic kernels, which are depicted in Figure 1.

6. Let k(x,y) = ψ(x− y) be a bounded continuous translation invariant kernel on Rd , which by Bochner’s theorem is
of the form in (5). Suppose ψ ∈ L1(Rd). Then by the Fourier inversion theorem (Dudley, 2002, Theorem 9.5.4), Λ
has a density, ψ̂ w.r.t. the Lebesgue measure such that ψ̂ ∈ L1(Rd). Therefore, since ψ is the Fourier transform of
ψ̂, by the Riemann-Lebesgue lemma (Rudin, 1991, Theorem 7.5), ψ ∈C0(Rd), that is, k is a c0-kernel. Most of the
well-known characteristic kernels satisfy the condition of ψ ∈ L1(Rd) and therefore are c0-kernels. This means, for
all practical purposes, we can assume bounded continuous translation invariant kernels to be c0-kernels.
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• For c0-kernels defined on an LCH space, X , Lp-universal ⇔ c0-universal ⇒ characteristic.
But in general, c0-kernels that are characteristic need not be c0-universal. However, for trans-
lation invariant kernels on Rd , c0-universal⇔ characteristic.

• When X is compact, c-universal⇒ characteristic but not vice-versa.

• For translation invariant kernels onRd , characteristic⇒ cc-universal but not vice-versa. How-
ever, on general non-compact Hausdorff spaces, continuous kernels that are characteristic
need not be cc-universal.

Open questions: The following relationship need to be clarified, which we do in Section 4.

(D) While the relation between universal and characteristic kernels that are translation invariant
onRd is clear (see the summary above), the characterization of characteristic and c0-universal
kernels that are radial on Rd is not known and therefore the relation between characteristic
and universal kernels that are radial on Rd is not clear. We address this in Section 4.3.

3.3 Relation of Universal and Characteristic Kernels to Strictly PD, Integrally Strictly PD
and Conditionally Strictly PD Kernels

In this section, we relate characteristic kernels and various notions of universal kernels to strictly pd,
integrally strictly pd and conditionally strictly pd kernels. Before that, we summarize the relation
between strictly pd, integrally strictly pd and conditionally strictly pd kernels. In Sriperumbudur
et al. (2010b, Section 3.4), we showed that integrally strictly pd kernels are strictly pd. The converse
is not true, which follows from Steinwart and Christmann (2008, Proposition 4.60, Theorem 4.62).
However, if X is a finite set, then k being strictly pd also implies it is integrally strictly pd. From the
definitions of strictly pd and conditionally strictly pd kernels, it is clear that a strictly pd kernel is
conditionally strictly pd but not vice-versa.

Universal kernels vs. Strictly pd kernels: Carmeli et al. (2010, Corollary 4.3) showed that
cc-universal kernels are strictly pd, which means c0-universal kernels are also strictly pd (as c0-
universal⇒ cc-universal from Section 3.1). This means, when X is compact Hausdorff, c-universal
kernels are strictly pd, which matches with the result in Steinwart and Christmann (2008, Definition
4.53, Proposition 4.54, Example 4.11).

Conversely, a strictly pd c0-kernel on an LCH space need not be c0-universal. This follows from
Theorem 4.62 in Steinwart and Christmann (2008) which shows that there exists a bounded strictly
pd kernel, k on X :=N∪{0}with k(·,x)∈C0(X), ∀x∈X such that k is not Lp-universal (which from
the summary of Section 3.1 means k is not c0-universal). Similarly, when X is compact, the converse
is not true, that is, continuous strictly pd kernels need not be c-universal which follows from the
results due to Dahmen and Micchelli (1987) and Pinkus (2004) for Taylor kernels (Steinwart and
Christmann, 2008, Lemma 4.8, Corollary 4.57)—refer to Steinwart and Christmann (2008, Section
4.7, p. 161) for more details.7 Therefore, it is evident that a continuous strictly pd kernel is in
general not cc-universal on an Hausdorff space. However, for translation invariant kernels that
are continuous, bounded and integrable on Rd , that is, k(x,y) = ψ(x− y), x,y ∈ Rd , where ψ ∈

7. Another example of continuous strictly pd kernels that are not c-universal is as follows. Using the technique in the
proof of Theorem 14 of Sriperumbudur et al. (2010b), it can be shown that a continuous translation invariant kernel
on T×T is c-universal if and only if Aψ(n) > 0, ∀n ∈ Z. Therefore, by Theorem 8 (see Appendix B), a strictly pd
kernel on T need not be c-universal.

2399



SRIPERUMBUDUR, FUKUMIZU AND LANCKRIET

Cb(Rd)∩L1(Rd), strictly pd implies cc-universality. This follows from Theorem 6.11 and Corollary
6.12 of Wendland (2005) that if ψ ∈ Cb(Rd)∩ L1(Rd) is strictly pd, then (supp(Λ))◦ �= /0, which
from the summary of Section 3.1 means k is cc-universal. Similarly, when the kernel is radial on
Rd , then strictly pd kernels are cc-universal. This follows from Theorem 7.14 of Wendland (2005),
which shows that a radial kernel on Rd is strictly pd if and only if supp(ν) �= {0}, and therefore cc-
universal (from the summary of Section 3.1). On the other hand, when X is finite, all these notions
of universal and strictly pd kernels are equivalent, which follows from the result due to Carmeli
et al. (2010, Corollary 4.3) that cc-universal and strictly pd kernels are the same when X is finite.

Characteristic kernels vs. Strictly pd kernels: Since characteristic kernels that are c0- and trans-
lation invariant on Rd are equivalent to c0-universal kernels (see the summary of Section 3.2), it
is clear that they are strictly pd. However, the converse is not true: for example, the sinc-squared

kernel, k(x,y) = sin2(σ(x−y))
(x−y)2 on R, which has supp(Λ) = [−σ,σ]�R is strictly pd (Wendland, 2005,

Theorem 6.11), while it is not characteristic. Based on Example 1, it can be shown that in gen-
eral, characteristic kernels on a non-compact space (not necessarily Rd) need not be strictly pd:
in Example 1, k is characteristic but is not strictly pd because for (a1, . . . ,an) = (1,0, . . . ,0) and
(x1, . . . ,xn) = (1, . . . ,n), we have ∑n

l, j=1 ala jk(xl,x j) = a21k(1,1)+2a1∑
n
j=2 a jk( j,1)+∑n

j=2 a
2
j = 0.

Note that Example 1 holds even if X is a compact subset of N. Therefore, when X is compact Haus-
dorff, a characteristic kernel need not be strictly pd. However, for translation invariant kernels on
T, a characteristic kernel is also strictly pd, while the converse is not true: Fukumizu et al. (2009,
Theorem 8) and Sriperumbudur et al. (2010b, Theorem 14) have shown that k on T×T is charac-
teristic if and only if Aψ(0)≥ 0, Aψ(n)> 0, ∀n ∈ Z\{0}, which by Theorem 8 (see Appendix B) is
strictly pd, while the converse is clearly not true.

Characteristic kernels vs. Integrally strictly pd kernels: In Sriperumbudur et al. (2009, The-
orem 4) and Sriperumbudur et al. (2010b, Theorem 7), we have shown that integrally strictly pd
kernels are characteristic, while the converse in general is not true.8 When k is bounded continuous
and translation invariant on Rd , however the converse holds, which is due to the fact that if k is
characteristic, then supp(Λ) = Rd (Sriperumbudur et al., 2008, Theorem 7), which ensures that k is
integrally strictly pd.

Summary: The following statements summarize the relation of universal and characteristic ker-
nels to strictly pd, integrally strictly pd and conditionally strictly pd kernels, which are depicted in
Figure 1.

• c-, cc- and c0-universal kernels are strictly pd and are therefore conditionally strictly pd, while
the converse in general is not true. When X is finite, then c-, cc- and c0-universal kernels are
equivalent to strictly pd kernels.

• Bounded, continuous, integrable, strictly pd translation invariant kernels onRd are cc-universal.
Radial kernels on Rd are strictly pd if and only if they are cc-universal.

• For a general non-compact Hausdorff space, characteristic kernels need not be strictly pd and
vice-versa. However, bounded continuous translation invariant kernels on Rd or T that are
characteristic are strictly pd but the converse is not true.

8. By Example 1, it is clear that for μ= δ1 ∈Mb(X)\{0},
∫∫
X k(x,y)dμ(x)dμ(y) = k(1,1) = 0, where δ1 represents the

Dirac measure at 1. Therefore k is not integrally strictly pd but is characteristic.
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• Integrally strictly pd kernels are characteristic. Though the converse is not true in general, it
holds if the kernel is bounded, continuous and translation invariant on Rd .

Open questions: The following questions need to be clarified, which is done in Section 4.

(E) While the relation of universal kernels to strictly pd and conditionally strictly pd kernels is
clear from the above summary, the relation between universal and integrally strictly pd kernels
is not known, which we establish in Section 4.2.

(F) When X is a finite set, it is easy to see that characteristic and conditionally strictly pd ker-
nels are equivalent (see Section 4.4). However, their relationship is not clear for a general
measurable space, which we clarify in Section 4.4.

(G) As summarized above, radial kernels on Rd are strictly pd if and only if they are cc-universal.
However, the relation between all the other notions of pd kernels—c0-universal, characteris-
tic, strictly pd and integrally strictly pd—is not known, which is addressed in Section 4.3.

4. Relation Between Various Notions of Positive Definite Kernels: New Results

In this section, we address the open questions, (A)–(G) mentioned in Section 3 to understand the
complete relationship between various notions of positive definite kernels.

4.1 c0-universality and RKHS Embedding of Measures

As mentioned in Section 3.1, Micchelli et al. (2006) have established the relation of c-universality
and cc-universality to injective RKHS embedding of finite signed Borel measures—shown in (8)
and (11)—through a simple application of the Hahn-Banach theorem (see Theorem 1). The fol-
lowing result (also see Suquet, 2009, Remark 1.1) in Proposition 2 provides a measure embedding
characterization—shown in (13)—for c0-universality, which is also obtained as a simple applica-
tion of the Hahn-Banach theorem, and therefore addresses the open question in (A). Before we state
Proposition 2, we present the Hahn-Banach theorem, which we quote from Rudin (1991, Theorem
3.5 and the remark following Theorem 3.5).

Theorem 1 (Hahn-Banach) Suppose A is a subspace of a locally convex topological vector space
Y . Then A is dense in Y if and only if A⊥ = {0}, where

A⊥ := {T ∈ Y ′ : ∀x ∈ A, T (x) = 0}.

The following result, which presents a necessary and sufficient condition for k to be c0-universal
hinges on the above theorem, where we choose A to be the RKHS,H and Y to be C0(X) for which
Y ′ is known through the Riesz representation theorem (Folland, 1999, Theorem 7.17).

Proposition 2 (c0-universality and RKHS embedding of measures) Suppose X is an LCH space
with the kernel, k being bounded and k(·,x) ∈C0(X), ∀x ∈ X. Then k is c0-universal if and only if
the embedding,

μ �→
∫
X
k(·,x)dμ(x), μ∈Mb(X), (14)

is injective.
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Proof By definition, k is c0-universal ifH is dense inC0(X). We now invoke Theorem 1 to charac-
terize the denseness ofH inC0(X), which means we need to consider the dualC′

0(X) := (C0(X))′ of
C0(X). By the Riesz representation theorem (Folland, 1999, Theorem 7.17),C′

0(X) =Mb(X) in the
sense that there is a bijective linear isometry μ �→ Tμ from Mb(X) onto C′

0(X), given by the natural
mapping, Tμ( f ) =

∫
X f dμ, f ∈C0(X). Therefore, by Theorem 1, H is dense in C0(X) if and only

if H⊥ := {μ∈Mb(X) : ∀ f ∈ H,
∫
X f dμ= 0} = {0}. From Lemma 7 (see Appendix B), we have

H
⊥ = {μ∈Mb(X) :

∫
X k(·,x)dμ(x) = 0} and therefore the result follows from Theorem 1.

Remark 3 (a) When X is compact, C0(X) coincides with C(X), and therefore the result in (14)
matches with the one in (8), derived by Micchelli et al. (2006).

(b) The characterization of cc-universality, shown in (11) can also be directly obtained as a
simple application of Theorem 1, wherein the proof is similar to that of Proposition 2 except that
we need to consider the dual of C(X) endowed with the topology of compact convergence (a locally
convex topological vector space) to characterize the denseness of H in C(X). It is known (Hewitt,
1950) that C′(X) =Mbc(X) in the sense that there is a bijective linear isometry μ �→ Tμ from Mbc(X)
onto C′(X), given by the natural mapping, Tμ( f ) =

∫
X f dμ, f ∈ C(X). The rest of the proof is

verbatim with Mb(X) replaced by Mbc(X).
(c) Comparing (14) and (2), it is clear that c0-universal kernels are characteristic while the

converse is not true, which matches with the result in Section 3.2.

4.2 Relation Between Universal Kernels and Integrally Strictly PD Kernels

In this section, we address the open question (E) through the following result which shows that
c0-kernels are integrally strictly pd if and only if they are c0-universal.

Proposition 4 (c0-universal and integrally strictly pd kernels) Suppose the assumptions in Propo-
sition 2 hold. Then, a c0-kernel, k is c0-universal if and only if it is integrally strictly pd, that is,

∫ ∫
X
k(x,y)dμ(x)dμ(y)> 0, ∀μ∈Mb(X)\{0}. (15)

Proof (⇐ ) Suppose k is not c0-universal. By Proposition 2, there exists μ∈Mb(X)\{0} such that∫
X k(·,x)dμ(x) = 0, which implies ‖

∫
X k(·,x)dμ(x)‖H = 0. This means

0=
〈∫

X
k(·,x)dμ(x),

∫
X
k(·,x)dμ(x)

〉
H

(e)
=

∫ ∫
X
k(x,y)dμ(x)dμ(y),

that is, k is not integrally strictly pd, where (e) follows from Lemma 7 (see Appendix B). Therefore,
if (15) holds, then k is c0-universal.

(⇒ ) Suppose there exists μ∈Mb(X)\{0} such that
∫∫

X k(x,y)dμ(x)dμ(y) = 0, that is,∥∥∥∥∫
X
k(·,x)dμ(x)

∥∥∥∥
H

= 0 ⇒
∫
X
k(·,x)dμ(x) = 0.

Therefore, the embedding in (14) is not injective, which by Proposition 2 implies that k is not c0-
universal. Therefore, if k is c0-universal, then k satisfies (15).
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4.3 Radial Kernels on Rd

In this section, we address the open questions (B), (C), (D) and (G) by showing that all the notions
of universality and characteristic kernels are equivalent to strictly pd kernels.

Proposition 5 (All notions are equivalent for radial kernels on Rd) Suppose k is radial on Rd.
Then the following conditions are equivalent.

(a) supp(ν) �= {0}.

(b) k is integrally strictly pd.

(c) k is c0-universal.

(d) k is cc-universal.

(e) k is strictly pd.

(f) k is characteristic.

Proof Note that (b)⇔ (c) follows from Proposition 4, (c)⇒ (d) from (11) and (13) and (d)⇔ (e)
from Micchelli et al. (2006, Proposition 14) and Wendland (2005, Theorem 7.14). Theorem 7.14 in
Wendland (2005) also ensures that (e)⇒ (a). Now, we show (a)⇒ (b). To do this, we first derive
an intermediate result. Suppose μ̂ is the Fourier transform of μdefined as μ̂(ω) =

∫
Rd e

√
−1ωT x dμ(x),

then for any ψ defined as in (5), we have
∫ ∫

Rd
ψ(x− y)dμ(x)dμ(y) =

∫ ∫ ∫
Rd
e−

√
−1(x−y)Tω dΛ(ω)dμ(x)dμ(y)

=
∫ ∫

Rd
e−

√
−1xTω dμ(x)

∫
Rd
e
√
−1yTω dμ(y)dΛ(ω)

=
∫
Rd

μ̂(ω)μ̂(ω)dΛ(ω)

=
∫
Rd

|μ̂(ω)|2 dΛ(ω). (16)

Consider
∫∫

Rd k(x,y)dμ(x)dμ(y) with k as in (6), given by

B :=
∫ ∫

Rd
k(x,y)dμ(x)dμ(y) =

∫ ∫
Rd

∫ ∞

0
e−t‖x−y‖

2
2 dν(t)dμ(x)dμ(y)

(�)
=

∫ ∞

0

[∫ ∫
Rd
e−t‖x−y‖

2
2 dμ(x)dμ(y)

]
dν(t)

(♣)
=

∫ ∞

0

1

(4πt)d/2

[∫
Rd

|μ̂(ω)|2e−
‖ω‖22
4t dω

]
dν(t)

(♠)
=

∫
Rd

|μ̂(ω)|2
[∫ ∞

0

1

(4πt)d/2
e−

‖ω‖22
4t dν(t)

]
dω, (17)

where Fubini’s theorem is invoked in (�) and (♠), while we used (16) in (♣), where we set ψ(x) =
e−t‖x‖

2
2 with dΛ(ω) = (4πt)−d/2e−‖ω‖22/4t dω. Since supp(ν) �= {0}, the inner integral in (17) is

positive for every ω ∈ Rd and so B> 0, which means k is integrally strictly pd.
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We now prove that (c) ⇔ ( f ). (c) ⇒ ( f ) follows from Section 3.2. To prove the converse, we
need to prove that if k is not c0-universal, then it is not characteristic. If k is not c0-universal, then
we have supp(ν) = {0}, which means the kernel is a constant function on Rd ×Rd and therefore
not characteristic.

4.4 Relation Between Characteristic and Conditionally Strictly PD Kernels

In this section we address the open question (F) which is about the relation of characteristic kernels
to conditionally strictly pd kernels.

As shown in Section 3.3, although the relation between universal and conditionally strictly
pd kernels straightforwardly follows from universal kernels being strictly pd, which in turn are
conditionally strictly pd, such an implication is not possible in the case of characteristic kernels as
they are not in general strictly pd (see Example 1). However, the following result establishes the
relation between characteristic and conditionally strictly pd kernels.

Proposition 6 If k is characteristic, then it is conditionally strictly pd.

Proof Suppose k is not conditionally strictly pd. This means for some n ≥ 2 and for mutually
distinct x1, . . . ,xn ∈ X , there exists {α j}

n
j=1 �= 0 with ∑

n
j=1α j = 0 such that ∑n

l, j=1αlα jk(xl,x j) = 0.
Define I := { j : α j > 0}, P := β−1∑ j∈I α jδx j and Q :=−β−1∑ j/∈I α jδx j , where β := ∑ j∈I α j. It is
easy to see that P and Q are distinct Borel probability measures on X . Then, we have∥∥∥∥∫

X
k(·,x)d(P−Q)(x)

∥∥∥∥2
H

= β−2
∥∥∥∥∥ n

∑
j=1

α jk(·,x j)

∥∥∥∥∥
H

= β−2
n

∑
l, j=1

αlα jk(xl,x j) = 0.

So, there exist P �=Q such that
∫
X k(·,x)d(P−Q)(x) = 0, that is, k is not characteristic.

The converse to Proposition 6 in general is however not true: we showed in Section 3.3 that strictly
pd kernels are conditionally strictly pd but need not be characteristic and so conditionally strictly pd
kernels need not have to be characteristic. In the following, we present a concrete example to show
the same—a similar example is used to prove Theorem 4.62 in Steinwart and Christmann (2008),
which shows that c0-kernels that are strictly pd need not be c0-universal.

Example 2 Let X =N∪{0}. Define k(0,0) =∑n∈N b
2
n, k(m,n) = δmn and k(n,0) = bn for m,n≥ 1,

where {bn}n≥1 ⊂ (0,1) and ∑n∈N bn = 1. Let n≥ 2 and α := (α0, . . . ,αn) ∈ Rn+1 be a vector with
α �= 0 such that ∑n

j=0α j = 0. Consider

B :=
n

∑
l, j=0

αlα jk(l, j) = α20k(0,0)+2
n

∑
j=1

α jα0k( j,0)+
n

∑
l, j=1

αlα jk(l, j)

= α20 ∑
j∈N

b2j +2α0
n

∑
j=1

α jb j+
n

∑
j=1

α2j = α20 ∑
j∈N

b2j +
n

∑
j=1

α j(2α0b j+α j).

If α0 = 0, then B= ∑n
j=1α

2
j > 0 since we assumed α �= 0. Suppose α0 �= 0. Then

B≥ α20 ∑
j∈N

b2j +
n

∑
j=1

α∗
j(2α0b j+α∗

j), (18)
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where

(α∗
1, . . . ,α

∗
n) = argmin

{
n

∑
j=1

α j(2α0b j+α j) :
n

∑
j=1

α j =−α0

}
. (19)

Note that (α∗
1, . . . ,α

∗
n) is unique as the objective in (19) is strictly convex, which is minimized over

a convex set. To solve (19), let us consider the Lagrangian, given as

L(α1, . . . ,αn,λ) =
n

∑
j=1

α j(2α0b j+α j)−λ
( n

∑
j=1

α j+α0
)
,

where λ ≥ 0. Differentiating L w.r.t. α j and setting it to zero yields α∗
j = (λ− 2α0b j)/2. Since

∑n
j=1α

∗
j =−α0, we have λ=

2α0(a−1)
n , where a := ∑n

j=1 b j. Substituting for λ in α
∗
j , we have

α∗
j =

α0(a−1−nb j)

n
, j ∈ Nn.

Substituting for α∗
j in (18) gives

B≥ α20 ∑
j∈N

b2j +
α20(a−1)

2

n
−α20

n

∑
j=1

b2j = α20
∞

∑
j=n+1

b2j +
α20(∑

n
j=1 b j−1)

2

n
> 0.

Consequently, we have B> 0 in any case, and therefore k is conditionally strictly pd. In the follow-
ing, we however show that k is not characteristic.

Let P= δ0 and Q= ∑n
j=1 b jδ j. Clearly P �=Q. Consider

∥∥∥∫
X
k(·,x)d(P−Q)(x)

∥∥∥2
H

=
∥∥∥k(·,0)−∑

j∈N

k(·, j)b j
∥∥∥2
H

= k(0,0)−2∑
j∈N

k( j,0)b j+ ∑
l, j∈N

k(l, j)blb j

= ∑
j∈N

b2j −2∑
j∈N

b2j +∑
j∈N

b2j = 0.

This implies the embedding in (2) is not injective and therefore k is not characteristic.

When X is finite, then the converse to Proposition 6 holds, that is, conditionally strictly pd kernels
are characteristic, which is shown as follows. Let X = Nn. Suppose k is conditionally strictly pd,
that is, for any n ≥ 2, (α1, . . . ,αn) �= (0, . . . ,0) with ∑n

j=1α j = 0, and all distinct x1, . . . ,xn ∈ X ,
we have ∑n

l, j=1αlα jk(xl,x j) > 0. Let I := { j : α j > 0}. Define P := β−1∑ j∈I α jδ j and Q :=
−β−1∑ j/∈I α jδ j, where β := ∑ j∈I α j and P �=Q. Then

∥∥∥∥∫ k(·,x)d(P−Q)(x)

∥∥∥∥2
H

= β−2
n

∑
l, j=1

αlα jk(l, j)> 0

and therefore k is characteristic.
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5. Conclusions

In this work, we have presented a unified study to explain the relation between universal kernels,
characteristic kernels and RKHS embedding of measures: while characteristic kernels are related
to the injective RKHS embedding of Borel probability measures, the universal kernels are related
to the injective RKHS embedding of finite signed Borel measures. We showed that for all practical
purposes (e.g., Gaussian kernel, Laplacian kernel, etc.), the notions of characteristic and universal
kernels are equivalent. In addition, we also explored their relation to various other notions of positive
definite (pd) kernels: strictly pd, integrally strictly pd and conditionally strictly pd. As an example,
we showed all these notions to be equivalent (except for conditionally strictly pd) in the case of
radial kernels on Rd . We would like to note that while this study assumes the kernel to be real-
valued, all the results extend verbatim to the case of complex-valued kernels as well.

This unified study shows that certain families of kernels, for example, bounded continuous
translation invariant kernels on Rd and radial kernels on Rd , are interesting for practical use, since
the disparate notions of universal and characteristic kernels seem to coincide for these families. On
the other hand, it may not give a guide regarding which kernel should be used given a problem.

Acknowledgments

The authors thank anonymous reviewers for their constructive comments that greatly improved the
manuscript and also for pointing out to Suquet (2009). B. K. S. and G. R. G. L. wish to acknowledge
support from the Institute of Statistical Mathematics (ISM), Tokyo, the National Science Foundation
(grant DMS-MSPA 0625409), the Fair Isaac Corporation and the University of California MICRO
program. Most of this work was done when B. K. S. was affiliated with the University of California,
San Diego, of which a part was carried out while B. K. S. was visiting ISM. K. F. was supported by
JSPS KAKENHI 19500249 and 22300098.

Appendix A. Radial Kernels are Translation Invariant on Rd

Let k be radial on Rd ×Rd . Define k(x,y) = ψ(x− y) :=
∫
[0,∞) e

−t‖x−y‖22 dν(t), x,y ∈ Rd , where
ν ∈M+

b ([0,∞)). Since

e−t‖x−y‖
2
2 =

∫
Rd
e−

√
−1(x−y)Tω(4πt)−d/2e−‖ω‖22/4t dω,

we have ψ(x) =
∫
Rd e−

√
−1xTωφ(ω)dω, where

φ(ω) =
∫
[0,∞)

(4πt)−d/2e−‖ω‖22/4t dν(t).

It is easy to check that φ(ω)≥ 0, ∀ω ∈ Rd and φ ∈ L1(Rd). Therefore ψ satisfies (5), which means
k is a bounded continuous translation invariant kernel on Rd .

Appendix B. Supplementary Results

For completeness, we present the following supplementary result, which is a simple generalization
of the technique used in the proof of Theorem 3 in Sriperumbudur et al. (2008).
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Lemma 7 Let k be a measurable and bounded kernel on a measurable space, X and let H be its
associated RKHS. Then, for any f ∈H and for any finite signed Borel measure, μ,∫

X
f (x)dμ(x) =

∫
X
〈 f ,k(·,x)〉H dμ(x) =

〈
f ,
∫
X
k(·,x)dμ(x)

〉
H

.

Proof Let Tμ :H → R be a linear functional defined as Tμ[ f ] :=
∫
X f (x)dμ(x). It is easy to show

that

‖Tμ‖ := sup
f∈H

|Tμ[ f ]|

‖ f‖H
≤
√
sup
x∈X

k(x,x)‖μ‖< ∞.

Therefore, Tμ is a bounded linear functional on H. By the Riesz representation theorem (Folland,
1999, Theorem 5.25), there exists a unique λμ ∈ H such that Tμ[ f ] = 〈 f ,λμ〉H for all f ∈ H. Set
f = k(·,u) for some u ∈ X , which implies λμ=

∫
X k(·,x)dμ(x) and the result follows.

The following result in Theorem 8 characterizes strictly pd kernels on T, which we quote from
Menegatto (1995). Before we state the result, we introduce some notation. For natural numbers m
and n and a set A of integers, m+nA := { j ∈Z | j=m+na, a∈ A}. An increasing sequence {cl} of
nonnegative integers is said to be prime if it is not contained in any set of the form p1N∪ p2N∪·· ·∪
pnN, where p1, p2, . . . , pn are prime numbers. Any infinite increasing sequence of prime numbers is
a trivial example of a prime sequence. We write N0n := {0,1, . . . ,n}.

Theorem 8 (Menegatto 1995) Let ψ be a pd function on T of the form in (7). Let N := {|n| :
Aψ(n) > 0, n ∈ Z} ⊂ N∪{0}. Then ψ is strictly pd if N has a subset of the form ∪∞

l=0(bl + clN0l ),
in which {bl}∪{cl} ⊂ N and {cl} is a prime sequence.

Appendix C. cb-universality

As mentioned in Section 2, the definition of c0-universality deals with H being dense in C0(X)
w.r.t. the uniform norm, where X is an LCH space. Although the notion of c0-universality addresses
limitations associated with both c- and cc-universality, it only approximates a subset of C(X), that
is, it cannot deal with functions in C(X)\C0(X). This limitation can be addressed by considering a
larger class of functions to be approximated.

To this end, one can consider a notion of universality that is stronger than c0-universality: a
bounded continuous kernel, k is said to be cb-universal if its corresponding RKHS, H is dense
in Cb(X), the space of bounded continuous functions on a topological space, X (note that C0(X) ⊂
Cb(X)). This notion of cb-universality may be more applicable in learning theory than c0-universality
as the target function, f � can belong to Cb(X) (which is a more natural assumption) instead of it
being restrained to C0(X) (note that C0(X) only contains functions that vanish at infinity). Similar
to Proposition 2, the following theorem provides a necessary and sufficient condition for k to be
cb-universal. Before we state the result, we need some definitions.

A set function is a function defined on a family of sets, and has values in [−∞,+∞]. A set func-
tion μ defined on a family τ of sets is said to be finitely additive if /0 ∈ τ, μ( /0) = 0 and μ(∪nl=1Al) =
∑n
l=1μ(Al), for every finite family {A1, . . . ,An} of disjoint subsets of τ such that ∪nl=1Al ∈ τ. A field

of subsets of a set X is a non-empty family, Σ, of subsets of X such that /0 ∈ Σ, X ∈ Σ, and for all
A,B ∈ Σ, we have A∪B ∈ Σ and B\A ∈ Σ. An additive set function μ defined on a field Σ of subsets
of a topological space X is said to be regular if for each A ∈ Σ and ε> 0, there exists B ∈ Σ whose
closure is contained in A and there exists C ∈ Σ whose interior contains A such that |μ(D)| < ε for
every D ∈ Σ with D :=C\B.
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Proposition 9 (cb-universality and RKHS embedding of set functions) Suppose X is a normal
topological space and Mrba(X) is the space of all finitely additive, regular, bounded set functions
defined on the field generated by the closed sets of X. Then, a bounded continuous kernel, k is
cb-universal if and only if the embedding,

μ �→
∫
X
k(·,x)dμ, μ∈Mrba(X), (20)

is injective.

Proof The proof is very similar to that of Proposition 2, wherein we identify (Cb(X))′ ∼=Mrba(X)
such that T ∈ (Cb(X))′ and μ∈Mrba(X) satisfy T ( f ) =

∫
X f dμ, f ∈Cb(X) (Dunford and Schwartz,

1958, p. 262). Here,∼= represents the isometric isomorphism. The rest of the proof is verbatim with
Mb(X) replaced byMrba(X).

Note thatMrba(X) does not contain any measure—though a set function inMrba(X) can be extended
to a measure—as measures are countably additive and defined on a σ-field. Since μ in Proposition 9
is not a measure but a finitely additive set function defined on a field, it is not clear how to deal with
the integral in (20). Due to the technicalities involved in dealing with set functions, the analysis of
cb-universality and its relation to other notions considered in Section 3 is not clear, although it is an
interesting problem to be resolved because of its applicability in learning theory.
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Abstract
MULAN is a Java library for learning frommulti-label data. It offers a variety of classification, rank-
ing, thresholding and dimensionality reduction algorithms, as well as algorithms for learning from
hierarchically structured labels. In addition, it contains an evaluation framework that calculates a
rich variety of performance measures.
Keywords: multi-label data, classification, ranking, thresholding, dimensionality reduction, hier-
archical classification, evaluation

1. Multi-Label Learning

A multi-label data set consists of training examples that are associated with a subset of a finite set
of labels. Nowadays, multi-label data are becoming ubiquitous. They arise in an increasing number
and diversity of applications, such as semantic annotation of images and video, web page catego-
rization, direct marketing, functional genomics and music categorization into genres and emotions.

There exist two major multi-label learning tasks (Tsoumakas et al., 2010): multi-label classifi-
cation and label ranking. The former is concerned with learning a model that outputs a bipartition of
the set of labels into relevant and irrelevant with respect to a query instance. The latter is concerned
with learning a model that outputs a ranking of the labels according to their relevance to a query
instance. Some algorithms learn models that serve both tasks. Several algorithms learn models that
primarily output a vector of numerical scores, one for each label. This vector is then converted to a
ranking after solving ties, or to a bipartition, after thresholding (Ioannou et al., 2010).

Multi-label learning methods addressing these tasks can be grouped into two categories
(Tsoumakas et al., 2010): problem transformation and algorithm adaptation. The first group of
methods are algorithm independent. They transform the learning task into one or more single-
label classification tasks, for which a large body of learning algorithms exists. The second group
of methods extend specific learning algorithms in order to handle multi-label data directly. There
exist extensions of decision tree learners, nearest neighbor classifiers, neural networks, ensemble
methods, support vector machines, kernel methods, genetic algorithms and others.

Multi-label learning stretches across several other tasks. When labels are structured as a tree-
shaped hierarchy or a directed acyclic graph, then we have the interesting task of hierarchical multi-
label learning. Dimensionality reduction is another important task for multi-label data, as it is for
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any kind of data. When bags of instances are used to represent a training object, then multi-instance
multi-label learning algorithms are required. There also exist semi-supervised learning and active
learning algorithms for multi-label data.

2. The MULAN Library

The main goal of MULAN is to bring the benefits of machine learning open source software
(MLOSS) (Sonnenburg et al., 2007) to people working with multi-label data. The availability of
MLOSS is especially important in emerging areas like multi-label learning, because it removes the
burden of implementing related work and speeds up the scientific progress. In multi-label learning,
an extra burden is implementing appropriate evaluation measures, since these are different com-
pared to traditional supervised learning tasks. Evaluating multi-label algorithms with a variety of
measures, is considered important by the community, due to the different types of output (biparti-
tion, ranking) and diverse applications.

Towards this goal, MULAN offers a plethora of state-of-the-art algorithms for multi-label classi-
fication and label ranking and an evaluation framework that computes a large variety of multi-label
evaluation measures through hold-out evaluation and cross-validation. In addition, the library offers
a number of thresholding strategies that produce bipartitions from score vectors, simple baseline
methods for multi-label dimensionality reduction and support for hierarchical multi-label classifi-
cation, including an implemented algorithm.

MULAN is a library. As such, it offers only programmatic API to the library users. There is no
graphical user interface (GUI) available. The possibility to use the library via command line, is also
currently not supported. Another drawback of MULAN is that it runs everything in main memory
so there exist limitations with very large data sets.

MULAN is written in Java and is built on top of Weka (Witten and Frank, 2005). This choice was
made in order to take advantage of the vast resources of Weka on supervised learning algorithms,
since many state-of-the-art multi-label learning algorithms are based on problem transformation.
The fact that several machine learning researchers and practitioners are familiar with Weka was
another reason for this choice. However, many aspects of the library are independent of Weka and
there are interfaces for most of the core classes.

MULAN is an advocate of open science in general. One of the unique features of the library is a
recently introduced experiments package, whose goal is to host code that reproduces experimental
results reported on published papers on multi-label learning.

To the best of our knowledge, most of the general learning platforms, like Weka, don’t support
multi-label data. There are currently only a number of implementations of specific multi-label
learning algorithms, but not a general library like MULAN.

3. Using MULAN

This section presents an example of how to setup an experiment for empirically evaluating two
multi-label algorithms on a multi-label data set using cross-validation. We create a new Java class
for this experiment, which we call MulanExp1.java.

The first thing to do is load the multi-label data set that will be used for the empirical evaluation.
MULAN requires two text files for the specification of a data set. The first one is in the ARFF format
of Weka. The labels should be specified as nominal attributes with values “0” and “1” indicating
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absence and presence of the label respectively. The second file is in XML format. It specifies the
labels and any hierarchical relationships among them. Hierarchies of labels can be expressed in the
XML file by nesting the label tag.

In our example, the two filenames are given to the experiment class through command-line
parameters.

String arffFile = Utils.getOption("arff", args);
String xmlFile = Utils.getOption("xml", args);

Loading the data can then be done using the following code.

MultiLabelInstances data = new MultiLabelInstances(arffFile, xmlFile);

The next step is to create an instance from each of the two learners that we want to evaluate. We
will create an instance of the RAkEL and MLkNN algorithms. RAkEL is actually a meta algorithm
and can accept any multi-label learner as a parameter, but is typically used in conjunction with the
Label Powerset (LP) algorithm. In turn LP is a transformation-based algorithm and it accepts a
single-label classifier as a parameter. We will use Weka’s J48 algorithm for this purpose. MLkNN
is an algorithm adaptation method that is based on kNN.

RAkEL learner1 = new RAkEL(new LabelPowerset(new J48()));
MLkNN learner2 = new MLkNN();

We then declare an Evaluator object that handles empirical evaluations and an object of the
MultipleEvaluation class that stores cross-validation results.

Evaluator eval = new Evaluator();
MultipleEvaluation results;

To actually perform the evaluations we use the crossValidatemethod of the Evaluator class.
This returns a MultipleEvaluation object, which we can print to see the results in terms of all
applicable evaluation measures available in MULAN.

int numFolds = 10;
results = eval.crossValidate(learner1, data, numFolds);
System.out.println(results);
results = eval.crossValidate(learner2, data, numFolds);
System.out.println(results);

For running the experiment, we can use the emotions data (emotions.xml and emotions.arff)
that are available together with the MULAN distribution. Other open access multi-label data sets
can be found at http://mulan.sourceforge.net/datasets.html. Assuming the experiment’s
source file is in the same directory with emotions.arff, emotions.xml, weka.jar and mulan.jar from
the distribution package, then to run this experiment we type the following commands (under Linux
use : instead of ; as path separator).

javac -cp mulan.jar;weka.jar MulanExp1.java
java -cp mulan.jar;weka.jar;. MulanExp1 -arff emotions.arff -xml emotions.xml

The mulan.examples package includes additional examples of usage of the MULAN API, such
as how to do hold-out and cross-validation learning experiments, how to store/load learned models,
perform dimensionality reduction, estimate data set statistics and obtain predictions on test sets with
unknown label values.
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4. Documentation, Requirements and Availability

MULAN’s online documentation1 contains user oriented sections, such as getting started with MU-
LAN and the data set format of MULAN, as well as developer-oriented sections, such as extending
MULAN, API reference and running tests. There is also a mailing list for requesting support on
using or extending MULAN.

MULAN is available under the GNU GPL licence. The current version of the library2 is 1.3.0.
It requires Java version 1.6, Weka version 3.7.3 and JUnit version 4.5 (only for running tests).
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Abstract
We sharply characterize the performance of different penalization schemes for the problem of se-
lecting the relevant variables in the multi-task setting. Previous work focuses on the regression
problem where conditions on the design matrix complicate the analysis. A clearer and simpler pic-
ture emerges by studying the Normal means model. This model, often used in the field of statistics,
is a simplified model that provides a laboratory for studying complex procedures.
Keywords: high-dimensional inference, multi-task learning, sparsity, normal means, minimax
estimation

1. Introduction

We consider the problem of estimating a sparse signal in the presence of noise. It has been em-
pirically observed, on various data sets ranging from cognitive neuroscience (Liu et al., 2009) to
genome-wide association mapping studies (Kim et al., 2009), that considering related estimation
tasks jointly can improve estimation performance. Because of this, joint estimation from related
tasks or multi-task learning has received much attention in the machine learning and statistics com-
munity (see for example Turlach et al., 2005; Zou and Yuan, 2008; Zhang, 2006; Negahban and
Wainwright, 2009; Obozinski et al., 2011; Lounici et al., 2009; Liu et al., 2009; Lounici et al.,
2010; Argyriou et al., 2008; Kim et al., 2009, and references therein). However, the theory behind
multi-task learning is not yet settled.

An example of multi-task learning is the problem of estimating the coefficients of several mul-
tiple regressions

y j = X jβ j+ε j, j ∈ [k] (1)

where X j ∈ Rn×p is the design matrix, y j ∈ Rn is the vector of observations, ε j ∈ Rn is the noise
vector and β j ∈ Rp is the unknown vector of regression coefficients for the j-th task, with [k] =
{1, . . . ,k}.

When the number of variables p is much larger than the sample size n, it is commonly assumed
that the regression coefficients are jointly sparse, that is, there exists a small subset S ⊂ [p] of the
regression coefficients, with s := |S| � n, that are non-zero for all or most of the tasks.

The model in (1) under the joint sparsity assumption was analyzed in, for example, Obozinski
et al. (2011), Lounici et al. (2009), Negahban and Wainwright (2009), Lounici et al. (2010) and
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Kolar and Xing (2010). Obozinski et al. (2011) propose to minimize the penalized least squares
objective with a mixed (2,1)-norm on the coefficients as the penalty term. The authors focus on
consistent estimation of the support set S, albeit under the assumption that the number of tasks k
is fixed. Negahban and Wainwright (2009) use the mixed (∞,1)-norm to penalize the coefficients
and focus on the exact recovery of the non-zero pattern of the regression coefficients, rather than
the support set S. For a rather limited case of k = 2, the authors show that when the regression do
not share a common support, it may be harmful to consider the regression problems jointly using
the mixed (∞,1)-norm penalty. Kolar and Xing (2010) address the feature selection properties of
simultaneous greedy forward selection. However, it is not clear what the benefits are compared to
the ordinary forward selection done on each task separately. In Lounici et al. (2009) and Lounici
et al. (2010), the focus is shifted from the consistent selection to benefits of the joint estimation for
the prediction accuracy and consistent estimation. The number of tasks k is allowed to increase with
the sample size. However, it is assumed that all tasks share the same features; that is, a relevant
coefficient is non-zero for all tasks.

Despite these previous investigations, the theory is far from settled. A simple clear picture of
when sharing between tasks actually improves performance has not emerged. In particular, to the
best of our knowledge, there has been no previous work that sharply characterizes the performance
of different penalization schemes on the problem of selecting the relevant variables in the multi-task
setting.

In this paper we study multi-task learning in the context of the many Normal means model.
This is a simplified model that is often useful for studying the theoretical properties of statistical
procedures. The use of the many Normal means model is fairly common in statistics but appears
to be less common in machine learning. Our results provide a sharp characterization of the sparsity
patterns under which the Lasso procedure performs better than the group Lasso. Similarly, our
results characterize how the group Lasso (with the mixed (2,1) norm) can perform better when
each non-zero row is dense.

1.1 The Normal Means Model

The simplest Normal means model has the form

Yi = μi+σεi, i= 1, . . . , p (2)

where μ1, . . . ,μp are unknown parameters and ε1, . . . ,εp are independent, identically distributed
Normal random variables with mean 0 and variance 1. There are a variety of results (Brown and
Low, 1996; Nussbaum, 1996) showing that many learning problems can be converted into a Nor-
mal means problem. This implies that results obtained in the Normal means setting can be trans-
ferred to many other settings. As a simple example, consider the nonparametric regression model
Zi = m(i/n) + δi where m is a smooth function on [0,1] and δi ∼ N(0,1). Let φ1,φ2, . . . , be an
orthonormal basis on [0,1] and write m(x) = ∑∞

j=1μjφ j(x) where μj =
∫ 1
0 m(x)φ j(x)dx. To estimate

the regression function m we need only estimate μ1,μ2, . . . ,. Let Yj = n−1∑n
i=1Zi φ j(i/n). Then

Yj ≈ N(μj,σ2) where σ2 = 1/n. This has the form of (2) with σ = 1/
√
n. Hence this regression

problem can be converted into a Normal means model.
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However, the most important aspect of the Normal means model is that it allows a clean setting
for studying complex problems. In this paper, we consider the following Normal means model. Let

Yi j ∼

{
(1− ε)N (0,σ2)+ εN (μi j,σ2) j ∈ [k], i ∈ S

N(0,σ2) j ∈ [k], i ∈ Sc
(3)

where (μi j)i, j are unknown real numbers, σ= σ0/
√
n is the variance with σ0 > 0 known, (Yi j)i, j are

random observations, ε ∈ [0,1] is the parameter that controls the sparsity of features across tasks
and S⊂ [p] is the set of relevant features. Let s= |S| denote the number of relevant features. Denote
the matrixM ∈ Rp×k of means

Tasks
1 2 . . . k

1 μ11 μ12 . . . μ1k
2 μ21 μ22 . . . μ2k
...

...
...

. . .
...

p μp1 μp2 . . . μpk

and let θi = (μi j) j∈[k] denote the i-th row of the matrixM. The set S
c = [p]\S indexes the zero rows

of the matrix M and the associated observations are distributed according to the Normal distribu-
tion with zero mean and variance σ2. The rows indexed by S are non-zero and the corresponding
observation are coming from a mixture of two Normal distributions. The parameter ε determines
the proportion of observations coming from a Normal distribution with non-zero mean. The reader
should regard each column as one vector of parameters that we want to estimate. The question is
whether sharing across columns improves the estimation performance.

It is known from the work on the Lasso that in regression problems, the design matrix needs to
satisfy certain conditions in order for the Lasso to correctly identify the support S (see van de Geer
and Bühlmann, 2009, for an extensive discussion on the different conditions). These regularity con-
ditions are essentially unavoidable. However, the Normal means model (3) allows us to analyze the
estimation procedure in (4) and focus on the scaling of the important parameters (n,k, p,s,ε,μmin)
for the success of the support recovery. Using the model (3) and the estimation procedure in (4),
we are able to identify regimes in which estimating the support is more efficient using the ordinary
Lasso than with the multi-task Lasso and vice versa. Our results suggest that the multi-task Lasso
does not outperform the ordinary Lasso when the features are not considerably shared across tasks;
thus, practitioners should be careful when applying the multi-task Lasso without knowledge of the
task structure.

An alternative representation of the model is

Yi j =

{
N (ξi jμi j,σ2) j ∈ [k], i ∈ S
N(0,σ2) j ∈ [k], i ∈ Sc

where ξi j is a Bernoulli random variable with success probability ε. Throughout the paper, we
will set ε = k−β for some parameter β ∈ [0,1); β < 1/2 corresponds to dense rows and β > 1/2
corresponds to sparse rows. Let μmin denote the following quantity μmin =min |μi j|.

Under the model (3), we analyze penalized least squares procedures of the form

μ̂= argmin
μ∈Rp×k

1
2
||Y−μ||2F +pen(μ) (4)
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where ||A||F = ∑ jk A
2
jk is the Frobenious norm, pen(·) is a penalty function and μ is a p× k matrix

of means. We consider the following penalties:

1. the �1 penalty
pen(μ) = λ ∑

i∈[p]
∑
j∈[k]

|μi j|,

which corresponds to the Lasso procedure applied on each task independently, and denote the
resulting estimate as μ̂�1

2. the mixed (2,1)-norm penalty
pen(μ) = λ ∑

i∈[p]

||θi||2,

which corresponds to the multi-task Lasso formulation in Obozinski et al. (2011) and Lounici
et al. (2009), and denote the resulting estimate as μ̂�1/�2

3. the mixed (∞,1)-norm penalty

pen(μ) = λ ∑
i∈[p]

||θi||∞,

which correspond to the multi-task Lasso formulation in Negahban and Wainwright (2009),
and denote the resulting estimate as μ̂�1/�∞ .

For any solution μ̂ of (4), let S(μ̂) denote the set of estimated non-zero rows

S(μ̂) = {i ∈ [p] : ||θ̂i||2 �= 0}.

We establish sufficient conditions under which P[S(μ̂) �= S]≤α for different methods. These results
are complemented with necessary conditions for the recovery of the support set S.

In this paper, we focus our attention on the three penalties outlined above. There is a large
literature on the penalized least squares estimation using concave penalties as introduced in Fan
and Li (2001). These penalization methods have better theoretical properties in the presence of the
design matrix, especially when the design matrix is far from satisfying the irrepresentable condition
(Zhao and Yu, 2006). In the Normal means model, due to the lack of the design matrix, there is no
advantage to concave penalties in terms of variable selection.

1.2 Overview of the Main Results

The main contributions of the paper can be summarized as follows.

1. We establish a lower bound on the parameter μmin as a function of the parameters (n,k, p,s,β).
Our result can be interpreted as follows: for any estimation procedure there exists a model
given by (3) with non-zero elements equal to μmin such that the estimation procedure will
make an error when identifying the set S with probability bounded away from zero.

2. We establish the sufficient conditions on the signal strength μmin for the Lasso and both vari-
ants of the group Lasso under which these procedures can correctly identify the set of non-
zero rows S.
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By comparing the lower bounds with the sufficient conditions, we are able to identify regimes
in which each procedure is optimal for the problem of identifying the set of non-zero rows S. Fur-
thermore, we point out that the usage of the popular group Lasso with the mixed (∞,1) norm can be
disastrous when features are not perfectly shared among tasks. This is further demonstrated through
an empirical study.

1.3 Organization of the Paper

The paper is organized as follows. We start by analyzing the lower bound for any procedure for
the problem of identifying the set of non-zero rows in Section 2. In Section 3 we provide sufficient
conditions on the signal strength μmin for the Lasso and the group Lasso to be able to detect the set
of non-zero rows S. In the following section, we propose an improved approach to the problem of
estimating the set S. Results of a small empirical study are reported in Section 4. We close the paper
by a discussion of our findings.

2. Lower Bound on the Support Recovery

In this section, we derive a lower bound for the problem of identifying the correct variables. In
particular, we derive conditions on (n,k, p,s,ε,μmin) under which any method is going to make an
error when estimating the correct variables. Intuitively, if μmin is very small, a non-zero row may
be hard to distinguish from a zero row. Similarly, if ε is very small, many elements in a row will be
zero and, again, as a result it may be difficult to identify a non-zero row. Before, we give the main
result of the section, we introduce the class of models that are going to be considered.

Let
F [μ] := {θ ∈ Rk : min

j
|θ j| ≥ μ}

denote the set of feasible non-zero rows. For each j ∈ {0,1, . . . ,k}, let M ( j,k) be the class of all
the subsets of {1, . . . ,k} of cardinality j. Let

M[μ,s] =
⋃

ω∈M (s,p)

{
(θ1, . . . ,θp)

′ ∈ Rp×k : θi ∈ F [μ] if i ∈ ω, θi = 0 if i �∈ ω
}

(5)

be the class of all feasible matrix means. For a matrix M ∈ M[μ,s], let PM denote the joint law of
{Yi j}i∈[p], j∈[k]. Since PM is a product measure, we can write PM =⊗i∈[p]Pθi . For a non-zero row θi,
we set

Pθi(A) =
∫
N (A; θ̂,σ2Ik)dν(θ̂), A ∈ B(Rk),

where ν is the distribution of the random variable ∑ j∈[k]μi jξ je j with ξ j ∼ Bernoulli(k−β) and
{e j} j∈[k] denoting the canonical basis of R

k. For a zero row θi = 0, we set

P0(A) =N (A;0,σ2Ik), A ∈ B(Rk).

With this notation, we have the following result.

Theorem 1 Let
μ2min = μ2min(n,k, p,s,ε,β) = ln

(
1+u+

√
2u+u2

)
σ2
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where

u=
ln
(
1+ α2(p−s+1)

2

)
2k1−2β

.

If α ∈ (0, 12) and k
−βu< 1, then for all μ≤ μmin,

inf
μ̂

sup
M∈M[μ,s]

PM[S(μ̂) �= S(M)]≥
1
2
(1−α)

whereM[μ,s] is given by (5).

The result can be interpreted in words in the following way: whatever the estimation procedure
μ̂, there exists some matrix M ∈ M[μmin,s] such that the probability of incorrectly identifying the
support S(M) is bounded away from zero. In the next section, we will see that some estimation
procedures achieve the lower bound given in Theorem 1.

3. Upper Bounds on the Support Recovery

In this section, we present sufficient conditions on (n, p,k,ε,μmin) for different estimation proce-
dures, so that

P[S(μ̂) �= S]≤ α.

Let α′,δ′ > 0 be two parameters such that α′+δ′ = α. The parameter α′ controls the probability of
making a type one error

P[∃i ∈ [p] : i ∈ S(μ̂) and i �∈ S]≤ α′,

that is, the parameter α′ upper bounds the probability that there is a zero row of the matrix M that
is estimated as a non-zero row. Likewise, the parameter δ′ controls the probability of making a type
two error

P[∃i ∈ [p] : i �∈ S(μ̂) and i ∈ S]≤ δ′,

that is, the parameter δ′ upper bounds the probability that there is a non-zero row of the matrix M
that is estimated as a zero row.

The control of the type one and type two errors is established through the tuning parameter λ. It
can be seen that if the parameter λ is chosen such that, for all i ∈ S, it holds that P[i �∈ S(μ̂)]≤ δ′/s
and, for all i ∈ Sc, it hold that P[i ∈ S(μ̂)] ≤ α′/(p− s), then using the union bound we have that
P[S(μ̂) �= S] ≤ α. In the following subsections, we will use the outlined strategy to choose λ for
different estimation procedures.

3.1 Upper Bounds for the Lasso

Recall that the Lasso estimator is given as

μ̂�1 = argmin
μ∈Rp×k

1
2
||Y−μ||2F +λ||μ||1.

It is easy to see that the solution of the above estimation problem is given as the following soft-
thresholding operation

μ̂�1i j =

(
1−

λ
|Yi j|

)
+

Yi j, (6)
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where (x)+ :=max(0,x). From (6), it is obvious that i∈ S(μ̂�1) if and only if the maximum statistic,
defined as

Mk(i) =max
j

|Yi j|,

satisfiesMk(i)≥ λ. Therefore it is crucial to find the critical value of the parameter λ such that{
P[Mk(i)< λ] < δ′/s i ∈ S
P[Mk(i)≥ λ] < α′/(p− s) i ∈ Sc.

We start by controlling the type one error. For i ∈ Sc it holds that

P[Mk(i)≥ λ]≤ kP[|N (0,σ2)| ≥ λ]≤
2kσ
√
2πλ

exp
(
−

λ2

2σ2
)

(7)

using a standard tail bound for the Normal distribution. Setting the right hand side to α′/(p− s) in
the above display, we obtain that λ can be set as

λ= σ

√
2ln

2k(p− s)
√
2πα′

(8)

and (7) holds as soon as 2 ln 2k(p−s)√
2πα′ ≥ 1. Next, we deal with the type two error. Let

πk = P[|(1− ε)N (0,σ2)+ εN (μmin,σ2)|> λ]. (9)

Then for i ∈ S, P[Mk(i) < λ] ≤ P[Bin(k,πk) = 0], where Bin(k,πk) denotes the binomial random
variable with parameters (k,πk). Control of the type two error is going to be established through
careful analysis of πk for various regimes of problem parameters.

Theorem 2 Let λ be defined by (8). Suppose μmin satisfies one of the following two cases:

(i) μmin = σ
√
2r lnk where

r >

(√
1+Ck,p,s−

√
1−β

)2
with

Ck,p,s =
ln 2(p−s)√

2πα′

lnk

and limn→∞Ck,p,s ∈ [0,∞);

(ii) μmin ≥ λ when

lim
n→∞

lnk
ln(p− s)

= 0

and k1−β/2≥ ln(s/δ′).

Then
P[S(μ̂�1) �= S]≤ α.
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The proof is given in Section 6.2. The two different cases describe two different regimes character-
ized by the ratio of lnk and ln(p− s).

Now we can compare the lower bound on μ2min from Theorem 1 and the upper bound from
Theorem 2. Without loss of generality we assume that σ= 1. We have that when β< 1/2 the lower
bound is of the order O

(
ln
(
kβ−1/2 ln(p− s)

))
and the upper bound is of the order ln(k(p− s)).

Ignoring the logarithmic terms in p and s, we have that the lower bound is of the order Õ(kβ−1/2)
and the upper bound is of the order Õ(lnk), which implies that the Lasso does not achieve the lower
bound when the non-zero rows are dense. When the non-zero rows are sparse, β > 1/2, we have
that both the lower and upper bound are of the order Õ(lnk) (ignoring the terms depending on p and
s).

3.2 Upper Bounds for the Group Lasso

Recall that the group Lasso estimator is given as

μ̂�1/�2 = argmin
μ∈Rp×k

1
2
||Y−μ||2F +λ ∑

i∈[p]

||θi||2,

where θi = (μi j) j∈[k]. The group Lasso estimator can be obtained in a closed form as a result of the
following thresholding operation (see, for example, Friedman et al., 2010)

θ̂
�1/�2
i =

(
1−

λ
||Yi·||2

)
+

Yi· (10)

where Yi· is the ith row of the data. From (10), it is obvious that i ∈ S(μ̂�1/�2) if and only if the
statistic defined as

Sk(i) =∑
j

Y 2i j,

satisfies Sk(i) ≥ λ. The choice of λ is crucial for the control of type one and type two errors. We
use the following result, which directly follows from Theorem 2 in Baraud (2002).

Lemma 3 Let {Yi = fi+σξi}i∈[n] be a sequence of independent observations, where f = { fi}i∈[n]

is a sequence of numbers, ξi
iid
∼ N (0,1) and σ is a known positive constant. Suppose that tn,α ∈ R

satisfies P[χ2n > tn,α]≤ α. Let
φα = I{∑

i∈[n]

Y 2i ≥ tn,ασ2}

be a test for f = 0 versus f �= 0. Then the test φα satisfies

P[φα = 1]≤ α

when f = 0 and
P[φα = 0]≤ δ

for all f such that

|| f ||22 ≥ 2(
√
5+4)σ2 ln

(
2e
αδ

)
√
n.
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Proof This follows immediately from Theorem 2 in Baraud (2002).

It follows directly from lemma 3 that setting

λ= tn,α′/(p−s)σ
2 (11)

will control the probability of type one error at the desired level, that is,

P[Sk(i)≥ λ]≤ α′/(p− s), ∀i ∈ Sc.

The following theorem gives us the control of the type two error.

Theorem 4 Let λ= tn,α′/(p−s)σ2. Then

P[S(μ̂�1/�2) �= S]≤ α

if

μmin ≥ σ
√
2(

√
5+4)

√
k−1/2+β

1− c

√
ln
2e(2s−δ′)(p− s)

α′δ′

where c=
√
2ln(2s/δ′)/k1−β.

The proof is given in Section 6.3.
Using Theorem 1 and Theorem 4 we can compare the lower bound on μ2min and the upper

bound. Without loss of generality we assume that σ= 1. When each non-zero row is dense, that is,
when β< 1/2, we have that both lower and upper bounds are of the order Õ(kβ−1/2) (ignoring the
logarithmic terms in p and s). This suggest that the group Lasso performs better than the Lasso for
the case where there is a lot of feature sharing between different tasks. Recall from previous section
that the Lasso in this setting does not have the optimal dependence on k. However, when β > 1/2,
that is, in the sparse non-zero row regime, we see that the lower bound is of the order Õ(ln(k))
whereas the upper bound is of the order Õ(kβ−1/2). This implies that the group Lasso does not have
optimal dependence on k in the sparse non-zero row setting.

3.3 Upper Bounds for the Group Lasso with the Mixed (∞,1) Norm

In this section, we analyze the group Lasso estimator with the mixed (∞,1) norm, defined as

μ̂�1/�∞ = argmin
μ∈Rp×k

1
2
||Y−μ||2F +λ ∑

i∈[p]

||θi||∞,

where θi = (μi j) j∈[k]. The closed form solution for μ̂�1/�∞ can be obtained (see Liu et al., 2009),
however, we are only going to use the following lemma.

Lemma 5 (Liu et al., 2009) θ̂�1/�∞
i = 0 if and only if ∑ j |Yi j| ≤ λ.

Proof See the proof of Proposition 5 in Liu et al. (2009).

Suppose that the penalty parameter λ is set as

λ= kσ

√
2ln

k(p− s)
α′

. (12)
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It follows immediately using a tail bound for the Normal distribution that

P[∑
j

|Yi j| ≥ λ]≤ kmax
j

P[|Yi j| ≥ λ/k]≤ α′/(p− s), ∀i ∈ Sc,

which implies that the probability of the type one error is controlled at the desired level.

Theorem 6 Let the penalty parameter λ be defined by (12). Then

P[S(μ̂�1/�∞) �= S]≤ α

if

μmin ≥
1+ τ
1− c

k−1+βλ

where c=
√
2ln(2s/δ′)/k1−β and τ= σ

√
2k ln 2s−δ

′

δ′ /λ.

The proof is given in Section 6.4.
Comparing upper bounds for the Lasso and the group Lasso with the mixed (2,1) norm with

the result of Theorem 6, we can see that both the Lasso and the group Lasso have better dependence
on k than the group Lasso with the mixed (∞,1) norm. The difference becomes more pronounced
as β increases. This suggest that we should be very cautious when using the group Lasso with the
mixed (∞,1) norm, since as soon as the tasks do not share exactly the same features, the other two
procedures have much better performance on identifying the set of non-zero rows.

4. Simulation Results

We conduct a small-scale empirical study of the performance of the Lasso and the group Lasso (both
with the mixed (2,1) norm and with the mixed (∞,1) norm). Our empirical study shows that the
theoretical findings of Section 3 describe sharply the behavior of procedures even for small sample
studies. In particular, we demonstrate that as the minimum signal level μmin varies in the model (3),
our theory sharply determines points at which probability of identifying non-zero rows of matrixM
successfully transitions from 0 to 1 for different procedures.

The simulation procedure can be described as follows. Without loss of generality we let S= [s]
and draw the samples {Yi j}i∈[p], j∈[k] according to the model in (3). The total number of rows p is
varied in {128,256,512,1024} and the number of columns is set to k = �p log2(p) . The sparsity
of each non-zero row is controlled by changing the parameter β in {0,0.25,0.5,0.75} and setting
ε = k−β. The number of non-zero rows is set to s = �log2(p) , the sample size is set to n = 0.1p
and σ0 = 1. The parameters α′ and δ′ are both set to 0.01. For each setting of the parameters, we
report our results averaged over 1000 simulation runs. Simulations with other choices of parameters
n,s and k have been tried out, but the results were qualitatively similar and, hence, we do not report
them here.

The regularization parameter λ is chosen according to Equations (8), (11) and (12), which as-
sume that the noise level σ0 is known. In practice, estimating the standard deviation of the noise in
high-dimensions is a hard problem and practitioners often use cross-validation as a data-driven way
to choose the penalty parameter. For recent work on data-driven tuning of the penalty parameters,
we refer the reader to Arlot and Bach (2009).
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4.1 Lasso

We investigate the performance on the Lasso for the purpose of estimating the set of non-zero rows,
S. Figure 1 plots the probability of success as a function of the signal strength. On the same figure
we plot the probability of success for the group Lasso with both (2,1) and (∞,1)-mixed norms.
Using theorem 2, we set

μlasso =
√
2(r+0.001) lnk (13)

where r is defined in theorem 2. Next, we generate data according to (3) with all elements {μi j}
set to μ= ρμlasso, where ρ ∈ [0.05,2]. The penalty parameter λ is chosen as in (8). Figure 1 plots
probability of success as a function of the parameter ρ, which controls the signal strength. This
probability transitions very sharply from 0 to 1. A rectangle on a horizontal line represents points
at which the probability P[Ŝ = S] is between 0.05 and 0.95. From each subfigure in Figure 1, we
can observe that the probability of success for the Lasso transitions from 0 to 1 for the same value
of the parameter ρ for different values of p, which indicates that, except for constants, our theory
correctly characterizes the scaling of μmin. In addition, we can see that the Lasso outperforms the
group Lasso (with (2,1)-mixed norm) when each non-zero row is very sparse (the parameter β is
close to one).

4.2 Group Lasso

Next, we focus on the empirical performance of the group Lasso with the mixed (2,1) norm. Fig-
ure 2 plots the probability of success as a function of the signal strength. Using theorem 4, we
set

μgroup = σ
√
2(

√
5+4)

√
k−1/2+β

1− c

√
ln
(2s−δ′)(p− s)

α′δ′
(14)

where c is defined in theorem 4. Next, we generate data according to (3) with all elements {μi j} set
to μ= ρμgroup, where ρ ∈ [0.05,2]. The penalty parameter λ is given by (11). Figure 2 plots prob-
ability of success as a function of the parameter ρ, which controls the signal strength. A rectangle
on a horizontal line represents points at which the probability P[Ŝ = S] is between 0.05 and 0.95.
From each subfigure in Figure 2, we can observe that the probability of success for the group Lasso
transitions from 0 to 1 for the same value of the parameter ρ for different values of p, which indi-
cated that, except for constants, our theory correctly characterizes the scaling of μmin. We observe
also that the group Lasso outperforms the Lasso when each non-zero row is not too sparse, that is,
when there is a considerable overlap of features between different tasks.

4.3 Group Lasso with the Mixed (∞,1) Norm

Next, we focus on the empirical performance of the group Lasso with the mixed (∞,1) norm. Fig-
ure 3 plots the probability of success as a function of the signal strength. Using theorem 6, we
set

μinfty =
1+ τ
1− c

k−1+βλ (15)

where τ and c are defined in theorem 6 and λ is given by (12). Next, we generate data according to
(3) with all elements {μi j} set to μ= ρμinfty, where ρ∈ [0.05,2]. Figure 3 plots probability of success
as a function of the parameter ρ, which controls the signal strength. A rectangle on a horizontal line
represents points at which the probability P[Ŝ = S] is between 0.05 and 0.95. From each subfigure
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Probability of successful support recovery: Lasso

Figure 1: The probability of success for the Lasso for the problem of estimating S plotted against
the signal strength, which is varied as a multiple of μlasso defined in (13). A rectangle on
each horizontal line represents points at which the probability P[Ŝ = S] is between 0.05
and 0.95. To the left of the rectangle the probability is smaller than 0.05, while to the
right the probability is larger than 0.95. Different subplots represent the probability of
success as the sparsity parameter β changes.

in Figure 3, we can observe that the probability of success for the group Lasso transitions from 0
to 1 for the same value of the parameter ρ for different values of p, which indicated that, except
for constants, our theory correctly characterizes the scaling of μmin. We also observe that the group
Lasso with the mixed (∞,1) norm never outperforms the Lasso or the group Lasso with the mixed
(2,1) norm.
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Probability of successful support recovery: group Lasso

Figure 2: The probability of success for the group Lasso for the problem of estimating S plotted
against the signal strength, which is varied as a multiple of μgroup defined in (14). A
rectangle on each horizontal line represents points at which the probability P[Ŝ = S] is
between 0.05 and 0.95. To the left of the rectangle the probability is smaller than 0.05,
while to the right the probability is larger than 0.95. Different subplots represent the
probability of success as the sparsity parameter β changes.

5. Discussion

We have studied the benefits of task sharing in sparse problems. Under many scenarios, the group
lasso outperforms the lasso. The �1/�2 penalty seems to be a much better choice for the group lasso
than the �1/�∞. However, as pointed out to us by Han Liu, for screening, where false discoveries
are less important than accurate recovery, it is possible that the �1/�∞ penalty could be useful. From
the results in Section 3, we can further conclude that the Lasso procedure performs better than the
group Lasso when each non-zero row is sparse, while the group Lasso (with the mixed (2,1) norm)
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Probability of successful support recovery: group Lasso with the mixed (∞,1) norm

Figure 3: The probability of success for the group Lasso with mixed (∞,1) norm for the problem
of estimating S plotted against the signal strength, which is varied as a multiple of μinfty
defined in (15). A rectangle on each horizontal line represents points at which the prob-
ability P[Ŝ = S] is between 0.05 and 0.95. To the left of the rectangle the probability is
smaller than 0.05, while to the right the probability is larger than 0.95. Different subplots
represent the probability of success as the sparsity parameter β changes.

performs better when each non-zero row is dense. Since in many practical situations one does not
know how much overlap there is between different tasks, it would be useful to combine the Lasso
and the group Lasso in order to improve the performance. For example, one can take the union of
the Lasso and the group Lasso estimate, Ŝ = S(μ̂�1)∪ S(μ̂�1/�2). The suggested approach has the
advantage that one does not need to know in advance which estimation procedure to use. While
such a combination can be justified in the Normal means problem as a way to increase the power to
detect the non-zero rows, it is not clear whether the same approach can be justified in the multi-task
regression model (1).
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The analysis of the Normal means model in (3) provides insights into the theoretical results we
could expect in the conventional multi-task learning given in (1). However, there is no direct way
to translate our results into valid results for the model in (1); a separate analysis needs to be done in
order to establish sharp theoretical results.

6. Proofs

This section collects technical proofs of the results presented in the paper. Throughout the section
we use c1,c2, . . . to denote positive constants whose value may change from line to line.

6.1 Proof of Theorem 1

Without loss of generality, we may assume σ = 1. Let φ(u) be the density of N (0,1) and define
P0 and P1 to be two probability measures on Rk with the densities with respect to the Lebesgue
measure given as

f0(a1, . . . ,ak) = ∏
j∈[k]

φ(a j) (16)

and

f1(a1, . . . ,ak) = EZEmEξ ∏
j∈m

φ(a j−ξ jμmin)∏
j �∈m

φ(a j) (17)

where Z ∼ Bin(k,k−β), m is a random variable uniformly distributed over M (Z,k) and {ξ j} j∈[k]
is a sequence of Rademacher random variables, independent of Z and m. A Rademacher random
variable takes values ±1 with probability 1

2 .
To simplify the discussion, suppose that p−s+1 is divisible by 2. Let T = (p−s+1)/2. Using

P0 and P1, we construct the following three measures,

Q̃= Ps−11 ⊗P
p−s+1
0 ,

Q0 =
1
T ∑

j∈{s,...,p}
j odd

Ps−11 ⊗P
j−s
0 ⊗P1⊗P

p− j
0

and

Q1 =
1
T ∑

j∈{s,...,p}
j even

Ps−11 ⊗P
j−s
0 ⊗P1⊗P

p− j
0 .

It holds that

inf
μ̂
sup
M∈M

PM[S(M) �= S(μ̂)]≥ inf
Ψ
max

(
Q0(Ψ= 1),Q1(Ψ= 0)

)
≥
1
2
−
1
2
||Q0−Q1||1,

where the infimum is taken over all tests Ψ taking values in {0,1} and || · ||1 is the total variation
distance between probability measures. For a readable introduction on lower bounds on the minimax
probability of error, see Section 2 in Tsybakov (2009). In particular, our approach is related to the
one described in Section 2.7.4. We proceed by upper bounding the total variation distance between
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Q0 and Q1. Let g= dP1/dP0 and let ui ∈ Rk for each i ∈ [p], then

dQ0

dQ̃
(u1, . . . ,up)

=
1
T ∑

j∈{s,...,p}
j even

∏
i∈{1,...,s−1}

dP1
dP1

(ui) ∏
i∈{s,..., j−1}

dP0
dP0

(ui)
dP1
dP0

(u j) ∏
i∈{ j+1,...,p}

dP0
dP0

(ui)

=
1
T ∑

j∈{s,...,p}
j even

g(u j)

and, similarly, we can compute dQ1/dQ̃. The following holds

‖Q0−Q1‖
2
1

=

(∫ ∣∣∣ 1
T

(
∑

j∈{s,...,p}
j even

g(u j)− ∑
j∈{s,...,p}
j odd

g(u j)
)∣∣∣ ∏

i∈{s,...,p}

dP0(ui)

)2

≤
1
T 2

∫ (
∑

j∈{s,...,p}
j even

g(u j)− ∑
j∈{s,...,p}
j odd

g(u j)
)2

∏
i∈{s,...,p}

dP0(ui)

=
2
T

(
P0(g

2)−1
)
,

(18)

where the last equality follows by observing that

∫
∑

j∈{s,...,p}
j even

∑
j′∈{s,...,p}
j′ even

g(u j)g(u j′) ∏
i∈{s,...,p}
i even

dP0(ui) = T P0(g
2)+T 2−T

and ∫
∑

j∈{s,...,p}
j even

∑
j′∈{s,...,p}
j′ odd

g(u j)g(u j′) ∏
i∈{s,...,p}

dP0(ui) = T 2.

Next, we proceed to upper bound P0(g2), using some ideas presented in the proof of Theorem 1 in
Baraud (2002). Recall definitions of f0 and f1 in (16) and (17) respectively. Then g = dP1/dP0 =
f1/ f0 and we have

g(a1, . . . ,ak) = EZEmEξ

[
exp

(
−
Zμ2min
2

+μmin ∑
j∈m

ξ ja j
)]

= EZ

[
exp

(
−
Zμ2min
2

)
Em

[
∏
j∈m
cosh(μmina j)

]]
.
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Furthermore, let Z′ ∼ Bin(k,k−β) be independent of Z and m′ uniformly distributed overM (Z′,k).
The following holds

P0(g
2)

= P0

(
EZ′,Z

[
exp

(
−

(Z+Z′)μ2min
2

)
Em,m′ ∏

j∈m
cosh(μmina j)∏

j∈m′

cosh(μmina j)
])

= EZ′,Z

[
exp

(
−

(Z+Z′)μ2min
2

)
Em,m′

[
∏

j∈m∩m′

∫
cosh2(μmina j)φ(a j)da j

∏
j∈m!m′

∫
cosh(μmina j)φ(a j)da j

]]
,

where we use m!m′ to denote (m∪m′)\(m∩m′). By direct calculation, we have that
∫
cosh2(μmina j)φ(a j)da j = exp(μ2min)cosh(μ

2
min)

and ∫
cosh(μmina j)φ(a j)da j = exp(μ

2
min/2).

Since 12 |m!m′|+ |m∩m′|= (Z+Z′)/2, we have that

P0(g
2) = EZ,Z′

[
Em,m′

[(
cosh(μ2min)

)|m∩m′|
]]

= EZ,Z′

[ k

∑
j=0

p j
(
cosh(μ2min)

) j]
= EZ,Z′

[
EX

[
cosh(μ2min)

X
]]
,

where

p j =

⎧⎨⎩ 0 if j < Z+Z′ − k or j >min(Z,Z′)

(Z
′

j )(
k−Z′

Z− j)
(kZ)

otherwise

and P[X = j] = p j. Therefore, X follows a hypergeometric distribution with parameters k, Z, Z′/k.
[The first parameter denotes the total number of stones in an urn, the second parameter denotes the
number of stones we are going to sample without replacement from the urn and the last parameter
denotes the fraction of white stones in the urn.] Then following (Aldous, 1985, p. 173; see also
Baraud 2002), we know that X has the same distribution as the random variable E[X̃ |T ] where
X̃ is a binomial random variable with parameters Z and Z′/k, and T is a suitable σ-algebra. By
convexity, it follows that

P0(g
2)≤ EZ,Z′

[
EX̃

[
cosh(μ2min)

X̃
]]

= EZ,Z′

[
exp

(
Z ln

(
1+

Z′

k

(
cosh(μ2min)−1

)))]
= EZ′EZ

[
exp

(
Z ln

(
1+

Z′

k
u
))]
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where μ2min = ln(1+u+
√
2u+u2) with

u=
ln
(
1+ α2T

2

)
2k1−2β

.

Continuing with our calculations, we have that

P0(g
2) = EZ′ exp

(
k ln

(
1+ k−(1+β)uZ′

))
≤ EZ′ exp

(
k−βuZ′

)
= exp

(
k ln

(
1+ k−β

(
exp(k−βu

)
−1)

))
≤ exp

(
k1−β

(
exp

(
k−βu

)
−1

))
≤ exp

(
2k1−2βu

)
= 1+

α2T
2

,

(19)

where the last inequality follows since k−βu< 1 for all large p. Combining (19) with (18), we have
that

‖Q0−Q1‖1 ≤ α,

which implies that

inf
μ̂
sup
M∈M

PM[S(M) �= S(μ̂)]≥
1
2
−
1
2
α.

6.2 Proof of Theorem 2

Without loss of generality, we can assume that σ= 1 and rescale the final result. For λ given in (8),
it holds that P[|N (0,1)≥ λ] = o(1). For the probability defined in (9), we have the following lower
bound

πk = (1− ε)P[|N (0,1)| ≥ λ]+ εP[|N (μmin,1)| ≥ λ]≥ εP[N (μmin,1)≥ λ].

We prove the two cases separately.
Case 1: Large number of tasks. By direct calculation

πk ≥ εP[N (μmin,1)≥ λ] =
1

√
4π logk

(√
1+Ck,p,s−

√
r
)k−β−(√1+Ck,p,s−

√
r
)2

=: πk.

Since 1−β >
(√

1+Ck,p,s−
√
r
)2
, we have that P[Bin(k,πk) = 0]

n→∞
−−−→ 0. We can conclude that

as soon as kπk ≥ ln(s/δ′), it holds that P[S(μ̂�1) �= S]≤ α.
Case 2: Medium number of tasks. When μmin ≥ λ, it holds that

πk ≥ εP[N (μmin,1)≥ λ]≥
k−β

2
.

We can conclude that as soon as k1−β/2≥ ln(s/δ′), it holds that P[S(μ̂�1) �= S]≤ α.
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6.3 Proof of Theorem 4

Using a Chernoff bound, P[Bin(k,k−β)≤ (1−c)k1−β]≤ δ′/2s for c=
√
2ln(2s/δ′)/k1−β. For i∈ S,

we have that

P[Sk(i)≤ λ]≤
δ′

2s
+
(
1−

δ′

2s

)
P

[
Sk(i)≤ λ

∣∣ {||θi||22 ≥ (1− c)k1−βμ2min
}]

.

Therefore, using lemma 3 with δ = δ′/(2s− δ′), if follows that P[Sk(i) ≤ λ] ≤ δ′/(2s) for all i ∈ S
when

μmin ≥ σ
√
2(

√
5+4)

√
k−1/2+β

1− c

√
ln
2e(2s−δ′)(p− s)

α′δ′
.

Since λ= tn,α′/(p−s)σ2, P[Sk(i)≥ λ]≤ α′/(p− s) for all i ∈ Sc. We can conclude that P[S(μ̂�1/�2) �=
S]≤ α.

6.4 Proof of Theorem 6

Without loss of generality, we can assume that σ = 1. Proceeding as in the proof of theorem 4,
P[Bin(k,k−β)≤ (1− c)k1−β]≤ δ′/2s for c=

√
2ln(2s/δ′)/k1−β. Then for i ∈ S it holds that

P[∑
j

|Yi j| ≤ λ]≤
δ′

2s
+
(
1−

δ′

2s

)
P[(1− c)k1−βμmin+ zk ≤ λ],

where zk ∼N (0,k). Since (1− c)k1−βμmin ≥ (1+ τ)λ, the right-hand side of the above display can
upper bounded as

δ′

2s
+
(
1−

δ′

2s

)
P[N (0,1)≥ τλ/

√
k]≤

δ′

2s
+
(
1−

δ′

2s

) δ′

2s−δ′
≤
δ′

s
.

The above display gives us the desired control of the type two error, and we can conclude that
P[S(μ̂�1/�∞) �= S]≤ α.
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Sara van de Geer and Peter Bühlmann. On the conditions used to prove oracle results for the lasso.
Elec. J. Statist., 3:1360–1392, 2009.

Jian Zhang. A Probabilistic Framework for Multitask Learning. PhD thesis, Carnegie Mellon
University, 2006.

2434



UNION SUPPORT RECOVERY

Peng Zhao and Bin Yu. On model selection consistency of lasso. J. Mach. Learn. Res., 7:2541–
2563, 2006. ISSN 1533-7928.

Hui Zou and Ming Yuan. The F∞-norm support vector machine. Stat. Sin, 18:379–398, 2008.

2435



 



Journal of Machine Learning Research 12 (2011) 2437-2459 Submitted 7/10; Revised 2/11; Published 7/11

Parallel Algorithm for Learning Optimal Bayesian Network Structure

Yoshinori Tamada∗ TAMADA@IMS.U-TOKYO.AC.JP
Seiya Imoto IMOTO@IMS.U-TOKYO.AC.JP
Satoru Miyano† MIYANO@IMS.U-TOKYO.AC.JP
Human Genome Center
Institute of Medical Science, The University of Tokyo
4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

Editor: Russ Greiner

Abstract
We present a parallel algorithm for the score-based optimal structure search of Bayesian networks.
This algorithm is based on a dynamic programming (DP) algorithm having O(n · 2n) time and
space complexity, which is known to be the fastest algorithm for the optimal structure search of
networks with n nodes. The bottleneck of the problem is the memory requirement, and therefore,
the algorithm is currently applicable for up to a few tens of nodes. While the recently proposed
algorithm overcomes this limitation by a space-time trade-off, our proposed algorithm realizes di-
rect parallelization of the original DP algorithm with O(nσ) time and space overhead calculations,
where σ> 0 controls the communication-space trade-off. The overall time and space complexity is
O(nσ+12n). This algorithm splits the search space so that the required communication between in-
dependent calculations is minimal. Because of this advantage, our algorithm can run on distributed
memory supercomputers. Through computational experiments, we confirmed that our algorithm
can run in parallel using up to 256 processors with a parallelization efficiency of 0.74, compared
to the original DP algorithm with a single processor. We also demonstrate optimal structure search
for a 32-node network without any constraints, which is the largest network search presented in
literature.

Keywords: optimal Bayesian network structure, parallel algorithm

1. Introduction

A Bayesian network represents conditional dependencies among random variables via a directed
acyclic graph (DAG). Several methods can be used to construct a DAG structure from observed
data, such as score-based structure search (Heckerman et al., 1995; Friedman et al., 2000; Imoto
et al., 2002), statistical hypothesis testing-based structure search (Pearl, 1988), and a hybrid of
these two methods (Tsamardinos et al., 2006). In this paper, we focus on a score-based learning
algorithm and formalize it as a problem to search for an optimal structure that derives the maximal
(or minimal) score using a score function defined on a structure with respect to an observed data set.
A score function has to be decomposed as the sum of the local score functions for each node in a
network. In general, posterior probability-based score functions derived from Bayesian statistics are
used. The optimal score-based structure search of Bayesian networks is known to be an NP-hard

∗. Currently at Department of Computer Science, Graduate School of Information Science and Technology, The Uni-
versity of Tokyo. 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. tamada@is.s.u-tokyo.ac.jp.
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problem (Chickering et al., 1995). Several efficient dynamic programming (DP) algorithms have
been proposed to solve such problems (Ott et al., 2004; Koivisto and Sood, 2004). Such algorithms
have O(n · 2n) time and space complexity, where n is the number of nodes in the network. When
these algorithms are applied to real problems, the main bottleneck is bound to be the memory
space requirement rather than the time requirement, because these algorithms need to store the
intermediate optimal structures of all combinations of node subsets during DP steps. Because of
this limitation, such algorithm can be applied to networks of only up to around 25 nodes in a typical
desktop computer. Thus far, the maximum number of nodes treated in an optimal search without
any constraints is 29 (Silander and Myllymäki, 2006). This was realized by using a 100 GB external
hard disk drive as the memory space instead of using the internal memory, which is currently limited
to only up to several tens of GB and in a typical desktop computer.

To overcome the above mentioned limitation, Perrier et al. (2008) proposed an algorithm to
reduce the search space using structural constraints. Their algorithm searches for the optimal struc-
ture on a given predefined super-structure, which is often available in actual problems. However, it
is still important to search for a globally optimal structure because Bayesian networks find a wide
range of applications. As another approach to overcome the limitation, Parviainen and Koivisto
(2009) proposed a space-time trade-off algorithm that can search for a globally optimal structure
with less space. From empirical results for a partial sub-problem, they showed that their algorithm
is computationally feasible for up to 31 nodes. They also mentioned that their algorithm can be
easily parallelized with up to 2p processors, where p = 0,1, . . . ,n/2 is a parameter that is used to
control the space-time trade-off. Using parallelization, they suggested that it might be possible to
search larger-scale network structures using their algorithm. The time and space complexities of
their algorithm are O(n ·2n(3/2)p) and O(n ·2n(3/4)p), respectively.

Of course, the memory space limitation can be overcome by simply using a computer with suf-
ficient memory. The DP algorithm remains computationally feasible even for a 29-node network
in terms of the time requirement. For such a purpose, a supercomputer with shared memory is
required. Modern supercomputers can be equipped with several terabytes of memory space. There-
fore, they can be used to search larger networks than the current 29-node network that requires 100
GB of memory. However, such supercomputers are typically very expensive and are not scalable in
terms of the memory size and the number of processors. In contrast, massively parallel computers,
a much cheaper type of supercomputers, make use of distributed memory; in such systems many
independent computers or computation nodes are combined and linked through high-speed connec-
tions. This type of supercomputers is less expensive, as mentioned, and it is scalable in terms of
both the memory space and the number of processors. However the DP algorithm cannot be exe-
cuted on such a distributed memory computer because it requires memory access to be performed
over a wide region of data, and splitting the search space across distributed processors and storing
the intermediate results in the distributed memory are not trivial problems.

Here, we present a parallelized optimal Bayesian network search algorithm called Para-OS. The
proposed algorithm is based on the OS algorithm using DP that was proposed by Ott et al. (2004).
Our algorithm realizes direct parallelization of the DP steps in the original algorithm by splitting
the search space of DP with O(nσ) time and space overhead calculations, where σ = 1,2, . . . > 0
is a parameter that is used to split the search space and controls the trade-off between the number
of communications (not the volume of communication) and the memory space requirement. The
main feature of this algorithm is that it guarantees that the amount of intermediate results that are re-
quired to be shared redundantly among independently split calculations is minimal. In other words,
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our algorithm guarantees that minimal communications are required between independent parallel
processors. Because of this advantage, our algorithm can be easily parallelized, and, in practice, it
can run very efficiently on massively parallel computers with several hundreds of processors. An-
other important feature of our algorithm is that it calculates no redundant score functions, and it
can distribute the entire calculation almost equally across all processors. The main operation in our
algorithm is the calculation of the score function. In practice, this feature is important to actually
search for the optimal structure. The overall time and space complexity isO(nσ+12n). Our algorithm
adopts an approach opposite to that of Parviainen and Koivisto (2009) to overcome the bottleneck
of the memory space problem. Although our algorithm has slightly greater space and time com-
plexties, it makes it possible to realize large-scale optimal network search in practice using widely
available low-cost supercomputers.

Through computational experiments, we show that our algorithm is applicable to large-scale
optimal structure search. First, the scalability of the proposed algorithm to the number of proces-
sors is evaluated through computational experiments with simulated data. We confirmed that the
program can run efficiently in parallel using up to 256 processors (CPU cores) with a paralleliza-
tion efficiency of more than 0.74 on a current supercomputer system, and acceptably using up to
512 processors with a parallelization efficiency of 0.59. Finally, we demonstrate the largest optimal
Bayesian network search attempted thus far on a 32-node network with 256 processors using our
proposed algorithm without any constraints and without an external hard disk drive. Our algorithm
was found to complete the optimal search including the score calculation within a week.

The remainder of this paper is organized as follows. Section 2 presents an overview of the
Bayesian network and the optimal search algorithm, which serves as the basis for our proposed
algorithm. Section 3 describes the parallel optimal search algorithm in detail. Section 4 describes
the computational experiments used for evaluating our proposed algorithm and presents the obtained
results. Section 5 concludes the paper with a brief discussion. The appendix contains some proofs
and corollaries related to those described in the main paper.

2. Preliminaries

In this section, we first present a brief introduction to the Bayesian network model, and then, we
describe the optimal search (OS) algorithm, which is the basal algorithm that we parallelize in the
proposed algorithm.

2.1 Bayesian Network

A Bayesian network is a graphical model that is used to represent a joint probability of random vari-
ables. By assuming the conditional independencies among variables, the joint probability of all the
variables can be represented by the simple product of the conditional probabilities. These indepen-
dencies can be represented via a directed acyclic graph (DAG). In a DAG, each node corresponds to
a variable and a directed edge, to the conditional dependencies among variables or to the indepen-
dencies from other variables. Suppose that we have n random variables, V = {X1,X2, . . . ,Xn}. The
joint probability of variables in V is represented as

P(X1,X2, . . . ,Xn) =
n

∏
j=1

P(Xj|Pa
G(Xj)),
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where PaG(Xj) represents the set of variables that are direct parents of the j-th variable Xj in network
structure G and P(Xj|PaG(Xj)), a conditional probability for variable Xj.

A score-based Bayesian network structure search or a Bayesian network estimation problem is
to search for the DAG structure fitted to the observed data, in which the fitness of the structure to the
given data is measured by a score function. The score function is defined on a node and its parent
set. The scores of nodes obtained by a score function are called local scores. A network score is
defined simply as the sum of local scores of all nodes in a network. Using a score function, the
Bayesian network structure search can be defined as a problem to find a network structure Ĝ that
satisfies the following equation:

Ĝ= argmin
G

n

∑
j=1

s(Xj,Pa
G(Xj),X),

where s(Xj,PaG(Xj),X) is a score function s : V × 2V ×RN,n → R for node Xj given the observed
input data of an (N×n)-matrix X , where N is the number of observed samples.

2.2 Optimal Search Algorithm using Dynamic Programming

Next, we briefly introduce the OS algorithm using DP proposed by Ott et al. (2004). Our proposed
algorithm is a parallelized version of this algorithm. We employ score functions described as in the
original paper by Ott et al. (2004). That is, a smaller score represents better fitting of the model.
Therefore, the problem becomes one of finding the structure that minimizes the score function. The
optimal network structure search by DP can be regarded as an optimal permutation search problem.
The algorithm consists of two-layer DP: one for obtaining the optimal choice of the parent set
for each node and one for obtaining the optimal permutation of nodes. First, we introduce some
definitions.

Definition 1 (Optimal local score) We define the function F :V ×2V → R as

F(v,A)
def
= min

B⊂A
s(v,B,X).

That is, F(v,A) calculates the optimal choice of the parent set from A for node v and returns its
optimal local score. B ⊂ A represents the actual optimal choice for v, and generally, we also need
to include it in the algorithm along with the score, in order to reconstruct the network structure
later.

Definition 2 (Optimal network score on a permutation) Let π : {1,2, . . . , |A|} → A be a permu-
tation on A ⊂ V and ΠA be a set of all the permutations on A. Given a permutation π ∈ ΠA, the
optimal network score on π can be described as

QA(π)
def
= ∑

v∈A

F(v,{u ∈ A : π−1(u)< π−1(v)}).

Definition 3 (Optimal network score) By using QA(π) defined above, we can formalize the net-
work structure search as a problem to find the optimal permutation that gives the minimal network
score:

M(A)
def
= arg min

π∈ΠA
QA(π).
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Here, M(A) represents the optimal permutation that derives the minimal score of the network con-
sisting of nodes in A.

Finally, the following theorem provides an algorithm to calculate F(v,A),M(A), and QA(M(A))
by DP. See Ott et al. (2004) for the proof of this theorem.

Theorem 4 (Optimal network search by DP) The functions F(v,A), M(A), and QA(M(A)) de-
fined above can be respectively calculated by the following recursive formulae:

F(v,A) =min{s(v,A,X),min
a∈A

F(v,A\{a})}, (1)

M(A)(i) =

{
M(A\{v∗})(i) (i< |A|)
v∗ (i= |A|)

, (2)

QA(M(A)) = F(v∗,A\{v∗})+QA\{v∗}(M(A\{v∗})), (3)

where
v∗ = argmin

v∈A
{F(v,A\{v})+QA\{v}(M(A\{v}))}.

By applying the above equations from |A|= 0 to |A|= |V |, we obtain the optimal permutation π on
V and its score QV (M(V )) in O(n ·2n) steps.

Note that in order to reconstruct the network structure, we need to keep the optimal choice of
the parent set derived in Equation (1) and the optimal permutation π=M(A) in Equation (3) for all
the combinations of A⊂V in an iterative loop for the next size of A.

3. Parallel Optimal Search Algorithm

The key to parallelizing the calculation of the optimal search algorithm by DP is splitting all the
combinations of nodes in a single loop of DP for F(v,A), M(A), and QA(M(A)), given above by
Equations (1), (2), and (3), respectively. Simultaneously, we need to consider how to reduce the
amount of information that needs to be exchanged between processors. In the calculation of M(A),
we need to obtain all the results of M(·) for one-smaller subsets of A at hand, that is, M(A \ {a})
for all a ∈ A. Suppose that such M(A \ {a})’s are stored in the distributed memory space, and we
have collected them for calculating M(A). In order to reduce the number of communications, it
would be better if we can re-use the collected results for another calculation. For example, we can
calculateM(B) (|B|= |A|) in the same processor that calculatesM(A) such that some ofM(B\{b})
(b ∈ B) overlaps M(A \ {a}). That is, if we can collect the maximal number of M(X)’s for any X
such that |X |= |A|−1 ∧ X ⊂ {(A\{a})∩ (B\{b})}, then the number of communications required
for calculatingM(A) andM(B) can be minimized. Theorem 7 shows how we generate such a set of
combinations, and we prove that it provides the optimally minimal choice of such combinations by
allowing some redundant calculations.

In addition, as is evident from Equations (1), (2), and (3), the DP algorithm basically consists
of simply searching for the best choice from the candidates that derive the minimal score. Time
is mainly required to calculate the score function s(v,A,X) for all the nodes and their parent com-
binations. Thus, our algorithm calculates s(v,A,X) equally in independent processors without any
redundant calculations for this part.

In this section, we first describe some basic definitions, and then, we present proofs of theorems
that the proposed algorithm relies on. Finally, we present the proposed parallel algorithm.
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3.1 Separation of Combinations

First, we define the combination, sub-combination, and super-combination of nodes.

Definition 5 (Combination) In this paper, we refer to a set of nodes inV as a combination of nodes.
We also assume a combination of k nodes, that is, X = {x1,x2, . . . ,xk} ⊂ V such that ord(xi) <
ord(x j) if i < j, where ord : V → N is a function that returns the index of element v ∈ V. For
example, suppose that V = {a,b,c,d}. ord(a) = 1 and ord(d) = 4.

Definition 6 (Sub-/super-combination) We define C′ as a sub-combination of some combination
C if C′ ⊂C, and C is a super-combination of C′. We say that a super-combination C is generated
from C′ if C is a super-combination of C′. In addition, we say that sub-combination C′ is derived
from C if C′ is a sub-combination of C. For the sake of convenience, if we do not mention about
the size of a sub-/super-combination of a combination, then we assume that it refers to a one-size
smaller/larger sub-/super-combination. In addition, we say that two combinations A and B share
sub-combinations if A ′ ∩B ′ �= /0, where A ′ and B ′ are sets of all the sub-combinations of A and B,
respectively.

We present two theorems that our algorithm relies on along with their proofs. These two theo-
rems are used to split the calculation of F(v,A), M(A), and QA(M(A)); all these require the results
for their sub-combinations. We show that the calculation can be split by the super-combination of
A, and it is the optimal separation of the combinations in terms of the number of communications
required.

Theorem 7 (Minimality of required sub-combinations) Let A be a set of combinations of nodes
in V , where |A|= k> 0 for A ∈A and |V |= n. If |A |=

(k+σ
k

)
(σ> 0 ∧ σ+k≤ n), then the minimal

number of sub-combinations of length k−1 required to generate all the combinations in A is
(k+σ
k−1

)
.

Let S be a combination of nodes, where |S|= k+σ. We can generate a set of combinations of length
k that satisfies the former condition by deriving all the sub-combinations of length k from S.

Proof Because A contains
(k+σ

k

)
combinations of length k, the number of distinct elements (nodes)

involved inA is k+σ and is minimal. Therefore, the number of sub-combinations required to derive(k+σ
k

)
combinations of length k in A is equal to the number of possible combinations that can be

generated from k+σ elements, and is
(k+σ
k−1

)
. No more combinations can be generated from

(k+σ
k−1

)
sub-combinations. Therefore, it is the minimal number of required sub-combinations required to
generate

(k+σ
k

)
combinations. A super-combination S of length k+σ contains k+σ elements and

can derive
(k+σ

k

)
combinations of length k. Therefore, S can derive A , and all the combinations of

length k−1 derived from elements in S are the sub-combinations required to generate combinations
in A .

Theorem 8 (Minimality of required super-combinations) The minimal number of
super-combinations of length k+σ from V that is required to generate all the sub-combinations
of size k is

(n−σ
k

)
.
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Proof Consider the set T = V \ {v1,v2, . . . ,vσ}, where any vi ∈ V , and thus, |T | = n−σ. If we
generate all the combinations of length k taken from T , then these include all the combinations of
length k from nodes in V without v1, . . . ,vσ, and the number of combinations is

(n−σ
k

)
. Consider a

set of combinations S = {{v1, . . . ,vσ}∪T ′ : T ′ ⊂ T ∧ |T ′| = k}. Here, |S| = k+σ for S ∈ S and
|S | =

(n−σ
k

)
. Because S contains all the combinations of length k without v1, . . . ,vσ and all the

elements in S contain v1, . . . ,vσ, we can generate all the combinations in V of length k from some
S ∈ S by combining 0 ≤ α ≤ k nodes from v1, . . . ,vσ and k−α nodes from S \ {v1, . . . ,vσ}. If
we remove any S ∈ S from it, then there exist combinations that cannot be generated from another
S ∈ S because S lists all the combinations except for nodes v1, . . . ,vσ. Therefore, S is the minimal
set of super-combinations required to derive all the combinations of length k from V and its size
is |S | =

(n−σ
k

)
. We can generate S by taking the first

(n−σ
k

)
combinations from

(n
k

)
combinations

arranged in lexicographical order.

Theorem 7 can be used to split the search space of DP using by super-combinations, and Theo-
rem 8 provides the number of super-combinations required in the parallel computation for a certain
size of A for M(A). From these two theorems, we can easily derive the following corollaries.

Corollary 9 (Optimal separation of combination) The DP steps used to calculate M(A) and
QA(M(A)) in the OS algorithm can be split into

(n−σ
k

)
portions by super-combinations of A with

length k+σ, where |A| = k. The size of each split problem is
(k+σ

k

)
and the number of required

M(B) for B ⊂ A ∧ |B| = k− 1 is
(k+σ
k−1

)
, which is the minimal number for

(k+σ
k

)
combinations of

M(A). Here, B is a set of sub-combinations of A. The calculation of F(v,A) can also be split based
on the sub-combinations B for M(A).

The separation of M(A) by super-combinations causes some redundant calculations. The fol-
lowing corollary gives the amount of such overhead calculations and the overall complexity of the
algorithm.

Corollary 10 (Amount of redundant calculations) If we split the calculations of M(A) (|A| = k)
using super-combinations of size k+σ (σ > 0), then the number of calculations of M(A) for all
A ⊂ V is

(n−σ
k

)
·
(k+σ

k

)
=
(n
k

)
O(nσ). Thus, as compared to the original DP steps

(n
k

)
, the overhead

increment of the calculations for M(A),QA(M(A)), and F(v,A) is at most O(nσ). The memory re-
quirement to store the intermediate results is also dependent on the size of the sub-combinations for
split calculations. Therefore, the overall time and space complexity of the algorithm is O(nσ+12n).

We present a proof in Appendix B. The parameter σ> 0 can be used to control the size of split
problems. Because using a large value of σ suppresses the number of required super-combinations,
the number of communications required between independent calculations is also suppressed. In-
stead, the large value of σ requires a large memory space to store the sub-combinations in a pro-
cessor. Therefore, σ can be used to control the trade-off between the number of communications
and the memory space requirement. Because the algorithm requires the exchange of intermediate
results

(n−σ
k

)
times for a loop with |A| = k and is a relatively large number, decreasing the number

of communications reduces the communication speed. In a case with many processors, however,
a large value of σ can also reduce the communication speed because a large value of σ requires
the transfer of a large amount of data, instead of reducing the number of communications. Table 1
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Increment for
k σ= 1 σ= 2 σ= 3
1 1 2 3
2 2 5 8
10 7 30 55
14 8 37 111
27 4 8 8

Table 1: Examples of the actual increment of various values of k and σ for n = 32. The increment
is largest for all cases of σ for k = 14.

Algorithm 1 Process-S(S,a,n,np) calculates the functions F(v,A), M(A), and QA(M(A)) for com-
binations A derived from the given super-combination S.
Input: S⊂V : Super-combination, a ∈N : size of combination to be calculated, n : total number of

nodes in the network, np : number of CPU processors (cores).
Output: F(v,B), Q(A), and M(Q(A)) for all sub-combinations of S with size a, v ∈ A, and B =

A\{v}.
1: A ←{A⊂ S : |A|= a}
2: Retrieve the local scores s(v,B,X) for B = A\{v} (v ∈ A ∈ A) from the LF(v,B,n,np)-th pro-
cessor.

3: Retrieve F(u,B\{u}) for u ∈ B (B= A\{v},v ∈ A ∈ A) from the LF(u,B\{u},n,np)-th pro-
cessor.

4: Retrieve QA\{v}(M(A\{v})) for v ∈ A ∈ A from the LQ(A\{v},n,np)-th processor.
5: for each A ∈ A do
6: Calculate F(v,B) for v ∈ A,B = A \ {v} from s(v,B) and F(v,B \ {u}) for u ∈ B by Equa-

tion (1).
7: Calculate M(A) and QA(M(A)) from QA\{v}(M(A\{v})) and F(v,A\{v}) by Equations (3)

and (2).
8: end for
9: Store Q(A) andMA(Q(A)) (A ∈ A) in the LQ(A,n,np)-th processor.
10: Store F(v,B) (B= A\{v},A ∈ A) in the LF(v,B,n,np)-th processor.

shows some examples of the actual overhead increment of the DP steps, that is,
(n−σ

k

)
·
(k+σ

k

)
/
(n
k

)
.

As shown in the table, the increment because of redundant DP steps caused by the separation ap-
pears to be relatively small for a case of the practical size of n and σ. If the algorithm runs in parallel
with hundreds of processors, the increment calculation in each processor is negligible as compared
to the total amount of calculations, and thus, it does not noticeably affect the overall computation
time. We discuss this later with the computational experiments presented in Section 4.2.
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Algorithm 2 Para-OS(V,X ,s,σ,np) calculates the exactly global optimal structure of the Bayesian
network with respect to the input data X and the local score function s with np processors.

Input: V : set of input nodes (variables) where |V | = n, X : (N× n)-input data matrix, s(v,Pa,X):
function V ×2V ×RN×n → R that returns the local Bayesian network score for variable v with
its parent set Pa ⊂ V w.r.t. the input data matrix X , σ ∈ N: size of super-combination, np:
number of CPU processors (cores).

Output: G= (V,E) : optimal Bayesian network structure.
1: {Initialization}
2: Calculate F(v, /0) = s(v, /0,X) for all v ∈V and store it in the LF(v, /0,n,np)-th processor.
3: Store F(v, /0) as Q{v}(M({v})) and M({v})(1) = v for all v ∈V in the LQ({v},n,np)-th proces-
sor.

4: {Main Loop for size of A}
5: for a= 1 to n−1 do
6: {S-phase: Execute the following for-loop on i in parallel. The {r= i mod np+1}-th proces-

sor is responsible for the (i+1)-th loop.}
7: for i= 0 to n

(n−1
a

)
−1 do

8: v← i mod n+1
9: j ← �i/n +1
10: Pa← m(v,RLI−1( j,n−1,a))
11: Calculate s(v,Pa,X) and store it in the local memory of the r-th processor.
12: end for
13: {Q-phase: Execute the following for-loop on i in parallel. The {r = i mod np+ 1}-th pro-

cessor is responsible for the (i+1)-th loop.}
14: if a+σ+1> n then
15: σ← n−a−1.
16: end if
17: for i=

( n
a+σ+1

)
−
(n−σ
a+1

)
to
( n
a+σ+1

)
−1 do

18: S← RLI−1(i+1,n,a+σ+1).
19: Call Process-S(S,a+1,n,np).
20: end for
21: end for
22: Construct network G = (V,E) by collecting the final sets of the parents selected in line 6 of

Process-S(·).
23: return G= (V,E).

3.2 Para-OS Algorithm

According to Theorems 7 and 8 and Corollary 9, the DP steps in Equations (1), (2), and (3) of
Theorem 4 can be split by super-combinations of A. The pseudocode of the proposed algorithm is
given by Algorithms 1 and 2. The former is a sub-routine of the latter main algorithm.

The algorithm consists of two phases: the S-phase and the Q-phase. In the former, each pro-
cessor calculates the score function s(v,Pa,X) independently without communication, whereas the
latter calculates F(v,A), M(A), and QA(M(A)) along with communications among each other to
exchange the results of F(v,A), M(A), and QA(M(A)). Note that in line 6 of Algorithm 1, we need
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to store not only the local scores but also the optimal choices of parent node sets, although we do
not describe this explicitly. This is required to reconstruct the optimal structure after the algorithm
terminates.

In this algorithm, we need to determine which processor stores the calculated intermediate re-
sults. In order to calculate this, we define some functions as given below.

Definition 11 We define function m′ : N×N → N as follows:

m′(a,b) =

{
a if a< b
a+1 otherwise

.

Using m′(a,b), we define function m :V ×2V → 2V as follows:

m(v,A) = {ord−1(m′(ord(u),ord(v))) : u ∈ A}.

In addition, we define function m′−1 : N×N → N as follows:

m′−1(a,b) =

{
a if a< b
a−1 otherwise

.

Using m′−1(a,b), we define function m−1 :V ×2V → 2V as follows:

m−1(v,A) = {ord−1(m′−1(ord(u),ord(v))) : u ∈ A}.

The function m(v,A) maps the combination A to a new combination in V \{v}, and m−1(v,A) is the
inverse function of m(v,A). These are used in the proposed algorithm and the following function.

Definition 12 (Calculation of processor index to store and retrieve results) We define functions
LQ : 2V ×N×N→ N and LF :V ×2V ×N×N→ N as follows:

LQ(A,n,np)
def
= (RLI(A,n)−1) mod np+1

and
LF(v,A,n,np)

def
=
{
(RLI(m−1(v,A),n−1)−1)×n+(ord(v)−1)

}
mod np+1,

where RLI(A,n) is a function used to calculate the reverse lexicographical index (RLI) of combina-
tion A taken from n objects and np, the number of processors.

Function LQ(A,n,np) locates the processor index used to store the results of M(A) and QA(M(A))
and LF(v,A,n,np), the results of F(v,A). By using RLIs, the algorithm can independently and
discontinuously generate the required combinations and processor indices for storing/retrieving of
intermediate results. We use RLIs instead of ordinal lexicographical indices because the conversion
between a combination and the RLI can be calculated in linear time by preparing the index table
once (Tamada et al., 2011). In Algorithm 2, the inverse function RLI−1(·) is also used to reconstruct
a combination from the index. See Appendix D for details of these calculations.

Figure 1 shows an example of the calculation of the DP for the super-combination S in a single
processor in a single loop. Note that in the figure, although a super-combination is assigned to a
single processor, s(v,A,X) is calculated in a different processor from one that calculates F(v,A) for
the same v ∈V and A⊂V \{v}.
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Q{a, b, c}(M({a, b, c}))

Q{a, b, d}(M({a, b, d}))

Q{a, c, d}(M({a, c, d}))

Q{b, c, d}(M({b, c, d}))

F(a, {b, c})

F(a, {b, d})

S = {a, b, c, d}

F(a, {c, d})

F(b, {a, c})

F(b, {a, d})

F(b, {c, d})

F(c, {a, b})

F(c, {a, d})

F(c, {b, d})

F(d, {a, b})

F(d, {a, c})

F(d, {b, c})

s(a, {b, c})

s(a, {b, d})

s(a, {c, d})

s(b, {a, c})

s(b, {a, d})

s(b, {c, d})

s(c, {a, b})

s(c, {a, d})

s(c, {b, d})

s(d, {a, b})

s(d, {a, c})

s(d, {b, c})

F(a, {b}) F(a, {d})F(a, {c})

F(b, {a}) F(b, {c}) F(b, {d})

F(c, {a}) F(c, {b}) F(c, {d})

F(d, {a}) F(d, {b}) F(d, {c})

Calculated in S-Phase

Q{a, d}(M({a, d}))

Q{a, c}(M({a, c}))

Q{a, b}(M({a, b}))

Retrieved from other processors

Calculate in Q-Phase

F(v, Aa - 1 )

F(v, Aa ) Q A a+1
(M(Aa+1))

Q A a(M(Aa))

Calculation for a super-combination S = {a, b, c, d} in a single loop

Store in other processors

Q{b, c}(M({b, c}))

Figure 1: Schematic illustration of the calculation in a single loop on i for a = 2. Aa represents a
subset A⊂V where |A|= a.

4. Computational Experiments

In this section, we present computational experiments for evaluating the proposed algorithm. In the
experiments, we first compared the running times and memory requirement for various values of
σ. Next, we evaluated the running times of the original dynamic programming algorithm with a
single processor and the proposed algorithm using 8 through 1024 processors. We also compared
the results for different sizes of networks. In the experiments, we measured the running times using
the continuous model score function BNRC proposed by Imoto et al. (2002). Finally, we tried to
run the algorithm with as many nodes as possible on our supercomputers, as a proof of long-run
practical execution that realizes the optimal large network structure learning. For this experiment,
we used the discrete model score function BDe proposed by Heckerman et al. (1995), in addition
to the BNRC score function. Brief definitions of BNRC and BDe are given in Appendix A. Before
presenting the experimental results, we first describe the implementation of the algorithm and the
computational environments used to execute the implemented programs.

4.1 Implementation and Computational Environment

We have implemented the proposed algorithm using the C programming language (ISO C99). The
matrix computation in the BNRC score function is implemented using the BLAS/LAPACK library.
The parallelization is implemented using MPI-1.1.
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We have used two different supercomputer systems, RIKEN RICC and Human Genome Center
Supercomputer System. The former is a massively parallel computer where each computation node
has dual Intel Xeon 5570 (2.93 GHz) CPUs (8 CPU cores per node) and 12 GiB memory. The
computation nodes are linked by X4 DDR InfiniBand. RICC employs Fujitsu’s ParallelNavi that
provides an MPI implementation, C compiler, BLAS/LAPACK library, and job scheduling. The
latter system is similar to the former except that it has dual Intel Xeon 5450 (3 GHz) CPUs and 32
GiB memory per node. It employs OpenMPI 1.4 with Sun Grid Engine as a parallel computation
environment. The compiler and the BLAS/LAPACK library are the Intel C compiler and Intel MKL,
respectively.

In our implementation, each core in a CPU is treated equally as a single processor so that one
MPI process runs in a single core. Therefore, 8 processes run in a computation node in both the
systems. The memory in a single node is divided equally among these 8 processes.

For the comparison presented later and the verification of the implementation, we also imple-
mented the original OS algorithm proposed by Ott et al. (2004). The verification of the implemen-
tation was tested by comparing the optimal structures calculated by the implementations of both the
original algorithm and the proposed algorithm for up to p = 23 using artificial simulated data with
various numbers of processors. We also checked whether the greedy hill-climbing (HC) algorithm
(Imoto et al., 2002) could search for a network structure having a better score than that of the opti-
mal structure. We repeated the execution of the HC algorithm 10,000 times, and confirmed that no
result was better than the optimal structure obtained using our algorithm.

4.2 Results

First, we generated artificial data with N = 50 (sample size) for the randomly generated DAG struc-
ture with n = 23 (node size). Refer to Appendix C for details on the generation of the artificial
network and data. We used n = 23 because RICC has a limited running time of 72 hours. The
calculation with a single processor for n= 24 exceeds this limit. In all the experiments, we carried
out three measurements for each setting and took the average of these measured times as an obser-
vation for that setting. The total running times are measured for the entire execution of the program,
including the input of the data from a file, output of the network to a file, and MPI initialization and
finalization routine calls.

Figure 2 shows the result of the comparison of σ= 1, . . . ,5 for n= 23. The row for σ= 0 shows
the results of the original DP algorithm with a single processor. We measured the running times
using 256 processors here. During the computation, we also measured the times required for calling
MPI functions to exchange required data between processors, and the times required for calculating
the score funtion s(·). As discussed in Section 3.1, σ controls the space-communication trade-off.
We expected that an increase in the value of σ would reduce the time and increase the memory
requirement. As expected, the total time decreased for up to σ= 4 with an increase in σ; however,
it increased for σ = 5 and the memory requirement also increased significantly. As shown in the
figure, σ does not affect the score calculation time. From these results, we employed σ = 3 for
later experiments because the increase in the memory requirement and the decrease in the total time
appeared reasonable.

Next, we compared the running times for various numbers of processors. We carried out mea-
surements for np = 8,16,32,64,128,256,512, and 1024 processors using 1, 2, 4, 8, 16, 32, 64,
and 128 computation nodes, respectively, on RICC. Here, np represents the number of processors.
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Figure 2: Running times and memory requirements with σ = 1, . . . ,5 for n = 23 and N = 50 with
256 processors. “Total Time” represents the total time required for execution in seconds,
“Cm Time” represents the total communication time required for calling MPI functions
within the total time; “Sc Time,” the time required for score calculation; and “Mem,” the
memory requirement in GiB.
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256 1072.85 189.49 0.74 249.06 0.23
512 667.38 304.62 0.59 251.46 0.38
1024 515.29 394.53 0.39 305.12 0.59

Figure 3: Scalability test results for n = 23 and N = 50 with σ = 3. We did not present the result
for np = 1024 in the graph on the left-hand side because the speedup was too low.

As mentioned above, we used σ = 3. For np = 1, we used the implementation of the original DP
algorithm. Therefore, we do not use the super-combination-based separation of our proposed al-
gorithm although it works for np = 1. Figure 3 shows the experimental result. We evaluated the
parallelization scalability of the proposed algorithm from the speedup S(np) and efficiency E(np).
The speedup S(np) is defined as S(np) = T (1)/T (np), where np is the number of processors and
T (np), the running time with np processors. If S(np) = np, then it is called the ideal speedup where
np-hold speedup is obtained by np processors. The parallelization efficiency E(np) is defined as
E(np) = S(np)/np. In the case of ideal speedup, E(np) = 1 for any np. Generally, parallel programs
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20 105.54 31.35 0.30 69.71 5.77
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22 546.07 188.80 0.35 344.00 10.97
23 1072.85 249.06 0.23 795.01 15.01
24 2645.04 579.61 0.22 1999.56 20.55
25 5386.38 1127.62 0.21 4095.74 28.50
26 11976.90 2374.81 0.20 9199.75 40.25
27 23686.51 5174.94 0.22 17517.04 59.31

Figure 4: Comparison of running tims for various network sizes. Column n represents the size of
the network and “(ratio),” the ratio of “Cm Time” to “Total.” “Mem” is represented in
GiB. Other columns have the same meaning as in Figure 2.

that have E(np)≥ 0.5 are considered to be successfully parallelized. As shown in the table in Fig-
ure 3, the efficiencies are 0.74 and 0.59 for np = 256 and 512, respectively. However, with 1024
processors, the efficiency became 0.39 and the speedup was very low as compared to that with 512
processors, and therefore, it is not efficient and feasible. From these results, we can conclude that
the program can run very efficiently in parallel for up to 256 processors, and acceptably for up to
512 processors.

Tc(np) in Figure 3 represents the time required for calling MPI functions during the executions,
and Rc(np) is a ratio of Tc(np) to the total time T (np). Except for np = 8, Tc(np) decreases with
an increase in np because the amount of communication for which each processor is responsible
decreases. However, it did not decrease linearly; in fact, for np ≥ 512, it increased. This may indi-
cate the current limitation of both our algorithm and the computer used to carry out this experiment.
For np = 8, Tc(np) was very small. This is mainly because communication between computation
nodes was not required for this number of processors. If we subtract Tc(np) from T (np), then the
efficiency E(np) becomes 0.96, 0.95, and 0.94 for 256, 512, and 1024 processors, respectively. This
result suggests that the redundant calculation in our proposed algorithm does not have a great ef-
fect, and the communication cost is the main cause of the inefficiency of our algorithm. Therefore,
improving the communication speed in the future may significantly improve the efficiency of the
algorithm with a larger number of processors.

Next, we compared the running times for various network sizes. We generated artificial sim-
ulated data for n = 20 to 27 as we did for the above experiment with n = 23. We measured the
running times with 256 processors and σ = 3. Figure 4 shows the result. As shown in the figure,
both the time and the space required increased exponentially. Note that both the left- and the right-
hand side y-axes are in log scale. The communication time decreased slightly for up to n= 26 with
an increase in n. However, for n= 27, it started to increase. From these results, we can say that the
score calculation remains dominant and the communication does not contribute significantly to the
total running times for this range of n with np = 256.
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Figure 5: Comparison of running times for various sample sizes. Column N represents the number
of samples. Other columns have the same meaning as in Figure 2.

To check the scalability of the algorithm to the sample size, we compared the running times for
various sample sizes. We generated artificial simulated data withN= 50,100,150,200,250,300,350,
and 400 for the artificial network of n= 23, which is used for the previous analyses. Theoretically,
the sample size does not affect the running times, except for the score calculation. Figure 5 shows
the result. We confirmed that the communication times are almost constant for all the tested sample
sizes and that the score calculation increased with the sample sizes, as was expected. Note that the
calculation of the BNRC score function is not in linear time, and it is difficult to determine the exact
time complexity because it involves an iterative optimization step (Imoto et al., 2002).

4.3 Structure Search for Large Networks

Finally, we tried to search for the optimal structure of nodes with as many nodes as possible in the
HGC system because it allows long execution for up to two weeks with 256 processor cores and has
a larger memory in each computation node.

As in the above experiment, we first generated random DAGs having various numbers of nodes,
and then generated simulated data with 50 samples. With the BNRC score function, we have suc-
ceeded in searching for the optimal structure of a 31-node network by using 464.3 GiB memory in
total (1.8 GiB per process) with 256 CPU cores in 32 computation nodes. For this calculation, we
did not impose a restriction on the parent size or any other parameter restrictions. 8 days 6 hours
50 minutes 24 seconds were required to finish the calculation. The total time required for calling
MPI functions was 2 days 15 hours 11 minutes 58 seconds. This is 32% of the total running time.
Therefore, the communication time became a relatively large portion of the total computation time,
relative to that in the case of n = 27 presented above. As described in Parviainen and Koivisto
(2009), thus far, the largest network search that has been reported was for a 29-node network (Si-
lander and Myllymäki, 2006). Therefore, our result improved upon this result without even using
an external hard disk drive.

To search for the optimal structure of an even larger network, we used the BDe network score,
which is a discrete model that is much faster than the BNRC score. Generally, the BDe score can be
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calculated 100 times faster than the BNRC score (data not shown). Using the BDe score function,
we successfully carried out optimal structure search for a 32-node network without any restriction
using 836.1 GiB memory (3.3 GiB per process) in total with 256 CPU cores. The total computation
time was 5 days 14 hours 24 minutes and 34 seconds. The MPI communication time was 4 days
12 hours 56 minutes 26 seconds, and this is 81% of the total time. Thus, for n = 32 with the
BDe score function, the calculation of score functions requires relatively very little time (actually, it
required only around 1.5 hours per process) as compared to the total time, and the communication
cost becomes the dominant part and the bottleneck of the calculation.

These results show that our algorithm is applicable to the optimal structure search of relatively
large-sized networks and it can be run on modern low-cost supercomputers.

5. Discussions

In this paper, we have presented a parallel algorithm to search for the score-based optimal structure
of Bayesian networks. The main feature of our algorithm is that it can run very efficiently on mas-
sively parallel computers in parallel. We confirmed the scalability of the algorithm to the number
of processors through computational experiments and successfully demonstrated optimal structure
search for a 32-node network with 256 processors, an improvement over the most successful result
reported thus far. Our algorithm overcomes the bottleneck of the previous algorithm by using a
large amount of distributed memory for large-scale Bayesian network structure search.

Our algorithm has a feature similar to that of an algorithm recently proposed by Parviainen and
Koivisto (2009) that requires less space. Both algorithms divide the search space of the problem,
and provide a way to compute the optimal structure in parallel. Both are capable of breaking the
current limitation of the network size in optimal network structure search. However, these two algo-
rithms differ in several respects. First, Parviainen and Koivisto (2009) primarily intended to develop
a space-time trade-off algorithm to overcome the bottleneck of the search problem. They found that
the search problem can be divided into sub-problems and that these sub-problems can be solved
independently with less space. Therefore, although the time requirement increases with a decrease
in the space requirement, they mentioned that their algorithm can obtain the optimal structure for a
34-node network by massive parallelization. Our algorithm, on the other hand, overcomes the bot-
tleneck in a more straightforward way. We found a way to divide the DP steps of the fastest known
algorithm with a relatively low overhead cost. In terms of memory requirement, our algorithm con-
sumes much more memory space than that of Parviainen and Koivisto (2009) and even more than
the original DP algorithm to realize parallelization. However, our algorithm can actually search for
the optimal structure of a 32-node network with 256 processors in less than a week, including score
calculation, whereas Parviainen and Koivisto (2009) computed only the partial problems. Their
estimate from their empirical result is 4 weeks using 100 processors to obtain the optimal structure
for a 31-node network. In addition, their estimate ignores the parallelization overhead that generally
becomes problematic in parallelization as well as score calculation, which requires the most time in
the actual application. We showed that our algorithm works efficiently with up to 256 processors,
and acceptably with up to 512 processors. An optimal search for even larger networks may be real-
ized by improving the current implementation. Our implementation regards each processor core in
a CPU equivalently. Therefore, exploiting the modern multi-core CPUs can reduce the communica-
tions required among computation nodes and increase the amount of memory space for independent
calculations without requiring improved hardware relative to current supercomputers.
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Appendix A. Definitions of Score Functions

In this paper, we use BNRC (Imoto et al., 2002) and BDe (Heckerman et al., 1995) as a score
function s(·) for computational experiments of the proposed algorithm. Here, we present brief
definitions of these score functions.

A.1 The BNRC Score Function

BNRC is a score function for modeling continuous variables. In a continuous model, we consider
the joint density of the variables instead of their joint probability. We search the network structure
G by maximizing the posterior of G for the input data matrix X . The posterior of G is given by

π(G|X) = π(G)
∫ N

∏
i=1

n

∏
j=1

f (xi j|pa
G
i j;θ j)π(θG|λ)dθG,

where π(G) is the prior distribution of G; f (xi j|paGi j;θ j), the local conditional density for the j-th

variable; paGi j = (pa( j)i1 , . . . , pa
( j)
iq j ), the set of observations in the i-th sample of q j variables that

represents the direct parents of the j-th node in a network; θG = (θ1, . . . ,θn), the parameter vector
of the conditional densities to be estimated; and π(θG|λ), the prior distribution of θG specified by
the hyperparameter λ. Conditional density f (xi j|paGi j;θ j) is modeled by nonparametric regression
with B-spline basis functions given by

f (xi j|pa
G
i j;θ j) =

1√
2πσ2j

exp

[
−
{xi j−∑

q j
k=1mjk(pa

( j)
ik )}2

2σ2j

]
,

where mjk(p
( j)
ik ) = ∑

Mjk

l=1 γ
( j)
lk b

( j)
lk (p

( j)
ik ), {b( j)1k (·), . . . ,b

( j)
Mjk,k

(·)} is the prescribed set of Mjk B-splines;

σ j, the variance, and γ
( j)
lk , the coefficient parameters. By taking a −2log of the posterior, the BNRC

score function for the j-th node is defined as

sBNRC(Xj,Pa
G(Xj),X) =−2log

{
πGj

∫ N

∏
i=1

f (xi j|pa
G
i j;θ j)π j(θ j|λ j)dθ j

}
,

where πGJ is the prior distribution of the local structure associated with the j-th node; and π j(θ j|λ j),
the decomposed prior distribution of θ j specified by the hyperparamter λ j.
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A.2 The BDe Score Function

BDe, a score function for the discrete model, can be applied to discrete (categorical) data. As in the
case of BNRC, BDe also considers the posterior of G; that is,

P(G|X) ∝ P(G)
∫
P(X |G,θ)P(θ|G)dθ,

where P(X |G,θ) is the product of local conditional probabilities (likelihood of X given G) and
P(θ|G), the prior distribution for parameters θ. In the discrete model, we employ multinomial
distribution for modeling the conditional probability and the Dirichlet distribution as its prior dis-
tribution. Let Xj be a discrete random variable corresponding to the j-th node, which takes one
of r values {u1, . . . ,ur}, where r is the number of categories of Xj. In this model, the conditional
probability of Xj is parameterized as

P(Xj = uk|Pa
G(Xj) = u jl) = θ jlk,

where u jl (l = 1, . . . ,rq j) is a combination of values for the parents and q j, the number of parents of
the j-th node. Note that ∑r

k=1θ jlk = 1. For the discrete model, the likelihood can be expressed as

P(X |G,θ) =
n

∏
j=1

rq j

∏
l=1

r

∏
k=1

θ
Njlk

jlk ,

where Njlk is the number of observations for the j-th node whose values equal uk in the data matrix
X with respect to a combination of the parents’ observation l. Njl =∑r

k=1Njlk and θ denotes a set of
parameters θ jlk. For the parameter set θ, we assume the Dirichlet distribution as π(θ|G); then, the
marginal likelihood can be described as

∫
P(X |G,θ)P(θ|G)dθ=

n

∏
j=1

rq j

∏
l=1

Γ(α jl)

Γ(α jl+Njl)

r

∏
k=1

Γ(α jlk+Njlk)

Γ(α jlk)
,

where θ is a set of parameters; α jlk, a hyperparameter for the Dirichlet distribution; and α jl =

∑r
k=1α jlk. By taking − log of the posterior, the BDe score function for the j-th node is defined as

sBDe(Xj,Pa
G(Xj),X) =− logπGj − log

{
rq j

∏
l=1

Γ(α jl)

Γ(α jl+Njl)

r

∏
k=1

Γ(α jlk+Njlk)

Γ(α jlk)

}
,

where πGj is the prior probability of the local structure associated with the j-th node.

Appendix B. Proof of Corollary 10

Proof We prove that
(n−σ

k

)
·
(k+σ

k

)
=
(n
k

)
O(nσ).(

n−σ
k

)
·

(
k+σ
k

)
=

(n−σ)!
k!(n−σ− k)!

·
(k+σ)!

k!(k+σ− k)!

=
(n−σ)!

k!(n−σ− k)!
·
(k+σ)!
k!σ!

·
(n− k)!
(n− k)!

·
n!
n!
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=
n!

k!(n− k)!
·
(n−σ)!(k+σ)!(n− k)!

(n−σ− k)!k!σ!n!

=

(
n
k

)
·

(n−σ)!
(n−σ− k)!

·
(k+σ)!
k!σ!

·
(n− k)!
n!

=

(
n
k

)
·
(n−σ)
n

(n−σ−1)
(n−1)

· · ·
(n−σ− k+1)
(n− k+1)

·
(k+σ) · · ·(k+1)k!

σ!k!

=

(
n
k

)
·O(1) ·O((k+σ)σ) =

(
n
k

)
·O((k+σ)σ).

For n < k+σ, we consider only super-combinations of size n. Thus, for each k, there are at
most

(n
k

)
O(nσ) calculations.

Appendix C. Method for Generating Artificial Network and Data

To generate the random DAG structure, we simply added edges at random to an empty graph so
that the acyclic structure is maintained and the average degree becomes d = 4.0. Consequently, the
number of total edges equals n · d/2. Note that the degree of DAGs does not affect the execution
time of the algorithm as the algorithm searches all possible structures. To generate the artificial data,
we first randomly assigned 8 different nonlinear or linear equations to the edges and then generated
the artificial numerical values based on the normal distribution and the assigned equations. Figure 6
shows the assigned equations and examples of the generated data. If a node has more than two
parent nodes, the generated values are summed before adding the noise. We set the noise ratio to be
0.2.

To apply BDe to the artificial data on the n = 32 network, we discretized the continuous data
generated by the same method for all variables into three categories (r = 3) and then executed the
algorithm for these discretized values.

Appendix D. Efficient Indexing of Combinations

When running the algorithm, we need to generate combination vectors discontinuously and indepen-
dently in a processor. To do this efficiently, we require an algorithm that calculates a combination
vector from its index and the index from its combination vector. Buckles and Lybanon (1977) pre-
sented an efficient lexicographical index - vector conversion algorithm. However, this algorithm
requires the calculation of binomial coefficients for every possible element in a combination every
time. To speed up this calculation, we developed a linear time algorithm that needed polynomial
time to construct a reusable table (Tamada et al., 2011). Our algorithm actually deals with the re-
verse lexicographical index instead of the ordinal lexicographical index; this enables us to calculate
the table only once and to make it reusable. In this section, we present the algorithms as described
in Tamada et al. (2011). See Tamada et al. (2011) for details and the proofs of the theorems. In this
section, note that we assume that ∑n

i=k fi = 0 for any fi if n< k.

Theorem 13 (RLI calculation) Let C = {C1,C2, . . . ,Cm} be the set of all the combinations of
length k taken from n objects, arranged in lexicographical order, where m=

(n
k

)
. We call i the lex-

icographical index of Ci ∈ C . Let us define the reverse lexicographical index of Ci ∈ C , RLI(Ci,n)
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Figure 6: Left: Linear and nonlinear equations assigned to each edge in artificial networks. ε repre-
sents the noise based on the normal distribution. Right: Examples of the values generated
by these equations.
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Figure 7: RLI calculation for n= 6 and k = 3.

def
= m− i+ 1. Suppose that we consider a combination of natural numbers, that is, some combina-
tion X = {x1,x2, . . . ,xk} ∈ C , where xi < x j if i < j and xi ∈ {1,2, . . . ,n}. Then, RLI(X ,n) can be
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Algorithm 3 RLITable(m) generates the index table for conversion between a combination and the
index.
Input: m: maximum number of elements appearing in a combination,
Output: T : m×m index table.
1: {Initialization}
2: T (i,1)← 0 (1≤ i≤ m).
3: T (1, j)← j−1 (2≤ j ≤ m).
4: {Main Routine}
5: for i= 2 to m do
6: for j = 2 to m do
7: T (i, j)← T (i−1, j)+T (i, j−1).
8: end for
9: end for
10: return T .

Algorithm 4 RLI(X ,n,T ) calculates the reverse lexicographical index of the given combination X .
Input: X = {x1,x2, . . .xk} (x1 < · · ·< xk ∧ 1≤ xi ≤ n) : input combination of length k taken from

n objects, n : total number of elements, T : index table calculated by RLITable(·).
Output: reverse lexicographical index of combination X .
1: r← 0
2: for i= 1 to k do
3: r← z+T (k− i+1,n− k− xi+ i+1).
4: end for
5: return r+1.

calculated by

RLI(X ,n) =
|X |

∑
i=1

(
n− xi

|X |− i+1

)
+1.

Figure 7 shows an example of the calculation of RLI for n = 6 and k = 3. For example,
RLI({1,3,5},6) =

(5
3

)
+
(3
2

)
+
(1
1

)
+1= 15.

Corollary 14 (RLI calculation by the index table) Let T be a (k,n−k+1)-size matrix whose ele-

ment T (α,β)
def
=
(α+β−2

α

)
. Matrix T can be calculated only by (n−1)(n−k−1) time addition and by

using T , RLI(X ,n) can be calculated in linear time by RLI(X ,n)=∑k
i=1T (k− i+1,n−k−xi+ i+1)

+ 1.

Algorithm 3 shows the pseudocode used to generate T and Algorithm 4, the pseudocode of
RLI(X ,n). The inverse function that generates the combination vector for an RLI can be calculated
by simply finding the largest column position of T , subtracting the value in the table from the index,
and then repeating this k times.

Corollary 15 Let RLI(X ,n) be the reverse lexicographical index defined above for combination X
= {x1,x2, . . . ,xk}. The inverse function of RLI(X ,n), that is, the i-th element xi of
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Algorithm 5 RLI−1(r,n,k,T ) calculates the combination vector of length k from n elements, corre-
sponding to the given reverse lexicographical index r.
Input: r : reverse lexicographical index of the combination to be calculated, n : total number of

elements, k : length of the combination, T : index table calculated by RLITable(·).
Output: X = {x1,x2, . . . ,xk} : combination corresponding to r.
1: r← r−1.
2: for i= 1 to k do
3: for j = n− k+1 to 1 do
4: if r ≥ T (k− i+1, j) then
5: xi ← n− k− j+ i+1.
6: r← r−T (k− i+1, j).
7: break
8: end if
9: end for
10: end for
11: return X = {x1,x2, . . . ,xk}.

RLI−1(RLI(X ,n),n,k) can be calculated by, for i= 1, . . . ,k,

xi = argmax
j
T (k− i+1,n− k− j+ i+1)

< RLI(X)−
i−1

∑
α=1

T (k−α+1,n− k− xα+α+1).

Algorithm 5 shows the pseudocode used to calculate RLI−1(r,n,k) for RLI r in linear time.

The search space of 15 is independent of k but dependent on n. This is because once xi is
identified, we need to search only x j for j > i such that x j > xi. Therefore, the inverse function
RLI−1(·) can generate the combination vector in linear time. By using the binary search, the search
of proper objects in a vector can be calculated in log time. See Tamada et al. (2011) for the binary
search version of this algorithm.

The advantage of using RLI is that once T is calculated for m, it can be used for calculating
RLI(X ,n) and RLI−1(r,n,k) for any n and k, where k ≤ n ≤ m. The normal lexicographical order
can also be calculated in a similar manner for fixed values of n and k. However, it is required for
constructing a different table for different values of n and k.
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Abstract

We develop the distance dependent Chinese restaurant process, a flexible class of distributions over
partitions that allows for dependencies between the elements. This class can be used to model many
kinds of dependencies between data in infinite clustering models, including dependencies arising
from time, space, and network connectivity. We examine the properties of the distance depen-
dent CRP, discuss its connections to Bayesian nonparametric mixture models, and derive a Gibbs
sampler for both fully observed and latent mixture settings. We study its empirical performance
with three text corpora. We show that relaxing the assumption of exchangeability with distance
dependent CRPs can provide a better fit to sequential data and network data. We also show that
the distance dependent CRP representation of the traditional CRP mixture leads to a faster-mixing
Gibbs sampling algorithm than the one based on the original formulation.

Keywords: Chinese restaurant processes, Bayesian nonparametrics

1. Introduction

Dirichlet process (DP) mixture models provide a valuable suite of flexible clustering algorithms for
high dimensional data analysis. Such models have been adapted to text modeling (Teh et al., 2006;
Goldwater et al., 2006), computer vision (Sudderth et al., 2005), sequential models (Dunson, 2006;
Fox et al., 2007), and computational biology (Xing et al., 2007). Moreover, recent years have seen
significant advances in scalable approximate posterior inference methods for this class of models
(Liang et al., 2007; Daume, 2007; Blei and Jordan, 2005). DP mixtures have become a valuable tool
in modern machine learning.

DP mixtures can be described via the Chinese restaurant process (CRP), a distribution over
partitions that embodies the assumed prior distribution over cluster structures (Pitman, 2002). The
CRP is fancifully described by a sequence of customers sitting down at the tables of a Chinese
restaurant. Each customer sits at a previously occupied table with probability proportional to the
number of customers already sitting there, and at a new table with probability proportional to a
concentration parameter. In a CRP mixture, customers are identified with data points, and data
sitting at the same table belong to the same cluster. Since the number of occupied tables is random,
this provides a flexible model in which the number of clusters is determined by the data.

c©2011 David M. Blei and Peter I. Frazier.
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The customers of a CRP are exchangeable—under any permutation of their ordering, the prob-
ability of a particular configuration is the same—and this property is essential to connect the CRP
mixture to the DP mixture. The reason is as follows. The Dirichlet process is a distribution over
distributions, and the DP mixture assumes that the random parameters governing the observations
are drawn from a distribution drawn from a Dirichlet process. The observations are conditionally
independent given the random distribution, and thus they must be marginally exchangeable.1 If the
CRP mixture did not yield an exchangeable distribution, it could not be equivalent to a DP mixture.

Exchangeability is a reasonable assumption in some clustering applications, but in many it is not.
Consider data ordered in time, such as a time-stamped collection of news articles. In this setting,
each article should tend to cluster with other articles that are nearby in time. Or, consider spatial data,
such as pixels in an image or measurements at geographic locations. Here again, each datum should
tend to cluster with other data that are nearby in space. While the traditional CRP mixture provides
a flexible prior over partitions of the data, it cannot accommodate such non-exchangeability.

In this paper, we develop the distance dependent Chinese restaurant process, a new CRP in
which the random seating assignment of the customers depends on the distances between them.2

These distances can be based on time, space, or other characteristics. Distance dependent CRPs
can recover a number of existing dependent distributions (Ahmed and Xing, 2008; Zhu et al., 2005).
They can also be arranged to recover the traditional CRP distribution. The distance dependent
CRP expands the palette of infinite clustering models, allowing for many useful non-exchangeable
distributions as priors on partitions.3

The key to the distance dependent CRP is that it represents the partition with customer assign-
ments, rather than table assignments. While the traditional CRP connects customers to tables, the
distance dependent CRP connects customers to other customers. The partition of the data, that
is, the table assignment representation, arises from these customer connections. When used in a
Bayesian model, the customer assignment representation allows for a straightforward Gibbs sam-
pling algorithm for approximate posterior inference (see Section 3). This provides a new tool for
flexible clustering of non-exchangeable data, such as time-series or spatial data, as well as a new
algorithm for inference with traditional CRP mixtures.

1.1 Related Work

Several other non-exchangeable priors on partitions have appeared in recent research literature.
Some can be formulated as distance dependent CRPs, while others represent a different class of
models. The most similar to the distance dependent CRP is the probability distribution on partitions
presented in Dahl (2008). Like the distance dependent CRP, this distribution may be constructed
through a collection of independent priors on customer assignments to other customers, which then
implies a prior on partitions. Unlike the distance dependent CRP, however, the distribution pre-

1. That these parameters will exhibit a clustering structure is due to the discreteness of distributions drawn from a
Dirichlet process (Ferguson, 1973; Antoniak, 1974; Blackwell, 1973).

2. This is an expanded version of our shorter conference paper on this subject (Blei and Frazier, 2010). This version
contains new perspectives on inference and new results.

3. We avoid calling these clustering models “Bayesian nonparametric” (BNP) because they cannot necessarily be cast as
a mixture model originating from a random measure, such as the DP mixture model. The DP mixture is BNP because
it includes a prior over the infinite space of probability densities, and the CRP mixture is only BNP in its connection
to the DP mixture. That said, most applications of this machinery are based around letting the data determine their
number of clusters. The fact that it actually places a distribution on the infinite-dimensional space of probability
measures is usually not exploited.
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sented in Dahl (2008) requires normalization of these customer assignment probabilities. The model
in Dahl (2008) may always be written as a distance dependent CRP, although the normalization re-
quirement prevents the reverse from being true (see Section 2). We note that Dahl (2008) does not
present an algorithm for sampling from the posterior, but the Gibbs sampler presented here for the
distance dependent CRP can also be employed for posterior inference in that model.

There are a number of Bayesian nonparametric models that allow for dependence between
(marginal) partition membership probabilities. These include the dependent Dirichlet process
(MacEachern, 1999) and other similar processes (Duan et al., 2007; Griffin and Steel, 2006; Xue
et al., 2007). Such models place a prior on collections of sampling distributions drawn from Dirich-
let processes, with one sampling distribution drawn per possible value of covariate and sampling
distributions from similar covariates more likely to be similar. Marginalizing out the sampling dis-
tributions, these models induce a prior on partitions by considering two customers to be clustered to-
gether if their sampled values are equal. (Recall, these sampled values are drawn from the sampling
distributions corresponding to their respective covariates.) This prior need not be exchangeable if
we do not condition on the covariate values.

Distance dependent CRPs represent an alternative strategy for modeling non-exchangeability.
The difference hinges on marginal invariance, the property that a missing observation does not af-
fect the joint distribution. In general, dependent DPs exhibit marginal invariance while distance
dependent CRPs do not. For the practitioner, this property is a modeling choice, which we discuss
in Section 2. Section 4 shows that distance dependent CRPs and dependent DPs represent nearly
distinct classes of models, intersecting only in the original DP or CRP.

Still other prior distributions on partitions include those presented in Ahmed and Xing (2008)
and Zhu et al. (2005), both of which are special cases of the distance dependent CRP. Rasmussen
and Ghahramani (2002) use a gating network similar to the distance dependent CRP to partition
datapoints among experts in way that is more likely to assign nearby points to the same cluster. Also
included are the product partition models of Hartigan (1990), their recent extension to dependence
on covariates (Muller et al., 2008), and the dependent Pitman-Yor process (Sudderth and Jordan,
2008). A review of prior probability distributions on partitions is presented in Mueller and Quintana
(2008). The Indian Buffet Process, a Bayesian non-parametric prior on sparse binary matrices, has
also been generalized to model non-exchangeable data by Miller et al. (2008). We further discuss
these priors in relation to the distance dependent CRP in Section 2.

The rest of this paper is organized as follows. In Section 2 we develop the distance dependent
CRP and discuss its properties. We show how the distance dependent CRP may be used to model
discrete data, both fully-observed and as part of a mixture model. In Section 3 we show how the
customer assignment representation allows for an efficient Gibbs sampling algorithm. In Section 4
we show that distance dependent CRPs and dependent DPs represent distinct classes of models. Fi-
nally, in Section 5 we describe an empirical study of three text corpora using the distance dependent
CRP. We show that relaxing the assumption of exchangeability with distance dependent CRPs can
provide a better fit to sequential data. We also show its alternative formulation of the traditional CRP
leads to a faster-mixing Gibbs sampling algorithm than the one based on the original formulation.
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Figure 1: An illustration of the distance dependent CRP. The process operates at the level of cus-
tomer assignments, where each customer chooses either another customer or no customer
according to Equation (2). Customers that chose not to connect to another are indicated
with a self link The table assignments, a representation of the partition that is familiar to
the CRP, are derived from the customer assignments.

2. Distance-dependent CRPs

The Chinese restaurant process (CRP) is a probability distribution over partitions (Pitman, 2002). It
is described by considering a Chinese restaurant with an infinite number of tables and a sequential
process by which customers enter the restaurant and each sit down at a randomly chosen table.
After N customers have sat down, their configuration at the tables represents a random partition.
Customers sitting at the same table are in the same cycle.

In the traditional CRP, the probability of a customer sitting at a table is computed from the
number of other customers already sitting at that table. Let zi denote the table assignment of the
ith customer, assume that the customers z1:(i−1) occupy K tables, and let nk denote the number of
customers sitting at table k. The traditional CRP draws each zi sequentially,

p(zi = k |z1:(i−1),α) ∝

{
nk for k ≤ K
α for k = K+1,

(1)

where α is a given scaling parameter. When all N customers have been seated, their table assign-
ments provide a random partition. Though the process is described sequentially, the CRP is ex-
changeable. The probability of a particular partition of N customers is invariant to the order in
which they sat down.

We now introduce the distance dependent CRP. In this distribution, the seating plan probability
is described in terms of the probability of a customer sitting with each of the other customers.
The allocation of customers to tables is a by-product of this representation. If two customers are
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Figure 2: Draws from sequential CRPs. Illustrated are draws for different decay functions, which
are inset: (1) The traditional CRP; (2) The window decay function; (3) The exponential
decay function; (4) The logistic decay function. The table assignments are illustrated,
which are derived from the customer assignments drawn from the distance dependent
CRP. The decay functions (inset) are functions of the distance between the current cus-
tomer and each previous customer.
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reachable by a sequence of interim customer assignments, then they at the same table. This is
illustrated in Figure 1.

Let ci denote the ith customer assignment, the index of the customer with whom the ith customer
is sitting. Let di j denote the distance measurement between customers i and j, let D denote the
set of all distance measurements between customers, and let f be a decay function (described in
more detail below). The distance dependent CRP independently draws the customer assignments
conditioned on the distance measurements,

p(ci = j |D,α) ∝

{
f (di j) if j �= i
α if i= j.

(2)

Notice the customer assignments do not depend on other customer assignments, only the distances
between customers. Also notice that j ranges over the entire set of customers, and so any customer
may sit with any other. (If desirable, restrictions are possible through the distances di j. See the
discussion below of sequential CRPs.)

As we mentioned above, customers are assigned to tables by considering sets of customers that
are reachable from each other through the customer assignments. (Again, see Figure 1.) We denote
the induced table assignments z(c), and notice that many configurations of customer assignments
c might lead to the same table assignment. Finally, customer assignments can produce a cycle,
for example, customer 1 sits with 2 and customer 2 sits with 1. This still determines a valid table
assignment: All customers sitting in a cycle are assigned to the same table.

By being defined over customer assignments, the distance dependent CRP provides a more
expressive distribution over partitions than models based on table assignments. This distribution
is determined by the nature of the distance measurements and the decay function. For example, if
each customer is time-stamped, then di j might be the time difference between customers i and j;
the decay function can encourage customers to sit with those that are contemporaneous. If each
customer is associated with a location in space, then di j might be the Euclidean distance between
them; the decay function can encourage customers to sit with those that are in proximity.4 For many
sets of distance measurements, the resulting distribution over partitions is no longer exchangeable;
this is an appropriate distribution to use when exchangeability is not a reasonable assumption.

2.1 Decay Functions

In general, the decay function mediates how distances between customers affect the resulting distri-
bution over partitions. We assume that the decay function f is non-increasing, takes non-negative
finite values, and satisfies f (∞) = 0. We consider several types of decay as examples, all of which
satisfy these nonrestrictive assumptions.

The window decay f (d) = 1[d < a] only considers customers that are at most distance a from
the current customer. The exponential decay f (d) = e−d/a decays the probability of linking to
an earlier customer exponentially with the distance to the current customer. The logistic decay
f (d) = exp(−d+a)/(1+ exp(−d+a)) is a smooth version of the window decay. Each of these
affects the distribution over partitions in a different way.

4. The probability distribution over partitions defined by Equation (2) is similar to the distribution over partitions pre-
sented in Dahl (2008). That probability distribution may be specified by Equation (2) if f (di j) is replaced by a
non-negative value hi j that satisfies a normalization requirement ∑i�= j hi j = N− 1 for each j. Thus, the model pre-
sented in Dahl (2008) may be understood as a normalized version of the distance dependent CRP. To write this model
as a distance dependent CRP, take di j = 1/hi j and f (d) = 1/d (with 1/0= ∞ and 1/∞= 0), so that f (di j) = hi j .

2466



DISTANCE DEPENDENT CHINESE RESTAURANT PROCESSES

2.2 Sequential CRPs and the Traditional CRP

With certain types of distance measurements and decay functions, we obtain the special case of
sequential CRPs.5 A sequential CRP is constructed by assuming that di j = ∞ for those j > i. With
our previous requirement that f (∞) = 0, this guarantees that no customer can be assigned to a later
customer, that is, p(ci ≤ i |D) = 1. The sequential CRP lets us define alternative formulations of
some previous time-series models. For example, with a window decay function and a = 1, we
recover the model studied in Ahmed and Xing (2008). With a logistic decay function, we recover
the model studied in Zhu et al. (2005). In our empirical study we will examine sequential models in
detail.

The sequential CRP can re-express the traditional CRP. Specifically, the traditional CRP is recov-
ered when f (d) = 1 for d �= ∞ and di j < ∞ for j < i. To see this, consider the marginal distribution
of a customer sitting at a particular table, given the previous customers’ assignments. The probabil-
ity of being assigned to each of the other customers at that table is proportional to one. Thus, the
probability of sitting at that table is proportional to the number of customers already sitting there.
Moreover, the probability of not being assigned to a previous customer is proportional to the scaling
parameter α. This is precisely the traditional CRP distribution of Equation (1). Although these
models are the same, the corresponding Gibbs samplers are different (see Section 5.4).

Figure 2 illustrates seating assignments (at the table level) derived from draws from sequential
CRPs with each of the decay functions described above, including the original CRP. (To adapt these
settings to the sequential case, the distances are di j = i− j for j < i and di j = ∞ for j > i.) Com-
pared to the traditional CRP, customers tend to sit at the same table with other nearby customers. We
emphasize that sequential CRPs are only one type of distance dependent CRP. Other distances, com-
bined with the formulation of Equation (2), lead to a variety of other non-exchangeable distributions
over partitions.

2.3 Marginal Invariance

The traditional CRP is marginally invariant: Marginalizing over a particular customer gives the
same probability distribution as if that customer were not included in the model at all. The distance
dependent CRP does not generally have this property, allowing it to capture the way in which influ-
ence might be transmitted from one point to another. See Section 4 for a precise characterization of
the class of distance dependent CRPs that are marginally invariant.

To see when this might be a relevant property, consider the goal of modeling preferences of
people within a social network. The model used should reflect the fact that persons A and B are
more likely to share preferences if they also share a common friend C. Any marginally invariant
model, however, would insist that the distribution of the preferences of A and B is the same whether
(1) they have no such common friend C, or (2) they do but his preferences are unobserved and
hence marginalized out. In this setting, we might prefer a model that is not marginally invariant.
Knowing that they have a common friend affects the probability that A and B share preferences,
regardless of whether the friend’s preferences are observed. A similar example is modeling the
spread of disease. Suddenly discovering a city between two others—even if the status of that city

5. Even though the traditional CRP is described as a sequential process, it gives an exchangeable distribution. Thus, se-
quential CRPs, which include both the traditional CRP as well as non-exchangeable distributions, are more expressive
than the traditional CRP.
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is unobserved—should change our assessment of the probability that the disease travels between
them.

We note, however, that if observations are missing then models that are not marginally invariant
require that relevant conditional distributions be computed as ratios of normalizing constants. In
contrast, marginally invariant models afford a more convenient factorization, and so allow easier
computation. Even when faced with data that clearly deviates frommarginal invariance, the modeler
may be tempted to use a marginally invariant model, choosing computational convenience over
fidelity to the data.

We have described a general formulation of the distance dependent CRP. We now describe two
applications to Bayesian modeling of discrete data, one in a fully observed model and the other
in a mixture model. These examples illustrate how one might use the posterior distribution of the
partitions, given data and an assumed generating process based on the distance dependent CRP. We
will focus on models of discrete data and we will use the terminology of document collections to
describe these models.6 Thus, our observations are assumed to be collections of words from a fixed
vocabulary, organized into documents.

2.4 Language Modeling

In the language modeling application, each document is associated with a distance dependent CRP,
and its tables are embellished with IID draws from a base distribution over terms or words. (The
documents share the same base distribution.) The generative process of words in a document is as
follows. The data are first placed at tables via customer assignments, and then assigned to the word
associated with their tables. Subsets of the data exhibit a partition structure by sharing the same
table.

When using a traditional CRP, this is a formulation of a simple Dirichlet-smoothed language
model. Alternatives to this model, such as those using the Pitman-Yor process, have also been
applied in this setting (Teh, 2006; Goldwater et al., 2006). We consider a sequential CRP, which
assumes that a word is more likely to occur near itself in a document. Words are still considered
contagious—seeing a word once means we’re likely to see it again—but the window of contagion
is mediated by the decay function.

More formally, given a decay function f , sequential distances D, scaling parameter α, and base
distribution G0 over discrete words, N words are drawn as follows,

1. For each word i ∈ {1, . . . ,N} draw assignment ci ∼ dist-CRP(α, f ,D).

2. For each table, k ∈ {1, . . .}, draw a word w∗ ∼ G0.

3. For each word i ∈ {1, . . . ,N}, assign the word wi = w∗
z(c)i
.

The notation z(c)i is the table assignment of the ith customer in the table assignments induced by
the complete collection of customer assignments.

For each document, we observe a sequence of words w1:N from which we can infer their seating
assignments in the distance dependent CRP. The partition structure of observations—that is, which
words are the same as other words—indicates either that they share the same table in the seating

6. While we focus on text, these models apply to any discrete data, such as genetic data, and, with modification, to
non-discrete data as well. That said, CRP-based methods have been extensively applied to text modeling and natural
language processing (Teh et al., 2006; Johnson et al., 2007; Li et al., 2007; Blei et al., 2010).
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arrangement, or that two tables share the same term drawn from G0. We have not described the
process sequentially, as one would with a traditional CRP, in order to emphasize the three stage
process of the distance dependent CRP—first the customer assignments and table parameters are
drawn, and then the observations are assigned to their corresponding parameter. However, the
sequential distances D guarantee that we can draw each word successively. This, in turn, means
that we can easily construct a predictive distribution of future words given previous words. (See
Section 3 below.)

2.5 Mixture Modeling

The second model we study is akin to the CRP mixture or (equivalently) the DP mixture, but differs
in that the mixture component for a data point depends on the mixture component for nearby data.
Again, each table is endowed with a draw from a base distribution G0, but here that draw is a dis-
tribution over mixture component parameters. In the document setting, observations are documents
(as opposed to individual words), and G0 is typically a Dirichlet distribution over distributions of
words (Teh et al., 2006). The data are drawn as follows:

1. For each document i ∈ [1,N] draw assignment ci ∼ dist-CRP(α, f ,D).

2. For each table, k ∈ {1, . . .}, draw a parameter θ∗k ∼ G0.

3. For each document i ∈ [1,N], draw wi ∼ F(θz(c)i).

In Section 5, we will study the sequential CRP in this setting, choosing its structure so that con-
temporaneous documents are more likely to be clustered together. The distances di j can be the
differences between indices in the ordering of the data, or lags between external measurements of
distance like date or time. (Spatial distances or distances based on other covariates can be used to
define more general mixtures, but we leave these settings for future work.) Again, we have not de-
fined the generative process sequentially but, as long as D respects the assumptions of a sequential
CRP, an equivalent sequential model is straightforward to define.

2.6 Relationship to Dependent Dirichlet Processes

More generally, the distance dependent CRPmixture provides an alternative to the dependent Dirich-
let process (DDP) mixture as an infinite clustering model that models dependencies between the
latent component assignments of the data (MacEachern, 1999). The DDP has been extended to
sequential, spatial, and other kinds of dependence (Griffin and Steel, 2006; Duan et al., 2007; Xue
et al., 2007). In all these settings, statisticians have appealed to truncations of the stick-breaking rep-
resentation for approximate posterior inference, citing the dependency between data as precluding
the more efficient techniques that integrate out the component parameters and proportions. In con-
trast, distance dependent CRP mixtures are amenable to Gibbs sampling algorithms that integrate
out these variables (see Section 3).

An alternative to the DDP formalism is the Bayesian density regression (BDR) model of Dun-
son et al. (2007). In BDR, each data point is associated with a random measure and is drawn from a
mixture of per-data random measures where the mixture proportions are related to the distance be-
tween data points. Unlike the DDP, this model affords a Gibbs sampler where the random measures
can be integrated out.
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However, it is still different in spirit from the distance dependent CRP. Data are drawn from
distributions that are similar to distributions of nearby data, and the particular values of nearby data
impose softer constraints than those in the distance dependent CRP. As an extreme case, consider
a random partition of the nodes of a network, where distances are defined in terms of the number
of hops between nodes. Further, suppose that there are several disconnected components in this
network, that is, pairs of nodes that are not reachable from each other. In the DDP model, these
nodes are very likely not to be partitioned in the same group. In the ddCRP model, however, it is
impossible for them to be grouped together.

We emphasize that DDPmixtures (and BDR) and distance dependent CRPmixtures are different
classes of models. DDP mixtures are Bayesian nonparametric models, interpretable as data drawn
from a random measure, while the distance dependent CRP mixtures generally are not. DDP mix-
tures exhibit marginal invariance, while distance dependent CRPs generally do not (see Section 4).
In their ability to capture dependence, these two classes of models capture similar assumptions, but
the appropriate choice of model depends on the modeling task at hand.

3. Posterior Inference and Prediction

The central computational problem for distance dependent CRP modeling is posterior inference,
determining the conditional distribution of the hidden variables given the observations. This poste-
rior is used for exploratory analysis of the data and how it clusters, and is needed to compute the
predictive distribution of a new data point given a set of observations.

Regardless of the likelihood model, the posterior will be intractable to compute because the
distance dependent CRP places a prior over a combinatorial number of possible customer configu-
rations. In this section we provide a general strategy for approximating the posterior using Monte
Carlo Markov chain (MCMC) sampling. This strategy can be used in either fully-observed or mix-
ture settings, and can be used with arbitrary distance functions. (For example, in Section 5 we
illustrate this algorithm with both sequential distance functions and graph-based distance functions
and in both fully-observed and mixture settings.)

In MCMC, we aim to construct a Markov chain whose stationary distribution is the posterior of
interest. For distance dependent CRP models, the state of the chain is defined by ci, the customer
assignments for each data point. We will also consider z(c), which are the table assignments that
follow from the customer assignments (see Figure 1). Let η= {D,α, f ,G0} denote the set of model
hyperparameters. It contains the distances D, the scaling factor α, the decay function f , and the
base measure G0. Let x denote the observations.

In Gibbs sampling, we iteratively draw from the conditional distribution of each latent variable
given the other latent variables and observations. (This defines an appropriate Markov chain, see
Neal 1993.) In distance dependent CRP models, the Gibbs sampler iteratively draws from

p(c(new)i |c−i,x,η) ∝ p(c(new)i |D,α)p(x |z(c−i∪ c
(new)
i ),G0).

The first term is the distance dependent CRP prior from Equation (2).
The second term is the likelihood of the observations under the partition given by z(c−i∪c

(new)
i ).

This can be thought of as removing the current link from the ith customer and then considering
how each alternative new link affects the likelihood of the observations. Before examining this
likelihood, we describe how removing and then replacing a customer link affects the underlying
partition (i.e., table assignments).
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Figure 3: An example of a single step of the Gibbs sampler. Here we illustrate a scenario that
highlights all the ways that the sampler can move: A table can be split when we remove
the customer link before conditioning; and two tables can join when we resample that
link.
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To begin, consider the effect of removing a customer link. What is the difference between the
partition z(c) and z(c−i)? There are two cases.

The first case is that a table splits. This happens when ci is the only connection between the
ith data point and a particular table. Upon removing ci, the customers at its table are split in two:
those customers pointing (directly or indirectly) to i are at one table; the other customers previously
seated with i are at a different table. (See the change from the first to second rows of Figure 3.)

The second case is that there is no change. If the ith link is not the only connection between
customer i and his table or if ci was a self-link (ci = i) then the tables remain the same. In this case,
z(c−i) = z(c).

Now consider the effect of replacing the customer link. What is the difference between the
partition z(c−i) and z(c−i ∪ c

(new)
i )? Again there are two cases. The first case is that c(new)i joins

two tables in z(c−i). Upon adding c
(new)
i , the customers at its table become linked to another set of

customers. (See the change from the second to third rows of Figure 3.)
The second case, as above, is that there is no change. This occurs if c(new)i points to a customer

that is already at its table under z(c−i) or if c
(new)
i is a self-link.

With the changed partition in hand, we now compute the likelihood term. We first compute the
likelihood term for partition z(c). The likelihood factors into a product of terms, each of which is
the probability of the set of observations at each table. Let |z(c)| be the number of tables and zk(c)
be the set of indices that are assigned to table k. The likelihood term is

p(x |z(c),G0) =
|z(c)|

∏
k=1

p(xzk(c) |G0). (3)

Because of this factorization, the Gibbs sampler need only compute terms that correspond to
changes in the partition. Consider the partition z(c−i), which may have split a table, and the new
partition z(c−i∪ c(new)). There are three cases to consider. First, ci might link to itself—there will
be no change to the likelihood function because a self-link cannot join two tables. Second, ci might
link to another table but cause no change in the partition. Finally, ci might link to another table and
join two tables k and �. The Gibbs sampler for the distance dependent CRP is thus

p(c(new)i |c−i,x,η) ∝

⎧⎪⎪⎨⎪⎪⎩
α if c(new)i is equal to i.
f (di j) if c(new)i = j does not join two tables.

f (di j)
p(xzk(c−i)∪z�(c−i)

|G0)

p(xzk(c−i)
|G0)p(xz�(c−i)

|G0)
if c(new)i = j joins tables k and �.

The specific form of the terms in Equation (3) depend on the model. We first consider the fully
observed case (i.e., “language modeling”). Recall that the partition corresponds to words of the
same type, but that more than one table can contain identical types. (For example, four tables could
contain observations of the word “peanut.” But, observations of the word “walnut” cannot sit at
any of the peanut tables.) Thus, the likelihood of the data is simply the probability under G0 of
a representative from each table, for example, the first customer, times a product of indicators to
ensure that all observations are equal,

p(xzk(c) |G0) = p(xzk(c)1 |G0)∏i∈zk(c) 1(xi = xzk(c)1),

where zk(c)1 is the index of the first customer assigned to table k.
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In the mixture model, we compute the marginal probability that the set of observations from
each table are drawn independently from the same parameter, which itself is drawn from G0. Each
term is

p(xzk(c) |G0) =
∫ (

∏i∈zk(c) p(xi |θ)
)
p(θ |G0)dθ.

Because this term marginalizes out the mixture component θ, the result is a collapsed sampler for
the mixture model. When G0 and p(x |θ) form a conjugate pair, the integral is straightforward to
compute. In nonconjugate settings, an additional layer of sampling is needed.

3.1 Prediction

In prediction, our goal is to compute the conditional probability distribution of a new data point xnew
given the data set x. This computation relies on the posterior. Recall that D is the set of distances
between all the data points. The predictive distribution is

p(xnew|x,D,G0,α) = ∑
cnew

p(cnew |D,α)∑c p(xnew|cnew,c,x,G0)p(c|x,D,α,G0).

The outer summation is over the customer assignment of the new data point; its prior proba-
bility only depends on the distance matrix D. The inner summation is over the posterior customer
assignments of the data set; it determines the probability of the new data point conditioned on the
previous data and its partition. In this calculation, the difference between sequential distances and
arbitrary distances is important.

Consider sequential distances and suppose that xnew is a future data point. In this case, the
distribution of the data set customer assignments c does not depend on the new data point’s location
in time. The reason is that data points can only connect to data points in the past. Thus, the posterior
p(c |x,D,α,G0) is unchanged by the addition of the new data, and we can use previously computed
Gibbs samples to approximate it.

In other situations—nonsequential distances or sequential distances where the new data occurs
somewhere in the middle of the sequence—the discovery of the new data point changes the posterior
p(c |x,D,α,G0). The reason is that the knowledge of where the new data is relative to the others (i.e.,
the information in D) changes the prior over customer assignments and thus changes the posterior
as well. This new information requires rerunning the Gibbs sampler to account for the new data
point. Finally, note that the special case where we know the new data’s location in advance (without
knowing its value) does not require rerunning the Gibbs sampler.

4. Marginal Invariance

In Section 2 we discussed the property of marginal invariance, where removing a customer leaves
the partition distribution over the remaining customers unchanged. When a model has this property,
unobserved data may simply be ignored. We mentioned that the traditional CRP is marginally
invariant, while the distance dependent CRP does not necessarily have this property.

In fact, the traditional CRP is the only distance dependent CRP that is marginally invariant.7

The details of this characterization are given in the appendix. This characterization of marginally

7. One can also create a marginally invariant distance dependent CRP by combining several independent copies of the
traditional CRP. Details are discussed in the appendix.
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invariant CRPs contrasts the distance dependent CRP with the alternative priors over partitions
induced by random measures, such as the Dirichlet process.

In addition to the Dirichlet process, random-measure models include the dependent Dirichlet
process (MacEachern, 1999) and the order-based dependent Dirichlet process (Griffin and Steel,
2006). These models suppose that data from a given covariate were drawn independently from a
fixed latent sampling probability measure. These models then suppose that these sampling mea-
sures were drawn from some parent probability measure. Dependence between the randomly drawn
sampling measures is achieved through this parent probability measure.

We formally define a random-measure model as follows. Let X and Y be the sets in which
covariates and observations take their values, let x1:N ⊂X, y1:N ⊂Y be the set of observed covariates
and their corresponding sampled values, and letM(Y) be the space of probability measures on Y. A
random-measure model is any probability distribution on the samples y1:N induced by a probability
measure G on the spaceM(Y)X. This random-measure model may be written

yn | xn ∼ Pxn , (Px)x∈X ∼ G,

where the yn are conditionally independent of each other given (Px)x∈X. Such models implicitly
induce a distribution on partitions of the data by taking all points n whose sampled values yn are
equal to be in the same cluster.

In such random-measure models, the (prior) distribution on y−n does not depend on xn, and
so such models are marginally invariant, regardless of the points x1:n and the distances between
them. From this observation, and the lack of marginal invariance of the distance dependent CRP, it
follows that the distributions on partitions induced by random-measure models are different from
the distance dependent CRP. The only distribution that is both a distance dependent CRP, and is also
induced by a random-measure model, is the traditional CRP.

Thus, distance dependent CRPs are generally not marginally invariant, and so are appropriate
for modeling situations that naturally depart from marginal invariance. This distinguishes priors
obtained with distance dependent CRPs from those obtained from random-measure models, which
are appropriate when marginal invariance is a reasonable assumption.

5. Empirical Study

We studied the distance dependent CRP in the language modeling and mixture settings on four text
data sets. We explored both time dependence, where the sequential ordering of the data is respected
via the decay function and distance measurements, and network dependence, where the data are
connected in a graph. We show below that the distance dependent CRP gives better fits to text data
in both the fully-observed and mixture modeling settings.8

Further, we compared the traditional Gibbs sampler for DPmixtures to the Gibbs sampler for the
distance dependent CRP formulation of DP mixtures. We found that the sampler based on customer
assignments mixes faster than the traditional sampler.

5.1 Language Modeling

We evaluated the fully-observed distance dependent CRP models on two data sets: a collection of
100 OCR’ed documents from the journal Science and a collection of 100 world news articles from

8. Our R implementation of Gibbs sampling for ddCRP models is available at http://www.cs.princeton.edu/

˜blei/downloads/ddcrp.tgz
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Figure 4: Bayes factors of the distance dependent CRP versus the traditional CRP on documents
from Science and the New York Times. The black line at 0 denotes an equal fit between
the traditional CRP and distance dependent CRP, while positive values denote a better fit
for the distance dependent CRP. Also illustrated are standard errors across documents.

the New York Times. We modeled each document independently. We assess sampler convergence
visually, examining the autocorrelation plots of the log likelihood of the state of the chain (Robert
and Casella, 2004).

We compare models by estimating the Bayes factor, the ratio of the probability under the dis-
tance dependent CRP to the probability under the traditional CRP (Kass and Raftery, 1995). For a
decay function f , this Bayes factor is

BFf ,α = p(w1:N |dist-CRP f ,α)/p(w1:N |CRPα).

A value greater than one indicates an improvement of the distance dependent CRP over the tra-
ditional CRP. Following Geyer and Thompson (1992), we estimate this ratio with a Monte Carlo
estimate from posterior samples.

Figure 4 illustrates the average log Bayes factors across documents for various settings of the
exponential and logistic decay functions. The logistic decay function always provides a better model
than the traditional CRP; the exponential decay function provides a better model at certain settings
of its parameter. (These curves are for the hierarchical setting with the base distribution over terms
G0 unobserved; the shapes of the curves are similar in the non-hierarchical settings.)

5.2 Mixture Modeling

We examined the distance dependent CRP mixture on two text corpora. We analyzed one month of
the New York Times (NYT) time-stamped by day, containing 2,777 articles, 3,842 unique terms and
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Figure 5: Predictive held-out log likelihood for the last year of NIPS and last three days of the New
York Times corpus. Error bars denote standard errors across MCMC samples. On the
NIPS data, the distance dependent CRP outperforms the traditional CRP for the logistic
decay with a decay parameter of 2 years. On the New York Times data, the distance
dependent CRP outperforms the traditional CRP in almost all settings tested.

530K observed words. We also analyzed 12 years of NIPS papers time-stamped by year, containing
1,740 papers, 5,146 unique terms, and 1.6M observed words. DistancesD were differences between
time-stamps.

In both corpora we removed the last 250 articles as held out data. In the NYT data, this amounts
to three days of news; in the NIPS data, this amounts to papers from the 11th and 12th year. (We re-
tain the time stamps of the held-out articles because the predictive likelihood of an article’s contents
depends on its time stamp, as well as the time stamps of earlier articles.) We evaluate the models by
estimating the predictive likelihood of the held out data. The results are in Figure 5. On the NYT
corpus, the distance dependent CRPs definitively outperform the traditional CRP. A logistic decay
with a window of 14 days performs best. On the NIPS corpus, the logistic decay function with
a decay parameter of 2 years outperforms the traditional CRP. In general, these results show that
non-exchangeable models given by the distance dependent CRP mixture provide a better fit than the
exchangeable CRP mixture.

5.3 Modeling Networked Data

The previous two examples have considered data analysis settings with a sequential distance func-
tion. However, the distance dependent CRP is a more general modeling tool. Here, we demonstrate
its flexibility by analyzing a set of networked documents with a distance dependent CRP mixture
model. Networked data induces an entirely different distance function, where any data point may
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link to an arbitrary set of other data. We emphasize that we can use the same Gibbs sampling
algorithms for both the sequential and networked settings.

Specifically, we analyzed the CORA data set, a collection of Computer Science abstracts that
are connected if one paper cites the other (McCallum et al., 2000). One natural distance function
is the number of connections between data (and ∞ if two data points are not reachable from each
other). We use the window decay function with parameter 1, enforcing that a customer can only
link to itself or to another customer that refers to an immediately connected document. We treat the
graph as undirected.

Figure 6 shows a subset of the MAP estimate of the clustering under these assumptions. Note
that the clusters form connected groups of documents, though several clusters are possible within a
large connected group. Traditional CRP clustering does not lean towards such solutions. Overall,
the distance dependent CRP provides a better model. The log Bayes factor is 13,062, strongly in
favor of the distance dependent CRP, although we emphasize that much of this improvement may
occur simply because the distance dependent CRP avoids clustering abstracts from unconnected
components of the network. Further analysis is needed to understand the abilities of the distance
dependent CRP beyond those of simpler network-aware clustering schemes.

We emphasize that this analysis is meant to be a proof of concept to demonstrate the flexibility
of distance dependent CRP mixtures. Many modeling choices can be explored, including longer
windows in the decay function and treating the graph as a directed graph. A similar modeling set-up
could be used to analyze spatial data, where distances are natural to compute, or images (e.g., for
image segmentation), where distances might be the Manhattan distance between pixels.

5.4 Comparison to the Traditional Gibbs Sampler

The distance dependent CRP can express a number of flexible models. However, as we describe
in Section 2, it can also re-express the traditional CRP. In the mixture model setting, the Gibbs
sampler of Section 3 thus provides an alternative algorithm for approximate posterior inference in
DP mixtures. We compare this Gibbs sampler to the widely used collapsed Gibbs sampler for DP
mixtures, that is, Algorithm 3 from Neal (2000), which is applicable when the base measure G0 is
conjugate to the data generating distribution.

The Gibbs sampler for the distance dependent CRP iteratively samples the customer assignment
of each data point, while the collapsed Gibbs sampler iteratively samples the cluster assignment of
each data point. The practical difference between the two algorithms is that the distance dependent
CRP based sampler can change several customers’ cluster assignments via a single customer assign-
ment. This allows for larger moves in the state space of the posterior and, we will see below, faster
mixing of the sampler.

Moreover, the computational complexity of the two samplers is the same. Both require comput-
ing the change in likelihood of adding or removing either a set of points (in the distance dependent
CRP case) or a single point (in the traditional CRP case) to each cluster. Whether adding or re-
moving one or a set of points, this amounts to computing a ratio of normalizing constants for each
cluster, and this is where the bulk of the computation of each sampler lies.9

9. In some settings, removing a single point—as is done in Neal (2000)—allows faster computation of each sampler
iteration. This is true, for example, if the observations are single words (as opposed to a document of words) or single
draws from a Gaussian. Although each iteration may be faster with the traditional sampler, that sampler may spend
many more iterations stuck in local optima.
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Figure 6: The MAP clustering of a subset of CORA. Each node is an abstract in the collection and
each link represents a citation. Colors are repeated across connected components—no
two data points from disconnected components in the graph can be assigned to the same
cluster. Within each connected component, colors are not repeated, and nodes with the
same color are assigned to the same cluster.
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Figure 7: Each panel illustrates 100 Gibbs runs using Algorithm 3 of Neal (2000) (CRP, in blue)
and the sampler from Section 3 with the identity decay function (distance dependent CRP,
in red). Both samplers have the same limiting distribution because the distance dependent
CRP with identity decay is the traditional CRP. We plot the log probability of the CRP
representation (i.e., the divergence) as a function of its iteration. The left panel shows
the Science corpus, and the right panel shows the New York Times corpus. Higher values
indicate that the chain has found a better local mode of the posterior. In these examples,
the distance dependent CRP Gibbs sampler mixes faster.

To compare the samplers, we analyzed documents from the Science and New York Times collec-
tions under a CRP mixture with scaling parameter equal to one and uniform Dirichlet base measure.
Figure 7 illustrates the log probability of the state of the traditional CRP Gibbs sampler as a function
of Gibbs sampler iteration. The log probability of the state is proportional to the posterior; a higher
value indicates a state with higher posterior likelihood. These numbers are comparable because
the models, and thus the normalizing constant, are the same for both the traditional representation
and customer based CRP. Iterations 3–1000 are plotted, where each sampler is started at the same
(random) state. The traditional Gibbs sampler is much more prone to stagnation at local optima,
particularly for the Science corpus.

6. Discussion

We have developed the distance dependent Chinese restaurant process, a distribution over partitions
that accommodates a flexible and non-exchangeable seating assignment distribution. The distance
dependent CRP hinges on the customer assignment representation. We derived a general-purpose
Gibbs sampler based on this representation, and examined sequential models of text.

The distance dependent CRP opens the door to a number of further developments in infinite
clustering models. We plan to explore spatial dependence in models of natural images, and multi-
level models akin to the hierarchical Dirichlet process (Teh et al., 2006). Moreover, the simplicity
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and fixed dimensionality of the corresponding Gibbs sampler suggests that a variational method is
worth exploring as an alternative deterministic form of approximate inference.
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Appendix A. A Formal Characterization of Marginal Invariance

In this section, we formally characterize the class of distance dependent CRPs that are marginally
invariant. This family is a very small subset of the entire set of distance dependent CRPs, containing
only the traditional CRP and variants constructed from independent copies of it. This characteriza-
tion is used in Section 4 to contrast the distance dependent CRP with random-measure models.

Throughout this section, we assume that the decay function satisfies a relaxed version of the
triangle inequality, which uses the notation  di j = min(di j,d ji). We assume: if  di j = 0 and  d jk = 0
then  dik = 0; and if  di j < ∞ and  d jk < ∞ then  dik < ∞.

A.1 Sequential Distances

We first consider sequential distances. We begin with the following proposition, which shows that a
very restricted class of distance dependent CRPs may also be constructed by collections of indepen-
dent CRPs.

Proposition 1 Fix a set of sequential distances between each of n customers, a real number a> 0,
and a set A ∈ { /0,{0},R}. Then there is a (non-random) partition B1, . . . ,BK of {1, . . . ,n} for which
two distinct customers i and j are in the same set Bk iff  di j ∈ A. For each k = 1, . . . ,K, let there be
an independent CRP with concentration parameter α/a, and let customers within Bk be clustered
among themselves according to this CRP.

Then, the probability distribution on clusters induced by this construction is identical to the
distance dependent CRP with decay function f (d) = a1[d ∈ A]. Furthermore, this probability dis-
tribution is marginally invariant.

Proof We begin by constructing a partition B1, . . . ,BK with the stated property. Let J(i) = min{ j :
j = i or  di j ∈ A}, and let J = {J(i) : i = 1, . . . ,n} be the set of unique values taken by J. Each
customer i will be placed in the set containing customer J(i). Assign to each value j ∈ J a unique
integer k( j) between 1 and |J |. For each j ∈ J , let Bk( j) = {i : J(i) = j} = {i : i= j or  di j ∈ A}.
Each customer i is in exactly one set, Bk(J(i)), and so B1, . . . ,B|J | is a partition of {1, . . . ,n}.

To show that i �= i′ are both in Bk iff  dii′ ∈ A, we consider two possibilities. If A = /0, then
J(i) = i and each Bk contains only a single point. If A = {0} or A = R, then it follows from the
relaxed triangle inequality assumed at the beginning of Appendix A.
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With this partition B1, . . . ,BK , the probability of linkage under the distance dependent CRP with
decay function f (d) = a1[d ∈ A] may be written

p(ci = j) ∝

⎧⎪⎨⎪⎩
α if i= j,

a if j < i and j ∈ Bk(i),

0 if j > i or j /∈ Bk(i).

By noting that linkages between customers from different sets Bk occur with probability 0, we
see that this is the same probability distribution produced by taking K independent distance de-
pendent CRPs, where the kth distance dependent CRP governs linkages between customers in Bk
using

p(ci = j) ∝

⎧⎪⎨⎪⎩
α if i= j,

a if j < i,

0 if j > i,

for i, j ∈ Bk.
Finally, dividing the unnormalized probabilities by a, we rewrite the linkage probabilities for

the kth distance dependent CRP as

p(ci = j) ∝

⎧⎪⎨⎪⎩
α/a if i= j,

1 if j < i,

0 if j > i,

for i, j ∈ Bk. This is identical to the distribution of the traditional CRP with concentration parameter
α/a.

This shows that the distance dependent CRP with decay function f (d) = a1[d ∈ A] induces
the same probability distribution on clusters as the one produced by a collection of K independent
traditional CRPs, each with concentration parameter α/a, where the kth traditional CRP governs
the clusters of customers within Bk.

The marginal invariance of this distribution follows from the marginal invariance of each tradi-
tional CRP, and their independence from one another.

The probability distribution described in this proposition separates customers into groups
B1, . . . ,BK based on whether inter-customer distances fall within the set A, and then governs clus-
tering within each group independently using a traditional CRP. Clustering across groups does not
occur.

We consider what this means for specific choices of A. If A = {0}, then each group contains
those customers whose distance from one another is 0. This group is well-defined because of the
assumption that di j = 0 and d jk = 0 implies dik = 0. If A = R, then each group contains those
customers whose distance from one another is finite. Similarly to the A = {0} case, this group is
well-defined because of the assumption that di j < ∞ and d jk < ∞ implies dik < ∞. If A = /0, then
each group contains only a single customer. In this case, each customer will be in his own cluster.

Since the resulting construction is marginally invariant, Proposition 1 provides a sufficient con-
dition for marginal invariance. The following proposition shows that this condition is necessary as
well.
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Proposition 2 If the distance dependent CRP for a given decay function f is marginally invariant
over all sets of sequential distances then f is of the form f (d) = a1[d ∈ A] for some a > 0 and A
equal to either /0, {0}, or R.

Proof Consider a setting with 3 customers, in which customer 2 may either be absent, or present
with his seating assignment marginalized out. Fix a non-increasing decay function f with f (∞) = 0
and suppose that the distances are sequential, so d13 = d23 = d12 = ∞. Suppose that the distance de-
pendent CRP resulting from this f and any collection of sequential distances is marginally invariant.
Then the probability that customers 1 and 3 share a table must be the same whether customer 2 is
absent or present.

If customer 2 is absent,

P{1 and 3 sit at same table | 2 absent}=
f (d31)

f (d31)+α
. (4)

If customer 2 is present, customers 1 and 3 may sit at the same table in two different ways: 3
sits with 1 directly (c3 = 1); or 3 sits with 2, and 2 sits with 1 (c3 = 2 and c2 = 1). Thus,

P{1 and 3 sit at same table | 2 present}

=
f (d31)

f (d31)+ f (d32)+α
+

(
f (d32)

f (d31)+ f (d32)+α

)(
f (d21)

f (d21)+α

)
. (5)

For the distance dependent CRP to be marginally invariant, Equation (4) and Equation (5) must
be identical. Writing Equation (4) on the left side and Equation (5) on the right, we have

f (d31)
f (d31)+α

=
f (d31)

f (d31)+ f (d32)+α
+

(
f (d32)

f (d31)+ f (d32)+α

)(
f (d21)

f (d21)+α

)
. (6)

We now consider two different possibilities for the distances d32 and d21, always keeping d31 =
d21+d32.

First, suppose d21 = 0 and d32 = d31 = d for some d ≥ 0. By multiplying Equation (6) through
by (2 f (d)+α)( f (0)+α)( f (d)+α) and rearranging terms, we obtain

0= α f (d)( f (0)− f (d)) .

Thus, either f (d) = 0 or f (d) = f (0). Since this is true for each d ≥ 0 and f is nonincreasing,
f = a1[d ∈ A] with a≥ 0 and either A= /0, A=R, A= [0,b], or A= [0,b) with b ∈ [0,∞). Because
A= /0 is among the choices, we may assume a> 0 without loss of generality. We now show that if
A= [0,b] or A= [0,b), then we must have b= 0 and A is of the form claimed by the proposition.

Suppose for contradiction that A = [0,b] or A = [0,b) with b > 0. Consider distances given by
d32 = d21 = d = b− ε with ε ∈ (0,b/2). By multiplying Equation (5) through by

( f (2d)+ f (d)+α)( f (d)+α)( f (2d)+α)

and rearranging terms, we obtain

0= α f (d)( f (d)− f (2d)) .
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Since f (d) = a> 0, we must have f (2d) = f (d)> 0. But, 2d = 2(b−ε)> b implies together with
f (2d) = a1[2d ∈ A] that f (2d) = 0, which is a contradiction.

These two propositions are combined in the following corollary, which states that the class of
decay functions considered in Propositions 1 and 2 is both necessary and sufficient for marginal
invariance.

Corollary 3 Fix a particular decay function f . The distance dependent CRP resulting from this
decay function is marginally invariant over all sequential distances if and only if f is of the form
f (d) = a1[d ∈ A] for some a> 0 and some A ∈ { /0,{0},R}.

Proof Sufficiency for marginal invariance is shown by Proposition 1. Necessity is shown by Propo-
sition 2.

Although Corollary 3 allows any choice of a > 0 in the decay function f (d) = a1[d ∈ A], the
distribution of the distance dependent CRP with a particular f and α remains unchanged if both
f and α are multiplied by a constant factor (see Equation (2)). Thus, the distance dependent CRP
defined by f (d) = a1[d ∈ A] and concentration parameter α is identical to the one defined by f (d) =
1[d ∈A] and concentration parameterα/a. In this sense, we can restrict the choice of a in Corollary 3
(and also Propositions 1 and 2) to a= 1 without loss of generality.

A.2 General Distances

We now consider all sets of distances, including non-sequential distances. The class of distance de-
pendent CRPs that are marginally invariant over this larger class of distances is even more restricted
than in the sequential case. We have the following proposition providing a necessary condition for
marginal invariance.

Proposition 4 If the distance dependent CRP for a given decay function f is marginally invariant
over all sets of distances, both sequential and non-sequential, then f is identically 0.

Proof From Proposition 2, we have that any decay function that is marginally invariant under all
sequential distances must be of the form f (d) = a1[d ∈ A], where a > 0 and A ∈ { /0,{0},R}. We
now show that if the decay function is marginally invariant under all sets of distances (not just those
that are sequential), then f (0) = 0. The only decay function of the form f (d) = a1[d ∈ A] that
satisfies f (0) = 0 is the one that is identically 0, and so this will show our result.

To show f (0) = 0, suppose that we have n+ 1 customers, all of whom are a distance 0 away
from one another, so di j = 0 for i, j = 1, . . . ,n+ 1. Under our assumption of marginal invariance,
the probability that the first n customers sit at separate tables should be invariant to the absence or
presence of customer n+1.

When customer n+1 is absent, the only way in which the first n customers may sit at separate
tables is for each to link to himself. Let pn = α/(α+(n−1) f (0)) denote the probability of a given
customer linking to himself when customer n+1 is absent. Then

P{1, . . . ,n sit separately | n+1 absent}= (pn)
n. (7)
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We now consider the case when customer n+ 1 is present. Let pn+1 = α/(α+ n f (0)) be the
probability of a given customer linking to himself, and let qn+1 = f (0)/(α+ n f (0)) be the proba-
bility of a given customer linking to some other given customer. The first n customers may each
sit at separate tables in two different ways. First, each may link to himself, which occurs with
probability (pn+1)n. Second, all but one of these first n customers may link to himself, with the
remaining customer linking to customer n+1, and customer n+1 linking either to himself or to the
customer that linked to him. This occurs with probability n(pn+1)n−1qn+1(pn+1+qn+1). Thus, the
total probability that the first n customers sit at separate tables is

P{1, . . . ,n sit separately | n+1 present}= (pn+1)
n+n(pn+1)

n−1qn+1(pn+1+qn+1). (8)

Under our assumption of marginal invariance, Equation (7) must be equal to Equation (8), and
so

0= (pn+1)
n+n(pn+1)

n−1qn+1(pn+1+qn+1)− (pn)
n. (9)

Consider n = 2. By substituting the definitions of p2, p3, and q3, and then rearranging terms,
we may rewrite Equation (9) as

0=
α f (0)2(2 f (0)2−α2)

(α+ f (0))2(α+2 f (0))3
,

which is satisfied only when f (0) ∈ {0,α/
√
2}. Consider the second of these roots, α/

√
2. When

n = 3, this value of f (0) violates Equation (9). Thus, the first root is the only possibility and we
must have f (0) = 0.

The decay function f = 0 described in Proposition 4 is a special case of the decay function from
Proposition 2, obtained by taking A = /0. As described above, the resulting probability distribution
is one in which each customer links to himself, and is thus clustered by himself. This distribution is
marginally invariant. From this observation quickly follows the following corollary.

Corollary 5 The decay function f = 0 is the only one for which the resulting distance dependent
CRP is marginally invariant over all distances, both sequential and non-sequential.

Proof Necessity of f = 0 for marginal invariance follows from Proposition 4. Sufficiency follows
from the fact that the probability distribution on partitions induced by f = 0 is the one under which
each customer is clustered alone almost surely, which is marginally invariant.

Appendix B. Gibbs Sampling for the Hyperparameters

To enhance our models, we place a prior on the concentration parameter α and augment our Gibbs
sampler accordingly, just as is done in the traditional CRP mixture (Escobar and West, 1995). To
sample from the posterior of α given the customer assignments c and data, we begin by noting
that α is conditionally independent of the observed data given the customer assignments. Thus, the
quantity needed for sampling is

p(α |c) ∝ p(c |α)p(α),
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where p(α) is a prior on the concentration parameter.
From the independence of the ci under the generative process, p(c |α) =∏N

i=1 p(ci |D,α). Nor-
malizing provides

p(c |α) =
N

∏
i=1

1[ci = i]α+1[ci �= i] f (dici)
α+∑ j �=i f (di j)

∝ αK
[

N

∏
i=1

(
α+∑

j �=i

f (di j)

)]−1

,

where K is the number of self-links ci = i in the customer assignments c. Although K is equal to the
number of tables |z(c)| when distances are sequential, K and |z(c)| generally differ when distances
are non-sequential. Then,

p(α |c) ∝ αK
[

N

∏
i=1

(
α+∑

j �=i

f (di j)

)]−1

p(α). (10)

Equation (10) reduces further in the following special case: f is the window decay function,
f (d) = 1[d < a]; di j = i− j for i> j; and distances are sequential so di j = ∞ for i< j. In this case,
∑i−1
j=1 f (di j) = (i−1)∧ (a−1), where ∧ is the minimum operator, and

N

∏
i=1

(
α+

i−1

∑
j=1

f (di j)

)
= (α+a−1)[N−a]+Γ(α+a∧N)/Γ(α), (11)

where [N−a]+ =max(0,N−a) is the positive part of N−a. Then,

p(α |c) ∝
Γ(α)

Γ(α+a∧N)
αK

(α+a−1)[N−a]+
p(α).

If we use the identity decay function, which results in the traditional CRP, then we recover an
expression from Antoniak (1974): p(α |c) ∝ Γ(α)

Γ(α+N)α
K p(α). This expression is used in Escobar

and West (1995) to sample exactly from the posterior of α when the prior is gamma distributed.
In general, if the prior on α is continuous then it is difficult to sample exactly from the posterior

of Equation (10). There are a number of ways to address this. We may, for example, use the Griddy-
Gibbs method (Ritter and Tanner, 1992). This method entails evaluating Equation (10) on a finite set
of points, approximating the inverse cdf of p(α |c) using these points, and transforming a uniform
random variable with this approximation to the inverse cdf.

We may also sample over any hyperparameters in the decay function used (e.g., the window size
in the window decay function, or the rate parameter in the exponential decay function) within our
Gibbs sampler. For the rest of this section, we use a to generically denote a hyperparameter in the
decay function, and we make this dependence explicit by writing f (d,a).

To describe Gibbs sampling over these hyperparameters in the decay function, we first write

p(c | α,a) =
N

∏
i=1

1[ci = i]α+1[ci �= i] f (dici ,a)

α+∑i−1
j=1 f (di j,a)

= αK
[
∏
i:ci �=i

f (di j,a)

][
N

∏
i=1

(
α+

i−1

∑
j=1

f (di j,a)

)]−1

.
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Since a is conditionally independent of the observed data given c and α, to sample over a in our
Gibbs sampler it is enough to know the density

p(a | c,α) ∝

[
∏
i:ci �=i

f (di j,a)

][
N

∏
i=1

(
α+

i−1

∑
j=1

f (di j,a)

)]−1

p(a | α). (12)

In many cases our prior p(a | α) on a will not depend on α.
In the case of the window decay function with sequential distances and di j = i− j for i> j, we

can simplify this further as we did above with Equation (11). Noting that ∏i:ci �=i f (di j,a) will be 1
for those a>maxi i− ci, and 0 for other a, we have

p(a | c,α) ∝
Γ(α)

Γ(α+a∧N)
p(a | α)1[a>maxi i− ci]

(α+a−1)[N−a]+
.

If the prior distribution on a is discrete and concentrated on a finite set, as it might be with the
window decay function, one can simply evaluate and normalize Equation (12) on this set. If the
prior is continuous, as it might be with the exponential decay function, then it is difficult to sample
exactly from Equation (12), but one can again use the Griddy-Gibbs approach of Ritter and Tanner
(1992) to sample approximately.
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Abstract
LPmade is a complete cross-platform software solution for multi-core link prediction and related
tasks and analysis. Its first principal contribution is a scalable network library supporting high-
performance implementations of the most commonly employed unsupervised link prediction meth-
ods. Link prediction in longitudinal data requires a sophisticated and disciplined procedure for
correct results and fair evaluation, so the second principle contribution of LPmade is a sophisti-
cated GNU make architecture that completely automates link prediction, prediction evaluation, and
network analysis. Finally, LPmade streamlines and automates the procedure for creating multivari-
ate supervised link prediction models with a version of WEKA modified to operate effectively on
extremely large data sets. With mere minutes of manual work, one may start with a raw stream of
records representing a network and progress through hundreds of steps to generate plots, gigabytes
or terabytes of output, and actionable or publishable results.
Keywords: link prediction, network analysis, multicore, GNU make, PropFlow, HPLP

1. Introduction

Link prediction is succinctly stated as the problem of identifying yet-unobserved links in a network.
This task is of increasing interest in both research and corporate contexts. Virtually every major
conference and journal in data mining or machine learning now has a significant network science
component, and these often include treatments of link prediction. Link prediction is of great use in
domains ranging from biology to corporate recruiting, but it is a difficult problem for which to de-
velop models because of extreme class imbalance, the longitudinal nature of the data, the difficulties
inherent in effective evaluation, and other issues raised by Lichtenwalter et al. (2010). Further, even
for standard prediction algorithms, researchers must often write new code or cobble together exist-
ing code fragments. The work flow to achieve predictions and fair evaluation is time-consuming,
challenging, and error-prone. LPmade is the first library to focus on link prediction specifically,
incorporating general and extensible forms of the predictors introduced by Liben-Nowell and Klein-
berg (2007). It also streamlines and parameterizes the complex link prediction work flow so that
researchers can start with source data and achieve predictions in minimal time.

There is no shortage of graph libraries: the Boost Graph Library, SNAP, igraph, JGraphT,
GraphCrunch, GOBLIN, and many others. Some offer extreme generality, some offer extreme
efficiency, some offer modeling utilities, and some have a dizzying array of algorithms. LPmade
is not just yet another graph library. Its software components are, by necessity, designed for high
performance, and it offers a wide array of graph analysis algorithms, but it is first and foremost
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an extensive toolkit for performing link prediction to achieve both research and application goals.
Unlike other options, LPmade provides an organized collection of link prediction algorithms in a
build framework that is accessible to researchers across many disciplines. The software is available
at http://mloss.org/software/view/307/.

2. The Software Package

The purpose of LPmade is to provide a workbench on which others may conduct link prediction
research and applications. For link prediction tasks in many large networks even a restricted set of
predictions may involve millions, billions, or even trillions of lines of output. Each unsupervised
link prediction method, the supervised classification framework from Lichtenwalter et al. (2010),
and all the evaluation tools are optimized for just such quantities of data. Nonetheless, the entire
process of starting from raw source data and ending with predictions, evaluations, and plots involves
an extensive series of steps that may each take a long time. The software includes a carefully con-
structed dependency tracking system that minimizes overhead and simplifies the management of
correct procedures. Both the build system and the link prediction library are modular and extensi-
ble. Researchers can incorporate their own prediction methods into the library and the automation
framework just by writing a C++ class and changing a make variable.

2.1 Network Library

The LPmade network library is written entirely in scalable, high-performance C/C++ that minimizes
memory consumption with a compact adjacency list format based on a vector-of-vectors to represent
edges and a translation vector to associate external vertex names to internal identifiers. The library
includes clearly written yet optimized versions of the most common asymptotically optimal network
analysis algorithms for sampling, finding connected components, computing centrality measures,
and calculating useful statistics.

LPmade specializes in link prediction by including commonly used unsupervised link predic-
tion methods: Adamic/Adar, common neighbors, Jaccard’s coefficient, Katz, preferential attach-
ment, PropFlow, rooted PageRank, SimRank, and weighted rooted PageRank. The library also has
some simpler methods useful in producing feature vectors for supervised learners: clustering coef-
ficient, geodesic distance, degree, PageRank, volume or gregariousness, mutuality, path count, and
shortest path count. These methods may be selectively incorporated as features into the supervised
framework by Lichtenwalter et al. (2010).

Several graph libraries such as the Boost Graph Library are brilliantly designed for maximum
generality and flexibility with template parameters and complex inheritance models. One minor
drawback to such libraries is that the code is complex to read and modify. The code base for this
library takes a narrower approach by offering fewer mechanisms for generality, but as a result it has
a much shallower learning curve.

2.2 GNU make Script and Supporting Tools

Although it can be used and extended as such, LPmade is not just a library of C++ code for network
analysis and link prediction. It is additionally an extensive set of scripts designed for sophisti-
cated automation and dependency resolution. These scripts are all incorporated into a set of 2
co-dependent Makefiles: task-specific and common. Each new raw data set requires its own task-
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Figure 1: A simplified depiction of some of the build paths in the automation script. Only the first
transition is user-defined. Each step involves multiple invocations of many programs to
properly assemble data and perform fair evaluation.

specific Makefile, which generally requires less than 20 lines of user code. This Makefile is where
users specify the manner in which raw source data is converted to the initial data stream required by
subsequent steps in the pipeline. It is also where rules from the common Makefile can be overridden
for task-specific reasons. The common Makefile, Makefile.common, includes all the general rules
that apply to any network analysis or link prediction task once the task-specific Makefile is written
to enable proper handling of raw input. The common Makefile script is designed with advanced
template features that allow make to modify original Makefile rules in accordance with user require-
ments. Logical tasks are aggressively provided with their own rules so that the multi-core features
of GNU make are of optimal benefit. In general, users need not be familiar with writing Makefiles.
The important options for the behavior of the automatic build system are presented at the top of the
common Makefile along with documentation. For instance, to predict within the 2nd and 3rd degree
neighborhoods, set NEIGHBORHOOD := 2 3.

Figure 1 illustrates some simplified build paths, and the sample calls below demonstrate several
targets with their corresponding actions:

make -j 28 sm # using 28 cores, build a data stream from source, generate required networks, run predictors, and perform evaluations
make -j 8 stats # using 8 cores, compute several network statistics on the complete network represented by the entire data set
make classify # construct data sets then use parameters specified in Makefile to train, test, and evaluate
make -j 6 growth # using 6 cores, generate growth information and plots to describe network saturation

Parallelism in these cases is all coarse-grained. Each rule in the Makefile script with no out-
standing prerequisites is handled by a separate process to make use of additional cores.

For many large networks, link prediction and supporting analysis yields very large output files.
When this prolific output is further combined into data sets, both the I/O capacity and bandwidth
requirements may be problematic. To combat this, most steps in the work flow create, accept, and
output gzip-compressed results. Especially on multi-core systems, this results in a hefty decrease in
I/O capacity and bandwidth requirements with a minimal impact on performance. In most cases, the
output from gunzip is produced faster than the consuming process can accept it. Where necessary,
named pipes are used to ameliorate potentially large temporary storage requirements.

2.3 WEKAModifications

LPmade includes a modified version of WEKA 3.5.8 (Witten and Frank, 2005). It is not meant for
direct user invocation. Instead the build system uses WEKA classifier implementations to construct
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supervised models for link prediction. Unmodified, WEKA has several limitations that make even
its command-line mode problematic for operation on enormous link prediction testing sets. These
include processing overhead for unwanted computations, Java string overflow and potential thrash-
ing from in-memory result concatenation, and inability to handle compressed C4.5 format input.
Alternatives such as MOA solve some but not all of these problems, and WEKA internal classes
such as AbstractOutput are unavailable at the command line. We have chosen to modify the WEKA
command-line evaluation path to compute only the necessary information and to output directly to
standard output for LPmade scripted downstream processing. We have integrated support for pro-
cessing gzip-compressed C4.5 input and use this support in the build system to take advantage of
significant space savings on disk.

3. Documentation and Requirements

LPmade comes with man pages and a PDF user manual that describes all aspects of the software,
most notably describing the setup process, how to use or extend the raw network library, and how to
leverage the existing build system to complete many complex steps with short commands. The net-
work library includes an easily extended testing architecture for testing and verification of individual
binaries.

The C++ library is written in platform-independent C++ code using only STL extensions. The
library may thus be built on any architecture and any operating system that provides a C++ compiler.
An included set of high-speed evaluation tools is written in C99 and builds on any system with
such a compiler. The bundled distribution of WEKA is cross-platform but requires version 1.5
or higher of the JRE. The automated build system requires GNU make. The common Makefile
additionally employs many standard tools such as cut, paste, sed, awk, perl, sort, gzip, and
bundled gnuplot 4.4.3.
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Abstract
We propose a unified neural network architecture and learning algorithm that can be applied to var-
ious natural language processing tasks including part-of-speech tagging, chunking, named entity
recognition, and semantic role labeling. This versatility is achieved by trying to avoid task-specific
engineering and therefore disregarding a lot of prior knowledge. Instead of exploiting man-made
input features carefully optimized for each task, our system learns internal representations on the
basis of vast amounts of mostly unlabeled training data. This work is then used as a basis for
building a freely available tagging system with good performance and minimal computational re-
quirements.
Keywords: natural language processing, neural networks

1. Introduction

Will a computer program ever be able to convert a piece of English text into a programmer friendly
data structure that describes the meaning of the natural language text? Unfortunately, no consensus
has emerged about the form or the existence of such a data structure. Until such fundamental
Articial Intelligence problems are resolved, computer scientists must settle for the reduced objective
of extracting simpler representations that describe limited aspects of the textual information.

These simpler representations are often motivated by specific applications (for instance, bag-
of-words variants for information retrieval), or by our belief that they capture something more gen-
eral about natural language. They can describe syntactic information (e.g., part-of-speech tagging,
chunking, and parsing) or semantic information (e.g., word-sense disambiguation, semantic role
labeling, named entity extraction, and anaphora resolution). Text corpora have been manually an-
notated with such data structures in order to compare the performance of various systems. The
availability of standard benchmarks has stimulated research in Natural Language Processing (NLP)
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c©2011 Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu and Pavel Kuksa.



COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

and effective systems have been designed for all these tasks. Such systems are often viewed as
software components for constructing real-world NLP solutions.

The overwhelming majority of these state-of-the-art systems address their single benchmark
task by applying linear statistical models to ad-hoc features. In other words, the researchers them-
selves discover intermediate representations by engineering task-specific features. These features
are often derived from the output of preexisting systems, leading to complex runtime dependencies.
This approach is effective because researchers leverage a large body of linguistic knowledge. On
the other hand, there is a great temptation to optimize the performance of a system for a specific
benchmark. Although such performance improvements can be very useful in practice, they teach us
little about the means to progress toward the broader goals of natural language understanding and
the elusive goals of Artificial Intelligence.

In this contribution, we try to excel on multiple benchmarks while avoiding task-specific engi-
neering. Instead we use a single learning system able to discover adequate internal representations.
In fact we view the benchmarks as indirect measurements of the relevance of the internal represen-
tations discovered by the learning procedure, and we posit that these intermediate representations
are more general than any of the benchmarks. Our desire to avoid task-specific engineered features
prevented us from using a large body of linguistic knowledge. Instead we reach good performance
levels in most of the tasks by transferring intermediate representations discovered on large unlabeled
data sets. We call this approach “almost from scratch” to emphasize the reduced (but still important)
reliance on a priori NLP knowledge.

The paper is organized as follows. Section 2 describes the benchmark tasks of interest. Sec-
tion 3 describes the unified model and reports benchmark results obtained with supervised training.
Section 4 leverages large unlabeled data sets (∼ 852 million words) to train the model on a language
modeling task. Performance improvements are then demonstrated by transferring the unsupervised
internal representations into the supervised benchmark models. Section 5 investigates multitask
supervised training. Section 6 then evaluates how much further improvement can be achieved by
incorporating standard NLP task-specific engineering into our systems. Drifting away from our ini-
tial goals gives us the opportunity to construct an all-purpose tagger that is simultaneously accurate,
practical, and fast. We then conclude with a short discussion section.

2. The Benchmark Tasks

In this section, we briefly introduce four standard NLP tasks on which we will benchmark our
architectures within this paper: Part-Of-Speech tagging (POS), chunking (CHUNK), Named Entity
Recognition (NER) and Semantic Role Labeling (SRL). For each of them, we consider a standard
experimental setup and give an overview of state-of-the-art systems on this setup. The experimental
setups are summarized in Table 1, while state-of-the-art systems are reported in Table 2.

2.1 Part-Of-Speech Tagging

POS aims at labeling each word with a unique tag that indicates its syntactic role, for example, plural
noun, adverb, . . . A standard benchmark setup is described in detail by Toutanova et al. (2003).
Sections 0–18 of Wall Street Journal (WSJ) data are used for training, while sections 19–21 are for
validation and sections 22–24 for testing.

The best POS classifiers are based on classifiers trained on windows of text, which are then fed
to a bidirectional decoding algorithm during inference. Features include preceding and following
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Task Benchmark Data set Training set Test set
(#tokens) (#tokens) (#tags)

POS Toutanova et al. (2003) WSJ sections 0–18 sections 22–24 ( 45 )
( 912,344 ) ( 129,654 )

Chunking CoNLL 2000 WSJ sections 15–18 section 20 ( 42 )
( 211,727 ) ( 47,377 ) (IOBES)

NER CoNLL 2003 Reuters “eng.train” “eng.testb” ( 17 )
( 203,621 ) ( 46,435 ) (IOBES)

SRL CoNLL 2005 WSJ sections 2–21 section 23 ( 186 )
( 950,028 ) + 3 Brown sections (IOBES)

( 63,843 )

Table 1: Experimental setup: for each task, we report the standard benchmark we used, the data set
it relates to, as well as training and test information.

System Accuracy
Shen et al. (2007) 97.33%
Toutanova et al. (2003) 97.24%
Giménez and Màrquez (2004) 97.16%

(a) POS

System F1
Shen and Sarkar (2005) 95.23%
Sha and Pereira (2003) 94.29%
Kudo and Matsumoto (2001) 93.91%

(b) CHUNK

System F1
Ando and Zhang (2005) 89.31%
Florian et al. (2003) 88.76%
Kudo and Matsumoto (2001) 88.31%

(c) NER

System F1
Koomen et al. (2005) 77.92%
Pradhan et al. (2005) 77.30%
Haghighi et al. (2005) 77.04%

(d) SRL

Table 2: State-of-the-art systems on four NLP tasks. Performance is reported in per-word accuracy
for POS, and F1 score for CHUNK, NER and SRL. Systems in bold will be referred as
benchmark systems in the rest of the paper (see Section 2.6).

tag context as well as multiple words (bigrams, trigrams. . . ) context, and handcrafted features to
deal with unknown words. Toutanova et al. (2003), who use maximum entropy classifiers and
inference in a bidirectional dependency network (Heckerman et al., 2001), reach 97.24% per-word
accuracy. Giménez and Màrquez (2004) proposed a SVM approach also trained on text windows,
with bidirectional inference achieved with two Viterbi decoders (left-to-right and right-to-left). They
obtained 97.16% per-word accuracy. More recently, Shen et al. (2007) pushed the state-of-the-art up
to 97.33%, with a new learning algorithm they call guided learning, also for bidirectional sequence
classification.
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2.2 Chunking

Also called shallow parsing, chunking aims at labeling segments of a sentence with syntactic con-
stituents such as noun or verb phrases (NP or VP). Each word is assigned only one unique tag, often
encoded as a begin-chunk (e.g., B-NP) or inside-chunk tag (e.g., I-NP). Chunking is often evaluated
using the CoNLL 2000 shared task.1 Sections 15–18 of WSJ data are used for training and section
20 for testing. Validation is achieved by splitting the training set.

Kudoh and Matsumoto (2000) won the CoNLL 2000 challenge on chunking with a F1-score
of 93.48%. Their system was based on Support Vector Machines (SVMs). Each SVM was trained
in a pairwise classification manner, and fed with a window around the word of interest containing
POS and words as features, as well as surrounding tags. They perform dynamic programming at
test time. Later, they improved their results up to 93.91% (Kudo and Matsumoto, 2001) using an
ensemble of classifiers trained with different tagging conventions (see Section 3.3.3).

Since then, a certain number of systems based on second-order random fields were reported
(Sha and Pereira, 2003; McDonald et al., 2005; Sun et al., 2008), all reporting around 94.3% F1
score. These systems use features composed of words, POS tags, and tags.

More recently, Shen and Sarkar (2005) obtained 95.23% using a voting classifier scheme, where
each classifier is trained on different tag representations2 (IOB, IOE, . . . ). They use POS features
coming from an external tagger, as well carefully hand-crafted specialization features which again
change the data representation by concatenating some (carefully chosen) chunk tags or some words
with their POS representation. They then build trigrams over these features, which are finally passed
through a Viterbi decoder a test time.

2.3 Named Entity Recognition

NER labels atomic elements in the sentence into categories such as “PERSON” or “LOCATION”.
As in the chunking task, each word is assigned a tag prefixed by an indicator of the beginning or the
inside of an entity. The CoNLL 2003 setup3 is a NER benchmark data set based on Reuters data.
The contest provides training, validation and testing sets.

Florian et al. (2003) presented the best system at the NER CoNLL 2003 challenge, with 88.76%
F1 score. They used a combination of various machine-learning classifiers. Features they picked
included words, POS tags, CHUNK tags, prefixes and suffixes, a large gazetteer (not provided by
the challenge), as well as the output of two other NER classifiers trained on richer data sets. Chieu
(2003), the second best performer of CoNLL 2003 (88.31% F1), also used an external gazetteer
(their performance goes down to 86.84% with no gazetteer) and several hand-chosen features.

Later, Ando and Zhang (2005) reached 89.31% F1 with a semi-supervised approach. They
trained jointly a linear model on NER with a linear model on two auxiliary unsupervised tasks.
They also performed Viterbi decoding at test time. The unlabeled corpus was 27M words taken
from Reuters. Features included words, POS tags, suffixes and prefixes or CHUNK tags, but overall
were less specialized than CoNLL 2003 challengers.

1. See http://www.cnts.ua.ac.be/conll2000/chunking.
2. See Table 3 for tagging scheme details.
3. See http://www.cnts.ua.ac.be/conll2003/ner.
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2.4 Semantic Role Labeling

SRL aims at giving a semantic role to a syntactic constituent of a sentence. In the PropBank
(Palmer et al., 2005) formalism one assigns roles ARG0-5 to words that are arguments of a verb
(or more technically, a predicate) in the sentence, for example, the following sentence might be
tagged “[John]ARG0 [ate]REL [the apple]ARG1 ”, where “ate” is the predicate. The precise arguments
depend on a verb’s frame and if there are multiple verbs in a sentence some words might have multi-
ple tags. In addition to the ARG0-5 tags, there there are several modifier tags such as ARGM-LOC
(locational) and ARGM-TMP (temporal) that operate in a similar way for all verbs. We picked
CoNLL 20054 as our SRL benchmark. It takes sections 2–21 of WSJ data as training set, and sec-
tion 24 as validation set. A test set composed of section 23 of WSJ concatenated with 3 sections
from the Brown corpus is also provided by the challenge.

State-of-the-art SRL systems consist of several stages: producing a parse tree, identifying which
parse tree nodes represent the arguments of a given verb, and finally classifying these nodes to
compute the corresponding SRL tags. This entails extracting numerous base features from the parse
tree and feeding them into statistical models. Feature categories commonly used by these system
include (Gildea and Jurafsky, 2002; Pradhan et al., 2004):

• the parts of speech and syntactic labels of words and nodes in the tree;

• the node’s position (left or right) in relation to the verb;

• the syntactic path to the verb in the parse tree;

• whether a node in the parse tree is part of a noun or verb phrase;

• the voice of the sentence: active or passive;

• the node’s head word; and

• the verb sub-categorization.

Pradhan et al. (2004) take these base features and define additional features, notably the part-of-
speech tag of the head word, the predicted named entity class of the argument, features providing
word sense disambiguation for the verb (they add 25 variants of 12 new feature types overall). This
system is close to the state-of-the-art in performance. Pradhan et al. (2005) obtain 77.30% F1 with a
system based on SVM classifiers and simultaneously using the two parse trees provided for the SRL
task. In the same spirit, Haghighi et al. (2005) use log-linear models on each tree node, re-ranked
globally with a dynamic algorithm. Their system reaches 77.04% using the five top Charniak parse
trees.

Koomen et al. (2005) hold the state-of-the-art with Winnow-like (Littlestone, 1988) classifiers,
followed by a decoding stage based on an integer program that enforces specific constraints on SRL
tags. They reach 77.92% F1 on CoNLL 2005, thanks to the five top parse trees produced by the
Charniak (2000) parser (only the first one was provided by the contest) as well as the Collins (1999)
parse tree.

4. See http://www.lsi.upc.edu/˜srlconll.
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2.5 Evaluation

In our experiments, we strictly followed the standard evaluation procedure of each CoNLL chal-
lenges for NER, CHUNK and SRL. In particular, we chose the hyper-parameters of our model
according to a simple validation procedure (see Remark 8 later in Section 3.5), performed over the
validation set available for each task (see Section 2). All these three tasks are evaluated by comput-
ing the F1 scores over chunks produced by our models. The POS task is evaluated by computing
the per-word accuracy, as it is the case for the standard benchmark we refer to (Toutanova et al.,
2003). We used the conlleval script5 for evaluating POS,6 NER and CHUNK. For SRL, we used
the srl-eval.pl script included in the srlconll package.7

2.6 Discussion

When participating in an (open) challenge, it is legitimate to increase generalization by all means.
It is thus not surprising to see many top CoNLL systems using external labeled data, like additional
NER classifiers for the NER architecture of Florian et al. (2003) or additional parse trees for SRL
systems (Koomen et al., 2005). Combining multiple systems or tweaking carefully features is also
a common approach, like in the chunking top system (Shen and Sarkar, 2005).

However, when comparing systems, we do not learn anything of the quality of each system if
they were trained with different labeled data. For that reason, we will refer to benchmark systems,
that is, top existing systems which avoid usage of external data and have been well-established in
the NLP field: Toutanova et al. (2003) for POS and Sha and Pereira (2003) for chunking. For NER
we consider Ando and Zhang (2005) as they were using additional unlabeled data only. We picked
Koomen et al. (2005) for SRL, keeping in mind they use 4 additional parse trees not provided by
the challenge. These benchmark systems will serve as baseline references in our experiments. We
marked them in bold in Table 2.

We note that for the four tasks we are considering in this work, it can be seen that for the
more complex tasks (with corresponding lower accuracies), the best systems proposed have more
engineered features relative to the best systems on the simpler tasks. That is, the POS task is one of
the simplest of our four tasks, and only has relatively few engineered features, whereas SRL is the
most complex, and many kinds of features have been designed for it. This clearly has implications
for as yet unsolved NLP tasks requiring more sophisticated semantic understanding than the ones
considered here.

3. The Networks

All the NLP tasks above can be seen as tasks assigning labels to words. The traditional NLP ap-
proach is: extract from the sentence a rich set of hand-designed features which are then fed to a
standard classification algorithm, for example, a Support Vector Machine (SVM), often with a lin-
ear kernel. The choice of features is a completely empirical process, mainly based first on linguistic
intuition, and then trial and error, and the feature selection is task dependent, implying additional
research for each new NLP task. Complex tasks like SRL then require a large number of possibly

5. Available at http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt.
6. We used the “-r” option of the conlleval script to get the per-word accuracy, for POS only.
7. Available at http://www.lsi.upc.es/˜srlconll/srlconll-1.1.tgz.
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Figure 1: Window approach network.

complex features (e.g., extracted from a parse tree) which can impact the computational cost which
might be important for large-scale applications or applications requiring real-time response.

Instead, we advocate a radically different approach: as input we will try to pre-process our
features as little as possible and then use a multilayer neural network (NN) architecture, trained in
an end-to-end fashion. The architecture takes the input sentence and learns several layers of feature
extraction that process the inputs. The features computed by the deep layers of the network are
automatically trained by backpropagation to be relevant to the task. We describe in this section a
general multilayer architecture suitable for all our NLP tasks, which is generalizable to other NLP
tasks as well.

Our architecture is summarized in Figure 1 and Figure 2. The first layer extracts features for
each word. The second layer extracts features from a window of words or from the whole sentence,
treating it as a sequence with local and global structure (i.e., it is not treated like a bag of words).
The following layers are standard NN layers.

3.1 Notations

We consider a neural network fθ(·), with parameters θ. Any feed-forward neural network with L
layers, can be seen as a composition of functions f lθ(·), corresponding to each layer l:

fθ(·) = f Lθ ( f L−1θ (. . . f 1θ (·) . . .)) .
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Figure 2: Sentence approach network.

In the following, we will describe each layer we use in our networks shown in Figure 1 and Figure 2.
We adopt few notations. Given a matrix A we denote [A]i, j the coefficient at row i and column j

in the matrix. We also denote 〈A〉dwini the vector obtained by concatenating the dwin column vectors
around the ith column vector of matrix A ∈ Rd1×d2 :

[
〈A〉dwini

]T
=
(
[A]1, i−dwin/2 . . . [A]d1, i−dwin/2 , . . . , [A]1, i+dwin/2 . . . [A]d1, i+dwin/2

)
.
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As a special case, 〈A〉1i represents the i
th column of matrix A. For a vector v, we denote [v]i the

scalar at index i in the vector. Finally, a sequence of element {x1, x2, . . . , xT} is written [x]T1 . The i
th

element of the sequence is [x]i.

3.2 Transforming Words into Feature Vectors

One of the key points of our architecture is its ability to perform well with the use of (almost8)
raw words. The ability for our method to learn good word representations is thus crucial to our
approach. For efficiency, words are fed to our architecture as indices taken from a finite dictionary
D . Obviously, a simple index does not carry much useful information about the word. However,
the first layer of our network maps each of these word indices into a feature vector, by a lookup
table operation. Given a task of interest, a relevant representation of each word is then given by
the corresponding lookup table feature vector, which is trained by backpropagation, starting from
a random initialization.9 We will see in Section 4 that we can learn very good word representa-
tions from unlabeled corpora. Our architecture allow us to take advantage of better trained word
representations, by simply initializing the word lookup table with these representations (instead of
randomly).

More formally, for each word w ∈D , an internal dwrd-dimensional feature vector representation
is given by the lookup table layer LTW (·):

LTW (w) = 〈W 〉1w ,

whereW ∈ Rdwrd×|D| is a matrix of parameters to be learned, 〈W 〉1w ∈ Rdwrd is the wth column ofW
and dwrd is the word vector size (a hyper-parameter to be chosen by the user). Given a sentence or
any sequence of T words [w]T1 inD , the lookup table layer applies the same operation for each word
in the sequence, producing the following output matrix:

LTW ([w]T1 ) =
(

〈W 〉1[w]1
〈W 〉1[w]2

. . . 〈W 〉1[w]T

)
. (1)

This matrix can then be fed to further neural network layers, as we will see below.

3.2.1 EXTENDING TO ANY DISCRETE FEATURES

One might want to provide features other than words if one suspects that these features are helpful
for the task of interest. For example, for the NER task, one could provide a feature which says if a
word is in a gazetteer or not. Another common practice is to introduce some basic pre-processing,
such as word-stemming or dealing with upper and lower case. In this latter option, the word would
be then represented by three discrete features: its lower case stemmed root, its lower case ending,
and a capitalization feature.

Generally speaking, we can consider a word as represented by K discrete features w ∈ D1×
·· ·×DK , where Dk is the dictionary for the kth feature. We associate to each feature a lookup table
LTWk(·), with parameters Wk ∈ Rdkwrd×|Dk| where dkwrd ∈ N is a user-specified vector size. Given a

8. We did some pre-processing, namely lowercasing and encoding capitalization as another feature. With enough (un-
labeled) training data, presumably we could learn a model without this processing. Ideally, an even more raw input
would be to learn from letter sequences rather than words, however we felt that this was beyond the scope of this
work.

9. As any other neural network layer.
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word w, a feature vector of dimension dwrd = ∑k d
k
wrd is then obtained by concatenating all lookup

table outputs:

LTW 1,...,WK (w) =

⎛⎜⎝ LTW 1(w1)
...

LTWK (wK)

⎞⎟⎠=

⎛⎜⎝ 〈W 1〉1w1
...

〈WK〉1wK

⎞⎟⎠ .

The matrix output of the lookup table layer for a sequence of words [w]T1 is then similar to (1), but
where extra rows have been added for each discrete feature:

LTW 1,...,WK ([w]T1 ) =

⎛⎜⎝ 〈W 1〉1[w1]1
. . . 〈W 1〉1[w1]T

...
...

〈WK〉1[wK ]1
. . . 〈WK〉1[wK ]T

⎞⎟⎠ . (2)

These vector features in the lookup table effectively learn features for words in the dictionary. Now,
we want to use these trainable features as input to further layers of trainable feature extractors, that
can represent groups of words and then finally sentences.

3.3 Extracting Higher Level Features from Word Feature Vectors

Feature vectors produced by the lookup table layer need to be combined in subsequent layers of
the neural network to produce a tag decision for each word in the sentence. Producing tags for
each element in variable length sequences (here, a sentence is a sequence of words) is a standard
problem in machine-learning. We consider two common approaches which tag one word at the
time: a window approach, and a (convolutional) sentence approach.

3.3.1 WINDOW APPROACH

A window approach assumes the tag of a word depends mainly on its neighboring words. Given a
word to tag, we consider a fixed size ksz (a hyper-parameter) window of words around this word.
Each word in the window is first passed through the lookup table layer (1) or (2), producing a matrix
of word features of fixed size dwrd×ksz. This matrix can be viewed as a dwrd ksz-dimensional vector
by concatenating each column vector, which can be fed to further neural network layers. More
formally, the word feature window given by the first network layer can be written as:

f 1θ = 〈LTW ([w]T1 )〉
dwin
t =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

〈W 〉1[w]t−dwin/2
...

〈W 〉1[w]t
...

〈W 〉1[w]t+dwin/2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

Linear Layer. The fixed size vector f 1θ can be fed to one or several standard neural network layers
which perform affine transformations over their inputs:

f lθ =Wl f l−1θ + bl , (4)

where Wl ∈ Rnlhu×n
l−1
hu and bl ∈ Rnlhu are the parameters to be trained. The hyper-parameter nlhu is

usually called the number of hidden units of the lth layer.
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HardTanh Layer. Several linear layers are often stacked, interleaved with a non-linearity func-
tion, to extract highly non-linear features. If no non-linearity is introduced, our network would be a
simple linear model. We chose a “hard” version of the hyperbolic tangent as non-linearity. It has the
advantage of being slightly cheaper to compute (compared to the exact hyperbolic tangent), while
leaving the generalization performance unchanged (Collobert, 2004). The corresponding layer l
applies a HardTanh over its input vector:[

f lθ
]
i
= HardTanh(

[
f l−1θ

]
i
) ,

where

HardTanh(x) =

⎧⎨⎩
−1 if x<−1
x if −1<= x<= 1
1 if x> 1

. (5)

Scoring. Finally, the output size of the last layer L of our network is equal to the number
of possible tags for the task of interest. Each output can be then interpreted as a score of the
corresponding tag (given the input of the network), thanks to a carefully chosen cost function that
we will describe later in this section.

Remark 1 (Border Effects) The feature window (3) is not well defined for words near the begin-
ning or the end of a sentence. To circumvent this problem, we augment the sentence with a special
“PADDING” word replicated dwin/2 times at the beginning and the end. This is akin to the use of
“start” and “stop” symbols in sequence models.

3.3.2 SENTENCE APPROACH

We will see in the experimental section that a window approach performs well for most natural
language processing tasks we are interested in. However this approach fails with SRL, where the tag
of a word depends on a verb (or, more correctly, predicate) chosen beforehand in the sentence. If the
verb falls outside the window, one cannot expect this word to be tagged correctly. In this particular
case, tagging a word requires the consideration of the whole sentence. When using neural networks,
the natural choice to tackle this problem becomes a convolutional approach, first introduced by
Waibel et al. (1989) and also called Time Delay Neural Networks (TDNNs) in the literature.

We describe in detail our convolutional network below. It successively takes the complete sen-
tence, passes it through the lookup table layer (1), produces local features around each word of the
sentence thanks to convolutional layers, combines these feature into a global feature vector which
can then be fed to standard affine layers (4). In the semantic role labeling case, this operation is
performed for each word in the sentence, and for each verb in the sentence. It is thus necessary to
encode in the network architecture which verb we are considering in the sentence, and which word
we want to tag. For that purpose, each word at position i in the sentence is augmented with two
features in the way described in Section 3.2.1. These features encode the relative distances i− posv
and i− posw with respect to the chosen verb at position posv, and the word to tag at position posw
respectively.

Convolutional Layer. A convolutional layer can be seen as a generalization of a window ap-
proach: given a sequence represented by columns in a matrix f l−1θ (in our lookup table matrix (1)),
a matrix-vector operation as in (4) is applied to each window of successive windows in the sequence.
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Figure 3: Number of features chosen at each word position by the Max layer. We consider a sen-
tence approach network (Figure 2) trained for SRL. The number of “local” features output
by the convolution layer is 300 per word. By applying a Max over the sentence, we ob-
tain 300 features for the whole sentence. It is interesting to see that the network catches
features mostly around the verb of interest (here “report”) and word of interest (“pro-
posed” (left) or “often” (right)).

Using previous notations, the tth output column of the lth layer can be computed as:

〈 f lθ〉
1
t =Wl 〈 f l−1θ 〉dwint +bl ∀t , (6)

where the weight matrixWl is the same across all windows t in the sequence. Convolutional layers
extract local features around each window of the given sequence. As for standard affine layers (4),
convolutional layers are often stacked to extract higher level features. In this case, each layer must
be followed by a non-linearity (5) or the network would be equivalent to one convolutional layer.

Max Layer. The size of the output (6) depends on the number of words in the sentence fed
to the network. Local feature vectors extracted by the convolutional layers have to be combined
to obtain a global feature vector, with a fixed size independent of the sentence length, in order to
apply subsequent standard affine layers. Traditional convolutional networks often apply an average
(possibly weighted) or a max operation over the “time” t of the sequence (6). (Here, “time” just
means the position in the sentence, this term stems from the use of convolutional layers in, for
example, speech data where the sequence occurs over time.) The average operation does not make
much sense in our case, as in general most words in the sentence do not have any influence on the
semantic role of a given word to tag. Instead, we used a max approach, which forces the network to
capture the most useful local features produced by the convolutional layers (see Figure 3), for the
task at hand. Given a matrix f l−1θ output by a convolutional layer l− 1, the Max layer l outputs a
vector f lθ: [

f lθ
]
i
=max

t

[
f l−1θ

]
i, t

1≤ i≤ nl−1hu . (7)

This fixed sized global feature vector can be then fed to standard affine network layers (4). As in
the window approach, we then finally produce one score per possible tag for the given task.

Remark 2 The same border effects arise in the convolution operation (6) as in the window ap-
proach (3). We again work around this problem by padding the sentences with a special word.
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Scheme Begin Inside End Single Other
IOB B-X I-X I-X B-X O
IOE I-X I-X E-X E-X O
IOBES B-X I-X E-X S-X O

Table 3: Various tagging schemes. Each word in a segment labeled “X” is tagged with a prefixed
label, depending of the word position in the segment (begin, inside, end). Single word
segment labeling is also output. Words not in a labeled segment are labeled “O”. Variants
of the IOB (and IOE) scheme exist, where the prefix B (or E) is replaced by I for all
segments not contiguous with another segment having the same label “X”.

3.3.3 TAGGING SCHEMES

As explained earlier, the network output layers compute scores for all the possible tags for the task of
interest. In the window approach, these tags apply to the word located in the center of the window.
In the (convolutional) sentence approach, these tags apply to the word designated by additional
markers in the network input.

The POS task indeed consists of marking the syntactic role of each word. However, the re-
maining three tasks associate labels with segments of a sentence. This is usually achieved by using
special tagging schemes to identify the segment boundaries, as shown in Table 3. Several such
schemes have been defined (IOB, IOE, IOBES, . . . ) without clear conclusion as to which scheme
is better in general. State-of-the-art performance is sometimes obtained by combining classifiers
trained with different tagging schemes (e.g., Kudo and Matsumoto, 2001).

The ground truth for the NER, CHUNK, and SRL tasks is provided using two different tagging
schemes. In order to eliminate this additional source of variations, we have decided to use the most
expressive IOBES tagging scheme for all tasks. For instance, in the CHUNK task, we describe
noun phrases using four different tags. Tag “S-NP” is used to mark a noun phrase containing a
single word. Otherwise tags “B-NP”, “I-NP”, and “E-NP” are used to mark the first, intermediate
and last words of the noun phrase. An additional tag “O” marks words that are not members of a
chunk. During testing, these tags are then converted to the original IOB tagging scheme and fed to
the standard performance evaluation scripts mentioned in Section 2.5.

3.4 Training

All our neural networks are trained by maximizing a likelihood over the training data, using stochas-
tic gradient ascent. If we denote θ to be all the trainable parameters of the network, which are trained
using a training set T we want to maximize the following log-likelihood with respect to θ:

θ �→ ∑
(x,y)∈T

log p(y |x, θ) , (8)

where x corresponds to either a training word window or a sentence and its associated features, and
y represents the corresponding tag. The probability p(·) is computed from the outputs of the neural
network. We will see in this section two ways of interpreting neural network outputs as probabilities.
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3.4.1 WORD-LEVEL LOG-LIKELIHOOD

In this approach, each word in a sentence is considered independently. Given an input example
x, the network with parameters θ outputs a score

[
fθ(x)

]
i, for the i

th tag with respect to the task of
interest. To simplify the notation, we drop x from now, and we write instead

[
fθ
]
i. This score can be

interpreted as a conditional tag probability p(i |x, θ) by applying a softmax (Bridle, 1990) operation
over all the tags:

p(i |x,θ) =
e[ fθ]i

∑ j e
[ fθ] j

. (9)

Defining the log-add operation as

logadd
i

zi = log(∑
i

ezi) , (10)

we can express the log-likelihood for one training example (x,y) as follows:

log p(y |x, θ) = [ fθ]y− logadd
j

[ fθ] j . (11)

While this training criterion, often referred as cross-entropy is widely used for classification prob-
lems, it might not be ideal in our case, where there is often a correlation between the tag of a word
in a sentence and its neighboring tags. We now describe another common approach for neural
networks which enforces dependencies between the predicted tags in a sentence.

3.4.2 SENTENCE-LEVEL LOG-LIKELIHOOD

In tasks like chunking, NER or SRL we know that there are dependencies between word tags in a
sentence: not only are tags organized in chunks, but some tags cannot follow other tags. Training
using a word-level approach discards this kind of labeling information. We consider a training
scheme which takes into account the sentence structure: given the predictions of all tags by our
network for all words in a sentence, and given a score for going from one tag to another tag, we
want to encourage valid paths of tags during training, while discouraging all other paths.

We consider the matrix of scores fθ([x]
T
1 ) output by the network. As before, we drop the input

[x]T1 for notation simplification. The element
[
fθ
]
i, t of the matrix is the score output by the network

with parameters θ, for the sentence [x]T1 and for the i
th tag, at the tth word. We introduce a transition

score [A]i, j for jumping from i to j tags in successive words, and an initial score [A]i,0 for starting

from the ith tag. As the transition scores are going to be trained (as are all network parameters θ),
we define θ̃= θ∪{[A]i, j ∀i, j}. The score of a sentence [x]

T
1 along a path of tags [i]

T
1 is then given

by the sum of transition scores and network scores:

s([x]T1 , [i]
T
1 , θ̃) =

T

∑
t=1

(
[A][i]t−1, [i]t +[ fθ][i]t , t

)
. (12)

Exactly as for the word-level likelihood (11), where we were normalizing with respect to all tags
using a softmax (9), we normalize this score over all possible tag paths [ j]T1 using a softmax, and
we interpret the resulting ratio as a conditional tag path probability. Taking the log, the conditional
probability of the true path [y]T1 is therefore given by:

log p([y]T1 | [x]
T
1 , θ̃) = s([x]T1 , [y]

T
1 , θ̃)− logadd

∀[ j]T1

s([x]T1 , [ j]
T
1 , θ̃) . (13)
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While the number of terms in the logadd operation (11) was equal to the number of tags, it grows
exponentially with the length of the sentence in (13). Fortunately, one can compute it in linear
time with the following standard recursion over t (see Rabiner, 1989), taking advantage of the
associativity and distributivity on the semi-ring10 (R∪{−∞}, logadd,+):

δt(k)
Δ
= logadd

{[ j]t1∩ [ j]t=k}
s([x]t1, [ j]

t
1, θ̃)

= logadd
i

logadd
{[ j]t1∩ [ j]t−1=i∩ [ j]t=k}

s([x]t1, [ j]
t−1
1 , θ̃)+ [A][ j]t−1,k+[ fθ]k, t

= logadd
i

δt−1(i)+ [A]i,k+[ fθ]k, t

= [ fθ]k, t + logadd
i

(
δt−1(i)+ [A]i,k

)
∀k ,

(14)

followed by the termination

logadd
∀[ j]T1

s([x]T1 , [ j]
T
1 , θ̃) = logadd

i
δT (i) . (15)

We can now maximize in (8) the log-likelihood (13) over all the training pairs ([x]T1 , [y]
T
1 ).

At inference time, given a sentence [x]T1 to tag, we have to find the best tag path which minimizes
the sentence score (12). In other words, we must find

argmax
[ j]T1

s([x]T1 , [ j]
T
1 , θ̃) .

The Viterbi algorithm is the natural choice for this inference. It corresponds to performing the
recursion (14) and (15), but where the logadd is replaced by a max, and then tracking back the
optimal path through each max.

Remark 3 (Graph Transformer Networks) Our approach is a particular case of the discrimina-
tive forward training for graph transformer networks (GTNs) (Bottou et al., 1997; Le Cun et al.,
1998). The log-likelihood (13) can be viewed as the difference between the forward score con-
strained over the valid paths (in our case there is only the labeled path) and the unconstrained
forward score (15).

Remark 4 (Conditional Random Fields) An important feature of equation (12) is the absence of

normalization. Summing the exponentials e [
fθ]i, t over all possible tags does not necessarily yield

the unity. If this was the case, the scores could be viewed as the logarithms of conditional transition
probabilities, and our model would be subject to the label-bias problem that motivates Conditional
Random Fields (CRFs) (Lafferty et al., 2001). The denormalized scores should instead be likened to
the potential functions of a CRF. In fact, a CRF maximizes the same likelihood (13) using a linear
model instead of a nonlinear neural network. CRFs have been widely used in the NLP world, such
as for POS tagging (Lafferty et al., 2001), chunking (Sha and Pereira, 2003), NER (McCallum and
Li, 2003) or SRL (Cohn and Blunsom, 2005). Compared to such CRFs, we take advantage of the
nonlinear network to learn appropriate features for each task of interest.

10. In other words, read logadd as ⊕ and + as ⊗.
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3.4.3 STOCHASTIC GRADIENT

Maximizing (8) with stochastic gradient (Bottou, 1991) is achieved by iteratively selecting a random
example (x, y) and making a gradient step:

θ←− θ+λ
∂ log p(y |x, θ)

∂θ
, (16)

where λ is a chosen learning rate. Our neural networks described in Figure 1 and Figure 2 are a
succession of layers that correspond to successive composition of functions. The neural network
is finally composed with the word-level log-likelihood (11), or successively composed in the re-
cursion (14) if using the sentence-level log-likelihood (13). Thus, an analytical formulation of the
derivative (16) can be computed, by applying the differentiation chain rule through the network, and
through the word-level log-likelihood (11) or through the recurrence (14).

Remark 5 (Differentiability) Our cost functions are differentiable almost everywhere.
Non-differentiable points arise because we use a “hard” transfer function (5) and because we use a
“max” layer (7) in the sentence approach network. Fortunately, stochastic gradient still converges
to a meaningful local minimum despite such minor differentiability problems (Bottou, 1991, 1998).
Stochastic gradient iterations that hit a non-differentiability are simply skipped.

Remark 6 (Modular Approach) The well known “back-propagation” algorithm (LeCun, 1985;
Rumelhart et al., 1986) computes gradients using the chain rule. The chain rule can also be used
in a modular implementation.11 Our modules correspond to the boxes in Figure 1 and Figure 2.
Given derivatives with respect to its outputs, each module can independently compute derivatives
with respect to its inputs and with respect to its trainable parameters, as proposed by Bottou and
Gallinari (1991). This allows us to easily build variants of our networks. For details about gradient
computations, see Appendix A.

Remark 7 (Tricks) Many tricks have been reported for training neural networks (LeCun et al.,
1998). Which ones to choose is often confusing. We employed only two of them: the initialization
and update of the parameters of each network layer were done according to the “fan-in” of the
layer, that is the number of inputs used to compute each output of this layer (Plaut and Hinton,
1987). The fan-in for the lookup table (1), the lth linear layer (4) and the convolution layer (6)
are respectively 1, nl−1hu and dwin× nl−1hu . The initial parameters of the network were drawn from a
centered uniform distribution, with a variance equal to the inverse of the square-root of the fan-in.
The learning rate in (16) was divided by the fan-in, but stays fixed during the training.

3.5 Supervised Benchmark Results

For POS, chunking and NER tasks, we report results with the window architecture12 described
in Section 3.3.1. The SRL task was trained using the sentence approach (Section 3.3.2). Results
are reported in Table 4, in per-word accuracy (PWA) for POS, and F1 score for all the other tasks.
We performed experiments both with the word-level log-likelihood (WLL) and with the sentence-
level log-likelihood (SLL). The hyper-parameters of our networks are reported in Table 5. All our

11. See http://torch5.sf.net.
12. We found that training these tasks with the more complex sentence approach was computationally expensive and

offered little performance benefits. Results discussed in Section 5 provide more insight about this decision.

2508



NATURAL LANGUAGE PROCESSING (ALMOST) FROM SCRATCH

Approach POS Chunking NER SRL
(PWA) (F1) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92
NN+WLL 96.31 89.13 79.53 55.40
NN+SLL 96.37 90.33 81.47 70.99

Table 4: Comparison in generalization performance of benchmark NLP systems with a vanilla neu-
ral network (NN) approach, on POS, chunking, NER and SRL tasks. We report results with
both the word-level log-likelihood (WLL) and the sentence-level log-likelihood (SLL).
Generalization performance is reported in per-word accuracy rate (PWA) for POS and F1
score for other tasks. The NN results are behind the benchmark results, in Section 4 we
show how to improve these models using unlabeled data.

Task Window/Conv. size Word dim. Caps dim. Hidden units Learning rate

POS dwin = 5 d0 = 50 d1 = 5 n1hu = 300 λ= 0.01

CHUNK ” ” ” ” ”

NER ” ” ” ” ”

SRL ” ” ”
n1hu = 300

n2hu = 500
”

Table 5: Hyper-parameters of our networks. They were chosen by a minimal validation (see Re-
mark 8), preferring identical parameters for most tasks. We report for each task the window
size (or convolution size), word feature dimension, capital feature dimension, number of
hidden units and learning rate.

networks were fed with two raw text features: lower case words, and a capital letter feature. We
chose to consider lower case words to limit the number of words in the dictionary. However, to keep
some upper case information lost by this transformation, we added a “caps” feature which tells if
each word was in lowercase, was all uppercase, had first letter capital, or had at least one non-initial
capital letter. Additionally, all occurrences of sequences of numbers within a word are replaced with
the string “NUMBER”, so for example both the words “PS1” and “PS2” would map to the single
word “psNUMBER”. We used a dictionary containing the 100,000 most common words in WSJ
(case insensitive). Words outside this dictionary were replaced by a single special “RARE” word.

Results show that neural networks “out-of-the-box” are behind baseline benchmark systems.
Although the initial performance of our networks falls short from the performance of the CoNLL
challenge winners, it compares honorably with the performance of most competitors. The training
criterion which takes into account the sentence structure (SLL) seems to boost the performance for
the Chunking, NER and SRL tasks, with little advantage for POS. This result is in line with existing
NLP studies comparing sentence-level and word-level likelihoods (Liang et al., 2008). The capacity
of our network architectures lies mainly in the word lookup table, which contains 50× 100,000
parameters to train. In the WSJ data, 15% of the most common words appear about 90% of the time.
Many words appear only a few times. It is thus very difficult to train properly their corresponding
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FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS

454 1973 6909 11724 29869 87025
PERSUADE THICKETS DECADENT WIDESCREEN ODD PPA

FAW SAVARY DIVO ANTICA ANCHIETA UDDIN

BLACKSTOCK SYMPATHETIC VERUS SHABBY EMIGRATION BIOLOGICALLY

GIORGI JFK OXIDE AWE MARKING KAYAK

SHAHEED KHWARAZM URBINA THUD HEUER MCLARENS

RUMELIA STATIONERY EPOS OCCUPANT SAMBHAJI GLADWIN

PLANUM ILIAS EGLINTON REVISED WORSHIPPERS CENTRALLY

GOA’ULD GSNUMBER EDGING LEAVENED RITSUKO INDONESIA

COLLATION OPERATOR FRG PANDIONIDAE LIFELESS MONEO

BACHA W.J. NAMSOS SHIRT MAHAN NILGIRIS

Table 6: Word embeddings in the word lookup table of a SRL neural network trained from scratch,
with a dictionary of size 100,000. For each column the queried word is followed by its
index in the dictionary (higher means more rare) and its 10 nearest neighbors (arbitrarily
using the Euclidean metric).

50 dimensional feature vectors in the lookup table. Ideally, we would like semantically similar
words to be close in the embedding space represented by the word lookup table: by continuity of
the neural network function, tags produced on semantically similar sentences would be similar. We
show in Table 6 that it is not the case: neighboring words in the embedding space do not seem to be
semantically related.

We will focus in the next section on improving these word embeddings by leveraging unlabeled
data. We will see our approach results in a performance boost for all tasks.

Remark 8 (Architectures) In all our experiments in this paper, we tuned the hyper-parameters by
trying only a few different architectures by validation. In practice, the choice of hyperparameters
such as the number of hidden units, provided they are large enough, has a limited impact on the
generalization performance. In Figure 4, we report the F1 score for each task on the validation set,
with respect to the number of hidden units. Considering the variance related to the network initial-
ization, we chose the smallest network achieving “reasonable” performance, rather than picking
the network achieving the top performance obtained on a single run.

Remark 9 (Training Time) Training our network is quite computationally expensive. Chunking
and NER take about one hour to train, POS takes few hours, and SRL takes about three days.
Training could be faster with a larger learning rate, but we preferred to stick to a small one which
works, rather than finding the optimal one for speed. Second order methods (LeCun et al., 1998)
could be another speedup technique.

4. Lots of Unlabeled Data

We would like to obtain word embeddings carrying more syntactic and semantic information than
shown in Table 6. Since most of the trainable parameters of our system are associated with the
word embeddings, these poor results suggest that we should use considerably more training data.
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Figure 4: F1 score on the validation set (y-axis) versus number of hidden units (x-axis) for different
tasks trained with the sentence-level likelihood (SLL), as in Table 4. For SRL, we vary in
this graph only the number of hidden units in the second layer. The scale is adapted for
each task. We show the standard deviation (obtained over 5 runs with different random
initialization), for the architecture we picked (300 hidden units for POS, CHUNK and
NER, 500 for SRL).

Following our NLP from scratch philosophy, we now describe how to dramatically improve these
embeddings using large unlabeled data sets. We then use these improved embeddings to initialize
the word lookup tables of the networks described in Section 3.5.

4.1 Data Sets

Our first English corpus is the entire English Wikipedia.13 We have removed all paragraphs con-
taining non-roman characters and all MediaWiki markups. The resulting text was tokenized using
the Penn Treebank tokenizer script.14 The resulting data set contains about 631 million words. As
in our previous experiments, we use a dictionary containing the 100,000 most common words in
WSJ, with the same processing of capitals and numbers. Again, words outside the dictionary were
replaced by the special “RARE” word.

Our second English corpus is composed by adding an extra 221 million words extracted from
the Reuters RCV1 (Lewis et al., 2004) data set.15 We also extended the dictionary to 130,000 words
by adding the 30,000 most common words in Reuters. This is useful in order to determine whether
improvements can be achieved by further increasing the unlabeled data set size.

4.2 Ranking Criterion versus Entropy Criterion

We used these unlabeled data sets to train language models that compute scores describing the
acceptability of a piece of text. These language models are again large neural networks using the
window approach described in Section 3.3.1 and in Figure 1. As in the previous section, most of the
trainable parameters are located in the lookup tables.

Similar language models were already proposed by Bengio and Ducharme (2001) and Schwenk
and Gauvain (2002). Their goal was to estimate the probability of a word given the previous words
in a sentence. Estimating conditional probabilities suggests a cross-entropy criterion similar to those
described in Section 3.4.1. Because the dictionary size is large, computing the normalization term

13. Available at http://download.wikimedia.org. We took the November 2007 version.
14. Available at http://www.cis.upenn.edu/˜treebank/tokenization.html.
15. Now available at http://trec.nist.gov/data/reuters/reuters.html.
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can be extremely demanding, and sophisticated approximations are required. More importantly for
us, neither work leads to significant word embeddings being reported.

Shannon (1951) has estimated the entropy of the English language between 0.6 and 1.3 bits per
character by asking human subjects to guess upcoming characters. Cover and King (1978) give
a lower bound of 1.25 bits per character using a subtle gambling approach. Meanwhile, using a
simple word trigram model, Brown et al. (1992b) reach 1.75 bits per character. Teahan and Cleary
(1996) obtain entropies as low as 1.46 bits per character using variable length character n-grams.
The human subjects rely of course on all their knowledge of the language and of the world. Can we
learn the grammatical structure of the English language and the nature of the world by leveraging
the 0.2 bits per character that separate human subjects from simple n-grammodels? Since such tasks
certainly require high capacity models, obtaining sufficiently small confidence intervals on the test
set entropy may require prohibitively large training sets.16 The entropy criterion lacks dynamical
range because its numerical value is largely determined by the most frequent phrases. In order to
learn syntax, rare but legal phrases are no less significant than common phrases.

It is therefore desirable to define alternative training criteria. We propose here to use a pairwise
ranking approach (Cohen et al., 1998). We seek a network that computes a higher score when
given a legal phrase than when given an incorrect phrase. Because the ranking literature often deals
with information retrieval applications, many authors define complex ranking criteria that give more
weight to the ordering of the best ranking instances (see Burges et al., 2007; Clémençon and Vayatis,
2007). However, in our case, we do not want to emphasize the most common phrase over the rare
but legal phrases. Therefore we use a simple pairwise criterion.

We consider a window approach network, as described in Section 3.3.1 and Figure 1, with
parameters θ which outputs a score fθ(x) given a window of text x = [w]dwin1 . We minimize the
ranking criterion with respect to θ:

θ �→ ∑
x∈X

∑
w∈D

max
{
0 , 1− fθ(x)+ fθ(x

(w))
}
, (17)

where X is the set of all possible text windows with dwin words coming from our training corpus,D
is the dictionary of words, and x(w) denotes the text window obtained by replacing the central word
of text window [w]dwin1 by the word w.

Okanohara and Tsujii (2007) use a related approach to avoiding the entropy criteria using a
binary classification approach (correct/incorrect phrase). Their work focuses on using a kernel
classifier, and not on learning word embeddings as we do here. Smith and Eisner (2005) also
propose a contrastive criterion which estimates the likelihood of the data conditioned to a “negative”
neighborhood. They consider various data neighborhoods, including sentences of length dwin drawn
from Ddwin . Their goal was however to perform well on some tagging task on fully unsupervised
data, rather than obtaining generic word embeddings useful for other tasks.

4.3 Training Language Models

The language model network was trained by stochastic gradient minimization of the ranking crite-
rion (17), sampling a sentence-word pair (s, w) at each iteration.

16. However, Klein and Manning (2002) describe a rare example of realistic unsupervised grammar induction using a
cross-entropy approach on binary-branching parsing trees, that is, by forcing the system to generate a hierarchical
representation.
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Since training times for such large scale systems are counted in weeks, it is not feasible to
try many combinations of hyperparameters. It also makes sense to speed up the training time by
initializing new networks with the embeddings computed by earlier networks. In particular, we
found it expedient to train a succession of networks using increasingly large dictionaries, each
network being initialized with the embeddings of the previous network. Successive dictionary sizes
and switching times are chosen arbitrarily. Bengio et al. (2009) provides a more detailed discussion
of this, the (as yet, poorly understood) “curriculum” process.

For the purposes of model selection we use the process of “breeding”. The idea of breeding
is instead of trying a full grid search of possible values (which we did not have enough computing
power for) to search for the parameters in analogy to breeding biological cell lines. Within each line,
child networks are initialized with the embeddings of their parents and trained on increasingly rich
data sets with sometimes different parameters. That is, suppose we have k processors, which is much
less than the possible set of parameters one would like to try. One chooses k initial parameter choices
from the large set, and trains these on the k processors. In our case, possible parameters to adjust
are: the learning rate λ, the word embedding dimensions d, number of hidden units n1hu and input
window size dwin. One then trains each of these models in an online fashion for a certain amount
of time (i.e., a few days), and then selects the best ones using the validation set error rate. That is,
breeding decisions were made on the basis of the value of the ranking criterion (17) estimated on
a validation set composed of one million words held out from the Wikipedia corpus. In the next
breeding iteration, one then chooses another set of k parameters from the possible grid of values
that permute slightly the most successful candidates from the previous round. As many of these
parameter choices can share weights, we can effectively continue online training retaining some of
the learning from the previous iterations.

Very long training times make such strategies necessary for the foreseeable future: if we had
been given computers ten times faster, we probably would have found uses for data sets ten times
bigger. However, we should say we believe that although we ended up with a particular choice of
parameters, many other choices are almost equally as good, although perhaps there are others that
are better as we could not do a full grid search.

In the following subsections, we report results obtained with two trained language models. The
results achieved by these two models are representative of those achieved by networks trained on
the full corpora.

• Language model LM1 has a window size dwin = 11 and a hidden layer with n1hu = 100 units.
The embedding layers were dimensioned like those of the supervised networks (Table 5).
Model LM1 was trained on our first English corpus (Wikipedia) using successive dictionaries
composed of the 5000, 10,000, 30,000, 50,000 and finally 100,000 most common WSJ
words. The total training time was about four weeks.

• Language model LM2 has the same dimensions. It was initialized with the embeddings of
LM1, and trained for an additional three weeks on our second English corpus
(Wikipedia+Reuters) using a dictionary size of 130,000 words.

4.4 Embeddings

Both networks produce much more appealing word embeddings than in Section 3.5. Table 7 shows
the ten nearest neighbors of a few randomly chosen query words for the LM1 model. The syntactic
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FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS

454 1973 6909 11724 29869 87025
AUSTRIA GOD AMIGA GREENISH NAILED OCTETS

BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD

GREECE KALI SEGA BROWNISH CRIMPED CARATS

SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ

EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS

HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S
SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1
trained with a dictionary of size 100,000. For each column the queried word is followed
by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using
the Euclidean metric, which was chosen arbitrarily).

and semantic properties of the neighbors are clearly related to those of the query word. These
results are far more satisfactory than those reported in Table 7 for embeddings obtained using purely
supervised training of the benchmark NLP tasks.

4.5 Semi-supervised Benchmark Results

Semi-supervised learning has been the object of much attention during the last few years (see
Chapelle et al., 2006). Previous semi-supervised approaches for NLP can be roughly categorized as
follows:

• Ad-hoc approaches such as Rosenfeld and Feldman (2007) for relation extraction.

• Self-training approaches, such as Ueffing et al. (2007) for machine translation, and McClosky
et al. (2006) for parsing. These methods augment the labeled training set with examples from
the unlabeled data set using the labels predicted by the model itself. Transductive approaches,
such as Joachims (1999) for text classification can be viewed as a refined form of self-training.

• Parameter sharing approaches such as Ando and Zhang (2005); Suzuki and Isozaki (2008).
Ando and Zhang propose a multi-task approach where they jointly train models sharing cer-
tain parameters. They train POS and NER models together with a language model (trained on
15 million words) consisting of predicting words given the surrounding tokens. Suzuki and
Isozaki embed a generative model (Hidden Markov Model) inside a CRF for POS, Chunking
and NER. The generative model is trained on one billion words. These approaches should
be seen as a linear counterpart of our work. Using multilayer models vastly expands the
parameter sharing opportunities (see Section 5).

Our approach simply consists of initializing the word lookup tables of the supervised networks
with the embeddings computed by the language models. Supervised training is then performed as
in Section 3.5. In particular the supervised training stage is free to modify the lookup tables. This
sequential approach is computationally convenient because it separates the lengthy training of the
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Approach POS CHUNK NER SRL
(PWA) (F1) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92
NN+WLL 96.31 89.13 79.53 55.40
NN+SLL 96.37 90.33 81.47 70.99
NN+WLL+LM1 97.05 91.91 85.68 58.18
NN+SLL+LM1 97.10 93.65 87.58 73.84
NN+WLL+LM2 97.14 92.04 86.96 58.34
NN+SLL+LM2 97.20 93.63 88.67 74.15

Table 8: Comparison in generalization performance of benchmark NLP systems with our (NN) ap-
proach on POS, chunking, NER and SRL tasks. We report results with both the word-level
log-likelihood (WLL) and the sentence-level log-likelihood (SLL). We report with (LMn)
performance of the networks trained from the language model embeddings (Table 7). Gen-
eralization performance is reported in per-word accuracy (PWA) for POS and F1 score for
other tasks.

language models from the relatively fast training of the supervised networks. Once the language
models are trained, we can perform multiple experiments on the supervised networks in a rela-
tively short time. Note that our procedure is clearly linked to the (semi-supervised) deep learning
procedures of Hinton et al. (2006), Bengio et al. (2007) and Weston et al. (2008).

Table 8 clearly shows that this simple initialization significantly boosts the generalization per-
formance of the supervised networks for each task. It is worth mentioning the larger language
model led to even better performance. This suggests that we could still take advantage of even
bigger unlabeled data sets.

4.6 Ranking and Language

There is a large agreement in the NLP community that syntax is a necessary prerequisite for se-
mantic role labeling (Gildea and Palmer, 2002). This is why state-of-the-art semantic role labeling
systems thoroughly exploit multiple parse trees. The parsers themselves (Charniak, 2000; Collins,
1999) contain considerable prior information about syntax (one can think of this as a kind of in-
formed pre-processing).

Our system does not use such parse trees because we attempt to learn this information from the
unlabeled data set. It is therefore legitimate to question whether our ranking criterion (17) has the
conceptual capability to capture such a rich hierarchical information. At first glance, the ranking
task appears unrelated to the induction of probabilistic grammars that underly standard parsing
algorithms. The lack of hierarchical representation seems a fatal flaw (Chomsky, 1956).

However, ranking is closely related to an alternative description of the language structure: op-
erator grammars (Harris, 1968). Instead of directly studying the structure of a sentence, Harris
defines an algebraic structure on the space of all sentences. Starting from a couple of elementary
sentence forms, sentences are described by the successive application of sentence transformation
operators. The sentence structure is revealed as a side effect of the successive transformations.
Sentence transformations can also have a semantic interpretation.
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In the spirit of structural linguistics, Harris describes procedures to discover sentence trans-
formation operators by leveraging the statistical regularities of the language. Such procedures are
obviously useful for machine learning approaches. In particular, he proposes a test to decide whether
two sentences forms are semantically related by a transformation operator. He first defines a ranking
criterion (Harris, 1968, Section 4.1):

“Starting for convenience with very short sentence forms, say ABC, we choose a
particular word choice for all the classes, say BqCq, except one, in this case A; for every
pair of members Ai, Aj of that word class we ask how the sentence formed with one
of the members, that is, AiBqCq compares as to acceptability with the sentence formed
with the other member, that is, AjBqCq.”

These gradings are then used to compare sentence forms:

“It now turns out that, given the graded n-tuples of words for a particular sentence
form, we can find other sentences forms of the same word classes in which the same
n-tuples of words produce the same grading of sentences.”

This is an indication that these two sentence forms exploit common words with the same syntac-
tic function and possibly the same meaning. This observation forms the empirical basis for the
construction of operator grammars that describe real-world natural languages such as English.

Therefore there are solid reasons to believe that the ranking criterion (17) has the conceptual
potential to capture strong syntactic and semantic information. On the other hand, the structure
of our language models is probably too restrictive for such goals, and our current approach only
exploits the word embeddings discovered during training.

5. Multi-Task Learning

It is generally accepted that features trained for one task can be useful for related tasks. This idea
was already exploited in the previous section when certain language model features, namely the
word embeddings, were used to initialize the supervised networks.

Multi-task learning (MTL) leverages this idea in a more systematic way. Models for all tasks
of interests are jointly trained with an additional linkage between their trainable parameters in the
hope of improving the generalization error. This linkage can take the form of a regularization
term in the joint cost function that biases the models towards common representations. A much
simpler approach consists in having the models share certain parameters defined a priori. Multi-
task learning has a long history in machine learning and neural networks. Caruana (1997) gives a
good overview of these past efforts.

5.1 Joint Decoding versus Joint Training

Multitask approaches do not necessarily involve joint training. For instance, modern speech recog-
nition systems use Bayes rule to combine the outputs of an acoustic model trained on speech data
and a language model trained on phonetic or textual corpora (Jelinek, 1976). This joint decoding
approach has been successfully applied to structurally more complex NLP tasks. Sutton and McCal-
lum (2005b) obtain improved results by combining the predictions of independently trained CRF
models using a joint decoding process at test time that requires more sophisticated probabilistic
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inference techniques. On the other hand, Sutton and McCallum (2005a) obtain results somewhat
below the state-of-the-art using joint decoding for SRL and syntactic parsing. Musillo and Merlo
(2006) also describe a negative result at the same joint task.

Joint decoding invariably works by considering additional probabilistic dependency paths be-
tween the models. Therefore it defines an implicit supermodel that describes all the tasks in the
same probabilistic framework. Separately training a submodel only makes sense when the train-
ing data blocks these additional dependency paths (in the sense of d-separation, Pearl, 1988). This
implies that, without joint training, the additional dependency paths cannot directly involve unob-
served variables. Therefore, the natural idea of discovering common internal representations across
tasks requires joint training.

Joint training is relatively straightforward when the training sets for the individual tasks con-
tain the same patterns with different labels. It is then sufficient to train a model that computes
multiple outputs for each pattern (Suddarth and Holden, 1991). Using this scheme, Sutton et al.
(2007) demonstrate improvements on POS tagging and noun-phrase chunking using jointly trained
CRFs. However the joint labeling requirement is a limitation because such data is not often avail-
able. Miller et al. (2000) achieves performance improvements by jointly training NER, parsing,
and relation extraction in a statistical parsing model. The joint labeling requirement problem was
weakened using a predictor to fill in the missing annotations.

Ando and Zhang (2005) propose a setup that works around the joint labeling requirements. They
define linear models of the form fi(x) = w�

i Φ(x)+ v�i ΘΨ(x) where fi is the classifier for the i-th
task with parameters wi and vi. Notations Φ(x) and Ψ(x) represent engineered features for the pat-
tern x. Matrix Θ maps the Ψ(x) features into a low dimensional subspace common across all tasks.
Each task is trained using its own examples without a joint labeling requirement. The learning pro-
cedure alternates the optimization of wi and vi for each task, and the optimization of Θ to minimize
the average loss for all examples in all tasks. The authors also consider auxiliary unsupervised tasks
for predicting substructures. They report excellent results on several tasks, including POS and NER.

5.2 Multi-Task Benchmark Results

Table 9 reports results obtained by jointly trained models for the POS, CHUNK, NER and SRL tasks
using the same setup as Section 4.5. We trained jointly POS, CHUNK and NER using the window
approach network. As we mentioned earlier, SRL can be trained only with the sentence approach
network, due to long-range dependencies related to the verb predicate. We thus performed additional
experiments, where all four tasks were trained using the sentence approach network. In both cases,
all models share the lookup table parameters (2). The parameters of the first linear layers (4) were
shared in the window approach case (see Figure 5), and the first the convolution layer parameters (6)
were shared in the sentence approach networks.

For the window approach, best results were obtained by enlarging the first hidden layer size to
n1hu = 500 (chosen by validation) in order to account for its shared responsibilities. We used the
same architecture as SRL for the sentence approach network. The word embedding dimension was
kept constant d0 = 50 in order to reuse the language models of Section 4.5.

Training was achieved by minimizing the loss averaged across all tasks. This is easily achieved
with stochastic gradient by alternatively picking examples for each task and applying (16) to all the
parameters of the corresponding model, including the shared parameters. Note that this gives each
task equal weight. Since each task uses the training sets described in Table 1, it is worth noticing
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Figure 5: Example of multitasking with NN. Task 1 and Task 2 are two tasks trained with the
window approach architecture presented in Figure 1. Lookup tables as well as the first
hidden layer are shared. The last layer is task specific. The principle is the same with
more than two tasks.

that examples can come from quite different data sets. The generalization performance for each
task was measured using the traditional testing data specified in Table 1. Fortunately, none of the
training and test sets overlap across tasks.

It is worth mentioning that MTL can produce a single unified network that performs well for
all these tasks using the sentence approach. However this unified network only leads to marginal
improvements over using a separate network for each task: the most important MTL task appears to
be the unsupervised learning of the word embeddings. As explained before, simple computational
considerations led us to train the POS, Chunking, and NER tasks using the window approach. The
baseline results in Table 9 also show that using the sentence approach for the POS, Chunking, and
NER tasks yields no performance improvement (or degradation) over the window approach. The
next section shows we can leverage known correlations between tasks in more direct manner.

6. The Temptation

Results so far have been obtained by staying (almost17) true to our from scratch philosophy. We
have so far avoided specializing our architecture for any task, disregarding a lot of useful a priori

17. We did some basic preprocessing of the raw input words as described in Section 3.5, hence the “almost” in the title of
this article. A completely from scratch approach would presumably not know anything about words at all and would
work from letters only (or, taken to a further extreme, from speech or optical character recognition, as humans do).
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Approach POS CHUNK NER SRL
(PWA) (F1) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92
Window Approach

NN+SLL+LM2 97.20 93.63 88.67 –
NN+SLL+LM2+MTL 97.22 94.10 88.62 –

Sentence Approach
NN+SLL+LM2 97.12 93.37 88.78 74.15
NN+SLL+LM2+MTL 97.22 93.75 88.27 74.29

Table 9: Effect of multi-tasking on our neural architectures. We trained POS, CHUNK NER in a
MTL way, both for the window and sentence network approaches. SRL was only included
in the sentence approach joint training. As a baseline, we show previous results of our
window approach system, as well as additional results for our sentence approach system,
when trained separately on each task. Benchmark system performance is also given for
comparison.

Approach POS CHUNK NER SRL
(PWA) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92
NN+SLL+LM2 97.20 93.63 88.67 74.15
NN+SLL+LM2+Suffix2 97.29 – – –
NN+SLL+LM2+Gazetteer – – 89.59 –
NN+SLL+LM2+POS – 94.32 88.67 –
NN+SLL+LM2+CHUNK – – – 74.72

Table 10: Comparison in generalization performance of benchmark NLP systems with our neural
networks (NNs) using increasing task-specific engineering. We report results obtained
with a network trained without the extra task-specific features (Section 5) and with the
extra task-specific features described in Section 6. The POS network was trained with
two character word suffixes; the NER network was trained using the small CoNLL 2003
gazetteer; the CHUNK and NER networks were trained with additional POS features;
and finally, the SRL network was trained with additional CHUNK features.

NLP knowledge. We have shown that, thanks to large unlabeled data sets, our generic neural net-
works can still achieve close to state-of-the-art performance by discovering useful features. This
section explores what happens when we increase the level of task-specific engineering in our sys-
tems by incorporating some common techniques from the NLP literature. We often obtain further
improvements. These figures are useful to quantify how far we went by leveraging large data sets
instead of relying on a priori knowledge.
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6.1 Suffix Features

Word suffixes in many western languages are strong predictors of the syntactic function of the word
and therefore can benefit the POS system. For instance, Ratnaparkhi (1996) uses inputs representing
word suffixes and prefixes up to four characters. We achieve this in the POS task by adding discrete
word features (Section 3.2.1) representing the last two characters of every word. The size of the
suffix dictionary was 455. This led to a small improvement of the POS performance (Table 10,
row NN+SLL+LM2+Suffix2). We also tried suffixes obtained with the Porter (1980) stemmer and
obtained the same performance as when using two character suffixes.

6.2 Gazetteers

State-of-the-art NER systems often use a large dictionary containing well known named entities
(e.g., Florian et al., 2003). We restricted ourselves to the gazetteer provided by the CoNLL chal-
lenge, containing 8,000 locations, person names, organizations, and miscellaneous entities. We
trained a NER network with 4 additional word features indicating (feature “on” or “off”) whether
the word is found in the gazetteer under one of these four categories. The gazetteer includes not
only words, but also chunks of words. If a sentence chunk is found in the gazetteer, then all words in
the chunk have their corresponding gazetteer feature turned to “on”. The resulting system displays
a clear performance improvement (Table 10, row NN+SLL+LM2+Gazetteer), slightly outperforming
the baseline. A plausible explanation of this large boost over the network using only the language
model is that gazetteers include word chunks, while we use only the word representation of our
language model. For example, “united” and “bicycle” seen separately are likely to be non-entities,
while “united bicycle” might be an entity, but catching it would require higher level representations
of our language model.

6.3 Cascading

When one considers related tasks, it is reasonable to assume that tags obtained for one task can be
useful for taking decisions in the other tasks. Conventional NLP systems often use features obtained
from the output of other preexisting NLP systems. For instance, Shen and Sarkar (2005) describe a
chunking system that uses POS tags as input; Florian et al. (2003) describes a NER system whose
inputs include POS and CHUNK tags, as well as the output of two other NER classifiers. State-of-
the-art SRL systems exploit parse trees (Gildea and Palmer, 2002; Punyakanok et al., 2005), related
to CHUNK tags, and built using POS tags (Charniak, 2000; Collins, 1999).

Table 10 reports results obtained for the CHUNK and NER tasks by adding discrete word fea-
tures (Section 3.2.1) representing the POS tags. In order to facilitate comparisons, instead of using
the more accurate tags from our POS network, we use for each task the POS tags provided by the
corresponding CoNLL challenge. We also report results obtained for the SRL task by adding word
features representing the CHUNK tags (also provided by the CoNLL challenge). We consistently
obtain moderate improvements.

6.4 Ensembles

Constructing ensembles of classifiers is a proven way to trade computational efficiency for general-
ization performance (Bell et al., 2007). Therefore it is not surprising that many NLP systems achieve
state-of-the-art performance by combining the outputs of multiple classifiers. For instance, Kudo
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Approach POS CHUNK NER
(PWA) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31
NN+SLL+LM2+POS worst 97.29 93.99 89.35
NN+SLL+LM2+POS mean 97.31 94.17 89.65
NN+SLL+LM2+POS best 97.35 94.32 89.86
NN+SLL+LM2+POS voting ensemble 97.37 94.34 89.70
NN+SLL+LM2+POS joined ensemble 97.30 94.35 89.67

Table 11: Comparison in generalization performance for POS, CHUNK and NER tasks of the net-
works obtained using by combining ten training runs with different initialization.

and Matsumoto (2001) use an ensemble of classifiers trained with different tagging conventions (see
Section 3.3.3). Winning a challenge is of course a legitimate objective. Yet it is often difficult to
figure out which ideas are most responsible for the state-of-the-art performance of a large ensemble.

Because neural networks are nonconvex, training runs with different initial parameters usually
give different solutions. Table 11 reports results obtained for the CHUNK and NER task after ten
training runs with random initial parameters. Voting the ten network outputs on a per tag basis
(“voting ensemble”) leads to a small improvement over the average network performance. We
have also tried a more sophisticated ensemble approach: the ten network output scores (before
sentence-level likelihood) were combined with an additional linear layer (4) and then fed to a new
sentence-level likelihood (13). The parameters of the combining layers were then trained on the
existing training set, while keeping the ten networks fixed (“joined ensemble”). This approach did
not improve on simple voting.

These ensembles come of course at the expense of a ten fold increase of the running time. On
the other hand, multiple training times could be improved using smart sampling strategies (Neal,
1996).

We can also observe that the performance variability among the ten networks is not very large.
The local minima found by the training algorithm are usually good local minima, thanks to the
oversized parameter space and to the noise induced by the stochastic gradient procedure (LeCun
et al., 1998). In order to reduce the variance in our experimental results, we always use the same
initial parameters for networks trained on the same task (except of course for the results reported in
Table 11.)

6.5 Parsing

Gildea and Palmer (2002) and Punyakanok et al. (2005) offer several arguments suggesting that
syntactic parsing is a necessary prerequisite for the SRL task. The CoNLL 2005 SRL benchmark
task provides parse trees computed using both the Charniak (2000) and Collins (1999) parsers.
State-of-the-art systems often exploit additional parse trees such as the k top ranking parse trees
(Koomen et al., 2005; Haghighi et al., 2005).

In contrast our SRL networks so far do not use parse trees at all. They rely instead on internal
representations transferred from a language model trained with an objective function that captures
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Figure 6: Charniak parse tree for the sentence “The luxury auto maker last year sold 1,214 cars
in the U.S.”. Level 0 is the original tree. Levels 1 to 4 are obtained by successively
collapsing terminal tree branches. For each level, words receive tags describing the seg-
ment associated with the corresponding leaf. All words receive tag “O” at level 3 in this
example.

a lot of syntactic information (see Section 4.6). It is therefore legitimate to question whether this
approach is an acceptable lightweight replacement for parse trees.

We answer this question by providing parse tree information as additional input features to our
system.18 We have limited ourselves to the Charniak parse tree provided with the CoNLL 2005 data.
Considering that a node in a syntactic parse tree assigns a label to a segment of the parsed sentence,
we propose a way to feed (partially) this labeled segmentation to our network, through additional
lookup tables. Each of these lookup tables encode labeled segments of each parse tree level (up to
a certain depth). The labeled segments are fed to the network following a IOBES tagging scheme
(see Sections 3.3.3 and 3.2.1). As there are 40 different phrase labels in WSJ, each additional tree-
related lookup tables has 161 entries (40×4+1) corresponding to the IBES segment tags, plus the
extra O tag.

We call level 0 the information associated with the leaves of the original Charniak parse tree.
The lookup table for level 0 encodes the corresponding IOBES phrase tags for each words. We
obtain levels 1 to 4 by repeatedly trimming the leaves as shown in Figure 6. We labeled “O” words
belonging to the root node “S”, or all words of the sentence if the root itself has been trimmed.

Experiments were performed using the LM2 language model using the same network archi-
tectures (see Table 5) and using additional lookup tables of dimension 5 for each parse tree level.
Table 12 reports the performance improvements obtained by providing increasing levels of parse

18. In a more recent work (Collobert, 2011), we propose an extension of this approach for the generation of full syntactic
parse trees, using a recurrent version of our architecture.
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Approach SRL
(valid) (test)

Benchmark System (six parse trees) 77.35 77.92
Benchmark System (top Charniak parse tree only) 74.76 –
NN+SLL+LM2 72.29 74.15
NN+SLL+LM2+Charniak (level 0 only) 74.44 75.65
NN+SLL+LM2+Charniak (levels 0 & 1) 74.50 75.81
NN+SLL+LM2+Charniak (levels 0 to 2) 75.09 76.05
NN+SLL+LM2+Charniak (levels 0 to 3) 75.12 75.89
NN+SLL+LM2+Charniak (levels 0 to 4) 75.42 76.06
NN+SLL+LM2+CHUNK – 74.72
NN+SLL+LM2+PT0 – 75.49

Table 12: Generalization performance on the SRL task of our NN architecture compared with the
benchmark system. We show performance of our system fed with different levels of depth
of the Charniak parse tree. We report previous results of our architecture with no parse
tree as a baseline. Koomen et al. (2005) report test and validation performance using six
parse trees, as well as validation performance using only the top Charniak parse tree. For
comparison purposes, we hence also report validation performance. Finally, we report
our performance with the CHUNK feature, and compare it against a level 0 feature PT0
obtained by our network.

tree information. Level 0 alone increases the F1 score by almost 1.5%. Additional levels yield
diminishing returns. The top performance reaches 76.06% F1 score. This is not too far from the
state-of-the-art system which we note uses six parse trees instead of one. Koomen et al. (2005) also
report a 74.76% F1 score on the validation set using only the Charniak parse tree. Using the first
three parse tree levels, we reach this performance on the validation set. These results corroborate
findings in the NLP literature (Gildea and Palmer, 2002; Punyakanok et al., 2005) showing that
parsing is important for the SRL task.

We also reported in Table 12 our previous performance obtained with the CHUNK feature (see
Table 10). It is surprising to observe that adding chunking features into the semantic role labeling
network performs significantly worse than adding features describing the level 0 of the Charniak
parse tree (Table 12). Indeed, if we ignore the label prefixes “BIES” defining the segmentation,
the parse tree leaves (at level 0) and the chunking have identical labeling. However, the parse trees
identify leaf sentence segments that are often smaller than those identified by the chunking tags,
as shown by Hollingshead et al. (2005).19 Instead of relying on Charniak parser, we chose to train
a second chunking network to identify the segments delimited by the leaves of the Penn Treebank
parse trees (level 0). Our network achieved 92.25% F1 score on this task (we call it PT0), while we
evaluated Charniak performance as 91.94% on the same task. As shown in Table 12, feeding our

19. As in Hollingshead et al. (2005), consider the sentence and chunk labels “(NP They) (VP are starting to buy) (NP
growth stocks)”. The parse tree can be written as “(S (NP They) (VP are (VP starting (S (VP to (VP buy (NP growth
stocks)))))))”. The tree leaves segmentation is thus given by “(NP They) (VP are) (VP starting) (VP to) (VP buy) (NP
growth stocks)”.
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own PT0 prediction into the SRL system gives similar performance to using Charniak predictions,
and is consistently better than the CHUNK feature.

6.6 Word Representations

We have described how we induced useful word embeddings by applying our architecture to a
language modeling task trained using a large amount of unlabeled text data. These embeddings
improve the generalization performance on all tasks (Section 4.) The literature describes other ways
to induce word representations. Mnih and Hinton (2007) proposed a related language model ap-
proach inspired from Restricted Boltzmann Machines. However, word representations are perhaps
more commonly inferred from n-gram language modeling rather than purely continuous language
models. One popular approach is the Brown clustering algorithm (Brown et al., 1992a), which
builds hierarchical word clusters by maximizing the bigram’s mutual information. The induced
word representation has been used with success in a wide variety of NLP tasks, including POS
(Schütze, 1995), NER (Miller et al., 2004; Ratinov and Roth, 2009), or parsing (Koo et al., 2008).
Other related approaches exist, like phrase clustering (Lin and Wu, 2009) which has been shown to
work well for NER. Finally, Huang and Yates (2009) have recently proposed a smoothed language
modeling approach based on a Hidden Markov Model, with success on POS and Chunking tasks.

While a comparison of all these word representations is beyond the scope of this paper, it is
rather fair to question the quality of our word embeddings compared to a popular NLP approach.
In this section, we report a comparison of our word embeddings against Brown clusters, when used
as features into our neural network architecture. We report as baseline previous results where our
word embeddings are fine-tuned for each task. We also report performance when our embeddings
are kept fixed during task-specific training. Since convex machine learning algorithms are common
practice in NLP, we finally report performances for the convex version of our architecture.

For the convex experiments, we considered the linear version of our neural networks (instead of
having several linear layers interleaved with a non-linearity). While we always picked the sentence
approach for SRL, we had to consider the window approach in this particular convex setup, as the
sentence approach network (see Figure 2) includes a Max layer. Having only one linear layer in our
neural network is not enough to make our architecture convex: all lookup-tables (for each discrete
feature) must also be fixed. The word-lookup table is simply fixed to the embeddings obtained from
our language model LM2. All other discrete feature lookup-tables (caps, POS, Brown Clusters...)
are fixed to a standard sparse representation. Using the notation introduced in Section 3.2.1, if LTWk

is the lookup-table of the kth discrete feature, we haveWk ∈R|Dk|×|Dk| and the representation of the
discrete input w is obtained with:

LTWk(w) = 〈Wk〉1w =

(
0, · · ·0, 1

at index w
, 0, · · · 0

)T

. (18)

Training our architecture in this convex setup with the sentence-level likelihood (13) corresponds
to training a CRF. In that respect, these convex experiments show the performance of our word
embeddings in a classical NLP framework.

Following the Ratinov and Roth (2009) and Koo et al. (2008) setups, we generated 1,000 Brown
clusters using the implementation20 from Liang (2005). To make the comparison fair, the clusters
were first induced on the concatenation of Wikipedia and Reuters data sets, as we did in Section 4

20. Available at http://www.eecs.berkeley.edu/˜pliang/software.
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Approach POS CHUNK NER SRL
(PWA) (F1) (F1) (F1)

Non-convex Approach
LM2 (non-linear NN) 97.29 94.32 89.59 76.06
LM2 (non-linear NN, fixed embeddings) 97.10 94.45 88.79 72.24
Brown Clusters (non-linear NN, 130K words) 96.92 94.35 87.15 72.09
Brown Clusters (non-linear NN, all words) 96.81 94.21 86.68 71.44

Convex Approach
LM2 (linear NN, fixed embeddings) 96.69 93.51 86.64 59.11
Brown Clusters (linear NN, 130K words) 96.56 94.20 86.46 51.54
Brown Clusters (linear NN, all words) 96.28 94.22 86.63 56.42

Table 13: Generalization performance of our neural network architecture trained with our language
model (LM2) word embeddings, and with the word representations derived from the
Brown Clusters. As before, all networks are fed with a capitalization feature. Addition-
ally, POS is using a word suffix of size 2 feature, CHUNK is fed with POS, NER uses
the CoNLL 2003 gazetteer, and SRL is fed with levels 1–5 of the Charniak parse tree, as
well as a verb position feature. We report performance with both convex and non-convex
architectures (300 hidden units for all tasks, with an additional 500 hidden units layer for
SRL). We also provide results for Brown Clusters induced with a 130K word dictionary,
as well as Brown Clusters induced with all words of the given tasks.

for training our largest language model LM2, using a 130K word dictionary. This dictionary covers
about 99% of the words in the training set of each task. To cover the last 1%, we augmented the
dictionary with the missing words (reaching about 140K words) and induced Brown Clusters using
the concatenation of WSJ, Wikipedia, and Reuters.

The Brown clustering approach is hierarchical and generates a binary tree of clusters. Each
word in the vocabulary is assigned to a node in the tree. Features are extracted from this tree by
considering the path from the root to the node containing the word of interest. Following Ratinov &
Roth, we picked as features the path prefixes of size 4, 6, 10 and 20. In the non-convex experiments,
we fed these four Brown Cluster features to our architecture using four different lookup tables,
replacing our word lookup table. The size of the lookup tables was chosen to be 12 by validation. In
the convex case, we used the classical sparse representation (18), as for any other discrete feature.

We first report in Table 13 generalization performance of our best non-convex networks trained
with our LM2 language model and with Brown Cluster features. Our embeddings perform at least
as well as Brown Clusters. Results are more mitigated in a convex setup. For most tasks, going
non-convex is better for both word representation types. In general, “fine-tuning” our embeddings
for each task also gives an extra boost. Finally, using a better word coverage with Brown Clusters
(“all words” instead of “130K words” in Table 13) did not help.

More complex features could be possibly combined instead of using a non-linear model. For
instance, Turian et al. (2010) performed a comparison of Brown Clusters and embeddings trained
in the same spirit as ours21, with additional features combining labels and tokens. We believe this

21. However they did not reach our embedding performance. There are several differences in how they trained their
models that might explain this. Firstly, they may have experienced difficulties because they train 50-dimensional
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Task Features
POS Suffix of size 2
CHUNK POS
NER CoNLL 2003 gazetteer
PT0 POS
SRL PT0, verb position

Table 14: Features used by SENNA implementation, for each task. In addition, all tasks use “low
caps word” and “caps” features.

Task Benchmark SENNA
Part of Speech (POS) (Accuracy) 97.24 % 97.29 %
Chunking (CHUNK) (F1) 94.29 % 94.32 %
Named Entity Recognition (NER) (F1) 89.31 % 89.59 %
Parse Tree level 0 (PT0) (F1) 91.94 % 92.25 %
Semantic Role Labeling (SRL) (F1) 77.92 % 75.49 %

Table 15: Performance of the engineered sweet spot (SENNA) on various tagging tasks. The PT0
task replicates the sentence segmentation of the parse tree leaves. The corresponding
benchmark score measures the quality of the Charniak parse tree leaves relative to the
Penn Treebank gold parse trees.

type of comparison should be taken with care, as combining a given feature with different word
representations might not have the same effect on each word representation.

6.7 Engineering a Sweet Spot

We implemented a standalone version of our architecture, written in the C language. We gave
the name “SENNA” (Semantic/syntactic Extraction using a Neural Network Architecture) to the
resulting system. The parameters of each architecture are the ones described in Table 5. All the
networks were trained separately on each task using the sentence-level likelihood (SLL). The word
embeddings were initialized to LM2 embeddings, and then fine-tuned for each task. We summarize
features used by our implementation in Table 14, and we report performance achieved on each task
in Table 15. The runtime version22 contains about 2500 lines of C code, runs in less than 150MB
of memory, and needs less than a millisecond per word to compute all the tags. Table 16 compares
the tagging speeds for our system and for the few available state-of-the-art systems: the Toutanova
et al. (2003) POS tagger23, the Shen et al. (2007) POS tagger24 and the Koomen et al. (2005) SRL

embeddings for 269K distinct words using a comparatively small training set (RCV1, 37Mwords), unlikely to contain
enough instances of the rare words. Secondly, they predict the correctness of the final word of each window instead
of the center word (Turian et al., 2010), effectively restricting the model to unidirectional prediction. Finally, they do
not fine tune their embeddings after unsupervised training.

22. Available at http://ml.nec-labs.com/senna.
23. Available at http://nlp.stanford.edu/software/tagger.shtml. We picked the 3.0 version (May 2010).
24. Available at http://www.cis.upenn.edu/˜xtag/spinal.
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POS System RAM (MB) Time (s)
Toutanova et al. (2003) 800 64
Shen et al. (2007) 2200 833

SENNA 32 4

SRL System RAM (MB) Time (s)
Koomen et al. (2005) 3400 6253

SENNA 124 51

Table 16: Runtime speed and memory consumption comparison between state-of-the-art systems
and our approach (SENNA). We give the runtime in seconds for running both the POS
and SRL taggers on their respective testing sets. Memory usage is reported in megabytes.

system.25 All programs were run on a single 3GHz Intel core. The POS taggers were run with
Sun Java 1.6 with a large enough memory allocation to reach their top tagging speed. The beam
size of the Shen tagger was set to 3 as recommended in the paper. Regardless of implementation
differences, it is clear that our neural networks run considerably faster. They also require much less
memory. Our POS and SRL tagger runs in 32MB and 120MB of RAM respectively. The Shen
and Toutanova taggers slow down significantly when the Java machine is given less than 2.2GB and
800MB of RAM respectively, while the Koomen tagger requires at least 3GB of RAM.

We believe that a number of reasons explain the speed advantage of our system. First, our
system only uses rather simple input features and therefore avoids the nonnegligible computation
time associated with complex handcrafted features. Secondly, most network computations are dense
matrix-vector operations. In contrast, systems that rely on a great number of sparse features experi-
ence memory latencies when traversing the sparse data structures. Finally, our compact implemen-
tation is self-contained. Since it does not rely on the outputs of disparate NLP system, it does not
suffer from communication latency issues.

7. Critical Discussion

Although we believe that this contribution represents a step towards the “NLP from scratch” objec-
tive, we are keenly aware that both our goal and our means can be criticized.

The main criticism of our goal can be summarized as follows. Over the years, the NLP com-
munity has developed a considerable expertise in engineering effective NLP features. Why should
they forget this painfully acquired expertise and instead painfully acquire the skills required to train
large neural networks? As mentioned in our introduction, we observe that no single NLP task really
covers the goals of NLP. Therefore we believe that task-specific engineering (i.e., that does not gen-
eralize to other tasks) is not desirable. But we also recognize how much our neural networks owe to
previous NLP task-specific research.

The main criticism of our means is easier to address. Why did we choose to rely on a twenty
year old technology, namely multilayer neural networks? We were simply attracted by their ability
to discover hidden representations using a stochastic learning algorithm that scales linearly with

25. Available at http://l2r.cs.uiuc.edu/˜cogcomp/asoftware.php?skey=SRL.
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the number of examples. Most of the neural network technology necessary for our work has been
described ten years ago (e.g., Le Cun et al., 1998). However, if we had decided ten years ago to train
the language model network LM2 using a vintage computer, training would only be nearing com-
pletion today. Training algorithms that scale linearly are most able to benefit from such tremendous
progress in computer hardware.

8. Conclusion

We have presented a multilayer neural network architecture that can handle a number of NLP tasks
with both speed and accuracy. The design of this system was determined by our desire to avoid
task-specific engineering as much as possible. Instead we rely on large unlabeled data sets and let
the training algorithm discover internal representations that prove useful for all the tasks of interest.
Using this strong basis, we have engineered a fast and efficient “all purpose” NLP tagger that we
hope will prove useful to the community.
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Appendix A. Neural Network Gradients

We consider a neural network fθ(·), with parameters θ. Wemaximize the likelihood (8), or minimize
ranking criterion (17), with respect to the parameters θ, using stochastic gradient. By negating the
likelihood, we now assume it all corresponds to minimize a costC( fθ(·)), with respect to θ.

Following the classical “back-propagation” derivations (LeCun, 1985; Rumelhart et al., 1986)
and the modular approach shown in Bottou (1991), any feed-forward neural network with L layers,
like the ones shown in Figure 1 and Figure 2, can be seen as a composition of functions f lθ(·),
corresponding to each layer l:

fθ(·) = f Lθ ( f
L−1
θ (. . . f 1θ (·) . . .))

Partitioning the parameters of the network with respect to each layers 1≤ l ≤ L, we write:

θ= (θ1, . . . , θl, . . . , θL) .

We are now interested in computing the gradients of the cost with respect to each θl . Applying the
chain rule (generalized to vectors) we obtain the classical backpropagation recursion:

∂C
∂θl

=
∂ f lθ
∂θl

∂C

∂ f lθ
(19)

∂C

∂ f l−1θ

=
∂ f lθ
∂ f l−1θ

∂C

∂ f lθ
. (20)

In other words, we first initialize the recursion by computing the gradient of the cost with respect to
the last layer output ∂C/∂ f Lθ . Then each layer l computes the gradient respect to its own parameters
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with (19), given the gradient coming from its output ∂C/∂ f lθ. To perform the backpropagation, it
also computes the gradient with respect to its own inputs, as shown in (20). We now derive the
gradients for each layer we used in this paper.

A.1 Lookup Table Layer

Given a matrix of parameters θ1 =W 1 and word (or discrete feature) indices [w]T1 , the layer outputs
the matrix:

f lθ([w]
T
l ) =

(
〈W 〉1[w]1

〈W 〉1[w]2
. . . 〈W 〉1[w]T

)
.

The gradients of the weights 〈W 〉1i are given by:

∂C
∂〈W 〉1i

= ∑
{1≤t≤T / [w]t=i}

〈
∂C

∂ f lθ
〉1i

This sum equals zero if the index i in the lookup table does not corresponds to a word in the se-
quence. In this case, the ith column ofW does not need to be updated. As a Lookup Table Layer is
always the first layer, we do not need to compute its gradients with respect to the inputs.

A.2 Linear Layer

Given parameters θl = (Wl,bl), and an input vector f l−1θ the output is given by:

f lθ =Wl f l−1θ +bl . (21)

The gradients with respect to the parameters are then obtained with:

∂C
∂Wl =

[
∂C

∂ f lθ

][
f l−1θ

]T
and

∂C
∂bl

=
∂C

∂ f lθ
, (22)

and the gradients with respect to the inputs are computed with:

∂C

∂ f l−1θ

=
[
Wl

]T ∂C
∂ f lθ

. (23)

A.3 Convolution Layer

Given a input matrix f l−1θ , a Convolution Layer f lθ(·) applies a Linear Layer operation (21) suc-
cessively on each window 〈 f l−1θ 〉dwint (1 ≤ t ≤ T ) of size dwin. Using (22), the gradients of the
parameters are thus given by summing over all windows:

∂C
∂Wl =

T

∑
t=1

[
〈
∂C

∂ f lθ
〉1t

][
〈 f l−1θ 〉dwint

]T
and

∂C
∂bl

=
T

∑
t=1

〈
∂C

∂ f lθ
〉1t .

After initializing the input gradients ∂C/∂ f l−1θ to zero, we iterate (23) over all windows for 1≤ t ≤
T , leading the accumulation26:

〈
∂C

∂ f l−1θ

〉dwint +=
[
Wl

]T
〈
∂C

∂ f lθ
〉1t .

26. We denote “+=” any accumulation operation.
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A.4 Max Layer

Given a matrix f l−1θ , the Max Layer computes[
f lθ
]
i
=max

t

[
〈 f l−1θ 〉1t

]
i
and ai = argmax

t

[
〈 f l−1θ 〉1t

]
i
∀i ,

where ai stores the index of the largest value. We only need to compute the gradient with respect to
the inputs, as this layer has no parameters. The gradient is given by[

〈
∂C

∂ f l−1θ

〉1t

]
i

=

{ [
〈 ∂C
∂ f lθ

〉1t

]
i
if t = ai

0 otherwise
.

A.5 HardTanh Layer

Given a vector f l−1θ , and the definition of the HardTanh (5) we get

[
∂C

∂ f l−1θ

]
i

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if

[
f l−1θ

]
i
<−1[

∂C
∂ f lθ

]
i
if −1<=

[
f l−1θ

]
i
<= 1

0 if
[
f l−1θ

]
i
> 1

,

if we ignore non-differentiability points.

A.6 Word-Level Log-Likelihood

The network outputs a score [ fθ]i for each tag indexed by i. Following (11), if y is the true tag for a
given example, the stochastic score to minimize can be written as

C( fθ) = logadd
j

[ fθ] j− [ fθ]y

Considering the definition of the logadd (10), the gradient with respect to fθ is given by

∂C
∂ [ fθ]i

=
e[ fθ]i

∑k e[ fθ]k
−1i=y ∀i.

A.7 Sentence-Level Log-Likelihood

The network outputs a matrix where each element
[
fθ
]
i, t gives a score for tag i at word t. Given a

tag sequence [y]T1 and a input sequence [x]
T
1 , we maximize the likelihood (13), which corresponds

to minimizing the score

C( fθ,A) = logadd
∀[ j]T1

s([x]T1 , [ j]
T
1 , θ̃)︸ ︷︷ ︸

Clogadd

−s([x]T1 , [y]
T
1 , θ̃) ,

with

s([x]T1 , [y]
T
1 , θ̃) =

T

∑
t=1

(
[A][y]t−1, [y]t +[ fθ][y]t , t

)
.
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We first initialize all gradients to zero

∂C

∂
[
fθ
]
i, t

= 0 ∀i, t and
∂C

∂ [A]i, j
= 0 ∀i, j .

We then accumulate gradients over the second part of the cost −s([x]T1 , [y]
T
1 , θ̃), which gives:

∂C

∂
[
fθ
]
[y]t , t

+=1

∂C
∂ [A][y]t−1, [y]t

+=1
∀t .

We now need to accumulate the gradients over the first part of the cost, that isClogadd . We differen-
tiate Clogadd by applying the chain rule through the recursion (14). First we initialize our recursion
with

∂Clogadd
∂δT (i)

=
eδT (i)

∑k eδT (k)
∀i .

We then compute iteratively:

∂Clogadd
∂δt−1(i)

=∑
j

∂Clogadd
∂δt( j)

eδt−1(i)+[A]i, j

∑k e
δt−1(k)+[A]k, j

,

where at each step t of the recursion we accumulate of the gradients with respect to the inputs fθ,
and the transition scores [A]i, j:

∂C

∂
[
fθ
]
i, t

+=
∂Clogadd
∂δt(i)

∂δt(i)

∂
[
fθ
]
i, t

=
∂Clogadd
∂δt(i)

∂C
∂ [A]i, j

+=
∂Clogadd
∂δt( j)

∂δt( j)
∂ [A]i, j

=
∂Clogadd
∂δt( j)

eδt−1(i)+[A]i, j

∑k e
δt−1(k)+[A]k, j

.

A.8 Ranking Criterion

We use the ranking criterion (17) for training our language model. In this case, given a “positive”
example x and a “negative” example x(w), we want to minimize:

C( fθ(x), fθ(x
w)) =max

{
0 , 1− fθ(x)+ fθ(x

(w))
}
.

Ignoring the non-differentiability of max(0, ·) in zero, the gradient is simply given by:

( ∂C
∂ fθ(x)

∂C
∂ fθ(xw)

)
=

⎧⎪⎪⎨⎪⎪⎩
(

−1

1

)
if 1− fθ(x)+ fθ(x(w))> 0(

0

0

)
otherwise

.
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P. Liang, H. Daumé, III, and D. Klein. Structure compilation: trading structure for features. In
International Conference on Machine learning (ICML), pages 592–599, 2008.

D. Lin and X. Wu. Phrase clustering for discriminative learning. In Meeting of the Association for
Computational Linguistics (ACL), pages 1030–1038, 2009.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. InMachine Learning, pages 285–318, 1988.

A. McCallum andWei Li. Early results for named entity recognition with conditional random fields,
feature induction and web-enhanced lexicons. In Conference of the North American Chapter of
the Association for Computational Linguistics & Human Language Technologies (NAACL-HLT),
pages 188–191, 2003.

D. McClosky, E. Charniak, and M. Johnson. Effective self-training for parsing. Conference of the
North American Chapter of the Association for Computational Linguistics & Human Language
Technologies (NAACL-HLT), 2006.

R. McDonald, K. Crammer, and F. Pereira. Flexible text segmentation with structured multilabel
classification. In Conference on Human Language Technology and Empirical Methods in Natural
Language Processing (HLT-EMNLP), pages 987–994, 2005.

S. Miller, H. Fox, L. Ramshaw, and R. Weischedel. A novel use of statistical parsing to extract
information from text. Applied Natural Language Processing Conference (ANLP), 2000.

S. Miller, J. Guinness, and A. Zamanian. Name tagging with word clusters and discriminative
training. In Conference of the North American Chapter of the Association for Computational
Linguistics & Human Language Technologies (NAACL-HLT), pages 337–342, 2004.

A Mnih and G. E. Hinton. Three new graphical models for statistical language modelling. In
International Conference on Machine Learning (ICML), pages 641–648, 2007.

G. Musillo and P. Merlo. Robust Parsing of the Proposition Bank. ROMAND 2006: Robust Methods
in Analysis of Natural language Data, 2006.

R. M. Neal. Bayesian Learning for Neural Networks. Number 118 in Lecture Notes in Statistics.
Springer-Verlag, New York, 1996.

D. Okanohara and J. Tsujii. A discriminative language model with pseudo-negative samples. Meet-
ing of the Association for Computational Linguistics (ACL), pages 73–80, 2007.

M. Palmer, D. Gildea, and P. Kingsbury. The proposition bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1):71–106, 2005.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San Mateo, 1988.

D. C. Plaut and G. E. Hinton. Learning sets of filters using back-propagation. Computer Speech
and Language, 2:35–61, 1987.

M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

2535



COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

S. Pradhan, W. Ward, K. Hacioglu, J. Martin, and D. Jurafsky. Shallow semantic parsing using
support vector machines. Conference of the North American Chapter of the Association for
Computational Linguistics & Human Language Technologies (NAACL-HLT), 2004.

S. Pradhan, K. Hacioglu, W.Ward, J. H. Martin, and D. Jurafsky. Semantic role chunking combining
complementary syntactic views. In Conference on Computational Natural Language Learning
(CoNLL), pages 217–220, 2005.

V. Punyakanok, D. Roth, and W. Yih. The necessity of syntactic parsing for semantic role labeling.
In International Joint Conference on Artificial Intelligence (IJCAI), pages 1117–1123, 2005.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

L. Ratinov and D. Roth. Design challenges and misconceptions in named entity recognition. InCon-
ference on Computational Natural Language Learning (CoNLL), pages 147–155. Association for
Computational Linguistics, 2009.

A. Ratnaparkhi. A maximum entropy model for part-of-speech tagging. InConference on Empirical
Methods in Natural Language Processing (EMNLP), pages 133–142, 1996.

B. Rosenfeld and R. Feldman. Using Corpus Statistics on Entities to Improve Semi-supervised
Relation Extraction from the Web. Meeting of the Association for Computational Linguistics
(ACL), pages 600–607, 2007.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by back-
propagating errors. In D.E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognition, volume 1, pages 318–362. MIT Press,
1986.

H. Schütze. Distributional part-of-speech tagging. InMeeting of the Association for Computational
Linguistics (ACL), pages 141–148, 1995.

H. Schwenk and J. L. Gauvain. Connectionist language modeling for large vocabulary continuous
speech recognition. In International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 765–768, 2002.

F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Conference of the North
American Chapter of the Association for Computational Linguistics & Human Language Tech-
nologies (NAACL-HLT), pages 134–141, 2003.

C. E. Shannon. Prediction and entropy of printed english. Bell Systems Technical Journal, 30:
50–64, 1951.

H. Shen and A. Sarkar. Voting between multiple data representations for text chunking. Advances
in Artificial Intelligence, pages 389–400, 2005.

L. Shen, G. Satta, and A. K. Joshi. Guided learning for bidirectional sequence classification. In
Meeting of the Association for Computational Linguistics (ACL), 2007.

2536



NATURAL LANGUAGE PROCESSING (ALMOST) FROM SCRATCH

N. A. Smith and J. Eisner. Contrastive estimation: Training log-linear models on unlabeled data. In
Meeting of the Association for Computational Linguistics (ACL), pages 354–362, 2005.

S. C. Suddarth and A. D. C. Holden. Symbolic-neural systems and the use of hints for developing
complex systems. International Journal of Man-Machine Studies, 35(3):291–311, 1991.

X. Sun, L.-P. Morency, D. Okanohara, and J. Tsujii. Modeling latent-dynamic in shallow parsing: a
latent conditional model with improved inference. In International Conference on Computational
Linguistics (COLING), pages 841–848, 2008.

C. Sutton and A. McCallum. Joint parsing and semantic role labeling. In Conference on Computa-
tional Natural Language (CoNLL), pages 225–228, 2005a.

C. Sutton and A.McCallum. Composition of conditional random fields for transfer learning. Confer-
ence on Human Language Technology and Empirical Methods in Natural Language Processing
(HLT-EMNLP), pages 748–754, 2005b.

C. Sutton, A. McCallum, and K. Rohanimanesh. Dynamic Conditional Random Fields: Factorized
Probabilistic Models for Labeling and Segmenting Sequence Data. Journal of Machine Learning
Research (JMLR), 8:693–723, 2007.

J. Suzuki and H. Isozaki. Semi-supervised sequential labeling and segmentation using giga-word
scale unlabeled data. In Conference of the North American Chapter of the Association for Com-
putational Linguistics & Human Language Technologies (NAACL-HLT), pages 665–673, 2008.

W. J. Teahan and J. G. Cleary. The entropy of english using ppm-based models. In Data Compres-
sion Conference (DCC), pages 53–62. IEEE Computer Society Press, 1996.

K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-of-speech tagging with a
cyclic dependency network. In Conference of the North American Chapter of the Association for
Computational Linguistics & Human Language Technologies (NAACL-HLT), 2003.

J. Turian, L. Ratinov, and Y. Bengio. Word representations: A simple and general method for semi-
supervised learning. In Meeting of the Association for Computational Linguistics (ACL), pages
384–392, 2010.

N. Ueffing, G. Haffari, and A. Sarkar. Transductive learning for statistical machine translation. In
Meeting of the Association for Computational Linguistics (ACL), pages 25–32, 2007.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K.J. Lang. Phoneme recognition using time-
delay neural networks. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(3):
328–339, 1989.

J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervised embedding. In Interna-
tional Conference on Machine learning (ICML), pages 1168–1175, 2008.

2537



 



Journal of Machine Learning Research 12 (2011) 2539-2561 Submitted 5/10; Revised 6/11; Published 9/11

Weisfeiler-Lehman Graph Kernels

Nino Shervashidze NINO.SHERVASHIDZE@TUEBINGEN.MPG.DE
Machine Learning & Computational Biology Research Group
Max Planck Institutes Tübingen
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1. Introduction

Graph-structured data is becoming more and more abundant: examples are social networks, protein
or gene regulation networks, chemical pathways and protein structures, or the growing body of
research in program flow analysis. To analyze and understand this data, one needs data analysis
and machine learning methods that can handle large-scale graph data sets. For instance, a typical
problem of learning on graphs arises in chemoinformatics: In this problem one is given a large set
of chemical compounds, represented as node- and edge-labeled graphs, that have a certain function
(e.g., mutagenicity or toxicity) and another set of molecules that do not have this function. The task
then is to accurately predict whether a new, previously unseen molecule will exhibit this function
or not. A common assumption made in this problem is that molecules with similar structure have
similar functional properties. The problem of measuring the similarity of graphs is therefore at the
core of learning on graphs.

There exist many graph similarity measures based on graph isomorphism or related concepts
such as subgraph isomorphism or the largest common subgraph. Possibly the most natural measure
of similarity of graphs is to check whether the graphs are topologically identical, that is, isomor-
phic. This gives rise to a binary similarity measure, which equals 1 if the graphs are isomorphic,
and 0 otherwise. Despite the idea of checking graph isomorphism being so intuitive, no efficient
algorithms are known for it. The graph isomorphism problem is in NP, but has been neither proven
NP-complete nor found to be solved by a polynomial-time algorithm (Garey and Johnson, 1979,
Chapter 7).

Subgraph isomorphism checking is the analogue of graph isomorphism checking in a setting
in which the two graphs have different sizes. Unlike the graph isomorphism problem, the problem
of subgraph isomorphism has been proven to be NP-complete (Garey and Johnson, 1979, Section
3.2.1). A slightly less restrictive measure of similarity can be defined based on the size of the largest
common subgraph in two graphs, but unfortunately the problem of finding the largest common
subgraph of two graphs is NP-complete as well (Garey and Johnson, 1979, Section 3.3).

Besides being computationally expensive or even intractable, similarity measures based on
graph isomorphism and its variants are too restrictive in the sense that graphs have to be exactly
identical or contain large identical subgraphs in order to be deemed similar by these measures.
More flexible similarity measures, based on inexact matching of graphs, have been proposed in the
literature. Graph comparison methods based on graph edit distances (Bunke and Allermann, 1983;
Neuhaus and Bunke, 2005) are expressive similarity measures respecting the topology, as well as
node and edge labels of graphs, but they are hard to parameterize and involve solving NP-complete
problems as intermediate steps. Another type of graph similarity measures, optimal assignment
kernels (Fröhlich et al., 2005), arise from finding the best match between substructures of graphs.
However, these kernels are not positive semidefinite in general (Vert, 2008).

Recently proposed group theoretical approaches for representing graphs, the skew spectrum
(Kondor and Borgwardt, 2008) and the graphlet spectrum (Kondor et al., 2009) can also be used
for defining similarity measures on graphs that are computable in polynomial time. However, the
skew spectrum is restricted to unlabeled graphs, while the graphlet spectrum can be difficult to
parameterize on general labeled graphs.

Graph kernels have recently evolved into a rapidly developing branch of learning on struc-
tured data. They respect and exploit graph topology, but restrict themselves to comparing substruc-
tures of graphs that are computable in polynomial time. Graph kernels bridge the gap between
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graph-structured data and a large spectrum of machine learning algorithms called kernel methods
(Schölkopf and Smola, 2002), that include algorithms such as support vector machines, kernel re-
gression, or kernel PCA (see Hofmann et al., 2008, for a recent review of kernel algorithms).

Informally, a kernel is a function of two objects that quantifies their similarity. Mathematically, it
corresponds to an inner product in a reproducing kernel Hilbert space (Schölkopf and Smola, 2002).
Graph kernels are instances of the family of so-called R-convolution kernels by Haussler (1999).
R-convolution is a generic way of defining kernels on discrete compound objects by comparing all
pairs of decompositions thereof. Therefore, a new type of decomposition of a graph results in a new
graph kernel.

Given a decomposition relation R that decomposes a graph into any of its subgraphs and the
remaining part of the graph, the associated R-convolution kernel will compare all subgraphs in two
graphs. However, this all subgraphs kernel is at least as hard to compute as deciding if graphs are
isomorphic (Gärtner et al., 2003). Therefore one usually restricts graph kernels to compare only
specific types of subgraphs that are computable in polynomial runtime.

1.1 Review of Graph Kernels

Before we review graph kernels from the literature, we clarify our terminology. We define a graphG
as a triplet (V,E, �), where V is the set of vertices, E is the set of undirected edges, and � :V → Σ is
a function that assigns labels from an alphabet Σ to nodes in the graph.1 The neighbourhood N (v)
of a node v is the set of nodes to which v is connected by an edge, that is N (v) = {v′|(v,v′) ∈ E}.
For simplicity, we assume that every graph has n nodes, m edges, and a maximum degree of d. The
size of G is defined as the cardinality of V .

A walk is a sequence of nodes in a graph, in which consecutive nodes are connected by an
edge. A path is a walk that consists of distinct nodes only. A (rooted) subtree is a subgraph of
a graph, which has no cycles, but a designated root node. A subtree of G can thus be seen as a
connected subset of distinct nodes of G with an underlying tree structure. The height of a subtree is
the maximum distance between the root and any other node in the subtree. Just as the notion of walk
extends the notion of path by allowing nodes to be equal, the notion of subtrees can be extended
to subtree patterns (also called tree-walks, Bach, 2008), which can have nodes that are equal (see
Figure 1). These repetitions of the same node are then treated as distinct nodes, such that the pattern
is still a cycle-free tree. Note that all subtree kernels compare subtree patterns in two graphs, not
(strict) subtrees.

Several different graph kernels have been defined in machine learning which can be categorized
into three classes: graph kernels based on walks (Kashima et al., 2003; Gärtner et al., 2003) and
paths (Borgwardt and Kriegel, 2005), graph kernels based on limited-size subgraphs (Horváth et al.,
2004; Shervashidze et al., 2009), and graph kernels based on subtree patterns (Ramon and Gärtner,
2003; Mahé and Vert, 2009).

The first class, graph kernels on walks and paths, compute the number of matching pairs of
random walks (resp. paths) in two graphs. The standard formulation of the random walk kernel,
based on the direct product graph of two graphs, is computable inO(n6) for a pair of graphs (Gärtner
et al., 2003). However, the same problem can be stated in terms of Kronecker products that can
be exploited to bring down the runtime complexity to O(n3) (Vishwanathan et al., 2010). For a

1. An extension of this definition and of our results to graphs with discrete edge labels is straightforward, but omitted
for clarity of presentation.
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Figure 1: A subtree pattern of height 2 rooted at the node 1. Note the repetitions of nodes in the
unfolded subtree pattern on the right.

computer vision application, Harchaoui and Bach (2007) have proposed a dynamic programming-
based approach to speed up the computation of the randomwalk kernel, but at the cost of considering
walks of fixed size. Suard et al. (2005) and Vert et al. (2009) present other applications of random
walk kernels in computer vision. Mahé et al. (2004) have proposed extensions of marginalized
graph kernels (Kashima et al., 2003) for a chemoinformatics application: here the authors relabel
vertices of graphs using the Morgan index (Morgan, 1965), which increases the specificity of labels
by augmenting them with information on the number of walks starting at a node, and thereby also
helps reduce the runtime, as fewer vertices will match. The shortest path kernel by Borgwardt and
Kriegel (2005) counts pairs of shortest paths having the same source and sink labels and the same
length in two graphs. The runtime of this kernel scales as O(n4).

The second class, graph kernels based on limited-size subgraphs, includes kernels based on so-
called graphlets, which represent graphs as counts of all types of subgraphs of size k ∈ {3,4,5}.
There exist efficient computation schemes for these kernels based on sampling or exploitation of
the low maximum degree of graphs (Shervashidze et al., 2009), but these apply to unlabeled graphs
only. Cyclic pattern kernels (Horváth et al., 2004) count pairs of matching cyclic patterns in two
graphs. Computing this kernel for a general graph is unfortunately NP-hard, however there exist
special cases where the kernel can be efficiently computed. The kernel, recently proposed by Costa
and De Grave (2010), can also be classified in this category: It counts identical pairs of rooted
subgraphs containing nodes up to a certain distance from the root, the roots of which are located at
a certain distance from each other, in two graphs.

The first kernel from the third class, subtree kernels, was defined by Ramon and Gärtner (2003).
Intuitively, to compare graphs G and G′, this kernel iteratively compares all matchings between
neighbours of two nodes v from G and v′ from G′. In other words, for all pairs of nodes v from
G and v′ from G′, it counts all pairs of matching substructures in subtree patterns rooted at v and
v′. The runtime complexity of the subtree kernel for a data set of N graphs is O(N2n2h 4d). For a
detailed description of this kernel see Section 3.2.2.

The subtree kernels by Mahé and Vert (2009) and Bach (2008) refine the Ramon-Gärtner kernel
for applications in chemoinformatics and hand-written digit recognition. BothMahé and Vert (2009)
and Bach (2008) propose to consider α-ary subtrees with at most α children per node. This restricts
the set of matchings to matchings of up to α nodes, but the runtime complexity is still exponential
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in this parameter α, which both papers describe as feasible on small graphs (with approximately 20
nodes on average) with many distinct node labels.

It is a general limitation of all the aforementioned graph kernels that they scale poorly to large,
labeled graphs with more than 100 nodes: In the worst case, none of them scale better than O(n3).
The efficient comparison of large, labeled graphs remained an unsolved challenge for almost a
decade. We present a general definition of graph kernels that encompasses many previously known
graph kernels, and instances of which are efficient to compute for both unlabeled and discretely
labeled graphs with thousands of nodes next. Moreover, in terms of prediction accuracy in graph
classification tasks its instances are competitive with or outperform other state-of-the-art graph ker-
nels.

The remainder of this article is structured as follows. In Section 2, we describe the Weisfeiler-
Lehman isomorphism test that our main contribution is based on. In Section 3, we describe what
we call the Weisfeiler-Lehman graphs and our proposed general graph kernels based on them, fol-
lowed by some examples. In Section 4, we compare these kernels to each other, as well as to a set
of five other state-of-the-art graph kernels. We report results on kernel computation runtime and
classification accuracy on graph benchmark data sets. Section 5 summarizes our contributions.

2. The Weisfeiler-Lehman Test of Isomorphism

Our graph kernels use concepts from the Weisfeiler-Lehman test of isomorphism (Weisfeiler and
Lehman, 1968), more specifically its 1-dimensional variant, also known as “naive vertex refine-
ment”. Assume we are given two graphs G and G′ and we would like to test whether they are
isomorphic. The 1-dimensional Weisfeiler-Lehman test proceeds in iterations, which we index by i
and which comprise the steps given in Algorithm 1.

The key idea of the algorithm is to augment the node labels by the sorted set of node labels of
neighbouring nodes, and compress these augmented labels into new, short labels. These steps are
then repeated until the node label sets of G and G′ differ, or the number of iterations reaches n.
See Figure 2, a-d, for an illustration of these steps (note however, that the two graphs in the figure
would directly be identified as non-isomorphic by the Weisfeiler-Lehman test, as their label sets are
already different in the beginning).

Sorting the set of multisets allows for a straightforward definition and implementation of f for
the compression of labels in step 4: one keeps a counter variable for f that records the number
of distinct strings that f has compressed before. f assigns the current value of this counter to a
string if an identical string has been compressed before, but when one encounters a new string, one
increments the counter by one and f assigns its value to the new string. The sorted order of the
set of multisets guarantees that all identical strings are mapped to the same number, because they
occur in a consecutive block. However, note that the sorting of the set of multisets is not required
for defining f . Any other injective mapping will give equivalent results. The alphabet Σ has to be
sufficiently large for f to be injective. For two graphs, |Σ|= 2n suffices.

The Weisfeiler-Lehman algorithm terminates after step 4 of iteration i if {li(v)|v ∈V} 
= {li(v′)|
v′ ∈ V ′}, that is, if the sets of newly created labels are not identical in G and G′. The graphs are
then not isomorphic. If the sets are identical after n iterations, it means that either G and G′ are
isomorphic, or the algorithm has not been able to determine that they are not isomorphic (see Cai
et al., 1992, for examples of graphs that cannot be distinguished by this algorithm or its higher-
dimensional variants). As a side note, we mention that the 1-dimensional Weisfeiler-Lehman al-
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Algorithm 1 One iteration of the 1-dim. Weisfeiler-Lehman test of graph isomorphism
1: Multiset-label determination

• For i= 0, setMi(v) := l0(v) = �(v). 2

• For i> 0, assign a multiset-labelMi(v) to each node v in G and G′ which consists of the
multiset {li−1(u)|u ∈N (v)}.

2: Sorting each multiset
• Sort elements inMi(v) in ascending order and concatenate them into a string si(v).
• Add li−1(v) as a prefix to si(v) and call the resulting string si(v).

3: Label compression
• Sort all of the strings si(v) for all v from G and G′ in ascending order.
• Map each string si(v) to a new compressed label, using a function f : Σ∗ → Σ such that
f (si(v)) = f (si(w)) if and only if si(v) = si(w).

4: Relabeling
• Set li(v) := f (si(v)) for all nodes in G and G′.

gorithm has been shown to be a valid isomorphism test for almost all graphs (Babai and Kucera,
1979).

Note that in Algorithm 1 we used the same node labeling functions �, l0, . . . , lh for both G and
G′ in order not to overload the notation. We will continue using this notation throughout the paper
and assume without loss of generality that the domain of these functions �, l0, . . . , lh is the set of all
nodes in our data set of graphs, which corresponds to V ∪V ′ in the case of Algorithm 1.

2.1 Complexity

The runtime complexity of the 1-dimensional Weisfeiler-Lehman algorithm with h iterations is
O(hm). Defining the multisets in step 1 for all nodes is an O(m) operation. Sorting each mul-
tiset is an O(m) operation for all nodes. This efficiency can be achieved by using counting sort,
which is an instance of bucket sort, due to the limited range of the elements of the multiset. The
elements of each multiset are a subset of { f (si(v))|v ∈ V}. For a fixed i, the cardinality of this
set is upper-bounded by n, which means that we can sort all multisets in O(m) by the following
procedure: We assign the elements of all multisets to their corresponding buckets, recording which
multiset they came from. By reading through all buckets in ascending order, we can then extract
the sorted multisets for all nodes in a graph. The runtime is O(m) as there are O(m) elements in the
multisets of a graph in iteration i. Sorting the resulting strings is of time complexity O(m) via radix
sort (see Mehlhorn, 1984, Vol. 1, Section II.2.1). The label compression requires one pass over all
strings and their characters, that is O(m). Hence all these steps result in a total runtime of O(hm)
for h iterations.

2.2 Link with Subtree Patterns

Note that the compressed labels li(v) correspond to subtree patterns of height i rooted at v (see
Figure 1 for an illustration of subtree patterns).

2. For unlabeled graphs, node labels M0(v) := l0(v) can be initialized with letters corresponding one to one to node
degrees |N (v)|.
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3. The General Weisfeiler-Lehman Kernels

In this section, we first define the Weisfeiler-Lehman graph sequence and the general graph kernels
based on them. We then present three instances of this kernel, the Weisfeiler-Lehman subtree kernel
(Section 3.2), the Weisfeiler-Lehman edge kernel (Section 3.3), and the Weisfeiler-Lehman shortest
path kernel (Section 3.4).

3.1 The Weisfeiler-Lehman Kernel Framework

In each iteration i of the Weisfeiler-Lehman algorithm (see Algorithm 1), we get a new labeling li(v)
for all nodes v. Recall that this labeling is concordant inG andG′, meaning that if nodes inG andG′

have identical multiset labels, and only in this case, they will get identical new labels. Therefore, we
can imagine one iteration of Weisfeiler-Lehman relabeling as a function r((V,E, li)) = (V,E, li+1)
that transforms all graphs in the same manner. Note that r depends on the set of graphs that we
consider.

Definition 1 Define theWeisfeiler-Lehman graph at height i of the graph G= (V,E, �) = (V,E, l0)
as the graph Gi = (V,E, li). We call the sequence of Weisfeiler-Lehman graphs

{G0,G1, . . . ,Gh}= {(V,E, l0),(V,E, l1), . . . ,(V,E, lh)},

where G0 = G and l0 = �, theWeisfeiler-Lehman sequence up to height h of G.

G0 is the original graph, G1 = r(G0) is the graph resulting from the first relabeling, and so on. Note
that neither V , nor E ever change in this sequence, but we define it as a sequence of graphs rather
than a sequence of labeling functions for the sake of clarity of definitions that follow.

Definition 2 Let k be any kernel for graphs, that we will call the base kernel. Then the Weisfeiler-
Lehman kernel with h iterations with the base kernel k is defined as

k(h)WL(G,G
′) = k(G0,G

′
0)+ k(G1,G

′
1)+ . . .+ k(Gh,G

′
h), (1)

where h is the number of Weisfeiler-Lehman iterations and {G0, . . . ,Gh} and {G′
0, . . . ,G

′
h} are the

Weisfeiler-Lehman sequences of G and G′ respectively.

Theorem 3 Let the base kernel k be any positive semidefinite kernel on graphs. Then the corre-

sponding Weisfeiler-Lehman kernel k(h)WL is positive semidefinite.

Proof Let φ be the feature mapping corresponding to the kernel k:

k(Gi,G
′
i) = 〈φ(Gi),φ(G

′
i)〉.

We have
k(Gi,G

′
i) = k(ri(G),ri(G′)) = 〈φ(ri(G)),φ(ri(G′))〉.

Let us define the feature mapping ψ(G) as φ(ri(G)). Then we have

k(Gi,G
′
i) = 〈ψ(G),ψ(G′)〉,
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hence k is a kernel on G and G′ and k(h)WL is positive semidefinite as a sum of positive semidefinite
kernels.

This definition provides a framework for applying all graph kernels that take into account dis-
crete node labels to different levels of the node-labeling of graphs, from the original labeling to
more and more fine-grained labelings for growing h. This enriches the set of extracted features.
For example, while the shortest path kernel counts pairs of shortest paths with the same distance
between identically labeled source and sink nodes on the original graphs, it will count pairs of
shortest paths with the same distance between the roots of identical subtree patterns of height 1 on
Weisfeiler-Lehman graphs with h= 1.

For some base kernels one might be able to exploit the fact that the graph structure does not
change over the Weisfeiler-Lehman sequence to do some computations only once instead of repeat-
ing it h times. One example of such a base kernel is the shortest path kernel: As shortest paths in
a graph G are the same as shortest paths in corresponding Weisfeiler-Lehman graphs Gi, we can
precompute them. One should bear in mind that for graph kernels k that depend on the size of
the alphabet of node labels, computing k(Gi,G′

i) will accordingly get increasingly expensive, or, in
some cases, cheaper, as a function of growing i.

Note that it is possible to put nonnegative real weights αi on k(Gi,G′
i), i= {0,1, . . . ,h}, to obtain

a more general definition of the Weisfeiler-Lehman kernel:

k(h)WL(G,G
′) = α0k(G0,G′

0)+α1k(G1,G′
1)+ . . .+αhk(Gh,G

′
h).

In this case, k(h)WL will still be positive semidefinite, as a positive linear combination of positive
semidefinite kernels.

3.1.1 NOTE ON COMPUTING WEISFEILER-LEHMAN KERNELS IN PRACTICE

In the inductive learning setting, we compute the kernel on the training set of graphs. For any
test graph that we subsequently need to classify, we have to map it to the feature space spanned
by original and compressed labels occurred in the training set. For this purpose, we will need to
maintain record of the data structures that hold the mappings li(v) := f (si(v)) for each iteration i
and each distinct si(v). This requires O(Nmh) memory in the worst case.

In contrast, in the transductive setting, where the test set is already known, we can compute
the kernel matrix on the whole data set (training and test set) without having to keep the mappings
mentioned above.

3.2 The Weisfeiler-Lehman Subtree Kernel

In this section we present the Weisfeiler-Lehman subtree kernel (Shervashidze and Borgwardt,
2009), which is a natural instance of Definition 2.

Definition 4 Let G and G′ be graphs. Define Σi ⊆ Σ as the set of letters that occur as node labels
at least once in G or G′ at the end of the i-th iteration of the Weisfeiler-Lehman algorithm. Let Σ0
be the set of original node labels of G and G′. Assume all Σi are pairwise disjoint. Without loss of
generality, assume that every Σi = {σi1, . . . ,σi|Σi|} is ordered. Define a map ci : {G,G

′}×Σi → N

such that ci(G,σi j) is the number of occurrences of the letter σi j in the graph G.
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The Weisfeiler-Lehman subtree kernel on two graphs G and G′ with h iterations is defined as:

k(h)WLsubtree(G,G
′) = 〈φ(h)WLsubtree(G),φ

(h)
WLsubtree(G

′)〉, (2)

where

φ(h)WLsubtree(G) = (c0(G,σ01), . . . ,c0(G,σ0|Σ0|), . . . ,ch(G,σh1), . . . ,ch(G,σh|Σh|)),

and

φ(h)WLsubtree(G
′) = (c0(G

′,σ01), . . . ,c0(G′,σ0|Σ0|), . . . ,ch(G
′,σh1), . . . ,ch(G

′,σh|Σh|)).

That is, the Weisfeiler-Lehman subtree kernel counts common original and compressed labels
in two graphs. See Figure 2 for an illustration.

Theorem 5 The Weisfeiler-Lehman subtree kernel on a pair of graphs G and G′ can be computed
in time O(hm).

Proof This follows directly from the definition of the Weisfeiler-Lehman subtree kernel and the
runtime complexity of the Weisfeiler-Lehman test, as described in Section 2.

The following theorem shows that (2) is indeed a special case of the general Weisfeiler-Lehman
kernel (1).

Theorem 6 Let the base kernel k be a function counting pairs of matching node labels in two
graphs:

k(G,G′) = ∑
v∈V

∑
v′∈V ′

δ(�(v), �(v′)),

where δ is the Dirac kernel, that is, it is 1 when its arguments are equal and 0 otherwise. Then
k(h)WL(G,G

′) = k(h)WLsubtree(G,G
′) for all G,G′.

Proof It is easy to notice that for each i ∈ {0,1, . . . ,h} we have

∑
v∈V

∑
v′∈V ′

δ(li(v), l′i(v
′)) =

|Σi|

∑
j=1

ci(G,σi j)ci(G′,σi j).

Adding up these sums for all i ∈ {0,1, . . . ,h} gives us k(h)WL(G,G
′) = k(h)WLsubtree(G,G

′).

3.2.1 COMPUTING THE WEISFEILER-LEHMAN SUBTREE KERNEL ON MANY GRAPHS

To compute the Weisfeiler-Lehman subtree kernel on N graphs, we propose Algorithm 2, which
improves over the naive, N2-fold application of the kernel from Definition 4. We now process all
N graphs simultaneously and conduct the steps given in Algorithm 2 on each graph G in each of h
iterations.

As before, Σ is assumed to be sufficiently large to allow f to be injective. In the case of N graphs
and h iterations, a Σ of size Nn(h+1) suffices.
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Figure 2: Illustration of the computation of the Weisfeiler-Lehman subtree kernel with h = 1 for
two graphs. Here {1,2, . . . ,13} ∈ Σ are considered as letters. Note that compressed
labels denote subtree patterns: For instance, if a node has label 8, this means that there
is a subtree pattern of height 1 rooted at this node, where the root has label 2 and its
neighbours have labels 3 and 5.

One way of implementing f is to sort all neighbourhood strings using radix sort, as done in step
4 in Algorithm 1. The resulting complexity of this step would be linear in the sum of the size of
the current alphabet and the total length of strings, that is O(Nn+Nm) = O(Nm). An alternative
implementation of f would be by means of a perfect hash function.
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Algorithm 2 One iteration of the Weisfeiler-Lehman subtree kernel computation on N graphs
1: Multiset-label determination

• Assign a multiset-labelMi(v) to each node v in G which consists of the multiset
{li−1(u)|u ∈N (v)}.

2: Sorting each multiset
• Sort elements inMi(v) in ascending order and concatenate them into a string si(v).
• Add li−1(v) as a prefix to si(v).

3: Label compression
• Map each string si(v) to a compressed label using a hash function f : Σ∗ → Σ such that
f (si(v)) = f (si(w)) if and only if si(v) = si(w).

4: Relabeling
• Set li(v) := f (si(v)) for all nodes in G.

Theorem 7 For N graphs, the Weisfeiler-Lehman subtree kernel with h iterations on all pairs of
these graphs can be computed in O(Nhm+N2hn).

Proof Naive application of the kernel from Definition 4 for computing an N ×N kernel matrix
would require a runtime ofO(N2hm). One can improve upon this runtime complexity by computing

φ(h)WLsubtree explicitly for each graph and only then taking pairwise inner products.
Step 1, the multiset-label determination, still requiresO(Nm). Step 2, the sorting of the elements

in each multiset, can be done via a joint bucket sort (counting sort) of all strings, requiring O(Nn+
Nm) time.

The effort of computing φ(h)WLsubtree on all N graphs in h iterations is then O(Nhm), assuming that
m > n. To get all pairwise kernel values, we have to multiply all feature vectors, which requires a
runtime of O(N2hn), as each graph G has at most hn non-zero entries in φ(h)WLsubtree(G). In Section
4.1, we empirically show that the first term Nhm dominates the overall runtime in practice.

While our Weisfeiler-Lehman subtree kernel matches neighbourhoods of nodes in a graph ex-
actly, one could also think of other strategies of comparing node neighbourhoods, and still retain
the favourable runtime of our graph kernel. In research that was published in parallel to ours, Hido
and Kashima (2009) present such an alternative kernel based on node neighbourhoods which uses
hash functions and logical operations on bit-representations of node labels and which also scales
linearly in the number of edges. The Morgan index (Morgan, 1965) is another way of summarizing
information contained in the neighbourhood of a node, and has been used by Mahé et al. (2004) in
the context of graph kernels.

3.2.2 THE RAMON-GÄRTNER SUBTREE KERNEL

Description. The first subtree kernel on graphs was defined by Ramon and Gärtner (2003). The
Ramon-Gärtner subtree kernel with subtree height h compares all pairs of nodes from graphs G =
(V,E, �) and G′ = (V ′,E ′, �) by iteratively comparing their neighbourhoods:

k(h)RG(G,G
′) = ∑

v∈V
∑
v′∈V ′

kRG,h(v,v
′),
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where

kRG,h(v,v
′) =

{
δ(�(v), �(v′)), if h= 0

λvλv′δ(�(v), �(v′))∑R∈M (v,v′)∏(w,w′)∈R kRG,h−1(w,w
′), if h> 0,

δ is an indicator function that equals 1 if its arguments are equal, 0 otherwise, λv and λv′ are weights
associated with nodes v and v′, and

M (v,v′) =
{
R⊆N (v)×N (v′)

∣∣(∀(u,u′),(w,w′) ∈ R : u= w⇔ u′ = w′)

∧(∀(u,u′) ∈ R : �(u) = �(u′))
}
. (3)

Said differently, M (v,v′) is the set of exact matchings of subsets of the neighbourhoods of v
and v′. Each element R of M (v,v′) is a set of pairs of nodes from the neighbourhoods of v ∈ V
and v′ ∈V ′ such that nodes in each pair have identical labels and no node is contained in more than
one pair. Thus, intuitively, kRG iteratively considers all matchingsM (v,v′) between neighbours of
two identically labeled nodes v from G and v′ from G′. Taking the parameters λv and λv′ equal to a
single parameter λ results in weighting each pattern by λ raised to the power of the number of nodes
in the pattern.

Complexity. The runtime complexity of the subtree kernel for a pair of graphs is O(n2h4d),
including a comparison of all pairs of nodes (n2), and a pairwise comparison of all matchings in
their neighbourhoods in O(4d), which is repeated in h iterations. h is a multiplicative factor, not an
exponent, since one can implement the subtree kernel via dynamic programming, starting with k1
and computing kh from kh−1. For a data set of N graphs, the resulting runtime complexity is then in
O(N2n2h4d).

3.2.3 LINK TO THE WEISFEILER-LEHMAN SUBTREE KERNEL

The Weisfeiler-Lehman subtree kernel can be defined in a recursive fashion which elucidates its
relation to the Ramon-Gärtner kernel.

Theorem 8 The kernel k(h)rec defined as

k(h)rec(G,G′) =
h

∑
i=0
∑
v∈V

∑
v′∈V ′

krec,i(v,v
′), (4)

where

krec,i(v,v
′) =

⎧⎨⎩
δ(�(v), �(v′)), if i= 0

krec,i−1(v,v′)maxR∈M (v,v′)∏(w,w′)∈R krec,i−1(w,w
′), if i> 0 and M 
= /0
0, if i> 0 and M = /0,

(5)

δ is the indicator function again, and

M (v,v′) =
{
R⊆N (v)×N (v′)

∣∣∣ |R|= |N (v)|= |N (v′)|

∧ (∀(u,u′),(w,w′) ∈ R : u= w⇔ u′ = w′)∧ (∀(u,u′) ∈ R : �(u) = �(u′))
}
, (6)

is equivalent to the Weisfeiler-Lehman subtree kernel k(h)WLsubtree.
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In other words, M (v,v′) is the set of exact matchings of the neighbourhoods of v and v′. It is
nonempty only in the case where the neighbourhoods of v and v′ have exactly the same size and the
multisets of labels of their neighbours {�(u)|u ∈N (v)} and {�(u′)|u′ ∈N (v′)} are identical. Note
that krec,i(v,v′) only takes binary values: it evaluates to 1 if the subtree patterns of height i rooted at
v and v′ are identical, and to 0 otherwise.

Proof We prove this theorem by induction over h.
Induction initialisation h= 0:

k(0)WLsubtree = 〈φ(0)WLsubtree(G),φ
(0)
WLsubtree(G)〉=

|Σ0|

∑
j=1

c0(G,σ0 j)c0(G′,σ0 j) =

= ∑
v∈V

∑
v′∈V ′

δ(�(v), �(v′)) = k(0)rec,

where Σ0 is the initial alphabet of node labels and c0(G,σ0 j) is the number of occurrences of the

letter σ0 j as a node label in G. The equality follows from the definitions of k
(h)
rec and k

(h)
WLsubtree.

Induction step h→ h+1: Assume that k(h)WLsubtree = k(h)rec. Then

k(h+1)rec =∑
v∈V

∑
v′∈V ′

krec,h+1(v,v
′)+

h

∑
i=0
∑
v∈V

∑
v′∈V ′

krec,i(v,v
′) = (7)

=
|Σh+1|

∑
j=1

ch+1(G,σh+1, j)ch+1(G
′,σh+1, j)+ k(h)WLsubtree = k(h+1)WLsubtree, (8)

where the equality of (7) and (8) follows from the fact that krec,h+1(v,v′) = 1 if and only if the labels
and neigbourhoods of v and v′ are identical, that is, if f (sh+1(v)) = f (sh+1(v′)).

Theorem 8 highlights the following differences between the Weisfeiler-Lehman and the Ramon-
Gärtner subtree kernels: In Equation (4), Weisfeiler-Lehman considers all subtrees up to height h,
whereas the Ramon-Gärtner kernel looks at subtrees of exactly height h. In Equations (5) and (6),
the Weisfeiler-Lehman subtree kernel checks whether the neighbourhoods of v and v′ match exactly,
while the Ramon-Gärtner kernel considers all pairs of matching subsets of the neighbourhoods of
v and v′ in Equation (3). In our experiments, we examine the empirical differences between these
two kernels in terms of runtime and prediction accuracy on classification benchmark data sets (see
Section 4.2).

3.3 The Weisfeiler-Lehman Edge Kernel

TheWeisfeiler-Lehman edge kernel is another instance of theWeisfeiler-Lehman kernel framework.
In the case of graphs with unweighted edges, we consider the base kernel that counts matching pairs
of edges with identically labeled endpoints (incident nodes) in two graphs. In other words, the base
kernel is defined as

kE = 〈φE(G),φE(G
′)〉,

where φE(G) is a vector of numbers of occurrences of pairs (a,b), a,b ∈ Σ, which represent or-
dered labels of endpoints of an edge in G. Denoting (a,b) and (a′,b′) the ordered labels of end-
points of edges e and e′ respectively, and δ the Dirac kernel, kE can equivalently be expressed as
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∑e∈E∑e′∈E ′ δ(a,a′)δ(b,b′). If the edges are weighted by a function w that assigns weights, the
base kernel kE can be defined as ∑e∈E∑e′∈E ′ δ(a,a′)δ(b,b′)kw(w(e),w(e′)), where kw is a kernel
comparing edge weights.

Following (1), we have

k(h)WL edge = kE(G0,G
′
0)+ kE(G1,G

′
1)+ . . .+ kE(Gh,G

′
h).

3.3.1 NOTE ON COMPUTATIONAL COMPLEXITY

If the edges are not weighted or labeled, the number of possible edge features in each iteration
equals the number of distinct ordered pairs (a,b), that is, |Σi|(|Σi|+1)

2 . It is easy to notice by looking
at the Algorithm 1 that for each i ∈ {0, . . . ,h−1}, we have |Σi| ≤ |Σi+1|. Therefore, if we compute
the edge kernel by first explicitly computing φE(G) for each G in the data set, the computation will
become increasingly expensive in each iteration i of the Weisfeiler-Lehman relabeling.

If edges are weighted and we use any general kernel to compare their weights, computing the
feature map explicitly may not be possible or practical any more. In this case, the kernel can be
computed by comparing edges pairwise in each pair of graphs. Assuming that the kernel on a pair
of weights can be computed in O(1), this results in O(N2m2) operations per Weisfeiler-Lehman
iteration.

Computing the feature map explicitly can also become problematic if the alphabet size gets pro-
hibitively large. In this case, one can either compute the kernel via pairwise comparisons of edges in
each pair of graphs as above (O(N2m2) per iteration), or via the construction of the explicit feature
map for each pair of graphs separately, potentially yielding smaller alphabets Σi than considering
the whole data set of N graphs at once.

3.4 The Weisfeiler-Lehman Shortest Path Kernel

Another example of the general Weisfeiler-Lehman kernels that we consider is the Weisfeiler-
Lehman shortest path kernel. Here we use a node-labeled shortest path kernel (Borgwardt and
Kriegel, 2005) as the base kernel.

In the particular case of graphs with unweighted edges, we consider the base kernel kSP of the
form kSP(G,G′) = 〈φSP(G),φSP(G′)〉, where φSP(G) (resp. φSP(G′)) is a vector whose components
are numbers of occurrences of triplets of the form (a,b, p) inG (resp. G′), where a,b∈ Σ are ordered
endpoint labels of a shortest path and p ∈ N0 is the shortest path length.

According to (1), we have

k(h)WL shortest path = kSP(G0,G
′
0)+ kSP(G1,G

′
1)+ . . .+ kSP(Gh,G

′
h).

3.4.1 NOTE ON COMPUTATIONAL COMPLEXITY

Computing shortest paths between all pairs of nodes in a graph can be done in O(n3) using the
Floyd-Warshall algorithm. Consequently, for N graphs, the complexity is of O(Nn3). This step
does not have to be repeated for every Weisfeiler-Lehman iteration, as the topology of a graph does
not change across the Weisfeiler-Lehman sequence. In case edges are not weighted, shortest paths
are determined in terms of geodesic distance and path lengths are integers. Denote the number of
distinct shortest path lengths occurring in the data set of graphs as P.
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Let us first consider the Dirac (δ) kernel on the shortest path lengths, which means that the
similarity of two paths in two graphs equals 1 if they have exactly the same length and identically
labeled endpoints and 0 otherwise. Then, in iteration i of the Weisfeiler-Lehman relabeling, we can
bound the number of features, triplets (a,b, p)where a,b∈ |Σi| are ordered start and end node labels
and p∈N0 the shortest path length, by

|Σi|(|Σi|+1)
2 P. As |Σi| ≤ |Σi+1| for each i∈ {0, . . . ,h−1}, if we

compute the shortest path kernel by first explicitly computing φSP(G) for each G in the data set, the
computation will get increasingly expensive in each iteration, as in the case of edge kernels (Section
3.3).

Similarly to the Weisfeiler-Lehman edge kernel, in a more general setting where we do not
assume that edges are unweighted and use any kernel (not necessarily the Dirac kernel) on shortest
path lengths, or if the alphabet size gets prohibitively large, computing the feature map explicitly
may become impossible or difficult. In this case, we can compute the kernel by comparing shortest
path lengths pairwise in two graphs. Therefore, the runtime of computing kSP(Gi,G′

i) will not
depend on i any more. It will scale as O(n4) for each pair of graphs as we have to compare all pairs
of the O(n2) shortest path lengths, and O(N2n4) for the whole data set.

3.5 Other Weisfeiler-Lehman Kernels

In a similar fashion, we can plug other base graph kernels into our Weisfeiler-Lehman graph kernel
framework. As node labels are the only aspect that differentiate Weisfeiler-Lehman graphs at dif-
ferent resolutions (determined by the number of iterations), a clear requirement that the base kernel
has to satisfy for the Weisfeiler-Lehman kernel to make sense is to exploit the labels on nodes. A
non-exhaustive list of possible base kernels not mentioned in previous sections includes the labeled
version of the graphlet kernel (Shervashidze et al., 2009), the random walk kernel (Gärtner et al.,
2003; Vishwanathan et al., 2010), and the subtree kernel by Ramon and Gärtner (2003).

4. Experiments

In this section, we first empirically study the runtime behaviour of the Weisfeiler-Lehman subtree
kernel on synthetic graphs (Section 4.1). Next, we compare the Weisfeiler-Lehman subtree kernel,
the Weisfeiler-Lehman edge kernel, and the Weisfeiler-Lehman shortest path kernel to state-of-
the-art graph kernels in terms of kernel computation runtime and classification accuracy on graph
benchmark data sets (Section 4.2).

4.1 Runtime Behaviour of Weisfeiler-Lehman Subtree Kernel

Here we experimentally examine the runtime performance of the Weisfeiler-Lehman subtree kernel.

4.1.1 METHODS

We empirically compared the runtime behaviour of our two variants of the Weisfeiler-Lehman sub-
tree (WL) kernel. The first variant computes kernel values pairwise inO(N2hm). The second variant
computes the kernel values in O(Nhm+N2hn) on the data set simultaneously. We will refer to the
former variant as the “pairwise” WL, and the latter as “global” WL.

2553



SHERVASHIDZE, SCHWEITZER, VAN LEEUWEN, MEHLHORN AND BORGWARDT

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Number of graphs N

R
un

tim
e 

in
 s

ec
on

ds

200 400 600 800 1000
0

200

400

600

Graph size n

R
un

tim
e 

in
 s

ec
on

ds

 

 

2 4 6 8
0

5

10

15

20

Subtree height h

R
un

tim
e 

in
 s

ec
on

ds

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

Graph density c

R
un

tim
e 

in
 s

ec
on

ds

pairwise
global

Figure 3: Runtime in seconds for kernel matrix computation on synthetic graphs using the pair-
wise (red, dashed) and the global (green, solid) computation schemes for the Weisfeiler-
Lehman subtree kernel (Default values: data set size N = 10, graph size n= 100, subtree
height h= 4, graph density c= 0.4).

4.1.2 EXPERIMENTAL SETUP

We assessed the behaviour on randomly generated graphs with respect to four parameters: data set
size N, graph size n, subtree height h and graph density c. The density of an undirected graph of n
nodes without self-loops is defined as the number of its edges divided by n(n− 1)/2, the maximal
number of edges. We kept 3 out of 4 parameters fixed at their default values and varied the fourth
parameter. The default values we used were 10 for N, 100 for n, 4 for h and 0.4 for the graph density
c. In more detail, we varied N in range {10,100,1000}, n in {100,200, . . . ,1000}, h in {2,4,8} and
c in {0.1,0.2, . . . ,0.9}.

For each individual experiment, we generated N graphs with n nodes, and inserted edges ran-
domly until the number of edges reached �cn(n− 1)/2�. We then computed the pairwise and the
global WL kernel on these synthetic graphs. We report CPU runtimes in seconds in Figure 3, as
measured in Matlab R2008a on an Apple MacPro with 3.0GHz Intel 8-Core with 16GB RAM.

4.1.3 RESULTS

Empirically, we observe that the pairwise kernel scales quadratically with data set size N. Interest-
ingly, the global kernel scales linearly with N for the considered range of N. The N2 sparse vector
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multiplications that have to be performed for kernel computation with global WL do not domi-
nate runtime here. This result on synthetic data indicates that the global WL kernel has attractive
scalability properties for large data sets.

When varying the number of nodes n per graph, we observe that the runtime of both WL kernels
scales quadratically with n, and the global WL is much faster than the pairwise WL for large graphs.
This agrees with the fact that our kernels scale linearly with the number of edges per graph,m, which
is 0.4 n(n−1)2 in this experiment.

We observe a different picture for the height h of the subtree patterns. The runtime of both
kernels grows linearly with h, but the global WL is more efficient in terms of runtime.

Varying the graph density c, both methods show again a linearly increasing runtime, although
the runtime of the global WL kernel is much lower than the runtime of the pairwise WL.

Across all different graph properties, the global WL kernel from Section 3.2.1 requires less
runtime than the pairwise WL kernel from Section 3.2. Hence the global WL kernel is the variant
of our Weisfeiler-Lehman subtree kernel that we use on the following graph classification tasks.

4.2 Graph Classification

We compared the performance of the WL subtree kernel, the WL edge kernel and the WL shortest
path kernel to several other state-of-the-art graph kernels in terms of runtime and classification
accuracy on graph benchmark data sets.

4.2.1 DATA SETS

We employed the following data sets in our experiments: MUTAG, NCI1, NCI109, ENZYMES and
D&D. MUTAG (Debnath et al., 1991) is a data set of 188 mutagenic aromatic and heteroaromatic
nitro compounds labeled according to whether or not they have a mutagenic effect on the Gram-
negative bacterium Salmonella typhimurium. NCI1 and NCI109 represent two balanced subsets
of data sets of chemical compounds screened for activity against non-small cell lung cancer and
ovarian cancer cell lines, respectively (Wale and Karypis, 2006, and http://pubchem.ncbi.nlm.
nih.gov). ENZYMES is a data set of protein tertiary structures obtained from Borgwardt et al.
(2005) consisting of 600 enzymes from the BRENDA enzyme database (Schomburg et al., 2004).
In this case the task is to correctly assign each enzyme to one of the 6 EC top-level classes. D&D
is a data set of 1178 protein structures (Dobson and Doig, 2003). Each protein is represented by a
graph, in which the nodes are amino acids and two nodes are connected by an edge if they are less
than 6 Ångstroms apart. The prediction task is to classify the protein structures into enzymes and
non-enzymes. Note that nodes are labeled in all data sets.

Figure 4 shows the distributions of node numbers, edge numbers, and degrees in these data sets.
All of these data sets, as well as Matlab scripts for computing kernels used in our experiments,

can be downloaded from http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/.

4.2.2 EXPERIMENTAL SETUP

On these data sets, we compared our Weisfeiler-Lehman subtree, Weisfeiler-Lehman edge, and
Weisfeiler-Lehman shortest path kernels to the Ramon-Gärtner kernel (λ= 1), as well as to several
state-of-the-art graph kernels for large graphs. Due to the large number of graph kernels in the
literature, we could not compare to every single graph kernel, but to representative instances of the
major families of graph kernels.
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Figure 4: The rows illustrate the distributions of node number, edge number, and degree in data sets
MUTAG, NCI1, ENZYMES and D&D. We omitted NCI109, as its node number, edge
number, and degree distributions are similar to those of NCI1.

From the family of kernels based on walks, we compared our new kernels to the fast geometric
random walk kernel by Vishwanathan et al. (2010) that counts common labeled walks, and to the
p-random walk kernel that compares random walks up to length p in two graphs (a special case of
random walk kernels Kashima et al., 2003; Gärtner et al., 2003).

From the family of kernels based on limited-size subgraphs, we chose an extension of the
graphlet kernel by Shervashidze et al. (2009) that counts common induced labeled connected sub-
graphs of size 3.

From the family of kernels based on paths, we compared to the shortest path kernel by Borg-
wardt and Kriegel (2005) that counts pairs of labeled nodes with identical shortest path length.

Note that whenever possible, we used fast computation schemes based on explicitly computing
the feature map (similar to that in Algorithm 2) before taking the inner product, in order to speed up
kernel computation. In particular, we used this technique for computing shortest path and graphlet
kernels. For connected 3-node graphlet kernels it is rather intuitive to imagine the explicit feature
map: First, we have only 4 types of different graphlets with 3 nodes. Second, for each type of
graphlet we can determine the number of possible labelings of the three nodes as a function of the
size of the node label alphabet. In the case of the shortest path kernel, the explicit feature map may
or may not exist. In our experiments, as edges were not weighted, we used the number of edges in a
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path as a measure of its length. Moreover, we used the Dirac kernel on shortest path distances. This
allowed us to explicitly compute the feature map corresponding to the shortest path kernel for each
graph in all data sets. We were able to compute the explicit feature maps corresponding to the WL
edge and WL shortest path up to and including h= 3 and h= 2 respectively on all data sets except
the largest one, D&D (which also has the largest original node label alphabet), because of the large
number of compressed labels. In the case of this data set, we used the pairwise edge (resp. shortest
path) comparison scheme described in Sections 3.3 and 3.4.

We performed 10-fold cross-validation of C-Support Vector Machine Classification using LIB-
SVM (Chang and Lin, 2001), using 9 folds for training and 1 for testing. All parameters of the
SVM were optimised on the training data set only. To exclude random effects of fold assignments,
we repeated the whole experiment 10 times. We report average prediction accuracies and standard
deviations in Tables 1 and 2.

We chose h for our Weisfeiler-Lehman subtree kernel by cross-validation on the training data
set for h ∈ {0,1, . . . ,10}, which means that we computed 11 different WL subtree kernel matrices
in each experiment. In the case of the WL edge and WL shortest path kernels, h was chosen by
cross-validation for h ∈ {0,1,2,3} and h ∈ {0,1,2} respectively. We reported the total runtime of
these computations (not the average per kernel matrix).

Note that all kernel matrices in Table 2 which needed more than 3 days to be computed on
one machine were computed on a cluster by distributing different blocks of the kernel matrix to be
computed to different nodes. The reported runtime is the sum of the runtimes required to obtain
each block.

Proceeding in the same fashion as in the case of the Weisfeiler-Lehman subtree kernel, we
computed the Ramon-Gärtner subtree and Weisfeiler-Lehman shortest path kernels for h ∈ {0,1,2}
and the p-random walk kernel for p ∈ {1, . . . ,10}. We computed the random walk kernel for λ
chosen from the set {10−2,10−3, . . . ,10−6} for smaller data sets and did not observe a large variation
in the resulting accuracy. For this reason and because of the relatively high runtime needed to
compute this kernel on larger data sets (see Table 2), we set λ as the largest power of 10 smaller
than the inverse of the squared maximum degree in the data set.

4.2.3 RESULTS

In terms of runtime, the Weisfeiler-Lehman subtree kernel could easily scale up even to graphs with
thousands of nodes. On D&D, subtree-patterns of height up to 10 were computed in 11 minutes,
while no other comparison method could handle this data set in less than half an hour. The shortest
path kernel, the WL edge kernel and the WL shortest path kernel were competitive to the WL
subtree kernel on smaller graphs (MUTAG, NCI1, NCI109, ENZYMES), but on D&D their runtime
degenerated to more than 23 hours for the shortest path kernel, to 3 days for the WL edge kernel,
and to more than a year for the WL shortest path kernel. The Ramon and Gärtner kernel was
computable on MUTAG in approximately 40 minutes, but it finished computation in more than a
month on ENZYMES and the computation took even longer time on larger data sets. The random
walk kernel was competitive on MUTAG and ENZYMES in terms of runtime, but took more than
a week on each of the NCI data sets and more than a month on D&D. The fact that the random
walk kernel was competitive on the smallest of our data sets, MUTAG, is not surprising, as on this
data set one could also afford using kernels with exponential runtime, such as the all paths kernel
(Gärtner et al., 2003). The graphlet kernel was faster than our WL subtree kernel on MUTAG and
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Method/Data Set MUTAG NCI1 NCI109 ENZYMES D & D

WL subtree 82.05 (±0.36) 82.19 (± 0.18) 82.46 (±0.24) 52.22 (±1.26) 79.78 (±0.36)
WL edge 81.06 (±1.95) 84.37 (±0.30) 84.49 (±0.20) 53.17 (±2.04) 77.95 (±0.70)

WL shortest path 83.78 (±1.46) 84.55 (±0.36) 83.53 (±0.30) 59.05 (±1.05) 79.43 (±0.55)
Ramon & Gärtner 85.72 (±0.49) 61.86 (±0.27) 61.67 (±0.21) 13.35 (±0.87) 57.27 (±0.07)
p-random walk 79.19 (±1.09) 58.66 (±0.28) 58.36 (±0.94) 27.67 (±0.95) 66.64 (±0.83)
Random walk 80.72 (±0.38) 64.34 (±0.27) 63.51 (± 0.18) 21.68 (±0.94) 71.70 (±0.47)
Graphlet count 75.61 (±0.49) 66.00 (±0.07) 66.59 (±0.08) 32.70 (±1.20) 78.59 (±0.12)
Shortest path 87.28 (±0.55) 73.47 (±0.11) 73.07 (±0.11) 41.68 (±1.79) 78.45 (±0.26)

Table 1: Prediction accuracy (± standard deviation) on graph classification benchmark data sets

the NCI data sets, and about a factor of 3 slower on D&D. However, this efficiency came at a price,
as the kernel based on size-3 graphlets turned out to lead to poor accuracy levels on four data sets.

Data Set MUTAG NCI1 NCI109 ENZYMES D & D

Maximum # nodes 28 111 111 126 5748
Average # nodes 17.93 29.87 29.68 32.63 284.32

# labels 7 37 38 3 82
Number of graphs 188 4110 4127 600 1178

WL subtree 6” 7’20” 7’21” 20” 11’0”
WL edge 3” 1’5” 58” 11” 3 days

WL shortest path 2” 2’20” 2’23” 1’3” 484 days
Ramon & Gärtner 40’6” 81 days 81 days 38 days 103 days
p-random walk 4’42” 5 days 5 days 10’ 4 days
Random walk 12” 9 days 9 days 12’19” 48 days
Graphlet count 3” 1’27” 1’27” 25” 30’21”
Shortest path 2” 4’38” 4’39” 5” 23h 17’2”

Table 2: CPU runtime for kernel computation on graph classification benchmark data sets

On NCI1, NCI109, ENZYMES and D&D, the kernels from the Weisfeiler-Lehman framework
reached the highest accuracy. While on NCI1, NCI109, and D&D the results of all three WL
kernels were competitive with each other, on ENZYMES the WL shortest path kernel dramatically
improved over the other two WL kernels. On D&D the shortest path and graphlet kernels yielded
similarly good results, while on NCI1 and NCI109 the Weisfeiler-Lehman subtree kernel improved
by more than 8% the best accuracy attained by other methods. On MUTAG, the WL kernels reached
the third, the fourth and the fifth best accuracy levels among all methods considered.

The labeled size-3 graphlet kernel achieved low accuracy levels, except on D&D. The random
walk and the p-random walk kernels, as well as the Ramon-Gärtner kernel, were less competitive to
kernels that performed the best on data sets other than MUTAG.

It is worth mentioning that in the case of WL edge and WL shortest path kernels, the values 2
and 3 of h were almost always chosen by the cross-validation procedure, meaning that the kernels
comparing edges and shortest paths on Weisfeiler-Lehman graphs of positive height systematically
improved the accuracy of the base kernel (corresponding to h= 0).
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To summarize, the WL subtree kernel turned out to be competitive in terms of runtime on all
smaller data sets, fastest on the large protein data set, and its accuracy levels were competitive on
all data sets. The WL edge kernel performed slightly better than the WL subtree kernel on three out
of five data sets in terms of accuracy. The WL shortest path kernel achieved the highest accuracy
level on two out of five data sets, and was competitive on the remaining data sets.

5. Conclusions

We have defined a general framework for constructing graph kernels on graphs with unlabeled or
discretely labeled nodes. Instances of our framework include a fast subtree kernel that combines
scalability with the ability to deal with node labels. Our kernels are competitive in terms of accu-
racy with state-of-the-art kernels on several classification benchmark data sets, even reaching the
highest accuracy level on four out of five data sets. Moreover, in terms of runtime on large graphs,
instances of our kernel outperform other kernels, even the efficient computation schemes for random
walk kernels (Vishwanathan et al., 2010) and graphlet kernels (Shervashidze et al., 2009) that were
recently developed.

Our new kernels open the door to applications of graph kernels on large graphs in bioinformatics,
for instance, protein function prediction via detailed graph models of protein structure on the amino
acid level, or on gene networks for phenotype prediction. An exciting algorithmic question for
further studies will be to consider kernels on graphs with continuous or high-dimensional node
labels and their efficient computation.
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Abstract
When training deep networks it is common knowledge that an efficient and well generalizing rep-
resentation of the problem is formed. In this paper we aim to elucidate what makes the emerging
representation successful. We analyze the layer-wise evolution of the representation in a deep net-
work by building a sequence of deeper and deeper kernels that subsume the mapping performed by
more and more layers of the deep network and measuring how these increasingly complex kernels
fit the learning problem. We observe that deep networks create increasingly better representations
of the learning problem and that the structure of the deep network controls how fast the representa-
tion of the task is formed layer after layer.
Keywords: deep networks, kernel principal component analysis, representations

1. Introduction

Finding an appropriate representation of data is a central problem in machine learning. The rep-
resentation should ideally distill the relevant information about a learning problem in a compact
manner, such that it becomes possible to learn the data from a small number of examples.

Deep networks (e.g., Rumelhart et al., 1986; Hinton et al., 2006) have shown promise by auto-
matically extracting representations from raw data. Through their deep multi-layered architecture,
simpler and more accurate representations of the learning problem can be built layer after layer.
Their depth makes possible the creation of abstractions that are important in order to learn the de-
sired well-generalizing representation. Also, their flexibility offers the possibility to systematically
and structurally incorporate prior knowledge, for example, by constraining the connectivity of the
deep network (e.g., LeCun, 1989; Lang et al., 1990), by learning multiple tasks at the same time
(Caruana, 1997; Collobert andWeston, 2008) or by regularizing the solution with unlabeled samples
(Salakhutdinov and Hinton, 2007; Weston et al., 2008). Such prior knowledge can significantly im-
prove the generalization ability of deep networks, leading to state-of-the-art performance on several
complex real-world data sets.

While a considerable amount of work has been dedicated to learning efficiently deep archi-
tectures (Orr and Müller, 1998; Hinton et al., 2006; Bengio et al., 2006), leading to simple and
efficient training algorithms, these learning machines still lack of analytic understanding. Recently,
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a significant amount of research has focused on improving our theoretical understanding of deep
networks, in particular, understanding the benefits of unsupervised pretraining (Erhan et al., 2010),
understanding what are the main difficulties when training deep networks (Larochelle et al., 2009)
and studying the invariance of representations built in deep networks (Goodfellow et al., 2009).
However, quantifying how good hidden representations are and measuring how the representation
evolves layer after layer are still open questions. Overall, deep networks are thus generally assumed
to be powerful and flexible learning machines that are however not well understood theoretically
(Bengio, 2009).

In parallel to the development of deep networks, kernel methods (Müller et al., 2001; Schölkopf
and Smola, 2002) offer an elegant framework that decouples learning algorithms from data repre-
sentations. The kernel operator k(x,x′)—a central concept of the kernel framework—measures the
similarity between two points x and x′ of the input distribution, yielding an implicit kernel feature
map x �→ φ(x) (Schölkopf et al., 1999) that ideally implements all the prior knowledge of the learn-
ing problem contained in the kernel operator. This decoupling between learning algorithms and
data representations opens the door to a whole world of generic learning machines and data analy-
sis tools such as support vector machines (Cortes and Vapnik, 1995), kernel discriminant analysis
(Mika et al., 1999; Baudat and Anouar, 2000; Mika et al., 2003) and kernel principal component
analysis (Schölkopf et al., 1998) that can be applied independently of the data set. The kernel frame-
work has also been used as an abstraction tool for modeling complex real systems such as the visual
cortex (Smale et al., 2010).

The goal of this paper is to study in the light of the kernel framework how exactly the represen-
tation is built in a deep network, in particular, how the representation evolves as we map the input
through more and more layers of the deep network. Here, the kernel framework is not used as an
effective learning machine, but as an abstraction tool for modeling the deep network. Our analysis
takes a trained deep network f (x) = fL ◦ · · · ◦ f1(x) as input, defines a sequence of “deep kernels”

k0(x,x
′) = kRBF(x,x

′),

k1(x,x
′) = kRBF( f1(x), f1(x

′)),

...

kL(x,x
′) = kRBF( fL ◦ · · · ◦ f1(x), fL ◦ · · · ◦ f1(x

′))

that subsume the mapping performed by more and more layers of the deep network and outputs how
good the representations yielded by these deeper and deeper kernels are. We quantify for each kernel
how good the representation with respect to the learning problem is by measuring how much task-
relevant information is contained in the leading principal components of the kernel feature space.
This method is based on the theoretical results of Braun (2006) and Braun et al. (2008) which
show that eigenvalues and projections to eigenspaces of the kernel matrix have small approximation
errors, even for already a small number of samples.

This analysis allows us for the first time to observe and quantify the evolution of the represen-
tation in deep networks. We use our analysis to test two hypotheses on deep networks:

Hypothesis 1: as the input is propagated through more and more layers of the deep net-
work, simpler and more accurate representations of the learning problem are obtained.

Indeed, as the input is mapped through more and more layers, abstractions learned by the deep
network are likely to change the perception of whether a task is simple or not. For example, in

2564



KERNEL ANALYSIS OF DEEP NETWORKS

input output

l = 0

f1

l = 1

f2

l = 2

f3

dimensionality d

er
ro
r
e(
d
)

l = 0
l = 1
l = 2

Hypothesis 1:

layer l

er
ro
r
e(
d 0
)

various structures
deep networks with

Hypothesis 2:

Figure 1: Illustration of our analysis. Curves on the left plot relate the simplicity (dimensionality)
and accuracy (error) of the representation of the learning problem at each layer of the deep
network. The dimensionality is measured as the number of kernel principal components
on which the representation is projected. The thick gray arrows indicate the forward
path of the deep network. Hypothesis 1 states that as deeper and deeper kernels are
built, simpler and more accurate representations of the learning problem are obtained.
Hypothesis 2 states that the structure of the deep network controls the way the solution is
formed layer after layer.

the context of image classification, classifying between cat and dog would appear simpler in the
last layers of the deep network than in the first layers since irrelevant factors of variation such as
occlusion and orientation would be progressively filtered out by the hierarchy of abstractions built
in the deep network.

Hypothesis 2: the structure of the deep network controls how fast the representation of
the task is formed layer after layer.

It has been empirically corroborated that carefully regularizing the training process by means of
specific learning rates, weight penalties, initial weights, shared weights or restricted connectivity can
greatly improve the generalization of deep networks (LeCun, 1989; Orr and Müller, 1998; Hinton
et al., 2006). We hypothesize that a common aspect of these various regularization techniques is
to control the layer-wise evolution of the representation through the deep network. On the other
hand, a simple unregularized deep network may make inefficient use of the representational power
of deep networks, distributing the discrimination steps across layers in a suboptimal way.

These two hypotheses are illustrated in Figure 1. Testing them are, to our opinion, of signif-
icant importance as they might shed light on the nature of deep learning and on the way complex
problems are to be solved. This paper completes our conference paper (Montavon et al., 2010) by
extending the discussion on the interest of analyzing deep networks within the kernel framework
and by extending the empirical study to more data sets and larger deep networks.
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1.1 Related Work

The concept of building kernels imitating the structure of deep architectures—or more simply, build-
ing “deep kernels”—is not new. Cho and Saul (2009) already expressed deep architectures as kernels
in order to solve a convex optimization problem and achieve large margin discrimination in a deep
network. This approach differs from our work in the sense that their deep kernel is not used as an
analysis tool for trained deep networks but as part of an effective learning machine.

The concept was also developed in Smale et al. (2010) where the authors give a recursive defini-
tion of the neural response as hierarchy of simple kernels operating on subparts of the sensory input
and in Wibisono et al. (2010) where a principal component analysis is performed on top of these
deep kernels in order to measure invariance properties of deep networks. While the last authors
focus mostly on the representation of data in static deep architectures made of predefined features,
we are considering instead trainable deep architectures.

Although not directly using the kernel framework, Goodfellow et al. (2009) also analyze the
layer-wise evolution of the representation in deep networks, showing that deep networks trained
in an unsupervised fashion build increasing levels of invariance with respect to several engineered
transformations of the input and to temporal transformations in video data.

2. Theory

Before being able to observe the layer-wise evolution of the representation in deep networks, we first
need quantify how good a representation is with respect to the learning problem. The representation
is said to be good if simple and accurate models of the learning problem can be built on top of it. We
measure it by means of an analysis based on kernel principal component analysis that determines
howmuch of the relevant problem subspace is contained in the leading kernel principal components,
more precisely, how well the learning problem can be solved from the leading kernel principal
components. The analysis extends naturally to deep networks by building a sequence of kernels that
subsume the mapping performed by more and more layers of the deep network and repeating the
analysis for these deeper and deeper kernels.

2.1 Quantifying How Good a Representation Is

In this section, we are interested in quantifying how good a representation is with respect to the
learning problem. The representation is good when it is possible to build models of the learning
problem on top of it that are both simple and accurate.

A first technical difficulty is to quantify how simple a model is. Indeed, the notion of simplicity
is highly subjective (Bousquet et al., 2004) and typically depends on which prior knowledge on the
learning problem is taken for granted. For example, visual recognition tasks are very simple for
humans, but very complex for simple learning algorithms such as a local learning machine. In this
example, humans possess a form of prior on how the image should look like (e.g., we know how
to classify real images from artificial images) and a machinery to make sense more easily of this
complex data.

We choose to model this prior by isolating it into a kernel operator that measures how similar
two data points drawn from the input distribution are. For example, a local predictor could be
modeled with a Gaussian kernel while a more intelligent human-like predictor should be modeled
with a more complex kernel encoding translation invariance, rotation invariance, etc. Then, the
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induced kernel feature map x �→ φ(x) encodes implicitly all the prior defined in the kernel with the
advantage that linear models can be built on top of it (Schölkopf et al., 1999).

A second technical difficulty comes from the fact that accuracy and simplicity are not always
measurable in practice: accuracy of a model can only be estimated up to a certain precision from
the finite data set and estimating the simplicity depends on whether we consider, for example, the
number of parameters of a model, its entropy or its algorithmic complexity. For these reasons, we
need to restrict ourselves to a class of models whose simplicity and accuracy can be easily measured
and that are expressive enough to solve the learning problem.

We choose to use the kernel principal component analysis (kernel PCA, Schölkopf et al., 1998)
as a basis for building measurably simple models of the learning problem. Our method consists
of projecting the input distribution on the d first components (in terms of variance) of the kernel
feature space and fitting a linear model on this low-rank representation. The number of components
d controls the simplicity of the model. When d is small, the model is simple. When d is large,
the model is complex. The accuracy can in turn be obtained by measuring the prediction error e(d)
of a linear predictor on top of the d-component kernel representation. We refer to the parameter d
as the dimensionality of the model and e(d) as the prediction error obtained with the d-component
model. The curve e(d) gives a complete picture of how good a representation is with respect to the
learning problem. Figure 2 gives some examples of curves e(d) and explains how these curves can
be interpreted.

An advantage of the kernel PCA method is that there exists a theoretical framework and con-
vergence bounds for the estimation of spectral properties from a limited number of samples drawn
from the input distribution. In the case of fixed kernels, Braun et al. (2008) show that the projec-
tions to kernel principal components obtained with a finite and typically small number of samples
n are close with essentially multiplicative errors to those that would be obtained in the asymptotic
case where n→ ∞. This result can be naturally extended to a finite set of kernels. These conver-
gence properties are desirable since the data distribution is unknown and only a finite number of
observations are available for our analysis. Appendix A gives some additional information on the
convergence of kernel principal components.

A second advantage of the kernel PCA method is the high flexibility that it offers with respect to
the nature of the learning problem. Kernel PCA is not only independent of the input representation
due to the kernel embedding, but also independent of the output representation. Indeed, kernel PCA
simply acts as a regularizer on the kernel feature space that limits the complexity of the subsequent
learning machine. Therefore any discriminative model can be used on top of the regularized rep-
resentation, allowing to treat various classes of problems such as binary classification, multi-class
classification or regression within the same framework.

To summarize, the kernel framework combines the four requirements of our analysis: (1) the
kernel operator expresses and isolates the subjective notion of simplicity, (2) the complexity of the
model is controlled by projecting the input distribution on a limited number of kernel principal
components, (3) convergence bounds allow to effectively measure the accuracy of the model and
(4) various models can be built on top of the leading kernel principal components in order to express
the various types of learning problems (regression, classification, ...) that arise in real applications.

We present below the computation steps required to estimate how good a kernel k and its associ-
ated feature map x �→ φ(x) are with respect to a learning problem p(x,y). Let {(x1,y1), . . . ,(xn,yn)}
be a data set of n points drawn independently from p(x,y). Let X = (x1, . . . ,xn) and Y = (y1, . . . ,yn)
be the matrices associated to the inputs and labels of the data set. We compute the kernel matrix K
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Figure 2: Effect of converting a representation of the learning problem p(x,y) (gray curve) to a
new representation of the learning problem p( f (x),y) (black curve) where the input x
is mapped to f (x). We can distinguish three scenarios: (Scenario 1) the mapping pro-
duces a better representation from which more accurate models are obtained for every
dimensionality—this is the desired behavior of deep networks,—(Scenario 2) the map-
ping concentrates the label information in the leading kernel principal components but
also loses some information—lossy feature extractors typically fall into that category—
and (Scenario 3) the mapping makes the learning problem more complex—this would be
the result of introducing noise or throwing away label information.

associated to the data set:

K =

⎛⎜⎝ k(x1,x1) . . . k(x1,xn)
...

...
k(xn,x1) . . . k(xn,xn)

⎞⎟⎠ .

The kPCA components u1, . . . ,un are obtained by performing an eigendecomposition of K where
eigenvectors u1, . . . ,un have unit length and eigenvalues λ1, . . . ,λn are sorted by decreasing magni-
tude:

K = (u1| . . . |un) ·diag(λ1, . . . ,λn) · (u1| . . . |un)
�.

Let Û = (u1| . . . |ud) and Λ̂ = diag(λ1, . . . ,λd) be a d-dimensional approximation of the eigende-
composition. The space spanned by this basis approximates the space spanned by the d leading
components of the infinite-dimensional kernel feature space associated to the probability distribu-
tion p(x). In this space, the learning problem can be solved by a standard linear or logistic regression
model. For regression problems, we fit a linear model β� that maps the d leading components to the
output:

β� = argminβ||Ûβ−Y ||
2
F = Û�Y. (1)

For classification problems, instead of fitting the model directly on the outputs, we fit the model on
the log-likelihood of classes

β� = argminβ
n

∏
i=1
softmax([Ûβ]i)yi (2)

where softmax(z) = ez/∑ j e
z j converts a vector z into a probability distribution over classes. Note

that the optimization criterion only consists of the empirical risk minimization term and lacks a
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regularization term. Indeed, the regularization is implicitly carried out by the projection on the d
leading principal components. The problem is therefore well-posed only when d � n. Once the
model β� is computed, the estimated outputs can be calculated as

Ŷ = Ûβ�

for regression problems and as

ŷi = argmax([Ûβ
�]i) 1≤ i≤ n

for classification problems. The training error is estimated as

e(d) =
1
n

n

∑
i=1

||ŷi− yi||
2 (3)

for regression problems and as

e(d) =
1
n

n

∑
i=1

1ŷi 
=yi (4)

for classification problems. The test error can be obtained by cross-validating the linear model on
random partitions of (x1, . . . ,xn). Training and test error can be used as approximation bounds for
the asymptotic case n→ ∞ where the model β� would minimize the error on the real distribution
p(x,y). In the next sections, the upper and lower approximation bounds are respectively depicted as
solid and dotted lines in Figure 5, 6 and 7.

2.2 Application to Deep Networks

In this section, we describe how the analysis of representations presented above can be used to
measure the layer-wise forming of the representation in deep networks. Let f (x) = fL ◦ · · · ◦ f1(x)
be a trained deep network of L layers. Our analysis consists of defining a sequence of “deep kernels”

k0(x,x
′) = kRBF(x,x

′),

k1(x,x
′) = kRBF( f1(x), f1(x

′)),

...

kL(x,x
′) = kRBF( fL ◦ · · · ◦ f1(x), fL ◦ · · · ◦ f1(x

′))

that subsume the mapping performed by more and more layers of the deep network and repeating for
each kernel the analysis presented in Section 2.1. Algorithm 1 summarizes the main computational
steps of our analysis. The kernel kRBF is the standard Gaussian kernel defined as kRBF(x,x′) =
exp(−||x− x′||2/2σ2).

The main prior encoded by Gaussian kernels is the smoothness of the task of interest in the
input space (Smola et al., 1998). Gaussian kernels are appropriate when two neighboring samples
(in terms of Euclidean distance) are likely to have the same class. It remains to see how the con-
cept of simplicity encoded by the Gaussian kernel can be understood from the perspective of the
induced prediction model. Figure 3 shows that the simplicity of the model can be related to the
number of allowed local variations in the input space. When d increases, more variations of the
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Algorithm 1: Main computational steps of our layer-wise analysis of deep networks. At
every layer of the deep network, the same analysis is performed, returning a list of curves
e(d) capturing the evolution of the representation in the deep network.

Input: A data set {(x1,y1), . . . ,(xn,yn)}
A deep network f : x �→ fL ◦ · · · ◦ f1(x)

Output: The curves e(d) for each layer l
for l ∈ {1, . . . ,L} do
for σ ∈ Σ do

k(x,x′) = kRBF(σ)( fl ◦ · · · ◦ f1(x), fl ◦ · · · ◦ f1(x
′))

compute the kernel matrix K associated to k(x,x′) and (x1, . . . ,xn)
do the eigendecomposition K = (u1| . . . |un) ·diag(λ1, . . . ,λn) · (u1| . . . |un)�

for d ∈ {0,1,2, . . .} do
build a low rank approximation of the input Û ← (u1| . . . |ud)
fit the model β� that predicts (y1, . . . ,yn) from Û (cf. Equation 1 and 2)
compute the error e(d,σ) of the model β� (cf. Equation 3 and 4)

e(d) =minσ e(d,σ)
plot the curve e(d)

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6
e(d) = 0.5 e(d) = 0.25 e(d) = 0.25 e(d) = 0 e(d) = 0 e(d) = 0

Figure 3: Interpretation of a prediction model based on the leading components of the Gaussian
kernel on a toy data set. As we add more and more leading components of the kernel, the
model becomes more flexible, creating a better decision boundary. Note that with four
leading components, all the samples are already perfectly classified.

learning problem can be encoded and the prediction improves. Figure 4 shows that by making the
problem increasingly complex—for example, by distorting it—the number of dimensions required
to approach the error of the optimal classifier becomes larger and larger.

The notion of simplicity encoded by the Gaussian kernel is meaningful for a wide range of learn-
ing problems, however, it does not explain how simple more intelligent systems perceive problems
such as vision and speech. Indeed, domain-specific regularities such as invariance to translation,
scale or occlusion can not be modeled efficiently by a Gaussian kernel. Consequently, observing
the learning problem become simpler as we build deeper and deeper kernels highlights the capacity
of deep networks to model the regularities of the input distribution.

A last aspect that has not been discussed yet is how to choose the scale parameter σ of the
Gaussian kernel. We decide to choose the parameter σ that minimizes the error e(d), leading to a
different scale for each dimensionality. The rationale for taking a different scale for each d is that the
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Figure 4: On the top, three increasingly complex representations of a binary classification problem.
On the bottom, the curves e(d) quantifying how good the representation of the learn-
ing problem is from the perspective of the Gaussian kernel. The original non-distorted
learning problem can be solved perfectly with only one kernel principal component. As
the input distribution gets distorted more and more, the number of leading components
required to solve the learning problem increases, hinting that Gaussian kernels become
progressively less suited.

optimal scale parameter typically shrinks as more leading components of the input distribution are
observed. This parameter selection method also makes our analysis scale invariant. Scale invariance
is desirable since the representation at a given layer of the deep network can take different scales
due to the number of nodes contained in each layer or to the multiple types of nonlinearities that
can be implemented in deep networks.

3. Methodology

In Section 2, we presented the theory and algorithms required to test our two hypotheses on the
evolution of representations in deep networks. To summarize, the main idea of the analysis is to
build a set of kernels that subsume the mapping performed at each layer of the deep network and, for
each kernel, compute how good the representation is by measuring how many leading components
of the kernel feature space are necessary in order to model the learning problem well. It remains to
select a set of deep networks and data sets in order to test the hypotheses formulated in Section 1.

We consider the MNIST-10K and CIFAR-bw-10K data sets. These two data sets of 10000
samples each are a trimmed version of the larger MNIST handwritten digits and CIFAR image
classification data sets (LeCun et al., 1998; Krizhevsky, 2009). The MNIST-10K data set is a 10-
class classification data set that consists of 10000 grayscale images of 28× 28 pixels representing
handwritten digits and their associated label (a number between 0 and 9). The CIFAR-bw-10K data
set is a 10-class classification data set that consists of 10000 grayscale images of 32× 32 pixels
representing different objects and their associated label (airplane, automobile, bird, cat, deer, dog,
frog, horse, ship and truck).
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State-of-the-art performance on these data sets is achieved with architectures made of several
layers, suggesting that these data sets are well suited to test the first hypothesis stated earlier in the
paper, that is, the progressive simplification of the learning problem performed by deep networks.
The second hypothesis on the effect of the structure of deep networks can be tested by taking a set
of structured and unstructured deep networks and observing how the layer-wise evolution of the
representation differs between these deep networks. We consider a multilayer perceptron (MLP), a
pretrained multilayer perceptron (PMLP) and a convolutional neural network (CNN).

The multilayer perceptron (MLP, Rumelhart et al., 1986) is built by alternating linear transfor-
mations and nonlinearities applied element-wise to the output of the linear transformations. On the
MNIST data set, we apply successively the functions

f1(x) = sigm(w1 · x+b1),

f2(x) = sigm(w2 · x+b2),

f3(x) = softmax(v · x)

to the input where weight matrices w1,w2,v and biases b1,b2 are learned from data and where the
size of hidden layers is set to 1600. The sigmoid and softmax functions are defined as sigm(x) =
ex/(1+ex) and softmax(x) = ex/∑ j e

x j . On the CIFAR data set, the sigmoid nonlinearity is replaced
by the rectifying function defined as rectify(x) = max(0,x) and the size of hidden layers is set to
3600. Since it has been observed that overparameterizing deep networks generally improves the
generalization error, the size of layers is chosen large with the only constraint of computational
cost. The MLP is mostly unstructured as any type of solution can emerge from the random weights
initialization.

The pretrained multilayer perceptron (PMLP, Hinton et al., 2006; Bengio et al., 2006) referred
in this paper as PMLP is a multilayer perceptron that has been pretrained using a deep belief net-
work (DBN, Hinton et al., 2006) and then fine-tuned on the discriminative task. The pretraining
procedure aims to build a deep generative model of the input that can be used as a starting point to
learn the supervised task. In order to use the same architecture as for the MLP during the fine-tuning
procedure, we set the visible and hidden units of the DBN to be binary on the MNIST data set and
respectively Gaussian and rectified linear (Nair and Hinton, 2010) on the CIFAR data set. Here,
the structure of the deep network is implicitly given by the weights initialization subsequent to the
unsupervised pretraining.

The convolutional neural network (CNN, LeCun et al., 1998) is a deep network inspired by
the structure of the primary visual cortex (Hubel and Wiesel, 1962). Its particular convolutional
structure exploits the spatial invariance of images in order to learn well-generalizing solutions from
few labeled samples. It is built by alternating (1) convolutional layers y = w� x+ b transforming
a set of input features maps {x1,x2, . . .} into a set of output features maps {y1,y2, . . .} such that
yi =∑ j wi j ∗x j+bi and where wi j are convolution kernels, (2) detection layers where a nonlinearity
is applied element-wise to the output of the convolutions in order to extract important features and
(3) pooling layers subsampling each feature map by a given factor. On the MNIST data set, we
apply successively the functions

f1(x) = pooling(sigm(w1� x+b1)),

f2(x) = pooling(sigm(w2� x+b2)),

f3(x) = softmax(v · x)
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to the input where weight tensors w1,w2, weight matrix v and biases b1,b2 are learned from data,
convolution kernels have size 5× 5, pooling layers downsample the input by a factor two and the
number of feature maps in each layer is set to 100. On the CIFAR data set, the sigmoid nonlinearity
is replaced by the rectifying function described above.

The deep networks described above are trained on a supervised task with backpropagation
(Rumelhart et al., 1986) and stochastic gradient descent (Bottou, 1991) with minibatches of size
20. The last layer has a L2 weight penalty. The softmax module (Bishop, 1996) optimizes the deep
network for maximum likelihood. Weights of each layer l are initialized so that the output is of
constant magnitude, thus falling into the correct regime of the subsequent nonlinearity. These deep
networks are analyzed in two different settings:

• Supervised learning: the deep network is trained in a supervised fashion on the target task
(digit classification for the MNIST data set and image classification for the CIFAR data set).

• Transfer learning: the deep network is trained in a supervised fashion on a binary classi-
fication task that consists of determining whether the sample has been flipped vertically or
not.

These settings allow us to measure how the structure contained in deep networks affects different
aspects of learning such as the layer-wise organization of the learned solution or the transferability
of features from one task to another.

3.1 Experimental Setup

We train the deep networks on the 10000 samples of the data set until a training error of 2.5% is
reached. Such stopping criterion ensures that the subsequent solutions have a constant complexity
and that the limited capacity of the deep network has no side effect on the structure of the solution.
As a sanity check, each architecture has been trained with the regular early stopping criterion on the
full MNIST and CIFAR-bw data sets, leading to test errors that are on par with results published
in the literature for similar architectures (MNIST-MLP: 1.6%, MNIST-PMLP: 1.3%, MNIST-CNN:
0.9%, CIFAR-bw-MLP: 48.1%, CIFAR-bw-PMLP: 46.8%, CIFAR-bw-CNN: 32.4%).

In our analysis, we estimate the kernel principal components with the 10000 samples used for
training the deep network. Therefore, the empirical estimate of the d leading kernel principal com-
ponents takes the form of d 10000-dimensional vectors, or similarly, of a data set of 10000 d-
dimensional mapped samples. A lower bound of e(d) is obtained by fitting and evaluating the linear
model with the 10000 mapped samples. An upper bound of e(d) is obtained by two-fold cross-
validation (5000 samples to fit the model and the 5000 remaining samples to evaluate it). The set of
candidate kernel widths is composed of the 0.1, 0.5 and 0.9 quantiles of the distribution of distances
between pairs of points. It turns out that the effect of the kernel scale is rather small and that no
further scale parameters are required. The layers of interest are the input data (l = 0) and the output
of each layer (l = 1,2, . . . ).

4. Results

In this section, we present the results of our analysis on the evolution of the representation in deep
networks. Section 4.1 discusses the empirical observation that deep networks trained on the super-
vised task produce gradually simpler and more accurate representations of the learning problem.
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Figure 5: Effect of the learning rate, of the capacity, of the training time and of the weight penalty
on the layer-wise evolution of the representation built by an MLP on the MNIST-10K
data set. Solid and dotted lines respectively represent the upper and lower approximation
bounds of the analysis. As the learning rate increases, the solution tends to make use
primarily of the first layers of the deep network. The same effect is observed when we
reduce the capacity, increase the weight penalty or increase the training time.

Then, Section 4.2 compares side-by-side the evolution of the representation in different deep net-
works and discusses the empirical observation that the structure of the deep network controls the
layer-wise evolution of the representation in the deep network.

4.1 Better Representations are Built Layer After Layer

It is still an open question how the complex and multimodal form of intelligence observed in liv-
ing organisms emerges from randomly disposed and locally scoped neurons. Machine learning
researchers similarly pointed out that emergent properties also occur in artificial neural networks
when trained with simple local algorithms such as Hebbian learning or backpropagation, without
having to explicitly define the role of each individual neuron. Also, their ability to simultaneously
specialize on specific tasks in output nodes and grow new functionalities from hidden nodes hints
that information contained in the underlying distribution of sensed data should be ubiquitous, yet
parsimonious where discrimination takes place.

It can be hypothesized that the organization of mapped data distributions within the neural net-
work forms a continuum between general purpose distributions in the middle of the network and
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Figure 6: Layer-wise evolution of the error as a function of the number of dimensions when trained
on the target task. Solid and dotted lines respectively represent the upper and lower
approximation bounds of the analysis. As we move from the first to the last layers, the
class information concentrates in the leading components of the mapped data distribution.
This observation confirms the first hypothesis depicted in Figure 1.

Su
pe
rv
is
ed
le
ar
ni
ng

T
ra
ns
fe
r
le
ar
ni
ng

Figure 7: Layer-wise evolution of the error obtained for each training procedure for d = 10. Solid
and dotted lines respectively represent the upper and lower approximation bounds of the
analysis. We observe that the particular structure of the CNN and of the PMLP con-
trols the layer-wise evolution of the representation. This confirms the second hypothesis
depicted in Figure 1.
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task specific distributions at its discriminative edges. Reformulating this hypothesis in the case
of a simple multilayer feedforward network trained on image classification, the sensed distribution
would evolve progressively from a distribution representing pixels well to a distribution representing
classes well as the distribution is mapped to more and more layers.

We can observe in Figure 6 that this hypothesis holds within the span of our experimental setup
and that simultaneously lower-dimensional and more accurate models of the task can be obtained
layer after layer. This means that the task-relevant information, initially spread over a large number
of principal components, converges progressively towards the leading components of the mapped
data distribution.

This layer-wise preservation of the statistical tractability of the learning problem and its progres-
sive simplification is a theoretical motivation for using these deep networks in a modular way (Caru-
ana, 1997; Weston et al., 2008; Collobert and Weston, 2008): additional modules can be plugged on
top of intermediate representations and still make sense of it.

4.2 Role of the Structure of Deep Networks

Training deep networks is a complex nonconvex learning problem with many reasonable solutions.
As it can be seen in Figure 5, even simple hyperparameters such as the learning rate or the L2
weight penalty can greatly influence the layer-wise structure of the solution. Adding to the fact
that those are only a fraction of the hyperparameters that needs to be tuned in order to achieve high
generalization (e.g., importance of reconstruction error, orthogonality of hidden representations), it
can therefore be tricky—if not, impossible—to find an appropriate combination of hyperparameters
that leads to a well-structured solution for the learning problem.

On the other hand, the unsupervised pretraining proposed by Hinton et al. (2006) finds a network
of latent variables that better represents the underlying distribution. As a consequence, the structure
of the pretrained deep network already contains a certain part of the solution (Larochelle et al.,
2009) and possibly makes better use of each layer. Similarly, in the context of sequential data, we
can postulate that dedicating the early layers of the architecture to a convolutional preprocessing is
also a more effective (LeCun, 1989; Serre et al., 2005) and biologically plausible (Ringach, 2002)
way of solving the learning problem. Both approaches have shown empirically to produce better
generalization (LeCun, 1989; Salakhutdinov and Hinton, 2007).

We corroborate this argument by comparing in Figure 7 the layer-wise evolution of the repre-
sentation for different deep networks: a multilayer perceptron (MLP), a pretrained MLP (PMLP)
and a convolutional neural network (CNN). On one side, the MLP does not embed any precondi-
tioning on the learning problem. On the other side, the PMLP and the CNN embed respectively a
generative model of the input and a spatial invariance prior on the problem. We can think of the
mechanisms implemented by the PMLP and the CNN as complex regularizers on the solution of the
learning problem.

Figure 7 (top) shows the evolution of the representation with respect to the learning problem
when the deep network has been trained on the target task. We observe that the evolution of the
representation of the MLP follows a different trend than the representation built by the PMLP and
the CNN. The MLP tends to solve the MNIST problem greedily, discriminating from the first layers
while the PMLP and the CNN postpone the discrimination to the last layers. On the other hand,
on the CIFAR data set, the MLP doesn’t discriminate until the last layer while the PMLP and
the CNN spread the discrimination to more layers. Figure 7 (bottom) shows the evolution of the
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representation with respect to the learning problem when the deep network has been trained on the
transfer task. On both data sets, the representation built by the MLP does not improve as the deep
network specializes on the transfer task while the PMLP and the CNN still build in the first layers
a better representation of the learning problem, corroborating the effect of the PMLP and the CNN
on structure of the solution.

These observations suggest that the complex regularizers implemented in the PMLP and the
CNN have the effect of facilitating the construction of a structured solution, controlling the rate
of discrimination at every layer. Erhan et al. (2010) already described the PMLP as a regularized
version of the MLP and showed how it improves the generalization ability of deep networks. Our
analysis completes the study, providing a layer-wise perspective on the effect and the role of reg-
ularization in deep networks and a unified view on the very different regularizers implemented by
the PMLP and the CNN.

5. Conclusion and Discussion

We introduce a method for analyzing deep networks that combines kernel methods and descriptive
statistics in order to quantify the layer-wise evolution of the representation in deep networks. Our
method abstracts deep networks as a sequence of deeper and deeper kernels subsuming the mapping
performed by more and more layers. The kernel framework expresses the relation between the
representation built in the deep network and the learning problem.

Our analysis is able to detect and quantify the progressive and layer-wise transformation of the
input performed by the deep network. In particular, we find that properly trained deep networks
progressively simplify the statistics of complex data distributions, building in their last layers rep-
resentations that are both simple and accurate.

The analysis also corroborates the hypothesis that a suitable structure for the deep network
allows to make efficient use of its representational power by controlling the rate of discrimination at
each layer of the deep network. This observation provides a new unified view on the role and effect
of regularizers in deep networks.

Conceptually, our analysis is not only restricted to artificial neural networks. We believe that
performing a similar analysis on different levels of processing in a biological neural architecture
may reveal interesting parallels between artificial and biological neural systems.

Appendix A. More Background Information on kPCA Convergence

In this section, we briefly give some additional results on the convergence properties of kernel PCA.
For the full account, please refer to Braun (2006) and Braun et al. (2008).

The rationale behind using the number of kPCA components as an estimate of the dimensional-
ity rather than simpler metrics such as counting the number of support vectors of a trained SVM is
that the first method provides an estimate of the dimensionality that is provably robust to the number
of samples used in the analysis. This interesting fact was derived from a fundamental result on the
approximation error of scalar products with eigenvectors of the kernel matrix with respect to their
asymptotic counterparts.

More concretely, if x1, . . . ,xn ∈ X are points drawn i.i.d. from some probability distribution PX ,
we define the kernel matrix K of a Mercer kernel k by

Ki j = k(xi,x j) for 1≤ i, j ≤ n.
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As n→ ∞, the eigenvalues and eigenvectors of K converge to those of the integral operator

Tk( f ) =
∫
x∈X

k( . ,x) f (x)dPX

in an appropriate measure. In particular, it has been shown by Braun (2006) that the approximation
error between the ith eigenvalue λi of K (in descending order) and corresponding eigenvalue li of Tk
scales essentially multiplicatively, that is,

|λi− li| ≤C(n)li+ ε(n),

whereC(n)→ 0, ε(n)→ 0 as n→ ∞, and even for small n, ε(n) is small.
So, even for a small number of points, the structure of the principal components in feature space

are very similar compared to the asymptotic case. Moreover, as the next result shows, the same also
holds for the location of the sample vector of a function with respect to the eigenspaces.

As shown by Braun et al. (2008), for a bounded function g which lies in the range of Tk (that is,
there exists a h such that Tk(h) = g), one can bound the scalar products between the sample vector
G= (g(x1), . . . ,g(xn)) and the eigenvectors ui (normalized to unit length) of K by

1
√
n
|u�i G| ≤ λiC(n)+ ε(n),

where ε(n)→ 0 as n→∞. Note that the scalar products with the eigenfunctions ψi of Tk also decay
as O(li), which are again linked to λi by the results discussed above.

In essence, this result shows that the scalar products between a subsampled smooth function
decays as quickly as the eigenvalues of the kernel matrix, such that the information about g is
contained in the leading kPCA components only. Here, smoothness means that g lies in the range of
Tk such that it is a smoothed version of some function h after convolution with the kernel function k.
On the other hand, any noise which is independent of the xi is uniformly distributed over all kPCA
components. In summary, if one plots the products u�i Y with the label vector Y = (y1, . . . ,yn), one
obtains a decomposition of the label information Y with respect to the kPCA components. From the
above considerations, it follows that the spectrum will typically consist of a flat “noise bed” from
which the relevant information in the leading components can clearly be distinguished. This result
is illustrated in Figure 8 for a small toy example.
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Abstract

Recently, variational Bayesian (VB) techniques have been applied to probabilistic matrix factor-
ization and shown to perform very well in experiments. In this paper, we theoretically elucidate
properties of the VB matrix factorization (VBMF) method. Through finite-sample analysis of the
VBMF estimator, we show that two types of shrinkage factors exist in the VBMF estimator: the
positive-part James-Stein (PJS) shrinkage and the trace-norm shrinkage, both acting on each sin-
gular component separately for producing low-rank solutions. The trace-norm shrinkage is simply
induced by non-flat prior information, similarly to the maximum a posteriori (MAP) approach.
Thus, no trace-norm shrinkage remains when priors are non-informative. On the other hand, we
show a counter-intuitive fact that the PJS shrinkage factor is kept activated even with flat priors.
This is shown to be induced by the non-identifiability of the matrix factorization model, that is,
the mapping between the target matrix and factorized matrices is not one-to-one. We call this
model-induced regularization. We further extend our analysis to empirical Bayes scenarios where
hyperparameters are also learned based on the VB free energy. Throughout the paper, we assume
no missing entry in the observed matrix, and therefore collaborative filtering is out of scope.

Keywords: matrix factorization, variational Bayes, empirical Bayes, positive-part James-Stein
shrinkage, non-identifiable model, model-induced regularization

1. Introduction

The goal of matrix factorization (MF) is to find a low-rank expression of a target matrix. MF can
be used for learning linear relation between vectors such as reduced rank regression (Baldi and
Hornik, 1995; Reinsel and Velu, 1998), canonical correlation analysis (Hotelling, 1936; Anderson,
1984), partial least-squares (Wold, 1966; Worsley et al., 1997; Rosipal and Krämer, 2006), and
multi-task learning (Chapelle and Harchaoui, 2005; Yu et al., 2005). More recently, MF is applied
to collaborative filtering for imputing missing entries of a target matrix, for example, in the context
of recommender systems (Konstan et al., 1997; Funk, 2006) and microarray data analysis (Baldi
and Brunak, 1998). For these reasons, MF has attracted considerable attention these days.

∗. This paper is an extended version of our earlier conference paper (Nakajima and Sugiyama, 2010).

c©2011 Shinichi Nakajima and Masashi Sugiyama.
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1.1 MF Methods

Srebro and Jaakkola (2003) proposed the weighted low-rank approximationmethod, which is based
on the expectation-maximization (EM) algorithm: a matrix is fitted to the data without a rank con-
straint in the E-step and it is projected back to the set of low-rank matrices by singular value de-
composition (SVD) in the M-step. Since the optimization problem of the weighted low-rank ap-
proximation method involves a low-rank constraint, it is non-convex and thus only a local optimal
solution may be obtained. Furthermore, SVD of the target matrix needs to be carried out in each
iteration, which may be computationally intractable for large-scale data.

Funk (2006) proposed the regularized SVD method that minimizes a goodness-of-fit term com-
bined with the Frobenius-norm penalty under a low-rank constraint by gradient descent (see also
Paterek, 2007). The regularized SVD method could be computationally more efficient than the
weighted low-rank approximation method in the context of collaborative filtering since only ob-
served entries are referred to in each gradient iteration.

Srebro et al. (2005) proposed to use the trace-norm penalty instead of the Frobenius-norm
penalty, so that a low-rank solution can be obtained without having an explicit low-rank constraint.
Thanks to the convexity of the trace-norm, a semi-definite programming formulation can be ob-
tained when the hinge-loss (Schölkopf and Smola, 2002) is used. See also Rennie and Srebro (2005)
for a computationally efficient variant using a gradient-based optimization method with smooth ap-
proximation.

Salakhutdinov and Mnih (2008) proposed a Bayesian maximum a posteriori (MAP) method
based on the Gaussian noise model and Gaussian priors on the decomposed matrices. This method
actually corresponds to minimizing the squared-loss with the trace-norm penalty (Srebro et al.,
2005).

Recently, the variational Bayesian (VB) approach (Attias, 1999) has been applied to MF (Lim
and Teh, 2007; Raiko et al., 2007), which we refer to as VBMF. The VBMF method was shown to
perform very well in experiments. However, its good performance was not completely understood
beyond its experimental success. The purpose of this paper is to provide new insight into Bayesian
MF.

1.2 MF Models and Non-identifiability

The MFmodels can be regarded as re-parameterization of the target matrix using low-rank matrices.
This kind of re-parameterization often significantly changes the statistical behavior of the estimator
(Gelman, 2004). Indeed, MF models possess a special structure called non-identifiability (Watan-
abe, 2009), meaning that the mapping between the target matrix and the factorized matrices is not
one-to-one .

Previous theoretical studies on non-identifiable models investigated the behavior of multi-layer
pereptrons, Gaussian mixture models, and hidden Markov models. It was shown that when such
non-identifiable models are trained using full-Baysian (FB) estimation, the regularization effect is
significantly stronger than the MAP method (Watanabe, 2001; Yamazaki and Watanabe, 2003).
Since a single point in the function space corresponds to a set of points in the (redundant) param-
eter space in non-identifiable models, simple distributions such as the Gaussian distribution in the
function space produce highly complicated multimodal distributions in the parameter space. This
causes the MAP and FB solutions to be significantly different. Thus the behavior of non-identifiable
models is substantially different from that of identifiable models. For Gaussian mixture models and
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reduced rank regression models, theoretical properties of VB have also been investigated (Watanabe
and Watanabe, 2006; Nakajima and Watanabe, 2007).

1.3 Our Contribution

In this paper, following the line of Nakajima and Watanabe (2007) which investigated asymptotic
behavior of VBMF estimators and the generalization error, we provide a more precise analysis of
VB estimators. More specifically, we derive non-asymptotic bounds of the VBMF estimator. The
obtained solution can be seen as a re-weighted singular value decomposition, and the weights in-
clude a factor induced by the Bayesian inference procedure, in the same way as automatic relevance
determination (Neal, 1996; Wipf and Nagarajan, 2008).

We show that VBMF consists of two shrinkage factors, the positive-part James-Stein (PJS)
shrinkage (James and Stein, 1961; Efron and Morris, 1973) and the trace-norm shrinkage (Srebro
et al., 2005), operating on each singular component separately for producing low-rank solutions.

The trace-norm shrinkage is simply induced by non-flat prior information, as in the MAP ap-
proach (Salakhutdinov and Mnih, 2008). Thus, no trace-norm shrinkage remains when priors are
non-informative. On the other hand, we show a counter-intuitive fact that the PJS shrinkage factor
is still kept activated even with uniform priors. This allows the VBMF method to avoid overfitting
(or in some cases, this may cause underfitting) even when non-informative priors are provided. We
call this regularization effect model-induced regularization since it is caused by the structure of the
model likelihood function.

We further extend the above analysis to empirical VBMF (EVBMF) scenarios, where hyperpa-
rameters in prior distributions are also learned based on the VB free energy. We derive bounds of
the EVBMF estimator, and show that the effect of PJS shrinkage is at least doubled compared with
the uniform prior cases.

Finally, we note that our analysis relies on the following three assumptions: First, we assume
that the given matrix is fully observed, and no missing entry exists. This means that missing entry
prediction is out of scope of our theory. Second, we require the noise to be independent Gaussian
noise and the priors to be isotropic Gaussian. Third, we assume the column-wise independence on
the VB posterior, which is different from the standard VB assumption that only the matrix-wise
independence is required.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we formulate the MF problem and
review its Bayesian approaches including FB, MAP, VB methods, and their empirical variants. In
Section 3, we analyze the behavior of MAPMF, VBMF, and their empirical variants, and elucidate
the regularization mechanism. In Section 4, we illustrate the characteristic behavior of MF solutions
through simple numerical experiments, highlighting the influence of non-identifiability of the MF
models. Finally, we conclude in Section 5. A brief review of the James-Stein shrinkage estimator
and all the technical details are provided in Appendix.

2. Bayesian Approaches to Matrix Factorization

In this section, we give a probabilistic formulation of the matrix factorization (MF) problem and
review its Bayesian methods.
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Figure 1: Matrix factorization model.

2.1 Formulation

The goal of the MF problem is to estimate a target matrixU (∈ RL×M) from its observation

V ∈ RL×M.

Throughout the paper, we assume that

L≤M.

If L >M, we may simply re-define the transposeU� asU so that L≤M holds. Thus this does not
impose any restriction.

A key assumption of MF is thatU is a low-rank matrix. Let H (≤ L) be the rank ofU . Then the
matrixU can be decomposed into the product of A∈RM×H and B∈RL×H as follows (see Figure 1):

U = BA�.

With appropriate pre-whitening (Hyvärinen et al., 2001), reduced rank regression (Baldi and
Hornik, 1995; Reinsel and Velu, 1998), canonical correlation analysis (Hotelling, 1936; Anderson,
1984), partial least-squares (Wold, 1966; Worsley et al., 1997; Rosipal and Krämer, 2006), and
multi-task learning (Chapelle and Harchaoui, 2005; Yu et al., 2005) can be seen as special cases of
the MF problem. Collaborative filtering (Konstan et al., 1997; Baldi and Brunak, 1998; Funk, 2006)
and image processing (Lee and Seung, 1999) would be popular applications of MF. Note that, some
of these applications such as collaborative filtering and multi-task learning with unshared input sets
are out of scope of our theory, since they require missing entry prediction.

Assume that the observed matrix V is subject to the following additive-noise model:

V =U+E ,

where E (∈ RL×M) is a noise matrix. Each entry of E is assumed to independently follow the
Gaussian distribution with mean zero and variance σ2. Then, the likelihood p(V |A,B) is given by

p(V |A,B) ∝ exp

(
−
1
2σ2

‖V −BA�‖2Fro

)
, (1)

where ‖ · ‖Fro denotes the Frobenius norm of a matrix.
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2.2 Full-Bayesian Matrix Factorization (FBMF) and Its Empirical Variant (EFBMF)

We use the Gaussian priors on the parameters A and B:

φ(U) = φA(A)φB(B),

where

φA(A) ∝ exp

(
−

H

∑
h=1

‖ah‖
2

2c2ah

)
= exp

(
−
tr(AC−1

A A�)

2

)
, (2)

φB(B) ∝ exp

(
−

H

∑
h=1

‖bh‖
2

2c2bh

)
= exp

(
−
tr(BC−1

B B�)

2

)
. (3)

Here, ah and bh are the h-th column vectors of A and B, respectively, that is,

A= (a1, . . . ,aH),

B= (b1, . . . ,bH).

c2ah and c
2
bh
are hyperparameters corresponding to the prior variances of those vectors. Without loss

of generality, we assume that the product cahcbh is non-increasing with respect to h. We also denote
them as covariance matrices:

CA = diag(c
2
a1 , . . . ,c

2
aH ),

CB = diag(c
2
b1 , . . . ,c

2
bH ),

where diag(c) denotes the diagonal matrix with its entries specified by vector c. tr(·) denotes the
trace of a matrix.

With the Bayes theorem and the definition of marginal distributions, the Bayes posterior p(A,B|V )
can be written as

p(A,B|V ) =
p(A,B,V )
p(V )

=
p(V |A,B)φA(A)φB(B)
〈p(V |A,B)〉φA(A)φB(B)

, (4)

where 〈·〉p denotes the expectation over p. The full-Bayesian (FB) solution is given by the Bayes
posterior mean:

ÛFB = 〈BA�〉p(A,B|V ). (5)

We call this method FBMF.
The hyperparameters cah and cbh may be determined so that the Bayes free energy F(V ) is

minimized.

F(V ) =− log p(V )

=− log〈p(V |A,B)〉φA(A)φB(B). (6)

We call this method the empirical full-Bayesian MF (EFBMF). The Bayes free energy is also
referred to as the marginal log-likelihood (MacKay, 2003), the evidence (MacKay, 1992) or the
stochastic complexity (Rissanen, 1986).
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2.3 Maximum A Posteriori Matrix Factorization (MAPMF) and Its Empirical Variant
(EMAPMF)

When computing the Bayes posterior (4), the expectation in the denominator of Equation (4) is often
intractable due to high dimensionality of the parameters A and B. More importantly, computing the
posterior mean (5) is also intractable. A simple approach to mitigating this problem is to use the
maximum a posteriori (MAP) approximation, which we refer to as MAPMF. The MAP solution
ÛMAP is given by

ÛMAP = B̂MAP(ÂMAP)�,

where

(ÂMAP, B̂MAP) = argmax
A,B

p(A,B|V ).

In the MAP framework, one may determine the hyperparameters cah and cbh so that the Bayes
posterior p(A,B|V ) is maximized (equivalently, the negative log posterior is minimized). We call
this method empirical MAPMF (EMAPMF). Note that EMAPMF does not work properly, as ex-
plained in Section 3.3.

2.4 Variational Bayesian Matrix Factorization (VBMF) and Its Empirical Variant (EVBMF)

Another approach to avoiding computational intractability of the FB method is to use the variational
Bayes (VB) approximation (Attias, 1999; Bishop, 2006). Here, we review the VB-basedMFmethod
(Lim and Teh, 2007; Raiko et al., 2007).

Let r(A,B|V ) be a trial distribution for A and B, and we define the following functional FVB
called the VB free energy with respect to r(A,B|V ):

FVB(r|V ) =

〈
log

r(A,B|V )
p(V,A,B)

〉
r(A,B|V )

. (7)

Using p(V,A,B) = p(A,B|V )p(V ), we can decompose Equation (7) into two terms:

FVB(r|V ) =

〈
log

r(A,B|V )
p(A,B|V )

〉
r(A,B|V )

+F(V ), (8)

where F(V ) is the Bayes free energy defined by Equation (6). The first term in Equation (8) is the
Kullback-Leibler divergence (Kullback and Leibler, 1951) from r(A,B|V ) to the Bayes posterior
p(A,B|V ). This is non-negative and vanishes if and only if the two distributions agree with each
other. Therefore, the VB free energy FVB(r|V ) is lower-bounded by the Bayes free energy F(V ):

FVB(r|V )≥ F(V ),

where the equality is satisfied if and only if r(A,B|V ) agrees with p(A,B|V ).
The VB approach minimizes the VB free energy FVB(r|V ) with respect to the trial distribution

r(A,B|V ), by restricting the search space of r(A,B|V ) so that the minimization is computationally
tractable. Typically, dissolution of probabilistic dependency between entangled parameters (A and
B in the case of MF) makes the calculation feasible:

r(A,B|V ) = rA(A|V )rB(B|V ). (9)
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Then, the VB free energy (7) is written as

FVB(r|V ) =

〈
log

rA(A|V )rB(B|V )
p(V |A,B)φA(A)φB(B)

〉
rA(A|V )rB(B|V )

. (10)

The resulting distribution is called the VB posterior. The VB solution ÛVB is given by the VB
posterior mean:

ÛVB = 〈BA�〉r(A,B|V ). (11)

We call this method VBMF.
Applying the variational method to the VB free energy shows that the VB posterior satisfies the

following conditions:

rA(A|V ) ∝ φA(A)exp
(
〈log p(V |A,B)〉rB(B|V )

)
, (12)

rB(B|V ) ∝ φB(B)exp
(
〈log p(V |A,B)〉rA(A|V )

)
. (13)

Recall that we are using the Gaussian priors (2) and (3). Also, Equation (1) implies that the log-
likelihood log p(V |A,B) is a quadratic function of A when B is fixed, and vice versa. Then the
conditions (12) and (13) imply that the VB posteriors rA(A|V ) and rB(B|V ) are also Gaussian.
This enables one to derive a computationally efficient algorithm called the iterated conditional
modes (Besag, 1986; Bishop, 2006), where the mean and the covariance of the parameters A and
B are iteratively updated using Equations (12) and (13) (Lim and Teh, 2007; Raiko et al., 2007).
This amounts to alternating between minimizing the free energy (10) with respect to rA(A|V ) and
rB(B|V ).

As in Raiko et al. (2007), we assume in our theoretical analysis that the trial distribution
r(A,B|V ) can be further factorized as

r(A,B|V ) =
H

∏
h=1

rah(ah|V )rbh(bh|V ). (14)

Then the update rules (12) and (13) are simplified as

rah(ah|V ) ∝ φah(ah)exp
(
〈log p(V |A,B)〉r\ah (A\ah,B|V )

)
, (15)

rbh(bh|V ) ∝ φbh(bh)exp
(
〈log p(V |A,B)〉r\bh (A,B\bh|V )

)
, (16)

where r\ah and r\bh denote the VB posterior of the parameters A and B except ah and bh, respectively.
The VB free energy also allows us to determine the hyperparameters c2ah and c

2
bh
in a computa-

tionally tractable way. That is, instead of the Bayes free energy F(V ), the VB free energy FVB(r|V )
is minimized with respect to c2ah and c

2
bh
. We call this method empirical VBMF (EVBMF).

3. Analysis of Bayesian MF Methods

In this section, we theoretically analyze the behavior of MAPMF, VBMF, EMAPMF, and EVBMF
solutions, and elucidate their regularization mechanism.
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3.1 MAPMF

The MAP estimator (ÂMAP, B̂MAP) is the maximizer of the Bayes posterior. In our model (1), (2),
and (3), the negative log of the Bayes posterior is expressed as

− log p(A,B|V ) =
LM logσ2

2
+
1
2

H

∑
h=1

(
M logc2ah +L logc2bh +

‖ah‖
2

c2ah
+

‖bh‖
2

c2bh

)

+
1
2σ2

∥∥∥∥∥V −
H

∑
h=1

bha
�
h

∥∥∥∥∥
2

Fro

+Const. (17)

Differentiating Equation (17) with respect to A and B and setting the derivatives to zero, we have
the following conditions:

ah =

(
‖bh‖

2+
σ2

c2ah

)−1
(
V − ∑

h′ 
=h

bh′a
�
h′

)�

bh, (18)

bh =

(
‖ah‖

2+
σ2

c2bh

)−1(
V − ∑

h′ 
=h

bh′a
�
h′

)
ah. (19)

One may search a local solution (i.e., a local minimum of the negative log posterior (17)) by iterating
Equations (18) and (19). However, as shown below, the optimal solution can be obtained analytically
in the current setup.

When the hyperparameters are homogeneous, that is, {cahcbh = c;∀h= 1, . . . ,H}, a closed-form
expression of the MAP estimator can be immediately obtained by combining the results given in
Srebro et al. (2005) and Cai et al. (2010). The following theorem is its slight extension that covers
heterogeneous cases (its proof is given in Appendix B):

Theorem 1 Let γh (≥ 0) be the h-th largest singular value of V . Let ωah and ωbh be the associated
right and left singular vectors:

V =
L

∑
h=1

γhωbhω
�
ah . (20)

The MAP estimator ÛMAP is given by

ÛMAP =
H

∑
h=1

γ̂MAPh ωbhω
�
ah ,

where

γ̂MAPh =max

{
0,γh−

σ2

cahcbh

}
. (21)

The theorem implies that the MAP solution cuts off the singular values less than σ2/(cahcbh);
otherwise it reduces the singular values by σ2/(cahcbh) (see Figure 2). This shrinkage effect allows
the MAPMF method to avoid overfitting.
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Figure 2: Shrinkage of the ML estimator (22), the MAP estimator (21), and the VB estimator (28)
when σ2 = 0.1, cahcbh = 0.1, L= 100, andM = 200.

Similarly to Theorem 1, we can show that the maximum likelihood (ML) estimator is given by

ÛML =
H

∑
h=1

γ̂MLh ωbhω
�
ah ,

where

γ̂MLh = γh for all h. (22)

Thus the ML solution is reduced to V when H = L (see Figure 2):

ÛML =
L

∑
h=1

γ̂MLh ωbhω
�
ah =V.

A parametric model is said to be identifiable if the mapping between parameters and functions is
one-to-one; otherwise the model is said to be non-identifiable (Watanabe, 2001). Since the decom-
positionU = BA� is redundant, the MF model is non-identifiable (Nakajima and Watanabe, 2007).
For identifiable models, the MAP estimator with the uniform prior is reduced to the ML estimator
(Bishop, 2006). On the other hand, in the MF model, a single point in the space of U corresponds
to a set of points in the joint space of A and B. For this reason, the uniform priors on A and B do not
produce the uniform prior onU . Nevertheless, Equations (21) and (22) imply that MAP is reduced
to ML when the priors on A and B are uniform (i.e., cah ,cbh → ∞).

More precisely, Equations (21) and (22) show that the product cahcbh →∞ is sufficient for MAP
to be reduced to ML, which is weaker than both cah ,cbh → ∞. This implies that both priors on A
and B do not have to be uniform; only the condition that one of the priors is uniform is sufficient for
MAP to be reduced to ML in the MF model. This phenomenon is distinctively different from the
case of identifiable models.

If the prior is uniform and the likelihood is Gaussian, then the posterior is also Gaussian. Thus
the mean and mode of the posterior agree with each other due to the symmetry of the Gaussian
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density. For identifiable models, this fact implies that the FB and MAP solutions agree with each
other. However, the FB and MAP solutions are generally different in non-identifiable models since
the symmetry of the Gaussian density in the space of U is no longer kept in the joint space of A
and B. In Section 4.1, we will further investigate these distinctive features of the MF model using
illustrative examples.

3.2 VBMF

Substituting Equations (1), (2), and (3) into Equations (15) and (16), we find that the VB posteriors
can be expressed as follows:

rA(A|V ) =
H

∏
h=1

NM(ah;μah ,Σah),

rB(B|V ) =
H

∏
h=1

NL(bh;μbh ,Σbh),

where Nd(·;μ,Σ) denotes the d-dimensional Gaussian density with mean μ and covariance matrix
Σ. μah , μbh , Σah , and Σbh satisfy

μah =
1
σ2
Σah

(
V − ∑

h′ 
=h

μbh′μ
�
ah′

)�

μbh , (23)

μbh =
1
σ2
Σbh

(
V − ∑

h′ 
=h

μbh′μ
�
ah′

)
μah , (24)

Σah =

(
1
σ2

(
‖μbh‖

2+ tr(Σbh)
)
+ c−2ah

)−1

IM, (25)

Σbh =

(
1
σ2

(
‖μah‖

2+ tr(Σah)
)
+ c−2bh

)−1

IL. (26)

Id denotes the d-dimensional identity matrix. One may search a local solution (i.e., a local minimum
of the free energy (10)) by iterating Equations (23)–(26).

It is straightforward to see that the VB solution ÛVB (see Equation (11)) can be expressed as

ÛVB =
H

∑
h=1

μbhμ
�
ah . (27)

Then we have the following theorem (its proof is given in Appendix C):1

Theorem 2 ÛVB is expressed as

ÛVB =
H

∑
h=1

γ̂VBh ωbhω
�
ah ,

1. This theorem could be regarded as a more precise version of Theorem 1 given in Nakajima and Watanabe (2007).
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where ωah and ωbh are the right and the left singular vectors of V (see Equation (20)). When
γh >

√
Mσ2, γ̂VBh (= ‖μah‖‖μbh‖) is bounded as

max

{
0,

(
1−

Mσ2

γ2h

)
γh−

σ2
√
M/L

cahcbh

}
≤ γ̂VBh <

(
1−

Mσ2

γ2h

)
γh. (28)

Otherwise, γ̂VBh = 0.

The upper and lower bounds given in Equation (28) are illustrated in Figure 2. Theorem 2 states
that, in the limit of cahcbh → ∞, the lower bound agrees with the upper bound and we have

lim
cahcbh→∞

γ̂VBh =

⎧⎪⎨⎪⎩max
{
0,

(
1−

Mσ2

γ2h

)
γh

}
if γh > 0,

0 otherwise.
(29)

This is the same form as the positive-part James-Stein (PJS) shrinkage estimator (James and Stein,
1961; Efron and Morris, 1973) (see Appendix A for the details of the PJS estimator). The factor
Mσ2 is the expected contribution of the noise to γ2h—when the target matrix isU = 0, the expectation
of γ2h over all h is given byMσ

2. When γ2h <Mσ2, Equation (29) implies that γ̂VBh = 0. Thus, the PJS
estimator cuts off the singular components dominated by noise. As γ2h increases, the PJS shrinkage
factor Mσ2/γ2h tends to 0, and thus the estimated singular value γ̂

VB
h becomes close to the original

singular value γh.
Let us compare the behavior of the VB solution (29) with that of the MAP solution (21) when

cahcbh →∞. In this case, theMAP solution merely results in theML solution where no regularization
is incorporated. In contrast, VB offers PJS-type regularization even when cahcbh → ∞. Thus VB
can still mitigate overfitting (or it can possibly cause underfitting). This fact is in good agreement
with the experimental results reported in Raiko et al. (2007), where no overfitting was observed
when c2ah = 1 and c2bh is set to large values. This counter-intuitive fact stems again from the non-
identifiability of the MF model—the Gaussian noise E imposed in the space ofU possesses a very
complex surface in the joint space of A and B, in particular, multimodal structure. This causes
the MAP solution to be distinctively different from the VB solution. We call this regularization
effect model-induced regularization. In Section 4.2, we investigate the effect of model-induced
regularization in more detail using illustrative examples.

The following theorem more precisely specifies under which condition the VB estimator is
strictly positive or zero (its proof is also included in Appendix C):

Theorem 3 It holds that

γ̂VBh = 0 if γh ≤ γ̃VBh ,

γ̂VBh > 0 if γh > γ̃VBh ,

where

γ̃VBh =

√√√√√(L+M)σ2

2
+

σ4

2c2ahc
2
bh

+

√√√√(
(L+M)σ2

2
+

σ4

2c2ahc
2
bh

)2
−LMσ4. (30)
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γ̃VBh is monotone decreasing with respect to cahcbh , and is lower-bounded as

γ̃VBh > lim
cahcbh→∞

γ̃VBh =
√
Mσ2.

As shown in Equation (21), γ̂MAPh satisfies

γ̂MAPh = 0 if γh ≤ γ̃MAPh ,

γ̂MAPh > 0 if γh > γ̃MAPh ,

where

γ̃MAPh =
σ2

cahcbh
.

Since

γ̃VBh >

√
σ4

c2ahc
2
bh

= γ̃MAPh ,

VB has a stronger shrinkage effect than MAP in terms of the vanishing condition of singular values.
We can derive another upper bound of γ̂VBh , which depends on hyperparameters cah and cbh (its

proof is also included in Appendix C):

Theorem 4 When γh >
√
Mσ2, γ̂VBh is upper-bounded as

γ̂VBh ≤

√(
1−

Lσ2

γ2h

)(
1−

Mσ2

γ2h

)
· γh−

σ2

cahcbh
. (31)

When L=M and γh >
√
Mσ2, the lower bound in Equation (28) and the upper bound in Equa-

tion (31) agree with each other. Thus, we have an analytic-form expression of γ̂VBh as follows:

γ̂VBh =

⎧⎪⎨⎪⎩max
{
0,

(
1−

Mσ2

γ2h

)
γh−

σ2

cahcbh

}
if γh > 0,

0 otherwise.
(32)

Then, the complete VB posterior can also be obtained analytically (its proof is given in Appendix D):

Corollary 1 When L=M, the VB posteriors are given by

rA(A|V ) =
H

∏
h=1

NM(ah;μah ,Σah),

rB(B|V ) =
H

∏
h=1

NM(bh;μbh ,Σbh),
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where, for γ̂VBh given by Equation (32),

μah =±

√
cah
cbh

γ̂VBh ·ωah , (33)

μbh =±

√
cbh
cah

γ̂VBh ·ωbh , (34)

Σah =
cah
2cbhM

⎛⎝√(
γ̂VBh +

σ2

cahcbh

)2
+4σ2M−

(
γ̂VBh +

σ2

cahcbh

)⎞⎠ IM, (35)

Σbh =
cbh
2cahM

⎛⎝√(
γ̂VBh +

σ2

cahcbh

)2
+4σ2M−

(
γ̂VBh +

σ2

cahcbh

)⎞⎠ IM. (36)

3.3 EMAPMF

In the EMAPMF framework, the hyperparameters cah and cbh are determined so that the Bayes
posterior p(A,B|V ) is maximized (equivalently, the negative log posterior is minimized).

Differentiating the negative log posterior (17) with respect to c2ah and c
2
bh
and setting the deriva-

tives to zero lead to the following optimality conditions.

c2ah =
‖ah‖

2

M
, (37)

c2bh =
‖bh‖

2

L
. (38)

Alternating Equations (18), (19), (37), and (38), one may learn the parameters A,B and the hyper-
parameters cah ,cbh at the same time.

However, as pointed out in Raiko et al. (2007), EMAPMF does not work properly since its
objective (17) is unbounded from below at ah,bh = 0 and cah ,cbh → 0. Thus we end up in merely
finding the trivial solution (ah,bh= 0) unless the iterative algorithm is stuck at some local optimum.

3.4 EVBMF

For the trial distribution (14), the VB free energy (10) can be written as follows:

FVB(r|V,{c
2
ah ,c

2
bh}) =

LM
2
logσ2+

H

∑
h=1

(
M
2
logc2ah −

1
2
log |Σah |+

‖μah‖
2+ tr(Σah)
2c2ah

+
L
2
logc2bh −

1
2
log |Σbh |+

‖μbh‖
2+ tr(Σbh)
2c2bh

)

+
1
2σ2

∥∥∥∥∥V −
H

∑
h=1

μbhμ
�
ah

∥∥∥∥∥
2

Fro

+
1
2σ2

H

∑
h=1

(
‖μah‖

2tr(Σbh)+ tr(Σah)‖μbh‖
2+ tr(Σah)tr(Σbh)

)
, (39)
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where | · | denotes the determinant of a matrix. Differentiating Equation (39) with respect to c2ah and
c2bh and setting the derivatives to zero, we obtain the following optimality conditions:

c2ah =
‖μah‖

2+ tr(Σah)
M

, (40)

c2bh =
‖μbh‖

2+ tr(Σbh)
L

. (41)

Here, we observe the invariance of Equation (39) with respect to the transform{
(μah ,μbh ,Σah ,Σbh ,c

2
ah ,c

2
bh)

}
→

{
(s1/2h μah ,s

−1/2
h μbh ,shΣah ,s

−1
h Σbh ,shc

2
ah ,s

−1
h c2bh)

}
(42)

for any {sh ∈R;sh> 0,h= 1, . . . ,H}. This redundancy can be eliminated by fixing the ratio between
the hyperparameters to some constant—we choose 1 without loss of generality:

cah
cbh

= 1. (43)

Then, Equations (40) and (41) yield

c2ah =

√
(‖μah‖

2+ tr(Σah))(‖μbh‖
2+ tr(Σbh))

LM
, (44)

c2bh =

√
(‖μah‖

2+ tr(Σah))(‖μbh‖
2+ tr(Σbh))

LM
. (45)

One may learn the parameters A,B and the hyperparameters cah ,cbh by applying Equations (44) and
(45) after every iteration of Equations (23)–(26) (this gives a local minimum of Equation (39) at
convergence).

For the EVB solution ÛEVB, we have the following theorem (its proof is provided in Ap-
pendix E):

Theorem 5 The EVB estimator is given by the following form:

ÛEVB =
H

∑
h=1

γ̂EVBh ωbhω
�
ah .

γ̂EVBh = 0 if γh < γEVB
h

, where

γEVB
h

=
(√

L+
√
M
)
σ.

If γh ≥ γEVB
h

, γ̂EVBh is upper-bounded as

γ̂EVBh <

(
1−

Mσ2

γ2h

)
γh. (46)

If γh ≥ γEVBh , where

γEVBh =
√
7M ·σ> γEVB

h
,
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γ̂EVBh is lower-bounded as

γ̂EVBh >max

⎧⎨⎩0,
⎛⎝1− 2Mσ2

γ2h−
√
γ2h(L+M+

√
LM)σ2

⎞⎠γh

⎫⎬⎭ . (47)

Theorem 5 implies that

γ̂EVBh = 0 if γh < γEVB
h

,

γ̂EVBh > 0 if γh ≥ γEVBh .

When
γEVB
h

≤ γh < γEVBh ,

our theoretical analysis is not precise enough to conclude whether γ̂EVBh is zero or not. As explained
in Section 3.3, EMAP always results in the trivial solution (i.e., γ̂EMAPh = 0). In contrast, Theorem 5
states that EVB gives a non-trivial solution (i.e., γ̂EVBh > 0) when γh≥ γEVBh . Since limcahcbh→∞ γ̃VBh =
√
Mσ2 < γEVB

h
(see Theorem 3), EVB has stronger shrinkage effect than VB with flat priors in terms

of the vanishing condition of singular values.
It is also note worthy that the upper bound in Equation (46) is the same as that in Theorem 2.

Thus, even when the hyperparameters cah and cbh are learned from data by EVB, the same upper
bound as the fixed-hyperparameter case in VB holds.

Another upper bound of γ̂EVBh is given as follows (its proof is also included in Appendix E):

Theorem 6 When γh ≥ γEVB
h

(= (
√
L+

√
M)σ), γ̂EVBh is upper-bounded as

γ̂EVBh <

√(
1−

Lσ2

γ2h

)(
1−

Mσ2

γ2h

)
γh−

√
LMσ2

γh
. (48)

Note that the right-hand side of (48) is strictly positive under γh ≥ γEVB
h

.
When L =M, the upper bound in Equation (48) is sharper than that in Equation (46), resulting

in

γ̂EVBh <

(
1−

2Mσ2

γ2h

)
γh. (49)

The PJS shrinkage factor of the upper bound (49) is 2Mσ2/γ2h. On the other hand, as shown in Equa-
tion (29), the PJS shrinkage factor of the plain VB with uniform priors on A and B (i.e., ca,cb → ∞)
isMσ2/γ2h, which is less than a half of EVB. Thus, EVB provides substantially stronger regulariza-
tion effect than the plain VB with uniform priors. Furthermore, from Equation (32), we can confirm
that the upper bound (49) is equivalent to the VB solution when cahcbh = γh/M.

When L=M, the complete EVB posterior is obtained analytically by using the following corol-
lary (the proof is given in Appendix F):

Corollary 2 For γh ≥ 2
√
Mσ, we define

ϕ(γh) = log

(
γ2h
Mσ2

(1−ρ−)

)
−

γ2h
Mσ2

(1−ρ−)+

(
1+

γ2h
2Mσ2

ρ2+

)
, (50)
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Figure 3: Equivalence class. Any A and B such that their product is unchanged give the sameU .

where

ρ± =

√√√√1
2

(
1−

2Mσ2

γ2h
±

√
1−

4Mσ2

γ2h

)
.

Suppose L=M. If γh ≥ 2
√
Mσ and ϕ(γh)≤ 0, then the EVB estimator of cahcbh is given by

ĉEVBah ĉEVBbh =
γh
M
ρ+. (51)

Otherwise, ĉEVBah ĉEVBbh
→ 0. The EVB posterior is obtained by Corollary 1 with

(c2ah ,c
2
bh) =

(
ĉEVBah ĉEVBbh , ĉEVBah ĉEVBbh

)
.

Furthermore, when γh ≥
√
7Mσ, it holds that

ϕ(γh)< 0. (52)

Given γh, Equation (50) and then Equation (51) are computed analytically. By substituting Equa-
tions (51) and (43) into Equations (33)–(36), the complete EVB posterior is obtained. In Section 4.3,
properties of EVBMF along with the behavior of the function (50) are further investigated through
numerical examples.

4. Illustration of Influence of Non-identifiability

In order to understand the regularization mechanism of the Bayesian MF methods more intuitively,
we illustrate the influence of non-identifiability when L = M = H = 1 (i.e., U , V , A, and B are
merely scalars). In this case, any A and B such that their product is unchanged form an equivalence
class and give the same U (see Figure 3). When U = 0, the equivalence class has a ‘cross-shape’
profile on the A- and B-axes; otherwise, it forms a pair of hyperbolic curves.
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Figure 4: Bayes posteriors with ca = cb = 100 (i.e., almost flat priors). The asterisks are the MAP
solutions, and the dashed lines indicate the ML solutions (the modes of the contour when
ca = cb = c→ ∞).
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Figure 5: Bayes posteriors with ca = cb = 2. The dashed lines indicating the ML solutions are
identical to those in Figure 4.

4.1 MAPMF

First, we illustrate the behavior of the MAP estimator.
When L=M = H = 1, Equation (17) yields that the Bayes posterior p(A,B|V ) is given as

p(A,B|V ) ∝ exp

(
− 1
2σ2

(V −BA)2− A2

2c2a
− B2

2c2b

)
. (53)

Figure 4 shows the contour of the above Bayes posterior when V = 0,1,2 are observed, where the
noise variance is σ2 = 1 and the hyperparameters are ca = cb = 100 (i.e., almost flat priors). When
V = 0, the surface of the Bayes posterior has a cross-shape profile and its maximum is at the origin.
When V > 0, the surface is divided into the positive orthant (i.e., A,B> 0) and the negative orthant
(i.e., A,B< 0), and the two ‘modes’ get farther as V increases.
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For finite ca and cb, Theorem 1 and Equation (66) (in Appendix B) imply that the MAP solution
can be expressed as

ÂMAP =±
√
ca
cb
max

{
0, |V |− σ2

cacb

}
,

B̂MAP =±sign(V )
√
cb
ca
max

{
0, |V |− σ2

cacb

}
,

where sign(·) denotes the sign of a scalar. In Figure 4, the asterisks indicate the MAP estimators,
and the dashed lines indicate the ML estimators (the modes of the contour of Equation (53) when
ca = cb = c→∞). WhenV = 0, the Bayes posterior takes the maximum value on the A- and B-axes,
which results in ÛMAP = 0. When V = 1, the profile of the Bayes posterior is hyperbolic and the
maximum value is achieved on the hyperbolic curves in the positive orthant (i.e., A,B> 0) and the
negative orthant (i.e., A,B < 0); in either case, ÛMAP ≈ 1 (and ÛMAP → 1 as ca,cb → ∞). When
V = 2, a similar multimodal structure is observed and the solution is ÛMAP ≈ 2 (and ÛMAP → 2 as
ca,cb →∞). From these plots, we can visually confirm that the MAP solution with almost flat priors
(ca = cb = 100) approximately agrees with the ML solution: ÛMAP ≈ ÛML =V (and ÛMAP→ ÛML

as ca,cb → ∞).
Furthermore, these graphs illustrate the reason why the product cacb → ∞ is sufficient for MAP

to agree with ML in the MF setup (see Section 3.1). Suppose ca is kept small, say ca= 1, in Figure 4.
Then the Gaussian ‘decay’ remains along the horizontal axis in the profile of the Bayes posterior.
However, the MAP solution ÛMAP does not change since the mode of the Bayes posterior is kept
lying on the dashed line (equivalence class). Thus, MAP agrees with ML if either ca or cb tends to
infinity.

Figure 5 shows the contour of the Bayes posterior when ca = cb = 2. The MAP estimators are
shifted from theML estimators (dashed lines) toward the origin, and they are more clearly contoured
as peaks.

4.2 VBMF

Here, we illustrate the behavior of the VB estimator, where the Bayes posterior is approximated by
a spherical Gaussian.

In the current one-dimensional setup, Corollary 1 implies that the VB posteriors rA(A|V ) and
rB(B|V ) can be expressed as

rA(A|V ) =N (A;±
√
γ̂VBca/cb,ζca/cb),

rB(B|V ) =N (B;±sign(V )
√
γ̂VBcb/ca,ζcb/ca),

where N (·;μ,σ2) denotes the Gaussian density with mean μ and variance σ2, and

ζ=

√(
γ̂VB

2
+

σ2

2cacb

)2
+σ2−

(
γ̂VB

2
+

σ2

2cacb

)
,

γ̂VB =

⎧⎨⎩max
{
0,

(
1− σ2

V 2

)
|V |− σ2

cacb

}
if V �= 0,

0 otherwise.
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Figure 6: VB posteriors and VB solutions when L = M = 1 (i.e., the matrices V , U , A, and B are
scalars). When V = 2, VB gives either one of the two solutions shown in the bottom row.

Figure 6 shows the contour of the VB posterior r(A,B|V ) = rA(A|V )rB(B|V ) when V = 0,1,2
are observed, where the noise variance is σ2 = 1 and the hyperparameters are ca = cb = 100 (i.e.,
almost flat priors). When V = 0, the cross-shaped contour of the Bayes posterior (see Figure 4)
is approximated by a spherical Gaussian function located at the origin. Thus, the VB estimator is
ÛVB = 0, which is equivalent to the MAP solution. When V = 1, two hyperbolic ‘modes’ of the
Bayes posterior are approximated again by a spherical Gaussian function located at the origin. Thus,
the VB estimator is still ÛVB = 0, which is different from the MAP solution.

V = γ̃VBh ≈
√
Mσ2 = 1 (̃γVBh →

√
Mσ2 as ca,cb→∞) is actually a transition point of the behavior

of the VB estimator. When V is not larger than the threshold
√
Mσ2, the VB method tries to

approximate the two ‘modes’ of the Bayes posterior by the origin-centered Gaussian function. When
V goes beyond the threshold

√
Mσ2, the ‘distance’ between two hyperbolic modes of the Bayes

posterior becomes so large that the VB method chooses to approximate one of the two modes in the
positive and negative orthants. As such, the symmetry is broken spontaneously and the VB solution
is detached from the origin. Note that, as discussed in Section 3, Mσ2 amounts to the expected
contribution of noise E to the squared singular value γ2 (=V 2 in the current setup).

The bottom row of Figure 6 shows the contour of two possible VB posteriors whenV = 2. Note
that, in either case, the VB solution is the same: ÛVB ≈ 3/2. The VB solution is closer to the origin
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than the MAP solution ÛMAP = 2, and the difference between the VB and MAP solutions tends to
shrink as V increases.

4.3 EVBMF

Next, we illustrate the behavior of the EVB estimator.
In the current one-dimensional setup, the free energy (39) is expressed as

FVB(r|V,c2a,c2b) = log
c2ac

2
b

ΣaΣb
+
μ2a+Σa
2c2a

+
μ2b+Σb
2c2b

− 1
σ2
Vμaμb+

1
2σ2

(
μ2a+Σa

)(
μ2b+Σb

)
+Const.

According to Corollary 2, if |V | ≥ 2σ and ϕ(|V |)≤ 0, the EVB estimator of the hyperparameters is
given by

(ĉEVBa )2 = (ĉEVBb )2 = |V |ρ+, (54)

where

ϕ(|V |) = log
( |V |2
σ2

(1−ρ−)
)
− |V |2

σ2
(1−ρ−)+

(
1+

|V |2
2σ2

ρ2+

)
,

ρ± =

√√√√1
2

(
1− σ2

|V |2 ±
√
1− 4σ2

|V |2
)
.

Based on a simple numerical evaluation (Figure 7) of ϕ(|V |), we can confirm that Equation (54)
holds if |V | ≥ γ̃EVB, where

γ̃EVB ≈ 2.22.
Otherwise ĉEVBah , ĉEVBbh

→ 0. Note that γ̃EVB is theoretically bounded as(
2= 2σ2 =

)
γEVB ≤ γ̃EVB ≤ γEVB

(
=
√
7σ2 ≈ 2.64

)
,

as shown in Equation (52).
Using Corollary 1 with Equation (54), we can plot the EVB posterior. When

|V |< γ̃EVB ≈ 2.22,

the infimum of the free energy with respect to (μa,μb,Σa,Σb,c2a,c
2
b) is attained by c

2
a = c2b = ε,

μa = μb = 0, and

Σa = Σb =
σ2

2ε

(√
1+

4nε2

σ2
−1

)
,

where ε→ 0 (i.e., c2a = c2b → 0, μa = μb = 0, and Σa = Σb → 0). Therefore, the Gaussian width of
the EVB posterior approaches zero (i.e., Dirac’s delta function located at the origin). The left graph
of Figure 8 illustrates the contour of the EVB posterior r(A,B|V ) = rA(A|V )rB(B|V ) when V = 2
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Figure 7: Numerical evaluation of ϕ(|V |) when L =M = 1 and σ2 = 1 (the blue solid curve). The
blue solid curve crosses the black dashed line (ϕ(|V |) = 0) at |V | = γ̃EVB ≈ 2.22.

is observed, where the noise variance is σ2 = 1. Since ÛMAP ≈ 2 and ÛVB ≈ 1.5 under almost flat
priors (see Figure 4 and Figure 6), ÛEVB = 0 is more strongly regularized than VB and MAP.

On the other hand, when

|V |≥ γ̃EVB ≈ 2.22,

the EVB posteriors rA(A|V ) and rB(B|V ) can be expressed as

rA(A|V ) =N (A;±
√
γ̂EVB,ζ),

rB(B|V ) =N (B;±sign(V )
√
γ̂EVB,ζ),

where

ζ=

√(
γ̂EVB

2
+

|V |ρ−
2

)2
+σ2−

(
γ̂EVB

2
+

|V |ρ−
2

)
,

ρ− =

√√√√1
2

(
1− 2σ

2

γ2h
−
√
1− 4σ

2

γ2h

)
,

γ̂EVB =

(
1− σ2

V 2
−ρ−

)
|V |.

When V = 3 is observed, we have ÛEVB ≈ 2.28 (c2a = c2b ≈ 2.62, μa = μb ≈
√
2.28, and Σa = Σb ≈

0.33). The possible posteriors are plotted in the middle and the right graphs of Figure 8. Since
ÛMAP ≈ 3 and ÛVB = 3/8 ≈ 2.67 under almost flat priors, EVB has stronger regularization effect
than VB and MAP.
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Figure 8: EVB posteriors and EVB solutions when L = M = 1. Left: When V = 2, the EVB
posterior is reduced to Dirac’s delta function located at the origin. Right: When V = 3,
the solution is detached from the origin and given by (A,B)≈ (

√
2.28,

√
2.28) or (A,B)≈

(−√
2.28,−√

2.28), which both yields the same solution ÛEVB ≈ 2.28.

4.4 FBMF

Here, we illustrate the behavior of the FB estimator.
When L=M = H = 1, the FB solution (5) is expressed as

ÛFB = 〈AB〉p(V |A,B)φA(A)φB(B). (55)

If V = 0,1,2,3 are observed, the FB solutions with almost flat priors are 0,0.92,1.93,2.95, re-
spectively, which were numerically computed.2 Since the corresponding MAP solutions (with the
almost flat priors) are 0,1,2,3, FB and MAP were shown to produce different solutions.

The theory by Jeffreys (1946) explains the origin of model-induced regularization in FB. Let us
consider the non-factorizing model

p(V |A,B) ∝ exp
(
− 1
2σ2

‖V −U‖2Fro
)
, (56)

whereU itself is the parameter to be estimated. The Jeffreys (non-informative) prior for this model
is uniform

φJefU (U) ∝ 1. (57)

On the other hand, the Jeffreys prior for the MF model (1) is given by

φJefA,B(A,B) ∝
√
A2+B2, (58)

which is illustrated in Figure 9 (see Appendix I for the derivation of Equations (57) and (58)). Note
that φJefU (U) and φJefA,B(A,B) are both improper.

2. More precisely, we numerically calculated the FB solution (55) by sampling A and B from the almost flat prior
distributions φA(A)φB(B) with ca = cb = 100 and taking the sample average of AB · p(V |A,B).
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Figure 9: The Jeffreys non-informative prior of the MF model in the joint space of A and B:
φJef(A,B) ∝

√
A2+B2. The scaling of the density value in the graph is arbitrary due

to impropriety.

Jeffreys (1946) states that the both combinations, the non-factorizingmodel (56) with its Jeffreys
prior (57) and the MF model (1) with its Jeffreys prior (58), give the equivalent FB solution. We can
easily show that the former combination, Equations (56) and (57), gives an unregularized solution.
Thus, the FB solution in the MF model (1) with its Jeffreys prior (58) is also unregularized. Since
the flat prior on (A,B) has more probability mass around the origin than the Jeffreys prior (58) (see
Figure 9), it favors smaller |U | and regularizes the FB solution.

4.5 EMAPMF

As explained in Section 3.3, EMAPMF always results in the trivial solution, A,B= 0 and cah ,cbh →
0.

4.6 EFBMF

The EFBMF solution is written as follows:

ÛEFB = 〈AB〉p(V |A,B)φA(A;ĉa)φB(B;ĉb),

where

(ĉa, ĉb) = argmin
(ca,cb)

F(V ;ca,cb).

Here F(V ;ca,cb) is the Bayes free energy (6).
When V = 0,1,2,3 are observed, the EFB solutions are 0,0.00,1.25,2.58 (ĉa = ĉb ≈ 0,0.0,1.4,

2.1), respectively, which were numerically computed.3 Since F(V ;ca,cb)→ ∞ when cacb → ∞, the

3. The model (1) and the priors (2) and (3) are invariant under the following parameter transformation

(ah,bh,cah ,cbh)→ (s1/2h ah,s
−1/2
h bh,s

1/2
h cah ,s

−1/2
h cbh)

for any {sh ∈ R;sh > 0,h= 1, . . . ,H}. Here, we fixed the ratio to ca/cb = 1. For cacb = 10−2.00,10−1.99, . . . ,101.00,
we numerically computed the free energy (6), and chose the minimizer ĉaĉb, with which the FB solution is computed.
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Figure 10: Numerical results of the FBMF solution ÛFB, the MAPMF solution ÛMAP, the VBMF
solution ÛVB, the EFBMF solution ÛEFB, the EMAPMF solution ÛEMAP, and the
EVBMF solution ÛEVB when the noise variance is σ2 = 1. For MAPMF, VBMF, and
FBMF, the hyperparameters are set to ca = cb = 100 (i.e., almost flat priors).

minimizer of F(V ;ca,cb) with respect to ĉa and ĉb are always finite. This implies that EFBMF is
more strongly regularized than FBMF with almost flat priors (cacb → ∞).

4.7 Summary

Finally, we summarize the numerical results of all Bayes estimators in Figure 10, including the
FBMF solution ÛFB, the MAPMF solution ÛMAP, the VBMF solution ÛVB, the EFBMF solution
ÛEFB, the EMAPMF solution ÛEMAP, and the EVBMF solution ÛEVB when the noise variance is
σ2 = 1. For MAPMF, VBMF, and FBMF, the hyperparameters are set to ca = cb = 100 (i.e., almost
flat priors). Overall, the solutions satisfy

ÛEMAP ≤ ÛEVB ≤ ÛEFB ≤ ÛVB ≤ ÛFB ≤ ÛMAP,

which shows the strength of regularization effect of each method.

5. Conclusion

In this paper, we theoretically analyzed the behavior of Bayesian matrix factorization methods.
More specifically, in Section 3, we derived non-asymptotic bounds of themaximum a posteriori ma-
trix factorization (MAPMF) estimator and the variational Bayesian matrix factorization (VBMF)
estimator. Then we showed that MAPMF consists of the trace-norm shrinkage alone, while VBMF
consists of the positive-part James-Stein (PJS) shrinkage and the trace-norm shrinkage.

An interesting finding was that, while the trace-norm shrinkage does not take effect when the
priors are flat, the PJS shrinkage remains activated even with flat priors. The fact that the PJS shrink-
age remains activated even with flat priors is induced by the non-identifiability of the MF models,
where parameters form equivalent classes. Thus, flat priors in the space of factorized matrices are
no longer flat in the space of the target (composite) matrix. Furthermore, simple distributions such
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as the Gaussian distribution in the space of the target matrix produce highly complicatedmultimodal
distributions in the space of factorized matrices.

We further extended the above analysis to empirical VBMF scenarios where hyperparameters
included in priors are optimized based on the VB free energy. We showed that the ‘strength’ of
the PJS shrinkage is more than doubled compared with the flat prior cases. We also illustrated the
behavior of Bayesian matrix factorization methods using one-dimensional examples in Section 4.

Our theoretical analysis relies on the assumption that a fully observed matrix is provided as a
training sample. Thus, our results are not directly applicable to the collaborative filtering scenarios
where an observed matrix with missing entries is given. Our important future work is to extend the
current analysis so that the behavior of the collaborative filtering algorithms can also be explained.
The correspondence between MAPMF and the trace-norm regularization still holds even if missing
entries exist. Likewise, we hope to find a relation between VBMF and a regularization term acting
on a matrix, which results in the PJS shrinkage if a fully observed matrix is given.

Our analysis also relies on the column-wise independence constraint (14), which was also used
in Raiko et al. (2007), on the VB posterior. In principle, the weaker matrix-wise constraint (9)
which was used in Lim and Teh (2007) allows non-zero covariances between column vectors, and
can achieve a better approximation to the true Bayes posterior. How this affects the performance
and when the difference is substantial are to be investigated.

As explained in Appendix A, the PJS estimator dominates (i.e., uniformly better than) the max-
imum likelihood (ML) estimator in vector estimation. This means that, when L = 1, VBMF with
(almost) flat priors dominates MLMF. Another interesting future direction is to investigate whether
this nice property is inherited to matrix estimation. For matrix estimation (L > 1), a variety of
estimators which shrink singular values have been proposed (Stein, 1975; Ledoit and Wolf, 2004;
Daniels and Kass, 2001), and were shown to possess nice properties under different criteria. Dis-
cussing the superiority of such shrinkage estimators including VBMF is interesting future work.

Our investigation revealed a gap between the fully-Bayesian (FB) estimator and the VB estima-
tor (see Section 4.7). Figure 10 showed that the VB estimator tends to be strongly regularized. This
could cause underfitting and degrade the performance. On the other hand, it is also possible that, in
some cases, this stronger regularization could work favorably to suppress overfitting, if we take into
account the fact that practitioners do not always choose their prior distributions based on explicit
prior information (it is often the case that conjugate priors are chosen only for computational con-
venience). Further theoretical analysis and empirical investigation are needed to clarify when the
stronger regularization of the VB estimator is harmful or helpful.

Tensor factorization is a high-dimensional extension of matrix factorization, which gathers con-
siderable attention recently as a novel data analysis tool (Cichocki et al., 2009). Among various
methods, Bayesian methods of tensor factorization have been shown to be promising (Tao et al.,
2008; Yu et al., 2008; Hayashi et al., 2009; Chu and Ghahramani, 2009). In our future work, we
will elucidate the behavior of tensor factorization methods based on a similar line of discussion to
the current work.
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Appendix A. James-Stein Shrinkage Estimator

Here, we briefly introduce the James-Stein (JS) shrinkage estimator and its variants (James and
Stein, 1961; Efron and Morris, 1973).

Let us consider the problem of estimating the mean μ (∈ Rd) of the d-dimensional Gaussian
distribution N (μ,σ2Id) from its independent and identically distributed samples

X n = {xi ∈ Rd | i= 1, . . . ,n}.

We measure the generalization error (or the risk) of an estimator μ̂ by the expected squared error:

E‖μ̂−μ‖2,

where E denotes the expectation over the samples X n.
An estimator μ̂ is said to dominate another estimator μ̂′ if

E‖μ̂−μ‖2 ≤ E‖μ̂′ −μ‖2 for all μ,

and

E‖μ̂−μ‖2 < E‖μ̂′ −μ‖2 for some μ.

An estimator is said to be admissible if no estimator dominates it.
Stein (1956) proved the inadmissibility of the maximum likelihood (ML) estimator (or equiva-

lently the least-squares estimator),

μ̂ML =
1
n

n

∑
i=1

xi,

when d ≥ 3. This discovery was surprising because the ML estimator had been believed to be a
good estimator. James and Stein (1961) subsequently proposed the JS shrinkage estimator μ̂JS,
which was proved to dominate the ML estimator:

μ̂JS =

(
1− χσ2

n‖μ̂ML‖2
)
μ̂ML, (59)

where χ= d−2. Efron and Morris (1973) showed that the JS shrinkage estimator can be derived as
an empirical Bayes estimator. In the current paper, we refer to all estimators of the form (59) with
arbitrary χ> 0 as the JS shrinkage estimators.

The positive-part James-Stein (PJS) shrinkage estimator, which was shown to dominate the JS
estimator, is given as follows (Baranchik, 1964):

μ̂PJS =max

{
0,

(
1− χσ2

n‖μ̂ML‖2
)
μ̂ML

}
.

Note that the PJS estimator itself is also inadmissible, following the fact that admissible estima-
tors are necessarily smooth (Lehmann, 1983). Indeed, there exist several estimators that dominate
the PJS estimator (Strawderman, 1971; Guo and Pal, 1992; Shao and Strawderman, 1994). How-
ever, their improvement is rather minor, and they are not as simple as the PJS estimator. Moreover,
none of these estimators is admissible.
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Appendix B. Proof of Theorem 1

The MAP estimator is defined as the minimizer of the negative log (17) of the Bayes posterior. Let
us double Equation (17) and neglect some constant terms which are irrelevant to its minimization
with respect to {ah,bh}Hh=1:

LMAP({ah,bh}Hh=1) =
H

∑
h=1

(
‖ah‖2
c2ah

+
‖bh‖2
c2bh

)
+
1
σ2

∥∥∥∥∥V −
H

∑
h=1

bha
�
h

∥∥∥∥∥
2

Fro

. (60)

We use the following lemma (its proof is given in Appendix G.1):

Lemma 7 For arbitrary matrices A ∈ RM×H and B ∈ RL×H, let

BA� =ΩLΓΩ�
R

be the singular value decomposition of the product BA�, where Γ = diag(̂γ1, . . . , γ̂H) ({γ̂h} are in
non-increasing order). Remember that {cahcbh}, where CA = diag(c2a1 , . . . ,c

2
aH ) and

CB = diag(c2b1 , . . . ,c
2
bH
) are positive-definite, are also arranged in non-increasing order. Then, it

holds that

tr(AC−1
A A�)+ tr(BC−1

B B�)≥
H

∑
h=1

2γ̂h
cahcbh

. (61)

Using Lemma 7, we obtain the following lemma (its proof is given in Appendix G.2):

Lemma 8 The MAP solution ÛMAP is written in the following form:

ÛMAP = B̂Â� =
H

∑
h=1

γ̂hωbhω
�
ah . (62)

There exists at least one minimizer that can be written as

ah = ahωah , (63)

bh = bhωbh , (64)

where {ah,bh} are scalars such that

γ̂h = ahbh ≥ 0.

Lemma 8 implies that the minimization of Equation (60) amounts to a re-weighted singular value
decomposition.

We can also prove the following lemma (its proof is given in Appendix G.3):

Lemma 9 Let {Hk;k = 1, . . . ,K(≤ H)} be the partition of {1, . . . ,H} such that cahcbh = cah′ cbh′ if

and only if h and h′ belong to the same group (i.e., ∃k such that h,h′ ∈Hk). Suppose that (Â, B̂) is a
MAP solution. Then,

Â′ = ÂΘ�,

B̂′ = B̂Θ−1,

2609



NAKAJIMA AND SUGIYAMA

is also a MAP solution, for any Θ defined by

Θ=C1/2A ΞC−1/2
A

=C−1/2
B ΞC1/2B .

Here, Ξ is a block diagonal matrix such that the blocks are organized based on the partition {Hk},
and each block consists of an arbitrary orthogonal matrix.

Lemma 9 states that non-orthogonal solutions (i.e., {ah}, as well as {bh}, are not orthogonal
with each other) can exist. However, Lemma 8 guarantees that any non-orthogonal solution has its
equivalent orthogonal solution, which is written in the form of Equations (63) and (64). Here, by
equivalent solution, we denote a solution resulting in the identical ÛMAP in Equation (62). Since
we are interested in finding ÛMAP, we regard the orthogonal solution as the representative of the
equivalent solutions, and focus on it.

The expression (63) and (64) allows us to decompose the minimization of Equation (60) into
the minimization of the following H separate objective functions: for h= 1, . . . ,H,

LMAPh (ah,bh) =

(
a2h
c2ah

+
b2h
c2bh

)
+
1
σ2

(γh−ahbh)
2 .

This can be written as

LMAPh (ah,bh) =
b2h
c2ah

(
ah
bh

− cah
cbh

)2
+
1
σ2

(
ahbh−

(
γh− σ2

cahcbh

))2
+

(
2γh
cahcbh

− σ2

c2ahc
2
bh

)
. (65)

The third term is constant with respect to ah and bh. The first nonnegative term vanishes by
setting the ratio ah/bh to

ah
bh

=
cah
cbh

(or bh = 0). (66)

Minimizing the second term in Equation (65), which is quadratic with respect to the product ahbh
(≥ 0), we can easily obtain Equation (21), which completes the proof.

Appendix C. Proof of Theorem 2, Theorem 3, and Theorem 4

We denote by Rd
+ the set of the d-dimensional vectors with non-negative elements, by R

d
++ the set

of the d-dimensional vectors with positive elements, by Sd+ the set of d× d positive semi-definite
symmetric matrices, and by Sd++ the set of d×d positive definite symmetric matrices. The VB free
energy to be minimized can be expressed as Equation (39). Neglecting constant terms, we define
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the objective function as follows:

LVB({ah,bh,Σah ,Σbh}) = 2FVB(r|V,{c2ah ,c2bh})+Const.

=
H

∑
h=1

(
− log |Σah |+

‖μah‖2+ tr(Σah)
c2ah

− log |Σbh |+
‖μbh‖2+ tr(Σbh)

c2bh

)

+
1
σ2

∥∥∥∥∥V −
H

∑
h=1

μbhμ
�
ah

∥∥∥∥∥
2

Fro

+
1
σ2

H

∑
h=1

(‖μah‖2tr(Σbh)+ tr(Σah)‖μbh‖2+ tr(Σah)tr(Σbh)
)
. (67)

We solve the following problem:

Given (c2ah ,c
2
bh) ∈ R2++(

∀h= 1, . . . ,H),σ2 ∈ R++,

min LVB({μah ,μbh ,Σah ,Σbh ;h= 1, . . . ,H}) (68)

s.t. μah ∈ RM,μbh ∈ RL,Σah ∈ SM++,Σbh ∈ SL++(
∀h= 1, . . . ,H). (69)

First, we have the following lemma (its proof is given in Appendix G.4):

Lemma 10 At least one minimizer always exists, and any minimizer is a stationary point.

Given fixed {(Σah ,Σbh)}, the objective function (67) is of the same form as Equation (60) if we
replace {(c2ah ,c2bh)} in Equation (60) with {(c′2ah ,c′2bh)} defined by

c′2ah =
(
1
c2ah

+
tr(Σbh)
σ2

)−1
, (70)

c′2bh =

(
1

c2bh
+
tr(Σah)
σ2

)−1
. (71)

Therefore, Lemma 8 implies that the minimizers of μah and μbh are parallel (or zero) to the singular
vectors ofV associated with theH largest singular values.4 On the other hand, Lemma 10 guarantees
that Equations (23)–(26), which together form a necessary and sufficient condition to be a stationary
point, hold at any minimizer. Equations (25) and (26) suggest that Σah and Σbh are proportional to
IM and IL, respectively. Accordingly, any minimizer can be written as μah = μahωah , μbh = μbhωbh ,
Σah = σ2ahIM, and Σbh = σ2bhIL, where μah , μbh , σ

2
ah , and σ

2
bh
are scalars. This allows us to decompose

the problem (68) into H separate problems: for h= 1, . . . ,H,

Given (c2ah ,c
2
bh) ∈ R2++,σ

2 ∈ R++,

min LVBh (μah ,μbh ,σ
2
ah ,σ

2
bh)

s.t. (μah ,μbh) ∈ R2,(σ2ah ,σ
2
bh) ∈ R2++, (72)

4. As in Appendix B, we regard the orthogonal solution of the form (63) and (64) as the representative of the equivalent
solutions, and focus on it. See Lemma 9 and its subsequent paragraph.

2611



NAKAJIMA AND SUGIYAMA

where

LVBh (μah ,μbh ,σ
2
ah ,σ

2
bh) =−M logσ2ah +

μ2ah +Mσ2ah
c2ah

−L logσ2bh +
μ2bh +Lσ2bh

c2bh

− 2
σ2
γhμahμbh +

1
σ2

(
μ2ah +Mσ2ah

)(
μ2bh +Lσ2bh

)
. (73)

Moreover, the necessary and sufficient condition (23)–(26) is reduced to

μah =
1
σ2
σ2ahγhμbh , (74)

μbh =
1
σ2
σ2bhγhμah , (75)

σ2ah = σ2
(
μ2bh +Lσ2bh +

σ2

c2ah

)−1
, (76)

σ2bh = σ2
(
μ2ah +Mσ2ah +

σ2

c2bh

)−1
. (77)

We use the following definition:

γ̂h = μahμbh , (78)

Note that Equations (27) and (78) imply that the VB solution ÛVB can be expressed as

ÛVB =
H

∑
h=1

γ̂hωbhω
�
ah .

Equations (74) and (75) imply that μah and μbh have the same sign (or both are zero), since γh ≥ 0
by definition. Therefore, Equation (78) yields

γ̂h ≥ 0.

In the following, we investigate two types of stationary points. We say that (μah ,μbh ,σ
2
ah ,σ

2
bh
) =

(μ̊ah , μ̊bh , σ̊
2
ah , σ̊

2
bh
) is a null stationary point if it is a stationary point resulting in the null output

(̂γh= μ̊ah μ̊bh = 0). On the other hand, we say that (μah ,μbh ,σ
2
ah ,σ

2
bh
) = (μ̆ah , μ̆bh , σ̆

2
ah , σ̆

2
bh
) is a positive

stationary point if it is a stationary point resulting in a positive output (̂γh = μ̆ah μ̆bh > 0).
Let

η̂h =

√√√√(
μ2ah +

σ2

c2bh

)(
μ2bh +

σ2

c2ah

)
. (79)

The explicit form of the null stationary point is derived as follows (its proof is given in Ap-
pendix G.5):
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Lemma 11 The unique null stationary point always exists, and it is given by

μ̊ah = 0, (80)

μ̊bh = 0, (81)

σ̊2ah =
cah
2Mcbh

{
−
(

σ2

cahcbh
− cahcbh(M−L)

)

+

√(
σ2

cahcbh
− cahcbh(M−L)

)2
+4Mσ2

}
, (82)

σ̊2bh =
cbh
2Lcah

{
−
(

σ2

cahcbh
+ cahcbh(M−L)

)

+

√(
σ2

cahcbh
+ cahcbh(M−L)

)2
+4Lσ2

}
. (83)

Next, we investigate the positive stationary points, assuming that μah �= 0,μbh �= 0. Equa-
tions (74) and (75) suggest that no positive stationary point exists when γh = 0. Below, we focus on
the case when γh > 0. Let

δ̂h =
μah
μbh

. (84)

We can transform the necessary and sufficient condition (74)–(77) as follows (its proof is given in
Appendix G.6):

Lemma 12 No positive stationary point exists if

γ2h ≤ σ2M.

When

γ2h > σ2M, (85)

at least one positive stationary point exists if and only if the following five equations

η̂h =

√√√√(
γ̂hδ̂h+

σ2

c2bh

)(
γ̂hδ̂

−1
h +

σ2

c2ah

)
, (86)

η̂2h =

(
1− σ2L

γ2h

)(
1− σ2M

γ2h

)
γ2h, (87)

σ2
(
Mδ̂h
c2ah

− L

c2bh δ̂h

)
= (M−L)(γh− γ̂h), (88)

σ2ah =
−(

η̂2h−σ2(M−L)
)
+
√
(η̂2h−σ2(M−L))2+4Mσ2η̂2h

2M(̂γhδ̂
−1
h +σ2c−2ah )

, (89)

σ2bh =
−(

η̂2h+σ2(M−L)
)
+
√
(η̂2h+σ2(M−L))2+4Lσ2η̂2h

2L(̂γhδ̂h+σ2c−2bh )
(90)
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have a solution with respect to (̂γh, δ̂h,σ2ah ,σ
2
bh
, η̂h) such that

(̂γh, δ̂h,σ
2
ah ,σ

2
bh , η̂h) ∈ R5++. (91)

When a solution exists, the corresponding pair of positive stationary points

(μah ,μbh ,σ
2
ah ,σ

2
bh) = (±

√
γ̂hδ̂h,±

√
γ̂hδ̂

−1
h ,σ2ah ,σ

2
bh) (92)

exist.

Then we obtain a simpler necessary and sufficient condition for existence of positive stationary
points (its proof is given in Appendix G.7):

Lemma 13 At least one positive stationary point exists if and only if Equation (85) holds and

γ̂2h+q1(̂γh) · γ̂h+q0 = 0 (93)

has any positive real solution with respect to γ̂h, where

q1(̂γh) =

−(M−L)2(γh− γ̂h)+(L+M)

√
(M−L)2(γh− γ̂h)2+ 4σ4LM

c2ah c
2
bh

2LM
, (94)

q0 =
σ4

c2ahc
2
bh

−
(
1− σ2L

γ2h

)(
1− σ2M

γ2h

)
γ2h. (95)

Any positive solution γ̂h satisfies

0< γ̂h < γh. (96)

Equation (96) guarantees that

q1(̂γh)> 0.

Recall that a quadratic equation

γ̂2+q1γ̂+q0 = 0 for q1 > 0 (97)

has only one positive solution when q0 < 0 (otherwise no positive solution exists) (see Figure 11).
The condition for the negativity of Equation (95) leads to the following lemma:

Lemma 14 At least one positive stationary point exists if and only if

γ2h > σ2M and

√(
1− σ2L

γ2h

)(
1− σ2M

γ2h

)
γh− σ2

cahcbh
> 0. (98)

The following lemma also holds (its proof is given in Appendix G.8):

Lemma 15 Equation (98) holds if and only if

γh > γ̃VBh ,

where γ̃VBh is defined by Equation (30).
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Figure 11: Quadratic function f (̂γ) = γ̂2+q1γ̂+q0, where q1 > 0 and q0 < 0.

Combining Lemma 10 and Lemma 14 together, we conclude that the null stationary point (which
always exists) is the minimizer when Equation (98) does not hold. On the other hand, when a
positive stationary point exists, we have to clarify which stationary point is the minimum. The
following lemma holds (its proof is given in Appendix G.9).

Lemma 16 The null stationary point is a saddle point when any positive stationary point exists.

Combining Lemma 10, Lemma 14, and Lemma 16 together, we obtain the following lemma:

Lemma 17 When Equation (98) holds, the minimizers consist of positive stationary points. Other-
wise, the minimizer is the null stationary point.

Combining Lemma 15 and Lemma 17 completes the proof of Theorem 3.

Finally, we derive bounds of the positive stationary points (its proof is given in Appendix G.10):

Lemma 18 Equations (28) and (31) hold for any positive stationary point.

Combining Lemma 17 and Lemma 18 completes the proof of Theorem 2 and Theorem 4.

Appendix D. Proof of Corollary 1

From Equations (78) and (84), we have μ2ah = γ̂hδ̂h and μ2bh = γ̂h/δ̂h. When L =M, γ̂h is expressed

analytically by Equation (32) and δ̂h = ca/cb follows from Equation (88). From these, we have
Equations (33) and (34).
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When L=M, Equations (137) and (138) are reduced to

σ2ah =
η̂h
√
η̂2h+4σ

2M− η̂2h

2M
(
μ2bh +σ2/c2ah

) , (99)

σ2bh =
η̂h
√
η̂2h+4σ

2M− η̂2h

2M
(
μ2ah +σ2/c2bh

) . (100)

Substituting Equation (79) into Equations (99) and (100) and using Equations (33) and (34) give
Equations (35) and (36). Because of the symmetry of the objective function (73), the two positive
stationary points (33)–(36) give the same objective value, which completes the proof.

Note that equivalent nonorthogonal (with respect to {μah}, as well as {μbh}) solutions may exist
in principle. We neglect such solutions, because they almost surely do not exist; Equations (70),
(71), (35), and (36) together imply that any pair {(h,h′);h �= h′} such that max(̂γVBh , γ̂VBh′ ) > 0 and
c′ahc

′
bh

= c′ah′ c
′
bh′
can exist only when cahcbh = cah′ cbh′ and γh = γh′ (i.e., two singular values of a

random matrix coincide with each other).

Appendix E. Proof of Theorem 5 and Theorem 6

The EVB estimator is the minimizer of the VB free energy (39). Neglecting constant terms, we
define the objective function as follows:

LEVB({ah,bh,Σah ,Σbh ,c2ah ,c2bh}) = 2FVB(r|V,{c2ah ,c2bh})+Const.

=
H

∑
h=1

(
log

c2Mah
|Σah |

+
‖μah‖2+ tr(Σah)

c2ah
+ log

c2bh
|Σbh |

+
‖μbh‖2+ tr(Σbh)

c2bh

)

+
1
σ2

∥∥∥∥∥V −
H

∑
h=1

μbhμ
�
ah

∥∥∥∥∥
2

Fro

+
1
σ2

H

∑
h=1

(‖μah‖2tr(Σbh)+ tr(Σah)‖μbh‖2+ tr(Σah)tr(Σbh)
)
.

We solve the following problem:

Given σ2 ∈ R++,

min LEVB({μah ,μbh ,Σah ,Σbh ,c
2
ah ,c

2
bh ;h= 1, . . . ,H}) (101)

s.t. μah ∈ RM,μbh ∈ RL,Σah ∈ SM++,Σbh ∈ SL++,(c
2
ah ,c

2
bh) ∈ R2++(

∀h= 1, . . . ,H). (102)

Define a partial minimization problem of (101) with fixed {c2ah ,c2bh}:

L̃EVB({c2ah ,c2bh}) = min
(μah ,μbh

,Σah ,Σbh )
LEVBh ({μah ,μbh ,Σah ,Σbh};{c2ah ,c2bh}) (103)

s.t. μah ∈ RM,μbh ∈ RL,Σah ∈ SM++,Σbh ∈ SL++(
∀h= 1, . . . ,H).
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This is identical to the VB estimation problem (68), and therefore, we can use the results proved in
Appendix C. According to Lemma 10, at least one solution of the problem (103) exists. Therefore,
the following problem is equivalent to the original problem (101):

min
{c2ah ,c2bh}

L̃EVB({c2ah ,c2bh}) (104)

s.t. (c2ah ,c
2
bh) ∈ R2++(

∀h= 1, . . . ,H).

We have proved in Appendix C that any solution of the problem (103) can be written as μah =
μahωah , μbh = μbhωbh , Σah = σ2ahIM, and Σbh = σ2bhIL, where μah , μbh , σ

2
ah , and σ

2
bh
are scalars. This

allows us to decompose the problem (101) into H separate problems: for h= 1, . . . ,H,

Given σ2 ∈ R++,

min LEVBh (μah ,μbh ,σ
2
ah ,σ

2
bh ,c

2
ah ,c

2
bh)

s.t. (μah ,μbh) ∈ R2,(σ2ah ,σ
2
bh) ∈ R2++,(c

2
ah ,c

2
bh) ∈ R2++, (105)

where

LEVBh (μah ,μbh ,σ
2
ah ,σ

2
bh ,c

2
ah ,c

2
bh) =M log

c2ah
σ2ah

+
μ2ah +Mσ2ah

c2ah
+L log

c2bh
σ2bh

+
μ2bh +Lσ2bh

c2bh

− 2
σ2
γhμahμbh +

1
σ2

(
μ2ah +Mσ2ah

)(
μ2bh +Lσ2bh

)
. (106)

Let

κ=

⎧⎪⎨⎪⎩σ
2

(√(
1− σ2L

γ2h

)(
1− σ2M

γ2h

)
γh

)−1
if γh >

√
σ2M,

∞ otherwise.

We divide the domain (105) into two regions (see Figure 12):

R̊ =
{
(μah ,μbh ,σ

2
ah ,σ

2
bh ,c

2
ah ,c

2
bh) ∈ R2×R2++×R2++;cahcbh ≤ κ

}
, (107)

R̆ =
{
(μah ,μbh ,σ

2
ah ,σ

2
bh ,c

2
ah ,c

2
bh) ∈ R2×R2++×R2++;cahcbh > κ

}
. (108)

Below, we will separately investigate the infimum of LEVBh over R̊ ,

L̊
EVB
h = inf

(μah ,μbh ,σ
2
ah
,σ2bh

,c2ah ,c
2
bh
)∈R̊

LEVBh (μah ,μbh ,σ
2
ah ,σ

2
bh ,c

2
ah ,c

2
bh), (109)

and the infimum over R̆ ,

L̆EVBh = inf
(μah ,μbh ,σ

2
ah
,σ2bh

,c2ah ,c
2
bh
)∈R̆

LEVBh (μah ,μbh ,σ
2
ah ,σ

2
bh ,c

2
ah ,c

2
bh).

Rigorously speaking, no minimizer over R̊ exists. To make discussion simple, we approximate
R̊ by its subregion with an arbitrary accuracy; for any ε (0< ε< κ), we define an ε-margin subregion
of R̊ :

R̊ε =
{
(μah ,μbh ,σ

2
ah ,σ

2
bh ,c

2
ah ,c

2
bh) ∈ R̊ ;cahcbh ≥ ε

}
.

Then the following lemma holds (its proof is given in Appendix G.11):
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cah

c
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1

1.5

R̆

R̊

Figure 12: Division of the domain, defined by Equations (107) and (108), when γ = 3,M = L =
σ2 = 1. The hyperbolic boundary belongs to R̊ .

Lemma 19 The minimizer over R̊ε is given by

μ̊ah = 0, (110)

μ̊bh = 0, (111)

σ̊2ah =
1
2M

⎧⎨⎩−
(
σ2

ε
− ε(M−L)

)
+

√(
σ2

ε
− ε(M−L)

)2
+4Mσ2

⎫⎬⎭ , (112)

σ̊2bh =
1
2L

⎧⎨⎩−
(
σ2

ε
+ ε(M−L)

)
+

√(
σ2

ε
+ ε(M−L)

)2
+4Lσ2

⎫⎬⎭ , (113)

c̊2ah = ε, (114)

c̊2bh = ε, (115)

and the infimum (109) over R̊ is given by

L̊
EVB
h = L+M. (116)

Note that Equations (110) and (111) result in the null output (̂γh = μ̊ah μ̊bh = 0). Accordingly, we call
the minimizer (110)–(115) over R̊ε the null (approximated) local minimizer.

On the other hand, we call any stationary point resulting in a positive output (̂γh = μ̆ah μ̆bh > 0) a
positive stationary point. The following lemma holds (its proof is given in Appendix G.12):

Lemma 20 Any positive stationary point lies in R̆ .

If

L̊
EVB
h < L̆EVBh , (117)
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the null local minimizer is global over the whole domain (105) (more accurately, over R̊ε ∪ R̆ for
any 0< ε< κ ). If

L̊
EVB
h ≥ L̆EVBh , (118)

the global minimizers consist of positive stationary points, as the following lemma states (its proof
is given in Appendix G.13):

Lemma 21 When Equation (118) holds, the global minimizers consist of positive stationary points.

Now, we look for the positive stationary points. According to Lemma 20, we can assume that
Equation (98) holds. Equations (40) and (41) are reduced to

c2ah =
μ2ah +Mσ2ah

M
, (119)

c2bh =
μ2bh +Lσ2bh

L
. (120)

Then, Equations (74)–(77), (119), and (120) form a necessary and sufficient condition to be a sta-
tionary point of the objective function (106). Solving these equations, we have the following lemma
(its proof is given in Appendix G.14):

Lemma 22 At least one positive stationary point exists if and only if

γ2h ≥ (
√
L+

√
M)2σ2. (121)

At any positive stationary point, c2ahc
2
bh
is given either by

c2ahc
2
bh = c̆2ah c̆

2
bh =

(
γ2h− (L+M)σ2

)
+

√(
γ2h− (L+M)σ2

)2−4LMσ4
2LM

, (122)

or by

c2ahc
2
bh = ć2ah ć

2
bh =

(
γ2h− (L+M)σ2

)−√(
γ2h− (L+M)σ2

)2−4LMσ4
2LM

. (123)

We categorize the positive stationary points into two groups, based on the above two solutions
of c2ahc

2
bh
; we say that a stationary point satisfying Equation (122) is a large positive stationary point,

and one satisfying Equation (123) is a small positive stationary point. Note that, when

γ2h = (
√
L+

√
M)2σ2, (124)

it holds that c̆2ah c̆
2
bh
= ć2ah ć

2
bh
, and therefore, the large positive stationary points and the small positive

stationary points coincide with each other. The following lemma allows us to focus on the large
positive stationary points (its proof is given in Appendix G.15.):

Lemma 23 When

γ2h > (
√
L+

√
M)2σ2, (125)

any small positive stationary point is a saddle point.
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Summarizing Lemmas 19–23, we have the following lemma:

Lemma 24 When Equation (121) holds, there are two possibilities: that the global minimizers
consist of large positive stationary points (in the case when Equation (118) holds); or that the global
minimizer is the null local minimizer (in the case when Equation (117) holds). When Equation (121)
does not hold, the global minimizer is the null local minimizer.

Hereafter, we assume that Equation (121) holds. We like to clarify when Equation (118) holds,
so that large positive stationary points become global minimizers. The EVB objective function (106)
is substantially more complex (see Appendix H for illustration) than the VB objective function (73)
where the null stationary point turns from the global minimum to a saddle point no sooner than any
positive stationary point arises.

Below, we derive a sufficient condition for any large positive stationary point to give a lower

objective value than L̊
EVB
h . We evaluate the difference between the objectives:

Δh(μ̆ah , μ̆bh , σ̆
2
ah , σ̆

2
bh , c̆

2
ah , c̆

2
bh) = LEVBh (μ̆ah , μ̆bh , σ̆

2
ah , σ̆

2
bh , c̆

2
ah , c̆

2
bh)− L̊

EVB
h . (126)

If Δh(μ̆ah , μ̆bh , σ̆
2
ah , σ̆

2
bh
, c̆2ah , c̆

2
bh
)≤ 0, Equation (118) holds. We obtain the following lemma (its proof

is given in Appendix G.16.):

Lemma 25 Δh(μ̆ah , μ̆bh , σ̆
2
ah , σ̆

2
bh
, c̆2ah , c̆

2
bh
) is upper-bounded as

Δh(μ̆ah , μ̆bh , σ̆
2
ah , σ̆

2
bh , c̆

2
ah , c̆

2
bh)<Mψ(α,β), (127)

where

ψ(α,β) = logβ+α log

(
β− (1−α)

α

)
+(1−α)+

2√
1− (α+

√
α+1)
β

−β, (128)

α=
L
M
, (129)

β=
γ2h
Mσ2

. (130)

Furthermore, the following lemma states that ψ(α,β) is negative when β is large enough (its proof
is given in Appendix G.17.):

Lemma 26 ψ(α,β)< 0 for any 0< α≤ 1 and β≥ 7.
Combining Lemma 24 and Lemma 25, we obtain the following lemma:

Lemma 27 When the condition (127) holds, the global minimizers consist of large positive station-
ary points.

Combining Lemma 26 and Lemma 27, we obtain the following lemma:

Lemma 28 When β≥ 7, the global minimizers consist of large positive stationary points.
Finally, we derive bounds of the large positive stationary points (its proof is given in Ap-

pendix G.18):

Lemma 29 Equations (46), (47), and (48) hold for any large positive stationary point.

Combining Lemma 24, Lemma 28, and Lemma 29 completes the proof of Theorem 5. Com-
bining Lemma 24 and Lemma 29 completes the proof of Theorem 6.
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Appendix F. Proof of Corollary 2

Assume that L = M. When γh ≥ 2
√
M, Lemma 22 guarantees that at least one large positive sta-

tionary point exists. In this case, Equation (122) leads to

c̆ah c̆bh =
γh
M
ρ+. (131)

Its inverse can be written as

1
c̆ah c̆bh

=
γh
σ2
ρ−.

Corollary 1 provides the exact values for the positive stationary points (μ̆ah , μ̆bh , σ̆
2
ah , σ̆

2
bh
), given

(c̆2ah , c̆
2
bh
) = (c̆ah c̆bh , c̆ah c̆bh). Therefore, we can compute the exact value of the difference (126) of

the objective values between the large positive stationary points and the null local minimizer:

Δh = 2M log
( γh
Mσ2

μ̆ah μ̆bh +1
)
+
1
σ2

(−2γhμ̆ah μ̆bh +M2c̆2ah c̆
2
bh

)
= 2M

{
log

(
γ2h
Mσ2

− γh
Mc̆ah c̆bh

)
−
(

γ2h
Mσ2

− γh
Mc̆ah c̆bh

)
+

(
1+

nM
2σ2

c̆2ah c̆
2
bh

)}
= 2Mϕ(γh).

Here, the first equation directly comes from Equation (172), and the last equation is obtained by
substituting Equation (131) into the second equation.

According to Lemma 24, when γh ≥ 2
√
M and Δh ≤ 0, the EVB solutions consist of large

positive stationary points; otherwise, the EVB solution is the null local minimizer. Using Equa-
tions (114), (115), and (131), we obtain Equation (51). Equation (52) follows Lemma 26, because
ϕ(γh) = Δh/(2M)< ψ(α,β)/2 for α= 1,β= γ2h/(Mσ

2).

Appendix G. Proof of Lemmas

In this appendix, the proofs of all the lemmas are given.

G.1 Proof of Lemma 7

We minimize the left-hand side of Equation (61) with respect to A and B:

min
A,B

{
tr(AC−1

A A�)+ tr(BC−1
B B�)

}
(132)

s.t. BA� =ΩLΓΩ
�
R .

We can remove the constraint by changing the variables as follows:

A→ΩRΓT�C1/2A , B→ΩLT
−1C−1/2

A ,

where T is a H×H non-singular matrix. Then, the problem (132) is rewritten as

min
T

{
tr
(
T�TΓ2

)
+ tr

(
(TT�)−1(CACB)−1

)}
. (133)
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Let
T−1 =UTDTV

�
T

be the singular value decomposition of T−1, whereDT = diag(d1, . . . ,dH) ({dh} are in non-increasing
order). Then, the problem (133) is written as

min
UT ,DT ,VT

{
tr
(
UTD

−2
T U�

T Γ
2
)
+ tr

(
VTD

2
TV

�
T (CACB)

−1
)}

. (134)

The objective function in Equation (134) can be written with the doubly stochastic matrices

QU =UT •UT ,
QV =VT •VT ,

where • denotes the Hadamard product, as follows (Marshall et al., 2009):

(d−21 , . . . ,d−2H )QU (̂γ21, . . . , γ̂
2
H)

�+(d21 , . . . ,d
2
H)QV ((ca1cb1)

−1, . . . ,(caH cbH )
−1)�.

Since {γ̂2h} and {d2h} are in non-increasing order, and {d−2h } and (cahcbh)−1 are in non-decreasing
order, this is minimized when QU = QV = IH (which is attained withUT =VT = IH) for any DT .

Thus, the problem (134) is reduced to

min
{dh}

H

∑
h=1

(
γ̂2h
d2h

+
d2h

(cahcbh)
2

)
.

This is minimized when d2h = γ̂hcahcbh ,
5 and the minimum coincides to the right-hand side of Equa-

tion (61), which completes the proof.

G.2 Proof of Lemma 8

It is known that the second term of Equation (60) is minimized when

A= (
√
γ1ωa1 , . . . ,

√
γHωaH )T

�,

B= (
√
γ1ωb1 , . . . ,

√
γHωbH )T

−1,

where T is any H×H non-singular matrix. Since the first term of Equation (60) does not depend on
the directions of {ah,bh}, any minimizer can be written in the form of Equation (62) with {γ̂h ≥ 0}.

The degeneracy with respect to T is partly resolved by the first term of Equation (60). Suppose
that we have obtained the best set of {γ̂h}. Then, minimizing Equation (60) is equivalent to the
following problem:

Given {γ̂h ≥ 0},
min
A,B

{
tr(AC−1

A A�)+ tr(BC−1
B B�)

}
(135)

s.t. BA� =
H

∑
h=1

γ̂hωbhω
�
ah .

5. If γ̂h = 0, the minimum is attained by simply setting the corresponding column vectors of A and B to (ah,bh) = (0,0).
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Lemma 7 guarantees that

ah =

√
cah
cbh

γ̂hωah ,

bh =

√
cbh
cah

γ̂hωbh ,

give a solution for the problem (135) for any (so far unknown) set of {γ̂h}, which completes the
proof.

G.3 Proof of Lemma 9

Equation (60) can be written as

LMAP(A,B) = tr(AC−1
A A�)+ tr(BC−1

B B�)+
1
σ2

∥∥∥V −BA�
∥∥∥2
Fro

.

This is invariant with respect to the transform

A→ AΘ�,

B→ BΘ−1,

since

tr(AΘ�C−1
A ΘA�) = tr(AC−1/2

A Ξ�C1/2A C−1
A C1/2A ΞC−1/2

A A�) = tr(AC−1
A A�),

tr(BΘ−1C−1
B (Θ−1)�B�) = tr(BC−1/2

B Ξ�C1/2B C−1
B C1/2B ΞC−1/2

B B�) = tr(BC−1
B B�),

BΘ−1ΘA= BA.

This completes the proof.

G.4 Proof of Lemma 10

Let

Σah =
M

∑
m=1

τ(ah)m t
(ah)
m t

(ah)�
m ,

Σbh =
L

∑
l=1

τ(bh)l t
(bh)
l t

(bh)�
l ,

be the eigenvalue decompositions of Σah and Σbh , where(
τ(ah)1 , . . . ,τ(ah)M

)
∈ RM

++,
(
τ(bh)1 , . . . ,τ(bh)L

)
∈ RL

++.
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are the eigenvalues. Then, the objective function (67) is written as

LVB({ah,bh,τ(ah)m ,τ(bh)l })

=
H

∑
h=1

(
−

M

∑
m=1

logτ(ah)m +
‖μah‖2+∑M

m=1 τ
(ah)
m

c2ah
−

L

∑
l=1

logτ(bh)l +
‖μbh‖2+∑L

l=1 τ
(bh)
l

c2bh

)

+
1
σ2

∥∥∥∥∥V −
H

∑
h=1

μbhμ
�
ah

∥∥∥∥∥
2

Fro

+
1
σ2

H

∑
h=1

(
‖μah‖2

L

∑
l=1

τ(bh)l +
M

∑
m=1

τ(ah)m ‖μbh‖2+
(

M

∑
m=1

τ(ah)m

)(
L

∑
l=1

τ(bh)l

))
.

Since the second and the third terms are positive, this is lower-bounded as

LVB({ah,bh,τ(ah)m ,τ(bh)l })>
H

∑
h=1

(
‖μah‖2
c2ah

+
M

∑
m=1

(
τ(ah)m

c2ah
− log τ

(ah)
m

c2ah

))

+
H

∑
h=1

(
‖μbh‖2
c2bh

+
L

∑
l=1

(
τ(bh)l

c2bh
− log τ

(bh)
l

c2bh

))
−

H

∑
h=1

(
M logc2ah +L logc2bh

)
. (136)

Focusing on the first term in Equation (136), we find that

lim
‖μah‖→∞

LVB({ah,bh,τ(ah)m ,τ(bh)l }) = ∞

for any h. Further,

lim
τ
(ah)
m →0

LVB({ah,bh,τ(ah)m ,τ(bh)l }) = ∞,

lim
τ
(ah)
m →∞

LVB({ah,bh,τ(ah)m ,τ(bh)l }) = ∞,

for any (h,m), because (x− logx) ≥ 1 for any x > 0, limx→+0(x− logx) = ∞, and limx→∞(x−
logx) = ∞. The same holds for {μbh} and {τ(bh)l } because of the second term in Equation (136).
Consequently, the objective function (67) goes to infinity when approaching to any point on the
boundary of the domain (69). Since the objective function (67) is differentiable in the domain, any
minimizer is a stationary point. For any observation V , the objective function (67) can be finite, for
example, when ‖μah‖ = ‖μbh‖ = 0,Σah = IM,Σbh = IL. Therefore, at least one minimizer always
exists.

G.5 Proof of Lemma 11

Combining Equations (76) and (77) and eliminating σ2bh , we obtain

M

(
μ2bh +

σ2

c2ah

)
σ4ah +

(
η̂2h−σ2(M−L)

)
σ2ah −σ2

(
μ2ah +

σ2

c2bh

)
= 0.
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This has one positive and one negative solutions. Neglecting the negative one, we obtain

σ2ah =
−(

η̂2h−σ2(M−L)
)
+
√
(η̂2h−σ2(M−L))2+4Mσ2η̂2h

2M(μ2bh +σ2c−2ah )
. (137)

Similarly, combining Equations (76) and (77) and eliminating σ2ah , we obtain

σ2bh =
−(

η̂2h+σ2(M−L)
)
+
√
(η̂2h+σ2(M−L))2+4Lσ2η̂2h

2L(μ2ah +σ2c−2bh )
. (138)

Note that Equations (137) and (138) are real and positive for any (μah ,μbh) ∈ R2 and η̂h ∈ R++.

Let us focus on the null stationary points. Apparently, Equations (80) and (81) are necessary
to satisfy Equations (74) and (75) and result in the null output γ̂h = μ̊ah μ̊bh = 0. Substituting Equa-
tions (80) and (81) into Equations (137) and (138) leads to Equations (82) and (83).

G.6 Proof of Lemma 12

To prove the lemma, we transform the set of variables (μah ,μbh ,σ
2
ah ,σ

2
bh
) to (̂γh, δ̂h,σ2ah ,σ

2
bh
, η̂h), and

the necessary and sufficient condition (74)–(77) to (86)–(90). The transform (92) is obtained from
the definitions (78) and (84), which we use in the following when necessary.

First we show that Equation (91) is necessary for any positive stationary point. γ̂h and δ̂h must
be positive because Equations (74) and (75) imply that μah and μbh have the same sign. σ

2
ah and σ

2
bh

must be positive because of their original domain (72). η̂h must be positive by its definition (79).

Next, we obtain Equations (86)–(90) from Equations (74)–(77). Equation (86) simply comes
from the definition (79) of the additional variable η̂h, which we have introduced for convenience.
Equations (89) and (90) are equivalent to Equations (137) and (138), which were derived from
Equations (76) and (77) in Appendix G.5. Equations (87) and (88) are derived from Equations (74)
and (75), as shown below.

Equations (137) and (138) can be rewritten as

σ2ah =
−(

η̂2h−σ2(M−L)
)
+
√
(η̂2h+σ2(L+M))2−4σ4LM

2M(μ2bh +σ2c−2ah )
, (139)

σ2bh =
−(

η̂2h+σ2(M−L)
)
+
√
(η̂2h+σ2(L+M))2−4σ4LM

2L(μ2ah +σ2c−2bh )
. (140)
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Substituting Equations (139) and (140) into Equations (74) and (75), respectively, we have

2σ2M

(
μ2bh +

σ2

c2ah

)
μah
μbh

= γh

{
−(

η̂2h−σ2(M−L)
)
+

√(
η2h+σ2(L+M)

)2−4σ4LM}
, (141)

2σ2L

(
μ2ah +

σ2

c2bh

)
μbh
μah

= γh

{
−(

η̂2h+σ2(M−L)
)
+

√(
η2h+σ2(L+M)

)2−4σ4LM}
. (142)

Subtraction of Equation (142) from Equation (141) gives

2σ2(M−L)μahμbh +2σ
4

(
Mμah
c2ahμbh

− Lμbh
c2bhμah

)
= 2σ2(M−L)γh,

which is equivalent to Equation (88).
The last condition (87) is derived by multiplying Equations (141) and (142) (of which the both

sides are positive):

4σ4LMη̂2h = γ2h

(
2η̂4h+2η̂

2
hσ
2(L+M)−2η̂2h

√
(η̂2h+σ2(L+M))2−4σ4LM

)
.

Dividing both sides by 2η̂2hγ
2
h (> 0), we have√

(η̂2h+σ2(L+M))2−4σ4LM = η̂2h+σ2(L+M)− 2σ
4LM

γ2h
. (143)

Note that the left-hand side of Equation (143) is always real and positive since

(η̂2h+σ2(L+M))2−4σ4LM = (η̂2h−σ2(M−L))2+4Mσ2η̂2h
> 0.

Therefore, the right-hand side of Equation (143) is non-negative when Equation (143) holds:

η̂2h+σ2(L+M)− 2σ
4LM

γ2h
≥ 0. (144)

To obtain Equation (87) from Equation (143), we square Equation (143):

(η̂2h+σ2(L+M))2−4σ4LM =

(
η̂2h+σ2(L+M)− 2σ

4LM

γ2h

)2
. (145)

Note that this is equivalent to Equation (143) only when Equation (144) holds. Equation (145) leads
to

σ4LM
γ2h

− (η̂2h+σ2(L+M))+ γ2h = 0.
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Solving this with respect to η̂2h results in Equation (87). Equation (87) cannot hold with any real and
positive value of η̂h when σ2L≤ γ2h ≤ σ2M. Further, substituting Equation (87) into Equation (144)
gives

γ2h−
σ4LM
γ2h

≥ 0.

Therefore, Equation (87) satisfies Equation (144) only when γ2h ≥ σ2
√
LM. Accordingly, when

Equation (85) holds, Equation (87) is equivalent to Equation (143). Otherwise, Equation (143)
cannot hold, and no positive stationary point exists.

G.7 Proof of Lemma 13

Squaring both sides of Equation (86) (which are positive) and substituting Equation (87) into it, we
have

γ̂2h+
σ2

cahcbh

(
cbh δ̂h
cah

+
cah
cbh δ̂h

)
γ̂h

+

(
σ4

c2ahc
2
bh

−
(
1− σ2L

γ2h

)(
1− σ2M

γ2h

)
γ2h

)
= 0. (146)

Multiplying both sides of Equation (88) by δ̂h (> 0) and solving it with respect to δ̂h, we obtain

δ̂h =

(M−L)(γh− γ̂h)+
√
(M−L)2(γh− γ̂h)2+ 4σ4LM

c2ah c
2
bh

2σ2Mc−2ah
(147)

as a positive solution. We neglect the other solution, since it is negative. Substituting Equation (147)
into Equation (146) gives Equation (93). Thus, we have transformed the necessary and sufficient
condition Equations (86)–(90) to (93), (87), (147), (89), and (90). This proves the necessity.

Assume that Equation (85) holds and a positive real solution γ̂h of Equation (93) exists. Then,
a positive real η̂h satisfying Equation (87) exists. For any existing (̂γh, η̂h) ∈ R2++, a positive real

δ̂h satisfying Equation (147) exists. For any existing (̂γh, δ̂h, η̂h) ∈ R3++, positive real σ
2
ah and σ

2
bh

satisfying Equations (89) and (90) exist. Thus, whenever a positive real solution γ̂h of Equation (93)
exists, the corresponding point (̂γh, δ̂h,σ2ah ,σ

2
bh
, η̂h) ∈ R5++ satisfying the necessary and sufficient

condition (93), (87), (147), (89), and (90) exists. This proves the sufficiency.
Finally, suppose that we obtain a solution satisfying Equations (86)–(90) in the domain (91).

Then, Equation (87) implies that

γh > η̂h.

Moreover, ignoring the positive terms σ2/c2bh and σ
2/c2ah in Equation (86), we have

η̂h > γ̂h.

Therefore, Equation (96) holds.
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G.8 Proof of Lemma 15

Assume that γ2h > σ2M. Then, the second inequality in Equation (98) holds if and only if(
1− σ2L

γ2h

)(
1− σ2M

γ2h

)
γ2h−

σ4

c2ahc
2
bh

> 0.

The left-hand side can be factorized as

γ−2h
(
γ2h−

(
κ+

√
κ2−LMσ4

))(
γ2h−

(
κ−

√
κ2−LMσ4

))
> 0, (148)

where

κ=
(L+M)σ2

2
+

σ4

2c2ahc
2
bh

.

Since

κ−
√
κ2−LMσ4 <Mσ2 < κ+

√
κ2−LMσ4,

Equation (148) holds if and only if

γ2h > κ+
√
κ2−LMσ4,

which leads to Equation (30).

G.9 Proof of Lemma 16

We show that the Hessian of the objective function (73) has at least one negative and one positive
eigenvalues at the null stationary point, when any positive stationary point exists. We only focus on
the 2-dimensional subspace spanned by (μah ,μbh). The partial derivatives of Equation (73) are given
by

1
2
∂LVBh
∂μah

=
μah
c2ah

+

(
−γhμbh +(μ2bh +Lσ2bh)μah

σ2

)
,

1
2
∂LVBh
∂μbh

=
μbh
c2bh

+

(
−γhμah +(μ2ah +Mσ2ah)μbh

σ2

)
.

Then, the Hessian is given by

1
2
H VB =

⎛⎝ 1
2
∂2LVBh
(∂μah )

2
1
2

∂2LVBh
∂μah∂μbh

1
2

∂2LVBh
∂μah∂μbh

1
2
∂2LVBh
(∂μbh )

2

⎞⎠
= σ2

⎛⎝ σ2

c2ah
+(μ2bh +Lσ2bh) −γh+2μahμbh

−γh+2μahμbh σ2

c2bh
+(μ2ah +Mσ2ah)

⎞⎠ . (149)
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The determinant of Equation (149) is written as∣∣∣∣12H VB

∣∣∣∣= 1
σ4

(
σ2

c2ah
+(μ2bh +Lσ2bh)

)(
σ2

c2bh
+(μ2ah +Mσ2ah)

)
− 1
σ4

(2μahμbh − γh)
2

=
1

σ2ahσ
2
bh

− 1
σ4

(2μahμbh − γh)
2 , (150)

where Equations (76) and (77) are used in the second equation.
The determinant (150) of the Hessian at the null stationary point, given by Equations (80)–(83),

is written as ∣∣∣∣12H̊ VB

∣∣∣∣= 1

σ̊2ah σ̊
2
bh

− 1
σ4
γ2h. (151)

Assume the existence of any positive stationary point, for which it holds that

γ2h =
σ4

σ̆2ah σ̆
2
bh

. (152)

This is obtained by substituting Equation (75) into Equation (74) and dividing both sides by
μ̆ah σ̆

2
ah σ̆

2
bh
/σ4 (> 0). Note that Equation (152) is not required for the null stationary point where

μ̊ah = 0. Substituting Equation (152) into Equation (151), we have∣∣∣∣12H̊ VB

∣∣∣∣= 1

σ̊2ah σ̊
2
bh

− 1

σ̆2ah σ̆
2
bh

. (153)

Multiplying Equations (139) and (140) leads to

σ2ahσ
2
bh =

1

4LMη̂2h

{
−(

η̂2h−σ2(M−L)
)
+

√(
η2h+σ2(L+M)

)2−4σ4LM}
×
{
−(

η̂2h+σ2(M−L)
)
+

√(
η2h+σ2(L+M)

)2−4σ4LM}
=

1
2LM

{
η̂2h+σ2(L+M)−

√(
η̂2h+σ2(L+M)

)2−4σ4LM}
,

which is decreasing with respect to η̂h. Equation (79) implies that η̂h is larger at any positive
stationary point than at the null stationary point. Therefore, it holds that σ̊2ah σ̊

2
bh

> σ̆2ah σ̆
2
bh
, and

Equation (153) is negative. This means that the Hessian H̊ VB has one negative and one positive
eigenvalues.

Consequently, the Hessian of the objective function (73) with respect to (μah ,μbh ,σ
2
ah ,σ

2
bh
) has

at least one negative and one positive eigenvalues at the null stationary point, which proves the
lemma.

G.10 Proof of Lemma 18

We rely on the monotonicity of the positive solution of the quadratic equation (97) with respect
to q1 and q0; the positive solution γ̂ of (97) is a monotone decreasing function of q1 and q0 (see
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Figure 11). Although Equation (93) is not really quadratic with respect to γ̂h because Equation (94)
depends on γ̂h, we can bound the positive solutions of Equation (93) by replacing the coefficients
q1 and q0 with their bounds. Equation (93) might have multiple positive solutions if the left-hand
side oscillates when crossing the horizontal axis in Fig.11. However, our approach bounds all the
positive solutions, and Lemma 17 guarantees that the minimizers consist of some of them when
Equation (98) holds.

First we derive an upper-bound of γ̂2h. Let us lower-bound Equation (94) by ignoring the positive
term 4σ4LM/(c2ahc

2
bh
):

q1(̂γh) =

−(M−L)2(γh− γ̂h)+(L+M)

√
(M−L)2(γh− γ̂h)2+ 4σ4LM

c2ah c
2
bh

2LM

>
−(M−L)2(γh− γ̂h)+(L+M)

√
(M−L)2(γh− γ̂h)2

2LM

=

(
1− L

M

)
(γh− γ̂h).

We also lower-bound Equation (95) by ignoring the positive term σ4/(c2ahc
2
bh
). Then we can obtain

an upper-bound of γ̂h:

γ̂h < γ̂uph ,

where γ̂uph is the larger solution of the following equation:

(̂γuph )2+

(
M
L
−1

)
γhγ̂

up
h −M

L

(
1− σ2L

γ2h

)(
1− σ2M

γ2h

)
γ2h = 0.

This can be factorized as(
γ̂uph −

(
1− σ2M

γ2h

)
γh

)(
γ̂uph +

M
L

(
1− σ2L

γ2h

)
γh

)
= 0.

Thus, the larger solution of this equation,

γ̂uph =

(
1− σ2M

γ2h

)
γh,

gives the upper-bound in Equation (28).
Similarly, we derive a lower-bound of γ̂2h. Let us upper-bound Equation (94) by using the relation√
x2+ y2 ≤

√
x2+ y2+2xy≤ x+ y for x,y≥ 0:

q1(̂γh) =

−(M−L)2(γh− γ̂h)+(L+M)

√
(M−L)2(γh− γ̂h)2+ 4σ4LM

c2ah c
2
bh

2LM

≤
−(M−L)2(γh− γ̂h)+(L+M)

(
(M−L)(γh− γ̂h)+ 2σ2

√
LM

cahcbh

)
2LM

=

(
1− L

M

)
(γh− γ̂h)+

2σ2(L+M)
√
LM

2LMcahcbh

=

(
1− L

M

)
(γh− γ̂h)+

σ2(L+M)√
LMcahcbh

.
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We also upper-bound Equation (95) by adding a non-negative term

(M−L)σ2

Lcahcbh

(
1

cahcbh
+
σ2

√
LM

γh

)
.

Then we can obtain a lower-bound of γ̂h:

γ̂h ≥ γ̂loh ,

where γ̂loh is the larger solution of the following equation:

L(̂γloh )
2
+

(
(M−L)γh+

σ2(L+M)
√
M/L

cahcbh

)
γ̂loh

+
M2σ4

Lc2ahc
2
bh

+
σ4M(M−L)

√
M/L

γhcahcbh
−M

(
1− σ2L

γ2h

)(
1− σ2M

γ2h

)
γ2h = 0.

This can be factorized as(
γ̂loh −

(
1− σ2M

γ2h

)
γh+

σ2
√
M/L

cahcbh

)(
Lγ̂loh +M

(
1− σ2L

γ2h

)
γh+

σ2M
√
M/L

cahcbh

)
= 0.

Thus, the larger solution of this equation,

γ̂loh =

(
1− σ2M

γ2h

)
γh− σ2

√
M/L

cahcbh
,

gives the lower-bound in Equation (28).
The coefficient of the second term of Equation (146),

σ2

cahcbh

(
cbh δ̂h
cah

+
cah
cbh δ̂h

)
,

is minimized when

δ̂h =
cah
cbh

.

Then we can obtain another upper-bound of γ̂h:

γ̂h ≤ γ̂′uph ,

where γ̂′uph is the larger solution of the following equation:

(̂γ′uph )2+

(
2σ2

cahcbh

)
γ̂′uph +

σ4

c2ahc
2
bh

−
(
1− σ2L

γ2h

)(
1− σ2M

γ2h

)
γ2h = 0.
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This can be factorized as(
γ̂′uph −

√(
1− σ2L

γ2h

)(
1− σ2M

γ2h

)
γh+

σ2

cahcbh

)

×
(
γ̂′uph +

√(
1− σ2L

γ2h

)(
1− σ2M

γ2h

)
γh+

σ2

cahcbh

)
= 0.

Thus, the larger solution of this equation,

γ̂′uph =

√(
1− σ2L

γ2h

)(
1− σ2M

γ2h

)
γh− σ2

cahcbh
,

gives the upper-bound in Equation (31).

G.11 Proof of Lemma 19

Consider the two-step minimization, (103) and (104). Lemma 17 implies that the minimizer of
Equation (103) is the null stationary point for any given (c2ah ,c

2
bh
) in R̊ . The null stationary point is

explicitly given by Lemma 11. Substituting Equations (80)–(83) into Equation (106) gives

˚̃LEVBh (c2ah ,c
2
bh) =M (− logλa,1+λa,1)+L(− logλb,1+λb,1)+

LMλa,0λb,0
σ2

. (154)

where

λa,k(cahcbh) =
1

2M(cahcbh)
k

{
−
(

σ2

cahcbh
− cahcbh(M−L)

)

+

√(
σ2

cahcbh
− cahcbh(M−L)

)2
+4Mσ2

}
,

λb,k(cahcbh) =
1

2L(cahcbh)
k

{
−
(

σ2

cahcbh
+ cahcbh(M−L)

)

+

√(
σ2

cahcbh
+ cahcbh(M−L)

)2
+4Lσ2

}
.

Note that λa,k > 0, λb,k > 0 for any k, and that Equation (154) depends on c2ah and c
2
bh
only through

their product cahcbh .
Consider a decreasing mapping x= σ2/(c2ahc

2
bh
) (> 0). Then, λa,1 and λb,1 are written as

λ′a,1(x) = 1−
(x+(L+M))−

√
(x+(L+M))2−4ML
2M

,

λ′b,1(x) = 1−
(x+(L+M))−

√
(x+(L+M))2−4ML
2L

.
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Since they are increasing with respect to x, λa,1 and λb,1 are decreasing with respect to cahcbh .
Further, λa,1 and λb,1 are upper-bounded as

λa,1(cahcbh)< lim
cah cbh→+0

λa,1(cahcbh) = lim
x→∞

λ′a,1(x) = 1,

λb,1(cahcbh)< lim
cah cbh→+0

λb,1(cahcbh) = lim
x→∞

λ′b,1(x) = 1.

Since (− logλ+λ) is decreasing in the range 0 < λ < 1, the first two terms in Equation (154) are
increasing with respect to cahcbh , and lower-bounded as

M(− logλa,1+λa,1)> lim
cahcbh→+0

M(− logλa,1+λa,1) =M, (155)

L(− logλb,1+λb,1)> lim
cahcbh→+0

L(− logλb,1+λb,1) = L. (156)

Similarly, using the same decreasing mapping, we have

λ′a,0(x) ·λ′b,0(x) =
σ2

2LM

(
(x+(L+M))−

√
(x+(L+M))2−4LM

)
.

Since this is decreasing with respect to x and lower-bounded by zero, λa,0λb,0 is increasing with
respect to cahcbh and lower-bounded as

λa,0(cahcbh) ·λb,0(cahcbh)> lim
cahcbh→+0

λa,0(cahcbh) ·λb,0(cahcbh) = lim
x→∞

λ′a,0(x) ·λ′b,0(x) = 0.

Therefore, the third term in Equation (154) is increasing with respect to cahcbh , and lower-bounded
as

LMλa,0λb,0
σ2

> lim
cah cbh→+0

LMλa,0λb,0
σ2

= 0. (157)

Now we have found that Equation (154) is increasing with respect to cahcbh , because it consists
of the increasing terms. Equations (114) and (115) minimize cahcbh over R̊ε when Equation (43)
is adopted. Therefore, they minimize Equation (154). Equations (110)–(113) are obtained by sub-
stituting Equations (114) and (115) into Equations (80)–(83). Since the infima (155)–(157) of the
three terms of Equation (154) are obtained at the same time with the minimizer in the limit when
ε→+0, we have Equation (116).

G.12 Proof of Lemma 20

Existence of any positive stationary point lying in R̊ contradicts with Lemma 14.

G.13 Proof of Lemma 21

Assume that Equation (118) holds. Then, any global minimizer or point sequence giving the global

infimum L̆EVBh exists in R̆. Let us investigate the objective function (106). It is differentiable in the
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domain (102), and lower-bounded as

LEVBh (μah ,μbh ,σ
2
ah ,σ

2
bh ,c

2
ah ,c

2
bh)≥ μ2ah

(
1
c2ah

+
1
σ2
Lσ2bh

)
+μ2bh

(
1

c2bh
+
1
σ2
Mσ2ah

)

+M

(
σ2ah
c2ah

− log σ
2
ah

c2ah

)
+L

(
σ2bh
c2bh

− log σ
2
bh

c2bh

)
+
1
σ2

(
LMσ2ahσ

2
bh − γ2h

)
. (158)

Note that each term is lower-bounded by a finite value, since (x− logx)≥ 1 for any x> 0.
Since any sequence such that c2ah → 0 or c2bh → 0 goes into R̊, it cannot give L̆EVBh . Accordingly,

we neglect such sequences. Then, we find that the lower-bound (158) goes to infinity when σ2ah → 0
or σ2bh → 0, because of the third and the fourth terms (note that limx→+0(x− logx) = ∞). Further, it
goes to infinity when σ2ah → ∞ or σ2bh → ∞, because of the fifth term. It also goes to infinity when
|μah | → ∞ or |μbh | → ∞, because of the first and the second terms. Finally, it goes to infinity when
c2ah → ∞ or c2bh → ∞, because of the third and the fourth terms.

The above mean that the objective function (106) goes to infinity when approaching to any point
on the domain boundary included in R̆. Consequently, the minimizers consist of stationary points
in R̆. According to Lemma 14 and Lemma 16, the null stationary points in R̆ are saddle points.
Therefore, the minimizers consist of positive stationary points.

G.14 Proof of Lemma 22

Substituting Equation (75) into Equation (74) gives

γ2h =
σ4

σ2ahσ
2
bh

. (159)

Substituting Equations (76) and (77) into Equation (159), we have

γ2h =

(
μ2ah +Mσ2ah +

σ2

c2bh

)(
μ2bh +Lσ2bh +

σ2

c2bh

)
. (160)

Substituting Equations (119) and (120) into Equation (160) gives

γ2h =

(
Mc2ah +

σ2

c2bh

)(
Lc2bh +

σ2

c2ah

)
.

From this, we have

LMc4ahc
4
bh −

(
γ2h− (L+M)σ2

)
c2ahc

2
bh +σ4 = 0. (161)

Solving Equation (161) with respect to c2ahc
2
bh
, we obtain two solutions:

c2ahc
2
bh =

(
γ2h− (L+M)σ2

)±√(
γ2h− (L+M)σ2

)2−4LMσ4
2LM

. (162)
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On the other hand, because of the redundancy with respect to the transform (42), we can fix
the ratio of the hyperparameters as in Equation (43). Thus, we have transformed the necessary and
sufficient condition (74)–(77), (119), and (120) to (74)–(77), and (162). Since√(

γ2h− (L+M)σ2
)2−4LMσ4

=

√(
γ2h− (

√
L+

√
M)2σ2

)(
γ2h− (

√
M−

√
L)2σ2

)
and √

(
√
M−

√
L)2σ2 <

√
Mσ2,

the two solutions (162) are real and positive if and only if Equation (121) holds. This proves the
necessity.

Suppose that Equation (121) holds. Then, the two solutions (162) exist. The inverse of the
smaller solution (123) is written as

1

ć2ah ć
2
bh

=

(
γ2h− (L+M)σ2

)
+

√(
γ2h− (L+M)σ2

)2−4LMσ4
2σ4

. (163)

This is upper-bounded as

1

ć2ah ć
2
bh

<
1
σ4

(
γ2h− (L+M)σ2

)
.

Using this bound, we have√(
1− σ2L

γ2h

)(
1− σ2M

γ2h

)
γh− σ2

ćah ćbh

>

√
γ2h− (L+M)σ2+

LMσ4

γ2h
−
√
γ2h− (L+M)σ2

> 0.

This means that Equation (98) holds. The same holds for the larger solution (122), since

1
c̆ah c̆bh

≤ 1
ćah ćbh

.

Consequently, Lemma 14 guarantees the existence of at least one positive stationary point
(μ̆ah , μ̆bh , σ̆

2
ah , σ̆

2
bh
) ∈ R2 ×R2++ satisfying Equations (74)–(77), given any (c2ah ,c

2
bh
) ∈ R2++ con-

structed from Equation (43) and either of the two solutions (162). Thus, we have shown the ex-
istence of at least one positive stationary point satisfying the necessary and sufficient condition
(74)–(77), and (162) when Equation (121) holds. This proves the sufficiency.
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G.15 Proof of Lemma 23

We show that, when Equation (125) holds, the Hessian of the objective function (106) has at least
one negative and one positive eigenvalues at any small positive stationary point. We only focus on
the 4-dimensional subspace spanned by (μah ,μbh ,c

2
ah ,c

2
bh
). The partial derivatives of the objective

function (106) are

1
2
∂LEVBh

∂μah
=
μah
c2ah

+
−γhμbh +(μ2bh +Lσ2bh)μah

σ2
,

1
2
∂LEVBh

∂μbh
=
μbh
c2bh

+
−γhμah +(μ2ah +Mσ2ah)μbh

σ2
,

1
2
∂LEVBh

∂c2ah
=
1
2

(
M
c2ah

− (μ2ah +Mσ2ah)

c4ah

)
,

1
2
∂LEVBh

∂c2bh
=
1
2

(
L

c2bh
− (μ2bh +Lσ2bh)

c4bh

)
.

Then, the Hessian is given by

1
2
H EVB =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
2
∂2LEVBh
(∂μah )

2
1
2
∂2LEVBh
∂μah∂μbh

1
2
∂2LEVBh
∂μah∂c

2
ah

1
2
∂2LEVBh
∂μah∂c

2
bh

1
2
∂2LEVBh
∂μbh∂μah

1
2
∂2LEVBh
(∂μbh )

2
1
2
∂2LEVBh
∂μbh∂c

2
ah

1
2
∂2LEVBh
∂μbh∂c

2
bh

1
2
∂2LEVBh
∂c2ah∂μah

1
2
∂2LEVBh
∂c2ah∂μbh

1
2
∂2LEVBh
(∂c2ah )

2
1
2
∂2LEVBh
∂c2ah∂c

2
bh

1
2
∂2LEVBh
∂c2bh

∂μah

1
2
∂2LEVBh
∂c2bh

∂μbh

1
2
∂2LEVBh
∂c2bh

∂c2ah

1
2
∂2LEVBh
(∂c2bh

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
c2ah

+
μ2bh

+Lσ2bh
σ2

2μahμbh−γh
σ2 −μah

c4ah
0

2μahμbh−γh
σ2

1
c2bh

+
μ2ah+Mσ

2
ah

σ2 0 −μbh
c4bh

−μah
c4ah

0
2(μ2ah+Mσ

2
ah
)−Mc2ah

2c6ah
0

0 −μbh
c4bh

0
2(μ2bh

+Lσ2bh
)−Lc2bh

2c6bh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (164)

At any positive stationary point, Equations (74)–(77), (119), and (120) hold. Substituting Equa-
tions (76), (77), (119), and (120) into (164), we have

1
2
H EVB =

⎛⎜⎜⎜⎜⎜⎜⎝

1
σ2ah

γh−2μahμbh
σ2 −μah

c4ah
0

γh−2μahμbh
σ2

1
σ2bh

0 −μbh
c4bh

−μah
c4ah

0 M
2c4ah

0

0 −μbh
c4bh

0 L
2c4bh

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Its determinant is calculated as

∣∣∣∣12H EVB

∣∣∣∣=−μbh
c4bh

∣∣∣∣∣∣∣∣∣
−μah

c4ah
0 M

2c4ah
0 −μbh

c4bh
0

1
σ2ah

γh−2μahμbh
σ2 −μah

c4ah

∣∣∣∣∣∣∣∣∣+
L

2c4bh

∣∣∣∣∣∣∣∣∣
1
σ2ah

γh−2μahμbh
σ2 −μah

c4ah
γh−2μahμbh

σ2
1
σ2bh

0

−μah
c4ah

0 M
2c4ah

∣∣∣∣∣∣∣∣∣
=

1

c4ahc
4
bh

(
μ2ahμ

2
bh

c4ahc
4
bh

− Mμ2bh
2σ2ahc

4
bh

− Lμ2ah
2σ2bhc

4
ah

+
LM
4σ4

(
σ4

σ2ahσ
2
bh

− (γh−2μahμbh)2
))

.

Multiplying both sides of Equation (74) by μah gives

μ2ah =
σ2ah
σ2

γhγ̂h,

and therefore

μ2ah
σ2ah

=
γhγ̂h
σ2

. (165)

Similarly from Equation (75), we obtain

μ2bh
σ2bh

=
γhγ̂h
σ2

. (166)

By using Equations (78), (84), (159), (165), and (166), we obtain∣∣∣∣12H EVB

∣∣∣∣= 1

c4ahc
4
bh

(
γ̂2h

c4ahc
4
bh

− γhγ̂h
2σ2

(
Mδ̂−2

c4bh
+
Lδ̂2

c4ah

)
+
LM
σ4

(̂
γhγh− γ̂2h

))
. (167)

Since
Mδ̂−2

c4bh
+
Lδ̂2

c4ah
≥ 2

√
LM

c2ahc
2
bh

for any δ̂2 > 0, Equation (167) is upper-bounded by∣∣∣∣12H EVB

∣∣∣∣≤ 1

c4ahc
4
bh

(
γ̂2h

c4ahc
4
bh

− γhγ̂h
√
LM

σ2c2ahc
2
bh

+
LM
σ4

(̂
γhγh− γ̂2h

))

=
γ̂h

c4ahc
4
bh

(
1

c2ahc
2
bh

−
√
LM
σ2

){(
1

c2ahc
2
bh

+

√
LM
σ2

)
γ̂h−

√
LM
σ2

γh

}
. (168)

At any small positive stationary point, Equation (123) is upper-bounded as

ć2ah ć
2
bh <

σ2√
LM

when Equation (125) holds. Therefore, Equation (168) is written as∣∣∣∣12H́ EVB

∣∣∣∣≤C

{(
1

ć2ah ć
2
bh

+

√
LM
σ2

)
γ̂h−

√
LM
σ2

γh

}
,
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with a positive factor

C =
γ̂h

ć4ah ć
4
bh

(
1

ć2ah ć
2
bh

−
√
LM
σ2

)
.

Using Equation (31), we have

∣∣∣∣12H́ EVB

∣∣∣∣≤C

{(
1

ć2ah ć
2
bh

+

√
LM
σ2

)(√(
1− Lσ2

γ2h

)(
1−Mσ2

γ2h

)
γh− σ2

ćah ćbh

)

−
√
LM
σ2

γh

}

=C

{
− σ2

ć3ah ć
3
bh

+

√(
1− Lσ2

γ2h

)(
1−Mσ2

γ2h

)
γh

ć2ah ć
2
bh

−
√
LM

ćah ćbh

−
√
LM
σ2

(
1−

√(
1− Lσ2

γ2h

)(
1−Mσ2

γ2h

))
γh

}

<
C

ćah ćbh

(
− σ2

ć2ah ć
2
bh

+

√(
1− Lσ2

γ2h

)(
1−Mσ2

γ2h

)
γh

ćah ćbh
−
√
LM

)
.

At the last inequality, we neglected the negative last term in the curly braces.

Using Equation (163), we have

∣∣∣∣12H́ EVB

∣∣∣∣<−C′( f (γh)−g(γh)), (169)

where

C′ =
γ2hC

2σ2ćah ćbh
,

f (γh) =

(
1− (

√
M−√

L)2σ2

γ2h

)
+

√(
1− (L+M)σ2

γ2h

)2
− 4LMσ

4

γ4h
,

g(γh) =

√
2

(
1− Lσ2

γ2h

)(
1−Mσ2

γ2h

)

×

√√√√(
1− (L+M)σ2

γ2h

)
+

√(
1− (L+M)σ2

γ2h

)2
− 4LMσ

4

γ4h
.
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Since C′, f (γh), and g(γh) are positive, the right-hand side of Equation (169) is negative if f 2(γh)−
g2(γh)> 0. This is shown below.

f 2(γh)−g2(γh) =

⎛⎝(
1− (

√
M−√

L)2σ2

γ2h

)
+

√(
1− (L+M)σ2

γ2h

)2
− 4LMσ

4

γ4h

⎞⎠2

−2
(
1− Lσ2

γ2h

)(
1−Mσ2

γ2h

)⎛⎝(
1− (L+M)σ2

γ2h

)
+

√(
1− (L+M)σ2

γ2h

)2
− 4LMσ

4

γ4h

⎞⎠
= 2

√
LMσ2

γ2h

(
2−

√
LMσ2

γ2h

)

×
⎛⎝(

1− (L+M)σ2

γ2h

)
+

√(
1− (L+M)σ2

γ2h

)2
− 4LMσ

4

γ4h

⎞⎠
> 0.

Consequently, it holds that |H́ EVB| < 0. This means that H́ EVB has at least one negative and
one positive eigenvalues. Therefore, the Hessian of the objective function (106) with respect to
(μah ,μbh ,σ

2
ah ,σ

2
bh
,c2ah ,c

2
bh
) has at least one negative and one positive eigenvalues at any small positive

stationary point, when Equation (125) holds. This proves the lemma.

G.16 Proof of Lemma 25

Substituting Equations (106) and (116) into Equation (126), we have

Δh(μ̆ah , μ̆bh , σ̆
2
ah , σ̆

2
bh , c̆

2
ah , c̆

2
bh) = LEVBh (μ̆ah , μ̆bh , σ̆

2
ah , σ̆

2
bh , c̆

2
ah , c̆

2
bh)− (L+M)

=M log
c̆2ah
σ̆2ah

+L log
c̆2bh
σ̆2bh

+
μ̆2ah +Mσ̆2ah

c̆2ah
+
μ̆2bh +Lσ̆2bh

c̆2bh

+
1
σ2

(−2γhμ̆ah μ̆bh + (
μ̆2ah +Mσ̆2ah

)(
μ̆2bh +Lσ̆2bh

))− (L+M). (170)

Substituting Equations (119) and (120) into Equation (170), we have

Δh =M log

(
μ̆2ah
Mσ̆2ah

+1

)
+L log

(
μ̆2bh
Lσ̆2bh

+1

)
+
1
σ2

(−2γhμ̆ah μ̆bh +LMc̆2ah c̆
2
bh

)
. (171)

Substituting Equations (165) and (166) into Equation (171) and using Equation (78), we have

Δh =M log
( γh
Mσ2

γ̂h+1
)
+L log

( γh
Lσ2

γ̂h+1
)
+
1
σ2

(−2γhγ̂h+LMc̆2ah c̆
2
bh

)
. (172)
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Using the bounds (28), Equation (172) is upper-bounded as

Δh <M log

(
γ2h
Mσ2

(
1−Mσ2

γ2h

)
+1

)
+L log

(
γ2h
Lσ2

(
1−Mσ2

γ2h

)
+1

)
+
1
σ2

(
−2γh

((
1− σ2M

γ2h

)
γh− σ2

√
M/L

c̆ah c̆bh

)
+LMc̆2ah c̆

2
bh

)

=M log

(
γ2h
Mσ2

)
+L log

(
γ2h
Lσ2

−M
L
+1

)
+
1
σ2

(
−2γh

(
γh− σ2M

γh
− σ2

√
M/L

c̆ah c̆bh

)
+LMc̆2ah c̆

2
bh

)

=M log

(
γ2h
Mσ2

)
+L log

(
γ2h
Lσ2

−M
L
+1

)
+2M+

2
√
M/L

c̆ah c̆bh
γh− 2γ

2
h

σ2
+
LMc̆2ah c̆

2
bh

σ2
.

Since
√
x2− y2 > x− y for x> y> 0, Equation (122) yields

c̆2ah c̆
2
bh ≥

γ2h− (L+M+
√
LM)σ2

LM
. (173)

Ignoring the positive term 4LMσ4 in Equation (122), we obtain

c̆2ah c̆
2
bh <

γ2h− (L+M)σ2

LM
. (174)

Equations (173) and (174) result in

√
γ2h− (L+M+

√
LM)σ2

LM
≤ c̆ah c̆bh <

√
γ2h− (L+M)σ2

LM
.

Using these bounds, we obtain

Δh <M log

(
γ2h
Mσ2

)
+L log

(
γ2h
Lσ2

−M
L
+1

)
+2M+

2
√
M/L√

γ2h−(L+M+
√
LM)σ2

LM

γh

− 2γ
2
h

σ2
+ γ2h− (L+M)

=M log

(
γ2h
Mσ2

)
+L log

(
γ2h
Lσ2

−M
L
+1

)
+M−L+

2M√
1− (L+M+

√
LM)σ2

γ2h

− γ2h
σ2

.

Using Equations (128), (129), and (130), we obtain Equation (127).
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G.17 Proof of Lemma 26

For 0< α≤ 1 and β≥ 7, Equation (128) is increasing with respect to α, because

∂ψ(α,β)
∂α

= log

(
β−1+α

α

)
−
(

β−1
β−1+α

)
−1+ (

√
α+1/2)

β
√
α
(
1− (α+

√
α+1)
β

)3/2
> log

(
β−1
α

+1

)
−2+ 1

β

≥ log(β)−2+ 1
β

> 0.

Here, we used the numerical estimation that log(β)− 2+ 1/β ≈ 0.0888 when β = 7, and the fact
that log(β)−2+1/β is increasing with respect to β when β> 1.

For 0< α≤ 1 and β> 3, Equation (128) is decreasing with respect to β, because

∂ψ(α,β)
∂β

=
1
β
+

α
(β−1+α)

−
(α+

√
α+1)

β2

2
(
1− (α+

√
α+1)
β

)3/2 −1
<
1
β
+

α
(β−1+α)

−1

=−(β−1+√
α)(β−1−√

α)
β(β−1+α)

< 0.

Consequently, if ψ(1, β̃) < 0, it holds that ψ(α,β) < 0 for any 0 < α ≤ 1 and β ≥ β̃. The fact
that ψ(1,7)≈−0.462< 0 completes the proof.

G.18 Proof of Lemma 29

Since the upper-bound in Equation (28) does not depend on (c2ah ,c
2
bh
), Equation (46) holds.

Since the lower-bound in Equation (28) is nondecreasing with respect to cahcbh , substituting
Equation (173) into Equation (28) yields

γ̂h ≥max
⎧⎨⎩0,

(
1− σ2M

γ2h

)
γh− σ2M√

γ2h− (L+M+
√
LM)σ2

⎫⎬⎭ .

It holds that

−σ2M
γh

>− σ2M√
γ2h− (L+M+

√
LM)σ2

>− σ2M

γh−
√
(L+M+

√
LM)σ2

,
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where the positive term (L+M+
√
LM)σ2 is subtracted in the first inequality and the relation√

x2− y2 > x− y for x> y> 0 is used in the second inequality. Then we have

γ̂h >max

⎧⎨⎩0,γh− 2σ2M

γh−
√
(L+M+

√
LM)σ2

⎫⎬⎭ ,

which leads to Equation (47).
Substituting Equation (174) into Equation (31), we obtain

γ̂h <

√(
1− σ2L

γ2h

)(
1− σ2M

γ2h

)
γh− σ2

√
LM√

γ2h− (L+M)σ2

<

√(
1− σ2L

γ2h

)(
1− σ2M

γ2h

)
γh− σ2

√
LM

γh
,

where the positive term (L+M)σ2 is ignored in the second inequality. This gives Equation (48),
and completes the proof.

Appendix H. Illustration of EVB Objective Function

Here we illustrate the EVB objective function (106). Let us consider a partially minimized objective
function:

L̃EVBh (cahcbh) = min
(μah ,μbh ,σ

2
ah
,σ2bh

)
LEVBh (μah ,μbh ,σ

2
ah ,σ

2
bh ,cahcbh ,cahcbh). (175)

According to Lemma 19, the infimum at the null local minimizer is given by

lim
cahcbh→0

L̃EVBh (cahcbh) = L̊
EVB
h = L+M. (176)

Figure 13 depicts the partially minimized objective function (175) when L=M=H = 1, σ2= 1,
andV = 1.5,2.0,2.1,2.7. Corollary 1 provides the exact values for drawing these graphs. The large
and the small positive stationary points, specified by Equations (122) and (123), respectively, are
also plotted in the graphs if they exist. When

V = 1.5
(
< 2= (

√
L+

√
M)σ

)
,

Equation (121) does not hold. In this case, the objective function (175) has no stationary point as
Lemma 22 states (the upper-left graph of Figure 13). The curve is identical for 0≤V < 2.0.

WhenV = 2.0 (the upper-right graph), Equation (124) holds. In this case, the objective function
(175) has a stationary point at cahcbh = 1. This corresponds to the coincident large and small positive
stationary point. Still no local minimum exists.

When V = 2.1 (the lower-left graph), Equation (125) holds. In this case, there exists a large
positive stationary point (which is a local minimum) at cahcbh ≈ 1.37, as well as a small positive
stationary point (which is a local maximum) at cahcbh ≈ 0.73. However, we see that

L̃EVBh (1.37)≈ 2.24> 2= L̊
EVB
h .
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Figure 13: Illustration of the partially minimized objective function (175) when L = M = H = 1,
σ2 = 1, and V = 1.5,2.0,2.1,2.7. The convergence L̃EVBh (cahcbh) → L+M (= 2) as
cahcbh → 0 is observed (see Equation (176)). ’Large SP’ and ’Small SP’ indicate the
large and the small positive stationary points, respectively.

Therefore, the null local minimizer (cahcbh → 0) is still global, resulting in γ̂EVBh = 0.
WhenV = 2.7 (the lower-right graph), γh≥

√
7M ·σ holds. As Lemma 28 states, a large positive

stationary point at cahcbh ≈ 2.26 gives the global minimum:

L̃EVBh (2.26) ≈ 0.52< 2= L̊
EVB
h ,

resulting in a positive output γ̂EVBh ≈ 1.89.

Appendix I. Derivation of Equations (57) and (58)

Let p(v|θ) be a model distribution, where v is a random variable and θ ∈ Rd is a d-dimensional
parameter vector. The Jeffreys non-informative prior (Jeffreys, 1946) is defined as

φJef(θ) ∝
√
|F |, (177)
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where F ∈ Rd×d is the Fisher information matrix defined by

F jk =
∫
∂ log p(v|θ)

∂θ j

∂ log p(v|θ)
∂θk

p(v|θ)dv. (178)

Let us first derive the Jeffreys prior for the non-factorizing model:

pU(V |U) ∝ exp

(
− 1
2σ2

(V −U)2
)
. (179)

In this model, the parameter vector is one-dimensional: θ=U . Since

∂ log pU(V |U)

∂U
=
V −U
σ2

,

the Fisher information (178) is given by

FU =
1
σ2

.

This is constant over the parameter space. Therefore, the Jeffreys prior (177) for the model (179) is
given by Equation (57).

Let us move on to the MF model:

pA,B(V |A,B) ∝ exp
(
− 1
2σ2

(V −AB)2
)
. (180)

In this model, the parameter vector is θ = (A,B). Since

∂ log pA,B(Y |A,B)
∂A

=
1
σ2

(Y −AB)B,

∂ log pA,B(Y |A,B)
∂B

=
1
σ2

(Y −AB)A,

the Fisher information matrix is given by

FA,B =
1
σ2

(
B2 AB
AB A2

)
,

whose eigenvalues are σ−2√A2+B2 and 0.
The common (over the parameter space) zero-eigenvalue comes from the invariance of the MF

model (180) under the transform (A,B)→ (sA,s−1B) for any s> 0. Neglecting it, we re-define the
Jeffreys prior by

φJef(θ) ∝
√
∏d−1

j=1 λ j,

where λ j is the j-th largest eigenvalue of the Fisher information matrix. Thus, we obtain Equa-
tion (58).
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R. Rosipal and N. Krämer. Overview and recent advances in partial least squares. In C. Saunders,
M. Grobelnik, S. Gunn, and J. Shawe-Taylor, editors, Subspace, Latent Structure and Feature
Selection Techniques, volume 3940 of Lecture Notes in Computer Science, pages 34–51, Berlin,
2006. Springer.

R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In J. C. Platt, D. Koller, Y. Singer,
and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1257–
1264, Cambridge, MA, 2008. MIT Press.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

P. Y.-S. Shao and W. E. Strawderman. Improving on the James-Stein positive-part estimator. The
Annals of Statistics, 22:1517–1538, 1994.

N. Srebro and T. Jaakkola. Weighted low rank approximation. In T. Fawcett and N. Mishra, editors,
Proceedings of the Twentieth International Conference on Machine Learning. AAAI Press, 2003.

N. Srebro, J. Rennie, and T. Jaakkola. Maximum margin matrix factorization. In Advances in NIPS,
volume 17, 2005.

C. Stein. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution.
In Proc. of the 3rd Berkeley Symp. on Math. Stat. and Prob., pages 197–206, 1956.

C. Stein. Estimation of a covariance matrix. In Rietz Lecture, 39th Annual Meeting IMS, 1975.

W. E. Strawderman. Proper Bayes minimax estimators of the multivariate normal mean. Annals of
Mathematical Statistics, 42:385–388, 1971.

D. Tao, M. Song, X. Li, J. Shen, J. Sun, X. Wu, C. Faloutsos, and S. J. Maybank. Tensor approach
for 3-D face modeling. IEEE Transactions on Circuits and Systems for Video Technology, 18(10):
1397–1410, 2008.

2647



NAKAJIMA AND SUGIYAMA

K.Watanabe and S.Watanabe. Stochastic complexities of Gaussian mixtures in variational Bayesian
approximation. Journal of Machine Learning Research, 7:625–644, 2006.

S. Watanabe. Algebraic analysis for nonidentifiable learning machines. Neural Computation, 13
(4):899–933, 2001.

S. Watanabe. Algebraic Geometry and Statistical Learning. Cambridge University Press, Cam-
bridge, UK, 2009.

D. Wipf and S. Nagarajan. A new view of automatric relevance determination. In J. C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems
20, pages 1625–1632, Cambridge, MA, 2008. MIT Press.

H. Wold. Estimation of principal components and related models by iterative least squares. In P. R.
Krishnaiah, editor,Multivariate Analysis, pages 391–420. Academic Press, New York, NY, USA,
1966.

K. J. Worsley, J-B. Poline, K. J. Friston, and A. C. Evanss. Characterizing the response of PET and
fMRI data using multivariate linear models. NeuroImage, 6(4):305–319, 1997.

K. Yamazaki and S. Watanabe. Singularities in mixture models and upper bounds of stochastic
complexity. Neural Networks, 16(7):1029–1038, 2003.

K. Yu, V. Tresp, and A. Schwaighofer. Learning Gaussian processes from multiple tasks. In Pro-
ceedings of the Twenty-Second International Conference on Machine learning, pages 1012–1019,
2005.

S. Yu, J. Bi, and J. Ye. Probabilistic interpretations and extensions for a family of 2D PCA-style
algorithms. In KDD Workshop on Data Mining using Matrices and Tensors, 2008.

2648



Journal of Machine Learning Research 12 (2011) 2649-2680 Submitted 6/09; Revised 5/11; Published 9/11

Bayesian Co-Training

Shipeng Yu SHIPENG.YU@SIEMENS.COM
Balaji Krishnapuram BALAJI.KRISHNAPURAM@SIEMENS.COM
Business Intelligence and Analytics
Siemens Medical Solutions USA, Inc.
51 Valley Stream Parkway
Malvern, PA 19355, USA
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Abstract
Co-training (or more generally, co-regularization) has been a popular algorithm for semi-supervised
learning in data with two feature representations (or views), but the fundamental assumptions un-
derlying this type of models are still unclear. In this paper we propose a Bayesian undirected
graphical model for co-training, or more generally for semi-supervised multi-view learning. This
makes explicit the previously unstated assumptions of a large class of co-training type algorithms,
and also clarifies the circumstances under which these assumptions fail. Building upon new insights
from this model, we propose an improved method for co-training, which is a novel co-training ker-
nel for Gaussian process classifiers. The resulting approach is convex and avoids local-maxima
problems, and it can also automatically estimate how much each view should be trusted to accom-
modate noisy or unreliable views. The Bayesian co-training approach can also elegantly handle
data samples with missing views, that is, some of the views are not available for some data points
at learning time. This is further extended to an active sensing framework, in which the missing
(sample, view) pairs are actively acquired to improve learning performance. The strength of active
sensing model is that one actively sensed (sample, view) pair would improve the joint multi-view
classification on all the samples. Experiments on toy data and several real world data sets illustrate
the benefits of this approach.
Keywords: co-training, multi-view learning, semi-supervised learning, Gaussian processes, undi-
rected graphical models, active sensing

1. Introduction

In machine learning, data samples may sometimes be characterized in multiple ways. For instance in
web page classification, the web pages can be described both in terms of the textual content in each
page and the hyperlink structure between them; for cancer diagnosis where the goal is to determine
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if the patient has cancer or not, multiple medical imaging techniques (such as CT, Ultrasound and
MRI) might be considered to collect complete characteristic of the patient from different perspec-
tives. For learning under such a setting, it has been shown in Dasgupta et al. (2001) that the error
rate on unseen test samples can be upper bounded by the disagreement between the classification-
decisions obtained from independent characterizations (i.e., views) of the data. Thus, in the web
page example, misclassification rate can be indirectly minimized by reducing the rate of disagree-
ment between hyperlink-based and content-based classifiers, provided these characterizations are
independent conditional on the class label.

As a completely new learning principle, multi-view consensus learning has been the subject of a
large body of research recently. This type of methods were originally developed for semi-supervised
learning, where class labels are expensive to obtain but unlabeled data are cheap and abundantly
available, such as in web page classification. When the data samples can be characterized in multiple
views, the disagreement between the class labels suggested by different views can be computed even
when using unlabeled data. Therefore, a natural strategy for using unlabeled data to minimize the
misclassification rate is to enforce consistency between the classification decisions based on several
independent characterizations of the unlabeled samples. For brevity, unless otherwise specified, we
shall use the term co-training to describe the entire genre of methods that rely upon this intuition,
although strictly it should only refer to the original algorithm of Blum and Mitchell (1998).

In this pioneering paper, Blum and Mitchell introduced an iterative, alternating co-training
method, which works in a bootstrap mode by repeatedly adding pseudo-labeled unlabeled samples
into the pool of labeled samples, retraining the classifiers for each view, and pseudo-labeling addi-
tional unlabeled samples where at least one view is confident about its decision. The paper provided
PAC-style guarantees that if (a) there exist weakly useful classifiers on each view of the data, and (b)
these characterizations of the sample are conditionally independent given the class label, then the
co-training algorithm can use the unlabeled data to learn arbitrarily strong classifiers. Later Balcan
et al. (2004) tried to reduce the strong theoretical requirements, and they showed that co-training
would be useful if (a) there exist low error rate classifiers on each view, (b) these classifiers never
make mistakes in classification when they are confident about their decisions, and (c) the two views
are not too highly correlated, in the sense that there would be at least some cases where one view
makes confident classification decisions while the classifier on the other view does not have much
confidence in its own decision. While each of these theoretical guarantees is intriguing and theoret-
ically interesting, they are also rather unrealistic in many application domains. The assumption that
classifiers do not make mistakes when they are confident and that of class conditional independence
are rarely satisfied in practice. Empirical studies of co-training on many applications show mixed
results. See, for instance, Pierce and Cardie (2001) and Kiritchenko and Matwin (2002); Hwa et al.
(2003).

A strongly related algorithm is the co-EM algorithm from Nigam and Ghani (2000), which
extends the original bootstrap approach of the co-training algorithm to operate simultaneously on
all unlabeled samples in an iterative batch mode. Brefeld and Scheffer (2004) used this idea with
SVMs as base classifiers, and subsequently in unsupervised learning in Bickel and Scheffer (2005).
However, co-EM also suffers from local maxima problems, and while each iteration’s optimization
step is clear, the co-EM is not really an expectation maximization algorithm (i.e., it lacks a clearly
defined overall log-likelihood that monotonically improves across iterations).

In recent years, some co-training algorithms jointly optimize an objective function which in-
cludes misclassification penalties (i.e., loss terms) for classifiers from each view, and a regulariza-
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tion term that penalizes lack of agreement between the classification decisions of the different views.
This co-regularization approach has become the dominant strategy for exploiting the intuition be-
hind multi-view consensus learning, rendering obsolete earlier alternating-optimization strategies.
Krishnapuram et al. (2004) proposed an approach for two-view consensus learning based on simul-
taneously learning multiple classifiers by maximizing an objective function which penalized mis-
classifications by any individual classifier, and included a regularization term that penalized a high
level of disagreement between different views. This co-regularization framework improves upon the
co-training and co-EM algorithms by maximizing a convex objective function; however the algo-
rithm still depends on an alternating optimization that optimizes one view at a time. This approach
was later adapted to two-view spectral clustering in de Sa (2005). The two-view co-regularization
approach was subsequently adopted by Sindhwani et al. (2005), Brefeld et al. (2006), Sindhwani
and Rosenberg (2008) and Farquhar et al. (2005) for semi-supervised classification and regression
based on the reproducing kernel Hilbert space (RKHS). In these approaches a new co-regularization
term is added to the objective function which is based on the disagreement of the two views. Repre-
senter theorem still holds and solutions can be easily derived by direct optimization. However, it is
unclear how to set the regularization parameters (i.e., to control the weight of the co-regularization
term). Theoretical analysis of this and other types of algorithms can be found in Balcan and Blum
(2006), Sridharan and Kakade (2008), Wang and Zhou (2007) and Wang and Zhou (2010).

Much of these previous work on co-training has been somewhat ad-hoc in nature. Although
some algorithms were empirically successful in specific applications, it was not always clear what
precise assumptions were made, what was being optimized overall or why they worked well. In
this paper we propose a principled undirected graphical model for co-training which we call the
Bayesian co-training, and show that co-regularization algorithms provide one way for maximum-
likelihood (ML) learning under this probabilistic model. By explicitly highlighting previously un-
stated assumptions, Bayesian co-training provides a deeper understanding of the co-regularization
framework, and we are also able to discuss certain fundamental limitations of multi-view consen-
sus learning. Summarizing our algorithmic contributions, we show that co-regularization is exactly
equivalent to the use of a novel co-training kernel for support vector machines (SVMs) and Gaus-
sian processes (GP), thus allowing one to leverage the large body of available literature for these
algorithms. The kernel is intrinsically non-stationary, that is, the level of similarity between any
pair of samples depends on all the available samples, whether labeled or unlabeled, thus promoting
semi-supervised learning. Therefore, this approach is significantly simpler and more efficient than
the alternating-optimization that is used in previous co-regularization implementations. Further-
more, we can automatically estimate how much each view should be trusted, and thus accommodate
noisy or unreliable views.

The basic idea of Bayesian co-training was published in a short conference paper by Yu et al.
(2008). In the current paper we have all the derivation details and more discussions to its related
models. More importantly, we extend the Bayesian co-training model to handle data samples with
missing views (i.e., some views are missing for certain data samples), and introduce a novel ap-
plication called the active sensing. This makes the current paper significantly different from its
conference version.

Active sensing aims to efficiently choose, among all the missing features (grouped in views),
what views and samples to additionally acquire (or sense) to improve the overall learning perfor-
mance. This is different from the typical active learning, which addresses the problem of efficiently
choosing data samples to be labeled in order to improve overall learning performance. From a can-
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cer diagnosis perspective, active learning is equivalent to choosing patients to do a biopsy such that
the tumor is correctly diagnosed (benign/malignant), whereas active sensing is targeting at collect-
ing (the not-yet-been-collected) medical imaging features (of, e.g., CT, Ultrasound and MRI) from
some patients such that all the patients can be better diagnosed. This is important, since a patient
does not undergo all possible tests at once (due to various side effects such as radiation and con-
trast), but these tests are selected based on the evidence collected up to a particular point. This is
normally referred to as differential diagnosis. Another example is in land mine detection in a sensor
network. We may have different types of sensors (as different views) deployed at one location, but
some sensors may not be available for all locations due to high cost. So active sensing is to decide
which location and which type of sensor we should additionally consider to achieve better detection
accuracy. Formulated within the Bayesian co-training framework, two approaches will be discussed
for efficiently choosing the (sample, view) pair, based on the mutual information (involving various
random variables) and on the predictive uncertainty, respectively.

This active sensing problem is similar to active feature acquisition—see, for example, Melville
et al. (2004) and Bilgic and Getoor (2007)—but there is a clear difference. Previous feature acqui-
sition only considers one sample at a time, that is, when one sample is in consideration, the other
samples will not be affected. But in active sensing, one actively acquired (sample, view) pair will
improve the classification performance of all the unlabeled samples via a co-training setting. A
related yet different problem was considered in Krause et al. (2008) to identify the optimal spatial
locations for placing a single type of sensor to model spatially varying phenomena; however, this
work addressed the use of a single type of sensor, and do not consider the scenario of multiple views.

The rest of the paper is organized as follows. We introduce the Bayesian co-training model in
Section 2, covering both the undirected graphical model and various marginalizations. Co-training
kernel will be discussed in detail to highlight the insight of the approach. The model is extended to
handle missing views in Section 4, and this provides the basics for the active sensing solution. The
active sensing problem is discussed in Section 5, in which we provide two methods for deciding
which incomplete samples should be further characterized, and which sensors should be deployed
on them. Experimental results are provided in Section 6, including both some toy problems and
real world problems on web page classification and differential diagnosis. We conclude with a brief
discussion and future work in Section 7.

2. Bayesian Co-Training

We start from an undirected graphical model for single-view learning with Gaussian processes,
and then present Bayesian co-training which is a new undirected graphical model for multi-view
learning.

2.1 Single-View Learning with Gaussian Processes

A Gaussian process (GP) defines a nonparametric prior over functions in Bayesian statistics (Ras-
mussen and Williams, 2006). A random, real-valued function f : Rd → R follows a GP, denoted
by f ∼ GP (h,κ), if for any finite number of data points x1, . . . ,xn ∈ Rd , f = { f (xi)}ni=1 follows
a multivariate Gaussian distribution N (h,K) with mean vector h = {h(xi)}ni=1 and covariance ma-
trix defined as K = {κ(xi,x j)}ni, j=1. The functions h and κ are called the mean function and the
covariance function, respectively. Conventionally, the mean function is fixed as h ≡ 0, and the co-
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Figure 1: Factor graph for (a) one-view and (b) two-view models.

variance function κ is assumed to take a parametric (and usually stationary) form (e.g., the squared
exponential function κ(xi,x j) = exp(− 1

2ρ2 ‖xi−x j‖2) with ρ> 0 a width parameter).
In a single-view, supervised learning scenario, an output or target yi is given for each observation

xi (e.g., for regression yi ∈ R and for classification yi ∈ {−1,+1}). In the GP model we assume
there is a latent function f underlying the output,

p(yi|xi) =
∫
p(yi| f ,xi) p( f )d f =

∫
p(yi| f (xi)) p( f )d f ,

with the GP prior p( f ) = GP (h,κ). Given the latent function f , for regression p(yi| f (xi)) takes a
Gaussian noise model N (yi| f (xi),σ2), with σ> 0 a parameter for the noise level; for classification
p(yi| f (xi)) takes the form of a sigmoid function λ(yi f (xi)). For instance for GP logistic regression,
we have λ(z) = (1+ exp(−z))−1. See Rasmussen and Williams (2006) for more details on this.

The dependency structure of the single-view GP model can be shown as an undirected graph
as in Figure 1(a). The maximal cliques of the graphical model are the fully connected nodes
{ f (x1), . . . , f (xn)} and the pairs {yi, f (xi)}, i = 1, . . . ,n. Therefore, the joint probability of ran-
dom variables f= { f (xi)} and y= {yi} is defined as

p(f,y) =
1
Z
ψ(f)

n

∏
i=1

ψ(yi, f (xi)),

with potential functions ψ(f) = exp(− 1
2 f

	K−1f), and1

ψ(yi, f (xi)) =

{
exp(− 1

2σ2 ‖yi− f (xi)‖2) for regression,

λ(yi f (xi)) for classification.
(1)

The normalization factor Z hereafter is defined such that the joint probability sums to 1.

1. The definition of ψ in this paper has been overloaded to simplify notation, but its meaning should be clear from the
function arguments.
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Figure 2: Factor graph in the functional space for 2-view and multi-view learning.

2.2 Undirected Graphical Model for Multi-View Learning

In multi-view learning, suppose we havem different views of a same set of n data samples. Let x( j)i ∈
Rd j be the features for the ith sample obtained using the jth view, where d j is the dimensionality of
the input space for view j. Note that subscripts index the data sample, and superscripts (with round
brackets) index the view. Then the vector xi � (x(1)i , . . . ,x(m)i ) is the complete representation of the

ith data sample, and x( j) � (x( j)1 , . . . ,x( j)n ) represents all sample observations for the jth view. As in
the single-view learning, let y= [y1, . . . ,yn]	 be the output where yi is the single output assigned to
the ith data point.

One can certainly concatenate the multiple views of the data into a single view, and apply a
single-view GP model. But the basic idea of multi-view learning is to introduce one function per
view, which only uses the features from that specific view to make predictions. Multi-view learning
then jointly optimizes these functions such that they come to a consensus. From a GP perspective,
let f j denote the latent function for the jth view (i.e., using features only from view j), and let
f j ∼ GP (0,κ j) be its GP prior in view j with covariance function κ j. Since one data sample i has
only one single label yi even though it has multiple features from the multiple views (i.e., latent
function value f j(x

( j)
i ) for view j), the label yi should depend on all of these latent function values

for data sample i.
The challenge here is to make this dependency explicit in a graphical model. We tackle this

problem by introducing a new latent function, the consensus function fc, to ensure conditional
independence between the output y and the m latent functions { f j} for the m views. See Figure 1(b)
for the undirected graphical model for multi-view learning. At the functional level, the output y
depends only on fc, and latent functions { f j} depend on each other only via the consensus function
fc (see Figure 2 for the factor graphs for 2-view and multi-view cases). That is, the joint probability
is defined as:

p(y, fc, f1, . . . , fm) =
1
Z
ψ(y, fc)

m

∏
j=1

ψ( f j, fc), (2)

with some potential functions ψ. In the ground network where we have n data samples, let fc =
{ fc(xi)}ni=1 and f j = { f j(x( j)i )}ni=1 be the functional values for the consensus view and the jth view,
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respectively. The graphical model leads to the following factorization:

p(y, fc, f1, . . . , fm) =
1
Z

n

∏
i=1

ψ(yi, fc(xi))
m

∏
j=1

ψ(f j)ψ(f j, fc). (3)

Here the within-view potential ψ(f j) specifies the dependency structure within each view j, and
the consensus potential ψ(f j, fc) describes how each latent function f j is related to the consensus
function fc. With a GP prior for each of the m views, we can define the following potentials:

ψ(f j) = exp

(
− 1
2
f	j K

−1
j f j

)
, ψ(f j, fc) = exp

(
− ‖f j− fc‖2

2σ2j

)
, (4)

where K j is the covariance matrix of view j, that is, K j(xk,x�) = κ j(x
( j)
k ,x( j)� ), and σ j > 0 is a

scalar which quantifies how apart the latent function f j is from the consensus function fc. It is seen
that the within-view potentials only rely on the intrinsic structure of each view, that is, through the
covariance matrix in a GP setting. Finally, the output potential ψ(yi, fc(xi)) is defined the same as
that in (1) for regression or for classification.

The most important potential function in Bayesian co-training is the consensus potential, which
simply defines an isotropic multivariate Gaussian for the difference of f j and fc, that is, f j − fc ∼
N (0,σ2jI). This can also be interpreted as assuming a conditional isotropic Gaussian for f j with
the consensus fc being the mean. Alternatively if fc is of interest, the joint consensus potentials
effectively define a conditional Gaussian prior for fc, fc|f1, . . . , fm, as N (μc,σ

2
cI) where

μc = σ2c∑
j

f j
σ2j

, σ2c =

(
∑
j

1

σ2j

)−1
. (5)

One can easily verify that this is a product of Gaussian distributions, with each Gaussian being
N (fc|f j,σ2jI).2 This indicates that, given the latent functions {f j}mj=1, the posterior mean of the
consensus function fc is a weighted average of these latent functions, and the weight is given by
the inverse variance (i.e., the precision) of each consensus potential. The higher the variance, the
smaller the contribution to the consensus function. In the following we call σ2j the view variance
for view j. In this paper these view variances are taken as parameters of the Bayesian co-training
model, but one can also assign a prior (e.g., a Gamma prior) to them and treat them instead as
hidden variables. We will discuss the consensus potential and the view variances in more details in
Section 3.

In (3) we assume the output y is available for all the n data samples. More generally we consider
semi-supervised multi-view learning, in which only a subset of data samples have outputs available.
This is actually the setting for which co-training and multi-view learning were originally motivated
(Blum and Mitchell, 1998). Formally, let nl be the number of data samples which have outputs
available, and let nu be the number of data samples which do not. We still keep n = nl + nu to be
the total number of data samples. Under this setting, we only have outputs available for nl samples,
that is, yl = [y1, . . . ,ynl ]

	.
In the functional space, the undirected graphical model for semi-supervised multi-view learning

is the same as in Figure 2. The joint probability is also the same as in (2). In the ground network,

2. Note that this conditional Gaussian for fc has a normalization factor which depends on f1, . . . , fm.
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since the output vector yl is only of length nl , the joint probability is now:

p(yl, fc, f1, . . . , fm) =
1
Z

nl

∏
i=1

ψ(yi, fc(xi))
m

∏
j=1

ψ(f j)ψ(f j, fc). (6)

Note that the product of output potentials contains only that of the nl labeled data samples, and
that fc = { fc(xi)}ni=1 and f j = { f j(x( j)i )}ni=1 are still of length n. Unlabeled data samples contribute
to the joint probability via the within-view potentials ψ(f j) and consensus potentials ψ(f j, fc). All
the potentials are defined similarly as in (4). In the following we will mainly discuss this more
interesting setting.

3. Inference and Learning in Bayesian Co-Training

In this section we discuss inference and learning in the proposed model, assuming first that there
is no missing data in any of the views (the setting with missing data will be discussed in Sec-
tion 4). Instead of working with the undirected graphical model directly, we show different types
of marginalizations under this model. The standard inference task is that of inferring y from the
observed data, that is, obtaining p(y); however, in order to gain insight into the proposed model and
co-training, we explore different marginalizations. All marginalizations lead to standard Gaussian
process inference with different latent function at consideration, but interestingly, these different
marginalizations show different insights of the proposed undirected graphical model. One advan-
tage of the marginalizations is that it allows us to see that many existing multi-view learning models
are actually special cases of the proposed framework. In addition, this Bayesian interpretation helps
us understand both the benefits and the limitations of co-training. For clarity we put the derivations
into Appendix A.

3.1 Marginal 1: Co-Regularized Multi-View Learning

Our first marginalization focuses on the joint probability distribution of them latent functions, when
the consensus function fc is integrated out. This would lead to a GP model in which the latent
functions are the view specific functions f1, . . . , fm. Taking the integral of (3) over fc (and ignoring
the output potential for the moment), we obtain the joint marginal distribution as follows after some
mathematics (for derivations see Appendix A.1):

p(f1, . . . , fm) =
1
Z
exp

{
−1
2

m

∑
j=1

f	j K
−1
j f j−

1
2 ∑j<k

[
‖f j− fk‖2
σ2jσ

2
k

/
∑
�

1

σ2�

]}
. (7)

It can be seen that the negation of the logarithm of this marginal recovers the regularization terms
in the co-regularized multi-view learning (see, e.g., Sindhwani et al., 2005; Brefeld et al., 2006). In
particular, we have

− log p(f1, . . . , fm) = 1
2

m

∑
j=1

f	j K
−1
j f j+

1
2 ∑j<k

[
‖f j− fk‖2
σ2jσ

2
k

/
∑
�

1

σ2�

]
+ logZ

=
1
2

m

∑
j=1

Ω j(f j)+
1
2

1

∑�
1
σ2�

∑
j<k

L(f j, fk)+ logZ,
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where Ω j(f j) � f	j K
−1
j f j regularizes the functional space of each individual view j, and the loss

function L(f j, fk)� ‖f j−fk‖2
/
σ2jσ

2
k measures the disagreement of every pair of the function outputs,

inversely weighted by the product of the corresponding variances. The higher the variance σ2j of
view j, the less the contribution view j brings to the overall loss. We refer to this as variance-
sensitive co-regularized multi-view learning. Note that unlike the formulation in Brefeld et al.
(2006) where the disagreements are only with respect to the unlabeled data, here we regularize the
disagreements of all data samples. From the GP perspective, (7) actually defines a joint multi-view
prior for the m latent functions, (f1, . . . , fm) ∼ N (0,Λ−1), where Λ is a mn×mn precision matrix
with block-wise definition:

Λ( j, j) = K−1
j +

1

∑�
1
σ2�

∑
k 
= j

1

σ2jσ
2
k

I, Λ( j, j′) =− 1

∑�
1
σ2�

1

σ2jσ
2
j′
I, j′ 
= j. (8)

It is seen that the block-wise precision matrix for view j has contributions from all the other views.
When we take into account the observed output variable y, we can also easily derive the joint

marginal of y with all the latent functions f1, . . . , fm. For instance for regression, the marginal distri-
bution turns out to be (recall that σ2 is the variance parameter in the output potential for regression):

p(y, f1, . . . , fm) =
1
Z
exp

{
− 1
2ρσ2∑j

∑n
i=1(yi− f j(xi))2

σ2j

− 1
2∑j

f	j K
−1
j f j−

1
2ρ ∑j<k

‖f j− fk‖2
σ2jσ

2
k

}
. (9)

Here ρ� 1
σ2 +∑ j

1
σ2j
is the sum of all the inverse variances, including the regression variance. Max-

imizing this marginal distribution is equivalent to solving a minimization problem in co-regularized
multi-view learning with least square loss. It is seen that the least square loss with respect to the
jth latent function f j is inversely weighted by the variance σ2j , which indicates again that a higher
variance leads to less contribution to the total loss.

3.2 Marginal 2: The Co-Training Kernel

The joint multi-view kernel defined in (8) is interesting, but it has a large dimension and is difficult
to work with. A more interesting kernel can be obtained if we instead integrate out all the m latent
functions f1, . . . , fm in (3). This leads to a standard (transductive) Gaussian process model, with fc
being the latent function realizations, and GP prior being p(fc) =N (0,Kc) where

Kc =

[
∑
j

(K j+σ2jI)
−1
]−1

. (10)

See Appendix A.2 for the derivation. This indicates that by marginalization, we can transfer the
multi-view problem into a single-view problem with respect to the consensus function fc, without
loss of information. The new kernel matrix Kc is derived via all the m kernels from the m views,
and note that each entry (i, j) in Kc depends not only on the features of the corresponding data
items xi and x j, but also on all the other labeled and unlabeled data points (as seen in (10) through
matrix inverse). This is the result of the multi-view dependency in the graphical model in Bayesian
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co-training, and it also means that this kernel lacks the marginalization property and can only be
used in a transductive setting.

This kernel definition is crucial to Bayesian co-training, and in the following we call Kc the
co-training kernel for multi-view learning. This marginalization reveals the previously unclear
insight of how the kernels from different views are combined together in a multi-view learning
framework. This allows us to transform a multi-view learning problem into a single-view prob-
lem, and simply use the co-training kernel Kc to solve GP classification or regression. Since this
marginalization is equivalent to (7),3 we end up with solutions that are largely similar to any other
co-regularization algorithm, but however a key difference is the Bayesian treatment contrasting pre-
vious ML-optimization methods.

Formulation (10) can also be viewed as a kernel design for transductive multi-view learning,
namely, the inverse of the co-training kernel is the sum of the inverse of all individual kernels,
corrected by the view specific variance term. Higher variance leads to less contribution to the
overall co-training kernel. In a transductive setting where the data are partially labeled, the co-
training kernel between labeled data is also dependent on the unlabeled data. Hence the proposed
co-training kernel, by the design in (10), can be used for semi-supervised GP learning (Zhu et al.,
2003).

Additional benefits of the co-training kernel include the following:

• With fixed hyperparameters (e.g., σ2j), the co-training kernel avoids repeated alternating op-
timizations with respect to the different views f j, and directly works with a single consensus
view fc. This reduces both time complexity and space complexity (since we only maintain Kc
in memory) of multi-view learning.

• While other alternating optimization algorithms might converge to local minima (because
they optimize, not integrate), the single consensus view guarantees the global optimal infer-
ence solution for multi-view learning since it marginalizes other latent functions and leads to
a standard GP inference model.

• Even if all the individual kernels are stationary, Kc is in general non-stationary. This is
because the inverse-covariances are added and then inverted again.

3.3 Marginal 3: Individual View Learning with Side-Information

In Bayesian co-training model we can also focus on one particular view j by marginalizing all the
other views and the consensus view. This is particularly interesting if there is one view that is of
the main interest (e.g., it provides the most useful features, or it has the least missing features), and
we want to understand how the other views influence this view in the inference process. This can
be done by integrating out the other latent functions fk, k 
= j, in (7), and it will lead to another GP
formulation with f j being the latent function. Since (7) represents a jointly Gaussian distribution,
we obtain f j ∼N (0,C j), where

C−1
j = K−1

j +

[
σ2jI+∑

k 
= j

(
Kk+σ2kI

)−1]−1
. (11)

3. The equivalence is in the sense that both marginalizations are based on the same underlying graphical model, and
any optimal solution derived from these marginalizations should be a solution which optimizes the likelihood of the
graphical model.
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See Appendix A.3 for the derivation. This can be intuitively understood as that the precision matrix
of the individual view, C−1

j , is the sum of its original precision matrix and the contributions from
other views, weighted by the inverse of the variance. Therefore if σ2k is big for some view k, its
contribution to the other views will be compromised. Hence, if one particular view is of interest, we
can encode the additional information from the other views into the kernel for the interested view.

Another benefit of this marginalization is the possibility of introducing an inductive inference
scheme (rather than transductive as in Section 3.2)—given a new test data x∗, we try to make
a prediction of y∗ if the jth view x( j)∗ is available. Inspired by Yu et al. (2005), let us define
α j = [α j1, . . . ,α jn]

	 ∈Rn such that f j(x) =∑n
i=1α jiκ j(x( j),x

( j)
i ) (this is also motivated by the Rep-

resenter theorem). On the training data, this yields f j = K jα j. From (11) we can see that this
re-parameterization leads to a co-training prior for α j as α j ∼ N (0,K−1

j C jK
−1
j ). At testing time

when we have the posterior of α j, y∗ can be approximated by f j(x∗) = ∑n
i=1α jiκ j(x

( j)
∗ ,x( j)i ). This

approach is particularly interesting in the case that one of the views is known to be predictive (i.e.,
the other views are “side” information to help this primary view), or test data often come with fea-
tures only in a specific view (since the features from the other views would be disregarded at testing
time).

3.4 Optimization of Hyperparameters

One of the advantages of Bayesian co-training is that each view j has a view-specific variance term
σ2j to quantify how far the latent function f j is apart from the consensus view fc. In particular, a
larger value of σ2j implies less confidence on the observation of evidence provided by the jth view.
In the perspective of kernel design, this leads to a lesser weight on the kernel K j. Thus when some
views of the data are better at predicting the output than the others, they are weighted more while
forming consensus opinions. These variance terms are hyperparameters of the Bayesian co-training
model.

To optimize these variance terms together with other hyperparameters involved in each covari-
ance function (e.g., parameter ρ > 0 in the Gaussian kernel κ(xi,x j) = exp(−ρ‖xi − x j‖2)), we
can use the type II maximum likelihood method (sometimes called evidence approximation), which
maximizes the marginal likelihood with respect to each of these hyperparameters. For simplicity we
put the derivation and detailed equations in Appendix B. For more details on the type II maximum
likelihood in the GP setting, please refer to Rasmussen and Williams (2006).

3.5 Discussions

The proposed undirected graphical model provides better understanding of multi-view learning al-
gorithms. In each of the marginalizations, we end up with a standard GP model for some latent
functions (i.e., {f1, . . . , fm} in Marginal 1, fc in Marginal 2, and f j in Marginal 3). This simpli-
fies learning and inference under the proposed model. Under a transductive setting, the co-training
kernel in (10) indicates that Bayesian co-training is equivalent to single-view learning with a spe-
cially designed (non-stationary) kernel. This is also the preferable way of working with multi-view
learning since it avoids alternating optimizations at the inference step.

The proposed graphical model also motivates new methods for unsupervised multi-view learn-
ing such as spectral clustering. While the similarity matrix of each view j is encoded in K j, the
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co-training kernel Kc encodes the similarity of two data samples with multiple views, and thus can
be used directly in spectral clustering.

We would also like to point out the limitations of the proposed consensus-based learning, which
are shared by co-training as proposed by Blum and Mitchell (1998) and many other multi-view
learning algorithms. As mentioned before, the consensus-based potentials in (4) can be interpreted
as defining a Gaussian prior (5) to fc, where the mean is a weighted average of the m individual
views. This averaging indicates that the value of fc is never higher (or lower) than that of any single
view. While the consensus-based potentials are intuitive and useful for many applications, they are
limited for some real world problems where the evidence from different views should be additive (or
enhanced) rather than averaging. For instance, when a radiologist is making a diagnostic decision
about a lung cancer patient, he or she might look at both the CT image and the MRI image. If
either of the two images gives a strong evidence of cancer by that image alone, he or she can make
a decision based on a single view (and thus, ignoring the other image completely); if either of the
images only gives a moderate evidence (i.e., from a single-view learner which ignores the other
image), it would be beneficial to look at both images (i.e., to consider both views), and the final
evidence of cancer after observing both images should be higher (or lower, depending on the specific
scenario) than either of them if observed individually. It’s clear that in this scenario the multiple
views are reinforcing or weakening each other, not averaging. While all the previously proposed co-
training and co-regularization algorithms have thus far been based on enforcing consensus between
the views explicitly or implicitly, we make this clear from the graphical model perspective, and allow
effective tailoring of the view importance from the training data. As part of future work, it would
be interesting to explore the possibility of going beyond consensus-based multi-view learning.

4. Bayesian Co-Training with Missing Views

In the previous two sections we assume that the input data are complete, that is, all the views
are observed for every data sample. However for many real-world problems, the features could
be incomplete or missing for various reasons. For instance, in cancer diagnosis we cannot ask
every patient to take all the available imaging tests (e.g., CT, PET, Ultrasound, MRI) for the final
diagnosis, so some views (i.e., imaging tests) are missing for certain patients. In this section we
extend Bayesian co-training to the case where there are missing (sample, view) pairs in the input
data (which can happen both in labeled data and in unlabeled data). The three marginalizations will
also be discussed. To the best of our knowledge, this is the first elegant framework to account for
the missing views in the multi-view learning setting.

Let each view j be observed for a subset of n j ≤ n samples, and let I j denote the indices of
these samples in the whole sample set (including labeled and unlabeled data). Note that under this
notation, the single-view kernel matrix K j for view j is of size n j× n j, which are defined over the
subset of samples denoted by indicator I j. From the co-training kernel perspective, the difficulty
here is to combine the kernels of different sizes together from different views, if at all possible.

We start from the undirected graphical model and make necessary changes to the potentials to
account for the missing views. The idea is to treat the missing view information as hidden in the
graphical model. The undirected graphical model is shown in Figure 3 for Bayesian co-training
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with missing views, which is very similar to Figure 1(b). The joint probability can be defined as:

p(yl, fc, f1, . . . , fm) =
1
Z

nl

∏
i=1

ψ(yi, fc(xi))
m

∏
j=1

ψ(f j)ψ(f j, fc), (12)

where fc = { fc(xi)}ni=1 ∈ Rn, and f j = { f j(x( j)i )}i∈I j ∈ Rn j . Note that f j is only realized on a subset
of samples and is of length n j (instead of n). The within-view potential ψ(f j) is defined via the
GP prior, ψ(f j) = exp(− 1

2 f
	
j K

−1
j f j), where K j ∈ Rn j×n j is the covariance matrix for view j; the

consensus potential ψ(f j, fc) is defined as follows:

ψ(f j, fc) = exp

(
−‖f j− fc(I j)‖2

2σ2j

)
, (13)

in which fc(I j) takes the length-n j subset of vector fc with indices given in I j. In other words, the
consensus potentials is defined such that

ψ( f j(xi), fc(xi)) = exp

(
− 1

2σ2j

(
f j(xi)− fc(xi)

)2)
, i ∈ I j.

The idea here is to define the consensus potential for view j using only the data samples observed in
view j. The other data samples with missing view information for view j are treated as hidden (or
integrated out) in this potential definition. As before, σ j > 0 quantifies how far the latent function f j
is apart from fc. Note that the smaller n j is, the less the contribution of view j to the overall graphical
model.4 Next we look at the three marginalizations to gain more insight about this graphical model.

4.1 Co-Regularization with Missing Views

It is straightforward to derive all the marginalizations of Bayesian co-training with missing views.
For the co-regularization marginal, a simple calculation leads to the following joint distribution for
the m latent functions:

p(f1, . . . , fm) =
1
Z
exp

{
− 1
2

m

∑
j=1

f	j K
−1
j f j−

1
2 ∑j<k

∑
x∈I j∧Ik

[
[ f j(x)− fk(x)]2

σ2jσ
2
k

/
∑

�:x∈I�

1

σ2�

]}
.

As in the Bayesian co-training with fully observed views, this provides an equivalent form to co-
regularized multi-view learning. The first part regularizes the functional space of each view, and the
second part constrains that every pair of views need to agree on the outputs for co-observed samples
(inversely weighted by view variances and the sum of inverse variances of the views in which the
sample is observed). This is very intuitive and naturally extends the joint distribution in (7). If
view j and view k do not share any data sample (i.e., no data sample has features from both view
j and view k), the view pair ( j,k) will not contribute to the joint distribution.5 A joint probability
distribution involving output yl can also be derived which takes a similar form as in (9).

4. Also note that after hyperparameter learning, σ j might not fully represent how strongly each view j contributes to
the consensus, since the contribution also depends on the number of available data n j in the view j.

5. Note that view j and view k will still contribute to the overall distribution through other views that they share data
samples with.
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Figure 3: Factor graphs for Bayesian co-training with missing views, for (a) one-view and (b) two-
view problems. Observed variables are marked as dark/bold, and unobserved ones are
marked as red/non-bold, including functions f1, f2, fc (blue/non-bold). Unobserved vari-
ables in a dotted box (such as x(1)j ) are potential observations for active sensing (see
Section 5). All labels y are denoted as observed in the graph, but this is not required.

4.2 Co-Training Kernel with Missing Views

We can also derive a co-training kernel Kc by integrating out all the latent functions {f j} in (12).
This leads to a Gaussian prior p(fc) =N (0,Kc), with

Kc = Λ−1
c , Λc =

m

∑
j=1

A j,

where each A j is a n×n matrix defined as

A j(I j,I j) = (K j+σ2jI)
−1, and 0 otherwise. (14)

That is, A j is an expansion of the one-view information matrix (K j+σ2jI)
−1 to the full size n× n,

with the other (unindexed) entries filled with 0. It is easily seen that such a kernel Kc is indeed
positive definite, as long as each one-view kernel K j is positive definite and at least there are two
views sharing one data sample. We also call Λc the co-training precision matrix. Very importantly,
we note that one additional observation of a (sample, view) pair will affect all the elements of the
co-training kernel. In other words, the kernel value for a pair of samples is potentially changed even
when a third (unrelated) object is further characterized by an additional sensor.6 This property mo-
tivates us to do active feature acquisition (or active sensing) in the Bayesian co-training framework.
Section 5 will discuss this in detail.

6. Note that the marginalizations in Section 4.2 and Section 4.1 are still equivalent (since they come from the same un-
derlying graphical model), despite the fact that additional (sample, view) pair influences the kernels (with dimension
nm×nm in Section 4.1 and n×n in Section 4.2) differently in these two marginalizations.
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4.3 Individual View Learning with Missing Views

If one particular view j is of interest, we can also integrate out the consensus view and all the other
views, leading to a GP prior for view j, f j ∼N (0,C j), with the precision matrix being

C−1
j = K−1

j +
[
σ2jI+Λc\ j(I j,I j)−1

]−1
.

Here we extract the (I j,I j) sub-matrix from the leave-one-view-out co-training precision matrix
Λc\ j, which is defined as Λc\ j =∑k 
= jAk. Each Ak is defined as in (14). This marginalization allows
us to, for example, measure how much benefit every other view brings to the interested view. An
important fact to realize here is that with an observed (sample, view) pair from another view k, even
if this sample is not observed in the primarily interested view j, the kernel of the view j will still be
affected so long as I j ∧ Ik 
= /0. One can also introduce the inductive GP inference as in Section 3.3
under this setting.

4.4 Discussion

Bayesian co-training with missing views provides an elegant framework to combine information
from multiple views or multiple data sources together, even when different subsets of data samples
are measured in different views. For learning and inference, we still prefer using the co-training
kernel with the second marginalization due to its simplicity.

We note that the definition of the consensus potentials in (13) implies that the influence of the
different pairs of views has been factored into a product. As a consequence, the view-pairs are
combined in a linear manner. A way to go beyond this is by using higher-order potentials.

A higher order potential definition ψ(f1, ..., fm, fc), which combines f1, ..., fm simultaneously,
would produce a richer combination of views, but often at the expense of increased
inference/computational complexity. It is not clear how to achieve this effect with standard co-
training.

Since one observation of a (sample, view) pair will affect the overall co-training kernel, we
can derive a framework for active sensing, which aims to actively select the best pair for feature
acquisition or sensing. This active sensing problem is different from active learning where the goal
is to select the best pair for labeling. We discuss this idea in detail in the next section.

5. Active Sensing in Bayesian Co-Training

In active sensing, we are interested in selecting the best unobserved (sample, view) pair for sensing,
or for view acquisition, which will improve the overall classification performance. In this section we
will focus on logistic regression loss for binary classification. For active sensing we mainly discuss
an approach based on the mutual information framework, which measures the expected information
gain after observing an additional (sample, view) pair. Another approach based on the predictive
uncertainty is also briefly discussed in Section 5.5.

In the following let DO and DU denote the observed and unobserved (sample, view) pairs,
respectively. Recall that under the second marginalization in which only the consensus function fc
is of primary interest, the Bayesian co-training model for binary classification reduces to

p(yl, fc) =
1
Z
ψ(fc)

nl

∏
i=1

ψ(yi, fc(xi)),
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where yl contains the binary labels for the nl labeled samples, ψ(fc) is defined via the co-training
kernel as ψ(fc) = exp

{− 1
2 f

	
c K

−1
c fc

}
, and ψ(yi, fc(xi)) is the output potential λ(yi fc(xi)) with λ(·)

the logistic function. The log marginal likelihood of the output yl under this model, conditioned on

the input data X� {x( j)i } and model parameters Θ, is:

L � log p(yl |X,Θ) = log
∫
p(yl |fc,Θ)p(fc|X,Θ) dfc− logZ

= log
∫ nl

∏
i=1

λ(yi fc(xi)) · exp
{
−1
2
f	c K

−1
c fc

}
dfc− logZ.

5.1 Laplace Approximation

To calculate the mutual information we need to calculate the differential entropy of the consensus
view function fc. With co-training kernel and the logistic regression loss, Laplace approximation
can be applied to approximate the a posteriori distribution of fc as a Gaussian distribution. The a
posteriori distribution of fc, p(fc|DO,yl,Θ) ∝ p(yl|fc,Θ)p(fc|DO,Θ), is approximately

N (f̂c,(Δpost)
−1), (15)

where f̂c is the maximum a posteriori (MAP) estimate of fc, and the a posteriori precision matrix is

Δpost = K
−1
c +Φ, (16)

with Φ the Hessian of the negative log-likelihood. It turns out that Φ is a diagonal matrix, with
Φ(i, i) = ηi(1−ηi) where ηi = λ(f̂c(xi)). The differential entropy of fc under this Laplace approxi-
mation is

H(fc) =−n
2
log(2πe)− 1

2
logdet(Δpost),

where det(·) denotes the matrix determinant.

5.2 Mutual Information for Active Sensing

Remind that x( j)i denote the features in the jth view for the ith sample. In active sensing, the mutual
information (MI) between the consensus view function fc and the unobserved (sample, view) pair
x( j)i ∈DU is the expected decrease in entropy of fc when x

( j)
i is observed,

I(fc,x
( j)
i ) = E[H(fc)]−E[H(fc|x( j)i )] =−1

2
logdet(Δpost)+

1
2
E [logdet(Δx(i, j)post )],

where the expectation is with respect to p(x( j)i |DO,yl), the distribution of the unobserved (sample,

view) pair given all the observed pairs and available outputs. Δx(i, j)post is the a posteriori precision

matrix, derived from (16), after one pair x( j)i is observed.
The maximum MI criterion has been used before to identify the “best” unlabeled sample in

active learning (MacKay, 1992). Here we adopt this criterion and choose the unobserved pair which
maximizes MI:

(i∗, j∗) = arg max
x( j)i ∈DU

I(fc,x
( j)
i ) = arg max

x( j)i ∈DU

E [logdet(Δx(i, j)post )]. (17)
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5.3 Density Modeling

In order to calculate the expectation in (17), we need a conditional density model for the unobserved
pairs, that is, p(x( j)i |DO,yl). This of course depends on the type of the features in each view, and
for our applications we use a special Gaussian mixture model (GMM). This model has the nice
property that all the marginals are still GMMs, and yet is not too flexible like the full GMM. One
can certainly define other density models based on the applications.

For a m-view input data x= (x(1), . . . ,x(m)), let the joint input density be

p(x(1), . . . ,x(m)) = p(y=+1)p(x(1), . . . ,x(m)|y=+1)+ p(y=−1)p(x(1), . . . ,x(m)|y=−1),

and each conditional density takes a component-wise factorized GMM form, that is,

p(x(1), . . . ,x(m)|y=+1) =∑
c
π+c ∏

j
N (x( j)|μ+( j)

c ,Σ+( j)
c ),

p(x(1), . . . ,x(m)|y=−1) =∑
c
π−c ∏

j
N (x( j)|μ−( j)

c ,Σ−( j)
c ).

Here, for the positive class, μ+( j)
c and Σ+( j)

c are the mean and covariance matrix for view j in
component c, and π+c > 0, ∑cπ

+
c = 1 are the mixture weights. For the negative class we use sim-

ilar notations. Note that although the conditional density for each mixture component is decou-
pled for different views, the joint conditional density is not.7 Under this model, the joint density
p(x(1), . . . ,x(m)) is also a GMM, and any marginal (conditioned on y or not) density is still a GMM,

for example, p(x( j)|y=+1) = ∑cπ
+
c N (x( j)|μ+( j)

c ,Σ+( j)
c ).

Now it is easy to calculate p(x( j)i |DO,yl). Let x
(O)
i be the set of observed views for xi, we need

to distinguish two different settings. When the label yi is available, for example, yi =+1, we have

p(x( j)i |DO,yl) = p(x( j)i |x(O)i ,yi =+1) =∑
c
π+( j)
c (x(O)i ) ·N (x( j)i |μ+( j)

c ,Σ+( j)
c ), (18)

which is again a GMM model, with the mixing weights being

π+( j)
c (x(O)i ) = π+c

∏k∈ON (x(k)i |μ+(k)
c ,Σ+(k)

c )

p(x(O)i |yi =+1)
.

When the label yi is not available, we need to integrate out the labeling uncertainty and compute

p(x( j)i |DO,yl) = p(x( j)i |x(O)i )

= p(yi =+1)p(x( j)i |x(O)i ,yi =+1)+ p(yi =−1)p(x( j)i |x(O)i ,yi =−1),

which is a GMM model as well, as can be seen from (18).

7. A straightforward EM algorithm can be derived to estimate all these parameters. When labels are only available for
a very limited number of samples, one might assume a full generative GMM model neglecting the dependency on
labels (instead of a conditional GMM model).
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5.4 Expectation Calculation

We are now ready to compute the expectation in (17). The a posteriori precision matrix after one
(sample, view) pair x( j)i is observed, Δx(i, j)post , can be calculated as

Δx(i, j)post = (Kx(i, j)c )−1+Φ= Ax(i, j)j +∑
k 
= j

Ak+Φ, (19)

where Kx(i, j)c and Ax(i, j)j are the new Kc and A j matrices after the new pair is observed. Based on

(14), to calculate Ax(i, j)j we need to recalculate the kernel for the jth view, K j, after an additional

pair x( j)i is observed. This is simply done by adding one row and column to the old K j as:

Kx(i, j)j =

[
K j b j
b	j a j

]
,

where a j = κ j(x
( j)
i ,x( j)i ) ∈ R, and b j ∈ Rn j has the �th entry as κ j(x

( j)
� ,x( j)i ). Then from (14), the

non-zero part of Ax(i, j)j is calculated as(
Kx(i, j)j +σ2jI

)−1
=

[
K j+σ2jI b j
b	j a j+σ2j

]−1
=

[
Γ j+λ jΓ jb jb	j Γ j −λ jΓ jb j

−λ jb	j Γ j λ j

]
, (20)

using the block-matrix inverse formula, where Γ j = (K j+σ2jI)
−1 and λ j = 1

a j+σ2j−b	j Γ jb j
.

As seen from (19) and (20), it is difficult to directly calculate the expectation in (17). Since
for any matrix Q, E [logdet(Q)]≤ logdet(E [Q]) due to the concavity of logdet(·), we alternatively
take the upper bound logdet(E [Δx(i, j)post ]) as the selection criteria and also take the risk that the best

pair (i, j) that optimizes logdet(E [Δx(i, j)post ]) doesn’t necessarily optimize E [logdet(Δx(i, j)post )]. From

(19) and (20), this reduces to computing E[λ j],E[λ jb j] and E[λ jb jb	j ], where the expectations are

with respect to p(x( j)i |DO,y), a GMM model (cf. Section 5.3). In general one needs to calculate
these expectations numerically, as different kernel functions lead to different integrals. As another
approximation one might assume each of the GMM component is a point-mass such that the mean
is used for the calculation.

5.5 Discussion

The mutual information based approach directly measures the expected information gain for every
(sample, view) pair. A different (and simpler) approach is based on the predictive uncertainty, in
which the most uncertain sample (after the current classifier is trained) is selected for view acqui-
sition. This approach was taken for a different problem in Melville et al. (2004). This uncertainty
(i.e., predictive variance) is estimated as the diagonal entries of the a posteriori covariance matrix
(Δpost)−1, as seen from (15). However it is not clear what view to acquire for this sample (if more
than one view is missing for the sample). The advantage of this approach is that no density modeling
is necessary for unobserved views.

6. Experiments

For the first part of the experiments we empirically evaluate some single-view and multi-view learn-
ing algorithms on several toy data and two real world data sets. We compare the proposed Bayesian
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co-training models with the original co-training method proposed by Blum and Mitchell (1998),
and several single-view learning algorithms. Since this co-training algorithm—sometimes we call it
the canonical co-training algorithm—was proposed for classification problems, we focus on classi-
fication in this section and compare all the methods with the logistic regression loss. We show both
problems where co-training works and does not work (i.e., is not better compared to the single-view
learning counterpart).

In the second part we evaluate the active sensing algorithms in the Bayesian co-training setting.
We are given a classification task with missing views, and at each iteration we are allowed to select
an unobserved (sample, view) pair for sensing (i.e., feature acquisition). The proposed methods are
compared with random sensing in which a random unobserved (sample, view) pair is selected for
sensing.

6.1 Toy Examples for Bayesian Co-Training

First of all, we show some 2D toy classification problems to visualize the co-training result in
Figure 4. We assume each of these 2D problems is a two-view problem, in which one view only
contains one single feature. Canonical co-training is applied by iteratively training one classifier
based on one view, adding the most confident unlabeled data from one view to the training pool of
the other classifier, and retraining each classifier till convergence (i.e., no confident unlabeled data
can be added further). In Bayesian co-training we use the squared exponential covariance function
as mentioned in Section 2, and the width ρ is set to 1/

√
2 which yields the optimal performance.

Our first example is a two-Gaussian case with mean (2,−2) and (−2,2), where either feature
x(1) or x(2) can be used alone to fully solve the problem (Figure 4(a)). This is an ideal case for
co-training, since: 1) each single view is sufficient to train a classifier, and 2) both views are con-
ditionally independent given the class labels. Therefore we see that both canonical co-training and
Bayesian co-training yield the same perfect result (Figure 4(b),(c)).

For the second toy data (Figure 4(d)) we assume the two Gaussians are aligned to the x(1)-axis
(with mean (2,0) and (−2,0)). In this case the feature x(2) is totally irrelevant to the classification
problem. The canonical co-training fails here (Figure 4(e)) since when we add labels using the x(2)

feature , noisy labels will be introduced and expanded to future training. The Bayesian co-training
model can handle this situation since we can adapt the weight of each view and penalize the feature
x(2) (Figure 4(f)).

The third toy data follows an XOR shape where the data from four Gaussians (with mean (2,2),
(−2,2), (2,−2), (−2,−2)) lead to a binary classification problem that is not linearly separable
(Figure 4(g)). In this case both the two assumptions mentioned above are violated, and neither
canonical nor Bayesian co-training will work (Figure 4(i)).8 On the other hand, a supervised GP
classification model with squared exponential covariance function can easily recover the non-linear
underlying structure (see Figure 4(h)). This indicates that the learning a multi-view classifier for
this problem with the current co-training type algorithms will not succeed. From a kernel design
perspective, the consensus based co-training kernel Kc is not suitable for this type of problem.

In summary, these toy problems indicate that when co-training works, Bayesian co-training
performs better than or at least as well as canonical co-training models. But since Bayesian co-
training is fundamentally a kernel design for a single-view supervised learning, it will not work
when the problem calls for more flexible kernel form (e.g., in Figure 4(g)).

8. We also tried other types of covariance functions but they yield similar results.
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(i) (Bayesian) co-training on T3

Figure 4: Toy problems for co-training. (b)∼(c) show canonical and Bayesian co-training results
on two-Gaussian data (a); (e)∼(f) show the results on two-Gaussian data (d); (h) shows
GP classification result on four-Gaussian XOR data (g); (i) shows (Bayesian) co-training
result on data (g). Square exponential covariance function was used with width 1 for GP
classification and 1/

√
2 for each feature in two-view learning. In the toy data big red-

square/blue-triangle markers denote the +1/− 1 labeled points, and black dots denote
the unlabeled points.
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# TRAIN +2/-10 # TRAIN +4/-20
MODEL AUC F1 AUC F1

TEXT 0.5725±0.0180 0.1359±0.0565 0.5770±0.0209 0.1443±0.0705
INBOUND LINK 0.5451±0.0025 0.3510±0.0011 0.5479±0.0035 0.3521±0.0017
OUTBOUND LINK 0.5550±0.0119 0.3552±0.0053 0.5662±0.0124 0.3600±0.0059
TEXT+LINK 0.5730±0.0177 0.1386±0.0561 0.5782±0.0218 0.1474±0.0721

CO-TRAINED GPLR 0.6459±0.1034 0.4001±0.2186 0.6519±0.1091 0.4042±0.2321
BAYESIAN CO-TRAINING 0.6536±0.0419 0.4210±0.0401 0.6880±0.0300 0.4530±0.0293

Table 1: Results for Citeseer with different numbers of labeled training data (positive/negative).
The first three lines are supervised learning results using only the single-view features.
The fourth line shows the supervised learning results by combining features from all the
three views. The fifth and sixth lines are the co-training results. Bold face indicates the
best performance.

MODEL # TRAIN +2/-2 # TRAIN +4/-4
AUC F1 AUC F1

TEXT 0.5767±0.0430 0.4449±0.1614 0.6150±0.0594 0.5338±0.1267
INBOUND LINK 0.5211±0.0017 0.5761±0.0013 0.5210±0.0019 0.5758±0.0015
TEXT+LINK 0.5766±0.0429 0.4443±0.1610 0.6150±0.0594 0.5336±0.1267

CO-TRAINED GPLR 0.5624±0.1058 0.5437±0.1225 0.5959±0.0927 0.5737±0.1203
BAYESIAN CO-TRAINING 0.5794±0.0491 0.5562±0.1598 0.6140±0.0675 0.5742±0.1298

Table 2: Results forWebKBwith different numbers of labeled training data (positive/negative). The
first two lines are supervised learning results using only the single-view features. The third
line shows the supervised learning results by combining features from both views. The
fourth and fifth lines are the co-training results. Bold face indicates the best performance.

6.2 Bayesian Co-Training for Web Page Classification

We use two sets of linked documents for our experiment. The main purpose of these empirical
studies is to show the benefit of the proposed Bayesian co-training method compared to single-view
learning and the canonical co-training algorithms, and also highlight the limitations of co-training
type algorithms. As will be seen later, we show one case that co-training works, in which case
Bayesian co-training yields the best performance; we also show one case that co-training does not
improve over the single-view counterpart, in which case Bayesian co-training is slightly better than
canonical co-training. As the co-training kernel based approach is equivalent to the adaptive co-
regularized multi-view learning (since they are based on the same underlying graphical model), we
do not include a separate line of results for the co-regularization methods.

The Citeseer data set contains 3,312 documents that belong to six classes. There are three
natural views for each document: the text view consists of title and abstract of the paper; the two
link views are inbound and outbound references. The bag-of-words features are extracted from
each view, which amount to 3,703 for the text view, 1,107 for the inbound view and 903 for the
outbound view. We pick up the largest class which contains 701 documents and test the one-vs-
rest classification performance. The WebKB data set is a collection of 4,501 academic web pages
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manually grouped into six classes (student, faculty, staff, department, course, project). There are
two views containing the text on the page (24,480 features) and the anchor text (901 features) of
all inbound links, respectively. We consider the binary classification problem “student” against
“faculty”, for which there are 1,641 and 1,119 documents, respectively. The preprocessed data sets
are kindly shared by Steffen Bickel at http://www.mpi-inf.mpg.de/∼bickel/mvdata/.

We compare the single-view learning methods based on logistic regression with Gaussian pro-
cesses (using features in the single view such as TEXT, INBOUND LINK, and OUTBOUND LINK),
concatenated-viewmethod based on logistic regression with Gaussian processes (TEXT+LINK), and
co-training methods CO-TRAINED GPLR (which stands for Co-Trained Gaussian Process Logistic
Regression using canonical co-training) and BAYESIAN CO-TRAINING (using co-training kernel
with logistic regression loss function). Linear kernels are used for all the competing methods since
it is very robust from our experience in these experiments. For CO-TRAINED GPLR method, we
repeat the procedure 50 times, and in each iteration we add the most predictable 1 positive sample
and r negative samples into the training set where r depends on the number of negative/positive
ratio of each training data set. The classifier we use is the Gaussian process classifier with logistic
regression loss (or GPLR for short). For BAYESIAN CO-TRAINING, we use the co-training ker-
nel approach with the same GPLR classifier. Performance is evaluated using AUC score and F1
measure. We vary the number of labeled training documents as seen in Table 1 and 2 (with ratio
proportional to the true positive/negative ratio). Single-view learning methods use only the labeled
data, and co-training algorithms are allowed to use all the unlabeled data in the training process.
The experiments are repeated 20 times and the prediction means and standard deviations are shown
in Table 1 and 2.

It can be seen that for the binary classification problem in Citeseer data set, the co-training
methods are better than the single-view methods. In this case BAYESIAN CO-TRAINING is better
than CO-TRAINED GPLR and achieves the best performance. ForWebDB, however, CO-TRAINED
GPLR is not as good as the single-view counterparts, and thus BAYESIAN CO-TRAINING is also
worse than the purely supervised methods though it is slightly better than CO-TRAINED GPLR.
This is maybe because the TEXT and LINK features are not independent given the class labels
(especially when two classes “faculty” and “staff” might share features). CO-TRAINED GPLR has
higher standard deviations than other methods due to the possibility of adding noisy labels. We have
also tried other number of iterations but 50 seems to give an overall best performance.

Note that the single-view learning with TEXT almost achieves the same performance as concatenated-
view method. This might be because the number of text features are much more than the link fea-
tures (e.g., for WebKB there are 24,480 text features and only 901 link features). So these multiple
views are very unbalanced and should be taken into account in co-training with different weights.
Bayesian co-training provides a natural way of doing it.

6.3 Active Sensing on Toy Data

We show some empirical results on active sensing in this and the following subsections. Suppose we
are given a classification task with missing views, and at each iteration we are allowed to select an
unobserved (sample, view) pair for sensing (i.e., feature acquisition). We compare the classification
performance on unlabeled data using the following three sensing approaches:

• Active Sensing MI: The pair is selected based on the mutual information criteria (17).
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Figure 5: Toy data for active sensing (left). Big red-square/blue-triangle markers denote +1/−
1 labeled points, and black dots denote unlabeled points. Data are sampled from two
Gaussians with mean (2,−2), (−2,2) and unit variance. After “hiding” one feature for
some of the data points, the data look like (middle) with removed features replaced with
0. Comparison of active sensing with random sensing is shown on the right. The x-axis
labels each acquired pair in order.

• Active Sensing VAR: A sample is selected first which has the maximal predictive variance
and has missing views, and then one of the missing views is randomly selected for sensing.

• Random Sensing: A random unobserved (sample, view) pair is selected for sensing.

After the pair is acquired in each iteration, learning is done using the Bayesian co-training model
(with missing views), as discussed in Section 4. Note that for all the three approaches, the acquired
(sample, view) pair will affect all the samples in the next iteration (via the co-training kernel). In
active sensing with MI, we use EM algorithm to learn the GMM structure with missing entries, and
the GMM model is re-estimated after each pair is selected and filled in (this is fast thanks to the
incremental updates in the EM algorithm).

We first illustrate active sensing with a toy example. Figure 5 (left) shows a well separated
two-class problem which is similar to the one shown in Figure 4(a). To simulate our active sensing
experiment, we randomly “hide” one of the two features of each sample with 40% probability each,
and with 20% probability observe both features. The final incomplete training data are shown in
Figure 5 (middle) with the incomplete samples shown along the first or second axis. It can be seen
that only 2 fully observed positive and negative samples are available. For active sensing MI we use
the Gaussian kernel with width 0.5, and let the GMM choose the number of clusters automatically
(see, e.g., Corduneanu and Bishop, 2001). Standard transductive setting is applied where all the
unlabeled data are available for co-training kernel calculation. In Figure 5 (right) we compare
active sensing with random sensing, using AUC for the unlabeled data. This indicates that active
sensing is much better than random sensing in improving the classification performance. The Bayes
optimal accuracy (reachable when there is no missing data) is reached by the 16th query by active
sensing whereas random sensing improves much slower with the number of acquired pairs. The two
active sensing algorithms show similar results.
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Features for NSCLC 2-years Survival Prediction

Feature Description View

GENDER 1-Male, 2-Female 1st
WHO WHO performance status 1st

FEV1
Forced expiratory volume

1st
in 1 second

GTV Gross tumor volume 2nd

NPLN
Number of positive

2nd
lymph node stations
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Figure 6: Experiments on NSCLC survival prediction. The features for the 2 views are listed in
the left table, and the performance comparison of active sensing and random sensing is
shown in the right figure. As baselines, training with full features (i.e., no sensing needed)
yields 0.73; training with mean imputation (i.e., using the mean of each feature to fill in
the missing entries) yields 0.62.

6.4 Active Sensing in Survival Prediction for Lung Cancer

We consider 2-year survival prediction for advanced non-small cell lung cancer (NSCLC) patients
treated with (chemo-)radiotherapy. This is currently a very challenging problem in clinical research,
since the prognosis of this group of patients is very poor (less than 40% survive two years). Cur-
rently most models in the literature rely on various clinical factors of the patient such as gender and
the WHO performance status. Very recently, imaging-related factors such as the size of the tumor
and the number of positive lymph node stations are shown to be better predictors (Dehing-Oberije
et al., 2009). However, it is expensive to obtain the images and to manually measure these factors.
Therefore we study how to select the best set of patients to go through imaging to get additional
features. All the relevant factors are listed in Figure 6 (left) with short descriptions. These factors
are all known to be predictive based on Dehing-Oberije et al. (2009). From Bayesian co-training
point of view we have 2 views, with 3 features in the first (clinical feature) view and 2 features in
the second (imaging-based feature) view.

Our study contains 233 advanced NSCLC patients treated at the MAASTRO Clinic in the
Netherlands from 2002 to 2006, among which 77 survived 2 years (labeled +1). All the features are
available for these patients, and are normalized to have zero mean and unit variance before training.
We randomly choose 30% of the patients as training samples (with labels known), and the rest 70%
as unlabeled samples. We use linear kernel for each view, and let the GMM algorithm automatically
choose the number of clusters. As the active sensing setup, the first view is available for all the
patients, and the second view is available only for randomly chosen 50% patients. So our goal is
to sequentially select patients to acquire features in view 2, such that the overall classifier perfor-
mance is maximized. Figure 6 (right) shows the test AUC scores (with error-bars) of active sensing
and random sensing, with different number of acquired pairs. Performance is averaged over 20 runs
with randomly chosen 50% patients at the start. Active sensing in general yields better performance,
and is significantly better after 5 first pairs. Active sensing based on MI and VAR again yield very
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similar results. We have also tested other experimental settings, and the comparison is not sensitive
to this setup.

6.5 Active Sensing in pCR Prediction for Rectal Cancer

Our second example is to predict tumor response after chemo-radiotherapy for locally advanced rec-
tal cancer. This is important in individualizing treatment strategies, since patients with a pathologic
complete response (pCR) after therapy, that is, with no evidence of viable tumor on pathologic anal-
ysis, would need less invasive surgery or another radiotherapy strategy instead of resection. Most
available models combine clinical factors such as gender and age, and pre-treatment imaging-based
factors such as tumor length and SUVmax (from CT/PET imaging), but it is expected that adding
imaging data collected after therapy would lead to a better predictive model (though with a higher
cost). In this study we show how to effectively select patients to go through pre-treatment and
post-treatment imaging to better predict pCR.

We use the data from Capirci et al. (2007) which contains 78 prospectively collected rectal
cancer patients. All patients underwent a CT/PET scan before treatment and 42 days after treatment,
and 21 of them had pCR (labeled +1). We split all the features into 3 views (clinical, pre-treatment
imaging, post-treatment imaging), and the features are listed in Figure 7 (left). For active sensing,
we assume that all the (labeled or unlabeled) patients have view 1 features available, 70% of the
patients have view 2 features available, and 40% of the patients have view 3 features available. This
is to account for the fact that view 3 features are most expensive to get. All the other settings are the
same as the NSCLC survival prediction study. Figure 7 (right) shows the performance comparison of
active sensing with random sensing, and it is seen that after about 18 pair acquisitions, active sensing
is significantly better than random sensing. Active sensing MI and VAR share a similar trend, and
the MI based active sensing is overall better than VAR based active sensing. The difference is
however not statistically significant. The optimal AUC (when there are no missing features) is
shown as a dotted line, and we see that with around 34 actively acquired pairs, active sensing
can almost achieve the optimum. It takes however much longer for random sensing to reach this
performance.

7. Conclusion

This paper has two principal contributions. We have proposed a graphical model for combining
multi-view data, and shown that previously derived co-regularization based training algorithms
maximize the likelihood of this model. In the process, we showed that these algorithms have been
making an intrinsic assumption of the form p( fc, f1, f2, . . . , fm) ∝ ψ( fc, f1)ψ( fc, f2) . . .ψ( fc, fm),
even though it was not explicitly realized earlier. We also studied circumstances when this assump-
tion proves unreasonable. Thus, our first contribution was to clarify the implicit assumptions and
limitations in multi-view consensus learning in general, and co-regularization in particular.

Motivated by the insights from the graphical model, our second contribution was the devel-
opment of alternative algorithms for co-regularization; in particular the development of a non-
stationary co-training kernel. Unlike previously published co-regularization algorithms, our ap-
proach handles all the following in an elegant framework: (a) handles naturally more than 2 views;
(b) automatically learns which views of the data should be trusted more while predicting class la-
bels; (c) shows how to leverage previously developed methods for efficiently training GP/SVM; (d)
clearly explains our assumptions, for example, what is being optimized overall; (e) does not suffer

2673



YU, KRISHNAPURAM, ROSALES AND RAO

Features for pCR Prediction in Rectal Cancer

Feature Description View

GENDER 1-Male, 2-Female 1st
AGE Age in years 1st
STAGE Staging of cancer 1st

LENGTH Max diameter of the tumor 2nd
SUVPre SUVmax before treatment 2nd

ΔSUV
Absolute difference of SUVmax 3rd
before and after treatment

RI Response Index, ΔSUV in % 3rd 10 20 30 40 50
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Figure 7: Experiments on pCR prediction for rectal cancer. The features for the 3 views are listed
in the left table, and the performance comparison of active sensing and random sensing is
shown in the right figure. As baselines, training with full features (i.e., no sensing needed)
yields 0.74 (shown as a dotted line); training with mean imputation (i.e., using the mean
of each feature to fill in the missing entries) yields 0.55 (not shown).

from local maxima problems; (f) is less computationally demanding in terms of both speed and
memory requirements.

We also extend this framework to handle multi-view data with missing features, and introduce
an active sensing framework which allows us to actively acquiring missing (sample, view) pairs to
maximize performance. In the future we plan to study alternative potentials based on the proposed
graphical model, and explore inductive multi-view learning in a more principled manner.

Appendix A. Derivations of the Marginalizations

In this appendix we provide the derivations of the various marginalizations of the Bayesian co-
training model, described in Section 3. The joint probability of all the variables is defined as in (6)
and is repeated here:

p(yl, fc, f1, . . . , fm) =
1
Z

nl

∏
i=1

ψ(yi, fc(xi))
m

∏
j=1

ψ(f j)ψ(f j, fc). (21)

Recall that the following integration result is true for any x ∈ Rp, b ∈ Rp, and symmetric matrix
A ∈ Rp×p.

∫
exp

{
−1
2
x	Ax+b	x

}
dx=

√
det(2πA−1)exp

{
1
2
b	A−1b

}
. (22)
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A.1 Marginal 1: Co-Regularized Multi-View Learning

The first marginalization integrates out the latent consensus function fc in (21). Ignoring the output
consensus function ψ(yi, fc(xi)) for the moment, we derive the joint likelihood

p(f1, . . . , fm) =
1
Z

∫ m

∏
j=1

ψ(f j)ψ(f j, fc)dfc

=
1
Z

∫ m

∏
j=1
exp

{
−1
2
f	j K

−1
j f

	
j −

‖f j− fc‖2
2σ2j

}
dfc

=
1
Z

∫
exp

{
−1
2

m

∑
j=1

[
f	j K

−1
j f

	
j +

‖f j− fc‖2
σ2j

]}
dfc

=
1
Z

∫
exp

{
−1
2
f	c Afc+b

	fc+C
}
dfc,

in which we define

A=∑
j

1

σ2j
I, b=∑

j

f j
σ2j

, C =−1
2∑j

[
f	j K

−1
j f j+

‖f j‖2
σ2j

]
. (23)

Note thatC does not depend on fc. Applying (22) and absorbing the constants into the normalization
factor Z, we have

p(f1, . . . , fm) =
1
Z
exp

⎧⎨⎩−1
2∑j

f	j K
−1
j f j−

1
2∑j

‖f j‖2
σ2j

+
1
2

1

∑ j
1
σ2j

∥∥∥∥∥∑j f jσ2j
∥∥∥∥∥
2
⎫⎬⎭

=
1
Z
exp

⎧⎨⎩−1
2∑j

f	j K
−1
j f j−

1
2

1

∑ j
1
σ2j

⎡⎣∑
j

1

σ2j
·∑
j

‖f j‖2
σ2j

−
∥∥∥∥∥∑j f jσ2j

∥∥∥∥∥
2
⎤⎦⎫⎬⎭

=
1
Z
exp

⎧⎨⎩−1
2∑j

f	j K
−1
j f j−

1
2

1

∑ j
1
σ2j

∑
j<k

‖f j− fk‖2
σ2jσ

2
k

⎫⎬⎭ .

This recovers the marginal 1 as in (7). To see the GP view of this marginal as in (8), we just need to
notice that (7) is a quadratic form of the joint latent functions (f1, . . . , fm), and relocate the terms in
(7) in the GP format.

When the output potentials ψ(yi, fc(xi)) are taken into account, the whole derivation follows
with the only difference that there is an additional term with respect to y in each summation in (23).
So we obtain (9) as the joint marginal likelihood.

A.2 Marginal 2: The Co-Training Kernel

To get the co-training kernel we integrate out all the m latent functions in (21), leaving only fc and
yl . We calculate the marginal distribution of yl and fc as follows:

p(yl, fc) =
∫
p(yl , fc, f1, . . . , fm) df1 . . .dfm

=
1
Z

nl

∏
i=1

ψ(yi, fc(xi))
m

∏
j=1

∫
ψ(f j)ψ(f j, fc) df j, (24)
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and
∫
ψ(f j)ψ(f j, fc) df j =

∫
exp

{
−1
2
f	j K

−1
j f j−

‖f j− fc‖2
2σ2j

}
df j

=
∫
exp

{
−1
2
f	j

(
K−1
j +

1

σ2j
I

)
f j+

f	c
σ2j
f j− ‖fc‖2

2σ2j

}
df j (25)

= exp

⎧⎨⎩12 f	cσ2j
(
K−1
j +

1

σ2j
I

)−1
fc
σ2j

− ‖fc‖2
2σ2j

⎫⎬⎭ (26)

= exp

{
−1
2
f	c A jfc

}
, (27)

where

A j �
1

σ2j
I− 1

σ2j

(
K−1
j +

1

σ2j
I

)−1
1

σ2j
=
(
K j+σ2jI

)−1
.

Note that from (25) to (26) we applied the integration result (22). Therefore, from (24) and (27) we
have

p(yl , fc) =
1
Z

nl

∏
i=1

ψ(yi, fc(xi))exp

{
−1
2
f	c

(
∑
j

A j

)
fc

}
,

in which the output potentials are equivalent to the conditional density p(yl |fc), and the big expo-
nential term can be seen as a prior term for the consensus function fc. This leads to the co-training
Gaussian prior p(fc) =N (0,Kc), with Kc = (∑ jA j)

−1 being the co-training kernel (10).

A.3 Marginal 3: Individual View Learning with Side-Information

The third marginalization leaves out only the latent function f j and integrates out the consensus
function fc and all the other latent functions {fk}k 
= j. Ignoring the output potentials for the moment,
based on (27) and (22) we have

p(f j) =
∫
p(fc, f1, . . . , fm) dfc df1 . . .df j−1 df j+1 . . .dfm

=
1
Z
ψ(f j)

∫ (
ψ(f j, fc)∏

k 
= j

∫
ψ(fk)ψ(fk, fc) dfk

)
dfc

=
1
Z
ψ(f j)

∫
exp

{
−‖f j− fc‖2

2σ2j
− 1
2
f	c

(
∑
k 
= j

Ak

)
fc

}
dfc

=
1
Z
ψ(f j)

∫
exp

{
−1
2
f	c

(
∑
k 
= j

Ak+
1

σ2j
I

)
fc+

f	j
σ2j
fc− ‖f j‖2

2σ2j

}
dfc

=
1
Z
exp

{
−1
2
f	j K

−1
j f j

}
exp

⎧⎨⎩12 f
	
j

σ2j

(
∑
k 
= j

Ak+
1

σ2j
I

)−1
f j
σ2j

− ‖f j‖2
2σ2j

⎫⎬⎭
=
1
Z
exp

{
−1
2
f	j C

−1
j f j

}
,
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where in the last line we define

C−1
j = K−1

j +
1

σ2j
I− 1

σ2j

(
∑
k 
= j

Ak+
1

σ2j
I

)−1
1

σ2j

= K−1
j +

(
σ2jI+∑

k 
= j

Ak

)−1
.

This yields the Equation (11). If we consider the output potentials, a similar GP prior for f j holds
but takes a more sophisticated form.

Appendix B. Optimization of the View Variance Parameters

In this appendix we derive the equations to optimize the view variance σ2j for each view j using
the type II maximum likelihood. Under the second marginalization in which only the consensus
function fc is of primary interest, the Bayesian co-training model reduces to

p(yl, fc) =
1
Z
ψ(fc)

nl

∏
i=1

ψ(yi, fc(xi)),

where ψ(yi, fc(xi)) is the output potential as defined in (1), and ψ(fc) is defined via the co-training
kernel as

ψ(fc) =
1
Z
exp

{
−1
2
f	c K

−1
c fc

}
. (28)

Note that fc is of length n≥ nl . This defines a single-view learning problem, and we are effectively
assigning a GP prior to fc with the co-training kernel Kc. The log marginal likelihood of the output
yl under this model, conditioned on the input data X� {x( j)i } and model parameters Θ, is:

L � log p(yl|X,Θ) = log
∫
p(yl |fc,Θ)p(fc|X,Θ) dfc. (29)

In (29) all the probabilities are conditional probabilities, in which p(yl |fc,Θ) is defined via (1) and
p(fc|X,Θ) is a Gaussian distribution defined via the co-training kernel (28). Here the model param-
eters Θ contain all the view variance parameters {σ2j}, all kernel parameters and other parameters
involved in the output potentials. In type II maximum likelihood we maximize (29) with respect to
these model parameters. In the following we derive the equations in the regression case, that is, the
output potential is a Gaussian noise model. Similar but more complicated equations can be derived
for classification case and readers please refer to Rasmussen and Williams (2006) for details.

When the outputs yl are regression outputs, the integral in (29) can be computed analytically as

L =−1
2
y	l G

−1yl−
1
2
logdetG− n

2
log2π,

in which for simplicity we rename G � Kc(1 : nl ,1 : nl)+σ2I. Note that since yl is only of length
nl ≤ n, matrix G only involves the nl × nl sub-matrix of Kc. For each θ ∈ Θ, the partial derivative
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of L with respect to θ is calculated as:

∂L
∂θ

=
1
2
y	l G

−1 ∂G
∂θ
G−1yl−

1
2
tr

[
G−1 ∂G

∂θ

]
=
1
2
tr

[(
αα	−G−1)∂G

∂θ

]
, (30)

where α = G−1yl , and tr(·) denote the matrix trace. We are now ready to calculate the partial
derivative of L with respect to each view variance σ2j . We first compute the partial derivative of Kc
with respect to σ2j as:

∂Kc
∂σ2j

=
∂
∂σ2j

[
∑
j

(
K j+σ2jI

)−1]−1

=−Kc · ∂
∂σ2j

(
K j+σ2jI

)−1 ·Kc
= Kc

(
K j+σ2jI

)−1 · ∂
∂σ2j

(
K j+σ2jI

) · (K j+σ2jI
)−1

Kc

= Kc
(
K j+σ2jI

)−1 (
K j+σ2jI

)−1
Kc.

Then if we name matrix B j � Kc(K j+σ2jI)
−1(K j+σ2jI)

−1Kc, we have

∂G
∂σ2j

=
∂
∂σ2j

Kc(1 : nl ,1 : nl) = B j(1 : nl ,1 : nl). (31)

This equation follows since we have

∂
∂σ2j

Kc(1 : nl,1 : nl) =
∂
∂σ2j

(
Inl 0

) ·Kc ·( Inl
0

)
=
(
Inl 0

) · ∂
∂σ2j

Kc ·
(
Inl
0

)
=
(
Inl 0

) ·B j ·
(
Inl
0

)
= B j(1 : nl ,1 : nl).

Note that even though we only need to consider the top left corner of matrix B j in the derivative
calculation, each entry in this sub-matrix depends both on labeled data and on unlabeled data. This
provides some additional insight since even with fc integrated out, the marginal likelihood still
depends on unlabeled data, so as the optimization of the hyperparameters σ2j .

With (30) and (31) we can calculate ∂L/∂σ2j and then use conjugate gradients to find the optimal
σ2j . Since the derivatives for the different σ

2
j are coupled, one needs to iteratively optimize each σ

2
j

until convergence. The partial derivative for σ2 can be easily computed as ∂G
∂σ2 = Inl . Similarly one

can derive the partial derivatives for other kernel parameters inside each kernel K j and we omit the
details.
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Abstract

We consider a class of learning problems regularized by a structured sparsity-inducing norm de-
fined as the sum of �2- or �∞-norms over groups of variables. Whereas much effort has been put
in developing fast optimization techniques when the groups are disjoint or embedded in a hierar-
chy, we address here the case of general overlapping groups. To this end, we present two different
strategies: On the one hand, we show that the proximal operator associated with a sum of �∞-
norms can be computed exactly in polynomial time by solving a quadratic min-cost flow problem,
allowing the use of accelerated proximal gradient methods. On the other hand, we use proximal
splitting techniques, and address an equivalent formulation with non-overlapping groups, but in
higher dimension and with additional constraints. We propose efficient and scalable algorithms
exploiting these two strategies, which are significantly faster than alternative approaches. We illus-
trate these methods with several problems such as CUR matrix factorization, multi-task learning
of tree-structured dictionaries, background subtraction in video sequences, image denoising with
wavelets, and topographic dictionary learning of natural image patches.

Keywords: convex optimization, proximal methods, sparse coding, structured sparsity, matrix
factorization, network flow optimization, alternating direction method of multipliers

1. Introduction

Sparse linear models have become a popular framework for dealing with various unsupervised and
supervised tasks in machine learning and signal processing. In such models, linear combinations of
small sets of variables are selected to describe the data. Regularization by the �1-norm has emerged
as a powerful tool for addressing this variable selection problem, relying on both a well-developed
theory (see Tibshirani, 1996; Chen et al., 1999; Mallat, 1999; Bickel et al., 2009; Wainwright,
2009, and references therein) and efficient algorithms (Efron et al., 2004; Nesterov, 2007; Beck and
Teboulle, 2009; Needell and Tropp, 2009; Combettes and Pesquet, 2010).
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The �1-norm primarily encourages sparse solutions, regardless of the potential structural rela-
tionships (e.g., spatial, temporal or hierarchical) existing between the variables. Much effort has
recently been devoted to designing sparsity-inducing regularizations capable of encoding higher-
order information about the patterns of non-zero coefficients (Cehver et al., 2008; Jenatton et al.,
2009; Jacob et al., 2009; Zhao et al., 2009; He and Carin, 2009; Huang et al., 2009; Baraniuk et al.,
2010; Micchelli et al., 2010), with successful applications in bioinformatics (Jacob et al., 2009; Kim
and Xing, 2010), topic modeling (Jenatton et al., 2010a, 2011) and computer vision (Cehver et al.,
2008; Huang et al., 2009; Jenatton et al., 2010b). By considering sums of norms of appropriate
subsets, or groups, of variables, these regularizations control the sparsity patterns of the solutions.
The underlying optimization is usually difficult, in part because it involves nonsmooth components.

Our first strategy uses proximal gradient methods, which have proven to be effective in this
context, essentially because of their fast convergence rates and their ability to deal with large prob-
lems (Nesterov, 2007; Beck and Teboulle, 2009). They can handle differentiable loss functions with
Lipschitz-continuous gradient, and we show in this paper how to use them with a regularization
term composed of a sum of �∞-norms. The second strategy we consider exploits proximal splitting
methods (see Combettes and Pesquet, 2008, 2010; Goldfarg and Ma, 2009; Tomioka et al., 2011;
Qin and Goldfarb, 2011; Boyd et al., 2011, and references therein), which builds upon an equivalent
formulation with non-overlapping groups, but in a higher dimensional space and with additional
constraints.1 More precisely, we make four main contributions:

• We show that the proximal operator associated with the sum of �∞-norms with overlapping
groups can be computed efficiently and exactly by solving a quadratic min-cost flow problem,
thereby establishing a connection with the network flow optimization literature.2 This is the
main contribution of the paper, which allows us to use proximal gradient methods in the
context of structured sparsity.

• We prove that the dual norm of the sum of �∞-norms can also be evaluated efficiently, which
enables us to compute duality gaps for the corresponding optimization problems.

• We present proximal splitting methods for solving structured sparse regularized problems.

• We demonstrate that our methods are relevant for various applications whose practical suc-
cess is made possible by our algorithmic tools and efficient implementations. First, we intro-
duce a new CUR matrix factorization technique exploiting structured sparse regularization,
built upon the links drawn by Bien et al. (2010) between CUR decomposition (Mahoney
and Drineas, 2009) and sparse regularization. Then, we illustrate our algorithms with differ-
ent tasks: video background subtraction, estimation of hierarchical structures for dictionary
learning of natural image patches (Jenatton et al., 2010a, 2011), wavelet image denoising

1. The idea of using this class of algorithms for solving structured sparse problems was first suggested to us by Jean-
Christophe Pesquet and Patrick-Louis Combettes. It was also suggested to us later by Ryota Tomioka, who briefly
mentioned this possibility in Tomioka et al. (2011). It can also briefly be found in Boyd et al. (2011), and in details
in the work of Qin and Goldfarb (2011) which was conducted as the same time as ours. It was also used in a related
context by Sprechmann et al. (2010) for solving optimization problems with hierarchical norms.

2. Interestingly, this is not the first time that network flow optimization tools have been used to solve sparse regularized
problems with proximal methods. Such a connection was recently established by Chambolle and Darbon (2009) in
the context of total variation regularization, and similarly by Hoefling (2010) for the fused Lasso. One can also find
the use of maximum flow problems for non-convex penalties in the work of Cehver et al. (2008) which combines
Markov random fields and sparsity.
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with a structured sparse prior, and topographic dictionary learning of natural image patches
(Hyvärinen et al., 2001; Kavukcuoglu et al., 2009; Garrigues and Olshausen, 2010).

Note that this paper extends a shorter version published in Advances in Neural Information Process-
ing Systems (Mairal et al., 2010b), by adding new experiments (CUR matrix factorization, wavelet
image denoising and topographic dictionary learning), presenting the proximal splitting methods,
providing the full proofs of the optimization results, and adding numerous discussions.

1.1 Notation

Vectors are denoted by bold lower case letters and matrices by upper case ones. We define for q≥ 1
the �q-norm of a vector x in Rm as ‖x‖q � (∑m

i=1 |xi|q)1/q, where xi denotes the i-th coordinate of x,
and ‖x‖∞ � maxi=1,...,m |xi| = limq→∞ ‖x‖q. We also define the �0-pseudo-norm as the number of
nonzero elements in a vector:3 ‖x‖0 � #{i s.t. xi 
= 0} = limq→0+(∑m

i=1 |xi|q). We consider the
Frobenius norm of a matrix X in Rm×n: ‖X‖F � (∑m

i=1∑
n
j=1X

2
i j)
1/2, where Xi j denotes the entry

of X at row i and column j. Finally, for a scalar y, we denote (y)+ � max(y,0). For an integer
p> 0, we denote by 2{1,...,p} the powerset composed of the 2p subsets of {1, . . . , p}.

The rest of this paper is organized as follows: Section 2 presents structured sparse models
and related work. Section 3 is devoted to proximal gradient algorithms, and Section 4 to proxi-
mal splitting methods. Section 5 presents several experiments and applications demonstrating the
effectiveness of our approach and Section 6 concludes the paper.

2. Structured Sparse Models

We are interested in machine learning problems where the solution is not only known beforehand
to be sparse—that is, the solution has only a few non-zero coefficients, but also to form non-zero
patterns with a specific structure. It is indeed possible to encode additional knowledge in the regu-
larization other than just sparsity. For instance, one may want the non-zero patterns to be structured
in the form of non-overlapping groups (Turlach et al., 2005; Yuan and Lin, 2006; Stojnic et al.,
2009; Obozinski et al., 2010), in a tree (Zhao et al., 2009; Bach, 2009; Jenatton et al., 2010a, 2011),
or in overlapping groups (Jenatton et al., 2009; Jacob et al., 2009; Huang et al., 2009; Baraniuk
et al., 2010; Cehver et al., 2008; He and Carin, 2009), which is the setting we are interested in here.

As for classical non-structured sparse models, there are basically two lines of research, that
either (A) deal with nonconvex and combinatorial formulations that are in general computationally
intractable and addressed with greedy algorithms or (B) concentrate on convex relaxations solved
with convex programming methods.

2.1 Nonconvex Approaches

A first approach introduced by Baraniuk et al. (2010) consists in imposing that the sparsity pattern
of a solution (i.e., its set of non-zero coefficients) is in a predefined subset of groups of variables
G ⊆ 2{1,...,p}. Given this a priori knowledge, a greedy algorithm (Needell and Tropp, 2009) is used

3. Note that it would be more proper to write ‖x‖00 instead of ‖x‖0 to be consistent with the traditional notation ‖x‖q.
However, for the sake of simplicity, we will keep this notation unchanged in the rest of the paper.
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to address the following nonconvex structured sparse decomposition problem

min
w∈Rp

1
2
‖y−Xw‖22 s.t. Supp(w) ∈ G and ‖w‖0 ≤ s,

where s is a specified sparsity level (number of nonzeros coefficients), y inRm is an observed signal,
X is a design matrix in Rm×p and Supp(w) is the support of w (set of non-zero entries).

In a different approach motivated by the minimum description length principle (see Barron et al.,
1998), Huang et al. (2009) consider a collection of groupsG ⊆ 2{1,...,p}, and define a “coding length”
for every group in G , which in turn is used to define a coding length for every pattern in 2{1,...,p}.
Using this tool, they propose a regularization function cl : Rp → R such that for a vector w in Rp,
cl(w) represents the number of bits that are used for encoding w. The corresponding optimization
problem is also addressed with a greedy procedure:

min
w∈Rp

1
2
‖y−Xw‖22 s.t. cl(w)≤ s,

Intuitively, this formulation encourages solutions w whose sparsity patterns have a small coding
length, meaning in practice that they can be represented by a union of a small number of groups.
Even though they are related, this model is different from the one of Baraniuk et al. (2010).

These two approaches are encoding a priori knowledge on the shape of non-zero patterns that
the solution of a regularized problem should have. A different point of view consists of modelling
the zero patterns of the solution—that is, define groups of variables that should be encouraged to
be set to zero together. After defining a set G ⊆ 2{1,...,p} of such groups of variables, the following
penalty can naturally be used as a regularization to induce the desired property

ψ(w)� ∑
g∈G

ηgδ
g(w), with δg(w)�

{
1 if there exists j ∈ g such that w j 
= 0,
0 otherwise,

where the ηg’s are positive weights. This penalty was considered by Bach (2010), who showed that
the convex envelope of such nonconvex functions (more precisely strictly positive, non-increasing
submodular functions of Supp(w), see Fujishige, 2005) when restricted on the unit �∞-ball, are in
fact types of structured sparsity-inducing norms which are the topic of the next section.

2.2 Convex Approaches with Sparsity-Inducing Norms

In this paper, we are interested in convex regularizations which induce structured sparsity. Gener-
ally, we consider the following optimization problem

min
w∈Rp

f (w)+λΩ(w), (1)

where f : Rp → R is a convex function (usually an empirical risk in machine learning and a data-
fitting term in signal processing), andΩ :Rp →R is a structured sparsity-inducing norm, defined as

Ω(w) � ∑
g∈G

ηg‖wg‖, (2)

where G ⊆ 2{1,...,p} is a set of groups of variables, the vector wg in R|g| represents the coefficients
of w indexed by g in G , the scalars ηg are positive weights, and ‖.‖ denotes the �2- or �∞-norm. We
now consider different cases:
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• When G is the set of singletons—that is G � {{1},{2}, . . . ,{p}}, and all the ηg are equal to
one, Ω is the �1-norm, which is well known to induce sparsity. This leads for instance to the
Lasso (Tibshirani, 1996) or equivalently to basis pursuit (Chen et al., 1999).

• If G is a partition of {1, . . . , p}, that is, the groups do not overlap, variables are selected
in groups rather than individually. When the coefficients of the solution are known to be
organized in such a way, explicitly encoding the a priori group structure in the regulariza-
tion can improve the prediction performance and/or interpretability of the learned models
(Turlach et al., 2005; Yuan and Lin, 2006; Roth and Fischer, 2008; Stojnic et al., 2009; Huang
and Zhang, 2010; Obozinski et al., 2010). Such a penalty is commonly called group-Lasso
penalty.

• When the groups overlap, Ω is still a norm and sets groups of variables to zero together
(Jenatton et al., 2009). The latter setting has first been considered for hierarchies (Zhao et al.,
2009; Kim and Xing, 2010; Bach, 2009; Jenatton et al., 2010a, 2011), and then extended
to general group structures (Jenatton et al., 2009). Solving Equation (1) in this context is a
challenging problem which is the topic of this paper.

Note that other types of structured-sparsity inducing norms have also been introduced, notably the
approach of Jacob et al. (2009), which penalizes the following quantity

Ω′(w) � min
ξ=(ξg)g∈G∈Rp×|G | ∑

g∈G
ηg‖ξg‖ s.t. w= ∑

g∈G
ξg and ∀g, Supp(ξg)⊆ g.

This penalty, which is also a norm, can be seen as a convex relaxation of the regularization intro-
duced by Huang et al. (2009), and encourages the sparsity pattern of the solution to be a union of a
small number of groups. Even though both Ω and Ω′ appear under the terminology of “structured
sparsity with overlapping groups”, they have in fact significantly different purposes and algorith-
mic treatments. For example, Jacob et al. (2009) consider the problem of selecting genes in a gene
network which can be represented as the union of a few predefined pathways in the graph (groups
of genes), which overlap. In this case, it is natural to use the norm Ω′ instead of Ω. On the other
hand, we present a matrix factorization task in Section 5.3, where the set of zero-patterns should be
a union of groups, naturally leading to the use of Ω. Dealing with Ω′ is therefore relevant, but out
of the scope of this paper.

2.3 Convex Optimization Methods Proposed in the Literature

Generic approaches to solve Equation (1) mostly rely on subgradient descent schemes (see Bert-
sekas, 1999), and interior-point methods (Boyd and Vandenberghe, 2004). These generic tools do
not scale well to large problems and/or do not naturally handle sparsity (the solutions they return
may have small values but no “true” zeros). These two points prompt the need for dedicated meth-
ods.

To the best of our knowledge, only a few recent papers have addressed problem Equation (1)
with dedicated optimization procedures, and in fact, only when Ω is a linear combination of �2-
norms. In this setting, a first line of work deals with the non-smoothness of Ω by expressing the
norm as the minimum over a set of smooth functions. At the cost of adding new variables (to
describe the set of smooth functions), the problem becomes more amenable to optimization. In
particular, reweighted-�2 schemes consist of approximating the norm Ω by successive quadratic
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upper bounds (Argyriou et al., 2008; Rakotomamonjy et al., 2008; Jenatton et al., 2010b; Micchelli
et al., 2010). It is possible to show for instance that

Ω(w) = min
(zg)g∈G∈R|G |

+

1
2

{
∑
g∈G

η2g‖wg‖22
zg

+ zg

}
.

Plugging the previous relationship into Equation (1), the optimization can then be performed by
alternating between the updates of w and the additional variables (zg)g∈G .4 When the norm Ω is
defined as a linear combination of �∞-norms, we are not aware of the existence of such variational
formulations.

Problem (1) has also been addressed with working-set algorithms (Bach, 2009; Jenatton et al.,
2009; Schmidt and Murphy, 2010). The main idea of these methods is to solve a sequence of
increasingly larger subproblems of (1). Each subproblem consists of an instance of Equation (1)
reduced to a specific subset of variables known as the working set. As long as some predefined
optimality conditions are not satisfied, the working set is augmented with selected inactive variables
(for more details, see Bach et al., 2011).

The last approach we would like to mention is that of Chen et al. (2010), who used a smoothing
technique introduced by Nesterov (2005). A smooth approximation Ωμ of Ω is used, when Ω is
a sum of �2-norms, and μ is a parameter controlling the trade-off between smoothness of Ωμ and
quality of the approximation. Then, Equation (1) is solved with accelerated gradient techniques
(Beck and Teboulle, 2009; Nesterov, 2007) butΩμ is substituted to the regularizationΩ. Depending
on the required precision for solving the original problem, this method provides a natural choice
for the parameter μ, with a known convergence rate. A drawback is that it requires to choose the
precision of the optimization beforehand. Moreover, since a �1-norm is added to the smoothed Ωμ,
the solutions returned by the algorithm might be sparse but possibly without respecting the struc-
ture encoded by Ω. This should be contrasted with other smoothing techniques, for example, the
reweighted-�2 scheme we mentioned above, where the solutions are only approximately sparse.

3. Optimization with Proximal Gradient Methods

We address in this section the problem of solving Equation (1) under the following assumptions:

• f is differentiable with Lipschitz-continuous gradient. For machine learning problems, this
hypothesis holds when f is for example the square, logistic or multi-class logistic loss (see
Shawe-Taylor and Cristianini, 2004).

• Ω is a sum of �∞-norms. Even though the �2-norm is sometimes used in the literature (Jenatton
et al., 2009), and is in fact used later in Section 4, the �∞-norm is piecewise linear, and we
take advantage of this property in this work.

To the best of our knowledge, no dedicated optimization method has been developed for this setting.
Following Jenatton et al. (2010a, 2011) who tackled the particular case of hierarchical norms, we
propose to use proximal gradient methods, which we now introduce.

4. Note that such a scheme is interesting only if the optimization with respect to w is simple, which is typically the case
with the square loss function (Bach et al., 2011). Moreover, for this alternating scheme to be provably convergent, the
variables (zg)g∈G have to be bounded away from zero, resulting in solutions whose entries may have small values,
but not “true” zeros.
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3.1 Proximal Gradient Methods

Proximal methods have drawn increasing attention in the signal processing (e.g., Wright et al.,
2009b; Combettes and Pesquet, 2010, and numerous references therein) and the machine learn-
ing communities (e.g., Bach et al., 2011, and references therein), especially because of their con-
vergence rates (optimal for the class of first-order techniques) and their ability to deal with large
nonsmooth convex problems (e.g., Nesterov, 2007; Beck and Teboulle, 2009).

These methods are iterative procedures that can be seen as an extension of gradient-based tech-
niques when the objective function to minimize has a nonsmooth part. The simplest version of this
class of methods linearizes at each iteration the function f around the current estimate w̃, and this
estimate is updated as the (unique by strong convexity) solution of the proximal problem, defined as:

min
w∈Rp

f (w̃)+(w− w̃)	∇ f (w̃)+λΩ(w)+
L
2
‖w− w̃‖22.

The quadratic term keeps the update in a neighborhood where f is close to its linear approximation,
and L>0 is a parameter which is a upper bound on the Lipschitz constant of ∇ f . This problem can
be equivalently rewritten as:

min
w∈Rp

1
2

∥∥w̃− 1
L
∇ f (w̃)−w∥∥22+ λ

L
Ω(w),

Solving efficiently and exactly this problem allows to attain the fast convergence rates of proximal
methods, that is, reaching a precision of O( Lk2 ) in k iterations.

5 In addition, when the nonsmooth
term Ω is not present, the previous proximal problem exactly leads to the standard gradient update
rule. More generally, we define the proximal operator:

Definition 1 (Proximal Operator)
The proximal operator associated with our regularization term λΩ, which we denote by ProxλΩ, is
the function that maps a vector u ∈ Rp to the unique solution of

min
w∈Rp

1
2
‖u−w‖22+λΩ(w). (3)

This operator was initially introduced by Moreau (1962) to generalize the projection operator onto
a convex set. What makes proximal methods appealing to solve sparse decomposition problems is
that this operator can often be computed in closed form. For instance,

• When Ω is the �1-norm—that is Ω(w) = ‖w‖1—the proximal operator is the well-known
elementwise soft-thresholding operator,

∀ j ∈ {1, . . . , p}, u j �→ sign(u j)(|u j|−λ)+ =

{
0 if |u j| ≤ λ

sign(u j)(|u j|−λ) otherwise.

• When Ω is a group-Lasso penalty with �2-norms—that is, Ω(u) = ∑g∈G ‖ug‖2, with G being
a partition of {1, . . . , p}, the proximal problem is separable in every group, and the solution
is a generalization of the soft-thresholding operator to groups of variables:

∀g ∈ G ,ug �→ ug−Π‖.‖2≤λ[ug] =

{
0 if ‖ug‖2 ≤ λ
‖ug‖2−λ
‖ug‖2 ug otherwise,

5. Note, however, that fast convergence rates can also be achieved while solving approximately the proximal problem
(see Schmidt et al., 2011, for more details).
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where Π‖.‖2≤λ denotes the orthogonal projection onto the ball of the �2-norm of radius λ.

• WhenΩ is a group-Lasso penalty with �∞-norms—that is,Ω(u) =∑g∈G ‖ug‖∞, with G being
a partition of {1, . . . , p}, the solution is a different group-thresholding operator:

∀g ∈ G , ug �→ ug−Π‖.‖1≤λ[ug],

where Π‖.‖1≤λ denotes the orthogonal projection onto the �1-ball of radius λ, which can be
solved in O(p) operations (Brucker, 1984; Maculan and de Paula, 1989). Note that when
‖ug‖1 ≤ λ, we have a group-thresholding effect, with ug−Π‖.‖1≤λ[ug] = 0.

• When Ω is a tree-structured sum of �2- or �∞-norms as introduced by Zhao et al. (2009)—
meaning that two groups are either disjoint or one is included in the other, the solution admits
a closed form. Let � be a total order on G such that for g1,g2 in G , g1 � g2 if and only if
either g1 ⊂ g2 or g1 ∩ g2 = /0.6 Then, if g1 � . . . � g|G |, and if we define Proxg as (a) the
proximal operator ug �→ Proxληg‖·‖(ug) on the subspace corresponding to group g and (b) the
identity on the orthogonal, Jenatton et al. (2010a, 2011) showed that:

ProxλΩ = Proxgm ◦ . . .◦Proxg1 ,
which can be computed in O(p) operations. It also includes the sparse group Lasso (sum of
group-Lasso penalty and �1-norm) of Friedman et al. (2010) and Sprechmann et al. (2010).

The first contribution of our paper is to address the case of general overlapping groups with �∞-norm.

3.2 Dual of the Proximal Operator

We now show that, for a set G of general overlapping groups, a convex dual of the proximal
problem (3) can be reformulated as a quadratic min-cost flow problem. We then propose an efficient
algorithm to solve it exactly, as well as a related algorithm to compute the dual norm of Ω. We start
by considering the dual formulation to problem (3) introduced by Jenatton et al. (2010a, 2011):

Lemma 2 (Dual of the proximal problem, Jenatton et al., 2010a, 2011)
Given u in Rp, consider the problem

min
ξ∈Rp×|G |

1
2
‖u− ∑

g∈G
ξg‖22 s.t. ∀g ∈ G , ‖ξg‖1 ≤ ληg and ξgj = 0 if j /∈ g, (4)

where ξ= (ξg)g∈G is in Rp×|G |, and ξgj denotes the j-th coordinate of the vector ξg. Then, ev-
ery solution ξ�=(ξ�g)g∈G of Equation (4) satisfies w�=u−∑g∈G ξ

�g, where w� is the solution of
Equation (3) when Ω is a weighted sum of �∞-norms.

Without loss of generality,7 we assume from now on that the scalars u j are all non-negative, and
we constrain the entries of ξ to be so. Such a formulation introduces p|G | dual variables which
can be much greater than p, the number of primal variables, but it removes the issue of overlapping
regularization. We now associate a graph with problem (4), on which the variables ξgj , for g in G
and j in g, can be interpreted as measuring the components of a flow.

6. For a tree-structured set G , such an order exists.
7. Let ξ� denote a solution of Equation (4). Optimality conditions of Equation (4) derived in Jenatton et al. (2010a,
2011) show that for all j in {1, . . . , p}, the signs of the non-zero coefficients ξ�gj for g in G are the same as the signs
of the entries u j. To solve Equation (4), one can therefore flip the signs of the negative variables u j, then solve the
modified dual formulation (with non-negative variables), which gives the magnitude of the entries ξ�gj (the signs of
these being known).
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3.3 Graph Model

Let G be a directed graph G = (V,E,s, t), where V is a set of vertices, E ⊆ V ×V a set of arcs, s
a source, and t a sink. For all arcs in E, we define a non-negative capacity constant, and as done
classically in the network flow literature (Ahuja et al., 1993; Bertsekas, 1998), we define a flow as a
non-negative function on arcs that satisfies capacity constraints on all arcs (the value of the flow on
an arc is less than or equal to the arc capacity) and conservation constraints on all vertices (the sum
of incoming flows at a vertex is equal to the sum of outgoing flows) except for the source and the
sink. For every arc e in E, we also define a real-valued cost function, which depends on the value of
the flow on e. We now introduce the canonical graph G associated with our optimization problem:

Definition 3 (Canonical Graph)
Let G ⊆ {1, . . . , p} be a set of groups, and (ηg)g∈G be positive weights. The canonical graph
G= (V,E,s, t) is the unique graph defined as follows:

1. V = Vu ∪Vgr, where Vu is a vertex set of size p, one vertex being associated to each index
j in {1, . . . , p}, and Vgr is a vertex set of size |G |, one vertex per group g in G . We thus
have |V |= |G |+ p. For simplicity, we identify groups g in G and indices j in {1, . . . , p} with
vertices of the graph, such that one can from now on refer to “vertex j” or “vertex g”.

2. For every group g in G , E contains an arc (s,g). These arcs have capacity ληg and zero cost.

3. For every group g in G , and every index j in g, E contains an arc (g, j) with zero cost and
infinite capacity. We denote by ξgj the flow on this arc.

4. For every index j in {1, . . . , p}, E contains an arc ( j, t) with infinite capacity and a cost
1
2(u j−ξ j)

2, where ξ j is the flow on ( j, t).

Examples of canonical graphs are given in Figures 1a-c for three simple group structures. The
flows ξgj associated with G can now be identified with the variables of problem (4). Since we have
assumed the entries of u to be non-negative, we can now reformulate Equation (4) as

min
ξ∈Rp×|G |

+ ,ξ∈Rp

p

∑
j=1

1
2
(u j−ξ j)

2 s.t. ξ= ∑
g∈G

ξg and ∀g ∈ G ,

{
∑
j∈g
ξgj ≤ ληg and Supp(ξg)⊆ g

}
.

(5)
Indeed,

• the only arcs with a cost are those leading to the sink, which have the form ( j, t), where j is
the index of a variable in {1, . . . , p}. The sum of these costs is ∑p

j=1
1
2(u j−ξ j)

2, which is the
objective function minimized in Equation (5);

• by flow conservation, we necessarily have ξ j = ∑g∈G ξ
g
j in the canonical graph;

• the only arcs with a capacity constraints are those coming out of the source, which have the
form (s,g), where g is a group in G . By flow conservation, the flow on an arc (s,g) is ∑ j∈g ξ

g
j

which should be less than ληg by capacity constraints;

• all other arcs have the form (g, j), where g is in G and j is in g. Thus, Supp(ξg)⊆ g.
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Therefore we have shown that finding a flow minimizing the sum of the costs on such a graph is
equivalent to solving problem (4). When some groups are included in others, the canonical graph
can be simplified to yield a graph with a smaller number of edges. Specifically, if h and g are groups
with h⊂ g, the edges (g, j) for j ∈ h carrying a flow ξgj can be removed and replaced by a single edge
(g,h) of infinite capacity and zero cost, carrying the flow ∑ j∈h ξ

g
j . This simplification is illustrated

in Figure 1d, with a graph equivalent to the one of Figure 1c. This does not change the optimal value
of ξ

�
, which is the quantity of interest for computing the optimal primal variable w�. We present in

Appendix A a formal definition of equivalent graphs. These simplifications are useful in practice,
since they reduce the number of edges in the graph and improve the speed of our algorithms.

3.4 Computation of the Proximal Operator

Quadratic min-cost flow problems have been well studied in the operations research literature
(Hochbaum and Hong, 1995). One of the simplest cases, where G contains a single group as in
Figure 1a, is solved by an orthogonal projection on the �1-ball of radius ληg. It has been shown,
both in machine learning (Duchi et al., 2008) and operations research (Hochbaum and Hong, 1995;
Brucker, 1984), that such a projection can be computed in O(p) operations. When the group struc-
ture is a tree as in Figure 1d, strategies developed in the two communities are also similar (Jenatton
et al., 2010a; Hochbaum and Hong, 1995),8 and solve the problem in O(pd) operations, where d is
the depth of the tree.

The general case of overlapping groups is more difficult. Hochbaum and Hong (1995) have
shown that quadratic min-cost flow problems can be reduced to a specific parametric max-flow
problem, for which an efficient algorithm exists (Gallo et al., 1989).9 While this generic approach
could be used to solve Equation (4), we propose to use Algorithm 1 that also exploits the fact that
our graphs have non-zero costs only on edges leading to the sink. As shown in Appendix D, it it has
a significantly better performance in practice. This algorithm clearly shares some similarities with
existing approaches in network flow optimization such as the simplified version of Gallo et al. (1989)
presented by Babenko and Goldberg (2006) that uses a divide and conquer strategy. Moreover, an
equivalent algorithm exists for minimizing convex functions over polymatroid sets (Groenevelt,
1991). This equivalence, a priori non trivial, is uncovered through a representation of structured
sparsity-inducing norms via submodular functions, which was recently proposed by Bach (2010).

The intuition behind our algorithm, computeFlow (see Algorithm 1), is the following: since ξ=
∑g∈G ξ

g is the only value of interest to compute the solution of the proximal operator w= u−ξ, the

first step looks for a candidate value γ for ξ by solving the following relaxed version of problem (5):

argmin
γ∈Rp

∑
j∈Vu

1
2
(u j− γ j)

2 s.t. ∑
j∈Vu

γ j ≤ λ ∑
g∈Vgr

ηg. (6)

The cost function here is the same as in problem (5), but the constraints are weaker: Any feasible
point of problem (5) is also feasible for problem (6). This problem can be solved in linear time
(Brucker, 1984). Its solution, which we denote γ for simplicity, provides the lower bound ‖u−γ‖22/2
for the optimal cost of problem (5).

8. Note however that, while Hochbaum and Hong (1995) only consider a tree-structured sum of �∞-norms, the results
from Jenatton et al. (2010a) also apply for a sum of �2-norms.

9. By definition, a parametric max-flow problem consists in solving, for every value of a parameter, a max-flow problem
on a graph whose arc capacities depend on this parameter.
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Figure 1: Graph representation of simple proximal problems with different group structures G . The
three indices 1,2,3 are represented as grey squares, and the groups g,h in G as red (darker) discs.
The source is linked to every group g,h with respective maximum capacity ληg,ληh and zero cost.
Each variable u j is linked to the sink t, with an infinite capacity, and with a cost c j� 1

2(u j− ξ j)
2.

All other arcs in the graph have zero cost and infinite capacity. They represent inclusion relations
in-between groups, and between groups and variables. The graphs (c) and (d) correspond to a
special case of tree-structured hierarchy in the sense of Jenatton et al. (2010a). Their min-cost flow
problems are equivalent.
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Algorithm 1 Computation of the proximal operator for overlapping groups.

input u ∈ Rp, a set of groups G , positive weights (ηg)g∈G , and λ (regularization parameter).
1: Build the initial graph G0 = (V0,E0,s, t) as explained in Section 3.4.
2: Compute the optimal flow: ξ← computeFlow(V0,E0).
3: Return: w= u−ξ (optimal solution of the proximal problem).

Function computeFlow(V =Vu∪Vgr,E)
1: Projection step: γ← argminγ ∑ j∈Vu

1
2(u j− γ j)

2 s.t. ∑ j∈Vu γ j ≤ λ∑g∈Vgr ηg.
2: For all nodes j in Vu, set γ j to be the capacity of the arc ( j, t).

3: Max-flow step: Update (ξ j) j∈Vu by computing a max-flow on the graph (V,E,s, t).
4: if ∃ j ∈Vu s.t. ξ j 
= γ j then
5: Denote by (s,V+) and (V−, t) the two disjoint subsets of (V,s, t) separated by the minimum

(s, t)-cut of the graph, and remove the arcs between V+ and V−. Call E+ and E− the two
remaining disjoint subsets of E corresponding to V+ and V−.

6: (ξ j) j∈V+
u
← computeFlow(V+,E+).

7: (ξ j) j∈V−
u
← computeFlow(V−,E−).

8: end if
9: Return: (ξ j) j∈Vu .

The second step tries to construct a feasible flow (ξ,ξ), satisfying additional capacity constraints
equal to γ j on arc ( j, t), and whose cost matches this lower bound; this latter problem can be cast
as a max-flow problem (Goldberg and Tarjan, 1986). If such a flow exists, the algorithm returns
ξ = γ, the cost of the flow reaches the lower bound, and is therefore optimal. If such a flow does
not exist, we have ξ 
= γ, the lower bound is not achievable, and we build a minimum (s, t)-cut of
the graph (Ford and Fulkerson, 1956) defining two disjoints sets of nodes V+ and V−; V+ is the
part of the graph which is reachable from the source (for every node j in V+, there exists a non-
saturated path from s to j), whereas all paths going from s to nodes inV− are saturated. More details
about these properties can be found at the beginning of Appendix B. At this point, it is possible to
show that the value of the optimal min-cost flow on all arcs between V+ and V− is necessary zero.
Thus, removing them yields an equivalent optimization problem, which can be decomposed into two
independent problems of smaller sizes and solved recursively by the calls to computeFlow(V+,E+)
and computeFlow(V−,E−). A formal proof of correctness of Algorithm 1 and further details are
relegated to Appendix B.

The approach of Hochbaum and Hong (1995); Gallo et al. (1989) which recasts the quadratic
min-cost flow problem as a parametric max-flow is guaranteed to have the same worst-case com-
plexity as a single max-flow algorithm. However, we have experimentally observed a significant
discrepancy between the worst case and empirical complexities for these flow problems, essentially
because the empirical cost of each max-flow is significantly smaller than its theoretical cost. Despite
the fact that the worst-case guarantees for our algorithm is weaker than theirs (up to a factor |V |), it
is more adapted to the structure of our graphs and has proven to be much faster in our experiments
(see Appendix D).10 Some implementation details are also crucial to the efficiency of the algorithm:

10. The best theoretical worst-case complexity of a max-flow is achieved by Goldberg and Tarjan (1986) and is
O
(|V ||E| log(|V |2/|E|)). Our algorithm achieves the same worst-case complexity when the cuts are well balanced—
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• Exploiting maximal connected components: When there exists no arc between two sub-
sets of V , the solution can be obtained by solving two smaller optimization problems cor-
responding to the two disjoint subgraphs. It is indeed possible to process them indepen-
dently to solve the global min-cost flow problem. To that effect, before calling the function
computeFlow(V,E), we look for maximal connected components (V1,E1), . . . ,(VN ,EN) and
call sequentially the procedure computeFlow(Vi,Ei) for i in {1, . . . ,N}.

• Efficient max-flow algorithm: We have implemented the “push-relabel” algorithm of Gold-
berg and Tarjan (1986) to solve our max-flow problems, using classical heuristics that signif-
icantly speed it up in practice; see Goldberg and Tarjan (1986) and Cherkassky and Goldberg
(1997). We use the so-called “highest-active vertex selection rule, global and gap heuris-
tics” (Goldberg and Tarjan, 1986; Cherkassky and Goldberg, 1997), which has a worst-case
complexity of O(|V |2|E|1/2) for a graph (V,E,s, t). This algorithm leverages the concept of
pre-flow that relaxes the definition of flow and allows vertices to have a positive excess.

• Using flow warm-restarts: The max-flow steps in our algorithm can be initialized with any
valid pre-flow, enabling warm-restarts. This is also a key concept in the parametric max-flow
algorithm of Gallo et al. (1989).

• Improved projection step: The first line of the procedure computeFlow can be replaced by
γ← argminγ ∑ j∈Vu

1
2(u j − γ j)

2 s.t. ∑ j∈Vu γ j ≤ λ∑g∈Vgr ηg and |γ j| ≤ λ∑g� jηg. The idea is
to build a relaxation of Equation (5) which is closer to the original problem than the one of
Equation (6), but that still can be solved in linear time. The structure of the graph will indeed
not allow ξ j to be greater than λ∑g� jηg after the max-flow step. This modified projection
step can still be computed in linear time (Brucker, 1984), and leads to better performance.

3.5 Computation of the Dual Norm

The dual norm Ω∗ of Ω, defined for any vector κ in Rp by

Ω∗(κ)� max
Ω(z)≤1

z	κ,

is a key quantity to study sparsity-inducing regularizations in many respects. For instance, dual
norms are central in working-set algorithms (Jenatton et al., 2009; Bach et al., 2011), and arise as
well when proving theoretical estimation or prediction guarantees (Negahban et al., 2009).

In our context, we use it to monitor the convergence of the proximal method through a duality
gap, hence defining a proper optimality criterion for problem (1). As a brief reminder, the duality
gap of a minimization problem is defined as the difference between the primal and dual objective
functions, evaluated for a feasible pair of primal/dual variables (see Section 5.5, Boyd and Vanden-
berghe, 2004). This gap serves as a certificate of (sub)optimality: if it is equal to zero, then the
optimum is reached, and provided that strong duality holds, the converse is true as well (see Sec-
tion 5.5, Boyd and Vandenberghe, 2004). A description of the algorithm we use in the experiments
(Beck and Teboulle, 2009) along with the integration of the computation of the duality gap is given
in Appendix C.

that is |V+| ≈ |V−| ≈ |V |/2, but we lose a factor |V | when it is not the case. The practical speed of such algorithms is
however significantly different than their theoretical worst-case complexities (see Boykov and Kolmogorov, 2004).
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We now denote by f ∗ the Fenchel conjugate of f (Borwein and Lewis, 2006), defined by
f ∗(κ) � supz[z	κ− f (z)]. The duality gap for problem (1) can be derived from standard Fenchel
duality arguments (Borwein and Lewis, 2006) and it is equal to

f (w)+λΩ(w)+ f ∗(−κ) for w,κ in Rp with Ω∗(κ)≤ λ.

Therefore, evaluating the duality gap requires to compute efficiently Ω∗ in order to find a feasible
dual variable κ (the gap is otherwise equal to +∞ and becomes non-informative). This is equivalent
to solving another network flow problem, based on the following variational formulation:

Ω∗(κ) = min
ξ∈Rp×|G |

τ s.t. ∑
g∈G

ξg = κ, and ∀g ∈ G , ‖ξg‖1 ≤ τηg with ξgj = 0 if j /∈ g. (7)

In the network problem associated with (7), the capacities on the arcs (s,g), g ∈ G , are set to τηg,
and the capacities on the arcs ( j, t), j in {1, . . . , p}, are fixed to κ j. Solving problem (7) amounts
to finding the smallest value of τ, such that there exists a flow saturating all the capacities κ j on the
arcs leading to the sink t. Equation (7) and Algorithm 2 are proven to be correct in Appendix B.

Algorithm 2 Computation of the dual norm.

input κ ∈ Rp, a set of groups G , positive weights (ηg)g∈G .
1: Build the initial graph G0 = (V0,E0,s, t) as explained in Section 3.5.
2: τ← dualNorm(V0,E0).
3: Return: τ (value of the dual norm).

Function dualNorm(V =Vu∪Vgr,E)
1: τ←(∑ j∈Vu κ j)/(∑g∈Vgr ηg) and set the capacities of arcs (s,g) to τηg for all g in Vgr.
2: Max-flow step: Update (ξ j) j∈Vu by computing a max-flow on the graph (V,E,s, t).
3: if ∃ j ∈Vu s.t. ξ j 
= κ j then
4: Define (V+,E+) and (V−,E−) as in Algorithm 1, and set τ← dualNorm(V−,E−).
5: end if
6: Return: τ.

4. Optimization with Proximal Splitting Methods

We now present proximal splitting algorithms (see Combettes and Pesquet, 2008, 2010; Tomioka
et al., 2011; Boyd et al., 2011, and references therein) for solving Equation (1). Differentiability
of f is not required here and the regularization function can either be a sum of �2- or �∞-norms.
However, we assume that:

(A) either f can be written f (w) = ∑n
i=1 f̃i(w), where the functions f̃i are such that proxγ f̃i can be

obtained in closed form for all γ> 0 and all i—that is, for all u in Rm, the following problems
admit closed form solutions: minv∈Rm

1
2‖u−v‖22+ γ f̃i(v).

(B) or f can be written f (w) = f̃ (Xw) for all w in Rp, where X in Rn×p is a design matrix, and
one knows how to efficiently compute proxγ f̃ for all γ> 0.
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It is easy to show that this condition is satisfied for the square and hinge loss functions, making it
possible to build linear SVMs with a structured sparse regularization. These assumptions are not
the same as the ones of Section 3, and the scope of the problems addressed is therefore slightly dif-
ferent. Proximal splitting methods seem indeed to offer more flexibility regarding the regularization
function, since they can deal with sums of �2-norms.11 However, proximal gradient methods, as
presented in Section 3, enjoy a few advantages over proximal splitting methods, namely: automatic
parameter tuning with line-search schemes (Nesterov, 2007), known convergence rates (Nesterov,
2007; Beck and Teboulle, 2009), and ability to provide sparse solutions (approximate solutions
obtained with proximal splitting methods often have small values, but not “true” zeros).

4.1 Algorithms

We consider a class of algorithms which leverage the concept of variable splitting (see Combettes
and Pesquet, 2010; Bertsekas and Tsitsiklis, 1989; Tomioka et al., 2011). The key is to introduce
additional variables zg inR|g|, one for every group g in G , and equivalently reformulate Equation (1)
as

min
w∈Rp

zg∈R|g| for g∈G
f (w)+λ ∑

g∈G
ηg‖zg‖ s.t. ∀g ∈ G , zg = wg, (8)

The issue of overlapping groups is removed, but new constraints are added, and as in Section 3, the
method introduces additional variables which induce a memory cost of O(∑g∈G |g|).

To solve this problem, it is possible to use the so-called alternating direction method of multi-
pliers (ADMM) (see Combettes and Pesquet, 2010; Bertsekas and Tsitsiklis, 1989; Tomioka et al.,
2011; Boyd et al., 2011).12 It introduces dual variables νg in R|g| for all g in G , and defines the
augmented Lagrangian:

L
(
w,(zg)g∈G ,(νg)g∈G

)
� f (w)+ ∑

g∈G

[
ληg‖zg‖+νg	(zg−wg)+ γ

2
‖zg−wg‖22

]
,

where γ> 0 is a parameter. It is easy to show that solving Equation (8) amounts to finding a saddle-
point of the augmented Lagrangian.13 The ADMM algorithm finds such a saddle-point by iterating
between the minimization of L with respect to each primal variable, keeping the other ones fixed,
and gradient ascent steps with respect to the dual variables. More precisely, it can be summarized as:

1. Minimize L with respect to w, keeping the other variables fixed.

11. We are not aware of any efficient algorithm providing the exact solution of the proximal operator associated to a sum
of �2-norms, which would be necessary for using (accelerated) proximal gradient methods. An iterative algorithm
could possibly be used to compute it approximately (e.g., see Jenatton et al., 2010a, 2011), but such a procedure
would be computationally expensive and would require to be able to deal with approximate computations of the
proximal operators (e.g., see Combettes and Pesquet, 2010; Schmidt et al., 2011, and discussions therein). We have
chosen not to consider this possibility in this paper.

12. This method is used by Sprechmann et al. (2010) for computing the proximal operator associated to hierarchical
norms, and independently in the same context as ours by Boyd et al. (2011) and Qin and Goldfarb (2011).

13. The augmented Lagrangian is in fact the classical Lagrangian (see Boyd and Vandenberghe, 2004) of the following
optimization problem which is equivalent to Equation (8):

min
w∈Rp,(zg∈R|g|)g∈G

f (w)+λ ∑
g∈G

ηg‖zg‖+ γ
2
‖zg−wg‖22 s.t. ∀g ∈ G , zg = wg.
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2. Minimize L with respect to the zg’s, keeping the other variables fixed. The solution can be
obtained in closed form: for all g in G , zg ← prox ληg

γ ‖.‖[wg−
1
γ ν

g].

3. Take a gradient ascent step on L with respect to the νg’s: νg ← νg+ γ(zg−wg).

4. Go back to step 1.

Such a procedure is guaranteed to converge to the desired solution for all value of γ > 0 (however,
tuning γ can greatly influence the convergence speed), but solving efficiently step 1 can be difficult.
To cope with this issue, we propose two variations exploiting assumptions (A) and (B).

4.1.1 SPLITTING THE LOSS FUNCTION f

We assume condition (A)—that is, we have f (w) = ∑n
i=1 f̃i(w). For example, when f is the square

loss function f (w) = 1
2‖y−Xw‖22, where X in Rn×p is a design matrix and y is in Rn, we would

define for all i in {1, . . . ,n} the functions f̃i : R → R such that f̃i(w) � 1
2(yi− x	i w)2, where xi is

the i-th row of X.
We now introduce new variables vi in Rp for i = 1, . . . ,n, and replace f (w) in Equation (8) by

∑n
i=1 f̃i(v

i), with the additional constraints that vi = w. The resulting equivalent optimization prob-
lem can now be tackled using the ADMM algorithm, following the same methodology presented
above. It is easy to show that every step can be obtained efficiently, as long as one knows how to
compute the proximal operator associated to the functions f̃i in closed form. This is in fact the case
for the square and hinge loss functions, where n is the number of training points. The main problem
of this strategy is the possible high memory usage it requires when n is large.

4.1.2 DEALING WITH THE DESIGN MATRIX

If we assume condition (B), another possibility consists of introducing a new variable v in Rn,
such that one can replace the function f (w) = f̃ (Xw) by f̃ (v) in Equation (8) with the additional
constraint v=Xw. Using directly the ADMM algorithm to solve the corresponding problem implies
adding a term κ	(v−Xw)+ γ

2‖v−Xw‖22 to the augmented Lagrangian L , where κ is a new dual
variable. The minimization of L with respect to v is now obtained by v← prox1

γ f̃
[Xw−κ], which

is easy to compute according to (B). However, the design matrix X in the quadratic term makes the
minimization of L with respect to w more difficult. To overcome this issue, we adopt a strategy
presented by Zhang et al. (2011), which replaces at iteration k the quadratic term γ

2‖v−Xw‖22 in the
augmented Lagrangian by an additional proximity term: γ

2‖v−Xw‖22+ γ
2‖w−wk‖2Q, where wk is

the current estimate of w, and ‖w−wk‖2Q = (w−wk)	Q(w−wk), whereQ is a symmetric positive
definite matrix. By choosing Q� δI−X	X, with δ large enough, minimizing L with respect to w
becomes simple, while convergence to the solution is still ensured. More details can be found in
Zhang et al. (2011).

5. Applications and Experiments

In this section, we present various experiments demonstrating the applicability and the benefits of
our methods for solving large-scale sparse and structured regularized problems.

2696



CONVEX AND NETWORK FLOW OPTIMIZATION FOR STRUCTURED SPARSITY

5.1 Speed Benchmark

We consider a structured sparse decomposition problem with overlapping groups of �∞-norms, and
compare the proximal gradient algorithm FISTA (Beck and Teboulle, 2009) with our proximal op-
erator presented in Section 3 (referred to as ProxFlow), two variants of proximal splitting methods,
(ADMM) and (Lin-ADMM) respectively presented in Section 4.1.1 and 4.1.2, and two generic
optimization techniques, namely a subgradient descent (SG) and an interior point method,14 on a
regularized linear regression problem. SG, ProxFlow, ADMM and Lin-ADMM are implemented
in C++.15 Experiments are run on a single-core 2.8 GHz CPU. We consider a design matrix X in
Rn×p built from overcomplete dictionaries of discrete cosine transforms (DCT), which are naturally
organized on one- or two-dimensional grids and display local correlations. The following families
of groups G using this spatial information are thus considered: (1) every contiguous sequence of
length 3 for the one-dimensional case, and (2) every 3×3-square in the two-dimensional setting. We
generate vectors y in Rn according to the linear model y=Xw0+ε, where ε∼N (0,0.01‖Xw0‖22).
The vector w0 has about 20% percent nonzero components, randomly selected, while respecting the
structure of G , and uniformly generated in [−1,1].

In our experiments, the regularization parameter λ is chosen to achieve the same level of spar-
sity (20%). For SG, ADMM and Lin-ADMM, some parameters are optimized to provide the low-
est value of the objective function after 1000 iterations of the respective algorithms. For SG,
we take the step size to be equal to a/(k+ b), where k is the iteration number, and (a,b) are
the pair of parameters selected in {10−3, . . . ,10}×{102,103,104}. Note that a step size of the
form a/(

√
t + b) is also commonly used in subgradient descent algorithms. In the context of hi-

erarchical norms, both choices have led to similar results (Jenatton et al., 2011). The parameter γ
for ADMM is selected in {10−2, . . . ,102}. The parameters (γ,δ) for Lin-ADMM are selected in
{10−2, . . . ,102}×{10−1, . . . ,108}. For interior point methods, since problem (1) can be cast either
as a quadratic (QP) or as a conic program (CP), we show in Figure 2 the results for both formu-
lations. On three problems of different sizes, with (n, p) ∈ {(100,103),(1024,104),(1024,105)},
our algorithms ProxFlow, ADMM and Lin-ADMM compare favorably with the other methods, (see
Figure 2), except for ADMM in the large-scale setting which yields an objective function value
similar to that of SG after 104 seconds. Among ProxFlow, ADMM and Lin-ADMM, ProxFlow
is consistently better than Lin-ADMM, which is itself better than ADMM. Note that for the small
scale problem, the performance of ProxFlow and Lin-ADMM is similar. In addition, note that QP,
CP, SG, ADMM and Lin-ADMM do not obtain sparse solutions, whereas ProxFlow does.16

5.2 Wavelet Denoising with Structured Sparsity

We now illustrate the results of Section 3, where a single large-scale proximal operator (p≈ 250000)
associated to a sum of �∞-norms has to be computed. We choose an image denoising task with
an orthonormal wavelet basis, following an experiment similar to one proposed in Jenatton et al.
(2011). Specifically, we consider the following formulation

min
w∈Rp

1
2
‖y−Xw‖22+λΩ(w),

14. In our simulations, we use the commercial software Mosek, http://www.mosek.com/
15. Our implementation of ProxFlow is available at http://www.di.ens.fr/willow/SPAMS/.
16. To reduce the computational cost of this experiment, the curves reported are the results of one single run. Similar

types of experiments with several runs have shown very small variability (Bach et al., 2011).
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Figure 2: Speed comparisons: distance to the optimal primal value versus CPU time (log-log scale).
Due to the computational burden, QP and CP could not be run on every problem.

where y in Rp is a noisy input image, w represents wavelets coefficients, X in Rp×p is an orthonor-
mal wavelet basis, Xw is the estimate of the denoised image, and Ω is a sparsity-inducing norm.
Since here the basis is orthonormal, solving the decomposition problem boils down to computing
w� = proxλΩ[X

	y]. This makes of Algorithm 1 a good candidate to solve it when Ω is a sum of
�∞-norms. We compare the following candidates for the sparsity-inducing norms Ω:

• the �1-norm, leading to the wavelet soft-thresholding of Donoho and Johnstone (1995).

• a sum of �∞-norms with a hierarchical group structure adapted to the wavelet coefficients, as
proposed in Jenatton et al. (2011). Considering a natural quad-tree for wavelet coefficients
(see Mallat, 1999), this norm takes the form of Equation (2) with one group per wavelet
coefficient that contains the coefficient and all its descendants in the tree. We call this norm
Ωtree.

• a sum of �∞-norms with overlapping groups representing 2× 2 spatial neighborhoods in the
wavelet domain. This regularization encourages neighboring wavelet coefficients to be set
to zero together, which was also exploited in the past in block-thresholding approaches for
wavelet denoising (Cai, 1999). We call this norm Ωgrid.

We consider Daubechies3 wavelets (see Mallat, 1999) for the matrix X, use 12 classical standard
test images,17 and generate noisy versions of them corrupted by a white Gaussian noise of vari-
ance σ2. For each image, we test several values of λ = 2

i
4σ

√
log p, with i taken in the range

{−15,−14, . . . ,15}. We then keep the parameter λ giving the best reconstruction error on average
on the 12 images. The factor σ

√
log p is a classical heuristic for choosing a reasonable regulariza-

tion parameter (see Mallat, 1999). We provide reconstruction results in terms of PSNR in Table 1.18

Unlike Jenatton et al. (2011), who set all the weights ηg in Ω equal to one, we tried exponential
weights of the form ηg = ρk, with k being the depth of the group in the wavelet tree, and ρ is taken
in {0.25,0.5,1,2,4}. As for λ, the value providing the best reconstruction is kept. The wavelet
transforms in our experiments are computed with the matlabPyrTools software.19 Interestingly, we
observe in Table 1 that the results obtained with Ωgrid are significantly better than those obtained

17. These images are used in classical image denoising benchmarks. See Mairal et al. (2009).
18. Denoting by MSE the mean-squared-error for images whose intensities are between 0 and 255, the PSNR is defined

as PSNR= 10log10(255
2/MSE) and is measured in dB. A gain of 1dB reduces the MSE by approximately 20%.

19. The matlabPyrTools can be found at http://www.cns.nyu.edu/$\sim$eero/steerpyr/.
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PSNR IPSNR vs. �1
σ �1 Ωtree Ωgrid �1 Ωtree Ωgrid
5 35.67 35.98 36.15 0.00± .0 0.31± .18 0.48± .25
10 31.00 31.60 31.88 0.00± .0 0.61± .28 0.88± .28
25 25.68 26.77 27.07 0.00± .0 1.09± .32 1.38± .26
50 22.37 23.84 24.06 0.00± .0 1.47± .34 1.68± .41
100 19.64 21.49 21.56 0.00± .0 1.85± .28 1.92± .29

Table 1: PSNR measured for the denoising of 12 standard images when the regularization function
is the �1-norm, the tree-structured norm Ωtree, and the structured norm Ωgrid, and improvement in
PSNR compared to the �1-norm (IPSNR). Best results for each level of noise and each wavelet type
are in bold. The reported values are averaged over 5 runs with different noise realizations.

with Ωtree, meaning that encouraging spatial consistency in wavelet coefficients is more effective
than using a hierarchical coding. We also note that our approach is relatively fast, despite the high
dimension of the problem. Solving exactly the proximal problem with Ωgrid for an image with
p = 512× 512 = 262144 pixels (and therefore approximately the same number of groups) takes
approximately ≈ 4−6 seconds on a single core of a 3.07GHz CPU.

5.3 CUR-like Matrix Factorization

In this experiment, we show how our tools can be used to perform the so-called CUR matrix decom-
position (Mahoney and Drineas, 2009). It consists of a low-rank approximation of a data matrix X
in Rn×p in the form of a product of three matrices—that is, X≈CUR. The particularity of the CUR
decomposition lies in the fact that the matricesC∈Rn×c andR∈Rr×p are constrained to be respec-
tively a subset of c columns and r rows of the original matrix X. The third matrix U ∈ Rc×r is then
given by C+XR+, where A+ denotes a Moore-Penrose generalized inverse of the matrix A (Horn
and Johnson, 1990). Such a matrix factorization is particularly appealing when the interpretability
of the results matters (Mahoney and Drineas, 2009). For instance, when studying gene-expression
data sets, it is easier to gain insight from the selection of actual patients and genes, rather than from
linear combinations of them.

In Mahoney and Drineas (2009), CUR decompositions are computed by a sampling procedure
based on the singular value decomposition ofX. In a recent work, Bien et al. (2010) have shown that
partial CUR decompositions, that is, the selection of either rows or columns of X, can be obtained
by solving a convex program with a group-Lasso penalty. We propose to extend this approach to
the simultaneous selection of both rows and columns of X, with the following convex problem:

min
W∈Rp×n

1
2
‖X−XWX‖2F+λrow

n

∑
i=1

‖Wi‖∞+λcol
p

∑
j=1

‖W j‖∞. (9)

In this formulation, the two sparsity-inducing penalties controlled by the parameters λrow and λcol
set to zero some entire rows and columns of the solutions of problem (9). Now, let us denote byWI J

in R|I|×|J| the submatrix of W reduced to its nonzero rows and columns, respectively indexed by
I ⊆ {1, . . . , p} and J ⊆ {1, . . . ,n}. We can then readily identify the three components of the CUR
decomposition of X, namely

XWX= CWI JR≈ X.
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Problem (9) has a smooth convex data-fitting term and brings into play a sparsity-inducing norm
with overlapping groups of variables (the rows and the columns of W). As a result, it is a partic-
ular instance of problem (1) that can therefore be handled with the optimization tools introduced
in this paper. We now compare the performance of the sampling procedure from Mahoney and
Drineas (2009) with our proposed sparsity-based approach. To this end, we consider the four gene-
expression data sets 9 Tumors, Brain Tumors1, Leukemia1 and SRBCT, with respective dimensions
(n, p)∈ {(60,5727),(90,5921),(72,5328),(83,2309)}.20 In the sequel, the matrix X is normalized
to have unit Frobenius-norm while each of its columns is centered. To begin with, we run our ap-
proach21 over a grid of values for λrow and λcol in order to obtain solutions with different sparsity
levels, that is, ranging from |I|= p and |J|= n down to |I|= |J|= 0. For each pair of values [|I|, |J|],
we then apply the sampling procedure from Mahoney and Drineas (2009). Finally, the variance
explained by the CUR decompositions is reported in Figure 3 for both methods. Since the sampling
approach involves some randomness, we show the average and standard deviation of the results
based on five initializations. The conclusions we can draw from the experiments match the ones
already reported in Bien et al. (2010) for the partial CUR decomposition. We can indeed see that
both schemes perform similarly. However, our approach has the advantage not to be randomized,
which can be less disconcerting in the practical perspective of analyzing a single run of the algo-
rithm. It is finally worth being mentioned that the convex approach we develop here is flexible and
can be extended in different ways. For instance, we can imagine to add further low-rank/sparsity
constraints onW thanks to sparsity-promoting convex regularizations.

5.4 Background Subtraction

Following Cehver et al. (2008); Huang et al. (2009), we consider a background subtraction task.
Given a sequence of frames from a fixed camera, we try to segment out foreground objects in a new
image. If we denote by y ∈ Rn this image composed of n pixels, we model y as a sparse linear
combination of p other images X ∈ Rn×p, plus an error term e in Rn, that is, y ≈ Xw+ e for some
sparse vector w in Rp. This approach is reminiscent of Wright et al. (2009a) in the context of face
recognition, where e is further made sparse to deal with small occlusions. The term Xw accounts
for background parts present in both y and X, while e contains specific, or foreground, objects in y.
The resulting optimization problem is given by

min
w∈Rp,e∈Rn

1
2
‖y−Xw−e‖22+λ1‖w‖1+λ2{‖e‖1+Ω(e)}, with λ1,λ2 ≥ 0. (10)

In this formulation, the only �1-norm penalty does not take into account the fact that neighboring
pixels in y are likely to share the same label (background or foreground), which may lead to scattered
pieces of foreground and background regions (Figure 4). We therefore put an additional structured
regularization term Ω on e, where the groups in G are all the overlapping 3×3-squares on the
image. For the sake of comparison, we also consider the regularization Ω̃ where the groups are
non-overlapping 3×3-squares.

This optimization problem can be viewed as an instance of problem (1), with the particular
design matrix [X, I] in Rn×(p+n), defined as the columnwise concatenation of X and the identity

20. The data sets are freely available at http://www.gems-system.org/.
21. More precisely, since the penalties in problem (9) shrink the coefficients ofW, we follow a two-step procedure: We

first run our approach to determine the sets of nonzero rows and columns, and then computeWI J = C+XR+.
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Figure 3: Explained variance of the CUR decompositions obtained for our sparsity-based approach
and the sampling scheme from Mahoney and Drineas (2009). For the latter, we report the average
and standard deviation of the results based on five initializations. From left to right and top to
bottom, the curves correspond to the data sets 9 Tumors, Brain Tumors1, Leukemia1 and SRBCT.

matrix. As a result, we could directly apply the same procedure as the one used in the other ex-
periments. Instead, we further exploit the specific structure of problem (10): Notice that for a fixed
vector e, the optimization with respect to w is a standard Lasso problem (with the vector of obser-
vations y− e),22 while for w fixed, we simply have a proximal problem associated to the sum of
Ω and the �1-norm. Alternating between these two simple and computationally inexpensive steps,
that is, optimizing with respect to one variable while keeping the other one fixed, is guaranteed to
converge to a solution of (10).23 In our simulations, this alternating scheme has led to a significant
speed-up compared to the general procedure.

A data set with hand-segmented images is used to illustrate the effect of Ω.24 For simplicity,
we use a single regularization parameter, that is, λ1 = λ2, chosen to maximize the number of pixels

22. Since successive frames might not change much, the columns of X exhibit strong correlations. Consequently, we use
the LARS algorithm (Efron et al., 2004) whose complexity is independent of the level of correlation in X.

23. More precisely, the convergence is guaranteed since the non-smooth part in (10) is separable with respect to w and e
(Tseng, 2001). The result from Bertsekas (1999) may also be applied here, after reformulating (10) as a smooth
convex problem under separable conic constraints.

24. Data set can be found at http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/
testimages.htm.
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matching the ground truth. We consider p = 200 images with n = 57600 pixels (i.e., a resolution
of 120×160, times 3 for the RGB channels). As shown in Figure 4, adding Ω improves the back-
ground subtraction results for the two tested images, by removing the scattered artifacts due to the
lack of structural constraints of the �1-norm, which encodes neither spatial nor color consistency.
The group sparsity regularization Ω̃ also improves upon the �1-norm but introduces block-artefacts
corresponding to the non-overlapping group structure.

5.5 Topographic Dictionary Learning

Let us consider a setY= [y1, . . . ,yn] inRm×n of n signals of dimensionm. The problem of dictionary
learning, originally introduced by Olshausen and Field (1996), is a matrix factorization problem
which aims at representing these signals as linear combinations of dictionary elements that are the
columns of a matrix X = [x1, . . . ,xp] in Rm×p. More precisely, the dictionary X is learned along
with a matrix of decomposition coefficients W = [w1, . . . ,wn] in Rp×n, so that yi ≈ Xwi for every
signal yi. Typically, n is large compared to m and p. In this experiment, we consider for instance a
database of n = 100000 natural image patches of size m = 12× 12 pixels, for dictionaries of size
p = 400. Adapting the dictionary to specific data has proven to be useful in many applications,
including image restoration (Elad and Aharon, 2006; Mairal et al., 2009), learning image features
in computer vision (Kavukcuoglu et al., 2009). The resulting optimization problem can be written

min
X∈C ,W∈Rp×n

n

∑
i=1

1
2
‖yi−Xwi‖22+λΩ(wi), (11)

where C is a convex set of matrices in Rm×p whose columns have �2-norms less than or equal to
one,25 λ is a regularization parameter andΩ is a sparsity-inducing norm. WhenΩ is the �1-norm, we
obtain a classical formulation, which is known to produce dictionary elements that are reminiscent
of Gabor-like functions, when the columns of Y are whitened natural image patches (Olshausen and
Field, 1996).

Another line of research tries to put a structure on decomposition coefficients instead of consid-
ering them as independent. Jenatton et al. (2010a, 2011) have for instance embedded dictionary ele-
ments into a tree, by using a hierarchical norm (Zhao et al., 2009) for Ω. This model encodes a rule
saying that a dictionary element can be used in the decomposition of a signal only if its ancestors in
the tree are used as well. In the related context of independent component analysis (ICA), Hyvärinen
et al. (2001) have arranged independent components (corresponding to dictionary elements) on a
two-dimensional grid, and have modelled spatial dependencies between them. When learned on
whitened natural image patches, this model exhibits “Gabor-like” functions which are smoothly or-
ganized on the grid, which the authors call a topographic map. As shown by Kavukcuoglu et al.
(2009), such a result can be reproduced with a dictionary learning formulation, using a structured
norm for Ω. Following their formulation, we organize the p dictionary elements on a

√
p×√

p
grid, and consider p overlapping groups that are 3×3 or 4×4 spatial neighborhoods on the grid (to
avoid boundary effects, we assume the grid to be cyclic). We define Ω as a sum of �2-norms over
these groups, since the �∞-norm has proven to be less adapted for this task. Another formulation
achieving a similar effect was also proposed by Garrigues and Olshausen (2010) in the context of
sparse coding with a probabilistic model.

25. Since the quadratic term in Equation (11) is invariant by multiplying X by a scalar andW by its inverse, constraining
the norm of X has proven to be necessary in practice to prevent it from being arbitrarily large.
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(a) Original frame. (b) Estimated background with Ω. (c) �1, 87.1%.

(d) �1+ Ω̃ (non-overlapping), 96.3%. (e) �1+Ω (overlapping), 98.9%. (f) Ω, another frame.

(g) Original frame. (h) Estimated background with Ω. (i) �1, 90.5%.

(j) �1+ Ω̃ (non-overlapping), 92.6%. (k) �1+Ω (overlapping), 93.8%. (l) Ω, another frame.

Figure 4: Background subtraction results. For two videos, we present the original image y, the
estimated background (i.e., Xw) reconstructed by our method, and the foreground (i.e., the sparsity
pattern of e as a mask on the original image) detected with �1, �1+ Ω̃ (non-overlapping groups) and
with �1+Ω. Figures (f) and (l) present another foreground found withΩ, on a different image, with
the same values of λ1,λ2 as for the previous image. Best seen in color.
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Figure 5: Topographic dictionaries with 400 elements, learned on a database of 12× 12 whitened
natural image patches with 3×3 (left) and 4×4 (right) cyclic overlapping groups.

As Kavukcuoglu et al. (2009) and Olshausen and Field (1996), we consider a projected stochas-
tic gradient descent algorithm for learning X—that is, at iteration t, we randomly draw one signal yt

from the database Y, compute a sparse code wt = argminw∈Rp
1
2‖yt −Xwt‖22+ λΩ(w), and up-

date X as follows: X←ΠC [X−ρ(Xwt −yt)wt	], where ρ is a fixed learning rate, and ΠC denotes
the operator performing orthogonal projections onto the set C . In practice, to further improve the
performance, we use a mini-batch, drawing 500 signals at eatch iteration instead of one (see Mairal
et al., 2010a). Our approach mainly differs from Kavukcuoglu et al. (2009) in the way the sparse
codes wt are obtained. Whereas Kavukcuoglu et al. (2009) uses a subgradient descent algorithm to
solve them, we use the proximal splitting methods presented in Section 4. The natural image patches
we use are also preprocessed: They are first centered by removing their mean value (often called
DC component), and whitened, as often done in the literature (Hyvärinen et al., 2001; Garrigues
and Olshausen, 2010). The parameter λ is chosen such that in average ‖yi−Xwi‖2 ≈ 0.4‖yi‖2 for
all new patch considered by the algorithm. Examples of obtained results are shown on Figure 5, and
exhibit similarities with the topographic maps of Hyvärinen et al. (2001). Note that even though
Equation (11) is convex with respect to each variable X and W when one fixes the other, it is not
jointly convex, and one can not guarantee our method to find a global optimum. Despite its intrinsic
non-convex nature, local minima obtained with various optimization procedures have been shown
to be good enough for many tasks (Elad and Aharon, 2006; Mairal et al., 2009; Kavukcuoglu et al.,
2009).

5.6 Multi-Task Learning of Hierarchical Structures

As mentioned in the previous section, Jenatton et al. (2010a) have recently proposed to use a hierar-
chical structured norm to learn dictionaries of natural image patches. In Jenatton et al. (2010a), the
dictionary elements are embedded in a predefined tree T , via a particular instance of the structured
norm Ω, which we refer to it as Ωtree, and call G the underlying set of groups. In this case, using
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the same notation as in Section 5.5, each signal yi admits a sparse decomposition in the form of a
subtree of dictionary elements.

Inspired by ideas from multi-task learning (Obozinski et al., 2010), we propose to learn the
tree structure T by pruning irrelevant parts of a larger initial tree T0. We achieve this by using an
additional regularization term Ωjoint across the different decompositions, so that subtrees of T0 will
simultaneously be removed for all signals yi. With the notation from Section 5.5, the approach of
Jenatton et al. (2010a) is then extended by the following formulation:

min
X∈C ,W∈Rp×n

1
n

n

∑
i=1

[1
2
‖yi−Xwi‖22+λ1Ωtree(wi)

]
+λ2Ωjoint(W), (12)

whereW� [w1, . . . ,wn] is the matrix of decomposition coefficients inRp×n. The new regularization
term operates on the rows ofW and is defined as Ωjoint(W)�∑g∈Gmaxi∈{1,...,n} |wig|.26 The overall
penalty onW, which results from the combination of Ωtree and Ωjoint, is itself an instance of Ω with
general overlapping groups, as defined in Equation (2).

To address problem (12), we use the same optimization scheme as Jenatton et al. (2010a), that
is, alternating between X and W, fixing one variable while optimizing with respect to the other.
The task we consider is the denoising of natural image patches, with the same data set and protocol
as Jenatton et al. (2010a). We study whether learning the hierarchy of the dictionary elements
improves the denoising performance, compared to standard sparse coding (i.e., when Ωtree is the
�1-norm and λ2 = 0) and the hierarchical dictionary learning of Jenatton et al. (2010a) based on
predefined trees (i.e., λ2 = 0). The dimensions of the training set—50000 patches of size 8×8
for dictionaries with up to p= 400 elements—impose to handle extremely large graphs, with |E| ≈
|V | ≈ 4.107. Since problem (12) is too large to be solved exactly sufficiently many times to select the
regularization parameters (λ1,λ2) rigorously, we use the following heuristics: we optimize mostly
with the currently pruned tree held fixed (i.e., λ2 = 0), and only prune the tree (i.e., λ2 > 0) every
few steps on a random subset of 10000 patches. We consider the same hierarchies as in Jenatton
et al. (2010a), involving between 30 and 400 dictionary elements. The regularization parameter λ1
is selected on the validation set of 25000 patches, for both sparse coding (Flat) and hierarchical
dictionary learning (Tree). Starting from the tree giving the best performance (in this case the
largest one, see Figure 6), we solve problem (12) following our heuristics, for increasing values
of λ2. As shown in Figure 6, there is a regime where our approach performs significantly better than
the two other compared methods. The standard deviation of the noise is 0.2 (the pixels have values
in [0,1]); no significant improvements were observed for lower levels of noise. Our experiments
use the algorithm of Beck and Teboulle (2009) based on our proximal operator, with weights ηg set
to 1. We present this algorithm in more details in Appendix C.

6. Conclusion

We have presented new optimization methods for solving sparse structured problems involving sums
of �2- or �∞-norms of any (overlapping) groups of variables. Interestingly, this sheds new light on
connections between sparse methods and the literature of network flow optimization. In particular,
the proximal operator for the sum of �∞-norms can be cast as a specific form of quadratic min-cost
flow problem, for which we proposed an efficient and simple algorithm.

26. The simplified case where Ωtree and Ωjoint are the �1- and mixed �1/�2-norms (Yuan and Lin, 2006) corresponds to
Sprechmann et al. (2010).
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Figure 6: Left: Hierarchy obtained by pruning a larger tree of 76 elements. Right: Mean square
error versus dictionary size. The error bars represent two standard deviations, based on three runs.

In addition to making it possible to resort to accelerated gradient methods, an efficient compu-
tation of the proximal operator offers more generally a certain modularity, in that it can be used
as a building-block for other optimization problems. A case in point is dictionary learning where
proximal problems come up and have to be solved repeatedly in an inner-loop. Interesting future
work includes the computation of other structured norms such as the one introduced by Jacob et al.
(2009), or total-variation based penalties, whose proximal operators are also based on minimum
cost flow problems (Chambolle and Darbon, 2009). Several experiments demonstrate that our al-
gorithm can be applied to a wide class of learning problems, which have not been addressed before
with convex sparse methods.
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Appendix A. Equivalence to Canonical Graphs

Formally, the notion of equivalence between graphs can be summarized by the following lemma:

Lemma 4 (Equivalence to canonical graphs.)
Let G=(V,E,s, t) be the canonical graph corresponding to a group structureG . Let G′ =(V,E ′,s, t)
be a graph sharing the same set of vertices, source and sink as G, but with a different arc set E ′. We
say that G′ is equivalent to G if and only if the following conditions hold:

• Arcs of E ′ outgoing from the source are the same as in E, with the same costs and capacities.
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• Arcs of E ′ going to the sink are the same as in E, with the same costs and capacities.

• For every arc (g, j) in E, with (g, j) in Vgr×Vu, there exists a unique path in E ′ from g to j
with zero costs and infinite capacities on every arc of the path.

• Conversely, if there exists a path in E ′ between a vertex g in Vgr and a vertex j in Vu, then
there exists an arc (g, j) in E.

Then, the cost of the optimal min-cost flow on G and G′ are the same. Moreover, the values of the
optimal flow on the arcs ( j, t), j in Vu, are the same on G and G′.

Proof We first notice that on both G and G′, the cost of a flow on the graph only depends on the
flow on the arcs ( j, t), j in Vu, which we have denoted by ξ in E.

We will prove that finding a feasible flow π on G with a cost c(π) is equivalent to finding a
feasible flow π′ on G′ with the same cost c(π) = c(π′). We now use the concept of path flow, which
is a flow vector in G carrying the same positive value on every arc of a directed path between two
nodes ofG. It intuitively corresponds to sending a positive amount of flow along a path of the graph.

According to the definition of graph equivalence introduced in the Lemma, it is easy to show
that there is a bijection between the arcs in E, and the paths in E ′ with positive capacities on every
arc. Given now a feasible flow π in G, we build a feasible flow π′ on G′ which is a sum of path
flows. More precisely, for every arc a in E, we consider its equivalent path in E ′, with a path flow
carrying the same amount of flow as a. Therefore, each arc a′ in E ′ has a total amount of flow that
is equal to the sum of the flows carried by the path flows going over a′. It is also easy to show that
this construction builds a flow on G′ (capacity and conservation constraints are satisfied) and that
this flow π′ has the same cost as π, that is, c(π) = c(π′).

Conversely, given a flow π′ on G′, we use a classical path flow decomposition (see Bertsekas,
1998, Proposition 1.1), saying that there exists a decomposition of π′ as a sum of path flows in E ′.
Using the bijection described above, we know that each path in the previous sums corresponds to a
unique arc in E. We now build a flow π in G, by associating to each path flow in the decomposition
of π′, an arc in E carrying the same amount of flow. The flow of every other arc in E is set to zero.
It is also easy to show that this builds a valid flow in G that has the same cost as π′.

Appendix B. Convergence Analysis

We show in this section the correctness of Algorithm 1 for computing the proximal operator, and of
Algorithm 2 for computing the dual norm Ω�.

B.1 Computation of the Proximal Operator

We first prove that our algorithm converges and that it finds the optimal solution of the proximal
problem. This requires that we introduce the optimality conditions for problem (4) derived from
Jenatton et al. (2010a, 2011) since our convergence proof essentially checks that these conditions
are satisfied upon termination of the algorithm.

Lemma 5 (Optimality conditions of the problem (4) from Jenatton et al. 2010a, 2011)
The primal-dual variables (w,ξ) are respectively solutions of the primal (3) and dual problems (4)
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if and only if the dual variable ξ is feasible for the problem (4) and

w= u−∑g∈G ξ
g,

∀g ∈ G ,

{
w	
g ξ

g
g = ‖wg‖∞‖ξg‖1 and ‖ξg‖1 = ληg,

or wg = 0.

Note that these optimality conditions provide an intuitive view of our min-cost flow problem.
Solving the min-cost flow problem is equivalent to sending the maximum amount of flow in the
graph under the capacity constraints, while respecting the rule that the flow coming from a group g
should always be directed to the variables u j with maximum residual u j−∑g∈G ξ

g
j . This point can

be more formaly seen by noticing that one of the optimality conditions above corresponds to the
case of equality in the �1/�∞ Hölder inequality.

Before proving the convergence and correctness of our algorithm, we also recall classical prop-
erties of the min capacity cuts, which we intensively use in the proofs of this paper. The procedure
computeFlow of our algorithm finds a minimum (s, t)-cut of a graph G = (V,E,s, t), dividing the
setV into two disjoint partsV+ andV−. V+ is by construction the sets of nodes inV such that there
exists a non-saturating path from s to V , while all the paths from s to V− are saturated. Conversely,
arcs fromV+ to t are all saturated, whereas there can be non-saturated arcs fromV− to t. Moreover,
the following properties, which are illustrated on Figure 7, hold

• There is no arc going from V+ to V−. Otherwise the value of the cut would be infinite (arcs
inside V have infinite capacity by construction of our graph).

• There is no flow going from V− to V+ (see Bertsekas, 1998).

• The cut goes through all arcs going from V+ to t, and all arcs going from s to V−.

s

g

ξg1+ξ
g
2<ληg

V+ h

ξh2=ληh

V−

u2

0ξg2

u1

ξg1

u3

ξh3

t

ξ1=γ1 ξ2=γ2 ξ3<γ3

Figure 7: Cut computed by our algorithm. V+=V+
u ∪V+

gr , with V
+
gr ={g}, V+

u ={1,2}, and V−=
V−
u ∪V−

gr , with V
−
gr ={h}, V−

u ={3}. Arcs going from s to V− are saturated, as well as arcs going
from V+ to t. Saturated arcs are in bold. Arcs with zero flow are dotted.
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Recall that we assume (cf. Section 3.3) that the scalars u j are all non negative, and that we add
non-negativity constraints on ξ. With the optimality conditions of Lemma 5 in hand, we can show
our first convergence result.

Proposition 6 (Convergence of Algorithm 1)
Algorithm 1 converges in a finite and polynomial number of operations.

Proof Our algorithm splits recursively the graph into disjoints parts and processes each part recur-
sively. The processing of one part requires an orthogonal projection onto an �1-ball and a max-flow
algorithm, which can both be computed in polynomial time. To prove that the procedure converges,
it is sufficient to show that when the procedure computeFlow is called for a graph (V,E,s, t) and
computes a cut (V+,V−), then the components V+ and V− are both non-empty.

Suppose for instance that V−= /0. In this case, the capacity of the min-cut is equal to ∑ j∈Vu γ j,
and the value of the max-flow is ∑ j∈Vu ξ j. Using the classical max-flow/min-cut theorem (Ford and
Fulkerson, 1956), we have equality between these two terms. Since, by definition of both γ and ξ,
we have for all j in Vu, ξ j ≤ γ j, we obtain a contradiction with the existence of j in Vu such that

ξ j 
= γ j.

Conversely, suppose now that V+= /0. Then, the value of the max-flow is still ∑ j∈Vu ξ j, and
the value of the min-cut is λ∑g∈Vgr ηg. Using again the max-flow/min-cut theorem, we have that

∑ j∈Vu ξ j = λ∑g∈Vgr ηg. Moreover, by definition of γ, we also have ∑ j∈Vu ξ j ≤∑ j∈Vu γ j ≤ λ∑g∈Vgr ηg,
leading to a contradiction with the existence of j in Vu satisfying ξ j 
= γ j. We remind the reader of

the fact that such a j ∈ Vu exists since the cut is only computed when the current estimate ξ is not
optimal yet. This proof holds for any graph that is equivalent to the canonical one.

After proving the convergence, we prove that the algorithm is correct with the next proposition.

Proposition 7 (Correctness of Algorithm 1)
Algorithm 1 solves the proximal problem of Equation (3).

Proof For a group structure G , we first prove the correctness of our algorithm if the graph used is
its associated canonical graph that we denote G0 = (V0,E0,s, t). We proceed by induction on the
number of nodes of the graph. The induction hypothesis H (k) is the following:

For all canonical graphs G = (V = Vu ∪Vgr,E,s, t) associated with a group structure GV with
weights (ηg)g∈GV such that |V | ≤ k, computeFlow(V,E) solves the following optimization prob-
lem:

min
(ξgj) j∈Vu,g∈Vgr

∑
j∈Vu

1
2
(u j− ∑

g∈Vgr
ξgj)

2 s.t. ∀g ∈Vgr, ∑
j∈Vu

ξgj ≤ ληg and ξgj = 0, ∀ j /∈ g. (13)

Since GV0 = G , it is sufficient to show that H (|V0|) to prove the proposition.
We initialize the induction by H (2), corresponding to the simplest canonical graph, for which

|Vgr|= |Vu|= 1). Simple algebra shows that H (2) is indeed correct.
We now suppose that H (k′) is true for all k′ < k and consider a graph G = (V,E,s, t), |V | = k.

The first step of the algorithm computes the variable (γ j) j∈Vu by a projection on the �1-ball. This is
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itself an instance of the dual formulation of Equation (4) in a simple case, with one group containing
all variables. We can therefore use Lemma 5 to characterize the optimality of (γ j) j∈Vu , which yields{

∑ j∈Vu(u j− γ j)γ j =
(
max j∈Vu |u j− γ j|

)
∑ j∈Vu γ j and ∑ j∈Vu γ j = λ∑g∈Vgr ηg,

or u j− γ j = 0, ∀ j ∈Vu.
(14)

The algorithm then computes a max-flow, using the scalars γ j as capacities, and we now have two
possible situations:

1. If ξ j = γ j for all j in Vu, the algorithm stops; we write w j = u j − ξ j for j in Vu, and using
Equation (14), we obtain{

∑ j∈Vuw jξ j = (max j∈Vu |w j|)∑ j∈Vu ξ j and ∑ j∈Vu ξ j = λ∑g∈Vgr ηg,
or w j = 0, ∀ j ∈Vu.

We can rewrite the condition above as

∑
g∈Vgr

∑
j∈g
w jξ

g
j = ∑

g∈Vgr
(max
j∈Vu

|w j|)∑
j∈Vu

ξgj .

Since all the quantities in the previous sum are positive, this can only hold if for all g ∈Vgr,

∑
j∈Vu
w jξ

g
j = (max

j∈Vu
|w j|)∑

j∈Vu
ξgj .

Moreover, by definition of the max flow and the optimality conditions, we have

∀g ∈Vgr, ∑
j∈Vu

ξgj ≤ ληg, and ∑
j∈Vu

ξ j = λ ∑
g∈Vgr

ηg,

which leads to
∀g ∈Vgr, ∑

j∈Vu
ξgj = ληg.

By Lemma 5, we have shown that the problem (13) is solved.

2. Let us now consider the case where there exists j inVu such that ξ j 
= γ j. The algorithm splits
the vertex set V into two parts V+ and V−, which we have proven to be non-empty in the
proof of Proposition 6. The next step of the algorithm removes all edges between V+ and V−

(see Figure 7). Processing (V+,E+) and (V−,E−) independently, it updates the value of the
flow matrix ξgj , j ∈ Vu, g ∈ Vgr, and the corresponding flow vector ξ j, j ∈ Vu. As for V , we
denote by V+

u �V+∩Vu, V−
u �V−∩Vu and V+

gr �V+∩Vgr, V−
gr �V−∩Vgr.

Then, we notice that (V+,E+,s, t) and (V−,E−,s, t) are respective canonical graphs for the
group structures GV+ � {g∩V+

u | g ∈Vgr}, and GV− � {g∩V−
u | g ∈Vgr}.

Writing w j = u j−ξ j for j in Vu, and using the induction hypotheses H (|V+|) and H (|V−|),
we now have the following optimality conditions deriving from Lemma 5 applied on Equa-
tion (13) respectively for the graphs (V+,E+) and (V−,E−):

∀g ∈V+
gr ,g

′
� g∩V+

u ,

{
w	
g′ξ

g
g′ = ‖wg′‖∞∑ j∈g′ξ

g
j and ∑ j∈g′ξ

g
j = ληg,

or wg′ = 0,
(15)
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and

∀g ∈V−
gr ,g

′
� g∩V−

u ,

{
w	
g′ξ

g
g′ = ‖wg′‖∞∑ j∈g′ξ

g
j and ∑ j∈g′ξ

g
j = ληg,

or wg′ = 0.
(16)

We will now combine Equation (15) and Equation (16) into optimality conditions for Equa-
tion (13). We first notice that g∩V+

u = g since there are no arcs betweenV+ andV− in E (see
the properties of the cuts discussed before this proposition). It is therefore possible to replace
g′ by g in Equation (15). We will show that it is possible to do the same in Equation (16), so
that combining these two equations yield the optimality conditions of Equation (13).

More precisely, we will show that for all g ∈ V−
gr and j ∈ g∩V+

u , |w j| ≤ maxl∈g∩V−
u
|wl|,

in which case g′ can be replaced by g in Equation (16). This result is relatively intuitive:
(s,V+) and (V−, t) being an (s, t)-cut, all arcs between s andV− are saturated, while there are
unsaturated arcs between s and V+; one therefore expects the residuals u j−ξ j to decrease on
the V+ side, while increasing on the V− side. The proof is nonetheless a bit technical.

Let us show first that for all g in V+
gr , ‖wg‖∞ ≤ max j∈Vu |u j − γ j|. We split the set V+ into

disjoint parts:

V++
gr � {g ∈V+

gr s.t. ‖wg‖∞ ≤max
j∈Vu

|u j− γ j|},

V++
u � { j ∈V+

u s.t. ∃g ∈V++
gr , j ∈ g},

V+−
gr �V+

gr \V++
gr = {g ∈V+

gr s.t. ‖wg‖∞ >max
j∈Vu

|u j− γ j|},

V+−
u �V+

u \V++
u .

As previously, we denote V+−
� V+−

u ∪V+−
gr and V++

�V++
u ∪V++

gr . We want to show that
V+−
gr is necessarily empty. We reason by contradiction and assume that V+−

gr 
=∅.

According to the definition of the different sets above, we observe that no arcs are going from
V++ to V+−, that is, for all g in V++

gr , g∩V+−
u = ∅. We observe as well that the flow from

V+−
gr to V++

u is the null flow, because optimality conditions (15) imply that for a group g only
nodes j ∈ g such that w j = ‖wg‖∞ receive some flow, which excludes nodes inV++

u provided
V+−
gr 
= ∅; Combining this fact and the inequality ∑g∈V+

gr
ληg ≥ ∑ j∈V+

u
γ j (which is a direct

consequence of the minimum (s, t)-cut), we have as well

∑
g∈V+−

gr

ληg ≥ ∑
j∈V+−

u

γ j.

Let j ∈V+−
u , if ξ j 
= 0 then for some g ∈V+−

gr such that j receives some flow from g, which
from the optimality conditions (15) implies w j = ‖wg‖∞; by definition of V+−

gr , ‖wg‖∞ >

u j − γ j. But since at the optimum, w j = u j − ξ j, this implies that ξ j < γ j, and in turn that

∑ j∈V+−
u
ξ j = λ∑g∈V+−

gr
ηg. Finally,

λ ∑
g∈V+−

gr

ηg = ∑
j∈V+−

u ,ξ j 
=0
ξ j < ∑

j∈V+−
u

γ j

and this is a contradiction.

2711



MAIRAL, JENATTON, OBOZINSKI AND BACH

We now have that for all g inV+
gr , ‖wg‖∞ ≤max j∈Vu |u j−γ j|. The proof showing that for all g

in V−
gr , ‖wg‖∞ ≥max j∈Vu |u j− γ j|, uses the same kind of decomposition for V−, and follows

along similar arguments. We will therefore not detail it.

To summarize, we have shown that for all g ∈ V−
gr and j ∈ g∩V+

u , |w j| ≤ maxl∈g∩V−
u
|wl|.

Since there is no flow from V− to V+, that is, ξgj = 0 for g in V
−
gr and j in V+

u , we can now

replace the definition of g′ in Equation (16) by g′ � g∩Vu, the combination of Equation (15)
and Equation (16) gives us optimality conditions for Equation (13).

The proposition being proved for the canonical graph, we extend it now for an equivalent graph
in the sense of Lemma 4. First, we observe that the algorithm gives the same values of γ for two
equivalent graphs. Then, it is easy to see that the value ξ given by the max-flow, and the chosen
(s, t)-cut is the same, which is enough to conclude that the algorithm performs the same steps for
two equivalent graphs.

B.2 Computation of the Dual Norm Ω�

As for the proximal operator, the computation of dual norm Ω∗ can itself be shown to solve another
network flow problem, based on the following variational formulation, which extends a previous
result from Jenatton et al. (2009):

Lemma 8 (Dual formulation of the dual-norm Ω�.)
Let κ ∈ Rp. We have

Ω∗(κ) = min
ξ∈Rp×|G |,τ∈R

τ s.t. ∑
g∈G

ξg = κ, and ∀g ∈ G , ‖ξg‖1 ≤ τηg with ξgj = 0 if j /∈ g.

Proof By definition of Ω∗(κ), we have

Ω∗(κ)� max
Ω(z)≤1

z	κ.

By introducing the primal variables (αg)g∈G ∈ R|G |, we can rewrite the previous maximization
problem as

Ω∗(κ) = max
∑g∈Gηgαg≤1

κ	z, s.t. ∀ g ∈ G , ‖zg‖∞ ≤ αg,

with the additional |G | conic constraints ‖zg‖∞ ≤ αg. This primal problem is convex and satisfies
Slater’s conditions for generalized conic inequalities, which implies that strong duality holds (Boyd
and Vandenberghe, 2004). We now consider the Lagrangian L defined as

L(z,αg,τ,γg,ξ) = κ	z+ τ(1−∑
g∈G

ηgαg)+ ∑
g∈G

(
αg
zg

)	(γg
ξgg

)
,

with the dual variables {τ,(γg)g∈G ,ξ} ∈ R+×R|G |×Rp×|G | such that for all g ∈ G , ξgj = 0 if j /∈ g
and ‖ξg‖1 ≤ γg. The dual function is obtained by taking the derivatives of L with respect to the
primal variables z and (αg)g∈G and equating them to zero, which leads to

∀ j ∈ {1, . . . , p}, κ j+∑g∈G ξ
g
j = 0

∀g ∈ G , τηg− γg = 0.
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After simplifying the Lagrangian and flipping the sign of ξ, the dual problem then reduces to

min
ξ∈Rp×|G |,τ∈R

τ s.t.

{
∀ j ∈ {1, . . . , p},κ j =∑g∈G ξ

g
j and ξ

g
j = 0 if j /∈ g,

∀g ∈ G ,‖ξg‖1 ≤ τηg,

which is the desired result.

We now prove that Algorithm 2 is correct.

Proposition 9 (Convergence and correctness of Algorithm 2)
Algorithm 2 computes the value of Ω∗ in a finite and polynomial number of operations.

Proof The convergence of the algorithm only requires to show that the cardinality of V in the
different calls of the function computeFlow strictly decreases. Similar arguments to those used in
the proof of Proposition 6 can show that each part of the cuts (V+,V−) are both non-empty. The
algorithm thus requires a finite number of calls to a max-flow algorithm and converges in a finite
and polynomial number of operations.

Let us now prove that the algorithm is correct for a canonical graph. We proceed again by
induction on the number of nodes of the graph. More precisely, we consider the induction hypothesis
H ′(k) defined as:

for all canonical graphs G= (V,E,s, t) associated with a group structure GV and such that |V | ≤ k,
dualNormAux(V =Vu∪Vgr,E) solves the following optimization problem:

min
ξ,τ

τ s.t. ∀ j ∈Vu,κ j = ∑
g∈Vgr

ξgj , and ∀g ∈Vgr, ∑
j∈Vu

ξgj ≤ τηg with ξgj = 0 if j /∈ g. (17)

We first initialize the induction by H (2) (i.e., with the simplest canonical graph, such that |Vgr| =
|Vu|= 1). Simple algebra shows that H (2) is indeed correct.

We next consider a canonical graphG= (V,E,s, t) such that |V |= k, and suppose thatH ′(k−1)
is true. After the max-flow step, we have two possible cases to discuss:

1. If ξ j = γ j for all j in Vu, the algorithm stops. We know that any scalar τ such that the con-
straints of Equation (17) are all satisfied necessarily verifies ∑g∈Vgr τηg ≥ ∑ j∈Vu κ j. We have
indeed that ∑g∈Vgr τηg is the value of an (s, t)-cut in the graph, and ∑ j∈Vu κ j is the value of the
max-flow, and the inequality follows from the max-flow/min-cut theorem (Ford and Fulker-
son, 1956). This gives a lower-bound on τ. Since this bound is reached, τ is optimal.

2. We now consider the case where there exists j in Vu such that ξ j 
= κ j, meaning that for
the given value of τ, the constraint set of Equation (17) is not feasible for ξ, and that the
value of τ should necessarily increase. The algorithm splits the vertex set V into two non-
empty parts V+ and V− and we remark that there are no arcs going from V+ to V−, and
no flow going from V− to V+. Since the arcs going from s to V− are saturated, we have
that ∑g∈V−

gr
τηg ≤ ∑ j∈V−

u
κ j. Let us now consider τ� the solution of Equation (17). Us-

ing the induction hypothesis H ′(|V−|), the algorithm computes a new value τ′ that solves
Equation (17) when replacing V by V− and this new value satisfies the following inequality
∑g∈V−

gr
τ′ηg ≥ ∑ j∈V−

u
κ j. The value of τ′ has therefore increased and the updated flow ξ now

satisfies the constraints of Equation (17) and therefore τ′ ≥ τ�. Since there are no arcs going
from V+ to V−, τ� is feasible for Equation (17) when replacing V by V− and we have that
τ� ≥ τ′ and then τ′ = τ�.
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To prove that the result holds for any equivalent graph, similar arguments to those used in the proof
of Proposition 6 can be exploited, showing that the algorithm computes the same values of τ and
same (s, t)-cuts at each step.

Appendix C. Algorithm FISTA with Duality Gap

In this section, we describe in details the algorithm FISTA (Beck and Teboulle, 2009) when applied
to solve problem (1), with a duality gap as the stopping criterion. The algorithm, as implemented in
the experiments, is summarized in Algorithm 3.

Without loss of generality, let us assume we are looking for models of the form Xw, for some
matrixX∈Rn×p (typically, a linear model whereX is the design matrix composed of n observations
in Rp). Thus, we can consider the following primal problem

min
w∈Rp

f (Xw)+λΩ(w), (18)

in place of problem (1). Based on Fenchel duality arguments (Borwein and Lewis, 2006),

f (Xw)+λΩ(w)+ f ∗(−κ), for w ∈ Rp,κ ∈ Rn and Ω∗(X	κ)≤ λ,

is a duality gap for problem (18), where f ∗(κ) � supz[z
	κ− f (z)] is the Fenchel conjugate of f

(Borwein and Lewis, 2006). Given a primal variable w, a good dual candidate κ can be obtained
by looking at the conditions that have to be satisfied by the pair (w,κ) at optimality (Borwein and
Lewis, 2006). In particular, the dual variable κ is chosen to be

κ=−ρ−1∇f (Xw), with ρ�max{λ−1Ω∗(X	∇f (Xw)),1
}
.

Consequently, computing the duality gap requires evaluating the dual norm Ω∗, as explained in
Algorithm 2. We sum up the computation of the duality gap in Algorithm 3. Moreover, we refer
to the proximal operator associated with λΩ as proxλΩ.

27 In our experiments, we choose the line-
search parameter ν to be equal to 1.5.

Appendix D. Speed Comparison of Algorithm 1 with Parametric Max-Flow Solvers

As shown by Hochbaum and Hong (1995), min-cost flow problems, and in particular, the dual
problem of (3), can be reduced to a specific parametric max-flow problem. We thus compare our
approach (ProxFlow) with the efficient parametric max-flow algorithm proposed by Gallo et al.
(1989) and a simplified version of the latter proposed by Babenko and Goldberg (2006). We refer
to these two algorithms as GGT and SIMP respectively. The benchmark is established on the same
data sets as those already used in the experimental section of the paper, namely: (1) three data sets
built from overcomplete bases of discrete cosine transforms (DCT), with respectively 104, 105 and
106 variables, and (2) images used for the background subtraction task, composed of 57600 pixels.
For GGT and SIMP, we use the paraF software which is a C++ parametric max-flow implementa-
tion available at http://www.avglab.com/andrew/soft.html. Experiments were conducted on

27. As a brief reminder, it is defined as the function that maps the vector u in Rp to the (unique, by strong convexity)
solution of Equation (3).
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Algorithm 3 FISTA procedure to solve problem (18).

1: Inputs: initial w(0) ∈ Rp, Ω, λ> 0, εgap > 0 (precision for the duality gap).
2: Parameters: ν> 1, L0 > 0.
3: Outputs: solution w.
4: Initialization: y(1) = w(0), t1 = 1, k = 1.
5: while

{
computeDualityGap

(
w(k−1)

)
> εgap

}
do

6: Find the smallest integer sk≥0 such that
7: f (prox[λΩ](y(k)))≤ f (y(k))+Δ	

(k)∇ f (y(k))+
L̃
2‖Δ(k)‖22,

8: with L̃� Lkνsk and Δ(k) � y(k)−prox[λΩ](y(k)).
9: Lk ← Lk−1νsk .
10: w(k) ← prox[λΩ](y(k)).

11: tk+1 ← (1+
√
1+ t2k )/2.

12: y(k+1) ← w(k) +
tk−1
tk+1

(w(k)−w(k−1)).
13: k← k+1.
14: end while
15: Return: w← w(k−1).

Procedure computeDualityGap(w)

1: κ← −ρ−1∇f (Xw), with ρ�max{λ−1Ω∗(X	∇f (Xw)),1
}
.

2: Return: f (Xw)+λΩ(w)+ f ∗(−κ).

a single-core 2.33 Ghz. We report in the following table the average execution time in seconds of
each algorithm for 5 runs, as well as the statistics of the corresponding problems:

Number of variables p 10000 100000 1000000 57600

|V | 20000 200000 2000000 57600
|E| 110000 500000 11000000 579632

ProxFlow (in sec.) 0.4 3.1 113.0 1.7
GGT (in sec.) 2.4 26.0 525.0 16.7
SIMP (in sec.) 1.2 13.1 284.0 8.31

Although we provide the speed comparison for a single value of λ (the one used in the corresponding
experiments of the paper), we observed that our approach consistently outperforms GGT and SIMP
for values of λ corresponding to different regularization regimes.
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Abstract
In hierarchical classification, class labels are structured, that is each label value corresponds to
one non-root node in a tree, where the inter-class relationship for classification is specified by
directed paths of the tree. In such a situation, the focus has been on how to leverage the inter-
class relationship to enhance the performance of flat classification, which ignores such dependency.
This is critical when the number of classes becomes large relative to the sample size. This paper
considers single-path or partial-path hierarchical classification, where only one path is permitted
from the root to a leaf node. A large margin method is introduced based on a new concept of
generalized margins with respect to hierarchy. For implementation, we consider support vector
machines and ψ-learning. Numerical and theoretical analyses suggest that the proposed method
achieves the desired objective and compares favorably against strong competitors in the literature,
including its flat counterparts. Finally, an application to gene function prediction is discussed.
Keywords: difference convex programming, gene function annotation, margins, multi-class clas-
sification, structured learning

1. Introduction

In many applications, knowledge is organized and explored in a hierarchical fashion. For instance,
in one of the central problems in modern biomedical research—gene function prediction, biological
functions of genes are often organized by a hierarchical annotation system such as MIPS (the Mu-
nich Information Center for Protein Sequences, Mewes et al., 2002)for yeast S. cerevisiae. MIPS
is structured hierarchically, with upper-level functional categories describing more general infor-
mation concerning biological functions of genes, while low-level ones refer to more specific and
detailed functional categories. A hierarchy of this sort presents the current available knowledge. To
predict unknown gene functions, a gene is classified, through some predictors, into one or more gene
functional categories in the hierarchy of MIPS, forming novel hypotheses for confirmatory biolog-
ical experiments (Hughes et al., 2000). Classification like this is called hierarchical classification,
which has been widely used in webpage classification and document categorization. Hierarchical
classification involves inter-class dependencies specified by a prespecified hierarchy, which is unlike
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multiclass classification where class membership is mutually exclusive for all classes. The primary
objective of hierarchical classification is leveraging inter-class relationships to enhance multiclass
classification ignoring such dependencies, known as flat classification. This is particularly critical in
high-dimensional problems with a large number of classes in classification. To achieve the desired
objective, this paper develops a large margin approach for single-path or partial-path hierarchical
classification with hierarchy defined by a tree.

Hierarchical classification, an important subject which has not yet received much attention, can
be thought of as nested classification within the framework of multiclass classification. One major
challenge is how to formulate a loosely defined hierarchical structure into classification to achieve
higher generalization performance, which, otherwise, is impossible for flat classification, especially
in a high-dimensional situation. Three major approaches have been proposed in the literature. The
first is the so called “flat approach”, which ignores the hierarchical structure. Recent studies suggest
that higher classification accuracy results can be realized by incorporating the hierarchical structure
(Dekel et al., 2004). Relevant references can be found in Yang and Liu (1999) for nearest neighbor,
Lewis (1998) for naive Bayes, Joachims (1998) for support vector machines (SVM, Boser et al.,
1992; Vapnik, 1998), among others. The second is the sequential approach, where a multiclass clas-
sifier is trained locally at each parent node of the hierarchy. As a result, the classifier may be not
well trained due to a small training sample locally and lack of global comparisons. Further investi-
gations are necessary with regard to how to use the given hierarchy in classification to improve the
predictive performance, as noted in Dekel et al. (2004) and Cesa-Bianchi et al. (2006). The third is
the promising structured approach, which recognizes the importance of a hierarchical structure in
classification. Shahbaba and Neal (2007) proposed a Bayesian method through a constrained hierar-
chical prior and a Markov Chain Monte Carlo implementation. Cai and Hofmann (2004) and Rousu
et al. (2006) employed structured linear and kernel representations and loss functions defined by a
tree, together with loss-weighted multiclass SVM, whereas Dekel et al. (2004) developed a batch
and on-line version of loss-weighted hierarchical SVM, and Cesa-Bianchi et al. (2006) developed
sequential training based SVM with certain hierarchical loss functions. The structured approach
uses a weighted loss defined by a hierarchy, such as the symmetric difference loss and a sub-tree
H-loss, see, for instance, Cesa-Bianchi et al. (2006), as opposed to the conventional 0-1 loss, then
maximizes the loss-weighted margins for a multiclass SVM, as described in Lin et al. (2002). En-
sembles of nested dichotomies in Dong et al. (2005) and Zimek et al. (2008) have achieved good
performance. Despite progress, issues remain with respect to how to fully take into account a hier-
archical structure and to what role the hierarchy plays.

To meet the challenge, this article develops a large margin method for hierarchical classification,
based on a new concept of structured functional and geometric margins defined for each node of
the hierarchy, which differs from the concept of the loss-weighted margins in structured prediction.
This concept of margins with respect to hierarchy is designed to account for inter-class dependen-
cies in classification. As a result, the complexity of the classification problem reduces, translating
into higher generalization accuracy of classification. Our theory describes when this will occur,
depending on the structure of a tree hierarchy. In contrast to existing approaches, the proposed
method trains a classifier globally while making sequential nested partitions of classification re-
gions. The proposed method is implemented for support vector machines (SVM, Boser et al., 1992)
and ψ-learning (Shen et al., 2003) through quadratic and difference convex (DC) programming.

To examine the proposed method’s generalization performance, we perform simulation studies.
They indicate that the proposed method achieves higher performance than three strong competitors.
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A theoretical investigation confirms that the empirical performance is indeed attributed to a reduced
size of the function space for classification, as measured by the metric entropy, through effective use
of a hierarchical structure. In fact, stronger inter-class relations tend to lead to better performance
over its flat counterpart. In conclusion, both the numerical and theoretical results suggest that a tree
hierarchical structure has been incorporated into classification for generalization.

This article is organized as follows. Section 2 formulates the problem of hierarchical classi-
fication. Section 3 introduces the proposed method and develops computational tools. Section 4
performs simulation studies and presents an application of the proposed method in gene function
prediction. Section 5 is devoted to theoretical investigation of the proposed method and to the study
of the role of a hierarchical structure in classification. Section 6 discusses the method, followed by
technical details in the Appendix.

2. Single-path and Partial-path Hierarchical Classification

In single-path or partial-path hierarchical classification, inputX = (X1, · · · ,Xq)∈ S⊂Rq is a vector
of q covariates, and we code output Y ∈ {1, · · · ,K}, corresponding to non-root nodes {1, · · · ,K} in
a rooted tree H , a graph with nodes connected by directed paths from the root 0, where directed
edge i → j specifies a parent-child relationship from i to j. Here Y is structured in that i → j in
H induces a subset relation between the corresponding classes i and j in classification, that is, the
classification region of class j is a subset of that of class i. As a result, direct and indirect relations
among nodes over H impose an inter-class relationship among K classes in classification.

Before proceeding, we introduce some notations for a treeH with k leaves and (K−k) non-leaf-
nodes, where a non-leaf node is an ancestor of a leaf one. Denote by |H | the size of H . For each
t ∈ {1, · · · ,K}, define par(t), chi(t) sib(t), anc(t) and sub(t) to be sets of its parent(s) (immediate
ancestor), its children (immediate offsprings), its siblings (nodes sharing the same parent with node
t), its ancestors (immediate or remote), and the subtree rooted from t, respectively. Throughout
this paper, par(t), chi(t) and sib(t) are allowed to be empty. Assume, without loss of generality,
that |par(t)|= 1 for non-root node t because multiple parents are not permitted for a tree. Also we
define L to be the set of leaves of H .

To classify x, a decision function vector f = ( f1, · · · , fK) ∈ F =∏K
j=1F j is introduced, where

f j(x); j = 1, · · · ,K, mapping from Rq onto R1, represents class j and mimics P(Y = j|X = x).
Then f is estimated through a training sample Zi = (Xi,Yi)ni=1, independent and identically dis-
tributed according to an unknown probability P(x,y). To assign x, we introduce a top-down deci-
sion rule dH(f(x)) with respect to H through f . From the top to the bottom, we go through each
node j and assign x to one of its children l = argmaxt∈chi( j) ft(x) having the highest value among
ft’s for t ∈ chi( j) when j /∈ L , and assign x to j otherwise.

This top-down rule is sequential, and yields mutually exclusive membership for sibling classes.
In particular, for each parent j, chi( j) gives a partition of the classification region of parent class
j. This permits an observation staying at a parent when one child of the parent is defined as itself,
see, for example, the node labeled 03.01 in Figure 3, which is a case of partial-path hierarchical
classification.

Finally, a classifier is constructed through dH(·) to have small generalization error
El0−1(Y,dH(f(X)), with l0−1(Y,dH(f(X)) = I(Y 
= dH(f(X)) the 0-1 hierarchical loss.
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3. Proposed Method

In the existing literature on hierarchical classification, the margins are defined by the conventional
unstructured margins for multiclass classification, for instance, the loss-weighted hierarchical SVM
of Cai and Hofmann (2004), denoted as HSVMc. For unstructured margins in classification, a
certain number of pairwise comparisons is required, which is the same as conventional multiclass
classification. In what follows, we propose a new framework using a given hierarchy to define
margins, leading to a reduced number of pairwise comparisons for hierarchical classification.

3.1 Margins with Respect to H

We first explore a connection between classification and function comparisons, based on the concept
of generalized functional margins with respect to a hierarchy is introduced. Over a hierarchyH , the
top-down rule dH(f(x)) is employed for classification. To classify, comparing some components
of f at certain relevant nodes in H is necessary, which is in a parallel fashion as in multiclass
classification. Consider leaf node 4 in the treeH described in Figure 2 (c). There f4− f3 and f6− f5
need to be compared against 0 to classify at node 4 through the top-down rule, that is, min( f4−
f3, f6− f5) is less than 0 or not, which leads to our margin definition for (x,y = 4) U(f(x),y =
4) = min( f4− f3, f6− f5). More generally, we define set U(f(x),y), for y ∈ {1, · · · ,K} to be
{ ft − f j : j ∈ sib(t), t ∈ anc(y)∪{y}} = {uy,1,uy,2, · · · ,uy,ky} with ky elements. This set compares
any class t against sibling classes defined by sib(t) for y and any of its ancestors t, permitting
hierarchical classification at any location of H and generating a single-path or partial-path from the
root to the node corresponding to class y.

For classification evaluation, we define the generalized functional margin with respect to H for
(x,y) as umin(f(x),y) =min{uy, j : uy, j ∈U(f(x),y)}. In light of the result of Lemma 1, this quan-
tity is directly related to the generalization error, which summarizes the overall error in hierarchical
classification as the 0-1 loss in binary classification. That is, a classification error occurs if and only
if umin(f(x),y) < 0. Moreover, this definition reduces to that of multiclass margin classification
of Liu and Shen (2006) when no hierarchical structure is imposed. In contrast to the definition
of multiclass classification, the number of comparisons required for classification over a tree H is
usually smaller, owing to the fact that only siblings need to be compared through the top-down rule,
as opposed to comparisons of all pairs of classes in multiclass classification.

Lemma 1 establishes a key connection between the generalization error and our definition of
umin( f (X),Y ).

Lemma 1 With I(·) denoting the indicator function,
GE(d) = El0−1(Y,d(X))≡ EI(Y 
= d(X)) = EI(umin( f (X),Y )< 0),

where l0−1 is the 0-1 loss in hierarchical classification, and I(·) is the indicator function.

This lemma says that a classification error occurs for decision function f and an observation
(x,y), if and only if the functional margin umin(f(x),y) is negative.

3.2 Cost Function and Geometric Margin

To achieve our objective of constructing classifier dH(f̂(x)) having small generalization error, we
construct a cost function to yield an estimate f̂ for dH(f̂(x)). Ideally, one may minimize the
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empirical generalization error n−1∑n
i=1 I(umin( f (Xi),Yi) < 0) based on (Xi,Yi)ni=1. However, it is

computationally infeasible because of discontinuity of I(·). For this reason, we replace I(·) by
a surrogate loss v(·) to use the existing two-class surrogate losses in hierarchical classification. In
addition to computational benefits, certain loss functions v(·)may also lead to desirable large margin
properties (Zhu and Hastie, 2005). Given functional margin u = umin(f(x),y), we say that a loss
v(·) is a margin loss if it can be written as a function of u. Moreover, it is a large margin if v(u)
is nonincreasing in u. Most importantly, v(umin(f(x),y)) yields Fisher-consistency in hierarchical
classification, which constitutes a basis of studying the generalization error in Section 5. Note that
in the two-class case a number of margin losses have been proposed. Convex margin losses are the
hinge loss v(u) = (1−u)+ for SVM and the logistic loss v(u) = log(1+e−u) for logistic regression
(Zhu and Hastie, 2005). Nonconvex large margin losses include, for exampleψ-loss v(u) =ψ(u) for
ψ-learning, with ψ(u) = 1− sign(u) and sign(u) = I(u> 0), if u≥ 1 or u< 0, and 1−u otherwise
(Shen et al., 2003).

Placing a margin loss v(·) in the framework of penalization, we propose our cost function for
hierarchical classification:

s(f) =C
n

∑
i=1

v(umin(f(xi),yi))+ J(f), (1)

subject to sum to zero constraints ∑{t∈sib( j)∪{ j}} ft(x) = 0; ∀ j = 1 · · · ,K,sib( j) 
= ∅,x ∈ S, the
domain of X1, for removing redundancy among the components of f . For example, for the tree H
in Figure 2 (c), three constraints are imposed: f1+ f2 = 0, f3+ f4 = 0 and f5+ f6 = 0, for three
pairs of siblings. In (1), penalty J(f) is the inverse geometric margin to be introduced, and C > 0
is a tuning parameter regularizing the trade-off between minimizing J(f) and minimizing training
error. Minimizing (1) with respect to f ∈ F , a candidate function space, yields an estimate f̂ , thus
classifier dH(f̂(x)). Note that (1) reduces to that of multiclass margin classification of Liu and
Shen (2006) when no hierarchical structure is specified.

To introduce the geometric margin with respect to H in the L2-norm, (with other norms applied
similarly), consider a generic vector of functions f : f j(x) =wT

j x̃+ b j; j = 1, · · · ,K, with x̃ = x

and x̃ = (K (x1, ·), · · · ,K (xn, ·))T for linear and kernel learning. The geometric margin is defined
as min{(t, j):t∈sib( j)} γ j,t , where γ j,t = 2

‖w j−wt‖2K
is the usual separation margin defined for classes j

versus t ∈ sib( j), representing the vertical distance between two parallel hyperplanes f j− ft = ±1
(Shen and Wang, 2007). Here ‖w j‖2K is ‖w j‖2 in the linear case and is wT

j Kw j in the kernel case
withK being an n×n kernel matrix. Note that the other form of the margin in the Lp-norm (with 1≤
p ≤ ∞) can be defined similarly. Ideally, J(f) is max{(t, j):t∈sib( j)} γ−1j,t = max{(t, j):t∈sib( j)}

‖w j−wt‖2
2 ,

the inverse of the geometric margin. However, it is less tractable numerically. Practically, we work
with its upper bound J(f) = 1

2 ∑
K
j=1 ‖w j‖2K instead.

For hierarchical classification, (1) yields different classifiers with different choices of margin
loss v(·). Specifically, (1) covers multiclass SVM and ψ-learning of Liu and Shen (2006), with
equal cost when all the leaf nodes share the same parent—the root, which are called SVM and
ψ-learning in what follows.

3.3 Classification and Hierarchy H

The hierarchical structure specified by H is summarized as the direct parent-child relation and the
associated indirect relations, for classification. They are integrated into our framework. Whereas
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Figure 1: Plot of generalized geometric margin with respect to H in (b), defined by a tree in (a).
Classification processes sequentially with a partition of classes 7 and 8 at the top level,
and a further partition of class 7 into classes 1,3 and 4, and that of class 8 into classes 3,5
and 6, where classification boundaries are displayed by dotted lines. Geometric margin
is defined as the minimal vertical distances between seven pairs of solid parallel lines,
representing separations between classes 7 and 8, 2 and 5, 2 and 6, 5 and 6, 1 and 3, 1
and 4, and 3 and 4.

the top-down rule is specified by H , umin(f(x),y) captures the relations through (1). As a re-
sult, a problem’s complexity is reduced when classification is restricted to H , leading to higher
generalization accuracy. This aspect will be confirmed by the numerical results in Section 4, and
by a comparison of the generalization errors between hierarchical SVM (HSVM) and hierarchical
ψ-learning (HPSI) against their flat counterparts—SVM and ψ-learning in Section 5.

3.4 Minimization

We implement (1) in a generic form: f j(x) =wT
j x̃+ b j; j = 1, · · · ,K. Note that the sum-to-zero

constraints may be infinite, which occurs when the domain of x has infinitely many values. To
overcome this difficulty, we derive Theorem 1, which says that reinforcement of the sum-to-zero
constraints for (1) suffices at the observed data instead of all possible x-values.

Theorem 1 Assume that {x̃1, x̃2, · · · , x̃n} spans Rq. Then, for j = 1, · · · ,K, minimizing (1) subject
to ∑{t:t∈sib( j)∪{ j}} f j(x) = 0; ∀ j= 1 · · · ,K,sib( j) 
=∅,x∈ S, is equivalent to minimizing (1) subject
to ∑{t:t∈sib( j)∪{ j}} f j(xi) = 0; ∀ j = 1 · · · ,K,sib( j) 
=∅, i= 1, · · · ,n.
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Based on Theorem 1, minimizing (1) is equivalent to

minimizings(f) =
1
2

K

∑
j=1

‖w j‖2+C
n

∑
i=1

v(umin(f(xi),yi)), (2)

subject to ∑{t:t∈sib( j)∪{ j}} ft(xi) = 0; i= 1, · · · ,n, j = 1, · · · ,K, sib( j) 
=∅.
Subsequently, we work with (2), where the proposed classifiers are denoted by HSVM and

HPSI when v(u) = (1− u)+ and v(u) = ψ(u), respectively. In the first case, HSVM is solved by
quadratic programming (QP), see Appendix B. In the second case, (2) for HPSI is solved by DC
programming, to be described next.

For HPSI, we decompose s(f) in (2) with v(u) = ψ(u) into a difference of two convex func-
tions: s(f) = s1(f)−s2(f), where s1(f) = 1

2 ∑
K
j=1 ‖w j‖2+C∑n

i=1ψ1(umin(f(xi),yi)) and s2(f) =
C∑n

i=1ψ2(umin(f(xi),yi)), derived from a DC decomposition of ψ = ψ1−ψ2, with ψ1(u) = (1−
u)+ and ψ2(u) = (−u)+. Through our DC decomposition, a sequence of upper approximations
of s(f) s1(f)− 〈f − f̂ (m−1),∇s2(f̂ (m−1))〉K is constructed iteratively, where 〈·, ·〉K is the inner
product with respect to kernel K and ∇s2(f̂ (m−1)) is a gradient vector of s2(f) at the solution
f̂ (m−1) at iteration m− 1, defined as a sum of partial derivatives of s2 over each observation, with
∇ψ2(u) = 0 when u > 0 and ∇ψ2(u) = −1 otherwise. Note that s1(f)−〈f − f̂ (m),∇s2(f̂ (m))〉K
is a convex upper bound of s(f) by convexity of s2. Then the upper approximation s1(f)−〈f −
f̂ (m−1),∇s2(f̂ (m−1))〉K is minimized to yield f̂ (m). This is called a DC method for non-convex
minimization in the global optimization literature (An and Tao, 1997).

To design our DC algorithm, starting from an initial value f̂ (0), the solution of HSVM, we solve
primal problems iteratively. At the mth iteration, we compute

f̂ (m) = argmin
f

(s1(f)−〈f ,∇s2(f̂ (m−1))〉K ), (3)

subject to ∑{t:t∈sib( j)∪{ j}} ft(xi) = 0; i = 1, · · · ,n, j = 1, · · · ,K, sib( j) 
= ∅, through QP and its
dual form in Appendix B. The above iterative process continues until a termination criterion is met:
|s(f̂ (m))− s(f̂ (m−1))| ≤ ε, where is ε> 0 is a prespecified tolerance precision. The final estimate f̂
is the best solution among f̂ (m) over m.

The above algorithm terminates, and its speed of convergence is superlinear, by Theorem 3 of
Liu et al. (2005) for ψ-learning. A DC algorithm usually leads to a good local solution even when
it is not global (An and Tao, 1997). In our DC decomposition, s2 can be thought of correcting the
bias due to convexity imposed by s1 that is the cost function of HSVM, which assures that a good
local solution or a global solution can be realized. More importantly, an ε-global minimizer can
be obtained when the algorithm is combined with the branch-and-bound method, as in Liu et al.
(2005). Due to computational consideration, we shall not seek the exact global minimizer.

3.5 Evaluation Losses and Test Errors with Respect to Hierarchy

In hierarchical classification, three types of losses have been proposed for measuring a classifier’s
performance with respect to H , as a generalization of the 0-1 loss in two-class classification. In ad-
dition to l0−1(Y,d(X)), there are the symmetric difference loss lΔ(Y,d(X)) (Tsochantaridis et al.,
2004) and the H-loss lH(Y,d(X)) (Rousu et al., 2006; Cesa-Bianchi et al., 2004). As in Tsochan-
taridis et al. (2004); Rousu et al. (2006); Cesa-Bianchi et al. (2004, 2006), we use the 0-1 loss,
symmetric difference loss and H-losses as performance measurements for our examples. Given a
classifier d(x), lΔ(Y,d(X)) is |anc(Y )�anc(d(X))|, where � denotes the symmetric difference
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of two sets. Here lH(Y,d(X)) = c j, with j the highest node yielding the disagreement between Y
and d(X) in a tree, ignoring any errors occurring at lower levels. In other words, it penalizes the
disagreement at a parent while tolerating subsequent errors at offsprings. Two common choices of
c j’s have been suggested, leading to the subtree based H-loss lsub and the siblings based H-loss lsib:

c j = |sub( j)|/K; j = 1, . . . ,K, (4)

c0 = 1, c j = cpar( j)/|sib( j)∪{ j}|; j = 1, . . . ,K. (5)

A classifier’s generalization performance is measured by the test error, defined as

TE(f) = n−1test
ntest

∑
i=1

l(Yi,d
H(f(Xi))), (6)

where ntest is the size of a test sample, and l is one of the four evaluation losses: l0−1, lΔ, lsib with
c j’s defined by (4) and lsub with c j’s defined by (5). The corresponding test errors are denoted as
TE0−1, TEΔ, TEsib and TEsub.

4. Numerical Examples

The following discusses the numerical results from three simulated examples together with an ap-
plication to gene functions classification.

4.1 Simulated Examples

This section applies HSVM and HPSI to three simulated examples, where they are compared
against their flat counterparts—k-class SVM and k-class ψ-learning of Liu and Shen (2006), and
two strong competitors—HSVMc and the sequential hierarchical SVM (SHSVM). For SHSVM, we
train SVMs separately for each parent node, and use the top-down scheme to label the estimated
classes. See Davies et al. (2007) for more details.

All numerical analyses are conducted in R version 2.1.1 for SVM, ψ-learning, HSVM, HPSI,
HSVMc and SHSVM. In linear learning,K (x,y) = 〈x,y〉. In Gaussian kernel learning,K (x1,x2) =
exp(−‖x1− x2‖2/σ2) is used, where σ is the median of the inter-class distances between any two
classes, see Jaakkola et al. (1999) for the binary case.

For comparison, we define the amount of improvement based on the test error. In simulated
examples, the amount of improvement of a classifier is the percentage of improvement over SVM,
in terms of the Bayesian regret:

(TE(SVM)−Bayes)− (TE(·)−Bayes)
(TE(SVM)−Bayes)

,

where TE(·) denotes the test error of a classifier, and Bayes denotes the Bayes error, which is the
ideal optimal performance and serves as a benchmark for comparison. In a real data example where
the Bayes rule is unavailable, the amount of improvement is

TE(SVM)−TE(·)
TE(SVM)

,

which may underestimate the actual percentage of improvement over SVM.
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Figure 2: Hierarchies used in Examples 1, 2 and 3 of Section 4.1, described by four leave-nodes
asymmetric tree in (a), and complete binary trees with depth p = 3 and k = 2p = 8 leaf
nodes in (b) and with depth p= 2 and k = 4 leaf nodes in (c), respectively.

In addition to test errors, F1-scores are computed for each classifier, which are between 0 and
1 and measure a classification (test)’s accuracy. A F1-score is defined as 2 ρ·r

ρ+r , where the precision
ρ is the number of correct results over the number of all results classified to a class by the trained
classifier, and the recall r is the number of correct results divided by the number of instances with
true label of a class. Specifically, for a given classifier, a F1-score is defined as a weighted average
of F1-scores over all classes, weighted by the sample distribution.

For each classifier, we use one independent tuning sample of size n and one independent testing
sample of 5× 104, for tuning and testing. For tuning, the optimal C is obtained by minimizing the
tuning error defined in (6) on 61 grid points: C = 10l/10; l =−30,−29, · · · ,30. Given the estimated
optimalC, the test error in (6) is computed over the test sample.

Example 1. A random sample (Yi,Xi = {Xi1,Xi2})ni=1 is generated as follows. First, Xi ∼
U2(0,1) is sampled from the two-dimensional uniform distribution. Second, Yi ∈ {1,2,3,4} is
sampled through conditional distributions: P(Yi = 1|X) = 0.17, P(Yi = 2|X) = 0.17, P(Yi = 3|X) =
0.17, P(Yi = 4|X) = 0.49. This generates a simple asymmetric distribution over a tree hierarchy
with a four leaf-nodes as displayed in Figure 2(a).

Clearly, HSVM and HPSI outperform their competitors - HSVMc, SHSVM and SVM under
each the four evaluation losses in both linear and Gaussian kernel situations. Specifically, the im-
provement amount of HSVM over SVM varies from 1.5% to 3.1% in the linear case and 1.6% to
1.9% in the Gaussian kernel case, whereas that of HPSI ranges from 94.5% to 94.7% and 100.0%,
respectively. By comparison, the amount of improvement of HSVMc is from 0.7% to 1.0% in
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Linear
Training Test error
Method l0−1 lΔ lsib lsub F1-score
SVM 0.545 (0.048) 0.527 (0.023) 0.521 (0.014) 0.521 (0.014) 0.328 (0.012)

ψ-learning 0.515 (0.032) 0.512 (0.015) 0.511 (0.009) 0.511 (0.009) 0.321 (0.011)
% of impro. 86.9% 86.9% 86.9% 86.8%
HSVMc 0.545 (0.044) 0.527 (0.022) 0.521 (0.012) 0.520 (0.012) 0.328 (0.015)

% of impro. 1.0% 1.0% 0.7% 0.9%
SHSVM 0.659 (0.130) 0.580 (0.061) 0.554 (0.038) 0.554 (0.038) 0.248 (0.013)
% of impro. -321.8% -315.8% -311.9% -312.7%
HSVM 0.545 (0.043) 0.526 (0.021) 0.520 (0.013) 0.520 (0.013) 0.327 (0.005)

% of impro. 1.5% 2.6% 3.0% 3.1%
HPSI 0.512(0.019) 0.511(0.009) 0.511(0.006) 0.511(0.006) 0.322 (0.102)

% of impro. 94.7% 94.6% 94.5% 94.5%
Bayes Rule 0.51 0.51 0.51 0.51 0.322

Gaussian
Training Test error
Method l0−1 lΔ lsib lsub F1-score
SVM 0.547 (0.055) 0.528 (0.026) 0.521 (0.017) 0.521 (0.017) 0.326 (0.012)

ψ-learning 0.510(0.000) 0.510(0.000) 0.510(0.000) 0.510(0.000) 0.322 (0.000)
% of impro. 100% 100% 100% 100%
HSVMc 0.547 (0.054) 0.527 (0.022) 0.521 (0.015) 0.521 (0.015) 0.325 (0.011)

% of impro. 1.0% 1.0% 1.1% 1.1%
SHSVM 0.626 (0.115) 0.565 (0.054) 0.544 (0.034) 0.544 (0.034) 0.280 (0.078)
% of impro. -214.6% -212.3% -209.8% -209.8%
HSVM 0.546 (0.050) 0.527 (0.024) 0.521 (0.015) 0.521 (0.015) 0.324 (0.010)

% of impro. 1.6% 1.6% 1.9% 1.9%
HPSI 0.510(0.000) 0.510(0.000) 0.510(0.000) 0.510(0.000) 0.322 (0.000)

% of impro. 100% 100% 100% 100%
Bayes Rule 0.51 0.51 0.51 0.51 0.322

Table 1: Averaged test errors as well as estimated standard deviations (in parenthesis) of SVM, ψ-
learning, SHSVM, HSVM, HPSI and HSVMc over 100 simulation replications in Example
1 of Section 4.1. The testing errors are computed under the l0−1, lΔ, lsib and lsub. The
bold face represents the best performance among four competitors for any given loss. For
reference, F1-scores, as defined in Section 4.1, for these classifiers are given as well.

the linear case and from 1.0% to 1.1% in the Gaussian kernel case, and that of SHSVM is from
−321.8% to −311.9% and −214.6% to −209.8%, which means it is actually much worse than
SVM. From hypothesis testing view, the differences of the means for HPSI and SVM are more than
three times of the standard error of the differenced means, indicating that these means are statisti-
cally different at level of α = 5%. Moreover, HPSI get F1-scores very close to that of the Bayes
rule.

In summary, HSVM, especially HPSI indeed yield significant improvements over its competi-
tors.
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Example 2. A complete binary tree of depth 3 is considered, which is displayed in Figure 2 (b).
There are eight leaf and six non-leaf nodes, coded as {1, · · · ,8} and {9, · · · ,14}, respectively. A
random sample of 100 instances (Yi,Xi = (Xi1,Xi2))100i=1 is generated as follows: Xi ∼U2(−1,1),
where U2(−1,1) is the uniform distribution on unit square, Yi|Xi = �8×Xi1 ∈ {1, · · · ,8}. Then
5% of the samples are randomly chosen with the label values redefined as Yi = Yi+1 if Yi 
= 8 and
Yi =Yi if Yi = 8. Another 5% of the samples are randomly chosen with the label values redefined as
Yi = Yi−1 if Yi 
= 1 and Yi = Yi if Yi = 1. For non-leaf node j, P(Yi = j|Xi) = ∑{t∈sub( j)∩L}P(Yi =
t|Xi). This generates a non-separable case.

Linear
Training Test error
Method l0−1 lΔ lsib lsub F1-score
SVM 0.326(0.004) 0.179(0.003) 0.148(0.002) 0.122(0.002) 0.671(0.004)

ψ-learning 0.21(0.004) 0.107(0.003) 0.091(0.002) 0.072(0.002) 0.787(0.004)
% of impro. 47.7% 55.4% 50.9% 53.8%
HSVMc 0.323(0.006) 0.169(0.002) 0.148(0.003) 0.120(0.002) 0.677(0.006)

% of impro. 1.2% 7.7% 0% 2.2%
SHSVM 0.201(0.003) 0.106(0.002) 0.086(0.001) 0.070(0.001) 0.798(0.003)
% of impro. 51.4% 56.1% 55.4% 55.9%
HSVM 0.199(0.003) 0.105(0.002) 0.086(0.001) 0.070(0.001) 0.800(0.003)

% of impro. 52.3% 56.9% 55.4% 55.9%
HPSI 0.195(0.003) 0.102(0.001) 0.086(0.002) 0.068(0.002) 0.804(0.003)

% of impro. 53.9% 59.2% 55.4% 58.1%
Bayes Rule 0.083 0.049 0.036 0.029 0.916

Gaussian
Training Test error
Methods l0−1 lΔ lsib lsub F1-score
SVM 0.305(0.015) 0.209(0.001) 0.135(0.008) 0.110(0.007) 0.696(0.015)

ψ-learning 0.206(0.005) 0.113(0.003) 0.087(0.004) 0.069(0.003) 0.798(0.005)
% of impro. 44.6% 60.0% 48.5% 50.6%
HSVMc 0.313(0.005) 0.166(0.003) 0.128(0.006) 0.109(0.005) 0.685(0.005)

% of impro. −3.6% 26.9% 7.1% 1.2%
SHSVM 0.202(0.003) 0.110(0.002) 0.086(0.001) 0.068(0.001) 0.792(0.003)
% of impro. 46.4% 61.9% 49.5% 51.9%
HSVM 0.205(0.003) 0.112(0.002) 0.087(0.001) 0.069(0.001) 0.795(0.003)

% of impro. 45.0% 60.6% 48.5% 50.6%
HPSI 0.190(0.002) 0.102(0.002) 0.085(0.002) 0.063(0.002) 0.815(0.002)

% of impro. 51.8% 66.9% 50.5% 58.0%
Bayes Rule 0.083 0.049 0.036 0.029 0.916

Table 2: Averaged test errors as well as estimated standard deviations (in parenthesis) of SVM, ψ-
learning, SHSVM, HSVM, HPSI and HSVMc over 100 simulation replications in Example
2 of Section 4.1. The testing errors are computed under the l0−1, lΔ, lsib and lsub. The
bold face represents the best performance among four competitors for any given loss. For
reference, F1-scores, as defined in Section 4.1, for these classifiers are given as well.

As suggested in Table 2, HSVM and HPSI outperform the three competitors under l0−1, lΔ, lsib
and lsub in the linear case, whereas HSVM performs slightly worse than SHSVM in the Gaussian

2731



WANG, SHEN AND PAN

case. In both cases, the amount of improvement of HSVM and HPSI over their flat counterpart
varies. Clearly, HPSI is the winner and outperforms its competitors in all the situations.

With regard to the test errors in Table 2, we also observe the following aspects. First, the five
classifiers perform similarly under lΔ, lsib and lsub. This is because all the eight leaf node classes are
at level 3 of the hierarchy, resulting a similar structure under these evaluation losses. Second, the
classifiers perform similarly for linear learning and Gaussian kernel learning. This is mainly due to
the fact that the ideal optimal decision rule—Bayes rule is linear in this case. Moreover, HPSI and
HSVM always have better F1-scores, which are the two most close to that of the Bayes rule.

In summary, HSVM and HPSI indeed yield improvements over their flat counterparts because
of the built-in hierarchical structure, and HPSI outperforms its competitors. Here, the hierarchy—a
tree of depth 3 is useful in reducing a classification problem’s complexity which can be explained
by the concept of the margins with respect to hierarchy, as discussed in Section 3.1.

Example 3. A random sample (Yi,Xi = {Xi1,Xi2})ni=1 is generated as follows. First, Xi ∼
U2(−1,1) is sampled. Second, Yi = 1 if Xi1 < 0 and Xi2 < 0; Yi = 2 if Xi1 < 0 and Xi2 ≥ 0; Yi = 3
if Xi1 ≥ 0 and Xi2 < 0; Yi = 4 if Xi1 ≥ 0 and Xi2 ≥ 0. Third, 20% of the sample are chosen at
random and their labels are randomly assigned to the other three classes. For non-leaf nodes 5 and
6, P(Yi = 5|Xi) = P(Yi = 1|Xi)+P(Yi = 2|Xi), and P(Yi = 6|Xi) = P(Yi = 3|Xi)+P(Yi = 4|Xi).
This generates a complete binary tree of depth 2, where nodes 1 and 2 are siblings of node 5, and
nodes 3 and 4 are siblings of node 6, see Figure 2 (c). Experiments are performed with different
training sample sizes of 50, 150, 500 and 1500.

Again, HSVM and HPSI outperform their competitors- HSVMc, SHSVM and SVM under the
four evaluation losses in all the situations. The amount improvement of HSVM over SVM varies
from 22.4% to 52.6% in the linear case and 8.9% to 42.5% in the Gaussian kernel case, whereas that
of HPSI ranges from 39.5% to 89.5% and 20.6% to 80.6%, respectively. By comparison, the amount
of improvement of HSVMc is from 6.4% to 23.8% in the linear case and from 2.4% to 18.8% in the
Gaussian kernel case, and that of SHSVM is from 21.1% to 47.4% and 9.5% to 45.2%. With regard
to F1-scores, HPSI and HSVM remain to be the best, and are much more close to that of the Bayes
rule.

In summary, the improvement of HPSI over HSVM becomes more significant when the training
size increases. As expected, HPSI is the winner and nearly achieves the optimal performance of the
Bayes rule when the sample size gets large.

4.2 Classification of Gene Functions

Biological functions of many known genes remain largely unknown. For yeast S. cerevisiae, only
68.5% of the genes were annotated in MIPS, as of May, 2005, for which many of them have only
general functions annotated in some top-level categories. Discovery of biological functions there-
fore becomes very important in biomedical research. As effective means, gene function prediction is
performed through known gene functions and gene expression profiles of both annotated and unan-
notated genes. Biologically, it is generally believed that genes having the same or similar functions
tend to be coexpressed (Hughes et al., 2000). By learning the patterns of expression profiles, a gene
with unknown functions can be classified into existing functional categories, as well as newly cre-
ated functional categories. In the process of prediction, classification is essential, as to be discussed
next.
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Linear
l & Sample TE and % of impro.

Bayes Rule Size SVM ψ-learning HSVMc SHSVM HSVM HPSI
l0−1 n=50 0.347(0.070) 0.315(0.058) 0.337(0.047) 0.316(0.047) 0.314(0.058) 0.289(0.045)

21.8% 6.8% 21.1% 22.4% 39.5%
n=150 0.284(0.043) 0.261(0.030) 0.275(0.023) 0.263(0.023) 0.260(0.030) 0.237(0.016)

0.200 27.4% 10.7% 25.0% 28.6% 56.0%
n=500 0.247(0.014) 0.234(0.013) 0.241(0.014) 0.235(0.014) 0.233(0.013) 0.213(0.007)

27.7% 12.8% 25.5% 29.8% 72.3%
n=1500 0.230(0.010) 0.217(0.005) 0.223(0.009) 0.218(0.009) 0.217(0.005) 0.205(0.003)

43.3% 23.3% 40.0% 43.3% 83.3%
lsib n=50 0.276(0.056) 0.249(0.046) 0.269(0.037) 0.250(0.037) 0.248(0.046) 0.229(0.035)

24.8% 6.4% 23.9% 25.7% 43.1%
n=150 0.230(0.032) 0.211(0.022) 0.222(0.018) 0.213(0.018) 0.210(0.022) 0.191(0.012)

0.167 30.2% 12.7% 27.0% 31.7% 61.9%
n=500 0.203(0.012) 0.193(0.011) 0.198(0.012) 0.194(0.012) 0.192(0.011) 0.175(0.005)

27.8% 13.9% 25.0% 30.6% 77.8%
n=1500 0.188(0.007) 0.178(0.004) 0.183(0.007) 0.179(0.007) 0.178(0.004) 0.170(0.002)

47.6% 23.8% 42.9% 47.6% 85.7%
lsub n=50 0.252(0.051) 0.227(0.042) 0.244(0.041) 0.228(0.041) 0.226(0.042) 0.210(0.033)

26.0% 8.3% 25.0% 27.1% 43.8%
n=150 0.212(0.029) 0.194(0.020) 0.203(0.020) 0.196(0.020) 0.193(0.020) 0.176(0.010)

0.156 32.1% 16.1% 28.6% 33.9% 64.3%
n=500 0.188(0.011) 0.179(0.010) 0.184(0.011) 0.180(0.011) 0.178(0.010) 0.162(0.005)

28.1% 12.5% 25.0% 31.3% 81.3%
n=1500 0.175(0.007) 0.165(0.004) 0.172(0.007) 0.166(0.007) 0.165(0.004) 0.158(0.002)

52.6% 15.8% 47.4% 52.6% 89.5%
lΔ n=50 0.184(0.037) 0.166(0.031) 0.179(0.025) 0.167(0.025) 0.165(0.031) 0.153(0.023)

24.7% 6.4% 23.7% 25.6% 42.9%
n=150 0.153(0.021) 0.141(0.015) 0.148(0.012) 0.142(0.012) 0.140(0.015) 0.127(0.008)

0.111 28.6% 12.6% 26.8% 31.5% 61.4%
n=500 0.135(0.008) 0.128(0.007) 0.132(0.008) 0.129(0.008) 0.128(0.007) 0.117(0.003)

29.2% 13.7% 24.7% 30.1% 76.7%
n=1500 0.125(0.005) 0.119(0.003) 0.122(0.005) 0.119(0.005) 0.119(0.003) 0.113(0.002)

42.9% 23.3% 41.9% 46.5% 83.7%
F1-score n=50 0.557(0.106) 0.588(0.107) 0.571(0.075) 0.588(0.076) 0.589(0.106) 0.597(0.110)

12.8% 5.8% 12.8% 13.2% 16.5%
n=150 0.672(0.063) 0.701(0.055) 0.683(0.026) 0.710(0.026) 0.691(0.054) 0.719(0.034)

0.800 22.7% 8.6% 29.7% 14.8% 36.7%
n=500 0.721(0.016) 0.741(0.017) 0.729(0.015) 0.749(0.014) 0.737(0.017) 0.754(0.012)

25.3% 10.1% 35.4% 20.3% 41.8%
n=1500 0.746(0.017) 0.763(0.015) 0.755(0.010) 0.763(0.010) 0.764(0.015) 0.779(0.004)

31.5% 16.7% 31.5% 33.3% 61.1%

Table 3: Averaged test errors as well as estimated standard deviations (in parenthesis) of SVM, ψ-
learning, HSVMc, SHSVM, HSVM and HPSI over 100 simulation replications of linear
learning in Example 3 of Section 4.1, with n = 50,150,500,1500. The test errors are
computed under the l0−1, lΔ, lsib and lsub. For reference, F1-scores, as defined in Section
4.1, for these classifiers are given as well.

Hughes et al. (2000) demonstrated the effectiveness of gene function prediction through genome-
wide expression profiles, and identified and experimentally confirmed eight uncharacterized open
reading frames as protein-coding genes. Specifically, three hundred expressions were profiled for
the genome of yeast S. cerevisiae, in which transcript levels of a mutant or a compound-treated
culture were compared against that of a wild-type or a mock-treated culture. Three hundred experi-
ments, consisting of 276 deletion mutants, 11 tetracycline-regulatable alleles of essential genes, and
13 well-characterized compounds. Deletion mutants were selected such that a variety of functional
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Gaussian
l & Sample TE and % of impro.

Bayes Rule Size SVM ψ-learning HSVMc SHSVM HSVM HPSI
l0−1 n=50 0.326(0.060) 0.313(0.047) 0.323(0.047) 0.314(0.047) 0.313(0.047) 0.300(0.045)

10.3% 2.4% 9.5% 8.9% 20.6%
n=150 0.280(0.036) 0.27 (0.027) 0.276(0.030) 0.270(0.030) 0.270(0.027) 0.261(0.016)

0.200 12.5% 5.0% 12.5% 12.5% 23.8%
n=500 0.257(0.022) 0.24 (0.014) 0.252(0.013) 0.239(0.013) 0.240(0.014) 0.224(0.007)

29.8% 8.8% 31.6% 29.8% 57.9%
n=1500 0.247(0.013) 0.227(0.010) 0.240(0.011) 0.226(0.011) 0.227(0.010) 0.215(0.003)

42.6% 14.9% 44.7% 42.5% 68.1%
lsib n=50 0.263(0.048) 0.250(0.037) 0.257(0.037) 0.251(0.037) 0.250(0.037) 0.243(0.035)

13.5% 6.3% 12.5% 9.8% 20.8%
n=150 0.229(0.029) 0.218(0.022) 0.225(0.022) 0.219(0.022) 0.218(0.022) 0.211(0.012)

0.167 17.7% 6.5% 16.1% 13.1% 29.0%
n=500 0.208(0.016) 0.195(0.010) 0.202(0.011) 0.194(0.011) 0.195(0.010) 0.181(0.005)

31.7% 14.6% 34.1% 31.7% 65.9%
n=1500 0.198(0.008) 0.185(0.006) 0.193(0.005) 0.184(0.005) 0.185(0.006) 0.173(0.003)

41.9% 16.1% 45.2% 40.9% 80.6%
lsub n=50 0.241(0.044) 0.227(0.034) 0.237(0.041) 0.230(0.041) 0.228(0.034) 0.222(0.033)

16.5% 4.7% 12.9% 11.1% 22.4%
n=150 0.211(0.027) 0.2 (0.020) 0.207(0.020) 0.202(0.020) 0.201(0.020) 0.192(0.010)

0.156 20.0% 7.3% 16.4% 13.5% 34.5%
n=500 0.192(0.015) 0.179(0.009) 0.187(0.010) 0.179(0.010) 0.180(0.009) 0.169(0.005)

36.1% 13.9% 36.1% 33.3% 63.9%
n=1500 0.188(0.009) 0.175(0.006) 0.182(0.005) 0.175(0.005) 0.176(0.006) 0.163(0.003)

40.6% 18.8% 40.6% 35.4% 78.1%
lΔ n=50 0.175(0.032) 0.167(0.025) 0.171(0.025) 0.167(0.025) 0.166(0.025) 0.162(0.023)

12.5% 6.2% 12.4% 9.8% 20.7%
n=150 0.153(0.019) 0.145(0.015) 0.150(0.014) 0.146(0.014) 0.145(0.015) 0.141(0.008)

0.111 19.0% 6.4% 16.0% 13.1% 28.8%
n=500 0.139(0.011) 0.13 (0.007) 0.135(0.007) 0.129(0.007) 0.130(0.007) 0.121(0.003)

32.1% 14.5% 33.7% 31.7% 65.1%
n=1500 0.132(0.005) 0.123(0.004) 0.129(0.004) 0.123(0.004) 0.123(0.004) 0.115(0.002)

42.9% 15.9% 44.4% 41.3% 79.4%
F1-score n=50 0.559(0.105) 0.589(0.107) 0.573(0.076) 0.590(0.076) 0.591(0.105) 0.595(0.109)

12.4% 5.8% 12.9% 13.3% 14.9%
n=150 0.674(0.062) 0.703(0.053) 0.686(0.024) 0.713(0.025) 0.695(0.051) 0.717(0.033)

0.800 23.0% 9.5% 31.0% 16.7% 34.1%
n=500 0.723(0.016) 0.744(0.017) 0.732(0.014) 0.752(0.014) 0.740(0.016) 0.753(0.012)

27.3% 11.7% 37.7% 22.1% 39.0%
n=1500 0.747(0.017) 0.765(0.015) 0.757(0.011) 0.766(0.010) 0.767(0.015) 0.776(0.004)

34.0% 18.9% 35.8% 37.7% 54.7%

Table 4: Averaged test errors as well as estimated standard deviations (in parenthesis) of SVM, ψ-
learning, HSVMc, SHSVM, HSVM and HPSI over 100 simulation replications of kernel
learning in Example 3 of Section 4.1, with n = 50,150,500,1500. The test errors are
computed under the l0−1, lΔ, lsib and lsub. For reference, F1-scores, as defined in Section
4.1, for these classifiers are given as well.

classifications were represented. Experiments were performed under a common condition to allow
direct comparison of the behavior of all genes in response to all mutations and treatments. Expres-
sions of the three hundred experiments were profiled through a two-channel cDNA chip technology
(or hybridization assay). As suggested in Hughes et al. (2000), the expression profiles were indeed
informative to gene function prediction.

In gene function prediction, one major difficulty is the presence of a large number of function
categories with relatively small-sample size, which is known as the situation of large number of cate-
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gories in classification. To battle the curse of dimensionality, a structured approach needs to be used
with built-in biological knowledge presented in a form of annotation system such as MIPS, where
a flat approach does not perform better than a classifier that uses a correct hierarchical structure.
Comparisons can be found in Shahbaba and Neal (2007), and Cesa-Bianchi and Valentini (2009).
The problem of gene function prediction is an ideal test case for hierarchical classification, where
accuracy of prediction is key. In the literature, recalibration and combination of different large
margin methods, including sequential HSVM and loss scaled SVM, were used in gene function pre-
diction, see, for example, Obozinski et al. (2008), Guan et al. (2008), and Valentini and Re (2009).
Astikainen et al. (2008) used a different representation with a loss-scaled SVM. Cesa-Bianchi et al.
(2006), and Cesa-Bianchi and Valentini (2009) employed a Bayesian ensemble method.

Through gene expression data in Hughes et al. (2000), we apply HSVM and HPSI to predict
gene functions. Of particular consideration is prediction of functional categories of unknown genes
within two major branches of MIPS, composed of two functional categories at the highest level:
“cell cycle and DNA processing” and “transcription” and their corresponding offsprings. Within
these two major branches, we have n= 1103 annotated genes together with p= 300 expressions for
each gene and a tree hierarchy of K = 23 functional categories, see Figure 3 for a display of the tree
hierarchy. In this case, the predictor x represents the expression levels of a gene, consisting of the
log-ratios (base 10) of the mRNA abundance in the test samples relative to the reference samples,
and label Y indicates the location within the MIPS hierarchy. For this MIPS data, some genes
belong to two or more functional categories. To place the problem of gene function prediction into
our framework of hierarchical classification, we may create a new separate category for all genes
that are annotated with a common set of categories. For an example, in Figure 2 (b), if we observed
cases of common members for Categories 2 and 3, we will create a category, say Category 15, which
is the sibling of Categories 9 and 10. Those common members will be assigned to Category 15.

Notice that, although we have nearly balanced situation in this example, in general we may see
unbalanced situations.

We now perform some simulations to gain insight into HSVM and HPSI for gene function
prediction before applying to predict new gene functions with respect to MIPS. For this purpose,
we use the 2005 version of MIPS and proceed 100 randomly partition the entire set of data of 1103
genes into training, tuning and testing sets, with 303, 300, and 500 genes, respectively. Then HSVM
and HPSI are trained with training samples, tuned and tested as in Section 4.1, over 100 different
random partitions to avoid homologous gene clusters. Their performance is measured by the test
errors is averaged over 100 random partitions.

As suggested by Table 5, besides similar results in F1-score, HSVM and HPSI outperform SVM
and HSVMc under l0−1, lΔ, lsib and lΔ, in both the linear and Gaussian kernel cases. With respect
to these four losses, the amount of improvement of HSVM over SVM ranges from 0.1% to 31.8%,
whereas that of HPSI over SVM is from 0.1% to 32.3%. Among these four losses, lΔ and lsub yield
the largest amount of improvement. This suggests that HPSI and HSVM classify more precisely
at the top levels than at the bottom levels of the hierarchy, where the inter-class dependencies are
weak. Note that lΔ and lsub penalize misclassification more at relevant nodes at lower levels in deep
branches, whereas lsib only does so at upper levels. Interestingly, small and large branches have the
same parents, leading to large differences in penalties under different losses. It is also noted that the
F1-scores are not significantly above 0 for all the large margin methods we are comparing here.

We are now ready to apply our method to real challenge of predicting unknown gene functional
categories that had not been annotated in the 2005 version of MIPS. The predicted gene functions
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Figure 3: Two major branches of MIPS, with two functional categories at the highest level: “Cell
cycle and DNA processing” and “Transcription”. For each node, the corresponding func-
tional category is defined by a combination of numbers of itself and all of its ancestors.
For instance, the middle node 01 at level 4 indicates functional category 04.05.01.01 in
MIPS, which corresponds to “General transcription activities”. Notes that a blank node
represents its parent itself, for instance, the left blank node at level 3 indicates functional
category 03.01.

will be cross-validated by a newer version of MIPS, dated in March 2008, where about 600 addi-
tional genes have been added into functional categories, representing the latest biological advance.
We proceed in three steps. First, we use the tuned HSVM and HPSI trained through the training
samples in the 2005 version of MIPS, which are the best performer over the 100 random partitions.
Second, the trained HPSI and HSVM are applied to ten most confident genes for prediction, which
are chosen among unannotated genes in the 2005 version but annotated in the 2008 version. Here the
confidence is measured by the value of the functional margin. Third, ten predictions from HSVM
and HPSI are cross-validated by the 2008 version of MIPS.

As indicated in Table 6, seven out of the ten genes are predicted correctly for both HSVM and
HPSI. For an example, gene “YGR054w” is not annotated in the 2005 version of MIPS, and is pre-
dicted to belong to functional categories along a path “Protein synthesis”→ “Ribosome biogenesis”
→ “Ribosomal proteins” by HPSI. This prediction is confirmed to be exactly correct by the newer
version of MIPS.

5. Statistical Learning Theory

In the literature, the generalization accuracy for hierarchical classification and the role of H have
not been widely studied. This section develops an asymptotic theory to quantify the generalization
accuracy of the proposed hierarchical large margin classifier dH(f̂) defined by (2) for a general loss
v. In particular, the rate of convergence of dH(f̂) is derived. Moreover, we apply the theory to one
illustrative example to study when and how H improves the performance over flat classification.
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Linear
Training Test error

Methods l0−1 lΔ lsib lsub F1-score
SVM 0.972(0.006) 0.651(0.024) 0.926(0.008) 0.593(0.029) 0.007(0.002)

ψ-learning 0.961(0.009) 0.633(0.023) 0.92(0.022) 0.581(0.041) 0.007(0.002)
% of impro. 1.13% 2.8% 0.7% 2.0%

SHSVM 0.962(0.007) 0.552(0.031) 0.927(0.008) 0.442(0.036) 0.015(0.002)
% of impro. 1.0% 15.2% 0.1% 25.5%

HSVM 0.960(0.009) 0.520(0.023) 0.918(0.022) 0.433(0.041) 0.008(0.002)
% of impro. 1.2% 20.0% 0.8% 27.0%

HPSI 0.958(0.008) 0.517(0.020) 0.917(0.020) 0.430(0.038) 0.009(0.002)
% of impro. 1.4% 20.6% 1.0% 27.5%

Gaussian
Training Test error

Methods l0−1 lΔ lsib lsub F1-score
SVM 0.976(0.002) 0.669(0.005) 0.921(0.003) 0.617(0.007) 0.007(0.002)

ψ-learning 0.961(0.008) 0.660(0.020) 0.92(0.019) 0.601(0.030) 0.007(0.002)
% of impro. 1.5% 1.3% 0.1% 2.6%

SHSVM 0.963(0.006) 0.558(0.033) 0.920(0.009) 0.430(0.029) 0.016(0.002)
% of impro. 1.3% 16.6% 0.1% 30.3%

HSVM 0.961(0.008) 0.515(0.020) 0.920(0.019) 0.421(0.030) 0.008(0.002)
% of impro. 1.5% 23.0% 0.1% 31.8%

HPSI 0.960(0.008) 0.512(0.021) 0.920(0.020) 0.418(0.030) 0.009(0.002)
% of impro. 1.6% 23.5% 0.1% 32.3%

Table 5: Averaged test errors as well as estimated standard deviations (in parenthesis) of SVM, ψ-
learning, SHSVM, HSVM and HPSI, in the gene function example in Section 4.2, over 100
simulation replications. The testing errors are computed under l0−1, lΔ, lH−sib and lH−sub.
The bold face represents the best performance among four competitors for any given loss.
For reference, F1-scores, as defined in Section 4.1, for these classifiers are given as well.

5.1 Theory

In classification, the performance of our classifier dH(f̂) is measured by the difference between the
actual performance of f̂ and the ideal optimal performance of f̄ , defined as e(f̂ , f̄) =GE(dH(f̂))−
GE(dH(  f)) = E(l0−1(Y,dH(f̂(X)))− l0−1(Y,dH(  f(X)))) ≥ 0. Here GE(dH(  f)) is the optimal
performance for any classifier provided that the unknown true distribution P(x,y) would have been
available. In hierarchical classification with k leaf and (K− k) non-leaf node classes, the Bayes de-
cision function vector  f is a decision function vector yielding the Bayes classifier under dH , that is,
dH(  f(x)) =  d(x). In our context, we define  f as follows: for each j,  f j(x) = maxt:t∈sub( j)∩L P(Y =
t|X = x) if j /∈ L and  f j(x) = P(Y = j|X = x) if j ∈ L .

Let eV (f , f̄) = E(V (f ,Z)−V (f̄ ,Z))≥ 0 and λ= (nC)−1, whereV (f ,Z) is defined as v(umin
(f(X),Y )), Z = (X,Y ), and v(·) is any large margin surrogate loss used in (2).

The following theorem quantifies Bayesian regret e(f̂ , f̄) in terms of the tuning parameter C
through λ = 1

nC , the sample size n, the smoothness parameters (α,β) of a surrogate loss V -based
classification model, and the complexity of the class of candidate function vectors F . Note that
the assumptions below are parallel to those of Theorem 3 in Liu and Shen (2006) for a statistical
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Prediction verified
Gene Function category HSVM HPSI HSVMc SHSVM

YGR054w translation initiation Yes Yes Yes Yes
YCR072c ribosome biogenesis Yes Yes Yes Yes
YFL044c transcriptional control Yes Yes Yes Yes
YNL156c binding / dissociation No No No No
YPL201c C-compound and carbohydrate utilization Yes Yes Yes Yes

YML069W mRNA synthesis Yes Yes Yes Yes
YOR039W mitotic cell cycle and cell cycle control Yes Yes No Yes
YNL023C mRNA synthesis No Yes No No
YPL007C mRNA synthesis No No No No
YDR279W DNA synthesis and replication Yes No No No

Table 6: Verification of 10 gene predictions using an updated MIPS system and their functional
categories.

learning theory for multiclass SVM and ψ-learning. In particular, Assumptions A-C described in
Appendix are used to quantity the error rate of the classifier, in addition to a complexity measure
the metric entropy with bracketing HB for function space F defined before Assumption C.

Theorem 2 Under Assumptions A-C in Appendix A, for any large margin hierarchical classifier
dH(f̂) defined by (1), there exists a constant c6 > 0 such that for any x≥ 1,

P
(
e(f̂ , f̄)≥ c1xδ

2α
n

)≤ 3.5exp(−c6x
2−min(β,1)n(λJ0)

2−min(β,1)),

provided that λ−1 ≥ 2δ−2
n J0, where δ2

n = min(ε2
n+2eV (f ∗, f̄),1), f ∗ ∈ F is an approximation in F

to  f , J0 = max(J(f ∗),1) with J(f) = 1
2 ∑

K
j=1 ‖ f j‖2

K , and α,β, εn are defined in Assumptions A-C in
Appendix A.

Corollary 1 Under the assumptions in Theorem 2, |e(f̂ ,  f)|=Op
(
δ2α
n

)
and E|e(f̂ ,  f)|=O

(
δ2α
n

)
,

provided that n(λJ0)
2−min(β,1) is bounded away from 0 n→ ∞.

The convergence rate for e(f̂ , f̄) is determined by δ2
n, α > 0 and β > 0, where δn captures the

trade-off between the approximation error eV (f ∗, f̄) due to use the surrogate loss V and estimation
error ε2

n, where εn is defined by the bracketing L2 entropy of candidate function space F V (t) =
{VT (f ,z)−V (f̄ ,z) : f ∈ F ,J(f) ≤ J0t}, and the last two quantify the first and second moments
of EV (f ,Z), where z = (x,y) and Z = (x,Y ).

By comparison, with V induced by a margin loss v, F V (t) in multiclass classification is usually
larger than its counterpart in hierarchical classification. This is because V is structured in that
functional margin umin(f(X),Y ) involves a smaller number of pairwise comparisons in hierarchical
classification. In fact, only siblings for Y or one of Y ’s ancestors are compared. In contrast, any two
classes need to be compared in multiclass classification without such a hierarchy (Liu and Shen,
2006). A theoretical description regarding the reduced size of the effective parameter space F V (t)
is given in the following lemma.
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With regard to tightness of the bounds derived in Theorem 1, note that it reduces to multiclass
margin classification, where the linear example in Shen and Wang (2007) indicates that the n−1 rate
obtained from the upper bound theory agrees with the optimal rate of convergence.

Lemma 2 Let H be a tree hierarchy with K non-root nodes including k leaf nodes. If F1 = · · · =
FK, then HB(ε,F V (t)) ≤ 2c(H )HB(ε/(2c(H )),F1(t)) with v being the hinge and ψ losses, where

c(H ) = ∑K
j=0

|chi( j)|(|chi( j)|−1)
2 ≤ k(k−1)

2 is the total number of comparisons required for hierarchical

classification, and F j(t) = { f j : 1
2‖ f j‖K ≤ J0t}; j = 1, · · · ,K.

5.2 Bayes Classifier and Fisher-consistency

To compare different losses for the purpose of hierarchical classification, we introduce a new con-
cept called “Fisher-consistency” with respect to H . Before proceeding, we define the Bayes rule in
Lemma 3 for K-class classification with non-exclusive membership, where only k< K classes have
mutually exclusive membership, determining the class membership of the other K−k non-exclusive
classes.

Lemma 3 In K-class classification with non-exclusive membership, assume that the k mutually ex-
clusive membership classes uniquely determine the membership of the other K− k non-exclusive
classes. That is, for any t ∈ E and t̃ /∈ E, either {Y = t̃} ⊇ {Y = t}, or {Y = t̃} ⊆ {Y 
= t},
where E is the set of k mutually exclusive membership classes. Then the Bayes classifier  d(x) =
argmax j∈E P(Y = j|X = x).

Based on Lemma 3, we define Fisher-consistency with respect to H in hierarchical classifica-
tion, which can be regarded as a generalization of Fisher-consistency in multi classification cases.

Definition 1 In hierarchical classification, denote by L the set of classes corresponding to the leaf
nodes in a tree. With L being a set of mutually exclusive membership classes, a loss l(·, ·) is said to
be Fisher-consistent with respect to H if a global minimizer El(Y,f(X)) over all possible f(x) is
 f .

Lemma 4 Loss l0−1 is Fisher-consistent with respect to H ; so is lΔ in the presence of a dominating
leaf node class, that is, a class such that for any x ∈ S there exists a leaf node class j such that
P(Y = j|X = x)> 1/2.

As shown in Lemma 4, l0−1 and lΔ are Fisher-consistent with respect to H .

Lemma 5 Surrogate loss v(umin(f(x),y)) is Fisher-consistent with respect toH when v(·) is either
the hinge loss or the ψ loss.

5.3 Theoretical Examples

Consider hierarchical classification with H defined by a complete binary tree with depth p. For this
tree, there are k = 2p leaf nodes and K = 2p+1 − 2 = 2k− 2 non-root nodes, see Figure 2 (b) for
an example of p = 3. Without loss of generality, denote by { j1, · · · , jk} the k leaf nodes. In what
follows, we focus on the 0-1 loss with l = l0−1.

A random sample is generated: X = (X(1),X(2)) sampled from the uniform distribution over
S= [0,1]2. For any leaf node ji; i= 1, · · · ,k, when X(1) ∈ [(i−1)/k, i/k), P(Y = ji|X) = (k−1)/k,
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and P(Y = j|X) = 1/[k(k− 1)] for j 
= ji. For any non-leaf node ji; i = k+ 1, · · · ,K, P(Y =
ji|X) =∑t∈sub( ji)∩L P(Y = t|X). Then the Bayes rule  d is defined from the Bayes decision function
f̄ = {  f1, · · · ,  fK} through the top-down rule, where f̄ is defined as follows: For leaf nodes,  f ji(x) =
∑i
t=1(x(1) − t/k); i = 1, · · · ,k, so that when x(1) ∈ [(i0 − 1)/k, i0/k),  f ji0 (x) = maxi=1,··· ,k  f ji(x).

For non-leaf nodes, let it be the maximum over the leaf nodes in the subtree, that is,  f ji(x) =
max{t∈sub( ji)∩L}  ft ; i= k+1, · · · ,K.

Linear learning: Let F = {( f1, · · · , fK) : f j =wT
j x+b j} and J(f) = ∑K

j=1 ‖w j‖2, where ‖ · ‖
is the EuclideanL2-norm. We now verify Assumptions A-C for Corollary 1. It follows from Lemma
3 of Shen and Wang (2007) with f ∗ = arg inff∈F El0−1(f ,Z) for HSVM and f ∗j = ∑

j
t=1 n(x(1) −

t/k) for HPSI; j = 1, · · · ,k, and f ∗j = max{t∈sub( j)∩L} f ∗t otherwise. Assumptions A and B there

are met with α = 1
2 and β = 1 for HSVM, and with α = β = 1 for HPSI. For Assumption C,

note that HB(ε,F1(t)) ≤ O(log(1/ε)), by Lemma 2 with c(H ) = ∑K
j=0 |chi( j)|(|chi( j)| − 1)/2 =

∑K
j=0 I{ j /∈ L}= k−1, we have, for HSVM and HPSI, HB(ε,F V (t))≤O(k log(k/ε)) (Kolmogorov

and Tihomirov, 1959). Consequently, L≤O(ε2
n) in Assumption C, where φ(εn,s) =

∫ c1/2
4 Lβ/2

c3L H1/2
B (u,

F V (s))du/L and supt≥2φ(εn, t) ≤ O((k log(k/εn))1/2/εn). Solving (7) in Assumption C leads to

εn = ( k logn
n )1/2 for HSVM and HPSI whenC/J0 ∼ δ−2

n /n∼ 1
nε2

n
, provided that k logn

n → 0, with δn as

defined in Theorem 2. Similarly, for multiclass SVM and ψ-learning, εn = ( k(k−1)/2logn
n )1/2 (Shen

and Wang, 2007).

By Corollary 1, |e(f̂ , f̄)|=Op

(
(k logn/n)1/2

)
and E |e(f̂ , f̄)|=O

(
(k logn/n)1/2

)
for HSVM,

and |e(f̂ , f̄)|=Op

(
k logn/n

)
and E |e(f̂ , f̄)|=O

(
k logn/n

)
for HPSI, when k logn

n → 0 as n→∞.

By comparison, the rates of convergence for SVM and ψ-learning are O
(
( k(k−1)

2 logn/n)1/2
)

and

O
(
k(k−1)

2 logn/n
)

. In this case, the hierarchy enables to reduce the order from k(k−1)
2 down to k.

Note that H is a flat tree with only one layer, that is, all the leaf nodes are the direct offsprings
of the root node 0, which means that |chi(0)| = k. Then c(H ) = |chi(0)|(|chi(0)|−1)

2 = k(k−1)
2 . This

would lead to the same rates of convergence for HSVM and HPSI as their counterparts.

Gaussian kernel learning: Consider the same setting with candidate function class defined by
the Gaussian kernel. By the Aronszajn representation theorem of the reproducing kernel Hilbert
spaces (Gu, 2000), it is convenient to embed a finite-dimensional Gaussian kernel representation
into an infinite-dimensional space F = {x ∈ R 2 : f(x) = ( f1(x), . . . , fK(x)) with f j(x) = b j +

wT
j φ(x) = b j+∑∞

l=0wj,lφl(x) : w j ∈ l2}, and 〈φ(x),φ(z)〉= K (x,z) = exp(−‖x−z‖2

2σ2
n

), where σn
is a scaling tuning parameter for the Gaussian kernel, which may depend on n. In what follows, we
verify Assumptions A-C for HSVM and HPSI separately, and calculate δn in Corollary 1.

For HSVM, letting f ∗j = 1− (1+ exp(∑
j
t=1 τ(x(1)− t/k)))−1; for j = 1, · · · ,k, and letting f ∗j =

max{t∈sub( j)∩L} f ∗t otherwise, e(f ∗,  f) = O(k/τ) and J(f ∗) = O(keτ
2σ2

n). Assumptions A and B
are met with α = β = 1 by Lemmas 6 and 7 of Shen and Wang (2007). For Assumption C, fol-
lowing from Section 5.3 of Shen and Wang (2007), we have HB(ε,F1(t))≤ O((log((J0t)1/2/ε))3).
By Lemma 2, with c(H ) = k− 1 as calculated in the linear cases, we have that HB(ε,F V (t)) ≤
O(k(log((J0t)1/2k/ε))3), where J0 = max(J(f ∗),1). Note that L ≤ O(ε2

n). Then supt≥2φ(εn, t) ≤
O((k(log((J0t)1/2k/εn))3)1/2/εn). Solving (7) in Assumption C leads to ε2

n = kn−1(log((J0n)1/2))3

when λJ0 ∼ ε2
n. By Corollary 1, e(f̂ ,  f) =Op(δ2

n) and Ee(f̂ ,  f) =O(δ2
n), with δ2

n = max(kn−1(τ2σ2
n
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+σ−2
n + logn)3, k/τ) =Op(kn−1/7) with τ∼ n1/7 when σ2

n is fixed, andOp(kn−1/4) when τ∼ σ−2
n ∼

n1/4.
For HPSI, let f ∗j =∑

j
j̃=1

τ(x(1)− j̃/k); j= 1, · · · ,k, and f ∗j =max{t∈sub( j)∩L} f ∗t otherwise. Then

it can be verified that eL(f ∗,  f) = O(k/τ) and J(f ∗) = O(kτ2σ2
n). Assumptions A and B are met

with α= β= 1 by Theorem 3.1 of Liu and Shen (2006). AlsoHB(ε,F1(t))≤O((log((J0t)1/2/ε))3),
thus supt≥2φ(εn, t) ≤ O((k(log((J0t)1/2k/εn))3)1/2/εn). Similarly as in HSVM, solving (7) in As-
sumption C leads to ε2

n = kn−1(log((J0n)1/2))3 when λJ0 ∼ ε2
n. By Corollary 1, e(f̂ ,  f) = Op(δ2

n)

and Ee(f̂ ,  f) = O(δ2
n), with δ2

n = max(kn−1(log(nτ2σ2
n) + σ−2

n )3, k/τ) = O
(
kn−1(logn)3

)
with

τ∼ n(logn)−3 and fixed σ2
n, or σ2

n ∼ 1/ logn.
An application of Theorem 1 in Shen and Wang (2007) yields the convergence rates of SVM and

ψ-learning to be O
(
k(k−1)

2 n−1/7
)

and O
(
k(k−1)

2 n−1(logn)3
)

, respectively. Again, the hierarchical

structure reduces the order from k(k−1)/2 to k as in the linear case.

6. Discussion

This paper proposed a novel large margin method for single-path or partial-path hierarchical classi-
fication with mutually exclusive membership at the same level of a hierarchy. In contrast to existing
hierarchical classification methods, the proposed method uses inter-class dependencies in a hierar-
chy. This is achieved through a new concept of generalized functional margins with respect to the
hierarchy. By integrating the hierarchical structure into classification, the classification accuracy, or
the generalization error defined by hierarchical losses, has been improved over its flat counterpart, as
suggested by our theoretical and numerical analyses. Most importantly, the proposed method com-
pares favorably against strong competitors in the large margin classification literature, especially
from different settings of our synthetic simulations.

At present, the hierarchical structure is assumed to be correct. However, in applications, some
classes may be mislabeled or unlabeled. In such a situation, a further investigation is necessary to
generalize the proposed method, and also to allow for novel class detection.
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Appendix A.

The following assumptions are made for Theorem 2.
For a given loss V , we define a truncated VT (f ,Z) = T ∧V (f ,Z) for any f ∈ F and some

truncation constant T , and eVT (f , f̄) = E(VT (f ,Z)−V (f̄ ,Z)).
Assumption A: There exist constants 0 < α≤ ∞ and c1 > 0 such that for any small ε> 0,

sup
{f∈F : eVT (f ,f

∗)≤ε}
|e(f , f̄)| ≤ c1εα.
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Assumption B: There exist constants β≥ 0 and c2 > 0 such that for any small ε> 0,
sup

{f∈F : eVT (f ,f̄)≤ε}
Var(VT (f ,Z)−V (f̄ ,Z))≤ c2εβ.

These assumptions describe local smoothness of |e(f , f̄)| and Var(VT (f ,Z)−V (f̄ ,Z)). In
particular, Assumption A describes a first moment relationship between the Bayes regret |e(f , f̄)|
and eVT (f ,f ∗). Assumption B is a second moment condition over the neighborhood of f̄ . The
exponents α and β depend on the joint distribution of (X ,Y ).

We now define a complexity measure of a function space F . Given any ε > 0, denote {( f lj ,
f uj )}mj=1 as an ε-bracketing function set of F if for any f ∈ F , there exists an j such that f lj ≤
f ≤ f uj and ‖ f lj − f uj ‖2 ≤ ε; j = 1, · · · ,m, where ‖ f‖2 = (E f 2)

1
2 is the L2-norm. Then the metric

entropy with bracketing HB(ε,F ) is the logarithm of the cardinality of the smallest ε-bracketing set
for F . Let F V (t) = {VT (f ,z)−V (f ∗,z) : f ∈ F ,J(f) ≤ J0t}, where J(f) = 1

2 ∑
K
j=1 ‖ f j‖2 and

J0 =max(J(f ∗),1).
Assumption C: For some constants ci > 0; i= 3, . . . ,5 and εn > 0,

sup
t≥2

φ(εn,s)≤ c5n
1/2, φ(εn,s) =

∫ c1/24 Lβ/2

c3L
H1/2B (u,F V (s))du/L, (7)

where L= L(εn,λ,s) =min(ε2n+λJ0(s/2−1),1).

Appendix B.

Proof of Theorem 1: The proof is the same as that of Liu and Shen (2006), and is omitted.
Proof of Lemma 1: When 0-1 loss is used, l0−1(Y,d(X)) = I{Y 
= d(X)}. From the sequential
decision rule described in Section 2, we know that y= d(x) is equivalent to for every t ∈ anc(y)∪
{y}}, ft(x)≥ f j(x) : j ∈ sib(t). Furthermore, it is also equivalent to min{uy, j : uy, j ∈U(f(x),y) =
{uy,1,uy,2, · · · ,uy,ky}} ≥ 0. Therefore, GE(d) = El0−1(Y,d(X)) = EI(umin( f (X),Y )< 0) follows.
Proof of Lemma 2: To construct bracket covering for F V (t), note that J(f)≤ J0t implies 12‖ f j‖2 ≤
J0t; j = 1, · · · ,K. Furthermore, consider a pairwise difference f j − f j′ with f j ∈ F j(t) and f j′ ∈
F j′(t). Let {( f i,lj , f i,uj )i} be a set of an ε-bracket functions for F j(t) in that for any f j ∈ F j(t), there

exists an i such that f i,lj ≤ f j ≤ f i,uj with ‖ f i,uj − f i,lj ‖2≤ ε; j= 1, · · · ,K. Now construct a set of brack-
ets for F V (t). Define gu =max{ j′∈sib( j), j∈anc(y)∪{y}} v

(
f i,lj − f i

′,u
j′
)
and gl =max{ j′∈sib( j), j∈anc(y)∪{y}}

v
(
f i,uj − f i

′,l
j′
)
, where v(t) is (1− t)+ for HSVM and ψ(t) for HPSI. By construction,

T ∧gl ≤VT (f ,z) = T ∧max{v( f j− f j′) : j
′ ∈ sib( j), j ∈ anc(y)∪{y}} ≤ T ∧gu

since hT (t) = T ∧ t is non-decreasing in t, where z = (x,y). By Lipschitz continuity of hT (t) in t,
0≤ (T ∧gu−T ∧gl)≤ gu−gl , implying

‖T ∧gu−T ∧gl‖2 ≤ ‖gu−gl‖2 ≤ ∑
{ j′∈sib( j), j∈anc(y)∪{y}}

‖( f i,uj − f i
′,l
j′ )− ( f i,lj − f i

′,u
j′ )‖2 ≤ 2c(H )ε,

with c(H ) = ∑K
j=0

|chi( j)|(|chi( j)|−1)
2 be the total number of sibling pairs ( j, j′) in H . It follows that

HB(2c(H )ε,F V (t))≤ HB(2c(H )ε,F1(t)). The desired result then follows.
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To prove that c(H )≤ k(k−1)/2, we count the total number of different paths from the root to a
leaf node. On one hand, given each non-leaf node j, there is only one path from the root to the node
j but when there are additional |chi( j)|−1 paths from the root to its children. An application of this
recursively yields that there are 1+∑ j/∈L(|chi( j)|−1) paths from the root of the k leaf nodes. On the
other hand, by definition, there are k different paths corresponding to k leaf nodes. Consequently,
k = 1+∑ j/∈L(|chi( j)|−1). For j /∈ L , |chi( j)|−1 ≥ 0. Then

∑
j/∈L

(|chi( j)|−1)2 ≤
(
∑
j/∈L

(|chi( j)|−1)
)2

= (k−1)2.

This implies

2c(H ) = ∑
j/∈L

(|chi( j)|−1)2 +∑
j/∈L

(|chi( j)|−1)≤ (k−1)2 + k−1 = k(k−1).

This completes the proof.
Proof of Lemma 3: Without loss of generality, assume that the membership is mutually exclusive
for the first k classes. The 0-1 loss over K non-exclusive membership classes can be expressed as
maxKt=1(I(Y = t,d(X) 
= t)+ I(Y 
= t,d(X) = t)), which is the disagreement between the value of
Y and that of d(X) in H . By assumption, if

k
max
t=1

(I(Y = t,d(X) 
= t)+ I(Y 
= t,d(X) = t)) = 0,

then maxKt=k+1(I(Y = t,d(X) 
= t)+ I(Y 
= t,d(X) = t)) = 0. On the other hand,

K
max
t=1

(I(Y = t,d(X) 
= t)+ I(Y 
= t,d(X) = t))≥ k
max
t=1

(I(Y = t,d(X) 
= t)+ I(Y 
= t,d(X) = t)),

which implies that maxKt=1(I(Y = t,d(X) 
= t)+ I(Y 
= t,d(X) = t)) = 1 when
maxkt=1(I(Y = t,d(X) 
= t)+ I(Y 
= t,d(X) = t)) = 1. Consequently

l0−1(Y,d(X)) =
k

max
t=1

(I(Y = t,d(X) 
= t)+ I(Y 
= t,d(X) = t)) =
k

∑
t=1

I(d(X) 
= t)I(Y = t)

by exclusiveness of the membership. Finally

 d(x) =
k

argmin
j=1

El0−1(Y,d(X) = j)|X = x)

=
k

argmin
j=1

k

∑
t=1

P(Y = t|X = x)I(t 
= j) =
k

argmin
j=1

k

∑
t 
= j,t=1

P(Y = t|X = x)

=
k

argmin
j=1

(
1−P(Y = j|X = x)

)
=

k
argmax

j=1
P(Y = j|X = x).

This completes the proof.
Proof of Lemma 4: The decision function  d(x), which minimizes E(l0−1(Y,d(X))|X = x) for
any x, thus minimizing its expectation El0−1(Y,d(X)).
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For lΔ(Y,d(X)) = |anc(Y )�anc(d(X))|, let m( j1, j2) to be |anc( j1)�anc( j2)|. First note that
we have a a length K(size of the tree) vector of bits for each class after introducing the binary 0-1
coding for each node including the ancestor nodes. Therefore m(·, ·) satisfies the triangle inequality
since it is equivalent to the Hamming distance.

In what follows, we prove that E(lΔ(Y,  d(X))|X = x)≤ E(lΔ(Y,d(X))|X = x) for any x and
classifier d(x). Let ŷ =  d(x). By the triangle inequality, m(y,d(x))−m(y, ŷ) ≥ −m(d(x), ŷ) for
any y. Note that m(ŷ, ŷ) = 0 and m(ŷ,d(x)) = m(d(x), ŷ)≥ 0. Then

E
(
lΔ
(
Y,d(X)

)− lΔ
(
Y,  d(X)

)∣∣X = x
)
= E

(
m
(
Y,d(x)

)−m(Y, ŷ)
∣∣X = x

)
= E

((
m
(
Y,d(x)

)−m(Y, ŷ)
)(
I(Y = ŷ)+ I(Y 
= ŷ)

)∣∣∣X = x

)
= E

((
m
(
ŷ,d(x)

)−m(ŷ, ŷ)
)
I(Y = ŷ)+

(
m
(
Y,d(x)

)−m(Y, ŷ)
)
I(Y 
= ŷ)

∣∣∣X = x

)
≥ E

(
m
(
ŷ,d(x)

)
I(Y = ŷ)|X = x

)
−E

(
m
(
d(x), ŷ

)
I(Y 
= ŷ)

∣∣X = x
)

= m
(
ŷ,d(x)

)(
P(Y = ŷ|X = x)−P(Y 
= ŷ|X = x)

)≥ 0.

The last inequality follows from the fact that ŷ= argmax j∈L P(Y = j|X = x) and P(Y = ŷ|X =x)≥
1/2 ≥ P(Y 
= ŷ|X = x) by the assumption of dominating class. The desired result then follows.
Proof of Lemma 5: We prove the case of v(z)= (1−z)+ for HSVM. Denote by f̂(x) a minimizer of
E(v(umin(f(X),Y ))|X =x) for any x. At a given x, without loss of generality, assume p j(x)> 0;
∀1 ≤ j ≤ k. Let ĵ = dH(f̂(x)) and û = umin(f̂(x), ĵ). By definition, f̂ j′(x)− f̂ j′′(x) ≥ û ≥ 0,
∀ j′ ∈ anc( ĵ) and j′′ ∈ sib( j′). First consider the case of û > 0. For all other leaf node j 
= ĵ,
there exists ja ∈ anc( j) and ĵa ∈ anc( ĵ) such that ja ∈ sib( ĵa). Then umin(f̂(x), j) ≤ f̂ ja(x)−
f̂ ĵa(x)≤−umin(f̂(x), ĵ) =−û, by the fact that umin(f̂(x), ĵ)≤−( f̂ ja(x)− f̂ ĵa(x)). Now we prove

the equality of umin(f̂(x), j) ≤ −û holds through construction of f ′: f ′j′(x)− f ′j′′(x) = û, and

f ′j(x) = 0,∀ j /∈ sib ◦ anc( ĵ). By construction, umin(f ′(x), j) = −û, for 1 ≤ j ≤ k, j 
= ĵ, and
umin(f ′(x), ĵ) = û. Note that

E(v(umin(f̂(X),Y ))|X = x)−E(v(umin(f
′(X),Y ))|X = x)

= ∑
1≤ j≤k; j 
= ĵ

p j(x)(v(umin(f̂(x), j))− v(−û))≥ 0.

By the fact that f̂(x) is the minimizer, for 1 ≤ j ≤ k, j 
= ĵ, v(umin(f̂(x), j))− v(−û) = 0, then
umin(f̂(x), j) = −û. Moreover, for the Bayes rule  d(x), if ĵ 
=  d(x), we construct f ∗ such that
umin(f ∗(x),  d(x)) = û, and umin(f ∗(x), j) =−û, for any leaf node j 
=  d(x), similar as above. This
implies that

E(v(umin(f̂(X),Y ))|X = x)−E(v(umin(f
∗(X),Y ))|X = x)

= (p ĵ(x)v(û)+ p  d(x)(x)v(−û))− (p ĵ(x)v(−û)+ p  d(x)(x)v(û))

= (p ĵ(x)− p  d(x)(x))(v(û)− v(−û))> 0,

because p ĵ(x) < p  d(x)(x) and û > 0. This contradicts the fact that f̂(x) is the minimizer. Conse-

quently, ĵ =  d(x). For the case of û= 0, it can be shown that umin(f̂(x), j) = 0, ∀ j = 1, · · · ,k, and
f̂ j(x) = 0, ∀ j = 1, · · · ,K, which reduces to the trivial case f̂(x) = 0.
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For HPSI, the proof is the same as that of Theorem 2 in Liu and Shen (2006), and is omitted.
Proof of Theorem 2: The proof is similar to that in Shen and Wang (2007) and is omitted.
Proof of Corollary 1: The Op(·) result follows from the exponential bound in Theorem 2. To see
the risk result, note that

δ−2αn Ee(f̂ , f̄) =
∫ ∞

0
P(e(f̂ , f̄)> (δ2αn t)

1/2α)dt.

The result then follows.
The primal and the dual of (2) for HSVM: The primal and the dual for HSVM can be obtained

from those of HPSI below, with ∇ŵ(m−1)
j = 0 and ∇b̂(m−1)

j = 0; j = 1, · · · ,K.
The primal and the dual of (3) for HPSI: The primal of (3) is

argmin
f

1
2

K

∑
j=1

‖w j‖2+C
n

∑
i=1

ξi−
K

∑
j=1

〈∇ŵ(m−1)
j ,w j〉−

K

∑
j=1

〈∇b̂(m−1)
j ,b j〉, (8)

subject to ξi > 0, ( f j(xi)− ft(xi))+ ξi ≥ 1, ( j, t) ∈ Q(yi) = {( j, t) : t ∈ sib( j), j ∈ {yi}∪ anc(yi)},
and ∑{ j∈chi(s),s/∈L} f j(xi) = 0; i= 1, · · · ,n, s= 1, · · · ,K.

To solve (8), we employ the Lagrange multipliers: αi ≥ 0, βi, j,t ≥ 0 and δi,s ≥ 0 for each con-
straint of (8). Then (8) is equivalent to:

max
αi,βi, j,t ,δi,s

L =
1
2

K

∑
j=1

‖w j‖2+C
n

∑
i=1

ξi−
K

∑
j=1

〈∇ŵ(m−1)
j ,w j〉−

K

∑
j=1

〈∇b̂(m−1)
j ,b j〉+

∑
( j,t)∈Q(yi):i=1,··· ,n

βi, j,t
(
1− (

(〈w j,xi〉+b j)− (〈wt ,xi〉+bt)
)−ξi

)
−

n

∑
i=1

αiξi+ ∑
(i,s):i=1,··· ,n;s/∈L

δi,s ∑
j∈chi(s)

(〈w j,xi〉+b j). (9)

By letting the partial derivatives be zero, we have that

∂L
∂w j

= 0 ,
∂L
∂ξi

= 0 ,
∂L
∂b j

= 0; i= 1, · · · ,n, j = 1, · · · ,K. (10)

implying that αi ≥ 0; i= 1, · · · ,n, and

∑
( j,t)∈Q(yi)

βi, j,t ≤C; i= 1, · · · ,n. (11)

After substituting (10) in (9), we obtain a quadratic form of L in terms of {αi,βi, j,t ,δi,s}Maximizing
L subject to βi, j,t ≥ 0; i= 1, · · · ,n;( j, t) ∈Q(yi), (10) and (11) yields the solution of {αi,βi, j,t ,δi,s}.
The solution of w j and ξi’s can be derived from (10). The solution of b j is derived from Karush-

Kuhn-Tucker’s condition: βi, j,t
(
1− (

(〈w j,xi〉+ b j)− (〈wt ,xi〉+ bt)
) −ξi

)
= 0, αiξi = 0, and

δi,s∑ j∈chi(s)(〈w j,xi〉+b j) = 0, for all suitable i, j, t and s. In case of these conditions are not appli-
cable to b j’s, we substitute the solution ofw j’s in (8), and solve b j’s through linear programming.
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Abstract
This paper presents hHDP, a hierarchical algorithm for representing a document collection as a hi-
erarchy of latent topics, based on Dirichlet process priors. The hierarchical nature of the algorithm
refers to the Bayesian hierarchy that it comprises, as well as to the hierarchy of the latent topics.
hHDP relies on nonparametric Bayesian priors and it is able to infer a hierarchy of topics, without
making any assumption about the depth of the learned hierarchy and the branching factor at each
level. We evaluate the proposed method on real-world data sets in document modeling, as well as
in ontology learning, and provide qualitative and quantitative evaluation results, showing that the
model is robust, it models accurately the training data set and is able to generalize on held-out data.
Keywords: hierarchical Dirichlet processes, probabilistic topic models, topic distributions, ontol-
ogy learning from text, topic hierarchy

1. Introduction

In this paper we address the problem of modeling the content of a given document collection as a
hierarchy of latent topics given no prior knowledge. These topics represent and capture facets of
content meaning, by means of multinomial probability distributions over the words of the term space
of the documents. The assignment of documents to latent topics without any preclassification is a
powerful text mining technique, useful among others for ontology learning from text and document
indexing.

In the context of this modeling problem, probabilistic topic models (PTMs) have attracted much
attention. While techniques for terminology extraction and concept identification from text rely
on the identification of representative terms using various frequency measures, such as the TF/IDF
(Salton and McGill, 1986) or C/NC value (Frantzi et al., 2000), PTMs aim to discover topics that
are soft clusters of words, by transforming the original term space into a latent one of meaningful
features (topics).
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Much work on PTMs focuses on a flat clustering of the term space into topics, while the cre-
ation of a hierarchical structure of topics without user involvement or pre-defined parameters still
remains a challenging task. The goal of discovering a topic hierarchy that comprises levels of topic
abstractions is different from conventional hierarchical clustering. The internal nodes of this type
of hierarchy reflect the topics, which correspond to the shared terminology or vocabulary between
documents. In contrast, hierarchical clustering usually groups data points, for instance documents,
resulting in internal nodes that constitute cluster summaries. Conventional techniques such as ag-
glomerative clustering, allow objects to be grouped together based on a similarity measure, but the
hierarchy is generally the result of hard clustering. This form of clustering limits the applicability
of the techniques, since a document is assigned to only one topic and may not be retrieved upon a
search on a related topic.

Furthermore, conventional clustering models texts based explicitly on syntax. It tends to cluster
words that appear in similar local contexts. On the other hand, topic models attempt to capture
through syntax, latent semantics. They cluster words that appear in a similar global context, in the
sense that they try to generalize beyond their place of appearance in a text collection, in order to
reflect their intended meaning.

The role of hierarchical topic models regarding text modeling and natural language processing
(NLP) is very important. The hierarchical modeling of topics allows the construction of more
accurate and predictive models than the ones constructed by flat models. Models of the former
type are more probable to predict unseen documents, than the latter. In most text collections, such
as web pages, a hierarchical model, for instance a web directory, is able to describe the structure and
organization of the document collection more accurately than flat models. This, however, ultimately
depends on the nature of the data set and the true generative process of the documents themselves.
Assuming that the higher levels of the hierarchy capture generic topics of a particular domain,
while lower-level ones focus on particular aspects of that domain, it is expected that a hierarchical
probabilistic topic model would be able to “explain” or could have generated the data set. In other
words, the likelihood of such a model given the data set would probably be higher than the likelihood
of other flat models (Mimno et al., 2007; Li et al., 2007; Li and McCallum, 2006).

Despite recent activity in the field of HPTMs, determining the hierarchical model that best
fits a given data set, in terms of the structure and size of the learned hierarchy, still remains a
challenging task and an open issue. In this paper, we propose a method that deals with some of
the limitations of the current models, regarding the representation of input data as latent topics.
In particular, we aim to infer a hierarchy of topics and subtopics, such that each topic is more
general than its subtopics, in the sense that if a document can be indexed by any of the subtopics
it should also be indexed by the topic itself. Moreover, we demand to infer the hierarchy without
making any assumption either about the number of topics at any level of the hierarchy, or about
the height of the hierarchy. The proposed method, given a collection of text documents, produces
a hierarchical representation in the form of a topic hierarchy, adopting a nonparametric Bayesian
approach. The resulting hierarchy specifies each topic as a multinomial probability distribution over
the vocabulary of the documents. Moreover, internal nodes are also represented as multinomial
probability distributions over the subtopics of the hierarchy. In addition to the basic model, we also
present a variant that produces a topic hierarchy, by modeling the vocabulary only at the leaf level
and considering topics in the inner levels to be multinomial distributions over subtopics. Although
the evaluation of such models is also an open issue, we demonstrate the effectiveness of the model
in different tasks through an extensive evaluation, providing qualitative and quantitative results.
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In what follows, we start by a quick review of the family of probabilistic topic models and
hierarchical models (Section 2). Section 3 presents the proposed method, namely topic hierarchies
of hierarchical Dirichlet processes (hHDP), along with its variant. Section 4 provides an extensive
evaluation of hHDP, including comparisons to other models and applications to different tasks, while
Section 5 summarizes the paper and presents future directions.

2. Hierarchical Probabilistic Topic Models

Probabilistic topic models (PTMs) (Griffiths and Steyvers, 2002) are generative models for doc-
uments. Documents are assumed to be mixtures of topics and topics are probability distributions
over the words of some vocabulary. The vocabulary may comprise all the words that appear in the
documents or a part of them, for example excluding the stop-words. PTMs are based on the De
Finetti theorem (Finetti, 1931), which states that an exchangeable sequence of random variables
is a mixture of independent and identically distributed random variables. In the case of text data,
PTMs treat documents as “bag-of-words.” The words in the documents are infinitely exchangeable
without loss of meaning, and thus, the joint probability underlying the data is invariant to permu-
tation. Based on this assumption of exchangeability, the meaning of documents does not depend
on the specific sequence of the words, that is, the syntax, but rather on their “ability” to express
specific topics either in isolation or in mixture. Given the latent variables, (the topics), the words
are assumed to be conditionally independent and identically distributed in the texts.

Figure 1 represents the underlying idea of the generative nature of PTMs. Topics, represented
as clouds, are probability distributions over words (puzzle pieces) of a predefined vocabulary. Ac-
cording to the mixture weights that reflect the probability of a topic to participate in a document,
words are sampled from the corresponding topics, in order for documents to be generated.

Figure 1: The generative nature of PTMs: Documents are mixtures of topics. Topics are probability
distributions over words (puzzle pieces). The probability of participation of a topic in a
document is defined by the mixture weights. Inspired by Steyvers and Griffiths (2007).

In the rest of the paper, we will refer to the document collection as D, consisting of d1, d2, ...,
dN documents. The set of the latent topics will be defined as T , consisting of t1, t2, ..., tK topics. We
will refer to the distribution of topics as θK , indicating the dimensionality K of the distribution, and
finally, φV will stand for the distribution of the words of the vocabulary V .

Following the principles of PTMs, the generative model of probabilistic latent semantic analysis
(PLSA) (Hofmann, 2001) specifies a simple generative rule for the words in a document di, accord-
ing to which, each word of a training document di comes from a randomly chosen topic ti. The
topics are drawn from a document-specific distribution over topics θK , and there exists one such
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distribution for each di. Hence, the set of the training documents D defines an empirical distribu-
tion over topics. In PLSA, the observed variable di is actually an index into the training set D, and
thus, there is no natural way for the model to handle previously unseen documents, except through
marginalization (Blei et al., 2003).

The model of PLSA has been extended by latent Dirichlet allocation (LDA) (Blei et al., 2003).
The generative model of LDA, being a probabilistic model of a corpus, represents each di as random
mixture over latent topics T . The mixture indicator is selected once per term, rather than once per
document as in PLSA. The estimated topics are represented as multinomial probability distributions
over the terms of the documents, while each di is represented as a Dirichlet random variable θ, the
dimensionality of which, is predefined and equal to the number of estimated latent topics. In contrast
to PLSA, LDA states that each word of both the observed and unseen documents is generated by a
randomly chosen topic, which is drawn from a distribution with a randomly chosen parameter. This
parameter is sampled once per document from a smooth distribution over topics.

A question that usually arises when using models like LDA is how many topics the estimated
model should have, given the document collection. The problem is harder when multiple parameters
are shared among documents, as in LDA. The problem is addressed by sharing a discrete base
distribution among documents. A hierarchical Dirichlet process (HDP) creates such a discrete base
distribution for the document Dirichlet processes (DPs) by sampling from another DP. In such a
Bayesian hierarchy, the root DP uses the Dirichlet distribution of the topics as a base distribution
and each document samples from it.

Although LDA is a true generative probabilistic model for documents and HDP is a convenient
mechanism for inferring the number of topics, relations of any type or correlations between the
estimated topics are not taken into account. In fact, a flat and soft clustering of the term space of
the documents into topics is provided. Thus, there is a need for hierarchical models that are able
to capture relations between the latent topics in order to represent common shared structure, as
explained in Section 1.

A method for producing a tree-like structure of latent topics is presented in Gaussier et al.
(2002), as an extension of the PLSA model. According to hierarchical probabilistic latent semantic
analysis (HPLSA), the data set D is assumed to have been generated by a hierarchical model. For
each di, a document class is picked from a predefined number of classes, with some probability.
Then, a di is chosen based on the conditional probability of a document given the class. Again,
given the class, a topic ti is sampled for that di. Finally, a word is generated given the sampled
topic ti. A class here represents a group of documents sharing some common thematic feature.
According to this model, documents and words are conditionally independent given the class. In a
typical hierarchy, documents are assigned to classes at the leaves of the hierarchy, while words are
sampled from topics which occupy non-leaf nodes of the hierarchy. The number of classes actually
defines the number of leaves of the hierarchy. The model extends PLSA in the sense that if one
topic per class is sampled, then the result is the flat clustering of PLSA. If on the other hand, a
single topic is sampled for more than one class, then it is placed on a higher level and represents
shared knowledge between these classes. However, the model inherits known problems of PLSA,
such as the large number of parameters that need to be estimated, which grow linearly with the size
of the corpus, a problem that LDA seems to deal with, since the latter treats the distribution θK as a
hidden random variable, rather than a large set of individual parameters which are explicitly linked
to the training set.
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Another approach to capturing relations between topics is the correlated topic models (CTM)
(Blei and Lafferty, 2006), an extension of LDA. The generative process of this model is identical to
that of LDA, with the exception that the topic proportions are drawn from a logistic normal distri-
bution, rather than a Dirichlet as in the case of LDA. The parameters of this distribution include a
covariance matrix, the entries of which specify the correlations between pairs of topics. Correlations
are introduced by topics that appear in the same context, in the sense that they appear together in
documents (or parts of documents). The advantage of this model is that the covariance matrix may
include positive covariance between two topics that co-occur frequently and negative between two
topics that co-occur rarely, while with the Dirichlet approach, we actually express the expectation of
each topic to occur, according to the weights of the mixture proportions, and how much we expect
any given document to follow these proportions. In CTM only pairwise correlations between topics
are modeled. Hence, the number of parameters grows as the square of the number of topics.

The Pachinko allocation model (PAM) (Li and McCallum, 2006) deals with some of the prob-
lems of CTM. PAM uses a directed acyclic graph (DAG) structure to represent and learn arbitrary,
nested and possibly sparse topic correlations. PAM connects the words of the vocabulary V and
topics T on a DAG, where topics occupy the interior nodes and the leaves are words. Each topic
ti is associated with a Dirichlet distribution of dimension equal to the number of children of that
topic. The four-level PAM, which is presented in Li and McCallum (2006), is able to model a text
collection through a three-level hierarchy of topics with arbitrary connections between them. How-
ever, PAM is unable to represent word distributions as parents of other word distributions and also
requires the length of the path from the root node to the leaves to be predefined.

The hierarchical latent Dirichlet allocation (hLDA) model (Blei et al., 2004) was the first attempt
to represent the distribution of topics as a tree-structure by providing at the same time uncertainty
over the branching factor at each level of the tree. In hLDA, each document is modeled as a mixture
of L topics defined by θL proportions along a path from the root topic to a leaf. Therefore, each
document di is generated by the topics along a single path of this tree. Hence, each di is about a
specific topic (a leaf topic) and its abstractions along the path to the root. Multiple inheritance, in the
sense of assigning more than one topic to a super-topic, is not modeled. When estimating the model
from data, for each di, the sampler chooses an existing or a new path through the tree and assigns
each word to a topic along the chosen path. Thus, both internal and leaf topics generate words
for new documents. In order to learn the structure of the tree, a nested Chinese restaurant process
(nCRP) is used as a prior distribution. Assuming that the depth (L) of the hierarchy is provided
a priori, the nCRP prior actually controls the branching factor at each level of the hierarchy. It
expresses the uncertainty about possible L-level trees and thus, the problem of modeling the corpus
is reduced to finding a good, in the sense of maximum likelihood, L-level tree among them.

Aiming to support multiple inheritance between topics, and extending PAM to express word
distributions as parents of other word distributions, the work in Mimno et al. (2007) presents the
hierarchical Pachinko allocation model (HPAM), in which every node is associated with a distribu-
tion over the vocabulary of the text collection. There are actually two variants of the model. In the
first variant, each path through the DAG is associated with a multinomial distribution on the levels
of the path, which is shared by all documents. In the second one, this distribution does not exist, but
the Dirichlet distribution of each internal node has one extra “exit” dimension, which corresponds
to the event that a word is produced directly by the internal node, without reaching the leaf topics
of the DAG. The three-level model that is presented in Mimno et al. (2007) comprises a root topic,
a level of super-topics and a level of sub-topics and it uses (T +1) Dirichlet distributions to model
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the text collection. One distribution incorporates a hyper-parameter α0 and serves as a prior over
the super-topics. The remaining T distributions incorporate a hyper-parameter αT , which serves
as a prior over their sub-topics. The difference between the priors α0 and αT is that they produce
different distributions θ0 and θT over super-topics and subtopics respectively.

While the models belonging in the PAM family provide a powerful means to describe inter-topic
correlations, they have the same practical difficulty as many other topic models in determining the
number of topics at the internal levels. For this purpose, a non-parametric Bayes version of PAM has
been presented in Li et al. (2007). This model is actually a combination of the hLDA model, in the
sense of determining the number of topics T at the internal levels, and of the four-level PAM (Li and
McCallum, 2006). Each topic ti is modeled by a Dirichlet process and the Dirichlet processes at each
level are further organized into a hierarchical Dirichlet process (HDP), which is used to estimate the
number of topics at this level. Apart from this, the model follows the basic PAM principles. During
the generation of a document, after sampling the multinomial distributions over topics from the
corresponding HDPs, a topic path is sampled repeatedly according to the multinomials for each
word in the document di. The resulting hierarchy is limited to three levels and comprises the root
topic, the next level of super-topics and the final level of sub-topics, which are the ones that are able
to generate words.

Representing all topics as multinomial distributions over words is more appealing, than repre-
senting only the leaf topics. For this purpose, the work in Zavitsanos et al. (2008) uses the LDA
model iteratively to produce layers of topics and then establishes hierarchical relations between
them, based on conditional independences, given candidate parent topics. The branching factor at
each level is decided by the number of discovered relations, since topics that are not connected to
others are disregarded. The issue of the depth of the hierarchy is addressed in that work by measur-
ing the similarity of the newly generated topics to the existing ones. However, the number of the
generated topics at each level is predefined.

In summary, some topic models support a latent hierarchy of topics, but allow the generation
of words only at the leaf level. Others are able to generate words at each level, but depend on a
predefined depth of the hierarchy. In particular, hLDA is able to infer the branching factor at each
level, but still requires the depth of the hierarchy to be known a priori. In addition, in contrast to
the simple LDA, in the case of hLDA, documents can only access the topics that lie across a single
path in the learned tree. Hence, LDA, which places no such restrictions in the mixture of topics for
each document, can be significantly more flexible than hLDA. The models belonging in the PAM
family seem to be able to address these issues, especially the non-parametric Bayes version of PAM
(Li et al., 2007) that exploits some of the advantages of hLDA. However, the fact that the resulting
hierarchy comprises three levels and produces words only at the leaves is limiting. It seems possible
to extend the hierarchy to more levels, but this would require the depth to be known a priori and
would impose an increase on the number of parameters to be estimated. Finally, parameters such as
the number of topics or the number of levels need to be estimated using cross-validation, which is
not efficient even for non-hierarchical topic models like LDA. Table 1 summarizes the properties of
the aforementioned models.

The evaluation of topic models is also an open issue. The majority of the work reviewed in
this section assesses the inferred hierarchy on the basis of how “meaningful” the latent topics are to
humans. In this spirit, new evaluation measures (Chang et al., 2009) have been proposed that try to
capture aspects of how humans evaluate topic models and especially the inferred hierarchy. Thus,
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Model Topic Infer number Infer number Multiple Generate words
hierarchy of topics of levels inheritance at all nodes

PLSA × × × × �

LDA × × × × �

HDP × � × × �

HPLSA � × × × �

CTM × × × × �

PAM � × × � ×
hLDA � � × × �

HPAM � × × � �

NPPAM � � × � ×

Table 1: Comparison of topic models. The first column is the acronym of the model. The second
column shows whether the model is able to organize the topics hierarchically. The third
and fourth columns depict the ability of the model to infer the number of topics and levels
respectively. The last two columns indicate whether the model’s topics share subtopics,
and whether the model produces words at all nodes.

the emphasis is on how topic models infer the latent structure of the input documents, rather than
on how well they generate documents. Based on this observation, we propose an algorithm that:

• Determines the depth of the learned hierarchy.
• Infers the number of topics at each level of the hierarchy.
• Allows sharing of topics among different documents.
• Allows topics to share subtopics.
• Allows a topic at any level of the hierarchy to be specified as a distribution over terms.
• Has a non-parametric Bayesian nature and thus exhibits all the advantages of such techniques.

In addition, we present a variant that models only the leaf levels as probability distributions over
words and results in a hierarchical topic clustering of the text collection. The basis for the methods
proposed in this paper is the model of a hierarchical Dirichlet process (HDP).

3. Topic Hierarchies of Hierarchical Dirichlet Processes (hHDP)

In this section we present the hHDP method in two variants. The first variant results in a hierarchy
whose internal nodes are represented as probability distributions over topics and over words. Thus it
performs a hierarchical vocabulary clustering (hvc). The second variant provides a hierarchical topic
clustering (htc) of the corpus, where only leaf nodes are represented as distributions over words. We
will refer to the first variant as hvHDP, and to the second as htHDP. We divide the section into two
subsections, providing insights about the proposed method and information regarding the sampling
scheme.
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3.1 Stacking HDPs

Starting with the criteria that we posed at the end of Section 2, we want to be able to infer the
number of topics at each level. For this purpose we use the mixture model of hierarchical Dirichlet
processes (HDP) (Teh et al., 2006), which is illustrated in Figure 2.

Figure 2: The HDP mixture model. Assuming a text collection of M documents, each of length
N, there is a DP Gj for each document to draw word distributions. There is a global,
higher-level DP (G0) that maintains the global distribution of word distributions.

Figure 3: The association of the HDPs with the topic hierarchy. There is an HDP associated with
each level. There are as many DPs (Gj) as the documents at each level, connected to all
topics of the level. Each level also comprises a global DP (G0) that is connected to all the
Gj in this level.

In the proposed method (Figure 3), at each level of the hierarchy, there is a DP (Gj) for each
document and a “global” DP (G0) over all the DPs at that level. Therefore, each level of the topic
hierarchy is associated with a HDP. An important characteristic of this approach is that the num-
ber of topics of each level is automatically inferred, due to the non-parametric Bayesian nature of
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the HDP. In addition, it allows the topics at each level to be shared among the documents of the
collection. Figure 3 depicts the DPs associated with different levels of the topic hierarchy.

Figure 4: (a) hvHDP. (b) htHDP. Topics are represented as circles, while word distributions as gray
boxes. hvHDP consists of topics that are both distributions over subtopics and over words.
htHDP represents only leaf topics as distributions over words.

Therefore, at each level, a HDP is assumed, according to Figure 4, which is modeled as shown
in Figure 3. The HDP at each level is used to express uncertainty about the possible number of
mixture components, that is, the latent topics.

Among the models mentioned in Section 2, hPAM and hLDA are the closest “relatives” of
hvHDP in terms of the representation of the corpus through an inferred hierarchy. They both have
internal nodes containing words. However, in hLDA a topic is not allowed to have more than one
parent, while in hPAM and hHDP this is allowed. On the other hand, while hPAM needs the number
of internal topics to be fixed a priori, hLDA and hHDP are able to infer the number of topics at each
level of the hierarchy, due to their non-parametric Bayesian nature. Moreover, while the model of
hLDA requires that each document is made of topics across a specific path of the hierarchy, hPAM
and hHDP provide much more flexibility, since topics can be shared among super-topics. Overall,
hHDP combines the strengths of hPAM and hLDA, extending also the non-parametric approach
to include the estimation of the depth of the learned hierarchy, which is further explained in the
following paragraphs.

The PAM and the non-parametric PAM models are similar to the second version of hHDP
(htHDP). The topics of the PAM models generate words at the leaf level and the models are based
on a fixed three-level hierarchy. The simple PAM model needs the number of internal topics to be
known a priori, while its non-parametric version uses the CRP to decide the number of super-topics
and sub-topics. The obvious advantage of htHDP is its full non-parametric nature that does not
impose restrictions on the depth and the branching factor at each level of the hierarchy.

3.2 Estimation of the Hierarchy

Regarding the estimation of the latent structure, exact inference of the hierarchy given a document
collection is intractable. For this purpose we use Gibbs sampling, which climbs stochastically the
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posterior distribution surface to find an area of high posterior probability and explores its curvature
(Andrieu et al., 2003). Although the method of Gibbs sampling lacks theoretical guarantees, it has
been proven to be appropriate for this type of data analysis and for inferring latent variables given
the distribution of the observations and the corresponding priors. More information about sampling
methods in machine learning can be found in Andrieu et al. (2003).

The sampling scheme of hHDP estimates both the number of topics at each level and the number
of levels of the learned hierarchy. As shown in Figure 5, starting at the leaf level, we use HDP to
infer the number of leaf topics as if no hierarchy is to be built. We then build the hierarchy bottom-up
until reaching a level with a single node (the root topic). Each level is modeled as a HDP, estimating
the appropriate number of topics.

Figure 5: Bottom-up probabilistic estimation of the topic hierarchy: Starting with a corpus of M
documents, the leaf topics are inferred first. The word distributions for each leaf topic
make up the observations (“documents”) for the estimation of the next level up. The
procedure is repeated until the root topic is inferred.

Figure 5 presents the steps of the sampling scheme. We start with the text collection, which
provides the observations, that is, the words, for the estimation. The words constitute the term
space. At the first step that infers the leaf level, in a Chinese Restaurant Franchise analogy, we
assume that the documents correspond to restaurants and the words to customers. The next steps
differ for the two variants of hHDP.

In hvHDP, where topics are both distributions over subtopics and over words, the inference
of the non-leaf levels treats topics, instead of documents, as restaurants. Thus, each inferred leaf
topic maintains a distribution over the term space as its representation. Based on this distribution,
it is treated as an observation for the inference of the next level up. Having inferred the topics
at the leaf level, we know the mixture proportions that the documents of the collection follow.
Similarly, each inferred topic maintains a distribution over the term space and a distribution over the
subtopics below it, following the corresponding proportions inferred for this topic. Therefore each
internal topic maintains a distribution over words and a distribution over subtopics. This procedure
is repeated until we infer a single topic, which serves as the root of the hierarchy. In other words,
at the leaf level we allocate documents to leaf topics, while at the intermediate levels we allocate
topics to super-topics. The sampling scheme that we propose for hvHDP is described in Algorithm
1.

Therefore, the main contribution of this sampling scheme is the estimation of the non-leaf topics
from “artificial” documents that correspond to estimated topics of lower levels. This procedure
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Data: Term - Document matrix of frequencies
Result: Estimated topic hierarchy
setM=number of documents
set V=vocabulary size
estimate leaf topics K
set T = K
while | T |> 1 do

// transform document space
set M = K
set input=MxV matrix of frequencies
estimate topics K of next level up
set T = K

end
Algorithm 1: Estimation of the topic hierarchy for the hierarchical vocabulary clustering hHDP
method (hvHDP).

supports the non-parametric inference of the depth of the hierarchy. Together with the use of the
HDP for the estimation of the number of topics at each level, it makes the estimation of the topic
hierarchy completely non-parametric.

Regarding the second variant of the model (htHDP), where the internal topics are distributions
only over subtopics and not words, the inference procedure differs in the modeling of non-leaf
topics. Leaf topics serve now as customers, changing the term space, maintaining at the same time
the restaurant space, which consists of the original documents. As observations for the inference of
the next level up, we use the distributions of topics at the lower level over the original documents.
Therefore, while in the first variant of hHDP, we had a topic - term matrix of frequencies as input
for the estimation of an intermediate level of the hierarchy, in htHDP, we have a document - topic
matrix of frequencies for the sampling procedure. The hierarchy estimated by htHDP is expected to
be shallower than that inferred by hvHDP. This is because the term space is reduced when moving a
level up. The procedure is repeated until we infer a single topic, which serves as the root topic. The
proposed sampling scheme is described in Algorithm 2.

The last step in Figure 5 shows the overall model that is estimated. A topic hierarchy is derived
from the corpus and a non-parametric Bayesian hierarchy is used at each level of the topic hierarchy.
The first hHDP variant satisfies the criteria that we set in Section 2: internal topics are represented
as distributions over words and over subtopics, topics can share subtopics at the lower level in the
hierarchy, and topics across any level of the hierarchy are shared among documents. The degree
of sharing topics across documents is expressed through the inferred parameters of the model, and
this sharing of topics reflects the sharing of common terminology between documents. The non-
parametric nature of this process is due to HDP that models each level of the hierarchy.

3.3 Level-wise Estimation

In hHDP, the estimation of each level is performed through posterior sampling of a HDP. At each
level we integrate out all the probability measures Gi, the base measures G0 and the tables. The
metaphor of the “Chinese restaurant franchise” (CRF) is ofter used to illustrate the sampling scheme
of the HDP. According to that metaphor, there are D restaurants and each one has an infinite number
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Data: Term - Document matrix of frequencies
Result: Estimated coarse topic hierarchy
setM=number of documents
set V=vocabulary size
estimate leaf topics K
set T = K
while | T |> 1 do

// transform term space
set V = K
set input=MxV matrix of frequencies
estimate topics K of level up
set T = K

end
Algorithm 2: Estimation of the topic hierarchy for hierarchical topic clustering version of hHDP
(htHDP).

of tables. On each table the restaurant serves one of the infinitely many dishes that other restaurants
may serve as well. A customer enters the restaurant. The customer not only chooses a table (which
corresponds to topic sampling from Gj appearing in G0), but also chooses whether she may have a
dish popular among several restaurants (topic sharing among documents).

Based on the CRF metaphor, the collapsed sampling scheme includes only the sampling of the
dishes, and the calculation of the number of tables that serve a specific dish in each restaurant. Thus,
the sampling of an existing topic z at a specific level, given a word wji and the previous state of the
Markov chain z¬ ji uses Equation (1), or equivalently Equation (2). On the other hand, the sampling
of a new topic znew, given a word wji and the previous state of the Markov chain z¬ ji uses Equation
(3), or equivalently Equation (4).

p(z ji = z | wji,z¬ ji) ∝
n j·z+

αtz
t·+ γ

n j··+α
·φz(wji) (1)

p(z ji = z | wji,z¬ ji) ∝
n j·z+

αtz
t·+ γ

n j··+α
· n·iz+H
n··z+VH

(2)

p(z ji = znew | wji,z¬ ji) ∝
αγ

(n j··+α)(t·+ γ)
·φz(wji) (3)

p(z ji = znew | wji,z¬ ji) ∝
αγ

(n j··+α)(t·+ γ)
· 1
V

(4)

In Equations (1) to (4), besides the hyper-parameters α and γ, n j·z is the number of words in
document j that are associated to topic z, n j·· is the number of words in document j, tz is the number
of tables that serve the dish z, and t· is the total number of tables. The factor n j·z emulates the draw

of an existing dish of restaurant Gj, while the factor
αtz
t·+ γ

emulates the draw of a dish from the base

restaurant G0 that maintains all the dishes. The factor
αγ
t·+ γ

emulates the draw of a new dish from
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the global DP with hyper-parameter H. Finally, φz(wji) stands for the word distribution p(w | z).
In addition, n·iz is the number of occurrences of word i in topic z, n··z is the total number of words
assigned to topic z, and finally, H and V are the prior DP hyper-parameter for word distributions
and the total number of words respectively.

Following the sampling of topic indicators, we calculate the number of tables that serve a spe-
cific dish at each restaurant, since we need that parameter for the sampling of topics. That is, we
calculate the factor tz, which influences the likelihood of a new table in document j via the factor
αtz
t·+ γ

. We estimate this number by simulating a DP with hyper-parameter α, since we are interested

in each document that is associated to a probability measure Gj, and parameter α provides control
over the topic mixture. Algorithm 3 describes this process.

Data: n j·z, hyper-parameter α
Result: Number of tables in document j serving topic z
// if no words exist then no tables are needed if n j·z = 0 then

return 0
end
// if only one word exists, one table is needed
if n j·z = 1 then

return 1
end
// if more words exist, simulate the DP
set tz = 1
for all words w in [1,n j·z] do

draw rand from Random
set DPtable = α/(w+α)
if rand < DPtable then

set tz = mt +1
end

end
Algorithm 3: Estimation of the number of tables that serve a specific dish (topic) in each restau-
rant. The parameters tz,n j·z are the ones used in Equations (1) to (4).

According to Algorithm 3, the estimation of the number of tables is performed for each restau-
rant, for the customers that have been assigned to new tables, not present in the previous sampling
iteration. The factor tz can only change when a word is assigned to a new topic. Due to the “rich
gets richer” property of the DP, some tables become unoccupied. Then, the probability that this
table will be occupied again in the future is zero, since this is proportional to n j·z, which will be
zero. Therefore, when estimating a new level bottom-up, the number of tables tends to decrease. In
addition, in hvHDP, at each level of the hierarchy we transform the inferred topics to documents.
This introduces a bound on the number of tables, since we decrease the restaurant space, which
in turn bounds the number of sharing components, that is, the topics. The same holds for htHDP,
where the term space is dramatically reduced at each level, placing in this way a stronger bound on
the number of sharing components. For this reason, the second variant of hHDP converges faster to
a single topic, producing smaller hierarchies.

2761



ZAVITSANOS, PALIOURAS AND VOUROS

More formally, and according to Teh and Jordan (2010), tz ∈ O(αlog
n j..
α

). Since G0 is itself a

draw from a DP, we have that K ∈O(γlog∑ j
tz
γ
) =O(γlog(

α
γ
∑ j log

n j..
α

)). Assuming J groups, each

of average size N, we have that K ∈ O(γlog
α
γ
Jlog

N
α
) = O(γlog

α
γ
+ γlogJ+ γloglog

N
α
). Thus, the

number of topics scales doubly logarithmically in the size of each group and logarithmically in the
number of groups. In summary, the HDP expresses a prior belief that the number of topics grows
very slowly in N.

4. Evaluation and Empirical Results

In this section, we present experiments using real data sets in order to demonstrate and evaluate
the proposed method. We perform experiments on two different tasks, in order to obtain a good
overview of the performance of the model. The goal is to measure how well the estimated hierarchy
fits a heldout data set of a specific domain, given a training data set of that domain and to what extent
the proposed method can be used for knowledge representation and help bootstrap an ontology
learning method. In particular, we divide the section into two subsections. The first one (Section
4.1) concerns document modeling and provides qualitative and quantitative results, while Section
4.2 applies the model to the task of ontology learning.

4.1 Document Modeling

Given a document collection, the task is to retrieve the latent hierarchy of topics that represents and
fits well, in terms of perplexity, to the data set. We fit hHDP and compare it with LDA and hLDA
on various data sets using held-out documents.

In particular, we use 10-fold cross validation and report perplexity figures for each method.
Perplexity is commonly used to evaluate language models, but it has also been used to evaluate
probability models in general (Blei et al., 2003; Teh et al., 2006). Better models that avoid overfitting
tend to assign high probabilities to the test events. Such models have lower perplexity as they are
less surprised by the test sample. In other words, they can predict well held-out data that are drawn
from a similar distribution as the training data. Hence, in our evaluation scenario, a lower perplexity
score indicates better generalization performance. Equation (5) defines the perplexity on a test set
D consisting of words w1,w2, ...,wN .

Perplexity(D) = exp{−
N

∑
i=1

1
N
log p(wi)} (5)

As an example of the results obtained by hvHDP, Figure 6 presents part of the latent structure
that was discovered from the NIPS data set. The NIPS data set is a benchmark corpus that has
been used in related work (Blei et al., 2004). It contains abstracts of the corresponding conferences
from 1987 to 1999. Specifically, the data set comprises 1732 documents and no pre-processing took
place before the learning of the hierarchy, resulting in an unrestricted vocabulary of 46873 terms.
The model ran for 1000 iterations of the Gibbs sampler with fixed hyper-parameters. In particular,
the Dirichlet process priors H and γ were set to 0.5 and 1.0 respectively, while the parameter α of
the topic mixture was set to 10.0. The values selected for the hyper-parameters are similar to the
values selected for related tasks in the literature (Mimno et al., 2007).
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Figure 6: Part of the hierarchy estimated from the NIPS data set. The learned hierarchy contains
54 topics, inferred by the hHDP model without any user-specified parameters. Thick
lines represent edges of high probability, while thinner ones stand for edges of lower
probability.

As shown in Figure 6, the model discovered interesting topics from the field of the conference.
Stop words are first grouped together at the root node representing a very general “topic” that con-
nects equiprobably the two topics of the conference, signal processing and neural networks. Taking
into account the context of the NIPS conferences, we believe that we have discovered a rather real-
istic hierarchical structure of 54 topics that fits well the field in question.

Similarly, Figure 7 illustrates part of the hierarchy that was produced by mixing two corpora
together and running hvHDP on the resulting data set. In this experiment we wanted to investigate
how the mixing of documents of different domains affects the resulting hierarchy, and in particular to
see whether we can identify a sub-hierarchy of one domain inside the complete hierarchy that was
learned. For this reason, we used 100 documents from the tourism domain and 1000 documents
from the domain of molecular biology, resulting in a total of 1100 documents.

In Figure 7 only edges of high probability are shown for clarity reasons. The two separate sub-
hierarchies, corresponding to the different domains are evident. The sub-hierarchy that corresponds
to the tourism data set (inside the circle in the figure) is much smaller than that of the domain of
molecular biology.

In order to obtain a quantitative evaluation of the method on document modeling, we used five
different data sets. We also fitted the models of hLDA and LDA to the same data sets, as well as
two other baseline models that we have implemented. The first, based on a uniform model (UM),
is not trained and generates words following a uniform distribution, irrespective of the data set.
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Figure 7: Part of the hierarchy estimated from a data set containing 1000 articles regarding molec-
ular biology and 100 regarding tourism information.

The second that we call memory model (MM), memorizes the given data set and generates words
according to the multinomial probability distribution of each document of the data set.

The different evaluation data sets that we used are the following: (a) the Genia data set,1 from
the domain of molecular biology, (b) the Seafood corpus,2 comprising texts relative to seafood
enterprises, (c) the Lonely Planet corpus,3 consisting of texts from the tourism domain, (d) the
Elegance corpus,4 comprising nematode biology abstracts, and finally, (e) the NIPS data set5 that
includes abstracts from the corresponding conferences between the years 1987 and 1999. Table 2
summarizes basic statistics of the five data sets.

Data Set #Docs TermSpace Domain

Genia 2000 16410 Molecular biology
Seafood 156 13031 Seafood enterprises

Lonely Planet 300 3485 Tourism
Elegance 7300 35890 Nematode biology
NIPS 1732 46873 NIPS conferences

Table 2: Data Sets

In the specific experimental setup we used the same hyper-parameters for all data sets. As
mentioned above, for hHDP, H = 0.5, γ = 1.0 and α = 10.0. In the case of hLDA, η = 0.5 and
γ = 1.0, and we varied the number of levels, while in the case of LDA, we varied the number of
topics from 10 to 120. Figure 8 illustrates the behavior of the models in the different data sets

1. The GENIA project can be found at http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/home/wiki.cgi.
2. The Seafood corpus can be found at http://users.iit.demokritos.gr/˜izavits/datasets/Seafood_

corpus.zip.
3. The Lonely Planet travel advise and information can be found at http://www.lonelyplanet.com/.
4. The Elegance corpus can be found at http://elegans.swmed.edu/wli/cgcbib.
5. The NIPS data set can be found at http://books.nips.cc.
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for different numbers of LDA topics. Specifically, the figures plot the perplexity of the various
models against the number of the discovered topics. In the case of hHDP the number of topics is
inferred automatically and cannot vary with the LDA or the hLDA parameters. The hLDA model is
parameterized by the number of levels. However, when changing the number of levels, the number
of topics also changes. The model itself decides the branching factor at each level, and thus the total
number of topics changes. A first observation in the results that we obtained is that in all cases, the
simple UM results in very high perplexity values, between 2500 and 45000 that we do not depict
in Figure 8 for reasons of readability of the graphs. Moreover, the MM performs worse in general
than the rest of the models.

In order to interpret the different results obtained in the five different data sets, we measured
the heterogeneity between the training and the held-out data in each case. More specifically, we
measured the difference in the distribution of words between training and held-out data, using the
mean total variational distance (TVD) (Gibbs and Su, 2002), according to Equation (6). The higher
the TVD, the bigger the difference between the training and the held-out set. Table 3 presents the
results of this measure in terms of the mean TVD in a 10-fold cross measurement. Based on these
figures, the Genia data set seems to be the most homogeneous, while NIPS is the least.

TVD=
1
2∑i

| p(i)−q(i) | . (6)

Data Set Mean TVD

Genia 1.2∗10−5
Seafood 3.5∗10−5

Lonely Planet 2.2∗10−5
Elegance 3.8∗10−5
NIPS 5.2∗10−5

Table 3: Mean Total Variational Distance between the training and the held-out parts of the data
sets.

Additionally, in order to validate the graphs of Figure 8, we measured the significance of the
results, using the Wilcoxon signed-rank test. This test is suitable for this kind of experiment, since it
is non-parametric and does not assume that the samples follow a specific distribution. In particular,
we performed the test for the mean perplexity values, for each value of the number of topics. Ac-
cording to the test, the perplexity of a model is significantly lower than that of another model, if the
output probability of the test is below 0.05, which is a threshold that is commonly used in statistical
analysis.

In all data sets, the most interesting comparison is that between hHDP and hLDA. Thus, Table 4
depicts the ranges of topics for which the proposed model performs significantly better than the
one of hLDA and the one of LDA. These ranges are also marked on the x axis of Figure 8 in all
diagrams.

Examining the results on the Genia data set (Figure 8a), the lowest perplexity is achieved by
hvHDP, while hLDA approaches the same perplexity for a number of topics around 60. LDA and
htHDP obtain higher perplexity.
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Figure 8: The behavior of the models on the five different data sets in terms of perplexity. The mod-
els: hvHDP, htHDP, hierarchical Latent Dirichlet Allocation (hLDA), Latent Dirichlet
Allocation (LDA), and Memory Model (MM). Diagrams (a)-(e) illustrate the perplexity
of the models for the Genia, Seafood, LonelyPlanet, Elegance and NIPS data sets respec-
tively. Topic ranges where statistically significant improvement over existing models is
achieved are marked on the x axis.
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Comparison Genia Seafood LP Elegance NIPS

hvHDP 1−120 1−40 1−50 1−20 1−30
hLDA 90−120 90−120 110−120 100−120
hvHDP 1−120 1−120 1−120 1−50 1−120
LDA 100−120

Table 4: Significant differences between hvHDP and hLDA and between hvHDP and LDA in all
corpora. Each cell presents topic ranges for which hvHDP performs significantly better
than hLDA or LDA.

The comparison between hLDA and hvHDP showed that for all the cases in this data set, hvHDP
obtains significantly lower perplexity values (Table 4).

Regarding the Seafood data set (Figure 8b), hLDA and LDA catch up with hvHDP after 40 and
60 topics respectively. htHDP also achieves good performance in this case. Regarding the statistical
significance of the differences, Table 4 validates that hvHDP performs better than hLDA for a range
of topics between 1−40 and between 90−120.

In the LonelyPlanet data set (Figure 8c), only hLDAmanages to approach the good performance
of hvHDP for a number of topics between 60−80 (Table 4). The LDA and htHDP models perform
worse. The htHDP is again much worse than the first variant of hHDP.

Concerning the Elegance data set (Figure 8d), all models, besides MM, achieve similar perfor-
mance within a specific range of topics (50 to 120). Furthermore, this is the only data set where
hLDA and LDA are observed to achieve better results than hvHDP, though not statistically signifi-
cant and for a very small range of topics (around 80).

Finally, in the NIPS data set, (Figure 8e), hLDA and LDA manage to equal hvHDP for a certain
range of topics and present a better performance than htHDP in a large range of topics. For this data
set, the statistical test showed that hvHDP is better than hLDA in the range 10−30 and 100−120
topics and better than LDA in the whole range of topics, although for a certain range both models
achieve similar perplexity values. On the other hand, the second version of hHDP outperforms only
LDA between 10 and 20 topics.

The results illustrate clearly the suitability of hHDP for document modeling tasks. It discovers
a hierarchy that fits well the given data sets, without overfitting them, thus achieving low values of
perplexity. The competing models of hLDA and LDA manage only at their best to reach the per-
formance of the proposed model. Furthermore, the performance of these models seems to be very
sensitive to the chosen number of topics (number of levels in the case of hLDA). This observation
makes the non-parametric modeling of hHDP particularly important. Comparing hLDA to the sim-
ple LDA, it is also quite clear that the hierarchical modeling of topics adds significant value to the
model.

Regarding the naive UM and MM models, these are only used as baselines and they perform
poorly. The experiments show that an overfitted model, such asMM, has low predictive performance
outside the training set. On the other hand, a uniform model is not able to predict at all the test set,
achieving the worst results.

A final important observation that is not evident in the numeric results, is that for a large num-
ber of topics, hLDA tends to construct a single path, rather than a hierarchy. Perhaps this can be
attributed to the difficulty of identifying sufficiently different topics at various levels of abstraction,
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when requesting a large depth for the hierarchy. By assigning all topics to a single branch, the model
becomes equivalent to LDA. When this happens, the perplexity value of the two models is also very
similar. The Wilcoxon statistical tests have indicated that in the Elegance data set and for a number
of topics around 80, hLDA does not perform significantly better than LDA, while in the NIPS data
set, the same situation holds for a number of topics between 50 and 100.

Perplexity has been criticized, since it is mainly used for the evaluation of language models. In
addition, recent advances in topic modeling evaluation suggest the use of unbiased assessment of
topic models. For this reason, we decided to conduct an additional experiment, measuring the log-
likelihood of these models using the left-to-right sequential sampler (Buntine, 2009). This sampler
improves on the algorithm proposed in Wallach et al. (2009), by providing unbiased estimates of
the model likelihood for sufficiently large sample sizes. Since hvHDP, hLDA and LDA achieve
the best results in terms of perplexity, we compare these models. Having the models trained on a
portion (90%) of the data sets, we calculate the log-likelihood of the models on the remaining 10%
that constitute the held-out data, using 10-fold cross validation. Figure 9 presents the results of this
experiment, in terms of the mean log-likelihood.

The main result shown in Figure 9 is the same as in Figure 8. hHDP outperforms the other
methods with statistical significance in most cases. The other methods, especially hLDA, approach
the performance of hHDP if the right number of topics is chosen somehow. Therefore, the experi-
ment has confirmed the value of estimating the number of topics and the depth of the hierarchy in a
completely non-parametric way.

As an additional experiment on the task of document modeling, we assessed the ability of the
method to estimate a known hierarchy, which is used to generate a set of documents. In particular,
based on the hierarchy inferred for the Seafood data set, we generated a set of documents with the
same average length as the original data set. Thus, we started at the root node of the hierarchy, and
traversed it stochastically, based on the parameters of the model, which are the probabilities of each
subtopic. When reaching a leaf topic we chose a word to be generated according to the probability
distribution of that topic. In this manner, we generated a total of 156 documents, as many as the
original data set, exhibiting similar word distributions. Then, we ran hvHDP on this “artificial” data
set, estimating a latent hierarchy, which we compared manually against the one used to create the
data set. From this comparison we concluded that all the topics of the estimated hierarchy have been
correctly inferred. However, the estimated hierarchy comprises fewer topics, a fact that in terms of
quantitative results implies a drop in recall.

4.2 Ontology Learning

The aim of this experiment was to validate the suitability of the proposed method on the task of
ontology learning. The vocabulary clustering version of hHDP (hvHDP) estimates topics that are
defined as distributions over words. It is, therefore, of particular interest to investigate how close
these distributions are to a gold-standard hierarchy, given the corresponding data set. Such an ex-
periment would highlight the potential of the method in other domains, such as automated ontology
construction, and would provide qualitative and quantitative results regarding the performance of
the method. In this experiment, we also compare hvHDP with hLDA.

Ontology learning (Gomez-Perez and Manzano-Macho, 2003; Maedche and Staab, 2003) refers
to the set of methods and techniques used for either building an ontology from scratch, enriching,
or adapting an existing ontology in an automated fashion, using various sources of information.
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Figure 9: The behavior of the models (hvHDP, hierarchical Latent Dirichlet Allocation (hLDA),
and Latent Dirichlet Allocation (LDA)) on the five different data sets in terms of log-
likelihood. Diagrams (a)-(e) illustrate the perplexity of the models for the Genia, Seafood,
LonelyPlanet, Elegance and NIPS data sets respectively.
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This task is usually decomposed into three steps: (a) identification of topics, (b) building of the
hierarchical backbone, and (c) enriching with further semantic relations. Regarding the sources of
information, we focus here on text collections.

Both hvHDP and hLDA can be used to perform the first two steps of the ontology learning
process, that is, identification of concepts and hierarchy construction, given the data set. Thus,
we merge the aforementioned two steps into one, and we assume that the estimated latent topics
correspond to ontology concepts. Therefore, in this task, we construct a topic ontology from scratch
that comprises only hierarchical relations, given a collection of text documents and we compare it
to a given gold standard ontology.

For this purpose, we use the Genia and the Lonely Planet data sets and the corresponding on-
tologies, which serve as gold standards for evaluation. The Genia ontology comprises 43 concepts
that are connected by 41 subsumption relations, which is the only type of relation among the con-
cepts. The Lonely Planet ontology contains 60 concepts and 60 subsumption relations among them.
For our experiments, the only pre-processing applied to the corpus was to remove stop-words and
words appearing fewer than 10 times.

The estimation of the hierarchy was achieved through 1000 iterations of the Gibbs sampler with
fixed hyper-parameters H = 0.5 and γ = 1.0 for the Dirichlet priors and α = 10.0 for the topic
mixture. The evaluation was performed using the method proposed in Zavitsanos et al. (2010). This
method is suitable for the evaluation of learned ontologies, since it represents the concepts of the
gold ontology as multinomial probability distributions over the term space of the documents and
provides measures in the closed interval of [0,1] to assess the quality of the learned structure.

In particular, the evaluation method first transforms the concepts of the gold ontology into prob-
ability distributions over the terms of the data set, taking into account the context of each ontology
concept. In a second step, the gold ontology is matched to the learned hierarchy, based on how
“close” the gold concepts and the learned topics are. The final evaluation is based on the measures
of P and R that evaluate the learned hierarchy in the spirit of precision and recall respectively, as well
as F that is a combined measure of P and R. The corresponding formulae are given in Equations
(7), (8) and (9).

P=
1
M

M

∑
i=1

(1−SDi)PCPi (7)

R=
1
M

M

∑
i=1

(1−SDi)PCRi (8)

F =
(β2+1)P∗R
(β2R)+P

(9)

In Equations (7) - (9), M is the number of matchings between learned topics and gold concepts
and SD is a distance measure between concepts, ranging in [0,1]. Specifically, the total variational
distance (TVD) (Gibbs and Su, 2002) of Equation (10) was used to assess the similarity between
topics and gold concepts.

TVD=
1
2∑i

| P(i)−Q(i) | (10)
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In Equation (10), P(·) and Q(·) are multinomial probability distributions over words that repre-
sent a gold concept and a learned topic. The estimated topics are already represented as multinomial
probability distributions over the term space of the data set, while the concepts of the gold ontology
are also transformed into multinomial probability distributions over the same term space. Thus, the
comparison between topics and gold concepts becomes straightforward.

The matching scheme compares the distributional representations of topics and gold concepts
and finds the best matching in the sense that the most similar word distributions among the two
hierarchies will be matched. More details about how the matching is performed can be found in
Zavitsanos et al. (2010). The PCP and PCR (probabilistic cotopy precision and recall) factors
in Equations (7) and (8) respectively, are influenced by the notion of semantic cotopy (Maedche
and Staab, 2002). The cotopy set of a concept C is the set of all its direct and indirect super and
subconcepts, including also the concept C itself. Thus, for a matching i, of a topic T in the learned
ontology and a conceptC in the gold ontology, PCPi is defined as the number of topics in the cotopy
set of T matched to concepts in the cotopy set ofC, divided by the number of topics participating in
the cotopy set of T . For the same matching i, PCRi is defined as the number of topics in the cotopy
set of T matched to concepts in the cotopy set ofC, divided by the number of topics participating in
the cotopy set ofC.

Values of the P, R and F measures close to 1 indicate that the resulting hierarchy is close to the
gold ontology, while values close to 0 indicate the opposite. Finally, we set β = 1 in Equation (9),
hence using the harmonic mean of P and R.

Figure 10 depicts a part of the gold ontology on the left and a part of the estimated hierarchy on
the right. The labels on the latent topics of the learned hierarchy correspond to the best TVD match
of each topic with a gold concept. As it is shown in the figure, hHDP estimated a hierarchy very
close to the gold standard. Thin edges between topics represent relations of low probability, while
thicker edges carry higher probability.

Figure 10: Part of the Genia ontology on the left and part of the estimated hierarchy on the right.
The labels on the topics of the learned hierarchy correspond to the best match of each
topic to a gold concept, according to TVD.

Regarding the estimated hierarchy, it comprises 38 topics in total, while the gold ontology com-
prises 43. Recall from Section 3 that the method estimates a probability distribution for each topic
over all topics of the next level. Hence, we expect to learn a hierarchy comprising more relations
than the gold ontology. However, relations with low probability, as the ones depicted with thin lines
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in Figure 10, can be ignored. In addition, the way the hierarchy is estimated, through Gibbs sam-
pling, infers the probability distributions, based on the assignments of words to topics and topics to
subtopics. Through sampling, it is possible for fragments of documents not to be allocated to every
estimated topic, and for subtopics not to be allocated to every super-topic. This leads to some zero
values in the probability distributions of topics. Therefore, there exist cases where the probability
of an edge in the resulting hierarchy may be zero. This fact provides extra flexibility to the method,
since it permits the construction of unbalanced hierarchies and prunes edges that are definitely not
necessary.

In the general case though, the learned hierarchy is expected to have more edges than the gold
ontology has. Therefore, pruning mechanisms may be of particular importance for the task of
ontology learning.

In the case of the Lonely Planet data set, hvHDP estimated a smaller hierarchy than the gold
standard, achieving lower quantitative results in terms of P, R and F. The difficulty in estimating
a hierarchy of similar size to the gold standard is due to the nature of the data set and the gold
ontology. In particular, half of the gold concepts had only one instance and in general, most of the
concepts were insufficiently instantiated in the data set.

Regarding hLDA, in the case of the Genia data set, the best quantitative results were obtained
for an estimated hierarchy of depth equal to 6. In this case, hLDA performed similarly to hHDP in
terms of P, R and F. However, in the case of the Lonely Planet data set the performance of the model
was poor. In particular, the best quantitative results were obtained for an estimated hierarchy of 3
levels. However, these results are much lower than that of hvHDP for the same data set.

Table 5 presents the quantitative results of the experiments, in terms of P, R and F for both
hHDP and LDA. For the proposed method, two cases are foreseen. The first case concerns the
evaluation of the learned hierarchy as is, without any post-processing. The performance of hHDP
is low, because the evaluation method is rather strict. The evaluation method does not take into
account the probabilities on the edges connecting a topic to all its sub-topics, but rather assumes
that all edges are of equal importance and penalizes the learned hierarchy for its high connectivity.

Therefore, through this first evaluation, we conclude that the original, highly connected hierar-
chy may not be usable as is. For this reason, we include another set of evaluation results in Table 5
that we call “pruned.” This is actually the same method without the low probability relations be-
tween the topics. In particular, we keep relations with probability higher than 0.1. The pruned
hierarchy is significantly closer to the gold standard than the unpruned one.

Genia LonelyPlanet

Method P R F P R F
hHDP 0.65 0.60 0.624 0.22 0.15 0.17

hHDP-pruned 0.88 0.80 0.838 0.35 0.23 0.27
hLDA 0.62 0.55 0.58 0.07 0.01 0.017

Table 5: Quantitative results for the task of Ontology Learning.

In summary, we conclude that hvHDP can be applied to the task of ontology learning with
promising results. Its ability to identify topics and at the same time build the taxonomic backbone
can facilitate the learning of ontologies in a purely statistical way, providing a powerful tool that
is independent of the language and the domain of the corpus. The proposed method discovered
correctly the majority of the identifiable gold concepts in the experiment and constructed a hierarchy
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that is very close to the gold standard. Furthermore, it constructed the taxonomy and inferred the
correct depth without any user parameters (except the pruning threshold) in a statistical way and
without any prior knowledge.

5. Conclusions

We have introduced hHDP, a flexible hierarchical probabilistic algorithm, suitable for learning hi-
erarchies from discrete data. hHDP uses the “bag-of-words” representation of documents. The
method is based on Dirichlet process priors that are able to express uncertainty about the number of
topics at each level of the hierarchy. We have also presented a bottom-up non-parametric discovery
method for the latent hierarchy, given a collection of documents. Since exact inference is known
to be intractable in such non-parametric methods, approximate inference was performed, using the
Gibbs sampling method, which provided accurate estimates.

An important contribution of this paper is the inference of the correct number of topics at each
level of the hierarchy, as well as the depth of the hierarchy. Its Bayesian non-parametric nature
requires no user parameters regarding the structure of the latent hierarchy. The Dirichlet process
priors, as well as the bottom-up procedure for the estimation of the hierarchy, provide a flexible
search in the space of different possible structures, choosing the one that maximizes the likelihood
of the hierarchy for the given data set. Moreover, hHDP does not impose restrictions and constraints
on the usage of topics, allowing multiple inheritance between topics of different layers and modeling
the internal nodes as distributions of both subtopics and words.

We provided extensive experimental results for the proposed method in two different evaluation
scenarios: (a) document modeling in five real data sets, comparing against state-of-the-art methods
on the basis of perplexity, and (b) applying the method to an ontology learning task, comparing the
learned hierarchy against a gold standard. The evaluation showed that hHDP is sufficiently robust
and flexible. The proposed method discovered meaningful hierarchies and fitted well the given data
sets. Finally, we have concluded that such methods are suitable for the task of ontology learning,
since they are able to discover topics and arrange them hierarchically, in a way that is independent
of the language and the domain of the data set, and without requiring any prior knowledge of the
domain.

The very promising results that we obtained in this work, encouraged us to study and improve
hHDP further. One possible improvement is the use of Pitman-Yor processes, which are generaliza-
tions of Dirichlet processes and produce power-law distributions. Natural language text is known
to follow such distributions and therefore we may be able to model documents more accurately. In
addition, we intend to apply the method to different tasks, including the learning of folksonomies
from user-generated tags. Also, due to its statistical nature, it would be interesting to evaluate hHDP
on different types of data sets, including images, time series and events. Finally, another future di-
rection is to bootstrap hHDP from an existing ontology and infer the remaining parameters using
the corresponding data set.
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Abstract
We consider the empirical risk minimization problem for linear supervised learning, with regular-
ization by structured sparsity-inducing norms. These are defined as sums of Euclidean norms on
certain subsets of variables, extending the usual �1-norm and the group �1-norm by allowing the
subsets to overlap. This leads to a specific set of allowed nonzero patterns for the solutions of such
problems. We first explore the relationship between the groups defining the norm and the resul-
ting nonzero patterns, providing both forward and backward algorithms to go back and forth from
groups to patterns. This allows the design of norms adapted to specific prior knowledge expressed
in terms of nonzero patterns. We also present an efficient active set algorithm, and analyze the
consistency of variable selection for least-squares linear regression in low and high-dimensional
settings.

Keywords: sparsity, consistency, variable selection, convex optimization, active set algorithm

1. Introduction

Sparse linear models have emerged as a powerful framework to deal with various supervised es-
timation tasks, in machine learning as well as in statistics and signal processing. These models
basically seek to predict an output by linearly combining only a small subset of the features de-
scribing the data. To simultaneously address this variable selection and the linear model estimation,
�1-norm regularization has become a popular tool, that benefits both from efficient algorithms (see,
e.g., Efron et al., 2004; Lee et al., 2007; Beck and Teboulle, 2009; Yuan et al., 2010; Bach et al.,
2011, and multiple references therein) and well-developed theory for generalization properties and
variable selection consistency (Zhao and Yu, 2006; Wainwright, 2009; Bickel et al., 2009; Zhang,
2009; Negahban et al., 2009).

c©2011 Rodolphe Jenatton, Jean-Yves Audibert and Francis Bach.
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When regularizing by the �1-norm, sparsity is yielded by treating each variable individually,
regardless of its position in the input feature vector, so that existing relationships and structures
between the variables (e.g., spatial, hierarchical or related to the physics of the problem at hand)
are merely disregarded. However, many practical situations could benefit from this type of prior
knowledge, potentially both for interpretability purposes and for improved predictive performance.

For instance, in neuroimaging, one is interested in localizing areas in functional magnetic res-
onance imaging (fMRI) or magnetoencephalography (MEG) signals that are discriminative to dis-
tinguish between different brain states (Gramfort and Kowalski, 2009; Xiang et al., 2009; Jenatton
et al., 2011a, and references therein). More precisely, fMRI responses consist in voxels whose three-
dimensional spatial arrangement respects the anatomy of the brain. The discriminative voxels are
thus expected to have a specific localized spatial organization (Xiang et al., 2009), which is impor-
tant for the subsequent identification task performed by neuroscientists. In this case, regularizing
by a plain �1-norm to deal with the ill-conditionedness of the problem (typically only a few fMRI
responses described by tens of thousands of voxels) would ignore this spatial configuration, with a
potential loss in interpretability and performance.

Similarly, in face recognition, robustness to occlusions can be increased by considering as fea-
tures, sets of pixels that form small convex regions on the face images (Jenatton et al., 2010b).
Again, a plain �1-norm regularization fails to encode this specific spatial locality constraint (Jenatton
et al., 2010b). The same rationale supports the use of structured sparsity for background subtraction
tasks (Cevher et al., 2008; Huang et al., 2009; Mairal et al., 2010b). Still in computer vision, object
and scene recognition generally seek to extract bounding boxes in either images (Harzallah et al.,
2009) or videos (Dalal et al., 2006). These boxes concentrate the predictive power associated with
the considered object/scene class, and have to be found by respecting the spatial arrangement of
the pixels over the images. In videos, where series of frames are studied over time, the temporal
coherence also has to be taken into account. An unstructured sparsity-inducing penalty that would
disregard this spatial and temporal information is therefore not adapted to select such boxes.

Another example of the need for higher-order prior knowledge comes from bioinformatics. In-
deed, for the diagnosis of tumors, the profiles of array-based comparative genomic hybridization
(arrayCGH) can be used as inputs to feed a classifier (Rapaport et al., 2008). These profiles are
characterized by plenty of variables, but only a few samples of such profiles are available, prompt-
ing the need for variable selection. Because of the specific spatial organization of bacterial artificial
chromosomes along the genome, the set of discriminative features is expected to have specific con-
tiguous patterns. Using this prior knowledge on top of a standard sparsity-inducing method leads to
improvement in classification accuracy (Rapaport et al., 2008). In the context of multi-task regres-
sion, a genetic problem of interest is to find a mapping between a small subset of single nucleotide
polymorphisms (SNP’s) that have a phenotypic impact on a given family of genes (Kim and Xing,
2010). This target family of genes has its own structure, where some genes share common genetic
characteristics, so that these genes can be embedded into a underlying hierarchy (Kim and Xing,
2010). Exploiting directly this hierarchical information in the regularization term outperforms the
unstructured approach with a standard �1-norm. Such hierarchical structures have been likewise
useful in the context of wavelet regression (Baraniuk et al., 2010; Zhao et al., 2009; Huang et al.,
2009; Jenatton et al., 2011b), kernel-based non linear variable selection (Bach, 2008a), for topic
modelling (Jenatton et al., 2011b) and for template selection in natural language processing (Mar-
tins et al., 2011).
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These real world examples motivate the need for the design of sparsity-inducing regulariza-
tion schemes, capable of encoding more sophisticated prior knowledge about the expected sparsity
patterns.

As mentioned above, the �1-norm focuses only on cardinality and cannot easily specify side
information about the patterns of nonzero coefficients (“nonzero patterns”) induced in the solution,
since they are all theoretically possible. Group �1-norms (Yuan and Lin, 2006; Roth and Fischer,
2008; Huang and Zhang, 2010) consider a partition of all variables into a certain number of subsets
and penalize the sum of the Euclidean norms of each one, leading to selection of groups rather
than individual variables. Moreover, recent works have considered overlapping but nested groups
in constrained situations such as trees and directed acyclic graphs (Zhao et al., 2009; Bach, 2008a;
Kim and Xing, 2010; Jenatton et al., 2010a, 2011b; Schmidt and Murphy, 2010).

In this paper, we consider all possible sets of groups and characterize exactly what type of
prior knowledge can be encoded by considering sums of norms of overlapping groups of variables.
Before describing how to go from groups to nonzero patterns (or equivalently zero patterns), we
show that it is possible to “reverse-engineer” a given set of nonzero patterns, that is, to build the
unique minimal set of groups that will generate these patterns. This allows the automatic design of
sparsity-inducing norms, adapted to target sparsity patterns. We give in Section 3 some interesting
examples of such designs in specific geometric and structured configurations, which covers the type
of prior knowledge available in the real world applications described previously.

As will be shown in Section 3, for each set of groups, a notion of hull of a nonzero pattern
may be naturally defined. For example, in the particular case of the two-dimensional planar grid
considered in this paper, this hull is exactly the axis-aligned bounding box or the regular convex
hull. We show that, in our framework, the allowed nonzero patterns are exactly those equal to their
hull, and that the hull of the relevant variables is consistently estimated under certain conditions,
both in low and high-dimensional settings. Moreover, we present in Section 4 an efficient active set
algorithm that scales well to high dimensions. Finally, we illustrate in Section 6 the behavior of our
norms with synthetic examples on specific geometric settings, such as lines and two-dimensional
grids.

1.1 Notation

For x ∈ Rp and q ∈ [1,∞), we denote by ‖x‖q its �q-norm defined as (∑
p
j=1 |x j|q)1/q and ‖x‖∞ =

max j∈{1,...,p} |x j|. Given w ∈ Rp and a subset J of {1, . . . , p} with cardinality |J|, wJ denotes the
vector in R|J| of elements of w indexed by J. Similarly, for a matrix M ∈ Rp×m, MIJ ∈ R|I|×|J|

denotes the sub-matrix of M reduced to the rows indexed by I and the columns indexed by J. For
any finite set A with cardinality |A|, we also define the |A|-tuple (ya)a∈A ∈ Rp×|A| as the collection
of p-dimensional vectors ya indexed by the elements of A. Furthermore, for two vectors x and y in
Rp, we denote by x◦ y= (x1y1, . . . ,xpyp)	 ∈ Rp the elementwise product of x and y.

2. Regularized Risk Minimization

We consider the problem of predicting a random variable Y ∈ Y from a (potentially non random)
vector X ∈ Rp, where Y is the set of responses, typically a subset of R. We assume that we are
given n observations (xi,yi) ∈Rp×Y , i= 1, . . . ,n. We define the empirical risk of a loading vector
w ∈ Rp as L(w) = 1

n ∑
n
i=1 �

(
yi,w	xi

)
, where � : Y ×R �→ R+ is a loss function. We assume that �
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is convex and continuously differentiable with respect to the second parameter. Typical examples of
loss functions are the square loss for least squares regression, that is, �(y, ŷ) = 1

2(y− ŷ)2 with y ∈R,
and the logistic loss �(y, ŷ) = log(1+ e−yŷ) for logistic regression, with y ∈ {−1,1}.

We focus on a general family of sparsity-inducing norms that allow the penalization of subsets
of variables grouped together. Let us denote by G a subset of the power set of {1, . . . , p} such
that

⋃
G∈GG = {1, . . . , p}, that is, a spanning set of subsets of {1, . . . , p}. Note that G does not

necessarily define a partition of {1, . . . , p}, and therefore, it is possible for elements of G to overlap.
We consider the norm Ω defined by

Ω(w) = ∑
G∈G

(
∑
j∈G

(dGj )
2|wj|2

) 1
2

= ∑
G∈G

‖dG ◦w‖2 , (1)

where (dG)G∈G is a |G |-tuple of p-dimensional vectors such that dGj > 0 if j ∈ G and dGj = 0 other-
wise. A same variable wj belonging to two different groups G1,G2 ∈ G is allowed to be weighted
differently in G1 and G2 (by respectively d

G1
j and dG2j ). We do not study the more general setting

where each dG would be a (non-diagonal) positive-definite matrix, which we defer to future work.
Note that a larger family of penalties with similar properties may be obtained by replacing the �2-
norm in Equation (1) by other �q-norm, q> 1 (Zhao et al., 2009). Moreover, non-convex alternatives
to Equation (1) with quasi-norms in place of norms may also be interesting, in order to yield sparsity
more aggressively (see, e.g., Jenatton et al., 2010b).

This general formulation has several important sub-cases that we present below, the goal of
this paper being to go beyond these, and to consider norms capable to incorporate richer prior
knowledge.

• �2-norm: G is composed of one element, the full set {1, . . . , p}.
• �1-norm: G is the set of all singletons, leading to the Lasso (Tibshirani, 1996) for the square
loss.

• �2-norm and �1-norm: G is the set of all singletons and the full set {1, . . . , p}, leading (up to
the squaring of the �2-norm) to the Elastic net (Zou and Hastie, 2005) for the square loss.

• Group �1-norm: G is any partition of {1, . . . , p}, leading to the group-Lasso for the square
loss (Yuan and Lin, 2006).

• Hierarchical norms: when the set {1, . . . , p} is embedded into a tree (Zhao et al., 2009) or
more generally into a directed acyclic graph (Bach, 2008a), then a set of p groups, each of
them composed of descendants of a given variable, is considered.

We study the following regularized problem:

min
w∈Rp

1
n

n

∑
i=1

�
(
yi,w

	xi
)
+μΩ(w), (2)

where μ≥0 is a regularization parameter. Note that a non-regularized constant term could be in-
cluded in this formulation, but it is left out for simplicity. We denote by ŵ any solution of Prob-
lem (2). Regularizing by linear combinations of (non-squared) �2-norms is known to induce sparsity
in ŵ (Zhao et al., 2009); our grouping leads to specific patterns that we describe in the next section.
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Figure 1: Groups and induced nonzero pattern: three sparsity-inducing groups (middle and right,
denoted by {G1,G2,G3}) with the associated nonzero pattern which is the complement of the union
of groups, that is, (G1∪G2∪G3)c (left, in black).

3. Groups and Sparsity Patterns

We now study the relationship between the normΩ defined in Equation (1) and the nonzero patterns
the estimated vector ŵ is allowed to have. We first characterize the set of nonzero patterns, then we
provide forward and backward procedures to go back and forth from groups to patterns.

3.1 Stable Patterns Generated by G

The regularization termΩ(w) =∑G∈G ‖dG ◦w‖2 is a mixed (�1, �2)-norm (Zhao et al., 2009). At the
group level, it behaves like an �1-norm and therefore,Ω induces group sparsity. In other words, each
dG ◦w, and equivalently each wG (since the support of dG is exactly G), is encouraged to go to zero.
On the other hand, within the groups G ∈ G , the �2-norm does not promote sparsity. Intuitively, for
a certain subset of groups G ′ ⊆G , the vectors wG associated with the groups G∈G ′ will be exactly
equal to zero, leading to a set of zeros which is the union of these groups,

⋃
G∈G ′G. Thus, the set of

allowed zero patterns should be the union-closure of G , that is, (see Figure 1 for an example):

Z =

{ ⋃
G∈G ′

G; G ′ ⊆ G
}
.

The situation is however slightly more subtle as some zeros can be created by chance (just as reg-
ularizing by the �2-norm may lead, though it is unlikely, to some zeros). Nevertheless, Theorem 2
shows that, under mild conditions, the previous intuition about the set of zero patterns is correct.
Note that instead of considering the set of zero patterns Z, it is also convenient to manipulate
nonzero patterns, and we define

P =

{ ⋂
G∈G ′

Gc; G ′ ⊆ G
}
=
{
Zc; Z ∈ Z

}
.

We can equivalently use P or Z by taking the complement of each element of these sets.
The following two results characterize the solutions of Problem (2). We first gives sufficient con-

ditions under which this problem has a unique solution. We then formally prove the aforementioned
intuition about the zero patterns of the solutions of (2), namely they should belong to Z. In the fol-
lowing two results (see proofs in Appendix A and Appendix B), we assume that � : (y,y′) �→ �(y,y′)
is nonnegative, twice continuously differentiable with positive second derivative with respect to the
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second variable and non-vanishing mixed derivative, that is, for any y,y′ in R, ∂2�
∂y′2

(y,y′) > 0 and
∂2�
∂y∂y′ (y,y

′) 
= 0.

Proposition 1 Let Q denote the Gram matrix 1
n ∑

n
i=1 xix

	
i . We consider the optimization problem

in Equation (2) with μ> 0. If Q is invertible or if {1, . . . , p} belongs to G , then the problem in
Equation (2) admits a unique solution.

Note that the invertibility of the matrix Q requires p ≤ n. For high-dimensional settings, the
uniqueness of the solution will hold when {1, . . . , p} belongs to G , or as further discussed at the end
of the proof, as soon as for any j,k ∈ {1, . . . , p}, there exists a group G ∈ G which contains both j
and k. Adding the group {1, . . . , p} to G will in general not modify P (and Z), but it will cause G
to lose its minimality (in a sense introduced in the next subsection). Furthermore, adding the full
group {1, . . . , p} has to be put in parallel with the equivalent (up to the squaring) �2-norm term in
the elastic-net penalty (Zou and Hastie, 2005), whose effect is to notably ensure strong convexity.
For more sophisticated uniqueness conditions that we have not explored here, we refer the readers
to Osborne et al. (2000, Theorem 1, 4 and 5), Rosset et al. (2004, Theorem 5) or Dossal (2007,
Theorem 3) in the Lasso case, and Roth and Fischer (2008) for the group Lasso setting. We now
turn to the result about the zero patterns of the solution of the problem in Equation (2):

Theorem 2 Assume that Y = (y1, . . . ,yn)	 is a realization of an absolutely continuous probability
distribution. Let k be the maximal number such that any k rows of the matrix (x1, . . . ,xn)∈Rp×n

are linearly independent. For μ> 0, any solution of the problem in Equation (2) with at most k−1
nonzero coefficients has a zero pattern in Z =

{⋃
G∈G ′G; G ′ ⊆ G

}
almost surely.

In other words, when Y = (y1, . . . ,yn)	 is a realization of an absolutely continuous probability
distribution, the sparse solutions have a zero pattern in Z =

{⋃
G∈G ′G; G ′ ⊆ G

}
almost surely. As

a corollary of our two results, if the Gram matrix Q is invertible, the problem in Equation (2) has
a unique solution, whose zero pattern belongs to Z almost surely. Note that with the assumption
made onY , Theorem 2 is not directly applicable to the classification setting. Based on these previous
results, we can look at the following usual special cases from Section 2 (we give more examples in
Section 3.5):

• �2-norm: the set of allowed nonzero patterns is composed of the empty set and the full set
{1, . . . , p}.

• �1-norm: P is the set of all possible subsets.

• �2-norm and �1-norm: P is also the set of all possible subsets.

• Group �1-norm: P = Z is the set of all possible unions of the elements of the partition
defining G .

• Hierarchical norms: the set of patterns P is then all sets J for which all ancestors of elements
in J are included in J (Bach, 2008a).

Two natural questions now arise: (1) starting from the groups G , is there an efficient way to gen-
erate the set of nonzero patterns P ; (2) conversely, and more importantly, given P , how can the
groups G—and hence the norm Ω(w)—be designed?
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Figure 2: G -adapted hull: the pattern of variables I (left and middle, red dotted surface) and its hull
(left and right, hatched square) that is defined by the complement of the union of groups that do not
intersect I, that is, (G1∪G2∪G3)c.

3.2 General Properties of G , Z and P

We now study the different properties of the set of groups G and its corresponding sets of patterns
Z and P .

3.2.1 CLOSEDNESS

The set of zero patterns Z (respectively, the set of nonzero patterns P ) is closed under union (re-
spectively, intersection), that is, for all K ∈ N and all z1, . . . ,zK ∈ Z,

⋃K
k=1 zk ∈ Z (respectively,

p1, . . . , pK ∈ P ,
⋂K
k=1 pk ∈ P ). This implies that when “reverse-engineering” the set of nonzero

patterns, we have to assume it is closed under intersection. Otherwise, the best we can do is to deal
with its intersection-closure. For instance, if we consider a sequence (see Figure 4), we cannot take
P to be the set of contiguous patterns with length two, since the intersection of such two patterns
may result in a singleton (that does not belong to P ).

3.2.2 MINIMALITY

If a group in G is the union of other groups, it may be removed from G without changing the sets Z
or P . This is the main argument behind the pruning backward algorithm in Section 3.3. Moreover,
this leads to the notion of a minimal set G of groups, which is such that for all G ′ ⊆Z whose union-
closure spans Z, we have G ⊆ G ′. The existence and uniqueness of a minimal set is a consequence
of classical results in set theory (Doignon and Falmagne, 1998). The elements of this minimal set
are usually referred to as the atoms of Z.

Minimal sets of groups are attractive in our setting because they lead to a smaller number of
groups and lower computational complexity—for example, for 2 dimensional-grids with rectangu-
lar patterns, we have a quadratic possible number of rectangles, that is, |Z| = O(p2), that can be
generated by a minimal set G whose size is |G |= O(

√
p).

3.2.3 HULL

Given a set of groups G , we can define for any subset I ⊆ {1, . . . , p} the G -adapted hull, or simply
hull, as:

Hull(I) =

{ ⋃
G∈G , G∩I=∅

G

}c

,
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Figure 3: The DAG for the set Z associated with the 2×2-grid. The members of Z are the comple-
ment of the areas hatched in black. The elements of G (i.e., the atoms of Z) are highlighted by bold
edges.

which is the smallest set in P containing I (see Figure 2); we always have I ⊆Hull(I) with equality
if and only if I ∈ P . The hull has a clear geometrical interpretation for specific sets G of groups.
For instance, if the set G is formed by all vertical and horizontal half-spaces when the variables
are organized in a 2 dimensional-grid (see Figure 5), the hull of a subset I ⊂ {1, . . . , p} is simply
the axis-aligned bounding box of I. Similarly, when G is the set of all half-spaces with all possible
orientations (e.g., orientations ±π/4 are shown in Figure 6), the hull becomes the regular convex
hull.1 Note that those interpretations of the hull are possible and valid only when we have geomet-
rical information at hand about the set of variables.

3.2.4 GRAPHS OF PATTERNS

We consider the directed acyclic graph (DAG) stemming from the Hasse diagram (Cameron, 1994)
of the partially ordered set (poset) (G ,⊃). By definition, the nodes of this graph are the elements G
of G and there is a directed edge from G1 to G2 if and only if G1 ⊃ G2 and there exists no G ∈ G
such that G1 ⊃ G ⊃ G2 (Cameron, 1994). We can also build the corresponding DAG for the set of
zero patterns Z ⊃G , which is a super-DAG of the DAG of groups (see Figure 3 for examples). Note
that we obtain also the isomorphic DAG for the nonzero patterns P , although it corresponds to the
poset (P ,⊂): this DAG will be used in the active set algorithm presented in Section 4.

Prior works with nested groups (Zhao et al., 2009; Bach, 2008a; Kim and Xing, 2010; Jenat-
ton et al., 2010a; Schmidt and Murphy, 2010) have also used a similar DAG structure, with the
slight difference that in these works, the corresponding hierarchy of variables is built from the prior
knowledge about the problem at hand (e.g., the tree of wavelets in Zhao et al., 2009, the decom-
position of kernels in Bach, 2008a or the hierarchy of genes in Kim and Xing, 2010). The DAG
we introduce here on the set of groups naturally and always comes up, with no assumption on the
variables themselves (for which no DAG is defined in general).

1. We use the term convex informally here. It can however be made precise with the notion of convex subgraphs (Chung,
1997).
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3.3 From Patterns to Groups

We now assume that we want to impose a priori knowledge on the sparsity structure of a solution
ŵ of our regularized problem in Equation (2). This information can be exploited by restricting the
patterns allowed by the normΩ. Namely, from an intersection-closed set of zero patterns Z, we can
build back a minimal set of groups G by iteratively pruning away in the DAG corresponding to Z,
all sets which are unions of their parents. See Algorithm 1. This algorithm can be found under a
different form in Doignon and Falmagne (1998)—we present it through a pruning algorithm on the
DAG, which is natural in our context (the proof of the minimality of the procedure can be found in
Appendix C). The complexity of Algorithm 1 isO(p|Z|2). The pruning may reduce significantly the
number of groups necessary to generate the whole set of zero patterns, sometimes from exponential
in p to polynomial in p (e.g., the �1-norm). In Section 3.5, we give other examples of interest where
|G | (and |P |) is also polynomial in p.

Algorithm 1 Backward procedure

Input: Intersection-closed family of nonzero patterns P .
Output: Set of groups G .
Initialization: Compute Z = {Pc; P ∈ P} and set G = Z.
Build the Hasse diagram for the poset (Z,⊃).
for t =minG∈Z |G| to maxG∈Z |G| do
for each node G ∈ Z such that |G|= t do

if
(⋃

C∈Children(G)C = G
)
then

if (Parents(G) 
=∅) then
Connect children of G to parents of G.

end if
Remove G from G .

end if
end for

end for

3.4 From Groups to Patterns

The forward procedure presented in Algorithm 2, taken from Doignon and Falmagne (1998), allows
the construction of Z from G . It iteratively builds the collection of patterns by taking unions,
and has complexity O(p|Z||G |2). The general scheme is straightforward. Namely, by considering
increasingly larger sub-families of G and the collection of patterns already obtained, all possible
unions are formed. However, some attention needs to be paid while checking we are not generating
a pattern already encountered. Such a verification is performed by the if condition within the inner
loop of the algorithm. Indeed, we do not have to scan the whole collection of patterns already
obtained (whose size can be exponential in |G |), but we rather use the fact that G generates Z. Note
that in general, it is not possible to upper bound the size of |Z| by a polynomial term in p, even
when G is very small (indeed, |Z|= 2p and |G |= p for the �1-norm).
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Algorithm 2 Forward procedure

Input: Set of groups G = {G1, . . . ,GM}.
Output: Collection of zero patterns Z and nonzero patterns P .
Initialization: Z = {∅}.
for m= 1 to M do
C = {∅}
for each Z ∈ Z do
if (Gm � Z) and (∀G ∈{G1, . . . ,Gm−1}, G⊆ Z∪Gm ⇒ G⊆ Z) then
C←C∪{Z∪Gm} .

end if
end for
Z ← Z∪C.

end for
P = {Zc; Z ∈ Z}.

3.5 Examples

We now present several examples of sets of groups G , especially suited to encode geometric and
temporal prior information.

3.5.1 SEQUENCES

Given p variables organized in a sequence, if we want only contiguous nonzero patterns, the back-
ward algorithm will lead to the set of groups which are intervals [1,k]k∈{1,...,p−1} and [k, p]k∈{2,...,p},
with both |Z| = O(p2) and |G | = O(p) (see Figure 4). Imposing the contiguity of the nonzero
patterns is for instance relevant for the diagnosis of tumors, based on the profiles of arrayCGH
(Rapaport et al., 2008).

Figure 4: (Left and middle) The set of groups (blue areas) to penalize in order to select contiguous
patterns in a sequence. (Right) An example of such a nonzero pattern (red dotted area) with its
corresponding zero pattern (hatched area).

3.5.2 TWO-DIMENSIONAL GRIDS

In Section 6, we notably consider for P the set of all rectangles in two dimensions, leading by the
previous algorithm to the set of axis-aligned half-spaces for G (see Figure 5), with |Z| = O(p2)
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and |G | = O(
√
p). This type of structure is encountered in object or scene recognition, where

the selected rectangle would correspond to a certain box inside an image, that concentrates the
predictive power for a given class of object/scene (Harzallah et al., 2009).

Larger set of convex patterns can be obtained by adding in G half-planes with other orienta-
tions than vertical and horizontal. For instance, if we use planes with angles that are multiples of
π/4, the nonzero patterns of P can have polygonal shapes with up to 8 faces. In this sense, if we
keep on adding half-planes with finer orientations, the nonzero patterns of P can be described by
polygonal shapes with an increasingly larger number of faces. The standard notion of convexity
defined in R2 would correspond to the situation where an infinite number of orientations is consid-
ered (Soille, 2003). See Figure 6. The number of groups is linear in

√
p with constant growing

linearly with the number of angles, while |Z| grows more rapidly (typically non-polynomially in
the number of angles). Imposing such convex-like regions turns out to be useful in computer vision.
For instance, in face recognition, it enables the design of localized features that improve upon the
robustness to occlusions (Jenatton et al., 2010b). In the same vein, regularizations with similar two-
dimensional sets of groups have led to good performances in background subtraction tasks (Mairal
et al., 2010b), where the pixel spatial information is crucial to avoid scattered results. Another ap-
plication worth being mentioned is the design of topographic dictionaries in the context of image
processing (Kavukcuoglu et al., 2009; Mairal et al., 2011). In this case, dictionaries self-organize
and adapt to the underlying geometrical structure encoded by the two-dimensional set of groups.

Figure 5: Vertical and horizontal groups: (Left) the set of groups (blue areas) with their (not dis-
played) complements to penalize in order to select rectangles. (Right) An example of nonzero pat-
tern (red dotted area) recovered in this setting, with its corresponding zero pattern (hatched area).

3.5.3 EXTENSIONS

The sets of groups presented above can be straightforwardly extended to more complicated topolo-
gies, such as three-dimensional spaces discretized in cubes or spherical volumes discretized in
slices. Similar properties hold for such settings. For instance, if all the axis-aligned half-spaces
are considered for G in a three-dimensional space, then P is the set of all possible rectangular boxes
with |P | = O(p2) and |G | = O(p1/3). Such three-dimensional structures are interesting to retrieve
discriminative and local sets of voxels from fMRI/MEEG responses. In particular, they have re-
cently proven useful for modelling brain resting-state activity (Varoquaux et al., 2010). Moreover,
while the two-dimensional rectangular patterns described previously are adapted to find bounding
boxes in static images (Harzallah et al., 2009), scene recognition in videos requires to deal with a
third temporal dimension (Dalal et al., 2006). This may be achieved by designing appropriate sets of
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Figure 6: Groups with ±π/4 orientations: (Left) the set of groups (blue areas) with their (not
displayed) complements to penalize in order to select diamond-shaped patterns. (Right) An example
of nonzero pattern (red dotted area) recovered in this setting, with its corresponding zero pattern
(hatched area).

groups, embedded in the three-dimensional space obtained by tracking the frames over time. Finally,
in the context of matrix-based optimization problems, for example, multi-task learning and dictio-
nary learning, sets of groups G can also be designed to encode structural constraints the solutions
must respect. This notably encompasses banded structures (Levina et al., 2008) and simultaneous
row/column sparsity for CUR matrix factorization (Mairal et al., 2011).

3.5.4 REPRESENTATION AND COMPUTATION OF G

The sets of groups described so far can actually be represented in a same form, that lends itself well
to the analysis of the next section. When dealing with a discrete sequence of length l (see Figure 4),
we have

G = {gk−; k ∈ {1, . . . , l−1}}∪{gk+; k ∈ {2, . . . , l}},
= Gleft∪Gright,

with gk− = {i; 1 ≤ i ≤ k} and gk+ = {i; l ≥ i ≥ k}. In other words, the set of groups G can be
rewritten as a partition2 in two sets of nested groups, Gleft and Gright.

The same goes for a two-dimensional grid, with dimensions h×l (see Figure 5 and Figure 6). In
this case, the nested groups we consider are defined based on the following groups of variables

gk,θ = {(i, j) ∈ {1, . . . , l}×{1, . . . ,h}; cos(θ)i+ sin(θ) j ≤ k},

where k ∈ Z is taken in an appropriate range. The nested groups we obtain in this way are therefore
parameterized by an angle3 θ, θ ∈ (−π;π]. We refer to this angle as an orientation, since it defines
the normal vector

(cos(θ)
sin(θ)

)
to the line {(i, j) ∈ R2;cos(θ)i+ sin(θ) j = k}. In the example of the

rectangular groups (see Figure 5), we have four orientations, with θ ∈ {0,π/2,−π/2,π}. More
generally, if we denote by Θ the set of the orientations, we have

G =
⋃
θ∈Θ

Gθ,

2. Note the subtlety: the sets Gθ are disjoint, that is Gθ∩Gθ′ =∅ for θ 
= θ′, but groups in Gθ and Gθ′ can overlap.
3. Due to the discrete nature of the underlying geometric structure of G , angles θ that are not multiple of π/4 (i.e., such
that tan(θ) /∈ Z) are dealt with by rounding operations.
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where θ ∈ Θ indexes the partition of G in sets Gθ of nested groups of variables. Although we have
not detailed the case of R3, we likewise end up with a similar partition of G .

4. Optimization and Active Set Algorithm

For moderate values of p, one may obtain a solution for Problem (2) using generic toolboxes for
second-order cone programming (SOCP) whose time complexity is equal to O(p3.5+ |G |3.5) (Boyd
and Vandenberghe, 2004), which is not appropriate when p or |G | are large. This time complexity
corresponds to the computation of a solution of Problem (2) for a single value of the regularization
parameter μ.

We present in this section an active set algorithm (Algorithm 3) that finds a solution for Prob-
lem (2) by considering increasingly larger active sets and checking global optimality at each step.
When the rectangular groups are used, the total complexity of this method is inO(smax{p1.75,s3.5}),
where s is the size of the active set at the end of the optimization. Here, the sparsity prior is exploited
for computational advantages. Our active set algorithm needs an underlying black-box SOCP solver;
in this paper, we consider both a first order approach (see Appendix H) and a SOCP method4—in
our experiments, we use SDPT3 (Toh et al., 1999; Tütüncü et al., 2003). Our active set algorithm
extends to general overlapping groups the work of Bach (2008a), by further assuming that it is
computationally possible to have a time complexity polynomial in the number of variables p.

We primarily focus here on finding an efficient active set algorithm; we defer to future work the
design of specific SOCP solvers, for example, based on proximal techniques (see, e.g., Nesterov,
2007; Beck and Teboulle, 2009; Combettes and Pesquet, 2010, and numerous references therein),
adapted to such non-smooth sparsity-inducing penalties.

4.1 Optimality Conditions: From Reduced Problems to Full Problems

It is simpler to derive the algorithm for the following regularized optimization problem5 which has
the same solution set as the regularized problem of Equation (2) when μ and λ are allowed to vary
(Borwein and Lewis, 2006, see Section 3.2):

min
w∈Rp

1
n

n

∑
i=1

�
(
yi,w

	xi
)
+
λ
2
[Ω(w)]2 . (3)

In active set methods, the set of nonzero variables, denoted by J, is built incrementally, and
the problem is solved only for this reduced set of variables, adding the constraint wJc = 0 to Equa-
tion (3). In the subsequent analysis, we will use arguments based on duality to monitor the optimal-
ity of our active set algorithm. We denote by L(w) = 1

n ∑
n
i=1 �

(
yi,w	xi

)
the empirical risk (which is

by assumption convex and continuously differentiable) and by L∗ its Fenchel-conjugate, defined as
(Boyd and Vandenberghe, 2004; Borwein and Lewis, 2006):

L∗(u) = sup
w∈Rp

{w	u−L(w)}.

4. The C++/Matlab code used in the experiments may be downloaded from the authors website.
5. It is also possible to derive the active set algorithm for the constrained formulation
minw∈Rp

1
n ∑

n
i=1 �

(
yi,w	xi

)
such that Ω(w) ≤ λ. However, we empirically found it more difficult to select

λ in this latter formulation.
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The restriction of L to R|J| is denoted LJ(wJ) = L(w̃) for w̃J = wJ and w̃Jc = 0, with Fenchel-
conjugate L∗

J . Note that, as opposed to L, we do not have in general L
∗
J(κJ) = L∗(κ̃) for κ̃J = κJ and

κ̃Jc = 0.
For a potential active set J ⊂ {1, . . . , p} which belongs to the set of allowed nonzero patterns P ,

we denote by GJ the set of active groups, that is, the set of groups G ∈ G such that G∩ J 
=∅. We
consider the reduced norm ΩJ defined on R|J| as

ΩJ(wJ) = ∑
G∈G

‖dGJ ◦wJ‖2 = ∑
G∈GJ

‖dGJ ◦wJ‖2 ,

and its dual normΩ∗
J(κJ) =maxΩJ(wJ)≤1w

	
J κJ , also defined onR

|J|. The next proposition (see proof
in Appendix D) gives the optimization problem dual to the reduced problem (Equation (4) below):

Proposition 3 (Dual Problems) Let J ⊆ {1, . . . , p}. The following two problems

min
wJ∈R|J|

LJ(wJ)+
λ
2
[ΩJ(wJ)]

2 , (4)

max
κJ∈R|J|

−L∗
J(−κJ)−

1
2λ

[Ω∗
J(κJ)]

2 ,

are dual to each other and strong duality holds. The pair of primal-dual variables {wJ,κJ} is
optimal if and only if we have{

κJ =−∇LJ(wJ),
w	
J κJ = 1

λ [Ω
∗
J(κJ)]

2 = λ [ΩJ(wJ)]
2 .

As a brief reminder, the duality gap of a minimization problem is defined as the difference between
the primal and dual objective functions, evaluated for a feasible pair of primal/dual variables (Boyd
and Vandenberghe, 2004, see Section 5.5). This gap serves as a certificate of (sub)optimality: if it
is equal to zero, then the optimum is reached, and provided that strong duality holds, the converse
is true as well (Boyd and Vandenberghe, 2004, see Section 5.5).

The previous proposition enables us to derive the duality gap for the optimization Problem (4),
that is reduced to the active set of variables J. In practice, this duality gap will always vanish (up
to the precision of the underlying SOCP solver), since we will sequentially solve Problem (4) for
increasingly larger active sets J. We now study how, starting from the optimality of the problem in
Equation (4), we can control the optimality, or equivalently the duality gap, for the full problem in
Equation (3). More precisely, the duality gap of the optimization problem in Equation (4) is

LJ(wJ)+L∗
J(−κJ)+

λ
2
[ΩJ(wJ)]

2+
1
2λ

[Ω∗
J(κJ)]

2

=
{
LJ(wJ)+L∗

J(−κJ)+w	
J κJ

}
+

{
λ
2
[ΩJ(wJ)]

2+
1
2λ

[Ω∗
J(κJ)]

2−w	
J κJ

}
,

which is a sum of two nonnegative terms, the nonnegativity coming from the Fenchel-Young in-
equality (Borwein and Lewis, 2006; Boyd and Vandenberghe, 2004, Proposition 3.3.4 and Section
3.3.2 respectively). We can think of this duality gap as the sum of two duality gaps, respectively
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relative to LJ and ΩJ . Thus, if we have a primal candidate wJ and we choose κJ = −∇LJ(wJ), the
duality gap relative to LJ vanishes and the total duality gap then reduces to

λ
2
[ΩJ(wJ)]

2+
1
2λ

[Ω∗
J(κJ)]

2−w	
J κJ.

In order to check that the reduced solution wJ is optimal for the full problem in Equation (3), we
pad wJ with zeros on Jc to define w and compute κ=−∇L(w), which is such that κJ =−∇LJ(wJ).
For our given candidate pair of primal/dual variables {w,κ}, we then get a duality gap for the full
problem in Equation (3) equal to

λ
2
[Ω(w)]2+

1
2λ

[Ω∗(κ)]2−w	κ

=
λ
2
[Ω(w)]2+

1
2λ

[Ω∗(κ)]2−w	
J κJ

=
λ
2
[Ω(w)]2+

1
2λ

[Ω∗(κ)]2− λ
2
[ΩJ(wJ)]

2− 1
2λ

[Ω∗
J(κJ)]

2

=
1
2λ

(
[Ω∗(κ)]2− [Ω∗

J(κJ)]
2
)

=
1
2λ

(
[Ω∗(κ)]2−λw	

J κJ
)
.

Computing this gap requires computing the dual norm which itself is as hard as the original problem,
prompting the need for upper and lower bounds on Ω∗ (see Propositions 4 and 5 for more details).

Figure 7: The active set (black) and the candidate patterns of variables, that is, the variables in K\J
(hatched in black) that can become active. The fringe groups are exactly the groups that have the
hatched areas (i.e., here we have FJ =

⋃
K∈ΠP (J)GK\GJ = {G1,G2,G3}).
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Figure 8: The active set (black) and the candidate patterns of variables, that is, the variables in K\J
(hatched in black) that can become active. The groups in red are those in

⋃
K∈ΠP (J)GK\GJ , while

the blue dotted group is in FJ\(⋃K∈ΠP (J)GK\GJ). The blue dotted group does not intersect with
any patterns in ΠP (J).

4.2 Active Set Algorithm

We can interpret the active set algorithm as a walk through the DAG of nonzero patterns allowed by
the norm Ω. The parents ΠP (J) of J in this DAG are exactly the patterns containing the variables
that may enter the active set at the next iteration of Algorithm 3. The groups that are exactly at
the boundaries of the active set (referred to as the fringe groups) are FJ = {G ∈ (GJ)c ; �G′ ∈
(GJ)c, G⊆ G′}, that is, the groups that are not contained by any other inactive groups.

In simple settings, for example, when G is the set of rectangular groups, the correspondence
between groups and variables is straightforward since we haveFJ =

⋃
K∈ΠP (J)GK\GJ (see Figure 7).

However, in general, we just have the inclusion (
⋃
K∈ΠP (J)GK\GJ) ⊆ FJ and some elements of FJ

might not correspond to any patterns of variables in ΠP (J) (see Figure 8).
We now present the optimality conditions (see proofs in Appendix E) that monitor the progress

of Algorithm 3:

Proposition 4 (Necessary condition) If w is optimal for the full problem in Equation (3), then

max
K∈ΠP (J)

∥∥∇L(w)K\J
∥∥
2

∑H∈GK\GJ
∥∥dHK\J

∥∥
∞

≤ {−λw	∇L(w)
} 1
2 . (N)

Proposition 5 (Sufficient condition) If

max
G∈FJ

{
∑
k∈G

{
∇L(w)k

∑H�k, H∈(GJ)c d
H
k

}2} 1
2

≤ {
λ(2ε−w	∇L(w))

} 1
2 , (Sε)

then w is an approximate solution for Equation (3) whose duality gap is less than ε≥ 0.
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Note that for the Lasso, the conditions (N) and (S0) (i.e., the sufficient condition taken with ε=
0) are both equivalent (up to the squaring ofΩ) to the condition ‖∇L(w)Jc‖∞≤−w	∇L(w), which is
the usual optimality condition (Fuchs, 2005; Tibshirani, 1996; Wainwright, 2009). Moreover, when
they are not satisfied, our two conditions provide good heuristics for choosing which K ∈ ΠP (J)
should enter the active set.

More precisely, since the necessary condition (N) directly deals with the variables (as opposed
to groups) that can become active at the next step of Algorithm 3, it suffices to choose the patternK ∈
ΠP (J) that violates most the condition.

The heuristics for the sufficient condition (Sε) implies that, to go from groups to variables, we
simply consider the group G ∈ FJ violating the sufficient condition the most and then take all the
patterns of variables K ∈ΠP (J) such that K∩G 
=∅ to enter the active set. If G∩ (

⋃
K∈ΠP (J)K) =

∅, we look at all the groups H ∈ FJ such that H ∩G 
= ∅ and apply the scheme described before
(see Algorithm 4).

A direct consequence of this heuristics is that it is possible for the algorithm to jump over the
right active set and to consider instead a (slightly) larger active set as optimal. However if the active
set is larger than the optimal set, then (it can be proved that) the sufficient condition (S0) is satisfied,
and the reduced problem, which we solve exactly, will still output the correct nonzero pattern.

Moreover, it is worthwhile to notice that in Algorithm 3, the active set may sometimes be in-
creased only to make sure that the current solution is optimal (we only check a sufficient condition
of optimality).

Algorithm 3 Active set algorithm

Input: Data {(xi,yi), i= 1, . . . ,n}, regularization parameter λ,
Duality gap precision ε, maximum number of variables s.

Output: Active set J, loading vector ŵ.
Initialization: J = {∅}, ŵ= 0.
while

(
(N) is not satisfied

)
and

( |J| ≤ s
)
do

Replace J by violating K ∈ΠP (J) in (N).
Solve the reduced problem minwJ∈R|J| LJ(wJ)+ λ

2 [ΩJ(wJ)]
2 to get ŵ.

end while
while

(
(Sε) is not satisfied

)
and

( |J| ≤ s
)
do

Update J according to Algorithm 4.
Solve the reduced problem minwJ∈R|J| LJ(wJ)+ λ

2 [ΩJ(wJ)]
2 to get ŵ.

end while

4.2.1 CONVERGENCE OF THE ACTIVE SET ALGORITHM

The procedure described in Algorithm 3 can terminate in two different states. If the procedure stops
because of the limit on the number of active variables s, the solution might be suboptimal. Note
that, in any case, we have at our disposal a upper-bound on the duality gap.

Otherwise, the procedure always converges to an optimal solution, either (1) by validating both
the necessary and sufficient conditions (see Propositions 4 and 5), ending up with fewer than p
active variables and a precision of (at least) ε, or (2) by running until the p variables become active,
the precision of the solution being given by the underlying solver.
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Algorithm 4 Heuristics for the sufficient condition (Sε)

Let G ∈ FJ be the group that violates (Sε) most.
if (G∩ (

⋃
K∈ΠP (J)K) 
=∅) then

for K ∈ΠP (J) such that K∩G 
=∅ do
J ← J∪K.

end for
else
for H ∈ FJ such that H ∩G 
=∅ do
for K ∈ΠP (J) such that K∩H 
=∅ do
J ← J∪K.

end for
end for

end if

4.2.2 ALGORITHMIC COMPLEXITY

We analyze in detail the time complexity of the active set algorithm when we consider sets of groups
G such as those presented in the examples of Section 3.5. We recall that we denote by Θ the set of
orientations in G (for more details, see Section 3.5). For such choices of G , the fringe groups FJ
reduces to the largest groups of each orientation and therefore |FJ| ≤ |Θ|. We further assume that
the groups in Gθ are sorted by cardinality, so that computing FJ costs O(|Θ|).

Given an active set J, both the necessary and sufficient conditions require to have access to the
direct parents ΠP (J) of J in the DAG of nonzero patterns. In simple settings, for example, when G
is the set of rectangular groups, this operation can be performed in O(1) (it just corresponds to scan
the (up to) four patterns at the edges of the current rectangular hull).

However, for more general orientations, computing ΠP (J) requires to find the smallest nonzero
patterns that we can generate from the groups in FJ , reduced to the stripe of variables around the
current hull. This stripe of variables can be computed as

[⋃
G∈(GJ)c\FJ G

]c\J, so that getting ΠP (J)

costs O(s2|Θ|+ p|G |) in total.
Thus, if the number of active variables is upper bounded by s$ p (which is true if our target is

actually sparse), the time complexity of Algorithm 3 is the sum of:

• the computation of the gradient, O(snp) for the square loss.
• if the underlying solver called upon by the active set algorithm is a standard SOCP solver,
O(smaxJ∈P ,|J|≤s |GJ|3.5+s4.5) (note that the term s4.5 could be improved upon by using warm-
restart strategies for the sequence of reduced problems).

• t1 times the computation of (N), that is O(t1(s2|Θ|+ p|G |+ sn2θ)+ p|G |) = O(t1p|G |).
During the initialization (i.e., J =∅), we have |ΠP (∅)|= O(p) (since we can start with any
singletons), and |GK\GJ|= |GK |= |G |, which leads to a complexity of O(p|G |) for the sum
∑G∈GK\GJ = ∑G∈GK . Note however that this sum does not depend on J and can therefore be
cached if we need to make several runs with the same set of groups G .

• t2 times the computation of (Sε), that isO(t2(s2|Θ|+ p|G |+ |Θ|2+ |Θ|p+ p|G |))=O(t2p|G |),
with t1+ t2 ≤ s.
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We finally get complexity with a leading term in O(sp|G |+ smaxJ∈P ,|J|≤s |GJ|3.5+ s4.5), which
is much better than O(p3.5+ |G |3.5), without an active set method. In the example of the two-
dimensional grid (see Section 3.5), we have |G | = O(

√
p) and O(smax{p1.75,s3.5}) as total com-

plexity. The simulations of Section 6 confirm that the active set strategy is indeed useful when s is
much smaller than p. Moreover, the two extreme cases where s≈ p or p$ 1 are also shown not to
be advantageous for the active set strategy, since either it is cheaper to use the SOCP solver directly
on the p variables, or we uselessly pay the additional fixed-cost of the active set machinery (such as
computing the optimality conditions). Note that we have derived here the theoretical complexity of
the active set algorithm when we use an interior point method as underlying solver. With the first
order method presented in Appendix H, we would instead get a total complexity in O(sp1.5).

4.3 Intersecting Nonzero Patterns

We have seen so far how overlapping groups can encore prior information about a desired set of
(non)zero patterns. In practice, controlling these overlaps may be delicate and hinges on the choice
of the weights (dG)G∈G (see the experiments in Section 6). In particular, the weights have to take
into account that some variables belonging to several overlapping groups are penalized multiple
times.

However, it is possible to keep the benefit of overlapping groups whilst limiting their side effects,
by taking up the idea of support intersection (Bach, 2008c; Meinshausen and Bühlmann, 2010).
First introduced to stabilize the set of variables recovered by the Lasso, we reuse this technique in a
different context, based on the fact that Z is closed under union.

If we deal with the same sets of groups as those considered in Section 3.5, it is natural to rewrite
G as

⋃
θ∈ΘGθ, where Θ is the set of the orientations of the groups in G (for more details, see

Section 3.5). Let us denote by ŵ and ŵθ the solutions of Problem (3), where the regularization term
Ω is respectively defined by the groups in G and by the groups6 in Gθ.

The main point is that, since P is closed under intersection, the two procedures described below
actually lead to the same set of allowed nonzero patterns:

a) Simply considering the nonzero pattern of ŵ.

b) Taking the intersection of the nonzero patterns obtained for each ŵθ, θ in Θ.

With the latter procedure, although the learning of several models ŵθ is required (a number of
times equals to the number of orientations considered, for example, 2 for the sequence, 4 for the
rectangular groups and more generally |Θ| times), each of those learning tasks involves a smaller
number of groups (that is, just the ones belonging to Gθ). In addition, this procedure is a variable
selection technique that therefore needs a second step for estimating the loadings (restricted to the
selected nonzero pattern). In the experiments, we follow Bach (2008c) and we use an ordinary
least squares (OLS). The simulations of Section 6 will show the benefits of this variable selection
approach.

6. To be more precise, in order to regularize every variable, we add the full group {1, . . . , p} to Gθ, which does not
modify P .
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5. Pattern Consistency

In this section, we analyze the model consistency of the solution of the problem in Equation (2) for
the square loss. Considering the set of nonzero patterns P derived in Section 3, we can only hope to
estimate the correct hull of the generating sparsity pattern, since Theorem 2 states that other patterns
occur with zero probability. We derive necessary and sufficient conditions for model consistency in
a low-dimensional setting, and then consider a high-dimensional result.

We consider the square loss and a fixed-design analysis (i.e., x1, . . . ,xn are fixed). The extension
of the following consistency results to other loss functions is beyond the scope of the paper (see
for instance Bach, 2009). We assume that for all i ∈ {1, . . . ,n}, yi = w	xi+ εi where the vector
ε is an i.i.d. vector with Gaussian distributions with mean zero and variance σ2 > 0, and w ∈ Rp

is the population sparse vector; we denote by J the G -adapted hull of its nonzero pattern. Note
that estimating the G -adapted hull of w is equivalent to estimating the nonzero pattern of w if and
only if this nonzero pattern belongs to P . This happens when our prior information has led us to
consider an appropriate set of groups G . Conversely, if G is misspecified, recovering the hull of
the nonzero pattern of w may be irrelevant, which is for instance the case if w =

(w1
0

) ∈ R2 and
G = {{1},{1,2}}. Finding the appropriate structure of G directly from the data would therefore be
interesting future work.

5.1 Consistency Condition

We begin with the low-dimensional setting where n is tending to infinity with p fixed. In addition,
we also assume that the design is fixed and that the Gram matrix Q= 1

n ∑
n
i=1 xix

	
i is invertible with

positive-definite (i.e., invertible) limit: limn→∞Q = Q % 0. In this setting, the noise is the only
source of randomness. We denote by rJ the vector defined as

∀ j ∈ J, r j = w j

(
∑

G∈GJ,G� j
(dGj )

2 ‖dG ◦w‖−12
)
.

In the Lasso and group Lasso setting, the vector rJ is respectively the sign vector sign(wJ) and the
vector defined by the blocks ( wG

‖wG‖2 )G∈GJ .
We define Ωc

J(wJc) = ∑G∈(GJ)c
∥∥dGJc ◦wJc∥∥2 (which is the norm composed of inactive groups)

with its dual norm (Ωc
J)

∗; note the difference with the norm reduced to Jc, defined as ΩJc(wJc) =
∑G∈G

∥∥dGJc ◦wJc∥∥2.
The following Theorem gives the sufficient and necessary conditions under which the hull of

the generating pattern is consistently estimated. Those conditions naturally extend the results of
Zhao and Yu (2006) and Bach (2008b) for the Lasso and the group Lasso respectively (see proof in
Appendix F).

Theorem 6 (Consistency condition) Assume μ→ 0, μ
√
n→ ∞ in Equation (2). If the hull is con-

sistently estimated, then (Ωc
J)

∗[QJcJQ−1
JJ rJ]≤ 1. Conversely, if (Ωc

J)
∗[QJcJQ−1

JJ rJ]< 1, then the hull
is consistently estimated, that is,

P({ j ∈ {1, . . . , p}, ŵ j 
= 0}= J) −→
n→+∞

1.

The two previous propositions bring into play the dual norm (Ωc
J)

∗ that we cannot compute in
closed form, but requires to solve an optimization problem as complex as the initial problem in
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Equation (3). However, we can prove bounds similar to those obtained in Propositions 4 and 5 for
the necessary and sufficient conditions.

5.1.1 COMPARISON WITH THE LASSO AND GROUP LASSO

For the �1-norm, our two bounds lead to the usual consistency conditions for the Lasso, that is, the
quantity ‖QJcJQ−1

JJ sign(wJ)‖∞ must be less or strictly less than one. Similarly, when G defines a
partition of {1, . . . , p} and if all the weights equal one, our two bounds lead in turn to the consistency
conditions for the group Lasso, that is, the quantity maxG∈(GJ)c ‖QG Hull(J)Q

−1
Hull(J)Hull(J)(

wG
‖wG‖2 )G∈GJ‖2

must be less or strictly less than one.

5.2 High-Dimensional Analysis

We prove a high-dimensional variable consistency result (see proof in Appendix G) that extends the
corresponding result for the Lasso (Zhao and Yu, 2006; Wainwright, 2009), by assuming that the
consistency condition in Theorem 6 is satisfied.

Theorem 7 Assume that Q has unit diagonal, κ = λmin(QJJ) > 0 and (Ωc
J)

∗[QJcJQ−1
JJ rJ] < 1− τ,

with τ > 0. If τμ
√
n ≥ σC3(G ,J), and μ|J|1/2 ≤ C4(G ,J), then the probability of incorrect hull

selection is upper bounded by:

exp

(
−nμ2τ2C1(G ,J)

2σ2

)
+2|J|exp

(
−nC2(G ,J)

2|J|σ2
)
,

where C1(G ,J), C2(G ,J), C3(G ,J) and C4(G ,J) are constants defined in Appendix G, which es-
sentially depend on the groups, the smallest nonzero coefficient of w and how close the support
{ j ∈ J : w j 
= 0} of w is to its hull J, that is the relevance of the prior information encoded by G .

In the Lasso case, we haveC1(G ,J) =O(1),C2(G ,J) =O(|J|−2),C3(G ,J) =O((log p)1/2) and
C4(G ,J) = O(|J|−1), leading to the usual scaling n≈ log p and μ≈ σ(log p/n)1/2.

We can also give the scaling of these constants in simple settings where groups overlap. For
instance, let us consider that the variables are organized in a sequence (see Figure 4). Let us further
assume that the weights (dG)G∈G satisfy the following two properties:

a) The weights take into account the overlaps, that is,

dGj = β(|{H ∈ G ; H � j, H ⊂ G and H 
= G}|),

with t �→ β(t) ∈ (0,1] a non-increasing function such that β(0) = 1,

b) The term
max

j∈{1,...,p} ∑
G� j,G∈G

dGj

is upper bounded by a constant K independent of p.

Note that we consider such weights in the experiments (see Section 6). Based on these assumptions,
some algebra directly leads to

‖u‖1 ≤Ω(u)≤ 2K ‖u‖1 , for all u ∈ Rp.
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We thus obtain a scaling similar to the Lasso (with, in addition, a control of the allowed nonzero
patterns). With stronger assumptions on the possible positions of J, we may have better scalings,
but these are problem-dependent (a careful analysis of the group-dependent constants would still be
needed in all cases).

6. Experiments

In this section, we carry out several experiments to illustrate the behavior of the sparsity-inducing
normΩ. We denote by Structured-lasso, or simply Slasso, the models regularized by the normΩ. In
addition, the procedure (introduced in Section 4.3) that consists in intersecting the nonzero patterns
obtained for different models of Slasso will be referred to as Intersected Structured-lasso, or simply
ISlasso.

Throughout the experiments, we consider noisy linear models Y = Xw+ε, where w ∈Rp is the
generating loading vector and ε is a standard Gaussian noise vector with its variance set to satisfy
‖Xw‖2 = 3‖ε‖2. This consequently leads to a fixed signal-to-noise ratio. We assume that the vector
w is sparse, that is, it has only a few nonzero components, that is, |J| $ p. We further assume that
these nonzero components are either organized on a sequence or on a two-dimensional grid (see
Figure 9). Moreover, we consider sets of groups G such as those presented in Section 3.5. We also
consider different choices for the weights (dG)G∈G that we denote by (W1), (W2) and (W3) (we
will keep this notation throughout the following experiments):

(W1): Uniform weights, dGj = 1,

(W2): Weights depending on the size of the groups, dGj = |G|−2,

(W3): Weights for overlapping groups, dGj = ρ |{H∈G ;H� j, H⊂G and H 
=G}|, for some ρ ∈ (0,1).

For each orientation in G , the third type of weights (W3) aims at reducing the unbalance caused
by the overlapping groups. Specifically, given a groupG∈G and a variable j∈G, the corresponding
weight dGj is all the more small as the variable j already belongs to other groups with the same
orientation. Unless otherwise specified, we use the third type of weights (W3) with ρ = 0.5. In
the following experiments, the loadings wJ, as well as the design matrices, are generated from a
standard Gaussian distribution with identity covariance matrix. The positions of J are also random
and are uniformly drawn.

6.1 Consistent Hull Estimation

We first illustrate Theorem 6 that establishes necessary and sufficient conditions for consistent hull
estimation. To this end, we compute the probability of correct hull estimation when we consider
diamond-shaped generating patterns of |J| = 24 variables on a 20×20-dimensional grid (see Fig-
ure 9h). Specifically, we generate 500 covariance matrices Q distributed according to a Wishart
distribution with δ degrees of freedom, where δ is uniformly drawn in {1,2, . . . ,10p}.7 The diago-
nal terms ofQ are then re-normalized to one. For each of these covariance matrices, we compute an

7. We have empirically observed that this choice of degrees of freedom enables to cover well the consistency transition
regime around zero in Figure 10.
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Hull with 25% of nonzero variables

(a)

Hull with 33% of nonzero variables

(b)

Hull with 50% of nonzero variables

(c)

Hull with 50% of nonzero variables

(d)

Hull with 75% of nonzero variables

(e)

Hull with 83% of nonzero variables

(f)

Hull with 100% of nonzero variables

(g)

Hull with 100% of nonzero variables

(h)

Figure 9: Examples of generating patterns (the zero variables are represented in black, while the
nonzero ones are in white): (Left column, in white) generating patterns that are used for the exper-
iments on 400-dimensional sequences; those patterns all form the same hull of 24 variables, that
is, the contiguous sequence in (g). (Right column, in white) generating patterns that we use for the
20×20-dimensional grid experiments; again, those patterns all form the same hull of 24 variables,
that is, the diamond-shaped convex in (h). The positions of these generating patterns are randomly
selected during the experiments. For the grid setting, the hull is defined based on the set of groups
that are half-planes, with orientations that are multiple of π/4 (see Section 3.5).
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Figure 10: Consistent hull estimation: probability of correct hull estimation versus the consistency
condition (Ωc

J)
∗[QJcJQ−1

JJ rJ]. The transition appears at zero, in good agreement with Theorem 6.

entire regularization path based on one realization of {J,w,X ,ε}, with n= 3000 samples. The quan-
tities {J,w,ε} are generated as described previously, while the n rows of X are Gaussian with co-
varianceQ. After repeating 20 times this computation for eachQ, we eventually report in Figure 10
the probabilities of correct hull estimation versus the consistency condition (Ωc

J)
∗[QJcJQ−1

JJ rJ]. In
good agreement with Theorem 6, comparing (Ωc

J)
∗[QJcJQ−1

JJ rJ] to 1 determines whether the hull is
consistently estimated.

6.2 Structured Variable Selection

We show in this experiment that the prior information we put through the normΩ improves upon the
ability of the model to recover spatially structured nonzero patterns. We are looking at two situations
where we can express such a prior through Ω, namely (1) the selection of a contiguous pattern on a
sequence (see Figure 9g) and (2) the selection of a convex pattern on a grid (see Figure 9h).

In what follows, we consider p = 400 variables with generating patterns w whose hulls are
composed of |J|= 24 variables. For different sample sizes n ∈ {100,200,300,400,500,700,1000},
we consider the probabilities of correct recovery and the (normalized) Hamming distance to the
true nonzero patterns. For the realization of a random setting {J,w,X ,ε}, we compute an entire
regularization path over which we collect the closest Hamming distance to the true nonzero pattern
and whether it has been exactly recovered for some μ. After repeating 50 times this computation for
each sample size n, we report the results in Figure 11.

First and foremost, the simulations highlight how important the weights (dG)G∈G are. In partic-
ular, the uniform (W1) and size-dependent weights (W2) perform poorly since they do not take into
account the overlapping groups. The models learned with such weights do not manage to recover
the correct nonzero patterns (in that case, the best model found on the path corresponds to the empty
solution, with a normalized Hamming distance of |J|/p= 0.06—see Figure 11c).

Although groups that moderately overlap do help (e.g., see Slasso with the weights (W3) on
Figure 11c), it remains delicate to handle groups with many overlaps, even with an appropriate
choice of (dG)G∈G (e.g., see Slasso on Figure 11d). The ISlasso procedure does not suffer from this
issue since it reduces the number of overlaps whilst keeping the desirable effects of overlapping
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(a) Probability of recovery for the sequence
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(b) Probability of recovery for the grid
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(c) Distance to the true pattern for the sequence
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(d) Distance to the true pattern for the grid

Figure 11: For different sample sizes, the probabilities of correct recovery and the (normalized)
Hamming distance to the true nonzero patterns are displayed. In the grid case, two sets of groups
G are considered, the rectangular groups with or without the ±π/4-groups (denoted by (π/4) in
the legend). The points and the error bars on the curves respectively represent the mean and the
standard deviation, based on 50 random settings {J,w,X ,ε}.
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groups. Another way to yield a better level of sparsity, even with many overlaps, would be to
consider non-convex alternatives to Ω (see, e.g., Jenatton et al., 2010b). Moreover, adding the
±π/4-groups to the rectangular groups enables to recover a nonzero pattern closer to the generating
pattern. This is illustrated on Figure 11d where the error of ISlasso with only rectangular groups (in
black) corresponds to the selection of the smallest rectangular box around the generating pattern.

6.3 Prediction Error and Relevance of the Structured Prior

In the next simulation, we start from the same setting as Section 6.2 where we additionally evaluate
the relevance of the contiguous (or convex) prior by varying the number of zero variables that are
contained in the hull (see Figure 9). We then compute the prediction error for different sample sizes
n ∈ {250,500,1000}. The prediction error is understood here as ‖X test(w− ŵ)‖22/‖X testw‖22, where
ŵ denotes the OLS estimate, performed on the nonzero pattern found by the model considered (i.e.,
either Lasso, Slasso or ISlasso). The regularization parameter is chosen by 5-fold cross-validation
and the test set consists of 500 samples. For each value of n, we display on Figure 12 the median
errors over 50 random settings {J,w,X ,ε}, for respectively the sequence and the grid. Note that we
have dropped for clarity the models that performed already poorly in Section 6.2.

The experiments show that if the prior about the generating pattern is relevant, then our struc-
tured approach performs better that the standard Lasso. Indeed, as soon as the hull of the generating
pattern does not contain too many zero variables, Slasso/ISlasso outperform Lasso. In fact, the
sample complexity of the Lasso depends on the number of nonzero variables in w (Wainwright,
2009) as opposed to the size of the hull for Slasso/ISlasso. This also explains why the error for
Slasso/ISlasso is almost constant with respect to the number of nonzero variables (since the hull has
a constant size).

6.4 Active Set Algorithm

We finally focus on the active set algorithm (see Section 4) and compare its time complexity to the
SOCP solver when we are looking for a sparse structured target. More precisely, for a fixed level
of sparsity |J| = 24 and a fixed number of observations n = 3500, we analyze the complexity with
respect to the number of variables p that varies in {100,225,400,900,1600,2500}. We consider the
same experimental protocol as above except that we display the median CPU time based only8 on 5
random settings {J,w,X ,ε}. We assume that we have a rough idea of the level of sparsity of the true
vector and we set the stopping criterion s = 4|J| (see Algorithm 3), which is a rather conservative
choice. We show on Figure 13 that we considerably lower the computational cost for the same level
of performance.9 As predicted by the complexity analysis of the active set algorithm (see the end
of Section 4), considering the set of rectangular groups with or without the ±π/4-groups results
in the same complexity (up to constant terms). We empirically obtain an average complexity of
≈ O(p2.13) for the SOCP solver and of ≈ O(p0.45) for the active set algorithm.

Not surprisingly, for small values of p, the SOCP solver is faster than the active set algorithm,
since the latter has to check its optimality by computing necessary and sufficient conditions (see
Algorithm 3 and the discussion in the algorithmic complexity paragraph of Section 4).

8. Note that it already corresponds to several hundreds of runs for both the SOCP and the active set algorithms since we
compute a 5-fold cross-validation for each regularization parameter of the (approximate) regularization path.

9. We have not displayed this second figure that is just the superposition of the error curves for the SOCP and the active
set algorithms.
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(b) Grid setting
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Figure 12: For the sample size n ∈ {250,500,1000}, we plot the prediction error versus the propor-
tion of nonzero variables in the hull of the generating pattern. In the grid case, two sets of groups
G are considered, the rectangular groups with or without the±π/4-groups (denoted by (π/4) in the
legend). The points, the lower and upper error bars on the curves respectively represent the median,
the first and third quartile, based on 50 random settings {J,w,X ,ε}.
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Figure 13: Computational benefit of the active set algorithm: CPU time (in seconds) versus the
number of variables p, displayed in log-log scale. The points, the lower and upper error bars on
the curves respectively represent the median, the first and third quartile. Two sets of groups G
are considered, the rectangular groups with or without the ±π/4-groups (denoted by (π/4) in the
legend). Due to the computational burden, we could not obtain the SOCP’s results for p= 2500.

7. Conclusion

We have shown how to incorporate prior knowledge on the form of nonzero patterns for linear
supervised learning. Our solution relies on a regularizing term which linearly combines �2-norms
of possibly overlapping groups of variables. Our framework brings into play intersection-closed
families of nonzero patterns, such as all rectangles on a two-dimensional grid. We have studied
the design of these groups, efficient algorithms and theoretical guarantees of the structured sparsity-
inducing method. Our experiments have shown to which extent our model leads to better prediction,
depending on the relevance of the prior information.

A natural extension to this work is to consider bootstrapping since this may improve theoretical
guarantees and result in better variable selection (Bach, 2008c; Meinshausen and Bühlmann, 2010).
In order to deal with broader families of (non)zero patterns, it would be interesting to combine our
approach with recent work on structured sparsity: for instance, Baraniuk et al. (2010) and Jacob
et al. (2009) consider union-closed collections of nonzero patterns, He and Carin (2009) exploit
structure through a Bayesian prior while Huang et al. (2009) handle non-convex penalties based on
information-theoretic criteria.

More generally, our regularization scheme could also be used for various learning tasks, as
soon as prior knowledge on the structure of the sparse representation is available, for example,
for multiple kernel learning (Micchelli and Pontil, 2006), multi-task learning (Argyriou et al., 2008;
Obozinski et al., 2009; Kim and Xing, 2010) and sparse matrix factorization problems (Mairal et al.,
2010a; Jenatton et al., 2010b, 2011b).

Finally, although we have mostly explored in this paper the algorithmic and theoretical issues
related to these norms, this type of prior knowledge is of clear interest for the spatially and tem-
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porally structured data typical in bioinformatics (Kim and Xing, 2010), computer vision (Jenatton
et al., 2010b; Mairal et al., 2010b) and neuroscience applications (see, e.g., Varoquaux et al., 2010).
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Appendix A. Proof of Proposition 1

We recall that L(w) = 1
n ∑

n
i=1 �

(
yi,w	xi

)
. Since w �→Ω(w) is convex and goes to infinite when ‖w‖2

goes to infinite, and since L is lower bounded, by Weierstrass’ theorem, the problem in Equation (2)
admits at least one global solution.
•First case: Q invertible. The Hessian of L is

1
n

n

∑
i=1

xix
	
i
∂2�

∂y′2
(yi,w

	xi).

It is positive definite since Q is positive definite and mini∈{1,...,n} ∂2�
∂y′2

(yi,w	xi) > 0. So L is strictly
convex. Consequently the objective function L+μΩ is strictly convex, hence the uniqueness of its
minimizer.
•Second case: {1, . . . , p} belongs to G . We prove the uniqueness by contradiction. Assume that the
problem in Equation (2) admits two different solutions w and w̃. Then one of the two solutions is
different from 0, say w 
= 0.

By convexity, it means that any point of the segment [w, w̃] =
{
aw+(1− a)w̃; a ∈ [0,1]

}
also

minimizes the objective function L+μΩ. Since both L and μΩ are convex functions, it means that
they are both linear when restricted to [w, w̃].

Now, μΩ is only linear on segments of the form [v, tv] with v ∈ Rp and t > 0. So we necessarily
have w̃ = tw for some positive t. We now show that L is strictly convex on [w, tw], which will
contradict that it is linear on [w, w̃]. Let E = Span(x1, . . . ,xn) and E⊥ be the orthogonal of E in Rp.
The vector w can be decomposed in w = w′ +w′′ with w′ ∈ E and w′′ ∈ E⊥. Note that we have
w′ 
= 0 (since if it was equal to 0, w′′ would be the minimizer of μΩ, which would imply w′′ = 0 and
contradict w 
= 0). We thus have (w	x1, . . . ,w	xn) = (w′	x1, . . . ,w′	xn) 
= 0.

This implies that the function s �→ �(yi,sw	xi) is a polynomial of degree 2. So it is not linear.
This contradicts the existence of two different solutions, and concludes the proof of uniqueness.

Remark 8 Still by using that a sum of convex functions is constant on a segment if and only if the
functions are linear on this segment, the proof can be extended in order to replace the alternative
assumption “{1, . . . , p} belongs to G” by the weaker but more involved assumption: for any ( j,k)∈
{1, . . . , p}2, there exists a group G ∈ G which contains both j and k.
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Appendix B. Proof of Theorem 2

For w ∈ Rp, we denote by Z(w) its zero pattern (i.e., the indices of zero-components of w). To
prove the result, it suffices to prove that for any set I ⊂ {1, . . . , p} with Ic /∈ Z and |I| ≤ k− 1, the
probability of

EI =
{
Y ∈ Rn: there exists w solution of the problem in Equation (2) with Z(w) = Ic

}
is equal to 0. We will prove this by contradiction: assume that there exists a set I ⊂ {1, . . . , p}
with Ic /∈ Z, |I| ≤ k−1 and P(EI) > 0. Since Ic /∈ Z, there exists α ∈ Hull(I)\ I. Let J = I ∪{α}
and GI = {G ∈ G : G∩ I 
= /0} be the set of active groups. Define RJ = {w ∈ Rp : wJc = 0}. The
restrictions LJ : RJ → R and ΩJ : RJ → R of L and Ω are continuously differentiable functions on{
w ∈ RJ : wI 
= 0

}
with respective gradients

∇LJ(w) =

(
∂LJ
∂wj

(w)

)	

j∈J
and ∇ΩJ(w) =

(
wj

(
∑

G∈GI ,
G� j

(dGj )
2 ‖dG ◦w‖−12

))	

j∈J
.

Let f (w,Y ) = ∇LJ(w)+μ∇ΩJ(w), where the dependence in Y of f (w,Y ) is hidden in ∇LJ(w) =
1
n ∑

n
i=1(xi)J

∂�
∂y′ (yi,w

	xi).
For Y ∈EI , there exists w∈RJ with Z(w) = Ic, which minimizes the convex function LJ+μΩJ .

The vector w satisfies f (w,Y ) = 0. So we have proved EI ⊂ E ′
I , where

E ′
I =

{
Y ∈ Rn : there exists w ∈ RJ with Z(w) = Ic and f (w,Y ) = 0

}
.

Let ỹ ∈ EI . Consider the equation f (w, ỹ) = 0 on
{
w ∈ RJ : wj 
= 0 for any j ∈ I

}
. By con-

struction, we have |J| ≤ k, and thus, by assumption, the matrix XJ =
(
(x1)J, ...,(xn)J

)	 ∈Rn×|J| has
rank |J|. As in the proof of Proposition 1, this implies that the function LJ is strictly convex, and
then, the uniqueness of the minimizer of LJ+μΩ, and also the uniqueness of the point at which the
gradient of this function vanishes. So the equation f (w, ỹ) = 0 on

{
w ∈ RJ : wj 
= 0 for any j ∈ I

}
has a unique solution, which we will write wỹ.

On a small enough ball around (wỹJ, ỹ), f is continuously differentiable since none of the norms

vanishes at wỹJ . Let ( f j) j∈J be the components of f and HJJ =
( ∂ f j
∂wk

)
j∈J,k∈J . The matrix HJJ is

actually the sum of:

a) the Hessian of LJ , which is positive definite (still from the same argument as in the proof of
Theorem 1),

b) the Hessian of the norm ΩJ around (wỹJ, ỹ) that is positive semidefinite on this small ball
according to the Hessian characterization of convexity (Borwein and Lewis, 2006, Theorem
3.1.11).

Consequently, HJJ is invertible. We can now apply the implicit function theorem to obtain that for
Y in a neighborhood of ỹ,

wY = ψ(Y ),

with ψ= (ψ j) j∈J a continuously differentiable function satisfying the matricial relation

(. . . ,∇ψ j, . . .)HJJ+(. . . ,∇y f j, . . .) = 0.
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LetCα denote the column vector ofH
−1
JJ corresponding to the index α, and let D the diagonal matrix

whose (i, i)-th element is ∂2�
∂y∂y′ (yi,w

	xi). Since n(. . . ,∇y f j, . . .) = DXJ , we have

n∇ψα =−DXJCα.

Now, since XJ has full rank, Cα 
= 0 and none of the diagonal elements of D is null (by assump-
tion on �), we have ∇ψα 
= 0. Without loss of generality, we may assume that ∂ψα/∂y1 
= 0 on a
neighborhood of ỹ.

We can apply again the implicit function theorem to show that on an open ball in Rn centered
at ỹ, say Bỹ, the solution to ψα(Y ) = 0 can be written y1 = ϕ(y2, . . . ,yn) with ϕ a continuously
differentiable function.

By Fubini’s theorem and by using the fact that the Lebesgue measure of a singleton inRn equals
zero, we get that the set A(ỹ) =

{
Y ∈ Bỹ : ψα(Y ) = 0

}
has thus zero probability. Let S ⊂ EI be a

compact set. We thus have S ⊂ E ′
I .

By compacity, the set S can be covered by a finite number of ball Bỹ. So there exist ỹ1, . . . , ỹm
such that we have S ⊂ A(ỹ1)∪·· ·∪A(ỹm). Consequently, we have P(S) = 0.

Since this holds for any compact set in EI and since the Lebesgue measure is regular, we have
P(EI) = 0, which contradicts the definition of I, and concludes the proof.

Appendix C. Proof of the Minimality of the Backward Procedure (See Algorithm 1)

There are essentially two points to show: (1) G spans Z, and (2) G is minimal.
The first point can be shown by a proof by recurrence on the depth of the DAG. At step t, the

base G (t) verifies {⋃G∈G ′G, ∀G ′ ⊆ G (t)} = {G ∈ Z, |G| ≤ t} because an element G ∈ Z is either
the union of itself or the union of elements strictly smaller. The initialization t = minG∈Z |G| is
easily verified, the leafs of the DAG being necessarily in G .

As for the second point, we proceed by contradiction. If there exists another base G∗ that spans
Z such that G∗ ⊂ G , then

∃ e ∈ G , e /∈ G∗.

By definition of the set Z, there exists in turn G ′ ⊆ G∗, G ′ 
= {e} (otherwise, e would belong to
G∗), verifying e =

⋃
G∈G ′G, which is impossible by construction of G whose members cannot be

the union of elements of Z.

Appendix D. Proof of Proposition 3

The proposition comes from a classic result of Fenchel Duality (Borwein and Lewis, 2006, Theorem
3.3.5 and Exercise 3.3.9) when we consider the convex function

hJ : wJ �→ λ
2
[ΩJ(wJ)]

2 ,

whose Fenchel conjugate h∗J is given by κJ �→ 1
2λ [Ω

∗
J(κJ)]

2 (Boyd and Vandenberghe, 2004, example
3.27). Since the set

{wJ ∈ R|J|; hJ(wJ)< ∞}∩{wJ ∈ R|J|; LJ(wJ)< ∞ and LJ is continuous at wJ}
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is not empty, we get the first part of the proposition. Moreover, the primal-dual variables {wJ,κJ}
is optimal if and only if {

−κJ ∈ ∂LJ(wJ),

κJ ∈ ∂[λ2 [ΩJ(wJ)]
2] = λΩJ(wJ)∂ΩJ(wJ),

where ∂ΩJ(wJ) denotes the subdifferential of ΩJ at wJ . The differentiability of LJ at wJ then gives
∂LJ(wJ) = {∇LJ(wJ)}. It now remains to show that

κJ ∈ λΩJ(wJ)∂ΩJ(wJ) (5)

is equivalent to

w	
J κJ =

1
λ
[Ω∗

J(κJ)]
2 = λ [ΩJ(wJ)]

2 . (6)

As a starting point, the Fenchel-Young inequality (Borwein and Lewis, 2006, Proposition 3.3.4)
gives the equivalence between Equation (5) and

λ
2
[ΩJ(wJ)]

2+
1
2λ

[Ω∗
J(κJ)]

2 = w	
J κJ. (7)

In addition, we have (Rockafellar, 1970)

∂ΩJ(wJ) = {uJ ∈ R|J|;u	J wJ =ΩJ(wJ) and Ω∗
J(uJ)≤ 1}. (8)

Thus, if κJ ∈ λΩJ(wJ)∂ΩJ(wJ) then w	
J κJ = λ [ΩJ(wJ)]

2 . Combined with Equation (7), we obtain
w	
J κJ =

1
λ [Ω

∗
J(κJ)]

2 .

Reciprocally, starting from Equation (6), we notably have

w	
J κJ = λ [ΩJ(wJ)]

2 .

In light of Equation (8), it suffices to check that Ω∗
J(κJ) ≤ λΩJ(wJ) in order to have Equation (5).

Combining Equation (6) with the definition of the dual norm, it comes

1
λ
[Ω∗

J(κJ)]
2 = w	

J κJ ≤Ω∗
J(κJ)ΩJ(wJ),

which concludes the proof of the equivalence between Equation (5) and Equation (6).

Appendix E. Proofs of Propositions 4 and 5

In order to check that the reduced solution wJ is optimal for the full problem in Equation (3), we
complete with zeros on Jc to define w, compute κ = −∇L(w), which is such that κJ = −∇LJ(wJ),
and get a duality gap for the full problem equal to

1
2λ

(
[Ω∗(κ)]2−λw	

J κJ
)
.

By designing upper and lower bounds for Ω∗(κ), we get sufficient and necessary conditions.
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E.1 Proof of Proposition 4

Let us suppose that w∗ =
(w∗

J
0Jc

)
is optimal for the full problem in Equation (3). Following the same

derivation as in Lemma 14 (up to the squaring of the regularizationΩ), we have that w∗ is a solution
of Equation (3) if and only if for all u ∈ Rp,

u	∇L(w∗)+λΩ(w∗)(u	J rJ+(Ωc
J)[uJc ])≥ 0,

with

r = ∑
G∈GJ

dG ◦dG ◦w∗

‖dG ◦w∗‖2
.

We project the optimality condition onto the variables that can possibly enter the active set, that is,
the variables in ΠP (J). Thus, for each K ∈ΠP (J), we have for all uK\J ∈ R|K\J|,

u	K\J∇L(w
∗)K\J+λΩ(w∗) ∑

G∈GK\J∩(GJ)c

∥∥∥dGK\J ◦uG∩K\J
∥∥∥
2
≥ 0.

By combining Lemma 13 and the fact that GK\J ∩ (GJ)c = GK\GJ , we have for all G ∈ GK\GJ ,
K\J ⊆ G and therefore uG∩K\J = uK\J . Since we cannot compute the dual norm of uK\J �→ ‖dGK\J ◦
uK\J‖2 in closed-form, we instead use the following upperbound∥∥∥dGK\J ◦uK\J

∥∥∥
2
≤ ‖dGK\J‖∞

∥∥uK\J
∥∥
2
,

so that we get for all uK\J ∈ R|K\J|,

u	K\J∇L(w
∗)K\J+λΩ(w∗) ∑

G∈GK\GJ
‖dGK\J‖∞

∥∥uK\J
∥∥
2
≥ 0.

Finally, Proposition 3 gives λΩ(w∗) =
{−λw∗	∇L(w∗)

} 1
2 , which leads to the desired result.

E.2 Proof of Proposition 5

The goal of the proof is to upper bound the dual norm Ω∗(κ) by taking advantage of the structure
of G ; we first show how we can upper bound Ω∗(κ) by (Ωc

J)
∗[κJc ]. We indeed have:

Ω∗(κ) = max
∑G∈GJ ‖dG◦v‖2+∑G∈(GJ )c‖dG◦v‖2≤1

v	κ

≤ max
∑G∈GJ‖dGJ ◦vJ‖2+∑G∈(GJ )c‖dG◦v‖2≤1

v	κ

= max
ΩJ(vJ)+(Ωc

J)(vJc )≤1
v	κ

= max{Ω∗
J(κJ),(Ω

c
J)

∗[κJc ]} ,

where in the last line, we use Lemma 15. Thus the duality gap is less than

1
2λ

(
[Ω∗(κ)]2− [Ω∗

J(κJ)]
2
)
≤ 1
2λ
max{0, [(Ωc

J)
∗[κJc ]]2− [Ω∗

J(κJ)]
2},
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and a sufficient condition for the duality gap to be smaller than ε is

(Ωc
J)

∗[κJc ]≤ (2λε+[Ω∗
J(κJ)]

2)
1
2 .

Using Proposition 3, we have −λw	∇L(w) = [Ω∗
J(κJ)]

2 and we get the right-hand side of Proposi-
tion 5. It now remains to upper bound (Ωc

J)
∗[κJc ]. To this end, we call upon Lemma 11 to obtain:

(Ωc
J)

∗[κJc ]≤ max
G∈(GJ)c

⎧⎨⎩∑j∈G
{

κ j
∑H∈ j,H∈(GJ)cd

H
j

}2
⎫⎬⎭

1
2

.

Among all groups G ∈ (GJ)c, the ones with the maximum values are the largest ones, that is, those
in the fringe groups FJ = {G ∈ (GJ)c ; �G′ ∈ (GJ)c,G⊆ G′}. This argument leads to the result of
Proposition 5.

Appendix F. Proof of Theorem 6

Necessary condition: We mostly follow the proof of Zou (2006) and Bach (2008b). Let ŵ ∈ Rp be
the unique solution of

min
w∈Rp

L(w)+μΩ(w) = min
w∈Rp

F(w).

The quantity Δ̂= (ŵ−w)/μ is the minimizer of F̃ defined as

F̃(Δ) =
1
2
Δ	QΔ−μ−1q	Δ+μ−1 [Ω(w+μΔ)−Ω(w)] ,

where q = 1
n ∑

n
i=1 εixi. The random variable μ−1q	Δ is a centered Gaussian with variance√

Δ	QΔ/(nμ2). Since Q→Q, we obtain that for all Δ ∈ Rp,

μ−1q	Δ= op(1).

Since μ→ 0, we also have by taking the directional derivative of Ω at w in the direction of Δ

μ−1 [Ω(w+μΔ)−Ω(w)] = r	J ΔJ+Ωc
J(ΔJc)+o(1),

so that for all Δ ∈ Rp

F̃(Δ) = Δ	QΔ+ r	J ΔJ+Ωc
J(ΔJc)+op(1) = F̃lim(Δ)+op(1).

The limiting function F̃lim being stricly convex (because Q % 0) and F̃ being convex, we have that
the minimizer Δ̂ of F̃ tends in probability to the unique minimizer of F̃lim (Fu and Knight, 2000)
referred to as Δ∗.

By assumption, with probability tending to one, we have J = { j ∈ {1, . . . , p}, ŵ j 
= 0}, hence
for any j ∈ Jc μΔ̂ j = (ŵ−w) j = 0. This implies that the nonrandom vector Δ∗ verifies Δ∗

Jc = 0.
As a consequence, Δ∗

J minimizes Δ
	
J QJJΔJ+ r

	
J ΔJ, hence rJ = −QJJΔ∗

J. Besides, since Δ
∗ is

the minimizer of F̃lim, by taking the directional derivatives as in the proof of Lemma 14, we have

(Ωc
J)

∗[QJcJΔ∗
J]≤ 1.

2810



STRUCTURED VARIABLE SELECTION WITH SPARSITY-INDUCING NORMS

This gives the necessary condition.

Sufficient condition: We turn to the sufficient condition. We first consider the problem reduced
to the hull J,

min
w∈R|J|

LJ(wJ)+μΩJ(wJ).

that is strongly convex since QJJ is positive definite and thus admits a unique solution ŵJ. With
similar arguments as the ones used in the necessary condition, we can show that ŵJ tends in proba-
bility to the true vector wJ. We now consider the vector ŵ ∈Rp which is the vector ŵJ padded with
zeros on Jc. Since, from Theorem 2, we almost surely have Hull({ j ∈ {1, . . . , p}, ŵ j 
= 0}) = { j ∈
{1, . . . , p}, ŵ j 
= 0}, we have already that the vector ŵ consistently estimates the hull of w and we
have that ŵ tends in probability to w. From now on, we consider that ŵ is sufficiently close to w, so
that for any G ∈ GJ, ‖dG ◦ ŵ‖2 
= 0. We may thus introduce

r̂ = ∑
G∈GJ

dG ◦dG ◦ ŵ
‖dG ◦ ŵ‖2

.

It remains to show that ŵ is indeed optimal for the full problem (that admits a unique solution due
to the positiveness of Q). By construction, the optimality condition (see Lemma 14) relative to the
active variables J is already verified. More precisely, we have

∇L(ŵ)J+μr̂J = QJJ(ŵJ−wJ)−qJ+μr̂J = 0.

Moreover, for all uJc ∈ R|Jc|, by using the previous expression and the invertibily of Q, we have

u	Jc∇L(ŵ)Jc = u	Jc
{−μQJcJQ−1

JJ r̂J+QJcJQ
−1
JJ qJ−qJc

}
.

The terms related to the noise vanish, having actually q= op(1). Since Q→Q and r̂J → rJ, we get
for all uJc ∈ R|Jc|

u	Jc∇L(ŵ)Jc =−μu	Jc
{
QJcJQ−1

JJ rJ
}
+op(μ).

Since we assume (Ωc
J)

∗[QJcJQ−1
JJ rJ]< 1, we obtain

−u	Jc∇L(ŵ)Jc < μ(Ωc
J)[uJc ]+op(μ),

which proves the optimality condition of Lemma 14 relative to the inactive variables: ŵ is therefore
optimal for the full problem.

Appendix G. Proof of Theorem 7

Since our analysis takes place in a finite-dimensional space, all the norms defined on this space are
equivalent. Therefore, we introduce the equivalence parameters a(J),A(J)> 0 such that

∀u ∈ R|J|, a(J)‖u‖1 ≤ΩJ[u]≤ A(J)‖u‖1 .
We similarly define a(Jc),A(Jc)> 0 for the norm (Ωc

J) on R
|Jc|. In addition, we immediately get by

order-reversing:
∀u ∈ R|J|, A(J)−1 ‖u‖∞ ≤ (ΩJ)

∗[u]≤ a(J)−1 ‖u‖∞ .
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For any matrix Γ, we also introduce the operator norm ‖Γ‖m,s defined as

‖Γ‖m,s = sup
‖u‖s≤1

‖Γu‖m.

Moreover, our proof will rely on the control of the expected dual norm for isonormal vectors:
E
[
(Ωc

J)
∗(W )

]
withW a centered Gaussian random variable with unit covariance matrix. In the case

of the Lasso, it is of order (log p)1/2.
Following Bach (2008b) and Nardi and Rinaldo (2008), we consider the reduced problem on J,

min
w∈Rp

LJ(wJ)+μΩJ(wJ)

with solution ŵJ, which can be extended to Jc with zeros. From optimality conditions (see Lemma
14), we know that

Ω∗
J[QJJ(ŵJ−wJ)−qJ]≤ μ, (9)

where the vector q ∈ Rp is defined as q = 1
n ∑

n
i=1 εixi. We denote by ν = min{|w j|; w j 
= 0} the

smallest nonzero components ofw. We first prove that we must have with high probability ‖ŵG‖∞>
0 for all G ∈ GJ, proving that the hull of the active set of ŵJ is exactly J (i.e., no active group is
missing).

We have

‖ŵJ−wJ‖∞ ≤ ‖Q−1
JJ ‖∞,∞ ‖QJJ(ŵJ−wJ)‖∞

≤ |J|1/2κ−1 (‖QJJ(ŵJ−wJ)−qJ‖∞+‖qJ‖∞) ,

hence from (9) and the definition of A(J),

‖ŵJ−wJ‖∞ ≤ |J|1/2κ−1 (μA(J)+‖qJ‖∞) . (10)

Thus, if we assume μ≤ κν
3|J|1/2A(J) and

‖qJ‖∞ ≤ κν
3|J|1/2 , (11)

we get
‖ŵJ−wJ‖∞ ≤ 2ν/3, (12)

so that for all G ∈ GJ, ‖ŵG‖∞ ≥ ν
3 , hence the hull is indeed selected.

This also ensures that ŵJ satisfies the equation (see Lemma 14)

QJJ (ŵJ−wJ)−qJ+μr̂J = 0, (13)

where

r̂ = ∑
G∈GJ

dG ◦dG ◦ ŵ
‖dG ◦ ŵ‖2

.

We now prove that the ŵ padded with zeros on Jc is indeed optimal for the full problem with
high probability. According to Lemma 14, since we have already proved (13), it suffices to show
that

(Ωc
J)

∗[∇L(ŵ)Jc ]≤ μ.
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Defining qJc|J = qJc −QJcJQ
−1
JJ qJ, we can write the gradient of L on J

c as

∇L(ŵ)Jc =−qJc|J−μQJcJQ
−1
JJ r̂J =−qJc|J−μQJcJQ

−1
JJ (r̂J− rJ)−μQJcJQ

−1
JJ rJ,

which leads us to control the difference r̂J− rJ. Using Lemma 12, we get

‖r̂J− rJ‖1 ≤ ‖ŵJ−wJ‖∞
(
∑
G∈GJ

∥∥dGJ∥∥22
‖dG ◦w‖2

+ ∑
G∈GJ

‖dG ◦dG ◦w‖21
‖dG ◦w‖32

)
,

where w= t0ŵ+(1− t0)w for some t0 ∈ (0,1).
Let J= {k ∈ J : wk 
= 0} and let ϕ be defined as

ϕ= sup
u∈Rp:J⊂{k∈J:uk 
=0}⊂J

G∈GJ

‖dG ◦dG ◦u‖1
‖dG
J
◦dG

J
◦uJ‖1

≥ 1.

The term ϕ basically measures how close J and J are, that is, how relevant the prior encoded by G
about the hull J is. By using (12), we have

‖dG ◦w‖22 ≥
∥∥∥dGJ ◦wJ∥∥∥22 ≥ ‖dGJ ◦dGJ ◦wJ‖1

ν
3
≥ ‖dG ◦dG ◦w‖1 ν3ϕ ,

‖dG ◦w‖2 ≥ ‖dGJ ◦wJ‖2 ≥ ‖dGJ‖2
ν
3
≥ ∥∥dGJ∥∥2 ν

3
√
ϕ

and

‖w‖∞ ≤ 5
3
‖w‖∞ .

Therefore we have

‖r̂J− rJ‖1 ≤ ‖ŵJ−wJ‖∞ ∑
G∈GJ

( ∥∥dGJ∥∥22
‖dG ◦w‖2

+
5ϕ
ν

‖w‖∞
∥∥dGJ ◦dGJ∥∥1

‖dG ◦w‖2

)

≤ 3
√
ϕ‖ŵJ−wJ‖∞

ν

(
1+

5ϕ‖w‖∞
ν

)
∑
G∈GJ

∥∥dGJ∥∥2 .
Introducing α= 18ϕ3/2‖w‖∞

ν2 ∑G∈GJ
∥∥dGJ∥∥2 , we thus have proved
‖r̂J− rJ‖1 ≤ α‖ŵJ−wJ‖∞ . (14)

By writing the Schur complement of Q on the block matrices QJcJc and QJJ, the positive-
ness of Q implies that the diagonal terms diag(QJcJQ

−1
JJ QJJc) are less than one, which results in

‖QJcJQ−1/2
JJ ‖∞,2 ≤ 1. We then have∥∥QJcJQ−1

JJ (r̂J− rJ)
∥∥
∞ =

∥∥∥QJcJQ−1/2
JJ Q−1/2

JJ (r̂J− rJ)
∥∥∥
∞

≤ ‖QJcJQ−1/2
JJ ‖∞,2‖Q−1/2

JJ ‖2 ‖r̂J− rJ‖2
≤ κ−1/2 ‖r̂J− rJ‖1
≤ κ−3/2α|J|1/2 (μA(J)+‖qJ‖∞) ,

2813



JENATTON, AUDIBERT AND BACH

where the last line comes from Equation (10) and (14). We get

(Ωc
J)

∗[QJcJQ−1
JJ (r̂J− rJ)]≤

α|J|1/2
κ3/2a(Jc)

(μA(J)+‖qJ‖∞) .

Thus, if the following inequalities are verified

α|J|1/2A(J)
κ3/2a(Jc)

μ≤ τ
4
,

α|J|1/2
κ3/2a(Jc)

‖qJ‖∞ ≤ τ
4
, (15)

(Ωc
J)

∗[qJc|J]≤
μτ
2
, (16)

we obtain

(Ωc
J)

∗[∇L(ŵ)Jc ] ≤ (Ωc
J)

∗[−qJc|J−μQJcJQ
−1
JJ rJ]

≤ (Ωc
J)

∗[−qJc|J]+μ(1− τ)+μτ/2≤ μ,

that is, J is exactly selected.
Combined with earlier constraints, this leads to the first part of the desired proposition.
We now need to make sure that the conditions (11), (15) and (16) hold with high probability.

To this end, we upperbound, using Gaussian concentration inequalities, two tail-probabilities. First,
qJc|J is a centered Gaussian random vector with covariance matrix

E
[
qJc|Jq	Jc|J

]
= E

[
qJcq

	
Jc −qJcq

	
J Q

−1
JJ QJJc −QJcJQ

−1
JJ qJq

	
Jc +QJcJQ

−1
JJ qJq

	
J Q

−1
JJ QJJc

]
=
σ2

n
QJcJc|J,

where QJcJc|J =QJcJc −QJcJQ
−1
JJ QJJc . In particular, (Ω

c
J)

∗[qJc|J] has the same distribution as ψ(W ),

with ψ : u �→ (Ωc
J)

∗(σn−1/2Q1/2JcJc|Ju) andW a centered Gaussian random variable with unit covari-
ance matrix.

Since for any u we have u	QJcJc|Ju ≤ u	QJcJcu ≤ ∥∥Q1/2∥∥22 ‖u‖22, by using Sudakov-Fernique
inequality (Adler, 1990, Theorem 2.9), we get:

E[(Ωc
J)

∗[qJc|J] = E sup
Ωc
J(u)≤1

u	qJc|J ≤ σn−1/2‖Q‖1/22 E sup
Ωc
J(u)≤1

u	W

≤ σn−1/2‖Q‖1/22 E[(Ωc
J)

∗(W )].

In addition, we have

|ψ(u)−ψ(v)| ≤ ψ(u− v)≤ σn−1/2a(Jc)−1
∥∥∥Q1/2JcJc|J(u− v)

∥∥∥
∞
.

On the other hand, since Q has unit diagonal and QJcJQ
−1
JJ QJJc has diagonal terms less than one,

QJcJc|J also has diagonal terms less than one, which implies that ‖Q1/2JcJc|J‖∞,2 ≤ 1. Hence ψ is a

Lipschitz function with Lipschitz constant upper bounded by σn−1/2a(Jc)−1. Thus by concentration
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of Lipschitz functions of multivariate standard random variables (Massart, 2003, Theorem 3.4), we
have for t > 0:

P
[
(Ωc

J)
∗[qJc|J]≥ t+σn−1/2‖Q‖1/22 E

[
(Ωc

J)
∗(W )

]]≤ exp
(
−nt2a(Jc)2

2σ2

)
.

Applied for t = μτ/2≥ 2σn−1/2‖Q‖1/22 E
[
(Ωc

J)
∗(W )

]
, we get (because (u−1)2 ≥ u2/4 for u≥ 2):

P
[
(Ωc

J)
∗[qJc|J]≥ t

]≤ exp(−nμ2τ2a(Jc)2

32σ2

)
.

It finally remains to control the term P(‖qJ‖∞ ≥ ξ), with

ξ=
κν
3
min

{
1,
3τκ1/2a(Jc)

4αν

}
.

We can apply classical inequalities for standard random variables (Massart, 2003, Theorem 3.4) that
directly lead to

P(‖qJ‖∞ ≥ ξ)≤ 2|J|exp
(
− nξ2

2σ2

)
.

To conclude, Theorem 7 holds with

C1(G ,J) =
a(Jc)2

16
,

C2(G ,J) =

(
κν
3
min

{
1,

τκ1/2a(Jc)ν
24ϕ3/2‖w‖∞∑G∈GJ

∥∥dGJ∥∥2
})2

,

C3(G ,J) = 4‖Q‖1/22 E
[
(Ωc

J)
∗(W )

]
,

and

C4(G ,J) =
κν
3A(J)

min

{
1,

τκ1/2a(Jc)ν
24ϕ3/2 ‖w‖∞∑G∈GJ

∥∥dGJ∥∥2
}
,

where we recall the definitions:W a centered Gaussian random variable with unit covariance matrix,
J= { j ∈ J : w j 
= 0}, ν=min{|w j|; j ∈ J},

ϕ= sup
u∈Rp:J⊂{k∈J:uk 
=0}⊂J

G∈GJ

‖dG ◦dG ◦u‖1
‖dG
J
◦dG

J
◦uJ‖1

,

κ= λmin(QJJ)> 0 and τ> 0 such that (Ωc
J)

∗[QJcJQ−1
JJ r]< 1− τ.

Appendix H. A First Order Approach to Solve Problems (2) and (3)

Both regularized minimization problems in Equation (2) and Equation (3) (that just differ in the
squaring of Ω) can be solved by using generic toolboxes for second-order cone programming
(SOCP) (Boyd and Vandenberghe, 2004). We propose here a first order approach that takes up
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ideas from Micchelli and Pontil (2006) and Rakotomamonjy et al. (2008) and that is based on the
following variational equalities: for x ∈ Rp, we have

‖x‖21 = min
z∈Rp

+,

∑
p
j=1z j≤1

p

∑
j=1

x2j
z j
,

whose minimum is uniquely attained for z j = |x j|/‖x‖1. Similarly, we have

2‖x‖1 = min
z∈Rp

+

p

∑
j=1

x2j
z j

+‖z‖1 ,

whose minimum is uniquely obtained for z j = |x j|. Thus, we can equivalently rewrite Equation (2)
as

min
w∈Rp,

(ηG)G∈G∈R|G |
+

1
n

n

∑
i=1

�
(
yi,w

	xi
)
+
μ
2

p

∑
j=1

w2jζ
−1
j +

μ
2

∥∥(ηG)G∈G
∥∥
1 , (17)

with ζ j = (∑G� j(dGj )
2(ηG)−1)−1. In the same vein, Equation (3) is equivalent to

min
w∈Rp,

(ηG)G∈G∈R|G |
+ ,

∑G∈G ηG≤1

1
n

n

∑
i=1

�
(
yi,w

	xi
)
+
λ
2

p

∑
j=1

w2jζ
−1
j , (18)

where ζ j is defined as above. The reformulations Equation (17) and Equation (18) are jointly convex
in {w,(ηG)G∈G} and lend themselves well to a simple alternating optimization scheme between w
(for instance, w can be computed in closed-form when the square loss is used) and (ηG)G∈G (whose
optimal value is always a closed-form solution). If the variables (ηG)G∈G ∈ R

|G |
+ are bounded away

from zero by a smoothing parameter, the convergence of this scheme is guaranteed by standard
results about block coordinate descent procedures (Bertsekas, 1999).

This first order approach is computationally appealing since it allows warm-restart, which can
dramatically speed up the computation over regularization paths. Moreover, it does not make any
assumptions on the nature of the family of groups G .

Appendix I. Technical Lemmas

In this last section of the appendix, we give several technical lemmas. We consider I ⊆ {1, . . . , p}
and GI = {G∈G ; G∩ I 
=∅}⊆G , that is, the set of active groups when the variables I are selected.

We begin with a dual formulation of Ω∗ obtained by conic duality (Boyd and Vandenberghe,
2004):

Lemma 9 Let uI ∈ R|I|. We have

(ΩI)
∗[uI] = min

(ξGI )G∈GI
max
G∈GI

‖ξGI ‖2
s.t. u j+ ∑

G∈GI ,G� j
dGj ξ

G
j = 0 and ξ

G
j = 0 if j /∈ G.
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Proof By definition of (ΩI)
∗[uI], we have

(ΩI)
∗[uI] = max

ΩI(vI)≤1
u	I vI.

By introducing the primal variables (αG)G∈GI ∈ R|GI |, we can rewrite the previous maximization
problem as

(ΩI)
∗[uI] = max

∑G∈GIαG≤1
u	I vI, s.t. ∀ G ∈ GI, ‖dGI ◦uG∩I‖2 ≤ αG,

which is a second-order cone program (SOCP) with |GI| second-order cone constraints. This primal
problem is convex and satisfies Slater’s conditions for generalized conic inequalities, which implies
that strong duality holds (Boyd and Vandenberghe, 2004). We now consider the Lagrangian L
defined as

L(vI,αG,γ,τG,ξGI ) = u	I vI+ γ(1−∑
G∈GI

αG)+ ∑
G∈GI

(
αG

dGI ◦uG∩I

)	(τG
ξGI

)
,

with the dual variables {γ,(τG)G∈GI ,(ξGI )G∈GI} ∈ R+×R|GI |×R|I|×|GI | such that for all G ∈ GI ,
ξGj = 0 if j /∈ G and ‖ξGI ‖2 ≤ τG. The dual function is obtained by taking the derivatives of L with
respect to the primal variables vI and (αG)G∈GI and equating them to zero, which leads to

∀ j ∈ I, u j+∑G∈GI ,G� j dGj ξ
G
j = 0

∀G ∈ GI, γ− τG = 0.

After simplifying the Lagrangian, the dual problem then reduces to

min
γ,(ξGI )G∈GI

γ s.t.

{
∀ j ∈ I,u j+∑G∈GI ,G� j dGj ξ

G
j = 0 and ξ

G
j = 0 if j /∈ G,

∀G ∈ GI,‖ξGI ‖2 ≤ γ,

which is equivalent to the displayed result.

Since we cannot compute in closed-form the solution of the previous optimization problem, we fo-
cus on a different but closely related problem, that is, when we replace the objective maxG∈GI ‖ξGI ‖2
by maxG∈GI ‖ξGI ‖∞, to obtain a meaningful feasible point:
Lemma 10 Let uI ∈ R|I|. The following problem

min(ξGI )G∈GI
max
G∈GI

‖ξGI ‖∞
s.t. u j+ ∑

G∈GI ,G� j
dGj ξ

G
j = 0 and ξ

G
j = 0 if j /∈ G,

is minimized for (ξGj )
∗ =− u j

∑H∈ j,H∈GId
H
j
.

Proof We proceed by contradiction. Let us assume there exists (ξGI )G∈GI such that

max
G∈GI

‖ξGI ‖∞ < max
G∈GI

‖(ξGI )∗‖∞

= max
G∈GI

max
j∈G

|u j|
∑H∈ j,H∈GId

H
j

=
|u j0 |

∑H∈ j0,H∈GId
H
j0

,
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where we denote by j0 an argmax of the latter maximization. We notably have for all G � j0:

|ξGj0 |<
|u j0 |

∑H∈ j0,H∈GId
H
j0

.

By multiplying both sides by dGj0 and by summing over G � j0, we get

|u j0 |= | ∑
G∈GI ,G� j0

dGj0ξ
G
j0 | ≤ ∑

G� j0
dGj0 |ξGj0 |< |u j0 |,

which leads to a contradiction.

We now give an upperbound on Ω∗ based on Lemma 9 and Lemma 10:

Lemma 11 Let uI ∈ R|I|. We have

(ΩI)
∗[uI]≤ max

G∈GI

⎧⎨⎩∑j∈G
{

u j
∑H∈ j,H∈GId

H
j

}2
⎫⎬⎭

1
2

.

Proof We simply plug the minimizer obtained in Lemma 10 into the problem of Lemma 9.

We now derive a lemma to control the difference of the gradient of ΩJ evaluated in two points:

Lemma 12 Let uJ,vJ be two nonzero vectors in R|J|. Let us consider the mapping wJ �→ r(wJ) =

∑G∈GJ
dGJ ◦dGJ ◦wJ
‖dGJ ◦wJ‖2 ∈ R|J|. There exists zJ = t0uJ+(1− t0)vJ for some t0 ∈ (0,1) such that

‖r(uJ)− r(vJ)‖1 ≤ ‖uJ− vJ‖∞
(
∑
G∈GJ

‖dGJ ‖22
‖dGJ ◦ zJ‖2

+ ∑
G∈GJ

‖dGJ ◦dGJ ◦ zJ‖21
‖dGJ ◦ zJ‖32

)
.

Proof For j,k ∈ J, we have

∂r j
∂wk

(wJ) = ∑
G∈GJ

(dGj )
2

‖dGJ ◦wJ‖2
I j=k− ∑

G∈GJ

(dGj )
2wj

‖dGJ ◦wJ‖32
(dGk )

2wk,

with I j=k = 1 if j= k and 0 otherwise. We then consider t ∈ [0,1] �→ h j(t) = r j(tuJ+(1− t)vJ). The
mapping h j being continuously differentiable, we can apply the mean-value theorem: there exists
t0 ∈ (0,1) such that

h j(1)−h j(0) =
∂h j(t)
∂t

(t0).

We then have

|r j(uJ)− r j(vJ)| ≤∑
k∈J

∣∣∣∣ ∂r j∂wk
(z)

∣∣∣∣|uk− vk|

≤ ‖uJ− vJ‖∞
(
∑
G∈GJ

(dGj )
2

‖dGJ ◦ zJ‖2
+∑

k∈J
∑
G∈GJ

(dGj )
2|z j|

‖dGJ ◦ zJ‖32
(dGk )

2|zk|
)
,
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which leads to

‖r(uJ)− r(vJ)‖1 ≤ ‖uJ− vJ‖∞
(
∑
G∈GJ

‖dGJ ‖22
‖dGJ ◦ zJ‖2

+ ∑
G∈GJ

‖dGJ ◦dGJ ◦ zJ‖21
‖dGJ ◦ zJ‖32

)
.

Given an active set J ⊆ {1, . . . , p} and a direct parent K ∈ ΠP (J) of J in the DAG of nonzero
patterns, we have the following result:

Lemma 13 For all G ∈ GK\GJ, we have K\J ⊆ G.

Proof We proceed by contradiction. We assume there exists G0 ∈ GK\GJ such that K\J � G0.
Given thatK ∈P , there existsG ′ ⊆G verifyingK=

⋂
G∈G ′Gc. Note thatG0 /∈G ′ since by definition

G0∩K 
=∅.
We can now build the pattern K̃ =

⋂
G∈G ′∪{G0}G

c = K ∩Gc
0 that belongs to P . Moreover,

K̃ = K ∩Gc
0 ⊂ K since we assumed Gc

0 ∩K 
= ∅. In addition, we have that J ⊂ K and J ⊂ Gc
0

because K ∈ΠP (J) and G0 ∈ GK\GJ . This results in J ⊂ K̃ ⊂ K, which is impossible by definition
of K.

We give below an important Lemma to characterize the solutions of Problem (2).

Lemma 14 The vector ŵ ∈ Rp is a solution of

min
w∈Rp

L(w)+μΩ(w)

if and only if {
∇L(ŵ)Ĵ+μr̂Ĵ = 0

(Ωc
Ĵ
)∗[∇L(ŵ)Ĵc ]≤ μ,

with Ĵ the hull of { j ∈ {1, . . . , p}, ŵ j 
= 0} and the vector r̂ ∈ Rp defined as

r̂ = ∑
G∈GĴ

dG ◦dG ◦ ŵ
‖dG ◦ ŵ‖2

.

In addition, the solution ŵ satisfies
Ω∗[∇L(ŵ)]≤ μ.

Proof The problem
min
w∈Rp

L(w)+μΩ(w) = min
w∈Rp

F(w)

being convex, the directional derivative optimality condition are necessary and sufficient (Borwein
and Lewis, 2006, Propositions 2.1.1-2.1.2). Therefore, the vector ŵ is a solution of the previous
problem if and only if for all directions u ∈ Rp, we have

lim
ε→0
ε>0

F(ŵ+ εu)−F(ŵ)
ε

≥ 0.
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Some algebra leads to the following equivalent formulation

∀u ∈ Rp, u	∇L(ŵ)+μu	Ĵ r̂Ĵ+μ(Ω
c
Ĵ)[uĴc ]≥ 0. (19)

The first part of the lemma then comes from the projections on Ĵ and Ĵc.
An application of the Cauchy-Schwartz inequality on u	

Ĵ
r̂Ĵ gives for all u ∈ Rp

u	Ĵ r̂Ĵ ≤ (ΩĴ)[uĴ].

Combined with Equation (19), we get ∀u ∈ Rp, u	∇L(ŵ)+μΩ(u) ≥ 0, hence the second part of
the lemma.

We end up with a lemma regarding the dual norm of the sum of two disjoint norms (see Rock-
afellar, 1970):

Lemma 15 Let A and B be a partition of {1, . . . , p}, that is, A∩B=∅ and A∪B= {1, . . . , p}. We
consider two norms uA ∈R|A| �→ ‖uA‖A and uB ∈R|B| �→ ‖uB‖B, with dual norms ‖vA‖∗A and ‖vB‖∗B.
We have

max
‖uA‖A+‖uB‖B≤1

u	v=max{‖vA‖∗A, ‖vB‖∗B} .
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Flour 23. Springer, 2003.
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K. C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3–a MATLAB software package for semidefinite
programming, version 1.3. Optimization Methods and Software, 11(1):545–581, 1999.
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Abstract
Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algo-
rithms for medium-scale supervised and unsupervised problems. This package focuses on bring-
ing machine learning to non-specialists using a general-purpose high-level language. Emphasis is
put on ease of use, performance, documentation, and API consistency. It has minimal dependen-
cies and is distributed under the simplified BSD license, encouraging its use in both academic
and commercial settings. Source code, binaries, and documentation can be downloaded from
http://scikit-learn.sourceforge.net.

Keywords: Python, supervised learning, unsupervised learning, model selection

1. Introduction

The Python programming language is establishing itself as one of the most popular languages for
scientific computing. Thanks to its high-level interactive nature and its maturing ecosystem of sci-
entific libraries, it is an appealing choice for algorithmic development and exploratory data analysis
(Dubois, 2007; Milmann and Avaizis, 2011). Yet, as a general-purpose language, it is increasingly
used not only in academic settings but also in industry.

Scikit-learn harnesses this rich environment to provide state-of-the-art implementations of many
well known machine learning algorithms, while maintaining an easy-to-use interface tightly inte-
grated with the Python language. This answers the growing need for statistical data analysis by
non-specialists in the software and web industries, as well as in fields outside of computer-science,
such as biology or physics. Scikit-learn differs from other machine learning toolboxes in Python
for various reasons: i) it is distributed under the BSD license ii) it incorporates compiled code for
efficiency, unlike MDP (Zito et al., 2008) and pybrain (Schaul et al., 2010), iii) it depends only on
numpy and scipy to facilitate easy distribution, unlike pymvpa (Hanke et al., 2009) that has optional
dependencies such as R and shogun, and iv) it focuses on imperative programming, unlike pybrain
which uses a data-flow framework. While the package is mostly written in Python, it incorporates
the C++ libraries LibSVM (Chang and Lin, 2001) and LibLinear (Fan et al., 2008) that provide ref-
erence implementations of SVMs and generalized linear models with compatible licenses. Binary
packages are available on a rich set of platforms including Windows and any POSIX platforms.
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Furthermore, thanks to its liberal license, it has been widely distributed as part of major free soft-
ware distributions such as Ubuntu, Debian, Mandriva, NetBSD and Macports and in commercial
distributions such as the “Enthought Python Distribution”.

2. Project Vision

Code quality. Rather than providing as many features as possible, the project’s goal has been to
provide solid implementations. Code quality is ensured with unit tests—as of release 0.8, test
coverage is 81%—and the use of static analysis tools such as pyflakes and pep8. Finally, we
strive to use consistent naming for the functions and parameters used throughout a strict adherence
to the Python coding guidelines and numpy style documentation.
BSD licensing. Most of the Python ecosystem is licensed with non-copyleft licenses. While such
policy is beneficial for adoption of these tools by commercial projects, it does impose some restric-
tions: we are unable to use some existing scientific code, such as the GSL.
Bare-bone design and API. To lower the barrier of entry, we avoid framework code and keep the
number of different objects to a minimum, relying on numpy arrays for data containers.
Community-driven development. We base our development on collaborative tools such as git, github
and public mailing lists. External contributions are welcome and encouraged.
Documentation. Scikit-learn provides a ∼300 page user guide including narrative documentation,
class references, a tutorial, installation instructions, as well as more than 60 examples, some fea-
turing real-world applications. We try to minimize the use of machine-learning jargon, while main-
taining precision with regards to the algorithms employed.

3. Underlying Technologies

Numpy: the base data structure used for data and model parameters. Input data is presented as
numpy arrays, thus integrating seamlessly with other scientific Python libraries. Numpy’s view-
based memory model limits copies, even when binding with compiled code (Van der Walt et al.,
2011). It also provides basic arithmetic operations.
Scipy: efficient algorithms for linear algebra, sparse matrix representation, special functions and
basic statistical functions. Scipy has bindings for many Fortran-based standard numerical packages,
such as LAPACK. This is important for ease of installation and portability, as providing libraries
around Fortran code can prove challenging on various platforms.
Cython: a language for combining C in Python. Cython makes it easy to reach the performance
of compiled languages with Python-like syntax and high-level operations. It is also used to bind
compiled libraries, eliminating the boilerplate code of Python/C extensions.

4. Code Design

Objects specified by interface, not by inheritance. To facilitate the use of external objects with
scikit-learn, inheritance is not enforced; instead, code conventions provide a consistent interface.
The central object is an estimator, that implements a fitmethod, accepting as arguments an input
data array and, optionally, an array of labels for supervised problems. Supervised estimators, such as
SVM classifiers, can implement a predict method. Some estimators, that we call transformers,
for example, PCA, implement a transform method, returning modified input data. Estimators
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scikit-learn mlpy pybrain pymvpa mdp shogun

Support Vector Classification 5.2 9.47 17.5 11.52 40.48 5.63
Lasso (LARS) 1.17 105.3 - 37.35 - -
Elastic Net 0.52 73.7 - 1.44 - -
k-Nearest Neighbors 0.57 1.41 - 0.56 0.58 1.36
PCA (9 components) 0.18 - - 8.93 0.47 0.33
k-Means (9 clusters) 1.34 0.79 � - 35.75 0.68
License BSD GPL BSD BSD BSD GPL

-: Not implemented. �: Does not converge within 1 hour.

Table 1: Time in seconds on the Madelon data set for various machine learning libraries exposed
in Python: MLPy (Albanese et al., 2008), PyBrain (Schaul et al., 2010), pymvpa (Hanke
et al., 2009), MDP (Zito et al., 2008) and Shogun (Sonnenburg et al., 2010). For more
benchmarks see http://github.com/scikit-learn.

may also provide a score method, which is an increasing evaluation of goodness of fit: a log-
likelihood, or a negated loss function. The other important object is the cross-validation iterator,
which provides pairs of train and test indices to split input data, for example K-fold, leave one out,
or stratified cross-validation.

Model selection. Scikit-learn can evaluate an estimator’s performance or select parameters using
cross-validation, optionally distributing the computation to several cores. This is accomplished by
wrapping an estimator in a GridSearchCV object, where the “CV” stands for “cross-validated”.
During the call to fit, it selects the parameters on a specified parameter grid, maximizing a score
(the scoremethod of the underlying estimator). predict, score, or transform are then delegated
to the tuned estimator. This object can therefore be used transparently as any other estimator. Cross
validation can be made more efficient for certain estimators by exploiting specific properties, such
as warm restarts or regularization paths (Friedman et al., 2010). This is supported through special
objects, such as the LassoCV. Finally, a Pipeline object can combine several transformers and
an estimator to create a combined estimator to, for example, apply dimension reduction before
fitting. It behaves as a standard estimator, and GridSearchCV therefore tune the parameters of all
steps.

5. High-level yet Efficient: Some Trade Offs

While scikit-learn focuses on ease of use, and is mostly written in a high level language, care has
been taken to maximize computational efficiency. In Table 1, we compare computation time for a
few algorithms implemented in the major machine learning toolkits accessible in Python. We use
the Madelon data set (Guyon et al., 2004), 4400 instances and 500 attributes, The data set is quite
large, but small enough for most algorithms to run.

SVM.While all of the packages compared call libsvm in the background, the performance of scikit-
learn can be explained by two factors. First, our bindings avoid memory copies and have up to
40% less overhead than the original libsvm Python bindings. Second, we patch libsvm to improve
efficiency on dense data, use a smaller memory footprint, and better use memory alignment and
pipelining capabilities of modern processors. This patched version also provides unique features,
such as setting weights for individual samples.
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LARS. Iteratively refining the residuals instead of recomputing them gives performance gains of
2–10 times over the reference R implementation (Hastie and Efron, 2004). Pymvpa uses this imple-
mentation via the Rpy R bindings and pays a heavy price to memory copies.
Elastic Net. We benchmarked the scikit-learn coordinate descent implementations of Elastic Net. It
achieves the same order of performance as the highly optimized Fortran version glmnet (Friedman
et al., 2010) on medium-scale problems, but performance on very large problems is limited since
we do not use the KKT conditions to define an active set.
kNN. The k-nearest neighbors classifier implementation constructs a ball tree (Omohundro, 1989)
of the samples, but uses a more efficient brute force search in large dimensions.
PCA. For medium to large data sets, scikit-learn provides an implementation of a truncated PCA
based on random projections (Rokhlin et al., 2009).
k-means. scikit-learn’s k-means algorithm is implemented in pure Python. Its performance is lim-
ited by the fact that numpy’s array operations take multiple passes over data.

6. Conclusion

Scikit-learn exposes a wide variety of machine learning algorithms, both supervised and unsuper-
vised, using a consistent, task-oriented interface, thus enabling easy comparison of methods for a
given application. Since it relies on the scientific Python ecosystem, it can easily be integrated into
applications outside the traditional range of statistical data analysis. Importantly, the algorithms,
implemented in a high-level language, can be used as building blocks for approaches specific to
a use case, for example, in medical imaging (Michel et al., 2011). Future work includes online
learning, to scale to large data sets.
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Abstract
Motivated by problems of anomaly detection, this paper implements the Neyman-Pearson paradigm
to deal with asymmetric errors in binary classification with a convex loss ϕ. Given a finite collection
of classifiers, we combine them and obtain a new classifier that satisfies simultaneously the two
following properties with high probability: (i) its ϕ-type I error is below a pre-specified level and
(ii), it has ϕ-type II error close to the minimum possible. The proposed classifier is obtained by
minimizing an empirical convex objective with an empirical convex constraint. The novelty of the
method is that the classifier output by this computationally feasible program is shown to satisfy the
original constraint on type I error. New techniques to handle such problems are developed and they
have consequences on chance constrained programming. We also evaluate the price to pay in terms
of type II error for being conservative on type I error.
Keywords: binary classification, Neyman-Pearson paradigm, anomaly detection, empirical con-
straint, empirical risk minimization, chance constrained optimization

1. Introduction

The Neyman-Pearson (NP) paradigm in statistical learning extends the objective of classical binary
classification in that, while the latter focuses on minimizing classification error that is a weighted
sum of type I and type II errors, the former minimizes type II error with an upper bound α on type I
error. With slight abuse of language, in verbal discussion we do not distinguish type I/II error from
probability of type I/II error.

For learning with the NP paradigm, it is essential to avoid one kind of error at the expense of the
other. As an illustration, consider the following problem in medical diagnosis: failing to detect a
malignant tumor has far more severe consequences than flagging a benign tumor. So it makes sense
to put priority on controlling the false negative rate. Other scenarios include spam filtering, machine
monitoring, target recognition, etc.

In the learning context, as true errors are inaccessible, we cannot enforce almost surely the
desired upper bound for type I error. The best we can hope is that a data dependent classifier has
type I error bounded with high probability. Ideally, a good classification rule f̂ in NP context should
satisfy two properties. The first is that type I error of the classifier f̂ is bounded from above by a
pre-specified level with pre-specified high probability; the second is that f̂ has good performance
bounds for excess type II error. As will be illustrated, it is unlikely that these two goals can be
fulfilled simultaneously. Following the original spirit of NP paradigm, we put priority on type I
error and insist on the pre-specified upper bound α. Our proposed learning procedure meets the

c©2011 Philippe Rigollet and Xin Tong.
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conservative attitude on type I error, and has good performance bound measured by the excess
ϕ-type II error. We also discuss the general consequence of being conservative in NP learning.

The paper is organized as follows. In Section 2, the classical setup for binary classification is
reviewed and the main notation is introduced. A parallel between binary classification and statisti-
cal hypothesis testing is drawn in Section 3 with emphasis on the NP paradigm in both frameworks.
The main propositions and theorems are stated in Section 4 while proofs and technical results are
relegated to Appendix A. Finally, Section 5 illustrates an application of our results to chance con-
strained optimization.

In the rest of the paper, we denote by x j the j-th coordinate of a vector x ∈ IRd .

2. Binary Classification

In this section, we review the classical setup of binary classification together with the convexification
procedure that we employ throughout the paper. Moreover, we introduce the Neyman-Pearson
paradigm in this setup.

2.1 Classification Risk and Classifiers

Let (X ,Y ) be a random couple where X ∈ X ⊂ IRd is a vector of covariates and Y ∈ {−1,1} is a
label that indicates to which class X belongs. A classifier h is a mapping h : X → [−1,1] whose sign
returns the predicted class given X . An error occurs when −h(X)Y ≥ 0 and it is therefore natural to
define the classification loss by 1I(−h(X)Y ≥ 0), where 1I(·) denotes the indicator function.

The expectation of the classification loss with respect to the joint distribution of (X ,Y ) is called
(classification) risk and is defined by

R(h) = P(−h(X)Y ≥ 0) .

Clearly the indicator function is not convex, and for computational convenience, a common practice
is to replace it by a convex surrogate (see, e.g., Bartlett et al., 2006, and references therein).

To this end, we rewrite the risk function as

R(h) = IE[ϕ(−h(X)Y )],

where ϕ(z) = 1I(z≥ 0). Convex relaxation can be achieved by simply replacing the indicator func-
tion by a convex surrogate.

Definition 1 A function ϕ : [−1,1]→ R+ is called a convex surrogate if it is non-decreasing, con-
tinuous and convex and if ϕ(0) = 1.

Commonly used examples of convex surrogates are the hinge loss ϕ(x) = (1+ x)+, the logit loss
ϕ(x) = log2(1+ ex) and the exponential loss ϕ(x) = ex.

For a given choice of ϕ, define the ϕ-risk

Rϕ(h) = IE[ϕ(−Yh(X))] .

Hereafter, we assume that ϕ is fixed and refer to Rϕ as the risk when there is no confusion. In our
subsequent analysis, this convex relaxation will also be the ground to analyze a stochastic convex
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optimization problem subject to stochastic constraints. A general treatment of such problems can
be found in Section 5.

Because of overfitting, it is unreasonable to look for mappings minimizing empirical risk over
all classifiers. Indeed, one could have a small empirical risk but a large true risk. Hence, we resort
to regularization. There are in general two ways to proceed. The first is to restrict the candidate
classifiers to a specific class H , and the second is to change the objective function by, for example,
adding a penalty term. The two approaches can be combined, and sometimes they are obviously
equivalent.

In this paper, we pursue the first idea by defining the class of candidate classifiers as follows.
Let h1, . . . ,hM,M ≥ 2 be a given collection of classifiers. In our setup, we allow M to be large.
In particular, our results remain asymptotically meaningful as long as M = o(en). Such classifiers
are usually called base classifiers and can be constructed in a very naive manner. Typical examples
include decision stumps or small trees. While the h j’s may have no satisfactory classifying power
individually, for over two decades, boosting type of algorithms have successfully exploited the
idea that a suitable weighted majority vote among these classifiers may result in low classification
risk (Schapire, 1990). Consequently, we restrict our search for classifiers to the set of functions
consisting of convex combinations of the h j’s:

H conv = {hλ =
M

∑
j=1

λ jh j,λ ∈ Λ},

where Λ denotes the flat simplex of IRM and is defined by Λ= {λ ∈ IRM : λ j ≥ 0,∑M
j=1λ j = 1}. In

effect, classification rules given by the sign of h ∈H conv are exactly the set of rules produced by the
weighted majority votes among the base classifiers h1, . . . ,hM.

By restricting our search to classifiers in H conv, the best attainable ϕ-risk is called oracle risk
and is abusively denoted by Rϕ(H conv). As a result, we have Rϕ(h)≥ Rϕ(H conv) for any h ∈H conv

and a natural measure of performance for a classifier h ∈ H conv is given by its excess risk defined
by Rϕ(h)−Rϕ(H conv).

The excess risk of a data driven classifier hn is a random quantity and we are interested in
bounding it with high probability. Formally, the statistical goal of binary classification is to construct
a classifier hn such that the oracle inequality

Rϕ(hn)≤ Rϕ(hH conv)+Δn(H conv,δ)

holds with probability 1−δ, where Δn(·, ·) should be as small as possible.
In the scope of this paper, we focus on candidate classifiers in the class H conv. Some of the

following results such as Theorem 3 can be extended to more general classes of classifiers with
known complexity such as classes with bounded VC-dimension, as for example in Cannon et al.
(2002). However, our main argument for bounding ϕ-type II error (defined in next subsection)
relies on Proposition 4 which, in turn, depends heavily on the convexity of the problem, and it is not
clear how it can be extended to more general classes of classifiers.

2.2 The Neyman-Pearson Paradigm

Wemake the convention that when h(X)≥ 0 the predicted class is+1, and−1 otherwise. Under this
convention, the risk function in classical binary classification can be expressed as a convex combina-
tion of type I error R−(h) = IP(−Yh(X)≥ 0|Y =−1) and type II error
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R+(h) = IP(−Yh(X)> 0|Y = 1):

R(h) = IP(Y =−1)R−(h)+ IP(Y = 1)R+(h).

While the goal of classical binary classification is minh∈H R(h), where H is the set of candidate
classifiers, the NP classification targets on

min
h∈H

R−(h)≤α
R+(h) .

More generally, we can define the ϕ-type I and ϕ-type II errors respectively by

R−
ϕ(h) = IE [ϕ(−Yh(X))|Y =−1] and R+

ϕ(h) = IE [ϕ(−Yh(X))|Y = 1] .

Our main theorems concern about R−
ϕ(·) and R+

ϕ(·), but we will come back and address how convex-
ification and conservativeness affect R−(·) and R+(·).

Following the NP paradigm, for a given class H of classifiers, we seek to solve the constrained
minimization problem:

min
h∈H

R−
ϕ (h)≤α

R+
ϕ(h), (1)

where α ∈ (0,1), the significance level, is a constant specified by the user.
NP classification is closely related to the NP approach to statistical hypothesis testing. We

now recall a few key concepts about the latter. Many classical works have addressed the theory
of statistical hypothesis testing, in particular Lehmann and Romano (2005) provides a thorough
treatment of the subject.

Statistical hypothesis testing bears strong resemblance with binary classification if we assume
the following model. Let P− and P+ be two probability distributions on X ⊂ IRd . Let p ∈ (0,1) and
assume that Y is a random variable defined by

Y =

{
1 with probability p ,
−1 with probability 1− p .

Assume further that the conditional distribution of X given Y is given by PY . Given such a model,
the goal of statistical hypothesis testing is to determine whether X was generated from P− or P+.
To that end, we construct a test φ : X → [0,1] and the conclusion of the test based on φ is that
X is generated from P+ with probability φ(X) and from P− with probability 1− φ(X). Note that
randomness here comes from an exogenous randomization process such as flipping a biased coin.
Two kinds of errors arise: type I error occurs when rejecting P− when it is true, and type II error
occurs when accepting P− when it is false. The Neyman-Pearson paradigm in hypothesis testing
amounts to choosing φ that solves the following constrained optimization problem

maximize IE[φ(X)|Y = 1] ,
subject to IE[φ(X)|Y =−1]≤ α ,

where α ∈ (0,1) is the significance level of the test. In other words, we specify a significance level
α on type I error, and minimize type II error. We call a solution to this problem a most powerful test
of level α. The Neyman-Pearson Lemma gives mild sufficient conditions for the existence of such
a test.
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Theorem 2 (Neyman-Pearson Lemma) Let P− and P+ be probability distributions possessing den-
sities p− and p+ respectively with respect to some measure μ. Let fk(x) = 1I(L(x)≥ k), where the
likelihood ratio L(x) = p+(x)/p−(x) and k is such that P−(L(X) > k) ≤ α and P−(L(X) ≥ k) ≥ α.
Then,

• fk is a level α= IE [ϕk(X)|Y =−1] most powerful test.
• For a given level α, the most powerful test of level α is defined by

φ(X) =

⎧⎪⎨⎪⎩
1 if L(X)> k
0 if L(X)< k
α−P−(L(X)>k)
P−(L(X)=k) if L(X) = k .

Notice that in the learning framework, φ cannot be computed since it requires the knowledge of
the likelihood ratio and of the distributions P− and P+. Therefore, it remains merely a theoretical
proposition. Nevertheless, the result motivates the NP paradigm pursued here.

3. Neyman-Pearson Classification Via Convex Optimization

Recall that in NP classification with a loss function ϕ, the goal is to solve the problem (1). This can-
not be done directly as conditional distributions P− and P+, and hence R−

ϕ and R
+
ϕ, are unknown. In

statistical applications, information about these distributions is available through two i.i.d. samples
X−
1 , . . . ,X

−
n− , n

− ≥ 1 and X+

1 , . . . ,X
+

n+ , n
+ ≥ 1, where X−

i ∼P−, i= 1, . . . ,n− and X+
i ∼P+, i= 1, . . . ,n+.

We do not assume that the two samples (X−
1 , . . . ,X

−
n−) and (X

+

1 , . . . ,X
+

n+) are mutually independent.
Presently the sample sizes n− and n+ are assumed to be deterministic and will appear in the sub-
sequent finite sample bounds. A different sampling scheme, where these quantities are random, is
investigated in Section 4.3.

3.1 Conservativeness on Type I Error

While the binary classification problem has been extensively studied, theoretical proposition on how
to implement the NP paradigm remains scarce. To the best of our knowledge, Cannon et al. (2002)
initiated the theoretical treatment of the NP classification paradigm and an early empirical study can
be found in Casasent and Chen (2003). The framework of Cannon et al. (2002) is the following.
Fix a constant ε0 > 0 and let H be a given set of classifiers with finite VC dimension. They study a
procedure that consists of solving the following relaxed empirical optimization problem

min
h∈H

R̂−(h)≤α+ε0/2
R̂+(h), (2)

where

R̂−(h) =
1
n−

n−

∑
i=1

1I(h(X−
i )≥ 0) , and R̂+(h) =

1
n+

n+

∑
i=1

1I(h(X−
i )≤ 0)

denote the empirical type I and empirical type II errors respectively. Let ĥ be a solution to (2).
Denote by h∗ a solution to the original Neyman-Pearson optimization problem:

h∗ ∈ argmin
h∈H

R−(h)≤α

R+(h) , (3)
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The main result of Cannon et al. (2002) states that, simultaneously with high probability, the type II
error R+(ĥ) is bounded from above by R+(h∗)+ ε1, for some ε1 > 0 and the type I error of ĥ is
bounded from above by α+ ε0. In a later paper, Cannon et al. (2003) considers problem (2) for
a data-dependent family of classifiers H , and bound estimation errors accordingly. Several results
for traditional statistical learning such as PAC bounds or oracle inequalities have been studied in
Scott (2005) and Scott and Nowak (2005) in the same framework as the one laid down by Cannon
et al. (2002). A noteworthy departure from this setup is Scott (2007) where sensible performance
measures for NP classification that go beyond analyzing separately two kinds of errors are intro-
duced. Furthermore, Blanchard et al. (2010) develops a general solution to semi-supervised novelty
detection by reducing it to NP classification. Recently, Han et al. (2008) transposed several results
of Cannon et al. (2002) and Scott and Nowak (2005) to NP classification with convex loss.

The present work departs from previous literature in our treatment of type I error. In fact, the
classifiers in all the papers mentioned above take a compromise on the pre-determined upper bound
on type I error, that is, they ensure that IP(R−(ĥ) > α+ ε0) is small, for some ε0 > 0. However,
it is our primary interest to make sure that R−(ĥ) ≤ α with high probability, following the original
principle of the Neyman-Pearson paradigm that type I error should be controlled by a pre-specified
level α. As we follow an empirical risk minimization procedure, to control IP(R−(ĥ) > α), it is
necessary to have ĥ be a solution to some program with a strengthened constraint on empirical
type I error. If our concern is only on type I error, we can just do so. However, we also want
to evaluate the excess type II error. Our conservative attitude on type I error faces new technical
challenges which we summarize here. In the approach of Cannon et al. (2002) and of Scott and
Nowak (2005), the relaxed constraint on the type I error is constructed such that the constraint
R̂−(h)≤ α+ ε0/2 on type I error in (2) is satisfied by h∗ (defined in (3)) with high probability, and
that this classifier accommodates the excess type II error well. As a result, the control of type II
error mainly follows as a standard exercise to control suprema of empirical processes. This is not
the case here; we have to develop methods to control the optimum value of an optimization problem
under a stochastic constraint. Such methods have consequences not only in NP classification but
also on chance constraint programming as explained in Section 5.

3.2 Convexified NP Classifier

Concerned about computational feasibility, our proposed classifier is the solution to a convex pro-
gram, which is an empirical form NP classification problem (1) where the distribution of the ob-
servations is unknown. In view of the arguments presented in the previous subsection, we cannot
simply replace the unknown risk functions by their empirical counterparts. The treatment of the
convex constraint should be done carefully and we proceed as follows.

For any classifier h and a given convex surrogate ϕ, define R̂−
ϕ and R̂

+
ϕ to be the empirical coun-

terparts of R−
ϕ and R

+
ϕ respectively by

R̂−
ϕ(h) =

1
n−

n−

∑
i=1

ϕ(h(X−
i )) , and R̂+

ϕ(h) =
1
n+

n+

∑
i=1

ϕ(−h(X+
i )) .

Moreover, for any a> 0, let H ϕ,a = {h ∈ H conv : R−
ϕ(h)≤ a} be the set of classifiers in H conv

whose convexified type I errors are bounded from above by a, and letH ϕ,a
n− = {h ∈H conv : R̂−

ϕ(h)≤
a} be the set of classifiers in H conv whose empirical convexified type I errors are bounded by a. To
make our analysis meaningful, we assume that H ϕ,α 
= /0.
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We are now in a position to construct a classifier in H conv according to the Neyman-Pearson
paradigm. For any τ> 0 such that τ≤α

√
n−, define the convexified NP classifier h̃τ as any classifier

that solves the following optimization problem

min
h∈H conv

R̂−
ϕ (h)≤α−τ/

√
n−

R̂+
ϕ(h) . (4)

Note that this problem consists of minimizing a convex function subject to a convex constraint
and can therefore be solved by standard algorithms (see, e.g., Boyd and Vandenberghe, 2004, and
references therein).

In the next section, we present a series of results on type I and type II errors of classifiers that
are more general than h̃τ.

4. Performance Bounds

In this section, we will first evaluate our proposed classifier h̃τ against ϕ I/II errors. These bench-
marks are necessary because h̃τ is constructed based on them. Moreover, in view of the decision
theory framework, such errors are just expected loss with a general loss function ϕ, which are inter-
esting to investigate. As the true type I and type II errors are usually the main concern in statistical
learning, we will also address the effect of convexification in terms of the excess type II error. In-
terestingly, given that we want to be conservative on type I error, neither working on ϕ errors nor
working on true errors leads to a most desirable type II error. The price to pay for being conservative
will be characterized explicitly.

4.1 Control of Type I Error

First, we identify classifiers h such that R−
ϕ(h)≤ α with high probability. This is done by enforcing

its empirical counterpart R̂−
ϕ(h) be bounded from above by the quantity

ακ = α−κ/
√
n−,

for a proper choice of positive constant κ.

Theorem 3 Fix constants δ,α∈ (0,1),L> 0 and let ϕ : [−1,1]→ IR+ be a given L-Lipschitz convex
surrogate. Define

κ= 4
√
2L

√
log

(
2M
δ

)
.

Then for any (random) classifier h ∈H conv that satisfies R̂−
ϕ(h)≤ ακ, we have

R−(h)≤ R−
ϕ(h)≤ α .

with probability at least 1−δ. Equivalently

IP
[
H ϕ,ακ
n− ⊂H ϕ,α]≥ 1−δ . (5)
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4.2 Simultaneous Control of the Two Errors

Theorem 3 guarantees that any classifier that satisfies the strengthened constraint on the empirical
ϕ-type I error will have ϕ-type I error and true type I error bounded from above by α. We now
check that the constraint is not too strong so that the ϕ-type II error is overly deteriorated. Indeed,
an extremely small ακ would certainly ensure a good control of type I error but would deteriorate
significantly the best achievable ϕ-type II error. Below, we show not only that this is not the case
for our approach but also that the convexified NP classifier h̃τ defined in Section 3.2 with τ = ακ
suffers only a small degradation of its ϕ-type II error compared to the best achievable. Analogous
to classical binary classification, a desirable result is that with high probability,

R+
ϕ(h̃

κ)− min
h∈H ϕ,α

R+
ϕ(h)≤ Δ̃n(F ), (6)

where Δ̃n(F ) goes to 0 as n= n−+n+ → ∞.
The following proposition is pivotal to our argument.

Proposition 4 Fix constant α ∈ (0,1) and let ϕ : [−1,1]→ IR+ be a given continuous convex sur-
rogate. Assume further that there exists ν0 > 0 such that the set of classifiers H ϕ,α−ν0 is nonempty.
Then, for any ν ∈ (0,ν0),

min
h∈H ϕ,α−ν

R+
ϕ(h)− min

h∈H ϕ,α
R+
ϕ(h)≤ ϕ(1)

ν
ν0 −ν

.

This proposition ensures that if the convex surrogate ϕ is continuous, strengthening the constraint on
type I error (ϕ-type I error) does not increase too much the best achievable ϕ-type II error. We should
mention that the proof does not use the Lipschitz property of ϕ, but only that it is uniformly bounded
by ϕ(1) on [−1,1]. This proposition has direct consequences on chance constrained programming
as discussed in Section 5.

The next theorem shows that the NP classifier h̃κ defined in Section 3.2 is a good candidate to
perform classification with the Neyman-Pearson paradigm. It relies on the following assumption
which is necessary to verify the condition of Proposition 4.

Assumption 1 There exists a positive constant ε< 1 such that the set of classifiersH ϕ,εα is nonempty.

Note that this assumption can be tested using (5) for large enough n−. Indeed, it follows from this
inequality that with probability 1−δ,

H ϕ,εα−κ/
√
n−

n− ⊂H ϕ,εα−κ/
√
n−+κ/

√
n− =H ϕ,εα .

Thus, it is sufficient to check if H ϕ,εα−κ/
√
n−

n− is nonempty for some ε> 0. Before stating our main
theorem, we need the following definition. Under Assumption 1, let  ε denote the smallest ε such
that H ϕ,εα 
= /0 and let n0 be the smallest integer such that

n0 ≥
(

4κ
(1−  ε)α

)2

. (7)
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Theorem 5 Let ϕ, κ, δ and α be the same as in Theorem 3, and h̃κ denote any solution to (4).
Moreover, let Assumption 1 hold and assume that n− ≥ n0 where n0 is defined in (7). Then, the
following hold with probability 1−2δ,

R−(h̃κ)≤ R−
ϕ(h̃

κ)≤ α (8)

and

R+
ϕ(h̃

κ)− min
h∈H ϕ,α

R+
ϕ(h)≤

4ϕ(1)κ

(1−  ε)α
√
n−

+
2κ√
n+

. (9)

In particular, there exists a constant C > 0 depending on α, ϕ(1) and  ε, such that (9) yields

R+
ϕ(h̃

κ)− min
h∈H ϕ,α

R+
ϕ(h)≤C

(√
log(2M/δ)

n− +

√
log(2M/δ)

n+

)
.

Note here that Theorem 4.2 is not exactly of the type (6). The right hand side of (9) goes to zero
if both n− and n+ go to infinity. Inequality (9) conveys a message that accuracy of the estimate
depends on information from both classes of labeled data. This concern motivates us to consider a
different sampling scheme.

4.3 A Different Sampling Scheme

In this subsection (only), we consider a model for observations that is more standard in statistical
learning theory (see, e.g., Devroye et al., 1996; Boucheron et al., 2005).

Let (X1,Y1), . . . ,(Xn,Yn) be n independent copies of the random couple (X ,Y ) ∈ X ×{−1,1}.
Denote by PX the marginal distribution of X and by η(x) = IE[Y |X = x] the regression function of Y
onto X . Denote by p the probability of positive label and observe that

p= IP[Y = 1] = IE(IP[Y = 1|X ]) = 1+ IE[η(X)]
2

.

In what follows, we assume that PX(η(X) =−1)∨PX(η(X) = 1)< 1 so that p ∈ (0,1).
Let N− = card{Yi :Yi =−1} be the random number of instances labeled −1 and N+ = n−N− =

card{Yi : Yi = 1}. In this setup, the NP classifier is defined as in Section 3.2 where n− and n+ are
replaced by N− and N+ respectively. To distinguish this classifier from h̃τ previously defined, we
denote the NP classifier obtained with this sampling scheme by h̃τn.

Let the event F be defined by

F = {R−
ϕ(h̃

κ
n)≤ α}∩{R+

ϕ(h̃
κ
n)− min

h∈H ϕ,α
R+
ϕ(h)≤

4ϕ(1)κ

(1−  ε)α
√
N−

+
2κ√
N+

}.

Denote Bn− = {Y1 = · · · = Yn− = −1,Yn−+1 = · · · = Yn = 1}. Although the event Bn− is different
from the event {N− = n−}, symmetry leads to the following key observation:

IP(F |N− = n−) = IP(F |Bn−).
Therefore, under the conditions of Theorem 5, we find that for n− ≥ n0 the event F satisfies

IP(F |N− = n−)≥ 1−2δ . (10)

We obtain the following corollary of Theorem 5.
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Corollary 6 Let ϕ, κ, δ and α be the same as in Theorem 3, and h̃κn be the NP classifier obtained
with the current sampling scheme. Then under Assumption 1, if n> 2n0/(1− p), where n0 is defined

in (7), we have with probability (1−2δ)(1− e−
n(1−p)2

2 ),

R−(h̃κn)≤ R−
ϕ(h̃

κ
n)≤ α (11)

and

R+
ϕ(h̃

κ
n)− min

h∈H ϕ,α
R+
ϕ(h)≤

4ϕ(1)κ

(1−  ε)α
√
N−

+
2κ√
N+

. (12)

Moreover, with probability 1−2δ− e−
n(1−p)2

2 − e−
np2

2 , we have simultaneously (11) and

R+
ϕ(h̃

κ
n)− min

h∈H ϕ,α
R+
ϕ(h)≤

4
√

2ϕ(1)κ

(1−  ε)α
√
n(1− p)

+
2
√

2κ√
np

. (13)

4.4 Price to Pay For Being Conservative

We have shown that the the computational feasible classifier h̃κ satisfies oracle inequalities which
take the optimal ϕ-type II errors as the benchmark. In this subsection, the excess type II error will
be measured, and we will characterize the price to pay by being conservative on type I error.

Much like its counterparts in classical binary classification, the next strikingly simple relation
addresses the consequence of convexification in the NP paradigm.

Theorem 7 Let h̃ be any classifier, then

R+(h̃)− min
R−(h)≤α

R+(h)≤ R+
ϕ(h̃)− inf

R−(h)≤α
R+
ϕ(h) .

This theorem applies to any classifier; in particular, it holds for our proposed h̃κ. As the proof of
Theorem 7 indicates, minR−(h)≤αR+(h) = infR−(h)≤αR+

ϕ(h). So the bound in the theorem can be very
tight, depending on the nature of h̃.

Now relax the range of base classifiers h1, . . . , hM to be [−B,B]. Denote by H ϕ,α
B the set of

convex combinations of the base classifiers that have ϕ-type I error bounded from above by α.
Therefore, we have the following observation:

R+(h̃κ)− min
R−(h)≤α

R+(h)≤ T1 +T2 +T3 ,

where

T1 = R+
ϕ(h̃

κ)− min
h∈H ϕ,α

B

R+
ϕ(h) ,

T2 = min
h∈H ϕ,α

B

R+
ϕ(h)− inf

R−(h)≤α
−B≤h≤B

R+
ϕ(h) ,

T3 = inf
R−(h)≤α
−B≤h≤B

R+
ϕ(h)− inf

R−(h)≤α
R+
ϕ(h) .

With the new set of base classifiers taking ranges in [−B,B], Theorem 5 holds if we replace κ by
κB = 4

√
2LBB

√
log(2M/δ), where LB is the Lipschitz constant of ϕ on [−B,B]. Therefore, the
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convergence rate of T1 is explicitly controlled. We can see that with a fixed sample size, choosing a
set of base classifiers with smaller range will result in a tighter bound for the excess ϕ-type II error.
However, if one concerns more about the true type II error, choosing a smaller B should not be a
better option, because only signs matters for true type I and II errors. This intuition is reflected in
the term T3. When B increases, T3 decreases. More specifically, it can be shown that

T3 =
(
P+(X+)ϕ(−B)+P+(X−)ϕ(0)

)−P+(X−) = P+(X+)ϕ(−B) ,
where X+ ⊂ X is the part of feature space mapped to label +1 by the optimal NP classifier that
solves minR−(h)≤αR+(h), and X− is the part that mapped to label −1; this is what NP Lemma says
when there is no need for randomization. Therefore, T3 diminishes towards 0 as B increases, and the
trade-off between T1 and T3 is very clear. When ϕ(x) = (1+ x)+ is the hinge loss, the best trade-off
occurs at B ∈ (0,1). When B(≥ 1) goes to infinity, T3 = 0 stays the same while the upper bound of
T1 blows up.

Note that H ϕ,α
B ⊂ {h : R−(h)≤ α,−B≤ h≤ B}, so T2 reflects the price to pay for being conser-

vative on type I error. It also reflect the bias for choosing a specific candidate pool of classifiers, that
is, convex combinations of base classifiers. As long as the base classifiers are rich enough, the latter
bias should be small. However in our belief, the price to pay for being conservative is unavoidable.
Even if we do not resort to convexification, getting the best insurance on type I error still demands
a high premium on type II error.

The same attitude is shared in the seminal paper Cannon et al. (2002), where it was claimed
without justification that if we use α′ < α for the empirical program, “it seems unlikely that we
can control the estimation error R+(ĥ)−R+(h∗) in a distribution independent way”. The following
proposition confirms this opinion in a certain sense.

Fix α ∈ (0,1),n− ≥ 1,n+ ≥ 1 and α′ < α. Let ĥ(α′) be the classifier defined as any solution of
the following optimization problem:

min
h∈H

R̂−(h)≤α′

R̂+(h) .

The following negative result holds not only for this estimator but also for the oracle h∗(α′) defined
as the solution of

min
h∈H

R−(h)≤α′

R+(h) .

Note that h∗(α′) is not a classifier but only a pseudo-classifier since it depends on the unknown
distribution of the data.

Proposition 8 There exist base classifiers h1,h2 and a probability distribution for (X ,Y ) for which,
regardless of the sample sizes n− and n+, any pseudo-classifier hλ̃ = λ̃h1+(1− λ̃)h2, 0 ≤ λ̃ ≤ 1,
such that R−(hλ̃)< α, it holds

R+(hλ̃)− min
R−(hλ)≤α,λ∈[0,1]

R+(hλ)≥ α .

In particular, the excess type II risk of h∗(α− εn−), εn− > 0 does not converge to zero as sample
sizes increase even if εn− → 0. Moreover, when α≤ 1/2 for any (pseudo-)classifier hλ̃ (0≤ λ̃≤ 1)
such that R̂−(hλ̃)< α, it holds

R+(hλ̃)− min
R−(hλ)≤α,λ∈[0,1]

R+(hλ)≥ α .
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with probability at least α∧1/4. In other words, if we letA = {hλ : R̂−(hλ)<α,λ∈ [0,1]}, and B =
{hλ : R+(hλ)−minR−(hλ)≤α,λ∈[0,1]R

+(hλ)≥ α,λ ∈ [0,1]}, then IP(A ⊂ B)≥ α∧1/4. In particular,
the excess type II risk of ĥ(α− εn−), εn− > 0 does not converge to zero with positive probability, as
sample sizes increase even if εn− → 0.

The proof of this result is postponed to Appendix A. The fact that the oracle h∗(α−εn−) satisfies
the lower bound indicates that the problem comes from using a strengthened constraint. Note that
the condition α≤ 1/2 is purely technical and can be removed. Nevertheless, it is always the case in
practice that α≤ 1/2. When the number of base classifiers is great then two, we believe that similar
counterexamples can be still constructed, though the technicality will be move involved.

In view of this negative result and our previous discussion, we have to accept the price to pay for
being conservative on type I error, and our classifier h̃κ is no exception. As such conservativeness
follows from the original spirit of the Neyman-Pearson paradigm, we need to pay whatever we have
to pay. The positive sides are that our proposed procedure is computationally feasible, and it attains
good rates under a different (but still meaningful) criterion.

5. Chance Constrained Optimization

Implementing the Neyman-Pearson paradigm for the convexified binary classification bears strong
connections with chance constrained optimization. A recent account of such problems can be found
in Ben-Tal et al. (2009, Chapter 2) and we refer to this book for references and applications. A
chance constrained optimization problem is of the following form:

min
λ∈Λ

f (λ) s.t. IP{F(λ,ξ)≤ 0} ≥ 1−α, (14)

where ξ∈Ξ is a random vector, Λ⊂RM is convex, α is a small positive number and f is a determin-
istic real valued convex function. Problem (14) can be viewed as a relaxation of robust optimization.
Indeed, for the latter, the goal is to solve the problem

min
λ∈Λ

f (λ) s.t. sup
ξ∈Ξ

F(λ,ξ)≤ 0 , (15)

and this essentially corresponds to (14) for the case α = 0. For simplicity, we take F to be scalar
valued but extensions to vector valued functions and conic orders are considered in Ben-Tal et al.
(2009, Chapter 10). Moreover, it is standard to assume that F(·,ξ) is convex almost surely.

Problem (14) may not be convex because the chance constraint {λ ∈ Λ : IP{F(λ,ξ) ≤ 0} ≥
1−α} is not convex in general and thus may not be tractable. To solve this problem, Prékopa
(1995) and Lagoa et al. (2005) have derived sufficient conditions on the distribution of ξ for the
chance constraint to be convex. On the other hand, Calafiore and Campi (2006) initiated a different
treatment of the problem where no assumption on the distribution of ξ is made, in line with the
spirit of statistical learning. In that paper, they introduced the so-called scenario approach based on
a sample ξ1, . . . ,ξn of independent copies of ξ. The scenario approach consists of solving

min
λ∈Λ

f (λ) s.t. F(λ,ξi)≤ 0, i= 1, . . . ,n. (16)

Calafiore and Campi (2006) showed that under certain conditions, if the sample size n is bigger than
some n(α,δ), then with probability 1− δ, the optimal solution λ̂sc of (16) is feasible for (14). The
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authors did not address the control of the term f (λ̂sc)− f ∗ where f ∗ denotes the optimal objective
value in (14). However, in view of Proposition 8, it is very unlikely that this term can be controlled
well.

In an attempt to overcome this limitation, a new analytical approach was introduced by Ne-
mirovski and Shapiro (2006). It amounts to solving the following convex optimization problem

min
λ∈Λ,t∈Rs

f (λ) s.t. G(λ, t)≤ 0, (17)

in which t is some additional instrumental variable and where G(·, t) is convex. The problem (17)
provides a conservative convex approximation to (14), in the sense that every x feasible for (17) is
also feasible for (14). Nemirovski and Shapiro (2006) considered a particular class of conservative
convex approximation where the key step is to replace IP{F(λ,ξ) ≥ 0} by IEϕ(F(λ,ξ)) in (14),
where ϕ a nonnegative, nondecreasing, convex function that takes value 1 at 0. Nemirovski and
Shapiro (2006) discussed several choices of ϕ including hinge and exponential losses, with a focus
on the latter that they name Bernstein Approximation.

The idea of a conservative convex approximation is also what we employ in our paper. Recall
that P− the conditional distribution of X given Y =−1. In a parallel form of (14), we cast our target
problem as

min
λ∈Λ

R+(hλ) s.t. P−{hλ(X)≤ 0} ≥ 1−α, (18)

where Λ is the flat simplex of IRM.
Problem (18) differs from (14) in that R+(hλ) is not a convex function of λ. Replacing R+(hλ)

by R+
ϕ(hλ) turns (18) into a standard chance constrained optimization problem:

min
λ∈Λ

R+
ϕ(hλ) s.t. P−{hλ(X)≤ 0} ≥ 1−α. (19)

However, there are two important differences in our setting, so that we cannot use directly Scenario
Approach or Bernstein Approximation or other analytical approaches to (14). First, R+

ϕ( fλ) is an
unknown function of λ. Second, we assume minimum knowledge about P−. On the other hand,
chance constrained optimization techniques in previous literature assume knowledge about the dis-
tribution of the random vector ξ. For example, Nemirovski and Shapiro (2006) require that the
moment generating function of the random vector ξ is efficiently computable to study the Bernstein
Approximation.

Given a finite sample, it is not feasible to construct a strictly conservative approximation to the
constraint in (19). On the other hand, it is possible to ensure that if we learned ĥ from the sample,
this constraint is satisfied with high probability 1−δ, that is, the classifier is approximately feasible
for (19). In retrospect, our approach to (19) is an innovative hybrid between the analytical approach
based on convex surrogates and the scenario approach.

We do have structural assumptions on the problem. Let g j, j ∈ {1, . . . ,M} be arbitrary functions
that take values in [−1,1] and F(λ,ξ) = ∑N

j=1λ jg j(ξ). Consider a convexified version of (14):

min
λ∈Λ

f (λ) s.t. IE[ϕ(F(λ,ξ))]≤ α, (20)

where ϕ is a L-Lipschitz convex surrogate, L > 0. Suppose that we observe a sample (ξ1, . . . ,ξn)
that are independent copies of ξ. We propose to approximately solve the above problem by

min
λ∈Λ

f (λ) s.t.
n

∑
i=1

ϕ(F(λ,ξi))≤ nα−κ
√
n ,
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for some κ > to be defined. Denote by λ̃ any solution to this problem and by f ∗ϕ the value of the
objective at the optimum in (20). The following theorem summarizes our contribution to chance
constrained optimization.

Theorem 9 Fix constants δ,α ∈ (0,1/2),L > 0 and let ϕ : [−1,1] → IR+ be a given L-Lipschitz
convex surrogate. Define

κ= 4
√
2L

√
log

(
2M
δ

)
.

Then, the following hold with probability at least 1−2δ
(i) λ̃ is feasible for (14).

(ii) If there exists ε∈ (0,1) such that the constraint IE[ϕ(F(λ,ξ))]≤ εα is feasible for some λ∈Λ,
then for

n≥
(

4κ
(1− ε)α

)2
,

we have

f (λ̃)− f ∗ϕ ≤ 4ϕ(1)κ
(1− ε)α

√
n
.

In particular, as M and n go to infinity with all other quantities kept fixed, we obtain

f (λ̃)− f ∗ϕ = O

(√
logM
n

)
.

The proof essentially follows that of Theorem 5 and we omit it. The limitations of Theorem 9
include rigid structural assumptions on the function F and on the setΛ. While the latter can be easily
relaxed using more sophisticated empirical process theory, the former is inherent to our analysis.
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Appendix A. Proof of the Main Results

We gather in this appendix the proofs of the main results of the paper.

A.1 Proof of Theorem 3

We begin with the following lemma, which is extensively used in the sequel. Its proof relies on
standard arguments to bound suprema of empirical processes. Recall that {h1, . . . ,hM} is family of
M classifiers such that h j : X → [−1,1] and that for any λ in the simplex Λ ⊂ RM, hλ denotes the
convex combination defined by

hλ =
N

∑
j=1

λ jh j .
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The following standard notation in empirical process theory will be used. Let X1, . . . ,Xn ∈ X be n
i.i.d random variables with marginal distribution P. Then for any measurable function f : X → IR,
we write

Pn( f ) =
1
n

n

∑
i=1

f (Xi) and P( f ) = IE f (X) =
∫
fdP .

Moreover, the Rademacher average of f is defined as

Rn( f ) =
1
n

n

∑
i=1

εi f (Xi) ,

where ε1, . . . ,εn are i.i.d. Rademacher random variables such that IP(εi = 1) = IP(εi = −1) = 1/2
for i= 1, . . . ,n.

Lemma 10 Fix L > 0,δ ∈ (0,1). Let X1, . . . ,Xn be n i.i.d random variables on X with marginal
distribution P. Moreover, let ϕ : [−1,1] → IR an L-Lipschitz function. Then, with probability at
least 1−δ, it holds

sup
λ∈Λ

|(Pn−P)(ϕ◦hλ)| ≤
4
√

2L√
n

√
log

(
2M
δ

)
.

Proof Define  ϕ(·) .
= ϕ(·)−ϕ(0), so that  ϕ is an L-Lipschitz function that satisfies  ϕ(0) = 0. More-

over, for any λ ∈ Λ, it holds

(Pn−P)(ϕ◦hλ) = (Pn−P)(  ϕ◦hλ) .
Let Φ : IR → IR+ be a given convex increasing function. Applying successively the symmetrization
and the contraction inequalities (see, e.g., Koltchinskii, 2011, Chapter 2), we find

IEΦ

(
sup
λ∈Λ

|(Pn−P)(  ϕ◦hλ)|
)

≤ IEΦ

(
2sup
λ∈Λ

|Rn(  ϕ◦hλ)|
)

≤ IEΦ

(
4Lsup

λ∈Λ
|Rn(hλ)|

)
.

Observe now that λ �→ |Rn(hλ)| is a convex function and Theorem 32.2 in Rockafellar (1997) entails
that

sup
λ∈Λ

|Rn(hλ)|= max
1≤ j≤M

∣∣Rn(h j)∣∣ .
We now use a Chernoff bound to control this quantity. To that end, fix s, t > 0, and observe that

IP

(
sup
λ∈Λ

|(Pn−P)(ϕ◦hλ)|> t

)
≤ 1
Φ(st)

IEΦ

(
ssup
λ∈Λ

|(Pn−P)(  ϕ◦hλ)|
)

≤ 1
Φ(st)

IEΦ

(
4Ls max

1≤ j≤M
∣∣Rn(h j)∣∣) . (21)

Moreover, since Φ is increasing,

IEΦ

(
4Ls max

1≤ j≤M
∣∣Rn(h j)∣∣)= IE max

1≤ j≤M
Φ
(
4Ls

∣∣Rn(h j)∣∣)
≤

M

∑
j=1

IE [Φ(4LsRn(h j))∨Φ(−4LsRn(h j))]

≤ 2
M

∑
j=1

IEΦ(4LsRn(h j)) . (22)
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Now choose Φ(·) = exp(·), then

IEΦ(4LsRn(h j)) =
n

∏
i=1

IEcosh

(
4Lsh j(Xi)

n

)
≤ exp

(
8L2s2

n

)
,

where cosh is the hyperbolic cosine function and where in the inequality, we used the fact that
|h j(Xi)| ≤ 1 for any i, j and cosh(x)≤ exp(x2/2). Together with (21) and (22), it yields

IP

(
sup
λ∈Λ

|(Pn−P)(ϕ◦hλ)|> t

)
≤ 2M inf

s>0
exp

(
8L2s2

n
− st

)
≤ 2M exp

(
− nt2

32L2

)
.

Choosing

t =
4
√

2L√
n

√
log

(
2M
δ

)
,

completes the proof of the Lemma.

We now proceed to the proof of Theorem 3. Note first that from the properties of ϕ, R−(h) ≤
R−
ϕ(h). Next, we have for any data-dependent classifier h ∈H conv such that R̂−

ϕ(h)≤ ακ:

R−
ϕ(h)≤ R̂−

ϕ(h)+ sup
h∈H conv

∣∣R̂−
ϕ(h)−R−

ϕ(h)
∣∣≤ α− κ√

n−
+ sup

h∈H conv

∣∣R̂−
ϕ(h)−R−

ϕ(h)
∣∣ .

Lemma 10 implies that, with probability 1−δ

sup
h∈H conv

∣∣R̂−
ϕ(h)−R−

ϕ(h)
∣∣= sup

λ∈Λ

∣∣(P−
n− −P−)(ϕ◦hλ)

∣∣≤ κ√
n−

.

The previous two displays imply that R−
ϕ(h)≤ α with probability 1−δ, which completes the proof

of Theorem 3.

A.2 Proof of Proposition 4

The proof of this proposition builds upon the following lemma.

Lemma 11 Let γ(α) = infhλ∈H ϕ,α R+
ϕ(hλ), then γ is a non-increasing convex function on [0,1].

Proof First, it is clear that γ is a non-increasing function of α because for α′ > α, {hλ ∈ H conv :
R−
ϕ(hλ)≤ α} ⊂ {hλ ∈H conv : R−

ϕ(hλ)≤ α′}.
We now show that γ is convex. To that end, observe first that since ϕ is continuous on [−1,1],

the set {λ ∈ Λ : hλ ∈H ϕ,α} is compact. Moreover, the function λ �→ R+
ϕ(hλ) is convex. Therefore,

there exists λ∗ ∈ Λ such that

γ(α) = inf
hλ∈H ϕ,α

R+
ϕ(hλ) = min

hλ∈H ϕ,α
R+
ϕ(hλ) = R+

ϕ(hλ∗) .

Now, fix α1,α2 ∈ [0,1]. From the above considerations, there exist λ1,λ2 ∈ Λ such that γ(α1) =
R+
ϕ(hλ1) and γ(α2) = R+

ϕ(hλ2). For any θ ∈ (0,1), define the convex combinations  αθ = θα1 +(1−
θ)α2 and  λθ = θλ1 +(1−θ)λ2. Since λ �→ R−

ϕ(hλ) is convex, it holds

R−
ϕ(h λθ

)≤ θR−
ϕ(hλ1)+(1−θ)R−

ϕ(hλ2)≤ θα1 +(1−θ)α2 =  αθ ,
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so that h λθ
∈H ϕ,  αθ . Hence, γ(  αθ)≤ R+

ϕ(h λθ
). Together with the convexity of ϕ, it yields

γ(θα1 +(1−θ)α2)≤ R+
ϕ(h λθ

)≤ θR+
ϕ(hλ1)+(1−θ)R+

ϕ(hλ2) = θγ(α1)+(1−θ)γ(α2) .

We now complete the proof of Proposition 4. For any x ∈ [0,1], let γ(x) = infh∈H ϕ,x R+
ϕ(h) and

observe that the statement of the proposition is equivalent to

γ(α−ν)− γ(α)≤ ϕ(1)
ν

ν0 −ν
, 0 < ν< ν0 .

Lemma 11 together with the assumption that H ϕ,α−ν0 
= /0 imply that γ is a non-increasing convex
real-valued function on [α−ν0,1] so that

γ(α−ν)− γ(α)≤ ν sup
g∈∂γ(α−ν)

|g| ,

where ∂γ(α− ν) denotes the sub-differential of γ at α− ν. Moreover, since γ is a non-increasing
convex function on [α−ν0,α−ν], it holds

γ(α−ν0)− γ(α−ν)≥ (ν−ν0) sup
g∈∂γ(α−ν)

|g| .

The previous two displays yield

γ(α−ν)− γ(α)≤ ν
γ(α−ν0)− γ(α−ν)

ν−ν0
≤ ν

ϕ(1)
ν−ν0

.

A.3 Proof of Theorem 5

Define the events E− and E+ by

E− =
⋂

h∈H conv

{|R̂−
ϕ(h)−R−

ϕ(h)| ≤
κ√
n−

} ,

E+ =
⋂

h∈H conv

{|R̂+
ϕ(h)−R+

ϕ(h)| ≤
κ√
n+

} .

Lemma 10 implies
IP(E−)∧ IP(E+)≥ 1−δ . (23)

Note first that Theorem 3 implies that (8) holds with probability 1− δ. Observe now that the l.h.s
of (9) can be decomposed as

R+
ϕ(h̃

κ)− min
h∈H ϕ,α

R+
ϕ(h) = A1 +A1 +A3 ,

where

A1 =
(
R+
ϕ(h̃

κ)− R̂+
ϕ(h̃

κ)
)
+

(
R̂+
ϕ(h̃

κ)− min
h∈H ϕ,ακ

n−
R+
ϕ(h)

)
A2 = min

h∈H ϕ,ακ
n−

R+
ϕ(h)− min

h∈H ϕ,α2κ
R+
ϕ(h)

A3 = min
h∈H ϕ,α2κ

R+
ϕ(h)− min

h∈H ϕ,α
R+
ϕ(h).
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To bound A1 from above, observe that

A1 ≤ 2 sup
h∈H ϕ,ακ

n−

|R̂+
ϕ(h)−R+

ϕ(h)| ≤ 2 sup
h∈H conv

|R̂+
ϕ(h)−R+

ϕ(h)|.

Therefore, on the event E+ it holds

A1 ≤ 2κ√
n+

.

We now treat A2. Note that A2 ≤ 0 on the event H ϕ,α2κ ⊂H ϕ,ακ
n− . But this event contains E− so

that A2 ≤ 0 on the event E−.
Finally, to control A3, observe that under Assumption 1, Proposition 4 can be applied with

ν = 2κ/
√
n− and ν0 = (1−  ε)α. Indeed, the assumptions of the theorem imply that ν ≤ ν0/2. It

yields

A3 ≤ 4ϕ(1)κ

(1−  ε)α
√
n−

.

Combining the bounds on A1, A2 and A3 obtained above, we find that (9) holds on the event E−∩E+

that has probability at least 1−2δ in view of (23).
The last statement of the theorem follows directly from the definition of κ.

A.4 Proof of Corollary 6

Now prove (12),

IP(F ) =
n

∑
n−=0

IP(F |N− = n−)IP(N− = n−)

≥
n

∑
n−=n0

IP(F |N− = n−)IP(N− = n−)

≥ (1−2δ)IP(N− ≥ n0) ,

where in the last inequality, we used (10). Applying now Lemma 12, we obtain

IP(N− ≥ n0)≥ 1− e−
n(1−p)2

2 .

Therefore,

IP(F )≥ (1−2δ)(1− e−
n(1−p)2

2 ) ,

which completes the proof of (12).
The proof of (13) follows by observing that{

R+
ϕ(h̃

κ
n)− min

h∈H ϕ,α
R+
ϕ(h)>

4
√

2ϕ(1)κ

(1−  ε)α
√
n(1− p)

+
2
√

2κ√
np

}
⊂ (A1 ∩Ac

2)∪A2 ∪A3 ,

where

A1 =

{
R+
ϕ(h̃

κ
n)− min

h∈H ϕ,α
R+
ϕ(h)>

4ϕ(1)κ

(1−  ε)α
√
N−

+
2κ√
N+

}
⊂ F c ,

A2 = {N− < n(1− p)/2} ,
A3 = {N+ < np/2} .
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Since Ac
2 ⊂ {N− ≥ n0}, we find

IP(A1 ∩Ac
2)≤ ∑

n−≥n0

IP(F c|N− = n−)IP(N− = n−)≤ 2δ .

Next, using Lemma 12, we get

IP(A2)≤ e−
n(1−p)2

2 and IP(A3)≤ e−
np2

2 .

Hence, we find

IP

{
R+
ϕ(h̃

κ
n)− min

h∈H ϕ,α
R+
ϕ(h)>

4
√

2ϕ(1)κ

(1−  ε)α
√
n(1− p)

+
2
√

2κ√
np

}
≤ 2δ+ e−

n(1−p)2
2 + e−

np2

2 ,

which completes the proof of the corollary.

A.5 Proof of Theorem 7

First observe that for any ĥ, R+(ĥ)≤ R+
ϕ(ĥ). Then the result follows from the claim that

min
R−(h)≤α

R+(h) = inf
R−(h)≤α

R+
ϕ(h) .

It is clear minR−(h)≤αR+(h) ≤ infR−(h)≤αR+
ϕ(h), it remains to prove the other direction. By the

Neyman-Pearson Lemma, We can decompose the feature space X into a disjoint union of X+ and
X−, and the optimal (pseudo) classifier that solves minR−(h)≤αR+(h) assigns label +1 for any x ∈
X+, and −1 for any x ∈ X−. Note that if any two classifiers g1 and g2 have the same signs, that is,
sgn(g1) = sgn(g2), then R−(g1) = R−(g2) and R+(g1) = R+(g2). On the other hand, for ϕ-type I and
II errors, values of classifiers do matter.

Let  hB,ε(x) = B · I(x ∈ X+) + (−ε) · I(x ∈ X−). Then clearly for any B,ε > 0,  hB,ε solves
minR−(h)≤αR+(h). Also, for any B,ε> 0,

inf
R−(h)≤α

R+
ϕ(h)≤ R+

ϕ(  hB,ε) = P+(X+)ϕ(−B)+P+(X−)ϕ(ε) .

Taking the limit, we have

lim
B→∞,ε→0

R+
ϕ(  hB,ε) = lim

B→∞,ε→0
P+(X+)ϕ(−B)+P+(X−)ϕ(ε) = P+(X−) = R+(  hB,ε) .

Therefore, infR−(h)≤αR+
ϕ(h)≤ minR−(h)≤αR+(h), which completes the proof.

A.6 Proof of Proposition 8

Let the base classifiers be defined as

h1(x) =−1 and h2(x) = 1I(x≤ α)−1I(x> α) , ∀x ∈ [0,1]

For any λ ∈ [0,1], denote the convex combination of h1 and h2 by hλ = λh1 +(1−λ)h2, that is,

hλ(x) = (1−2λ)1I(x≤ α)−1I(x> α) .
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Suppose the conditional distributions of X given Y = 1 or Y =−1, denoted respectively by P+ and
P−, are both uniform on [0,1]. Recall that R−(hλ) = P−(hλ(X)≥ 0) and R+(hλ) = P+(hλ(X)< 0) .
Then, we have

R−(hλ) = P−(hλ(X)≥ 0) = α1I(λ≤ 1/2) . (24)

Therefore, for any τ ∈ [0,α], we have

{λ ∈ [0,1] : R−(hλ)≤ τ}=
{

[0,1] if τ= α ,
(1/2,1] if τ< α .

Observe now that

R+(hλ) = P+(hλ(X)< 0) = (1−α)1I(λ< 1/2)+1I(λ≥ 1/2) . (25)

For any τ ∈ [0,α], it yields

inf
λ∈[0,1]:R−(hλ)≤τ

R+(hλ) =

{
1−α if τ= α ,
1 if τ< α .

Consider now a classifier  hλ such that R−(  hλ)≤ τ for some τ< α. Then from (24), we see that must
have λ> 1/2. Together with (25), this imples that R+(  hλ) = 1. It yields

R+(  hλ)− min
λ :R−(hλ)≤α

R+(hλ) = 1− (1−α) = α .

This completes the first part of the proposition. Moreover, in the same manner as (24), it can be
easily proved that

R̂−(hλ) =
1
n−

n−

∑
i=1

1I(hλ(X
−
i )≥ 0) = αn−1I(λ≤ 1/2) , (26)

where

αn− =
1
n−

n−

∑
i=1

1I(X−
i ≤ α) (27)

If a classifier ĥλ is such that R̂−(ĥλ) < αn− , then (26) implies that λ > 1/2. Using again (25), we
find also that R+(ĥλ) = 1. It yields

R+(ĥλ)− min
λ :R−(hλ)≤α

R+(hλ) = 1− (1−α) = α .

It remains to show that R̂−(ĥλ)<αn− with positive probability for any classifier such that R̂−(ĥλ)≤ τ
for some τ< α. Note that a sufficient condition for a classifier ĥλ to satisfy this constraint is to have
α≤ αn− . It is therefore sufficient to find a lower bound on the probability of the event A = {αn− ≥
α}. Such a lower bound is provided by Lemma 13, which guarantees that IP(A)≥ α∧1/4.

Appendix B. Technical Lemmas on Binomial Distributions

The following lemmas are purely technical on the tails of Binomial distributions.
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Lemma 12 Let N be a binomial random variables with parameters n≥ 1 and q ∈ (0,1). Then, for
any t > 0 such that t ≤ nq/2, it holds

IP(N ≥ t)≥ 1− e−
nq2

2 .

Proof Note first that n−N has binomial distribution with parameters n ≥ 1 and 1− q. Therefore,
we can write n−N = ∑n

i=1Zi where Zi are i.i.d. Bernoulli random variables with parameter 1− q.
Thus, using Hoeffding’s inequality, we find that for any s≥ 0,

IP(n−N−n(1−q)≥ s)≤ e−
2s2
n .

Applying the above inequality with s= n−n(1−q)− t ≥ nq/2≥ 0 yields

IP(N ≥ t) = IP(n−N−n(1−q)≤ n−n(1−q)− t)≥ 1− e−
nq2

2 .

The next lemma provides a lower bound on the probability that a binomial distribution exceeds its
expectation. Our result is uniform in the size of the binomial and it can be easily verified that it
is sharp by considering sizes n = 1 and n = 2 and by looking at Figure 1. In particular, we do not
resort to Gaussian approximation which improves upon the lower bounds that can be derived from
the inequalities presented in Slud (1977).

Lemma 13 Let N be a binomial random variable with parameters n≥ 1 and 0< q≤ 1/2. Then, it
holds

IP(N ≥ nq)≥ q∧ (1/4) .

Proof We introduce the following local definition, which is limited to the scope of this proof.
Fix n ≥ 1 and for any q ∈ (0,1), let Pq denote the distribution of a binomial random variable with
parameters n and q. Note first that if n= 1, the result is trivial since

Pq(N ≥ q) = IP(Z ≥ q) = IP(Z = 1) = q ,

where Z is a Bernoulli random variable with parameter q.
Assume that n≥ 2. Note that if q≤ 1/n, then Pq(N≥ nq)≥ IP(Z= 1)= q, where Z is a Bernoulli

random variable with parameter q. Moreover, for any any integer k such that k/n < q ≤ (k+1)/n,
we have

Pq(N ≥ nq) = Pq(N ≥ k+1)≥ Pk
n
(N ≥ k+1) . (28)

The above inequality can be easily proved by taking the derivative over the interval (k/n,(k+1)/n],
of the function

q �→
n

∑
j=k+1

(
n
j

)
q j(1−q)n− j .

We now show that
Pk
n
(N ≥ k+1)≥ Pk−1

n
(N ≥ k) , 2≤ k ≤ n/2 . (29)
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Figure 1: Tail probabilities IP(N ≥ nq) where N is a binomial random variable with parameters n
and q.

LetU1, . . . ,Un be n i.i.d. random variables uniformly distributed on the interval [0,1] and denote
by U(k) the corresponding kth order statistic such that U(1) ≤ . . . ≤U(n). Following Feller (1971,
Section 7.2), it is not hard to show that

Pk
n
(N ≥ k+1) = IP(U(k+1) ≤

k
n
) = n

(
n−1
k

)∫ k
n

0
tk(1− t)n−k−1dt ,

and in the same manner,

Pk−1
n
(N ≥ k) = IP(U(k) ≤

k−1
n

) = n

(
n−1
k−1

)∫ k−1
n

0
tk−1(1− t)n−kdt .

Note that (
n−1
k−1

)
=

(
n−1
k

)
k

n− k
,
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so that (29) follows if we prove

k
∫ k−1

n

0
tk−1(1− t)n−kdt ≤ (n− k)

∫ k
n

0
tk(1− t)n−k−1dt . (30)

We can establish the following chain of equivalent inequalities.

k
∫ k−1

n

0
tk−1(1− t)n−kdt ≤ (n− k)

∫ k
n

0
tk(1− t)n−k−1dt

⇔
∫ k

n

0

dtk

dt
(1− t)n−kdt ≤ −

∫ k
n

0
tk
d(1− t)n−k

dt
dt+ k

∫ k
n

k−1
n

tk−1(1− t)n−kdt

⇔
∫ k

n

0

d
dt

[
tk(1− t)n−k

]
dt ≤ k

∫ k
n

k−1
n

tk−1(1− t)n−kdt

⇔
(
k
n

)k(
1− k

n

)n−k
≤ k

∫ k
n

k−1
n

tk−1(1− t)n−kdt

We now study the variations of the function t �→ b(t) = tk−1(1−t)n−k on the interval [(k−1)/n,k/n].
Taking derivative, it is not hard to see that function b admits a unique local optimum, which is a
maximum, at t0 = k−1

n−1 and that t0 ∈ ((k− 1)/n,k/n) because k ≤ n. Therefore, the function is
increasing on [(k−1)/n, t0] and decreasing on [t0,k/n]. It implies that

∫ k
n

k−1
n

b(t)dt ≥ 1
n
min

[
b
(k−1

n

)
,b
(k
n

)]
.

Hence, the proof of (30) follows from the following two observations:(
k
n

)k(
1− k

n

)n−k
=
k
n

(
k
n

)k−1(
1− k

n

)n−k
=
k
n
b
(k
n

)
,

and (
k
n

)k(
1− k

n

)n−k
≤ k
n

(
k−1
n

)k−1(
1− k−1

n

)n−k
=
k
n
b
(k−1

n

)
.

While the first equality above is obvious, the second inequality can be obtained by an equivalent
statement is (

k
n

)k−1(n− k
n

)n−k
≤
(
k−1
n

)k−1(n− k+1
n

)n−k

⇔
(

k
k−1

)k−1( n− k
n− k+1

)n−k
≤ 1

Since the function t �→ (
t+1
t

)t
is increasing on [0,∞), and k ≤ n− k+1, the result follows.

To conclude the proof of the Lemma, note that (28) and (29) imply that for any q> 1/n,

Pq(N ≥ nq)≥ P1
n
(N ≥ 2) = 1−

(
n−1
n

)n

−
(
n−1
n

)n−1
≥ 1−

(
1
2

)2
− 1
2
=
1
4
,
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where, in the last inequality, we used the fact that the function

t �→ 1−
(
t−1
t

)t

−
(
t−1
t

)t−1

is increasing on [1,∞).
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Nicolò Cesa-Bianchi NICOLO.CESA-BIANCHI@UNIMI.IT
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Abstract
We investigate three variants of budgeted learning, a setting in which the learner is allowed to
access a limited number of attributes from training or test examples. In the “local budget” setting,
where a constraint is imposed on the number of available attributes per training example, we design
and analyze an efficient algorithm for learning linear predictors that actively samples the attributes
of each training instance. Our analysis bounds the number of additional examples sufficient to
compensate for the lack of full information on the training set. This result is complemented by a
general lower bound for the easier “global budget” setting, where it is only the overall number of
accessible training attributes that is being constrained. In the third, “prediction on a budget” setting,
when the constraint is on the number of available attributes per test example, we show that there
are cases in which there exists a linear predictor with zero error but it is statistically impossible
to achieve arbitrary accuracy without full information on test examples. Finally, we run simple
experiments on a digit recognition problem that reveal that our algorithm has a good performance
against both partial information and full information baselines.

Keywords: budgeted learning, statistical learning, linear predictors, learning with partial informa-
tion, learning theory

1. Introduction

Consider the problem of predicting whether a person has some disease based on medical tests.
In principle, we may draw a sample of the population, perform a large number of medical tests
on each person in the sample, and use this information to train a classifier. In many situations,
however, this approach is unrealistic. First, patients participating in the experiment are generally
not willing to go through a large number of medical tests. Second, each test has some associated
cost, and we typically have a budget on the amount of money to spend for collecting the training
information. This scenario, where there is a hard constraint on the number of training attributes the

∗. A short version of this paper has been presented in ICML 2010.
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learner has access to, is known as budgeted learning.1 Note that the constraint on the number of
training attributes may be local (no single participant is willing to undergo many tests) or global (the
overall number of tests that can be performed is limited). In a different but related budgeted learning
setting, the system may be facing a restriction on the number of attributes that can be viewed at test
time. This may happen, for example, in a search engine, where a ranking of web pages must be
generated for each incoming user query and there is no time to evaluate a large number of attributes
to answer the query.

We may thus distinguish three basic budgeted learning settings:

• Local Budget Constraint: The learner has access to at most k attributes of each individual
example, where k is a parameter of the problem. The learner has the freedom to actively
choose which of the attributes is revealed, as long as at most k of them will be given.

• Global Budget Constraint: The total number of training attributes the learner is allowed to
see is bounded by k. As in the local budget constraint setting, the learner has the freedom to
actively choose which of the attributes is revealed. In contrast to the local budget constraint
setting, the learner can choose to access more than k/m attributes from specific examples
(where m is the overall number of examples) as long as the global number of attributes is
bounded by k.

• Prediction on a budget: The learner receives the entire training set, however, at test time,
the predictor can see at most k attributes of each instance and then must form a prediction.
The predictor is allowed to actively choose which of the attributes is revealed.

In this paper we focus on budgeted linear regression, and prove negative and positive learning
results in the three abovementioned settings. Our first result shows that, under a global budget
constraint, no algorithm can learn a general d-dimensional linear predictor while observing less
than Ω(d) attributes at training time. This is complemented by the following positive result: we
show an efficient algorithm for learning under a given local budget constraint of 2k attributes per
example, for any k ≥ 1. The algorithm actively picks which attributes to observe in each example
in a randomized way depending on past observed attributes, and constructs a “noisy” version of all
attributes. Intuitively, we can still learn despite the error of this estimate because instead of receiving
the exact value of each individual example in a small set it suffices to get noisy estimations of many
examples. We show that the overall number of attributes our algorithm needs to learn a regressor is at
most a factor of d bigger than that used by standard regression algorithms that view all the attributes
of each example. Ignoring logarithmic factors, the same gap of d exists when the attribute bound
of our algorithm is specialized to the choice of parameters that is used to prove the abovementioned
Ω(d) lower bound under the global budget constraint.

In the prediction on a budget setting, we prove that in general it is not possible (even with an
infinite amount of training examples) to build an active classifier that uses at most two attributes of
each example at test time, and whose error will be smaller than a constant. This in contrast with
the local budget setting, where it is possible to learn a consistent predictor by accessing at most two
attributes of each example at training time.

1. See, for example, webdocs.cs.ualberta.ca/˜greiner/BudgetedLearning/.
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2. Related Work

The notion of budgeted learning is typically identified with the “global budget” and “prediction
on a budget” settings—see, for example, Deng et al. (2007), Kapoor and Greiner (2005a,b) and
Greiner et al. (2002) and references therein. The more restrictive “local budget” setting has been
first proposed in Ben-David and Dichterman (1998) under the name of “learning with restricted
focus of attention”. Ben-David and Dichterman (1998) considered binary classification and showed
learnability of several hypothesis classes in this model, like k-DNF and axis-aligned rectangles.
However, to the best of our knowledge, no efficient algorithm for the class of linear predictors has
been so far proposed.2

Our algorithm for the local budget setting actively chooses which attributes to observe for each
example. Similarly to the heuristics of Deng et al. (2007), we borrow ideas from the adversarial
multi-armed bandit problem (Auer et al., 2003; Cesa-Bianchi and Lugosi, 2006). However, our
algorithm is guaranteed to be attribute efficient, comes with finite sample generalization bounds,
and is provably competitive with algorithms which enjoy full access to the data. A related but
different setting is multi-armed bandit on a global budget—see, for example, Guha and Munagala
(2007) and Madani et al. (2004). There one learns the single best arm rather than the best linear
combination of many attributes, as we do here. Similar protocols were also studied in the context
of active learning (Cohn et al., 1994; Balcan et al., 2006; Hanneke, 2007, 2009; Beygelzimer et al.,
2009), where the learner can ask for the target associated with specific examples.

Finally, our technique is reminiscent of methods used in the compressed learning framework
(Calderbank et al., 2009; Zhou et al., 2009), where data is accessed via a small set of random linear
measurements. Unlike compressed learning, where learners are both trained and evaluated in the
compressed domain, our techniques are mainly designed for a scenario in which only the access to
training data is restricted.

We note that a recent follow-up work (Hazan and Koren, 2011) present 1-norm and 2-norm
based algorithms for our local budget setting, whose theoretical guarantees improve on those pre-
sented in this paper, and match our lower bound to within logarithmic factors.

3. Linear Regression

We consider linear regression problems where each example is an instance-target pair, (x,y)∈Rd×
R. We refer to x as a vector of attributes. Throughout the paper we assume that ‖x‖∞ ≤ 1 and
|y| ≤ B. The goal of the learner is to find a linear predictor x �→ 〈w,x〉. In the rest of the paper,
we use the term predictor to denote the vector w ∈ Rd . The performance of a predictor w on an
instance-target pair, (x,y) ∈ Rd ×R, is measured by a loss function �(〈w,x〉,y). For simplicity, we
focus on the squared loss function, �(a,b) = (a− b)2, and briefly mention other loss functions in
Section 8. Following the standard framework of statistical learning (Haussler, 1992; Devroye et al.,
1996; Vapnik, 1998), we model the environment as a joint distribution D over the set of instance-
target pairs, Rd ×R. The goal of the learner is to find a predictor with low risk, defined as the
expected loss

LD(w)
def
= E

(x,y)∼D
[
�(〈w,x〉,y)] .

2. Ben-David and Dichterman (1998) do describe learnability results for similar classes but only under the restricted
family of product distributions.
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Since the distribution D is unknown, the learner relies on a training set of m examples
S=

{
(x1,y1), . . . ,(xm,ym)

}
, which are assumed to be sampled i.i.d. fromD . We denote the training

loss by

LS(w)
def
=
1
m

m

∑
i=1

(〈w,xi〉− yi)
2 .

4. Impossibility Results

Our first result states that any budget learning algorithm (local or global) needs in general a budget
of Ω(d) attributes for learning a d-dimensional linear predictor.

Theorem 1 For any d≥ 4 and ε∈ (
0, 116

)
, there exists a distributionD over {−1,+1}d×{−1,+1}

and a weight vector w� ∈ Rd, with ‖w�‖0 = 1 and ‖w�‖2 = ‖w�‖1 = 2
√
ε, such that any learning

algorithm must see at least

k ≥ 1
2

⌊
d
96ε

⌋
attributes in order to learn a linear predictor w such that LD(w)−LD(w�)< ε.

The proof is given in the Appendix. In Section 6 we prove that under the same assumptions as those
of Theorem 1, it is possible to learn a predictor using a local budget of two attributes per example
and using a total of Õ(d2) training examples. Thus, ignoring logarithmic factors hidden in the Õ
notation, we have a multiplicative gap of d between the lower bound and the upper bound.

Next, we consider the prediction on a budget setting. Greiner et al. (2002) studied this setting
and showed positive results regarding (agnostic) PAC-learning of k-active predictors. A k-active
predictor is restricted to use at most k attributes per test example x, where the choice of the i-th
attribute of x may depend on the values of the i−1 attributes of x that have been already observed.
Greiner et al. (2002) show that it is possible to learn a k-active predictor from training examples
whose performance is slightly worse than that of the best k-active predictor. But, how good are the
predictions of the best k-active predictor? We now show that even in simple cases in which there
exists a linear predictor w� with LD(w�) = 0, the risk of the best k-active predictor can be high.
The following theorem indeed shows that if the only constraint on w� is bounded �2 norm, then the
risk can be as high as 1− k

d . We use the notation LD(A) to denote the expected loss of the k-active
predictor A on a test example.

Theorem 2 There exists a weight vector w� ∈ Rd and a distribution D such that ‖w�‖2 = 1 and
LD(w�) = 0, while any k-active predictor A must have LD(A)≥ 1− k

d .

Note that the risk of the constant prediction of zero is 1. Therefore, the theorem tells us that no
active predictor can get an improvement over the naive predictor of more than k

d .

Proof For any d> k letw�=
(
1
/√

d, . . . ,1
/√

d
)
. Let x∈{±1}d be distributed uniformly at random

and y is determined deterministically to be 〈w�,x〉. Then, LD(w�) = 0 and ‖w�‖2 = 1. Without loss
of generality, suppose the k-active predictor asks for the first k attributes of a test example and forms
its prediction to be ŷ. Since the generation of attributes is independent, we have that the value of
xk+1, . . . ,xd does not depend neither on x1, . . . ,xk nor on ŷ. Using this and the fact that E[x j] = 0 for
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all j we therefore obtain

E
[
(ŷ−〈w�,x〉)2]= E

⎡⎣(ŷ− k

∑
i=1

w�
i xi−

d

∑
j=k+1

w�
j x j

)2⎤⎦
= E

⎡⎣(ŷ− k

∑
i=1

w�
i xi

)2⎤⎦+
d

∑
j=k+1

(w�
j)
2E[x2j ]

+2ŷ
d

∑
j=k+1

w�
j E[x j]−2

k

∑
i=1

d

∑
j=k+1

w�
i w

�
j E[xi]E[x j]

= E

⎡⎣(ŷ− k

∑
i=1

w�
i xi

)2⎤⎦+∑
i>k

(w�
i )
2E[x2i ]+0

≥ 0+ d− k
d

= 1− k
d

which concludes our proof.

It is well known that a low 1-norm of w� encourages sparsity of the learned predictor, which nat-
urally helps in designing active predictors. The following theorem shows that even if we restrict
w� to have ‖w�‖1 = 1, LD(w�) = 0, and ‖w�‖0 > k, we still have that the risk of the best k-active
predictor can be non-vanishing.

Theorem 3 There exists a weight vector w� ∈ Rd and a distribution D such that ‖w�‖1 = 1,
LD(w�) = 0, and ‖w�‖0 = ck (for c > 1) such that any k-active predictor A must have LD(A) ≥(
1− 1

c

)
1
ck .

For example, if in the theorem above we choose c = 2, then ‖w�‖0 = 2k and LD(A) ≥ 1
4k . If we

choose instead c = k+1
k , then ‖w�‖0 = k+ 1 and LD(A) ≥ 1

(k+1)2 . Note that if ‖w�‖0 ≤ k there is a
trivial way to predict on a budget of k attributes by always querying the attributes corresponding to
the non-zero elements of w�.

Proof Let

w� =
(

1
ck , . . . ,

1
ck︸ ︷︷ ︸

ck components

,0, . . . ,0
)

and, similarly to the proof of Theorem2, let x ∈ {±1}d be distributed uniformly at random and let
y be determined deterministically to be 〈w�,x〉. Then, LD(w�) = 0, ‖w�‖1 = 1, and ‖w�‖0 = ck.
Without loss of generality, suppose the k-active predictor asks for the first k < ck attributes of a
test example and form its prediction to be ŷ. Again similarly to the proof of Theorem2, since the
generation of attributes is independent, we have that the value of xk+1, . . . ,xd does not depend on
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x1, . . . ,xk, and on ŷ. Therefore,

E
[
(ŷ−〈w�,x〉)2]= E

⎡⎣(ŷ− k

∑
i=1

w�
i xi

)2⎤⎦+∑
i>k

(w�
i )
2E[x2i ]

≥ 0+ ck− k
(ck)2

=
c−1
c2k

=

(
1− 1

c

)
1
ck

which concludes our proof.

These negative results highlight an interesting phenomenon: in Section 6 we show that one can
learn an arbitrarily accurate predictor w with a local budget of k = 2. However, here we show that
even if we know the optimal w�, we might not be able to accurately predict a new partially observed
example unless k is very large. Therefore, at least in the worst-case sense, learning on a budget is
much easier than predicting on a budget.

5. Local Budget Constraint: A Baseline Algorithm

In this section we describe a straightforward adaptation of Lasso (Tibshirani, 1996) to the local
budget setting. This adaptation is based on a direct nonadaptive estimate of the loss function. In
Section 6 we describe a more effective approach, which combines a stochastic gradient descent
algorithm called Pegasos (Shalev-Shwartz et al., 2007) with the adaptive sampling of attributes to
estimate the gradient of the loss at each step.

A popular approach for learning a linear regressor is to minimize the empirical loss on the
training set plus a regularization term, which often takes the form of a norm of the predictor w. For
example, in ridge regression the regularization term is ‖w‖22 and in Lasso the regularization term
is ‖w‖1. Instead of regularization, we can include a constraint of the form ‖w‖1 ≤ B or ‖w‖2 ≤
B. Modulo an appropriate choice of the parameters, the regularization form is equivalent to the
constraint form. In the constraint form, the predictor is a solution to the following optimization
problem

min
w∈Rd

1
|S| ∑

(x,y)∈S

(〈w,x〉− y
)2

s.t. ‖w‖p ≤ B
(1)

where S= {(x1,y1), . . . ,(xm,ym)} is a training set of m examples, B is the regularization parameter,
and p is 1 for Lasso and 2 for ridge regression.

We start with a standard risk bound for constrained predictors.

Lemma 4 Let D be a distribution on pairs (x,y) ∈ Rd ×R such that ‖x‖∞ ≤ 1 and |y| ≤ B holds
with probability one. Then there exists a constant c> 0 such that

max
w :‖w‖1≤B

∣∣LS(w)−LD(w)
∣∣= cB2

√
1
m
ln
d
δ
.

holds with probability at least 1−δ with respect to the random draw of the training set S of size m
from D .
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Proof We apply the following Rademacher bound (Kakade et al., 2008)

∣∣LS(w)−LD(w)
∣∣≤ LmaxB

√
2
m
ln2d+ �max

√
1
2m
ln
2
δ

that holds with probability at least 1− δ for all w ∈ Rd such that ‖w‖1 ≤ B, where Lmax bounds
the Lipschitz constant for the square loss from above, and �max bounds the square loss from above.
The result then follows by observing that

∣∣(a−y)2− (b−y)2
∣∣≤ |a−b| |a+b−2y| . Hence, Lmax ≤

maxa,b,y |a+b−2y|= 4Bwhere both a and b are of the form 〈w,x〉, and we used the fact ∣∣〈w,x〉∣∣≤B
(recall that ‖x‖∞ ≤ 1) together with the assumption |y| ≤ B. Similarly, under the same assumptions,
�max =maxa,y(a− y)2 = 4B2.

This immediately leads to the following risk bound for Lasso.

Corollary 5 If ŵ is a minimizer of (1) with p= 1, then there exists a constant c> 0 such that, under
the same assumptions as Lemma 4,

LD(ŵ)≤ min
w :‖w‖1≤B

LD(w)+ cB2
√
1
m
ln
d
δ

(2)

holds with probability at least 1−δ over the random draw of the training set S of size m from D .

To adapt Lasso to the partial information case, we first rewrite the squared loss as follows:(〈w,x〉− y
)2

= w	xx	w−2yx	w+ y2

wherew,x are column vectors andw	,x	 are their corresponding transpose (i.e., row vectors). Next,
we estimate the matrix xx	 and the vector x using the partial information we have, and then we solve
the optimization problem given in (1) with the estimated values of xx	 and x. To estimate the vector
x we can pick an index i uniformly at random from [d] = {1, . . . ,d} and define the estimation to be
a vector v such that

vr =

{
d xr if r = i

0 else
. (3)

It is easy to verify that v is an unbiased estimate of x, namely, E[v] = x where expectation is with
respect to the choice of the index i. To estimate the matrix xx	 we could pick two indices i, j
independently and uniformly at random from [d], and define the estimation to be a matrix with all
zeros except d2 xix j in the (i, j) entry. However, this yields a non-symmetric matrix which will
make our optimization problem with the estimated matrix non-convex. To overcome this obstacle,
we symmetrize the matrix by adding its transpose and dividing by 2. This sampling process can be
easily generalized to the case where k > 1 attributes can be seen. The resulting baseline procedure3

is given in Algorithm 1.
The following theorem shows that similar to Lasso, the Baseline algorithm is competitive with

the optimal linear predictor with a bounded 1-norm.

3. We note that an even simpler approach is to arbitrarily assume that the correlation matrix is the identity matrix and
then the solution to the loss minimization problem is simply the averaged vector, w = ∑(x,y)∈S yx. In that case, we
can simply replace x by its estimated vector as defined in (3). While this naive approach can work on very simple
classification tasks, it will perform poorly on realistic data sets, in which the correlation matrix is not likely to be
identity. Indeed, in our experiments with the MNIST data set, we found out that this approach performed poorly
relatively to the algorithms proposed in this paper.
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ALGORITHM: Baseline(S,k)
INPUT: Training set S of size m, local budget k ≥ 2 (with k even)
INITIALIZE:  A= 0 ∈ Rd×d ;  v= 0 ∈ Rd ;  y= 0

for each (x,y) ∈ S
v= 0 ∈ Rd ; A= 0 ∈ Rd×d

Choose a setC of k entries from [d], uniformly without replacement
for each c ∈C
vc = vc+

d
k
xc

Randomly splitC into two sets I,J of size k/2 each
for each (i, j) ∈ I× J

Ai, j = Ai, j+2

(
d
k

)2

xix j ; Aj,i = Aj,i+2

(
d
k

)2

xix j

end

 A=  A+
A
m

;  v=  v+2y
v
m

;  y=  y+
y2

m
end
Let L̃S(w) = w	  Aw+w	  v+  y

OUTPUT: ŵ= argmin
w :‖w‖1≤B

L̃S(w)

Figure 1: An adaptation of Lasso to the local budget setting, where the learner can view at most
k attributes of each training example. The predictive performance of this algorithm is
analyzed in Theorem 6.

Theorem 6 Let D be a distribution on pairs (x,y) ∈ Rd ×R such that ‖x‖∞ ≤ 1 and |y| ≤ B with
probability one. Let ŵ be the output of Baseline(S,k), where |S| = m. Then there exists a constant
c> 0 such that

LD(ŵ)≤ min
w :‖w‖1≤B

LD(w)+ c

(
dB
k

)2
√

1
m

ln
d
δ

holds with probability of at least 1− δ over the random draw of the training set S from D and the
algorithm’s own randomization.

The above theorem tells us that for a sufficiently large training set we can find a very good predictor.
Put another way, a large number of examples can compensate for the lack of full information on each
individual example. In particular, to overcome the extra factor (d/k)2 in the bound, which does not
appear in the full information bound given in (2), we need to increase m by a factor of (d/k)4. In
the next subsection, we describe a better, adaptive procedure for the partial information case.

In view of proving Theorem 6, we first show that sampling k elements without replacements
and then averaging the result has the same expectation as sampling just once.
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Lemma 7 Let C be a set of n elements and let f :C→ R be an arbitrary function. Let Ck = {C′ ⊂
C : |C′|= k} and let U be the uniform distribution over Ck. Then

E
C′∼U

[
1
k ∑c′∈C′

f (c′)

]
=

1
n ∑c∈C

f (c) .

Proof We have

E
C′∼U(

[
1
k ∑c′∈C′

f (c′)

]
=

1(n
k

) ∑
C′∈Ck

1
k ∑c′∈C′

f (c′)

=
1

k
(n
k

) ∑
c∈C

f (c)
∣∣{C′ ∈ Ck : c′ ∈C′}∣∣

=

(n−1
k−1

)
k
(n
k

) ∑
c∈C

f (c)

=
1
n ∑c∈C

f (c)

and this concludes the proof.

We now show that the estimation matrix constructed by the Baseline algorithm is likely to be close
to the true correlation matrix over the training set.

Lemma 8 Let At be the matrix constructed at iteration t of the Baseline algorithm and note that
 A = 1

m ∑
m
t=1At. Let X = 1

m ∑
m
t=1 xt x

	
t . Then, with probability of at least 1− δ over the algorithm’s

own randomness we have that

∣∣  Ar,s−Xr,s
∣∣≤ (

d
k

)2
√

8
m

ln

(
2d2

δ

)
r,s= 1, . . . ,d.

Proof Based on Lemma 7, it is easy to verify that E[At ] = x	t xt . Additionally, since we sample

without replacements, each element of At is in
[
−2

(
d
k

)2
,2
(
d
k

)2
]

because we assume ‖xt‖∞ ≤ 1.

Therefore, we can apply Hoeffding’s inequality on each element of  A and obtain that

P
[∣∣  Ar,s−Xr,s

∣∣> ε
]
≤ 2exp

(
−mε2

8

(
k
d

)4
)

.

Combining the above with the union bound we obtain that

P
[
∃(r,s) :

∣∣  Ar,s−Xr,s
∣∣> ε

]
≤ 2d2 exp

(
−mε2

8

(
k
d

)4
)

.

Setting the right-hand side of the above to δ and rearranging terms concludes the proof.

Next, we show that the estimate of the linear part of the objective function is also likely to be
accurate.
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Lemma 9 Let vt be the vector constructed at iteration t of the Baseline algorithm and note that
 v = 1

m ∑
m
t=1 2yt vt . Let  x = 1

m ∑
m
t=1 2yt xt . Then, with probability at least 1− δ over the algorithm’s

own randomness we have that

‖ v−  x‖∞ ≤ dB
k

√
8
m

ln

(
2d
δ

)
.

Proof Based on Lemma 7, it is easy to verify that E[2yt vt ] = 2yt xt . Additionally, since we sample
k elements without replacement, each element of vt is in

[− d
k ,

d
k

]
(because we assume ‖xt‖∞ ≤ 1)

and thus each element of 2ytvt is in
[− 2dB

k , 2dB
k

]
(because we assume that |yt | ≤ B). Therefore, we

can apply Hoeffding’s inequality on each element of  v and obtain that

P
[∣∣  vr−  xr

∣∣> ε
]
≤ 2exp

(
−mε2

8

(
k
dB

)2
)

.

Combining the above with the union bound we obtain that

P
[
∃(r,s) :

∣∣  Ar,s−Xr,s
∣∣> ε

]
≤ 2d exp

(
−mε2

8

(
k
dB

)2
)

.

Setting the right-hand side of the above to δ and rearranging terms concludes proof.

Next, we show that the estimated training loss

L̃S(w) = w	  Aw+w	  v+  y

computed by the Baseline algorithm is close to the true training loss.

Lemma 10 With probability greater than 1− δ over the Baseline algorithm’s own randomization,
for all w such that ‖w‖1 ≤ B,

∣∣L̃S(w)−LS(w)
∣∣≤ (

Bd
k

)2
√

32
m

ln

(
2d2

δ

)
.

Proof Using twice Hölder’s inequality and Lemma 8 we get∣∣w	(  A−X)w
∣∣≤ ‖w‖1

∥∥(  A−X)w
∥∥
∞ ≤ ‖w‖2

1 max
r,s=1,...,d

∣∣(  A−X)r,s
∣∣

≤
(
Bd
k

)2
√

8
m

ln

(
2d2

δ

)
. (4)

Similarly, using Hölder’s inequality and Lemma 9 we also get

∣∣w	( v−  x)
∣∣≤ B2d

k

√
8
m

ln

(
2d
δ

)
. (5)
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Using the triangle inequality, (4)–(5), and the union bound we finally obtain∣∣L̃S(w)−LS(w)
∣∣= ∣∣∣w	  Aw+w	  v+  y−w	Xw−w	  x−  y

∣∣∣
≤ ∣∣w	(  A−X)w

∣∣+ ∣∣w	( v−  x)
∣∣

≤
(
Bd
k

)2
√

8
m

ln

(
2d2

δ

)
+
B2d
k

√
8
m

ln

(
2d
δ

)
which upon slight simplifications concludes the proof.

We are now ready to prove Theorem 6.

Proof (of Theorem 6) Lemma 4 states that with probability greater than 1−δ over the random draw
of a training set S of m examples, for all w such that ‖w‖1 ≤ B, we have that∣∣LS(w)−LD(w)

∣∣= c′B2

√
1
m

ln
d
δ

for some c′ > 0. Combining the above with Lemma 10, we obtain that for some c> 0, with proba-
bility at least 1−δ over both the random draw of the training set and the algorithm’s own random-
ization, ∣∣LD(w)− L̃S(w)

∣∣≤ ∣∣LD(w)−LS(w)
∣∣+ ∣∣LS(w)− L̃S(w)

∣∣≤ c

(
dB
k

)2
√

1
m

ln
d
δ

for all w such that ‖w‖1 ≤ B. The proof of Theorem 6 follows since the Baseline algorithm mini-
mizes L̃S(w).

6. Gradient-Based Attribute Efficient Regression

In this section, by avoiding the estimation of the matrix xx	, we significantly decrease the number
of additional examples sufficient for learning with k attributes per training example. To do so, we do
not try to estimate the loss function but rather to estimate the gradient ∇�(w) = 2

(〈w,x〉−y
)
x, with

respect to w, of the squared loss function �(w) =
(〈w,x〉− y

)2
. Each vector w defines a probability

distribution P over [d] by letting P(i) = |wi|
/‖w‖1. We can estimate the gradient using an even

number k≥ 2 of attributes as follows. First, we randomly pick a subset i1, . . . , ik/2 from [d] according
to the uniform distribution over the k/2-subsets in [d]. Based on this, we estimate the vector x via

v=
2
k
d
k/2

∑
s=1

xis eis (6)

where e j is the j-th element of the canonical basis of Rd . Second, we randomly pick j1, . . . , jk/2

from [d] without replacement according to the distribution defined by w. Based on this, we estimate
the term 〈w,x〉 by

ŷ=
2
k
‖w‖1

k/2

∑
s=1

sgn
(
wjs

)
x js e js . (7)

This allows us to obtain an unbiased estimate of the gradient, as stated by the following simple
result.
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Lemma 11 Fix any w,x ∈ Rd and y ∈ R and let �(w) =
(〈w,x〉− y

)
be the square loss. Then the

estimate
∇̃�(w) = 2

(
ŷ− y

)
v (8)

satisfies E ∇̃�(w) = 2
(〈w,x〉− y

)
x= ∇�(w).

Proof Since E[d x j e j] = x for a random j ∈ [d], Lemma 7 immediately implies that E[v] = x.
Moreover, it is easy to see that E

[‖w‖1 sgn(wi)xi ei] = 〈w,x〉 when i is drawn with probability
P(i) = |wi|

/‖w‖1. Hence E[ŷ] = 〈w,x〉. The proof is concluded by noting that i1, . . . , ik/2 are drawn
independently from j1, . . . , jk/2.

The advantage of the above approach over the loss based approach we took before is that the mag-
nitude of each element of the gradient estimate is order of d ‖w‖1. This is in contrast to what we had
for the loss based approach, where the magnitude of each element of the matrix A was order of d2.
In many situations, the 1-norm of a good predictor is significantly smaller than d and in these cases
the gradient based estimate is better than the loss based estimate. However, while in the previous
approach our estimation did not depend on a specific w, now the estimation depends on w. We
therefore need an iterative learning method in which at each iteration we use the gradient of the loss
function on an individual example. Luckily, the stochastic gradient descent approach conveniently
fits our needs.

Concretely, below we describe a variant of the Pegasos algorithm (Shalev-Shwartz et al., 2007)
for learning linear regressors. Pegasos tries to minimize the regularized risk

min
w

λ
2
‖w‖22 + E

(x,y)∼D

[(〈w,x〉− y
)2]

. (9)

Of course, the distributionD is unknown, and therefore we cannot hope to solve the above problem
exactly. Instead, Pegasos finds a sequence of weight vectors that (on average) converge to the
solution of (9). We start with the all zeros vector w= 0 ∈ Rd . Then, at each iteration Pegasos picks
the next example in the training set (which is equivalent to sampling a fresh example according to
D) and calculates the gradient of the regularized loss

g(w) =
λ
2
‖w‖22+

(〈w,x〉− y
)2

for this example with respect to the current weight vector w. This gradient is simply ∇g(w) =
λw+∇�(w), where ∇�(w) = 2

(〈w,x〉− y
)
x. Finally, Pegasos updates the predictor according to

the gradient descent rule w ← w− 1
λ t∇g(w) where t is the current iteration number. This can be

rewritten as w← (
1− 1

t

)
w− 1

λ t∇�(w).
To apply Pegasos in the partial information case we could simply replace the gradient vector

∇�(w) with its estimation given in (8). However, our analysis shows that it is desirable to maintain
an estimation vector ∇̃�(w) with small magnitude. Since the magnitude of ∇̃�(w) = 2

(
ŷ− y

)
v is

order of d ‖w‖1, we would like to ensure that ‖w‖1 is always smaller than some threshold B. We
achieve this goal by adding an additional projection step at the end of each Pegasos’s iteration.
Formally, the update is performed in two steps as follows

w←
(
1− 1

t

)
w− 1

λ t
2
(
ŷ− y

)
v (10)

w← argmin
u :‖u‖1≤B

‖u−w‖2 (11)
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ALGORITHM: AER(S,k)
INPUT: Training set S of size m, local budget k ≥ 2 (with k even)
PARAMETER: λ> 0
INITIALIZATION: w= 0 ∈ Rd ;  w= w ; t = 1

for each (x,y) ∈ S
v= 0 ∈ Rd ; ŷ= 0
Choose C uniformly at random from all subsets of [d] of size k

2
for each j ∈C
vj = v j+

2
k
d x j

end
for r = 1, . . . ,k/2

sample i from [d] based on P(i) =
|wi|
‖w‖1

(if w= 0 set P(i) = 1/d)

ŷ= ŷ+
2
k

sgn(wi)‖w‖1 xi

end

w=

(
1− 1

t

)
w− 2

λt
(ŷ− y)v

w= argmin
u :‖u‖1≤B

‖u−w‖2

 w=  w+
w
m

; t = t+1

end

OUTPUT:  w

Figure 2: An adaptation of the Pegasos algorithm to the local budget setting. Theorem 12 provides
a performance guarantee for this algorithm.

where v and ŷ are respectively defined by (6) and (7). The projection step (11) can be performed
efficiently in time O(d) using the technique described in Duchi et al. (2008). A pseudo-code of the
resulting Attribute Efficient Regression algorithm is given in Figure 2.

Note that the right-hand side of (10) is w− 1
λt∇ f for the function

f (w) = λ
2‖w‖2

2 +2(ŷ− y)〈v,w〉 . (12)

This observation is used in the proof of the following result, providing convergence guarantees for
AER.

Theorem 12 Let D be a distribution on pairs (x,y) ∈ Rd ×R such that ‖x‖∞ ≤ 1 and |y| ≤ B with
probability one. Let S be a training set of size m and let  w be the output of AER(S,k) run with
λ= 12d

√
log(m)/(mk). Then, there exists a constant c> 0 such that

LD(  w)≤ min
w :‖w‖1≤B

LD(w)+ cdB2

√
1
km

ln
m
δ
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holds with probability at least 1−δ over both the choice of the training set and the algorithm’s own
randomization.

Proof Let yt , ŷt ,vt ,wt be the values of y, ŷ,v,w, respectively, at each iteration t of the AER algorithm.
Moreover, let ∇t = 2(〈wt ,xt〉− yt)xt and ∇̃t = 2(ŷt − yt)vt . From the convexity of the squared loss,
and taking expectation with respect to the algorithm’s own randomization, we have that for any
vector w� such that ‖w�‖1 ≤ B,

E

[
m

∑
t=1

(〈wt ,xt〉− yt
)2]−

m

∑
t=1

(〈w�,xt〉− yt
)2 ≤ E

[
m

∑
t=1

〈∇t ,wt −w�〉
]

= E

[
m

∑
t=1

〈∇̃t ,wt −w�〉
]

= E

[
m

∑
t=1

2(ŷt − yt)〈vt ,wt −w�〉
]
.

For the first equality we used Lemma 11, which states that, conditioned on wt , E
[
∇̃t
]
= ∇t .

We now deterministically bound the random quantity inside the above expectation as follows

m

∑
t=1

2(ŷt − yt)〈vt ,wt −w�〉=
m

∑
t=1

(
λ
2
‖wt‖22+2(ŷt − yt)〈vt ,wt〉

)
−

m

∑
t=1

(
λ
2
‖w�‖22+2(ŷt − yt)〈vt ,w�〉

)
+m

λ
2
‖w�‖22

=
m

∑
t=1

ft(wt)−
m

∑
t=1

ft(w
�)+m

λ
2
‖w�‖22

where ft(w) = λ
2‖w‖22+2(ŷt−yt)〈vt ,w〉 is the λ-strongly convex function defined in (12). Recalling

that the right-hand side in the AER update (10) is equal to wt − 1
λt∇ ft(wt), we can apply the fol-

lowing logarithmic regret bound for λ-strongly convex functions (Hazan et al., 2006; Kakade and
Shalev-Shwartz, 2008)

m

∑
t=1

ft(wt)−
m

∑
t=1

ft(w
�)≤ 1

λ

(
max
t

‖∇ ft(wt)‖2
)
lnm

which remains valid also in the presence of the projection steps (11). Similarly to the analysis of
Pegasos, and using our assumptions on ‖xt‖∞ and |yt |, the norm of the gradient ∇ ft(wt) is bounded
as follows ∥∥∇ ft(wt)∥∥≤ λ‖wt‖+2

∣∣ŷt − yt
∣∣‖vt‖ ≤ λ‖wt‖+4Bd

√
2
k
.

In addition, it is easy to verify (e.g., using an iductive argument) that

‖wt‖ ≤ 1
λ
4Bd

√
2
k
,

which yields ∥∥∇ ft(wt)∥∥≤ 8Bd
√
2
k
.
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This gives the bound

m

∑
t=1

2(ŷt − yt)〈vt ,wt −w�〉 ≤ 128(dB)2

λk
lnm+m

λ
2
‖w�‖2

2 .

Choosing λ= 16d
√

log(m)/(km) and noting that ‖ · ‖2 ≤ ‖ · ‖1 we get that

m

∑
t=1

2(ŷt − yt)〈vt ,wt −w�〉 ≤ 16dB2

√
m
k

lnm .

The resulting bound is then

E

[
m

∑
t=1

(〈wt ,xt〉− yt
)2

]
≤

m

∑
t=1

(〈w�,xt〉− yt
)2

+16dB2

√
m
k

lnm .

To conclude the proof, we apply the online-to-batch conversion of Cesa-Bianchi et al. (2004, Corol-
lary 2) to the probability space that includes both the algorithm’s own randomization and the prod-
uct distribution from which the training set is drawn. Since

(〈w,xt〉− yt
)2 ≤ 4B2 for all w such

that ‖w‖1 ≤ B (recall our assumptions on xt and yt), and using the convexity of the square loss, we
obtain that

LD(  w)≤ inf
w :‖w‖≤B

LD(w)+16dB2

√
1
km

lnm+4B2

√
2
m

ln
1
δ

holds with probability at least 1−δ with respect to all random events.

Note that for small values of k (which is the reasonable regime here) the bound for AER is much
better than the bound for Baseline: ignoring logarithmic factors, instead of quadratic dependence
on d, we have only linear dependence on d.

It is interesting to compare the bound for AER to the Lasso bound (2) for the full information
case. As it can be seen, to achieve the same level of risk, AER needs a factor of d2/k more examples
than the full information Lasso.4 Since each AER example uses only k attributes while each Lasso
example uses all d attributes, the ratio between the total number of attributes AER needs and the
number of attributes Lasso needs to achieve the same error is O(d). Intuitively, when having d times
total number of attributes, we can fully compensate for the partial information protocol.

However, in some situations even this extra d factor is not needed. Indeed, suppose we know
that the vector w�, which minimizes the risk, is dense. That is, it satisfies ‖w�‖1 ≈ √

d ‖w�‖2 ≤ B.
In this case, by setting λ= d3/2

√
log(m)/(km), and using the tighter bound ‖w�‖2 ≤ B

/√
d instead

of ‖w�‖2 ≤ ‖w�‖1 ≤ B in the proof of Theorem 12, we get a final bound of the form

LD(  w)≤ LD(w
�)+ cB2

√
d
km

ln
m
δ
.

Therefore, the number of examples AER needs in order to achieve the same error as Lasso is only
a factor d/k more than the number of examples Lasso uses. But, this implies that both AER and
Lasso needs the same number of attributes in order to achieve the same level of error! Crucially, the
above holds only if w� is dense. When w� is sparse we have ‖w�‖1 ≈ ‖w�‖2 and then AER needs
more attributes than Lasso.

4. We note that when d = k we still do not recover the full information bound. However, it is possible to improve the
analysis and replace the factor d/

√
k with a factor d

(
maxt ‖xt‖2

)/
k.
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Figure 3: In the upper row six examples from the training set (of digits 3 and 5) are shown. In the lower
row we show the same six examples, where only four randomly sampled pixels from each original
image are displayed.

7. Experiments

We performed some experiments to test the behavior of our algorithm on the well-known MNIST
digit recognition data set (Le Cun et al., 1998), which contains 70,000 images (28×28 pixels each)
of the digits 0− 9. The advantages of this data set for our purposes is that it is not a small scale
data set, has a reasonable dimensionality-to-data-size ratio, and the setting is clearly interpretable
graphically. While this data set is designed for classification (e.g., recognizing the digit in the
image), we can still apply our algorithms on it by regressing to the label.

First, to demonstrate the hardness of our settings, we provide in Figure 3 below some examples
of images from the data set, in the full information setting and the partial information setting. The
upper row contains six images from the data set, as available to a full information algorithm. A
partial information algorithm, however, will have a much more limited access to these images. In
particular, if the algorithm may only choose k = 4 pixels from each image, the same six images as
available to it might look like the bottom row of Figure 3.

We began by looking at a data set composed of “3” vs. “5”, where all the “3” digits were labeled
as−1 and all the “5” digits were labeled as+1. We ran four different algorithms on this data set: the
simple Baseline algorithm, AER, as well as ridge regression and Lasso for comparison (for Lasso,
we solved (1) with p= 1). Both ridge regression and Lasso were run in the full information setting:
Namely, they enjoyed full access to all attributes of all examples in the training set. The Baseline
algorithm and AER, however, were given access to only four attributes from each training example.

We randomly split the data set into a training set and a test set (with the test set being 10% of the
original data set). For each algorithm, parameter tuning was performed using 10-fold cross valida-
tion. Then, we ran the algorithm on increasingly long prefixes of the training set, and measured the
average regression error (〈w,x〉− y)2 on the test set. The results (averaged over runs on 10 random
train-test splits) are presented in Figure 4. In the upper plot, we see how the test regression error
improves with the number of examples. The Baseline algorithm is highly unstable at the beginning,
probably due to the ill-conditioning of the estimated covariance matrix, although it eventually stabi-
lizes (to prevent a graphical mess at the left hand side of the figure, we removed the error bars from
the corresponding plot). Its performance is worse than AER, completely in line with our earlier
theoretical analysis.
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The bottom plot of Figure 4 is similar, only that now the X-axis represents the accumulative
number of attributes seen by each algorithm rather than the number of examples. For the partial-
information algorithm, the graph ends at approximately 49,000 attributes, which is the total number
of attributes accessed by the algorithm after running over all training examples, seeing k = 4 pixels
from each example. However, for the full-information algorithms 49,000 attributes are already
seen after just 62 examples. When we compare the algorithms in this way, we see that our AER
algorithm achieves excellent performance for a given attribute budget, significantly better than the
other 1-norm-based algorithms (Baseline and Lasso). Moreover, AER is even comparable to the
full information 2-norm-based ridge regression algorithm, which performs best on this data set.
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Figure 4: Test regression error for each one of the four algorithms (ridge regression, Lasso, AER, and Base-
line), over increasing prefixes of the training set for “3” vs. “5”. The results are averaged over 10
runs.
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Finally, we tested the algorithms over 45 data sets generated fromMNIST, one for each possible
pair of digits. For each data set and each of 10 random train-test splits, we performed parameter
tuning for each algorithm separately, and checked the average squared error on the test set. The
median test errors over all data sets are presented in the table below.

Test Error
Full Information Ridge 0.110

Lasso 0.222
Partial Information AER 0.320

Baseline 0.812

As can be seen, the AER algorithm manages to achieve good performance, not much worse
than the full information Lasso algorithm. The Baseline algorithm, however, achieves a substan-
tially worse performance, in line with our theoretical analysis above. We also calculated the test
classification error of AER, that is, sign(〈w,x〉) 
= y, and found out that AER, which can see only
4 pixels per image, usually performs only a little worse than the full information algorithms (ridge
regression and Lasso), which enjoy full access to all 784 pixels in each image. In particular, the
median test classification errors of AER, Lasso, and Ridge are 3.5%, 1.1%, and 1.3% respectively.

8. Discussion and Extensions

In this paper we have investigated three budgeted learning settings with different constraints on the
way instance attributes may be accessed: a local constraint on each training example (local budget),
a global constraint on the set of all training examples (global budget), and a constraint on each test
example (prediction on a budget). In the local budget setting, we have introduced a simple and
efficient algorithm, AER, that learns by accessing a pre-specified number of attributes from each
training example. The AER algorithm comes with formal guarantees, is provably competitive with
algorithms which enjoy full access to the data, and performs well in simple experiments. This result
is complemented by a general lower bound for the global budget setting which is a factor d smaller
than the upper bound achieved by our algorithm. We note that this gap has been recently closed
by Hazan and Koren (2011), which in our local budget setting, show 1-norm and 2-norm-based
algorithms for learning linear predictors using only Õ(d) attributes, thus matching our lower bound
to within logarithmic factors.

Whereas AER is based on Pegasos, our adaptive sampling approach easily extends to other
gradient-based algorithms. For example, generalized additive algorithms such as p-norm Percep-
trons and Winnow—see, for example, Cesa-Bianchi and Lugosi (2006).

In contrast to the local/global budget settings, where we can learn efficiently by accessing few
attributes of each training example, we showed that accessing a limited number of attributes at test
time is a significantly harder setting. Indeed, we proved that is not possible to build an active linear
predictor that uses two attributes of each test example and whose error is smaller than a certain
constant, even when there exists a linear predictor achieving zero error on the same data source.

An obvious direction for future research is how to deal with loss functions other than the squared
loss. In related work (Cesa-Bianchi et al., 2010), we developed a technique which allows us to
deal with arbitrary analytic loss functions. However, in the setting of this paper, those techniques
would lead to sample complexity bounds which are exponential in d. Another interesting extension
we are considering is connecting our results to the field of privacy-preserving learning (Dwork,
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2008), where the goal is to exploit the attribute efficiency property in order to prevent acquisition of
information about individual data instances.
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Appendix A. Proof of Theorem 1

The outline of the proof is as follows. We define a specific distribution such that only one “good”
feature is slightly correlated with the label. We then show that if some algorithm learns a linear
predictor with an extra risk of at most ε, then it must know the value of the good feature. Next, we
construct a variant of a multi-armed bandit problem out of our distribution and show that a good
learner can yield a good prediction strategy. Finally, we adapt a lower bound for the multi-armed
bandit problem given in Auer et al. (2003), to conclude that the number k of attributes viewed by a
good learner must satisfy k =Ω

(
d
ε

)
.

A.1 The Distribution

We generate a joint distribution over Rd ×R as follows. Choose some j ∈ [d]. First, we generate
y1,y2, . . . ∈ {±1} i.i.d. according to P

[
yt = 1

]
= P

[
yt = −1] = 1

2 . Given j and yt , xt ∈ {±1} is
generated according to P

[
xt,i = yt

]
= 1

2 +1{i= j}p where p > 0 is chosen later. Denote by P j

the distribution mentioned above assuming the “good” feature is j. Also denote by Pu the uniform
distribution over {±1}d+1. Analogously, we denote by E j and Eu expectations w.r.t. P j and Pu.

A.2 A Good Regressor “Knows” j

We now show that if we have a good linear regressor than we can know the value of j. It is easy to
see that the optimal linear predictor under the distribution P j is w� = 2pe j, and the risk of w� is

LP j(w
�) =E j

[
(〈w�,x〉−y)2

]
=
(
1
2 + p

)
(1−2p)2+(

1
2 − p

)
(1+2p)2 = 1+4p2−8p2 = 1−4p2 .

The risk of an arbitrary weight vector w under Pj is

LP j(w) = E j
[
(〈w,x〉− y)

]2
=∑

i
= j

w2i +E j
[
(wjx j− y)2

]
=∑

i
= j

w2i +w2j +1−4pwj .

Suppose that LP j(w)−LP j(w
�)< ε. This implies that:

1. For all i 
= j we have w2i < ε, or equivalently, |wi|<
√
ε.

2. 1+w2j −4pwj− (1−4p2)< ε and thus |wj−2p|<
√
ε which gives |wj|> 2p−

√
ε.

By choosing p =
√
ε, the above implies that we can identify the value of j from any w whose risk

is strictly smaller than LP j(w
�)+ ε.
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A.3 Constructing A Variant Of A Multi-Armed Bandit Problem

We now construct a variant of the multi-armed bandit problem out of the distribution P j. Each
coordinate i ∈ {1, . . . ,d} is an arm and the reward of pulling i at time t is 1{xNi,t ,i = yNi,t} ∈ {0,1},
where Ni,t denotes the random number of times arm i has been pulled in the first t plays. Hence the
expected reward of pulling i is 12 +1{i= j}p. At the end of each round t the player observes xNi,t ,i
and yNi,t .

A.4 A Good Learner Yields A Bandit Strategy

Suppose that we have a learner that, for any j = 1, . . . ,d, can learn a linear predictor with LP j(w)−
LP j(w

�)< ε using k attributes. Since we have shown that once LP j(w)−LP j(w
�)< ε we know the

value of j, we can construct a strategy for the multi-armed bandit problem in a straightforward way.
Simply use the first m examples to learn w and from then on always pull the arm j. The expected
reward of this strategy under any P j after T ≥ k plays is at least

k
2
+(T − k)

(
1
2
+ p

)
=
T
2
+(T − k)p . (13)

A.5 An Upper Bound On the Reward Of Any Bandit Strategy

Recall that under distribution P j the expected reward for pulling arm I is 12 + p1{I = j}. Hence,
the total expected reward of a player that runs for T rounds is upper bounded by 1

2T + pE j[Nj],
where Nj = Nj,T is the overall number of pulls of arm j. Moreover, at the end of each round t the
player observes xs,i and ys, where s=Ni,t . This allows the player to compute the value of the reward
for the current play. For any s, note that ys is observed whenever some arm i is pulled for the s-th
time. However, since P j

[
xi,s = ys

]
= P j

[
xi,s = ys | ys

]
for all i (including i = j), the knowledge of

ys does not provide any information about the distribution of rewards for arm i. Therefore, without
loss of generality, we can assume that at each play the bandit strategy observes only the obtained
binary reward. This implies that our bandit construction is identical to the one used in the proof of
Theorem 5.1 in Auer et al. (2003). In particular, for any bandit strategy there exists some arm j such
that the expected reward of the strategy under distribution P j is at most

T
2
+ p

(
T
d
+T

√
−T
d
ln(1−4p2)

)
≤ T
2
+ p

(
T
d
+T

√
6T
d
p2

)
(14)

where we used the inequality − ln(1− q) ≤ 3
2q for q ∈ [0,1/4]. Note that q = 4p2 = 4ε ∈ [0,1/4]

when ε≤ 1/16.

A.6 Concluding The Proof

Take a learning algorithm that finds an ε-good predictor using k attributes. Since the reward of the
strategy based on this learning algorithm cannot exceed the upper bound given in (14), from (13)
we obtain that

T
2
+(T − k)p≤ T

2
+ p

(
T
d
+T

√
6T
d
p2

)
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which solved for k gives

k ≥ T

(
1− 1

d
−
√
6T
d
p2

)
.

Since we assume d ≥ 4, choosing T =
⌊
d
/
(96p2)

⌋
, and recalling p2 = ε, gives

k ≥ T
2
=
1
2

⌊
d
96ε

⌋
.
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Abstract
In the efficient global optimization problem, we minimize an unknown function f , using as few ob-
servations f (x) as possible. It can be considered a continuum-armed-bandit problem, with noiseless
data, and simple regret. Expected-improvement algorithms are perhaps the most popular methods
for solving the problem; in this paper, we provide theoretical results on their asymptotic behaviour.

Implementing these algorithms requires a choice of Gaussian-process prior, which determines
an associated space of functions, its reproducing-kernel Hilbert space (RKHS). When the prior is
fixed, expected improvement is known to converge on the minimum of any function in its RKHS.
We provide convergence rates for this procedure, optimal for functions of low smoothness, and
describe a modified algorithm attaining optimal rates for smoother functions.

In practice, however, priors are typically estimated sequentially from the data. For standard
estimators, we show this procedure may never find the minimum of f . We then propose alternative
estimators, chosen to minimize the constants in the rate of convergence, and show these estimators
retain the convergence rates of a fixed prior.
Keywords: convergence rates, efficient global optimization, expected improvement, continuum-
armed bandit, Bayesian optimization

1. Introduction

Suppose we wish to minimize a continuous function f : X →R, where X is a compact subset of Rd .
Observing f (x) is costly (it may require a lengthy computer simulation or physical experiment), so
we wish to use as few observations as possible. We know little about the shape of f ; in particular
we will be unable to make assumptions of convexity or unimodality. We therefore need a global
optimization algorithm, one which attempts to find a global minimum.

Many standard global optimization algorithms exist, including genetic algorithms, multistart,
and simulated annealing (Pardalos and Romeijn, 2002), but these algorithms are designed for func-
tions that are cheap to evaluate. When f is expensive, we need an efficient algorithm, one which
will choose its observations to maximize the information gained.

We can consider this a continuum-armed-bandit problem (Srinivas et al., 2010, and references
therein), with noiseless data, and loss measured by the simple regret (Bubeck et al., 2009). At time
n, we choose a design point xn ∈ X , make an observation zn = f (xn), and then report a point x∗n
where we believe f (x∗n) will be low. Our goal is to find a strategy for choosing the xn and x∗n, in
terms of previous observations, so as to minimize f (x∗n).

We would like to find a strategy which can guarantee convergence: for functions f in some
smoothness class, f (x∗n) should tend to min f , preferably at some fast rate. The simplest method

c©2011 Adam D. Bull.
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would be to fix a sequence of xn in advance, and set x∗n = argmin f̂n, for some approximation f̂n
to f . We will show that if f̂n converges in supremum norm at the optimal rate, then f (x∗n) also
converges at its optimal rate. However, while this strategy gives a good worst-case bound, on
average it is clearly a poor method of optimization: the design points xn are completely independent
of the observations zn.

We may therefore ask if there are more efficient methods, with better average-case performance,
that nevertheless provide good guarantees of convergence. The difficulty in designing such a method
lies in the trade-off between exploration and exploitation. If we exploit the data, observing in regions
where f is known to be low, we will be more likely to find the optimum quickly; however, unless
we explore every region of X , we may not find it at all (Macready and Wolpert, 1998).

Initial attempts at this problem include work on Lipschitz optimization (summarized in Hansen
et al., 1992) and the DIRECT algorithm (Jones et al., 1993), but perhaps the best-known strategy is
expected improvement. It is sometimes called Bayesian optimization, and first appeared in Močkus
(1974) as a Bayesian decision-theoretic solution to the problem. Contemporary computers were not
powerful enough to implement the technique in full, and it was later popularized by Jones et al.
(1998), who provided a computationally efficient implementation. More recently, it has also been
called a knowledge-gradient policy by Frazier et al. (2009). Many extensions and alterations have
been suggested by further authors; a good summary can be found in Brochu et al. (2010).

Expected improvement performs well in experiments (Osborne, 2010, §9.5), but little is known
about its theoretical properties. The behaviour of the algorithm depends crucially on the Gaussian
process prior π chosen for f . Each prior has an associated space of functions H , its reproducing-
kernel Hilbert space. H contains all functions X → R as smooth as a posterior mean of f , and is
the natural space in which to study questions of convergence.

Vazquez and Bect (2010) show that when π is a fixed Gaussian process prior of finite smooth-
ness, expected improvement converges on the minimum of any f ∈ H , and almost surely for f
drawn from π. Grunewalder et al. (2010) bound the convergence rate of a computationally infea-
sible version of expected improvement: for priors π of smoothness ν, they show convergence at a
rate O∗(n−(ν∧0.5)/d) on f drawn from π. We begin by bounding the convergence rate of the feasible
algorithm, and show convergence at a rate O∗(n−(ν∧1)/d) on all f ∈ H . We go on to show that a
modification of expected improvement converges at the near-optimal rate O∗(n−ν/d).

For practitioners, however, these results are somewhat misleading. In typical applications, the
prior is not held fixed, but depends on parameters estimated sequentially from the data. This process
ensures the choice of observations is invariant under translation and scaling of f , and is believed
to be more efficient (Jones et al., 1998, §2). It has a profound effect on convergence, however:
Locatelli (1997, §3.2) shows that, for a Brownian motion prior with estimated parameters, expected
improvement may not converge at all.

We extend this result to more general settings, showing that for standard priors with estimated
parameters, there exist smooth functions f on which expected improvement does not converge. We
then propose alternative estimates of the prior parameters, chosen to minimize the constants in the
convergence rate. We show that these estimators give an automatic choice of parameters, while
retaining the convergence rates of a fixed prior.

Table 1 summarizes the notation used in this paper. We say f : Rd → R is a bump function if
f is infinitely differentiable and of compact support, and f : Rd → C is Hermitian if f (x) = f (−x).
We use the Landau notation f =O(g) to denote limsup| f/g|<∞, and f = o(g) to denote f/g→ 0.
If g = O( f ), we say f = Ω(g), and if both f = O(g) and f = Ω(g), we say f = Θ(g). If further
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f/g→ 1, we say f ∼ g. Finally, if f and g are random, and P(sup| f/g| ≤M) → 1 as M → ∞, we
say f = Op(g).

In Section 2, we briefly describe the expected-improvement algorithm, and detail our assump-
tions on the priors used. We state our main results in Section 3, and discuss implications for further
work in Section 4. Finally, we give proofs in Appendix A.

2. Expected Improvement

Suppose we wish to minimize an unknown function f , choosing design points xn and estimated
minima x∗n as in the introduction. If we pick a prior distribution π for f , representing our beliefs
about the unknown function, we can describe this problem in terms of decision theory. Let (Ω,F ,P)
be a probability space, equipped with a random process f having law π. A strategy u is a collection
of random variables (xn), (x∗n) taking values in X . Set zn := f (xn), and define the filtration Fn :
= σ(xi,zi : i ≤ n). The strategy u is valid if xn is conditionally independent of f given Fn−1, and
likewise x∗n given Fn. (Note that we allow random strategies, provided they do not depend on
unknown information about f .)

When taking probabilities and expectations we will write Puπ and E
u
π, denoting the dependence

on both the prior π and strategy u. The average-case performance at some future time N is then
given by the expected loss,

Euπ[ f (x
∗
N)−min f ],

and our goal, given π, is to choose the strategy u to minimize this quantity.

2.1 Bayesian Optimization

For N > 1 this problem is very computationally intensive (Osborne, 2010, §6.3), but we can solve
a simplified version of it. First, we restrict the choice of x∗n to the previous design points x1, . . . ,xn.
(In practice this is reasonable, as choosing an x∗n we have not observed can be unreliable.) Secondly,
rather than finding an optimal strategy for the problem, we derive the myopic strategy: the strategy
which is optimal if we always assume we will stop after the next observation. This strategy is sub-
optimal (Ginsbourger et al., 2008, §3.1), but performs well, and greatly simplifies the calculations
involved.

In this setting, given Fn, if we are to stop at time n we should choose x∗n := xi∗n , where i
∗
n :=

argmin1,...,n zi. (In the case of ties, we may pick any minimizing i∗n.) We then suffer a loss z∗n−min f ,
where z∗n := zi∗n . Were we to observe at xn+1 before stopping, the expected loss would be

Euπ[z
∗
n+1−min f | Fn],

so the myopic strategy should choose xn+1 to minimize this quantity. Equivalently, it should maxi-
mize the expected improvement over the current loss,

EIn(xn+1;π) := Euπ[z
∗
n− z∗n+1 | Fn] = Euπ[(z

∗
n− zn+1)

+ | Fn], (1)

where x+ =max(x,0).
So far, we have merely replaced one optimization problem with another. However, for suitable

priors, EIn can be evaluated cheaply, and thus maximized by standard techniques. The expected-
improvement algorithm is then given by choosing xn+1 to maximize (1).
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Section 1

f unknown function X → R to be minimized
X compact subset of Rd to minimize over
d number of dimensions to minimize over
xn points in X at which f is observed
zn observations zn = f (xn) of f
x∗n estimated minimum of f , given z1, . . . ,zn

Section 2.1

π prior distribution for f
u strategy for choosing xn, x∗n
Fn filtration Fn = σ(xi,zi : i≤ n)
z∗n best observation z∗n =mini=1,...,n zi
EIn expected improvement given Fn

Section 2.2

μ, σ2 global mean and variance of Gaussian-process prior π
K underlying correlation kernel for π
Kθ correlation kernel for π with length-scales θ
ν, α smoothness parameters of K

μ̂n, f̂n, s2n, R̂
2
n quantities describing posterior distribution of f given Fn

Section 2.3

EI(π) expected improvement strategy with fixed prior
σ̂2n, θ̂n estimates of prior parameters σ2, θ
cn rate of decay of σ̂2n

θL, θU bounds on θ̂n
EI(π̂) expected improvement strategy with estimated prior

Section 3.1

Hθ(S) reproducing-kernel Hilbert space of Kθ on S
Hs(D) Sobolev Hilbert space of order s on D

Section 3.2

Ln loss suffered over an RKHS ball after n steps

Section 3.3

EI(π̃) expected improvement strategy with robust estimated prior

Section 3.4

EI( · ,ε) ε-greedy expected improvement strategies

Table 1: Notation
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2.2 Gaussian Process Models

We still need to choose a prior π for f . Typically, we model f as a stationary Gaussian process: we
consider the values f (x) to be jointly Gaussian, with mean and covariance

Eπ[ f (x)] = μ, Covπ[ f (x), f (y)] = σ2Kθ(x− y). (2)

μ∈R is the global mean of f ; we place a flat prior on μ, reflecting our uncertainty over the location
of f .

σ> 0 is the global scale of variation of f , and Kθ :Rd →R its correlation kernel, governing the
local properties of f . In the following, we will consider kernels

Kθ(t1, . . . , td) := K(t1/θ1, . . . , td/θd), (3)

for an underlying kernel K with K(0) = 1. (Note that we can always satisfy this condition by
suitably scaling K and σ.) The θi > 0 are the length-scales of the process: two values f (x) and f (y)
will be highly correlated if each xi− yi is small compared with θi. For now, we will assume the
parameters σ and θ are fixed in advance.

For (2) and (3) to define a consistent Gaussian process, K must be a symmetric positive-definite
function. We will also make the following assumptions.

Assumption 1. K is continuous and integrable.

K thus has Fourier transform

K̂(ξ) :=
∫
Rd
e−2πi〈x,ξ〉K(x)dx,

and by Bochner’s theorem, K̂ is non-negative and integrable.

Assumption 2. K̂ is isotropic and radially non-increasing.

In other words, K̂(x) = k̂(‖x‖) for a non-increasing function k̂ : [0,∞) → [0,∞); as a consequence,
K is isotropic.

Assumption 3. As x→ ∞, either:

(i) K̂(x) =Θ(‖x‖−2ν−d) for some ν> 0; or

(ii) K̂(x) = O(‖x‖−2ν−d) for all ν> 0 (we will then say that ν= ∞).

Note the condition ν> 0 is required for K̂ to be integrable.

Assumption 4. K is Ck, for k the largest integer less than 2ν, and at the origin, K has k-th order
Taylor approximation Pk satisfying

|K(x)−Pk(x)|= O
(
‖x‖2ν(− log‖x‖)2α

)
as x→ 0, for some α≥ 0.
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When α = 0, this is just the condition that K be 2ν-Hölder at the origin; when α > 0, we instead
require this condition up to a log factor.

The rate ν controls the smoothness of functions from the prior: almost surely, f has continuous
derivatives of any order k < ν (Adler and Taylor, 2007, §1.4.2). Popular kernels include the Matérn
class,

Kν(x) :=
21−ν

Γ(ν)

(√
2ν‖x‖

)ν
kν
(√
2ν‖x‖

)
, ν ∈ (0,∞),

where kν is a modified Bessel function of the second kind, and the Gaussian kernel,

K∞(x) := e−
1
2‖x‖2 ,

obtained in the limit ν→ ∞ (Rasmussen and Williams, 2006, §4.2). Between them, these kernels
cover the full range of smoothness 0< ν≤∞. Both kernels satisfy Assumptions 1–4 for the ν given;
α= 0 except for the Matérn kernel with ν ∈N, where α= 1

2 (Abramowitz and Stegun, 1965, §9.6).
Having chosen our prior distribution, we may now derive its posterior. We find

f (x) | z1, . . . ,zn ∼ N
(
f̂n(x;θ),σ2s2n(x;θ)

)
,

where

μ̂n(θ) :=
1TV−1z
1TV−11

, (4)

f̂n(x;θ) := μ̂n+ vTV−1(z− μ̂n1), (5)

and

s2n(x;θ) := 1− vTV−1v+
(1−1TV−1v)2

1TV−11
, (6)

for z= (zi)ni=1, V = (Kθ(xi− x j))ni, j=1, and v= (Kθ(x− xi))ni=1 (Santner et al., 2003, §4.1.3). Equiv-
alently, these expressions are the best linear unbiased predictor of f (x) and its variance, as given in
Jones et al. (1998, §2). We will also need the reduced sum of squares,

R̂2n(θ) := (z− μ̂n1)
TV−1(z− μ̂n1). (7)

2.3 Expected Improvement Strategies

Under our assumptions on π, we may now derive an analytic form for (1), as in Jones et al. (1998,
§4.1). We obtain

EIn(xn+1;π) = ρ
(
z∗n− f̂n(xn+1;θ),σsn(xn+1;θ)

)
, (8)

where

ρ(y,s) :=

{
yΦ(y/s)+ sϕ(y/s), s> 0,

max(y,0), s= 0,
(9)

and Φ and ϕ are the standard normal distribution and density functions respectively.
For a prior π as above, expected improvement chooses xn+1 to maximize (8), but this does not

fully define the strategy. Firstly, we must describe how the strategy breaks ties, when more than one
x ∈ X maximizes EIn. In general, this will not affect the behaviour of the algorithm, so we allow
any choice of xn+1 maximizing (8).
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Secondly, we must say how to choose x1, as the above expressions are undefined when n = 0.
In fact, Jones et al. (1998, §4.2) find that expected improvement can be unreliable given few data
points, and recommend that several initial design points be chosen in a random quasi-uniform ar-
rangement. We will therefore assume that until some fixed time k, points x1, . . . ,xk are instead
chosen by some (potentially random) method independent of f . We thus obtain the following strat-
egy.

Definition 1. An EI(π) strategy chooses:

(i) initial design points x1, . . . ,xk independently of f ; and

(ii) further design points xn+1 (n≥ k) from the maximizers of (8).

So far, we have not considered the choice of parameters σ and θ. While these can be fixed in
advance, doing so requires us to specify characteristic scales of the unknown function f , and causes
expected improvement to behave differently on a rescaling of the same function. We would prefer
an algorithm which could adapt automatically to the scale of f .

A natural approach is to take maximum likelihood estimates of the parameters, as recommended
by Jones et al. (1998, §2). Given θ, the MLE σ̂2n = R̂2n(θ)/n; for full generality, we will allow
any choice σ̂2n = cnR̂2n(θ), where cn = o(1/ logn). Estimates of θ, however, must be obtained by
numerical optimization. As θ can vary widely in scale, this optimization is best performed over
logθ; as the likelihood surface is typically multimodal, this requires the use of a global optimizer.
We must therefore place (implicit or explicit) bounds on the allowed values of logθ. We have thus
described the following strategy.

Definition 2. Let π̂n be a sequence of priors, with parameters σ̂n, θ̂n satisfying:

(i) σ̂2n = cnR̂2n(θ̂n) for constants cn > 0, cn = o(1/ logn); and

(ii) θL ≤ θ̂n ≤ θU for constants θL, θU ∈ Rd
+.

An EI(π̂) strategy satisfies Definition 1, replacing π with π̂n in (8).

3. Convergence Rates

To discuss convergence, we must first choose a smoothness class for the unknown function f .
Each kernel Kθ is associated with a space of functions Hθ(X), its reproducing-kernel Hilbert space
(RKHS) or native space. Hθ(X) contains all functions X → R as smooth as a posterior mean of
f , and is the natural space to study convergence of expected-improvement algorithms, allowing a
tractable analysis of their asymptotic behaviour.

3.1 Reproducing-Kernel Hilbert Spaces

Given a symmetric positive-definite kernel K on Rd , set kx(t) = K(t− x). For S ⊆ Rd , let E(S) be
the space of functions S → R spanned by the kx, for x ∈ S. Furnish E(S) with the inner product
defined by

〈kx,ky〉 := K(x− y).
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The completion of E(S) under this inner product is the reproducing-kernel Hilbert space H (S) of K
on S. The members f ∈H (S) are abstract objects, but we can identify them with functions f : S→R

through the reproducing property,
f (x) = 〈 f ,kx〉,

which holds for all f ∈E(S). See Aronszajn (1950), Berlinet and Thomas-Agnan (2004), Wendland
(2005) and van der Vaart and van Zanten (2008).

We will find it convenient also to use an alternative characterization of H (S). We begin by
describing H (Rd) in terms of Fourier transforms. Let f̂ denote the Fourier transform of a function
f ∈ L2. The following result is stated in Parzen (1963, §2), and proved in Wendland (2005, §10.2);
we give a short proof in Appendix A.

Lemma 1. H (Rd) is the space of real continuous f ∈ L2(Rd) whose norm

‖ f‖2
H (Rd) :=

∫ | f̂ (ξ)|2
K̂(ξ)

dξ

is finite, taking 0/0 = 0.

We may now describe H (S) in terms of H (Rd).

Lemma 2 (Aronszajn, 1950, §1.5). H (S) is the space of functions f = g|S for some g ∈ H (Rd),
with norm

‖ f‖H (S) := inf
g|S= f

‖g‖H (Rd),

and there is a unique g minimizing this expression.

These spaces are in fact closely related to the Sobolev Hilbert spaces of functional analysis. Say
a domain D⊆Rd is Lipschitz if its boundary is locally the graph of a Lipschitz function (see Tartar,
2007, §12, for a precise definition). For such a domain D, the Sobolev Hilbert space Hs(D) is the
space of functions f : D→ R, given by the restriction of some g : Rd → R, whose norm

‖ f‖2
Hs(D) := inf

g|D= f

∫ |ĝ(ξ)|2
(1+‖ξ‖2)s/2

dξ

is finite. Thus, for the kernel K with Fourier transform K̂(ξ) = (1+‖ξ‖2)s/2, this is just the RKHS
H (D). More generally, if K satisfies our assumptions with ν<∞, these spaces are equivalent in the
sense of normed spaces: they contain the same functions, and have norms ‖·‖1,‖·‖2 satisfying

C‖ f‖1 ≤ ‖ f‖2 ≤C′‖ f‖1,

for constants 0 <C ≤C′.

Lemma 3. Let Hθ(S) denote the RKHS of Kθ on S, and D⊆ Rd be a Lipschitz domain.

(i) If ν< ∞, Hθ(  D) is equivalent to the Sobolev Hilbert space Hν+d/2(D).

(ii) If ν= ∞, Hθ(  D) is continuously embedded in Hs(D) for all s.

Thus if ν< ∞, and X is, say, a product of intervals ∏d
i=1[ai,bi], the RKHS Hθ(X) is equivalent

to the Sobolev Hilbert space Hν+d/2(∏d
i=1(ai,bi)), identifying each function in that space with its

unique continuous extension to X .
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3.2 Fixed Parameters

We are now ready to state our main results. Let X ⊂ Rd be compact with non-empty interior. For
a function f : X → R, let Puf and E

u
f denote probability and expectation when minimizing the fixed

function f with strategy u. (Note that while f is fixed, u may be random, so its performance is still
probabilistic in nature.) We define the loss suffered over the ball BR in Hθ(X) after n steps by a
strategy u,

Ln(u,Hθ(X),R) := sup
‖ f‖Hθ(X)≤R

Euf [ f (x
∗
n)−min f ].

We will say that u converges on the optimum at rate rn, if

Ln(u,Hθ(X),R) = O(rn)

for all R> 0. Note that we do not allow u to vary with R; the strategy must achieve this rate without
prior knowledge of ‖ f‖Hθ(X)

.

We begin by showing that the minimax rate of convergence is n−ν/d .

Theorem 1. If ν< ∞, then for any θ ∈ Rd
+, R> 0,

inf
u
Ln(u,Hθ(X),R) =Θ(n−ν/d),

and this rate can be achieved by a strategy u not depending on R.

The upper bound is provided by a naive strategy as in the introduction: we fix a quasi-uniform
sequence xn in advance, and take x∗n to minimize a radial basis function interpolant of the data. As
remarked previously, however, this naive strategy is not very satisfying; in practice it will be outper-
formed by any good strategy varying with the data. We may thus ask whether more sophisticated
strategies, with better practical performance, can still provide good worst-case bounds.

One such strategy is the EI(π) strategy of Definition 1. We can show this strategy converges at
least at rate n−(ν∧1)/d , up to log factors.

Theorem 2. Let π be a prior with length-scales θ ∈ Rd
+. For any R> 0,

Ln(EI(π),Hθ(X),R) =

{
O(n−ν/d(logn)α), ν≤ 1,
O(n−1/d), ν> 1.

For ν ≤ 1, these rates are near-optimal. For ν > 1, we are faced with a more difficult problem;
we discuss this in more detail in Section 3.4.

3.3 Estimated Parameters

First, we consider the effect of the prior parameters on EI(π). While the previous result gives a
convergence rate for any fixed choice of parameters, the constant in that rate will depend on the
parameters chosen; to choose well, we must somehow estimate these parameters from the data. The
EI(π̂) strategy, given by Definition 2, uses maximum likelihood estimates for this purpose. We can
show, however, that this may cause the strategy to never converge.
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x

f (x)

Figure 1: A counterexample from Theorem 3

Theorem 3. Suppose ν < ∞. Given θ ∈ Rd
+, R > 0, ε > 0, there exists f ∈ Hθ(X) satisfying

‖ f‖Hθ(X)
≤ R, and for some fixed δ> 0,

P
EI(π̂)
f

(
inf
n
f (x∗n)−min f ≥ δ

)
> 1− ε.

The counterexamples constructed in the proof of the theorem may be difficult to minimize, but
they are not badly-behaved (Figure 1). A good optimization strategy should be able to minimize
such functions, and we must ask why expected improvement fails.

We can understand the issue by considering the constant in Theorem 2. Define

τ(x) := xΦ(x)+ϕ(x).

From the proof of Theorem 2, the dominant term in the convergence rate has constant

C(R+σ)
τ(R/σ)
τ(−R/σ) , (10)

forC > 0 not depending on R or σ. In Appendix A, we will prove the following result.

Corollary 1. R̂n(θ) is non-decreasing in n, and bounded above by ‖ f‖Hθ(X)
.

Hence for fixed θ, the estimate σ̂2n = R̂2n(θ)/n ≤ R2/n, and thus R/σ̂n ≥ n1/2. Inserting this choice
into (10) gives a constant growing exponentially in n, destroying our convergence rate.

To resolve the issue, we will instead try to pick σ to minimize (10). The term R+σ is increasing
in σ, and the term τ(R/σ)/τ(−R/σ) is decreasing in σ; we may balance the terms by taking σ= R.
The constant is then proportional to R, which we may minimize by taking R= ‖ f‖Hθ(X)

. In practice,
we will not know ‖ f‖Hθ(X)

in advance, so we must estimate it from the data; from Corollary 1, a

convenient estimate is R̂n(θ).
Suppose, then, that we make some bounded estimate θ̂n of θ, and set σ̂2n= R̂2n(θ̂n). As Theorem 3

holds for any σ̂2n of faster than logarithmic decay, such a choice is necessary to ensure convergence.
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(We may also choose θ to minimize (10); we might then pick θ̂n minimizing R̂n(θ)∏d
i=1θ

−ν/d
i , but

our assumptions on θ̂n are weak enough that we need not consider this further.)
If we believe our Gaussian-process model, this estimate σ̂n is certainly unusual. We should,

however, take care before placing too much faith in the model. The function in Figure 1 is a rea-
sonable function to optimize, but as a Gaussian process it is highly atypical: there are intervals on
which the function is constant, an event which in our model occurs with probability zero. If we
want our algorithm to succeed on more general classes of functions, we will need to choose our
parameter estimates appropriately.

To obtain good rates, we must add a further condition to our strategy. If z1 = · · ·= zn, EIn( · ; π̂n)
is identically zero, and all choices of xn+1 are equally valid. To ensure we fully explore f , we will
therefore require that when our strategy is applied to a constant function f (x) = c, it produces a
sequence xn dense in X . (This can be achieved, for example, by choosing xn+1 uniformly at random
from X when z1 = · · ·= zn.) We have thus described the following strategy.

Definition 3. An EI(π̃) strategy satisfies Definition 2, except:

(i) we instead set σ̂2n = R̂2n(θ̂n); and

(ii) we require the choice of xn+1 maximizing (8) to be such that, if f is constant, the design points
are almost surely dense in X.

We cannot now prove a convergence result uniform over balls in Hθ(X), as the rate of conver-
gence depends on the ratio R/R̂n, which is unbounded. (Indeed, any estimator of ‖ f‖Hθ(X)

must
sometimes perform poorly: f can appear from the data to have arbitrarily small norm, while in
fact having a spike somewhere we have not yet observed.) We can, however, provide the same
convergence rates as in Theorem 2, in a slightly weaker sense.

Theorem 4. For any f ∈HθU (X), under P
EI(π̃)
f ,

f (x∗n)−min f =
{
Op(n−ν/d(logn)α), ν≤ 1,
Op(n−1/d), ν> 1.

3.4 Near-Optimal Rates

So far, our rates have been near-optimal only for ν ≤ 1. To obtain good rates for ν > 1, standard
results on the performance of Gaussian-process interpolation (Narcowich et al., 2003, §6) then
require the design points xi to be quasi-uniform in a region of interest. It is unclear whether this
occurs naturally under expected improvement, but there are many ways we can modify the algorithm
to ensure it.

Perhaps the simplest, and most well-known, is an ε-greedy strategy (Sutton and Barto, 1998,
§2.2). In such a strategy, at each step with probability 1− ε we make a decision to maximize some
greedy criterion; with probability ε we make a decision completely at random. This random choice
ensures that the short-term nature of the greedy criterion does not overshadow our long-term goal.

The parameter ε controls the trade-off between global and local search: a good choice of ε will
be small enough to not interfere with the expected-improvement algorithm, but large enough to
prevent it from getting stuck in a local minimum. Sutton and Barto (1998, §2.2) consider the values
ε= 0.1 and ε= 0.01, but in practical work ε should of course be calibrated to a typical problem set.

We therefore define the following strategies.
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Definition 4. Let · denote π, π̂ or π̃. For 0< ε< 1, an EI( · ,ε) strategy:
(i) chooses initial design points x1, · · · ,xk independently of f ;
(ii) with probability 1− ε, chooses design point xn+1 (n≥ k) as in EI( ·); or
(iii) with probability ε, chooses xn+1 (n≥ k) uniformly at random from X.

We can show that these strategies achieve near-optimal rates of convergence for all ν< ∞.

Theorem 5. Let EI( · ,ε) be one of the strategies in Definition 4. If ν< ∞, then for any R> 0,

Ln(EI( · ,ε),HθU (X),R) = O((n/ logn)−ν/d(logn)α),

while if ν= ∞, the statement holds for all ν< ∞.

Note that unlike a typical ε-greedy algorithm, we do not rely on random choice to obtain global
convergence: as above, the EI(π) and EI(π̃) strategies are already globally convergent. Instead, we
use random choice simply to improve upon the worst-case rate. Note also that the result does not in
general hold when ε= 1; to obtain good rates, we must combine global search with inference about
f .

4. Conclusions

We have shown that expected improvement can converge near-optimally, but a naive implementation
may not converge at all. We thus echo Diaconis and Freedman (1986) in stating that, for infinite-
dimensional problems, Bayesian methods are not always guaranteed to find the right answer; such
guarantees can only be provided by considering the problem at hand.

We might ask, however, if our framework can also be improved. Our upper bounds on conver-
gence were established using naive algorithms, which in practice would prove inefficient. If a so-
phisticated algorithm fails where a naive one succeeds, then the sophisticated algorithm is certainly
at fault; we might, however, prefer methods of evaluation which do not consider naive algorithms
so successful.

Vazquez and Bect (2010) and Grunewalder et al. (2010) consider a more Bayesian formulation
of the problem, where the unknown function f is distributed according to the prior π, but this
approach can prove restrictive: as we saw in Section 3.3, placing too much faith in the prior may
exclude functions of interest. Further, Grunewalder et al. find the same issues are present also within
the Bayesian framework.

A more interesting approach is given by the continuum-armed-bandit problem (Srinivas et al.,
2010, and references therein). Here the goal is to minimize the cumulative regret,

Rn :=
n

∑
i=1

( f (xi)−min f ),

in general observing the function f under noise. Algorithms controlling the cumulative regret at rate
rn also solve the optimization problem, at rate rn/n (Bubeck et al., 2009, §3). The naive algorithms
above, however, have poor cumulative regret. We might, then, consider the cumulative regret to be
a better measure of performance, but this approach too has limitations. Firstly, the cumulative regret

2890



CONVERGENCE RATES OF EFFICIENT GLOBAL OPTIMIZATION

is necessarily increasing, so cannot establish rates of optimization faster than n−1. (This is not an
issue under noise, where typically rn =Ω(n1/2), see Kleinberg and Slivkins, 2010.) Secondly, if our
goal is optimization, then minimizing the regret, a cost we do not incur, may obscure the problem
at hand.

Bubeck et al. (2010) study this problem with the additional assumption that f has finitely many
minima, and is, say, quadratic in a neighbourhood of each. This assumption may suffice in practice,
and allows the authors to obtain impressive rates of convergence. For optimization, however, a
further weakness is that these rates hold only once the algorithm has found a basin of attraction;
they thus measure local, rather than global, performance. It may be that convergence rates alone are
not sufficient to capture the performance of a global optimization algorithm, and the time taken to
find a basin of attraction is more relevant. In any case, the choice of an appropriate framework to
measure performance in global optimization merits further study.

Finally, we should also ask how to choose the smoothness parameter ν (or the equivalent pa-
rameter in similar algorithms). Van der Vaart and van Zanten (2009) show that Bayesian Gaussian-
process models can, in some contexts, automatically adapt to the smoothness of an unknown func-
tion f . Their technique requires, however, that the estimated length-scales θ̂n to tend to 0, posing
both practical and theoretical challenges. The question of how best to optimize functions of un-
known smoothness remains open.
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Appendix A. Proofs

We now prove the results in Section 3.

A.1 Reproducing-Kernel Hilbert Spaces

Proof of Lemma 1. Let V be the space of functions described, andW be the closed real subspace of
Hermitian functions in L2(Rd , K̂−1). We will show f �→ f̂ is an isomorphism V →W , so we may
equivalently work withW . Given f̂ ∈W , by Cauchy-Schwarz and Bochner’s theorem,

∫
| f̂ | ≤

(∫
K̂

)1/2(∫
| f̂ |2/K̂

)1/2
< ∞,

and as ‖K̂‖∞ ≤ ‖K‖1, ∫
| f̂ |2 ≤ ‖K̂‖∞

∫
| f̂ |2/K̂ < ∞,

so f̂ ∈ L1 ∩L2. f̂ is thus the Fourier transform of a real continuous f ∈ L2, satisfying the Fourier
inversion formula everywhere.
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f �→ f̂ is hence an isomorphismV →W . It remains to show thatV =H (Rd). W is complete, so
V is. Further, E(Rd)⊂V , and by Fourier inversion each f ∈V satisfies the reproducing property,

f (x) =
∫
e2πi〈x,ξ〉 f̂ (ξ)dξ=

∫
f̂ (ξ)k̂x(ξ)

K̂(ξ)
dξ= 〈 f ,kx〉,

so H (Rd) is a closed subspace of V . Given f ∈ H (Rd)⊥, f (x) = 〈 f ,kx〉 = 0 for all x, so f = 0.
Thus V =H (Rd).

Proof of Lemma 3. By Lemma 1, the norm on Hθ(R
d) is

‖ f‖2
Hθ(Rd) =

∫ | f̂ (ξ)|2
K̂θ(ξ)

dξ,

and Kθ has Fourier transform

K̂θ(ξ) =
K̂(ξ1/θ1, . . . ,ξd/θd)

∏d
i=1θi

.

If ν < ∞, by assumption K̂(ξ) = k̂(‖ξ‖), for a finite non-increasing function k̂ satisfying k̂(‖ξ‖) =
Θ(‖ξ‖−2ν−d) as ξ→ ∞. Hence

C(1+‖ξ‖2)−(ν+d/2) ≤ K̂θ(ξ)≤C′(1+‖ξ‖2)−(ν+d/2),

for constantsC,C′ > 0, and we obtain that Hθ(R
d) is equivalent to the Sobolev space Hν+d/2(Rd).

From Lemma 2, Hθ(D) is given by the restriction of functions in Hθ(R
d); as D is Lipschitz, the

same is true of Hν+d/2. Hθ(D) is thus equivalent to Hν+d/2(D). Finally, functions in Hθ(  D) are
continuous, so uniquely identified by their restriction to D, and

Hθ(  D))Hθ(D)) Hν+d/2(D).

If ν= ∞, by a similar argument Hθ(  D) is continuously embedded in all Hs(D).

From Lemma 1, we can derive results on the behaviour of ‖ f‖Hθ(S)
as θ varies. For small θ, we

obtain the following result.

Lemma 4. If f ∈Hθ(S), then f ∈Hθ′(S) for all 0 < θ′ ≤ θ, and

‖ f‖2
Hθ′ (S)

≤
(

d

∏
i=1

θi/θ
′
i

)
‖ f‖2

Hθ(S)
.

Proof. LetC =∏d
i=1(θ

′
i/θi). As K̂ is isotropic and radially non-increasing,

K̂θ′(ξ) =CK̂θ((θ
′
1/θ1)ξ1, . . . ,(θ

′
d/θd)ξd)≥CK̂θ(ξ).

Given f ∈Hθ(S), let g ∈Hθ(R
d) be its minimum norm extension, as in Lemma 2. By Lemma 1,

‖ f‖2
Hθ′ (S)

≤ ‖g‖2
Hθ′ (Rd) =

∫ |ĝ|2
K̂θ′

≤
∫ |ĝ|2
CK̂θ

=C−1‖ f‖2
Hθ(S)

.
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Likewise, for large θ, we obtain the following.

Lemma 5. If ν< ∞, f ∈Hθ(S), then f ∈Htθ(S) for t ≥ 1, and
‖ f‖2Htθ(S)

≤C′′t2ν‖ f‖2Hθ(S)
,

for a C′′ > 0 depending only on K and θ.

Proof. As in the proof of Lemma 3, we have constantsC,C′ > 0 such that

C(1+‖ξ‖2)−(ν+d/2) ≤ K̂θ(ξ)≤C′(1+‖ξ‖2)−(ν+d/2).

Thus for t ≥ 1,
K̂tθ(ξ) = tdK̂θ(tξ)≥Ctd(1+ t2‖ξ‖2)−(ν+d/2)

≥Ct−2ν(1+‖ξ‖2)−(ν+d/2)

≥CC′−1t−2νK̂θ(ξ),

and we may argue as in the previous lemma.

We can also describe the posterior distribution of f in terms of Hθ(S); as a consequence, we
may deduce Corollary 1.

Lemma 6. Suppose f (x) = μ+g(x), g ∈Hθ(S).

(i) f̂n(x;θ) = μ̂n+ ĝn(x) solves the optimization problem

minimize ‖ĝ‖2Hθ(S)
, subject to μ̂+ ĝ(xi) = zi, 1≤ i≤ n,

with minimum value R̂2n(θ).

(ii) The prediction error satisfies

| f (x)− f̂n(x;θ)| ≤ sn(x;θ)‖g‖Hθ(S)

with equality for some g ∈Hθ(S).

Proof.

(i) LetW = span(kx1 , . . . ,kxn), and write ĝ= ĝ‖+ ĝ⊥ for ĝ‖ ∈W , ĝ⊥ ∈W⊥. ĝ⊥(xi) = 〈ĝ⊥,kxi〉=
0, so ĝ⊥ affects the optimization only through ‖ĝ‖. The minimal ĝ thus has ĝ⊥ = 0, so
ĝ= ∑n

i=1λikxi . The problem then becomes

minimize λTVλ, subject to μ̂1+Vλ= z.

The solution is given by (4) and (5), with value (7).

(ii) By symmetry, the prediction error does not depend on μ, so we may take μ= 0. Then

f (x)− f̂n(x;θ) = g(x)− (μ̂n+ ĝn(x)) = 〈g,en,x〉,
for en,x = kx−∑n

i=1λikxi , and

λ=
V−11
1TV−11

+

(
I− V−11

1TV−11
1T
)
V−1v.

Now, ‖en,x‖2Hθ(S)
= s2n(x;θ), as given by (6); this is a consequence of Loève’s isometry, but is

easily verified algebraically. The result then follows by Cauchy-Schwarz.
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A.2 Fixed Parameters

Proof of Theorem 1. We first establish the lower bound. Suppose we have 2n functions ψm with
disjoint supports. We will argue that, given n observations, we cannot distinguish between all the
ψm, and thus cannot accurately pick a minimum x∗n.

To begin with, assume X = [0,1]d . Let ψ :Rd → [0,1] be aC∞ function, supported inside X and
with minimum -1. By Lemma 3, ψ ∈ Hθ(R

d). Fix k ∈ N, and set n = (2k)d/2. For vectors m ∈
{0, . . . ,2k−1}d , construct functions ψm(x) =C(2k)−νψ(2kx−m), whereC> 0 is to be determined.
ψm is given by a translation and scaling of ψ, so by Lemmas 1, 2 and 5, for someC′ > 0,

‖ψm‖Hθ(X)
≤ ‖ψm‖Hθ(Rd) =C(2k)−ν‖ψ‖H2kθ(Rd) ≤CC′‖ψ‖Hθ(Rd).

SetC = R/C′‖ψ‖Hθ(Rd), so that ‖ψm‖Hθ(X)
≤ R for all m and k.

Suppose f = 0, and let xn and x∗n be chosen by any valid strategy u. Set χ= {x1, . . . ,xn−1,x∗n−1},
and let Am be the event that ψm(x) = 0 for all x ∈ χ. There are n points in χ, and the 2n functions
ψm have disjoint support, so ∑m I(Am)≥ n. Thus

∑
m
Pu0(Am) = Eu0

[
∑
m
I(Am)

]
≥ n,

and we have some fixed m, depending only on u, for which Pu0(Am)≥ 1
2 . On the event Am,

ψm(x
∗
n−1)−minψm =C(2k)−ν,

but on that event, u cannot distinguish between 0 and ψm before time n, so

C−1(2k)νEuψm [ f (x
∗
n−1)−min f ]≥ Puψm(Am) = Pu0(Am)≥ 1

2 .

As the minimax loss is non-increasing in n, for (2(k−1))d/2≤ n< (2k)d/2 we conclude

inf
u
Ln(u,Hθ(X),R)≥ inf

u
L(2k)d/2−1(u,Hθ(X),R)

≥ inf
u
sup
m

Euψm

[
f
(
x∗(2k)d/2−1

)
−min f

]
≥ 1

2C(2k)
−ν =Ω(n−ν/d).

For general X having non-empty interior, we can find a hypercube S= x0+[0,ε]d ⊆ X , with ε> 0.
We may then proceed as above, picking functions ψm supported inside S.

For the upper bound, consider a strategy u choosing a fixed sequence xn, independent of the
zn. Fit a radial basis function interpolant f̂n to the data, and pick x∗n to minimize f̂n. Then if x∗

minimizes f ,

f (x∗n)− f (x∗)≤ f (x∗n)− f̂n(x
∗
n)+ f̂n(x

∗)− f (x∗)

≤ 2‖ f̂n− f‖∞,
so the loss is bounded by the error in f̂n.

From results in Narcowich et al. (2003, §6) and Wendland (2005, §11.5), for suitable radial
basis functions the error is uniformly bounded by

sup
‖ f‖Hθ(X)≤R

‖ f̂n− f‖∞ = O(h−νn ),
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where the mesh norm

hn := sup
x∈X

n
min
i=1

‖x− xi‖.

(For ν 
∈ N, this result is given by Narcowich et al. for the radial basis function Kν, which is ν-
Hölder at 0 by Abramowitz and Stegun, 1965, §9.6; for ν ∈ N, the result is given by Wendland for
thin-plate splines.) As X is bounded, we may choose the xn so that hn = O(n−1/d), giving

Ln(u,Hθ(X),R) = O(n−ν/d).

To prove Theorem 2, we first show that some observations zn will be well-predicted by past
data.

Lemma 7. Set

β :=

{
α, ν≤ 1,
0, ν> 1.

Given θ∈Rd
+, there is a constant C

′ > 0 depending only on X, K and θ which satisfies the following.
For any k ∈ N, and sequences xn ∈ X, θn ≥ θ, the inequality

sn(xn+1;θn)≥C′k−(ν∧1)/d(logk)β

holds for at most k distinct n.

Proof. We first show that the posterior variance s2n is bounded by the distance to the nearest design
point. Let πn denote the prior with variance σ2 = 1, and length-scales θn. Then for any i ≤ n, as
f̂n(x;θn) = Eπn [ f (x) | Fn],

s2n(x;θn) = Eπn [( f (x)− f̂n(x;θn))2 | Fn]
= Eπn [( f (x)− f (xi))

2− ( f (xi)− f̂n(x;θn))
2 | Fn]

≤ Eπn [( f (x)− f (xi))
2 | Fn]

= 2(1−Kθn(x− xi)).

If ν≤ 1
2 , then by assumption

|K(x)−K(0)|= O
(
‖x‖2ν(− log‖x‖)2α

)
as x→ 0. If ν> 1

2 , then K is differentiable, so as K is symmetric, ∇K(0) = 0. If further ν≤ 1, then

|K(x)−K(0)|= |K(x)−K(0)− x ·∇K(0)|= O
(
‖x‖2ν(− log‖x‖)2α

)
.

Similarly, if ν> 1, then K isC2, so

|K(x)−K(0)|= |K(x)−K(0)− x ·∇K(0)|= O(‖x‖2).

We may thus conclude

|1−K(x)|= |K(x)−K(0)|= O
(
‖x‖2(ν∧1)(− log‖x‖)2β

)
,
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and
s2n(x;θn)≤C2‖x− xi‖2(ν∧1)(− log‖x− xi‖)2β,

for a constantC > 0 depending only on X , K and θ.
We next show that most design points xn+1 are close to a previous xi. X is bounded, so can be

covered by k balls of radius O(k−1/d). If xn+1 lies in a ball containing some earlier point xi, i ≤ n,
then we may conclude

s2n(xn+1;θn)≤C′2k−2(ν∧1)/d(logk)2β,

for a constant C′ > 0 depending only on X , K and θ. Hence as there are k balls, at most k points
xn+1 can satisfy

sn(xn+1;θn)≥C′k−(ν∧1)/d(logk)β.

Next, we provide bounds on the expected improvement when f lies in the RKHS.

Lemma 8. Let ‖ f‖Hθ(X)
≤ R. For x ∈ X, n ∈ N, set I = ( f (x∗n)− f (x))+, and s= sn(x;θ). Then for

τ(x) := xΦ(x)+φ(x),

we have

max

(
I−Rs,

τ(−R/σ)
τ(R/σ)

I

)
≤ EIn(x;π)≤ I+(R+σ)s.

Proof. If s= 0, then by Lemma 6, f̂n(x;θ) = f (x), so EIn(x;π) = I, and the result is trivial. Suppose
s> 0, and set t = ( f (x∗n)− f (x))/s, u= ( f (x∗n)− f̂n(x;θ))/s. From (8) and (9),

EIn(x;π) = σsτ(u/σ),

and by Lemma 6, |u− t| ≤ R. As τ′(z) = Φ(z) ∈ [0,1], τ is non-decreasing, and τ(z) ≤ 1+ z for
z≥ 0. Hence

EIn(x;π)≤ σsτ

(
t++R
σ

)
≤ σs

(
t++R
σ

+1

)
= I+(R+σ)s.

If I = 0, then as EI is the expectation of a non-negative quantity, EI ≥ 0, and the lower bounds
are trivial. Suppose I > 0. Then as EI ≥ 0, τ(z)≥ 0 for all z, and τ(z) = z+ τ(−z)≥ z. Thus

EIn(x;π)≥ σsτ

(
t−R
σ

)
≥ σs

(
t−R
σ

)
= I−Rs.

Also, as τ is increasing,

EIn(x;π)≥ στ

(−R
σ

)
s.

Combining these bounds, and eliminating s, we obtain

EIn(x;π)≥ στ(−R/σ)
R+στ(−R/σ) I =

τ(−R/σ)
τ(R/σ)

I.

We may now prove the theorem. We will use the above bounds to show that there must be times
nk when the expected improvement is low, and thus f (x∗nk) is close to min f .
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Proof of Theorem 2. From Lemma 7 there existsC> 0, depending on X , K and θ, such that for any
sequence xn ∈ X and k ∈ N, the inequality

sn(xn+1;θ)>Ck−(ν∧1)/d(logk)β

holds at most k times. Furthermore, z∗n− z∗n+1 ≥ 0, and for ‖ f‖Hθ(X)
≤ R,

∑
n
z∗n− z∗n+1 ≤ z∗1−min f ≤ 2‖ f‖∞ ≤ 2R,

so z∗n− z∗n+1 > 2Rk
−1 at most k times. Since z∗n− f (xn+1)≤ z∗n− z∗n+1, we have also z

∗
n− f (xn+1)>

2Rk−1 at most k times. Thus there is a time nk, k≤ nk ≤ 3k, for which snk(xnk+1;θ)≤Ck−(ν∧1)/d(logk)β

and z∗nk − f (xnk+1)≤ 2Rk−1.
Let f have minimum z∗ at x∗. For k large, xnk+1 will have been chosen by expected improvement

(rather than being an initial design point, chosen at random). Then as z∗n is non-increasing in n, for
3k ≤ n< 3(k+1) we have by Lemma 8,

z∗n− z∗ ≤ z∗nk − z∗

≤ τ(R/σ)
τ(−R/σ)EInk(x

∗;π)

≤ τ(R/σ)
τ(−R/σ)EInk(xnk+1;π)

≤ τ(R/σ)
τ(−R/σ)

(
2Rk−1+C(R+σ)k−(ν∧1)/d(logk)β

)
.

This bound is uniform in f with ‖ f‖Hθ(X)
≤ R, so we obtain

Ln(EI(π),Hθ(X),R) = O(n−(ν∧1)/d(logn)β).

A.3 Estimated Parameters

To prove Theorem 3, we first establish lower bounds on the posterior variance.

Lemma 9. Given θL,θU ∈ Rd
+, pick sequences xn ∈ X, θL ≤ θn ≤ θU. Then for open S⊂ X,

sup
x∈S

sn(x;θn) =Ω(n−ν/d),

uniformly in the sequences xn, θn.

Proof. S is open, so contains a hypercube T . For k ∈ N, let n= 1
2(2k)

d , and construct 2n functions
ψm on T with ‖ψm‖HθU (X)

≤ 1, as in the proof of Theorem 1. Let C2 = ∏d
i=1(θ

U
i /θ

L
i ); then by

Lemma 4, ‖ψm‖Hθn (X)
≤C.

Given n design points x1, . . . ,xn, there must be some ψm such that ψm(xi) = 0, 1 ≤ i ≤ n. By
Lemma 6, the posterior mean of ψm given these observations is the zero function. Thus for x ∈ T
minimizing ψm,

sn(x;θn)≥C−1sn(x;θn)‖ψm‖Hθn (X)
≥C−1|ψm(x)−0|=Ω(k−ν).

As sn(x;θ) is non-increasing in n, for 12(2(k−1))d < n≤ 1
2(2k)

d we obtain

sup
x∈S

sn(x;θn)≥ sup
x∈S

s 1
2 (2k)

d (x;θn) =Ω(k−ν) =Ω(n−ν/d).
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Next, we bound the expected improvement when prior parameters are estimated by maximum
likelihood.

Lemma 10. Let ‖ f‖HθU (X)
≤ R, xn,yn ∈ X. Set In(x) = z∗n− f (x), sn(x) = sn(x; θ̂n), and tn(x) =

In(x)/sn(x). Suppose:

(i) for some i< j, zi 
= z j;

(ii) for some Tn → −∞, tn(xn+1)≤ Tn whenever sn(xn+1)> 0;

(iii) In(yn+1)≥ 0; and
(iv) for some C > 0, sn(yn+1)≥ e−C/cn .

Then for π̂n as in Definition 2, eventually EIn(xn+1; π̂n)< EIn(yn+1; π̂n). If the conditions hold on a
subsequence, so does the conclusion.

Proof. Let R̂2n(θ) be given by (7), and set R̂
2
n = R̂2n(θ̂n). For n ≥ j, R̂2n > 0, and by Lemma 4 and

Corollary 1,

R̂2n ≤ ‖ f‖2Hθ̂n
(X) ≤ S2 = R2

d

∏
i=1

(θUi /θ
L
i ).

Thus 0< σ̂2n ≤ S2cn. Then if sn(x)> 0, for some |un(x)− tn(x)| ≤ S,

EIn(x; π̂n) = σ̂nsn(x)τ(un(x)/σ̂n),

as in the proof of Lemma 8.
If sn(xn+1) = 0, then xn+1 ∈ {x1, . . . ,xn}, so

EIn(xn+1; π̂n) = 0< EIn(yn+1; π̂n).

When sn(xn+1)> 0, as τ is increasing we may upper bound EIn(xn+1; π̂n) using un(xn+1)≤ Tn+S,
and lower bound EIn(yn+1; π̂n) using un(yn+1)≥ −S. Since sn(xn+1)≤ 1, and τ(x) = Θ(x−2e−x

2/2)
as x→−∞ (Abramowitz and Stegun, 1965, §7.1),

EIn(xn+1; π̂n)
EIn(yn+1; π̂n)

≤ τ((Tn+S)/σ̂n)
e−C/cnτ(−S/σ̂n)

= O
(
(Tn+S)−2eC/cn−(T 2n +2STn)/2σ̂

2
n

)
= O

(
(Tn+S)−2e−(T 2n +2STn−2CS2)/2S2cn

)
= o(1).

If the conditions hold on a subsequence, we may similarly argue along that subsequence.

Finally, we will require the following technical lemma.

Lemma 11. Let x1, . . . ,xn be random variables taking values in Rd. Given open S⊆Rd, there exist
open U ⊆ S for which P(

⋃n
i=1{xi ∈U}) is arbitrarily small.
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Proof. Given ε> 0, fix m≥ n/ε, and pick disjoint open setsU1, . . . ,Um ⊂ S. Then

m

∑
j=1

E[#{xi ∈Uj}]≤ E[#{xi ∈ Rd}] = n,

so there existsUj with

P

(⋃
i

{xi ∈Uj}
)

≤ E[#{xi ∈Uj}]≤ n/m≤ ε.

We may now prove the theorem. We will construct a function f on which the EI(π̂) strategy
never observes within a region W . We may then construct a function g, agreeing with f except on
W , but having different minimum. As the strategy cannot distinguish between f and g, it cannot
successfully find the minimum of both.

Proof of Theorem 3. Let the EI(π̂) strategy choose initial design points x1, . . . ,xk, independently of
f . Given ε > 0, by Lemma 11 there exists open U0 ⊆ X for which PEI(π̂)(x1, . . . ,xk ∈U0) ≤ ε; we
may chooseU0 so thatV0 =X \U0 has non-empty interior. Pick openU1 such thatV1 =  U1 ⊂U0, and
set f to be aC∞ function, 0 onV0, 1 onV1, and everywhere non-negative. By Lemma 1, f ∈HθU (X).

We work conditional on the event A, having probability at least 1 − ε, that z∗k = 0, and thus
z∗n = 0 for all n ≥ k. Suppose xn ∈ V1 infinitely often, so the zn are not all equal. By Lemma 7,
sn(xn+1; θ̂n)→ 0, so on a subsequence with xn+1 ∈V1, we have

tn = (z∗n− f (xn+1))/sn(xn+1; θ̂n) =−sn(xn+1; θ̂n)−1 →−∞

whenever sn(xn+1; θ̂n) > 0. However, by Lemma 9, there are points yn ∈ V0 with z∗n− f (yn+1) =
0, and sn(yn+1; θ̂n) = Ω(n−ν/d). Hence by Lemma 10, EIn(xn+1; π̂n) < EIn(yn+1; π̂n) for some n,
contradicting the definition of xn+1.

Hence, on A, there is a random variable T taking values in N, for which n > T =⇒ xn 
∈ V1.
Hence there exists a constant t ∈ N for which the event B = A∩{T ≤ t} has P

EI(π̂)
f -probability at

least 1−2ε. By Lemma 11, we thus have an open setW ⊂V1 for which the event

C = B∩{xn 
∈W : n ∈ N}= B∩{xn 
∈W : n≤ t}

has PEI(π̂)f -probability at least 1−3ε.
Construct a smooth function g by adding to f a C∞ function which is 0 outside W , and has

minimum −2. Then ming=−1, but on the eventC, EI(π̂) cannot distinguish between f and g, and
g(x∗n)≥ 0. Thus for δ= 1,

P
EI(π̂)
g

(
inf
n
g(x∗n)−ming≥ δ

)
≥ P

EI(π̂)
g (C) = P

EI(π̂)
f (C)≥ 1−3ε.

As the behaviour of EI(π̂) is invariant under rescaling, we may scale g to have norm ‖g‖Hθ(X)
≤ R,

and the above remains true for some δ> 0.

Proof of Theorem 4. As in the proof of Theorem 2, we will show there are times nk when the ex-
pected improvement is small, so f (xnk) must be close to the minimum. First, however, we must
control the estimated parameters σ̂2

n, θ̂n.
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If the zn are all equal, then by assumption the xn are dense in X , so f is constant, and the result
is trivial. Suppose the zn are not all equal, and let T be a random variable satisfying zT 
= zi for
some i < T . Set U = infθL≤θ≤θU R̂T (θ). R̂T (θ) is a continuous positive function, so U > 0. Let
S2 = R2∏d

i=1(θ
U
i /θ

L
i ). By Lemma 4, ‖ f‖Hθ̂n

(X) ≤ S, so by Corollary 1, for n≥ T ,

U ≤ R̂T (θ̂n)≤ σ̂n ≤ ‖ f‖Hθ̂n
(X) ≤ S.

As in the proof of Theorem 2, we have a constant C > 0, and some nk, k ≤ nk ≤ 3k, for which
z∗nk − f (xnk+1) ≤ 2Rk−1 and snk(xnk+1; θ̂nk) ≤ Ck−α(logk)β. Then for k ≥ T , 3k ≤ n < 3(k+ 1),
arguing as in Theorem 2 we obtain

z∗n− z∗ ≤ z∗nk − z∗

≤ τ(S/σ̂nk)
τ(−S/σ̂nk)

(
2Rk−1+C(S+ σ̂nk)k

−(ν∧1)/d(logk)β
)

≤ τ(S/U)

τ(−S/U)

(
2Rk−1+2CSk−(ν∧1)/d(logk)β

)
.

We thus have a random variable C′ satisfying z∗n− z∗ ≤C′n−(ν∧1)/d(logn)β for all n, and the result
follows.

A.4 Near-Optimal Rates

To prove Theorem 5, we first show that the points chosen at random will be quasi-uniform in X .

Lemma 12. Let xn be i.i.d. random variables, distributed uniformly over X, and define their mesh
norm,

hn := sup
x∈X

n
min
i=1

‖x− xi‖.

For any γ> 0, there exists C > 0 such that

P(hn >C(n/ logn)−1/d) = O(n−γ).

Proof. We will partition X into n regions of size O(n−1/d), and show that with high probability we
will place an xi in each one. Then every point x will be close to an xi, and the mesh norm will be
small.

Suppose X = [0,1]d , fix k ∈ N, and divide X into n = kd sub-cubes Xm = 1
k (m+ [0,1]d), for

m ∈ {0, . . . ,k−1}d . Let Im be the indicator function of the event

{xi 
∈ Xm : 1≤ i≤ *γn logn+},

and define

μn = E

[
∑
m
Im

]
= nE[I0] = n(1−1/n)*γn logn+ ∼ ne−γ logn = n−(γ−1).

For n large, μn ≤ 1, so by the generalized Chernoff bound of Panconesi and Srinivasan (1997, §3.1),

P

(
∑
m
Im ≥ 1

)
≤
(
e(μ

−1
n −1)

μ−μ−1n
n

)μn

≤ eμn ∼ en−(γ−1).
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On the event ∑m Im < 1, Im = 0 for all m. For any x ∈ X , we then have x ∈ Xm for some m, and
x j ∈ Xm for some 1≤ j ≤ *γn logn+. Thus

*γn logn+
min
i=1

‖x− xi‖ ≤ ‖x− x j‖ ≤
√
dk−1.

As this bound is uniform in x, we obtain h*γn logn+ ≤
√
dk−1. Thus for n= kd ,

P(h*γn logn+ >
√
dk−1) = O(k−d(γ−1)),

and as hn is non-increasing in n, this bound holds also for kd ≤ n < (k+ 1)d . By a change of
variables, we then obtain

P(hn >C(n/γ logn)−1/d) = O((n/γ logn)−(γ−1)),

and the result follows by choosing γ large. For general X , as X is bounded it can be partitioned into
n regions of measure Θ(n−1/d), so we may argue similarly.

We may now prove the theorem. We will show that the points xn must be quasi-uniform in X , so
posterior variances must be small. Then, as in the proofs of Theorems 2 and 4, we have times when
the expected improvement is small, so f (x∗n) is close to min f .

Proof of Theorem 5. First suppose ν < ∞. Let the EI( · ,ε) choose k initial design points indepen-
dent of f , and suppose n ≥ 2k. Let An be the event that * ε4n+ of the points xk+1, . . . ,xn are chosen
uniformly at random, so by a Chernoff bound,

PEI( · ,ε)(Acn)≤ e−εn/16.

Let Bn be the event that one of the points xn+1, . . . ,x2n is chosen by expected improvement, so

PEI( · ,ε)(Bcn) = εn.

Finally, letCn be the event that An and Bn occur, and further the mesh norm hn ≤C(n/ logn)−1/d , for
the constantC from Lemma 12. Set rn = (n/ logn)−ν/d(logn)α. Then by Lemma 12, sinceCn ⊂ An,

P
EI( · ,ε)
f (Ccn)≤C′rn,

for a constantC′ > 0 not depending on f .
Let EI( · ,ε) have prior πn at time n, with (fixed or estimated) parameters σn, θn. Suppose

‖ f‖HθU (X)
≤ R, and set S2 = R2∏d

i=1(θ
U
i /θ

L
i ), so by Lemma 4, ‖ f‖Hθn (X)

≤ S. If α = 0, then by
Narcowich et al. (2003, §6),

sup
x∈X

sn(x;θ) = O(M(θ)hνn)

uniformly in θ, forM(θ) a continuous function of θ. Hence on the eventCn,

sup
x∈X

sn(x;θn)≤ sup
x∈X

sup
θL≤θ≤θU

sn(x;θ)≤C′′rn,

for a constant C′′ > 0 depending only on X , K, C, θL and θU . If α > 0, the same result holds by a
similar argument.
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On the event Cn, we have some xm chosen by expected improvement, n < m ≤ 2n. Let f have
minimum z∗ at x∗. Then by Lemma 8,

z∗m−1− z∗ ≤ EIm−1(x∗; ·)+C′′Srm−1
≤ EIm−1(xm; ·)+C′′Srm−1
≤ ( f (xm−1)− f (xm))

++C′′(2S+σm−1)rm−1
≤ z∗m−1− z∗m+C

′′Trn,

for a constant T > 0. (Under EI(π,ε), we have T = 2S+σ; otherwise σm−1 ≤ S by Corollary 1, so
T = 3S.) Thus, rearranging,

z∗2n− z∗ ≤ z∗m− z∗ ≤C′′Trn.

On the eventCcn, we have z
∗
2n− z∗ ≤ 2‖ f‖∞ ≤ 2R, so

E
EI( · ,ε)
f [z∗2n+1− z∗]≤ E

EI( · ,ε)
f [z∗2n− z∗]

≤ 2RPEI( · ,ε)f (Ccn)+C
′′Trn

≤ (2C′R+C′′T )rn.

As this bound is uniform in f with ‖ f‖HθU (X)
≤ R, the result follows. If instead ν = ∞, the above

argument holds for any ν< ∞.
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Abstract
We demonstrate that there are machine learning algorithms that can achieve success for two sepa-
rate tasks simultaneously, namely the tasks of classification and bipartite ranking. This means that
advantages gained from solving one task can be carried over to the other task, such as the abil-
ity to obtain conditional density estimates, and an order-of-magnitude reduction in computational
time for training the algorithm. It also means that some algorithms are robust to the choice of
evaluation metric used; they can theoretically perform well when performance is measured either
by a misclassification error or by a statistic of the ROC curve (such as the area under the curve).
Specifically, we provide such an equivalence relationship between a generalization of Freund et
al.’s RankBoost algorithm, called the “P-Norm Push,” and a particular cost-sensitive classification
algorithm that generalizes AdaBoost, which we call “P-Classification.” We discuss and validate the
potential benefits of this equivalence relationship, and perform controlled experiments to under-
stand P-Classification’s empirical performance. There is no established equivalence relationship
for logistic regression and its ranking counterpart, so we introduce a logistic-regression-style algo-
rithm that aims in between classification and ranking, and has promising experimental performance
with respect to both tasks.

Keywords: supervised classification, bipartite ranking, area under the curve, rank statistics, boost-
ing, logistic regression

1. Introduction

The success of a machine learning algorithm can be judged in many different ways. Thus, algo-
rithms that are somehow robust to multiple performance metrics may be more generally useful for a
wide variety of problems. Experimental evaluations of machine learning algorithms tend to reflect
this by considering several different measures of success (see, for example, the study of Caruana and
Niculescu-Mizil, 2006). For instance, classification algorithms are commonly judged both by their
classification accuracy and the Area Under the ROC curve (AUC), even though these algorithms are
designed only to optimize the classification accuracy, and not the AUC.

If algorithms should be judged using multiple measures of success, it makes sense to analyze
and design algorithms that achieve success with respect to multiple performance metrics. This is the
topic considered in this work, and we show that several additional advantages, such as probabilis-
tic interpretability and computational speed, can be gained from finding equivalence relationships
between algorithms for different problems. It is true that there is no “free lunch” (Wolpert and
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Macready, 1997), we are not claiming that one algorithm can solve all problems. We instead point
out that it is possible to optimize two objectives simultaneously if they have an overlapping set of
optima. The objectives in this case are convexified versions of the performance metrics for classifi-
cation and ranking. In this work, we show that a particular equivalence relationship exists between
two algorithms: a ranking algorithm called the P-Norm Push (Rudin, 2009), which is a general-
ization of RankBoost (Freund et al., 2003) that aims to maximize a weighted area under the curve,
and a classification algorithm that we call P-Classification, which is a generalization of AdaBoost
(Freund and Schapire, 1997) that aims to minimize a weighted misclassification error. Specifically,
we show that P-Classification not only optimizes its objective, but also optimizes the objective of
the P-Norm Push (and vice versa, the P-Norm Push can be made to optimize P-Classification’s ob-
jective function). Thus, P-Classification and the P-Norm Push perform equally well on both of their
objectives; P-Classification can be used as a ranking algorithm, and the P-Norm Push can be made
into a classification algorithm. This equivalence relationship allows us to: 1) obtain conditional
density estimates for P(y= 1|x) for the P-Norm Push (and thus RankBoost as a special case), 2) ob-
tain solutions of the P-Norm Push an order of magnitude faster without sacrificing the quality of the
solution at all, and 3) show a relationship between the P-Norm Push’s objective and the “precision”
metric used in Information Retrieval. This relationship will allow us to conduct a set of controlled
experiments to better understand P-Classification’s empirical performance. It is not clear that such
an equivalence relationship holds between logistic regression and its ranking counterpart; in fact,
our experiments indicate that no such relationship can hold.

Bipartite ranking problems are similar to but distinct from binary classification problems. In
both bipartite ranking and classification problems, the learner is given a training set of examples
{(x1,y1), . . . ,(xm,ym)} consisting of instances x ∈ X that are either positive (y = 1) or negative
(y = −1). The goal of bipartite ranking is to learn a real-valued ranking function f : X → that
ranks future positive instances higher than negative ones. Bipartite ranking algorithms optimize rank
statistics, such as the AUC. There is no decision boundary, and the absolute scores of the examples
do not matter, instead the values of the scores relative to each other are important. Classification
algorithms optimize a misclassification error, and are they are not designed to optimize rank statis-
tics. The “equivalence” is where a classification (or ranking) algorithm aims to optimize not only a
misclassification error, but also a rank statistic.

The first work that suggested such equivalence relationships could hold is that of Rudin and
Schapire (2009), showing that AdaBoost is equivalent to RankBoost. They showed that AdaBoost,
which iteratively minimizes the exponential misclassification loss, also iteratively minimizes Rank-
Boost’s exponential ranking loss, and vice versa, that RankBoost with trivial modifications can be
made to minimize the exponential misclassification loss. The first result of our work, provided in
Section 3, is to broaden that proof to handle more general ranking losses and classification losses.
The more general ranking loss is that of the P-Norm Push, which concentrates on “pushing” nega-
tives away from the top of the ranked list. The more general classification loss, determined mainly
by the number of false positives, is minimized by P-Classification, which is introduced formally in
Section 3. Also in Section 3, we consider another simple cost-sensitive version of AdaBoost, and
show the forward direction of its equivalence to RankBoost; in this case, the cost-sensitive version of
AdaBoost minimizes RankBoost’s objective no matter what the cost parameter is. In Section 4, we
will verify the equivalence relationship empirically and provide evidence that no such relationship
holds for logistic regression and its ranking counterpart. In Section 5 we discuss the first two main
benefits gained by this equivalence relationship described above, namely obtaining probability esti-

2906



ON EQUIVALENCE RELATIONSHIPS BETWEEN CLASSIFICATION ANDRANKING ALGORITHMS

mates, and computing solutions faster. In Section 6 we discuss the relationship of P-Classification’s
objective to the “precision” metric, and evaluate several parameters influencing the performance of
P-Classification. As a result, we are able to suggest improvements to boost performance. Section 7
introduces a new logistic-regression-style algorithm that solves a problem in between classification
and ranking, in the hopes of performing better than AdaBoost on both counts. Note that this work
does not relate directly to work on reductions (e.g., Balcan et al., 2008), since in this work, the same
set of features are used for both the classification and ranking problems without any modification.
Another recent work that addresses the use of classification algorithms for solving ranking problems
is that of Kotlowski et al. (2011), who show loss and regret bounds on the ranking performance of
classifiers. Their analysis is useful when equivalence relationships, such as the ones we show here,
do not hold.

2. Definitions

We denote the set of instances with positive labels as {xi}i=1,...,I , and the set of instances with
negative labels as {x̃k}i=1,...,K , where xi, x̃k ∈ X . Throughout most of the paper, the subscripts i and
k will be used as indices over positive and negative instances, respectively. We assume that (xi,yi)
are drawn from a joint distribution D on X ×{−1,1}. Our goal is to construct a scoring function
f : X → which gives a real valued score to each instance in X . Let F denote the hypothesis
space that is the class of convex combinations of features {h j} j=1...n, where h j : X → {−1,1}. The
function f ∈ F is then defined as a linear combination of the features:

f := fλ :=∑
j

λ jh j,

where λ ∈ n will be chosen to minimize (or approximately minimize) an objective function. We
always include a y-intercept (feature that is 1 for all x), assigned to the index  j. This y-intercept
term is important in the equivalence proof; in order to turn the P-Norm Push into a classification
algorithm, we need to place a decision boundary by adjusting the y-intercept.

In bipartite ranking, the goal is to rank positive instances higher than the negative ones. The
quality of a ranking function is often measured by the area under the ROC curve (AUC). The as-
sociated misranking loss, related to 1−AUC, is the number of positive instances that are ranked
below negative instances:

standard misranking loss ( f ) =
I

∑
i=1

K

∑
k=1

1[ f (xi)≤ f (x̃k)]. (1)

The ranking loss is zero when all negative instances are ranked below the positives instances.
In binary classification, the goal is to correctly predict the true labels of positive and negative

examples. The loss is measured by the misclassification error:

standard misclassification loss ( f ) =
I

∑
i=1

1[ f (xi)≤0] +
K

∑
k=1

1[ f (x̃k)≥0]. (2)

Since it is difficult to minimize (1) and (2) directly, a widely used approach is to minimize a convex
upper bound on the loss. The exponential loss that is iteratively minimized by AdaBoost (Freund
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and Schapire, 1997) is one such example:

R AB(λ) :=
I

∑
i=1

e− fλ(xi) +
K

∑
k=1

e fλ(x̃k) =: R AB
+ (λ)+R AB

− (λ). (3)

The ranking counterpart of AdaBoost is RankBoost (Freund et al., 2003). RankBoost’s objective
function is a sum of exponentiated differences in scores, a convexified version of (1):

R RB(λ) :=
I

∑
i=1

K

∑
k=1

e−( fλ(xi)− fλ(x̃k)) =
I

∑
i=1

e− fλ(xi)
K

∑
k=1

e fλ(x̃k) = R AB
+ (λ)R AB

− (λ). (4)

A generalization of RankBoost that is considered in this paper is the P-Norm Push (Rudin,
2009), which minimizes the following objective:

R PN(λ) :=
K

∑
k=1

(
I

∑
i=1

e−( fλ(xi)− fλ(x̃k))

)p

.

By increasing p, one changes how hard the algorithm concentrates on “pushing” high scoring neg-
ative examples down from the top of the list. The power p acts as a soft maximum for the highest
scoring negative instance. When p= 1, P-Norm Push’s objective reduces to RankBoost’s objective.

We also investigate the equivalence relationship between logistic regression and its ranking
counterpart, which we call “Logistic Regression Ranking” (LRR). Logistic regression minimizes
the objective:

R LR(λ) :=
I

∑
i=1

log
(
1+ e− fλ(xi)

)
+

K

∑
k=1

log
(
1+ e fλ(x̃k)

)
, (5)

whereas LRR is defined with the following objective:

R LRR(λ) :=
I

∑
i=1

K

∑
k=1

log
(
1+ e−( fλ(xi)− fλ(x̃k))

)
. (6)

LRR bears a strong resemblance to the algorithm RankNet (Burges et al., 2005) in that its objective
(6) is similar to the second term of RankNet’s objective (Equation 3 in Burges et al., 2005). LRR’s
objective (6) is an upper bound on the 0-1 ranking loss in (1), using the logistic loss log(1+ e−z) to
upper bound the 0-1 loss 1z≤0.

3. Equivalence Relationships

We now introduce P-Classification, which is a boosting-style algorithm that minimizes a weighted
misclassification error. Like the P-Norm Push, it concentrates on “pushing” the negative examples
down from the top of the list. Unlike the P-Norm Push, it minimizes a weighted misclassification
error (rather than a weighted misranking error), though we will show that minimization of either
objective yields an equally good result for either problem. P-Classification minimizes the following
loss:

R PC(λ) :=
I

∑
i=1

e− fλ(xi) +
1
p

K

∑
k=1

e fλ(x̃k)p =: R PC
+ (λ)+R PC

− (λ) (7)
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where fλ = ∑ j λ jh j. P-Classification is a generalization of AdaBoost, in that when p = 1 (i.e.,
no emphasis on the top-scoring negatives), P-Classification’s loss reduces exactly to that of Ada-
Boost’s. We implemented P-Classification as coordinate descent (functional gradient descent) on
R PC(λ). Pseudocode is presented in Figure 1, using the notation of Collins et al. (2002), where i
is the index over all examples (not just positive examples), and M is the “game matrix” for Ada-
Boost, where Mi j = yih j(xi). AdaBoost was originally shown to be a coordinate descent algorithm
by Breiman (1997), Friedman et al. (2000), Rätsch et al. (2001), Duffy and Helmbold (1999) and
Mason et al. (2000).

1. Input: examples {(xi,yi)}mi=1, where (xi,yi) ∈ X ×{−1,1}, features {h j}nj=1, h j : X → ,
number of iterations tmax, parameter p.

2. Define: Mi j := yih j(xi) for all i, j,
φi := 1{yi=1}+ p1{yi=−1} for all i.

3. Initialize: λ1, j = 0 for j = 1, . . . ,n, d1,i = 1/m for i= 1, . . . ,m.

4. Loop for t = 1, ..., tmax

(a) jt ∈ argmax j∑m
i=1 dt,iMi j

(b) Perform a linesearch for αt . That is, find a value αt that minimizes:(
m

∑
i=1

dt,iMi, jt e
−αtφiMi, jt

)2

(c) λt+1, j = λt, j+αt1 j= jt

(d) dt+1,i = dt,ie−αtφiMi, jt for i= 1, . . . ,m

(e) dt+1,i =
dt+1,i
∑i dt+1,i

5. Output: λtmax

Figure 1: Pseudocode for the P-Classification algorithm.

There are other cost-sensitive boosting algorithms similar to P-Classification. Sun et al. (2007)
introduced three “modifications” of AdaBoost’s weight update scheme, in order to make it cost
sensitive. Modifications I and II incorporate an arbitrary constant (a cost item) for each example
somewhere within the update scheme, where the third modification is a blend of Modifications I
and II. Since Sun et al. (2007) consider the iteration scheme itself, some of their modifications are
not easy to interpret with respect to a global objective, particularly Modification II (and thus III).
Although no global objective is provided explicitly, Modification I seems to correspond to approx-

imate minimization of the following objective:
[
∑i

1
Ci
e−(Mλi)Ci

]
. In that sense, P-Classification is

almost a special case of Modification I, where in our case, we would take their arbitrary Ci to be
assigned the value of φi. The step size αt within Modification I is an approximate solution to a line-
search, whereas we use a numerical (exact) linesearch. The AdaCost algorithm of Fan et al. (1999)

2909



ERTEKIN AND RUDIN

is another cost-sensitive variation of AdaBoost, however it is not associated with a global objective
and in our experiments (not shown here) it tended to choose the intercept repeatedly as the weak
classifier, and thus the combined classifier was also the intercept. Lozano and Abe (2008) also use
�p norms within a boosting-style algorithm, but for the problem of label ranking instead of example
ranking. However, their objective is totally different than ours; for instance, it does not correspond
directly to a 0-1 misranking loss like (1).

We will now show that the P-Norm Push is equivalent to P-Classification, meaning that mini-
mizers of P-Classification’s objective are also minimizers of the P-Norm Push’s objective, and that
there is a trivial transformation of the P-Norm Push’s output that will minimize P-Classification’s
objective. This trivial transformation simply puts a decision boundary in the right place. This proof
will generalize the result of Rudin and Schapire (2009), but with a simpler proof strategy; since
there are pathological cases where minimizers of the objectives occur only at infinity, the result of
Rudin and Schapire (2009) used a Bregman distance technique to incorporate these points at infin-
ity. Our proof does not handle the cases at infinity, but does handle, in a much simpler way, all other
cases. These points at infinity occur because the objectives R PC and R PN are not strictly convex
(though they are convex). For AdaBoost, there is work showing that the minimization problem can
be essentially split into two subproblems, one which handles examples near the decision boundary
and is strictly convex, and the other which handles examples that become infinitely far away from
the boundary (Mukherjee et al., 2011).

The forward direction of the equivalence relationship is as follows:

Theorem 1 (P-Classification minimizes P-Norm Push’s objective)
If λPC ∈ argminλR PC(λ) (assuming minimizers exist), then λPC ∈ argminλR PN(λ).

The corresponding proof within Rudin and Schapire (2009) used four main steps, which we follow
also in our proof: 1) characterizing the conditions to be at a minimizer of the classification objective
function, 2) using those conditions to develop a “skew” condition on the classes, 3) characterizing
the conditions to be at a minimizer of the ranking objective function and 4) plugging the skew
condition into the equations arising from step 3, and simplifying to show that a minimizer of the
classification objective is also a minimizer of the ranking objective.

Proof Step 1 is to characterize the conditions to be at a minimizer of the classification loss. Define
λPC to be a minimizer of R PC (assuming minimizers exist). At λPC we have: for all j = 1, . . . ,n:

0 =
∂R PC(λ)

∂λ j

∣∣∣
λ=λPC

=
K

∑
k=1

ep∑ j λ
PC
j h j(x̃k)h j(x̃k)+

I

∑
i=1

e−∑ j λ
PC
j h j(xi)(−h j(xi))

=
K

∑
k=1

vpk h j(x̃k)+
I

∑
i=1

qi(−h j(xi)) (8)

where vk := e fλPC (x̃k) and qi := e− f
λPC (xi).

Step 2 is to develop a skew condition on the classes. When j is  j then h j(xi) = 1 for all i, and
h j(x̃k) = 1 for all k. Using this, we can derive the skew condition:

0 =
K

∑
k=1

vpk −
I

∑
i=1

qi := pR PC
− (λPC)−R PC

+ (λPC). (skew condition) (9)
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Step 3 is to characterize the conditions to be at a minimizer of the ranking loss. First we simplify
the derivatives:

∂R PN(λ)

∂λ j
=

K

∑
k=1

p

(
I

∑
i=1

e(− fλ(xi)− fλ(x̃k))

)p−1[ I

∑
i=1

e−( fλ(xi)− fλ(x̃k)) [−(h j(xi)−h j(x̃k))]

]

= p
K

∑
k=1

e fλ(x̃k)p
(

I

∑
i=1

e− fλ(xi)

)p−1(
h j(x̃k)

I

∑
i=1

e− fλ(xi)−
I

∑
i=1

h j(xi)e
− fλ(xi)

)

= p

(
I

∑
i=1

e− fλ(xi)

)p−1[ K

∑
k=1

h j(x̃k)e
fλ(x̃k)p

I

∑
i=1

e− fλ(xi)

−
K

∑
k=1

e fλ(x̃k)p
I

∑
i=1

h j(xi)e
− fλ(xi)

]
. (10)

To be at a minimizer, the derivatives above must all be zero. Continuing to step 4, when λ = λPC,
we have:

∂R PN(λ)

∂λ j

∣∣∣
λ=λPC

= p

(
I

∑
i=1

qi

)p−1[ K

∑
k=1

h j(x̃k)v
p
k

I

∑
i=1

qi−
K

∑
k=1

vpk

I

∑
i=1

h j(xi)qi

]
.

Using the skew condition (9), and then (8),

∂R PN(λ)

∂λ j

∣∣∣
λ=λPC

= p

(
I

∑
i=1

qi

)p−1( I

∑
i=1

qi

)[
K

∑
k=1

h j(x̃k)v
p
k −

I

∑
i=1

h j(xi)qi

]

= p

(
I

∑
i=1

qi

)p
∂R PC(λ)

∂λ j

∣∣∣
λ=λPC

= 0. (11)

This means that λPC is a minimizer of the P-Norm Push’s objective.

The backwards direction of the equivalence relationship is as follows:

Theorem 2 (The P-Norm Push can be trivially altered to minimize P-Classification’s objective.)
Let  j index the constant feature h  j(x) = 1 ∀x. Take λPN ∈ argminλR PN(λ) (assuming minimizers
exist). Create a “corrected” λPN,corr as follows:

λPN,corr = λPN+b · e  j,

where

b=
1

p+1
ln
∑i e

− f
λPN (xi)

∑k e
f
λPN (x̃k)p

. (12)

Then, λPN,corr ∈ argminλR PC(λ).

Rudin and Schapire (2009) have a very simple proof for the reverse direction, but this technique
could not easily be applied here. We have instead used the following proof outline: first, we
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show that the corrected vector λPN,corr satisfies the skew condition; then by deriving an expres-
sion similar to (11), we show that if the corrected P-Norm Push’s derivatives are zero, then so are
P-Classification’s derivatives at the corrected P-Norm Push’s solution.

Proof We will first show that the skew condition is satisfied for corrected vector λPN,corr. The
condition we need to prove is:

I

∑
i=1

qcorri =
K

∑
k=1

(vcorrk )p (skew condition), (13)

where vcorrk := e fλPN,corr (x̃k) and qcorri := e− f
λPN,corr (xi).

From (12), we have:

e−b =

[
∑k e

f
λPN (x̃k)p

∑i e
− f

λPN (xi)

] 1
p+1

.

The left side of (13) thus reduces as follows:

I

∑
i=1

qcorri =
I

∑
i=1

e− f
λPN (xi)−b = e−b

I

∑
i=1

e− f
λPN (xi)

=

[
∑K
k=1 e

f
λPN (x̃k)p

∑I
i=1 e

− f
λPN (xi)

] 1
p+1 I

∑
i=1

e− f
λPN (xi)

=

[
I

∑
i=1

e− f
λPN (xi)

] p
p+1

[
K

∑
k=1

e fλPN (x̃k)p
] 1

p+1

. (14)

Now consider the right side:

K

∑
k=1

(vcorrk )p =
K

∑
k=1

e fλPN (x̃k)pebp

=
K

∑
k=1

e fλPN (x̃k)p
[
∑I
i=1 e

− f
λPN (xi)

∑k e
f
λPN (x̃k)p

] p
p+1

=

[
I

∑
i=1

e− f
λPN (xi)

] p
p+1

[
K

∑
k=1

e fλPN (x̃k)p
] 1

p+1

. (15)

Expression (14) is equal to expression (15), so the skew condition in (13) holds. According to (10),
at λ= λPN,corr,

∂R PN(λ)

∂λ j

∣∣∣
λ=λPN,corr

= p

(
∑
i

qcorri

)p−1[
∑
k

h j(x̃k)(v
corr
k )p∑

i

qcorri

−∑
k

(vcorrk )p∑
i

h j(xi)q
corr
i

]
.

Incorporating (13),

∂R PN(λ)

∂λ j

∣∣∣
λ=λPN,corr

= p

(
∑
i

qcorri

)p[
∑
k

h j(x̃k)(v
corr
k )p−∑

i

h j(xi)q
corr
i

]
,
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which includes the derivatives of R PC:

∂R PN(λ)

∂λ j

∣∣∣
λ=λPN,corr

= p

(
∑
i

qcorr
i

)p[
∂R PC(λ)

∂λ j

∣∣∣
λ=λPN,corr

]
.

By our assumption that λPN,corr exists, ∑i q
corr
i is positive and finite. Thus, whenever

∂R PN(λ)
∂λ j

∣∣∣
λ=λPN,corr

= 0 for all j we have

∂R PC(λ)

∂λ j

∣∣∣
λ=λPN,corr

= 0.

We need only that ∂R PN(λ)
∂λ j

∣∣∣
λ=λPN,corr

= 0, ∀ j. This is not difficult to show, since the correction

b never influences the value of R PN , that is, R PN(λ) = R PN(λcorr).

As an alternative to P-Classification, we consider a simple weighted version of AdaBoost. The
objective for this algorithm, which we call “Cost-Sensitive AdaBoost,” is a weighted combination
of R AB− and R AB

+ . The objective is:

R CSA(λ) :=
I

∑
i=1

e− fλ(xi) +C
K

∑
k=1

e fλ(x̃k) =: R AB
+ (λ)+CR AB

− (λ).

Cost-Sensitive AdaBoost can be implemented by using AdaBoost’s usual update scheme, where
the only change from AdaBoost is the initial weight vector: d0 is set so that the negatives are each
weightedC times as much as the positives.

No matter whatC is, we prove that Cost-Sensitive AdaBoost minimizes RankBoost’s objective.
This indicates that Cost-Sensitive AdaBoost is not fundamentally different than AdaBoost itself. To
show this, we prove the forward direction of the equivalence relationship between Cost-Sensitive
AdaBoost (for anyC) and RankBoost. We did not get this type of result earlier for P-Classification,
because P-Classification produces different solutions than AdaBoost (and the P-Norm Push pro-
duces different solutions than RankBoost). Here is the forward direction of the equivalence rela-
tionship:

Theorem 3 (Cost-Sensitive AdaBoost minimizes RankBoost’s objective.)
If λCSA ∈ argminλR CSA(λ) (assuming minimizers exist), then λCSA ∈ argminλR RB(λ).

The proof follows the same four steps outlined for the proof of Theorem 1.

Proof Define λCSA to be a minimizer of R CSA (assuming minimizers exist). At λCSA we have:

0 =
∂R CSA(λ)

∂λ j

∣∣∣
λ=λCSA

=
∂R AB

+ (λ)

∂λ j
+C

∂R AB− (λ)

∂λ j

=
I

∑
i=1

qi(−h j(xi))+C
K

∑
k=1

vkh j(x̃k) (16)

where vk := e fλCSA (x̃k) and qi := e− f
λCSA (xi). The next step is to develop a skew condition on the

classes. When j is  j then h j(xi) = 1 for all i, and h j(x̃k) = 1 for all k. Using this, the skew condition
can be derived as follows:
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0=C
K

∑
k=1

vk−
I

∑
i=1

qi :=CR AB
− (λCSA)−R AB

+ (λCSA). (skew condition)

We now characterize the conditions to be at a minimizer of the ranking loss. We plug the skew
condition into the derivatives from RankBoost’s objective, which is given in (4):

∂R RB(λ)

∂λ j
=

K

∑
k=1

h j(x̃k)vk
I

∑
i=1

qi−
K

∑
k=1

vk
I

∑
i=1

h j(xi)qi

=
K

∑
k=1

h j(x̃k)vk

[
C

K

∑
k=1

vk

]
−
[

K

∑
k=1

vk

]
I

∑
i=1

h j(xi)qi

=

[
K

∑
k=1

vk

][
C

K

∑
k=1

h j(x̃k)vk−
I

∑
i=1

h j(xi)qi

]
.

To be at a minimizer, the derivative must be zero. When λ= λCSA, from (16) we have:

∂R RB(λ)

∂λ j

∣∣∣
λ=λCSA

=

[
K

∑
k=1

vk

]
∂R CSA(λ)

∂λ j

∣∣∣
λ=λCSA

= 0.

This means that λCSA is a minimizer of RankBoost’s objective, regardless of the value ofC.

4. Verification of Theoretical Results

The previous section presented theoretical results; in this section and in the following sections we
demonstrate that these results can have direct implications for empirical practice. The equivalence
of P-Classification and P-Norm Push can be observed easily in experiments, both in the special case
p = 1 (AdaBoost and RankBoost are equivalent, Section 4.2) as well as for their generalizations
when p > 1 (in Section 4.3). We further investigated whether a similar equivalence property holds
for logistic regression and Logistic Regression Ranking (“LRR,” defined in Section 2). We present
empirical evidence in Section 4.4 suggesting that such an equivalence relationship does not hold
between these two algorithms. Both algorithms have been implemented as coordinate descent on
their objectives. Coordinate descent was first suggested for logistic regression by Friedman et al.
(2000).

4.1 Data Sets

For the experimental evaluation, we used the Letter Recognition, MAGIC, Yeast and Banana data
sets obtained from the UCI repository (Frank and Asuncion, 2010). The Letter Recognition data set
consists of various statistics computed from black-and-white rectangular pixel displays, which each
represent one of the 26 capital-letters of the English alphabet. The learning task is to determine
which letter an image represents. The MAGIC data set contains data from theMajor Atmospheric
Gamma Imaging Cherenkov Telescope project. The goal is to discriminate the statistical signatures
of Monte Carlo simulated “gamma” particles from simulated “hadron” particles. The yeast data
set is a collection of protein sequences and the goal is to predict cellular localization sites of each
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Data Set # Training examples # Test examples # Features

Letter Recognition 1000 4000 15
MAGIC 1000 4000 11
Yeast 500 984 9
Banana 1000 4000 5

Table 1: Sizes of training/test sets used in the experiments. The number of features column repre-
sents the total number of features for the data sets, including the intercept.

protein. Banana is an artificial data set with a banana-shaped distribution of two classes, represented
by two features.

For MAGIC, Letter Recognition, and Yeast data sets, the weight of each feature h j(xi) was
quantized into -1 or +1 based on thresholding on meanih j(xi). The MAGIC data set was not further
pre-processed beyond this, and “hadrons” were used as the positive class. For the Letter Recognition
data set, we transformed the data set to two distinct categories, where the letter A represents the
positive class and the remaining letters collectively form the negative class. This transformation
created a highly imbalanced data set and presented a challenge in our experimental setup for the
RankBoost algorithm, which, in its original implementation uses an analytical solution for the line
search for αt at each iteration. In particular, the analytical solution requires that the fraction in
the expression for αt (Equation 2 in Freund et al., 2003) is neither zero nor infinity. To ensure
this, each feature h j in the training set must have at least one positive example where h j = 1 and
a negative example where h j = −1, and similarly, the training set should also contain at least one
positive example where h j = −1 and a negative example where h j = 1. Our random sampling of
the training sets for the Letter Recognition data set did not often satisfy the requirement on the
positive examples for “x2bar” and “x-ege” features; we thus removed these two features. Note that
we could not use RankBoost in its original form, since our features are {−1,1}-valued rather than
{0,1}-valued. We simply rederived Equation 2 in Freund et al. (2003) to accommodate this. For
the Yeast data set, from the 10 different classes of localization sites, we used CYT (cytosolic or
cytoskeletal) as the positive class and combined the remaining 9 classes as the negative class. We
used the 8 numerical features of the Yeast data set and omitted the categorical feature. We increased
the number of features of the Banana data set by mapping the original two features {x1,x2} to a new
four-dimensional feature space {x′1,x

′′
1,x

′
2,x

′′
2} by thresholding the original feature values at values

of −4 and −2. Namely, we used the mapping:

x
′
i =

{
+1 if xi >−2
−1 otherwise

and x
′′
i =

{
+1 if xi >−4
−1 otherwise

.

for i = 1,2. The experimental results reported in this section are averaged over 10 random and
distinct train/test splits. The size of train/test splits for each data set and the number of features are
presented in Table 1.

4.2 Equivalence of AdaBoost and RankBoost

Although AdaBoost and RankBoost perform (asymptotically) equally well, it is not immediately
clear whether this equivalence would be able to be observed if the algorithm is stopped before the
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Figure 2: Verifying the forward direction of the equivalence relationship for AdaBoost and Rank-
Boost

regime of convergence is reached. We present empirical evidence to support the forward direction
of the theoretical equivalence relationship for p= 1, on both the training and test splits, for all data
sets described above.

In Figure 2, {λr}r and {λc}c denote sequences of coefficients produced by RankBoost and Ada-
Boost respectively; the subscripts r and c stand for ranking and classification. The figure illustrates
both the convergence of AdaBoost and the convergence of RankBoost, with respect to RankBoost’s
objective RRB. The x-axis denotes the number of iterations. The illustration supports the conver-
gence of AdaBoost to a minimizer of RankBoost’s objective. Because of the way that RankBoost is
designed, R RB(λr) converges more rapidly (in terms of the number of iterations), than R RB(λc).

4.3 Equivalence of P-Classification and P-Norm Push

In the same experimental setting, we now validate the equivalence of P-Classification and P-Norm
Push. In Figure 3, {λr}r and {λc}c denote sequences of coefficients produced by the P-Norm Push
and P-Classification respectively. Convergence is illustrated for both algorithms with respect to
the P-Norm Push’s objective RPN . The x-axis again denotes the number of iterations. The figure
illustrates that P-Classification can effectively be used to minimize the P-Norm Push’s objective.
Comparing with the p = 1 results in Figure 2, the convergence behavior on the training sets are
similar, whereas there are small differences in convergence behavior on the test sets. One impor-
tant distinction between training and testing phases is that the ranking loss is required to decrease
monotonically on the training set, but not on the test set. As discussed in depth in Rudin (2009),
generalization is more difficult as p grows, so we expect a larger difference between training and
test behavior for Figure 3.
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The next experiment verifies the backwards direction of the equivalence relationship. We
demonstrate that a sequence of corrected λ’s minimizing P-Norm Push’s objective also minimizes
P-Classification’s objective. At each iteration of the P-Norm Push, we compute b as defined in (12)
and update λr accordingly. The sequences of R PC values for {λc}c and the corrected {λr}r are
shown in Figure 4.

4.4 Equivalence Does Not Seem To Hold For Logistic Regression and Logistic Regression
Ranking

We implemented a coordinate descent algorithm for minimizing LRR’s objective function (6), where
pseudocode is given in Figure 5. Note that the pseudocode for minimizing logistic regression’s
objective function would be similar, with the only change being that the definition of the matrix M
is the same as in Figure 1.

Figure 6 provides evidence that no such equivalence relationship holds for logistic regression
and Logistic Regression Ranking. For this experiment, {λr}r and {λc}c denote sequences of coef-
ficients produced by LRR and logistic regression respectively. Convergence is illustrated for both
algorithms with respect to LRR’s objective. Even after many more iterations than the earlier ex-
periments, and after LRR’s objective function values have plateaued for the two algorithms, these
values are not close together.
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Figure 3: Verifying the forward direction of the equivalence theorem for P-Classification and the
P-Norm Push (p=4)
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5. Benefits of the Equivalence Relationship

Four major benefits of the equivalence relationship are (i) theoretical motivation, using an algo-
rithm that optimizes classification and ranking objectives simultaneously (ii) gaining the ability to
estimate conditional probabilities from a ranking algorithm, (iii) much faster runtimes for rank-
ing tasks, by passing to a classification algorithm and using the equivalence relationship, and (iv)
building a relationship between the P-Norm Push and the “precision” performance metric through
P-Classification’s objective (discussed in Section 6). We have already discussed theoretical motiva-
tion, and we will now discuss the other two benefits.

5.1 Estimating Probabilities

Themain result in this section is that the scoring function fλ(x) can be used to obtain estimates of the
conditional probability P(y = 1|x). This result relies on properties of the loss functions, including
smoothness, and the equivalence relationship of Theorem 2. Note that the conditional probability
estimates for AdaBoost are known not to be very accurate asymptotically in many cases (e.g., see
Mease et al., 2007), even though AdaBoost generally provides models with high classification and
ranking accuracy (e.g., see Caruana and Niculescu-Mizil, 2006). In other words, even in cases
where the probability estimates are not accurate, the relative ordering of probability estimates (the
ranking) can be accurate.
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Figure 4: Verifying the backward direction of the equivalence for P-Classification and P-Norm Push
(p=4). λr are corrected with b that is defined in (12).
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1. Input: Examples {(xi,yi)}mi=1, where xi ∈ X , yi ∈ {−1,1}, features {h j}nj=1, h j : X → R ,
number of iterations tmax.

2. Define: Mik, j := h j(xi)−h j(x̃k) for all i,k, j, where the first index is over all positive-negative
pairs indexed by ik, for ik = 1, . . . , IK.

3. Initialize: λ1, j = 0 for j = 1, . . . ,n, d1,ik = 1/IK for ik = 1, . . . , IK.

4. Loop for t = 1, ..., tmax

(a) jt ∈ argmax j∑ik dt,ikMik, j

(b) Perform a linesearch for αt . That is, find a value αt that minimizes:(
IK

∑
ik=1

Mik, jt
1

1+ e[(∑ j Mik, jt λt)+αikMik, jt ]

)2

(c) λt+1, j = λt, j+αt1 j= jt

(d) dt+1,ik = 1

1+e(∑ j Mik, jλt+1, j)
for i= 1, . . . , I,k = 1, . . . ,K

(e) dt+1,ik =
dt+1,ik

∑ik dt+1,ik

5. Output: λtmax

Figure 5: Pseudocode for the Logistic Regression Ranking algorithm.

Theorem 4 Probability estimates for P-Classification and for the P-Norm Push algorithm (with λ
corrected trivially as in Theorem 2) can be obtained from the scoring function fλ(x) as follows:

P̂(y= 1|x) = 1

1+ e− fλ(x)(1+p)
.

Proof This proof (in some sense) generalizes results from the analysis of AdaBoost and logistic
regression (see Friedman et al., 2000; Schapire and Freund, 2011). A general classification objective
function can be regarded as an estimate for the expected loss:

Rtrue( f ) := x,y∼D[l(y, f (x))],

where expectation is over randomly selected examples from the true distribution D . This quantity
can be split into two terms, as follows:

x,y∼D[l(y, f (x))] = x
[

y|x[l(y, f (x)|x)]
]

= x[P(y= 1|x)l(1, f (x))+(1−P(y= 1|x))l(−1, f (x))].
At each x, differentiating the inside with respect to f (x) and setting the derivative to 0 at the point
f (x) = f ∗(x), we obtain:

0= P(y= 1|x)l ′(1, f ∗(x))+(1−P(y= 1|x))l ′(−1, f ∗(x)),
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Figure 6: Doubt on equivalence relationship for logistic regression and LRR

and solving this equation for P(y= 1|x),

P(y= 1|x) =
1

l′ (1, f ∗(x))
−l′ (−1, f ∗(x)) +1

. (17)

P-Classification’s objective is an empirical sum over the training instances rather than an expectation
over the true distribution:

R PC(λ) =
I

∑
i=1

e− fλ(xi) +
K

∑
k=1

1
p
e fλ(x̃k)p.

Thus, estimates of the conditional probabilities P̂(y= 1|x) can be obtained using (17) where:

l(1, f (x)) = e− f (x) and l(−1, f (x)) =
1
p
e f (x)p,

and instead of f ∗(x), which cannot be calculated, we use fλ(x). To do this, we first find derivatives:

l(1, f (x)) = e− f (x) ⇒ l
′
(1, f (x)) = −e− f (x)

l(−1, f (x)) =
1
p
e f (x)p ⇒ l

′
(−1, f (x)) = e f (x)p.

Substituting into (17), we obtain estimated conditional probabilities as follows:

P̂(y= 1|x) =
1

1+ l′ (1, fλ(x))
−l′ (−1, fλ(x))

=
1

1+ −e− fλ(x)

−e fλ(x)p

=
1

1+ e− fλ(x)(1+p)
.

This expression was obtained for P-Classification, and extends to the P-Norm Push (with λ cor-
rected) by the equivalence relationship of Theorem 2.

Note that for p= 1, Theorem 4 yields conditional probabilities for RankBoost.
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Letter Recognition

Algorithm Objective # of Iterations(for .05%) Time (sec.)

1K
T
ra
in

AdaBoost R RB 123.4±21.6 0.1±0.0
RankBoost R RB 50.2±10.4 1.1±0.3
P-Classification R PN 132.5±23.9 0.6±0.1
PNormPush R PN 43.3±7.0 3.3±0.6
Logistic Regression R LRR N/A N/A
LRR R LRR 50.0±11.9 8.0±3.0

3K
T
ra
in

AdaBoost R RB 112.3±28.5 0.1±0.0
RankBoost R RB 43.7±9.3 10.7±2.7
P-Classification R PN 136.5±36.4 1.3±0.3
PNormPush R PN 44.0±8.8 29.3±6.5
Logistic Regression R LRR N/A N/A
LRR R LRR 43.8±11.4 65.8±18.2

5K
T
ra
in

AdaBoost R RB 108.9±18.8 0.1±0.0
RankBoost R RB 43.2±7.5 29.2±7.8
P-Classification R PN 138.3±29.4 1.7±0.3
PNormPush R PN 41.9±6.2 72.0±12.5
Logistic Regression R LRR N/A N/A
LRR R LRR 44.4±8.3 218.3±40.6

Table 2: Comparison of runtime performances over varying training set sizes. p = 4 for P-
Classification and P-Norm Push.

5.2 Runtime Performances

Faster runtime is a major practical benefit of the equivalence relationship proved in Section 3. As
we have shown in Sections 4.2 and 4.3, when comparing how ranking algorithms and classification
algorithms approach the minimizers of the misranking error, the ranking algorithms tend to converge
more rapidly in terms of the number of iterations. Convergence with fewer iterations, however,
does not translate into faster convergence. Each iteration of either algorithm requires a search for
the optimal weak hypothesis j. For the P-Norm Push, each comparison requires quadratic space
(involving a vector multiplication of size I×K). In contrast, P-Classification’s comparisons are
linear in the number of examples (involving a vector multiplication of size I+K). For RankBoost,
note that a more efficient implementation is possible for bipartite ranking (see Section 3.2 of Freund
et al., 2003), though a more efficient implementation has not previously been explored in general
for the P-Norm Push; in fact, the equivalence relationship allows us to use P-Classification instead,
making it somewhat redundant to derive one.

Table 2 presents the number of iterations and the amount of time required to train each of
the algorithms (AdaBoost, RankBoost, P-Classification for p=4, P-Norm Push for p=4, logistic
regression, and Logistic Regression Ranking) in an experiment, using a 2.53 gHz macbook pro
with 4 GB ram. We used the RankBoost algorithm with the “second method” for computing αt
given by Freund et al. (2003), since it is the special case corresponding to the P-Norm Push with
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p= 1. The results are presented for the Letter Recognition data set, which is the largest data set in
our experimental corpus. To assess the scalability of the algorithms, we generated 10 training sets
each of sizes 1000 examples, 3000 examples, and 5000 examples (30 total training sets). For each
algorithm, we report the mean and variance (over 10 training sets) of the number of iterations and
the time elapsed (in seconds) for the ranking loss to be within 0.05% of the asymptotic minimum
ranking loss. The asymptotic value was obtained using 200 iterations of the corresponding ranking
algorithm (for AdaBoost and RankBoost, we used RankBoost; for P-Classification and the P-Norm
Push, we used the P-Norm Push; and for logistic regression and LRR, we used LRR). Note that
logistic regression may never converge to within 0.05% of the ranking loss obtained by LRR (there
is no established equivalence relationship), so “N/A” has been placed in the table when this occurs.

Comparing the runtime performances of classification and ranking algorithms in Table 2, Ada-
Boost and P-Classification yield dramatic improvement over their ranking counterparts. Despite
the fact that they require more than double the number of iterations to obtain the same quality of
solution, it only takes them a fraction of the time. Further, AdaBoost and P-Classification appear
to scale better with the sample size. Going from 1K to 5K, AdaBoost’s run time roughly doubles,
on average from 0.08 to 0.14 seconds, whereas RankBoost takes over 27 times longer (29.19/1.08
≈ 27). Similarly, P-Classification’s run time on the 5K data set is slightly more than twice the run
time on the 1K data set, as opposed to approximately 22 times longer (72/3.32 ≈ 21.7) for P-Norm
Push on the 5K data set. Thus, the equivalence relationship between classification and ranking al-
gorithms enables us to pass the efficiency of classification algorithms to their ranking counterparts,
which leads to significant speed improvement for ranking tasks.

6. Experiments on Prediction Performance

When evaluating the prediction performance of the P-Classification algorithm, we chose preci-
sion as our performance metric, motivated by a specific relationship between precision and P-
Classification’s objective that we derive in this section. In Information Retrieval (IR) contexts,
precision is defined as the number of relevant instances retrieved as a result of a query, divided by
the total number of instances retrieved. Similarly, in a classification task the precision is defined as

Precision :=
TP

TP+FP

where TP (true positives) are the number of instances correctly labeled as belonging to the positive
class and FP (false positives) are the number of instances incorrectly labeled as belonging to the
positive class. In a classification task, 100% precision means that every instance labeled as belong-
ing to the positive class does indeed belong to the positive class, whereas 0% precision means that
all positive instances are misclassified.

In order to derive the relationship between precision and P-Classification’s objective, consider
P-Classification’s objective:

R PC(λ) =
I

∑
i=1

e− fλ(xi) +
1
p

K

∑
k=1

e fλ(x̃k)p. (18)
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There is a potential for the second term to be much larger than the first term when p > 1, so we
consider:

R PC(λ)≥ 1
p∑k

e fλ(x̃k)p (19)

≥ 1
p∑k

eγp1[ fλ(x̃k)≥γ] =
1
p
eγp∑

k

1[ fλ(x̃k)≥γ]. (20)

Transitioning from (19) to (20) uses the fact that e fλ(x̃k) > eγp when fλ(x̃k)≥ γ, ∀γ. Let  I fλ>γ,  Kfλ>γ

denote the number of positive and negative instances that score higher than the cutoff threshold γ,
respectively. Then,

∑
k

1[ fλ(x̃k)≥γ] =  Kfλ≥γ

=
(

 I fλ≥γ+  Kfλ≥γ
)(

1−
 I fλ≥γ

 I fλ≥γ+  Kfλ≥γ

)
=

(
 I fλ≥γ+  Kfλ≥γ

)
(1−Precision@( fλ = γ)) . (21)

Note that  I fλ≥γ+  Kfλ≥γ is simply the number of all instances with scores greater than γ. Plugging
(21) into (20) yields

R PC(λ)≥ 1
p
eγp

(
 I fλ≥γ+  Kfλ≥γ

)
(1−Precision@( fλ = γ))

which indicates that minimizing P-Classification’s objective may yield solutions that have high
precision. Through the equivalence of the P-Norm Push and P-Classification, a similar relationship
with precision also exists for the P-Norm Push.

6.1 Effect of p:

In this section, we explore the prediction performance of the P-Classification algorithm with respect
to p, for various levels of γ, where γ is the cutoff threshold for calculating precision. We have three
hypotheses that we want to investigate, regarding the relationship between p and precision.

Hypothesis 1: The presence of exponent p in the second term in (18) enables P-Classification
to achieve improved prediction performance.

The first term of (18) can be much smaller than the second term, due mainly to the presence
of p in the exponent. This means that the bound in (19) becomes tighter with the presence of p.
This may indicate that the exponent p can influence the algorithm’s performance with respect to
precision. The empirical analysis that we present later in this section investigates the influence and
impact of the exponent p on precision accuracy.

Hypothesis 2: Increasing p in P-Classification’s objective yields improved prediction perfor-
mance.

As p increases, the bound in (19) becomes tighter and the largest terms in R PC correspond to the
highest scoring negative examples. Minimizing R PC thus “pushes” these negative examples down
the ranked list, potentially leading to higher values of precision.

Hypothesis 3: P-Classification can achieve better performance than AdaBoost.
P-Classification is a generalized version of AdaBoost. We hypothesize that as p increases, it

will be possible to obtain better prediction performance.
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We are able to make the hypotheses above since we have chosen precision to be the performance
metric. Another metric for evaluating the performance of a ranking function is recall, which is
defined as the number of true positives divided by the total number of positive examples. A perfect
recall of 100% indicates that all positive examples are above the cutoff threshold. Therefore, if
our goal was to optimize recall instead of precision, we would want to put the exponent p on the
first term of R PC rather than the second term, since it will create the effect of pushing the positive
examples from bottom to top of the list. As the goal is to concentrate on the correct rankings at the
top of the list, we particularly aim at achieving higher precision, rather than higher recall. In many
IR systems, including web search, what matters most is how many relevant (positive) results there
are on the first page or the first few pages—this is reflected directly by precision. Recall does not
accurately represent the performance at the top of the list, since it concerns the performance across
all of the positives; this would require us to go much farther down the list than is reasonable to
consider for these applications, in order to span all of the positive examples.

We will now describe the experimental setup. We chose training sets as follows: for MAGIC,
1000 randomly chosen examples, for Yeast, 500 randomly chosen examples, for Banana, 1000
randomly chosen examples and for Letter Recognition, 1200 examples with 200 positives and 1000
positives to achieve an imbalance ratio of 1:5. Increasing the number of positive examples in the
training set of Letter Recognition enabled us to keep the “x-ege” attribute, but discard only the
“x2bar” attribute, due to RankBoost’s requirement discussed in Section 4.1. For all data sets except
Yeast, we randomly selected 4000 examples as the test set. For Yeast, we selected the remaining 983
examples as the test set. The experiments were conducted for three cutoff thresholds γ, to consider
the top 50%, 25% and 10% of the list. The algorithms were run until they had converged (hundreds
of iterations).

Table 3 presents the precision results on the test sets from all four data sets. In order to inves-
tigate the hypotheses above, we redefine Cost-Sensitive AdaBoost as an algorithm that minimizes
the following objective:

R AB
cs (λ) =

I

∑
i=1

e−yi fλ(xi) +C
1
p

K

∑
k=1

e−yk fλ(x̃k). (22)

In order to test the first hypothesis, we fixC= 1. WhenC= 1, (22) resembles P-Classification’s
objective in (7), the only difference is that p is missing in the exponent. When C = 1 and p = 1,
(22) reduces to AdaBoost’s objective (3). In that case, P-Classification and AdaBoost give the same
performance trivially. As shown in Table 3, for fixed values of p, where p > 1, our experiments
indicate that P-Classification yields higher precision than Cost-Sensitive AdaBoost, which agrees
with our first hypothesis. To see this, compare element-wise the “AdaB.CS” rows (C = 1, p > 1)
in the table with the corresponding “P-Classification” rows; this is 36 comparisons that all show
P-Classification giving higher precision than AdaBoost. This was a controlled experiment in which
the treatment was the presence of the exponent p. Our results indicate that the presence of the
exponent p can be highly effective in achieving higher precision values.

In order to test the second hypothesis, we investigated the impact of increasing p in
P-Classification’s objective. We considered four values of p for each of three cutoff thresholds.
Table 3 shows that increasing p in P-Classification’s objective leads to higher precision values. To
see this, consider the P-Classification rows in Table 3. Within each column of the table, perfor-
mance improves as p increases. With increasing p, P-Classification focuses more on pushing down
the high-scored negative instances from top of the list, yielding higher precision.
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MAGIC Letter Recognition
50% 25% 10% 50% 25% 10%

AdaB.CS

p=1,C=1 63.94±3.26 69.40±2.75 94.75±1.03 66.88±8.13 66.88±8.13 72.78±7.20
p=2,C=1 55.92±2.68 69.40±2.75 94.75±1.03 61.76±8.14 61.76±8.14 72.60±6.99
p=3,C=1 54.25±1.41 69.40±2.75 94.75±1.03 58.91±7.61 58.91±7.61 72.82±7.24
p=4,C=1 54.25±1.41 69.40±2.75 94.75±1.03 55.61±7.23 56.02±6.82 72.78±7.20
p=4,C= #neg#pos 55.20±2.35 69.40±2.75 94.75±1.03 68.42±7.09 68.42±7.09 72.88±7.33

P-Class.

p=1,C=1 63.94±3.26 69.40±2.75 94.75±1.03 66.88±8.13 66.88±8.13 72.78±7.20
p=2,C=1 64.45±3.13 70.22±2.77 94.97±0.97 68.98±8.02 68.98±8.02 77.20±7.62
p=3,C=1 65.21±2.99 70.46±2.60 95.15±0.91 70.09±7.65 70.09±7.65 78.45±8.63
p=4,C=1 65.13±2.96 70.60±2.62 95.15±0.94 70.38±7.43 70.38±7.43 78.93±8.41
p=4,C= #neg#pos 82.27±7.68 82.49±7.08 95.15±0.94 90.96±3.39 90.96±3.39 90.96±3.39

LR 65.31±2.90 69.51±2.65 94.78±1.08 69.49±7.63 69.49±7.63 77.10±8.22
LRCS C= #neg#pos 84.54±8.64 84.54±8.64 95.00±0.96 90.62±4.18 90.62±4.18 90.62±4.18

Banana Yeast
50% 25% 10% 50% 25% 10%

AdaB.CS

p=1,C=1 75.56±0.39 88.77±1.75 90.35±2.49 52.77±4.59 52.77±4.59 56.27±3.87
p=2,C=1 75.56±0.39 88.77±1.75 90.35±2.49 44.24±2.54 49.11±3.91 56.06±3.85
p=3,C=1 74.91±0.94 88.77±1.75 90.35±2.49 42.66±1.56 49.11±3.91 56.06±3.85
p=4,C=1 74.15±1.09 88.77±1.75 90.35±2.49 42.66±1.56 49.11±3.91 56.06±3.85
p=4,C= #neg#pos 75.56±0.39 88.77±1.75 90.35±2.49 42.66±1.56 49.11±3.91 56.06±3.85

P-Class.

p=1,C=1 75.56±0.39 88.77±1.75 90.35±2.49 52.77±4.59 52.77±4.59 56.27±3.87
p=2,C=1 75.57±0.39 89.16±0.60 96.70±2.79 53.20±4.23 53.20±4.23 56.37±4.66
p=3,C=1 75.57±0.39 89.16±0.60 97.80±0.86 53.25±4.22 53.25±4.22 56.47±5.38
p=4,C=1 75.57±0.39 89.16±0.60 98.55±1.02 53.26±4.22 53.26±4.22 56.98±4.74
p=4,C= #neg#pos 88.75±9.45 92.86±2.86 98.55±1.02 56.37±6.26 56.37±6.26 58.12±6.20

LR 75.57±0.39 89.16±0.60 90.35±2.49 53.23±4.24 53.23±4.24 56.57±5.15
LRCS C=#pos#neg 88.75±9.45 92.86±2.86 90.35±2.49 55.88±6.09 55.88±6.09 57.59±6.57

Table 3: Precision values at the top 50%, 25% and 10% of the ranked list.

Evaluating the third hypothesis, Table 3 shows that P-Classification for p > 1 yields superior
precision than AdaBoost in all comparisons (36 of them in total, from 4 data sets, 3 γ levels and 3
values of p> 1).

6.2 Effect of ParameterC

Our next set of experiments focus on the behavior that we observe in Cost-Sensitive AdaBoost’s
results, which is that increasing p has a detrimental effect on precision, whereas in P-Classification,
increasing p leads to higher precision. Given that the only difference between R PC and R AB

cs is the
presence of the exponent p in R PC, the behavior that we observe can be explained by the hypothesis
that the exponent p in P-Classification is the dominant factor in determining the misclassification
penalty on the negative examples, overwhelming the effect of the 1p factor.

This leaves room for the possibility that altering the 1
p factor could lead to improved perfor-

mance. We tested this possibility as follows: first, we varied the coefficient C in Cost-Sensitive
AdaBoost’s objective in (22); second, we introduced the same C into P-Classification’s objective,
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and thus defined a Cost-Sensitive P-Classification algorithm that minimizes the following loss:

R PC
cs (λ) =

I

∑
i=1

e− fλ(xi) +C
1
p

K

∑
k=1

e fλ(x̃k)p.

In the experiments, we heuristically set C = #neg
#pos in order to reduce, and possibly eliminate, the

detrimental effect of the 1p term. Our data sets share characteristics similar to many other real world
data sets in that the number of positive examples is less than the number of negative examples;
therefore C > 1 for all four data sets. The #neg

#pos ratios averaged over 10 splits for each data set
are 354/646, 200/1000, 400/600 and 155/345 for MAGIC, Letter Recognition, Banana and Yeast,
respectively. The last row in Table 3 for Cost-Sensitive AdaBoost, and also the last row for P-
Classification, contains performance results with C = #neg

#pos . As seen, for a fixed p (p = 4 in this
case), using this new value forC dramatically improves precision for P-Classification in most cases
(10 out of 12 comparisons) and for AdaBoost in some cases (5 out of 12 comparisons). To see this,
compare the p = 4,C = 1 row with the p = 4,C = #neg

#pos row for each algorithm. Using C > 1 is
equivalent to giving higher misclassification penalty to the negative examples, which can result in a
stronger downward push on these examples, raising precision.

6.3 Comparison of P-Classification With Logistic Regression

Table 3 also presents results for logistic regression, both using its original formulation (5) as well
as its cost-sensitive variant; the objective for cost-sensitive logistic regression is formulated by mul-
tiplying the second term of logistic regression’s objective in (5) with the coefficient C. In compar-
ing P-Classification (p=4) with logistic regression, P-Classification performed worse than logistic
regression in only one comparison out of 12 (3 γ levels and 4 data sets). Considering their cost-
sensitive variants with C = #neg

#pos , P-Classification and logistic regression generally outperformed
their original (non-cost-sensitive) formulations (10 out of 12 comparisons for P-Classification vs.
Cost-Sensitive P-Classification with p=4, and 11 out of 12 comparisons for logistic regression vs
cost-sensitive logistic regression). Furthermore, Cost-Sensitive P-Classification performed worse
than cost-sensitive logistic regression in only 2 out of 12 comparisons.

7. A Hybrid Approach for Logistic Regression

As we discussed in Section 4.4, logistic regression and LRR do not seem to exhibit the equivalence
property that we have established for boosting-style algorithms. Consequently, neither logistic re-
gression or LRR may have the benefit of low classification loss and ranking loss simultaneously.
This limitation can be mitigated to some degree, through combining the benefits of logistic re-
gression and LRR into a single hybrid algorithm that aims to solve both classification and ranking
problems simultaneously. We define the hybrid loss function as:

R LR+LRR = R LR+βR LRR

where β denotes a non-negative regularization factor. β= 0 reduces the hybrid loss to that of logistic
regression, whereas increasing β tilts the balance towards LRR. The trade-off between classification
and ranking accuracy is shown explicitly in Figure 7, which presents the 0-1 classification loss and
0-1 ranking loss of this hybrid approach at various β settings. For comparison, we have included
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(a) (b)

Figure 7: Effect of β on the misclassification error and misranking error rates for MAGIC data set.

the baseline performance of AdaBoost, logistic regression and LRR. For this particular experiment,
logistic regression was able to achieve a better misclassification result than AdaBoost (see Figure
7(a)), but at the expense of a very large misranking error (see Figure 7(b)). As β increases, Figure
7(b) shows that the misranking error decreases almost to the level of AdaBoost’s, whereas Figure
7(a) shows that the classification error increases to be higher than AdaBoost’s. The value of β
should be chosen based on the desired performance criteria for the specific application, determining
the balance between desired classification vs ranking accuracy.

8. Conclusion

We showed an equivalence relationship between two algorithms for two different tasks, based on
a relationship between the minimizers of their objective functions. This equivalence relationship
provides an explanation for why these algorithms perform well with respect to multiple evaluation
metrics, it allows us to compute conditional probability estimates for ranking algorithms, and per-
mits the solution of ranking problems an order of magnitude faster. The two algorithms studied in
this work are generalizations of well-known algorithms AdaBoost and RankBoost. We showed that
our new classification algorithm is related to a performance metric used for ranking, and studied
empirically how aspects of our new classification algorithm influence ranking performance. This
allowed us to suggest improvements to the algorithm in order to boost performance. Finally, we pre-
sented a new algorithm inspired by logistic regression that solves a task that is somewhere between
classification and ranking, with the goal of providing solutions to both problems. This suggests
many avenues for future work. For instance, it may be possible to directly relate either the objec-
tive of P-Classification or the P-Norm Push to other performance metrics (see also the discussion
in Rudin, 2009). It may also be interesting to vary the derivation of P-Classification to include an
exponent on both terms in order to handle, for instance, both precision and recall.
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Abstract

We propose a sequential sampling policy for noisy discrete global optimization and ranking and
selection, in which we aim to efficiently explore a finite set of alternatives before selecting an
alternative as best when exploration stops. Each alternative may be characterized by a multi-
dimensional vector of categorical and numerical attributes and has independent normal rewards.
We use a Bayesian probability model for the unknown reward of each alternative and follow a fully
sequential sampling policy called the knowledge-gradient policy. This policy myopically optimizes
the expected increment in the value of sampling information in each time period. We propose a hier-
archical aggregation technique that uses the common features shared by alternatives to learn about
many alternatives from even a single measurement. This approach greatly reduces the measurement
effort required, but it requires some prior knowledge on the smoothness of the function in the form
of an aggregation function and computational issues limit the number of alternatives that can be
easily considered to the thousands. We prove that our policy is consistent, finding a globally opti-
mal alternative when given enough measurements, and show through simulations that it performs
competitively with or significantly better than other policies.

Keywords: sequential experimental design, ranking and selection, adaptive learning, hierarchical
statistics, Bayesian statistics

1. Introduction

We address the problem of maximizing an unknown function θx where x = (x1, . . . ,xD), x ∈ X , is
a discrete multi-dimensional vector of categorical and numerical attributes. We have the ability to
sequentially choose a set of measurements to estimate θx, after which we choose the value of x with
the largest estimated value of θx. Our challenge is to design a measurement policy which produces
fast convergence to the optimal solution, evaluated using the expected objective function after a
specified number of iterations. Many applications in this setting involve measurements that are
time consuming and/or expensive. This problem is equivalent to the ranking and selection (R&S)
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problem, where the difference is that the number of alternatives |X | is extremely large relative to
the measurement budget.

We do not make any explicit structural assumptions about θx, but we do assume that we are
given an ordered set G and a family of aggregation functions Gg : X → X g, g ∈ G , each of which
maps X to a region X g, which is successively smaller than the original set of alternatives. After
each observation ŷnx = θx + εn, we update a family of statistical estimates of θ at each level of
aggregation. After n observations, we obtain a family of estimates μg,nx of the function at different
levels of aggregation, and we form an estimate μnx of θx using

μnx = ∑
g∈G

wg,nx μg,nx , (1)

where the weights wg,nx sum to one over all the levels of aggregation for each point x. The estimates
μg,nx at more aggregate levels have lower statistical variance since they are based upon more obser-
vations, but exhibit aggregation bias. The estimates μg,nx at more disaggregate levels will exhibit
greater variance but lower bias. We design our weights to strike a balance between variance and
bias.

Our goal is to create a measurement policy π that leads us to find the alternative x that maximizes
θx. This problem arises in a wide range of problems in stochastic search including (i) which settings
of several parameters of a simulated system has the largest mean performance, (ii) which combi-
nation of chemical compounds in a drug would be the most effective to fight a particular disease,
and (iii) which set of features to include in a product would maximize profits. We also consider
problems where x is a multi-dimensional set of continuous parameters.

A number of measurement policies have been proposed for the ranking and selection problem
when the number of alternatives is not too large, and where our beliefs about the value of each
alternative are independent. We build on the work of Frazier et al. (2009) which proposes a policy,
the knowledge-gradient policy for correlated beliefs, that exploits correlations in the belief structure,
but where these correlations are assumed known.

This paper makes the following contributions. First, we propose a version of the knowledge
gradient policy that exploits aggregation structure and similarity between alternatives, without re-
quiring that we specify an explicit covariance matrix for our belief. Instead, we develop a belief
structure based on the weighted estimates given in (1). We estimate the weights using a Bayesian
model adapted from frequentist estimates proposed by George et al. (2008). In addition to eliminat-
ing the difficulty of specifying an a priori covariance matrix, this avoids the computational challenge
of working with large covariance matrices. Second, we show that a learning policy based on this
method is optimal in the limit, that is, eventually it always discovers the best alternative. Our
method requires that a family of aggregation functions be provided, but otherwise does not make
any specific assumptions about the structure of the function or set of alternatives.

The remainder of this paper is structured as follows. In Section 2 we give a brief overview of
the relevant literature. In Section 3, we present our model, the aggregation techniques we use, and
the Bayesian updating approach. We present our measurement policy in Section 4 and a proof of
convergence of this policy in Section 5. We present numerical experiments in Section 6 and 7. We
close with conclusions, remarks on generalizations, and directions for further research in Section 8.

2932



HIERARCHICAL KNOWLEDGE GRADIENT FOR SEQUENTIAL SAMPLING

2. Literature

There is by now a substantial literature on the general problem of finding the maximum of an
unknown function where we depend on noisy measurements to guide our search. Spall (2003)
provides a thorough review of the literature that traces its roots to stochastic approximation methods
first introduced by Robbins and Monro (1951). This literature considers problems with vector-
valued decisions, but its techniques require many measurements to find maxima precisely, which is
a problem when measurements are expensive.

Our problem originates from the ranking and selection (R&S) literature, which begins with
Bechhofer (1954). In the R&S problem, we have a collection of alternatives whose value we can
learn through sampling, and from which we would like to select the one with the largest value. This
problem has been studied extensively since its origin, with much of this work reviewed by Bechhofer
et al. (1995), more recent work reviewed in Kim and Nelson (2006), and research continuing actively
today. The R&S problem has also been recently and independently considered within computer
science (Even-Dar et al., 2002; Madani et al., 2004; Bubeck et al., 2009b).

There is also a related literature on online learning and multi-armed bandits, in which an al-
gorithm is faced with a collection of noisy options of unknown value, and has the opportunity to
engage these options sequentially. In the online learning literature, an algorithm is measured ac-
cording to the cumulative value of the options engaged, while in the problem that we consider an
algorithm is measured according to its ability to select the best at the end of experimentation. Rather
than value, researchers often consider the regret, which is the loss compared to optimal sequence of
decisions in hindsight. Cumulative value or regret is appropriate in settings such as dynamic pricing
of a good sold online (learning while doing), while terminal value or regret is appropriate in settings
such as optimizing a transportation network in simulation before building it in the real world (learn
then do). Strong theoretical bounds on cumulative and average regret have been developed in the
online setting (see, e.g., Auer et al., 2002; Flaxman et al., 2005; Abernethy et al., 2008).

General-purpose online-to-batch conversion techniques have been developed, starting with Lit-
tlestone (1989), for transforming online-learning methods with bounds on cumulative regret into
methods with bounds on terminal regret (for a summary and literature review see Shalev-Shwartz,
2007, Appendix B). While these techniques are easy to apply and immediately produce methods
with theoretical bounds on the rate at which terminal regret converges to zero, methods created in
this way may not have the best achievable bounds on terminal regret: Bubeck et al. (2009b) shows
that improving the upper bound on the cumulative regret of an online learning method causes a cor-
responding lower bound on the terminal regret to get worse. This is indicative of a larger difference
between what is required in the two types of problems. Furthermore, as as example of the differ-
ence between cumulative and terminal performance, Bubeck et al. (2009b) notes that with finitely
many unrelated arms, achieving optimal cumulative regret requires sampling suboptimal arms no
more than a logarithmic number of times, while achieving optimal terminal regret requires sampling
every arm a linear number of times.

Despite the difference between cumulative and terminal value, a number of methods have been
developed that are often applied to both online learning and R&S problems in practice, as well
as to more complex problems in reinforcement learning and Markov decision processes. These
heuristics include Boltzmann exploration, interval estimation, upper confidence bound policies, and
hybrid exploration-exploitation policies such as epsilon-greedy. See Powell and Frazier (2008) for
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a review of these. Other policies include the Explicit Explore or Exploit (E3) algorithm of Kearns
and Singh (2002) and R-MAX of Brafman and Tennenholtz (2003).

Researchers from the online learning and multi-armed bandit communities have also directly
considered R&S and other related problems in which one is concerned with terminal rather than
cumulative value (Even-Dar et al., 2002, 2003; Madani et al., 2004; Mnih et al., 2008; Bubeck
et al., 2009b). Most work that directly considers terminal value assumes no a-priori relationship
between alternatives. One exception is Srinivas et al. (2010), which considers a problem with a
Gaussian process prior on the alternatives, and uses a standard online-to-batch conversion to obtain
bounds on terminal regret. We are aware of no work in the online learning community, however,
whether considering cumulative value or terminal value, that considers the type of hierarchical
aggregation structures that we consider here. A number of researchers have considered other types
of dependence between alternatives, such as online convex and linear optimization (Flaxman et al.,
2005; Kleinberg, 2005; Abernethy et al., 2008; Bartlett et al., 2008), general metric spaces with a
Lipschitz or locally-Lipschitz condition (Kleinberg et al., 2008; Bubeck et al., 2009a), and Gaussian
process priors (Grünewälder et al., 2010; Srinivas et al., 2010).

A related line of research has focused on finding the alternative which, if measured, will have
the greatest impact on the final solution. This idea was originally introduced in Mockus (1975) for a
one-dimensional continuous domain with a Wiener process prior, and in Gupta and Miescke (1996)
in the context of the independent normal R&S problem as also considered in this paper. The latter
policy was further analyzed in Frazier et al. (2008) under the name knowledge-gradient (KG) policy,
where it was shown that the policy is myopically optimal (by construction) and asymptotically
optimal. An extension of the KG policy when the variance is unknown is presented in Chick et al.
(2010) under the name LL1, referring to the one-step linear loss, an alternative name when we are
minimizing expected opportunity cost. A closely related idea is given in Chick and Inoue (2001)
where samples are allocated to maximize an approximation to the expected value of information.
Related search methods have also been developed within the simulation-optimization community,
which faces the problem of determining the best of a set of parameters, where evaluating a set of
parameters involves running what is often an expensive simulation. One class of methods evolved
under the name optimal computing budget allocation (OCBA) (Chen et al., 1996; He et al., 2007).

The work in ranking and selection using ideas of expected incremental value is similar to work
on Bayesian global optimization of continuous functions. In Bayesian global optimization, one
would place a Bayesian prior belief on the unknown function θ. Generally the assumption is that
unknown function θ is a realization from a Gaussian process. Wiener process priors, a special case
of the Gaussian process prior, were common in early work on Bayesian global optimization, being
used by techniques introduced in Kushner (1964) and Mockus (1975). Surveys of Bayesian global
optimization may be found in Sasena (2002); Lizotte (2008) and Brochu et al. (2009).

While algorithms for Bayesian global optimization usually assume noise-free function evalu-
ations (e.g., the EGO algorithm of Jones et al., 1998), some algorithms allow measurement noise
(Huang et al., 2006; Frazier et al., 2009; Villemonteix et al., 2009). We compare the performance of
HKG against two of these: Sequential Kriging Optimization (SKO) from Huang et al. (2006) and
the knowledge-gradient policy for correlated normal beliefs (KGCB) from Frazier et al. (2009). The
latter policy is an extension of the knowledge-gradient algorithm in the presence of correlated be-
liefs, where measuring one alternative updates our belief about other alternatives. This method was
shown to significantly outperform methods which ignore this covariance structure, but the algorithm
requires the covariance matrix to be known. The policies SKO and KGCB are further explained in
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Section 6. Like the consistency results that we provide for HKG, consistency results are known for
some algorithms: consistency of EGO is shown in Vazquez and Bect (2010), and lower bounds on
the convergence rate of an algorithm called GP-UCB are shown in Srinivas et al. (2010).

An approach that is common in optimization of continuous functions, and which accounts for
dependencies, is to fit a continuous function through the observations. In the area of Bayesian
global optimization, this is usually done using Gaussian process priors. In other approaches, like the
Response Surface Methodology (RSM) (Barton and Meckesheimer, 2006) one normally would fit
a linear regression model or polynomials. An exception can be found in Brochu et al. (2009) where
an algorithm is presented that uses random forests instead, which is reminiscent of the hierarchical
prior that we employ in this paper. When we are dealing with nominal categorical dimensions, fitting
a continuous function is less appropriate as we will show in this paper. Moreover, the presence of
categorical dimensions might give a good indication for the aggregation function to be used. The
inclusion of categorical variables in Bayesian global optimization methods, via both random forests
and Gaussian processes, as well as a performance comparison between these two, is addressed in
Hutter (2009).

There is a separate literature on aggregation and the use of mixtures of estimates. Aggregation,
of course, has a long history as a method of simplifying models (see Rogers et al., 1991). Bert-
sekas and Castanon (1989) describes adaptive aggregation techniques in the context of dynamic
programming, while Bertsekas and Tsitsiklis (1996) provides a good presentation of state aggre-
gation methods used in value iteration. In the machine learning community, there is an extensive
literature on the use of weighted mixtures of estimates, which is the approach that we use. We refer
the reader to LeBlanc and Tibshirani (1996); Yang (2001) and Hastie et al. (2001). In our work,
we use a particular weighting scheme proposed by George et al. (2008) due to its ability to easily
handle state dependent weights, which typically involves estimation of many thousands of weights
since we have a weight for each alternative at each level of aggregation.

3. Model

We consider a finite set X of distinct alternatives where each alternative x ∈ X might be a multi-
dimensional vector x = (x1, . . . ,xD). Each alternative x ∈ X is characterized by an independent
normal sampling distribution with unknown mean θx and known variance λx > 0. We use M to
denote the number of alternatives |X | and use θ to denote the column vector consisting of all θx,
x ∈ X .

Consider a sequence of N sampling decisions, x0,x1, . . . ,xN−1. The sampling decision xn selects
an alternative to sample at time n from the set X . The sampling error εn+1x ∼N (0,λx) is independent
conditioned on xn = x, and the resulting sample observation is ŷn+1x = θx+ εn+1x . Conditioned on θ
and xn = x, the sample has conditional distribution

ŷn+1x ∼N (θx,λx) .

Because decisions are made sequentially, xn is only allowed to depend on the outcomes of the
sampling decisions x0,x1, . . . ,xn−1. In the remainder of this paper, a random variable indexed by n
means it is measurable with respect to F n which is the sigma-algebra generated by
x0, ŷ1x0 ,x

1, . . . ,xn−1, ŷnxn−1 .
In this paper, we derive a method based on Bayesian principles which offers a way of formal-

izing a priori beliefs and of combining them with the available observations to perform statistical

2935



MES, POWELL AND FRAZIER

inference. In this Bayesian approach we begin with a prior distribution on the unknown values θx,
x ∈ X , and then use Bayes’ rule to recursively to derive the posterior distribution at time n+1 from
the posterior at time n and the observed data. Let μn be our estimate of θ after n measurements.
This estimate will either be the Bayes estimate, which is the posterior mean E[θ | F n], or an approx-
imation to this posterior mean as we will use later on. Later, in Sections 3.1 and 3.2, we describe
the specific prior and posterior that we use in greater detail. Under most sampling models and prior
distributions, including the one we treat here, we may intuitively understand the learning that occurs
from sampling as progressive concentration of the posterior distribution on θ, and as the tendency
of μn, the mean of this posterior distribution, to move toward θ as n increases.

After taking N measurements, we make an implementation decision, which we assume is given
by the alternative xN that has the highest expected reward under the posterior, that is,
xN ∈ argmaxx∈X μNx . Although we could consider policies making implementation decisions in
other ways, this implementation decision is optimal when μN is the exact posterior mean and when
performance is evaluated by the expected value under the prior of the true value of the implemented
alternative. Our goal is to choose a sampling policy that maximizes the expected value of the im-
plementation decision xN . Therefore we define Π to be the set of sampling policies that satisfies
the requirement xn ∈ F n and introduce π ∈ Π as a policy that produces a sequence of decisions(
x0, . . . ,xN−1). We further write Eπ to indicate the expectation with respect to the prior over both
the noisy outcomes and the truth θ when the sampling policy is fixed to π. Our objective function
can now be written as

sup
π∈Π

Eπ
[
max
x∈X

E[θx | F N ]

]
.

If μN is the exact posterior mean, rather than an approximation, this can be written as

sup
π∈Π

Eπ
[
max
x∈X

μNx

]
.

As an aid to the reader, the notation defined throughout the next subsections is summarized in
Table 1.

3.1 Model Specification

In this section we describe our statistical model, beginning first by describing the aggregation struc-
ture upon which it relies, and then describing our Bayesian prior on the sampling means θx. Later,
in Section 3.2, we describe the Bayesian inference procedure. Throughout these sections we make
the following assumptions: (i) we assume independent beliefs across different levels of aggregation
and (ii) we have two quantities which we assume are fixed parameters of our model whereas we
estimate them using the empirical Bayes approach. Even though these are serious approximations,
we show that posterior inference from the prior results in the same estimators as presented in George
et al. (2008) derived using frequestist methods.

Aggregation is performed using a set of aggregation functions Gg : X → X g, where X g repre-
sents the gth level of aggregation of the original set X . We denote the set of all aggregation levels
by G ={0,1, . . . ,G}, with g = 0 being the lowest aggregation level (which might be the finest
discretization of a continuous set of alternatives), g = G being the highest aggregation level, and
G= |G |−1.

The aggregation functions Gg are typically problem specific and involve a certain amount of
domain knowledge, but it is possible to define generic forms of aggregation. For example, numeric
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Variable Description
G highest aggregation level
Gg(x) aggregated alternative of alternative x at level g
G set of all aggregation levels
G (x,x′) set of aggregation levels that alternatives x and x′ have in common
X set of alternatives
X g set of aggregated alternatives Gg(x) at the gth aggregation level
X g(x) set of alternatives sharing aggregated alternative Gg(x) at aggregation level g
N maximum number of measurements
M number of alternatives, that is,M = |X |
θx unknown true sampling mean of alternative x
θgx unknown true sampling mean of aggregated alternative Gg(x)
λx measurement variance of alternative x
xn nth measurement decision
ŷnx nth sample observation of alternative x
εnx measurement error of the sample observation ŷnx
μnx estimate of θx after n measurements
μg,nx estimate of aggregated alternative Gg(x) on aggregation level g after n measurements
wg,nx contribution (weight) of the aggregate estimate μg,nx to the overall estimate μnx of θx
mg,n
x number of measurements from the aggregated alternative Gg(x)

βnx precision of μnx , with β
n
x = 1/(σ

n
x)
2,

βg,nx precision of μg,nx , with β
g,n
x = 1/(σg,nx )2

βg,n,εx measurement precision from alternatives x′ ∈ X g(x), with βg,n,εx = 1/(σg,n,εx )2

δg,nx estimate of the aggregation bias
g̃nx lowest level g for which mg,n

x > 0.
νg,nx variance of θgx −θx
δ lower bound on δg,nx

Table 1: Notation used in this paper.

data can be defined over a range, allowing us to define a series of aggregations which divide this
range by a factor of two at each additional level of aggregation. For vector valued data, we can ag-
gregate by simply ignoring dimensions, although it helps if we are told in advance which dimensions
are likely to be the most important.

Using aggregation, we create a sequence of sets {X g,g= 0,1, . . . ,G}, where each set has fewer
alternatives than the previous set, and where X 0 equals the original set X . We introduce the follow-
ing notation and illustrate its value using the example of Figure 1:

G (x,x′) Set of all aggregation levels that the alternatives x and x′ have in common, with G (x,x′)⊆
G . In the example we have G (2,3) = {1,2}.

X g(x) Set of all alternatives that share the same aggregated alternative Gg(x) at the gth aggregation
level, with X g(x)⊆ X . In the example we have X 1 (4) = {4,5,6}.
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g= 2 13
g= 1 10 11 12
g= 0 1 2 3 4 5 6 7 8 9

Figure 1: Example with nine alternatives and three aggregation levels.

Given this aggregation structure, we now define our Bayesian model. Define latent variables
θgx , where g ∈ G and x ∈ X . These variables satisfy θgx = θgx′ when G

g(x) = Gg(x′). Also, θ0x = θx
for all x ∈ X . We have a belief about these θgx , and the posterior mean of the belief about θgx is
μg,nx . We see that, roughly speaking, θ

g
x is the best estimate of θx that we can make from aggregation

level g, given perfect knowledge of this aggregation level, and that μg,nx may be understood to be an
estimator of the value of θgx for a particular alternative x at a particular aggregation level g.

We begin with a normal prior on θx that is independent across different values of x, given by

θx ∼N (μ0x ,(σ
0
x)
2).

The way in which θgx relates to θx is formalized by the probabilistic model

θgx ∼N (θx,ν
g
x),

where νgx is the variance of θ
g
x −θx under our prior belief.

The values θgx − θx are independent across different values of g, and between values of x that
differ at aggregation level g, that is, that have different values of Gg(x). The value νgx is currently
a fixed parameter of the model. In practice this parameter is unknown, and while we could place
a prior on it (e.g., inverse gamma), we later employ an empirical Bayes approach instead, first
estimating it from data and then using the estimated value as if it were given a priori.

When we measure alternative xn = x at time n, we observe a value ŷn+1x . In reality, this obser-
vation has distribution N (θx,λx). But in our model, we make the following approximation. We
suppose that we observe a value ŷg,n+1x for each aggregation level g ∈ G . These values are indepen-
dent and satisfy

ŷg,n+1x ∼N (θgx ,1/β
g,n,ε
x ),

where again βg,n,εx is, for the moment, a fixed known parameter, but later will be estimated from
data and used as if it were known a priori. In practice we set ŷg,n+1x = ŷn+1x . It is only a modeling
assumption that breaks this equality and assumes independence in its place. This approximation
allows us to recover the estimators derived using other techniques in George et al. (2008).

This probabilistic model for ŷg,n+1x in terms of θgx induces a posterior on θ
g
x , whose calculation

is discussed in the next section. This model is summarized in Figure 2.

3.2 Bayesian Inference

We now derive expressions for the posterior belief on the quantities of interest within the model.
We begin by deriving an expression for the posterior belief on θgx for a given g.

We define μg,nx , (σ
g,n
x )2, and βg,nx = (σg,nx )−2 to be the mean, variance, and precision of the belief

that we would have about θgx if we had a noninformative prior on θ
g
x and then observed ŷ

g,m
xm−1 for only

those m< n satisfying Gg(xm) =Gg(x) and only for the given value of g. These are the observations
from level g pertinent to alternative x. The quantities μg,nx and βg,nx can be obtained recursively
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θx θ
g

x

N

x
nŷ

g,n+1

xn

|X | |X g| |G||G|

Figure 2: Probabilistic graphical model used by HKG. The dependence of xn upon the past induced
because HKG chooses its measurements adaptively is not pictured.

by considering two cases. When Gg
(xn) �= Gg

(x), we let μg,n+1x = μg,nx and βg,n+1x = βg,nx . When
Gg

(xn) = Gg
(x) we let

μg,n+1x =

[
βg,nx μg,nx +βg,n,εx ŷn+1x

]
/βg,n+1x , (2)

βg,n+1x = βg,nx +βg,n,εx , (3)

where βg,0x = 0 and μg,0x = 0.
Using these quantities, we may obtain an expression for the posterior belief on θx. We define

μnx , (σnx)
2 and βnx = (σnx)

−2 to be the mean, variance, and precision of this posterior belief. By
Proposition 4 (Appendix B), the posterior mean and precision are

μnx =
1
βnx

[
β0xμ

0
x + ∑

g∈G

(
(σg,nx )

2
+νgx

)−1
μg,nx

]
, (4)

βnx = β0x + ∑
g∈G

(
(σg,nx )

2
+νgx

)−1
. (5)

We generally work with a noninformative prior on θx in which β0x = 0. In this case, the posterior
variance is given by

(σnx)
2
=

(
∑
g∈G

(
(σg,nx )

2
+νgx

)−1)−1

, (6)

and the posterior mean μnx is given by the weighted linear combination

μnx = ∑
g∈G

wg,nx μg,nx , (7)

where the weights wg,nx are

wg,nx =

(
(σg,nx )

2
+νgx

)−1
(
∑
g′∈G

((
σg

′
,n

x

)2
+νg

′

x

)−1
)−1

. (8)

Now, we assumed that we knew νgx and β
g,n,ε
x as part of our model, while in practice we do

not. We follow the empirical Bayes approach, and estimate these quantities, and then plug in the
estimates as if we knew these values a priori. The resulting estimator μnx of θx will be identical to
the estimator of θx derived using frequentist techniques in George et al. (2008).
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First, we estimate νgx . Our estimate will be (δ
g,n
x )2, where δg,nx is an estimate of the aggregation

bias that we define here. At the unaggregated level (g= 0), the aggregation bias is clearly 0, so we set
δ0,nx = 0. If we have measured alternative x and g> 0, then we set δg,nx =max(|μg,nx −μ0,nx |,δ), where
δ ≥ 0 is a constant parameter of the inference method. When δ > 0, estimates of the aggregation
bias are prevented from falling below some minimum threshold, which prevents the algorithm from
placing too much weight on a frequently measured aggregate level when estimating the value of
an infrequently measured disaggregate level. The convergence proof assumes δ > 0, although in
practice we find that the algorithm works well even when δ= 0.

To generalize this estimate to include situations when we have not measured alternative x, we
introduce a base level g̃nx for each alternative x, being the lowest level g for which m

g,n
x > 0. We then

define δg,nx as

δg,nx =

{
0 if g= 0 or g< g̃nx ,

max(|μg̃nxx −μg,nx |,δ) if g> 0 and g≥ g̃nx .
(9)

In addition, we set wg,nx = 0 for all g< g̃nx .

Second, we estimate βg,n,εx using βg,n,εx =
(
σg,n,εx

)−2
where (σg,n,εx )2 is the group variance (also

called the population variance). The group variance (σ0,n,εx )2 at the disaggregate (g= 0) level equals
λx, and we may use analysis of variance (see, e.g., Snijders and Bosker, 1999) to compute the group
variance at g> 0. The group variance over a number of subgroups equals the variance within each
subgroup plus the variance between the subgroups. The variance within each subgroup is a weighted
average of the variance λx′ of measurements of each alternative x′ ∈ X g(x). The variance between
subgroups is given by the sum of squared deviations of the disaggregate estimates and the aggregate
estimates of each alternative. The sum of these variances gives the group variance as

(σg,n,εx )
2
=

1
mg,n
x

(
∑

x′∈X g(x)

m0,nx′ λx′ + ∑
x′∈X g(x)

m0,nx′
(
μ0,nx′ −μg,nx

)2)
,

where mg,n
x is the number of measurements from the aggregated alternative Gg(x) at the gth aggre-

gation level, that is, the total number of measurements from alternatives in the set X g(x), after n

measurements. For g= 0 we have
(
σg,n,εx

)2
= λx.

In the computation of
(
σg,n,εx

)2
, the numbers m0,nx′ can be regarded as weights: the sum of the

bias and measurement variance of the alternative we measured the most contributes the most to
the group variance

(
σg,n,εx

)2
. This is because observations of this alternative also have the biggest

impact on the aggregate estimate μg,nx . The problem, however, is that we are going to use the group
variances

(
σg,n,εx

)2
to get an idea about the range of possible values of ŷn+1x′ for all x′ ∈ X g(x). By

including the number of measurements m0,nx′ , this estimate of the range will heavily depend on the
measurement policy. We propose to put equal weight on each alternative by setting mg,n

x = |X g(x)|
(so m0,nx = 1). The group variance

(
σg,n,εx

)2
is then given by

(σg,n,εx )
2
=

1
|X g(x)|

(
∑

x′∈X g(x)

λx′ +
(
μ0,nx′ −μg,nx

)2)
. (10)

A summary of the Bayesian inference procedure can be found in Appendix A. Given this method
of inference, we formally present in the next section the HKG policy for choosing the measurements
xn.
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4. Measurement Decision

Our goal is to maximize the expected reward μNxN of the implementation decision x
N = argmaxx∈X μNx .

During the sequence of N sampling decisions, x0,x1, . . . ,xN−1 we gain information that increases
our expected final reward μNxN . We may formulate an equivalent problem in which the reward is
given in pieces over time, but the total reward given is identical. Then the reward we gain in a
single time unit might be regarded as an increase in knowledge. The knowledge-gradient policy
maximizes this single period reward. In Section 4.1 we provide a brief general introduction of the
knowledge-gradient policy. In Section 4.2 we summarize the knowledge-gradient policy for in-
dependent and correlated multivariate normal beliefs as introduced in Frazier et al. (2008, 2009).
Then, in Section 4.3, we adapt this policy to our hierarchical setting. We end with an illustration of
how the hierarchical knowledge gradient policy chooses its measurements (Section 4.4).

4.1 The Knowledge-Gradient Policy

The knowledge-gradient policy was first introduced in Gupta and Miescke (1996) under the name
(R1, . . . ,R1), further analyzed in Frazier et al. (2008), and extended in Frazier et al. (2009) to cope
with correlated beliefs. The idea works as follows. Let Sn be the knowledge state at time n. In
Frazier et al. (2008, 2009) this is given by Sn = (μn,Σn), where the posterior on θ is N (μn,Σn). If
we were to stop measuring now, our final expected reward would be maxx∈X μnx . Now, suppose we
were allowed to make one more measurement xn. Then, the observation ŷn+1xn would result in an
updated knowledge state Sn+1 which might result in a higher expected reward maxx∈X μn+1x at the
next time unit. The expected incremental value due to measurement x is given by

υKGx (Sn) = E

[
max
x′∈X

μn+1x′ |Sn,xn = x

]
−max

x′∈X
μnx′ . (11)

The knowledge-gradient policy πKG chooses its sampling decisions to maximize this expected
incremental value. That is, it chooses xn as

xn = argmax
x∈X

υKGx (Sn) .

4.2 Knowledge Gradient For Independent And Correlated Beliefs

In Frazier et al. (2008) it is shown that when all components of θ are independent under the prior
and under all subsequent posteriors, the knowledge gradient (11) can be written

υKGx (Sn) = σ̃x (Σn,x) f

(−|μnx−maxx′ �=xμnx′ |
σ̃x (Σn,x)

)
,

where σ̃x (Σn,x) = Var
(
μn+1x |Sn,xn = x

)
= Σnxx/

√
λx+Σnxx, with Σ

n
xx the variance of our estimate

μnx , and where f (z) = ϕ(z)+ zΦ(z) where ϕ(z) and Φ(z) are, respectively, the normal density and
cumulative distribution functions.

In the case of correlated beliefs, an observation ŷn+1x of alternative x may change our estimate
μnx′ of alternatives x

′ �= x. The knowledge gradient (11) can be written as

υKG,nx (Sn) = E

[
max
x′∈X

μnx′ + σ̃x′ (Σ
n,x)Z|Sn,xn = x

]
−max

x′∈X
μnx′ , (12)
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where Z is a standard normal random variable and σ̃x′ (Σn,x) = Σnx′x/
√
λx+Σnxx with Σ

n
x′x the covari-

ance between μnx′ and μ
n
x .

Solving (12) involves the computation of the expectation over a piecewise linear convex func-
tion, which is given as the maximum of affine functions μnx′ + σ̃x′ (Σn,x)Z. To do this, Frazier et al.
(2009) provides an algorithm (Algorithm 2) which solves h(a,b) = E [maxi ai+biZ]−maxi ai as a
generic function of any vectors a and b. In Frazier et al. (2009), the vectors a and b are given by the
elements μnx′ and σ̃x′ (Σ

n,x) for all x′ ∈ X respectively, and the index i corresponds to a particular x′.
The algorithm works as follows. First it sorts the sequence of pairs (ai,bi) such that the bi are in non-
decreasing order and ties in b are broken by removing the pair (ai,bi) when bi = bi+1 and ai ≤ ai+1.
Next, all pairs (ai,bi) that are dominated by the other pairs, that is, ai+ biZ ≤ max j �=i a j+ b jZ for
all values of Z, are removed. Throughout the paper, we use ã and b̃ to denote the vectors that re-
sult from sorting a and b by bi followed by the dropping of the unnecessary elements, producing a
smaller M̃. The knowledge gradient can now be computed using

υKGx = ∑
i=1,...,M̃

(
b̃i+1− b̃i

)
f

(
−
∣∣∣∣ ãi− ãi+1
b̃i+1− b̃i

∣∣∣∣) .

Note that the knowledge gradient algorithm for correlated beliefs requires that the covariance
matrix Σ0 be provided as an input. These correlations are typically attributed to physical relation-
ships among the alternatives.

4.3 Hierarchical Knowledge Gradient

We start by generalizing the definition (11) of the knowledge-gradient in the following way

υKGx (Sn) = E

[
max
x′∈X

μn+1x′ |Sn,xn = x

]
−max

x′∈X
E
[
μn+1x′ |Sn,xn = x

]
, (13)

where the knowledge state is given by Sn =
{
μg,nx ,βg,nx : x ∈ X ,g ∈ G

}
.

When using the Bayesian updating equations from the original knowledge-gradient policy, the
estimates μnx form a martingale, in which case the conditional expectation of μ

n+1
x′ given Sn is μnx′ , and

(13) is equivalent to the original definition (11). Because of approximations used in the updating
equations derived in Section 3, μnx is not a martingale in our case, and the term subtracted in (13)
ensures the non-negativity of the KG factor.

Before working out the knowledge gradient (13), we first focus on the aggregate estimate μg,n+1x .
We rewrite the updating Equation (2) as

μg,n+1x =
[
βg,nx μg,nx +βg,n,εx ŷn+1x

]
/βg,n+1x

= μg,nx +
βg,n,εx

βg,nx +βg,n,εx

(
ŷn+1x −μg,nx

)
= μg,nx +

βg,n,εx

βg,nx +βg,n,εx

(
ŷn+1x −μnx

)
+

βg,n,εx

βg,nx +βg,n,εx
(μnx−μg,nx ) .

Now, the new estimate is given by the sum of (i) the old estimate, (ii) the deviation of ŷn+1x
from the weighted estimate μnx times the relative increase in precision, and (iii) the deviation of the
estimate μg,nx from the weighted estimate μnx times the relative increase in precision. This means
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that even if we observe precisely what we expected
(
ŷn+1
x = μnx

)
, the aggregate estimate μg,n+1

x still
shrinks towards our current weighted estimate μnx . However, the more observations we have, the less
shrinking will occur because the precision of our belief on μg,nx will be higher.

The conditional distribution of ŷn+1
x is N

(
μnx ,(σ

n
x)

2 +λx
)

where the variance of ŷn+1
x is given

by the measurement noise λx of the current measurement plus the variance (σnx)
2 of our belief given

by (6). So, Z =
(
ŷn+1
x −μnx

)
/
√
(σnx)2 +λx is a standard normal. Now we can write

μg,n+1
x = μg,nx +

βg,n,εx

βg,nx +βg,n,εx
(μnx−μg,nx )+ σ̃g,nx Z, (14)

where

σ̃g,nx =
βg,n,εx

√
(σnx)

2 +λx

βg,nx +βg,n,εx
. (15)

We are interested in the effect of decision x on the weighted estimates
{
μn+1
x′ , ∀x′ ∈ X

}
. The

problem here is that the values μnx′ for all alternatives x′ ∈ X are updated whenever they share at least
one aggregation level with alternative x, which is to say for all x′ for which G (x′,x) is not empty.
To cope with this, we break our expression (7) for the weighted estimate μn+1

x′ into two parts

μn+1
x′ = ∑

g/∈G(x′,x)
wg,n+1
x′ μg,n+1

x′ + ∑
g∈G(x′,x)

wg,n+1
x′ μg,n+1

x .

After substitution of (14) and some rearrangement of terms we get

μn+1
x′ = ∑

g∈G
wg,n+1
x′ μg,nx′ + ∑

g∈G(x′,x)
wg,n+1
x′

βg,n,εx

βg,nx +βg,n,εx
(μnx−μg,nx ) (16)

+Z ∑
g∈G(x′,x)

wg,n+1
x′ σ̃g,nx .

Because the weightswg,n+1
x′ depend on the unknown observation ŷn+1

x′ , we use an estimate  wg,nx′ (x)
of the updated weights given we are going to sample x. Note that we use the superscript n instead
of n+1 to denote its F n measurability.

To compute  wg,nx′ (x), we use the updated precision βg,n+1
x due to sampling x in the weights (8).

However, we use the current biases δg,nx because the updated bias δg,n+1
x depends on the μg,n+1

x which
we aim to estimate. The predictive weights  wg,nx′ (x) are

 wg,nx′ (x) =

((
βg,nx′ + Igx′,xβ

g,n,ε
x′

)−1
+
(
δg,nx′

)2
)−1

∑g′∈G

((
βg

′,n
x′ + Ig

′
x′,xβ

g′,n,ε
x′

)−1
+
(
δg

′,n
x′

)2
)−1 , (17)

where

Igx′,x =

{
1 if g ∈ G (x′,x)
0 otherwise

.

After combining (13) with (16) and (17), we get the following knowledge gradient

υKGx (Sn) = E

[
max
x′∈X

anx′(x)+bnx′(x)Z|Sn
]
−max

x′∈X
anx′(x), (18)
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where

anx′(x) = ∑
g∈G

 wg,nx′ (x)μ
g,n
x′ + ∑

g∈G(x′,x)
 wg,nx′ (x)

βg,n,εx

βg,nx +βg,n,εx
(μnx−μg,nx ) , (19)

bnx′(x) = ∑
g∈G(x′,x)

 wg,nx′ (x)σ̃
g,n
x . (20)

Note that these equations for the knowledge gradient are quite different from those presented in
Frazier et al. (2008) for the knowledge gradient for independent beliefs. However, it can be shown
that without aggregation levels they coincide (if G= 0, then anx′(x) = μ0,n

x′ = μnx′ and bnx′(x) = σ̃0,n
x ).

Following the approach of Frazier et al. (2009), which was briefly described in Section 4.2, we
define an(x) as the vector

{
anx′(x), ∀x′ ∈ X

}
and bn(x) as the vector

{
bnx′(x), ∀x′ ∈ X

}
. From this

we derive the adjusted vectors ãn(x) and b̃n(x). The knowledge gradient (18) can now be computed
using

υKG,nx = ∑
i=1,...,M̃−1

(
b̃ni+1(x)− b̃ni (x)

)
f

(
−
∣∣∣∣∣ ãni (x)− ãni+1(x)

b̃ni+1(x)− b̃ni (x)

∣∣∣∣∣
)
, (21)

where ãni (x) and b̃ni (x) follow from (19) and (20), after the sort and merge operation as described in
Section 4.2.

The form of (21) is quite similar to that of the expression in Frazier et al. (2009) for the cor-
related knowledge-gradient policy, and the computational complexities of the resulting policies are
the same. Thus, like the correlated knowledge-gradient policy, the complexity of the hierarchical
knowledge-gradient policy is O

(
M2 logM

)
. An algorithm outline for the hierarchical knowledge-

gradient measurement decision can be found in Appendix A.

4.4 Remarks

Before presenting the convergence proofs and numerical results, we first provide the intuition behind
the hierarchical knowledge gradient (HKG) policy. As illustrated in Powell and Frazier (2008), the
independent KG policy prefers to measure alternatives with a high mean and/or with a low precision.
As an illustration, consider Figure 3, where we use an aggregation structure given by a perfect binary
tree (see Section 6.3) with 128 alternatives at the disaggregate level. At aggregation level 5, there are
four aggregated alternatives. As a result, the first four measurements are chosen such that we have
one observation for each of these alternatives. The fifth measurement will be either in an unexplored
region one aggregation level lower (aggregation level 4 consisting of eight aggregated alternatives)
or at an already explored region that has a high weighted estimate. In this case, HKG chooses to
sample from the unexplored region 48 < x ≤ 64 since it has a high weighted estimate and a low
precision. The same holds for the sixth measurements which would be either from one of the three
remaining unexplored aggregated alternatives from level 4, or from an already explored alternative
with high weighted mean. In this case, HKG chooses to sample from the region 32 < x≤ 40, which
corresponds with an unexplored alternative at the aggregation level 3. The last panel shows the
results after 20 measurements. From this we see HKG concentrates its measurements around the
optimum and we have a good fit in this area.

2944



HIERARCHICAL KNOWLEDGE GRADIENT FOR SEQUENTIAL SAMPLING

 0

 0.2

 0.4

 0.6

 0.8

 1

 16  32  48  64  80  96  112  128

n=4

observation

truth

weighted estimate

confidence interval

new observation

 0

 0.2

 0.4

 0.6

 0.8

 1

 16  32  48  64  80  96  112  128

n=5

 0

 0.2

 0.4

 0.6

 0.8

 1

 16  32  48  64  80  96  112  128

n=6

 0

 0.2

 0.4

 0.6

 0.8

 1

 16  32  48  64  80  96  112  128

n=20

Figure 3: Illustration of the way HKG chooses its measurements.

5. Convergence Results

In this section, we show that the HKG policy measures each alternative infinitely often (Theorem 1).
This implies that the HKG policy learns the true values of every alternative as n→ ∞ (Corollary 2)
and eventually finds a globally optimal alternative (Corollary 3). This final corollary is the main
theoretical result of this paper. The proofs of these results depend on lemmas found in Appendix C.

Although the posterior inference and the derivation of the HKG policy assumed that samples
from alternative x were normal random variables with known variance λx, the theoretical results
in this section allow general sampling distributions. We assume only that samples from any fixed
alternative x are independent and identically distributed (iid) with finite variance, and that δ > 0.
These distributions may, of course, differ across x. Thus, even if the true sampling distributions do
not meet the assumptions made in deriving the HKG policy, we still enjoy convergence to a globally
optimal alternative. We continue to define θx to be the true mean of the sampling distribution from
alternative x, but the true variance of this distribution can differ from λx.

Theorem 1 Assume that samples from any fixed alternative x are iid with finite variance, and that
δ > 0. Then, the HKG policy measures each alternative infinitely often (i.e., limn→∞m

0,n
x = ∞ for

each x ∈ X ) almost surely.

Proof Consider what happens as the number of measurements n we make under the HKG policy
goes to infinity. Let X∞ be the set of all alternatives measured infinitely often under our HKG policy,
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and note that this is a random set. Suppose for contradiction that X∞ �= X with positive probability,
that is, there is an alternative that we measure only a finite number of times. Let N1 be the last time
we measure an alternative outside of X∞. We compare the KG values υKG,nx of those alternatives
within X∞ to those outside X∞.

Let x ∈ X∞. We show that limn→∞υ
KG,n
x = 0. Since f is an increasing non-negative function,

and b̃ni+1(x)− b̃ni (x)≥ 0 by the assumed ordering of the alternatives, we have the bounds

0 ≤ υKG,nx ≤ ∑
i=1,...,M̃−1

(
b̃ni+1(x)− b̃ni (x)

)
f (0).

Taking limits, limn→∞υ
KG,n
x = 0 follows from limn→∞ b̃ni (x) = 0 for i= 1, . . . ,M̃, which follows

in turn from limn→∞ bnx′(x) = 0 ∀x′ ∈ X as shown in Lemma 8.

Next, let x /∈ X∞. We show that liminfn→∞υ
KG,n
x > 0. Let U = supn,i |ani (x)|, which is almost

surely finite by Lemma 7. Let x′ ∈ X∞. At least one such alternative x′ must exist since we allocate
an infinite number of measurements and X is finite. Lemma 9 shows

υKG,nx ≥ 1
2
|bnx′(x)−bnx(x)| f

( −4U
|bnx′(x)−bnx(x)|

)
.

From Lemma 8, we know that liminfn→∞ bnx(x) > 0 and limn→∞ bnx′(x) = 0. Thus,

b∗ = liminfn→∞ |bnx(x)− bnx′(x)| > 0. Taking the limit inferior of the bound on υKG,nx and noting
the continuity and monotonicity of f , we obtain

liminf
n→∞

υKG,nx ≥ 1
2
b∗ f

(−4U
b∗

)
> 0.

Finally, since limn→∞υ
KG,n
x = 0 for all x ∈ X∞ and liminfn→∞υ

KG,n
x′ > 0 for all x′ /∈ X∞, each

x′ /∈ X∞ has an n> N1 such that υKG,nx′ > υKG,nx ∀x ∈ X∞. Hence we choose to measure an alternative
outside X∞ at a time n> N1. This contradicts the definition of N1 as the last time we measured out-
side X∞, contradicting the supposition that X∞ �= X . Hence we may conclude that X∞ = X , meaning
we measure each alternative infinitely often.

Corollary 2 Assume that samples from any fixed alternative x are iid with finite variance, and that
δ> 0. Then, under the HKG policy, limn→∞μnx = θx almost surely for each x ∈ X .

Proof Fix x. We first consider μ0,n
x , which can be written as

μ0,n
x =

β0,0
x μ0,0

x +m0,n
x (λx)−1  ynx

β0,0
x +m0,n

x (λx)−1
,

where  ynx is the average of all observations of alternative x by time n. As n → ∞, m0,n
x → ∞ by

Theorem 1. Thus, limn→∞μ0,n
x = limn→∞  ynx , which is equal to θx almost surely by the law of large

numbers.
We now consider the weights wg,nx . For g �= 0, (8) shows

wg,nx ≤
(
(σg,nx )2 +(δg,nx )2

)−1

(σ0,n
x )−2 +

(
(σg,nx )2 +(δg,nx )2

)−1 .
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When n is large enough that we have measured at least one alternative in X g(x), then δg,nx ≥ δ,
implying

(
(σg,nx )2+(δg,nx )2

)−1 ≤ δ−2 and wg,nx ≤ δ−2/((σ0,nx )−2+ δ−2). As n→ ∞, m0,nx → ∞ by

Theorem 1 and (σ0,nx )−2 = β0,0+m0,nx (λx)−1→∞. This implies that limn→∞w
g,n
x = 0. Also observe

that w0,nx = 1−∑g �=0w
g,n
x implies limn→∞w

0,n
x = 1.

These limits for the weights, the almost sure finiteness of supn |μg,nx | for each g from Lemma 7,
and the definition (7) of μnx together imply limn→∞μnx = limn→∞μ

0,n
x , which equals θx as shown

above.

Finally, Corollary 3 below states that the HKG policy eventually finds a globally optimal alter-
native. This is the main result of this section. In this result, keep in mind that x̂n = argmaxxμ

N
x is the

alternative one would estimate to be best at time N, given all the measurements collected by HKG.
It is this estimate that converges to the globally optimal alternative, and not the HKG measurements
themselves.

Corollary 3 For each n, let x̂n ∈ argmaxxμnx. Assume that samples from any fixed alternative x are
iid with finite variance, and that δ > 0. Then, under the HKG policy, there exists an almost surely
finite random variable N′ such that x̂n ∈ argmaxx θx for all n> N′.

Proof Let θ∗ = maxx θx and ε = min{θ∗ − θx : x ∈ X ,θ∗ > θx}, where ε = ∞ if θx = θ∗ for all
x. Corollary 2 states that limn→∞μnx = θx almost surely for all x, which implies the existence
of an almost surely finite random variable N′ with maxx |μnx − θx| < ε/2 for all n > N′. On the
event {ε = ∞} we may take N′ = 0. Fix n > N′, let x∗ ∈ argmaxx θx, and let x′ /∈ argmaxx θx.
Then μnx∗ − μnx′ = (θx∗ − θx′) + (−θx∗ + μnx∗) + (θx′ − μnx′) > θx∗ − θx′ − ε ≥ 0. This implies that
x̂n ∈ argmaxx θx.

6. Numerical Experiments

To evaluate the hierarchical knowledge-gradient policy, we perform a number of experiments. Our
objective is to find the strengths and weaknesses of the HKG policy. To this end, we compare HKG
with some well-known competing policies and study the sensitivity of these policies to various
problem settings such as the dimensionality and smoothness of the function, and the measurement
noise.

6.1 Competing Policies

We compare the Hierarchical Knowledge Gradient (HKG) algorithm against several ranking and
selection policies: the Interval Estimation (IE) rule from Kaelbling (1993), the Upper Confidence
Bound (UCB) decision rule from Auer et al. (2002), the Independent Knowledge Gradient (IKG)
policy from Frazier et al. (2008), Boltzmann exploration (BOLTZ), and pure exploration (EXPL).

In addition, we compare with the Knowledge Gradient policy for correlated beliefs (KGCB)
from Frazier et al. (2009) and, from the field of Bayesian global optimization, we select the Se-
quential Kriging Optimization (SKO) policy from Huang et al. (2006). SKO is an extension of the
well known Efficient Global Optimization (EGO) policy (Jones et al., 1998) to the case with noisy
measurements.

2947



MES, POWELL AND FRAZIER

We also consider an hybrid version of the HKG algorithm (HHKG) in which we only exploit the
similarity between alternatives in the updating equations and not in the measurement decision. As a
result, this policy uses the measurement decision of IKG and the updating equations of HKG. The
possible advantage of this hybrid policy is that it is able to cope with similarity between alternatives
without the computational complexity of HKG.

Since several of the policies require choosing one or more parameters, we provide a brief de-
scription of the implementation of these policies in Appendix D. For those policies that require it,
we perform tuning using all one-dimensional test functions (see Section 6.2). For the Bayesian
approaches, we always start with a non-informative prior.

6.2 Test Functions

To evaluate the policies numerically, we use various test functions with the goal of finding the
highest point of each function. Measuring the functions is done with normally distributed noise with
variance λ. The functions are chosen from commonly used test functions for similar procedures.

6.2.1 ONE-DIMENSIONAL FUNCTIONS

First we test our approach on one-dimensional functions. In this case, the alternatives x simply
represent a single value, which we express by i or j. As test functions we use a Gaussian process
with zero mean and power exponential covariance function

Cov(i, j) = σ2 exp

{
−
( |i− j|
(M−1)ρ

)η}
,

which results in a stationary process with variance σ2 and a length scale ρ.
Higher values of ρ result in fewer peaks in the domain and higher values of η result in smoother

functions. Here we fix η = 2 and vary ρ ∈ 0.05,0.1,0.2,0.5. The choice of σ2 determines the
vertical scale of the function. Here we fix σ2 = 0.5 and we vary the measurement variance λ.

To generate a truth θi, we take a random draw from the Gaussian process (see, e.g., Rasmussen
and Williams, 2006) evaluated at the discretized points i= 1, ..,128. Figure 4 shows one test func-
tion for each value of ρ.

Next, we consider non-stationary covariance functions. We choose to use the Gibbs covariance
function (Gibbs, 1997) as it has a similar structure to the exponential covariance function but is
non-stationary. The Gibbs covariance function is given by

Cov(i, j) = σ2
√

2l(i)l( j)
l(i)2+ l( j)2

exp

(
− (i− j)2

l(i)2+ l( j)2

)
,

where l(i) is an arbitrary positive function in i. In our experiments we use a horizontally shifted
periodic sine curve for l(i),

l (i) = 1+10

(
1+ sin

(
2π

(
i
128

+u

)))
,

where u is a random number from [0,1] that shifts the curve horizontally across the x-axis. The
function l(i) is chosen so that, roughly speaking, the resulting function has one full period, that is,
one area with relatively low correlations and one area with relatively high correlations. The area
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Figure 4: Illustration of one-dimensional test functions.

with low correlations visually resembles the case of having a stationary function with ρ = 0.05,
whereas the area with high correlations visually resembles the case of having a stationary function
with ρ= 0.5.

The policies KGCB, SKO and HKG all assume the presence of correlations in function values.
To test the robustness of these policies in the absence of any correlation, we consider one last one-
dimensional test function. This function has an independent truth generated by θi = U [0,1], i =
1, ...,128.

6.2.2 TWO-DIMENSIONAL FUNCTIONS

Next, we consider two-dimensional test functions. First, we consider the Six-hump camel back
(Branin, 1972) given by

f (x) = 4x21−2.1x41+
1
3
x61+ x1x2−4x22+4x42.

Different domains have been proposed for this function. Here we consider the domain x ∈
[−1.6,2.4]× [−0.8,1.2] as also used in Huang et al. (2006) and Frazier et al. (2009), and a slightly
bigger domain x ∈ [−2,3]× [−1,1.5]. The extended part of this domain contains only values far
from the optimum. Hence, the extension does not change the value and location of the optimum.

The second function we consider is the Tilted Branin (Huang et al., 2006) given by

f (x) =

(
x2− 5.1

4π2
x21+

5
π
x1−6

)2
+10

(
1− 1

8π

)
cos(x1)+10+

1
2
x1,

with x ∈ [−5,10]× [0,15].
The Six-hump camel back and Tilted Branin function are relatively smooth functions in the

sense that a Gaussian process can be fitted to the truth relatively well. Obviously, KGCB and SKO
benefit from this. To also study more messy functions, we shuffle these functions by placing a 2×2
grid onto the domain and exchange the function values from the lower left quadrant with those from
the upper right quadrant.

2949



MES, POWELL AND FRAZIER

With the exception of SKO, all policies considered in this paper require problems with a fi-
nite number of alternatives. Therefore, we discretize the set of alternatives and use an 32 × 32
equispaced grid on R2. We choose this level of discretization because, although our method is
theoretically capable of handling any finite number of alternatives, computational issues limit the
possible number to the order of thousands. This limit also holds for KGCB, which has the same
computational complexity as HKG. For SKO we still use the continuous functions which should
give this policy some advantage.

6.2.3 CASE EXAMPLE

To give an idea about the type of practical problems for which HKG can be used, we consider a
transportation application (see Simao et al., 2009). Here we must decide where to send a driver
described by three attributes: (i) the location to which we are sending him, (ii) his home location
(called his domicile) and (iii) to which of six fleets he belongs. The “fleet” is a categorical attribute
that describes whether the driver works regionally or nationally and whether he works as a single
driver or in a team. The spatial attributes (driver location and domicile) are divided into 100 re-
gions (by the company). However, to reduce computation time, we aggregate these regions into 25
regions. Our problem is to find which of the 25×25×6= 3750 is best.

To allow replicability of this experiment, we describe the underlying truth using an adaption of
a known function which resembles some of the characteristics of the transportation application. For
this purpose we use the Six-hump camel back function, on the smaller domain, as presented earlier.
We let x1 be the location and x2 be the driver domicile, which are both discretized into 25 pieces to
represent regions. To include the dependence on capacity type, we use the following transformation

g(x1,x2,x3) = p1 (x3)− p2 (x3)(|x1−2x2|)− f (x1,x2) ,

where x3 denotes the capacity type. We use p2(x3) to describe the dependence of capacity type on
the distance between the location of the driver and his domicile.

We consider the following capacity types: CAN for Canadian drivers that only serve Canadian
loads, WR for western drivers that only serve western loads, US S for United States (US) solo
drivers, US T for US team drivers, US IS for US independent contractor solo drivers, and US IT
for US independent contractor team drivers. The parameter values are shown in Table 2. To cope
with the fact that some drivers (CAN and WR) cannot travel to certain locations, we set the value to
zero for the combinations {x3 = CAN∧ x1 < 1.8} and {x3 =WR∧ x1 >−0.8}. The maximum of
g(x1,x2,x3) is attained at g(0,0,US S) with value 6.5.

x3 CAN WR US S US T US IS US IT
p1 (x3) 7.5 7.5 6.5 5.0 2.0 0.0
p2 (x3) 0.5 0.5 2.0 0.0 2.0 0.0

Table 2: Parameter settings.

To provide an indication of the resulting function, we show maxx3 g(x1,x2,x3) in Figure 5. This
function has similar properties to the Six-hump camel back, except for the presence of discontinu-
ities due to the capacity types CAN and WR, and a twist at x1 = x2.

An overview of all test functions can be found in Table 3. Here σ denotes the standard deviation
of the function measured over the given discretization.
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Figure 5: maxx3g(x1,x2,x3).

Type Function name σ Description
One-dimensional GP1R005 0.32 stationary GP with ρ= 0.05

GP1R01 0.49 stationary GP with ρ= 0.1
GP1R02 0.57 stationary GP with ρ= 0.2
GP1R05 0.67 stationary GP with ρ= 0.5
NSGP 0.71 non-stationary GP
IT 0.29 independent truth

Two-dimensional SHCB-DS 2.87 Six-hump camel back on small domain
SHCB-DL 18.83 Six-hump camel back on large domain
TBRANIN 51.34 Tilted Branin
SHCB-DS-SH 2.87 shuffled SHCB-DS
SHCB-DB-SH 18.83 shuffled SHCB-DL
TBRANIN-SH 51.34 shuffled TBRANIN

Case example TA 3.43 transportation application

Table 3: Overview of test functions.

6.3 Experimental Settings

We consider the following experimental factors: the measurement variance λ, the measurement
budget N, and for the HKG policy the aggregation structure. Given these factors, together with the
nine policies from Section 6.1 and the 15 test functions from Section 6.2, a full factorial design is
not an option. Instead, we limit the number of combinations as explained in this section.

As mentioned in the introduction, our interest is primarily in problems where M is larger than
the measurement budget N. However, for these problems it would not make sense to compare
with the tested versions of IE, UCB and BOLTZ since, in the absence of an informed prior, these
methods typically choose one measurement of each of the M alternatives before measuring any
alternative a second time. Although we do not do so here, one could consider versions of these
policies with informative priors (e.g., the GP-UCB policy of Srinivas et al. (2010), which uses UCB
with a Gaussian process prior), which would perform better on problems with M much larger than
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N. To obtain meaningful results for the tested versions of IE, UCB and BOLTZ, we start with an
experiment with a relatively large measurement budget and relatively large measurement noise. We
use all one-dimensional test functions with N = 500 and

√
λ ∈ {0.5,1}. We omit the policy HHKG,

which will be considered later.
In the remaining experiments we omit the policies IE, UCB, and BOLTZ that use non-informative

priors because they would significantly underperform the other policies. This is especially true with
the multi-dimensional problems where the number of alternatives after discretization is much bigger
then the measurement budget. We start with testing the remaining policies, together with the hybrid
policy HHKG, on all one-dimensional test functions using

√
λ ∈ {0.1,0.5,1} and N = 200. Next,

we use the non-stationary function to study (i) the sensitivity of all policies on the value of λ, using√
λ ∈ {0.1,0.5,1,1.5,2,2.5} and (ii) the sensitivity of HKG on the aggregation structure. For the

latter, we consider two values for
√
λ, namely 0.5 and 1, and five different aggregation structures as

presented at the end of this subsection.
For the stationary one-dimensional setting, we generate 10 random functions for each value of

ρ. For the non-stationary setting and the random truth setting, we generate 25 random functions
each. This gives a total of 90 different functions. We use 50 replications for each experiment and
each generated function.

For the multi-dimensional functions we only consider the policies KGCB, SKO, HKG, and
HHKG. For the two-dimensional functions we use N = 200. For the transportation application we
use N = 500 and also present the results for intermediate values of n. We set the values for λ by
taking into account the standard deviation σ of the functions (see Table 3). For the Six-hump camel
back we use

√
λ ∈ {1,2,4}, for the Tilted Branin we use

√
λ ∈ {2,4,8}, and for the case example

we use
√
λ ∈ {1,2}. For the multi-dimensional functions we use 100 replications.

During the replications we keep track of the opportunity costs, which we define as OC(n) =
(maxi θi)− θi∗ , with i∗ ∈ argmaxxμnx , that is, the difference between the true maximum and the
value of the best alternative found by the algorithm after n measurements. Our key performance
indicator is the mean opportunity costs E[OC(n)] measured over all replications of one or more ex-
periments. For clarity of exposition, we also group experiments and introduce a set GP1 containing
the 40 stationary one-dimensional test functions and a set NS0 containing the 50 non-stationary and
independent truth functions. When presenting the E[OC(n)] in tabular form, we bold and underline
the lowest value, and we also bold those values that are not significantly different from the lowest
one (using Welch’s t test at the 0.05 level).

We end this section with an explanation of the aggregation functions used by HKG. Our default
aggregation structure is given by a binary tree, that is, |X g(x)| = 2g for all x ∈ X g and g ∈ G . As
a result, we have 8 (ln(128)/ ln(2)+1) aggregation levels for the one-dimensional problems and 6
(ln(32)/ ln(2)+1) for the two-dimensional problems. For the experiment with varying aggregation
functions, we introduce a variableω to denote the number of alternativesGg(x),g<G that should be
aggregated in a single alternativeGg+1(x) one aggregation level higher. At the end of the domain this
might not be possible, for example, if we have an odd number of (aggregated) alternatives. In this
case, we use the maximum number possible. We consider the values ω ∈ {2,4,8,16}, where ω= 2
resembles the original situation of using a binary tree. To evaluate the impact of having a difference
in the size of aggregated sets, we introduce a fifth aggregation structure where ω alternately takes
values 2 and 4.

For the transportation application, we consider five levels of aggregation. At aggregation level 0,
we have 25 regions for location and domicile, and 6 capacity types, producing 3750 attribute vectors.
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At aggregation level 1, we represent the driver domicile as one of 5 areas. At aggregation level 2,
we ignore the driver domicile; at aggregation level 3, we ignore capacity type; and at aggregation
level 4, we represent location as one of 5 areas.

An overview of all experiments can be found in Table 4.

Experiment Number of runs
One-dimensional long 90×8×2×1×50= 72,000
One-dimensional normal 90×6×3×1×50= 81,000
One-dimensional varying λ 25×6×6×1×50= 45,000
One-dimensional varying ω 25×1×2×5×50= 12,500
Two-dimensional 6×3×3×1×100= 27,000
Transportation application 2×3×2×1×100= 6000

Table 4: Overview of experiments. The number of runs is given by #functions × #policies × #λ’s
× #ω’s× #replications. The total number of experiments, defined by the number of unique
combinations of function, policy, λ, and ω, is 2696.

7. Numerical Results

In this section we present the results of the experiments described in Section 6. We demonstrate that
HKG performs best when measured by the average performance across all problems. In particular,
it outperforms others on functions for which the use of an aggregation function seems to be a natural
choice, but it also performs well on problems for which the other policies are specifically designed.
In the following subsections we present the policies, the test functions, and the experimental design.

7.1 One-dimensional Functions

In our first experiment, we focus on the comparison with R&S policies using a relatively large
measurement budget. A complete overview of the results, for n = 500 and an intermediate value
n = 250, can be found in Appendix E. To illustrate the sensitivity of the performance of these
policies to the number of measurements n, we also provide a graphical illustration in Figure 6. To
keep these figures readable, we omit the policies UCB and IKG since their performance is close to
that of IE (see Appendix E).

As expected, the R&S policies perform well with many measurements. IE generally performs
best, closely followed by UCB. BOLTZ only performs well for few measurements (n ≤ M) after
which it underperforms the other policies with the exception of EXPL, which spends an unnecessary
portion of its measurements on less attractive alternatives.

With increasing n, IE eventually outperforms at least one of the advanced policies (KGCB,
SKO, and HKG). However, it seems that the number of measurements required for IE to outperform
KGCB and HKG increases with increasing measurement variance λ. We further see, from Appendix
E, that IE outperforms IKG onmost instances. However, keep in mind that we tuned IE using exactly
the functions on which we test while IKG does not require any form of tuning. The qualitative
change in the performance of IE at n= 128 samples is due to the fact that the version of IE against
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Figure 6: Results for the one-dimensional long experiments.

which we compare uses a non-informative prior, which causes it to measure each alternative exactly
once before it can use the IE logic to decide where to allocate future samples.

With respect to the more advanced policies, we see that HKG outperforms the others on the
NS0 functions (non-stationary covariance and independent truth) and performs competitively on
the stationary GPs in the case of relatively large λ. Obviously, KGCB and SKO are doing well on
the latter case since the truths are drawn from a Gaussian process and these policies fit a Gaussian
process to the evaluated function values. Apart from the given aggregation function, HKG does not
assume any structure and therefore has a slower rate of convergence on these instances. Further, it is
remarkable to see that SKO is only competitive on GP1 with λ= 0.5 but not with λ= 1. We return
to this issue in the next experiment.

For a more detailed comparison between KGCB, SKO and HKG we now focus on smaller
measurement budgets. A summary of the results can be found in Table 5. More detailed results in
combination with a further analysis can be found in Appendix E. As mentioned before, we bold and
underline the lowest value, and we also bold those values that are not significantly different from
the lowest one.

On the GP1 functions with λ ≤ 0.5, HKG is outperformed by KGCB and SKO. SKO does
particularly well during the early measurements (n=50) after which it is outperformed by KGCB
(n=200). On the GP1 functions with λ = 1, we see HKG becomes more competitive: in almost
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Function
√
λ n EXPL IKG KGCB SKO HKG HHKG

GP1 0.1 50 0.090 0.081 0.010 0.008 0.034 0.078
200 0.051 0.006 0.002 0.004 0.008 0.008

0.5 50 0.265 0.252 0.123 0.104 0.141 0.175
200 0.214 0.075 0.037 0.041 0.059 0.065

1 50 0.460 0.441 0.286 0.302 0.265 0.305
200 0.415 0.182 0.122 0.181 0.121 0.135

NS0 0.1 50 0.111 0.096 0.066 0.093 0.051 0.113
200 0.043 0.008 0.017 0.060 0.009 0.014

0.5 50 0.301 0.288 0.189 0.221 0.170 0.212
200 0.219 0.086 0.078 0.136 0.065 0.081

1 50 0.498 0.468 0.323 0.375 0.306 0.335
200 0.446 0.213 0.183 0.238 0.141 0.163

Table 5: E[OC(n)] on the one-dimensional normal experiments.

all cases it outperforms SKO, and with a limited measurement budget (n=50) it also outperforms
KGCB.

On the NS0 functions, we see that HKG always outperforms KGCB and SKO with the only
exception being the independent truth (IT) function with λ = 1 and n = 50 (see Appendix E). We
also see that SKO is always outperformed by KGCB. Especially in the case with low measurement
noise (λ = 0.1) and a large number of measurements (n = 200), SKO performs relatively poorly.
This is exactly the situation in which one would expect to obtain a good fit, but a fitted Gaussian
process prior with zero correlation is of no use. With an increasing number of measurements, we
see SKO is even outperformed by EXPL.

In general, HKG seems to be relatively robust in the sense that, whenever it is outperformed by
other policies, it still performs well. This claim is also supported by the opportunity costs measured
over all functions and values of λ found in Table 6 (note this is not a completely fair comparison
since we have slightly more non-stationary functions, and the average opportunity costs over all
policies is slightly higher in the non-stationary cases). Even though HKG seems to be quite com-
petitive, HKG seems to have convergence problems in the low noise case (λ= 0.1). We analyze this
issue further in Appendix E. The hybrid policy does not perform well, although it outperforms IKG
on most problem instances.

EXPL IKG KGCB SKO HKG HHKG
E[OC(50)] 0.289 0.273 0.169 0.189 0.163 0.205
E[OC(200)] 0.232 0.096 0.075 0.114 0.068 0.078

Table 6: Aggregate results for the one-dimensional normal experiments.

In the next experiment we vary the measurement variance λ. Figure 7 shows the relative reduc-
tion in E[OC(50)] compared with the performance of EXPL. For clarity of exposition, we omitted
the results for n = 200 and the performance of IKG. These results confirm our initial conclusions
with respect to the measurement variance: increasing λ gives HKG a competitive advantage whereas
the opposite holds for SKO. On the GP1R02 functions, HKG is outperformed by SKO and KGCB
for λ ≤ 0.5. With λ > 0.5, the performance of KGCB, HKG, and HHKG is close and they all
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outperform SKO. On the NSGP functions, the ordering of policies seem to remain the same for all
values of λ, with the exception that with λ≥ 1, SKO is outperformed by all policies. The difference
between KGCB and HKG seems to decline with increasing λ.
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Figure 7: Sensitivity to the measurement noise.

As a final test with one-dimensional functions, we now vary the aggregation structure used
by HKG. The results can be found in Figure 8. Obviously, HKG is sensitive to the choice of
aggregation structure. The aggregation function with ω = 16 is so coarse that, even on the lowest
aggregation level, there exists aggregate alternatives that have local maxima as well as local minima
in their aggregated set. We also see that the performance under the ω = 2/4 structure is close to
that of ω= 4, which indicates that having some symmetry in the aggregation function is preferable.
When comparing the two figures, we see that the impact of the aggregation function decreases with
increasing λ. The reason for this is that with higher λ, more weight is given to the more aggregate
levels. As a result, the benefit of having more precise lower aggregation levels decreases.
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Figure 8: Sensitivity of HKG to the aggregation function.
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7.2 Two-dimensional Functions

An overview of results for the two-dimensional functions can be found in Table 7. From these
results we draw the following conclusions:

1. On the standard test functions, SHCB-DS and TBRANIN, HKG is outperformed by KGCB
and SKO. However, with increasing λ, HKG still outperforms SKO.

2. In case of the Six-hump camel back function, just extending the domain a bit (where the
extended part of the domain only contains points with large opportunity costs) has a major
impact on the results. With the exception of one outcome (KGCBwith λ= 1), the opportunity
costs increase for all policies. This makes sense because there are simply more alternatives
with higher opportunity costs. For KGCB and SKO, these extreme values also play a role in
fitting the Gaussian process prior. As a result, we have a less reliable fit at the area of interest,
something especially SKO suffers from. Obviously, also HKG ‘loses’ measurements on these
extreme values. However, their influence on the fit (via the aggregation function) is limited
since HKG automatically puts a low weight on them. As a result, HKG outperforms the other
policies in almost all cases.

3. Shuffling the Six-hump camel back has a similar influence to extending the domain. In all
cases, HKG outperforms KGCB and SKO. Shuffling the TBRANIN has an especially large
impact on the performance of KGCB and SKO. However, not all performance differences
with the shuffled TBRANIN are significant due to relatively large variances, especially in the
case of n= 50.

7.3 Example Case

The results for the transportation application can be found in Figure 9. As mentioned in Section
6, the first two dimensions of this problem are described by the Six-hump camel back function on
the small domain. This function is also considered in Huang et al. (2006) and Frazier et al. (2009)
where the policies SKO and KGCB respectively are introduced. Compared to HKG, these policies
perform relatively well on this standard test function. It is interesting to see that the addition of a
third, categorical, dimension changes the situation.

As can be seen from Figure 9, HKG outperforms SKO and KGCB for both values of λ and
almost all intermediate values of n. Measured at n = 100 and n = 200, the differences between
HKG and both KGCB and SKO are significant (again using the 0.05 level). The hybrid policy
HHKG is doing remarkably well; the differences with HKG at n = 200 are not significant, which
is partly due to the fact that the variances with HHKG are higher. The performance of HHKG is
especially remarkable since this policy requires only a fraction of the computation time of the others.
Given, the large number of measurements and alternatives, the running times of KGCB, SKO, and
HKG take multiple hours per replication whereas HHKG requires around 10 seconds.

8. Conclusions

We have presented an efficient learning strategy to optimize an arbitrary function that depends on
a multi-dimensional vector with numerical and categorical attributes. We do not attempt to fit a
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E[OC(50)] E[OC(100)]
Function

√
λ KGCB SKO HKG HHKG KGCB SKO HKG HHKG

SHCB-DS 1 0.28 0.35 0.37 0.55 0.18 0.30 0.29 0.33
2 0.56 0.53 0.72 0.84 0.38 0.41 0.48 0.54
4 0.95 1.17 1.19 1.08 0.72 0.89 0.92 0.78

SHCB-DB 1 0.53 0.70 0.57 0.58 0.12 0.53 0.41 0.35
2 1.03 1.11 0.73 0.92 0.83 0.95 0.46 0.64
4 1.55 1.50 1.21 1.34 1.33 1.42 0.89 1.05

SHCB-DS-SF 1 0.60 0.63 0.32 0.51 0.35 0.41 0.20 0.31
2 0.90 0.95 0.67 0.81 0.69 0.86 0.42 0.51
4 1.17 1.44 1.13 1.22 1.05 1.23 0.86 0.89

SHCB-DB SF 1 1.19 0.75 0.48 0.65 0.60 0.81 0.29 0.38
2 1.66 1.23 0.69 0.99 1.08 1.07 0.48 0.64
4 1.85 1.41 1.00 1.14 1.36 1.43 0.74 0.86

TBRANIN 2 0.16 0.30 2.33 3.30 0.08 0.23 0.79 1.57
4 0.67 1.21 2.40 4.12 0.33 0.85 1.16 2.27
8 3.64 2.88 3.81 4.99 1.29 2.03 2.12 2.80

TBRANIN-SF 2 21.85 1.42 2.18 3.76 7.59 1.42 0.82 1.68
4 10.61 2.84 2.57 4.55 3.17 1.99 1.25 2.22
8 7.63 5.01 4.07 4.50 6.47 3.46 2.33 2.48

Table 7: Results for the 2-dimensional test functions.
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Figure 9: Results for the transportation application.

function to this surface, but we do require a family of aggregation functions. We produce estimates
of the value of the function using a Bayesian adaptation of the hierarchical estimation procedure
suggested by George et al. (2008). We then present an adaptation of the knowledge-gradient proce-
dure of Frazier et al. (2009) for problems with correlated beliefs. That method requires the use of a
known covariance matrix, while in our strategy, we compute covariances from our statistical model.
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The hierarchical knowledge-gradient (HKG) algorithm shares the inherent steepest ascent prop-
erty of the knowledge gradient algorithm, which chooses samples that produce the greatest single-
sample improvement in our ability to maximize the function. We also prove that the algorithm
is guaranteed to produce the optimal solution in the many-sample limit, since the HKG algorithm
measures every alternative infinitely often.

We close with experimental results on a class of one and two dimensional scalar functions
and a multi-attribute problem drawn from a transportation application. In these experiments, HKG
performs better than all competing policies tested, when measured by average performance across
all problems. In particular, it outperforms the other policies on functions for which the use of an
aggregation function seems to be a natural choice (e.g., those with categorical dimensions), but it
also performs well on problems for which the other policies are specifically designed.

The limitation of the HKG policy is that it requires a given aggregation structure, which means
that we depend on having some insight into the problem. When this is the case, the ability to
capture this knowledge in an aggregation structure is actually a strength, since we can capture the
most important features in the highest levels of aggregation. If we do not have this insight, designing
the aggregation functions imposes an additional modeling burden.

We mention two other limitations that give rise to further research. First, we observe conver-
gence problems for HKG in the case of low measurement variance where HKG tends to become to
confident about values of alternatives never measured before. We describe this issue in more detail
in Appendix E. Second, the HKG policy requires enumerating all possible choices before deter-
mining the next measurement. This is appropriate for applications where we need to make good
choices with a small number of measurements, typically far smaller than the set of alternatives.
However, this limits our approach to handling perhaps thousands of choices, but not millions. A so-
lution here would be to create a limited set of choices for the next measurement. As a starting point
we might create this set by running HKG on a higher aggregation level which has fewer elements.
Preliminary experiments have shown that this method can drastically reduce computation time with-
out harming the performance too much. Future research could further explore such computational
improvements.

We mention one final direction for future research. While we have presented a proof of con-
vergence for the HKG policy, there are no theoretical results currently available that bound the rate
at which it converges. Future research could derive such bounds, or could create new techniques
appropriate for problems with hierarchical aggregation structures that have bounds on their conver-
gence rates. One approach for creating such techniques would be to begin with an online learning
technique with bounds on cumulative regret, and then to use a batch-to-online conversion technique
to derive a procedure with a bound on the rate at which its terminal regret converges to zero.

Appendix A.

The overall sampling and updating procedure used for HKG is shown in Algorithm 1 and an outline
for the HKG measurement decision is shown in Algorithm 2.
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Algorithm 1 Sampling and updating procedure.
Require: Inputs (Gg)∀g ∈ G , (λx)∀x ∈ X , and δ

1: Initialize (μ0
x ,β

0
x , g̃

0
x)∀x ∈ X , (μg,0x ,βg,0x ,δg,0x ,βg,0,εx )∀g ∈ G ,x ∈ X

2: for n= 1 to N do
3: Use Algorithm 2 to get measurement decision x∗

4: Measure x∗ and observe ŷnx∗
5: Compute g̃nx ∀x ∈ X
6: Compute μg,nx , βg,nx , and δg,nx ∀g ∈ G ,x ∈ X using (2), (3), and (9)
7: Compute wg,nx with (σg,nx )2 = 1/βg,nx ∀g ∈ G ,x ∈ X using (8)
8: Compute βg,n,εx = (σg,n,εx )−2 ∀g ∈ G ,x ∈ X using (10)
9: Compute μnx and βnx with (σg,nx )2 = 1/βg,nx ∀x ∈ X using (4) and (5)

10: end for
11: return xN ∈ argmaxx∈X μNx

Algorithm 2 Hierarchical knowledge-gradient measurement decision.

Require: Inputs (Gg)∀g ∈ G , (λx,μnx ,β
n
x)∀x ∈ X , (μg,nx ,βg,nx ,δg,nx ,βg,n,εx )∀g ∈ G ,x ∈ X

1: for x= 1 to M do
2: Compute σ̃g,nx ∀g ∈ G using (15) with (σnx)

2 = 1/βnx
3: for x′ = 1 to M do
4: Compute  wg,nx′ (x) ∀g ∈ G using (17)
5: Compute anx′(x) and bnx′(x) using (19) and (20)
6: end for
7: Sort the sequence of pairs (ani (x),b

n
i (x))

M
i=1 so that the bni (x) are in non-decreasing order and

ties are broken so that ani (x)< ani+1(x) if bni (x) = bni+1(x).
8: for i= 1 to M−1 do
9: if bni (x) = bni+1(x) then

10: Remove entry i from the sequence (ani (x),b
n
i (x))

M
i=1

11: end if
12: end for
13: Use Algorithm 1 from Frazier et al. (2009) to compute ãni (x) and b̃ni (x)
14: Compute υKG,nx using (21)
15: if x= 1 or υKG,nx ≥ υ∗ then
16: υ∗ = υKG,nx , x∗ = x
17: end if
18: end for
19: return x∗
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Appendix B.

Proposition 4 The posterior belief on θx given observations up to time n for all aggregation levels
is normally distributed with mean and precision

μnx =
1
βnx

[
β0xμ

0
x+ ∑

g∈G

(
(σg,nx )2+νgx

)−1
μg,nx

]
,

βnx = β0x+ ∑
g∈G

(
(σg,nx )2+νgx

)−1
.

Proof Let Yg,nx =
{
ŷg,mxm−1 : m≤ n,Gg(x) = Gg(xm−1)

}
. This is the set of observations from level g

pertinent to alternative x.
Let H be a generic subset of G . We show by induction on the size of the set H that the posterior

on θx given Y
g,n
x for all g ∈ H is normal with mean and precision

μH,n
x =

1

βH,n
x

[
β0xμ

0
x+ ∑

g∈H

(
(σg,nx )2+νgx

)−1
μg,nx

]
,

βH,n
x = β0x+ ∑

g∈H

(
(σg,nx )2+νgx

)−1
.

Having shown this statement for all H, the proposition follows by taking H = G .
For the base case, when the size of H is 0, we have H = /0 and the posterior on θ is the same as

the prior. In this case the induction statement holds because μH,n
x = μ0x and β

H,n
x = β0x .

Now suppose the induction statement holds for allH of a sizem and consider a setH ′ withm+1
elements. Choose g ∈ H ′ and let H = H ′ \ {g}. Then the induction statement holds for H because

it has size m. Let PH denote the prior conditioned on Y
g′,n
x for g′ ∈ H, and define PH ′ similarly. We

show that the induction statement holds forH ′ by considering two cases: Yg,nx empty and non-empty.
IfYg,nx is empty, then the distribution of θx is the same under both PH and PH ′ . Additionally, from

the fact that σg,nx = ∞ it follows that μH,n
x = μH

′,n
x and βH,n

x = βH
′,n

x . Thus, the induction statement
holds for H ′.

Now consider the case that Yg,nx is non-empty. Let ϕ be the normal density, and let y denote the
observed value of Yg,nx . Then, by the definitions of H and H ′, and by Bayes rule,

PH ′ {θx ∈ du}= PH {θx ∈ du | Yg,nx = y} ∝ PH {Yg,nx ∈ dy | θx = u}PH {θx ∈ du} .
The second term may be rewritten using the induction statement as PH {θx ∈ du} =

ϕ
(
(u−μH,n

x )/σH,n
x

)
. The first term may be rewritten by first noting that Yg,nx is independent of

Yg
′,n

x for g′ ∈ H, and then conditioning on θgx . This provides
PH {Yg,nx ∈ dy | θx = u} = P{Yg,nx ∈ dy | θx = u}

=
∫
R
P{Yg,nx ∈ dy | θgx = v}P{θgx = v | θx = u} dv

∝
∫
R
ϕ

(
μg,nx − v

σg,nx

)
ϕ

(
v−u√
νgx

)
dv

∝ ϕ

(
μg,nx −u√
(σg,nx )2+νgx

)
.
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In the third line, we use the fact that PH
{
Yg,nx ∈ dy | θgx = v

}
is proportional (with respect to u)

to ϕ
(
(μg,nx − v)/σg,nx

)
, which may be shown by induction on n from the recursive definitions for μg,nx

and βg,nx .
Using this, we write

PH ′ {θx ∈ du} ∝ ϕ

(
u−μg,nx√
(σg,nx )2+νgx

)
ϕ

(
u−μH,n

x

σH,n
x

)
∝ ϕ

(
u−μH

′,n
x

σH
′,n

x

)
,

which follows from an algebraic manipulation that involves completing the square.
This shows that the posterior is normally distributed with mean μH

′,n
x and variance (σH

′,n
x )2,

showing the induction statement.

Appendix C.

This appendix contains all the lemmas required in the proofs of Theorem 1 and Corollaries 2 and 3.

Lemma 5 If z1,z2, . . . is a sequence of non-negative real numbers bounded above by a constant
a< ∞, and sn = ∑k≤n zk, then ∑n(zn/sn)

21{sn>0} is finite.

Proof Let n0 = inf{n≥ 0 : sn > 0}, and, for each integer k, let nk = inf{n≥ 0 : sn > ka}. Then,
noting that sn = 0 for all n< n0 and that sn > 0 for all n≥ n0, we have

∑
n
(zn/sn)

21{sn>0} =

[
∑

n0≤n<n1
(zn/sn)

2

]
+

∞

∑
k=1

[
∑

nk≤n<nk+1
(zn/sn)

2

]
.

We show that this sum is finite by showing that the two terms are both finite. The first term may
be bounded by

∑
n0≤n<n1

(zn/sn)
2 ≤ ∑

n0≤n<n1
(zn/zn0)

2 ≤
(
∑

n0≤n<n1
zn/zn0

)2
≤ (a/zn0)

2 < ∞.

The second term may be bounded by

∞

∑
k=1

nk+1−1
∑
n=nk

(zn/sn)
2 ≤

∞

∑
k=1

nk+1−1
∑
n=nk

(zn/ka)
2 ≤

∞

∑
k=1

(
nk+1−1
∑
n=nk

zn/ka

)2

=
∞

∑
k=1

(
snk+1−1− snk + znk

ka

)2
≤

∞

∑
k=1

(
(k+1)a− ka+a

ka

)2
=

∞

∑
k=1

(2/k)2 =
2
3
π2 < ∞.
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Lemma 6 Assume that samples from any fixed alternative x are iid with finite variance. Fix g ∈ G
and x ∈ X and let

 ynx =

[
∑
m<n

βg,m,εx ŷm+1
x 1{xm=x}

]/[
∑
m<n

βg,m,εx 1{xm=x}

]
for all those n for which the denominator is strictly positive, and let  ynx = 0 for those n for which the
denominator is zero. Then, supn |  ynx | is finite almost surely.

Proof Let αn =
[
βg,n,εx 1{xn=x}

]/[
∑m≤nβ

g,m,ε
x 1{xm=x}

]
, so that

 yn+1
x = (1−αn)  ynx+αnŷn+1

x .

Let vx be the variance of samples from alternative x, which is assumed finite. Let Mn = (  ynx −
θx)2 +∑∞

m=n 1{xm=x}vx(αm)2, and note that Lemma 5 and the upper bound (minx′ λx′)
−1 on βg,m,εx

together imply that M0 is finite. We will show that Mn is a supermartingale with respect to the
filtration generated by (ŷnx)

∞
n=1. In this proof, we write En to indicate E[ · | F n], the conditional

expectation taken with respect to F n.
Consider En[Mn+1]. On the event {xn �= x} (which is F n measurable), we have Mn+1 =Mn and

En
[
Mn+1 −Mn

]
= 0. On the event {xn = x} we compute En

[
Mn+1 −Mn

]
by first computing

Mn+1 −Mn = (  yn+1
x −θx)

2 − (  ynx−θx)
2 − vx(α

n)2

= ((1−αn)  ynx+αnŷn+1
x −θx)2 − (  ynx−θx)2 − vx(αn)2

= −(αn)2(  ynx−θx)
2 +2αn(1−αn)(  ynx−θx)(ŷ

n+1
x −θx)

+(αn)2 [(ŷn+1
x −θx)2 − vx

]
.

Then, the F n measurability of αn and  ynx , together with the facts that En
[
ŷn+1
x −θx

]
= 0 and

En
[(
ŷn+1
x −θx

)2
]
= vx, imply

E
[
Mn+1 −Mn]=−(αn)2 (  ynx−θx)

2 ≤ 0.

Since Mn ≥ 0 and M0 < ∞, the integrability of Mn follows. Thus, (Mn)n is a supermartingale
and has a finite limit almost surely. Then,

lim
n→∞

Mn = lim
n→∞

(  ynx−θx)2 +
∞

∑
m=n

1{xm=x}vx(αm)2 = lim
n→∞

(  ynx−θx)2.

The almost sure existence of a finite limit for (ŷnx −θx)2 implies the almost sure existence of a
finite limit for |ŷnx−θx| as well. Finally, the fact that a sequence with a limit has a finite supremum
implies that supn |  ynx | ≤ supn |  ynx−θx|+ |θx|< ∞ almost surely.

Lemma 7 Assume that samples from any fixed alternative x are iid with finite variance. Let x,x′ ∈
X , g ∈ G . Then supn |μg,nx | and supn |anx′(x)| are almost surely finite.
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Proof We first show supn |μg,nx |< ∞ almost surely for fixed x and g. We write μg,nx as

μg,nx =
βg,0x μg,0x +∑m<nβ

g,m,ε
x 1{xm∈X g(x)}ŷm+1

xm

βg,0x +∑m<nβ
g,m,ε
x 1{xm∈X g(x)}

= pn0μ
g,0
x + ∑

x′∈X g(x)

pnx′  y
n
x′ ,

where the  ynx′ are as defined in Lemma 6 and the pnx′ are defined for x′ ∈ X g(x) by

pn0 =
βg,0x

βg,0x +∑m<nβ
g,m,ε
x 1{xm∈X g(x)}

, pnx′ =
∑m<nβ

g,m,ε
x 1{xm=x′}

βg,0x +∑m<nβ
g,m,ε
x 1{xm∈X g(x)}

.

Note that pn0 and each of the pnx′ are bounded uniformly between 0 and 1. We then have

sup
n
|μg,nx | ≤ sup

n

[
|μg,0x |+ ∑

x′∈X g(x)

|  ynx′ |
]
≤ |μ0,g

x |+ ∑
x′∈X g(x)

sup
n
|  ynx′ |.

By Lemma 6, supn |  ynx′ | is almost surely finite, and hence so is supn |μg,nx |.
We now turn our attention to anx′(x) for fixed x and x′. anx′(x) is a weighted linear combinations

of the terms μg,nx′ , g∈G (note that μnx′ is itself a linear combination of such terms), where the weights
are uniformly bounded. This, together with the almost sure finiteness of supn |μg,nx′ | for each g, im-
plies that supn |anx′(x)| is almost surely finite.

Lemma 8 Assume that δ> 0 and samples from any fixed alternative x are iid with finite variance.
Let X∞ be the (random) set of alternatives measured infinitely often by HKG. Then, for each x′,x∈X ,
the following statements hold almost surely,

• If x ∈ X∞ then limn→∞ bnx′(x) = 0 and limn→∞ bnx(x
′) = 0.

• If x /∈ X∞ then liminfn→∞ bnx(x)> 0.

Proof Let x′ and x be any pair of alternatives.
First consider the case x ∈ X∞. Let g ∈ G(x′,x) and B = supn(σ

g,n,ε
x )2. Lemma 7 and (10)

imply that B is almost surely finite. Since βg,n,εx ≥ 1/B for each n, we have βg,nx ≥ mg,n
x B. Then

x ∈ X∞ implies limn→∞m
g,n
x = ∞ and limn→∞β

g,n
x = ∞. Also, x and x′ share aggregation level g,

so βg,nx = βg,nx′ and limn→∞β
g,n
x′ = ∞. Then consider σ̃g,nx for n large enough that we have measured

alternative x at least once. From (10), (σg,n,εx )2 ≥ λx/|X g(x)|, which gives a uniform upper bound
βg,n,εx ≤ |X g(x)|/λx. Also, the definition (6) implies (σnx)

2 ≤ (σg,nx )2 ≤ 1/B. This, the definition (15),
and limn→∞β

g,n
x = ∞ together imply limn→∞ σ̃

g,n
x = 0. The limit limn→∞ σ̃

g,n
x′ = 0 follows similarly

from the bounds βg,n,εx′ ≤ |X g(x)|/λx′ and (σnx′)
2 ≤ (σn,gx )2 ≤ 1/B, and limn→∞β

g,n
x′ =∞. Hence, (20)

and the boundedness of the weights  wg,nx′ and  wg,nx imply limn→∞ bnx′(x) = limn→∞ bnx (x
′) = 0.

Now consider the case x /∈ X∞. We show that liminfn→∞ bnx(x)> 0. From (20) and 0 ∈ G(x,x),

bnx(x)≥  w0,n
x (x)

(λx)
−1

√(
∑g′∈G β

g′,n
x

)−1
+λx

β0,n
x +(λx)

−1 .
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Because x /∈X∞, there is some random timeN1 <∞ after which we do not measure x, and β0,n
x ≤ βN1,0

x

for all n.

bnx(x)≥  w0,n
x (x)

(λx)
−1√λx

β0,N1
x +(λx)

−1 ,

where the weights are given by

 w0,n
x (x) =

(
β0,n
x +(λx)

−1
)−1

(
β0,n
x +(λx)

−1
)−1

+∑g∈G\{0}ψ
g,n
x

,

with

ψg,nx =
(
(βg,nx +βg,n,εx )

−1
+(δg,nx )2

)−1
.

We now show limsupnψ
g,n
x <∞ for all g∈G \{0}. We consider two cases for g. In the first case,

suppose that an alternative in X g(x) is measured at least once. Then, for all n after this measurement,
mg,n
x > 0 and δg,nx ≥ δ (by (9)), implying ψg,nx ≤ δ−2 and limsupnψ

g,n
x ≤ δ−2 <∞. In the second case,

suppose no alternative in X g(x) is ever measured. Then, limsupnψ
g,n
x ≤ limsupnβ

g,n
x +βg,n,εx < ∞.

Finally, limsupnψ
g,n
x < ∞ and

(
β0,n
x +(λx)

−1
)−1

≥
(
β0,N1
x +(λx)

−1
)−1

> 0 together imply

liminfn→∞  w0,n
x (x)> 0. This shows liminfn→∞ bnx(x)> 0.

Lemma 9 Let a ∈ Rd with maxi |ai| ≤ c, b ∈ Rd, and let Z be a standard normal random variable.
If x �= x′, then,

E

[
max
i
ai+biZ

]
−max

i
ai ≥ |bx′ −bx|

2
f

( −4c
|bx′ −bx|

)
,

where this expression is understood to be 0 if bx′ = bx.

Proof Let x∗ ∈ argmaxi ai and a∗ = maxi ai. Then adding and subtracting ax∗ + bx∗Z = a∗+ bx∗Z
and observing E[bx∗Z] = 0 provides

E

[
max
i
ai+biZ

]
−a∗ = E

[(
max
i
(ai−a∗)+(bi−bx∗)Z

)
+a∗+bx∗Z

]
−a∗

= E

[
max
i
(ai−a∗)+(bi−bx∗)Z

]
.

Let j ∈ argmaxi∈{x,x′} |bi− b∗|. Then, by taking the maximum in the previous expression over
only j and x∗, we obtain the lower bound

E

[
max
i
ai+biZ

]
−a∗ ≥ E [max(0,a j−a∗+(b j−bx∗)Z)]

≥ E [max(0,−2c+(b j−bx∗)Z)]

= |b j−bx∗ | f
( −2c
|b j−bx∗ |

)
≥ |bx′ −bx|

2
f

( −4c
|bx′ −bx|

)
.
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The second line follows from the bound maxi |ai| ≤ c. The equality in the third line can be verified
by evaluating the expectation analytically (see, e.g., Frazier et al., 2008), where the expression is
taken to be 0 if b j = bx∗ . The inequality in the third line then follows from |b j−b∗| ≥ |bx−bx′ |/2
and from f being an increasing non-negative function.

Appendix D.

Here we provide a brief description of the implementation of the policies considered in our numer-
ical experiments.

Interval estimation (IE) The IE decision rule by Kaelbling (1993) is given by

xn = argmax
x∈X

(
μnx+ zα/2 ·σnx

)
where zα/2 is a tunable parameter. Kaelbling (1993) suggests that values of 2, 2.5 or 3 often
works best. The IE policy is quite sensitive to this parameter. For example, we observe that
the following cases require higher values for zα/2: more volatile functions (low values for ρ,
see Section 6.2), a higher measurement variance λ, and higher measurement budget N. To
find a value that works reasonably well on most problem instances, we tested values between
0.5 and 4 with increments of .1 and found that zα/2 = 2.3 works best on average. Since we

assume the measurement noise is known, we use σnx =
√

λ
mnx
, where mn

x is the number of times

x has been measured up to and including time n.

UCB1-Normal (UCB1) The study by Auer et al. (2002) proposes different variations of the Up-
per Confidence Bound (UCB) decision rule originally proposed by Lai (1987). The UCB1-
Normal policy is proposed for problems with Gaussian rewards and is given by

xn = argmax
x∈X

(
μnx+4

√
λ logn
Nn
x

)
.

The original presentation of the policy uses a frequentist estimate of the measurement variance
λ, which we replace by the known value. We improve the performance of UCB1 by treating
the coefficient 4 as a tunable parameter. As with IE, we observe that the performance is quite
sensitive to the value of this parameter. Using a setup similar to IE, we found that a value of
0.9 produced the best results on average.

Independent KG (IKG) This is the knowledge-gradient policy as presented in Section 4.1 of this
paper.

Boltzmann exploration (BOLTZ) Boltzmann exploration chooses its measurements by

P(xn = x) =

(
eμ

n
x/T

n

∑x′∈X e
μn
x′/T

n

)
,
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where the policy is parameterized by a decreasing sequence of “temperature” coefficients
(Tn)N−1n=0 . We tune this temperature sequence within the set of exponentially decreasing se-
quences defined by Tn+1 = γTn for some constant γ ∈ (0,1]. The set of all such sequences is
parameterized by γ and TN . We tested combinations of γ∈ {.1, .2, ...,1} and TN ∈ {.1, .5,1,2}
and found that the combination γ= 1 and TN = .3 produces the best results on average.

Pure exploration (EXPL) The pure exploration policy measures each alternative x with the same
probability, that is, P(xn = x) = 1/M.

Sequential Kriging Optimization (SKO) This is a blackbox optimization method from Huang
et al. (2006) that fits a Gaussian process onto the observed variables. The hyperparame-
ters of the Gaussian process prior are estimated using an initial Latin hypercube design with
2p+ 2 measurements, with p being the number of dimensions, as recommended by Huang
et al. (2006). After this initial phase we continue to update the hyperparameters, using maxi-
mum likelihood estimation, during the first 50 measurements. The parameters are updated at
each iteration.

KG for Correlated Beliefs (KGCB) This is the knowledge-gradient policy for correlated beliefs
as presented in Section 4.1. We estimate the hyperparameters in the same way as done with
SKO.

Hierarchical KG (HKG) This is the hierarchical knowledge-gradient policy as presented in this
paper. This policy only requires an aggregation function as input. We present these functions
in Section 6.3.

Hybrid HKG (HHKG) In this hybrid policy, we only exploit the similarity between alternatives in
the updating equations and not in the measurement decision. As a result, this policy uses the
measurement decision of IKG and the updating equations of HKG. The possible advantage
of this hybrid policy is that it is able to cope with similarity between alternatives without the
computational complexity of HKG.

Appendix E.

Here we show more detailed results for the experiments on one-dimensional problems. A complete
overview of the results for the one-dimensional experiments with N = 500 can be found in Table 8
and with N = 200 in Table 9.

Besides the conclusions from the main text, we mention a few additional observations based on
the more detailed results.

First, from Table 9 we see that the relative performance of KGCB and SKO depends on the value
of ρ. On relatively smooth functions with ρ ≥ 2, SKO outperforms KGCB, whereas the opposite
holds for ρ< 2.

Second, it is remarkable to see that in the independent truth case (IT), the policies that exploit
correlation (KGCB and HKG) are doing so well and outperform IKG. The explanation is the fol-
lowing. After M measurements, IKG has sampled each alternative once and the implementation
decision is the one with the highest value observed so far. Obviously, this is not a reliable estimate,
especially with λ ≥ 0.5. The policies KGCB and HKG tend to resample promising alternatives.
So, after M measurements, they have a more reliable estimate for their implementation decision.
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Function
√
λ N EXPL IKG KGCB SKO HKG IE UCB BOLTZ

GP1R05 0.5 250 0.206 0.090 0.061 0.029 0.072 0.077 0.073 0.133
500 0.169 0.044 0.037 0.027 0.053 0.038 0.040 0.075

1 250 0.344 0.170 0.131 0.142 0.111 0.174 0.183 0.242
500 0.332 0.108 0.093 0.111 0.092 0.106 0.113 0.155

GP1R02 0.5 250 0.152 0.041 0.024 0.024 0.032 0.046 0.043 0.069
500 0.106 0.022 0.014 0.019 0.017 0.024 0.025 0.048

1 250 0.308 0.103 0.084 0.129 0.077 0.112 0.111 0.151
500 0.298 0.057 0.050 0.120 0.044 0.062 0.061 0.113

GP1R01 0.5 250 0.196 0.057 0.019 0.038 0.043 0.043 0.053 0.088
500 0.158 0.033 0.009 0.024 0.027 0.022 0.024 0.058

1 250 0.424 0.162 0.107 0.218 0.114 0.138 0.166 0.192
500 0.348 0.084 0.064 0.165 0.069 0.069 0.088 0.143

GP1R005 0.5 250 0.253 0.065 0.017 0.047 0.049 0.053 0.058 0.100
500 0.183 0.027 0.008 0.037 0.031 0.019 0.019 0.070

1 250 0.483 0.162 0.093 0.189 0.100 0.145 0.178 0.210
500 0.432 0.084 0.046 0.147 0.061 0.073 0.080 0.143

NSGP 0.5 250 0.249 0.052 0.070 0.146 0.049 0.046 0.043 0.122
500 0.186 0.024 0.044 0.121 0.026 0.019 0.019 0.076

1 250 0.539 0.193 0.184 0.240 0.124 0.150 0.175 0.220
500 0.443 0.092 0.113 0.194 0.067 0.068 0.073 0.141

IT 0.5 250 0.182 0.075 0.066 0.107 0.060 0.075 0.074 0.113
500 0.153 0.047 0.045 0.092 0.040 0.042 0.046 0.093

1 250 0.306 0.155 0.144 0.207 0.108 0.151 0.162 0.188
500 0.253 0.097 0.101 0.188 0.087 0.094 0.099 0.168

GP1 0.5 250 0.202 0.063 0.030 0.034 0.049 0.055 0.057 0.098
500 0.154 0.032 0.017 0.027 0.032 0.026 0.027 0.063

1 250 0.390 0.149 0.104 0.170 0.101 0.143 0.160 0.198
500 0.352 0.083 0.063 0.136 0.066 0.078 0.086 0.138

NS0 0.5 250 0.215 0.064 0.068 0.126 0.055 0.060 0.059 0.118
500 0.169 0.035 0.044 0.106 0.033 0.031 0.032 0.085

1 250 0.423 0.174 0.164 0.224 0.116 0.150 0.168 0.204
500 0.348 0.094 0.107 0.191 0.077 0.081 0.086 0.154

Table 8: Results for the one-dimensional long experiments.
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Function
√
λ N EXPL IKG KGCB SKO HKG HHKG

GP1R05 0.1 50 0.149 0.131 0.020 0.001 0.033 0.036
200 0.102 0.008 0.006 0.001 0.008 0.008

0.5 50 0.261 0.231 0.165 0.078 0.171 0.169
200 0.216 0.097 0.075 0.036 0.085 0.080

1 50 0.390 0.411 0.277 0.210 0.258 0.278
200 0.359 0.222 0.150 0.148 0.129 0.162

GP1R02 0.1 50 0.039 0.038 0.010 0.005 0.026 0.050
200 0.025 0.008 0.003 0.002 0.007 0.006

0.5 50 0.203 0.187 0.079 0.063 0.092 0.126
200 0.169 0.055 0.029 0.029 0.037 0.044

1 50 0.396 0.389 0.233 0.230 0.224 0.257
200 0.332 0.142 0.096 0.138 0.097 0.087

GP1R01 0.1 50 0.062 0.056 0.007 0.014 0.030 0.083
200 0.036 0.006 0.001 0.008 0.008 0.005

0.5 50 0.254 0.253 0.121 0.117 0.132 0.184
200 0.218 0.065 0.022 0.043 0.055 0.054

1 50 0.477 0.482 0.303 0.358 0.294 0.283
200 0.441 0.182 0.124 0.235 0.136 0.128

GP1R005 0.1 50 0.111 0.099 0.003 0.011 0.047 0.144
200 0.043 0.004 0.000 0.003 0.008 0.011

0.5 50 0.342 0.336 0.127 0.157 0.170 0.222
200 0.254 0.082 0.021 0.054 0.061 0.080

1 50 0.577 0.482 0.329 0.411 0.286 0.401
200 0.530 0.182 0.118 0.204 0.123 0.164

NSGP 0.1 50 0.168 0.143 0.087 0.135 0.059 0.184
200 0.047 0.003 0.021 0.094 0.005 0.017

0.5 50 0.391 0.373 0.235 0.265 0.200 0.294
200 0.263 0.082 0.084 0.156 0.066 0.082

1 50 0.692 0.627 0.428 0.451 0.381 0.440
200 0.580 0.249 0.208 0.260 0.153 0.176

IT 0.1 50 0.053 0.050 0.046 0.052 0.044 0.042
200 0.039 0.013 0.012 0.027 0.013 0.011

0.5 50 0.212 0.203 0.144 0.178 0.141 0.130
200 0.175 0.091 0.072 0.116 0.065 0.079

1 50 0.305 0.310 0.218 0.298 0.230 0.231
200 0.312 0.177 0.157 0.217 0.128 0.150

Table 9: Results for the one-dimensional normal experiments.

Obviously, there is a probability that KGCB and HKG do not measure the true optimal alternative
after M measurements. However, given the way we generated this function, there are multiple al-
ternatives close the the optimal one (we may expect 10% of the alternatives to be less then 0.1 from
the optimum).
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Finally, even though HKG seems to be quite competitive, there are some results that suggest
future extensions of HKG. Specifically, HKG seems to have convergence problems in the low noise
case (λ = 0.1). We see this from (i) the settings with λ = 0.1 and n = 200 where HKG underper-
forms IKG on three cases (two of them with significant differences), (ii) the settings with the one-
dimensional long experiments where HKG is outperformed by IKG in three cases, each of them
having a low value for λ and a large number of measurements, and (iii) the hybrid policy HHKG is
outperformed by IKG on most of the λ= 0.1 cases. We believe that the source of this problem lies in
the use of the base level g̃nx , that is, the lowest level g for which we have at least one observation on
an aggregate alternative that includes alternative x (mg,n

x > 0). We introduced this base level because
we need the posterior mean μnx and the posterior variance (σ

n
x)
2 for all alternatives, including those

we have not measured. When λ is relatively small, the posterior variance on the aggregate levels
(σg,nx )2 increases relatively quickly; especially because the squared bias (δg,nx )2, which we use as an
estimate for νgx , is small at the base level (equal to the lower bound δ). As a result, we may become
too confident about the value of an alternative we never measured. We may be able to resolve this
by adding a prior on these functions, which obviously requires prior knowledge about the truth or
additional measurements, or by tuning δ.
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Volodymyr Mnih, Csaba Szepesvári, and Jean-Yves Audibert. Empirical Bernstein stopping. In
Proceedings of the 25th International Conference on Machine Learning, pages 672–679, 2008.

Jonas Mockus. On Bayesian methods for seeking the extremum. In G. Marchuk, editor, Optimiza-
tion Techniques IFIP Technical Conference Novosibirsk, July 17, 1974, volume 27 of Lecture
Notes in Computer Science, pages 400–404. Springer Berlin / Heidelberg, 1975.

Warren B. Powell and Peter I. Frazier. Optimal learning. In TutORials in Operations Research,
pages 213–246. INFORMS, 2008.

Carl E. Rasmussen and Christopher Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22(3):400–407, 1951.

David F. Rogers, Robert D. Plante, Richard T. Wong, and James R. Evans. Aggregation and dis-
aggregation techniques and methodology in optimization. Operations Research, 39(4):553–582,
1991.

Michael J. Sasena. Flexibility and Efficiency Enhancements for Constrained Global Design Opti-
mization with Kriging Approximations. PhD thesis, University of Michigan, 2002.

Shai Shalev-Shwartz. Online learning: Theory, algorithms, and applications. PhD thesis, The
Hebrew University of Jerusalem, 2007.

Hugo P. Simao, Jeff Day, Abraham P. George, Ted Gifford, John Nienow, and Warren B. Pow-
ell. An approximate dynamic programming algorithm for large-scale fleet management: A case
application. Transportation Science, 43(2):178–197, 2009.

Tom A.B. Snijders and Roel J. Bosker. Multilevel Analysis: An Introduction To Basic And Advanced
Multilevel Modeling. Sage Publications Ltd, 1999.

James C. Spall. Introduction to Stochastic Search and Optimization. Wiley-Interscience, Hoboken,
NJ, 2003.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaussian process opti-
mization in the bandit setting: No regret and experimental design. In Proceedings International
Conference on Machine Learning (ICML), 2010.

Emmanuel Vazquez and Julien Bect. Convergence properties of the expected improvement algo-
rithm with fixed mean and covariance functions. Journal of Statistical Planning and Inference,
140(11):3088–3095, 2010.

Julien Villemonteix, Emmanuel Vazquez, and Eric Walter. An informational approach to the global
optimization of expensive-to-evaluate functions. Journal of Global Optimization, 44(4):509–534,
2009.

2973



MES, POWELL AND FRAZIER

Yuhong Yang. Adaptive regression by mixing. Journal of American Statistical Association, 96
(454):574–588, 2001.

2974



Journal of Machine Learning Research 12 (2011) 2975-3026 Submitted 9/10; Revised 6/11; Published 10/11

High-dimensional Covariance Estimation Based On
Gaussian Graphical Models

Shuheng Zhou SHUHENGZ@UMICH.EDU
Department of Statistics
University of Michigan
Ann Arbor, MI 48109-1041, USA
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1. Introduction

There have been a lot of recent activities for estimation of high-dimensional covariance and inverse
covariance matrices where the dimension p of the matrix may greatly exceed the sample size n.
High-dimensional covariance estimation can be classified into two main categories, one which relies
on a natural ordering among the variables [Wu and Pourahmadi, 2003; Bickel and Levina, 2004;
Huang et al., 2006; Furrer and Bengtsson, 2007; Bickel and Levina, 2008; Levina et al., 2008]
and one where no natural ordering is given and estimators are permutation invariant with respect
to indexing the variables [Yuan and Lin, 2007; Friedman et al., 2007; d’Aspremont et al., 2008;
Banerjee et al., 2008; Rothman et al., 2008]. We focus here on the latter class with permutation
invariant estimation and we aim for an estimator which is accurate for both the covariance matrix Σ
and its inverse, the precision matrix Σ−1. A popular approach for obtaining a permutation invariant
estimator which is sparse in the estimated precision matrix Σ̂−1 is given by the �1-norm regularized
maximum-likelihood estimation, also known as the GLasso [Yuan and Lin, 2007; Friedman et al.,
2007; Banerjee et al., 2008]. The GLasso approach is simple to use, at least when relying on
publicly available software such as the glasso package in R. Further improvements have been
reported when using some SCAD-type penalized maximum-likelihood estimator [Lam and Fan,
2009] or an adaptive GLasso procedure [Fan et al., 2009], which can be thought of as a two-stage
procedure. It is well-known from linear regression that such two- or multi-stage methods effectively
address some bias problems which arise from �1-penalization [Zou, 2006; Candès and Tao, 2007;
Meinshausen, 2007; Zou and Li, 2008; Bühlmann and Meier, 2008; Zhou, 2009, 2010a].

In this paper we develop a new method for estimating graphical structure and parameters for multi-
variate Gaussian distributions using a multi-step procedure, which we call Gelato (Graph estimation
with Lasso and Thresholding). Based on an �1-norm regularization and thresholding method in a
first stage, we infer a sparse undirected graphical model, that is, an estimated Gaussian conditional
independence graph, and we then perform unpenalized maximum likelihood estimation (MLE) for
the covariance Σ and its inverse Σ−1 based on the estimated graph. We make the following theoreti-
cal contributions: (i) Our method allows us to select a graphical structure which is sparse. In some
sense we select only the important edges even though there may be many non-zero edges in the
graph. (ii) Secondly, we evaluate the quality of the graph we have selected by showing consistency
and establishing a fast rate of convergence with respect to the operator and Frobenius norm for the
estimated inverse covariance matrix; under sparsity constraints, the latter is of lower order than the
corresponding results for the GLasso [Rothman et al., 2008] and for the SCAD-type estimator [Lam
and Fan, 2009]. (iii) We show predictive risk consistency and provide a rate of convergence of the
estimated covariance matrix. (iv) Lastly, we show general results for the MLE, where only approxi-
mate graph structures are given as input. Besides these theoretical advantages, we found empirically
that our graph based method performs better in general, and sometimes substantially better than the
GLasso, while we never found it clearly worse. Moreover, we compare it with an adaptation of the
method Space [Peng et al., 2009]. Finally, our algorithm is simple and is comparable to the GLasso
both in terms of computational time and implementation complexity.
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There are a few key motivations and consequences for proposing such an approach based on graph-
ical modeling. We will theoretically show that there are cases where our graph based method can
accurately estimate conditional independencies among variables, that is, the zeroes of Σ−1, in sit-
uations where GLasso fails. The fact that GLasso easily fails to estimate the zeroes of Σ−1 has
been recognized by Meinshausen [2008] and it has been discussed in more details in Ravikumar
et al. [2011]. Closer relations to existing work are primarily regarding our first stage of estimating
the structure of the graph. We follow the nodewise regression approach from Meinshausen and
Bühlmann [2006] but we make use of recent results for variable selection in linear models assuming
the much weaker restricted eigenvalue condition [Bickel et al., 2009; Zhou, 2010a] instead of the
restrictive neighborhood stability condition [Meinshausen and Bühlmann, 2006] or the equivalent
irrepresentable condition [Zhao and Yu, 2006]. In some sense, the novelty of our theory extending
beyond Zhou [2010a] is the analysis for covariance and inverse covariance estimation and for risk
consistency based on an estimated sparse graph as we mentioned above. Our regression and thresh-
olding results build upon analysis of the thresholded Lasso estimator as studied in Zhou [2010a].
Throughout our analysis, the sample complexity is one of the key focus point, which builds upon
results in Zhou [2010b]; Rudelson and Zhou [2011]. Once the zeros are found, a constrained max-
imum likelihood estimator of the covariance can be computed, which was shown in Chaudhuri
et al. [2007]; it was unclear what the properties of such a procedure would be. Our theory answers
such questions. As a two-stage method, our approach is also related to the adaptive Lasso [Zou,
2006] which has been analyzed for high-dimensional scenarios in Huang et al. [2008], Zhou et al.
[2009] and van de Geer et al. [2011]. Another relation can be made to the method by Rütimann
and Bühlmann [2009] for covariance and inverse covariance estimation based on a directed acyclic
graph. This relation has only methodological character: the techniques and algorithms used in
Rütimann and Bühlmann [2009] are very different and from a practical point of view, their ap-
proach has much higher degree of complexity in terms of computation and implementation, since
estimation of an equivalence class of directed acyclic graphs is difficult and cumbersome. There
has also been work that focuses on estimation of sparse directed Gaussian graphical model. Verze-
len [2010] proposes a multiple regularized regression procedure for estimating a precision matrix
with sparse Cholesky factors, which correspond to a sparse directed graph. He also computes non-
asymptotic Kullback Leibler risk bound of his procedure for a class of regularization functions. It
is important to note that directed graph estimation requires a fixed good ordering of the variables a
priori.

1.1 Notation

We use the following notation. Given a graphG= (V,E0), whereV = {1, . . . , p} is the set of vertices
and E0 is the set of undirected edges. we use si to denote the degree for node i, that is, the number
of edges in E0 connecting to node i. For an edge set E, we let |E| denote its size. We use Θ0 = Σ−10
and Σ0 to refer to the true precision and covariance matrices respectively from now on. We denote
the number of non-zero elements of Θ by supp(Θ). For any matrixW = (wi j), let |W | denote the
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determinant of W , tr(W ) the trace of W . Let ϕmax(W ) and ϕmin(W ) be the largest and smallest
eigenvalues, respectively. We write diag(W ) for a diagonal matrix with the same diagonal asW and

offd(W ) =W−diag(W ). The matrix Frobenius norm is given by ‖W‖F =
√
∑i∑ j w

2
i j. The operator

norm ‖W‖22 is given by ϕmax(WWT ). We write | · |1 for the �1 norm of a matrix vectorized, that is,
for a matrix |W |1 = ‖vecW‖1 = ∑i∑ j |wi j|, and sometimes write ‖W‖0 for the number of non-zero
entries in the matrix. For an index set T and a matrix W = [wi j], write WT ≡ (wi jI((i, j) ∈ T )),
where I(·) is the indicator function.

2. The Model and the Method

We assume a multivariate Gaussian model

X = (X1, . . . ,Xp)∼Np(0,Σ0), where Σ0,ii = 1. (1)

The data is generated by X (1), . . . ,X (n) i.i.d. ∼ Np(0,Σ0). Requiring the mean vector and all vari-
ances being equal to zero and one respectively is not a real restriction and in practice, we can easily
center and scale the data. We denote the concentration matrix by Θ0 = Σ−10 .

Since we will use a nodewise regression procedure, as described below in Section 2.1, we consider
a regression formulation of the model. Consider many regressions, where we regress one variable
against all others:

Xi =∑
j �=i
βijXj+Vi (i= 1, . . . , p), where (2)

Vi ∼N (0,σ2Vi) independent of {Xj; j �= i} (i= 1, . . . , p). (3)

There are explicit relations between the regression coefficients, error variances and the concentration
matrix Θ0 = (θ0,i j):

βij =−θ0,i j/θ0,ii, Var(Vi) := σ2Vi = 1/θ0,ii (i, j = 1, . . . , p). (4)

Furthermore, it is well known that for Gaussian distributions, conditional independence is encoded
in Θ0, and due to (4), also in the regression coefficients:

Xi is conditionally dependent of Xj given {Xk; k ∈ {1, . . . , p}\{i, j}}
⇐⇒ θ0,i j �= 0 ⇐⇒ β ji �= 0 and βij �= 0. (5)

For the second equivalence, we assume that Var(Vi) = 1/θ0,ii > 0 and Var(Vj) = 1/θ0, j j > 0. Con-
ditional (in-)dependencies can be conveniently encoded by an undirected graph, the conditional
independence graph which we denote by G= (V,E0). The set of vertices is V = {1, . . . , p} and the
set of undirected edges E0 ⊆V ×V is defined as follows:

there is an undirected edge between nodes i and j

⇐⇒ θ0,i j �= 0 ⇐⇒ β ji �= 0 and βij �= 0. (6)
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Note that on the right hand side of the second equivalence, we could replace the word ”and” by
”or”. For the second equivalence, we assume Var(Vi),Var(Vj)> 0 following the remark after (5).

We now define the sparsity of the concentration matrix Θ0 or the conditional independence graph.
The definition is different than simply counting the non-zero elements of Θ0, for which we have
supp(Θ0) = p+ 2|E0|. We consider instead the number of elements which are sufficiently large.
For each i, define the number si0,n as the smallest integer such that the following holds:

p

∑
j=1, j �=i

min{θ20,i j,λ2θ0,ii} ≤ si0,nλ
2θ0,ii, where λ=

√
2log(p)/n, (7)

where essential sparsity si0,n at row i describes the number of “sufficiently large” non-diagonal
elements θ0,i j relative to a given (n, p) pair and θ0,ii, i = 1, . . . , p. The value S0,n in (8) is summing
essential sparsity across all rows of Θ0,

S0,n :=
p

∑
i=1

si0,n. (8)

Due to the expression of λ, the value of S0,n depends on p and n. For example, if all non-zero
non-diagonal elements θ0,i j of the ith row are larger in absolute value than λ

√
θ0,ii, the value si0,n

coincides with the node degree si. However, if some (many) of the elements |θ0,i j| are non-zero
but small, si0,n is (much) smaller than its node degree s

i; As a consequence, if some (many) of
|θ0,i j|,∀i, j, i �= j are non-zero but small, the value of S0,n is also (much) smaller than 2|E0|, which
is the “classical” sparsity for the matrix (Θ0−diag(Θ0)). See Section A for more discussions.

2.1 The Estimation Procedure

The estimation of Θ0 and Σ0 = Θ−1
0 is pursued in two stages. We first estimate the undirected

graph with edge set E0 as in (6) and we then use the maximum likelihood estimator based on the
estimate Ên, that is, the non-zero elements of Θ̂n correspond to the estimated edges in Ên. Inferring
the edge set E0 can be based on the following approach as proposed and theoretically justified in
Meinshausen and Bühlmann [2006]: perform p regressions using the Lasso to obtain p vectors of
regression coefficients β̂1, . . . , β̂p where for each i, β̂i = {β̂ij; j ∈ {1, . . . , p}\ i}; Then estimate the
edge set by the “OR” rule,

estimate an edge between nodes i and j⇐⇒ β̂ij �= 0 or β̂ ji �= 0. (9)

2.1.1 NODEWISE REGRESSIONS FOR INFERRING THE GRAPH

In the present work, we use the Lasso in combination with thresholding [Zhou, 2009, 2010a]. Con-
sider the Lasso for each of the nodewise regressions

βiinit = argminβi
n

∑
r=1

(X (r)
i −∑

j �=i
βijX

(r)
j )2+λn∑

j �=i
|βij| for i= 1, . . . , p, (10)
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where λn > 0 is the same regularization parameter for all regressions. Since the Lasso typically es-
timates too many components with non-zero estimated regression coefficients, we use thresholding
to get rid of variables with small regression coefficients from solutions of (10):

β̂ij(λn,τ) = βij,init(λn)I(|βij,init(λn)|> τ), (11)

where τ> 0 is a thresholding parameter. We obtain the corresponding estimated edge set as defined
by (9) using the estimator in (11) and we use the notation

Ên(λn,τ). (12)

We note that the estimator depends on two tuning parameters λn and τ.

The use of thresholding has clear benefits from a theoretical point of view: the number of false
positive selections may be much larger without thresholding (when tuned for good prediction). and
a similar statement would hold when comparing the adaptive Lasso with the standard Lasso. We
refer the interested reader to Zhou [2009, 2010a] and van de Geer et al. [2011].

2.1.2 MAXIMUM LIKELIHOOD ESTIMATION BASED ON GRAPHS

Given a conditional independence graph with edge set E, we estimate the concentration matrix by
maximum likelihood. Denote by Ŝn = n−1∑n

r=1X
(r)(X (r))T the sample covariance matrix (using

that the mean vector is zero) and by

Γ̂n = diag(Ŝn)−1/2(Ŝn)diag(Ŝn)−1/2

the sample correlation matrix. The estimator for the concentration matrix in view of (1) is:

Θ̂n(E) = argminΘ∈Mp,E

(
tr(ΘΓ̂n)− log |Θ|

)
, where

Mp,E = {Θ ∈ Rp×p; Θ� 0 and θi j = 0 for all (i, j) �∈ E, where i �= j} (13)

defines the constrained set for positive definite Θ. If n ≥ q∗ where q∗ is the maximal clique size
of a minimal chordal cover of the graph with edge set E, the MLE exists and is unique, see, for
example Uhler [2011, Corollary 2.3]. We note that our theory guarantees that n ≥ q∗ holds with
high probability for G = (V,E), where E = Ên(λn,τ)), under Assumption (A1) to be introduced in
the next section. The definition in (13) is slightly different from the more usual estimator which
uses the sample covariance Ŝn rather than Γ̂n. Here, the sample correlation matrix reflects the fact
that we typically work with standardized data where the variables have empirical variances equal
to one. The estimator in (13) is constrained leading to zero-values corresponding to Ec = {(i, j) :
i, j = 1, . . . , p, i �= j,(i, j) �∈ E}.
If the edge set E is sparse having relatively few edges only, the estimator in (13) is already suffi-
ciently regularized by the constraints and hence, no additional penalization is used at this stage. Our
final estimator for the concentration matrix is the combination of (12) and (13):

Θ̂n = Θ̂n(Ên(λn,τ)). (14)
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2.1.3 CHOOSING THE REGULARIZATION PARAMETERS

We propose to select the parameter λn via cross-validation to minimize the squared test set error
among all p regressions:

λ̂n = argminλ
p

∑
i=1

(CV-score(λ) of ith regression) ,

where CV-score(λ) of ith regression is with respect to the squared error prediction loss. Sequentially
proceeding, we then select τ by cross-validating the multivariate Gaussian log-likelihood, from (13).
Regarding the type of cross-validation, we usually use the 10-fold scheme. Due to the sequential
nature of choosing the regularization parameters, the number of candidate estimators is given by
the number of candidate values for λ plus the number of candidate value for τ. In Section 4, we
describe the grids of candidate values in more details. We note that for our theoretical results, we
do not analyze the implications of our method using estimated λ̂n and τ̂.

3. Theoretical Results

In this section, we present in Theorem 1 convergence rates for estimating the precision and the co-
variance matrices with respect to the Frobenius norm; in addition, we show a risk consistency result
for an oracle risk to be defined in (16). Moreover, in Proposition 4, we show that the model we select
is sufficiently sparse while at the same time, the bias term we introduce via sparse approximation is
sufficiently bounded. These results illustrate the classical bias and variance tradeoff. Our analysis is
non-asymptotic in nature; however, we first formulate our results from an asymptotic point of view
for simplicity. To do so, we consider a triangular array of data generating random variables

X (1), . . . ,X (n) i.i.d.∼Np(0,Σ0), n= 1,2, . . . (15)

where Σ0 = Σ0,n and p= pn change with n. Let Θ0 := Σ−10 . We make the following assumptions.

(A0) The size of the neighborhood for each node i ∈ V is upper bounded by an integer s < p and
the sample size satisfies for some constantC

n≥Cs log(p/s).

(A1) The dimension and number of sufficiently strong non-zero edges S0,n as in (8) satisfy: dimen-
sion p grows with n following p= o(ecn) for some constant 0< c< 1 and

S0,n = o(n/ logmax(n, p)) (n→ ∞).

(A2) The minimal and maximal eigenvalues of the true covariance matrix Σ0 are bounded: for
some constantsMupp ≥Mlow > 0, we have

ϕmin(Σ0)≥Mlow > 0 and ϕmax(Σ0)≤Mupp < ∞.
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Moreover, throughout our analysis, we assume the following. There exists v2 > 0 such that
for all i, and Vi as defined in (3): Var(Vi) = 1/θ0,ii ≥ v2.

Before we proceed, we need some definitions. Define for Θ� 0

R(Θ) = tr(ΘΣ0)− log |Θ|, (16)

where minimizing (16) without constraints gives Θ0. Given (8), (7), and Θ0, define

C2diag :=min{ max
i=1,...p

θ20,ii, max
i=1,...,p

(
si0,n/S0,n

) · ‖diag(Θ0)‖2F}. (17)

We now state the main results of this paper. We defer the specification on various tuning parameters,
namely, λn,τ to Section 3.2, where we also provide an outline for Theorem 1.

Theorem 1 Consider data generating random variables as in (15) and assume that (A0), (A1), and
(A2) hold. We assume Σ0,ii = 1 for all i. Then, with probability at least 1− d/p2, for some small
constant d > 2, we obtain under appropriately chosen λn and τ, an edge set Ên as in (12), such that

|Ên| ≤ 2S0,n, where |Ên \E0| ≤ S0,n; (18)

and for Θ̂n and Σ̂n = (Θ̂n)
−1 as defined in (14), the following holds,∥∥∥Θ̂n−Θ0
∥∥∥
2
≤ ‖Θ̂n−Θ0‖F = OP

(√
S0,n logmax(n, p)/n

)
,∥∥∥Σ̂n−Σ0

∥∥∥
2
≤ ‖Σ̂n−Σ0‖F = OP

(√
S0,n logmax(n, p)/n

)
,

R(Θ̂n)−R(Θ0) = OP (S0,n logmax(n, p)/n) ,

where the constants hidden in the OP() notation depend on τ, Mlow,Mupp, Cdiag as in (17), and
constants concerning sparse and restrictive eigenvalues of Σ0 (cf. Section 3.2 and B).

We note that convergence rates for the estimated covariance matrix and for predictive risk depend
on the rate in Frobenius norm of the estimated inverse covariance matrix. The predictive risk can
be interpreted as follows. Let X ∼ N (0,Σ0) with fΣ0 denoting its density. Let fΣ̂n be the density

for N (0, Σ̂n) and DKL(Σ0‖Σ̂n) denotes the Kullback Leibler (KL) divergence from N (0,Σ0) to
N (0, Σ̂n). Now, we have for Σ, Σ̂n � 0,

R(Θ̂n)−R(Θ0) := 2E0
[
log fΣ0(X)− log fΣ̂n(X)

]
:= 2DKL(Σ0‖Σ̂n)≥ 0. (19)

Actual conditions and non-asymptotic results that are involved in the Gelato estimation appear in
Sections B, C, and D respectively.

Remark 2 Implicitly in (A1), we have specified a lower bound on the sample size to be n =

Ω(S0,n logmax(n, p)). For the interesting case of p> n, a sample size of

n=Ω(max(S0,n log p,s log(p/s)))
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is sufficient in order to achieve the rates in Theorem 1. As to be shown in our analysis, the lower
bound on n is slightly different for each Frobenius norm bound to hold from a non-asymptotic point
of view (cf. Theorem 19 and 20).

Theorem 1 can be interpreted as follows. First, the cardinality of the estimated edge set exceeds
S0,n at most by a factor 2, where S0,n as in (8) is the number of sufficiently strong edges in the
model, while the number of false positives is bounded by S0,n. Note that the factors 2 and 1 can
be replaced by some other constants, while achieving the same bounds on the rates of convergence
(cf. Section D.1). We emphasize that we achieve these two goals by sparse model selection, where
only important edges are selected even though there are many more non-zero edges in E0, under
conditions that are much weaker than (A2). More precisely, (A2) can be replaced by conditions on
sparse and restrictive eigenvalues (RE) of Σ0. Moreover, the bounded neighborhood constraint (A0)
is required only for regression analysis (cf. Theorem 15) and for bounding the bias due to sparse
approximation as in Proposition 4. This is shown in Sections B and C. Analysis follows from Zhou
[2009, 2010a] with earlier references to Candès and Tao [2007], Meinshausen and Yu [2009] and
Bickel et al. [2009] for estimating sparse regression coefficients.

We note that the conditions that we use are indeed similar to those in Rothman et al. [2008], with
(A1) being much more relaxed when S0,n�|E0|. The convergence rate with respect to the Frobenius
norm should be compared to the rate OP(

√|E0| logmax(n, p)/n) in case diag(Σ0) is known, which
is the rate in Rothman et al. [2008] for the GLasso and for SCAD [Lam and Fan, 2009]. In the
scenario where |E0| � S0,n, that is, there are many weak edges, the rate in Theorem 1 is better than
the one established for GLasso [Rothman et al., 2008] or for the SCAD-type estimator [Lam and
Fan, 2009]; hence we require a smaller sample size in order to yield an accurate estimate of Θ0.

Remark 3 For the general case where Σ0,ii, i = 1, . . . , p are not assumed to be known, we could
achieve essentially the same rate as stated in Theorem 1 for ‖Θ̂n−Θ0‖2 and ‖Σ̂n− Σ0‖2 under
(A0),(A1) and (A2) following analysis in the present work (cf. Theorem 6) and that in Rothman
et al. [2008, Theorem 2]. Presenting full details for such results are beyond the scope of the current
paper. We do provide the key technical lemma which is essential for showing such bounds based on
estimating the inverse of the correlation matrix in Theorem 6; see also Remark 7 which immediately
follows.

In this case, for the Frobenius norm and the risk to converge to zero, a too large value of p is not
allowed. Indeed, for the Frobenius norm and the risk to converge, (A1) is to be replaced by:

(A3) p� nc for some constant 0< c< 1 and p+S0,n = o(n/ logmax(n, p)) as n→ ∞.

In this case, we have

‖Θ̂n−Θ0‖F = OP

(√
(p+S0,n) logmax(n, p)/n

)
,

‖Σ̂n−Σ0‖F = OP

(√
(p+S0,n) logmax(n, p)/n

)
,

R(Θ̂n)−R(Θ0) = OP ((p+S0,n) logmax(n, p)/n) .
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Moreover, in the refitting stage, we could achieve these rates with the maximum likelihood estimator
based on the sample covariance matrix Ŝn as defined in (20):

Θ̂n(E) = argminΘ∈Mp,E

(
tr(ΘŜn)− log |Θ|

)
, where

Mp,E = {Θ ∈ Rp×p; Θ� 0 and θi j = 0 for all (i, j) �∈ E, where i �= j}. (20)

A real high-dimensional scenario where p � n is excluded in order to achieve Frobenius norm
consistency. This restriction comes from the nature of the Frobenius norm and when considering,
for example, the operator norm, such restrictions can indeed be relaxed as stated above.

It is also of interest to understand the bias of the estimator caused by using the estimated edge set
Ên instead of the true edge set E0. This is the content of Proposition 4. For a given Ên, denote by

Θ̃0 = diag(Θ0)+(Θ0)Ên = diag(Θ0)+Θ0,Ên∩E0 ,

where the second equality holds since Θ0,Ec0 = 0. Note that the quantity Θ̃0 is identical to Θ0 on Ên
and on the diagonal, and it equals zero on Êcn = {(i, j) : i, j = 1, . . . , p, i �= j,(i, j) �∈ Ên}. Hence, the
quantity Θ0,D := Θ̃0−Θ0 measures the bias caused by a potentially wrong edge set Ên; note that
Θ̃0 =Θ0 if Ên = E0.

Proposition 4 Consider data generating random variables as in expression (15). Assume that (A0),
(A1), and (A2) hold. Then we have for choices on λn,τ as in Theorem 1 and Ên in (12),∥∥Θ0,D∥∥F := ‖Θ̃0−Θ0‖F = OP

(√
S0,n logmax(n, p)/n

)
.

We note that we achieve essentially the same rate for ‖(Θ̃0)−1−Σ0‖F ; see Remark 27. We give
an account on how results in Proposition 4 are obtained in Section 3.2, with its non-asymptotic
statement appearing in Corollary 17.

3.1 Discussions and Connections to Previous Work

It is worth mentioning that consistency in terms of operator and Frobenius norms does not depend
too strongly on the property to recover the true underlying edge set E0 in the refitting stage. Regard-
ing the latter, suppose we obtain with high probability the screening property

E0 ⊆ E, (21)

when assuming that all non-zero regression coefficients |βij| are sufficiently large (E might be an
estimate and hence random). Although we do not intend to make precise the exact conditions
and choices of tuning parameters in regression and thresholding in order to achieve (21), we state
Theorem 5, in case (21) holds with the following condition: the number of false positives is bounded
as |E \E0|= O(S).
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Theorem 5 Consider data generating random variables as in expression (15) and assume that (A1)
and (A2) hold, where we replace S0,n with S := |E0|=∑

p
i=1 s

i. We assume Σ0,ii = 1 for all i. Suppose
on some event E , such that P(E)≥ 1−d/p2 for a small constant d, we obtain an edge set E such
that E0 ⊆ E and |E \E0| = O(S). Let Θ̂n(E) be the minimizer as defined in (13). Then, we have

‖Θ̂n(E)−Θ0‖F = OP

(√
S logmax(n, p)/n

)
.

It is clear that this bound corresponds to exactly that of Rothman et al. [2008] for the GLasso
estimation under appropriate choice of the penalty parameter for a general Σ� 0 with Σii = 1 for all
i (cf. Remark 3). We omit the proof as it is more or less a modified version of Theorem 19, which
proves the stronger bounds as stated in Theorem 1. We note that the maximum node-degree bound
in (A0) is not needed for Theorem 5.

We nowmake some connections to previous work. First, we note that to obtain with high probability
the exact edge recovery, E = E0, we need again sufficiently large non-zero edge weights and some
restricted eigenvalue (RE) conditions on the covariance matrix as defined in Section A even for the
multi-stage procedure. An earlier example is shown in Zhou et al. [2009], where the second stage
estimator β̂ corresponding to (11) is obtained with nodewise regressions using adaptive Lasso [Zou,
2006] rather than thresholding as in the present work in order to recover the edge set E0 with high
probability under an assumption which is stronger than (A0). Clearly, given an accurate Ên, under
(A1) and (A2) one can then apply Theorem 5 to accurately estimate Θ̂n. On the other hand, it is
known that GLasso necessarily needs more restrictive conditions on Σ0 than the nodewise regression
approach with the Lasso, as discussed in Meinshausen [2008] and Ravikumar et al. [2011] in order
to achieve exact edge recovery.

Furthermore, we believe it is straightforward to show that Gelato works under the RE conditions on
Σ0 and with a smaller sample size than the analogue without the thresholding operation in order to
achieve nearly exact recovery of the support in the sense that E0 ⊆ Ên and maxi |Ên,i \E0,i| is small,
that is, the number of extra estimated edges at each node i is bounded by a small constant. This
is shown essentially in Zhou [2009, Theorem1.1] for a single regression. Given such properties of
Ên, we can again apply Theorem 5 to obtain Θ̂n under (A1) and (A2). Therefore, Gelato requires
relatively weak assumptions on Σ0 in order to achieve the best sparsity and bias tradeoff as illustrated
in Theorem 1 and Proposition 4 when many signals are weak, and Theorem 5 when all signals in E0
are strong.

Finally, it would be interesting to derive a tighter bound on the operator norm for the Gelato estima-
tor. Examples of such bounds have been recently derived for a restricted class of inverse covariance
matrices in Yuan [2010] and Cai et al. [2011].

3.2 An Outline for Theorem 1

Let s0 =maxi=1,...,p si0,n. We note that although sparse eigenvalues ρmax(s),ρmax(3s0) and restricted
eigenvalue for Σ0 (cf. Section A) are parameters that are unknown, we only need them to appear in
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the lower bounds for d0, D4, and hence also that for λn and t0 that appear below. We simplify our
notation in this section to keep it consistent with our theoretical non-asymptotic analysis to appear
toward the end of this paper.

3.2.1 REGRESSION

We choose for some c0 ≥ 4
√
2, 0< θ< 1, and λ=

√
2log(p)/n,

λn = d0λ, where d0 ≥ c0(1+θ)2
√
ρmax(s)ρmax(3s0).

Let βiinit, i = 1, . . . , p be the optimal solutions to (10) with λn as chosen above. We first prove an
oracle result on nodewise regressions in Theorem 15.

3.2.2 THRESHOLDING

We choose for some constants D1,D4 to be defined in Theorem 15,

t0 = f0λ := D4d0λ where D4 ≥ D1

and D1 depends on restrictive eigenvalue of Σ0; Apply (11) with τ = t0 and βiinit, i = 1, . . . , p for
thresholding our initial regression coefficients. Let

D i = { j : j �= i,
∣∣βij,init∣∣< t0 = f0λ},

where bounds on D i, i= 1, . . . , p are given in Lemma 16. In view of (9), we let

D = {(i, j) : i �= j : (i, j) ∈D i∩D j}. (22)

3.2.3 SELECTING EDGE SET E

Recall for a pair (i, j) we take the OR rule as in (9) to decide if it is to be included in the edge set
E: for D as defined in (22), define

E := {(i, j) : i, j = 1, . . . , p, i �= j,(i, j) �∈D}. (23)

to be the subset of pairs of non-identical vertices of G which do not appear in D; Let

Θ̃0 = diag(Θ0)+Θ0,E0∩E (24)

for E as in (23), which is identical to Θ0 on all diagonal entries and entries indexed by E0∩E, with
the rest being set to zero. As shown in the proof of Corollary 17, by thresholding, we have identified
a sparse subset of edges E of size at most 4S0,n, such that the corresponding bias

∥∥Θ0,D∥∥F :=
‖Θ̃0−Θ0‖F is relatively small, that is, as bounded in Proposition 4.
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3.2.4 REFITTING

In view of Proposition 4, we aim to recover Θ̃0 given a sparse subset E; toward this goal, we
use (13) to obtain the final estimator Θ̂n and Σ̂n = (Θ̂n)

−1. We give a more detailed account of this
procedure in Section D, with a focus on elaborating the bias and variance tradeoff. We show the
rate of convergence in Frobenius norm for the estimated Θ̂n and Σ̂n in Theorem 6, 19 and 20, and
the bound for Kullback Leibler divergence in Theorem 21 respectively.

3.3 Discussion on Covariance Estimation Based on Maximum Likelihood

The maximum likelihood estimate minimizes over all Θ� 0,

R̂n(Θ) = tr(ΘŜn)− log |Θ|, (25)

where Ŝn is the sample covariance matrix. Minimizing R̂n(Θ) without constraints gives Σ̂n = Ŝn. We
now would like to minimize (25) under the constraints that some pre-defined subset D of edges are
set to zero. Then the follow relationships hold regarding Θ̂n(E) defined in (20) and its inverse Σ̂n,
and Ŝn: for E as defined in (23),

Θ̂n,i j = 0, ∀(i, j) ∈D, and

Σ̂n,i j = Ŝn,i j, ∀(i, j) ∈ E ∪{(i, i), i= 1, . . . , p}.

Hence the entries in the covariance matrix Σ̂n for the chosen set of edges in E and the diagonal
entries are set to their corresponding values in Ŝn. Indeed, we can derive the above relationships via
the Lagrange form, where we add Lagrange constants γ jk for edges in D ,

�C(Θ) = log |Θ|− tr(ŜnΘ)− ∑
( j,k)∈D

γ jkθ jk. (26)

Now the gradient equation of (26) is:

Θ−1− Ŝn−Γ= 0,

where Γ is a matrix of Lagrange parameters such that γ jk �= 0 for all ( j,k)∈D and γ jk = 0 otherwise.

Similarly, the follow relationships hold regarding Θ̂n(E) defined in (13) in case Σ0,ii = 1 for all i,
where Ŝn is replaced with Γ̂n, and its inverse Σ̂n, and Γ̂n: for E as defined in (23),

Θ̂n,i j = 0, ∀(i, j) ∈D, and

Σ̂n,i j = Γ̂n,i j = Ŝn,i j/σ̂iσ̂ j, ∀(i, j) ∈ E, and
Σ̂n,ii = 1, ∀i= 1, . . . , p.

Finally, we state Theorem 6, which yields a general bound on estimating the inverse of the correla-
tion matrix, when Σ0,11, . . . ,Σ0,pp take arbitrary unknown values in R+ = (0,∞). The corresponding
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estimator is based on estimating the inverse of the correlation matrix, which we denote by Ω0. We
use the following notations. Let Ψ0 = (ρ0,i j) be the true correlation matrix and let Ω0 =Ψ−1

0 . Let

W = diag(Σ0)1/2. Let us denote the diagonal entries ofW with σ1, . . . ,σp where σi := Σ1/20,ii for all i.
Then the following holds:

Σ0 = WΨ0W and Θ0 = W−1Ω0W−1.

Given sample covariance matrix Ŝn, we construct sample correlation matrix Γ̂n as follows. Let
Ŵ = diag(Ŝn)1/2 and

Γ̂n = Ŵ−1(Ŝn)Ŵ−1, where Γ̂n,i j =
Ŝn,i j
σ̂iσ̂ j

=
〈Xi,Xj 〉

‖Xi‖2
∥∥Xj∥∥2

where σ̂2i := Ŝn,ii. Thus Γ̂n is a matrix with diagonal entries being all 1s and non-diagonal entries
being the sample correlation coefficients, which we denote by ρ̂i j.

The maximum likelihood estimate for Ω0 =Ψ−1
0 minimizes over all Ω� 0,

R̂n(Ω) = tr(ΩΓ̂n)− log |Ω|. (27)

To facilitate technical discussions, we need to introduce some more notation. Let S p++ denote the
set of p× p symmetric positive definite matrices:

S p++ = {Θ ∈ Rp×p|Θ� 0}.

Let us define a subspace S pE corresponding to an edge set E ⊂ {(i, j) : i, j = 1, . . . , p, i �= j}:

S pE := {Θ ∈ Rp×p | θi j = 0 ∀ i �= j s.t. (i, j) �∈ E} and denote Sn = S p++∩S pE . (28)

Minimizing R̂n(Θ) without constraints gives Ψ̂n = Γ̂n. Subject to the constraints that Ω ∈ Sn as
defined in (28), we write the maximum likelihood estimate for Ω0:

Ω̂n(E) := arg min
Ω∈Sn

R̂n(Ω) = arg min
Ω∈S p++∩S pE

{
tr(ΩΓ̂n)− log |Ω|

}
, (29)

which yields the following relationships regarding Ω̂n(E), its inverse Ψ̂n = (Ω̂n(E))−1, and Γ̂n. For
E as defined in (23),

Ω̂n,i j = 0, ∀(i, j) ∈D,

Ψ̂n,i j = Γ̂n,i j := ρ̂i j ∀(i, j) ∈ E,
and Ψ̂n,ii = 1 ∀i= 1, . . . , p.

Given Ω̂n(E) and its inverse Ψ̂n = (Ω̂n(E))−1, we obtain

Σ̂n = Ŵ Ψ̂nŴ and Θ̂n = Ŵ−1Ω̂nŴ
−1
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and therefore the following holds: for E as defined in (23),

Θ̂n,i j = 0, ∀(i, j) ∈D,

Σ̂n,i j = σ̂iσ̂ jΨ̂n,i j = σ̂iσ̂ jΓ̂n,i j = Ŝn,i j ∀(i, j) ∈ E,
and Ψ̂n,ii = σ̂2i = Ŝn,ii ∀i= 1, . . . , p.

The proof of Theorem 6 appears in Section E.

Theorem 6 Consider data generating random variables as in expression (15) and assume that (A1)
and (A2) hold. Let σ2max :=maxiΣ0,ii <∞ and σ2min :=miniΣ0,ii > 0. Let E be some event such that
P(E)≥ 1−d/p2 for a small constant d. Let S0,n be as defined in (8). Suppose on event E :

1. We obtain an edge set E such that its size |E|= lin(S0,n) is a linear function in S0,n.

2. And for Θ̃0 as in (24) and for some constant Cbias to be specified in (59), we have∥∥Θ0,D∥∥F := ∥∥∥Θ̃0−Θ0
∥∥∥
F
≤Cbias

√
2S0,n log(p)/n. (30)

Let Ω̂n(E) be as defined in (29) Suppose the sample size satisfies for C3 ≥ 4
√
5/3,

n>
144σ4max
M2
low

(
4C3+

13Mupp

12σ2min

)2
max

{
2|E| logmax(n, p), C2bias2S0,n log p

}
. (31)

Then with probability≥ 1−(d+1)/p2, we have for M= (9σ4max/(2k
2)) ·(4C3+13Mupp/(12σ2min)

)
∥∥∥Ω̂n(E)−Ω0

∥∥∥
F
≤ (M+1)max

{√
2|E| logmax(n, p)/n, Cbias

√
2S0,n log(p)/n

}
. (32)

Remark 7 We note that the constants in Theorem 6 are by no means the best possible. From (32),
we can derive bounds on ‖Θ̂n(E)−Θ0‖2 and ‖Σ̂n(E)−Σ0‖2 to be in the same order as in (32)
following the analysis in Rothman et al. [2008, Theorem 2]. The corresponding bounds on the

Frobenius norms on covariance estimation would be in the order of OP

(√
p+S0
n

)
as stated in

Remark 3.

4. Numerical Results

We consider the empirical performance for simulated and real data. We compare our estimation
method with the GLasso, the Space method and a simplified Gelato estimator without thresholding
for inferring the conditional independence graph. The comparison with the latter should yield some
evidence about the role of thresholding in Gelato. The GLasso is defined as:

Θ̂GLasso = argmin
Θ �0

(tr(Γ̂nΘ)− log |Θ|+ρ∑
i< j

|θi j|),
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where Γ̂n is the empirical correlation matrix and the minimization is over positive definite matrices.
Sparse partial correlation estimation (Space) is an approach for selecting non-zero partial correla-
tions in the high-dimensional framework. The method assumes an overall sparsity of the partial
correlation matrix and employs sparse regression techniques for model fitting. For details see Peng
et al. [2009]. We use Space with weights all equal to one, which refers to the method type space
in Peng et al. [2009]. For the Space method, estimation of Θ0 is done via maximum likelihood as
in (13) based on the edge set Ê(Space)

n from the estimated sparse partial correlation matrix. For com-
putation of the three different methods, we used the R-packages glmnet [Friedman et al., 2010],
glasso [Friedman et al., 2007] and space [Peng et al., 2009].

4.1 Simulation Study

In our simulation study, we look at three different models.

• An AR(1)-Block model. In this model the covariance matrix is block-diagonal with equal-
sized AR(1)-blocks of the form ΣBlock = {0.9|i− j|}i, j.

• The random concentration matrix model considered in Rothman et al. [2008]. In this model,
the concentration matrix is Θ= B+δI where each off-diagonal entry in B is generated inde-
pendently and equal to 0 or 0.5 with probability 1−π or π, respectively. All diagonal entries
of B are zero, and δ is chosen such that the condition number of Θ is p.

• The exponential decay model considered in Fan et al. [2009]. In this model we consider a
case where no element of the concentration matrix is exactly zero. The elements of Θ0 are
given by θ0,i j = exp(−2|i− j|) equals essentially zero when the difference |i− j| is large.

We compare the three estimators for each model with p= 300 and n= 40,80,320. For each model
we sample data X (1), . . . ,X (n) i.i.d. ∼ N (0,Σ0). We use two different performance measures. The
Frobenius norm of the estimation error ‖Σ̂n − Σ0‖F and ‖Θ̂n −Θ0‖F , and the Kullback Leibler
divergence between N (0,Σ0) and N (0, Σ̂n) as defined in (19).

For the three estimation methods we have various tuning parameters, namely λ, τ (for Gelato), ρ
(for GLasso) and η (for Space). We denote the regularization parameter of the Space technique
by η in contrary to Peng et al. [2009], in order to distinguish it from the other parameters. Due
to the computational complexity we specify the two parameters of our Gelato method sequentially.
That is, we derive the optimal value of the penalty parameter λ by 10-fold cross-validation with
respect to the test set squared error for all the nodewise regressions. After fixing λ= λCV we obtain
the optimal threshold τ again by 10-fold cross-validation but with respect to the negative Gaussian
log-likelihood (tr(Θ̂Ŝout)− log |Θ̂|, where Ŝout is the empirical covariance of the hold-out data).
We could use individual tuning parameters for each of the regressions. However, this turned out
to be sub-optimal in some simulation scenarios (and never really better than using a single tuning
parameter λ, at least in the scenarios we considered). For the penalty parameter ρ of the GLasso
estimator and the parameter η of the Space method we also use a 10-fold cross-validation with
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respect to the negative Gaussian log-likelihood. The grids of candidate values are given as follows:

λk = Ak

√
log p
n

k = 1, . . . ,10 with τk = 0.75 ·Bk
√
log p
n

,

ρk =Ck

√
log p
n

k = 1, . . . ,10,

ηr = 1.56
√
nΦ−1

(
1− Dr

2p2

)
r = 1, . . . ,7,

where Ak,Bk,Ck ∈ {0.01,0.05,0.1,0.3,0.5,1,2,4,8,16} and Dr ∈ {0.01,0.05,0.075,0.1,0.2,
0.5,1}. The two different performance measures are evaluated for the estimators based on the
sample X (1), . . . ,X (n) with optimal CV-estimated tuning parameters λ, τ, ρ and η for each model
from above. All results are based on 50 independent simulation runs.

4.1.1 THE AR(1)-BLOCK MODEL

We consider two different covariance matrices. The first one is a simple auto-regressive process
of order one with trivial block size equal to p = 300, denoted by Σ(1)0 . This is also known as a

Toeplitz matrix. That is, we have Σ(1)0;i, j = 0.9|i− j| ∀ i, j ∈ {1, ..., p}. The second matrix Σ(2)0 is a
block-diagonal matrix with AR(1) blocks of equal block size 30×30, and hence the block-diagonal
of Σ(2)0 equals ΣBlock;i, j = 0.9|i− j|, i, j ∈ {1, . . . ,30}. The simulation results for the AR(1)-block
models are shown in Figure 1 and 2.

The figures show a substantial performance gain of our method compared to the GLasso in both
considered covariance models. This result speaks for our method, especially because AR(1)-block
models are very simple. The Space method performs about as well as Gelato, except for the Frobe-
nius norm of Σ̂n−Σ0. There we see an performance advantage of the Space method compared to
Gelato. We also exploit the clear advantage of thresholding in Gelato for a small sample size.

4.1.2 THE RANDOM PRECISION MATRIX MODEL

For this model we also consider two different matrices, which differ in sparsity. For the sparser
matrix Θ(3)

0 we set the probability π to 0.1. That is, we have an off diagonal entry inΘ(3) of 0.5 with

probability π= 0.1 and an entry of 0 with probability 0.9. In the case of the second matrix Θ(4)
0 we

set π to 0.5 which provides us with a denser concentration matrix. The simulation results for the
two performance measures are given in Figure 3 and 4.

From Figures 3 and 4 we see that GLasso performs better than Gelato with respect to ‖Θ̂n−Θ0‖F
and the Kullback Leibler divergence in both the sparse and the dense simulation setting. If we
consider ‖Σ̂n−Σ0‖F , Gelato seems to keep up with GLasso to some degree. For the Space method
we have a similar situation to the one with GLasso. The Space method outperforms Gelato for
‖Θ̂n−Θ0‖F and DKL(Σ0‖Σ̂n) but for ‖Σ̂n−Σ0‖F , Gelato somewhat keeps up with Space.
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(a) Σ(1)0 with n= 40 (b) Σ(1)0 with n= 80 (c) Σ(1)0 with n= 320

(d) Σ(1)0 with n= 40 (e) Σ(1)0 with n= 80 (f) Σ(1)0 with n= 320

(g) Σ(1)0 with n= 40 (h) Σ(1)0 with n= 80 (i) Σ(1)0 with n= 320

Figure 1: Plots for model Σ(1)0 . The triangles (green) stand for the GLasso and the circles (red) for
our Gelato method with a reasonable value of τ. The horizontal lines show the perfor-
mances of the three techniques for cross-validated tuning parameters λ, τ, ρ and η. The
dashed line stands for our Gelato method, the dotted one for the GLasso and the dash-
dotted line for the Space technique. The additional dashed line with the longer dashes
stands for the Gelato without thresholding. Lambda/Rho stands for λ or ρ, respectively.
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(a) Σ(2)AR with n= 40 (b) Σ(2)AR with n= 80 (c) Σ(2)AR with n= 320

(d) Σ(2)AR with n= 40 (e) Σ(2)AR with n= 80 (f) Σ(2)AR with n= 320

(g) Σ(2)AR with n= 40 (h) Σ(2)AR with n= 80 (i) Σ(2)AR with n= 320

Figure 2: Plots for model Σ(2)0 . The triangles (green) stand for the GLasso and the circles (red) for
our Gelato method with a reasonable value of τ. The horizontal lines show the perfor-
mances of the three techniques for cross-validated tuning parameters λ, τ, ρ and η. The
dashed line stands for our Gelato method, the dotted one for the GLasso and the dash-
dotted line for the Space technique. The additional dashed line with the longer dashes
stands for the Gelato without thresholding. Lambda/Rho stands for λ or ρ, respectively.
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(a) Θ(3)
0 with n= 40 (b) Θ(3)

0 with n= 80 (c) Θ(3)
0 with n= 320

(d) Θ(3)
0 with n= 40 (e) Θ(3)

0 with n= 80 (f) Θ(3)
0 with n= 320

(g) Θ(3)
0 with n= 40 (h) Θ(3)

0 with n= 80 (i) Θ(3)
0 with n= 320

Figure 3: Plots for model Θ(3)
0 . The triangles (green) stand for the GLasso and the circles (red) for

our Gelato method with a reasonable value of τ. The horizontal lines show the perfor-
mances of the three techniques for cross-validated tuning parameters λ, τ, ρ and η. The
dashed line stands for our Gelato method, the dotted one for the GLasso and the dash-
dotted line for the Space technique. The additional dashed line with the longer dashes
stands for the Gelato without thresholding. Lambda/Rho stands for λ or ρ, respectively.
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(a) Θ(4)
0 with n= 40 (b) Θ(4)

0 with n= 80 (c) Θ(4)
0 with n= 320

(d) Θ(4)
0 with n= 40 (e) Θ(4)

0 with n= 80 (f) Θ(4)
0 with n= 320

(g) Θ(4)
0 with n= 40 (h) Θ(4)

0 with n= 80 (i) Θ(4)
0 with n= 320

Figure 4: Plots for model Θ(4)
0 . The triangles (green) stand for the GLasso and the circles (red) for

our Gelato method with a reasonable value of τ. The horizontal lines show the perfor-
mances of the three techniques for cross-validated tuning parameters λ, τ, ρ and η. The
dashed line stands for our Gelato method, the dotted one for the GLasso and the dash-
dotted line for the Space technique. The additional dashed line with the longer dashes
stands for the Gelato without thresholding. Lambda/Rho stands for λ or ρ, respectively.
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4.1.3 THE EXPONENTIAL DECAY MODEL

In this simulation setting we only have one version of the concentration matrix Θ(5)
0 . The entries of

Θ(5)
0 are generated by θ(5)0,i j = exp(−2|i− j|). Thus, Σ0 is a banded and sparse matrix.

Figure 5 shows the results of the simulation. We find that all three methods show equal performances
in both the Frobenius norm and the Kullback Leibler divergence. This is interesting because even
with a sparse approximation of Θ0 (with GLasso or Gelato), we obtain competitive performance for
(inverse) covariance estimation.

4.1.4 SUMMARY

Overall we can say that the performance of the methods depend on the model. For the models
Σ(1)0 and Σ(2)0 the Gelato method performs best. In case of the models Θ(3)

0 and Θ(4)
0 , Gelato gets

outperformed by GLasso and the Space method and for the model Θ(5)
0 none of the three methods

has a clear advantage. In Figures 1 to 4, we see the advantage of Gelato with thresholding over
the one without thresholding, in particular, for the simulation settings Σ(1)0 , Σ

(2)
0 and Θ(3)

0 . Thus
thresholding is a useful feature of Gelato.

4.2 Application to Real Data

We show two examples in this subsection.

4.2.1 ISOPRENOID GENE PATHWAY IN ARABIDOBSIS THALIANA

In this example we compare the two estimators on the isoprenoid biosynthesis pathway data given
in Wille et al. [2004]. Isoprenoids play various roles in plant and animal physiological processes
and as intermediates in the biological synthesis of other important molecules. In plants they serve
numerous biochemical functions in processes such as photosynthesis, regulation of growth and de-
velopment. The data set consists of p = 39 isoprenoid genes for which we have n = 118 gene
expression patterns under various experimental conditions. In order to compare the two techniques
we compute the negative log-likelihood via 10-fold cross-validation for different values of λ, τ and
ρ. In Figure 6 we plot the cross-validated negative log-likelihood against the logarithm of the av-
erage number of non-zero entries (logarithm of the �0-norm) of the estimated concentration matrix
Θ̂n. The logarithm of the �0-norm reflects the sparsity of the matrix Θ̂n and therefore the figures
show the performance of the estimators for different levels of sparsity. The plots do not allow for a
clear conclusion. The GLasso performs slightly better when allowing for a rather dense fit. On the
other hand, when requiring a sparse fit, the Gelato performs better.
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(a) Θ(5)
0 with n= 40 (b) Θ(5)

0 with n= 80 (c) Θ(5)
0 with n= 320

(d) Θ(5)
0 with n= 40 (e) Θ(5)

0 with n= 80 (f) Θ(5)
0 with n= 320

(g) Θ(5)
0 with n= 40 (h) Θ(5)

0 with n= 80 (i) Θ(5)
0 with n= 320

Figure 5: Plots for model Θ(5)
0 . The triangles (green) stand for the GLasso and the circles (red) for

our Gelato method with a reasonable value of τ. The horizontal lines show the perfor-
mances of the three techniques for cross-validated tuning parameters λ, τ, ρ and η. The
dashed line stands for our Gelato method, the dotted one for the GLasso and the dash-
dotted line for the Space technique. The additional dashed line with the longer dashes
stands for the Gelato without thresholding. Lambda/Rho stands for λ or ρ, respectively.
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(a) isoprenoid data (b) breast cancer data

Figure 6: Plots for the isoprenoid data from arabidopsis thaliana (a) and the human breast cancer
data (b). 10-fold cross-validation of negative log-likelihood against the logarithm of the
average number of non-zero entries of the estimated concentration matrix Θ̂n. The circles
stand for the GLasso and the Gelato is displayed for various values of τ.

4.2.2 CLINICAL STATUS OF HUMAN BREAST CANCER

As a second example, we compare the two methods on the breast cancer data set from West et al.
[2001]. The tumor samples were selected from the Duke Breast Cancer SPORE tissue bank. The
data consists of p= 7129 genes with n= 49 breast tumor samples. For the analysis we use the 100
variables with the largest sample variance. As before, we compute the negative log-likelihood via
10-fold cross-validation. Figure 6 shows the results. In this real data example the interpretation of
the plots is similar as for the arabidopsis data set. For dense fits, GLasso is better while Gelato has
an advantage when requiring a sparse fit.

5. Conclusions

We propose and analyze the Gelato estimator. Its advantage is that it automatically yields a positive
definite covariance matrix Σ̂n, it enjoys fast convergence rate with respect to the operator and Frobe-
nius norm of Σ̂n−Σ0 and Θ̂n−Θ0. For estimation of Θ0, Gelato has in some settings a better rate
of convergence than the GLasso or SCAD type estimators. From a theoretical point of view, our
method is clearly aimed for bounding the operator and Frobenius norm of the inverse covariance
matrix. We also derive bounds on the convergence rate for the estimated covariance matrix and
on the Kullback Leibler divergence. From a non-asymptotic point of view, our method has a clear
advantage when the sample size is small relative to the sparsity S= |E0|: for a given sample size n,
we bound the variance in our re-estimation stage by excluding edges of E0 with small weights from
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the selected edge set Ên while ensuring that we do not introduce too much bias. Our Gelato method
also addresses the bias problem inherent in the GLasso estimator since we no longer shrink the en-
tries in the covariance matrix corresponding to the selected edge set Ên in the maximum likelihood
estimate, as shown in Section 3.3.

Our experimental results show that Gelato performs better than GLasso or the Space method for
AR-models while the situation is reversed for some random precision matrix models; in case of
an exponential decay model for the precision matrix, all methods exhibit the same performance.
For Gelato, we demonstrate that thresholding is a valuable feature. We also show experimentally
how one can use cross-validation for choosing the tuning parameters in regression and thresholding.
Deriving theoretical results on cross-validation is not within the scope of this paper.
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Appendix A. Theoretical Analysis and Proofs

In this section, we specify some preliminary definitions. First, note that when we discuss estimating
the parameters Σ0 and Θ0 = Σ−10 , we always assume that

ϕmax(Σ0) := 1/ϕmin(Θ0)≤ 1/c< ∞ and 1/ϕmax(Θ0) = ϕmin(Σ0)≥ k > 0, (33)

where we assume k,c≤ 1 so that c≤ 1≤ 1/k. (34)

It is clear that these conditions are exactly that of (A2) in Section 3 with

Mupp := 1/c and Mlow := k,

where it is clear that for Σ0,ii= 1, i= 1, . . . , p, we have the sum of p eigenvalues of Σ0, ∑
p
i=1ϕi(Σ0) =

tr(Σ0) = p. Hence it will make sense to assume that (34) holds, since otherwise, (33) implies that
ϕmin(Σ0) = ϕmax(Σ0) = 1 which is unnecessarily restrictive.

We now define parameters relating to the key notion of essential sparsity s0 as explored in Candès
and Tao [2007] and Zhou [2009, 2010a] for regression. Denote the number of non-zero non-
diagonal entries in each row of Θ0 by si. Let s = maxi=1,...,p si denote the highest node degree
in G = (V,E0). Consider nodewise regressions as in (2), where we are given vectors of parameters
{βij, j = 1, . . . , p, j �= i} for i = 1, . . . , p. With respect to the degree of node i for each i, we define
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si0 ≤ si ≤ s as the smallest integer such that

p

∑
j=1, j �=i

min((βij)
2,λ2Var(Vi))≤ si0λ

2Var(Vi), where λ=
√
2log p/n, (35)

where si0 denotes s
i
0,n as defined in (7).

Definition 8 (Bounded degree parameters.) The size of the node degree si for each node i is upper
bounded by an integer s< p. For si0 as in (35), define

s0 := max
i=1,...,p

si0 ≤ s and S0,n := ∑
i=1,...,p

si0, (36)

where S0,n is exactly the same as in (8), although we now drop subscript n from si0,n in order to
simplify our notation.

We now define the following parameters related to Σ0. For an integer m≤ p, we define the smallest
and largestm-sparse eigenvalues of Σ0 as follows:

√
ρmin(m) := min

t �=0;m−sparse

∥∥∥Σ1/20 t
∥∥∥
2

‖t‖2
,
√
ρmax(m) := max

t �=0;m−sparse

∥∥∥Σ1/20 t
∥∥∥
2

‖t‖2
.

Definition 9 (Restricted eigenvalue condition RE(s0,k0,Σ0)). For some integer 1≤ s0 < p and a
positive number k0, the following condition holds for all υ �= 0,

1
K(s0,k0,Σ0)

:= min
J⊆{1,...,p},
|J|≤s0

min
‖υJc‖1≤k0‖υJ‖1

∥∥∥Σ1/20 υ
∥∥∥
2

‖υJ‖2
> 0, (37)

where υJ represents the subvector of υ ∈ Rp confined to a subset J of {1, . . . , p}.
When s0 and k0 become smaller, this condition is easier to satisfy. When we only aim to estimate
the graphical structure E0 itself, the global conditions (33) need not hold in general. Hence up till
Section D, we only need to assume that Σ0 satisfies (37) for s0 as in (35), and the sparse eigenvalue
ρmin(s) > 0. In order of estimate the covariance matrix Σ0, we do assume that (33) holds, which
guarantees that the RE condition always holds on Σ0, and ρmax(m),ρmin(m) are upper and lower
bounded by some constants for all m≤ p. We continue to adopt parameters such as K, ρmax(s), and
ρmax(3s0) for the purpose of defining constants that are reasonable tight under condition (33). In
general, one can think of

ρmax(max(3s0,s))� 1/c< ∞ and K2(s0,k0,Σ0)� 1/k < ∞,

for c,k as in (33) when s0 is small.

Roughly speaking, for two variables Xi,Xj as in (1) such that their corresponding entry in Θ0 =
(θ0,i j) satisfies: θ0,i j < λ

√
θ0,ii, where λ=

√
2log(p)/n, we can not guarantee that (i, j)∈ Ên when
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we aim to keep � si0 edges for node i, i = 1, . . . , p. For a given Θ0, as the sample size n increases,
we are able to select edges with smaller coefficient θ0,i j. In fact it holds that

|θ0,i j|< λ
√
θ0,ii which is equivalent to |βij|< λσVi , for all j ≥ si0+1+ Ii≤si0+1, (38)

where I{·} is the indicator function, if we order the regression coefficients as follows:

|βi1| ≥ |βi2|...≥ |βii−1| ≥ |βii+1|....≥ |βip|,
in view of (2), which is the same as if we order for row i of Θ0,

|θ0,i1| ≥ |θ0,i,2|...≥ |θ0,i,i−1| ≥ |θ0,i,i+1|....≥ |θ0,i,p|.
This has been shown by Candès and Tao [2007]; See also Zhou [2010a].

A.1 Concentration Bounds for the Random Design

For the random design X generated by (15), let Σ0,ii = 1 for all i. In preparation for showing the
oracle results of Lasso in Theorem 33, we first state some concentration bounds on X . Define for
some 0< θ< 1

F (θ) :=
{
X : ∀ j = 1, . . . , p, 1−θ≤ ∥∥Xj∥∥2/√n≤ 1+θ

}
, (39)

where X1, . . . ,Xp are the column vectors of the n× p design matrix X . When all columns of X have
an Euclidean norm close to

√
n as in (39) , it makes sense to discuss the RE condition in the form

of (40) as formulated by Bickel et al. [2009]. For the integer 1 ≤ s0 < p as defined in (35) and a
positive number k0, RE(s0,k0,X) requires that the following holds for all υ �= 0,

1
K(s0,k0,X)

�
= min

J⊂{1,...,p},
|J|≤s0

min
‖υJc‖1≤k0‖υJ‖1

‖Xυ‖2√
n‖υJ‖2

> 0. (40)

The parameter k0 > 0 is understood to be the same quantity throughout our discussion. The fol-
lowing event R provides an upper bound on K(s0,k0,X) for a given k0 > 0 when Σ0 satisfies
RE(s0,k0,Σ0) condition:

R (θ) :=

{
X : RE(s0,k0,X) holds with 0< K(s0,k0,X)≤ K(s0,k0,Σ0)

1−θ

}
.

For some integer m≤ p, we define the smallest and largest m-sparse eigenvalues of X to be

Λmin(m) := min
υ�=0;m−sparse

‖Xυ‖22/(n‖υ‖22) and

Λmax(m) := max
υ�=0;m−sparse

‖Xυ‖22/(n‖υ‖22),

upon which we define the following event:

M (θ) := {X : (41) holds ∀m≤max(s,(k0+1)s0)} , for which
0< (1−θ)

√
ρmin(m)≤

√
Λmin(m)≤

√
Λmax(m)≤ (1+θ)

√
ρmax(m). (41)
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Formally, we consider the set of random designs that satisfy all events as defined, for some 0< θ< 1.
Theorem 10 shows concentration results that we need for the present work, which follows from
Theorem 1.6 in Zhou [2010b] and Theorem 3.2 in Rudelson and Zhou [2011].

Theorem 10 Let 0 < θ < 1. Let ρmin(s) > 0, where s < p is the maximum node-degree in G.
Suppose RE(s0,4,Σ0) holds for s0 as in (36), where Σ0,ii = 1 for i= 1, . . . , p.

Let f (s0) = min(4s0ρmax(s0) log(5ep/s0),s0 log p). Let c,α,c′ > 0 be some absolute constants.
Then, for a random design X as generated by (15), we have

P(X ) := P(R (θ)∩F (θ)∩M (θ))≥ 1−3exp(−cθ2n/α4)

as long as the sample size satisfies

n>max

{
9c′α4

θ2
max

(
36K2(s0,4,Σ0) f (s0), log p

)
,
80sα4

θ2
log

(
5ep
sθ

)}
. (42)

Remark 11 We note that the constraint s< p/2, which has appeared in Zhou [2010b, Theorem 1.6]
is unnecessary. Under a stronger RE condition on Σ0, a tighter bound on the sample size n, which
is independent of ρmax(s0), is given in Rudelson and Zhou [2011] in order to guarantee R (θ). We
do not pursue this optimization here as we assume that ρmax(s0) is a bounded constant throughout
this paper. We emphasize that we only need the first term in (42) in order to obtain F (θ) and R (θ);
The second term is used to bound sparse eigenvalues of order s.

A.2 Definitions Of Other Various Events

Under (A1) as in Section 3, excluding event X c as bounded in Theorem 10 and events Ca,X0 to
be defined in this subsection, we can then proceed to treat X ∈ X ∩Ca as a deterministic design in
regression and thresholding, for which R (θ)∩M (θ)∩F (θ) holds with Ca, We then make use of
event X0 in the MLE refitting stage for bounding the Frobenius norm. We now define two types of
correlations events Ca and X0.

A.2.1 CORRELATION BOUNDS ON Xj AND Vi

In this section, we first bound the maximum correlation between pairs of random vectors (Vi,Xj),
for all i, j where i �= j, each of which corresponds to a pair of variables (Vi,Xj) as defined in (2)
and (3). Here we use Xj and Vi, for all i, j, to denote both random vectors and their corresponding
variables.

Let us define σVj :=
√
Var(Vj)≥ v> 0 as a shorthand. Let V ′

j :=Vj/σVj , j = 1, . . . , p be a standard
normal random variable. Let us now define for all j,k �= j,

Zjk =
1
n
〈V ′

j ,Xk 〉=
1
n

n

∑
i=1

v′j,ixk,i,
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where for all i = 1, . . . ,n v′j,i,xk,i,∀ j,k �= j are independent standard normal random variables. For
some a≥ 6, let event

Ca :=
{
max
j,k

|Zjk|<
√
1+a

√
(2log p)/n where a≥ 6

}
.

A.2.2 BOUNDS ON PAIRWISE CORRELATIONS IN COLUMNS OF X

Let Σ0 := (σ0,i j), where we denote σ0,ii := σ2i . Denote by Δ = XTX/n−Σ0. Consider for some
constantC3 > 4

√
5/3,

X0 :=
{
max
j,k

|Δ jk|<C3σiσ j

√
logmax{p,n}/n< 1/2

}
. (43)

We first state Lemma 12, which is used for bounding a type of correlation events across all regres-
sions; see proof of Theorem 15. It is also clear that event Ca is equivalent to the event to be defined
in (44). Lemma 12 also justifies the choice of λn in nodewise regressions (cf. Theorem 15). We
then bound event X0 in Lemma 13. Both proofs appear in Section A.3.

Lemma 12 Suppose that p< en/4C
2
2 . Then with probability at least 1−1/p2, we have

∀ j �= k,

∣∣∣∣1n〈Vj,Xk 〉
∣∣∣∣≤ σVj

√
1+a

√
(2log p)/n, (44)

where σVj =
√
Var(Vj) and a≥ 6. Hence P(Ca)≥ 1−1/p2.

Lemma 13 For a random design X as in (1) with Σ0, j j = 1,∀ j ∈ {1, . . . , p}, and for p < en/4C
2
3 ,

where C3 > 4
√
5/3, we have

P(X0)≥ 1−1/max{n, p}2.

We note that the upper bounds on p in Lemma 12 and 13 clearly hold given (A1). For the rest of the
paper, we prove Theorem 15 in Section B for nodewise regressions. We proceed to derive bounds
on selecting an edge set E in Section C. We then derive various bounds on the maximum likelihood
estimator given E in Theorem 19- 21 in Section D, where we also prove Theorem 1. Next, we prove
Lemma 12 and 13 in Section A.3.

A.3 Proof of Lemma 12 and 13

We first state the following large inequality bound on products of correlated normal random vari-
ables.

Lemma 14 Zhou et al., 2008, Lemma 38 Given a set of identical independent random variables
Y1, . . . ,Yn ∼ Y , where Y = x1x2, with x1,x2 ∼ N(0,1) and σ12 = ρ12 with ρ12 ≤ 1 being their cor-
relation coefficient. Let us now define Q = 1

n ∑
n
i=1Yi =:

1
n〈X1,X2 〉 = 1

n ∑
n
i=1 x1,ix2,i. Let Ψ12 =
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(1+σ212)/2. For 0≤ τ≤Ψ12,

P(|Q−EQ|> τ)≤ exp
{
− 3nτ2

10(1+σ212)

}
. (45)

Proof of Lemma 12. It is clear that event (44) is the same as event Ca. Clearly we have at
most p(p− 1) unique entries Zjk,∀ j �= k. By the union bound and by taking τ =C2

√
log p
n in (45)

with σ jk = 0,∀ j,k, where
√
2(1+a)≥C2 > 2

√
10/3 for a≥ 6.

1−P(Ca) = P

(
max
jk

|Zjk| ≥
√
2(1+a)

√
log p
n

)

≤ P

(
max
jk

|Zjk| ≥C2

√
log p
n

)
≤ (p2− p)exp

(
−3C

2
2 log p
10

)
≤ p2 exp

(
−3C

2
2 log p
10

)
= p−

3C22
10 +2 <

1
p2

,

where we apply Lemma 14 with ρ jk = 0,∀ j,k= 1, . . . , p, j �= k and use the fact that EZjk = 0. Note

that p< en/4C
2
2 guarantees thatC2

√
log p
n < 1/2. �

In order to bound the probability of event X0, we first state the following bound for the non-diagonal
entries of Σ0, which follows immediately from Lemma 14 by plugging in σ2i =σ0,ii= 1,∀i= 1, . . . , p
and using the fact that |σ0, jk| = |ρ jkσ jσk| ≤ 1,∀ j �= k, where ρ jk is the correlation coefficient be-
tween variables Xj and Xk. Let Ψ jk = (1+σ20, jk)/2. Then

P
(|Δ jk|> τ

)≤ exp{− 3nτ2

10(1+σ20, jk)

}
≤ exp

{
−3nτ

2

20

}
for 0≤ τ≤Ψ jk. (46)

We now also state a large deviation bound for the χ2n distribution [Johnstone, 2001]:

P

(
χ2n
n
−1> τ

)
≤ exp

(−3nτ2
16

)
, for 0≤ τ≤ 1

2
. (47)

Lemma 13 follows from (46) and (47) immediately.

Proof of Lemma 13. Now it is clear that we have p(p− 1)/2 unique non-diagonal entries
σ0, jk,∀ j �= k and p diagonal entries. By the union bound and by taking τ=C3

√
logmax{p,n}

n in (47)
and (46) with σ0, jk ≤ 1, we have

P((X0)c) = P

(
max
jk

|Δ jk| ≥C3

√
logmax{p,n}

n

)

≤ pexp

(
−3C

2
3 logmax{p,n}

16

)
+
p2− p
2

exp

(
−3C

2
3 logmax{p,n}

20

)
≤ p2 exp

(
−3C

2
3 logmax{p,n}

20

)
= (max{p,n})−

3C23
20 +2 <

1
(max{p,n})2
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for C3 > 4
√
5/3, where for the diagonal entries we use (47), and for the non-diagonal entries, we

use (46). Finally, p< en/4C
2
3 guarantees thatC3

√
logmax{p,n}

n < 1/2. �

Appendix B. Bounds for Nodewise Regressions

In Theorem 15 and Lemma 16 we let si0 be as in (35) and T
i
0 denote locations of the s

i
0 largest

coefficients of βi in absolute values. For the vector hi to be defined in Theorem 15, we let T i1 denote
the si0 largest positions of h

i in absolute values outside of T i0; Let T
i
01 := T i0 ∪T i1. We suppress the

superscript in T i0 ,T
i
1, and T

i
01 throughout this section for clarity.

Theorem 15 (Oracle inequalities of the nodewise regressions) Let 0 < θ < 1. Let ρmin(s) > 0,
where s < p is the maximum node-degree in G. Suppose RE(s0,4,Σ0) holds for s0 ≤ s as in (36),
where Σ0,ii= 1 forall i. Suppose ρmax(max(s,3s0))<∞. The data is generated by X (1), . . . ,X (n) i.i.d.∼
Np(0,Σ0), where the sample size n satisfies (42).

Consider the nodewise regressions in (10), where for each i, we regress Xi onto the other variables
{Xk; k �= i} following (2), where Vi ∼ N(0,Var(Vi)) is independent of Xj,∀ j �= i as in (3).

Let βiinit be an optimal solution to (10) for each i. Let λn = d0λ = di0λσVi where d0 is chosen such
that d0 ≥ 2(1+θ)

√
1+a holds for some a ≥ 6. Let hi = βiinit−βiT0 . Then simultaneously for all i,

on Ca∩X , where X := R (θ)∩F (θ)∩M (θ), we have∥∥βiinit−βi
∥∥
2 ≤ λ

√
si0d0

√
2D20+2D

2
1+2, where

‖hT01‖2 ≤ D0d0λ
√
si0 and

∥∥∥hiTc0 ∥∥∥1 = ∥∥∥βiinit,Tc0 ∥∥∥1 ≤ D1d0λs
i
0, (48)

where D0,D1 are defined in (82) and (83) respectively.

Suppose we choose for some constant c0 ≥ 4
√
2 and a0 = 7,

d0 = c0(1+θ)2
√
ρmax(s)ρmax(3s0),

where we assume that ρmax(max(s,3s0))< ∞ is reasonably bounded. Then

D0 ≤ 5K2(s0,4,Σ0)
(1−θ)2

and D1 ≤ 49K2(s0,4,Σ0)
16(1−θ)2

.

The choice of d0 will be justified in Section F, where we also the upper bound on D0,D1 as above.

Proof Consider each regression function in (10) with X·\i being the design matrix and Xi the re-
sponse vector, where X·\i denotes columns of X excluding Xi. It is clear that for λn = d0λ, we have
for i= 1, . . . , p and a≥ 6,

λn = (d0/σVi)σViλ := di0σViλ≥ d0λσVi ≥ 2(1+θ)λ
√
1+aσVi = 2(1+θ)λσ,a,p

such that (81) holds given that σVi ≤ 1,∀i, where it is understood that σ := σVi .
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It is also clear that on Ca∩X , event Ta∩X holds for each regression when we invoke Theorem 33,
with Y := Xi and X := X·\i, for i = 1, . . . , p. By definition di0σVi = d0. We can then invoke bounds
for each individual regression as in Theorem 33 to conclude.

Appendix C. Bounds on Thresholding

In this section, we first show Lemma 16, following conditions in Theorem 15. We then show
Corollary 17, which proves Proposition 4 and the first statement of Theorem 1. D0,D1 are the same
constants as in Theorem 15.

Lemma 16 Suppose RE(s0,4,Σ0) holds for s0 be as in (36) and ρmin(s) > 0, where s < p is the
maximum node-degree in G. Suppose ρmax(max(s,3s0)) < ∞. Let Si = { j : j �= i, βij �= 0}. Let
c0 ≥ 4

√
2 be some absolute constant. Suppose n satisfies (42). Let βiinit be an optimal solution

to (10) with
λn = d0λ where d0 = c0(1+θ)2

√
ρmax(s)ρmax(3s0);

Suppose for each regression, we apply the same thresholding rule to obtain a subset Ii as follows,

Ii = { j : j �= i,
∣∣βij,init∣∣≥ t0 = f0λ}, and D i := {1, . . . , i−1, i+1, . . . , p}\ Ii,

where f0 := D4d0 for some constant D4 to be specified. Then we have on event Ca∩X ,

|Ii| ≤ si0(1+D1/D4) and |Ii∪Si| ≤ si+(D1/D4)s
i
0, and (49)∥∥βiD∥∥2 ≤ d0λ

√
si0

√
1+(D0+D4)2,

where D is understood to be D i.

Recall Θ0 = Σ−10 . Let Θ0,D denote the submatrix of Θ0 indexed by D as in (22) with all other
positions set to be 0. Let E0 be the true edge set.

Corollary 17 Suppose all conditions in Lemma 16 hold. Then on event Ca ∩X , for Θ̃0 as in (24)
and E as in (23), we have for S0,n as in (36) and Θ0 = (θ0,i j)

|E| ≤ (1+D1/D4)S0,n where |E \E0| ≤ (D1/D4)S0,n, (50)

and ∥∥Θ0,D∥∥F :=
∥∥∥Θ̃0−Θ0

∥∥∥
F

≤
√
min{S0,n( max

i=1,...p
θ20,ii),s0 ‖diag(Θ0)‖2F}

√
(1+(D0+D4)2)d0λ (51)

:=
√
S0,n (1+(D0+D4)2)Cdiagd0λ,

where C2diag :=min{maxi=1,...pθ20,ii,(s0/S0,n)‖diag(Θ0)‖2F}. For D4 ≥ D1, we have (18).
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Proof By the OR rule in (9), we could select at most ∑p
i=1 |Ii| edges. We have by (49)

|E| ≤ ∑
i=1,...p

(1+D1/D4)s
i
0 = (1+D1/D4)S0,n,

where (D1/D4)S0,n is an upper bound on |E \E0| by (52). Thus

∥∥Θ0,D∥∥2F ≤
p

∑
i=1

θ20,ii
∥∥βiD∥∥22 ≤ (1+(D0+D4)

2)d20λ
2

p

∑
i=1

θ20,iis
i
0

≤ min{S0,n( max
i=1,...p

θ20,ii),s0 ‖diag(Θ0)‖2F}(1+(D0+D4)
2)d20λ

2.

Remark 18 Note that if s0 is small, then the second term in Cdiag will provide a tighter bound.

Proof of Lemma 16. Let T0 := T i0 denote the s
i
0 largest coefficients of β

i in absolute values.
We have by (48),

|Ii∩Tc0 | ≤
∥∥∥βiinit,Tc0 ∥∥∥1 1

f0λ
≤ D1d0s

i
0/(D4d0)≤ D1s

i
0/D4, (52)

where D1 is understood to be the same constant that appears in (48). Thus we have∣∣Ii∣∣= |Ii∩Tc0 |+ |Ii∩T0| ≤ si0(1+D1/D4).

Now the second inequality in (49) clearly holds given (52) and the following:

|Ii∪Si| ≤ |Si|+ |Ii∩ (Si)c| ≤ si+ |Ii∩ (T i0)
c|.

We now bound
∥∥βiD∥∥22 following essentially the arguments as in Zhou [2009]. We have∥∥βiD∥∥22 =

∥∥βiT0∩D∥∥22+∥∥∥βiT c0 ∩D∥∥∥22 ,
where for the second term, we have

∥∥∥βiT c0 ∩D∥∥∥22 ≤ ∥∥∥βiT c0 ∥∥∥22 ≤ si0λ
2σ2Vi by definition of s

i
0 as in (35)

and (38); For the first term, we have by the triangle inequality and (48),∥∥βiT0∩D∥∥2 ≤ ∥∥(βi−βiinit)T0∩D
∥∥
2+

∥∥(βiinit)T0∩D∥∥2
≤ ∥∥(βi−βiinit)T0

∥∥
2+ t0

√
|T0∩D| ≤ ‖hT0‖2+ t0

√
si0

≤ D0d0λ
√
si0+D4d0λ

√
si0 ≤ (D0+D4)d0λ

√
si0.

�
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Appendix D. Bounds on MLE Refitting

Recall the maximum likelihood estimate Θ̂n minimizes over all Θ ∈ Sn the empirical risk:

Θ̂n(E) = arg min
Θ∈Sn

R̂n(Θ) := arg min
Θ∈S p++∩S pE

{
tr(ΘΓ̂n)− log |Θ|

}
, (53)

which gives the “best” refitted sparse estimator given a sparse subset of edges E that we obtain from
the nodewise regressions and thresholding. We note that the estimator (53) remains to be a convex
optimization problem, as the constraint set is the intersection the positive definite cone S p++ and the
linear subspace S pE . Implicitly, by using Γ̂n rather than Ŝn in (53), we force the diagonal entries in
(Θ̂n(E))−1 to be identically 1. It is not hard to see that the estimator (53) is equivalent to (13), after
we replace Ŝn with Γ̂n.

Theorem 19 Consider data generating random variables as in expression (15) and assume that
(A1), (33), and (34) hold. Suppose Σ0,ii = 1 for all i. Let E be some event such that P(E) ≥
1−d/p2 for a small constant d. Let S0,n be as defined in (36); Suppose on event E :

1. We obtain an edge set E such that its size |E|= lin(S0,n) is a linear function in S0,n.

2. And for Θ̃0 as in (24) and for some constant Cbias to be specified, we have∥∥Θ0,D∥∥F := ∥∥∥Θ̃0−Θ0
∥∥∥
F
≤Cbias

√
2S0,n log(p)/n< c/32. (54)

Let Θ̂n(E) be as defined in (53). Suppose the sample size satisfies for C3 ≥ 4
√
5/3,

n>
106

k2

(
4C3+

32
31c2

)2
max

{
2|E| logmax(n, p), C2bias2S0,n log p

}
. (55)

Then on event E ∩X0, we have for M = (9/(2k2)) · (4C3+32/(31c2))∥∥∥Θ̂n(E)−Θ0
∥∥∥
F
≤ (M+1)max

{√
2|E| logmax(n, p)/n, Cbias

√
2S0,n log(p)/n

}
. (56)

We note that although Theorem 19 is meant for proving Theorem 1, we state it as an independent
result; For example, one can indeed take E from Corollary 17, where we have |E| ≤ cS0,n for some
constant c for D4 � D1. In view of (51), we aim to recover Θ̃0 by Θ̂n(E) as defined in (53). In
Section D.2, we will focus in Theorem 19 on bounding forW suitably chosen,∥∥∥Θ̂n(E)− Θ̃0

∥∥∥
F
= OP

(
W
√
S0,n logmax(n, p)/n

)
.

By the triangle inequality, we conclude that∥∥∥Θ̂n(E)−Θ0
∥∥∥
F
≤
∥∥∥Θ̂n(E)− Θ̃0

∥∥∥
F
+
∥∥∥Θ̃0−Θ0

∥∥∥
F
= OP

(
W
√
S0,n log(n)/n

)
.

We now state bounds for the convergence rate on Frobenius norm of the covariance matrix and for
KL divergence. We note that constants have not been optimized. Proofs of Theorem 20 and 21
appear in Section D.3 and D.4 respectively.
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Theorem 20 Suppose all conditions, events, and bounds on |E| and ∥∥Θ0,D∥∥F in Theorem 19 hold.
Let Θ̂n(E) be as defined in (53). Suppose the sample size satisfies for C3 ≥ 4

√
5/3 and Cbias,M as

defined in Theorem 19

n>
106

c2k4

(
4C3+

32
31c2

)2
max

{
2|E| logmax(p,n), C2bias2S0,n log p

}
. (57)

Then on event E ∩X0, we have ϕmin(Θ̂n(E))> c/2> 0 and for Σ̂n(E) = (Θ̂n(E))−1,∥∥∥Σ̂n(E)−Σ0
∥∥∥
F
≤ 2(M+1)

c2
max

{√
2|E| logmax(n, p)

n
, Cbias

√
2S0,n log(p)

n

}
. (58)

Theorem 21 Suppose all conditions, events, and bounds on |E| and ∥∥Θ0,D∥∥F := ∥∥∥Θ̃0−Θ0
∥∥∥
F
in

Theorem 19 hold. Let Θ̂n(E) be as defined in (53). Suppose the sample size satisfies (55) for
C3 ≥ 4

√
5/3 andCbias,M as defined in Theorem 19. Then on event E ∩X0, we have for R(Θ̂n(E))−

R(Θ0)≥ 0,

R(Θ̂n(E))−R(Θ0)≤M(C3+1/8)max
{
2|E| logmax(n, p)/n, C2bias2S0,n log(p)/n

}
.

D.1 Proof of Theorem 1

Clearly the sample requirement as in (42) is satisfied for some θ > 0 that is appropriately chosen,
given (55). In view of Corollary 17, we have on E := X ∩Ca: forCdiag as in (17)

|E| ≤ (1+
D1
D4

)S0,n ≤ 2S0,n for D4 ≥ D1 and∥∥Θ0,D∥∥F :=
∥∥∥Θ̃0−Θ0

∥∥∥
F
≤Cbias

√
2S0,n log(p)/n≤ c/32,

where

C2bias := min

{
max
i=1,...p

θ20,ii,
s0
S0,n

‖diag(Θ0)‖2F
}
d20(1+(D0+D4)

2)

= C2diagd
2
0(1+(D0+D4)

2). (59)

Clearly the last inequality in (54) hold so long as n> 322C2bias2S0,n log(p)/c
2,which holds given (55).

Plugging in |E| in (56), we have on E ∩X0,∥∥∥Θ̂n(E)−Θ0
∥∥∥
F
≤ (M+1)max

{√
2(1+D1/D4)S0,n logmax(n, p)

n
, Cbias

√
2S0,n log p

n

}
.

Now if we take D4 ≥ D1, then we have (18) on event E ; and moreover on E ∩X0,∥∥∥Θ̂n(E)−Θ0
∥∥∥
F

≤ (M+1)max

{√
4S0,n logmax(n, p)/n, Cbias

√
2S0,n log(p)/n

}
≤ W

√
S0,n logmax(n, p)/n,
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whereW ≤√
2(M+1)max{Cdiagd0

√
1+(D0+D4)2,2}. Similarly, we get the bound on

∥∥∥Σ̂n−Σ0
∥∥∥
F

with Theorem 20, and the bound on risk following Theorem 21. Thus all statements in Theorem 1
hold. �

Remark 22 Suppose event E ∩X0 holds. Now suppose that we take D4 = 1, that is, if we take the
threshold to be exactly the penalty parameter λn:

t0 = d0λ := λn.

Then we have on event E , |E| ≤ (1+D1)S0,n and |E \E0| ≤ D1S0,n by (50); And on event E ∩X0,
for C′

bias :=Cdiagd0
√
1+(D0+1)2,∥∥∥Θ̂n(E)−Θ0
∥∥∥
F
≤Mmax

{√
2(1+D1)S0,n logmax(n, p)

n
, C′

bias

√
2S0,n log p

n

}
.

It is not hard to see that we achieve essential the same rate as stated in Theorem 1, with perhaps
slightly more edges included in E.

D.2 Proof of Theorem 19

Suppose event E holds throughout this proof. We first obtain the bound on spectrum of Θ̃0: It is
clear that by (33) and (54), we have on E ,

ϕmin(Θ̃0) ≥ ϕmin(Θ0)−
∥∥∥Θ̃0−Θ0

∥∥∥
2
≥ ϕmin(Θ0)−

∥∥Θ0,D∥∥F > 31c/32, (60)

ϕmax(Θ̃0) < ϕmax(Θ0)+
∥∥∥Θ̃0−Θ0

∥∥∥
2
≤ ϕmax(Θ0)+

∥∥Θ0,D∥∥F <
c
32

+
1
k
. (61)

Throughout this proof, we let Σ0 = (σ0,i j) := Θ−1
0 . In view of (60), define Σ̃0 := (Θ̃0)−1. We use

Θ̂n := Θ̂n(E) as a shorthand.

Given Θ̃0 ∈ S p++∩S pE as guaranteed in (60), let us define a new convex set:

Un(Θ̃0) := (S p++∩S pE )− Θ̃0 = {B− Θ̃0|B ∈ S p++∩S pE} ⊂ S pE ,

which is a translation of the original convex set S p++∩S pE . Let 0 be a matrix with all entries being
zero. Thus it is clear thatUn(Θ̃0) � 0 given that Θ̃0 ∈ S p++∩S pE . Define for R̂n as in expression (53)

Q̃(Θ) := R̂n(Θ)− R̂n(Θ̃0) = tr(ΘΓ̂n)− log |Θ|− tr(Θ̃0Γ̂n)+ log |Θ̃0|
= tr

(
(Θ− Θ̃0)(Γ̂n− Σ̃0)

)
− (log |Θ|− log |Θ̃0|)+ tr

(
(Θ− Θ̃0)Σ̃0

)
.

For an appropriately chosen rn and a large enoughM > 0, let

Tn = {Δ ∈Un(Θ̃0),‖Δ‖F =Mrn}, and
Πn = {Δ ∈Un(Θ̃0),‖Δ‖F <Mrn}.
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It is clear that both Πn and Tn∪Πn are convex. It is also clear that 0 ∈Πn. Throughout this section,
we let

rn =max

{√
2|E| logmax(n, p)

n
,Cbias

√
2S0,n log p

n

}
. (62)

Define for Δ ∈Un(Θ̃0),
G̃(Δ) := Q̃(Θ̃0+Δ) = tr(Δ(Γ̂n− Σ̃0))− (log |Θ̃0+Δ|− log |Θ̃0|)+ tr(ΔΣ̃0).

It is clear that G̃(Δ) is a convex function onUn(Θ̃0) and G̃(0) = Q̃(Θ̃0) = 0.

Now, Θ̂n minimizes Q̃(Θ), or equivalently Δ̂= Θ̂n− Θ̃0 minimizes G̃(Δ). Hence by definition,

G̃(Δ̂)≤ G̃(0) = 0.

Note that Tn is non-empty, while clearly 0 ∈Πn. Indeed, consider Bε := (1+ ε)Θ̃0, where ε> 0; it

is clear that Bε− Θ̃0 ∈ S p++∩S pE and
∥∥∥Bε− Θ̃0

∥∥∥
F
= |ε|

∥∥∥Θ̃0∥∥∥
F
=Mrn for |ε| =Mrn/

∥∥∥Θ̃0∥∥∥
F
. Note

also if Δ ∈ Tn, then Δi j = 0∀(i, j : i �= j) /∈ E; Thus we have Δ ∈ S pE and

‖Δ‖0 = ‖diag(Δ)‖0+‖offd(Δ)‖0 ≤ p+2|E| where |E|= lin(S0,n).
We now show the following two propositions. Proposition 23 follows from standard results.

Proposition 23 Let B be a p× p matrix. If B� 0 and B+D� 0, then B+ vD� 0 for all v ∈ [0,1].

Proposition 24 Under (33), we have for all Δ ∈ Tn such that ‖Δ‖F =Mrn for rn as in (62), Θ̃0+
vΔ� 0,∀v ∈ an open interval I ⊃ [0,1] on event E .

Proof In view of Proposition 23, it is sufficient to show that Θ̃0+(1+ ε)Δ, Θ̃0− εΔ � 0 for some
ε> 0. Indeed, by definition of Δ ∈ Tn, we have ϕmin(Θ̃0+Δ)� 0 on event E ; thus

ϕmin(Θ̃0+(1+ ε)Δ) ≥ ϕmin(Θ̃0+Δ)− ε‖Δ‖2 > 0,
and ϕmin(Θ̃0− εΔ) ≥ ϕmin(Θ̃0)− ε‖Δ‖2 > 31c/32− ε‖Δ‖2 > 0

for ε> 0 that is sufficiently small.

Thus we have that log |Θ̃0+ vΔ| is infinitely differentiable on the open interval I ⊃ [0,1] of v. This
allows us to use the Taylor’s formula with integral remainder to obtain the following:

Lemma 25 On event E ∩X0, G̃(Δ)> 0 for all Δ ∈ Tn.

Proof Let us use Ã as a shorthand for

vecΔT
(∫ 1

0
(1− v)(Θ̃0+ vΔ)−1⊗ (Θ̃0+ vΔ)−1dv

)
vecΔ,

where ⊗ is the Kronecker product (ifW = (wi j)m×n, P= (bk�)p×q, thenW ⊗P= (wi jP)mp×nq), and
vecΔ ∈ Rp2 is Δp×p vectorized. Now, the Taylor expansion gives for all Δ ∈ Tn,

log |Θ̃0+Δ|− log |Θ̃0| =
d
dv
log |Θ̃0+ vΔ||v=0Δ+

∫ 1

0
(1− v)

d2

dv2
log |Θ̃0+ vΔ|dv

= tr(Σ̃0Δ)− Ã.
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Hence for all Δ ∈ Tn,

G̃(Δ) = Ã+ tr
(
Δ(Γ̂n− Σ̃0)

)
= Ã+ tr

(
Δ(Γ̂n−Σ0)

)
− tr

(
Δ(Σ̃0−Σ0)

)
, (63)

where we first bound tr(Δ(Σ̃0−Σ0)) as follows: by (54) and (60), we have on event E∣∣∣tr(Δ(Σ̃0−Σ0))
∣∣∣ =

∣∣∣〈Δ,(Σ̃0−Σ0)〉
∣∣∣≤ ‖Δ‖F

∥∥∥Σ̃0−Σ0
∥∥∥
F

≤ ‖Δ‖F
∥∥Θ0,D∥∥F

ϕmin(Θ̃0)ϕmin(Θ0)

< ‖Δ‖F
32Cbias

√
2S0,n log p/n

31c2
≤ ‖Δ‖F

32rn
31c2

. (64)

Conditioned on event X0, by (70) and (55)

max
j,k

|Γ̂n, jk−σ0, jk| ≤ 4C3
√
logmax(n, p)/n=: δn.

Thus on event E ∩X0, we have
∣∣∣tr(Δ(Γ̂n−Σ0)

)∣∣∣≤ δn |offd(Δ)|1 , where

|offd(Δ)|1 ≤
√
‖offd(Δ)‖0 ‖offd(Δ)‖F ≤

√
2|E|‖Δ‖F ,

and

tr
(
Δ(Γ̂n−Σ0)

)
≥ −4C3

√
logmax(n, p)/n

√
2|E|‖Δ‖F ≥−4C3rn ‖Δ‖F . (65)

Finally, we bound Ã. First we note that for Δ ∈ Tn, we have on event E ,

‖Δ‖2 ≤ ‖Δ‖F =Mrn <
7
16k

, (66)

given (55): n> ( 167 · 92k )2
(
4C3+ 32

31c2

)2
max

{
(2|E|) log(n), C2bias2S0,n log p

}
. Now we have by (61)

and (34) following Rothman et al. [2008] (see Page 502, proof of Theorem 1 therein): on event E ,

Ã ≥ ‖Δ‖2F /
(
2
(
ϕmax(Θ̃0)+‖Δ‖2

)2)
≥ ‖Δ‖2F /

(
2(
1
k
+

c
32

+
7
16k

)2
)
> ‖Δ‖2F

2k2

9
. (67)

Now on event E ∩X0, for all Δ ∈ Tn, we have by (63),(67), (65), and (64),

G̃(Δ) > ‖Δ‖2F
2k2

9
−4C3rn ‖Δ‖F −‖Δ‖F

32rn
31c2

= ‖Δ‖2F
(
2k2

9
− 1

‖Δ‖F

(
4C3rn+

32rn
31c2

))
= ‖Δ‖2F

(
2k2

9
− 1
M

(
4C3+

32
31c2

))
,
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hence we have G̃(Δ) > 0 for M large enough, in particular M = (9/(2k2))
(
4C3+32/(31c2)

)
suf-

fices.

We next state Proposition 26, which follows exactly that of Claim 12 of Zhou et al. [2008].

Proposition 26 Suppose event E holds. If G̃(Δ)> 0,∀Δ ∈ Tn, then G̃(Δ)> 0 for all Δ in

Wn = {Δ : Δ ∈Un(Θ̃0),‖Δ‖F >Mrn}

for rn as in (62); Hence if G̃(Δ)> 0 for all Δ ∈ Tn, then G̃(Δ)> 0 for all Δ ∈ Tn∪Wn.

Note that for Θ̂n ∈ S p++ ∩ S pE , we have Δ̂ = Θ̂n− Θ̃0 ∈ Un(Θ̃0). By Proposition 26 and the fact
that G̃(Δ̂) ≤ G̃(0) = 0 on event E , we have the following: on event E , if G̃(Δ) > 0,∀Δ ∈ Tn then
‖Δ̂‖F <Mrn, given that Δ̂ ∈Un(Θ̃0)\ (Tn∪Wn). Therefore

P
(
‖Δ̂‖F ≥Mrn

)
≤ P(E c)+P(E) ·P

(
‖Δ̂‖F ≥Mrn|E

)
= P(E c)+P(E) · (1−P

(
‖Δ̂‖F <Mrn|E

)
)

≤ P(E c)+P(E) · (1−P
(
G̃(Δ)> 0,∀Δ ∈ Tn|E

)
)

≤ P(E c)+P(E) · (1−P(X0|E))

= P(E c)+P(X c
0 ∩E)≤ P(E c)+P(X c

0 )

≤ c
p2

+
1

max(n, p)2
≤ c+1

p2
.

We thus establish that the theorem holds. �

D.3 Frobenius Norm for the Covariance Matrix

We use the bound on
∥∥∥Θ̂n(E)−Θ0

∥∥∥
F
as developed in Theorem 19; in addition, we strengthen the

bound onMrn in (66) in (68). Before we proceed, we note the following bound on bias of (Θ̃0)−1.

Remark 27 Clearly we have on event E , by (64)∥∥∥(Θ̃0)−1−Σ0
∥∥∥
F

≤
∥∥Θ0,D∥∥F

ϕmin(Θ̃0)ϕmin(Θ0)
≤ 32Cbias

√
2S0,n log p/n

31c2
.

Proof of Theorem 20. Suppose event E ∩X0 holds. Now suppose

n> (
16
7c

· 9
2k2

)2
(
C3+

32
31c2

)2
max

{
2|E| logmax(n, p), C2bias2S0,n log p

}
,

which clearly holds given (57). Then in addition to the bound in (66), on event E ∩X0, we have

Mrn < 7c/16, (68)
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for rn as in (62). Then, by Theorem 19, for the sameM as therein, on event E ∩X0, we have∥∥∥Θ̂n(E)−Θ0
∥∥∥
F
≤ (M+1)max

{√
2|E| logmax(n, p)/n, Cbias

√
2S0,n log(p)/n

}
,

given that sample bound in (55) is clearly satisfied. We now proceed to bound
∥∥∥Σ̂n−Σ0

∥∥∥
F
given (56).

First note that by (68), we have on event E ∩X0 forM > 7

ϕmin(Θ̂n(E)) ≥ ϕmin(Θ0)−
∥∥∥Θ̂n−Θ0

∥∥∥
2
≥ ϕmin(Θ0)−

∥∥∥Θ̂n−Θ0
∥∥∥
F

≥ c− (M+1)rn > c/2.

Now clearly on event E ∩X0, (58) holds by (56) and

∥∥∥Σ̂n(E)−Σ0
∥∥∥
F

≤

∥∥∥Θ̂n(E)−Θ0
∥∥∥
F

ϕmin(Θ̂n(E))ϕmin(Θ0)
<
2
c2

∥∥∥Θ̂n(E)−Θ0
∥∥∥
F
.

�

D.4 Risk Consistency

We now derive the bound on risk consistency. Before proving Theorem 21, we first state two lemmas
given the following decomposition of our loss in terms of the risk as defined in (16):

0≤ R(Θ̂n(E))−R(Θ0) = (R(Θ̂n(E))−R(Θ̃0))+(R(Θ̃0)−R(Θ0)), (69)

where clearly R(Θ̂n(E))≥ R(Θ0) by definition. It is clear that Θ̃0 ∈ Sn for Sn as defined in (28), and
thus R̂n(Θ̃0)≥ R̂n(Θ̂n(E)) by definition of Θ̂n(E) = argminΘ∈Sn R̂n(Θ).

We now bound the two terms on the RHS of (69), where clearly R(Θ̃0)≥ R(Θ0).

Lemma 28 On event E , we have for Cbias,Θ0, Θ̃0 as in Theorem 19,

0≤ R(Θ̃0)−R(Θ0)≤ (32/(31c))2C2bias
2S0,n log p

2n
≤ (32/(31c))2 · r2n/2≤Mr2n/8,

for rn as in (62), where the last inequality holds given that M ≥ 9/2(4C3+32/(31c2)).
Lemma 29 Under E ∩X0, we have for rn as in (62) and M,C3 as in Theorem 19

R(Θ̂n(E))−R(Θ̃0)≤MC3r
2
n.

Proof of Theorem 21. We have on E ∩X0, for rn is as in (62)

R(Θ̂n(E))−R(Θ0) = (R(Θ̂n(E))−R(Θ̃0))+(R(Θ̃0)−R(Θ0))≤Mr2n(C3+1/8)

as desired, using Lemma 28 and 29. �
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Proof of Lemma 28. For simplicity, we use Δ0 as a shorthand for the rest of our proof:

Δ0 := Θ0,D = Θ̃0−Θ0.

We use B̃ as a shorthand for

vecΔ0
T
(∫ 1

0
(1− v)(Θ0+ vΔ0)

−1⊗ (Θ0+ vΔ0)
−1dv

)
vecΔ0,

where ⊗ is the Kronecker product. First, we have for Θ̃0,Θ0 � 0

R(Θ̃0)−R(Θ0) = tr(Θ̃0Σ0)− log |Θ̃0|− tr(Θ0Σ0)+ log |Θ0|
= tr((Θ̃0−Θ0)Σ0)−

(
log |Θ̃0|− log |Θ0|

)
:= B̃≥ 0,

where B̃ = 0 holds when ‖Δ0‖F = 0, and in the last equation, we bound the difference between
two log | · | terms using the Taylor’s formula with integral remainder following that in proof of
Theorem 19. Indeed, it is clear that on E , we have

Θ0+ vΔ0 � 0 for v ∈ (−1,2)⊃ [0,1],

given that ϕmin(Θ0) ≥ c and ‖Δ0‖2 ≤ ‖Δ0‖F ≤ c/32 by (54). Thus log |Θ0 + vΔ0| is infinitely
differentiable on the open interval I ⊃ [0,1] of v. Now, the Taylor expansion gives

log |Θ0+Δ0|− log |Θ0| =
d
dv
log |Θ0+ vΔ0||v=0Δ0+

∫ 1

0
(1− v)

d2

dv2
log |Θ0+ vΔ0|dv

= tr(Σ0Δ0)− B̃.

We now obtain an upper bound on B̃≥ 0. Clearly, we have on event E , Lemma 28 holds given that

B̃≤ ‖Δ0‖2F ·ϕmax
(∫ 1

0
(1− v)(Θ0+ vΔ0)

−1⊗ (Θ0+ vΔ0)
−1dv

)
,

where ‖Δ0‖2F ≤C2bias2S0,n log(p)/n and

ϕmax

(∫ 1

0
(1− v)(Θ0+ vΔ0)

−1⊗ (Θ0+ vΔ0)
−1dv

)
≤

∫ 1

0
(1− v)ϕ2max(Θ0+ vΔ0)−1dv≤ sup

v∈[0,1]
ϕ2max(Θ0+ vΔ0)−1

∫ 1

0
(1− v)dv

=
1
2
sup
v∈[0,1]

1

ϕ2min(Θ0+ vΔ0)
=

1

2infv∈[0,1]ϕ2min(Θ0+ vΔ0)

≤ 1

2(ϕmin(Θ0)−‖Δ0‖2)2
≤ 1

2(31c/32)2
,

where clearly for all v ∈ [0,1], we have ϕ2min(Θ0+vΔ0)≥ (ϕmin(Θ0)−‖Δ0‖2)2 ≥ (31c/32)2, given
ϕmin(Θ0)≥ c and ‖Δ0‖2 ≤

∥∥Θ0,D∥∥F ≤ c/32 by (54). �
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Proof of Lemma 29. Suppose R(Θ̂n(E))−R(Θ̃0)< 0, then we are done.

Otherwise, assume R(Θ̂n(E))−R(Θ̃0)≥ 0 throughout the rest of the proof. Define

Δ̂ := Θ̂n(E)− Θ̃0,

which by Theorem 19, we have on event E ∩X0, and forM as defined therein,∥∥∥Δ̂∥∥∥
F
:=

∥∥∥Θ̂n(E)− Θ̃0
∥∥∥
F
≤Mrn.

We have by definition R̂n(Θ̂n(E))≤ R̂n(Θ̃0), and hence

0≤ R(Θ̂n(E))−R(Θ̃0) = R(Θ̂n(E))− R̂n(Θ̂n(E))+ R̂n(Θ̂n(E))−R(Θ̃0)

≤ R(Θ̂n(E))− R̂n(Θ̂n(E))+ R̂n(Θ̃0)−R(Θ̃0)

= tr(Θ̂n(E)(Σ0− Γ̂n))− tr(Θ̃0(Σ0− Γ̂n))

= tr((Θ̂n(E)− Θ̃0)(Σ0− Γ̂n)) = tr(Δ̂(Σ0− Γ̂n)).

Now, conditioned on event E ∩X0, following the same arguments around (65), we have∣∣∣tr(Δ̂(Ŝn−Σ0)
)∣∣∣ ≤ δn

∣∣∣offd(Δ̂)∣∣∣
1
≤ δn

√
2|E|

∥∥∥offd(Δ̂)∥∥∥
F

≤ MrnC3
√
2|E| logmax(n, p)/n≤MC3r

2
n,

where
∥∥∥offd(Δ̂)∥∥∥

0
≤ 2|E| by definition, and rn is as defined in (62). �

Appendix E. Proof of Theorem 6

We first bound P(X0) in Lemma 30, which follows exactly that of Lemma 13 as the covariance
matrix Ψ0 for variables X1/σ1, . . . ,Xp/σp satisfy the condition that Ψ0,ii = 1,∀i ∈ {1, . . . , p}.
Lemma 30 For p< en/4C

2
3 , where C3 > 4

√
5/3, we have for X0 as defined in (43)

P(X0)≥ 1−1/max{n, p}2.

On event X0, the following holds for τ=C3

√
logmax{p,n}

n < 1/2, where we assume p< en/4C
2
3 ,

∀i,
∣∣∣∣∣‖Xi‖22σ2i n

−1
∣∣∣∣∣ ≤ τ,

∀i �= j,

∣∣∣∣1n〈Xi/σi,Xj/σ j 〉−ρ0,i j

∣∣∣∣ ≤ τ.
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Let us first derive the large deviation bound for
∣∣∣Γ̂n,i j−ρ0,i j

∣∣∣. First note that on event X0 √1− τ≤
‖Xi‖2 /(σi

√
n)≤√

1+ τ and for all i �= j∣∣∣Γ̂n,i j−ρ0,i j
∣∣∣= ∣∣∣∣∣ Ŝn,i jσ̂iσ̂ j

−ρ0,i j

∣∣∣∣∣ := ∣∣ρ̂i j−ρ0,i j
∣∣

=

∣∣∣∣∣ 1
n〈Xi/σi,Xj/σ j 〉−ρ0,i j

(‖Xi‖2 /(σi
√
n)) · (∥∥Xj∥∥2 /(σ j

√
n))

+
ρ0,i j

(‖Xi‖2 /(σi
√
n)) · (∥∥Xj∥∥2 /(σ j

√
n))

−ρ0,i j

∣∣∣∣∣
≤

∣∣∣∣∣ 1
n〈Xi/σi,Xj/σ j 〉−ρ0,i j

(‖Xi‖2 /(σi
√
n)) · (∥∥Xj∥∥2 /(σ j

√
n))

∣∣∣∣∣+
∣∣∣∣∣ ρ0,i j
(‖Xi‖2 /(σi

√
n)) · (∥∥Xj∥∥2 /(σ j

√
n))

−ρ0,i j

∣∣∣∣∣
≤ τ

1− τ
+ |ρ0,i j|

∣∣∣∣ 1
1− τ

−1
∣∣∣∣≤ 2τ

1− τ
< 4τ. (70)

Proof of Theorem 6. For Θ̃0 as in (24), we define

Ω̃0 = W Θ̃0W =W (diag(Θ0))W +WΘ0,E0∩EW

= diag(WΘ0W )+WΘ0,E0∩EW = diag(Ω0)+Ω0,E0∩E ,

whereW = diag(Σ0)1/2. Then clearly Ω̃0 ∈ Sn as Θ̃0 ∈ Sn. We first bound
∥∥Θ0,D∥∥F as follows.∥∥Θ0,D∥∥F ≤ Cbias

√
2S0,n log(p)/n<

k
√
144σ2max

(
4C3+ 13

12c2σ2min

)
≤ kc2σ2min

(48c2σ2minC3+13)σ
2
max

≤min
{

k
48C3σ2max

,
cσ2min
13σ2max

}
≤ c
13σ2max

.

Suppose event E holds throughout this proof. We first obtain the bound on spectrum of Θ̃0: It is
clear that by (33) and (30), we have on E ,

ϕmin(Θ̃0) ≥ ϕmin(Θ0)−
∥∥∥Θ̃0−Θ0

∥∥∥
2
≥ ϕmin(Θ0)−

∥∥Θ0,D∥∥F >
12c
13

, (71)

ϕmax(Θ̃0) < ϕmax(Θ0)+
∥∥∥Θ̃0−Θ0

∥∥∥
2
≤ ϕmax(Θ0)+

∥∥Θ0,D∥∥F <
c

13σ2max
+
1
k
. (72)

Throughout this proof, we let Σ0 = (σ0,i j) :=Θ−1
0 . In view of (71), define Σ̃0 := (Θ̃0)−1. Then

Ω̃−1
0 =W−1(Θ̃0)−1W−1 =W−1Σ̃0W−1 := Ψ̃0.

We use Ω̂n := Ω̂n(E) as a shorthand. Thus we have for Ω̃0 =W Θ̃0W ,

ϕmax(Ω̃0) ≤ ϕmax(W )ϕmax(Θ̃0)ϕmax(W )≤ σ2max
k

+
c
13

ϕmin(Ω̃0), =
1

ϕmax(Ψ̃0)
=

1

ϕmax(W−1Σ̃0W−1)
=

1

ϕmax(W−1)2ϕmax(Σ̃0)

=
ϕmin(W )2

ϕmax(Σ̃0)
= ϕmin(W )2ϕmin(Θ̃0)≥ σ2min

12c
13

. (73)
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Given Ω̃0 ∈ S p++∩S pE as guaranteed in (73), let us define a new convex set:

Un(Ω̃0) := (S p++∩S pE )− Ω̃0 = {B− Ω̃0|B ∈ S p++∩S pE} ⊂ S pE ,

which is a translation of the original convex set S p++∩S pE . Let 0 be a matrix with all entries being
zero. Thus it is clear thatUn(Ω̃0) � 0 given that Ω̃0 ∈ S p++∩S pE . Define for R̂n as in expression (27),

Q̃(Ω) := R̂n(Ω)− R̂n(Ω̃0) = tr(ΩΓ̂n)− log |Ω|− tr(Ω̃0Γ̂n)+ log |Ω̃0|
= tr

(
(Ω− Ω̃0)(Γ̂n− Ψ̃0)

)
− (log |Ω|− log |Ω̃0|)+ tr

(
(Ω− Ω̃0)Ψ̃0

)
.

For an appropriately chosen rn and a large enoughM > 0, let

Tn = {Δ ∈Un(Ω̃0),‖Δ‖F =Mrn}, and
Πn = {Δ ∈Un(Ω̃0),‖Δ‖F <Mrn}.

Both Πn and Tn∪Πn are convex. It is clear that 0 ∈Πn. Define for Δ ∈Un(Ω̃0),

G̃(Δ) := Q̃(Ω̃0+Δ) = tr(Δ(Γ̂n− Ψ̃0))− (log |Ω̃0+Δ|− log |Ω̃0|)+ tr(ΔΨ̃0).

Thus G̃(Δ) is a convex function onUn(Ω̃0) and G̃(0) = Q̃(Ω̃0) = 0.

Now, Ω̂n minimizes Q̃(Ω), or equivalently Δ̂= Ω̂n− Ω̃0 minimizes G̃(Δ). Hence by definition,

G̃(Δ̂)≤ G̃(0) = 0.

Note that Tn is non-empty, while clearly 0 ∈Πn. Indeed, consider Bε := (1+ ε)Ω̃0, where ε> 0; it

is clear that Bε− Ω̃0 ∈ S p++∩S pE and
∥∥∥Bε− Ω̃0

∥∥∥
F
= |ε|

∥∥∥Ω̃0∥∥∥
F
=Mrn for |ε|=Mrn/

∥∥∥Ω̃0∥∥∥
F
. Note

also if Δ ∈ Tn, then Δi j = 0∀(i, j : i �= j) /∈ E; Thus we have Δ ∈ S pE and

‖Δ‖0 = ‖diag(Δ)‖0+‖offd(Δ)‖0 ≤ p+2|E| where |E|= lin(S0,n).

We now show the following proposition.

Proposition 31 Under (33), we have for all Δ ∈ Tn such that ‖Δ‖F =Mrn for rn as in (62), Ω̃0+
vΔ� 0,∀v ∈ an open interval I ⊃ [0,1] on event E .

Proof In view of Proposition 23, it is sufficient to show that Ω̃0+(1+ ε)Δ,Ω̃0− εΔ � 0 for some
ε> 0. Indeed, by definition of Δ ∈ Tn, we have ϕmin(Ω̃0+Δ)� 0 on event E ; thus

ϕmin(Ω̃0+(1+ ε)Δ) ≥ ϕmin(Ω̃0+Δ)− ε‖Δ‖2 > 0,
and ϕmin(Ω̃0− εΔ) ≥ ϕmin(Ω̃0)− ε‖Δ‖2 > 12σ2minc/13− ε‖Δ‖2 > 0

for ε> 0 that is sufficiently small.

Thus we have that log |Ω̃0+ vΔ| is infinitely differentiable on the open interval I ⊃ [0,1] of v. This
allows us to use the Taylor’s formula with integral remainder to obtain the following:
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Lemma 32 On event E ∩X0, G̃(Δ)> 0 for all Δ ∈ Tn.

Proof Let us use Ã as a shorthand for

vecΔT
(∫ 1

0
(1− v)(Ω̃0+ vΔ)−1⊗ (Ω̃0+ vΔ)−1dv

)
vecΔ,

where ⊗ is the Kronecker product (ifW = (wi j)m×n, P= (bk�)p×q, thenW ⊗P= (wi jP)mp×nq), and
vecΔ ∈ Rp2 is Δp×p vectorized. Now, the Taylor expansion gives for all Δ ∈ Tn,

log |Ω̃0+Δ|− log |Ω̃0| =
d
dv
log |Ω̃0+ vΔ||v=0Δ+

∫ 1

0
(1− v)

d2

dv2
log |Ω̃0+ vΔ|dv

= tr(Ψ̃0Δ)− Ã.

Hence for all Δ ∈ Tn,

G̃(Δ) = Ã+ tr
(
Δ(Γ̂n− Ψ̃0)

)
= Ã+ tr

(
Δ(Γ̂n−Ψ0)

)
− tr

(
Δ(Ψ̃0−Ψ0)

)
, (74)

where we first bound tr(Δ(Ψ̃0−Ψ0)) as follows: by (30) and (60), we have on event E∣∣∣tr(Δ(Ψ̃0−Ψ0))
∣∣∣ =

∣∣∣〈Δ,(Ψ̃0−Ψ0)〉
∣∣∣≤ ‖Δ‖F

∥∥∥Ψ̃0−Ψ0
∥∥∥
F

≤ ‖Δ‖F
13rn

12σ2minc
2
, (75)

where we bound
∥∥∥Ψ̃0−Ψ0

∥∥∥
F
as follows:∥∥∥Ψ̃0−Ψ0

∥∥∥
F

=
∥∥∥W−1(Σ̃0−Σ0)W−1

∥∥∥
F
≤max

i
W−2
i

∥∥∥Σ̃0−Σ0
∥∥∥
F

≤ 1

σ2min

∥∥Θ0,D∥∥F
ϕmin(Θ̃0)ϕmin(Θ0)

≤ Cbias
√
2S0,n log p/n

12σ2minc
2/13

≤ 13rn
12σ2minc

2
.

Now, conditioned on event X0, by (70)

max
j,k

|Γ̂n, jk−ρ0, jk| ≤ 4C3
√
logmax(n, p)/n=: δn

and thus on event E ∩ X0, we have
∣∣∣tr(Δ(Γ̂n−Ψ0)

)∣∣∣ ≤ δn |offd(Δ)|1, where |offd(Δ)|1 ≤√‖offd(Δ)‖0 ‖offd(Δ)‖F ≤√
2|E|‖Δ‖F , and

tr
(
Δ(Γ̂n−Ψ0)

)
≥−4C3

√
logmax(n, p)/n

√
2|E|‖Δ‖F ≥−4C3rn ‖Δ‖F . (76)

Finally, we bound Ã. First we note that for Δ ∈ Tn, we have on event E ,

‖Δ‖2 ≤ ‖Δ‖F =Mrn <
3σ2max
8k

,
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given (31): n> ( 83 · 92k )2σ4max
(
4C3+ 13

12σ2minc
2

)2
max

{
2|E|) logmax(n, p),C2bias2S0,n log p

}
. We have

by (72) and (34) following Rothman et al. [2008] (see Page 502, proof of Theorem 1 therein): on
event E ,

Ã ≥ ‖Δ‖2F /
(
2
(
ϕmax(Ω̃0)+‖Δ‖2

)2)
> ‖Δ‖2F /

(
2σ4max

(
1
k
+

c
13

+
3
8k

)2)
> ‖Δ‖2F

2k2

9σ4max
. (77)

Now on event E ∩X0, for all Δ ∈ Tn, we have by (74),(77), (76), and (75),

G̃(Δ) > ‖Δ‖2F
2k2

9σ4max
−4C3rn ‖Δ‖F −‖Δ‖F

13rn
12σ2minc

2

= ‖Δ‖2F
(
2k2

9σ4max
− 1

‖Δ‖F

(
4C3rn+

13rn
12σ2minc

2

))
= ‖Δ‖2F

(
2k2

9σ4max
− 1
M

(
4C3+

13

12σ2minc
2

))
.

Hence we have G̃(Δ) > 0 for M large enough, in particular M =

(9σ4max/(2k
2))

(
4C3+13/(12σ2minc

2)
)
suffices.

The rest of the proof follows that of Theorem 19, see Proposition 26 and the bounds which follow.
We thus establish that the theorem holds. �

Appendix F. Oracle Inequalities for the Lasso

In this section, we consider recovering β ∈ Rp in the following linear model:

Y = Xβ+ ε,

where X follows (15) and ε∼ N(0,σ2In). Recall given λn, the Lasso estimator for β ∈Rp is defined
as:

β̂= argmin
β

1
2n

‖Y −Xβ‖22+λn‖β‖1, (78)

which corresponds to the regression function in (10) by letting Y := Xi and X := X·\i where X·\i
denotes columns of X without i. Define s0 as the smallest integer such that

p

∑
i=1

min(β2i ,λ
2σ2)≤ s0λ

2σ2, where λ=
√
2log p/n. (79)

For X ∈ F (θ) as defined in (39), define

Ta =
{
ε :

∥∥∥∥XT εn
∥∥∥∥
∞
≤ (1+θ)λσ,a,p, where X ∈ F (θ), for 0< θ< 1

}
, (80)
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where λσ,a,p = σ
√

1+a
√
(2log p)/n, where a≥ 0. We have (cf. Lemma 34)

P(Ta)≥ 1− (
√
π log ppa)−1;

In fact, for such a bound to hold, we only need
‖Xj‖2√

n ≤ 1+θ,∀ j to hold in F (θ).

We now state Theorem 33, which may be of independent interests as the bounds on �2 and �1 loss
for the Lasso estimator are stated with respect to the actual sparsity s0 rather than s= |supp(β)| as
in Bickel et al. [2009, Theorem 7.2]. The proof is omitted as on event Ta∩X , it follows exactly that
of Zhou [2010a, Theorem 5.1] for a deterministic design matrix X which satisfies the RE condition,
with some suitable adjustments on the constants.

Theorem 33 ((Oracle inequalities of the Lasso) Zhou, 2010a) Let Y = Xβ+ ε, for ε being i.i.d.
N(0,σ2) and let X follow (15). Let s0 be as in (79) and T0 denote locations of the s0 largest
coefficients of β in absolute values. Suppose that RE(s0,4,Σ0) holds with K(s0,4,Σ0) and ρmin(s)>
0. Fix some 1 > θ> 0. Let βinit be an optimal solution to (78) with

λn = d0λσ≥ 2(1+θ)λσ,a,p (81)

where a≥ 1 and d0 ≥ 2(1+θ)
√

1+a. Let h= βinit −βT0 . Define

X := R (θ)∩F (θ)∩M (θ).

Suppose that n satisfies (42). Then on Ta∩X , we have

‖βinit −β‖2 ≤ λn
√
s0

√
2D2

0 +2D2
1 +2 := λσ

√
s0d0

√
2D2

0 +2D2
1 +2,∥∥hTc0 ∥∥1

≤ D1λns0 := D1d0λσs0,

where D0 and D1 are defined in (82) and (83) respectively, and P(X ∩Ta)≥ 1−3exp(−  cθ2n/α4)−
(
√
π log ppa)−1.

Let T1 denote the s0 largest positions of h in absolute values outside of T0; Let T01 := T0 ∪T1. The
proof of Theorem 33 yields the following bounds on X ∩Ta: ‖hT01‖2 ≤ D0d0λσ

√
s0 where

D0 = max

{
D
d0

, 2
√

2(1+θ)
K(s0,4,Σ0)

√
ρmax(s− s0)

(1−θ)d0
+

3
√

2K2(s0,4,Σ0)

(1−θ)2

}
, (82)

where D=
3(1+θ)

√
ρmax(s− s0)

(1−θ)
√
ρmin(2s0)

+
2(1+θ)4ρmax(3s0)ρmax(s− s0)

d0(1−θ)2ρmin(2s0)
,

and

D1 = max

⎧⎨⎩4(1+θ)2ρmax(s− s0)

d2
0

,

(
(1+θ)

√
ρmax(s− s0)

d0
+

3K(s0,4,Σ0)

2(1−θ)

)2
⎫⎬⎭ . (83)

We note that implicit in these constants, we have used the concentration bounds for Λmax(3s0),
Λmax(s− s0) and Λmin(2s0) as derived in Theorem 10, given that (41) holds for m ≤ max(s,(k0 +
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1)s0), where we take k0 > 3. In general, these maximum sparse eigenvalues as defined above will
increase with s0 and s; Taking this issue into consideration, we fix for c0 ≥ 4

√
2, λn = d0λσ where

d0 = c0(1+θ)2
√
ρmax(s− s0)ρmax(3s0)≥ 2(1+θ)

√
1+a,

where the second inequality holds for a= 7 as desired, given ρmax(3s0),ρmax(s− s0)≥ 1.
Thus we have for ρmax(3s0)≥ ρmax(2s0)≥ ρmin(2s0)

D/d0 ≤ 3

c0(1+θ)(1−θ)
√
ρmax(3s0)

√
ρmin(2s0)

+
2

c20(1−θ)2ρmin(2s0)

≤ 3
√
ρmin(2s0)

c0(1−θ)2
√
ρmax(3s0)ρmin(2s0)

+
2

c20(1−θ)2ρmin(2s0)

≤ 2(3c0+2)K2(s0,4,Σ0)
c20(1−θ)2

≤ 7
√
2K2(s0,4,Σ0)
8(1−θ)2

which holds given that ρmax(3s0)≥ 1, and 1≤ 1√
ρmin(2s0)

≤√
2K(s0,k0,Σ0), and thus 1

K2(s0,k0,Σ0)
≤ 2

as shown in Lemma 35; Hence

D0 ≤ max

{
D/d0,

(4+3
√
2c0)

√
ρmax(s− s0)ρmax(3s0)(1+θ)2K2(s0,4,Σ0)

d0(1−θ)2

}
,

≤ 7K2(s0,4,Σ0)√
2(1−θ)2

<
5K2(s0,4,Σ0)

(1−θ)2
and

D1 ≤
(

6
4(1−θ)

+
1
4

)2
K2(s0,4,Σ0)≤ 49K2(s0,4,Σ0)

16(1−θ)2
,

where for both D1, we have used the fact that

2(1+θ)2ρmax(s− s0)

d20
=

2

c20(1+θ)2ρmax(3s0)
≤ 2

c20(1+θ)2ρmin(2s0)

≤ 4K2(s0,4,Σ0)
c20(1+θ)2

≤ K2(s0,4,Σ0)
8

.

Appendix G. Misc Bounds

Lemma 34 For fixed design X with max j ‖Xj‖2 ≤ (1+θ)
√
n, where 0 < θ < 1, we have for Ta as

defined in (80), where a> 0, P(T c
a )≤ (

√
π log ppa)−1.

Proof Define random variables: Yj = 1
n ∑

n
i=1 εiXi, j. Note that max1≤ j≤p |Yj|= ‖XT ε/n‖∞. We have

E(Yj) = 0 and Var((Yj)) =
∥∥Xj∥∥22σ2/n2 ≤ (1+ θ)σ2/n. Let c1 = 1+ θ. Obviously, Yj has its tail

probability dominated by that of Z ∼ N(0, c
2
1σ
2

n ):

P(|Yj| ≥ t)≤ P(|Z| ≥ t)≤ 2c1σ√
2πnt

exp

( −nt2
2c21σ

2
ε

)
.
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We can now apply the union bound to obtain:

P

(
max
1≤ j≤p

|Yj| ≥ t

)
≤ p

c1σ√
nt
exp

( −nt2
2c21σ

2

)
= exp

(
−
(

nt2

2c21σ
2
+ log

t
√
πn√
2c1σ

− log p
))

.

By choosing t = c1σ
√
1+a

√
2log p/n, the right-hand side is bounded by (

√
π log ppa)−1 for a≥ 0.

Lemma 35 (Zhou, 2010b) Suppose that RE(s0,k0,Σ0) holds for k0 > 0, then for m= (k0+1)s0,√
ρmin(m) ≥ 1√

2+ k20K(s0,k0,Σ0)
; and clearly

if Σ0,ii = 1,∀i, then 1≥
√
ρmin(2s0) ≥ 1√

2K(s0,k0,Σ0)
for k0 ≥ 1.
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of the isoprenoid gene network in arabidopsis thaliana. Genome Biology, 5:R92, 2004.

W. Wu and M. Pourahmadi. Nonparametric estimation of large covariance matrices of longitudinal
data. Biometrika, 90:831–844, 2003.

M. Yuan. High dimensional inverse covariance matrix estimation via linear programming. Journal
of Machine Learning Research, 11:2261–2286, 2010.

M. Yuan and Y. Lin. Model selection and estimation in the gaussian graphical model. Biometrika,
94:19–35, 2007.

P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine Learning Re-
search, 7:2541–2563, 2006.

S. Zhou. Thresholding procedures for high dimensional variable selection and statistical estimation.
In Advances in Neural Information Processing Systems 22. MIT Press, 2009.

S. Zhou. Thresholded Lasso for high dimensional variable selection and statistical estima-
tion. University of Michigan, Department of Statistics Technical Report 511. Available at
arXiv:1002.1583v2, 2010a.

3025



ZHOU, RÜTIMANN, XU AND BÜHLMANN

S. Zhou. Restricted eigenvalue conditions on subgaussian random matrices, 2010b. Manuscript,
earlier version available at arXiv:0904.4723v2.

S. Zhou, J. Lafferty, and L. Wasserman. Time varying undirected graphs. In Proceedings of the 21st
Annual Conference on Computational Learning Theory (COLT’08), July 2008.
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Abstract
Value function approximation methods have been successfully used in many applications, but the
prevailing techniques often lack useful a priori error bounds. We propose a new approximate
bilinear programming formulation of value function approximation, which employs global opti-
mization. The formulation provides strong a priori guarantees on both robust and expected policy
loss by minimizing specific norms of the Bellman residual. Solving a bilinear program optimally
is NP-hard, but this worst-case complexity is unavoidable because the Bellman-residual minimiza-
tion itself is NP-hard. We describe and analyze the formulation as well as a simple approximate
algorithm for solving bilinear programs. The analysis shows that this algorithm offers a convergent
generalization of approximate policy iteration. We also briefly analyze the behavior of bilinear
programming algorithms under incomplete samples. Finally, we demonstrate that the proposed
approach can consistently minimize the Bellman residual on simple benchmark problems.
Keywords: value function approximation, approximate dynamic programming, Markov decision
processes

1. Introduction

Solving large Markov Decision Processes (MDPs) is a very useful, but computationally challenging
problem addressed widely in the AI literature, particularly in the area of reinforcement learning.
It is widely accepted that large MDPs can be solved only approximately. The commonly used
approximation methods can be divided into three broad categories: 1) policy search, which ex-
plores a restricted space of all policies, 2) approximate dynamic programming—or value function
approximation—which searches a restricted space of value functions, and 3) approximate linear
programming, which approximates the solution using a linear program. The goal of approximate
methods is to compute a policy that minimizes the policy loss—the difference between the returns
of the computed policy and an optimal one. While all of these approximate methods have achieved
impressive results in various application domains, they have significant limitations.

Policy search methods rely on local search in a restricted policy space. The policy may be
represented, for example, as a finite-state controller (Stanley and Miikkulainen, 2004) or as a greedy
policy with respect to an approximate value function (Szita and Lorincz, 2006). Policy search

c©2011 Marek Petrik and Shlomo Zilberstein.



PETRIK AND ZILBERSTEIN

methods have achieved impressive results in such domains as Tetris (Szita and Lorincz, 2006) and
helicopter control (Abbeel et al., 2006). However, they are notoriously hard to analyze. We are not
aware of any established theoretical guarantees regarding the quality of the solution.

Approximate dynamic programming (ADP) methods iteratively approximate the value function
(Bertsekas and Ioffe, 1997; Powell, 2007; Sutton and Barto, 1998). They have been extensively
analyzed and are the most commonly used methods. However, approximate dynamic programming
methods typically do not converge and they only provide weak guarantees of approximation quality.
The approximation error bounds are usually expressed in terms of the worst-case approximation of
the value function over all policies (Bertsekas and Ioffe, 1997). In addition, most available bounds
are with respect to the L∞ norm, while the algorithms often minimize the L2 norm. While there exist
some L2-based bounds (Munos, 2003), they require values that are difficult to obtain.

Approximate linear programming (ALP) uses a linear program to compute the approximate
value function in a particular vector space (de Farias, 2002). ALP has been previously used in
a wide variety of settings (Adelman, 2004; de Farias and van Roy, 2004; Guestrin et al., 2003).
Although ALP often does not perform as well as ADP, there have been some recent efforts to close
the gap (Petrik and Zilberstein, 2009). ALP has better theoretical properties than ADP and policy
search. It is guaranteed to converge and return the closest L1-norm approximation ṽ of the optimal
value function v� up to a multiplicative factor. However, the L1 norm must be properly weighted
to guarantee a small policy loss, and there is no reliable method for selecting appropriate weights
(de Farias, 2002).

To summarize, existing reinforcement learning techniques often provide good solutions, but
typically require significant domain knowledge (Powell, 2007). The domain knowledge is needed
partly because useful a priori error bounds are not available, as mentioned above. Our goal is to
develop a more reliable method that is guaranteed to minimize bounds on the policy loss in various
settings.

This paper presents new formulations for value function approximation that provably minimize
bounds on policy loss using a global optimization framework; we consider both L∞ and weighted
L1 error bounds. To minimize the policy loss, we derive new bounds based on approximate value
functions. These bounds do not require coefficients that are hard to obtain or compute, unlike, for
example, bounds for approximate linear programming.

An advantage of the approach we propose is that the actual solutions and their properties are
independent of the methods used to compute them. The paper focuses on the development of models
for value function approximation and their properties. Although we do present two methods for
solving these models, it is likely that more efficient algorithms will be developed in the future.

We start with a description of the framework and notation in Section 2 and a description of value
function approximation in Section 3. Then, in Section 4, we describe the proposed approximate
bilinear programming (ABP) formulations. Bilinear programs are typically solved using global
optimization methods, which we briefly discuss in Section 5. A drawback of the bilinear formulation
is that solving bilinear programs may require exponential time. We show in Section 5, however, that
this complexity is unavoidable because minimizing the approximation error bound is in fact NP-
hard.

In practice, only sampled versions of ABPs are often solved. While a thorough treatment of
sampling is beyond the scope of this paper, we examine the impact of sampling and establish some
guarantees in Section 6. Unlike classical sampling bounds on approximate linear programming, we
describe bounds that apply to the worst-case error. Section 7 shows that ABP is related to other
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approximate dynamic programming methods, such as approximate linear programming and policy
iteration. Section 8 demonstrates the applicability of ABP using common reinforcement learning
benchmark problems.

The general setting considered in this paper is a restricted form of reinforcement learning. In
reinforcement learning, methods can use samples without requiring a model of the environment.
The methods we propose can also be based on samples, but they require additional structure. In
particular, they require that all or most actions are sampled for every state. Such samples can be
easily generated when a model of the environment is available.

2. Framework and Notation

This section defines the framework and the notation we use. We also define Markov decision pro-
cesses and the associated approximation errors. Markov decision processes come in many forms,
depending on the objective function that is optimized. This work focuses on infinite-horizon dis-
counted MDPs, which are defined as follows; a more extensive treatment is available, for example,
in Puterman (2005).

Definition 1 AMarkov Decision Process is a tuple (S ,A ,P,r,α), where S is a finite set of states, A
is a finite set of actions, P : S ×A×S  → [0,1] is the transition function (P(s,a,s′) is the probability
of transiting to state s′ from state s given action a), and r : S ×A  → R is a reward function. The
initial distribution is: α : S  → [0,1], such that ∑s∈S α(s) = 1.

The goal in solving an MDP is to find a sequence of actions that maximizes the expected γ-
discounted cumulative sum of rewards, also called the return. A solution of a Markov decision
process is a policy, defined as follows.

Definition 2 A deterministic stationary policy π : S  → A assigns an action to each state of the
Markov decision process. A stochastic stationary policy π : S×A  → [0,1] satisfies ∑a∈A π(s,a) = 1
for each s ∈ S . The set of all stochastic stationary policies is denoted as Π.

Non-stationary policies may take different actions in the same state in different time-steps. We
limit our treatment to stationary policies, since for infinite-horizon MDPs there exists an optimal
stationary and deterministic policy. We also consider stochastic policies because they are more
convenient to use in some settings. A policy π ∈ Π together with the transition matrix induces a
distribution over the state space S in every time step resulting in random variables St for t = 0 . . .∞.
The return of a policy is then defined as:

ρ(π,α) = Eα

[
∞

∑
t=0
∑
a∈A

γtπ(St ,a)r(St ,a)

]
,

where α is the distribution of S0. Our objective is then maxπ∈Πρ(π,α), for which the optimal
solution is some deterministic policy π�.

The transition matrix and reward function for a deterministic policy π are defined as:

Pπ : (s,s
′)  → P(s,π(s),s′) and rπ : s  → r(s,π(s)) .

The transition matrix and reward function for a stochastic policy π are defined as:

Pπ : (s,s
′)  → ∑

a∈A
π(s,a)P(s,a,s′) and rπ : s  → ∑

a∈A
π(s,a)r(s,a) .
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In addition, we use Pa and ra to denote these values for a constant policy π(s) = a for some a ∈ A .
The value function v : S → R represents the expected return when starting in a particular state.

The set of all value functions is denoted as V = R|S |. A value function vπ of a policy π is: vπ =
(I− γPπ)

−1 rπ.
The value function update for a policy π is denoted by Lπ, and the Bellman operator is denoted

by L and defined as:

Lπv= γPπv+ rπ , Lv=max
π∈Π

Lπv .

The value function update for a stochastic policy π can be written as:

(Lπv)(s) = ∑
a∈A ,s′∈S

π(s,a)
(
γP(s,a,s′)v(s′)+ r(s,a)

)
.

A policy π is greedy with respect to a value function v when Lπv= Lv. The optimal value function
v� = vπ� satisfies v� = Lv�. The following proposition summarizes an important property of optimal
value functions.

Proposition 3 (Section 6.9 in Puterman, 2005) For any policy π ∈ Π the optimal value function
is an upper bound on the value function of any policy:

v� ≥ vπ .

We assume a vector representation of the policy π ∈ R|S ||A |. The variables π are defined for all
state-action pairs and represent policies. That is, π(s,a) represents the probability of taking action
a ∈ A in state s ∈ S . The space of all stochastic policies can be represented using the following set
of linear equations:

∑
a∈A

π(s,a) = 1 ∀s ∈ S ,

π(s,a)≥ 0 ∀s ∈ S ,∀a ∈ A .

These inequalities can be represented using matrix notation as follows:

Bπ= 1 π≥ 0 ,
where the matrix B : |S |× (|S | · |A |) is defined as follows:

B(s′,(s,a)) =

{
1 s= s′

0 otherwise
.

We use 0 and 1 to denote vectors of all zeros or ones of the appropriate size respectively. The
symbol I denotes an identity matrix of the appropriate dimension.

In addition, a policy π induces a state occupancy frequency uπ : S → R, defined as follows:

uπ =
(
I− γPT

π

)−1
α .

The set of all occupancy frequencies is denoted asU ⊆ R|S |. The return of a policy depends on the
state-action occupancy frequencies andαTvπ= rTπ uπ. The optimal state-action occupancy frequency
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is uπ� and is often denoted as u�. State-action occupancy frequency u : S ×A → R is defined for
all states and actions; notice the missing subscript. We use u|a : S → R to denote the restriction
of u to action a ∈ A and use u|π equivalently for a deterministic policy π as u|π : s  → u(s,π(s,a)).
State-action occupancy frequencies u must satisfy (e.g., Section 6.9 in Puterman, 2005):

∑
a∈A

(I− γPa)Tu|a = α ∀a ∈ A .

To formulate approximate linear and bilinear programs, it is necessary to restrict the value func-
tions so that their Bellman residuals are non-negative (or at least bounded from below). We call
such value functions transitive-feasible and define them as follows.

Definition 4 A value function is transitive-feasible when v≥ Lv. The set of transitive-feasible value
functions is:

K = {v ∈ V v≥ Lv} .
Given some ε≥ 0, the set of ε-transitive-feasible value functions is:

K (ε) = {v ∈ V v≥ Lv− ε1} .

Notice that the optimal value function v� is transitive-feasible.
Next, we summarize the key properties of value functions and policies that we use to derive the

results. First, the following lemma summarizes the monotonicity of transition matrices; it follows
from the geometric sequence representation of the matrix inverse.

Lemma 5 [Monotonicity] Let P be a stochastic matrix. Then both linear operators P and (I− γP)−1

are monotonous:

x≥ y⇒ Px≥ Py ,

x≥ y⇒ (I− γP)−1 x≥ (I− γP)−1 y

for all x and y.

An important property, which we rely on, is that greedy policies are not affected by adding or
subtracting a constant from a value function; we state this well-known property without proof.

Proposition 6 Let v ∈ V be any value function and assume an arbitrary c ∈ R. Then:

L(v+ c1) = Lv+ γc1 .

In addition, if π is a greedy policy with respect to v it is also greedy with respect to v+ c1.

The models we define also rely on the following basic properties of the Bellman operator.

Lemma 7 Let u be the state-action occupancy frequency of some policy π. Then:

1Tu= 1/(1− γ) .
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Proof The lemma follows because:

∑
a∈A

(u|a)T(I− γPa) = αT ,

∑
a∈A

(u|a)T(I− γPa)1= αT1 ,

(1− γ) ∑
a∈A

(u|a)T1= 1= (1− γ)uT1 .

Finally, an important property of transitive-feasible value functions is that they represent an upper
bound on the optimal value function.

Lemma 8 Transitive feasible value functions form an upper bound on the optimal value function.
If v ∈K (ε) is an ε-transitive-feasible value function, then:

v≥ v�− ε/(1− γ)1 .

Proof Let P� and r� be the transition matrix and the reward vector of the optimal policy. Then,
using Theorem 5, we get:

v≥ Lv− ε1 ,

v≥ γP�v+ r�− ε1 ,

(I− γP�)v≥ r�− ε1 ,

v≥ (I− γP�)−1 r�− ε/(1− γ) .

3. Value Function Approximation

This section describes basic methods for value function approximation used to solve large MDPs.
Value function approximation, as its name indicates, only computes an approximate value function
ṽ of the MDP. The actual solution of the MDP is then the greedy policy π with respect to this value
function ṽ. The quality of such a policy can be characterized using its value function vπ in one of
the following two ways.

Definition 9 (Policy Loss) Let π be a policy. The expected policy loss σe of π is defined as:

σe(π) = ρ(π�,α)−ρ(π,α) = ‖v�− vπ‖1,α = αTv�−αTvπ ,

where ‖x‖1,c denotes the weighted L1 norm: ||x‖1,c = ∑i |c(i)x(i)|.
The robust policy loss σr of π is defined as:

σr(π) = max
{α≥0 1Tα=1}

ρ(π�,α)−ρ(π,α) = ‖v�− vπ‖∞ =max
s∈S

|v�(s)− vπ(s)| .
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The expected policy loss captures the total loss of discounted reward when following the policy
π instead of the optimal policy, given the initial state distribution. The robust policy loss ignores the
initial distribution and, in some sense, measures the difference for the worst-case initial distribution.

A set of state features is a necessary component of value function approximation. These features
must be supplied in advance and must capture the essential structure of the problem. The features
are defined by mapping each state s to a vector φ(s) of features. We denote φi : S → R to be a
function that maps states to the value of feature i:

φi(s) = (φ(s))i .

The desirable properties of the features depend strongly on the algorithm, samples, and attributes of
the problem; the tradeoffs are not yet fully understood. The function φi can be treated as a vector,
similarly to the value function v.

Value function approximation methods compute value functions that can be represented using
the state features. We call such value functions representable and define them below.

Definition 10 Given a convex polyhedral set Ṽ ⊆ V , a value function v is representable (in Ṽ ) if
v ∈ Ṽ .

Many methods that compute a value function based on a given set of features have been de-
veloped, such as genetic algorithms and neural networks (Bertsekas and Tsitsiklis, 1996). Most of
these methods are extremely hard to analyze, computationally complex, and hard to use. More-
over, these complex methods do not satisfy the convexity assumption in Theorem 10. A simpler
and more common method is linear value function approximation, in which the value function of
each state s is represented as a linear combination of nonlinear features φ(s). Linear value function
approximation is easy to apply and analyze.

Linear value function approximation can be expressed in terms of matrices as follows. Let the
matrix Φ : |S |×m represent the features for the state-space, where m is the number of features. The
rows of the feature matrix Φ, also known as the basis, correspond to the features of the states φ(s).
The feature matrix can be defined in one of the following two equivalent ways:

Φ=

⎛⎜⎝− φ(s1)T −
− φ(s2)T −

...

⎞⎟⎠ , Φ=

⎛⎝ | |
φ1 φ2 . . .
| |

⎞⎠ .

The value function v is then represented as v = Φx and the set of representable functions is Ṽ =
colspan(Φ).

The goal of value function approximation is not simply to obtain a good value function ṽ but
a policy with a small policy loss. Unfortunately, the policy loss of a greedy policy, as formulated
in Theorem 9, depends non-trivially on the approximate value function ṽ. Often, the only reliable
method of precisely computing the policy loss is to simulate the policy, which can be very costly.
The following theorem states the most common bound on the robust policy loss.

Theorem 11 [Robust Policy Loss, Williams and Baird, 1994] Let π be a greedy policy with respect
to a value function ṽ. Then:

‖v�− vπ‖∞ ≤ 2
1− γ

‖ṽ−Lṽ‖∞ .
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In addition, if ṽ ∈K then:

‖v�− vπ‖∞ ≤ 1
1− γ

‖ṽ−Lṽ‖∞ .

The bounds in Theorem 11 are often overly conservative because they ignore the initial distri-
bution and do not apply to the expected policy loss. We propose methods that minimize both the
standard bounds in Theorem 11 and new tighter bounds on the expected policy loss in Theorem 12.

We are now ready to derive a new bound on the expected policy loss in its most general form.
We show later how this bound relates to existing bounds and discuss its properties and special cases.

Theorem 12 [Expected Policy Loss] Let π ∈Π be a greedy policy with respect to a value function
ṽ ∈ V and let the state occupancy frequencies of π be bounded as u≤ uπ ≤  u. Then:

σe(π) = ‖v�− vπ‖1,α = αTv�−αTṽ+uTπ (ṽ−Lṽ)

≤ αTv�−αTṽ+uT [ṽ−Lṽ]−+  uT [ṽ−Lṽ]+ ,

where [x]+ = max{x,0} and [x]− = min{x,0} element-wise. In addition, when ṽ ∈K , the bound is:

‖v�− vπ‖1,α ≤−‖v�− ṽ‖1,α+‖ṽ−Lṽ‖1,  u , (1)

‖v�− vπ‖1,α ≤−‖v�− ṽ‖1,α+
1

1− γ
‖ṽ−Lṽ‖∞ . (2)

Proof Note that:
uTπ (I− γPπ)−αT = 0T , (3)

which follows directly from the definition of state-action occupancy frequencies. The bound is then
derived as follows:

‖v�− vπ‖α Theorem 3
= αTv�−αTvπ

(3)
= αTv�−αTvπ+(uTπ (I− γPπ)−αT)ṽ

= αTv�− rTπ uπ+(uTπ (I− γPπ)−αT)ṽ

= αTv�− rTπ uπ+uTπ (I− γPπ)ṽ−αTṽ

= αTv�−αTṽ+uTπ ((I− γPπ)ṽ− rπ)

= αTv�−αTṽ+uTπ (ṽ−Lṽ)

≤ αTv�−αTṽ+uT [ṽ−Lṽ]−+  uT [ṽ−Lṽ]+ .

Inequality (1) then follows from Theorem 8, which implies that ṽ ≥ v� and v ≥ Lv. Inequality (2)
follows using the trivial version of Holder’s inequality as:

αTv�−αTṽ
Theorem 8

= −‖v�− ṽ‖1,α ,

uTπ (ṽ−Lṽ)
Holder’s≤ ‖uπ‖1 ‖ṽ−Lṽ‖∞ Theorem 7

=
1

1− γ
‖ṽ−Lṽ‖∞ .

Notice that the bounds in Theorem 12 can be minimized even without knowing the optimal v�.
The optimal value function v� is independent of the approximate value function ṽ and the greedy
policy π depends only on ṽ.
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Algorithm 1: Approximate policy iteration, where Z(π) denotes a custom value function
approximation for the policy π.

π0,k← random, 1 ;1

while πk �= πk−1 do2

ṽk ← Z(πk−1) ;3

πk(s)← argmaxa∈A r(s,a)+ γ∑s′∈S P(s,a,s′)ṽk(s) ∀s ∈ S ;4

k← k+1 ;5

Remark 13 Theorem 12 generalizes the bounds established by de Farias (2002, Theorem 3.1),
which state that for each ṽ ∈K and a greedy policy π:

‖v�− vπ‖1,α ≤ 1
1− γ

‖v�− ṽ‖1,(1−γ)uπ .

This bound is a special case of Inequality (1) because αTv�−αTṽ≤ 0 and:

‖ṽ−Lṽ‖1,uπ ≤ ‖v�− ṽ‖1,uπ =
1

1− γ
‖v�− ṽ‖1,(1−γ)uπ ,

from v� ≤ Lṽ≤ ṽ.

The methods that we propose require the following standard assumption.

Assumption 1 All multiples of the constant vector 1 are representable in Ṽ . That is, k1 ∈ Ṽ for
all k ∈ R.

Notice that the representation set Ṽ satisfies Assumption 1 when the first column of Φ is 1. The
impact of including the constant feature is typically negligible because adding a constant to the
value function does not change the greedy policy.

Value function approximation algorithms are typically variations of the exact algorithms for
solving MDPs. Hence, they can be categorized as approximate value iteration, approximate policy
iteration, and approximate linear programming. The ideas behind approximate value iteration can
be traced to Bellman (1957), which was followed by many additional research efforts (Bertsekas
and Tsitsiklis, 1996; Sutton and Barto, 1998; Powell, 2007). Below, we only discuss approximate
policy iteration and approximate linear programming, because they are the methods most closely
related to our approach.

Approximate policy iteration (API) is summarized in Algorithm 1. The function Z(π) denotes
the specific method used to approximate the value function for the policy π. The two most com-
monly used methods—Bellman residual approximation and least-squares approximation
(Lagoudakis and Parr, 2003)—minimize the L2 norm of the Bellman residual.

The approximations based on minimizing L2 norm of the Bellman residual are common in
practice since they are easy to compute and often lead to good results. Most theoretical analyses of
API, however, assume minimization of the L∞ norm of the Bellman residual:

Z(π) ∈ argmin
v∈Ṽ

‖(I− γPπ)v− rπ‖∞ .
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L∞-API is shown in Algorithm 1, where Z(π) is calculated by solving the following linear program:

Z(π) =min
σ,v

{
σ (I− γPπ)v+1σ≥ rπ, −(I− γPπ)v+1σ≥−rπ,v ∈ Ṽ

}
.

We are not aware of convergence or divergence proofs of L∞-API, and such analysis is beyond
the scope of this paper. Theoretically, it is also possible to minimize the L1 norm of the Bellman
residual, but we are not aware of any detailed study of such an approximation.

In the above description of API, we assumed that the value function is approximated for all
states and actions. This is impossible in practice due to the size of the MDP. Instead, API relies on a
subset of states and actions, provided as samples. API is not guaranteed to converge in general and
its analysis is typically in terms of limit behavior. The limit bounds are often very loose. We discuss
the performance of API and how it relates to approximate bilinear programming in more detail in
Section 7.

Approximate linear programming—a method for value function approximation—is based on
the linear program formulation of exact MDPs:

min
v ∑

s∈S
c(s)v(s)

s.t. v(s)− γ ∑
s′∈S

P(s′,s,a)v(s′)≥ r(s,a) ∀(s,a) ∈ (S ,A) .
(4)

The value c represents a distribution over the states, usually a uniform one. That is, ∑s∈S c(s) = 1.
The linear program (4) is often too large to be solved precisely, so it is approximated by assuming
that v ∈ Ṽ (de Farias and van Roy, 2003), yielding the following approximate linear program:

min
v

cTv

s.t. Av≥ b , v ∈ Ṽ .
(5)

The matrix inequality Av ≥ b represents the inequality in (4) and is the following for actions
a1,a2, . . . ,an ∈ A : ⎛⎜⎝I− γPa1

I− γPa2
...

⎞⎟⎠= A ≥ b=

⎛⎜⎝ra1ra2
...

⎞⎟⎠ .

The constraint v ∈ Ṽ denotes the value function approximation. To actually solve this linear pro-
gram for the simple linear approximation (when Ṽ = colspan(Φ)), the value function is represented
as v=Φx, which leads to:

min
x

cTΦx

s.t. AΦx≥ b .

Appropriate constraints can be added for other choices of Ṽ .
Assumption 1 guarantees that (5) is feasible. The following lemma follows directly from the

definition of K :

Lemma 14 A value function v satisfies Av ≥ b if and only if v ∈ K . In addition, if v ∈ K , then
v≥ v�.
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Theorem 14 implies that an optimal solution ṽ of (5) satisfies: ṽ≥ v� from Theorem 8. As a result,
the objective of (5) represents the minimization of ‖v− v�‖1,c = cT(v− v�) (de Farias, 2002).

Approximate linear programming is guaranteed to converge to a solution and minimize a
weighted L1 norm on the solution quality.

Theorem 15 (Theorem 4.1 in de Farias, 2002) Given Assumption 1, let ṽ be the solution of (5). If
c= α then:

‖v�− ṽ‖1,α ≤ 2
1− γ

min
v∈Ṽ

‖v�− v‖∞ =
2

1− γ
min
x

‖v�−Φx‖∞ .

The difficulty with the solution of ALP is that it is hard to derive guarantees on the policy loss based
on the bounds in terms of the L1 norm; it is possible when the objective function c represents  u, as
Theorem 13 shows. In addition, the constant 1/(1− γ) may be very large when γ is close to 1.

Approximate linear programs are often formulated in terms of samples instead of the full formu-
lation above. The performance guarantees are then based on analyzing the probability that a large
number of constraints is violated. It is generally hard to translate the constraint violation bounds to
bounds on the quality of the value function and the policy.

4. Bilinear Program Formulations

This section shows how to formulate value function approximation as a separable bilinear program.
Bilinear programs are a generalization of linear programs that allows the objective function to in-
clude an additional bilinear term. A separable bilinear program consists of two linear programs
with independent constraints and is fairly easy to solve and analyze in comparison to non-separable
bilinear programs.

Definition 16 (Separable Bilinear Program) A separable bilinear program in the normal form is
defined as follows:

min
w,x y,z

sT1 w+ rT1 x+ xTCy+ rT2 y+ sT2 z

s.t. A1x+B1w= b1 , A2y+B2z= b2 ,

w,x≥ 0 , y,z≥ 0 .
(6)

The objective of the bilinear program (6) is denoted as f (w,x,y,z). We separate the variables using
a vertical line and the constraints using different columns to emphasize the separable nature of the
bilinear program. In this paper, we only use separable bilinear programs and refer to them simply
as bilinear programs.

The goal in approximate dynamic programming and value function approximation is to find a
policy that is close to optimal. The set of acceptable policies is typically restricted to be greedy with
respect to representable value functions. We define this set of policies Π̃⊆Π as:

Π̃= {π ∈Π Lπv= Lv, v ∈ Ṽ } .
We propose approximate bilinear formulations that minimize the following bounds on robust

and expected policy loss.
1. Robust policy loss: Minimize ‖v�− vπ‖∞ by minimizing the bounds in Theorem 11:

min
π∈Π̃

‖v�− vπ‖∞ ≤ min
v∈Ṽ

1
1− γ

‖v−Lv‖∞ .
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2. Expected policy loss: Minimize ‖v�− vπ‖1,α by minimizing the bounds in Theorem 12:

min
π∈Π̃

‖v�− vπ‖1,α ≤ αTv�+ min
v∈Ṽ∩K

(
−αTṽ+

1
1− γ

‖v−Lv‖∞
)

.

The appropriateness of each formulation depends on the particular circumstances of the domain.
For example, minimizing robust bounds is advantageous when the initial distribution is not known
and the performance must be consistent under all circumstances. On the other hand, minimizing
expected bounds on the value function is useful when the initial distribution is known.

In the formulations described below, we initially assume that samples of all states and actions
are used. This means that the precise version of the operator L is available. When solving large
problems, the number of samples is often much smaller, due to either subsampling or reduction
based on the structure of the MDP. While sampling in linear programs results simply in removal of
constraints, in approximate bilinear programs it also leads to a reduction in the number of certain
variables, as described in Section 6.

The formulations below denote the value function approximation generically by v ∈ Ṽ . That
restricts the value functions to be representable using the features. Representable value functions
v can be replaced by a set of variables x as v = Φx, which reduces the number of variables to the
number of features.

4.1 Robust Policy Loss

The solution of the robust approximate bilinear program minimizes the L∞ norm of the Bellman
residual ‖v−Lv‖∞ over the set of representable and transitive-feasible value functions. This mini-
mization can be formulated as follows.

min
π λ,λ′,v

πTλ+λ′

s.t. Bπ= 1 , λ+λ′1≥ Av−b≥ 0 ,
π≥ 0 , λ,λ′ ≥ 0 ,

v ∈ Ṽ .

(7)

All the variables are vectors except λ′, which is a scalar. The values A and b are identical to the
values in (5). The variables λ correspond to all state-action pairs. These variables represent the
Bellman residuals that are being minimized. This formulation offers the following guarantees.

Theorem 17 Let (π̃, ṽ, λ̃, λ̃′) be an optimal solution of (7) and let

v′ = ṽ− ‖ṽ−Lṽ‖∞
2(1− γ)

1 .

Then:

π̃Tλ̃+ λ̃′ = ‖ṽ−Lṽ‖∞ = min
v∈K ∩Ṽ

‖v−Lv‖∞

‖v′ −Lv′‖∞ =min
v∈Ṽ

‖v−Lv‖∞
≤ (1+ γ)min

v∈Ṽ
‖v− v�‖∞ .

In addition, there exists an optimal π̃ ∈ Π̃.
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It is important to note that the theorem states that solving the approximate bilinear program is
equivalent to minimization over all representable value functions, not only the transitive-feasible
ones. This follows by subtracting a constant vector 1 from ṽ to balance the lower bounds on the
Bellman residual error with the upper ones as Theorem 20 shows. This reduces the Bellman resid-
ual by 1/2 without affecting the policy. Finally, note that whenever v� ∈ Ṽ , both ABP and ALP
will return the optimal value function v�. The following corollary follows from Theorem 11 and
Theorem 17 applied to v′.

Corollary 18 For any optimal solution ṽ of (7), the policy loss of the greedy policy π̃ is bounded
by:

‖v�− vπ̃‖∞ =
2

1− γ
min
v∈Ṽ

‖v−Lv‖∞ .

To prove Theorem 17, we first define the following linear programs.

f1(π,v) =min
λ,λ′

{
πTλ+λ′ 1λ′+λ≥ Av−b,λ≥ 0

}
,

f2(v) =min
π

{ f1(π,v) Bπ= 1,π≥ 0} .

Assuming that f � is the optimal solution of (7), then:

f � = min
π∈Π,v∈Ṽ∩K

f1(π,v) = min
v∈Ṽ∩K

f2(v) .

Lemma 19 Let v ∈K be a transitive-feasible value function and let π be a policy. Then:

f1(π,v)≥ ‖v−Lπv‖∞ , (8)

f2(v) = ‖v−Lv‖∞ . (9)

In addition, inequality (8) becomes an equality for any deterministic policy π, and there is a deter-
ministic optimal policy that satisfies equality (9).

Proof To prove (8), notice that for all s ∈ S we have that ∑a∈A π(s,a) = 1 and π(s,a)≥ 0. Then:

f1(π,v)
(8)
= λ′+ ∑

s∈S ,a∈A
λ(s,a)π(s,a)

λ(s,a)≥0
≥ λ′+max

s∈S ∑a∈A
λ(s,a)π(s,a)

=max
s∈S ∑a∈A

π(s,a)(λ′+λ(s,a))

≥max
s∈S ∑a∈A

π(s,a) ∑
s′∈S

(γP(s,a,s′)v(s′)+ r(s,a))

= ‖v−Lπv‖∞ .

To show the equality for a deterministic policy, set λ′ = ‖v−Lπv‖∞ and λ(s,π(s)) = 0 with other
elements of λ set arbitrarily. This can be readily shown to be an optimal solution.
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To prove (9), note again that v ∈ K , which implies that v ≥ Lv. Then, using the fact that the
policy defines an action for every state, we get:

f2(v) = min
π∈Π

‖v−Lπv‖∞ = min
π∈Π

max
s∈S

(v−Lπv)(s)

= max
s∈S

min
π∈Π

(v−Lπv)(s)

= max
s∈S

(v−max
π∈Π

Lπv)(s)

= max
s∈S

(v−Lv)(s) = ‖v−Lv‖∞ .

The existence of an optimal deterministic solution then follows from the existence of a deterministic
greedy policy with respect to a value function.

Now, we show that restricting the value functions to be transitive feasible is not limiting, because
it does not restrict the set of greedy policies that are considered. To do that, we define the following
sets:

V1 = arg min
v∈Ṽ∩K

‖v−Lv‖∞ , V2 = argmin
v∈Ṽ

‖v−Lv‖∞ .

Let Π1 and Π2 be sets of greedy policies with respect to V1 and V2. The sets V1 and V2 satisfy the
following important property.

Lemma 20 Given Assumption 1, let v1 ∈ V1 and v2 ∈ V2, we have the following equalities:

min
s∈S

(v1 −Lv1)(s) = 0 , −min
s∈S

(v2 −Lv2)(s) = max
s∈S

(v2 −Lv2)(s) .

Then, define:

v′1 = v1 − ‖v1 −Lv1‖∞
2(1− γ)

1 , v′2 = v2 +
‖v2 −Lv2‖∞

(1− γ)
1 .

for which the following holds:

min
s∈S

(v′2 −Lv′2)(s) = 0 , −min
s∈S

(v′1 −Lv′1)(s) = max
s∈S

(v′1 −Lv′1)(s) .

Proof Assume, for the sake of deriving a contradiction, that mins∈S (v1−Lv1)(s) = ε> 0. Then, let
 v1 = v1 − ε/(1− γ)1 ∈K which implies the following by Theorem 6:

‖  v1 −L  v1‖∞ = ‖v1 −Lv1 − ε1‖∞ = max
s∈S

(v1 −Lv1 − ε1)(s)

= max
s∈S

(v1 −Lv1)(s)− ε= ‖v1 −Lv1‖∞− ε

< ‖v1 −Lv1‖∞ .

This contradicts the optimality of v1. The inequality for v2 follows similarly. The rest of the lemma
is a simple consequence of Theorem 6.

We are now ready to show that neither the set of greedy policies considered nor the policy loss
bounds are affected by considering only transitive feasible functions in (7).
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Proposition 21 Given Assumption 1, the following holds:

V1 =

{
v2 +

‖v2 −Lv2‖∞
(1− γ)

1 v2 ∈ V2

}
,

‖v1 −Lv1‖∞ = 2‖v2 −Lv2‖∞ ∀v1 ∈ V1,∀v2 ∈ V2 ,

Π1 =Π2 .

Proof To show that V1 ⊆
{
v2 +

‖v2−Lv2‖∞
(1−γ) 1 v2 ∈ V2

}
, assume a v1 ∈ V1 and define:

v2 = v1 − ‖v1 −Lv1‖∞
2(1− γ)

1 .

Note that v2 ∈V from Assumption 1, and 2‖v2 −Lv2‖∞ = ‖v1 −Lv1‖∞ from Theorem 20. To show
that v2 ∈ V2 by contradiction, assume that there exists  v2 ∈ V2 such that
‖  v2 −L  v2‖∞ < ‖v2 −Lv2‖∞ and let  v1 =  v2 +

‖  v2−L  v2‖∞
(1−γ) 1. Using Theorem 20, we get:

‖  v1 −L  v1‖∞ = 2‖  v2 −L  v2‖∞ < 2‖v2 −Lv2‖∞ = ‖v1 −Lv1‖∞ ,

which contradicts the optimality of v1.

The inclusion V1 ⊇
{
v2 − ‖v−Lv‖∞

2(1−γ) 1 v2 ∈ V2

}
and Π1 ⊇ Π2 can be shown similarly. Finally,

Theorem 6 implies that Π1 =Π2.

Proposition 22 Given Assumption 1, the minimal Bellman residual for a representable value func-
tion can be bounded as follows:

min
v∈Ṽ

‖Lv− v‖∞ ≤ (1+ γ)min
v∈Ṽ

‖v− v�‖∞ .

Proof Assume that v̂ minimizes minv∈Ṽ ‖v− v�‖∞ ≤ ε. Then:

v�− ε1≤ v ≤ v�+ ε1 ,
Lv�− γε1≤ Lv ≤ Lv�+ γε1 ,

Lv�− γε1− v≤ Lv− v ≤ Lv�+ γε1− v ,
Lv�− v�− (1+ γ)ε1≤ Lv− v ≤ Lv�− v�+(1+ γ)ε1 ,

−(1+ γ)ε1≤ Lv− v ≤ (1+ γ)ε1 .

Theorem 17 now easily follows from the results above.
Proof [Proof of Theorem 17] Let f � be the optimal objective value of (7). Then we have from
Theorem 19 that:

f � = min
π∈Π,v∈Ṽ∩K

f1(π,v) = min
v∈Ṽ∩K

f2(v) = min
v∈Ṽ∩K

‖v−Lv‖∞ .

The properties of v′ follow directly from Theorem 21:

ṽ ∈ V1 ⇒ v′ ∈ V2 ⇒‖v′ −Lv′‖∞ = min
v∈Ṽ

‖v−Lv‖∞ .
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Note that the existence of an optimal deterministic policy in (7) follows from the existence of a
deterministic optimal policy in f2. The bound on the minimal Bellman residual follows from Theo-
rem 22.

4.2 Expected Policy Loss

This section describes bilinear programs that minimize bounds on the expected policy loss for a
given initial distribution ‖v−Lv‖1,α. The initial distribution can be used to derive tighter bounds on
the policy loss. We describe two formulations. They respectively minimize an L∞ and a weighted
L1 norm on the Bellman residual.

The expected policy loss can be minimized by solving the following bilinear formulation.

min
π λ,λ′,v

πTλ+λ′ − (1− γ)αTv

s.t. Bπ= 1 , Av−b≥ 0 ,
π≥ 0 , λ+λ′1≥ Av−b ,

λ,λ′ ≥ 0 ,
v ∈ Ṽ .

(10)

Notice that this formulation is identical to the bilinear program (7) with the exception of the term
−(1− γ)αTv.

Theorem 23 Given Assumption 1, any optimal solution (π̃, ṽ, λ̃, λ̃′) of (10) satisfies:

1
1− γ

(
π̃Tλ̃+ λ̃′

)
−αTṽ=

1
1− γ

‖Lṽ− ṽ‖∞−αTṽ

= min
v∈K ∩Ṽ

(
1

1− γ
‖Lv− v‖∞−αTv

)
=min

v∈Ṽ

(
1

1− γ
‖Lv− v‖∞−αTv

)
.

In addition, there exists an optimal π̃ ∈ Π̃.

The following bound on the policy loss follows using Theorem 12.

Corollary 24 There exists an optimal solution π̃ that is greedy with respect to ṽ for which the policy
loss is bounded by:

‖v�− vπ̃‖1,α ≤
(
min

v∈Ṽ∩K

1
1− γ

‖Lv− v‖∞−‖v�− v‖1,α
)

≤
(
min
v∈Ṽ

1
1− γ

‖Lv− v‖∞−αT(v− v�)

)
.
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Proof The proof of Theorem 23 is similar to the proof of Theorem 17 with the main difference
being in the definition of functions f1, and f2:

f1(π,v) =min
λ,λ′

{
πTλ+λ′ − (1− γ)αTv 1λ′+λ≥ Av−b,λ≥ 0

}
,

f2(v) =min
π

{ f1(π,v) Bπ= 1,π≥ 0} .

The following lemma can be proved identically to Theorem 19.

Lemma 25 Let v ∈K be a transitive-feasible value function and let π be a policy. Then:

f1(π,v)≥ ‖v−Lπv‖∞−‖v�− v‖1,α , (11)

f2(v) = ‖v−Lv‖∞−‖v�− v‖1,α . (12)

In addition, (11) holds with an equality for a deterministic policy π, and there is a deterministic
optimal policy that satisfies (12).

The fact that optimization over transitive-feasible value functions does not restrict the resulting
policies is proved identically to Theorem 21 with sets V1 and V2 that satisfy the same equations.
Notice also that the objective function of (10) does not change when subtracting a constant for
v′ = v− k1 and k ≥ 0:

1
1− γ

‖v′ −Lv′‖∞−αTv′ =
1

1− γ
‖v−Lv‖∞−αTv ,

when −mins∈S (v′ −Lv′)(s) =maxs∈S (v′ −Lv′)(s) and mins∈S (v−Lv)(s) = 0.

5. Solving Bilinear Programs

This section describes methods for solving approximate bilinear programs. Bilinear programs can
be easily mapped to other global optimization problems, such as mixed integer linear programs
(Horst and Tuy, 1996). We focus on a simple iterative algorithm for solving bilinear programs
approximately, which also serves as a basis for many optimal algorithms. In addition, we provide a
basic problem-specific mixed integer program formulation.

Solving a bilinear program is an NP-complete problem (Bennett and Mangasarian, 1993). The
membership in NP follows from the finite number of basic feasible solutions of the individual linear
programs, each of which can be checked in polynomial time. The NP-hardness is shown by a
reduction from the SAT problem.

There are two main approaches for solving bilinear programs optimally. In the first approach, a
relaxation of the bilinear program is solved. The solution of the relaxed problem represents a lower
bound on the optimal solution. The relaxation is then iteratively refined, for example by adding
cutting plane constraints, until the solution becomes feasible. This is a common method used to
solve integer linear programs. The relaxation of the bilinear program is typically either a linear or
semi-definite program (Carpara and Monaci, 2009).

In the second approach, feasible, but suboptimal, solutions of the bilinear program are calculated
approximately. The approximate algorithms are usually some variation of Algorithm 2. The bilinear
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Algorithm 2: Iterative algorithm for solving (6)

(x0,w0)← random ;1

(y0,z0)← argminy,z f (w0,x0,y,z) ;2

i← 1 ;3

while yi−1 �= yi or xi−1 �= xi do4

(yi,zi)← argmin{y,z A2y+B2z=b2 y,z≥0} f (wi−1,xi−1,y,z) ;5

(xi,wi)← argmin{x,w A1x+B1w=b1 x,w≥0} f (w,x,yi,zi) ;6

i← i+17

return f (wi,xi,yi,zi)8

program formulation is then refined—using concavity cuts (Horst and Tuy, 1996)—to eliminate
previously computed feasible solutions and solved again. This procedure can be shown to find the
optimal solution by eliminating all suboptimal feasible solutions.

The most common and simplest approximate algorithm for solving bilinear programs is Algo-
rithm 2. This algorithm is shown for the general bilinear program (6), where f (w,x,y,z) represents
the objective function. The minimizations in the algorithm are linear programs which can be eas-
ily solved. Interestingly, as we will show in Section 7, Algorithm 2 applied to ABP generalizes a
version of API.

While Algorithm 2 is not guaranteed to find an optimal solution, its empirical performance is
often remarkably good (Mangasarian, 1995). Its basic properties are summarized by the following
proposition.

Proposition 26 (Theorem 2.2 in Bennett and Mangasarian, 1993) Algorithm 2 is guaranteed to
converge, assuming that the linear program solutions are in a vertex of the optimality simplex. In
addition, the global optimum is a fixed point of the algorithm, and the objective value monotonically
improves during execution.

The proof is based on the finite count of the basic feasible solutions of the individual linear pro-
grams. Because the objective function does not increase in any iteration, the algorithm will eventu-
ally converge.

As mentioned above, any separable bilinear program can be also formulated as a mixed integer
linear program (Horst and Tuy, 1996). Such formulation is not practical in our setting, because its
size grows quadratically with the size of ABP and its linear relaxations were very loose in our exper-
iments. Below, we present a more compact and structured mixed integer linear program formulation,
which relies on the property of ABP that there is always a solution with an optimal deterministic
policy (see Theorem 17).

We only show the formulation of the robust approximate bilinear program (7); the same ap-
proach applies to all other formulations that we propose. To formulate the mixed integer linear
program, assume a given upper bound τ ∈ R for the optimal solution λ� and all s ∈ S and a ∈ A
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such that τ≥ λ�(s,a). The mixed integer linear program formulation that corresponds to (7) is:

min
z,π,λ,λ′,v

1Tz+λ′

s.t. z≥ λ− τ(1−π) ,

Bπ= 1 ,

λ+λ′1≥ Av−b≥ 0 ,
λ,λ′ ≥ 0 , v ∈ Ṽ , π ∈ {0,1}|S ||A | .

(13)

The following theorem states the correctness of this formulation:

Theorem 27 Let (π1,λ1,λ′1) be an optimal (greedy-policy) solution of (7) and let τ≥ λ1. Then:(
π1,λ1,λ′1,z

′ = min
z≥λ1−(τ−π1)

1Tz
)

is an optimal solution of (13) and vice versa. When in addition f1 and f2 are the optimal objective
values of (7) and (13), then f1 = f2.

Proof First, we show that (π1,λ1,λ′1,z = minz≥λ1−(τ−π1) 1
Tz) is feasible in (13) and has the same

objective value. Since π1 is a greedy policy (see Theorem 17), then π1 ∈ {0,1}S×A . That is π1 is
feasible in (13). Let then:

z2(s,a) =

{
λ(s,a) if π1(s,a) = 1

0 otherwise
.

To show that z2 is feasible in (13), analyze the following two cases:

π(s,a) = 1 : z2(s,a)+ τ(s,a)(1−π1(s,a)) = z2(s,a) = λ1(s,a) ,

π(s,a) = 0 : z2(s,a)+ τ(s,a)(1−π1(s,a))≥ τ(s,a)≥ λ1(s,a) .

The objective values must then be identical based on a simple algebraic manipulation. The reverse
direction—showing that for any solution of (13) there is a solution of (7) with the same objective
value—follows similarly.

This mixed integer linear program formulation is much simpler than a general MILP formulation of
a bilinear program (Horst and Tuy, 1996).

The performance of the proposed solution methods strongly depends on the actual structure of
the problem. As usual with NP-hard problems, there is very little understanding of the theoretical
properties that could guarantee faster solution methods. Experimental results, however, show that
the ABP-specific formulation can solve problems that are orders of magnitude larger than those that
can be solved by the general MILP formulation of ABP.

6. Sampling Guarantees

Typically, the number of states in an MDP is too large to be explicitly enumerated, making it hard
to solve even when the value function is restricted to be representable. The usual approach is to
sample a limited number of states, actions, and their transitions in order to approximately calculate
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the value function. This section shows basic properties of the samples that are sufficient to establish
solution quality guarantees with incomplete samples. To derive sampling bounds, we assume in this
section that the representable value functions are regularized.

First, we formally define samples and then show how to use them to compute a solution. The
samples of the simplest type are defined as follows.

Definition 28 One-step simple samples are defined as:

Σ̃⊆ {(s,a,(s1 . . .sn),r(s,a)) s,s
′ ∈ S , a ∈ A} ,

where s1 . . .sn are selected i.i.d. from the distribution P(s,a, ·).

Note that Σ̃ represents an arbitrary subset of states and actions and may or may not be sampled from
a distribution. More informative samples include the full distribution P(s,a, ·) instead of samples
from the distribution. While these samples are often unavailable in practice, they are useful in the
theoretical analysis of sampling issues.

Definition 29 One-step samples with expectation are defined as follows:

 Σ⊆ {(s,a,P(s,a, ·),r(s,a)) s ∈ S , a ∈ A} ,

where P(s,a, ·) is the distribution over the next states.

The membership of a state in the samples is denoted simply as s∈ Σ̃ or (s,a)∈ Σ with the remaining
variables, such as r(s,a) considered to be available implicitly.

The sampling models may vary significantly in different domains. The focus of this work is
on problems with either a fixed set of available samples or a domain model. Therefore, we do not
analyze methods for gathering samples. We also do not assume that the samples come from previous
executions, but rather from a deliberate sample-gathering process.

The samples are used to approximate the Bellman operator and the set of transitive-feasible
value functions as the following definitions describe.

Definition 30 The sampled Bellman operator and the corresponding set of sampled transitive-
feasible functions are defined as:

(  L(v))(  s) = max
{a (  s,a)∈  Σ}

r(  s,a)+ γ ∑
s′∈S

P(  s,a,s′)v(s′) ∀  s ∈  Σ

 K =
{
v (  s,a,P(  s,a),r(  s,a)) ∈  Σ, v(  s)≥ (  Lv)(  s)

}
.

The less-informative set of samples Σ̃ can be used as follows.

Definition 31 The estimated Bellman operator and the corresponding set of estimated transitive-
feasible functions are defined as:

(L̃(v))(  s) = max
{a (  s,a)∈Σ̃}

r(  s,a)+ γ
1
n

n

∑
i=1

v(si) ∀  s ∈ Σ̃

K̃ =
{
v (  s,a,(s1 . . .sn),r(  s,a)) ∈ Σ̃, v(  s)≥ (L̃v)(  s)

}
.
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Notice that operators L̃ and  L map value functions to a subset of all states—only states that are
sampled. The values for other states are not defined here; they would be defined in a problem-
specific way as, for example, the proof of Theorem 32 shows.

The samples can also be used to create an approximation of the initial distribution, or the dis-
tribution of visitation frequencies of a given policy. The estimated initial distribution  α is defined
as:

 α(s) =

{
α(s) (s, ·, ·, ·) ∈  Σ

0 otherwise
.

Most existing sampling bounds for approximate linear programming focus on bounding the
probability that a large number of constraints is violated when assuming a distribution over the
constraints (de Farias and van Roy, 2004). The difficulty with this approach is that the number
of violated constraints does not easily translate to bounds on the quality of the value function, or
the policy. In addition, the constraint distribution assumed in the bounds of de Farias and van Roy
(2004) is often somewhat arbitrary with no implication on solution quality.

Our approach, on the other hand, is to define properties of the sampled operators that guarantee
that the sampling error bounds are small. These bounds do not rely on distributions over constraints
and transform directly to bounds on the policy loss. To define bounds on the sampling behavior, we
propose the following assumptions. The first assumption limits the error due to missing transitions
in the sampled Bellman operator  L.

Assumption 2 (Constraint Sampling Behavior) There exists εp ≥ 0 such that for all v ∈ Ṽ :

Lv− εp1≤  Lv≤ Lv .

Notice that Assumption 2 implies that:

K ⊆  K ⊆K (εp) .

The second assumption quantifies the error on the estimation of the transitions of the estimated
Bellman operator L̃.

Assumption 3 (Constraint Estimation Behavior) There exists εs ≥ 0 such that for all v ∈ Ṽ :

Lv− εs1≤ L̃v≤ Lv+ εs1 .

Notice that Assumption 3 implies that:

 K (−εs)⊆ K̃ ⊆  K (εs) .

Assumptions 2 and 3 are intentionally generic, so that they apply to a wide range of scenarios.
They can be easily satisfied, for example, by making the following Lipschitz continuity assumptions
on state features, transitions and rewards.

Assumption 4 Let k : S → Rn be a map of the state-space to a normed vector space. Then for all
s1,s2,s3 ∈ S and all features (columns) φi ∈Φ, we define Kr, KP, and Kφ such that

|r(s1)− r(s2)| ≤ Kr ‖k(s1)− k(s2)‖ ,

|p(s3|s1,a)− p(s3|s2,a)| ≤ KP ‖k(s1)− k(s2)‖ ∀a ∈ A ,

|φi(s1)−φi(s2)| ≤ Kφ ‖k(s1)− k(s2)‖ .
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This assumption can be used to provide bounds on the sampling error as follows; for more details
on tighter and more general bounds see Petrik (2010).

Proposition 32 Given Assumptions 1 and 4 and that Ṽ = {Φx+ l1 ‖x‖1 ≤ ψ, l ∈ R}, then As-
sumption 2 holds with:

εp =
(
Kr+ψ(Kφ+ γKP)

)
max
s∈S

min
 s∈  Σ

‖k(s)− k(  s)‖ .

Note that Ṽ as defined in Theorem 32 satisfies Assumption 1.
Proof Assume that there exists a constant q such that:

max
s∈S

min
 s∈Σ

‖k(s)− k(  s)‖ ≤ q .

Also, define a function χ : S →  S that maps each state to the closest sample as follows:

χ(s) = argmin
 s∈  Σ

‖k(s)− k(  s)‖ .

We will use the following simple extension of Holder’s inequality to prove the proposition.

Lemma 33 The following holds for any v ∈ Ṽ = {Φx+ l1 ‖x‖1 ≤ ψ, l ∈ R} and any y such that
1Ty= 0.

|yTv| ≤ |y|T|v| ≤ ψ‖Φy‖∞ .

Assumption 4 directly implies the following inequalities:

‖φ(χ(s))−φ(s)‖∞ ≤ qKφ ,

|r(χ(s))− r(s)| ≤ qKr ,

‖P(χ(s),a)Tφi−P(s,a)Tφi‖∞ ≤ qKp ∀a ∈ A .

The proposition now follows using simple algebraic manipulation as:

max
s∈S

|(v−Lv)(s)− (v−  Lv)(χ(s))|
≤ max

s∈S ,a∈A
|(v− γPav− ra)(s)− (v− γPav− ra)(χ(s))|

≤ max
s∈S ,a∈A

|1Ts (Φx− γPaΦx− ra)−1Tχ(s)(Φx− γPaΦx− ra)|

≤ max
s∈S ,a∈A

|(1Ts −1Tχ(s))Φx|+ |(1Ts −1Tχ(s))γPaΦx|+

+ |(1Ts −1Tχ(s))ra|
Theorem 33≤ max

s∈S ,a∈A
‖(1Ts −1Tχ(s))Φ‖∞ψ+

+‖(1Ts −1Tχ(s))γPaΦ‖∞ψ+‖(1Ts −1Tχ(s))ra‖∞
≤ qKr+qψ(Kφ+ γKp) ,

where the last inequality follows from Assumption 4.
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In practice, the estimated Bellman operator is used to formulate the approximate bilinear pro-
gram. Then, the matrices used in the sampled approximate bilinear program (7) are defined as
follows for all (si,a j) ∈ Σ̃.

ÃΦ=

(− φ(si)T− γ 1
m ∑s′∈s′1...s′m P(si,a j,s

′)φ(s′)T −
− ... −

)
, b̃=

(
r(si,a j)

...

)
,

B̃(s′,(si,a j)) = I
{
s′ = si

} ∀s′ ∈ Σ̃ .

The ordering over states in the definitions above is also assumed to be consistent. The sampled
version of the bilinear program (7) is then:

min
π λ,λ′,x

πTλ+λ′

s.t. B̃π= 1 , ÃΦx−b≥ 0 ,
π≥ 0 , λ+λ′1≥ ÃΦx− b̃ ,

λ,λ′ ≥ 0 .

(14)

The size of the bilinear program (14) scales with the number of samples and features, not with
the size of the full MDP, because the variables λ and π are defined only for state-action pairs in
Σ̃. That is, |π| = |λ| = |{(s,a) ∈ Σ}|. The number of constraints in (14) is approximately three
times the number of variables λ. Finally, the number of variables x corresponds to the number of
approximation features.

Theorem 17 shows that sampled robust ABP minimizes ‖v− L̃v‖∞ or ‖v−  Lv‖∞. We are now
ready to derive sampling bounds on these values that rely on Assumptions 2 and 3 defined above.

Theorem 34 Let the optimal solutions to the sampled and precise Bellman residual minimization
problems be:

v1 ∈ min
v∈Ṽ

‖v−Lv‖∞ , v2 ∈ min
v∈Ṽ

‖v−  Lv‖∞ , v3 ∈ min
v∈Ṽ

‖v− L̃v‖∞ .

Value functions v1, v2, v3 correspond to solutions of instances of robust approximate bilinear pro-
grams for the given samples. Also let v̂i = vπi , where πi is greedy with respect to vi. Then, given
Assumptions 1 to 3, the following holds:

‖v�− v̂1‖∞ ≤ 2
1− γ

min
v∈Ṽ

‖v−Lv‖∞ ,

‖v�− v̂2‖∞ ≤ 2
1− γ

(
min
v∈Ṽ

‖v−Lv‖∞+ εp

)
,

‖v�− v̂3‖∞ ≤ 2
1− γ

(
min
v∈Ṽ

‖v−Lv‖∞+ εp+2εs

)
.

These bounds show that it is possible to bound policy loss due to incomplete samples. As mentioned
above, existing bounds on constraint violation in approximate linear programming (de Farias and
van Roy, 2004) typically do not easily lead to policy loss bounds.
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Sampling guarantees for other bilinear program formulations are very similar. Because they
also rely on an approximation of the initial distribution and the policy loss, they require additional
assumptions on the uniformity of state samples.
Proof We show bounds on ‖vi−Lvi‖∞; the theorem can then be inferred from Theorem 17, which
establishes that ABP minimizes the Bellman residual. The first inequality follows directly from
Theorem 17. The second inequality can be derived as:

v2 −Lv2

Assumption 2
≤ v2 −  Lv2

(�)

≤ v1 −  Lv1

≤ v1 −Lv1 + εp1 .

The third inequality can be derived as:

v3 −Lv3

Assumption 2
≤ v3 −  Lv3 + εp1

Assumption 3
≤ v3 − L̃v3 + εs1+ εp1

(�)

≤ v1 − L̃v1 + εs1+ εp1
Assumption 3

≤ v1 −Lv1 +2εs1+ εp1 .

The star (�) in the inequalities refers to the fact that vi ≥ Lvi and that vi’s minimize the correspond-
ing Bellman residuals.

To summarize, this section identifies basic assumptions on the sampling behavior and shows
that approximate bilinear programming scales well in the face of uncertainty caused by incomplete
sampling. More detailed analysis will need to focus on identifying problem-specific assumptions
and sampling modes that guarantee the basic conditions, namely satisfying Assumptions 2 and 3.
Such analysis is beyond the scope of this paper.

7. Discussion and Related ADP Methods

This section describes connections between approximate bilinear programming and two closely
related approximate dynamic programming methods: ALP, and L∞-API, which are commonly used
to solve factored MDPs (Guestrin et al., 2003). Our analysis sheds light on some of their observed
properties and leads to a new convergent form of approximate policy iteration.

Approximate bilinear programming addresses some important drawbacks of ALP:
1. ALP provides value function bounds with respect to L1 norm, which does not guarantee small

policy loss;
2. ALP’s solution quality depends significantly on the heuristically-chosen objective function c

in (5) (de Farias, 2002);
3. The performance bounds involve a constant 1/(1−γ) which can be very large when γ is close

to 1; and
4. Incomplete constraint samples in ALP easily lead to unbounded linear programs.
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The downside of using approximate bilinear programming is, of course, the higher computational
complexity.

The first and the second issues in ALP can be addressed by choosing a problem-specific objec-
tive function c (de Farias, 2002). Unfortunately, all existing bounds require that c is chosen based on
the optimal ALP solution for c. This is impossible to compute in practice. Heuristic values for c are
used instead. Robust approximate bilinear program (7), on the other hand, has no such parameters.

The fourth issue in approximate linear programs arises when the constraints need to be sampled.
The ALP may become unbounded with incomplete samples because its objective value is defined
using the L1 norm on the value function, and the constraints are defined using the L∞ norm of
the Bellman residual. In approximate bilinear programs, the Bellman residual is used in both the
constraints and objective function. The objective function of ABP is then bounded below by 0 for
an arbitrarily small number of samples.

The NP-completeness of ABP compares unfavorably with the polynomial complexity of ALP.
However, most other approximate dynamic programming algorithms are not guaranteed to con-
verge to a solution in finite time. As we show below, the exponential time complexity of ABP is
unavoidable (unless P = NP).

Proposition 35 (Mangasarian, 1995) A bilinear program can be solved in NP time.

The proof is straightforward. There is an optimal solution of the bilinear program such that the
solutions of the individual linear programs are basic feasible. The set of all basic feasible solutions
is finite, because the feasible regions of w,x and y,z are independent. The value of a basic feasible
solution can be calculated in polynomial time.

The following theorem shows that the computational complexity of the ABP formulation is
asymptotically the same as the complexity of tightly approximating the value function.

Theorem 36 Suppose that 0 < γ < 1 and ε > 0. Then the problem of determining whether the
following inequalities hold is NP-complete:

min
v∈K ∩Ṽ

‖Lv− v‖∞ < ε , min
v∈Ṽ

‖Lv− v‖∞ < ε .

The problem remains NP-complete even when Assumption 1 is satisfied. In addition, it is also NP-
complete to determine:

min
v∈Ṽ

‖Lv− v‖∞−‖v�− v‖1,α < ε , min
v∈Ṽ

‖Lv− v‖1,  u−‖v�− v‖1,α < ε ,

assuming that  u≥ 0 and 1T  u= 1.

As the theorem states, the value function approximation does not become computationally sim-
pler even when Assumption 1 holds—a universal assumption in the paper. Notice that ALP can
determine whether minv∈K ∩Ṽ ‖Lv− v‖∞ = 0 in polynomial time.
Proof The membership in NP follows from Theorem 17 and Theorem 35. We show NP-hardness
by a reduction from the 3SAT problem. We first do not make Assumption 1. We show that the
theorem holds for ε = 1. The appropriate ε can be obtained by simply scaling the rewards in the
MDP.

The main idea is to construct an MDP and an approximation basis, such that the approximation
error is small whenever the SAT problem is satisfiable. The values of the states will correspond to
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a3
a2a1 a3

a2
a1

s(C2)s(C1)

( l11 ∨ l12 ∨ l13) ∧ (l21 ∨ l22 ∨ l23)

Figure 1: MDP constructed from the corresponding SAT formula.

the truth values of the literals and clauses. The approximation features φ will be used to constrain
the values of literals that share the same variable. The MDP constructed from the SAT formula is
depicted in Figure 1.

Consider a SAT problem with clausesCi:∧
i=1,...,n

Ci =
∧

i=1,...,n

(li1 ∨ li2 ∨ li3) ,

where li j are literals. A literal is a variable or the negation of a variable. The variables in the SAT
problem are x1 . . .xm. The corresponding MDP is constructed as follows. It has one state s(li j) for
every literal li j, one state s(Ci) for each clauseCi and an additional state  s. That is:

S = {s(Ci) i= 1, . . . ,n}∪{s(li j) i= 1, . . . ,n, j = 1, . . . ,3}∪{  s} .
There are 3 actions available in each state s(Ci), which determine the literal of the clause whose
value is true. There is only a single action available in states s(li j) and  s. All the MDP’s transitions
are deterministic. The transition t(s,a) = (s′,r) is from the state s to s′, when action a is taken, and
the reward received is r. The transitions are as follows:

t(s(Ci),a j) = (s(li j),1− γ) ,

t(s(li j),a) = (s(li j),−(1− γ)) ,

t(  s,a) = (  s,2− γ) .

Notice that the rewards depend on the discount factor γ, for notational convenience.
There is one approximation feature for every variable xk such that:

φk(s(Ci)) = 0 ,

φk(  s) = 0 ,

φk(s(li j)) =

{
1 if li j = xk
−1 if li j = ¬xk

.

An additional feature in the problem  φ is defined as follows:

 φ(s(Ci)) = 1 ,

 φ(s(li j)) = 0 ,

 φ(  s) = 1 .
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The purpose of state  s is to ensure that v(s(ci))≥ 2− γ, as we assume in the remainder of the proof.
First, we show that if the SAT problem is satisfiable, then minv∈Ṽ∩K ‖Lv− v‖∞ < 1. The value

function ṽ ∈ K is constructed as a linear sum of the features as: v = Φy, where y = (y1, . . . ,ym,  y).
Here yk corresponds to φk and  y corresponds to  φ. The coefficients yk are constructed from the truth
value of the variables as follows:

yk =

{
γ if xk = true

−γ if xk = false
,

 y= 2− γ .

Now define the deterministic policy π as:

π(s(Ci)) = a j where li j = true .

The true literals are guaranteed to exist from the satisfiability. This policy is greedy with respect to
ṽ and satisfies that ‖Lπṽ− ṽ‖∞ ≤ 1− γ2.

The Bellman residuals for all actions and states, given a value function v, are defined as:

v(s)− γv(s′)− r ,

where t(s,a) = (s′,r). Given the value function ṽ, the residual values are:

t(s(Ci),a j) = (s(li j),1− γ) :

{
2− γ− γ2 +(1− γ) = 1− γ2 if li j = true

2− γ+ γ2 +(1− γ) = 1+ γ2 if li j = false
,

t(s(li j),a) = (s(li j),(1− γ)) :

{
γ− γ2 +1− γ= 1− γ2 if li j = true

−γ+ γ2 +1− γ= (1− γ)2 > 0 if li j = false
,

t(  s,a) = (  s,1− γ) : (1− γ)+ γ−1 = 0 .

It is now clear that π is greedy and that:

‖Lṽ− ṽ‖∞ = 1− γ2 < 1 .

We now show that if the SAT problem is not satisfiable then minv∈K ∩Ṽ ‖Lv− v‖∞ ≥ 1− γ2

2 .
Now, given a value function v, there are two possible cases for each v(s(li j)): 1) a positive value,
and 2) a non-positive value. Two literals that share the same variable will have the same sign, since
there is only one feature per each variable.

Assume now that there is a value function ṽ. There are two possible cases we analyze: 1) all
transitions of a greedy policy are to states with positive value, and 2) there is at least one transition
to a state with a non-positive value. In the first case, we have that

∀i∃ j, ṽ(s(li j))> 0 .

That is, there is a function q(i), which returns the positive literal for the clause j. Now, create a
satisfiable assignment of the SAT problem as follows:

xk =

{
true if liq(i) = xk
false if liq(i) = ¬xk

,
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with other variables assigned arbitrary values. Given this assignment, all literals with states that
have a positive value will be also positive. Since every clause contains at least one positive literal,
the SAT is satisfiable, which is a contradiction with the assumption. Therefore, there is at least one
transition to a state with a non-positive value.

Let C1 represent the clause with a transition to a literal l11 with a non-positive value, without
loss of generality. The Bellman residuals at the transitions from these states will be:

b1 = ṽ(s(l11))− γṽ(s(l11))+(1− γ)≥ 0−0+(1− γ) = 1− γ ,

b1 = ṽ(s(C1))− γṽ(s(l11))− (1− γ)≥ 2− γ−0−1+ γ= 1 .

Therefore, the Bellman residual ṽ is bounded as:

‖Lṽ− ṽ‖∞ ≥ max{b1,b2} ≥ 1 .

Since we did not make any assumptions on ṽ, the claim holds for all representable and transitive-
feasible value functions. Therefore, minv∈Ṽ∩K ‖Lv− v‖∞ ≤ 1− γ2 is and only if the 3SAT problem
is feasible.

We now show that the problem remains NP-complete even when Assumption 1 holds. Define a
new state  s1 with the following transition:

t(  s2,a) = (  s2,− γ
2
) .

All previously introduced features φ are zero on the new state. That is φk(  s1) =  φ(  s1) = 0. The new
constant feature is: φ̂(s) = 1 for all states s∈ S , and the matching coefficient is denoted as  y1. When
the formula is satisfiable, then clearly minv∈Ṽ∩K ‖Lv− v‖∞ ≤ 1− γ2 since the basis is now richer

and the Bellman error on the new transition is less than 1− γ2 when  y1 = 0.
Now we show that when the formula is not satisfiable, then:

min
v∈Ṽ∩K

‖Lv− v‖∞ ≥ 1− γ2

2
.

This can be scaled to an appropriate ε by scaling the rewards. Notice that

0 ≤  y1 ≤ γ
2
.

When  y1 < 0, the Bellman residual on transitions s(Ci)→ s(li j) may be decreased by increasing  y1

while adjusting other coefficients to ensure that v(s(Ci)) = 2− γ. When  y1 >
γ
2 then the Bellman

residual from the state  s1 is greater than 1− γ2

2 . Given the bounds on  y1, the argument for yk = 0
holds and the minimal Bellman residual is achieved when:

v(s(Ci))− γv(s(li j))− (1− γ) = v(s(  s1))− γv(s(  s1))+
γ
2
,

2− γ− γ  y1 − (1− γ) =  y1 − γ  y1 +
γ
2
,

 y1 =
γ
2
.

Therefore, when the SAT problem is unsatisfiable, the Bellman residual is at least 1− γ2

2 .
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The NP-completeness of minv∈Ṽ ‖Lv− v‖∞ < ε follows trivially from the fact that transitive-
feasibility does not restrict the solution quality. The proof for ‖v−Lv‖∞−αTv is almost identical.
The difference is a new state ŝ, such that φ(ŝ) = 1 and α(ŝ) = 1. In that case αTv= 1 for all v ∈ Ṽ .
The additional term thus has no effect on the optimization.

The proof can be similarly extended to the minimization of ‖v−Lv‖1,  u. Define  u(Ci) = 1/n and
 u(li j) = 0. Then the SAT problem is satisfiable if an only if ‖v−Lv‖1,  u = 1− γ2. Note that  u, as
defined above, is not an upper bound on the occupancy frequencies uπ. It is likely that the proof
could be extended to cover the case  u ≥ uπ by more carefully designing the transitions from Ci. In
particular, there needs to be high probability of returning toCi and  u(li j > 0.

Approximate bilinear programming can also improve on API with L∞ minimization (L∞-API for
short), which is a popular method for solving factored MDPs (Guestrin et al., 2003). Minimizing the
L∞ approximation error is theoretically preferable, since it is compatible with the existing bounds on
policy loss (Guestrin et al., 2003). The bounds on value function approximation in API are typically
(Munos, 2003):

limsup
k→∞

‖v�− v̂k‖∞ ≤ 2γ
(1− γ)2 limsup

k→∞
‖ṽk− vk‖∞ ,

where v̂k is the value function of policy πk which is greedy with respect to ṽk. These bounds are
looser than the bounds on solutions of ABP by at least a factor of 1/(1− γ). Often the difference
may be up to 1/(1− γ)2 since the error ‖ṽk− vk‖∞ may be significantly larger than ‖ṽk− Lṽk‖∞.
Finally, the bounds cannot be easily used, because they only hold in the limit.

We propose Optimistic Approximate Policy Iteration (OAPI), a modification of API. OAPI is
shown in Algorithm 1, where Z(π) is calculated using the following program:

min
σ,v

σ

s.t. Av≥ b (≡ (I− γPa)v≥ ra ∀a ∈ A)

−(I− γPπ)v+1σ≥−rπ ,
v ∈ Ṽ .

(15)

In fact, OAPI corresponds to Algorithm 2 applied to ABP because the linear program (15) corre-
sponds to (7) with a fixed π. Then, using Theorem 26, we get the following corollary.

Corollary 37 Optimistic approximate policy iteration converges in finite time. In addition, the
Bellman residual of the generated value functions monotonically decreases.

OAPI differs from L∞-API in two ways: 1) OAPI constrains the Bellman residuals by 0 from
below and by σ from above, and then it minimizes σ. L∞-API constrains the Bellman residuals by
σ from both above and below. 2) OAPI, like API, uses only the current policy for the upper bound
on the Bellman residual, but uses all the policies for the lower bound on the Bellman residual. Next
we show that the optimal solutions of (16) and (17) are closely related.

L∞-API cannot return an approximate value function that has a lower Bellman residual than
ABP, given the optimality of ABP described in Theorem 17. However, even OAPI—an approximate
ABP algorithm—is guaranteed to perform comparably to L∞-API, as the following theorem states.

3055



PETRIK AND ZILBERSTEIN

Theorem 38 Assume that L∞-API converges to a policy  π and a value function  v. Then, define:

 v′ =  v+
1

1− γ
‖  v−L  π  v‖∞1 .

The pair  π and  v′ is a fixed point of OAPI when ties are broken appropriately.

Notice that while the optimistic and standard policy iterations can converge to the same solutions,
the steps in their computation may not be identical. In addition, there may be multiple points of
convergence with the solution depending on the initialization.
Proof First, note that the value function optimization in API and OAPI corresponds to the following
optimization problems:

min
v∈Ṽ

‖Lπv− v‖∞ = min
σ,v

{
σ

(I− γPπ)v+1σ≥ rπ
−(I− γPπ)v+1σ≥−rπ,v ∈ Ṽ

}
, (16)

min
v∈Ṽ∩K

‖Lπv− v‖∞ = min
σ,v

{
σ

(I− γPa)v≥ ra ∀a ∈ A
−(I− γPπ)v+1σ≥−rπ ,v ∈ Ṽ

}
. (17)

Given that  π is greedy with respect to  v and that  vminimizes the Bellman residual of  π, the following
equalities hold:

L  π  v≥ L  v ,

‖  v−L  π  v‖∞ ≤ ‖v−L  πv‖∞ ∀v ∈ Ṽ ,

−min
s∈S

(v−Lπv)(s) = max
s∈S

(v−Lπv)(s) .

Then,  v′ ∈ K from the first and third properties, since  v′ ≥ L  π  v′ ≥ L  v′. The value function  v′ is
therefore feasible in OAPI. In addition, we have that ‖  v′ −L  π  v′‖∞ = 2‖  v−L  π  v‖∞.

For the policy  π to be a fixed point in OAPI, it needs to minimize the Bellman residual with
respect to  v′. This is easy to show as follows:

L  π  v≥ Lπ  v ,

 v−L  π  v≤  v−Lπ  v ,

0≤  v′ −L  π  v′ ≤  v′ −Lπ  v′ ,
‖  v′ −L  π  v′‖∞ ≤ ‖  v′ −Lπ  v′‖∞ .

For the value function  v′ to be a fixed point in OAPI, it needs to minimize the Bellman residual
with respect to all representable and transitive-feasible value functions. To show a contradiction,
assume that there exists v′ ∈ Ṽ ∩K such that for some ε> 0:

‖v′ −L  πv
′‖∞ ≤ ‖v′ −L  πv

′‖∞− ε .

Define also a value function z as follows:

z= v′ −
(

1
2(1− γ)

‖  v−L  π  v‖∞+ ε
2

)
1 .
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We now show that the Bellman residual of z is less than that of  v:

‖v′ −L  πv′‖∞ ≤ ‖  v′ −L  π  v′‖∞− ε ,

0 ≤ maxs∈S (v′ −L  πv′)(s) ≤ max
s∈S

(  v′ −L  π  v′)(s)− ε ,

−‖  v−L  π  v‖∞+ ε
2
≤ maxs∈S (v′ −L  πv′)(s)−‖  v−L  π  v‖∞+ ε

2 ≤−‖  v−L  π  v‖∞+ ε
2
,

−‖  v−L  π  v‖∞+ ε
2
≤ ‖z−L  πz‖∞ ≤−‖  v−L  π  v‖∞+ ε

2
.

Therefore, ‖z−L  πz‖∞ < ‖  v−L  π  v‖∞, which is a contradiction.

To summarize, OAPI guarantees convergence, while matching the performance of L∞-API. The
convergence of OAPI is achieved because given a non-negative Bellman residual, the greedy policy
also minimizes the Bellman residual. Because OAPI ensures that the Bellman residual is always
non-negative, it can progressively reduce it. In comparison, the greedy policy in L∞-API does not
minimize the Bellman residual, and therefore L∞-API does not always reduce it. Theorem 38 also
explains why API provides better solutions than ALP, as observed in Guestrin et al. (2003). From
the discussion above, ALP can be seen as an L1-norm approximation of a single iteration of OAPI.
L∞-API, on the other hand, performs many such ALP-like iterations.

8. Experimental Results

In this section, we validate the approach by applying it to simple reinforcement learning bench-
mark problems. We consider three different problem domains, each designed to empirically test a
different property of the algorithm.

First, in Section 8.1, we compare the policy loss of various approximate bilinear programming
formulations with the policy loss of approximate policy iteration and approximate linear program-
ming. These experiments are on a problem that is sufficiently small to compute the optimal value
function. Second, in Section 8.2, we compare the solution quality in terms of the Bellman residual
for a number of applicable algorithms. Finally, in Section 8.3 we apply ABP with L1 relaxation to
a common inverted pendulum benchmark problem and solve it using the proposed mixed integer
linear formulation.

Note that our analysis shows that the solution of ABP using OAPI corresponds to the solutions
of API. The optimal solutions of ABP are, therefore, also at least equivalently good in terms of
the Bellman residual bounds. However, the actual empirical performance of these methods will
depend significantly on the specific problem; our experimental results mostly demonstrate that the
proposed methods compute value functions that minimize Bellman residual bounds and result in
good policies.

ABP is an off-policy approximation method like LSPI (Lagoudakis and Parr, 2003) or ALP.
Thus samples can be gathered independently of the control policy. But it is necessary that multiple
actions are sampled for each state to enable the selection of different policies.

8.1 Simple Chain Problem

First, we demonstrate and analyze the properties of ABP on a simple chain problem with 200 states,
in which the transitions move to the right or left (2 actions) by one step with a centered Gaussian
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Figure 2: L∞ Bellman residual for the chain problem

noise of standard deviation 3. The rewards were set to sin(i/20) for the right action and cos(i/20)
for the left action, where i is the index of the state. This problem is small enough to calculate the
optimal value function and to control the approximation features. The approximation basis in this
problem is represented by piece-wise linear features, of the form φ(si) = [i− c]

+
, for c from 1 to 200.

The discount factor in the experiments was γ= 0.95 and the initial distribution was α(130) = 1. We
verified that the solutions of the bilinear programs were always close to optimal, albeit suboptimal.

We experimented with the full state-action sample and randomly chose the features. All results
are averages over 50 runs with 15 features. In the results, we use ABP to denote a close-to-optimal
solution of robust ABP, ABPexp for the bilinear program (10), and ABPh for a formulation that min-
imizes the average of ABP and ABPexp. API denotes approximate policy iteration that minimizes
the L2 norm.

Figure 2 shows the Bellman residual attained by the methods. It clearly shows that the robust
bilinear formulation most reliably minimizes the Bellman residual. The other two bilinear formu-
lations are not much worse. Notice also the higher standard deviation of ALP and API. Figure 3
shows the expected policy loss, as specified in Theorem 9, for the calculated value functions. It
confirms that the ABP formulation outperforms the robust formulation, since its explicit objective
is to minimize the expected loss. Similarly, Figure 4 shows the robust policy loss. As expected, it
confirms the better performance of the robust ABP formulation in this case.

Note that API and ALP may achieve lower policy loss on this particular domain than the ABP
formulations, even though their Bellman residual is significantly higher. This is possible because
ABP simply minimizes bounds on the policy loss. The analysis of tightness of policy loss bounds
is beyond the scope of this paper.

8.2 Mountain Car Benchmark Problem

In the mountain-car benchmark, an underpowered car needs to climb a hill (Sutton and Barto, 1998).
To do so, it first needs to back up to an opposite hill to gain sufficient momentum. The car receives
a reward of 1 when it climbs the hill. The discount factor in the experiments was γ= 0.99.
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Figure 4: Robust policy loss for the chain problem

Note that the state space in this problem is infinite. It is, therefore, necessary to sample states.
The states are sampled uniformly from the feasible state space and the ABP formulation is created
as described in Section 6.

The experiments are designed to determine whether OAPI reliably minimizes the Bellman resid-
ual in comparison with API and ALP. We use a uniformly-spaced linear spline to approximate the
value function. The constraints were based on 200 uniformly sampled states with all 3 actions per
state. We evaluated the methods with 100 and 144 approximation features, which correspond to the
number of linear segments.

The results of robust ABP (in particular OAPI), ALP, API with L2 minimization, and LSPI are
depicted in Table 1. The results are shown for both L∞ norm and uniformly-weighted L2 norm. The
run-times of all these methods are comparable, with ALP being the fastest. Since API (LSPI) is
not guaranteed to converge, we ran it for at most 20 iterations, which was an upper bound on the
number of iterations of OAPI. The results demonstrate that ABP minimizes the L∞ Bellman residual
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(a) L∞ error of the Bellman residual

Features 100 144
OAPI 0.21 (0.23) 0.13 (0.1)
ALP 13. (13.) 3.6 (4.3)
LSPI 9. (14.) 3.9 (7.7)
API 0.46 (0.08) 0.86 (1.18)

(b) L2 error of the Bellman residual

Features 100 144
OAPI 0.2 (0.3) 0.1 (1.9)
ALP 9.5 (18.) 0.3 (0.4)
LSPI 1.2 (1.5) 0.9 (0.1)
API 0.04 (0.01) 0.08 (0.08)

Table 1: Bellman residual of the final value function. The values are averages over 5 executions,
with the standard deviations shown in parentheses.

much more consistently than the other methods. Note, however, that all the considered algorithms
would have performed significantly better with a finer approximation.

8.3 Inverted Pendulum Benchmark Problem

The goal in the inverted pendulum benchmark problem is to balance an inverted pole by accelerating
a cart in either of two directions (Wang et al., 1996; Lagoudakis and Parr, 2003). There are three
actions in this domain that represent applying the force of u = −50N, u = 0N, and u = 50N to the
cart with a uniform noise between −10N and 10N. The angle of the inverted pendulum is θ and its
update equation is:

θ̈=
gsin(θ)−αml(θ̇)2 sin(2θ)/2−αcos(θ)u

4l/3−αml cos2(θ)
.

Here the constants are: g = 9.8, m = 2.0, M = 8.0, α = 1/(m+M). The simulation step is set to
0.1 and we use linear interpolation for simplicity.

We used the standard features for this benchmark problem; a set of radial basis functions ar-
ranged in a grid over the 2-dimensional state space with centers μi and a constant term required by
Assumption 1. The features for a state s= (θ, θ̇) are defined as:(

1,exp−
‖s−μ1‖22

2
,exp−

‖s−μ2‖22
2

, . . .

)
.

We considered 100 centers for radial basis functions arranged in a 10 by 10 grid for θ∈ [−π/2,π/2]
and θ̇ ∈ [−5,5].

We used L1 norm regularization to apply the sampling bounds and to compare the approach with
regularized approximate linear programming. Assuming that φ0 represents the constant feature, the
set of representable value functions is defined as:

Ṽ =

{
100

∑
i=0

φixi
100

∑
i=1

|xi| ≤ ψ

}
.

Note that the constant feature is not included in the regularization. The regularization bound was
set apriori to ψ = 100. Subsequent tests showed that ABP performed almost identically with the
regularization bound for values ψ ∈ [50,200].

Transition samples were collected in advance—using the same procedure as LSPI—from ran-
dom episodes, starting in randomly perturbed states very close to the equilibrium state (0,0) and
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Figure 5: Policy loss as a function of the number of samples.

following a random policy. The average length of such episodes was about 6 steps. We computed
the transitions for each sampled state and all the actions by sampling each transition 20 times.

We compare the solution quality to regularized approximate linear programming (RALP), which
has been show to perform well on a range of benchmarks (Petrik et al., 2010). We evaluated only
the formulation that minimizes the robust objective. The mixed integer linear program formulation
for ABP was optimized using CPLEX 12.1. We set the time cutoff to be 60s. In this time interval,
most solutions were computed to about 10% optimality gap.

Figure 5 compares the expected policy loss of ABP and RALP on the inverted pendulum bench-
mark as a function of the number of state transitions sampled. In every iteration, both ABP and
RALP were run with the same samples. The policy loss was evaluated on 50 episodes, each at most
50 steps long. The performance of the optimal policy was assumed to be 0 and the policy loss of 0
essentially corresponds to balancing the pole for 2500 steps.

The experimental results on the inverted pendulum demonstrate that ABP may significantly out-
perform RALP. Both RALP and ABP have a large sampling error when the number of samples is
small. This could be addressed by appropriately setting the regularization bound as our sampling
bounds indicate; we kept the regularization bound fixed for all sample counts for the sake of sim-
plicity. With a larger number of samples, ABP significantly outperforms RALP, which significantly
outperforms LSPI for similar features (Petrik et al., 2010).

9. Conclusion and Future Work

We propose and analyze approximate bilinear programming, a new value-function approximation
method, which provably minimizes bounds on policy loss. ABP returns the optimal approximate
value function with respect to the Bellman residual bounds, despite being formulated with regard to
transitive-feasible value functions. We also show that there is no asymptotically simpler formula-
tion, since finding the closest value function and solving a bilinear program are both NP-complete
problems. Finally, the formulation leads to the development of OAPI, a new convergent form of
API which monotonically improves the objective value function.

While we only discuss simple solvers for ABP, a deeper study of bilinear solvers may lead to
more efficient optimal solution methods. ABPs have a small number of essential variables (that
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determine the value function) and a large number of constraints, which can be leveraged by some
solvers (Petrik and Zilberstein, 2007). In addition, the L∞ error bound provides good theoretical
guarantees, but it may be too conservative in practice; a similar formulation based on L2 norm
minimization may be more practical.

Note that, as for example LSPI, approximate bilinear programming is especially applicable to
MDPs with discrete (and small) action spaces. This requirement is limiting in solving many resource
management problems in which the resource is a continuous variable. While it is always possible to
discretize the action space, this is not feasible when the action space is multidimensional. Therefore,
extending these methods to problems with continuous action spaces is an important issue that needs
to be addressed in future work.

We believe that the proposed formulation will help deepen the understanding of value func-
tion approximation and the characteristics of existing solution methods, and potentially lead to the
development of more robust and more widely-applicable reinforcement learning algorithms.
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Abstract
The Stationary Subspace Analysis (SSA) algorithm linearly factorizes a high-dimensional time se-
ries into stationary and non-stationary components. The SSA Toolbox is a platform-independent
efficient stand-alone implementation of the SSA algorithm with a graphical user interface written
in Java, that can also be invoked from the command line and from Matlab. The graphical inter-
face guides the user through the whole process; data can be imported and exported from comma
separated values (CSV) and Matlab’s .mat files.
Keywords: non-stationarities, blind source separation, dimensionality reduction, unsupervised
learning

1. Introduction

Discovering and understanding temporal changes in high-dimensional time series is a central task
in data analysis. In particular, when the observed data is a mixture of latent factors that cannot
be measured directly, visual inspection of multivariate time series is not informative to discern
stationary and non-stationary contributions. For example, a single non-stationary factor can be
spread out among all channels and make the whole data appear non-stationary, even when all other
sources are perfectly stationary. Conversely, a non-stationary component with low power can remain
hidden among stronger stationary sources. In electroencephalography (EEG) analysis (Niedermeyer
and Lopes da Silva, 2005), for instance, the electrodes on the scalp record a mixture of the activity
from a multitude of sources located inside the brain, which we cannot measure individually with
non-invasive methods. Thus, in order to distinguish the activity of stationary and non-stationary
brain sources, we need to separate their contributions in the measured EEG signals (von Bünau
et al., 2010).

To that end, in the Stationary Subspace Analysis (SSA) model (von Bünau et al., 2009), the
observed data x(t) ∈R

D is assumed to be generated as a linear mixture of d stationary sources ss(t)
and D−d non-stationary sources sn(t),

x(t) = As(t) =
[
As An

][ss(t)
sn(t)

]
,
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where A is an invertible mixing matrix. Note that the sources s(t) are not assumed to be independent
or uncorrelated. A time series is considered stationary if its mean and covariance are constant over
time, that is, a time series u(t) is called stationary if

E[u(t1)] = E[u(t2)] and E[u(t1)u(t1)
�] = E[u(t2)u(t2)

�],

at all pairs of time points t1, t2 ≥ 0. This is a variant of weak stationarity (Priestley, 1983), where
we do not consider the time structure.

The SSA algorithm (von Bünau et al., 2009; Hara et al., 2010; Kawanabe et al., 2011) finds the
demixing matrix that separates the stationary and non-stationary sources given samples from x(t)
by solving a non-convex optimization problem. This yields an estimate for the mixing matrix, and
the stationary and non-stationary sources.

2. Capabilities of the SSA Toolbox

The SSA Toolbox is a platform-independent implementation of the SSA algorithmwith a convenient
graphical user interface. The latest release is available from the SSA website.1 It can be used in the
following environments.

• As a stand-alone application with a graphical user interface.

• From the operating system’s command line.

• From Matlab via an efficient in-memory interface through the wrapper script ssa.m.

• As a library from your Java own application.

In the following, we give an overview of the main features of the SSA Toolbox.

2.1 Platforms

The SSA Toolbox is platform-independent: it is written in the Java programming language with
bytecode backwards-compatible until JVM version 1.5 (released in 2004); native libraries are in-
cluded for all major platforms with a pure-Java fallback.

2.2 Data Import/Export

The stand-alone application can read data and write results from comma separated values (CSV)
and from Matlab’s .mat file format.2

2.3 Efficiency

The efficiency of the toolbox is mainly due to the underlying matrix libraries. The user can choose
between COLT,3 written in pure Java, and the high-performance library jblas4 (Braun et al., 2010),
which wraps the state-of-the-art BLAS and LAPACK implementations included as native binaries
for Windows, Linux and MacOS in 32 and 64 bit.

1. See http://www.stationary-subspace-analysis.org/toolbox.
2. We use the JMatIO library, see http://sourceforge.net/projects/jmatio.
3. See http://acs.lbl.gov/software/colt/.
4. See http://www.jblas.org.
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Figure 1: Graphical user interface of the SSA Toolbox. From top to bottom, the panels correspond
to the steps data import, parameter specification, and export of results. The window also
includes a log panel at the bottom, which is not shown here.

2.4 User Interface

The graphical user interface of the stand-alone application provides step-by-step guidance through
the whole process: from data import, specification of parameters to the export of results. The
toolbox also suggests sensible parameter values based on heuristics. The log panel, not pictured in
Figure 1, shows instructive error and diagnostic messages.

>> [ X, A ] = ssa_toydata(10, 2, 2); % generate data
>> [ Ps, Pn, As, An ] = ssa(X, 2); % apply SSA
>> err=subspace_error(An, A(:,[3 4])); % measure the error
>> s1=Ps*X{1}; % Project to s-sources in epoch 1

Figure 2: Application of the SSA Toolbox from within Matlab to a synthetic data set with two
stationary and two non-stationary sources.

2.5 Matlab Interface

The implementation of the SSA algorithm can also be accessed directly from Matlab, using the
wrapper script ssa.m, see Figure 2. Data and results are passed in-memory between Java and
Matlab and all messages are relayed to the Matlab prompt.
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2.6 Documentation

The user manual explains the SSA algorithm, the use of the toolbox, interpretation of results and an-
swers frequently asked questions. It also includes a section for developers that provides an overview
of the source code and a description of the unit tests.

2.7 Examples

The toolbox comes with example data in CSV and .mat format, a Matlab script for generating
synthetic data sets (documented in the manual, and a self-contained Matlab demo ssa demo.m).

2.8 Developer Access, License and Unit Tests

The source code is provided under the BSD license and is available in a separate archive for each
released version. The latest version of the source code is available from github,5 a free hosting
services for the git version control system. The source code is fully documented according to the
Javadoc conventions and accompanied by a set of unit tests, which are described in the developer
section of the user manual.
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Abstract
Statistical models of natural images provide an important tool for researchers in the fields of ma-
chine learning and computational neuroscience. The canonical measure to quantitatively assess
and compare the performance of statistical models is given by the likelihood. One class of statis-
tical models which has recently gained increasing popularity and has been applied to a variety of
complex data is formed by deep belief networks. Analyses of these models, however, have often
been limited to qualitative analyses based on samples due to the computationally intractable nature
of their likelihood. Motivated by these circumstances, the present article introduces a consistent
estimator for the likelihood of deep belief networks which is computationally tractable and simple
to apply in practice. Using this estimator, we quantitatively investigate a deep belief network for
natural image patches and compare its performance to the performance of other models for natural
image patches. We find that the deep belief network is outperformed with respect to the likelihood
even by very simple mixture models.

Keywords: deep belief network, restricted Boltzmann machine, likelihood estimation, natural
image statistics, potential log-likelihood

1. Introduction

When dealing with natural images, the choice of image representation is often crucial for achieving
a good performance. Good generative models or classifiers, for example, can be easier to realize
in terms of more complex features such as edges than in terms of raw pixel intensities. Several
facts point to the advantage of using hierarchical representations for encoding natural images over
non-hierarchical ones. Multiple layers of representations allow for the use of simpler transforma-
tions, each solving only a subproblem, as well as for a more efficient implementation by enabling
the reuse of low-level features in the realization of higher-level features. Further motivation for
hierarchical representations comes from the hierarchical organization of the brain (Felleman and
van Essen, 1991) and the hierarchical organization of the concepts surrounding us. The idea of
using hierarchical image representations in supervised as well as unsupervised tasks is now several
decades old (e.g., Selfridge, 1958; Fukushima, 1980; LeCun et al., 1989). However, only the emer-
gence of recent training methods has made them competitive across many supervised learning tasks
and led to a renewed surge of interest in hierarchical image representations. Despite this success
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in supervised tasks, no probabilistic model has been conclusively shown to exhibit state-of-the-art
performance as a generative model and at the same time benefit strongly from hierarchical image
representations.

The most prominent example of the recent research in hierarchical image modeling is the re-
search into a class of hierarchical generative models called deep belief networks. Deep belief net-
works were introduced by Hinton and Salakhutdinov (2006); Hinton et al. (2006) together with a
greedy learning rule as an approach to the long-standing challenge of training deep neural networks,
that is, hierarchical neural networks such as multi-layer perceptrons. The existence of an efficient
learning rule has made them become attractive not only for pretraining multi-layer perceptrons, but
also for density estimation and other inherently unsupervised learning tasks. In supervised tasks,
they have been shown to learn representations which outperform many competing representations
when employed, for example, in character recognition (Hinton et al., 2006) or speech recognition
(Mohamed et al., 2009). In unsupervised tasks, they have been applied to a wide variety of com-
plex data sets such as patches of natural images (Osindero and Hinton, 2008; Ranzato et al., 2010a;
Ranzato and Hinton, 2010; Lee and Ng, 2007), motion capture recordings (Taylor et al., 2007) and
images of faces (Susskind et al., 2008). When applied to natural images, deep belief networks have
been shown to develop biologically plausible features (Lee and Ng, 2007) and samples from the
model were shown to adhere to certain statistical regularities also found in natural images (Osin-
dero and Hinton, 2008). Examples of natural image patches and features learned by a deep belief
network are presented in Figure 1.

An important measure to assess the generative performance of a probabilistic model is the like-
lihood. The likelihood allows us to objectively compare the density estimation performance of
different models. Given two model instances with equal a priori probability, the ratio of their likeli-
hoods with respect to a set of data samples tells us everything we need to know to decide which of
the two models is more likely to have generated the data set. Further motivation for the likelihood
stems from coding theory. For densities p and q, the negative expected log-likelihood represents the
cross-entropy term of the Kullback-Leibler (KL) divergence,

DKL[p(x)||q(x)] =−∑
x
p(x) logq(x)−H[p(x)],

which is always non-negative and zero if and only if p and q are identical. The cross-entropy
represents the coding cost of encoding samples drawn from p with a code that would be optimal for
samples drawn from q. Correspondingly, the KL-divergence represents the additional coding cost
created by using an optimal code which assumes the distribution of the samples to be q instead of
p.

The expected negative log-likelihood, or cross-entropy, quantifies the amount of correlations
captured by a statistical model. A model with a minimal cross-entropy would, at least in principle,
be able to predict missing information from partially observed input in an optimal manner. In this
sense, the likelihood can be understood as a measure of scene understanding if a model is applied
to natural scenes.

Finally, the likelihood allows us to directly examine the success of training when maximum
likelihood learning is employed. Even when the ultimate goal is classification, deep belief networks
and related unsupervised feature learning approaches are optimized with respect to the likelihood.
Evaluating the likelihood is therefore also important to assess the success of pretraining and for
fine-tuning hyperparameters. Unfortunately, the likelihood of deep belief networks is in general
computationally intractable to evaluate.
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Figure 1: Left: Natural image patches sampled from the van Hateren dataset (van Hateren and
van der Schaaf, 1998). Right: Filters learned by a deep belief network trained on whitened
image patches.

In this article, we set out to test the performance of a deep belief network by evaluating its
likelihood. After reviewing the relevant aspects of deep belief networks, we will derive a new
consistent estimator for their likelihood and demonstrate the estimator’s applicability in practice.
We will investigate a particular deep belief network’s capability to model the statistical regularities
found in natural image patches. We will show that the deep belief network under study is not
particularly good at capturing the statistics of natural image patches as it is outperformed with
respect to the likelihood even by very simple mixture models. We will furthermore show that adding
layers to the network has only a small effect on the overall performance of the model if the first layer
is trained well enough and offer possible explanations for this observation by analyzing a best-case
scenario of the greedy learning procedure commonly used for training deep belief networks.

2. Models

In this section we will review the statistical models used in the remainder of this article and discuss
some of their properties relevant for estimating the likelihood of deep belief networks (DBNs).
Throughout this section, the goal of applying statistical models is assumed to be the approximation
of a particular distribution of interest, the data distribution. We will denote this distribution by p̃.

2.1 Boltzmann Machines

A Boltzmann machine is a potentially fully connected undirected graphical model with binary
random variables. Its probability mass function is a Boltzmann distribution over 2k binary states
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Figure 2: Boltzmann machines with different constraints on their connectivity. Filled nodes denote
visible variables, unfilled nodes denote hidden variables. A:A fully connected Boltzmann
machine. B: A restricted Boltzmann machine. C: A semi-restricted Boltzmann machine,
which in contrast to RBMs also allows connections between the visible units.

s ∈ {0,1}k which is defined in terms of an energy function E,

q(s) =
1
Z
exp(−E(s)), Z =∑

s
exp(−E(s)),

where E is given by

E(s) =−
1
2
s�Ws−b�s=−

1
2∑i, j

siwi js j−∑
i

sibi

and depends on a symmetric weight matrix W ∈ Rk×k with zeros on the diagonal, wii = 0 for all
i= 1, ...,k, and bias terms b ∈ Rk. Z is called partition function and ensures the normalization of q.
In the following, unnormalized distributions will be marked with an asterisk:

q∗(s) = Zq(s) = exp(−E(s)).

Of particular interest for building DBNs are latent variable Boltzmann machines, that is, Boltzmann
machines for which the states s are only partially observed (Figure 2). We will refer to states of
observed or visible random variables as x and to states of unobserved or hidden random variables as
y, such that s= (x,y).

Maximum likelihood (ML) learning can be implemented by following the gradient of the log-
likelihood. In Boltzmann machines, this gradient is conceptually simple yet computationally hard
to evaluate. The gradient of the expected log-likelihood with respect to some parameter θ of the
energy function is (e.g., Salakhutdinov, 2009):

E p̃(x)

[
∂
∂θ
logq(x)

]
= Eq(x,y)

[
∂
∂θ
E(x,y)

]
−Ep̃(x)q(y|x)

[
∂
∂θ
E(x,y)

]
. (1)

The first term on the right-hand side of this equation is the expected gradient of the energy function
when both hidden and visible states are sampled from the model, while the second term is the
expected gradient of the energy function when the hidden states are drawn from the conditional
distribution of the model, given a visible state drawn from the data distribution, p̃(x).
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Evaluating these expectations, however, is computationally intractable for all but the simplest
models. Even approximating the expectations with Monte Carlo methods is typically very slow
(Long and Servedio, 2010). Two measures can be taken to make learning in Boltzmann machines
feasible: constraining the Boltzmann machine in some way, or replacing the likelihood with a sim-
pler objective function. The latter approach led to the introduction of the contrastive divergence
(CD) learning rule (Hinton, 2002) which represents a tractable approximation to ML learning: In
CD learning, the expectation over the model distribution q(x,y) is replaced by an expectation over

qCD(x,y) = ∑
x0,y1

p̃(x0)q(y1 | x0)q(x | y1)q(y | x),

from which samples are obtained by taking a sample x0 from the data distribution, updating the
hidden units, updating the visible units, and finally updating the hidden units again, while in each
step keeping the respective set of other variables fixed. This corresponds to a single sweep of Gibbs
sampling through all random variables of the model plus an additional update of the hidden units.
If instead n sweeps of Gibbs sampling are used, the learning procedure is generally referred to as
CD(n) learning. In the limit of large n, ML learning is regained (Salakhutdinov, 2009). An improved
sampling scheme is offered by persistent contrastive divergence (PCD), in which the Markov chain
is initialized not with a sample from the data distribution, but with the state of the Markov chain at
the previous update of the gradient (Younes, 1989; Tieleman, 2008).

2.2 Restricted Boltzmann Machines

The first expectation on the right-hand side of Equation 1 can be made analytically tractable by
constraining the energy function such that no direct interaction between two visible units or two
hidden units is possible (Smolensky, 1986; Hinton, 2002),

E(x,y) =−x�Wy−b�x− c�y.

Such a model is called a restricted Boltzmann machine (RBM). The corresponding graph has no
connections between the visible units and no connections between the hidden units (Figure 2).
Importantly, the unnormalized marginal distributions q∗(x) and q∗(y) can now be computed analyti-
cally by integrating out the respective other set of variables. The unnormalized marginal distribution
of the visible units becomes

q∗(x) = exp(b�x)∏
j
(1+ exp(w�

j x+ c j)). (2)

Two related models also used in this article are the Gaussian RBM (GRBM) (Salakhutdinov,
2009) and the semi-restricted Boltzmann machine (SRBM) (Osindero and Hinton, 2008). The
GRBM employs continuous visible units and binary hidden units and can thus be used to model
continuous data. Its energy function is given by

E(x,y) =
1
2σ2

||x−b||2−
1
σ
x�Wy− c�y.

A somewhat more general definition allows a different σ for each individual visible unit (Salakhutdi-
nov, 2009). The conditional distribution q(x | y) of a GRBM is a multivariate Gaussian distribution,

q(x | y) =N (x;σWy+b,σ2I).
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Each binary state of the hidden units encodes one mean, while σ controls the variance of each
Gaussian and is the same for all hidden units. The GRBM can therefore be interpreted as a mixture
of an exponential number of Gaussian distributions with fixed, isotropic covariance and parameter
sharing constraints.

In an SRBM, only the hidden units are constrained to have no direct connections to each other
while the visible units are unconstrained (Figure 2). Analytic expressions are therefore only avail-
able for q∗(x) but not for q∗(y) and the visible units are no longer independent given a state for the
hidden units.

2.3 Deep Belief Networks

Figure 3: A graphical model representation of a two-layer deep belief network composed of two
RBMs. The connections of the first layer are directed.

DBNs (Hinton and Salakhutdinov, 2006) are hierarchical generative models composed of sev-
eral layers of RBMs or one of their generalizations. Let q(x,y) and r(y,z) be the densities of two
RBMs over visible states x and hidden states y and z. Then the joint probability mass function of a
two-layer DBN is defined to be

p(x,y,z) = q(x | y)r(y,z).

The resulting model is best described not as a deep Boltzmann machine but as a graphical model
with undirected connections between y and z and directed connections between x and y (Figure 3).
This definition can be recursively extended to DBNs with three or more layers by replacing r(y,z)
with another DBN. DBNs with an arbitrary number of layers have been shown to be universal
approximators even if the number of hidden units in each layer is fixed to the number of visible
units (Sutskever and Hinton, 2008). DBNs are easily generalized by allowing more general models
as layers, such as the GRBM and the SRBM.

The learning procedure introduced by Hinton et al. (2006) for training DBNs makes two ap-
proximations to ML learning. The first approximation is made by training the DBN in a greedy
manner: After the first layer of the model has been trained to approximate the data distribution, its
parameters are fixed and only the parameters of the second layer are optimized. If θ is a parameter

3076



IN ALL LIKELIHOOD, DEEP BELIEF IS NOT ENOUGH

of the second-layer density r, the gradient of the DBN’s log-likelihood with respect to θ is

∂
∂θ
log p(x) =∑

y
p(y | x)

∂
∂θ
logr(y). (3)

However, exact sampling from the posterior distribution p(y | x) is difficult. In order to make the
training feasible, the posterior distribution is replaced by the factorial distribution q(y | x). Training
the DBN in this manner optimizes a variational lower bound on the log-likelihood (Hinton et al.,
2006),

∑
y
q(y | x) logr(y)≤ log p(x)+ const, (4)

where const is constant in θ, which is a parameter of r. Taking the derivative of the left-hand side of
Equation 4 with respect to θ yields (3) with the posterior distribution p(y | x) replaced by q(y | x).
The greedy learning procedure can be generalized to more layers by training each additional layer
to approximate the distribution obtained by conditionally sampling from each layer in turn, starting
with the lowest layer.

After finishing the greedy training, Hinton et al. (2006) suggested to use the wake-sleep algo-
rithm (Hinton et al., 1995) to fine-tune the parameters. Like the greedy algorithm, the wake-sleep
algorithm optimizes a lower bound on the log-likelihood of the model, but in contrast optimizes all
parameters concurrently. In addition, a separate set of RBMs is used and adapted to more closely
approximate the DBN’s posterior distribution over hidden units.

3. Likelihood Estimation

In this section, we will discuss the problem of estimating the likelihood of a two-layer DBN with
joint density

p(x,y,z) = q(x | y)r(y,z). (5)

That is, for a given visible state x, to estimate the value of

p(x) =∑
y,z
q(x | y)r(y,z).

We will later generalize this problem to more layers. As before, q(x,y) and r(y,z) refer to the
densities of two RBMs.

Two difficulties arise when dealing with this problem in the context of DBNs. First, r(y,z)
depends on a partition function Zr whose exact evaluation requires integration over an exponential
number of states. Second, despite being able to integrate analytically over z, even computing just
the unnormalized likelihood still requires integration over an exponential number of hidden states y,

p∗(x) =∑
y
q(x | y)r∗(y).

After briefly reviewing previous approaches to resolving these difficulties, we will propose an un-
biased estimator for p∗(x), its contribution being a possible solution to the second problem, and
discuss how to construct a consistent estimator for p(x) based on this result.
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3.1 Importance Sampling

Since our estimator relies on importance sampling, we briefly review it here. Importance sampling
is a Monte Carlo integration method for unbiased estimation of expectations (MacKay, 2003) and
is based on the following observation: Let s be a density with s(x)> 0 whenever q∗(x)> 0 and let
w(x) = q∗(x)

s(x) , then

∑
x
q∗(x) f (x) =∑

x
s(x)

q∗(x)
s(x)

f (x) = Es(x) [w(x) f (x)]

for any function f . s is called a proposal distribution for q and w(x) is called importance weight. If
f (x) = 1 for all x, we get

Es(x) [w(x)] =∑
x
s(x)

q∗(x)
s(x)

= Zq. (6)

Estimates of the partition function Zq can therefore be obtained by drawing samples x(n) from a
proposal distribution and averaging the resulting importance weights w(x(n)). It was pointed out
in Minka (2005) that minimizing the variance of the importance sampling estimate of the partition
function (6) is equivalent to minimizing an α-divergence1 between the proposal distribution s and
the true distribution q. Therefore, for an estimator to work well in practice, s should be both close
to q and easy to sample from.

3.2 Previous Work

The following is a brief summary of existing approaches to approximating the likelihood of RBMs
and DBNs.

3.2.1 ANNEALED IMPORTANCE SAMPLING

Salakhutdinov and Murray (2008) have shown how annealed importance sampling (AIS) (Neal,
2001) can be used to estimate the partition function of an RBM. AIS tries to circumvent some of
the problems associated with finding a suitable proposal distribution. For a sequence of proposal
distributions s1, ...,sn and corresponding transition operators T1, ...,Tn, one can show that

Zq =∑
x
sn(xn−1)Tn−1(xn−2;xn−1) · · ·T1(x0;x1)

s∗n−1(xn−1)

sn(xn−1)
· · ·

q∗(x0)
s∗1(x0)

,

where the sum integrates over all x=(x0, ...,xn−1). Hence, in order to estimate the partition function,
we can draw independent samples xn−1 from a simple distribution sn, use the transition operators
to generate samples xn−2, ...,x0 from increasingly complex distributions, and average the resulting
product of fractions given in the preceding equation. For details on how to choose the intermediate
distributions and transition operators, see Salakhutdinov and Murray (2008).

1. With α= 2. α-divergences are a generalization of the KL-divergence.
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3.2.2 ESTIMATING LOWER BOUNDS

In Salakhutdinov and Murray (2008) it was also shown how estimates of a lower bound on the
log-likelihood,

log p(x)≥∑
y
q(y | x) log

r∗(y)q(x | y)
q(y | x)

− logZr (7)

=∑
y
q(y | x) logr∗(y)q(x | y)+H[q(y | x)]− logZr, (8)

can be obtained, provided the partition function Zr is given. This is the same lower bound as the
one optimized during greedy learning (4). Since q(y | x) is factorial, the entropy H[q(y | x)] can
be computed analytically. The only term which still needs to be estimated is the first term on the
right-hand side of Equation 8. This was achieved in Salakhutdinov and Murray (2008) by averaging
over samples drawn from q(y | x).

3.2.3 CONSISTENT ESTIMATES

In Murray and Salakhutdinov (2009), a rather elaborate sampling scheme was devised to give un-
biased estimates for the inverse posterior probability 1

p(y|x) of some fixed hidden state y. These
estimates were then used to get unbiased estimates of p∗(x) by taking advantage of the fact p∗(x) =
p∗(x,y)
p(y|x) . The corresponding partition function was estimated using AIS, giving rise to a consistent
estimator. While the estimator’s Markov chain was constructed such that arbitrarily short runs of
the Markov chain result in unbiased estimates of p∗(x), even a single step of the Markov chain is
slow compared to sampling from q(y | x), as it was done for the estimation of the lower bound (7).

3.3 A New Estimator for DBNs

The estimator we will introduce in this section shares the same formal properties as the estimator
proposed in Murray and Salakhutdinov (2009), but will use samples drawn from q(y | x). This will
make it conceptually as simple and as easy to apply in practice as the estimator for the lower bound
(7), while providing us with consistent estimates of p(x).

Let p(x,y,z) be the joint density of a DBN as defined in Equation 5. By applying Bayes’
theorem, we obtain

p(x) =∑
y
q(x | y)r(y)

=∑
y
q(y | x)

q(x)
q(y)

r(y)

=∑
y
q(y | x)

q∗(x)
q∗(y)

r∗(y)
Zr

. (9)

A natural choice for an estimator of p(x) is therefore

p̂N(x) =
1
N∑n

q∗(x)

q∗(y(n))

r∗(y(n))
Zr

(10)

= q∗(x)
1
ZrN

∑
n

r∗(y(n))

q∗(y(n))
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where y(n) ∼ q(y(n) | x) for n = 1, ...,N. For RBMs, the unnormalized marginals q∗(x),q∗(y) and
r∗(y) can be computed analytically (2). Also note that the partition function Zr only has to be
calculated once for all visible states we wish to evaluate. We are not aware of any work which
tried to use this estimator to estimate the likelihood of DBNs. In the following, we will discuss and
investigate its properties.

Under the assumption that the partition function Zr is known, p̂N(x) provides an unbiased esti-
mate of p(x) since the sample average is always an unbiased estimate of the expectation. However,
Zr is generally intractable to compute exactly so that approximations become necessary. If in the es-
timate (10) the partition function Zr is replaced by an unbiased estimate Ẑr, then the overall estimate
will tend to overestimate the true likelihood,

E
[
p̂∗N(x)

Ẑr

]
= E

[
1

Ẑr

]
E [ p̂∗N(x)]

≥
1

E
[
Ẑr
] p∗(x) = p(x),

where p̂∗N(x) = Zr p̂N(x) is an unbiased estimate of the unnormalized density. The second step is a
consequence of Jensen’s inequality and the averages are taken with respect to p̂N(x) and Ẑr, which
are independent; x is held fix.

While the estimator loses its unbiasedness for unbiased estimates of the partition function, it
still retains its consistency. Since p̂∗N(x) is unbiased for all N ∈N, it is also asymptotically unbiased,

plim
N→∞

p̂∗N(x) = p∗(x).

Furthermore, if Ẑr,N for N ∈ N is a consistent sequence of estimators for the partition function, it
follows that

plim
N→∞

p̂∗N(x)

Ẑr,N
=

plim
N→∞

p̂∗N(x)

plim
N→∞

Ẑr,N
=
p∗(x)
Zr

= p(x).

Unbiased and consistent estimates of Zr can be obtained using AIS (Salakhutdinov and Murray,
2008). Note that although the estimator tends to overestimate the true likelihood in expectation and
is unbiased in the limit, it is still possible for it to underestimate the true likelihood most of the time.
This behavior can occur if the distribution of estimates is heavily skewed.

An important question which remains is whether the estimator is also good in terms of statistical
efficiency. The more efficient an estimator, the less samples are required to obtain reliable estimates
of the likelihood. If we cast Equation 9 into the form of Equation 6, we see that our estimator per-
forms importance sampling with proposal distribution q(y | x) and target distribution p(y | x), where
p(x) can be seen as the partition function of an unnormalized distribution p(x,y). As mentioned
earlier, the efficiency of importance sampling estimates of partition functions depends on how well
the proposal distribution approximates the true distribution. Therefore, for the proposed estimator
to work well in practice, q(y | x) should be close to p(y | x). Note that a similar assumption is made
when optimizing the variational lower bound during greedy learning. The lower bound (4) can be
shown to be equal to

∑
y
q(y | x) logr(y) = log p(x)−DKL(q(y | x)||p(y | x))+ const, (11)

3080



IN ALL LIKELIHOOD, DEEP BELIEF IS NOT ENOUGH

Estimate p(x0)

1: p̂← q∗1(x0)
2: for l = 1 to L−1 do
3: xl ∼ ql(xl | xl−1)

4: p̂← p̂ ·
q∗l+1(xl)
q∗l (xl)

5: end for
6: return p̂/ZL

Figure 4: Pseudocode for generating an unbiased estimate p̂ of the probablity of x0 under a DBN
with L layers. Layer l here has unnormalized density q∗l . Note that in practice, an average
over multiple such estimates will generally be taken. Also note that ZL will typically have
to be estimated as well.

where again const is constant in the parameters of r. Training the DBN by optimizing the above
lower bound therefore minimizes the KL-divergence between the true posterior and the approximat-
ing posterior, thereby making it a better proposal distribution. We will further address the question
of statistical efficiency empirically in the experimental section.

The definition of the estimator for two-layer DBNs readily extends to DBNs with L layers.
If p(x) is the marginal density of a DBN whose layers are RBMs with densities q1(x0,x1), ...,
qL(xL−1,xL) and partition functions Z1, ...,ZL, and if we refer to the states of the random vectors
in each layer by x0, ...,xL, where x0 contains the visible states and xL contains the states of the top
hidden layer, then

p(x0) = ∑
x1,...,xL

qL(xL−1,xL)
L−1

∏
l=1

ql(xl−1 | xl)

= ∑
x1,...,xL−1

qL(xL−1)
L−1

∏
l=1

ql(xl | xl−1)
q∗l (xl−1)

q∗l (xl)

= q∗1(x0)
1
ZL

∑
x1,...,xL−1

L−1

∏
l=1

ql(xl | xl−1)
q∗l+1(xl)

q∗l (xl)
.

In order to estimate this term, hidden states x1, ...,xL−1 are generated in a feed-forward manner using

the conditional distributions ql(xl | xl−1). The weights
q∗l+1(xl)
q∗l (xl)

are computed along the way, then
multiplied together and finally averaged over all drawn states. Intuitively, the estimation process
can be imagined as first assigning a basic value using the first layer and then correcting this value
based on how the densities of each pair of consecutive layers relate to each other. Pseudocode for
this procedure is given in Figure 4.

3.4 Potential Log-Likelihood

In this section, we will discuss a concept which appears in Roux and Bengio (2008) and which
we will dub the potential log-likelihood. By considering a best-case scenario, the potential log-
likelihood can give us an idea of the log-likelihood that can at best be achieved by training additional
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Figure 5: A cartoon explaining the potential log-likelihood. For each choice for the second layer
of a DBN, we obtain a different value for the log-likelihood and its lower bound. From
all possible choices, we take the distribution which maximizes the lower bound (1) and
compute its log-likelihood (2). We call this particular log-likelihood the potential log-
likelihood. It is still possible that the log-likelihood is larger for other distributions (3).
However, it is unlikely that such a distribution will be found, as the second layer is opti-
mized with respect to the lower bound.

layers using the greedy learning of Hinton and Salakhutdinov (2006). Its usefulness will become
apparent in the experimental section.

Let q(x,y) be the distribution of an already trained RBM or one of its generalizations, and let
r(y) be a second distribution—not necessarily the marginal distribution of any Boltzmann machine.
As in section 2.3, r(y) serves to replace the prior distribution over the hidden variables, q(y), and
to thereby improve the marginal distribution over x, ∑y q(x | y)r(y). As above, let p̃(x) denote the
data distribution. Our goal is to increase the expected log-likelihood of the model distribution with
respect to r,

∑
x
p̃(x) log∑

y
q(x | y)r(y). (12)

In applying the greedy learning procedure, we try to reach this goal by optimizing a lower bound on
the log-likelihood (4), or equivalently, by minimizing the following KL-divergence:

DKL

[
∑
x
p̃(x)q(y | x)||r(y)

]
=−∑

x
p̃(x)∑

y
q(y | x) logr(y)+ const,

where const is constant in r.
The KL divergence is minimal if r(y) is equal to

∑
x
p̃(x)q(y | x) (13)
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for every y. Since RBMs are universal approximators (Roux and Bengio, 2008), this distribution
could in principle be approximated arbitrarily well by a single, potentially very large RBM. Assume
therefore that we have found this distribution, that is, we have maximized the lower bound with
respect to all possible distributions r. Then, the distribution for the DBN which we obtain by
replacing r in (12) with (13) is given by

∑
y
q(x | y)∑

x0

p̃(x0)q(y | x0) =∑
x0

p̃(x0)∑
y
q(x | y)q(y | x0)

=∑
x0

p̃(x0)q0(x | x0),

where we have used the reconstruction distribution

q0(x | x0) =∑
y
q(x | y)q(y | x0),

which can be sampled from by conditionally sampling a state for the hidden units, and then, given
the state of the hidden units, conditionally sampling a reconstruction of the visible units. The log-
likelihood we achieve with this lower-bound optimal distribution is given by

∑
x
p̃(x) log∑

x0

p̃(x0)q0(x | x0).

We will refer to this log-likelihood as the potential log-likelihood. Note that the potential log-
likelihood is not a true upper bound on the log-likelihood that can be achieved with greedy learn-
ing, as suboptimal solutions with respect to the lower bound might still give rise to higher log-
likelihoods. However, if such a solution was found, it would have been rather by accident than by
design. The situation is depicted in the cartoon in Figure 5.

4. Experiments

We performed two types of experiments. In the first, we tested the performance of our estimator.
In the second, we further investigated the capabilities of a DBN architecture proposed by Osindero
and Hinton (2008) as a model for natural images. The model consists of a GRBM in the first layer
and SRBMs in the subsequent layers.

For all but the topmost layer, our estimator requires evaluation of the unnormalized marginal
density over hidden states (see Figure 4). In an SRBM, however, integrating out the visible states is
analytically intractable. Fortunately, an RBM with the same hidden-to-visible connections and the
same bias weights but without the lateral connections turned out to be an efficient enough proposal
distribution. We estimated the unnormalized SRBM marginals using

q∗(y) =∑
x
q∗(x,y) =∑

x
q′(x | y)

q∗(x,y)
q′(x | y)

≈
1
N∑n

q∗(x(n),y)

q′(x(n) | y)
,

where q′ is the density of an RBM which approximates the density of the SRBM, q.

4.1 Testing the Estimator

As a first test, we considered a three-layer model for which the likelihood is still tractable. It em-
ployed 15 hidden units in each of the first two layers, 50 hidden units in the third layer and was
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layers true neg. log-likelihood est. neg. log-likelihood
1 2.0482569 2.0484440
2 2.0478912 2.0477577
3 2.0478672 2.0474685

Table 1: True and estimated negative log-likelihood in bits per component of a small DBN trained
on 4 by 4 image patches. The estimated likelihood closely matches the true likelihood.
Adding more layers to the network did not help to improve the performance if the GRBM
employed only few hidden units.

trained on 4 by 4 pixel image patches taken from the van Hateren image data set (van Hateren and
van der Schaaf, 1998). The image patches were preprocessed using a standard battery of prepro-
cessing steps including a log-transformation, a centering step and a whitening step. Additionally,
the DC component was projected out and only the remaining 15 components of each patch were
used for training (for a more detailed description of the preprocessing, see Eichhorn et al., 2009).
Brute-force and estimated results are given in Table 1.

We also compared results obtained with our estimator applied to larger models to results ob-
tained by Murray and Salakhutdinov (2009). Using the same preprocessing of the image patches
and the same hyperparameters as in Murray and Salakhutdinov (2009), we trained a two-layer model
with 2000 hidden units in the first layer and 500 hidden units in the second layer on 20 by 20 pixel
van Hateren image patches. In contrast to the preprocessing of the smaller image patches, the DC
component was not removed. We used 150000 patches for training and 50000 patches for testing
and obtained a negative log-likelihood of 2.047 bits per component on the test set, compared to
2.032 bits reported by Murray and Salakhutdinov (2009).

We further evaluated a two-layer model with 500 hidden units in the first and 2000 hidden units
in the second layer trained on a binarized version of the MNIST data set. For the first layer we
took the parameters from Salakhutdinov (2009), which were available online. We then tried to
match the training of the second-layer RBM with 2000 hidden units using the information given in
Salakhutdinov (2009) and Murray and Salakhutdinov (2009). Evaluating the model on the whole
test set, we obtained a result of 0.357 bits per component compared to 0.358 bits reported by Murray
and Salakhutdinov (2009).

We measured the statistical efficiency of our estimator in terms of the effective sample size (ESS)
(Kong et al., 1994). For N samples, target density p and proposal density q, the ESS is defined to be

N

1+Varq(y)
[
p(y)
q(y)

] =
N

1+D2[p(y)||q(y)]
.

D2 is the α-divergence with α = 2 and is also known as the χ2-divergence. In our case, the target
distribution is the conditional distribution over the hidden states of a DBN given a state for the
visible units. If p equals q, then the variance of the importance weights is zero, so that a single
sample from the posterior would suffice to get a perfect estimate of the unnormalized probability of
any data point. In that case, the ESS would be N.

Note that the success of training DBNs is also influenced by the ESS. The tightness of the lower
bound optimized during training depends on the goodness of the same approximation, although it is
measured in terms of the KL-divergence rather than the χ2-divergence (see Equation 11).
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Figure 6: Left: Distributions of relative effective sample sizes (ESS) for two-layer DBNs (thick
lines) and three-layer DBNs (thin lines) trained on 4 by 4 pixel image patches using
different training rules. The larger the ESS for a given data point, the more efficient is
our estimator in determining its probability. Right: Ditributions of relative ESSs for two
two-layer models trained on 20 by 20 pixel image patches. Both models were trained with
PCD but using different hyperparameters. While the GRBM yielded a better performance
for smaller σ, it also caused the evaluation and the training of subsequent layers to be
more difficult.

Because the distributions we are interested in are conditional distributions which are dependent
on the state of the visible units, we obtain a different ESS for each data point. Hence, we get
a distribution over ESSs for each model (Figure 6). We found that the quality of the proposal
distribution was strongly dependent on the parameters of the model. Training a model on the larger
image patches using the same hyperparameters as used by Osindero and Hinton (2008) and Murray
and Salakhutdinov (2009), for example, led to a distribution of ESSs which was sharply peaked
around 0.75. This made it easier to train subsequent layers and to evaluate the two-layer model.
Using a smaller value for the Gaussian noise, on the other hand, led to a better likelihood but also
a worse approximation to the posterior distribution. Consequently, getting accurate estimates of the
log-likelihood took longer (right plot in Figure 7).

On a single core of an AMD Opteron 6174 machine with 2.20 GHz and with an implementation
written in Python, it took us about 10 minutes to get accurate results for 50 data points taken from
the MNIST data set. Murray and Salakhutdinov (2009) report that they needed about 50 minutes
on a Pentium Xeon 3.00 GHz to get stable results for 50 data points. However, a fair comparison of
computational efficiency is difficult, even when the comparison is performed with the same machine
and the same programming framework is used. For the larger models trained on 20 by 20 van
Hateren image patches, it took us less than a second and up to a few minutes to get reasonably
accurate estimates for 50 samples (Figure 7). Note that even for the case where the distribution of
ESSs is peaked around a value very close to zero, evaluating a large number of training samples was
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Figure 7: Left: The log-likelihood in bits per component was estimated for 50 test samples using
different numbers of proposal samples. The difference between each estimate and the
most accurate estimate was then measured. The plots show the mean difference and its
standard deviation relative to the time it takes to compute the estimates. The bias in
the estimates is due to the logarithm. Right: The same plot for a different model. The
time it takes to get accurate estimates depends on the parameters of the model. Using the
parameters obtained with the hyperparameters suggested in (Osindero and Hinton, 2008),
already a single sample yielded good estimates of the log-likelihood (about 0.2 seconds).
But even for the case where our estimator showed the least statistical efficiency, it only
took a few minutes to evaluate 50 samples on a single CPU.

more than feasible. To further reduce computation time, the evaluation can easily be parallelized by
splitting the test set into batches which are evaluated separately.

One likely reason for the efficiency of our estimator is the optimization of the lower bound
during training (see discussion around Equation 11). This means that if the model is trained with a
different learning algorithm, it should become less efficient. We found that this was indeed the case
if models were further optimized using the wake-sleep algorithm (Figure 6).

4.2 Model Comparison

We compared the DBN’s performance to the performance of complete ICA (Comon, 1994; Eich-
horn et al., 2009) as well as several mixture distributions. Perhaps closest in interpretation to the
GRBM as well as to the DBN is the mixture of isotropic Gaussian distributions (MoIG) with identi-
cal covariances and varying means. Recall that the GRBM can be interpreted as a mixture of a very
large number of isotropic Gaussian distributions with weight sharing constraints. After the parame-
ters of the GRBM have been fixed, adding layers to the network only changes the prior distribution
over the Gaussians, but does not alter their means. Other models taken into account are mixtures
of Gaussians with unconstrained covariance but zero mean (MoG) and mixtures of elliptically con-
toured distributions with zero mean (MoEC) (Bethge and Hosseini, 2007), of which a special case
is the more well-known mixture of Gaussian scale mixtures (e.g., Guerrero-Colon et al., 2008).
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Figure 8: A comparison of different models. For each model, the estimated negative log-likelihood
in bits per data component is shown, averaged over 10 independent trials with indepen-
dent training and test sets. For the GRBM and DBN trained on 20 by 20 image patches,
the performance obtained from a single trial is shown. The number behind each model
hints either at the number of hidden units or at the number of mixture components used.
DBNs were trained using the greedy learning rule and fine-tuned using the wake-sleep al-
gorithm. Boltzmann machines were trained with PCD. Larger values correspond to worse
performance.

Using PCD, we trained a three-layer model with 100 hidden units per layer on the smaller 4 by
4 image patches. As expected, both the GRBM and the DBN performed better than the mixture of
isotropic Gaussians. Strikingly, however, the DBN was outperformed even by the mixture of Gaus-
sians with just two components. The overall results suggest that mixture models with freely varying
covariance are better suited for modeling the statistics of natural images than mixture models with
constrained covariance (Figure 8), which is consistent with previous observations that having a flex-
ible model of the covariance structure is important (e.g., Karklin and Lewicki, 2009; Ranzato et al.,
2010a).

Adding a second layer to the network only helped very little and we found that the better the
performance achieved by the GRBM, the smaller the improvement contributed by subsequent layers.
For the hyperparameters that led to the best performance, adding a third layer had no effect on the
likelihood and in some cases even led to a decrease in performance (Figure 9). This was despite the
apparently reasonable approximation to the posterior distribution over the hidden states (Figure 6).
The hyperparameters were selected by performing separate grid searches for the different layers
(for details, see Appendix A). PCD on average yielded a slightly worse performance than CD(5) or
CD(10), indicating that the Markov chain used during training to sample from the model converged
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Figure 9: Left: Estimated performance of three DBN-100 models trained on 4× 4 van Hateren
image patches using the greedy learning rule. Each point represents an average over
10 models trained on different training sets. Smaller values correspond to better perfor-
mance. Error bars were too small to be visible and were therefore left out. The dashed
lines indicate the estimated negative potential log-likelihood. Right: Performance af-
ter fine-tuning the model parameters with the two-layer and three-layer models with the
wake-sleep algorithm.

quickly to the true distribution. For other sets of hyperparameters we found that adding a third layer
was still able to yield some improvement, but the overall performance of the three-layer model
achieved with these hyperparameters was worse.

We also trained a two-layer DBN with 500 hidden units in the first layer and 2000 hidden units
in the third layer on 20 by 20 pixel image patches. Using PCD instead of CD(1) and a smaller
value for σ led to a performance which is about 0.18 bits per pixel better than the performance
reported by Murray and Salakhutdinov (2009). However, the performance achieved by the model
was again worse than the performance achieved by other, simpler models. As for the smaller model,
the improvement in performance of the GRBM led to a smaller improvement gained by adding a
second layer to the model. Despite the much larger second layer, the performance gain induced
by the second layer was even less than for the smaller models. Both patch sizes led to the same
ordering of the models and resulted in an overall similar picture (Figure 8).

The improvement of the DBN over the GRBM trained with PCD is about 0.05 bits per compo-
nent for the smaller model and 0.01 bits for the larger model. An important question is why this
improvement is so small. Insight into this question can be gained by evaluating the potential log-
likelihood, as it represents a practical limit to the performance which can be achieved by means of
the approximate greedy learning procedure and could in principle be evaluated even before train-
ing any additional layers. If the potential log-likelihood of a GRBM is close to its log-likelihood,
adding layers is a priori unlikely to prove useful. Unfortunately, exact evaluation of the potential
log-likelihood is intractable, as it involves two nested integrals with respect to the data distribution,

∫
p̃(x) log

∫
p̃(x0)q0(x | x0)dx0dx. (14)

3088



IN ALL LIKELIHOOD, DEEP BELIEF IS NOT ENOUGH

Figure 10: Estimated negative potential log-likelihood of the GRBM. Each plot represents an av-
erage over 10 GRBMs trained on different training sets. Error bars indicate one stan-
dard deviation. After 512000 samples to approximate the integrals of the potential log-
likelihood, the estimates have still not converged, suggesting that the true potential log-
likelihood is even worse.

Nevertheless, optimistic estimates of this quantity can still tell us something about the DBN’s capa-
bility to improve over the GRBM. We estimated the potential log-likelihood using the same set of
data samples to approximate both integrals, thereby encouraging optimistic estimation. Note that
estimating the potential log-likelihood in this manner is similar to evaluating the log-likelihood of
a kernel density estimate on the training data, although the reconstruction distribution q0(x | x0)
might not correspond to a valid kernel. Also note that by taking more and more data samples, the
estimate of the potential log-likelihood should become more and more accurate. Figure 10 there-
fore suggests that the negative potential log-likelihood of a GRBM trained with PCD is at least
1.72 or larger, which is still worse than the performance of, for example, the mixture of Gaussian
distributions with 5 components.

The potential log-likelihood is a joint property of the trained first-layer model and the greedy
learning procedure. If the greedy algorithm is responsible for the weak performance of the model, it
should be possible to get better results by using a non-greedy strategy. We therefore tried to improve
the model’s performance by fine-tuning the weights with the wake-sleep algorithm (Hinton et al.,
1995). We trained the model for another 100 epochs using the same set of hyperparameters but
with smaller learning rates. This led to a small improvement (Figure 9), but the likelihood remained
behind the performance of the mixture of Gaussians with two components. By applying the same
strategy to the larger model, we were unable to get any further improvements. If the learning rate
was chosen large enough to cause a measurable change in performance, the performance of the
model decreased.

3089



THEIS, GERWINN, SINZ AND BETHGE

5. Discussion

In this paper, we have introduced a new estimator for the likelihood of DBNs. We have shown that
it can be very efficient for models trained with the greedy learning algorithm and efficient enough
to evaluate models fine-tuned using the wake-sleep algorithm. However, as we have also seen, the
estimator’s performance depends on the particular parameters of the model and the way the model
was trained. The estimator is unbiased for the unnormalized likelihood, but only asymptotically
unbiased for the log-likelihood. When evaluating the log-likelihood, this means that the number of
samples from the proposal distribution has to be chosen large enough to ensure that the effects of
the bias are small. Since the number of proposal samples is the only parameter of our estimator and
the evaluation can generally be performed quickly, a good way to do this is to test the estimator for
different numbers of proposal samples on a smaller test set.

Using our estimator, we have shown that DBNs based on GRBMs and SRBMs are not well
suited for capturing the statistics of natural images. Since the family of DBNs includes a very large
number of models if we allow arbitrary Boltzmann machines in the definition, this of course does
not imply that no DBN is able to model natural images well. In fact, other models like the mcRBM
or mPoT (Ranzato and Hinton, 2010; Ranzato et al., 2010b) promise to be much better models
of natural images than the GRBM and can be used to construct DBNs. One goal of this paper,
however, was to see if a deep network with simple layer modules could perform well as a generative
model for natural images. While more complex Boltzmann machines are likely to achieve a better
likelihood, it is not clear why they should also be good choices as layer modules for constructing
DBNs. In particular, it is not clear why they should also lead to large improvements through the
addition of layers. In our experiments, better performances achieved with the first layer were always
accompanied by a decrease in the performance gained by adding layers. Note that a model which
achieves a high likelihood could still have a potential log-likelihood very close to it. This would
make a model a better model for natural images, but not the best choice as a layer module for DBNs
trained with the greedy learning algorithm.

In Ranzato et al. (2011) it was shown that adding a second-layer RBM to the mPoT model leads
to qualitatively different and visually more appealing samples. However, as we have shown in this
work, the appearance of samples can be misleading when judging the generative performance of a
probabilistic model. For the DBN based on GRBMs and SRBMs we arrive at a different conclusion
about the model’s capabilities than Osindero and Hinton (2008), who based their conclusions mainly
on statistics derived from model samples. We believe that it is therefore worth the effort to come up
with statistical estimators which directly target the likelihood or related quantities.

The relationship between generative models and models used for object recognition is not yet
fully understood. Hence, the implications of our results on the object recognition performance
of features learned by a DBN are also not clear. Most DBNs used to learn features for solving
supervised tasks rarely exceed more than a few layers (e.g., Ranzato and Hinton, 2010 show that the
effects of adding layers to a GRBM or mcRBM on object recognition performance can be small or
even adverse). This observation might be related to the observations made here, that adding layers
does not help much to improve the likelihood on natural image patches. A possible explanation
for the small contribution of each layer would be that too little information is carried by the hidden
representations of each layer about the respective visible states. This is consistent with a small
potential log-likelihood and would affect both object recognition and generative performance. If
the visible states can be perfectly reconstructed from the hidden states, that is, when q0(x | x0) =
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δ(x− x0), the potential log-likelihood reduces to the negative entropy of the data—the maximum
value for the likelihood that any model can achieve.

A much less frequently used hierarchical model is hierarchical ICA, for which a greedy learning
algorithm was introduced by Chen and Gopinath (2001) and which can be seen as a special case of
projection pursuit density estimation. In ICA, all the information about a visible state is retained in
the hidden representation, so that the potential log-likelihood is optimal for this layer module. As
shown in Figure 8, already a single ICA layer can compete with a DBN based on RBMs. Further-
more, adding layers to the network is guaranteed to improve the likelihood of the model (Chen and
Gopinath, 2001) and not just a lower bound as with the greedy learning algorithm for DBNs. Hos-
seini and Bethge (2009) have shown that adding layers does indeed give significant improvements
of the likelihood, although it was also shown that hierarchical ICA cannot compete with other, non-
hierarchical models of natural images. An interesting question is whether representations learned
by this model can also compete or outperform those learned by DBNs in supervised tasks. Compar-
ing the supervised performance of features learned with hierarchical ICA and the model discussed
here could shed further light on the importance of the likelihood when training DBNs for supervised
tasks.

A lot of research has been devoted to creating new layer modules (e.g., Roux et al., 2010; Ran-
zato and Hinton, 2010; Lee and Ng, 2007; Welling et al., 2005) and finding better approximations
to ML learning for training these (e.g., Gutmann and Hyvärinen, 2010; Sohl-Dickstein et al., 2009;
Tieleman, 2008). To our knowledge, much less work has been done to improve the general strategy
for training DBNs since its introduction. Currently, the lower layers are trained in a way which is
independent of whether additional layers will be added to the network. A better performance could
be achieved by devising alternative learning schemes in which the lower layers are optimized to bet-
ter assist the upper layers, for example by making sure that the potential log-likelihood stays large.
Directly regularizing with respect to the potential log-likelihood is difficult due to the nested inte-
grals (see Equation 14). An improvement could nevertheless indirectly be achieved by maximizing
the information that is carried in the hidden representations about the states of the visible units.

An alternative strategy would be to use non-greedy learning strategies such as the wake-sleep
algorithm, for which the potential log-likelihood no longer plays a critical role. We showed that
in one case, the wake-sleep algorithm was able to further improve the likelihood. In another case,
we were unable to get any improvement. While more extensive tests are necessary before final
conclusions about its effectiveness should be made, its potential to improve the likelihood of the
DBN discussed here seems rather limited.

A very recent paper by Ngiam et al. (2011) introduced an alternative approach to hierarchical
modeling of natural images. Instead of stacking probabilistic models on top of each other, the ap-
proach is based on a single Boltzmann machine in which the energy function itself is hierarchically
organized. This allows them to jointly train all parameters of the network and also to evaluate the
likelihood much more easily. The paper reports the likelihood of several instances of the model and
shows that the model is able to take advantage of multiple layers. Unfortunately, it missed to also
report the likelihood of other, more well known models of natural images. This makes it hard to
judge the performance of the model, as the absolute value of the likelihood is highly dependent on
the preprocessing of the data.

Despite good arguments for why hierarchical models should excel at modeling natural images,
no hierarchical model has been convincingly shown to yield state-of-the-art generative performance
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and outperform other, much simpler models, such as the mixture of Gaussians, in terms of the
log-likelihood.
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Appendix A.

In all experiments, we used stochastic gradient descent with a batch size of 100 data points to train
DBNs. For the 4 by 4 pixel image patches, we used 5 ·104 training and 5 ·104 test samples in each
trial. For the case of 20 by 20 pixel image patches, we used 15 ·104 training and 5 ·104 test samples.

When PCD was used for training, the persistent Markov chain was updated using one Gibbs
sampling step before each computation of the gradient.

For the GRBM with 100 hidden units trained on 4 by 4 pixel image patches, we used a σ of
0.65 and trained the models for 200 epochs. Together with CD(1) we used a learning rate of 10−2

and weight decay of 10−2 times the learning rate. With PCD, CD(5) and CD(10) we used a learning
rate of 5 ·10−3. For all parameters and all models, a momentum parameter of 0.9 used.

We initialized the second-layer SRBM so that its marginal distribution matched that of the
GRBM and trained it for 200 epochs. During training, approximate samples from the conditional
distribution of the visible units were obtained using 20 parallel mean field updates with a damping
parameter of 0.2 (Welling and Hinton, 2002). For all sampling schemes, we used a learning rate of
5 ·10−3 for hidden-to-visible connections and a learning rate of 5 ·10−4 for lateral connections. The
weight decay was set to 5 ·10−3. The third layer was randomly initialized and had to be trained for
500 epochs before convergence was reached. It employed the same hyperparameters as the second
layer.

The hyperparameters were selected by performing several grid searches. After the hyperpa-
rameters of the GRBM had been selected, we performed a second grid-search for the second-layer
SRBM and used the same hyperparameters for the third-layer SRBM. We performed separate grid
searches for CD(1) and PCD, but used the hyperparameters found for PCD also with CD(5) and
CD(10). Each grid search comprised 75 hyperparameter combinations for the GRBM and 45 hyper-
parameter combinations for the SRBM. After the hyperparameters had been selected, we retrained
the model.

For the larger model applied to 20 by 20 pixel image patches, we trained both layers for 200
epochs using PCD. For the GRBM, we used a σ of 0.7, a learning rate of 10−3 and weight decay of
10−2. For the SRBM, we used a learning rate of 10−3 for the hidden-to-visible connections and 5 ·
10−4 for the lateral connections. We used 30 parallel mean field updates with a damping rate of 0.2
to sample the visible units. The hyperparameters of the GRBM were selected by performing a grid
search over 66 hyperparameter combinations. For the SRBM we tried 18 different combinations.
Due to the high computational cost of training the two-layer model, we took the parameters which
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achieved the best result in the grid search for our comparison and evaluated it using a separate test
set.

Partition functions were estimated using AIS. For the smaller model we used 103 intermediate
distributions with a linear annealing schedule, 100 samples in the first and 103 samples in the second
and third layer. For the larger model we used a linear annealing schedule, 2 · 104 intermediate
distributions and 100 importance samples in both layers. The transition operator for the SRBM was
implemented using Gibbs sampling. Conditioned on the hidden units, the visible units were updated
in a random order.

To estimate the unnormalized log-probability of each data point with respect to the smaller
models, we used 200 samples from the proposal distribution of our estimator for the two-layer, and
500 samples for the three-layer model. For the larger model we used 2000 samples, although less
would have been sufficient.

For the fine-tuning of the smaller models with the wake-sleep algorithm, we reduced the learning
rates to 14 of the original learning rates. Using larger learning rates led to a decrease in performance.
We used the same hyperparameters for the DBN representing the proposal distribution. We trained
the models for 100 epochs. Training the models for 200 epochs led to no further improvements.
We controlled for the estimator’s bias by testing the estimators behavior on a smaller test set for
different numbers of proposal samples. We used 4000 samples from the proposal distribution of
our estimator to estimate the log-likelihood. Using only 500 samples led to essentially the same
results, but the small difference in performance between the two-layer and three-layer model was
less visible.

To estimate the unnormalized hidden marginals of SRBMs, we used 100 proposal samples from
an approximating RBM with the same hidden-to-visible connections and same bias weights.

Lastly, note that the performance of the GRBM and the DBNmight still be improved by taking a
larger number of hidden units. A post-hoc analysis revealed that the GRBM does indeed not overfit
but continues to improve its performance if the variance is decreased while increasing the number
of hidden units. This is of course also true for the other models we evaluated, whose performance
can still be improved if we allow them to use more parameters.

Code for training and evaluating deep belief networks using our estimator can be found under

http://www.bethgelab.org/code/theis2011/.
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Abstract
Common visual codebook generation methods used in a bag of visual words model, for example,
k-means or Gaussian Mixture Model, use the Euclidean distance to cluster features into visual code
words. However, most popular visual descriptors are histograms of image measurements. It has
been shown that with histogram features, the Histogram Intersection Kernel (HIK) is more effective
than the Euclidean distance in supervised learning tasks. In this paper, we demonstrate that HIK can
be used in an unsupervised manner to significantly improve the generation of visual codebooks. We
propose a histogram kernel k-means algorithm which is easy to implement and runs almost as fast
as the standard k-means. The HIK codebooks have consistently higher recognition accuracy over
k-means codebooks by 2–4% in several benchmark object and scene recognition data sets. The
algorithm is also generalized to arbitrary additive kernels. Its speed is thousands of times faster
than a naive implementation of the kernel k-means algorithm. In addition, we propose a one-class
SVM formulation to create more effective visual code words. Finally, we show that the standard k-
median clustering method can be used for visual codebook generation and can act as a compromise
between the HIK / additive kernel and the k-means approaches.
Keywords: visual codebook, additive kernel, histogram intersection kernel

1. Introduction

Bag of visual words (BOV) is currently a popular approach to object and scene recognition in com-
puter vision. Local features are extracted from an image, and the image is then considered as a bag
of features, that is, completely ignoring the spatial relationship among features. Probably due to the
lack of an efficient and effective mechanism to encode spatial information among features, BOV is
widely adopted in vision tasks. A typical BOV-based method consists of the following stages:

• Extract features. Visual features and their corresponding descriptors are extracted from
local image patches. Two typical visual descriptors are SIFT by Lowe (2004) and HOG by
Dalal and Triggs (2005). Usually two ways are used to determine where to extract local
features. Some methods extract features at certain detected interest points. Other methods
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densely sample local features in a regular grid of pixel locations, for example, in Lazebnik
et al. (2006). Visual descriptors extracted from these local patches are considered as feature
vectors that describe these local regions.

• Generate a codebook and map features to visual code words. A visual codebook is a
method that divides the space of visual descriptors into several regions. Features in one region
correspond to the same visual code word, which is represented by an integer between 1 and
the size of the codebook. An image is then encoded as a histogram of visual code words.

• Learn and test. Various machine learning methods can be applied to the histogram represen-
tation of images. For example, SVM is a frequently used learner in BOV models for object
and scene recognition.

The quality of the visual codebook has a significant impact on the success of BOV-based meth-
ods. Popular and successful methods for object and scene categorization typically employ unsu-
pervised learning methods (for example, k-means clustering or Gaussian Mixture Model) to obtain
a visual codebook. When there is a need to compute the dissimilarity of two feature vectors, the
Euclidean distance is the most frequently used metric.

However, in spite of its mathematical simplicity and efficacy in many other applications, we find
that the Euclidean distance is not the most suitable similarity (or dissimilarity) measure for creating
visual codebooks.

Two observations support our argument. First, most of the popular visual descriptors are based
on histograms of various image measurements such as spatial gradients, optical flow, or color. For
example, both SIFT and HOG use histograms of pixel intensity gradients in their descriptors. Sec-
ond, for the case of supervised classification, it has been shown that the �2 distance is not the most
effective metric for comparing two histograms, for example, in Maji et al. (2008). In particular,
the Histogram Intersection Kernel (HIK) was demonstrated to give significantly improved results.
Other similarity measures designed for comparing histograms, for example, the χ2 measure, have
also exhibited higher accuracy in SVM classification than the dot-product kernel (which corresponds
to the Euclidean distance). One common characteristic of HIK and χ2 is that they are instances in a
family of kernels called the additive kernel (Maji and Berg, 2009; Vedaldi and Zisserman, 2010).

In this paper we demonstrate that HIK and other additive kernels can be used to generate bet-
ter visual codebooks with unsupervised learning, in comparison to the popular k-means clustering
method. The proposed methods are simple to implement, and our software implementations are
freely available. We show that using roughly twice the computational time of the standard k-means
based method (which uses the �2 distance), we can gain consistent accuracy improvements of 2–4%
across a diverse collection of object and scene recognition problems. Specifically, this paper makes
four contributions:

First, we show that HIK generates better codebooks and thus improves recognition accuracy. We
generalize and speedup the method in Maji et al. (2008), such that the generation and application of
HIK codebook has the same theoretical complexity as the standard k-means. Our proposed method
achieves consistent performance improvements over k-means codebooks, and has established state-
of-the-art performance numbers for four benchmark object and scene recognition data sets. We also
show that a one-class SVM formulation can be used to improve the effectiveness of HIK codebooks,
by providing well-separated, compact clusters in the histogram feature space.

Second, we show that all additive kernels can be used to efficiently generate visual codebooks.
The HIK visual codebook creation method is also generalized to be compatible with any additive
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kernel, while the learning cost remains unchanged as O(nmd), where n, m, and d are the number
of features to be clustered, the codebook size, and the feature dimension, respectively. In contrast,
a naive implementation has complexity O(n2d). Since n � m, in practice the speedup is more
than three orders of magnitude. Similar recognition accuracies are observed for different additive
kernels, including HIK and χ2. More generally, we suggest that HIK (or other additive kernel such
as χ2) should be used whenever two histograms are compared.

Third, we empirically show that k-median is a compromise between k-means and additive kernel
codebooks. K-median’s performance is consistently lower than the proposed HIK codebook, but
better than k-means in most cases. On the other hand, it runs as fast as the proposed method, and
also uses less storage.

Finally, we validate our method through experiments on standard data sets, using both the SIFT
feature and CENTRIST, a recently proposed feature based on CENsus TRansform hISTogram (Wu
and Rehg, 2011), which has been shown to offer performance advantages for scene classification.

The rest of the paper is organized as follows.1 Related methods are discussed in Section 2. Sec-
tion 3 introduces the histogram intersection kernel and various other additive kernels, and presents
a general kernel k-means based method for visual codebook generation. In Section 4 we propose
methods to efficiently generate visual codebooks for HIK and other additive kernels. Experiments
are shown in Section 5, and Section 6 concludes this paper.

2. Related Works

In this section we will briefly review two categories of related works: different kernels for comparing
histograms, and various visual codebook generation methods.

The main point of this paper is that when histogram features are employed, the histogram inter-
section kernel or another additive kernel should be used to compare them. HIK was introduced by
Swain and Ballard (1991) for color-based object recognition. Odone et al. (2005) demonstrated that
HIK forms a positive definite kernel when feature values are non-negative integers, facilitating its
use in SVM classifiers. Simultaneously, works such as Lowe (2004) and Dalal and Triggs (2005)
demonstrated the value of histogram features for a variety of tasks. However, the high computational
cost of HIK at run-time remained a barrier to its use in practice. This barrier was removed for the
case of SVM classifiers by various recent research works (Maji et al., 2008; Wu, 2010; Vedaldi and
Zisserman, 2010), based on techniques to accelerate the kernel evaluations. Additive kernels, which
include HIK as one of its instances, have also shown excellent performance in SVM classification
of histograms (Vedaldi and Zisserman, 2010).

In this paper, we extend the results of Maji et al. (2008) in two ways: First, we demonstrate
that the speedup of HIK can be extended to codebook generation (and unsupervised learning in
general). Second, our Algorithm 2 provides an exact O(d) method, which makes it possible to
obtain the maximum efficiency without the loss of accuracy.

On the visual codebook side, k-means is the most widely used method for visual codebook gen-
eration (Sivic and Zisserman, 2003). However, several alternative strategies have been explored.
K-means usually positions its clusters almost exclusively around the densest regions. A mean-shift
type clustering method was used to overcome this drawback in Jurie and Triggs (2005). There are
also information theoretic methods that try to capture the “semantic” common visual components
by minimizing information loss (Liu and Shah, 2007; Lazebnik and Raginsky, 2009). An extreme

1. A preliminary version of portions of this work has been published in Wu and Rehg (2009).
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method was presented in Tuytelaars and Schmid (2007), which divided the space of visual descrip-
tors into regular lattice instead of learning a division of the space from training data. There are also
efforts to build hash functions (that is, multiple binary functions / hash bits) in order to accelerate
distance computations (Weiss et al., 2009). Recently, sparse coding is also used to vector quantize
visual descriptors, for example, in Yang et al. (2009) and Gao et al. (2010). In this work, we propose
a new alternative to k-means, based on the histogram intersection kernel and other additive kernels.

In k-means based methods, a visual code word is usually represented by the cluster center (that
is, the average of all features that belong to this code word), which is simple and fast to compute.
It was discovered that assigning a feature to multiple code words (which is also termed as soft-
assignment) may improve the codebook quality (Philbin et al., 2008; van Gemert et al., 2008).
Within a probabilistic framework, code words can be represented by the Gaussian Mixture Model
(GMM) (Perronnin, 2008; Winn et al., 2005). GMM has better representation power than a single
cluster center. However, it requires more computational power. Another interesting representation
is the hyperfeature in Agarwal and Triggs (2008), which considers the mapped code word indexes
as a type of image feature and repeatedly generates new codebooks and code words into a hierarchy.

Methods have been proposed to accelerate the space division and code word mapping. Nistér
and Stewénius (2006) used a tree structure to divide the space of visual descriptors hierarchically
and Moosmann et al. (2008) used ensembles of randomly created cluster trees. Both methods map
visual features to code words much faster than k-means.

Some methods do not follow the divide then represent pattern. For example, Yang et al. (2008)
unified the codebook generation step with the classifier learning step seamlessly. In another in-
teresting research work, Vogel and Schiele (2007) manually specified a few code words and used
supervised learning to learn these concepts from manually labeled examples.

It is worth noting that all of these previous methods used the �2 distance metric (except Gao
et al., 2010 which followed our previous work Wu and Rehg, 2009, and used HIK). They could
therefore in principle be improved through the use of HIK or other additive kernels.

3. Visual Codebook for Additive Kernels

In this section we will first introduce the Histogram Intersection Kernel (HIK), and then its gener-
alization to the additive kernel case. In order to make our presentation clearer, we will use boldface
characters (for example, x) to represent vectors. The scalar x j is the j-th dimension of x.

3.1 Histogram Intersection Kernel

Let x= (x1, . . . ,xd) ∈ Rd
+ be a histogram of non-negative real values with d histogram bins, where

R+ is the set of non-negative real numbers. x could represent an image (for example, a histogram of
visual code words in the bag of visual words model) or an image patch (for example, a SIFT visual
descriptor). The histogram intersection kernel κHI is defined as follows (Swain and Ballard, 1991):

κHI(x1,x2) =
d

∑
j=1

min(x1, j,x2, j) . (1)

It is proved in Wu (2010) that HIK is a valid positive definite kernel when the data x ∈ Rd
+. Thus

there exists a mapping φ that maps any histogram x to a corresponding vector φ(x) in a high di-
mensional (possibly infinite dimensional) feature space Φ, such that κHI(x1,x2) = φ(x1)Tφ(x2).
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Through the nonlinear mapping φ, histogram similarity is equivalent to a dot product in the feature
space Φ. Furthermore, when the feature values are non-negative integers, that is, x ∈ Nd , we can
explicitly find the mapping φ(·). If we constrain the feature values to be bounded from above by  v,
that is, 0 ≤ x j ≤  v for all x and 1 ≤ j ≤ d, the mapping φ(·) for HIK is then the following unary
representation B(·) of an integer (Odone et al., 2005):

B(x) : x �→

⎡⎣1 · · ·1︸ ︷︷ ︸
x 1′s

0 · · ·0︸ ︷︷ ︸
 v−x 0′s

⎤⎦ .

It is easy to verify that κHI(x1,x2) = B(x1)
TB(x2), in which B(x) is the concatenation of

B(x1),B(x2), . . . ,B(xd). Note that B(x j) ∈ R  v and B(x) ∈ Rd  v.
This kernel trick makes it possible to use HIK in creating codebooks, while keeping the simplic-

ity of k-means clustering. That is, we may use a kernel k-means algorithm (Schölkopf et al., 1998)
to generate visual codebooks. In Algorithm 1, histograms are compared using HIK instead of the
inappropriate Euclidean distance if we set φ(·) = B(·).2

When the data points x ∈ Rd , that is, allowing negative feature values, HIK is not a positive
definite kernel. And it can not be used in Algorithm 1 to generate visual codebooks.3

3.2 Additive Kernels

Algorithm 1 is not restricted to work only with the histogram intersection kernel. It is a general ker-
nel k-means algorithm which can be used together with any positive definite kernel. In particular,
we are interested in a family of kernels called the additive kernels (Maji and Berg, 2009). Algo-
rithm 1 instantiated with an additive kernel can be greatly accelerated, for which we will present in
Section 4.

An additive kernel is a positive definite kernel that can be expressed in the following form

κ(x1,x2) =
d

∑
j=1

κ̂(x1, j,x2, j) .

A positive semidefinite function κ̂(·, ·) is used to compute the similarity of two scalar values. An
additive kernel κ then compares two vectors by comparing and summing up every dimension of
these two vectors using κ̂.

It is obvious that the histogram intersection kernel is an instance of the additive kernels. In fact,
a family of additive kernels can be derived from HIK. If g(·) is a non-negative and non-decreasing
function, then the generalized histogram intersection kernel,

κ(x1,x2) =
d

∑
j=1

g(min(x1, j,x2, j)) ,

is a valid additive kernel. HIK corresponds to g(x) = x,x≥ 0. The GHI kernel proposed in Boughor-
bel et al. (2005) is also an instance of this family with g(x) = xβ for β> 0 and x ≥ 0. In this paper

2. Note that since k-means++ is used in Algorithm 1 and it is a randomized algorithm, two runs of Algorithm 1 with
the same input will possibly generate different results.

3. HIK is a conditionally positive definite kernel when x ∈ Rd (Maji and Berg, 2009). It can still be used in some SVM
solvers.
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Algorithm 1 Codebook Generation Using Kernel k-means

1: Input: x1, . . . ,xn ∈ Rd
+ (n input histograms), m (size of the codebook), and ε (tolerance).

2: {The output is a function that maps a histogram to its visual code word index, w1(x∗) : Rd
+ →

{1, . . . ,m}.}
3: t ← 0, {Initialize t, the iteration counter, to 0.}
εt ← ∞. {Initialize the current clustering error to ∞.}

4: Initialize the visual codebook. First, use the k-means++ method (Arthur and Vassilvitskii,
2007) to choose m distinct examples from the input set {x1, . . . ,xn}. We denote these examples
as  x1, . . . ,  xm. Second, use mi = φ(  xi), i = 1,2, . . . ,m, as the initial visual code words. φ(·) is
the mapping associated with a positive definite kernel.

5: repeat
6: For every input histogram xi, find the visual code word that xi belongs to, and denote the

index of this visual code word as li:

li ← argmin
1≤ j≤m

‖φ(xi)−m j‖
2, 1 ≤ i≤ n.

7: For every visual code word mi, find the set of the input histograms that belong to this visual
code word, and denote this set as πi:

πi = { j|l j = i,1 ≤ j ≤ n}, 1 ≤ i≤ m.

8: For every visual code wordmi, update it to be the centroid of input histograms that belong to
this visual code word:

mi ←
∑ j∈πi φ(x j)

|πi|
, 1 ≤ i≤ m.

9: Update the iteration counter and compute the current clustering error:

t ← t+1,

εt =
1
n

n

∑
i=1

‖φ(xi)−mli‖
2.

10: until εt−1 − εt ≤ ε.
11: Output: For any histogram x∗ ∈ Rd

+, its corresponding visual code word index is:

w1(x∗) = argmin
1≤i≤m

‖φ(x∗)−mi‖
2. (2)

we will explore one specific instance from this family, which we call exponential HIK (or eHIK),
defined as

κeHI(x1,x2) =
d

∑
j=1

min(eγx1, j ,eγx2, j), γ> 0 .

χ2 is another additive kernel that has been used for comparing histograms. The original χ2

measure is defined as χ2(x1,x2) =
(x1−x2)

2

x1+x2
for x1,x2 ∈ R+. Alternatively, a variant of χ2 is explored
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in Vedaldi and Zisserman (2010) for SVM classification when the feature values are positive:

κχ2(x1,x2) =
d

∑
j=1

2x1, jx2, j
x1, j+ x2, j

.

We will adopt this definition in our experiments.

3.3 K-median Codebook Generation

Although k-means (or equivalently, using the �2 distance) is the most popular codebook genera-
tion method, the histogram intersection kernel has a closer connection to the �1 distance. For two
numbers a and b, it is easy to show that

2min(a,b)+ |a−b|= a+b .

As a consequence, we have

2κHI(x1,x2)+‖x1−x2‖1 = ‖x1‖1+‖x2‖1 ,

in which ‖x‖1 is the �1 norm of x. In cases when ‖x‖1 is constant for any histogram x, κHI and the
�1 distance are linearly correlated.

For an array x1, . . . ,xn, it is well known that the value which minimizes the �1 error,

x∗ = argmin
x

n

∑
i=1

|x− xi| ,

equals the median value of the array. Thus, k-median is a natural alternative for codebook genera-
tion. The only difference between k-median and k-means is that k-median uses �1 instead of �2 as
the distance metric.

K-median has been less popular than k-means for the creation of visual codebooks. An online
k-median algorithm has been used by Larlus and Jurie to create visual codebooks in the Pascal
challenge (Everingham et al., 2006). In Section 5, we empirically compare visual codebooks gener-
ated by the k-median algorithm to those generated by both the k-means algorithm and the proposed
additive kernel k-means method.

4. The Efficient Additive Kernel k-means Clustering Method

As mentioned in Section 3.2, additive kernels are attractive for kernel k-means because very fast
clustering is possible for these kernels. In this section, we first propose an efficient kernel k-means
algorithm for the histogram intersection kernel, and then generalize the algorithm to all additive
kernels.

4.1 Common Computation Bottleneck

Given n examples in Rd , the standard k-means clustering method (that is, φ(x) = x in Algorithm 1)
requires O(nmd) steps in one iteration (from line 5 to line 10). Similarly, the k-median algorithm
also requires O(nmd) steps in one iteration.

When φ(x) �= x, the centersmi are vectors in the unrealized, high dimensional spaceΦ. mi might
even be infinite dimensional for some kernels (for example, the RBF kernel). The computations are
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then carried out in the following way (using the usual kernel trick φ(x1)Tφ(x2) = κ(x1,x2) such that
mi does not need to be explicitly generated):

‖φ(x∗)−mi‖
2

=

∥∥∥∥φ(x∗)− ∑ j∈πi φ(x j)

|πi|

∥∥∥∥2
=‖φ(x∗)‖2+

1
|πi|2

∑
j,k∈πi

κ(x j,xk)−
2
|πi|

∑
j∈πi

κ(x∗,x j). (3)

The first term in Equation 3 does not affect the result in lines 6 and 11 of Algorithm 1. The
second term does not change within a specific iteration of Algorithm 1. Thus, we need to compute
this term only once for every visual code word in each iteration. Most of the computations are then
spent in computing the last term ∑ j∈πi κ(x∗,x j).

A naive implementation to compute this term will be costly. For example, if we use the his-
togram intersection kernel and compute this term literally using Equation 1, the complexity is
O(|πi|d). The complexity of line 6 in Algorithm 1 will be on the order

n

∑
i=1

m|πli |d =
m

∑
i=1

(
∑
j:l j=i

m|πi|d

)
=

m

∑
i=1

m|πi|
2d ,

since there are |πi| input histograms x j satisfying l j = i. Using the Cauchy-Schwarz inequality, it is
clear that

m

∑
i=1

|πi|
2 ≥

1
m

(
m

∑
i=1

|πi|

)2
=
n2

m
,

because ∑m
i=1 |πi|= n. In practice, the sizes of πi are usually similar for different i, and one iteration

of this naive implementation will have complexity O(n2d). We generally have n�m, thus a kernel
k-means will be much more expensive than the standard k-means. In summary, the last term in
Equation 3 is the bottleneck in the computations.

The form of this term, ∑ j∈πi κ(x∗,x j), is similar to the binary SVM classifier, which has the
following form:

sign

(
∑
i∈π

αiyiκ(x∗,xi)+ρ

)
, (4)

where xi, αi, and yi are, respectively, the support vectors, and their corresponding weights and
labels.

Based on these observations, we propose a more general objective,

f (x∗) =∑
i∈π
ciκ(x∗,xi) , (5)

where π indexes a set of histograms (data points to be clustered, or support vectors) and ci are
constant coefficients. Note that both Equation 4 and the last term in Equation 3 are special forms of
Equation 5, with ci = αiyi and ci = 1, respectively.

Our goal is then to reduce the complexity of Equation 5 to O(d) (the same complexity as that of
standard k-means when φ(x) = x), which will in turn yield efficient kernel k-means clustering and
SVM testing methods. We will first present the algorithm for HIK, and then its generalization to
arbitrary additive kernels.
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4.2 Efficient Computation of HIK

Maji et al. (2008) proposed fast methods to compute Equation 4 for the histogram intersection kernel
to improve the testing speed of HIK SVM classifiers, which achieved an exact answer of Equation 4
in O(d log2 |π|) steps and an approximate answer in O(d) steps. In this paper we propose a variant
that finds the exact answer for Equation 5 in O(d) steps when the feature values are non-negative
integers.

A histogram of visual code word indexes has the property that every histogram component is
a non-negative integer, that is, it is a vector in Nd . Similarly, a visual descriptor histogram can
usually be transformed into the space Nd . For example, the SIFT descriptors are stored as vectors
in N128. In general, a vector in Rd

+ can be transformed into Nd by a linear transformation followed
by quantization.

In the rest of this paper, we assume that any histogram x= (x1, . . . ,xd) satisfies that xi ∈ N and
0 ≤ xi ≤  v for all i. Then the quantity f (x∗) can be computed as follows:

f (x∗) =∑
i∈π
ciκHI(x∗,xi)

=∑
i∈π

∑
1≤ j≤d

cimin(x∗, j,xi, j)

= ∑
1≤ j≤d

(
∑
i∈π
cimin(x∗, j,xi, j)

)

= ∑
1≤ j≤d

(
∑

i:x∗, j≥xi, j

cixi, j+ x∗, j ∑
i:x∗, j<xi, j

ci

)
. (6)

Note that the two summands in Equation 6 can both be pre-computed. It is shown in Maji et al.
(2008) that Equation 6 is a piece-wise linear function of x∗, j. Thus using a binary search for x∗, j,
Equation 6 can be computed in O(d log |π|) steps in Maji et al. (2008).

However, since we assume that x∗, j is an integer in the range [0  v], we have an even faster
method. Different dimensions of x∗ make independent contributions to f (x∗) in Equation 6, because
of the additive property. Thus it is sufficient to solve the problem for one single feature dimension
at a time. And because there are only  v+ 1 possibilities for x∗, j given a fixed j, we just need to
pre-compute the solutions for these  v+1 values. Let T be a table of size d  v, with

T ( j,k)← ∑
i:k≥xi, j

cixi, j+ k ∑
i:k<xi, j

ci

for all 1 ≤ j ≤ d and 1 ≤ k ≤  v. Then it is clear that

f (x∗) =
d

∑
j=1

T ( j,x∗, j) . (7)

This method is summarized in Algorithm 2. Note that since T ( j,0) = 0 for all j, there is no need to
store it.

It is obvious that f (x∗) can be evaluated in O(d) steps after the table T is pre-computed. And
because Algorithm 2 only involves table lookup and summation, it is faster (that is, has less over-
head) than the approximation scheme in Maji et al. (2008), which is also O(d). Depending on the

3105



WU, TAN AND REHG

Algorithm 2 Fast Computation of HIK Sums

1: Input: n histograms x1, . . . ,xn in Nd , with 0 ≤ xi, j ≤  v for 1 ≤ i≤ n and 1 ≤ j ≤ d.
2: {The output is a fast method to compute

f (x∗) =
n

∑
i=1

ciκHI(x∗,xi) ,

where x∗ ∈ Nd and 0 ≤ x∗, j ≤  v,∀ 1 ≤ j ≤ d.}
3: Create T , a d×  v table.
4: For 1 ≤ j ≤ d, 1 ≤ k ≤  v,

T ( j,k)← ∑
i:k≥xi, j

cixi, j+ k ∑
i:k<xi, j

ci .

5: Output:

f (x∗) =
d

∑
j=1

T ( j,x∗ j) .

relative size of  v and the number of approximation bins used in Maji et al. (2008), Algorithm 2’s
storage requirement, O(  vd), could be larger or smaller than that of Maji et al. (2008). It is also
worth noting that under our assumptions, Algorithm 2’s result is precise rather than approximate.

Both the complexity of the pre-computation and the storage requirement are linear in  v, which
is a parameter specified by users.4 Our experiments show that while too small a  v usually produces
inferior results, a large  v does not necessarily improve performance. In this paper, we choose  v =
128, which seems to give the best results in our experiments.

Our algorithm has the same computational complexity as the standard k-means when generating
a visual codebook or mapping histograms to visual code word indexes (that is, Equation 2 or Equa-
tion 3). In practice, the proposed method takes about twice the time of k-means. In summary, the
proposed method generates a visual codebook that can not only run almost as fast as the k-means
method, but also can use the non-linear similarity measure κHI that is most suitable for comparing
histograms.

4.3 Generalization to Additive Kernels

Algorithm 2 can be generalized from HIK to arbitrary additive kernels. The following two condi-
tions are also satisfied by all additive kernels: different dimensions of x∗ make independent contri-
butions to f (x∗); and there are only  v+1 possibilities for x∗, j when j is fixed. We just need to find
an appropriate value for T ( j,k), and Equation 7 is then valid for all additive kernels. Of course, we
assume that the feature values are natural numbers bounded from above by  v.

For an additive kernel

κ(x1,x2) =
d

∑
j=1

κ̂(x1, j,x2, j) ,

4. A simple implementation to pre-compute the table T takes O(nd  v) steps. We will present a O(d(n+  v)) implemen-
tation of Algorithm 2 in Section 4.3.
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we propose Algorithm 3 to efficiently assign values to the table T . Considering a fixed dimension
j, by the independence property, we have

T ( j,k) =
n

∑
i=1

ciκ̂(xi, j,k) . (8)

In general, it takes O(nd  v) steps to fill the table T for an additive kernel if we literally translate
Equation 8. However, for additive kernels, Algorithm 3 uses a sequential update strategy whose
complexity is only O(d(n+  v2)).

Algorithm 3 Assign values to T for an arbitrary additive kernel

1: Input: n histograms x1, . . . ,xn in Nd , with 0 ≤ xi, j ≤  v, for all 1 ≤ i≤ n and 1 ≤ j ≤ d; and an
additive kernel κ(x1,x2) = ∑d

j=1 κ̂(x1, j,x2, j).
2: {The output is a table T ∈Rd  v for fast computation of Equation 5, where x∗ ∈Nd and 0 ≤ x∗, j ≤

 v,∀ 1 ≤ j ≤ d.}
3: for j = 1, . . . ,d do
4: Create a vector h ∈ R  v, and h← 0.
5: for i= 1, . . . ,n do
6: hxi, j ← hxi, j + ci .
7: end for
8: T ( j,0) = ∑n

i=1 κ̂(xi, j,0).
9: for k = 1, . . . ,  v do

10: T ( j,k)← T ( j,k−1)+
 v

∑
v=0

hv (κ̂(v,k)− κ̂(v,k−1)) .

11: end for
12: end for
13: Output: A table T such that

f (x∗) =
d

∑
j=1

T ( j,x∗ j) .

For a fixed feature dimension j,

T ( j,k)−T ( j,k−1)

=
n

∑
i=1

ci (κ̂(xi, j,k)− κ̂(xi, j,k−1))

=
 v

∑
v=0

(
∑

i:xi, j=v
ci (κ̂(v,k)− κ̂(v,k−1))

)

=
 v

∑
v=0

((
∑

i:xi, j=v
ci

)
(κ̂(v,k)− κ̂(v,k−1))

)
.

In Algorithm 3, we make a weighted histogram h for the j-th dimension such that hv = ∑i:xi, j=v ci.
This is the first inner-loop, and its complexity is O(n). It then takes O(  v2) steps to sequentially
update the j-th row of the table T . In total, Algorithm 3 takes O(d(n+  v2)) steps. Since in general
n�  v, Algorithm 3 is more efficient than a O(nd  v) method.
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k-means Kernel k-means (naive) Kernel k-means (proposed)
Storage md nd md  v
Running time O(nmd) O(n2d) O(nmd)

Table 1: Space and running time requirements of the standard k-means, a naive implementation of
kernel k-means, and the proposed method. The space requirement does not include the
memory required to store the input histograms. The running time requirement shows the
complexity of one kernel k-means iteration.

One difference between Algorithms 2 and 3 is that T ( j,0) may not be equal to 0 in Algorithm 3.
A more important difference is that Algorithm 2 can be further improved to O(d(n+  v)). Note that
in Algorithm 2, κ̂(x,y) = min(x,y). We then have κ̂(v,k)− κ̂(v,k− 1) equals 1 if v > k− 1 and
0 if otherwise. In consequence, T ( j,k)−T ( j,k− 1) = ∑  v

v=k hv, which can in turn be sequentially
updated and takes only O(1) steps to compute for every k value. The complexity of Algorithm 2 is
then O(d(n+  v)).

In practice, we generally have n� m, n� d, and n�  v. Typical values in our experiments are
n= 300,000, d = 128 or d = 256, m= 200, and  v= 128. The complexity of kernel k-means is then
dominated by the line 6 of Algorithm 1. Space and running time requirements of various algorithms
are summarized in Table 1. The naive implementation does not need additional storage during the
visual codebook generation step. However, it needs to keep all input histograms (nd numbers) for
the quantization step. The other two methods do not need to keep input histograms for quantization.

The theoretical complexities in Table 1 match the empirical running time in our experiments.
For example, in one experiment using the Caltech 101 data set (refer to Section 5), the naive imple-
mentation and the proposed method took 2403 and 1.2 seconds, respectively. The empirical speedup
ratio is 2000. In this experiment, the theoretical speedup ratio is O(n/m), and n/m ≈ 1200. Since
the naive implementation is impractical for large-scale problems, we will not provide empirical
results of this method in our experiments.5

4.4 One Class SVM Codebook Representation

A codebook generated by the k-means algorithm first divides the space Rd into m regions, and then
represents each code word (or, region) by the centroid of the examples (histogram, feature vectors,
etc.) that fall into this region. This approach is optimal if we assume that vectors in all regions
follow Gaussian distributions with the same spherical covariance matrix (that is, only differ in their
means).

This assumption rarely holds. Different regions usually have very different densities and co-
variance structures. Simply dividing the space Rd into a Voronoi diagram from the set of region
centers is, in many cases, misleading. However, further refinements are usually computationally
prohibitive. For example, if we model regions as Gaussian distributions with distinct covariance
matrices, the generation of codebooks and mapping from visual features to code words will require
much more storage and computational resources than we can afford.

5. Since one kernel k-means iteration takes more than 2400 seconds, it will take months to finish running all the exper-
iments in Section 5.
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We propose to use one-class SVM (Schölkopf et al., 2001) to represent the divided regions in an
effective and computationally-efficient way. Given a set of histograms in a region xπ = {x1, . . . ,xn},
we construct a one-class SVM with parameter ν ∈ (0,1],

sign

(
∑
i∈π

αiκ(x,xi)+ρ

)
, (9)

where αi’s are non-negative, sparse, and ∑iαi = 1. Intuitively, a one-class SVM classifier seeks a
“simple” (compact) subset of xπ (or the divided region) that retains a large portion of the histograms
(or densities). It is proved that ν is the upper bound on the fraction of outliers (that is, on which
Equation 9 are less than 0), and at the same time a lower bound on the fraction of support vectors
(that is, αi �= 0) (Schölkopf et al., 2001).

The one-class SVM summarizes the distribution of histograms inside a visual code word. It
takes into consideration the shape and density of the histogram distribution. It seeks to include
most of the histograms (at least (1− ν)|π|) in a compact hypersphere in the feature space, while
paying less attention to those borderline cases (at most ν|π| examples). We believe that this compact
hypersphere better summarizes a visual code word.

At the same time, these new code words can be computed very efficiently. Equation 9 is evalu-
ated in O(d) steps because it is again a special case of Algorithm 2. We propose Algorithm 4 to use
one-class SVM to generate visual code words. Note that we use the space Rd because Algorithm 4
is not restricted to Nd . In this paper, we set the parameter ν= 0.2.

Algorithm 4 One-class SVM Code Word Generation
1: Input: Same as that of Algorithm 1.
2: Use Algorithm 1 to generate the divisions πi (i= 1, . . . ,m) from the input histograms x1, . . . ,xn
in Rd

+.
3: For each division 1≤ i≤ m, train a one-class SVM from its data xπi with a parameter ν,

wi2(x∗) = ∑
j∈πi

α jκ(x∗,x j)+ρi . (10)

4: Output: For any histogram x∗ ∈ Rd
+,

w2(x∗) = argmax
1≤i≤m

wi2(x∗) .

In many applications, a histogram x=(x1, . . . ,xd) satisfies the condition that ‖x‖1=∑d
j=1 x j=N

is a constant. Under this condition, Equation 10 is equivalent to

wi2(x∗) = r2i −‖φ(x∗)−mi‖
2 ,

where mi = ∑ j∈πi α jx j and r2i = N + ‖mi‖
2− 2ρi. In other words, a histogram is considered as

belonging to the i-th visual word if it is inside the sphere (in the feature spaceΦ) centered atmi with
radius ri. A sphere in Φ is different from a usual k-means sphere because it respects the similarity
measure κ, and its radius ri automatically adapts to the distribution of histograms in a visual word.
Note that different kernels such as the dot-product kernel or κHI can be used in Algorithm 4.
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5. Experiments

We validate the proposed methods using four benchmark data sets in computer vision: the Caltech
101 object recognition data set (Fei-Fei et al., 2004), the 15 class scene recognition data set (Lazeb-
nik et al., 2006), the 8 class sports events data set (Li and Fei-Fei, 2007), and the 67 class indoor
data set (Quattoni and Torralba, 2009).

5.1 Setup

In each data set, the available data is randomly split into a training set and a testing set based on
published protocols on these data sets. The random splitting is repeated 5 times, and the average
accuracy is reported. In each train/test splitting, a visual codebook is generated using the training
images, and both training and testing images are transformed into histograms of code words. Accu-
racy is computed as the mean accuracy of all categories (that is, the average of diagonal entries in
the confusion matrix).

The proposed algorithms can efficiently process a huge number of histogram features, for ex-
ample, approximately 200k to 320k histograms are clustered across the first three data sets in less
than 6 minute. In the 67 class indoor data set, more than 1 million histograms are clustered.

In the BOV model, we use 16×16 image patches and densely sample features over a grid with
a spacing of 2, 4, or 8 pixels. We use two types of visual descriptors: SIFT for Caltech 101,
CENTRIST (CENsus TRansform hISTogram, refer to Wu and Rehg (2011) for more details) for the
scene, event, and indoor data sets.6 All feature vectors are scaled and rounded such that a histogram
only contains non-negative integers that approximately sum to 128 (thus  v= 128 is always valid.)

The first step is to use visual descriptors from the training images to form a visual codebook,
in which we use m = 200 to generate 200 visual code words. Next, every feature is mapped to an
integer (code word index) between 1 and m. Thus an image or image sub-window is represented by
a histogram of code words in the specified image region. In order to incorporate spatial information,
we use the spatial hierarchy in Wu and Rehg (2008). An image is represented by the concatenation
of histograms from all the 31 sub-windows, which is a 6200 dimensional histogram. To capture
the edge information, we sometimes use Sobel gradients of an input image as an additional input,
and concatenate histograms from the original input and the Sobel gradient image (which is 12400
dimensional). Following Boiman et al. (2008), we also sample features at 5 scales.

SVM is used for classification. LIBSVM (Chang and Lin, 2001) is used for the scene and
sports data set. Since LIBSVM uses the 1-vs-1 strategy, it will produce too many classifiers for the
Caltech 101 and indoor data set (more than 5000 and 2200 respectively). Therefore we instead use
the Crammer & Singer formulation in BSVM (Hsu and Lin, 2006) for these two data sets. Since
we are classifying histograms, we modified both LIBSVM and BSVM so that they are able to use
the histogram intersection kernel.7 It is observed that HIK is robust to the C parameter in SVM.
For example, using the LIBSVM solver, classification accuracy remains almost unchanged after
C > 0.001, as empirically showed in Wu (2010). Thus we do not use cross-validation to choose a
different C value for every different training set. Instead, we use cross-validation to find C = 2 and

6. We will also evaluate the effect when these two feature types are switched in these data sets.
7. The methods proposed in this paper are publicly available in the libHIK package, which can be downloaded from

http://c2inet.sce.ntu.edu.sg/Jianxin/projects/libHIK/libHIK.htm. The modified version of LIBSVM
and BSVM are also included in libHIK.
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C = 0.03125 for LIBSVM and BSVM respectively on a sample training set. These C values are
then used on all data sets for LIBSVM and BSVM, respectively.

5.2 Main Results

We conducted several sets of experiments to validate the proposed algorithms. Experimental results
are organized using the following rule: texts in the italic type summarize findings from one set of
experiments and details are described after the italic texts. Mean / standard deviation values and
paired t-tests are used to show the benefit of histogram kernel codebooks (Algorithm 1), while the
Wilcoxon test is used for evaluating the one-class SVM code word generation method (Algorithm 4).
We first present the main results, which are based on the experimental results summarized in Table 2.

In Table 2, sub-tables (a), (b), (c), and (d) are results for the Caltech 101, 15 class scene, 8
class sports, and the 67 class indoor data sets, respectively. κHI and κLIN means that a histogram
intersection or a linear kernel visual codebook is used, respectively. ocsvm and ¬ocsvm indicate
whether one-class SVM is used in generating code words. B and ¬B indicate whether Sobel images
are concatenated or not. And s= 4 or s= 8 is the grid step size when densely sampling features. The
number of training/testing images in each category are indicated in the sub-table captions, which
follows the protocol of previously published results on these data sets.

Histogram Intersection Kernel Visual Codebook (Algorithm 1) greatly improves classification
accuracy. We compare the classification accuracies of systems that use Algorithm 1 with κHI, the
standard k-means algorithm (that is, using κLIN), and k-median. From the experimental results in
Table 2, it is obvious that in all four data sets, the classification accuracy with a κHI-based codebook
is consistently higher than that with a k-means codebook. Using a paired t-test with significance
level 0.05, the differences are statistically significant in 21 out of the 24 cases in Table 2, when
comparing κHI and κLIN based codebooks. The three exceptions all come from the 8 class sports
event data set, when one-class SVM is not used (that is, comparing the second row to the fifth row
in Table 2c). HIK codebooks also have advantages over k-median codebooks in most cases.

HIK codebook can be computed efficiently (Algorithm 2). We have shown that Algorithm 2
evaluates in O(d) steps, in the same order as k-means. Empirically, the κHI-based method spent
less than 2 times CPU cycles than that of k-means. For example, the proposed method took 105
seconds to generate a codebook for the Caltech 101 data set, while k-means used 56 seconds in our
experiments.

One-class SVM improves histogram intersection kernel code words (Algorithm 4). The t-test
is not powerful enough here, because we have only 5 paired samples and they are not necessarily
normally distributed. The Wilcoxon signed-rank test is more appropriate (Demšar, 2006) to show
the effect of Algorithm 4. Algorithm 4 improved the classification accuracy of the κHI-based method
in 11 out of 12 cases in Table 2. The Wilcoxon test shows that the difference is significant at
significance level 0.01.

In summary, using HIK codebooks and one-class SVM together generated the best results in
almost all cases (best results are shown in boldface within each column of Table 2).

One-Class SVM degrades the standard k-means code words. It is interesting to observe a com-
pletely reversed trend when κLIN is used with one-class SVM. Applying Algorithm 4 in the standard
k-means method reduced accuracy in all cases. Since a vector in Rd is not an appropriate under-
standing of a histogram with d bins, we conjecture that Algorithm 4 with κLIN produced a better
division of the space Rd , but probably a worse one in the space of histograms.
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Figure 1: Effects of one-class SVM.

Figure 1 shows the effect of applying Algorithm 4 to example code words. The distribution of
squared distance to cluster center becomes more compact in case of κHI with a minor increase in
the average error. However, in the k-means case, the distances spread to larger values.

K-median is a compromise between k-means and HIK codebooks. As shown in Table 2, HIK
codebooks outperformed k-median codebooks in most cases.8 However, k-median generally out-
performed the popular k-means codebooks. Furthermore, k-median requires less memory than the
proposed method. Qualitative comparisons of these methods are summarized in Table 3.

5.3 Experimental Results for Additive Kernels

Experiments with codebooks generated using the other two additive kernels (χ2 and exponential
HIK) are shown in Table 4. For ease of comparison, results of HIK (without one-class SVM)
codebooks are also shown in Table 4.

HIK and χ2 based codebooks have very similar accuracies, and both outperform the exponential
HIK codebooks. However, all three additive kernel based codebooks generally have higher accura-
cies than the standard k-means codebook generation method. Since the time complexity of additive
kernel based codebooks is the same as that of the k-means method, it is advantageous to apply such
kernels in generating visual codebooks. For example, the χ2 kernel in some cases leads to higher
accuracies than the histogram intersection kernel.

5.4 Effects of Information Content

Next we study the effects of using different types and amounts of information, for example, different
types of base features and step sizes in dense feature sampling.

8. There is not an obvious kernel for the �1 distance, so we did not use one-class SVM for codebooks generated by
k-median.
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B,s= 4 B,s= 8 ¬B,s= 8

κHI,ocsvm 67.44±0.95% 65.20±0.91% 61.00±0.90%
κHI,¬ocsvm 66.54±0.58% 64.11±0.84% 60.33±0.95%
k-median 66.38±0.79% 63.65±0.94% 59.64±1.03%
κLIN,ocsvm 62.69±0.80% 60.09±0.92% 56.31±1.13%
κLIN,¬ocsvm 64.39±0.92% 61.20±0.95% 57.74±0.70%

(a) Caltech 101, 15 train, 20 test

B,s= 4 B,s= 8 ¬B,s= 8

κHI,ocsvm 84.12±0.52% 84.00±0.46% 82.02±0.54%
κHI,¬ocsvm 83.59±0.45% 83.74±0.42% 81.77±0.49%
k-median 83.04±0.61% 82.70±0.42% 80.98±0.50%
κLIN,ocsvm 79.84±0.78% 79.88±0.41% 77.00±0.80%
κLIN,¬ocsvm 82.41±0.59% 82.31±0.60% 80.02±0.58%

(b) 15 class scene, 100 train, rest test

B,s= 4 B,s= 8 ¬B,s= 8

κHI,ocsvm 84.21±0.99% 83.54±1.13% 81.33±1.56%
κHI,¬ocsvm 83.17±1.01% 83.13±0.85% 81.87±1.14%
k-median 82.13±1.30% 81.71±1.30% 80.25±1.12%
κLIN,ocsvm 80.42±1.44% 79.42±1.51% 77.46±0.83%
κLIN,¬ocsvm 82.54±0.86% 82.29±1.38% 81.42±0.76%

(c) 8 class sports, 70 train, 60 test

B,s= 4 B,s= 8 ¬B,s= 8

κHI,ocsvm 43.01±0.81% 41.75±0.94% 35.09±1.04%
κHI,¬ocsvm 41.73±0.80% 40.07±0.27% 33.55±0.26%
k-median 41.81±1.11% 40.22±1.07% 34.04±1.56%
κLIN,ocsvm 35.94±1.14% 34.63±1.24% 28.69±1.04%
κLIN,¬ocsvm 39.79±0.47% 38.28±0.39% 32.49±0.72%

(d) 67 class indoor, 80 train, 20 test

Table 2: Results of HIK, k-median and k-means codebooks and one-class SVM code words. The
best result in each column is shown in boldface.

HIK k-median k-means
Computation time 2 2 1
Codebook storage size  v 1 1

Table 3: Comparison of three codebook generation methods. k-means is used as a baseline, that is,
a value ‘2’ means approximately 200% of that of k-means.
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B,s= 4 B,s= 8 ¬B,s= 8

κHI 66.54±0.58% 64.11±0.84% 60.33±0.95%
κχ2 67.35±0.77% 64.31±1.28% 60.63±0.85%
κeHI 66.18±0.72% 63.71±0.58% 57.13±0.89%

(a) Caltech 101, 15 train, 20 test

B,s= 4 B,s= 8 ¬B,s= 8

κHI 83.59±0.45% 83.74±0.42% 81.77±0.49%
κχ2 83.67±0.42% 83.56±0.51% 81.60±0.46%
κeHI 83.17±0.52% 82.78±0.51% 80.79±0.71%

(b) 15 class scene, 100 train, rest test

B,s= 4 B,s= 8 ¬B,s= 8

κHI 83.17±1.01% 83.13±0.85% 81.87±1.14%
κχ2 83.54±1.01% 83.21±1.31% 81.75±0.65%
κeHI 80.71±1.60% 80.67±1.81% 78.46±1.05%

(c) 8 class sports, 70 train, 60 test

B,s= 4 B,s= 8 ¬B,s= 8

κHI 41.73±0.80% 40.07±0.27% 33.55±0.26%
κχ2 41.85±1.03% 40.22±1.01% 33.51±0.99%
κeHI 38.97±0.93% 37.04±1.12% 31.72±0.84%

(d) 67 class indoor, 80 train, 20 test

Table 4: Results of HIK, χ2 and exponential HIK codebooks. One-class SVM code word generation
is not used. The best result in each column is shown in boldface.

Caltech 101 15 scene 8 sports 67 indoor

53.25±0.80% 78.54±0.22% 81.17±0.65% 33.48±0.59%
61.00±0.90% 82.02±0.54% 81.33±1.56% 35.09±1.04%

Table 5: Results when features are sampled in only 1 image scale and 5 scales, respectively. HIK
codebooks are used, with ocsvm, ¬B and s= 8.

Sampling features at 5 scales improves accuracy. It is advantageous to sample features from
multiple scaled versions of the input image. Also, Table 5 reinforces the conclusions from Sec-
tion 5.2.

Smaller step size is better. Similarly, a smaller step size means that more features are sampled.
Table 2 shows that when other conditions were the same, s= 4 outperformed s= 8 in general. We
observed differences between object and scene recognition. The accuracy difference in Caltech 101
is significant. In the sports and indoor data set, s = 4 slightly outperformed s = 8 and they are
indistinguishable in the 15 class scene data set. Thus it is not necessary to compute s= 2 results for
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Caltech 101 15 scene 8 sports 67 indoor
60.99±0.67% 79.86±0.30% 82.33±0.74% 38.04±1.24%
65.20±0.91% 84.00±0.46% 83.54±1.13% 41.75±0.94%

Table 6: Results when feature type is switched. We use B, s = 8, and ocSVM. The second row
contains numbers extracted from Table 2, and the first row are results when feature type is
switched.

the two scene recognition data sets. In Caltech 101, however, s = 2 further improved recognition
accuracy to 67.82±0.59% (using κHI, ocSVM, and B.)

Use the right feature for different tasks. SIFT is widely used in object recognition for its per-
formance. And CENTRIST has been shown as a suitable feature for place and scene recognition in
Wu and Rehg (2011). As shown in Table 6, if we use SIFT for scene recognition and CENTRIST
for object recognition, the recognition accuracies are reduced.

More code words are (sometimes) better. We also experimented with different numbers of code
words. In the scene recognition tasks, we did not observe significant changes in recognition accu-
racies. In the Caltech 101 data set, however, a higher accuracy 70.74± 0.69% was achieved using
1000 code words (with κHI, ocSVM, B, and s= 2). In comparison, using standard k-means with 1000
code words (together with B, s= 2, and ¬ocSVM which is the better choice for κLIN), the accuracy is
67.89±1.11%. The proposed method is significantly better than standard k-means codebooks with
more visual code words.

In summary, we need to choose the appropriate feature for a specific task (CENTRIST for scene
recognition and SIFT for object recognition), and to incorporate as much information as possible.

What’s more interesting is the different behaviors of object and scene recognition problems
exhibited in our experiments. Scene recognition requires different type of features (CENTRIST
instead of SIFT) and less information (performance almost stabilized when step size is 8 and code-
book size is 200). We strongly recommend the CENTRIST descriptor, or its variant like PACT (Wu
and Rehg, 2008), and the proposed algorithms for recognizing place and scene categories.

6. Conclusion

In this article, we show that when the histogram intersection kernel is used as the similarity measure
in clustering visual descriptors that are histograms, the generated visual codebooks produce better
code words and as a consequence, improve the bag of visual words model. We propose a HIK based
codebook generation method which runs almost as fast as k-means and has consistently higher
accuracies than k-means codebooks by 2–4% in several benchmark object and scene recognition
data sets. As an alternative to k-means, in which cluster centroids are used to represent code words,
we proposed a one-class SVM formulation to generate better visual code words. We also generalize
the proposed visual codebook generation method to arbitrary additive kernels. In particular, this
extends our speedup results to the popular χ2 kernel. The proposed algorithms achieve state-of-the-
art accuracies on four benchmark object and scene recognition data sets.

Although k-median is rarely used to generate codebooks, we empirically evaluated k-median
codebooks and recommend it as a compromise between the proposed method and k-means. K-
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median codebooks have lower accuracies than HIK codebooks but usually have higher accuracy
than k-means codebooks. They also require less memory than HIK codebooks.

We provide a software package, named libHIK, which contains implementation of the methods
proposed in this paper. The software is available at http://c2inet.sce.ntu.edu.sg/Jianxin/
projects/libHIK/libHIK.htm.
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Abstract
Many popular linear classifiers, such as logistic regression, boosting, or SVM, are trained by op-
timizing a margin-based risk function. Traditionally, these risk functions are computed based on
a labeled data set. We develop a novel technique for estimating such risks using only unlabeled
data and the marginal label distribution. We prove that the proposed risk estimator is consistent
on high-dimensional data sets and demonstrate it on synthetic and real-world data. In particular,
we show how the estimate is used for evaluating classifiers in transfer learning, and for training
classifiers with no labeled data whatsoever.
Keywords: classification, large margin, maximum likelihood

1. Introduction

Many popular linear classifiers, such as logistic regression, boosting, or SVM, are trained by op-
timizing a margin-based risk function. For standard linear classifiers Ŷ = sign∑θ jXj with Y ∈
{−1,+1}, and X ,θ ∈ Rd the margin is defined as the product

Y fθ(X) where fθ(X)
def
=

d

∑
j=1

θ jXj.

Training such classifiers involves choosing a particular value of θ. This is done by minimizing the
risk or expected loss

R(θ) = E p(X ,Y )L(Y, fθ(X)) (1)

c©2011 Krishnakumar Balasubramanian, Pinar Donmez, and Guy Lebanon.
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with the three most popular loss functions

L1(Y, fθ(X)) = exp(−Y fθ(X)) , (2)

L2(Y, fθ(X)) = log(1+ exp(−Y fθ(X))) and (3)

L3(Y, fθ(X)) = (1−Y fθ(X))+ (4)

being exponential loss L1 (boosting), logloss L2 (logistic regression) and hinge loss L3 (SVM)
respectively (A+ above corresponds to A if A> 0 and 0 otherwise).

Since the risk R(θ) depends on the unknown distribution p, it is usually replaced during training
with its empirical counterpart

Rn(θ) =
1
n

n

∑
i=1

L(Y (i), fθ(X
(i))) (5)

based on a labeled training set

(X (1),Y (1)), . . . ,(X (n),Y (n))
iid
∼ p (6)

leading to the following estimator

θ̂n = argmin
θ

Rn(θ).

Note, however, that evaluating and minimizing Rn requires labeled data (6). While suitable in some
cases, there are certainly situations in which labeled data is difficult or impossible to obtain.

In this paper we construct an estimator for R(θ) using only unlabeled data, that is using

X (1), . . . ,X (n) iid
∼ p (7)

instead of (6). Our estimator is based on the assumption that when the data is high dimensional
(d→ ∞) the quantities

fθ(X)|{Y = y}, y ∈ {−1,+1} (8)

are normally distributed. This phenomenon is supported by empirical evidence and may also be de-
rived using non-iid central limit theorems. We then observe that the limit distributions of (8) may be
estimated from unlabeled data (7) and that these distributions may be used to measure margin-based
losses such as (2)-(4). We examine two novel unsupervised applications: (i) estimating margin-
based losses in transfer learning and (ii) training margin-based classifiers. We investigate these
applications theoretically and also provide empirical results on synthetic and real-world data. Our
empirical evaluation shows the effectiveness of the proposed framework in risk estimation and clas-
sifier training without any labeled data.

The consequences of estimating R(θ) without labels are indeed profound. Label scarcity is a
well known problem which has lead to the emergence of semisupervised learning: learning using a
few labeled examples and many unlabeled ones. The techniques we develop lead to a new paradigm
that goes beyond semisupervised learning in requiring no labels whatsoever.
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2. Unsupervised Risk Estimation

In this section we describe in detail the proposed estimation framework and discuss its theoretical
properties. Specifically, we construct an estimator for R(θ) defined in (1) using the unlabeled data
(7) which we denote R̂n(θ ;X (1), . . . ,X (n)) or simply R̂n(θ) (to distinguish it from Rn in (5)).

Our estimation is based on two assumptions. The first assumption is that the label marginals
p(Y ) are known and that p(Y = 1) �= p(Y = −1). While this assumption may seem restrictive at
first, there are many cases where it holds. Examples include medical diagnosis (p(Y ) is the well
known marginal disease frequency), handwriting recognition or OCR (p(Y ) is the easily computable
marginal frequencies of different letters in the English language), life expectancy prediction (p(Y )
is based on marginal life expectancy tables). In these and other examples p(Y ) is known with great
accuracy even if labeled data is unavailable. Our experiments show that assuming a wrong marginal
p′(Y ) causes a graceful performance degradation in |p(Y )− p′(Y )|. Furthermore, the assumption of
a known p(Y ) may be replaced with a weaker form in which we know the ordering of the marginal
distributions, for example, p(Y = 1) > p(Y = −1), but without knowing the specific values of the
marginal distributions.

The second assumption is that the quantity fθ(X)|Y follows a normal distribution. As fθ(X)|Y
is a linear combination of random variables, it is frequently normal when X is high dimensional.
From a theoretical perspective this assumption is motivated by the central limit theorem (CLT). The
classical CLT states that fθ(X) =∑d

i=1θiXi|Y is approximately normal for large d if the data compo-
nents X1, . . . ,Xd are iid given Y . A more general CLT states that fθ(X)|Y is asymptotically normal
if X1, . . . ,Xd|Y are independent (but not necessary identically distributed). Even more general CLTs
state that fθ(X)|Y is asymptotically normal if X1, . . . ,Xd|Y are not independent but their dependency
is limited in some way. We examine this issue in Section 2.1 and also show that the normality
assumption holds empirically for several standard data sets.

To derive the estimator we rewrite (1) by taking expectation with respect to Y and α= fθ(X)

R(θ) = E p( fθ(X),Y )L(Y, fθ(X)) = ∑
y∈{−1,+1}

p(y)
∫
R
p( fθ(X) = α|y)L(y,α)dα. (9)

Equation (9) involves three terms L(y,α), p(y) and p( fθ(X) = α|y). The loss function L is
known and poses no difficulty. The second term p(y) is assumed to be known (see discussion
above). The third term is assumed to be normal fθ(X) |{Y = y} = ∑i θiXi |{Y = y} ∼ N(μy,σy)
with parameters μy,σy, y ∈ {−1,1} that are estimated by maximizing the likelihood of a Gaussian
mixture model (we denote μ= (μ1,μ−1) and σ2 = (σ21,σ

2
−1). These estimated parameters are used

to construct the plug-in estimator R̂n(θ) as follows:

�n(μ,σ) =
n

∑
i=1

log ∑
y(i)∈{−1,+1}

p(y(i))pμy,σy( fθ(X
(i))|y(i)).

(μ̂(n), σ̂(n)) = argmax
μ,σ

�n(μ,σ).

R̂n(θ) = ∑
y∈{−1,+1}

p(y)
∫
R
p
μ̂(n)y ,σ̂(n)y

( fθ(X) = α|y)L(y,α)dα.

(10)

(11)

(12)

We make the following observations.
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1. Although we do not denote it explicitly, μy and σy are functions of θ.

2. The loglikelihood (10) does not use labeled data (it marginalizes over the label y(i)).

3. The parameters of the loglikelihood (10) are μ= (μ1,μ−1) and σ = (σ1,σ−1) rather than the
parameter θ associated with the margin-based classifier. We consider the latter one as a fixed
constant at this point.

4. The estimation problem (11) is equivalent to the problem of maximum likelihood for means
and variances of a Gaussian mixture model where the label marginals are assumed to be
known. It is well known that in this case (barring the symmetric case of a uniform p(y)) the
MLE converges to the true parameter values (Teicher, 1963).

5. The estimator R̂n (12) is consistent in the limit of infinite unlabeled data

P
(
lim
n→∞

R̂n(θ) = R(θ)
)
= 1.

6. The two risk estimators R̂n(θ) (12) and Rn(θ) (5) approximate the expected loss R(θ). The
latter uses labeled samples and is typically more accurate than the former for a fixed n.

7. Under suitable conditions argminθ R̂n(θ) converges to the expected risk minimizer

P

(
lim
n→∞

argmin
θ∈Θ

R̂n(θ) = argmin
θ∈Θ

R(θ)

)
= 1.

This far reaching conclusion implies that in cases where argminθR(θ) is the Bayes classifier
(as is the case with exponential loss, log loss, and hinge loss) we can retrieve the optimal
classifier without a single labeled data point.

2.1 Asymptotic Normality of fθ(X)|Y

The quantity fθ(X)|Y is essentially a sum of d random variables which under some conditions for
large d is likely to be normally distributed. One way to verify this is empirically, as we show in
Figures 1-3 which contrast the histogram with a fitted normal pdf for text, digit images, and face
images data. For these data sets the dimensionality d is sufficiently high to provide a nearly normal
fθ(X)|Y . For example, in the case of text documents (Xi is the relative number of times word i
appeared in the document) d corresponds to the vocabulary size which is typically a large number
in the range 103− 105. Similarly, in the case of image classification (Xi denotes the brightness of
the i-pixel) the dimensionality is on the order of 102−104.

Figures 1-3 show that in these cases of text and image data fθ(X)|Y is approximately normal
for both randomly drawn θ vectors (Figure 1) and for θ representing estimated classifiers (Figures 2
and 3). A caveat in this case is that normality may not hold when θ is sparse, as may happen for
example for L1 regularized models (last row of Figure 2).

From a theoretical standpoint normality may be argued using a central limit theorem. We ex-
amine below several progressively more general central limit theorems and discuss whether these
theorems are likely to hold in practice for high dimensional data. The original central limit theorem
states that ∑d

i=1Zi is approximately normal for large d if Zi are iid.
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RCV1 text data face images
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−5 0 5 −5 0 5 −5 0 5

MNIST handwritten digit images

Figure 1: Centered histograms of fθ(X)|{Y = 1} overlayed with the pdf of a fitted Gaussian for
randomly drawn θ vectors (θi ∼U(−1/2,1/2)). The columns represent data sets (RCV1
text data, Lewis et al., 2004, MNIST digit images, and face images, Pham et al., 2002) and
the rows represent multiple random draws. For uniformity we subtracted the empirical
mean and divided by the empirical standard deviation. The twelve panels show that even
in moderate dimensionality (RCV1: 1000 top words, MNIST digits: 784 pixels, face
images: 400 pixels) the assumption that fθ(X)|Y is normal holds often for randomly
drawn θ.
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RCV1 text data face images
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Figure 2: Centered histograms of fθ(X)|{Y = 1} overlayed with the pdf of a fitted Gaussian for
multiple θ vectors (four rows: Fisher’s LDA, logistic regression, l2 regularized logistic
regression, and l1 regularized logistic regression-all regularization parameters were se-
lected by cross validation) and data sets (columns: RCV1 text data, Lewis et al., 2004,
MNIST digit images, and face images, Pham et al., 2002). For uniformity we subtracted
the empirical mean and divided by the empirical standard deviation. The twelve panels
show that even in moderate dimensionality (RCV1: 1000 top words, MNIST digits: 784
pixels, face images: 400 pixels) the assumption that fθ(X)|Y is normal holds well for fit-
ted θ values (except perhaps for L1 regularization in the last row which promotes sparse
θ).
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USPS ISOLET
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Figure 3: Centered histograms of fθ(X)|{Y = 1} overlayed with the pdf of a fitted Gaussian for
multiple θ vectors (four rows: Fisher’s LDA, logistic regression, l2 regularized logistic
regression, and l1 regularized logistic regression-all regularization parameters were se-
lected by cross validation) and data sets (columns: USPS Handwritten Digits, Arcene
data set, and ISOLET). For uniformity we subtracted the empirical mean and divided by
the empirical standard deviation. The twelve panels further confirm that the assumption
that fθ(X)|Y is normal holds well for fitted θ values (except perhaps for L1 regularization
in the last row which promotes sparse θ) for various data sets.

Proposition 1 (de-Moivre) If Zi, i ∈ N are iid with expectation μ and variance σ2 and
 Zd = d−1∑d

i=1Zi then we have the following convergence in distribution
√
d(  Zd−μ)/σ� N(0,1) as d→ ∞.
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As a result, the quantity∑d
i=1Zi (which is a linear transformation of

√
d(  Zd−μ)/σ) is approximately

normal for large d. This relatively restricted theorem is unlikely to hold in most practical cases as
the data dimensions are often not iid.

A more general CLT does not require the summands Zi to be identically distributed.

Proposition 2 (Lindberg) For Zi, i ∈ N independent with expectation μi and variance σ2
i , and de-

noting s2
d = ∑d

i=1σ
2
i , we have the following convergence in distribution as d→ ∞

s−1
d

d

∑
i=1

(Zi−μi)� N(0,1)

if the following condition holds for every ε> 0

lim
d→∞

s−2
d

d

∑
i=1

E(Zi−μi)
21{|Xi−μi|>εsd} = 0. (13)

This CLT is more general as it only requires that the data dimensions be independent. The condition
(13) is relatively mild and specifies that contributions of each of the Zi to the variance sd should not
dominate it. Nevertheless, the Lindberg CLT is still inapplicable for dependent data dimensions.

More general CLTs replace the condition that Zi, i ∈ N be independent with the notion of m(k)-
dependence.

Definition 3 The random variables Zi, i∈N are said to be m(k)-dependent if whenever s−r>m(k)
the two sets {Z1, . . . ,Zr}, {Zs, . . . ,Zk} are independent.

An early CLT for m(k)-dependent RVs was provided by Hoeffding and Robbins (1948). Below is a
slightly weakened version of the CLT, as proved in Berk (1973).

Proposition 4 (Berk) For each k ∈ N let d(k) and m(k) be increasing sequences and suppose that

Z(k)1 , . . . ,Z(k)d(k) is an m(k)-dependent sequence of random variables. If

1. E |Z(k)i |2 ≤M for all i and k,

2. Var(Z(k)i+1 + . . .+Z(k)j )≤ ( j− i)K for all i, j,k,

3. limk→∞Var(Z
(k)
1 + . . .+Z(k)d(k))/d(k) exists and is non-zero, and

4. limk→∞m2(k)/d(k) = 0

then ∑
d(k)
i=1 Z

(k)
i√

d(k)
is asymptotically normal as k→ ∞.

Proposition 4 states that under mild conditions the sum ofm(k)-dependent RVs is asymptotically
normal. If m(k) is a constant, that is, m(k) =m, m(k)-dependence implies that a Zi may only depend
on its neighboring dimensions (in the sense of Definition 3). Intuitively, dimensions whose indices
are far removed from each other are independent. The full power of Proposition 4 is invoked when
m(k) grows with k relaxing the independence restriction as the dimensionality grows. Intuitively,
the dependency of the summands is not fixed to a certain order, but it cannot grow too rapidly.

A more realistic variation of m(k) dependence where the dependency of each variable is speci-
fied using a dependency graph (rather than each dimension depends on neighboring dimensions) is
advocated in a number of papers, including the following recent result by Rinott (1994).
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Definition 5 A graph G = (V ,E) indexing random variables is called a dependency graph if for
any pair of disjoint subsets of V , A1 and A2 such that no edge in E has one endpoint in A1 and the
other in A2, we have independence between {Zi : i ∈ A1} and {Zi : i ∈ A2}. The degree d(v) of a
vertex is the number of edges connected to it and the maximal degree is maxv∈V d(v).

Proposition 6 (Rinott) Let Z1, . . . ,Zn be random variables having a dependency graph whose max-
imal degree is strictly less than D, satisfying |Zi − EZi| ≤ B a.s., ∀i, E(∑n

i=1Zi) = λ and
Var(∑n

i=1Zi) = σ2 > 0, Then for any w ∈ R,∣∣∣∣P(∑n
i=1Zi−λ
σ

≤ w

)
−Φ(w)

∣∣∣∣≤ 1
σ

(
1

√
2π
DB+16

( n
σ2

)1/2
D3/2B2+10

( n
σ2

)
D2B3

)
where Φ(w) is the CDF corresponding to a N(0,1) distribution.

The above theorem states a stronger result than convergence in distribution to a Gaussian in that it
states a uniform rate of convergence of the CDF. Such results are known in the literature as Berry
Essen bounds (Davidson, 1994). When D and B are bounded and Var(∑n

i=1Zi) = O(n) it yields a
CLT with an optimal convergence rate of n−1/2.

The question of whether the above CLTs apply in practice is a delicate one. For text one can
argue that the appearance of a word depends on some words but is independent of other words.
Similarly for images it is plausible to say that the brightness of a pixel is independent of pixels
that are spatially far removed from it. In practice one needs to verify the normality assumption
empirically, which is simple to do by comparing the empirical histogram of fθ(X) with that of a
fitted mixture of Gaussians. As the figures above indicate this holds for text and image data for
some values of θ, assuming it is not sparse. Also, it is worth mentioning that one dimensional CLTs
kick in relatively early perhaps at 50 or 100 dimensions. Even when the high dimensional data lie
on a lower dimensional manifold whose dimensionality is on the order of 100 dimensions, the CLT
still applies to some extent (see histogram plots).

2.2 Unsupervised Consistency of R̂n(θ)

We start with proving identifiability of the maximum likelihood estimator (MLE) for a mixture of
two Gaussians with known ordering of mixture proportions. Invoking classical consistency results in
conjunction with identifiability we show consistency of the MLE estimator for (μ,σ) parameterizing
the distribution of fθ(X)|Y . As a result consistency of the estimator R̂n(θ) follows.

Definition 7 A parametric family {pα : α ∈ A} is identifiable when pα(x) = pα′(x),∀x implies α=
α′.

Proposition 8 Assuming known label marginals with p(Y = 1) �= p(Y =−1) the Gaussian mixture
family

pμ,σ(x) = p(y= 1)N(x ;μ1,σ
2
1)+ p(y=−1)N(x ;μ−1,σ

2
−1)

is identifiable.

Proof It can be shown that the family of Gaussian mixture model with no apriori information about
label marginals is identifiable up to a permutation of the labels y (Teicher, 1963). We proceed by
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assuming with no loss of generality that p(y = 1) > p(y = −1). The alternative case p(y= 1) <
p(y = −1) may be handled in the same manner. Using the result of Teicher (1963) we have that if
pμ,σ(x) = pμ′,σ′(x) for all x, then (p(y),μ,σ) = (p(y),μ′,σ′) up to a permutation of the labels. Since
permuting the labels violates our assumption p(y= 1) > p(y=−1) we establish (μ,σ) = (μ′,σ′)
proving identifiability.

The assumption that p(y) is known is not entirely crucial. It may be relaxed by assuming that it
is known whether p(Y = 1)> p(Y =−1) or p(Y = 1)< p(Y =−1). Proving Proposition 8 under
this much weaker assumption follows identical lines.

Proposition 9 Under the assumptions of Proposition 8 the MLE estimates for (μ,σ) =
(μ1,μ−1,σ1,σ−1)

(μ̂(n), σ̂(n)) = argmax
μ,σ

�n(μ,σ),

�n(μ,σ) =
n

∑
i=1

log ∑
y(i)∈{−1,+1}

p(y(i))pμy,σy( fθ(X
(i))|y(i)).

are consistent, that is, (μ̂(n)1 , μ̂(n)−1, σ̂
(n)
1 , σ̂(n)−1) converge as n→ ∞ to the true parameter values with

probability 1.

Proof Denoting pη(z) = ∑y p(y)pμy,σy(z|y) with η = (μ,σ) we note that pη is identifiable (see
Proposition 8) in η and the available samples z(i) = fθ(X (i)) are iid samples from pη(z). We there-
fore use standard statistics theory which indicates that the MLE for identifiable parametric model is
strongly consistent (Ferguson, 1996, Chapter 17).

Proposition 10 Under the assumptions of Proposition 8 and assuming the loss L is given by one of
(2)-(4) with a normal fθ(X)|Y ∼ N(μy,σ2y), the plug-in risk estimate

R̂n(θ) = ∑
y∈{−1,+1}

p(y)
∫
R
p

μ̂(n)y ,σ̂(n)y
( fθ(X) = α|y)L(y,α)dα. (14)

is consistent, that is, for all θ,

P
(
lim
n
R̂n(θ) = R(θ)

)
= 1.

Proof The plug-in risk estimate R̂n in (14) is a continuous function (when L is given by (2), (3)
or (4)) of μ̂(n)1 , μ̂(n)−1, σ̂

(n)
1 , σ̂(n)−1 (note that μy and σy are functions of θ), which we denote R̂n(θ) =

h(μ̂(n)1 , μ̂(n)−1, σ̂
(n)
1 , σ̂(n)−1).

Using Proposition 9 we have that

lim
n→∞

(μ̂(n)1 , μ̂(n)−1, σ̂
(n)
1 , σ̂(n)−1) = (μtrue1 ,μtrue−1 ,σ

true
1 ,σtrue−1 )

with probability 1. Since continuous functions preserve limits we have

lim
n→∞

h(μ̂(n)1 , μ̂(n)−1, σ̂
(n)
1 , σ̂(n)−1) = h(μtrue1 ,μtrue−1 ,σ

true
1 ,σtrue−1 )

with probability 1 which implies convergence limn→∞ R̂n(θ) = R(θ) with probability 1.
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2.3 Unsupervised Consistency of argmin R̂n(θ)

The convergence above R̂n(θ) → R(θ) is pointwise in θ. If the stronger concept of uniform con-
vergence is assumed over θ ∈ Θ we obtain consistency of argminθ R̂n(θ). This surprising result
indicates that in some cases it is possible to retrieve the expected risk minimizer (and therefore the
Bayes classifier in the case of the hinge loss, log-loss and exp-loss) using only unlabeled data. We
show this uniform convergence using a modification of Wald’s classical MLE consistency result
(Ferguson, 1996, Chapter 17).

Denoting

pη(z) = ∑
y∈{−1,+1}

p(y)pμy,σy( f (X) = z|y), η= (μ1,μ−1,σ1,σ−1)

we first show that the MLE converges to the true parameter value η̂n → η0 uniformly. Uniform
convergence of the risk estimator R̂n(θ) follows. Since changing θ ∈ Θ results in a different η ∈ E
we can state the uniform convergence in θ ∈Θ or alternatively in η ∈ E.

Proposition 11 Let θ take values in Θ for which η ∈ E for some compact set E. Then assuming the
conditions in Proposition 10 the convergence of the MLE to the true value η̂n → η0 is uniform in
η0 ∈ E (or alternatively θ ∈ Θ).

Proof We start by making the following notation

U(z,η,η0) = log pη(z)− log pη0(z),

α(η,η0) = Epη0U(z,η,η0) =−D(pη0 , pη)≤ 0

with the latter quantity being non-positive and 0 iff η= η0 (due to Shannon’s inequality and identi-
fiability of pη).

For ρ> 0 we define the compact set Sη0,ρ = {η ∈ E : ‖η−η0‖ ≥ ρ}. Since α(η,η0) is continu-
ous it achieves its maximum (with respect to η) on Sη0,ρ denoted by δρ(η0) =maxη∈Sη0 ,ρ α(η,η0)<
0 which is negative since α(η,η0) = 0 iff η= η0. Furthermore, note that δρ(η0) is itself continuous
in η0 ∈ E and since E is compact it achieves its maximum

δ= max
η0∈E

δρ(η0) = max
η0∈E

max
η∈Sη0,ρ

α(η,η0)< 0

which is negative for the same reason.
Invoking the uniform strong law of large numbers (Ferguson, 1996, Chapter 16) we have

n−1∑n
i=1U(z(i),η,η0) → α(η,η0) uniformly over (η,η0) ∈ E2. Consequentially, there exists N

such that for n> N (with probability 1)

sup
η0∈E

sup
η∈Sη0,ρ

1
n

n

∑
i=1

U(z(i),η,η0)< δ/2< 0.

But since n−1∑n
i=1U(z(i),η,η0)→ 0 for η= η0 it follows that the MLE

η̂n = max
η∈E

1
n

n

∑
i=1

U(z(i),η,η0)

is outside Sη0,ρ (for n> N uniformly in η0 ∈ E) which implies ‖η̂n−η0‖ ≤ ρ. Since ρ> 0 is arbi-
trarily and N does not depend on η0 we have η̂n → η0 uniformly over η0 ∈ E.
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Proposition 12 Assuming that X ,Θ are bounded in addition to the assumptions of Proposition 11
the convergence R̂n(θ)→ R(θ) is uniform in θ ∈ Θ.

Proof Since X ,Θ are bounded the margin value fθ(X) is bounded with probability 1. As a result
the loss function is bounded in absolute value by a constant C. We also note that a mixture of two
Gaussian model (with known mixing proportions) is Lipschitz continuous in its parameters∣∣∣∣∣ ∑

y∈{−1,+1}

p(y)p
μ̂(n)y ,σ̂(n)y

(z)− ∑
y∈{−1,+1}

p(y)pμtruey ,σtruey
(z)

∣∣∣∣∣
≤ t(z) ·

∣∣∣∣∣∣(μ̂(n)1 , μ̂(n)−1, σ̂
(n)
1 , σ̂(n)−1)− (μtrue1 ,μtrue−1 ,σ

true
1 ,σtrue−1 )

∣∣∣∣∣∣
which may be verified by noting that the partial derivatives of pη(z) = ∑y p(y)pμy,σy(z|y)

∂pη(z)

∂μ̂(n)1
=
p(y= 1)(z− μ̂(n)1 )

(2π)1/2σ̂(n)
3

1

e
−

(z−μ̂
(n)
1 )2

2σ̂
(n)3
1 ,

∂pη(z)

∂μ̂(n)−1

=
p(y=−1)(z− μ̂(n)−1)

(2π)1/2σ̂(n)
3

−1

e
−

(z−μ̂
(n)
−1)

2

2σ̂
(n)3
−1 ,

∂pη(z)

∂σ̂(n)1
=−

p(y= 1)(z− μ̂(n)1 )2

(2π)3/2σ̂(n)
6

1

e
−

(z−μ̂
(n)
1 )2

2σ̂
(n)2
1 ,

∂pη(z)

∂σ̂(n)−1

=−
p(y=−1)(z− μ̂(n)−1)

2

(2π)3/2σ̂(n)
6

−1

e
−

(z−μ̂
(n)
−1)

2

2σ̂
(n)2
−1

are bounded for a compact E. These observations, together with Proposition 11 lead to

|R̂n(θ)−R(θ)| ≤ ∑
y∈{−1,+1}

p(y)
∫ ∣∣∣p

μ̂(n)y ,σ̂(n)y
( fθ(X) = α)− pμtruey ,σtruey

( fθ(X) = α)
∣∣∣ |L(y,α)|dα

≤C
∫ ∣∣∣ ∑

y∈{−1,+1}

p(y)p
μ̂(n)y ,σ̂(n)y

(α)− ∑
y∈{−1,+1}

p(y)pμtruey ,σtruey
(α)

∣∣∣dα
≤C‖(μ̂(n)1 , μ̂(n)−1, σ̂

(n)
1 , σ̂(n)−1)− (μtrue1 ,μtrue−1 ,σ

true
1 ,σtrue−1 )‖

∫ b

a
t(z)dz

≤C′ ‖(μ̂(n)1 , μ̂(n)−1, σ̂
(n)
1 , σ̂(n)−1)− (μtrue1 ,μtrue−1 ,σ

true
1 ,σtrue−1 )‖→ 0

uniformly over θ ∈ Θ.

Proposition 13 Under the assumptions of Proposition 12

P

(
lim
n→∞

argmin
θ∈Θ

R̂n(θ) = argmin
θ∈Θ

R(θ)

)
= 1.
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Proof We denote t∗ = argminR(θ), tn = argmin R̂n(θ). Since R̂n(θ) → R(θ) uniformly, for each
ε> 0 there exists N such that for all n> N, |R̂n(θ)−R(θ)|< ε.

Let S = {θ : ‖θ− t∗‖ ≥ ε} and minθ∈S R(θ)> R(t∗) (S is compact and thus R achieves its min-
imum on it). There exists N′ such that for all n > N′ and θ ∈ S, R̂n(θ) ≥ R(t∗)+ ε. On the other
hand, R̂n(t∗)→ R(t∗) which together with the previous statement implies that there exists N′′ such
that for n > N′′, R̂n(t∗) < R̂n(θ) for all θ ∈ S. We thus conclude that for n > N′′, tn �∈ S. Since we
showed that for each ε > 0 there exists N such that for all n > N we have ‖tn− t∗‖ ≤ ε, tn → t∗

which concludes the proof.

2.4 Asymptotic Variance

In addition to consistency, it is useful to characterize the accuracy of our estimator R̂n(θ) as a
function of p(y),μ,σ. We do so by computing the asymptotic variance of the estimator which
equals the inverse Fisher information

√
n(η̂mlen −η0)� N(0, I−1(ηtrue))

and analyzing its dependency on the model parameters. We first derive the asymptotic variance of
MLE for mixture of Gaussians (we denote below η= (η1,η2),ηi = (μi,σi))

pη(z) = p(Y = 1)N(z;μ1,σ
2
1)+ p(Y =−1)N(z;μ−1,σ

2
−1)

= p1pη1(z)+ p−1pη−1(z).

The elements of 4×4 information matrix I(η)

I(ηi,η j) = E

(
∂ log pη(z)

∂ηi

∂ log pη(z)
∂η j

)
may be computed using the following derivatives

∂ log pη(z)
∂μi

=
pi
σi

(
z−μi
σi

)
pηi(z)

pη(z)
,

∂ log pη(z)

∂σ2i
=

pi
2σi

((
z−μi
σi

)2
−1

)
pηi(z)
pη(z)

for i= 1,−1. Using the method of Behboodian (1972) we obtain

I(μi,μj) =
pip j
σiσ j

M11

(
pηi(z), pηi(z)

)
,

I(μ1,σ2i ) =
p1pi
2σ1σ2i

[
M12

(
pηi(z), pηi(z)

)
−M10

(
pη1(z), pηi(z)

)]
,

I(μ−1,σ2i ) =
p−1pi
2σ−1σ2i

[
M21

(
pηi(z), pη−1(z)

)
−M01

(
pηi(z), pη−1(z)

)]
,

I(σ2i ,σ
2
i ) =

p4i
4σ4i

[
M00

(
pηi(z), pηi(z)

)
−2M11

(
pηi(z), pηi(z)

)
+M22

(
pηi(z), pηi(z)

)]
,

I(σ21,σ
2
−1) =

p1p−1
4σ21σ

2
−1

[
M00

(
pη1(z), pη−1(z)

)
−M20

(
pη1(z), pη−1(z)

)
−M02

(
pη1(z), pη−1(z)

)
+M22

(
pη1(z), pη−1(z)

)]
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where

Mm,n

(
pηi(z), pη j(z)

)
=

∫ ∞

−∞

(
z−μi
σi

)m(z−μj
σ j

)n pηi(z)pη j(z)

pη(z)
dx.

In some cases it is more instructive to consider the asymptotic variance of the risk estimator
R̂n(θ) rather than that of the parameter estimate for η = (μ,σ). This could be computed using the
delta method and the above Fisher information matrix

√
n(R̂n(θ)−R(θ))� N(0,∇h(ηtrue)T I−1(ηtrue)∇h(ηtrue))

where ∇h is the gradient vector of the mapping R(θ) = h(η). For example, in the case of the
exponential loss (2) we get

h(η) = p(Y = 1)σ1
√
2exp

((μ1−1)2
2

−
μ21
2σ21

)
+ p(Y =−1)σ−1

√
2exp

((μ−1−1)2
2

−
μ2−1
2σ2−1

)
,

∂h(η)
∂μ1

=

√
2P(Y = 1)(μ1(σ21−1)−σ21)

σ1
exp

(
(μ1−1)2

2
−

μ21
2σ21

)
,

∂h(η)
∂μ−1

=

√
2P(Y =−1)(μ−1(σ2−1−1)+σ2−1)

σ−1
exp

(
(μ−1+1)2

2
−

μ2−1
2σ2−1

)
,

∂h(η)
∂σ21

=
P(Y = 1)(μ21+σ21)√

2σ1

((μ1−1)2
2

−
μ21
2σ21

)
,

∂h(η)
∂σ2−1

=
P(Y =−1)(μ2−1+σ2−1)√

2σ−1

((μ−1+1)2
2

−
μ2−1
2σ2−1

)
.

Figure 4 plots the asymptotic accuracy of R̂n(θ) for log-loss. The left panel shows that the
accuracy of R̂n increases with the imbalance of the marginal distribution p(Y ). The right panel
shows that the accuracy of R̂n increases with the difference between the means |μ1−μ−1| and the
variances σ1/σ2.

2.5 Multiclass Classification

Thus far, we have considered unsupervised risk estimation in binary classification. In this section
we describe a multiclass extension based on standard extensions of the margin concept to multiclass
classification. In this case the margin vector associated with the multiclass classifier

Ŷ = argmax
k=1,...,K

fθk(X), X ,θk ∈ Rd

is fθ(X) = ( fθ1(X), . . . , fθK (X)). Following our discussion of the binary case, fθk(X)|Y , k= 1, . . . ,K
is assumed to be normally distributed with parameters that are estimated by maximizing the like-
lihood of a Gaussian mixture model. We thus have K Gaussian mixture models, each one with K
mixture components. The estimated parameters are plugged-in as before into the multiclass risk

R(θ) = Ep( fθ(X),Y )L(Y, fθ(X))
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Figure 4: Left panel: asymptotic accuracy (inverse of trace of asymptotic variance) of R̂n(θ) for
logloss as a function of the imbalance of the class marginal p(Y ). The accuracy increases
with the class imbalance as it is easier to separate the two mixture components. Right
panel: asymptotic accuracy (inverse of trace of asymptotic variance) as a function of the
difference between the means |μ1− μ−1| and the variances σ1/σ2. See text for more
information.

where L is a multiclass margin based loss function such as

L(Y, fθ(X)) = ∑
k �=Y

log(1+ exp(− fθk(X))), (15)

L(Y, fθ(X)) = ∑
k �=Y

(1+ fθk(X))+. (16)

Care should be taken when defining the loss function for the multi-class case, as a straight-forward
extension from the binary case might render the framework inconsistent. We use the specific ex-
tension which is proved to be consistent for various loss functions (including hinge-loss) by Tewari
and Bartlett (2007). Since the MLE for a Gaussian mixture model with K components is consistent
(assuming P(Y ) is known and all probabilities P(Y = k),k = 1, . . . ,K are distinct) the MLE estima-
tor for fθk(X)|Y = k′ are consistent. Furthermore, if the loss L is a continuous function of these
parameters (as is the case for (15)-(16)) the risk estimator R̂n(θ) is consistent as well.

3. Application 1: Estimating Risk in Transfer Learning

We consider applying our estimation framework in two ways. The first application, which we
describe in this section, is estimating margin-based risks in transfer learning where classifiers are
trained on one domain but tested on a somewhat different domain. The transfer learning assumption
that labeled data exists for the training domain but not for the test domain motivates the use of our
unsupervised risk estimation. The second application, which we describe in the next section, is
more ambitious. It is concerned with training classifiers without labeled data whatsoever.

In evaluating our framework we consider both synthetic and real-world data. In the synthetic
experiments we generate high dimensional data from two uniform distributions X |{Y = 1} and
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Figure 5: The relative accuracy of R̂n (measured by |R̂n(θ)− Rn(θ)|/Rn(θ)) as a function of n,
classifier accuracy (acc) and the label marginal p(Y ) (left: logloss, right: hinge-loss).
The estimation error nicely decreases with n (approaching 1% at n= 1000 and decaying
further). It also decreases with the accuracy of the classifier (top) and non-uniformity of
p(Y ) (bottom) in accordance with the theory of Section 2.4.

X |{Y = −1} with independent dimensions and prescribed p(Y ) and classification accuracy. This
controlled setting allows us to examine the accuracy of the risk estimator as a function of n, p(Y ),
and the classifier accuracy.

Figure 5 shows that the relative error of R̂n(θ) (measured by |R̂n(θ)−Rn(θ)|/Rn(θ)) in estimat-
ing the logloss (left) and hinge loss (right). The curves decrease with n and achieve accuracy of
greater than 99% for n > 1000. In accordance with the theoretical results in Section 2.4 the fig-
ure shows that the estimation error decreases as the classifiers become more accurate and as p(Y )
becomes less uniform. We found these trends to hold in other experiments as well. In the case of
exponential loss, however, the estimator performed substantially worse across the board, in some
cases with an absolute error of as high as 10. This is likely due to the exponential dependency of
the loss on Y fθ(X) which makes it very sensitive to outliers.

Table 1 shows the accuracy of logloss estimation for a real world transfer learning experiment
based on the 20-newsgroup data. We followed the experimental setup of used by Dai et al. (2007)
in order to have different distributions for training and test sets. More specifically, 20-newsgroup
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Data Rn |Rn− R̂n| |Rn− R̂n|/Rn n p(Y = 1)
sci vs. comp 0.7088 0.0093 0.013 3590 0.8257
sci vs. rec 0.641 0.0141 0.022 3958 0.7484
talk vs. rec 0.5933 0.0159 0.026 3476 0.7126
talk vs. comp 0.4678 0.0119 0.025 3459 0.7161
talk vs. sci 0.5442 0.0241 0.044 3464 0.7151
comp vs. rec 0.4851 0.0049 0.010 4927 0.7972

Table 1: Error in estimating logloss for logistic regression classifiers trained on one 20-newsgroup
classification task and tested on another. We followed the transfer learning setup described
by Dai et al. (2007) which may be referred to for more detail. The train and testing sets
contained samples from two top categories in the topic hierarchy but with different subcat-
egory proportions. The first column indicates the top category classification task and the
second indicates the empirical log-loss Rn calculated using the true labels of the testing set
(5). The third and forth columns indicate the absolute and relative errors of R̂n. The fifth
and sixth columns indicate the train set size and the label marginal distribution.

data has a hierarchical class taxonomy and the transfer learning problem is defined at the top-level
categories. We split the data based on subcategories such that the training and test sets contain data
sampled from different subcategories within the same top-level category. Hence, the training and
test distributions differ. We trained a logistic regression classifier on the training set and estimate its
risk on the test set of a different distribution. Our unsupervised risk estimator was quite effective in
estimating the risk with relative accuracy greater than 96% and absolute error less than 0.02.

4. Application 2: Unsupervised Learning of Classifiers

Our second application is a very ambitious one: training classifiers using unlabeled data by min-
imizing the unsupervised risk estimate θ̂n = argmin R̂n(θ). We evaluate the performance of the
learned classifier θ̂n based on three quantities: (i) the unsupervised risk estimate R̂n(θ̂n), (ii) the su-
pervised risk estimate Rn(θ̂n), and (iii) its classification error rate. We also compare the performance
of θ̂n = argmin R̂n(θ) with that of its supervised analog argminRn(θ).

We compute θ̂n = argmin R̂n(θ) using two algorithms (see Algorithms 1-2) that start with an
initial θ(0) and iteratively construct a sequence of classifiers θ(1), . . . ,θ(T ) which steadily decrease
R̂n. Algorithm 1 adopts a gradient descent-based optimization. At each iteration t, it approximates
the gradient vector ∇R̂n(θ(t)) numerically using a finite difference approximation (17). We com-
pute the integral in the loss function estimator using numeric integration. Since the integral is one
dimensional a variety of numeric methods may be used with high accuracy and fast computation.
Algorithm 2 proceeds by constructing a grid search along every dimension of θ(t) and set [θ(t)]i to
the grid value that minimizes R̂n (iteratively optimize one dimension at a time). This amounts to
greedy search converging to local maxima. The same might hold for Algorithm 1, but we observe
that Algorithm 1 works slightly better in practice, leading to lower test error with less number of
training iterations.
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Although we focus on unsupervised training of logistic regression (minimizing unsupervised
logloss estimate), the same techniques may be generalized to train other margin-based classifiers
such as SVM by minimizing the unsupervised hinge-loss estimate.

Algorithm 1 Unsupervised Gradient Descent

Input: X (1), . . . ,X (n) ∈ Rd , p(Y ), step size α
Initialize t = 0, θ(t) = θ0 ∈ Rd

repeat
Compute fθ(t) (X

( j)) = 〈θ(t),X ( j)〉 ∀ j = 1, . . . ,n
Estimate (μ̂1, μ̂−1, σ̂1, σ̂−1) by maximizing (11)
for i= 1 to d do
Plug-in the estimates into (14) to approximate

∂R̂n(θ(t))
∂θi

=
R̂n(θ(t) +hiei)− R̂n(θ(t)−hiei)

2hi
(ei is an all zero vector except for [ei]i = 1) (17)

end for
Form ∇R̂n(θ(t)) = ( ∂R̂n(θ

(t))

∂θ(t)1
, . . . , ∂R̂n(θ

(t))

∂θ(t)d
)

Update θ(t+1) = θ(t)−α∇R̂n(θ(t)), t = t+1
until convergence
Output: linear classifier θfinal = θ(t)

Algorithm 2 Unsupervised Grid Search

Input: X (1), . . . ,X (n) ∈ Rd , p(Y ), grid-size τ
Initialize θi ∼ Uniform(−2,2) for all i
repeat
for i= 1 to d do
Construct τ points grid in the range [θi−4τ,θi+4τ]
Compute the risk estimate (14) where all dimensions of θ(t) are fixed except for [θ(t)]i which
is evaluated at each grid point.
Set [θ(t+1)]i to the grid value that minimized (14)

end for
until convergence
Output: linear classifier θfinal = θ

Figures 6-7 display R̂n(θ̂n), Rn(θ̂n) and error-rate(θ̂n) on the training and testing sets as on two
real world data sets: RCV1 (text documents) and MNIST (handwritten digit images) data sets. In
the case of RCV1 we discarded all but the most frequent 504 words (after stop-word removal) and
represented documents using their tfidf scores. We experimented on the binary classification task of
distinguishing the top category (positive) from the next 4 top categories (negative) which resulted
in p(y= 1) = 0.3 and n= 199328. 70% of the data was chosen as a (unlabeled) training set and the
rest was held-out as a test-set. In the case of MNIST data, we normalized each of the 28×28= 784
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pixels to have 0 mean and unit variance. Our classification task was to distinguish images of the
digit one (positive) from the digit 2 (negative) resulting in 14867 samples and p(Y = 1) = 0.53. We
randomly choose 70% of the data as a training set and kept the rest as a testing set.

Figures 6-7 indicate that minimizing the unsupervised logloss estimate is quite effective in
learning an accurate classifier without labels. Both the unsupervised and supervised risk estimates
R̂n(θ̂n), Rn(θ̂n) decay nicely when computed over the train set as well as the test set. Also interesting
is the decay of the error rate. For comparison purposes supervised logistic regression with the same
n achieved only slightly better test set error rate: 0.05 on RCV1 (instead of 0.1) and 0.07 or MNIST
(instead of 0.1).

In another experiment we examined the proposed approach on several different data sets and
compared the classification performance with a supervised baseline (logistic regression) and Gaus-
sian mixture modeling (GMM) clustering with known label proportions in the original data space
(Table 2). The comparison was made under the same experimental setting (n, p(Y )) for all three
approaches. We used data sets from UCI machine learning repository (Frank and Asuncion, 2010)
and from previously cited sources, unless otherwise noted. The following tasks were considered for
each data set.

• RCV1: top category versus next 4 categories

• MNIST: Digit 1 versus Digit 2

• 20 newsgroups: Comp category versus Recreation category

• USPS1: Digit 2 versus Digit 5

• Umist1: Male face (16 subjects) versus Female faces (4 subjects) with image resolution re-
duced to 40×40

• Arcene: Cancer versus Normal

• Isolet: Vowels versus Consonants

• Dexter: Documents about corporate acquisitions versus rest

• Secom: Semiconductor manufacturing defects versus good items

• Pham faces: Face versus Non-face images

• CMU pie face2: male (30 subjects) vs female (17 subjects)

• Madelon3: It consists of data points (artificially generated) grouped in 32 clusters placed on
the vertices of a five dimensional hypercube and randomly labeled +1 or -1, corrupted with
features that are not useful for classification.

1. Data set can be found at http://www.cs.nyu.edu/˜roweis/data.html.
2. Data set can be found at http://www.zjucadcg.cn/dengcai/Data/FaceData.html.
3. Data set can be found at http://archive.ics.uci.edu/ml/machine-learning-databases/madelon/

Dataset.pdf.
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Figure 6: Performance of unsupervised logistic regression classifier θ̂n computed using Algorithm 1
(left) and Algorithm 2 (right) on the RCV1 data set. The top two rows show the decay
of the two risk estimates R̂n(θ̂n), Rn(θ̂n) as a function of the algorithm iterations. The
risk estimates of θ̂n were computed using the train set (top) and the test set (middle).
The bottom row displays the decay of the test set error rate of θ̂n as a function of the
algorithm iterations. The figure shows that the algorithm obtains a relatively accurate
classifier (testing set error rate 0.1, and R̂n decaying similarly to Rn) without the use
of a single labeled example. For comparison, the test error rate for supervised logistic
regression with the same n is 0.07.
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Figure 7: Performance of unsupervised logistic regression classifier θ̂n computed using Algorithm 1
(left) and Algorithm 2 (right) on the MNIST data set. The top two rows show the decay
of the two risk estimates R̂n(θ̂n), Rn(θ̂n) as a function of the algorithm iterations. The
risk estimates of θ̂n were computed using the train set (top) and the test set (middle).
The bottom row displays the decay of the test set error rate of θ̂n as a function of the
algorithm iterations. The figure shows that the algorithm obtains a relatively accurate
classifier (testing set error rate 0.1, and R̂n decaying similarly to Rn) without the use
of a single labeled example. For comparison, the test error rate for supervised logistic
regression with the same n is 0.05.
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Data set Dimensions Supervised log-reg USL-2 GMM

RCV1 top 504 words 0.0500 0.0923 0.2083
Mnist 784 0.0700 0.1023 0.3163

20 news group top 750 words 0.0652 0.0864 0.1234
USPS 256 0.0348 0.0545 0.1038
Umist 400 PCA components 0.1223 0.1955 0.2569
Arcene 1000 PCA components 0.1593 0.1877 0.3843*
Isolet 617 0.0462 0.0568 0.1332
Dexter top-700 words 0.0564 0.1865 0.2715
Secom 591 0.1246 0.1532 0.2674

Pham faces 400 0.1157 0.1669 0.2324
CMU pie face 1024 0.0983 0.1386 0.2682*
Madelon 500 0.0803 0.1023 0.1120

Table 2: Comparison (test set error rate) between supervised logistic regression, Unsupervised lo-
gistic regression and Gaussian mixture modeling in original data space. The unsupervised
classifier performs better than the GMM clustering on the original space and compares
well with its supervised counterpart on most data sets. See text for more details. The stars
represent GMM with covariance σ2I due to the high dimensionality. In all other cases we
used a diagonal covariance matrix. Non-diagonal covariance matrix was impractical due
to the high dimensionality.

Table 2 displays the test set error for the three methods on each data set. We note that our
unsupervised approach achieves test set errors comparable to the supervised logistic regression in
several data sets. The poor performance of the unsupervised technique on the Dexter data set is
due to the fact that the data contains many irrelevant features. In fact it was engineered for a
feature selection competition and has a sparse solution vector. In general our method significantly
outperforms Gaussian mixture model clustering in the original feature space. A likely explanation
is that (i) fθ(X)|Y is more likely to be normal than X |Y and (ii) it is easier to estimate in one
dimensional space rather than in a high dimensional space.

4.1 Inaccurate Specification of p(Y )

Our estimation framework assumes that the marginal p(Y ) is known. In some cases we may only
have an inaccurate estimate of p(Y ). It is instructive to consider how the performance of the learned
classifier degrades with the inaccuracy of the assumed p(Y ).

Figure 8 displays the performance of the learned classifier for RCV1 data as a function of the
assumed value of p(Y = 1) (correct value is p(Y = 1) = 0.3). We conclude that knowledge of p(Y )
is an important component in our framework but precise knowledge is not crucial. Small deviations
of the assumed p(Y ) from the true p(Y ) result in a small degradation of logloss estimation quality
and testing set error rate. Naturally, large deviation of the assumed p(Y ) from the true p(Y ) renders
the framework ineffective.
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Figure 8: Performance of unsupervised classifier training on RCV1 data (top class vs. classes 2-5)
for misspecified p(Y ). The performance of the estimated classifier (in terms of training
set empirical logloss Rn (5) and test error rate measured using held-out labels) decreases
with the deviation between the assumed and true p(Y = 1) (true p(Y = 1) = 0.3)). The
classifier performance is very good when the assumed p(Y ) is close to the truth and
degrades gracefully when the assumed p(Y ) is not too far from the truth.

4.2 Effect of Regularization and Dimensionality Reduction

In Figure 9 we examine the effect of regularization on the performance of the unsupervised classifier.
In this experiment we use the L1 regularization software available at http://www.cs.ubc.ca/

˜schmidtm/Software/L1General.html. Clearly, regularization helps in the supervised case. It
appears that in the USL case weak regularization may improve performance but not as drastically as
in the supervised case. Furthermore, the positive effect of L1 regularization in the USL case appears
to be weaker than L2 regularization (compare the left and right panels of Figure 9). One possible
reason is that the sparsity promoting nature of L1 conflicts with the CLT assumption.

In Figure 10 we examine the effect of reducing the data dimensionality via PCA prior to training
the unsupervised classifier. Specifically, the 256 dimensions USPS image data set was embedded
in an increasingly lower dimensional space via PCA. For the original dimensionality of 256 or a
slightly lower dimensionality the classification performance of the unsupervised classifier is com-
parable to the supervised. Once the dimensions are reduced to less than 150 a significant perfor-
mance gap appears. This is consistent with our observation above that for lower dimensions the
CLT approximation is less accurate. The supervised classifier also degrades in performance as less
dimensions are used but not as fast as the unsupervised classifier.

5. Related Work

Semi-supervised approaches: Semisupervised learning is closely related to our work in that un-
supervised classification may be viewed as a limiting case. One of the first attempts at studying
the sample complexity of classification with unlabeled and labeled data was by Castelli and Cover
(1995). They consider a setting when data is generated by mixture distributions and show that with
infinite unlabeled data, the probability of error decays exponentially faster in the labeled data to the
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Figure 9: Test set error rate versus regularization parameter (L2 on the left panel and L1 on the right
panel) for supervised and unsupervised logistic regression on RCV1 data set.
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Figure 10: Test set error rate versus the amount of dimensions used (extracted via PCA) for super-
vised and unsupervised logistic regression on USPS data set. The original dimensional-
ity was 256.

Bayes risk. They also analyze the case when there are only finite labeled and unlabeled data sam-
ples, with known class conditional densities but unknown mixing proportions (Castelli and Cover,
1996). A variant of the same scenario with known parametric forms for the class conditionals
(specifically n-dimensional Gaussians) but unknown parameters and mixing proportions is also an-
alyzed by J. Ratsaby and Venkatesh (1995). Some of the more recent work in the area concentrated
on analyzing semisupervised learning under the cluster assumption or the manifold assumption. We
refer the reader to a recent survey by Zhu and Goldberg (2009) for a discussion of recent approaches.
However, none of the prior work consider mixture modeling in the projected 1-d space along with
a CLT assumption which we exploit. In addition, assuming known mixing proportions, we propose
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a framework for training a classifier with no labeled samples, while approaches above still need
labeled samples for classification.

Unsupervised approaches: The most recent related research approaches are by Quadrianto et al.
(2009), Gomes et al. (2010), and Donmez et al. (2010). The work by Quadrianto et al. (2009) aims
to estimate the labels of an unlabeled testing set using known label proportions of several sets
of unlabeled observations. The key difference between their approach and ours is that they require
separate training sets from different sampling distributions with different and known label marginals
(one for each label). Our method assumes only a single data set with a known label marginal but on
the other hand assumed the CLT approximation. Furthermore, as noted previously (see comment
after Proposition 8), our analysis is in fact valid when only the order of label proportions is known,
rather than the absolute values.

A different attempt at solving this problem is provided by Gomes et al. (2010) which focuses
on discriminative clustering. This approach attempts to estimate a conditional probabilistic model
in an unsupervised way by maximizing mutual information between the empirical input distribution
and the label distribution. A key difference is the focus on probabilistic classifiers and in partic-
ular logistic regression whereas our approach is based on empirical risk minimization which also
includes SVM. Another key difference is that the work by Gomes et al. (2010) lacks consistency
results which characterize when it works from a theoretical perspective. The approach by Donmez
et al. (2010) focuses on estimating the error rate of a given stochastic classifier (not necessarily
linear) without labels. It is similar in that it estimates the 0/1 risk rather than the margin based risk.
However, it uses a different strategy and it replaces the CLT assumption with a symmetric noise
assumption.

An important distinction between our work and the references above is that our work provides an
estimate for the margin-based risk and therefore leads naturally to unsupervised versions of logistic
regression and support vector machines. We also provide asymptotic analysis showing convergence
of the resulting classifier to the optimal classifier (minimizer of (1)). Experimental results show
that in practice the accuracy of the unsupervised classifier is on the same order (but slightly lower
naturally) as its supervised analog.

6. Discussion

In this paper we developed a novel framework for estimating margin-based risks using only unla-
beled data. We show that it performs well in practice on several different data sets. We derived
a theoretical basis by casting it as a maximum likelihood problem for Gaussian mixture model
followed by plug-in estimation.

Remarkably, the theory states that assuming normality of fθ(X) and a known p(Y ) we are able
to estimate the risk R(θ) without a single labeled example. That is the risk estimate converges to the
true risk as the number of unlabeled data increase. Moreover, using uniform convergence arguments
it is possible to show that the proposed training algorithm converges to the optimal classifier as
n→ ∞ without any labeled data. The results in the paper are applicable only to linear classifiers,
which are an extremely important class of classifiers especially in the high dimensional case. In
the non-linear classification scenario, it is worth examining if the CLT assumptions on the mapped
high-dimensional feature space could be used for building non-linear classifiers via the kernel trick.

On a more philosophical level, our approach points at novel questions that go beyond supervised
and semi-supervised learning. What benefit do labels provide over unsupervised training? Can
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our framework be extended to semi-supervised learning where a few labels do exist? Can it be
extended to non-classification scenarios such as margin based regression or margin based structured
prediction? When are the assumptions likely to hold and how can we make our framework even
more resistant to deviations from them? These questions and others form new and exciting open
research directions.
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Abstract

Many algorithms and applications involve repeatedly solving variations of the same inference prob-
lem, for example to introduce new evidence to the model or to change conditional dependencies.
As the model is updated, the goal of adaptive inference is to take advantage of previously com-
puted quantities to perform inference more rapidly than from scratch. In this paper, we present
algorithms for adaptive exact inference on general graphs that can be used to efficiently compute
marginals and update MAP configurations under arbitrary changes to the input factor graph and its
associated elimination tree. After a linear time preprocessing step, our approach enables updates to
the model and the computation of any marginal in time that is logarithmic in the size of the input
model. Moreover, in contrast to max-product our approach can also be used to update MAP config-
urations in time that is roughly proportional to the number of updated entries, rather than the size
of the input model. To evaluate the practical effectiveness of our algorithms, we implement and
test them using synthetic data as well as for two real-world computational biology applications.
Our experiments show that adaptive inference can achieve substantial speedups over performing
complete inference as the model undergoes small changes over time.

Keywords: exact inference, factor graphs, factor elimination, marginalization, dynamic program-
ming, MAP computation, model updates, parallel tree contraction
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SÜMER, ACAR, IHLER AND METTU

1. Introduction

Graphical models provide a rich framework for describing structure within a probability distribution,
and have proven to be useful in numerous application areas such as computational biology, statistical
physics, and computer vision. Considerable efforts have been made to understand and minimize the
computational complexity of inferring the marginal probabilities or most likely state of a graphical
model. However, in many applications we may need to perform repeated computations over a
collection of very similar models. For example, hidden Markov models are commonly used for
sequence analysis of DNA, RNA and proteins, while protein structure requires the definition of a
factor graph defined by the three-dimensional topology of the protein of interest. For both of these
types of models, it is often desirable to study the effects of mutation on functional or structural
properties of the gene or protein. In this setting, each putative mutation gives rise to a new problem
that is nearly identical to the previously solved problem.

The changes described in the examples above can, of course, be handled by incorporating them
into the model and then performing inference from scratch. However, in general we may wish to
assess thousands of potential changes to the model—for example, the number of possible mutations
in a protein structure grows exponentially with the number of considered sites—and minimize the
total amount of work required. Adaptive inference refers to the problem of handling changes to the
model (e.g., to model parameters and even dependency structure) more efficiently than performing
inference from scratch. Performing inference in an adaptive manner requires a new algorithmic
approach, since it requires us to balance the computational cost of the inference procedure with the
reusability of its calculations. As a simple example, suppose that we wish to compute the marginal
distribution of a leaf node in a Markov chain with n variables. Using the standard sum-product
algorithm, upon a change to the conditional probability distribution at one end of the chain, we must
perform Ω(n) computation to compute the marginal distribution of the node at the other end of the
chain. In such a setting, it is worth using additional preprocessing time to restructure the underlying
model in such a way that changes to the model can be handled in time that is logarithmic, rather
than linear, in the size of the model.

In this paper, we focus on developing efficient algorithms for performing exact inference in
the adaptive setting. Specifically, we present techniques for two basic inference tasks in general
graphical models: marginalization and finding maximum a posteriori (MAP) configurations. Our
high-level approach to enabling efficient updates of the model, and recalculation of marginals or
a MAP configuration, is to “cluster” parts of the input model by computing partial eliminations,
and construct a balanced-tree data structure with depth O(logn). We use a process based on factor
elimination (Darwiche, 2009) that we call hierarchical clustering that takes as input a graph and
elimination tree (equivalent to a tree-decomposition of the graphical model), and produces an al-
ternative, balanced elimination sequence. The sufficient statistics of the balanced elimination are
re-usable in the sense that they will remain largely unchanged by any small update to the model.
In particular, changes to factors and the variables they depend on can be performed in time that is
logarithmic in the size of the input model. Furthermore, we show that after such updates, the time
necessary to compute marginal distributions is logarithmic in the size of the model, and the time to
update a MAP configuration is roughly proportional to the number of variables whose values have
changed.
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1.1 Related Work

There are numerous machine learning and artificial intelligence problems, such as path planning
problems in robotics, where new information or observations require changing a previously com-
puted solution. As an example, problems solved by heuristic search techniques have benefited
greatly from incremental algorithms (Koenig et al., 2004), in which solutions can be efficiently up-
dated by reusing previously searched parts of the solution space. The problem of performing adap-
tive inference in graphical models was first considered by Delcher et al. (1995). In their work, they
introduced a logarithmic time method for updating marginals under changes to observed variables
in the model. Their algorithm relies on the input model being tree-structured, and can only handle
changes to observations in the input model. At a high level their approach is similar to our own, in
that they also use a linear time preprocessing step to transform the input tree-structured model into a
balanced tree representation. However, their algorithm addresses only updates to “observations” in
the model, and cannot update dependencies in the input model. Additionally, while their algorithm
can be applied to general graphs by performing a tree decomposition, it is not clear whether the tree
decomposition itself can be easily updated, as is necessary to remain efficient when modifying the
input model. Adaptive exact inference using graph-cut techniques has also been studied by Kohli
and Torr (2007). Although the running time of their method does not depend on the tree-width of the
input model, it is restricted to pairwise models with binary variables or with submodular pairwise
factors. Adaptivity for approximate inference has also been studied by Komodakis et al. (2008); in
this work, adaptivity is achieved by performing “warm starts”. That is, a change to model is simply
made at the final iteration of approximate inference and the algorithm is restarted from this state and
allowed to continue until convergence.

The preprocessing technique used by Delcher et al. (1995) is inspired by a method known as
parallel tree contraction, devised by Miller and Reif (1985) to evaluate expressions on parallel ar-
chitectures. In parallel tree contraction we must evaluate a given expression tree, where internal
nodes are arithmetic operations and leaves are input values. The parallel algorithm of Miller and
Reif (1985) works by “contracting” both leaves and internal nodes of the tree in rounds. At each
round, the nodes to eliminate are chosen in a random fashion and it can be shown that, in expec-
tation, a constant fraction of the nodes are eliminated in each round. By performing contractions
in parallel, the expression tree can be evaluated in logarithmic time and linear total work. Paral-
lel tree contraction can be applied to any semi-ring, including sum-product (marginalization) and
max-product (maximization) operators, making it directly applicable to inference problems, and
it has also been used to develop efficient parallel implementations of inference (Pennock, 1998;
Namasivayam et al., 2006; Xia and Prasanna, 2008).

An interesting property of tree contraction is that it can also be made to be adaptive to changes
in the input (Acar et al., 2004, 2005). In particular, the techniques of self-adjusting computation
(Acar, 2005; Acar et al., 2006, 2009a; Hammer et al., 2009) show that tree contraction can, for
example, be used to derive an efficient and reasonably general data structure for dynamic trees
(Sleator and Tarjan, 1983). In this paper we apply similar techniques to develop a new algorithm
for adaptive inference that can handle arbitrary changes to the input model and can be used for both
marginalization and for computing MAP configurations.
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1.2 Contributions

In this paper, we present a new framework for adaptive exact inference, building upon the work of
Delcher et al. (1995). Given a factor graphGwith n nodes, and domain size d (each variable can take
d different values), we require the user to specify an elimination tree T on factors. Our framework
for adaptive inference requires a preprocessing step in which we build a balanced representation of
the input elimination tree in O(d3wn) time where w is the width of the input elimination tree T . We
show that this balanced representation, which we call a cluster tree, is essentially equivalent to a tree
decomposition. For marginal computations, a change to the model can be processed inO(d3w · logn)
time, and the marginal for particular variable can be computed in O(d2w · logn) time. For a change
to the model that induces � changes to a MAP configuration, our approach can update the MAP
configuration in O(d3w logn+ dw� log(n/�)) time, without knowing � or the changed entries in the
configuration.

As in standard approaches for exact inference in general graphs, our algorithm has an expo-
nential dependence on the tree-width of the input model. The dependence in our case, however
is stronger: if the input elimination tree has width w, our balanced representation is guaranteed to
have width at most 3w. As a result the running time of our algorithms for building the cluster tree as
well as the updates have a O(d3w) multiplicative factor; updates to the model and queries however
require logarithmic, rather than linear, time in the size of the graph. Our approach is therefore most
suitable for settings in which a single build operation is followed by a large number of updates and
queries.

Since d and w can often be bounded by reasonably small constant factors, we know that there
exists some n beyond which we would achieve speedups, but where exactly the speedups materialize
is important in practice. To evaluate the practical effectiveness of our approach, we implement the
proposed algorithms and present an experimental evaluation by considering both synthetic data
(Section 6.1) and real data (Sections 6.2 and 6.3). Our experiments using synthetically generated
factor graphs show that even for modestly-sized graphs (10− 1000 nodes) our algorithm provides
orders of magnitude speedup over computation from scratch for computing both marginals and
MAP configurations. Thus, the overhead observed in practice is negligible compared to the speedup
possible using our framework. Given that the asymptotic difference between linear and logarithmic
run-times can be large, it is not surprising that our approach yields speedups for large models. The
reason for the observed speedups in the smaller graphs is due to the fact that constant factors hidden
by the asymptotic bounds associated with the exponential bounds are small (because they involve
fast floating point operations) and because our worst-case bounds are often not attained for relatively
small graphs (Section 6.1.5).

In addition, we also show the applicability of our framework to two problems in computational
structural biology (Sections 6.2 and 6.3). First, we apply our algorithm to protein secondary struc-
ture prediction using an HMM, showing that secondary structure types can be efficiently updated as
mutations are made to the primary sequence. For this application, our algorithm is one to two orders
of magnitude faster than computation from scratch. We also apply our algorithm to protein sidechain
packing, in which a (general) factor graph defines energetic interactions in a three-dimensional pro-
tein structure and we must find a minimum-energy conformation of the protein. For this problem,
our algorithm can be used to maintain a minimum-energy conformation as changes are being made
to the underlying protein. In our experiments, we show that for a subset of the SCWRL benchmark
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(Canutescu et al., 2003), our algorithm is nearly 7 times faster than computing minimum-energy
conformations from scratch.

Several elements of this work have appeared previously in conference versions (Acar et al.,
2007, 2008, 2009b). In this paper we unify these into a single framework and improve our al-
gorithms and our bounds in several ways. Specifically, we present deterministic versions of the
algorithms, including a key update algorithm and its proof of correctness; we derive upper bounds
in terms of the tree-width, the size of the model, and the domain size; and we give a detailed exper-
imental analysis.

1.3 Outline

The remainder of the paper is organized as follows. In Section 2, we give the definitions and notation
used throughout this paper, along with some background on the factor elimination algorithm and
tree decompositions. In Section 3, we describe our algorithm and the cluster tree data structure
and how they can be used for marginalization. Then, in Section 4, we describe how updates to the
underlying model can be performed efficiently. In Section 5, we extend our algorithm to compute
and maintain MAP configurations under model changes. In Section 6, we show experimental results
for our approach on three synthetic benchmarks and two applications in computational biology. We
conclude with a discussion of future directions in Section 7.

2. Background

Factor graphs (Kschischang et al., 2001) describe the factorization structure of the function g(X)
using a bipartite graph consisting of variable nodes and factor nodes. Specifically, suppose such a
graph G= (X ,F) consists of variable nodes X = {x1, . . . ,xn} and factor nodes F = { f1, . . . , fm} (see
Figure 1a). We denote the adjacency relationship in graphG by∼G , and let Xf j =

{
xi ∈ X : xi∼G f j

}
be the set of variables adjacent to factor f j. For example, in Figure 1a, Xf5 = {x,v}. G is said to be
consistent with a function g(·) if and only if

g(x1, . . . ,xn) =∏
j
f j

for some functions f j whose arguments are the variable sets Xf j . We omit the arguments Xf j of each
factor f j from our formulas. In a common abuse of notation, we use the same symbol to denote a
variable (resp., factor) node and its associated variable xi (resp., factor f j). We assume that each
variable xi takes on a finite set of values.

In this paper we first study the problem of marginalization of the function g(X). Specifically,
for any xi we are interested in computing the marginal function

gi(xi) = ∑
X\xi

g(X).

Once we establish the basic results for performing adaptive inference, we will also show how our
methods can be applied to another commonly studied inference problem, that of finding the config-
uration of the variables that maximizes g, that is,

X∗ = argmax
X

g(X).

In this paper, we call the vector X∗ the maximum a posteriori (MAP) configuration of X .
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Figure 1: Factor elimination. Factor elimination takes a factor graph G1 and an elimination tree
T1 as input and sequentially eliminates the leaf factors in the elimination tree. As an
example, to eliminate f1 in iteration t, we first marginalize out any variables that are
only adjacent to the eliminated factor, and then propagate this information to the unique
neighbor in Tt , that is, f ′2 = f2∑z f1.

2.1 Factor Elimination

There are various essentially equivalent algorithms proposed for solving marginalization problems,
including belief propagation (Pearl, 1988) or sum-product (Kschischang et al., 2001) for tree-
structured graphs, or more generally bucket elimination (Dechter, 1998), recursive conditioning
(Darwiche and Hopkins, 2001), junction-trees (Lauritzen and Spiegelhalter, 1988) and factor elimi-
nation (Darwiche, 2009). The basic structure of these algorithms is iterative; in each iteration partial
marginalizations are computed by eliminating variables and factors from the graph. The set of vari-
ables and factors that are eliminated at each iteration is typically guided by some sort of auxiliary
structure on either variables or factors. For example, the sum-product algorithm simply eliminates
variables starting at leaves of the input factor graph. In contrast, factor elimination uses an elimina-
tion tree T on the factors and eliminates factors starting at leaves of T ; an example elimination tree
is shown in Figure 1b.

For a particular factor f j, the basic operation of factor elimination eliminates f j in the given
model and then propagates information associated with f j to neighboring factors. At iteration t, we
pick a leaf factor f j in Tt and eliminate it from the elimination tree forming Tt+1. We also remove
f j along with all the variables V j ⊆ X that appear only in factor f j from Gt forming Gt+1. Let fk be
f j’s unique neighbor in Tt . We then partially marginalize f j, and update the value of fk in Gt+1 and
Tt+1 with

λ j =∑
V j

f j, f ′k = fkλ j.

For reasons that will be explained in Section 3.1, we use the notation λi to represent the partially
marginalized functions; for standard factor elimination these operations are typically combined into
a single update to fk. Finally, since multiplying by λ j may make f ′k depend on additional variables,
we expand the argument set of f ′k by making the arguments of λ j adjacent to f ′k in Gt+1, that is,
Xf ′k := Xfk ∪Xf j \V j. Figure 1 gives an example where we apply factor elimination to a leaf factor f1
in the elimination tree. We marginalize out the variables that are only adjacent to f1 (i.e., V1 = {z})
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Figure 2: Factor trees and tree decompositions. A tree-decomposition (right) that is equivalent to
a given elimination tree (left) can be obtained by first replacing each factor with a hyper-
node that contains the variables adjacent to that factor node and then adding variables to
the hyper-nodes so that the running intersection property is satisfied.

and update f1’s neighbor f2 in the elimination tree with f ′2 = f2∑V1 f1. Finally, we add an edge
between the remaining variables Xf1 \V1 = {x} and the updated factor f ′2.

Suppose we wish to compute a particular marginal gi(xi). We root the elimination tree at a factor
f j such that xi∼G f j, then eliminate leaves of the elimination tree one at a time, until only one factor
remains. By definition the remaining factor f ′j corresponds to f j multiplied by the results of the
elimination steps. Then, we have that gi(xi) = ∑X\xi f

′
j. All of the marginals in the factor graph can

be efficiently computed by re-rooting the tree and reusing the values propagated during the previous
eliminations.

Factor elimination is equivalent to bucket (or variable) elimination (Kask et al., 2005; Darwiche,
2009) in the sense that we can identify a correspondence between the computations performed
in each algorithm. In particular, the factor elimination algorithm marginalizes out a variable xi
when there is no factor left in the factor graph that is adjacent to xi. Therefore, if we consider
the operations from the variables’ point of view, this sequence is also a valid bucket (variable)
elimination procedure. With a similar argument, one can also interpret any bucket elimination
procedure as a factor elimination sequence. In all of these algorithms, while marginal calculations
are guaranteed to be correct, the particular auxiliary structure or ordering determines the worst-case
running time. In the following section, we analyze the performance consequences of imposing a
particular elimination tree.

2.2 Viewing Elimination Trees as Tree-decompositions

For tree-structured factor graphs, the typical choice for the elimination tree is based on the fac-
tor graph itself. However, when the input factor graph is not tree-structured, we must choose an
elimination ordering that ensures that the propagation of variables over the course of elimination
is not too costly. In this section, we outline how a particular elimination tree can be related to a
tree decomposition on the input graph (e.g., as in Darwiche and Hopkins, 2001 and Kask et al.,
2005), thereby allowing us to use the quality of the associated tree decomposition as a measure of
quality for elimination trees. In subsequent sections, this relationship will enable us to compare the
constant-factor overhead associated with our algorithm against that of the original input elimination
tree.
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Let G = (X ,F) be a factor graph. A tree-decomposition for G is a triplet (χ,ψ,D) where
χ = {χ1,χ2, . . . ,χm} is a family of subsets of X and ψ = {ψ1,ψ2, . . . ,ψm} is a family of subsets
of F such that ∪ f∈ψiXf ⊆ χi for all i = 1,2, . . . ,m and D is a tree whose nodes are the subsets χi
satisfying the following properties:

1. Cover property: Each variable xi is contained in some subset belonging to χ and each factor
f j ∈ F is contained in exactly one subset belonging to ψ.

2. Running Intersection property: If χs,χt ∈ χ both contain a variable xi, then all nodes χu of the
tree in the (unique) path between χs and χt contain xi as well. That is, the nodes associated
with vertex xi form a connected sub-tree of D .

Any factor elimination algorithm can be viewed in terms of a message-passing algorithm in
a tree-decomposition. For a factor graph G, we can construct a tree decomposition (χ,ψ,D) that
corresponds to an elimination tree T = (F,E) on G. First, we set ψi = { fi} and D = (χ,E ′) where
(χi,χ j) ∈ E ′ is an edge in the tree-decomposition if and only if ( fi, f j) ∈ E is an edge in the elim-
ination tree T . We then initialize χ =

{
Xf1 ,Xf2 , . . . ,Xfm

}
and add the minimal number of variables

to each set χ j so that the running intersection property is satisfied. By construction, the final triplet
(χ,ψ,D) satisfies all the conditions of a tree-decomposition. This procedure is illustrated in Fig-
ure 2. The factor graph (light edges) and its elimination tree (bold edges) on the left is equivalent
to the tree-decomposition on the right. We first initialize χ j = Xf j for each j = 1, . . . ,6 and add
necessary variables to sets χ j to satisfy the running intersection property: x is added to χ2,χ3 and
χ4. Finally, we set ψ j =

{
f j
}
for each j = 1, . . . ,6.

Using a similar procedure, it is also possible to obtain an elimination tree equivalent to the
messages passed on a given tree-decomposition. We define two messages for each edge (χi,χ j) in
the tree decomposition: the message μχi→χ j from χi to χ j is the partial marginalization of the factors
on the χi side ofD , and the message μχ j→χi from χ j to χi is the partial marginalization of the factors
on the χ j side of D . The outgoing message μχi→χ j from χi can be computed recursively using the
incoming messages μχk→χi except for k = j, that is,

μχi→χ j = ∑
χ j\χi

fi ∏
(χk,χi)∈E ′\{(χ j,χi)}

μχk→χi . (1)

The factor elimination process can then be interpreted as passing messages from leaves to parents
in the corresponding tree-decomposition. The partial marginalization function λi computed during
the elimination of fi is identical to the message μχi→χ j where f j is the parent of fi in the elimination
tree. This equivalence is illustrated in Figure 2 where each partial marginalization function λ j is
equal to a sum-product message μχ j→χk for some k. This example assumes that f3 is eliminated last.

For an elimination tree T , suppose that the corresponding tree decomposition is (χ,ψ,D). For
the remainder of this paper, we will define the width of T to be the size of the largest set contained in
χ minus 1. Inference performed using T incurs a constant-factor overhead that is exponential in its
width; for example, computing marginals using an elimination tree T of width w takes O(dw+1 ·n)
time and space where n is the number of variables and d is the domain size.

3. Computing Marginals with Deferred Factor Elimination

When performing inference with factor elimination, one typically attempts to select an elimination
tree to minimize its associated width. However, such an elimination ordering may not be optimal
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Figure 3: Balanced and unbalanced elimination trees. For the chain factor graph in (a), the elimi-
nation tree in (b) has width 1 but requiresO(n) steps to propagate information from leaves
to the root. The balanced elimination tree in (c), for the same factor graph, has width 2 but
takes only O(logn) steps to propagate information from a leaf to the root, since f3 and f5
are eliminated earlier. If f1 is modified, then using a balanced elimination tree, we only
need to update O(logn) elimination steps, while an unbalanced tree requires potentially
O(n) updates.

for repeated inference tasks. For example, an HMM typically used for sequence analysis yields a
chain-structured factor graph as shown in Figure 3a. The obvious elimination tree for this graph is
also chain-structured (Figure 3b). While this elimination tree is optimal for a single computation,
suppose that we now modify the leaf factor f1. Then, recomputing the marginal for the leaf factor
f7 requires time that is linear in the size in the model, even though only a single factor has changed.
However, if we use the balanced elimination tree shown in Figure 3c, we can compute the marginal-
ization for f7 in time that is logarithmic in the size of the model. While the latter elimination tree
increases the width by one (increasing the dependence on d), for fixed d and as n grows large we
can achieve a significant speedup over the unbalanced ordering if we wish to make changes to the
model.

In this section we present an algorithm that generates a logarithmic-depth representation of a
given elimination tree. Our primary technique, which we call deferred factor elimination, gener-
alizes factor elimination so that it can be applied to non-leaf nodes in the input elimination tree.
Deferred factor elimination introduces ambiguity, however, since we cannot determine the “direc-
tion” that a factor should be propagated until one of its neighbors is also eliminated. We refer to
the local information resulting from each deferred factor elimination as a cluster function (or, more
succinctly, as a cluster), and store this information along with the balanced elimination tree. We use
the resulting data structure, which we call a cluster tree, to perform marginalization and efficiently
manage structural and parameter updates. Pseudocode is given in Figure 4.

For our algorithm, we assume that the user provides both an input factor graph G and an associ-
ated elimination tree T . While the elimination tree is traditionally computed from an input model,
in an adaptive setting it may be desirable to change the elimination tree to take advantage of changes
made to the factors (see Figure 9 for an example). Furthermore, domain-specific knowledge of the
changes being made to the model may also inform how the elimination tree should be chosen and
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DeferredFactorElimination(G, T, fj)

Compute cluster λj using Equation (3)

if fj is a leaf in elimination tree T

Let fk be fj’s unique neighbor in T

Attach λj to fk in T

end if
if fj is a degree-2 node in T

Let fi and fk be fj’s neighbors in T

Create a new edge (fi, fk) in T

Attach λj to the newly created edge (fi, fk)

endif
Remove factor fj from factor graph G and T

for each variable xi that is connected to only fj in G

Remove xi from G

endfor

Figure 4: Deferred factor elimination. In addition to eliminating leaves, deferred factor elimination
also eliminates degree-two nodes. This operation can be simultaneously applied to an
independent set of leaves and degree-two nodes.

updated. Thus, in the remainder of the paper we separate the discussion of updates applied to the
input model from updates that are applied to the input elimination tree. As we will see in Section 4,
the former prove to be relatively easy to deal with, while the latter require a reorganization of the
cluster tree data structure.

3.1 Deferred Factor Elimination and Cluster Functions

Consider the elimination of a degree-two factor f j, with neighbors fi and fk in the given elimination
tree. We can perform a partial marginalization for f j to obtain λk, but cannot yet choose whether to
update fi or fk—whichever is eliminated first will need λk for its computation. To address this, we
define deferred factor elimination, which removes the factor f j and saves the partial marginalization
λ j as a cluster, leaving the propagation step to be decided at a later time. In this section, we show
how deferred factor elimination can be performed on the elimination tree, and how the intermediate
cluster information can be saved and also used to efficiently compute marginals.

For convenience, we will segregate the process of deferred factor elimination on the input model
into rounds. In a particular round t (1≤ t ≤ n), we begin with a factor graph Gt and an elimination
tree Tt , and after performing some set of deferred factor eliminations, we obtain a resulting factor
graph Gt+1 and elimination tree Tt+1 for the next round. For the first round, we let G1 = G and
T1 = T . Note that since each factor is eliminated exactly once, the number of total rounds depends
on the number of the factors eliminated in each round.

To construct Tt+1 from Tt , we modify the elimination tree as follows. When we eliminate a
degree-one (leaf) factor f j, we attach λ j to the neighbor vertex fk. When a degree-two factor f j
is removed, we attach λ j to a newly created edge ( fi, fk) where fi and fk are f j’s neighbors in
elimination tree T . We define CT ( f j) to be the set of clusters that are attached either directly to f j or
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Figure 5: Deferred factor elimination. (a) An elimination tree T1 (bold elges), with variable de-
pendencies shown with light edges for reference. To eliminate a leaf node f1, we sum
out variables that are not attached to any other factors (shaded), resulting in the cluster
function λ1 and new elimination tree T2 in (b). To eliminate a degree-two node f3, we
replace it with λ3 attached to the edge ( f2, f4), giving tree T3 shown in (c).

to an edge incident to f j. In the factor graph Gt+1, we remove all λk ∈ CTt ( f j) and variables V j ⊂ X
that do not depend on any factors other than f j or λk ∈ CTt ( f j). Finally, we replace f j with λ j, given
by

λ j =∑
V j

f j ∏
λk∈CTt ( f j)

λk. (2)

The cluster λ j is referred as a root cluster if degTt ( f j) = 0, a degree-one cluster if degTt ( f j) = 1, and
a degree-two cluster if degTt ( f j) = 2. Figure 5 illustrates the creation of degree-one and degree-two
clusters, and the associated changes to the elimination tree and factor graph. We first eliminate f1 by
replacing it with degree-one cluster λ1(x) = ∑z f1(x). Cluster λ1 is attached to factor f2 and the set
of clusters around f2 is CT2( f2) = {λ1,λ3}. We then eliminate a degree-two factor f3 by replacing it
with degree-two cluster λ3(y,v) = f3(y,v). This connects f2 to f4 in the elimination tree, and places
λ3 on the newly created edge.

We note that the correctness of deferred factor elimination follows from the correctness of stan-
dard factor elimination. To perform marginalization for any particular variable, we can simply
instantiate a series of propagations, at each step using a cluster function that has already been com-
puted in one of the aforementioned rounds.

To establish the overall running time of deferred factor elimination we first explain how the clus-
ters we compute can be interpreted in the tree-decomposition framework. Recall that in Section 2.2,
we established an equivalence between clusters and messages in the tree-decomposition in the case
where only leaf factors in the elimination tree are eliminated. We can generalize this relationship
to the case where degree-two factors are also eliminated. As discussed earlier in Section 2.2, the
equivalent tree-decomposition (χ,ψ,D) of an elimination tree T = (F,E) consists of a tree D on
hyper-nodes χ= {χ1, . . . ,χm} with the same adjacency relationship with the factors { f1, . . . , fm} in
T .

A degree-one cluster λ j produced after eliminating a leaf f j factor in T is a partial marginaliza-
tion of the factors on a sub-tree of T . Let fk be f j’s unique neighbor in the elimination tree when
it is eliminated. This implies λ j = μχt→χk for some t as previously shown in Section 2.2. Note that
the index t may not equal j, since there may be a cluster attached to the edge ( f j, fk) (for example
in Figure 5, λ1(x) = μχ1→χ2(x)).
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A degree-two cluster λ j produced after eliminating a degree-two factor f j in T is a partial
marginalization of the factors in a connected subgraph S⊂ T such that S and T \S are connected by
exactly two edges. Let ( fi, fc) and ( fd , fk) be these edges, where fc and fd belong to S and fi and
fk are outside of S (we will show how these “boundary” edges can be efficiently computed in Sec-
tion 3.2). We interpret λ j as an intermediary function that enables us to compute an outgoing mes-
sage μχd→χk by using only λ j and the incoming message μχ j→χc , that is, μχd→χk = ∑χk\χ j λiμχ j→χc .
These intermediate functions are in fact the mechanism that allows us avoid long sequences of mes-
sage passing. For example in Figure 5, λ3 can be used to compute the message μχ3→χ4 using only
μχ2→χ3 , that is, μχ3→χ4(x,v) = ∑yμχ2→χ3(x,y)λ3(y,v).

Finally, we note that we have a single root cluster that is just a marginalization of all of the
factors in the factor graph. Using the relationships established above between cluster functions and
messages in a tree decomposition, we give the running time of deferred factor elimination on a given
elimination tree and input factor graph.

Lemma 1 For an elimination tree with width w, the elimination of leaf factors takes Θ(d2w) time
and produces a cluster of size Θ(dw), where d is the domain size of the variables in the input factor
graph. The elimination of degree-two vertices takes Θ(d3w) time and produces a cluster of size
Θ(d2w).

Proof Each degree-one cluster has size O(dw) because it is equal to a sum-product message in the
equivalent tree-decomposition. For a degree-two vertex f j, the cluster λ j can be interpreted as an
intermediary function that enables us to compute the outgoing messages μχc→χi and μχd→χk using
the incoming messages μχk→χd and μχi→χc for some χc,χd,χi and χk where fi and fk are neighbors of
f j in the elimination tree during its elimination. The set of variables involved in these computations
is (χi ∩ χc)∪ (χk ∩ χd) which is bounded by 2w. Hence, the cluster fi that computes the partial
marginalization of the factors that are between ( fd , fk) and ( fi, fc) has size O(d2w). Moreover, these
bounds are achieved if χi∩χc and χk∩χk are disjoint and each has w variables.

We now establish the running times of calculating cluster functions, by bounding the number
of variables involved in computing a cluster. We first show that when a leaf node f j is eliminated,
the set of variables involved in the computation is χ j ∪ χk where fk is f j’s neighbor. For all the
degree-one clusters of f j, their argument set is a subset of χ j, so the product in Equation (2) can
be computed in O(dw) time. There can be a cluster λc on the edge ( f j, fk) whose argument set has
to be subset of χ j ∪χk. If there is such a cluster, the cost of computing the product in Equation (2)
becomes O(d2w). This bound is achieved when there is a degree-two cluster and χ j and χk are
disjoint.

When a degree-two factor f j is eliminated, the set of variables involved in the computation is
χi ∪χ j ∪χk where fi and fk are neighbors of f j. As shown above, the argument set of degree-one
clusters is a subset of χ j. This cluster can have degree-two clusters on edges ( fi, f j) and ( f j, fk), and
in this case, computation of a degree-two cluster takes O(d3w) time. This upper bound is achieved
when the sets χi, χ j and χk are disjoint.

We note that in the above discussion we assumed that the number of operands in Equation (2) is
bounded, that is, for any factor f , |CT ( f )| = O(1). This assumption is valid because for any given
elimination tree, we can construct an equivalent elimination tree with degree 3 by adding dummy
factors. For example, suppose the input elimination tree has degree n− 1 (i.e., it is star-shaped);
then Equation (2) has nmultiplication operands hence requires O(ndw) time to compute. By adding
dummy factors in the shape of a complete binary tree between the center factor and the leaf factors,
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BuildClusterTree(G, T )

G0 := G, T0 := T

Initialize H as an empty rooted tree

for round t = 1 up to k

Gt := Gt−1, Tt := Tt−1

S := A maximal independent set of leaves and degree two nodes in Tt

for each factor fj in S

call DeferredFactorElimination(Gt, Tt, fj)
for each cluster λi that is used to compute λj

Add edge (λi, λj) in H where λj is the parent.

endfor
for each variable xi eliminated along with fj

Add edge (xi, λj) in H where λj is the parent

endfor
endfor

endfor
return H as the cluster tree

Figure 6: Hierarchical clustering. Using deferred factor elimination, we can construct a balanced
cluster tree data structure that can be used for subsequent marginal queries.

we can bring the complexity of computing Equation (2) down to O(dw) for each factor.

3.2 Constructing a Balanced Cluster Tree

In this section, we show how performing deferred factor elimination in rounds can be used to create
a data structure we call a cluster tree. As variables and factors are eliminated through deferred
factor elimination, we build the cluster tree using the dependency relationships among clusters (see
Figure 6). The cluster tree can then be used to compute marginals efficiently, and as we will see, it
can also be used to efficiently update the original factor graph or elimination tree.

For a factor graphG= (X ,F) and an elimination tree T , a cluster treeH = (X∪C,E) is a rooted
tree on variables and clusters X ∪C whereC is the set of clusters. The edges E represent the depen-
dency relationships among the quantities computed while performing deferred factor elimination.
When a factor f j is eliminated, cluster λ j is produced by Equation (2). All the variables V j and
clusters C ( f j) removed in this computation become λ j’s children. For a cluster λ j, the boundary ∂ j
is the set of edges in T that separates the collection of factors that is contracted into λ j from the rest
of the factors.

In Equation (2), we gave a recursive formula to compute λ j in terms of its children in the cluster
tree. In order to use the cluster tree in our computations, we need to derive a similar recursive
formula for the boundary ∂ j for each cluster λ j. Let clusters λ1,λ2, . . . ,λk and variables x1,x2, . . . ,xt
be λ j’s children in the cluster tree. Let E( f j) be the set of edges incident to f j in T . Then the
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Figure 7: Cluster Tree Construction. To obtain the cluster tree in (b), eliminations are performed
in the factor graph G (a) in the following order: f1, f3, f5 and f6 in round 1, f4 in round
2 and f2 in round 3. The cluster-tree (b) representing this elimination is annotated by
boundaries.

boundary of λ j can be computed by

∂ j = E( f j)�∂1�∂2� . . .�∂k
where ∂i is the boundary of cluster λi and � is the symmetric set difference operator. An ex-
ample cluster tree, along with explicitly computed boundaries, is given in Figure 7b. For ex-
ample the boundary of the cluster λ4 is computed by ∂4 = E( f4)�∂3�∂5�∂6 where E( f4) =
{( f2, f4),( f4, f5),( f4, f6)}.

Theorem 2 Let G= (X ,F) be a factor graph with n nodes and T be an elimination tree on G with
width w. Constructing a cluster tree takes Θ(d3w ·n) time.

Proof During the construction of the cluster tree, every factor is eliminated once. By Lemma 1,
each such elimination takes O(d3w) time.

For our purposes it is desirable to perform deferred factor elimination so that we obtain a cluster
tree with logarithmic depth. We call this process hierarchical clustering and define it as follows. We
start with T1 = T and at each round i we identify a set K of degree-one or -2 factors in Ti and apply
deferred factor elimination to this independent set of factors to construct Ti+1. This procedure ends
once we eliminate the last factor, say fr. We make λr the root of the cluster tree. At each round,
the set K ⊂ F is chosen to be a maximal independent set, that is, for fi, f j ∈ K, fi �∼ f j in T , and
no other factor fk can be added to K without violating independence. The sequence of elimination
trees created during the hierarchical clustering process will prove to be useful in Section 4, when
we show how to perform structural updates to the elimination tree. As an example, a factor graph
G, along with its associated elimination tree T = T1, is given in Figure 7a. In round 1, we eliminate
a maximal independent set { f1, f3, f5, f6} and obtain T2. In round 2 we eliminate f4, and finally in
round 3 we eliminate f2. This gives us the cluster tree shown in Figure 7b.

As we show with the following lemma, the cluster tree that results from hierarchical clustering
has logarithmic depth. We will make use of this property throughout the remainder of the paper to
establish the running times for updating and computing marginals and MAP configurations.
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QueryMarginal(H, xi)

Let xi, λ1, . . . , λk be the path from xi to the root λk of cluster tree H
for j = k down to 1

Let fj be the factor associated with cluster λj

Compute downward marginalization function Mfj using Equation (4)

endfor
Compute the marginal at xi using Equation (5)

Figure 8: Performing Marginalization with a Cluster Tree. Computing any particular marginal in
the input factor graph corresponds to a root-to-leaf path in the cluster tree.

Lemma 3 For any factor graph G = (X ,F) with n nodes and any elimination tree T , the cluster
tree obtained by hierarchical clustering has depth O(logn).

Proof Let the elimination tree T = (F,E) have a leaves, b degree-two nodes and c degree-3 or more
nodes, that is, m = a+ b+ c where m is the number of factors. Using the fact that the sum of the
degrees of the vertices is twice the number of edges, we get 2 |E| ≥ a+ 2b+ 3c. Since a tree with
m vertices have m−1 edges, we get 2a+b−2≥ m. On the other hand, a maximal independent set
of degree-one and degree-two vertices must have size at least a− 1+(b− a)/3 ≥ m/3, since we
can eliminate at least a third of the degree-two vertices that are not adjacent to leaves. Therefore at
each round, we eliminate at least a third of the vertices, which in turn guarantees that the depth of
the cluster tree is O(logn).

3.3 Computing Marginals

Once a balanced cluster tree H has been constructed from the input factor graph and elimination
tree, as in standard approaches we can compute the marginal distribution of any variable xi by prop-
agating information (i.e., partial marginalizations) through the cluster tree. For any fixed variable
xi, let λ1,λ2, . . . ,λk be the sequence from xi to the root λk in the cluster tree H . We now de-
scribe how to compute the marginal for xi (see Figure 8 for pseudocode). For each factor f j, let
∂ j contain neighbors fa and fb of f j (i.e., neighboring factors at the time f j is eliminated). This
information can be obtained easily, since fa and fb are ancestors of f j in the cluster tree, that is,
fa, fb ∈

{
f j+1, f j+2, . . . , fk

}
. For convenience we state our formulas as if there are two neighbors

in the boundary; in the case of degree-one clusters, terms associated with one of the neighbors, say
fb, can be ignored in the statements below. First, we compute a downward pass of marginalization
functions from λk to λ1 given by

Mfj = ∑
Y\Xλ j

f jM faMfb ∏
f∈C j\{ f j−1}

f , (3)

whereY is the set of variables that appear in the summands and Xλ j is the set of variables that cluster
λ j depends on. Therefore each marginalization function Mj from parent λ j is computed using only
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information in the path above λ j. Then, the marginal for variable xi is

gi(xi) = ∑
Y\{xi}

Mf1 ∏
f∈C1

f (4)

where Y is the set of variables that appear in the summands. Combining this approach with Lemmas
1 and 3, we have the following theorem.

Theorem 4 Consider a factor graph G with n nodes and let T be an elimination tree with width w.
Then, Equation (4) holds for any variable xi and can be computed in O(d2w logn) time.

Proof The correctness of Equation (4) follows when each marginalization function Mfj is viewed
as a sum-product message in the equivalent tree-decomposition. To prove the latter, we will show
that for ∂ j = {( fc, fa),( fd, fb)}, Mfa and Mfb are equal to the tree-decomposition messages μχa→χc
and μχb→χd , respectively. This can be proven inductively starting with Mfk . First, note that the
base case holds trivially. Then, using the inductive hypothesis, we assume that Mfa = μχa→χc and
Mfb = μχb→χd . Now, there has to be a descendant λ� of λ j such that ( fe, f j) ∈ ∂�. By multiplying
with the degree-two clusters in C j \

{
f j−1

}
, we can convert the messages μχa→χc and μχb→χd to the

messages into f j. Applying Equation (1) then givesMfj = μχ j→χe as desired.
For the running time, we observe that each message computation is essentially the same proce-

dure as eliminating a leaf factor, therefore each message has size O(dw) and takes O(d2w) time to
compute by Lemma 1.

We note that it is also possible to speed-up successive marginal queries by caching the down-
ward marginalization functions in Equation (3). For example, if we query all variables as described
above, we compute O(n logn)many downward marginalization messages. However, by caching the
downward marginalization functions in the cluster tree, we can compute all marginals in O(d2w ·n)
time, which is optimal given the elimination ordering. As we will see in Section 4.1, the bal-
anced nature of the cluster tree allows us to perform batch operations efficiently. In particular, for
marginal computation, using the caching strategy above, any set of � marginals can be computed in
O(d2w� log(n/�)) time.

4. Updates

The preceding sections described the process of constructing a balanced, cluster tree elimination
ordering from a given elimination tree, and how to use the resulting cluster tree to compute marginal
distributions. However, the primary advantage of a balanced ordering lies in its ability to adapt to
changes and incorporate updates to the model. In this section, we describe how to efficiently update
the cluster tree data structure after changes are made to the input factor graph or elimination tree.

We divide our update process into two algorithmic components. We first describe how to make
changes to the factors, whether changing the parameters of the factor or its arguments (and thus
the structure of the factor graph), but leaving the original elimination tree (and thus the cluster
tree) fixed. We then describe how to make changes to the elimination tree and efficiently update
the cluster tree. In practice these two operations may be combined; for example when modifying
a tree-structured graph such that it remains a tree we are likely to change the elimination tree to
reflect the new structure. Similarly, for a general input factor graph we may also wish to change the
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Figure 9: Modifying the Elimination Tree. If the factor graph in (a) is modified by removing the
edge (y, f1), we can reduce the width of the elimination tree (from 3 to 2) by replacing
the edge ( f1, f2) by ( f1, f5).
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Figure 10: Modifying the arguments of factors. If the factor graph in (a) is modified by removing
the edge (x, f1), we update two paths in the cluster tree, as shown in (b), from both x and
λ1 to the root. The position in which x is eliminated is found by bottom-up traversing of
the factors adjacent to x.

elimination tree upon changes to factors. Figure 9 illustrates such an example, in which changing a
dependency in the factor graph makes it possible to reduce the width of the elimination tree.

4.1 Updating Factors With a Fixed Elimination Tree

For a fixed elimination tree, suppose that we change the parameters of a factor f j (but not its ar-
guments), and consider the new cluster tree created for the resulting graph. As suggested in the
discussion in Section 3, the first change in the clustering process occurs when computing λ j; a
change to λ j changes its parent, and so on upwards to the root. Thus, the number of affected func-
tions that need to be recalculated is at most the depth of the cluster tree. Since the cluster tree is of
depth O(logn) by Lemma 3, and each operation takes at most O(d3w), the total recomputation is at
most O(d3w logn).

If we change the structure of graph G by modifying the arguments of a factor f j by adding
or removing some variable xi, then the point at which xi is removed from the factor graph may
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Figure 11: Batch updates. After modifying �= 3 factors, f1, f5 and f12, we update the correspond-
ing clusters and their ancestors in a bottom-up fashion. The total number of nodes visited
is O(� log( n� )+2

log(�)) = O(� log( n� )).

also change. Since xi is eliminated (i.e., summed out) once every factor that depends on it has
been eliminated, adding an edge may postpone elimination, while removing an edge may lead to an
earlier elimination. To update the cluster tree as a result of this change, we must update all clusters
affected by the change to f j, and we must also identify and update the clusters affected by earlier, or
later, removal of xi from the factor graph. In both edge addition and removal, we can update clusters
from λ j to the root in O(d3w logn) time.

We describe how to identify the new elimination point for xi in O(logn) time. Observe that
the original cluster λk at which xi is eliminated is the topmost cluster in the cluster tree with the
property that either fk, the associated factor, depends on xi, or λk has two children clusters that both
depend on xi. The procedure to find the new point of elimination differs for edge insertion and edge
removal. First, suppose we add edge (xi, f j) to the factor graph. We must traverse upward in the
cluster tree until we find the cluster satisfying the above condition. For edge removal, suppose that
we remove the dependency (xi, f j). Then, xi can only need to be removed earlier in the clustering
process, and so we traverse downwards from the cluster where xi was originally eliminated. At any
cluster λk during the traversal, if the above condition is not satisfied then λk must have one or no
children clusters that depend on xi. If λk has a single child that depends on xi, we continue traversing
in that direction. If λk has no children that depend on xi, then we continue traversing towards λ j.
Note that this latter case occurs only when the paths of xi and λ j to the root overlap, and thus is
always possible to traverse toward λ j.

Once we have identified the new cluster at which xi is eliminated, we can recalculate cluster
functions upwards in O(d3w logn) time. Therefore the total cost of performing an edge insertion or
removal O(d3w logn). Figure 10 illustrates how the cluster tree is updated after deleting an edge in
a factor graph keeping the elimination tree fixed. After deleting (x, f1) we first update the clusters
upwards starting from λ1. Then traverse downwards to find the point at which xi is eliminated,
which is λ5 because f5 depends on x. Finally, we update λ5 and its ancestors.

We can also extend the above arguments to handle multiple, simultaneous updates to the factor
graph. Suppose that we make � changes to the model, either to the definition of a factor or its
dependencies. Each change results in a set of affected nodes that must be recomputed; these nodes
are the ancestors of the changed factor, and thus form a path upwards through the cluster tree. This
situation is illustrated in Figure 11. Now, we count the number of affected nodes by grouping them
into two sets. If our cluster tree has branching factor b, level logb(�) has � nodes; above this point,
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Figure 12: Updating the elimination tree. Suppose we modify the input factor graph by removing
(y, f1) from the factor graph and replacing ( f1, f2) by ( f1, f5) in the elimination tree as
shown in (a). The original cluster tree (b) must be changed to reflect these changes. We
must revisit the decisions made during the hierarchical clustering for the affected factors
(shaded).

paths must merge, and all clusters may need to be recalculated. Below level logb(�), each path may
be separate. Thus the total number of affected clusters is �+ � logb(n/�).

Note that for edge modifications, we must also address how to find new elimination points
efficiently. As stated earlier, any elimination point λk for xi satisfies the condition that it is the
topmost cluster in the cluster tree with the property that either fk depends on xi, or λk has two
children clusters that both depend on xi. As we update the clusters in batch, we can determine the
variables for which the above condition is not satisfied until we reach the root cluster. In addition,
we also mark the bottommost clusters at which the above condition is not satisfied. Starting from
these marked clusters, we search downwards level-by-level until we find the new elimination points.
At each step λk, we check if there is a variable xi such that xi �∼ f j and only one child cluster of
λk depends on xi. If there is not, we stop the search; if there is, we continue searching towards
those clusters. Since each step takes O(w) time, the total time to find all new elimination points is
O(w� log(n/�)). We then update the clusters upwards starting from the new elimination points until
the root, which takes O(d3w� log(n/�)) time.

Combining the arguments above, we have the following theorem.

Theorem 5 Let G= (X ,F) be a factor graph with n nodes andH be the cluster tree obtained using
an elimination tree T with width w. Suppose that we make � changes to the model, each consisting
of either adding or removing an edge or modifying the parameters of some factor, while holding T
fixed. Then, we can recompute the cluster tree H ′ in O(d3w� log(n/�)) time.

4.2 Structural Changes to the Elimination Tree

Many changes to the graphical model will be accompanied by some change to the desired elimina-
tion ordering. For example, changing the arguments of a factor may suggest some more efficient
ordering that we may wish to exploit. However, changing the input elimination order also requires
modifying the cluster tree constructed from it. Figure 12 shows such a scenario, where removing
a dependency suggests an improved elimination tree. In this section we prove that it is possible to
efficiently reorganize the cluster tree after a change to the elimination tree.
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As in the previous section, we wish to recompute only those nodes in the cluster tree whose
values have been affected by the update. In particular we construct the new cluster tree by stepping
through the creation of the original sequence T1,T2, . . ., marking some nodes as affected if we need
to revisit the deferred elimination decision we made in constructing the cluster tree, and leaving
the rest unchanged. We first describe the algorithm itself, then prove the required properties: that
the original clustering remains valid outside the affected set; that after re-clustering the affected set,
our clustering remains a valid maximal independent set and is thus consistent with the theorems in
Section 3; and finally that the total affected set is again only of size O(logn). Since the elimination
tree can be arbitrarily modified by performing edge deletions and insertions successively, for ease
of exposition we first focus on how the cluster tree can be efficiently updated when a single edge
in the elimination tree is inserted or deleted. For the remainder of the section, we assume that the
hierarchical clustering process produced intermediate trees (T1,T2, . . . ,Tk) and that ( fi, f j) is the
edge being inserted or deleted.

Observe that, to update any particular round of the hierarchical clustering, for any factor fk
we must be able to efficiently determine whether its associated cluster must be recomputed due to
the insertion or deletion of an edge ( fi, f j). A trivial way to check this would be to compute a
new hierarchical clustering (T ′

1,T
′
2, . . . ,T

′
l ) using the changed elimination tree. Then, the cluster λk

that is generated after eliminating fk depends only on the set of clusters around fk at the time of
the elimination. If Ci( fk) and C ′

i ( fk) are the set of clusters around fk on Ti and T ′
i , respectively,

then fk is affected at round i if the sets Ci( fk) and C ′
i ( fk) are different. Note that we consider

Ci( fk) = Ci( fk) if λ j ∈ Ci( fk) ⇐⇒ λ j ∈ C ′
i ( fk) and the values of λ j are identical in both sets.

Clearly, this approach is not efficient, but motivates us to (incrementally) track whether or not Ci( fk)
and C ′

i ( fk) are identical in a more efficient manner. To do this, we define the degree-status of the
neighbors of fk, and maintain it as we update the cluster tree. Given two hierarchical clusterings
(T1 = (F1,E1),T2 = (F2,E2), . . . ,Tk = (Fk, /0)) and (T1 = (F ′

1,E
′
1),T2 = (F ′

2,E
′
2), . . . ,Tl = (F ′

l , /0)), we
define the degree-status σi( f ) of a factor f at round i as

σi( f ) =

{
1 if degTi( f )≤ 2 or degT ′

i
( f )≤ 2 or f /∈ Fi∩F ′

i ,

0 if degTi( f )≥ 3 and degT ′
i
( f )≥ 3.

The degree status tells us whether f is a candidate for elimination in either the previous or the new
cluster tree.

At a high level, we step through the original clustering, marking factors as affected according
to their degree-status. For a factor f j, if σi( f j) = 1, then f j is either eliminated or a candidate for
elimination at round i in one or both of the previous and new hierarchical clusterings. Since we
must recompute clusters for affected factors, if we mark f j as affected, then its unaffected neighbors
should also be marked as affected in the next round. An example is shown in Figure 13. This
approach conservatively tracks how affectedness “spreads” from one round to the next; we may
mark factors as affected unnecessarily. However, we will be able to show that any round of the new
clustering has a constant number of factors for which we must recompute clusters.

We now describe our algorithm for updating a hierarchical clustering after a change to the
elimination tree. We first insert or remove the edge ( fi, f j) in the original elimination tree and
obtain T ′

1 = (V ′
1,E

′
1) where E

′
1 = E1 ∪

{
( fi, f j)

}
if the edge is inserted or E ′

1 = E1 \
{
( fi, f j)

}
if

deleted. For i= 1,2, . . . , l, the algorithm proceeds by computing the affected set Ai, an independent
set Mi ⊆ Ai of affected factors of degree at most two in T ′

i , and then eliminating Mi to form T ′
i+1.

We let A0 =
{
fi, f j

}
,M0 = /0 and T ′

0 = T ′
1. For round i= 1,2, . . . l we do the following:
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Figure 13: Affected nodes in the clustering. By rule 2 for marking factors as affected, eliminating
f6 in the first round makes σ2( f3) = 1, thereby making f1 and f5 affected. In contrast,
since σ2( f9) = 0, f12 and f13 are not marked as affected. By rule 1, eliminating f7 in the
first round makes f10 affected.

• We obtain the new elimination tree T ′
i = (F ′

i ,E
′
i) by eliminating the factors inMi−1 from Ti−1

via deferred factor elimination subroutine.

• All affected factors left in T ′
i remain affected, namely the set Ai−1 \Mi−1. We mark a previ-

ously unaffected factor f as affected if

1. f has an affected neighbor g in T ′
i−1 such that g ∈Mi−1 or

2. f has an affected neighbor g in T ′
i such that g ∈ Ai−1 \Mi−1 with σi(g) = 1.

Let Ni be the set of factors that are marked in this round according to these two rules, then
Ai = (Ai−1 \Mi−1)∪Ni.

• Initialize Mi = /0 and greedily add affected factors to Mi starting with the factors that are
adjacent to an unaffected factor. Let f ∈ Ai be an affected factor with an unaffected neighbor
g ∈ V ′

i \Ai. If g is being eliminated at round i we skip f , otherwise f is included in Mi if
degT ′

i
( f )≤ 2. We continue traversing the set of affected factors with degree at most two and

add as many of them as we can toMi, subject to the independence condition.

Observe that a factor f in T ′
i becomes affected either if an affected neighbor of f is eliminated

at round i− 1 or if f has neighbor that was affected in earlier rounds with degree-status one in T ′
i .

Once a factor becomes affected, it stays affected. For an unaffected factor f at round i, f ’s neighbors
have to be (i) unaffected, (ii) affected with degree-status zero, or (iii) have become affected at round
i.

In order to establish that the procedure above correctly updates the hierarchical clustering, we
first prove that we are able to correctly identify unaffected factors, and incrementally maintain
maximal independent sets.

Lemma 6 Given T = (T1,T2, . . . ,Tk), let T ′ = (T ′
1,T

′
2, . . . ,T

′
l ) be the updated hierarchical cluster-

ing. For any round i = 1 . . . l, let T ′
i = (F ′

i ,E
′
i), let Pi = F ′

i \Ai be the set of unaffected factors and
Ri = Pi \F ′

i+1 be the ones that are eliminated at round i. Then, the following statements hold:

• Ri∪Mi is a maximal independent set among vertices of degree at most two in F ′
i .

• For any f ∈ Pi, the set of clusters around f and the set of neighbors of f are the same in Ti as
in T ′

i .
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Proof For the first claim, we first observe that Ri is an independent since it is contained in Mi.
For maximality, assume that Ri ∪Mi is not a maximal independent set among degree ≤ 2 vertices
of F ′

i . Then there must be a factor f with two neighbors g,h with degrees ≤ 2 and none of which
are eliminated at round i. This triplet ( f ,g,h) cannot be entirely in Ai or F ′

i \Ai, because the sets
Ri and Mi are maximal on their domain, namely Ri is a maximal independent set over F ′

i \Ai and
Mi is a maximal independent set over Ai. On the other hand, the triplet ( f ,g,h) cannot be on the
boundary either because the update algorithm eliminates any factor with degT ′

i
≤ 2 if it is adjacent

to an unaffected factor that is not eliminated at round i. Therefore, Ri∪Mi is a maximal independent
set over degree ≤ 2 vertices of F ′

i .
We now prove the first part of the second claim by induction on i. Let Ci( f ) and C ′

i ( f ) be the
set of clusters around f in Ti and T ′

i , respectively. The claim is trivially true for i = 1 because
Ci( f ) = C ′

i ( f ) = /0 for all factors. Assume that C j( f ) = C ′
j( f ) for all unaffected factors at round j

where j = 1, . . . , i− 1. Since f ∈ Pi implies that f ∈ Pi−1, we have that Ci−1( f ) = C ′
i−1( f ). Since

the set of clusters around a factor changes only if any of its neighbors are eliminated, we must
prove that if a neighbor of f is eliminated in Ti−1, then it must be eliminated in T ′

i−1 and vice versa;
additionally we must prove that they also generate the same clusters. Since f ∈ Pi−1, the neighbors
of f in T ′

i can be unaffected, affected with degree-status zero or newly affected in round i. When
an unaffected factor g is eliminated in Ti−1, it is eliminated in T ′

i as well, so the resulting clusters
are identical since Ci−1(g) = C ′

i−1(g). So any change to Ci( f ) due to f ’s unaffected neighbors is
replicated in C ′

i ( f ). On the other hand, by definition we cannot eliminate a factor with degree-status
zero, so they do not pose a problem even if they are affected. The last case is a newly affected
neighbor g of f in Ti−1 with σi−1(g) = 1. But this case is impossible because, if g is eliminated
then we would have marked f as affected in Ti via the first rule, or if g is not eliminated then by
the second rule and the fact that σi(g) = 1, we would have marked f as affected in Ti. Therefore
Ci( f ) = C ′

i ( f ) for all unaffected factors. This implies that clusters of unaffected factors are identical
and do not have to be recalculated in T ′

i .
Let Ni( f ) and N ′

i ( f ) be the set of neighbors of f in Ti and T
′
i , respectively. Proving the second

part of the second claim (i.e.,Ni( f ) =N ′
i ( f )) proceeds similarly to that for Ci( f ) = Ci( f ). The only

difference is the initial round when i= 1. In round 1, the update algorithm marks all the factors that
are incident to the added or removed edges as affected, so for all unaffected factors their neighbor
set must be identical in Ti and T ′

i .

Using this lemma, we can now prove the correctness of our method to incrementally update a
hierarchical clustering.

Theorem 7 Given a valid hierarchical clustering T , let T ′ = (T ′
1,T

′
2, . . . ,T

′
l ) be the updated hierar-

chical clustering, where T ′
i = (F ′

i ,E
′
i). Then, T

′ is a valid hierarchical clustering, that is,

• the set Mi = F ′
i \F ′

i+1 is a maximal independent set containing vertices of degree at most two,
and

• T ′
i+1 is obtained from T ′

i by applying deferred factor elimination to the factors in Mi.

Proof Recall that Ai is the set of affected factors marked andM′
i ∈ Ai be the independent set chosen

by the algorithm. Let Pi = F ′
i \Ai be the set of unaffected factors and Ri = Pi \F ′

i+1 be the ones that
are eliminated at round i. The fact that Mi is a maximal independent set follows from Lemma 6
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because Mi = Ri∪M′
i . Since the update algorithm keeps the decisions made for the unaffected fac-

tors, the set of eliminated vertices are precisely Mi = Ri ∪M′
i and by Lemma 6, Mi is a maximal

independent set over degree-one and degree-two in T ′
i . The update algorithm applies the deferred

factor elimination subroutine on the set M′
i , so what remains to be shown is the saved values for Ri

are the same as if we eliminate them explicitly. By Lemma 6, the factors in Ri have the same set
of clusters around them in Ti and T ′

i , which means that deferred factor elimination procedure will
produce the same result in both elimination trees when unaffected factors are eliminated. Therefore,
we can reuse the clusters in Ri.

Theorem 7 shows that our update method correctly modifies the cluster tree, and thus marginals
can be correctly computed. Note that, by Lemma 3, we also have that the resulting cluster tree also
has logarithmic depth. It remains to show that we can efficiently update the clustering itself. We do
this by first establishing a bound on the number of affected nodes in each round.

Lemma 8 For i = 1,2, . . . , l, let Ai be the set of affected nodes computed by our algorithm after
inserting or deleting edge ( fi, f j) in the elimination tree. Then, |Ai| ≤ 12.

Proof First, we observe that the edge ( fi, f j) defines two connected components, that are either
created or merged, in the elimination tree. Since an unaffected node becomes affected only if it
is adjacent to an affected factor, the set of affected nodes forms a connected sub-tree throughout
the elimination procedure. For the remained of the proof, we focus on the component associated
with fi, and show that it has at most six affected nodes. A similar argument can be applied to the
component associated with f j, thereby proving the lemma.

For round i, let Bi be the set of affected neighbors of with at least one unaffected neighbor and
let Ni be the set of newly affected factors. We claim that |Bi| ≤ 2 and |Ni| ≤ 2 at every round i.
This can be proven inductively: assume that |Bi| and |Ni| are at most two in round i ≥ 0. Rule
1 for marking a factor affected can make only one newly affected factor at round i+ 1, in which
case it is eliminated, and hence |Bi| cannot increase. Rule 2 for marking a factor affected can make
two newly affected factors, as shown in the example Figure 13. What is left to be shown is that if
|Bi| = 2, then rule 2 cannot create two newly affected factors and make |Bi| > 2. Let Bi = { fa, fb}
and suppose fa can force two previously unaffected factors affected in the next round. For this to
happen, the degree-status of fa has to be one in round i+1. However, this cannot because fa must
have at least three neighbors in both Ti+1 and T ′

i+1. This is because it has two unaffected neighbors
plus an affected neighbor that is eventually connected to another unaffected factor through fb. Note
that Figure 13 has |Bi|= 1, so we can increase |Bi| by one.

We have now established the fact that the number of affected nodes can increase at most by two
in each round, and it remains to be shown that the number of affected nodes is at most six in each
connected component.

To prove this, we argue that if there are more than six affected nodes in the connected com-
ponent, our algorithm eliminates at least two factors. Since affected nodes form a sub-tree that
interacts with the rest of the tree on at most two factors, what remains to be shown is that in any tree
with at least four nodes, the size of a maximal independent set over the nodes with degree at most
two is at least two. To see this, observe that every tree has two leaves, and if the size of the tree is at
least four, the distance between these two leaves is at least two or the tree is star-shaped. In either
case, any maximal independent set must include at least two nodes, proving the claim.
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Combining the above arguments, we now conclude that a cluster tree can be efficiently updated
if the elimination tree is modified.

Theorem 9 Let G= (X ,F) be a factor graph with n nodes andH be the cluster tree obtained using
an elimination tree T . If we insert or delete a single edge from T , it suffices to re-compute O(logn)
clusters in H to reflect the changes.

Proof Since the number of affected factors is constant at each round by Lemma 8 and the number
of rounds is O(logn) by Lemma 3, the result follows.

We can easily generalize these results to multiple edge insertions and deletions by considering
each connected component resulting from a modification separately. As we discussed in Section 4.1,
we only need to recalculate O(� log(n/�)) many clusters where � is the number of modifications to
the elimination tree. We can now state the running time efficiency of our update algorithm under
multiple changes to the elimination tree.

Theorem 10 Let G = (X ,F) be a factor graph with n nodes and H be the cluster tree obtained
using an elimination tree T . If we make � edge insertions or deletions in T , we can recompute the
new cluster tree in O(d3w� log(n/�)) time.

5. Maintaining MAP Configurations

The previous sections provide for efficient marginal queries to user-specified variables and can be
extended to compute max-marginals when each sum is replaced with max in the formulas. While we
can query each max-marginal, since we do not know a prioriwhich entries of theMAP configuration
have changed, in the worst case it may take linear time to update the entire MAP configuration. In
this section, we show how to use the cluster tree data structure along with a tree traversal approach
to efficiently update the entries of the MAP configuration. More precisely, for a change to the model
that inducesm changes to aMAP configuration, our algorithm computes the newMAP configuration
in time proportional to m log(n/m), without requiring a priori knowledge of m or which entries in a
MAP configuration will change.

5.1 Computing MAP Configurations Using a Cluster Tree

In Section 3, we described how to compute a cluster tree for computing marginals for any given
variable. In this section, we show how this cluster tree can be modified to compute a MAP configu-
ration. First, we modify Equation (2) for computing a cluster λ j to be

λ j =max
V j

f j ∏
λk∈CT ( f j)

λk (5)

where V j ⊆ X is the set of children variables of λ j and CT ( f j) is the set of children clusters of λ j in
the cluster-tree. For MAP computations, rather than using boundaries we make use of the argument
set of clusters. The argument set Xλ j of a cluster λ j is the set of variables λ j depends on at time it
was created and it is implicitly computed as we perform hierarchical clustering.
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Figure 14: Updating a MAP configuration. Factor f1 is modified and no longer depends on z on the
factor graph (left). We first update the clusters on the path from modified clusters to the
root, namely, λ1 and λ2. Then, we check for changes to the MAP configuration using
a top-down traversal in the cluster-tree (right). Here x is assumed to have a different
MAP configuration than before, which requires us to check for changes to the MAP
configuration in clusters with x in their argument sets, namely λ4, λ5. The argument set
for each cluster is annotated in the cluster tree.

We now perform a downward pass, in which we select an optimal configuration for the variables
associated with the root of the cluster tree, then at its children, and so on. During this downward
pass, as we reach each cluster λ j, we choose the optimal configurations for its children variables V j

using
V ∗
j = argmax

X
δ(Xλ j = X∗

λ j) f j ∏
λk∈CT ( f j)

λk (6)

where δ(·) is the Kronecker delta, ensuring that λ j’s argument set Xλ j takes on value X∗
λ j
. By

the recursive nature of the computation, we are guaranteed that the optimal configuration X∗
λ j
is

selected before reaching the cluster λ j. This can be proven inductively: assume that Xλ j has an
optimal assignment when the recursion reaches the cluster λ j. We are conditioning on Xλ j , which
is the Markov blanket for λ j, and can therefore optimize the subtree of λ j independently. The value
in Equation (6) is thus the optimal configuration for V j (which by definition includes the Markov
blanket) for each child cluster λk; see Figure 14 for an example.

Theorem 11 Let G be a factor graph with n nodes and T be an elimination tree on G with tree-
width w. The MAP configuration can be computed in O(nd3w) time.

Proof Computation of the formulas in Equations (5) and (6) takes O(d3w) by Lemma 3. Since
the algorithm visits each node twice, once bottom-up using Equation (5) and once top-down using
Equation (6) the total cost is O(nd3w).

5.2 Updating MAP Configurations Under Changes

In this section we show, somewhat surprisingly, that the time required to update a MAP configu-
ration after a change to the model is proportional to the number of changed entries in the MAP
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configuration, rather than the size of the model. Furthermore, the cost of updating the MAP config-
uration is in the worst case linear in the number of nodes in the factor graph, ensuring that changes
to model result in no worse cost than computing the MAP from scratch. This means that, although
the extent of any changed configurations is not known a priori, it is identified automatically during
the update process. For the sake of simplicity, we present the case where we modify a single factor.
However, with little alteration the algorithm also applies to an arbitrary number of modifications
both to the factors and to the structure of the model.

Let G = (X ,F) be a factor graph and H be its cluster tree. Suppose that we modify a factor
f1 ∈ F and let λ1 be the cluster formed after eliminating f1. Let λ1,λ2, . . . ,λk be the path from λ1
to the root λk in H . As in Section 4, we recompute each cluster along the path using Equation (5).
We additionally mark these clusters dirty to indicate that they have been modified. In the top-down
phase we search for changes to and update the optimal configuration for the children variables of
each cluster. Beginning at the root, we move downward along the path, checking for a MAP change.
At each node, we recompute the optimal MAP configuration for the children variables and recurse
on any children cluster who is marked as dirty or whose argument set has a variable with a changed
MAP configuration.

Figure 14 shows an example of how a MAP configuration changes after a factor (e.g., f1) is
changed in the factor graph. The bottom-up phase marks λ1 and λ2 dirty and updates them. The
top-down phase starts at the root and re-computes the optimal configuration for x and y. Assuming
that the configuration for x is changed, the recursion proceeds on λ1 due to the dirty cluster and λ4
due to the modified argument set. At λ4 we re-compute the optimal MAP configurations for v and
w and assuming nothing has changed, we proceed to λ5 and terminate.

We now prove the correctness and overall running time of this procedure.

Theorem 12 Suppose that we make a single change to a factor in the input factor graph G, and
that a MAP configuration of the new model differs from our previous result on at most m variables.
Let γ = min(1+ rm,n), where r is the maximum degree of any node in G. After updating the
cluster tree, the MAP update algorithm can find m variables and their new MAP configurations in
O(γ(1+ log( nγ ))d

w) time.

Proof Suppose that after the modified factor is changed, we update the cluster tree as described in
Section 4. To find the new MAP, we revisit our decision for the configuration of any variables along
this path.

Consider how we can rule out any changes in the MAP configuration of a subtree rooted at λ j
in the cluster tree. First, suppose that we have found all changed configurations above λ j. The
decision at λ j is based on its children clusters and the configuration of its argument set: if none
of these variables have changed, and no clusters used in calculating λ j have changed, then the
configuration for all nodes in the subtree rooted λ j remains valid. Thus, our dynamic MAP update
procedure correctly finds all the changed m variables and their new MAP configurations.

Now suppose that m variables have changed the value they take on in the new MAP configu-
ration. The total number of paths with changed argument set is then at most rm. These paths are
of height O(logn), and every node is checked at most once, ensuring that the total number nodes
visited is at most O(γ log( nγ )) where γ=min(1+ rm,n). Each visit to a cluster λ j decodes the opti-
mal configuration for its children variables V j using Equation (6). Since we are conditioning on the

argument set, this computation takes O(d|V j|) time. Using arguments as in the proof of Lemma 1,

3172



ADAPTIVE EXACT INFERENCE IN GRAPHICAL MODELS

we can show that
∣∣V j

∣∣≤ w. Therefore the top-down phase takes O(γ(1+ n
γ )d

w) time.

It is also possible, using essentially the same procedure, to process batch updates to the input
model. Suppose we modifyG or its elimination tree T by inserting and deleting a total of � edges and
nodes. First, we use the method described in Section 4 to update the clusters. Then, the total number
of nodes recomputed (and hence marked dirty) is guaranteed to be O(� log(n/�)). Note that we also
require O(� logn) time to identify new points of elimination for at most � variables. Therefore, the
bottom-up phase will take O(d3w� log(n/�)) time. The top-down phase works exactly as before
and can check an additional O(rm) paths for MAP changes where m is the number of variables
with changed MAP value and r is the maximum degree in G. Therefore the top-down phase takes
O(γ log( nγ )d

w) time where γ=min(�+ rm,n).

6. Experiments

In this section, we evaluate the performance of our approach by comparing the running times for
building, querying, and updating the cluster-tree data structure against (from-scratch or complete)
inference using the standard sum- or max-product algorithms. For the experiments, we implemented
our proposed approach as well as the sum- and max-product algorithms in Python.1 In our imple-
mentation, all algorithms take the elimination tree as input; when it is not possible to compute
the optimal elimination tree for a given input, we use a simple greedy method to construct it (the
algorithm grows the tree incrementally while minimizing width). To evaluate our algorithm, we
performed experiments with both synthetic data (Section 6.1) and real-world applications (Sections
6.2 and 6.3).

First, we evaluate the practical effectiveness of our proposed approach by considering syn-
thetically generated graphs to compute marginals (Section 6.1.3) and MAP configurations (Sec-
tion 6.1.4). These experiments show that adaptive inference can yield significant speedups for
reasonably chosen inputs. To further explore the limits of our approach, we also perform a more de-
tailed analysis in which we compute the speedup achievable by our method for a range tree-width,
dimension, and size parameters. This analysis allows us to better interpret how the asymptotic
bounds derived in the previous sections fare in practice.

Second, we evaluate the effectiveness of our approach for two applications in computational
biology. The first application studies adaptivity in the context of using an HMM for the standard
task of protein secondary structure prediction. For this task, we show how a MAP configuration that
corresponds to the maximum likelihood secondary structure can be maintained as mutations are
applied to the primary sequence. The second application evaluates our approach on higher-order
graphical models that are derived from three-dimensional protein structure. We show our algorithm
can efficiently maintain the minimum-energy conformation of a protein as its structure undergoes
changes to local sidechain conformations.

6.1 Experiments with Synthetic Data

For our experiments with synthetically generated data, we randomly generate problems consisting
of either tree-structured graphs or loopy graphs and measure the running-time for the operations
supported by the cluster tree data structure and compare their running times to that of the sum-

1. The source code of our implementation can be obtained by contacting the authors.

3173
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product algorithm. Since we perform exact inference, the sum-product algorithm offers an adequate
basis for comparison.

6.1.1 DATA GENERATION

For our experiments on synthetically generated data, we randomly generate input instances consist-
ing of either tree-structured graphs or loopy graphs, consisting of n variables, each of which takes
on d possible values. For tree-structured graphs, we define how a factor fi (1 ≤ i < n) depends on
any particular variable x j (1≤ j < n) through the following distribution:

Pr
{
fi depends on x j

}
=

⎧⎨⎩
1 if j = i+1,

p(1− p)i− j if j = 2, . . . , i,
1−∑i

s=2 p(1− p)i−s if j = 1.

Here, p is a parameter that when set to 1 results in a linear chain. More generally, the parameter
p determines how far back a node is connected while growing the random tree. The ith node is
expected to connect as far back as the jth node where j = i− 1/p, due to the truncated geometric
distribution. In our experiments we chose p= .2 and d = 25 when generating trees.

For loopy graphs, we start with a simple Markov chain, where each factor fi depends on vari-
ables xi and xi+1, where 1 ≤ i < n. Then for parameters w and p, we add a cycle to this graph as
follows: if i is even and less than n−2(w−1), with probability p we create a cycle by adding a new
factor gi that depends on xi and xi+2(w−1). This procedure is guaranteed to produce a random loopy
graph whose width along the chain x1, . . . ,xn is at most w; to ensure that the induced width is exactly
w we then discard any created loopy graph with width strictly less than w. In our experiments, we
set p= (0.2)1/(w−1) so that the maximum width is attained by 20% of the nodes in the chain regard-
less of the width parameter w. We use an elimination tree T = (F,E) that eliminates the variables
x1, . . . ,xn in order. More specifically, E includes {( fi, fi+1) : i= 1, . . . ,n−1} and any ( fi,gi) with
2≤ i≤ n−2(w−1) that is selected by the random procedure above. In our experiments, we varied
n between 10 and 50000.

For both tree-structured and loopy factor graphs, we generate the entries of the factors (i.e., the
potentials) by sampling a log-normal distribution, that is, each entry is randomly chosen from eZ

where Z is a Gaussian distribution with zero mean and unit variance.

6.1.2 MEASUREMENTS

To compare our approach to sum- and max-product algorithms when the underlying models undergo
changes, we measure the running times for build, update, structural update, and query operations.
To perform inference with a graphical model that undergoes changes, we start by performing an
initial build operation that constructs the cluster-tree data structure on the initial model. As the
model changes, we reflect these changes to the cluster tree by issuing update operations that change
the factors, or structural-update operations that change the dependencies in the graph (by insert-
ing/deleting edges) accordingly, and retrieve the updated inference results by issuing query opera-
tions. We are interested in applications where after an initial build, graphical models undergo many
small changes over time. Our goal therefore is to reduce the update and query times, at the cost of
a slightly slower initial build operation.
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(a) tree-structured factor graphs
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(b) loopy factor graphs with tree-width 3

Figure 15: Marginalization queries and model updates. We measure the running times for naive
sum-product, building the cluster tree, computing marginal queries, updating factors,
and restructuring (adding and deleting edges to the elimination tree) for tree-structured
and loopy factor graphs. Building the cluster tree is slightly more expensive than a single
execution of sum-product, but subsequent updates and queries are much more efficient
than recomputing from scratch. For both tree-structured and loopy graphs, our approach
is about three orders of magnitude faster than sum-product.

6.1.3 MARGINAL COMPUTATIONS

We consider marginal computation and how we can compute marginals of graphical models that un-
dergo changes using the proposed approach. To this end we measure the running-time for the build,
update, structural-update and query operations and compare them to the sum-product algorithm.
We consider graphs with tree-width one (trees) and three, with between 10 and 200,000 nodes. For
trees, we set d = 25, and for graphs we set d = 6.

For the build time, we measure the time to build the cluster tree data structure for graphs gen-
erated for various input sizes. The running-time of sum-product is defined as the time to compute
messages from leaves to a chosen root node in the factor graph. To compute the average time for a
query operation, we take the average time over 100 trials to perform a query for a randomly chosen
marginal. To compute the update time, we take the average over 100 trials of the time required to
change a modify a randomly chosen factor (to a new factor that is randomly generated). To compute
the average time required for a structural updates (i.e, restructure operations), we take the average
over 100 trials of the total time required to remove a randomly chosen edge, update the cluster tree,
and to add the same edge back to the cluster tree.

Figure 15 shows the result of our measurements for tree-structured factor graphs and loopy
graphs with tree-width 3. We observe that the running time for the build operations, which con-
structs the initial cluster tree, is comparable to the time required to perform sum-product. Since we
perform exact inference, sum-product is the best we can expect in general. We observe that all of
our query and update operations exhibit running times that are logarithmic in n, and are between one
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Figure 16: Updates to MAP configurations. We report the time required to update a MAP configu-
ration after a single change is made to the input model, in both tree-structured and loopy
factor graphs, with 300 variables. Our algorithm takes time that is roughly linear in
the number of changed entries, unlike the standard max-product algorithm, which takes
time that is linear in the size of the model.

to four orders of magnitude faster than a from-scratch inference with the sum-product algorithm.
Update and restructuring operations are costlier than the query operation, as predicted by our com-
plexity bounds on updates (O(d3w logn), Theorem 5) and queries (O(d2w logn), Theorem 4). The
overall trend is logarithmic in n, and even for small graphs (100–1000 nodes) we observe a factor of
10–30 speedup. In the scenario of interest, where we perform an initial build operation followed by
a large number of updates and queries, these results suggest that we can achieve significant speedups
in practice.

6.1.4 MAP CONFIGURATIONS

We also tested the approach for computing and maintaining MAP configurations, as outlined in
Section 5. For these experiments we generated factor graphs with tree-width one (trees) and three
comprised of n= 300 variables. For trees, we choose d = 25 and for graphs we choose d = 6. We
compute the update time by uniformly randomly selecting a factor and replacing with another factor,
averaging over 100 updates. We compare the update time to the running-time of the max-product
algorithm, which computes messages from leaves to a chosen root node in the factor graph and then
performs maximization back to the leaves.

Figure 16 show the results of our experiments. For both tree-structured and loopy factor graphs,
we observed strong linear dependence between the time required to update the MAP on the number
of changed entries in the MAP configuration. We note that while there is an additional logarithmic
factor in the running time, it is likely negligible since n was set to be small enough to observe
changes to the entire MAP configuration. Overall, our method of updating MAP configurations
were substantially faster than computing a MAP configuration from scratch in all cases, for both
tree-structured and loopy graphs.
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Figure 17: Speedup Analysis. The regions where we obtain speedup, defined as the ratio of running
time of our algorithm for a single update and query to the running time of standard
sum-product, are shown for loopy graphs with width 2,3 and 4 and variable dimensions
2–16.

6.1.5 EFFICIENCY TRADE-OFFS AND CONSTANT FACTORS

Our experiments with the computations of marginals and MAP configurations (Sections 6.1.3 and
6.1.4) suggest that our proposed approach can lead to efficiency improvements and significant
speedups in practice. In this section, we present a more detailed analysis by considering a broader
range of graphs and by presenting a more detailed analysis by considering constant factors and
realized exponents.

For a graph of n nodes with tree-width w and dimension d, inference of marginals using sum
product algorithm requires O(dw+1n) time. With adaptive inference, the preprocessing step takes
O(d3wn) time whereas updates and queries after unit changes require O(d3w logn) and O(d2w logn)
time respectively. These asymptotic bounds imply that using updates and queries, as opposed to
performing inference with sum-product, would yield a speedup of O( n

d3w logn), where d is the di-
mension (domain size) and w and n is the tree-width and the size of the graphical model. In the
case that d and w can be bounded by constants, this speedup would result in a near linear efficiency
increase as the size of the graphical model increases. At what point and with what inputs exactly the
speedups materialize, however, depends on the constant factors hidden by our asymptotic analysis.
For example in Figure 15, we obtain speedups for nearly all graphs considered.

Speedups for varying input parameters.

To assess further the practical effectiveness of adaptive inference, we have measured the perfor-
mance of our algorithm versus sum-product for graphical models generated at random with varying
values of d,w and n. Specifically, for a given d,w,n we generate a random graphical model as pre-
viously described and measure the average time for ten randomly generated updates plus queries,
and compare this to the time to perform from-scratch inference using the sum-product algorithm.
The resulting speedup is defined as the ratio of the time for the from-scratch inference to the time
for the random update plus query.
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Figure 17 illustrates a visualization of this speedup information. For tree-widths, 2,3,4, we
show the speedup expected for each pair of values (n,d). Given fixed w,d we expect the speedup
to increase as n increases. The empirical evaluation illustrates this trend; for example, at w= 3 and
d = 4, we see a five-fold or more speedup starting with input graphs with n ≈ 100. As the plots
illustrate, we observe that when the tree-width is 2 or less, as in Figure 17a, adaptive inference is
preferable in many cases even for small graphs. With tree-widths 3 and 4, we obtain speedups for
dimensions below 10 and 6 respectively. We further observe that for a given width w, we obtain
higher speedups as we reduce the dimensionality d and as we increase n, except for small values of
n. Disregarding such small graphs, this is consistent with our theoretical bounds. In small graphs
(n < 100) we see higher speedups than predicted because our method’s worst-case exponential
dependence is often not achieved, a phenomenon we examine in more detail shortly.

Constant Factors. The experiments shown in Figures 17 and 15 show that adaptive inference can
deliver speedups even for modest input sizes. To understand these result better, it helps to consider
the constant factors hidden in our asymptotic bounds. Taking into account the constant factors, we
can write the dynamic update times with adaptive inference as αad3w logn+βa logn, where αa,βa
are constants dependent on the cost of operations involved. The first term αad2w logn accounts for
the cost of matrix computations (when computing the cluster functions) at each node and the term
βa logn accounts for the time to locate and visit the logn nodes to be updated in the cluster-tree data
structure. In comparison, sum-product algorithm requires αsdw+1n+βsn time for some constants
αs,βs which again represent matrix computation at each node and the finding and visiting of the

nodes. Thus the speedup would be αsdw+1n+βsn
αad3w logn+βa logn

.

These bounds suggest that for fixed d,w, there will be some n0 beyond which speedups will be
possible. The value of n0 depends on the relationships between the constants. First, constants αa
and αs are similar because they both involve similar matrix operations. Also, the constants βa and
βs are similar because they both involve traversing a tree in memory by following pointers. Given
this relationship between the constants, if the non-exponential terms dominate, that is, β� α, then
we can obtain speedups even for small n.

Our experiments showing that speedups are realized at relatively modest input sizes suggest
that the βs dominate the αs. To test this hypothesis, we measured separately the time required for
the matrix operations. For an example model with n = 10000,w = 3,d = 6, the matrix operations
(the first term in the formulas) consumed roughly half the total time: 8.3 seconds, compared to 7.4
seconds for the rest of the algorithm. This suggests that βs are indeed larger than the αs. This should
be expected: the constant factor for matrix computation, performed locally and in machine registers,
should be far smaller than the parts of the code that include more random memory accesses (e.g., for
finding nodes) and likely incur cache misses as well, which on modern machines can be hundreds
of times slower than register computations.

While this analysis compares the dynamic update times of adaptive inference, comparing the
pre-processing (build) time of our cluster tree data structures (Figure 15) suggests that a similar
case holds. Specifically, in Theorem 2 we showed that the building the cluster tree takes in the worst
case Θ(d3w ·n) whereas the standard sum-product takes Θ(dw+1 ·n). Thus the worst-case build time
could be d2w = 62·3 = 46656 times slower than standard sum-product. In our experiments, this ratio
is significantly lower. For a graph of size 50,000, for example, it is only 3.05. Figure 15(b) also
shows a modest increase in build time as the input size grows. For example at n = 100, our build
time is about 1.20 slower than performing sum-product. Another 100-fold increase in the size makes
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Figure 18: Cost of cluster computation. The maximum exponent e during the computation of clus-
ters, which takesO(de) time, is plotted as a function of the input size. As can be seen, the
exponent starts relatively small and increases to reach the theoretical maximum of three
times the tree-width as the graph size increases. Since the cost of computing clusters
in our algorithm is O(de), our approach can yield speedup even for small and medium-
sized models. This shows that our worst-case bound of O(d3w) for computing clusters
can be pessimistic, that is, it is not tight except in larger graphs.

our build time about 2.05 slower. As we illustrate in next this section, this is due to our bounds not
being tight in small graphs.

It is also worth noting that the differences between the running times of query and update op-
erations are also low in practice, in contrast to the results of Theorems 10 and 4. According to
Theorems 10 and 4, the query operation could, in the worst-case, be dw = 63 = 216 times faster
than an update operation. However, in practice we see that, for example at n = 100, the queries
are about 2.5 times faster than updates. This gap does increase as n increases, for example, at
n= 50000, queries are about 6.7 times faster than updates; this is again due to our bounds not being
tight in small graphs (described in detail next).

Tightness of our bounds in small graphs. Our experiments with varying sizes of graphs show
some unexpected behavior. For example, contrary to our bound that predicts speedup to increase
as the input size increases, we see in Figure 17 that speedups occur for very small graphs (less
than 100 nodes) then disappear as the graph size increases. To understand the reasons for this
we calculated the actual exponential factor in our bounds occurring in our randomly generated
graphs, by building each cluster-tree and calculating the maximum exponent encountered during
the computation. Figure 18 shows the measurements, which demonstrate that for small graphs the
worst case asymptotic bound is not realized because the exponent remains small. In other words,
we perform far fewer computations than would be predicted by our worst-case bound. As the graph
size grows, the worst case configurations become increasingly likely to occur, and the exponent
eventually reaches the bound predicted by our analysis. This suggests that our bounds may be loose
for small graphs, but more accurate for larger graphs, and explains why speedups are possible even
for small graphs.
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6.2 Sequence Analysis with Hidden Markov Models

HMMs are a widely-used tool to analyze DNA and amino acid sequences; typically an HMM is
trained using a sequence with known function or annotations, and new sequences are analyzed by
inferring hidden states in the resulting HMM. In this context, our algorithm for updating MAP
configuration can be used to study the effect of changes to the model and observations on hidden
states of the HMM. We consider the application of secondary structure prediction from the primary
amino acid sequence of a given protein. This problem has been studied extensively (Frishman and
Argos, 1995), and is an ideal setting to demonstrate the benefits of our adaptive inference algorithm.
An HMM for protein secondary structure prediction is constructed by taking the observed variables
to be the primary sequence and setting the hidden variables (i.e., one hidden state per amino acid) to
be the type of secondary structure element (α-helix, β-strand, or random coil) of the corresponding
amino acid. Then, a MAP configuration of the hidden states in this model identifies the regions with
α helix and β strands in the given sequence. This general approach has been studied and refined
(Chu et al., 2004; Martin et al., 2005), and is capable of accurately predicting secondary structure.
In the context of secondary structure prediction, our algorithm to adaptively update the model could
be used in protein design applications, where we make “mutations” to a starting sequence so that
the resulting secondary structure elements match a desired topology. Or, more conventionally, our
algorithm could be applied to determine which residues in the primary sequence of a given protein
are critical to preserving the native pattern of secondary structure elements. It is also worth pointing
out that our approach is fully general and can be used at any application where biological sequences
are represented by HMMs (e.g., DNA or RNA sequence, exon-intron chains, CpG islands) and we
want to study the effects of changes to these sequences.

For our experiments, we constructed an HMM for secondary structure prediction by construct-
ing an observed state for each amino acid in the primary sequence, and a corresponding hidden
state indicating its secondary structure type. We estimated the model parameters using 400 protein
sequences labeled by the DSSP algorithm (Kabsch and Sander, 1983), which annotates a three-
dimensional protein structure with secondary structure types using standard geometric criteria.
Since repeated modification to a protein sequence typically causes small updates to the regions
with α helices and β strands, we expect to gain significant speedup by using our algorithm. To
test this hypothesis, we compared the time to update MAP configuration in our algorithm against
the standard max-product algorithm. The results of this experiment are given in Figure 19(a). We
observed that overall the time to update secondary structure predictions were 10-100 times faster
than max-product. The overall trend of running times, when sorted by protein size, is roughly loga-
rithmic. In some cases, smaller proteins required longer update times; in these cases it is likely that
due to the native secondary structure topology, a single mutation induced a large number of changes
in the MAP configuration. We also studied the update times for a single protein, E. coli hemolysin
(PDB id: 1QOY), with 302 amino acids, as we apply random mutations (see Figure 19(b)). As in
Section 6.1.4 above, we see that the update time scales linearly with the number of changes to a
MAP configuration, rather than depending on the size of the primary sequence.

6.3 Protein Sidechain Packing with Factor Graphs

In the previous section, we considered an application where the input model was a chain-structured
representation of the protein primary sequence. In this section, we consider a higher-order rep-
resentation that defines a factor graph to model the three-dimensional structure of protein, which
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Figure 19: Secondary structure prediction using HMMs. We applied our algorithm to perform up-
dates in HMMs for secondary structure prediction. For our data set, we can perform
MAP updates about 10-100 faster than max-product, and we see a roughly logarithmic
trend as the size of the protein increases. For a single protein, E. coli hemolysin, we
see that the time required to update the MAP configuration is linear in the number of
changes to the MAP configuration, rather than in the size of the HMM.

essentially defines its biochemical function. Graphical models constructed from protein structures
have been used to successfully predict structural properties (Yanover and Weiss, 2002) as well as
free energy (Kamisetty et al., 2007). These models are typically constructed by taking each node
as an amino acid whose states represent a discrete set of local conformations called rotamers (Dun-
brack Jr., 2002), and basing conditional probabilities on a physical energy function (e.g., Weiner
et al., 1984 and Canutescu et al., 2003).

The typical goal of using these models is to efficiently compute a maximum-likelihood (i.e.,
minimum-energy) conformation of the protein in its native environment. Our algorithmic frame-
work for updating MAP configurations allows us to study, for example, the effects of amino acid
mutations, and the addition and removal of edges corresponds directly to allowing backbone motion
in the protein. Applications that make use of these kinds of perturbations include protein design and
ligand-binding analysis. The common theme of these applications is that, given an input protein
structure with a known backbone, we wish to characterize the effects of changes to the underlying
model (e.g., by modifying amino acid types or their local conformations), in terms of their effect on
a MAP configurations (i.e., the minimum energy conformation of the protein).

For our experiments, we studied the efficiency of adaptively updating the optimal sidechain
conformation after a perturbation to the model in which a random group of sidechains are fixed
to new local conformations. This experiment is meant to mimic a ligand-binding study, in which
we would like to test how introducing ligands to parts of the protein structure affect the overall
minimum-energy conformation. For our data set, we took about 60 proteins from the SCWRL
benchmark or varying sizes (between 26 and 244 amino acids) and overall topology.
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Figure 20: Adaptive sidechain packing for protein structures. For 60 proteins from the SCWRL
benchmark, we compared the time to adaptively update a MAP configuration against
max-product. Since this set of proteins have a diverse set of folds (and thus graph
structures), we order the inputs by the time taken by max-product. The speedup achieved
by our algorithm varies due to the diversity of protein folds, but on average our approach
is 6.88 times faster than computation from scratch.

For each protein, we applied updates to a random group within a selected set amino acids (e.g.,
to represent an active site) by choosing a random rotameric state for each. With appropriate pre-
processing (using Goldstein dead-end elimination), we were able to obtain accurate models with
an induced width of about 5 on average. For the cluster tree corresponding to each protein we se-
lected a set of 10 randomly chosen amino acids for modification, and recorded the average time,
over 100 such trials, to update a MAP configuration and compared it against computing the latter
from scratch. The results of our experiment are given in Figure 20. Due to the diversity of protein
folds, and thus the resulting factor graphs, we sort the results according to the time required for
max-product. We find that our approach consistently outperforms max-product, and was on average
6.88 times faster than computation from scratch.

We note that the overall trend for our algorithm versus max-product is somewhat different than
the results in Sections 6.1.4 and 6.2. In those experiments we observed a clear logarithmic trend in
running times for our algorithm versus max-product, since the constant-factor overheads (e.g., for
computing cluster functions) grew as a function of a model size. For adaptive sidechain packing, it
is difficult to make general statements about the complexity of a particular input model with respect
to its size: a small protein may be very tightly packed and induce a very dense input model, while a
larger protein may be more loosely structured and induce a less dense model.

7. Conclusion

In this paper, we have presented an adaptive framework for performing exact inference that effi-
ciently handles changes to the input factor graph and its associated elimination tree. Our approach
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to adaptive inference requires a linear preprocessing step in which we construct a cluster-tree data
structure by performing a generalized factor elimination; the cluster tree offers a balanced represen-
tation of an elimination tree annotated with certain statistics. We can then make arbitrary changes
to the factor graph or elimination tree, and update the cluster tree in logarithmic time in the size
of the input factor graph. Moreover, we can also calculate any particular marginal in time that is
logarithmic in the size of the input graph, and update MAP configurations in time that is roughly
proportional to the number of entries in the MAP configuration that are changed by the update.

As with all methods for exact inference, our algorithms carry a constant factor that is exponential
in the width of the input elimination tree. Compared to traditional methods, this constant factor is
larger for adaptive inference; however the running time of critical operations are logarithmic, rather
than linear, in the size of the graph in the common case. In our experiments, we establish that for any
fixed tree-width and variable dimension, adaptive inference is preferable as long as the input graph
is sufficiently large. For reasonable values of these input parameters, our experimental evaluation
shows that adaptive inference can offer a substantial speedup over traditional methods. Moreover,
we validate our algorithm using two real-world computational biology applications concerned with
sequence and structure variation in proteins.

At a high level, our cluster-tree data structure is a replacement for the junction tree in the typical
sum-product algorithm. A natural question, then, is whether our data structure, can be extended
to perform approximate inference. The approach does appear to be amenable to methods that rely
on approximate elimination (e.g., Dechter, 1998), since these approximations can incorporated be
into the cluster functions in the cluster tree. Approximate methods that are iterative in nature (e.g.,
Wainwright et al., 2005a,b and Yedidia et al., 2004), however, may be more difficult, since they
often make a large number of changes to messages in each successive iteration.

Another interesting direction is to tune the cluster tree construction based on computational
concerns. While deferred factor elimination gives rise to a balanced elimination tree, it also incurs
a larger constant factor dependent on the tree width. While our benchmarks show that this overhead
can be pessimistic, it is also possible to tune the number of deferred factor eliminations performed, at
the expense of increasing the depth of the resulting cluster tree. It would be interesting to incorporate
additional information into the deferred elimination procedure used to build the cluster tree to reduce
this constant factor. For example, we can avoid creating a cluster function if its run-time complexity
is high (e.g., its dimension or the domain sizes of its variables are large), preferring instead a cluster
tree that has a greater depth but will yield overall lower costs for queries and updates.
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Abstract

In this paper, we consider the Group Lasso estimator of the covariance matrix of a stochastic pro-
cess corrupted by an additive noise. We propose to estimate the covariance matrix in a high-
dimensional setting under the assumption that the process has a sparse representation in a large
dictionary of basis functions. Using a matrix regression model, we propose a new methodology
for high-dimensional covariance matrix estimation based on empirical contrast regularization by a
group Lasso penalty. Using such a penalty, the method selects a sparse set of basis functions in the
dictionary used to approximate the process, leading to an approximation of the covariance matrix
into a low dimensional space. Consistency of the estimator is studied in Frobenius and operator
norms and an application to sparse PCA is proposed.

Keywords: group Lasso, �1 penalty, high-dimensional covariance estimation, basis expansion,
sparsity, oracle inequality, sparse PCA

1. Introduction

Let T be some subset of Rp, p ∈ N, and let X = (X (t))t∈T be a stochastic process with values
in R. Assume that X has zero mean E(X (t)) = 0 for all t ∈ T, and finite covariance σ(s, t) =
E(X (s)X (t)) for all s, t ∈ T. Let t1, . . . , tn be fixed points in T (deterministic design), X1, ...,XN
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independent copies of the process X , and suppose that we observe the noisy processes

X̃i (t j) = Xi (t j)+Ei (t j) for i= 1, ...,N, j = 1, ...,n, (1)

where E1, ...,EN are independent copies of a second order Gaussian process E with zero mean and
independent of X , which represent an additive source of noise in the measurements. Based on the
noisy observations (1), an important problem in statistics is to construct an estimator of the covari-
ance matrix Σ= E

(
XX�) of the process X at the design points, whereX = (X (t1) , ...,X (tn))

�.
This problem is a fundamental issue in many applications, ranging from geostatistics, financial
series or epidemiology for instance (see Stein, 1999, Journel, 1977 or Cressie, 1993; Wikle and
Cressie, 1999 for general references and applications). Estimating such a covariance matrix has
also important applications in dimension reduction by principal component analysis (PCA) or clas-
sification by linear or quadratic discriminant analysis (LDA and QDA).

In Bigot et al. (2010), using N independent copies of the process X , we have proposed to con-
struct an estimator of the covariance matrixΣ by expanding the process X into a dictionary of basis
functions. The method in Bigot et al. (2010) is based on model selection techniques by empiri-
cal contrast minimization in a suitable matrix regression model. This new approach to covariance
estimation is well adapted to the case of low-dimensional covariance estimation when the num-
ber of replicates N of the process is larger than the number of observations points n. However,
many application areas are currently dealing with the problem of estimating a covariance matrix
when the number of observations at hand is small when compared to the number of parameters
to estimate. Examples include biomedical imaging, proteomic/genomic data, signal processing in
neurosciences and many others. This issue corresponds to the problem of covariance estimation
for high-dimensional data. This problem is challenging since, in a high-dimensional setting (when
n>> N or n∼ N), it is well known that the sample covariance matrices

S =
1
N

N

∑
i=1

XiX
�
i ∈ Rn×n, whereXi = (Xi (t1) , ...,Xi (tn))

� , i= 1, . . . ,N

and

S̃ =
1
N

N

∑
i=1

X̃iX̃
�
i ∈ Rn×n, where X̃i =

(
X̃i (t1) , ..., X̃i (tn)

)�
, i= 1, . . . ,N

behave poorly, and are not consistent estimators ofΣ. For example, suppose that theXi’s are inde-
pendent and identically distributed (i.i.d.) random vectors inRn drawn from a multivariate Gaussian
distribution. Then, when n

N → c> 0 as n,N→+∞, neither the eigenvalues nor the eigenvectors of
the sample covariance matrix S are consistent estimators of the eigenvalues and eigenvectors of
Σ (see Johnstone, 2001). This topic has thus recently received a lot of attention in the statistical
literature. To achieve consistency, recently developed methods for high-dimensional covariance es-
timation impose sparsity restrictions on the matrix Σ. Such restrictions imply that the true (but
unknown) dimension of the model is much lower than the number n(n+1)

2 of parameters of an un-
constrained covariance matrix. Under various sparsity assumptions, different regularizing methods
of the empirical covariance matrix have been proposed. Estimators based on thresholding or band-
ing the entries of the empirical covariance matrix have been studied in Bickel and Levina (2008b)
and Bickel and Levina (2008a). Thresholding the components of the empirical covariance matrix
has also been proposed by El Karoui (2008) and the consistency of such estimates is studied using
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tools from random matrix theory. Fan et al. (2008) impose sparsity on the covariance via a fac-
tor model which is appropriate in financial applications. Levina et al. (2008) and Rothman et al.
(2008) propose regularization techniques with a Lasso penalty to estimate the covariance matrix or
its inverse. More general penalties have been studied in Lam and Fan (2009). Another approach
is to impose sparsity on the eigenvectors of the covariance matrix which leads to sparse PCA. Zou
et al. (2006) use a Lasso penalty to achieve sparse representation in PCA, d’Aspremont et al. (2008)
study properties of sparse principal components by convex programming, while Johnstone and Lu
(2009) propose a PCA regularization by expanding the empirical eigenvectors in a sparse basis and
then apply a thresholding step.

In this paper, we propose to estimate Σ in a high-dimensional setting by using the assumption
that the process X has a sparse representation in a large dictionary of basis functions. Using a matrix
regression model as in Bigot et al. (2010), we propose a new methodology for high-dimensional
covariance matrix estimation based on empirical contrast regularization by a group Lasso penalty.
Using such a penalty, the method selects a sparse set of basis functions in the dictionary used to
approximate the process X . This leads to an approximation of the covariance matrix Σ into a
low dimensional space, and thus to a new method of dimension reduction for high-dimensional
data. Group Lasso estimators have been studied in the standard linear model and in multiple kernel
learning to impose a group-sparsity structure on the parameters to recover (see Nardi and Rinaldo,
2008, Bach, 2008 and references therein). However, to the best of our knowledge, it has not been
used for the estimation of covariance matrices using a functional approximation of the process X .

The rest of the paper is organized as follows. In Section 2, we describe a matrix regression
model for covariance estimation, and we define our estimator by group Lasso regularization. The
consistency of such a procedure is investigated in Section 3 using oracle inequalities and a non-
asymptotic point of view by holding fixed the number of replicates N and observation points n.
Consistency of the estimator is studied in Frobenius and operator norms. Various results existing
in matrix theory show that convergence in operator norm implies convergence of the eigenvectors
and eigenvalues (for example through the use of the sin(θ) theorems in Davis and Kahan, 1970).
Consistency in operator norm is thus well suited for PCA applications. Numerical experiments are
given in Section 4, and an application to sparse PCA is proposed. A technical Appendix contains
all the proofs.

2. Model and Definition of the Estimator

To impose sparsity restrictions on the covariance matrix Σ, our approach is based on an ap-
proximation of the process in a finite dictionary of (not necessarily orthogonal) basis functions
gm : T→ R for m= 1, ...,M. Suppose that

X (t)≈
M

∑
m=1

amgm (t) , (2)

where am, m= 1, ...,M are real valued random variables, and that for each trajectory Xi

Xi (t j)≈
M

∑
m=1

ai,mgm (t j) . (3)
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The notation ≈ means that the process X can be well approximated into the dictionary. A precise
meaning of this will be discussed later on. Then (3) can be written in matrix notation as:

Xi ≈Gai, i= 1, ...,N

whereG is the n×M matrix with entries

G jm = gm (t j) for 1≤ j ≤ n and 1≤ m≤M,

and ai is the M×1 random vector of components ai,m, with 1≤ m≤M.
Recall that we want to estimate the covariance matrix Σ= E

(
XX�) from the noisy observa-

tions (1). SinceX ≈Ga with a= (am)1≤m≤M with am as in (2), it follows that

Σ≈ E
(
Ga(Ga)�

)
= E

(
Gaa�G�

)
=GΨ

∗G� withΨ∗ = E
(
aa�

)
.

Given the noisy observations X̃i as in (1) with i= 1, ...,N, consider the following matrix regres-
sion model

X̃iX̃
�
i =Σ+Ui+Wi i= 1, . . . ,N, (4)

where Ui =XiX
�
i −Σ are i.i.d centered matrix errors, and

Wi = EiE�
i ∈ Rn×n where Ei = (Ei (t1) , ...,Ei (tn))� , i= 1, . . . ,N.

The size M of the dictionary can be very large, but it is expected that the process X has a sparse
expansion in this basis, meaning that, in approximation (2), many of the random coefficients am
are close to zero. We are interested in obtaining an estimate of the covariance Σ in the form Σ̂ =
GΨ̂G� such that Ψ̂ is a symmetric M×M matrix with many zero rows (and so, by symmetry,
many corresponding zero columns). Note that setting the k-th row of Ψ̂ to 0∈RM means to remove
the function gk from the set of basis functions (gm)1≤m≤M in the function expansion associated to
G.

Let us now explain how to select a sparse set of rows/columns in the matrix Ψ̂. For this, we
use a group Lasso approach to threshold some rows/columns of Ψ̂ which corresponds to removing
some basis functions in the approximation of the process X . For two p× p matrices A,B define
the inner product 〈A,B〉F := tr

(
A�B

)
and the associated Frobenius norm ‖A‖2F := tr

(
A�A

)
.

Let SM denote the set of M×M symmetric matrices with real entries. We define the group Lasso
estimator of the covariance matrixΣ by

Σ̂λ =GΨ̂λG
� ∈ Rn×n, (5)

where Ψ̂λ is the solution of the following optimization problem:

Ψ̂λ = argmin
Ψ∈SM

{
1
N

N

∑
i=1

∥∥∥X̃iX̃
�
i −GΨG�

∥∥∥2
F
+2λ

M

∑
k=1

γk

√
M

∑
m=1

Ψ2mk

}
, (6)

where Ψ = (Ψmk)1≤m,k≤M ∈ RM×M, λ is a positive number and γk are some weights whose values
will be discuss later on. In (6), the penalty term imposes to give preference to solutions with compo-

nents Ψk = 0, where (Ψk)1≤k≤M denotes the columns of Ψ. Recall that S̃ = 1
N

N
∑
i=1

X̃iX̃
�
i denotes
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the sample covariance matrix from the noisy observations (1). It can be checked that minimizing
the criterion (6) is equivalent to

Ψ̂λ = argmin
Ψ∈SM

{∥∥∥S̃−GΨG�
∥∥∥2
F
+2λ

M

∑
k=1

γk

√
M

∑
m=1

Ψ2mk

}
. (7)

Thus Ψ̂λ ∈ RM×M can be interpreted as a group Lasso estimator of Σ in the following matrix
regression model

S̃ =Σ+U +W ≈GΨ
∗G�+U +W , (8)

whereU ∈Rn×n is a centered error matrix given byU = 1
N ∑

N
i=1Ui andW = 1

N

N
∑
i=1

Wi. In the above

regression model (8), there are two errors terms of a different nature. The termW corresponds to
the additive Gaussian errors E1, ...,EN in model (1), while the term U = S −Σ represents the
difference between the (unobserved) sample covariance matrix S and the matrix Σ that we want to
estimate.

This approach can be interpreted as a thresholding procedure of the entries of an empirical
matrix. To see this, consider the simple case whereM = n and the basis functions and observations
points are chosen such that the matrix G is orthogonal. Let Y = G�S̃G be a transformation of
the empirical covariance matrix S̃. In the orthogonal case, the following proposition shows that the
group Lasso estimator Ψ̂λ defined by (7) consists in thresholding the columns/rows of Y whose �2-
norm is too small, and in multiplying the other columns/rows by weights between 0 and 1. Hence,
the group Lasso estimate (7) can be interpreted as covariance estimation by soft-thresholding the
columns/rows of Y .

Proposition 1 Suppose that M = n and thatG�G= In where In denotes the identity matrix of size
n×n. Let Y =G�S̃G. Then, the group Lasso estimator Ψ̂λ defined by (7) is the n×n symmetric
matrix whose entries are given by

(
Ψ̂λ

)
mk

=

⎧⎪⎪⎨⎪⎪⎩
0 if

√
∑M
j=1Y

2
jk ≤ λγk,

Ymk

(
1− λγk√

∑Mj=1Y
2
mk

)
if

√
∑M
j=1Y

2
jk > λγk,

for 1≤ k,m≤M.

3. Consistency of the Group Lasso Estimator

In this section, we describe the statistical properties of the group Lasso estimator.

3.1 Notations and Main Assumptions

Let us begin by some definitions. For a symmetric p× p matrix A with real entries, ρmin(A)
denotes the smallest eigenvalue of A, and ρmax(A) denotes the largest eigenvalue of A. For β ∈
Rq, ‖β‖�2 denotes the usual Euclidean norm of β. For p× q matrix A with real entries, ‖A‖2 =
supβ∈Rq, β�=0

‖Aβ‖�2
‖β‖�2

denotes the operator norm of A. Recall that if A is a non negative definite

matrix with p= q then ‖A‖2 = ρmax(A).
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Let Ψ ∈ SM and β a vector in RM. For a subset J ⊂ {1, . . . ,M} of indices of cardinality |J|,
then βJ is the vector in RM that has the same coordinates as β on J and zeros coordinates on the
complement Jc of J. The n×|J| matrix obtained by removing the columns ofG whose indices are
not in J is denoted byGJ . The sparsity ofΨ is defined as its number of non-zero columns (and thus
by symmetry non-zero rows) namely

Definition 2 ForΨ ∈ SM, the sparsity ofΨ is

M (Ψ) = #{k :Ψk �= 0} .

Then, let us introduce the following quantities that control the minimal eigenvalues of sub-
matrices of small size extracted from the matrixG�G, and the correlations between the columns of
G:

Definition 3 Let 0< s≤M. Then,

ρmin(s) := inf
J ⊂ {1, . . . ,M}

|J| ≤ s

(
β�J G

�GβJ
‖βJ‖2�2

)
= inf

J ⊂ {1, . . . ,M}
|J| ≤ s

ρmin
(
G�
J GJ

)
.

Definition 4 The mutual coherence θ(G) of the columnsGk, k = 1, . . . ,M ofG is defined as

θ(G) :=max
{∣∣∣G�

k′Gk

∣∣∣ , k �= k′, 1≤ k,k′ ≤M
}
,

and let
G2
max :=max

{‖Gk‖2�2 , 1≤ k ≤M
}
.

To derive oracle inequalities showing the consistency of the group Lasso estimator Ψ̂λ the cor-
relations between the columns ofG (measured by θ(G)) should not be too large when compared to
the minimal eigenvalues of small matrices extracted fromG�G, which is formulated in the follow-
ing assumption:

Assumption 1 Let c0 > 0 be some constant and 0< s≤M. Then

θ(G)<
ρmin(s)2

c0ρmax(G�G)s
.

Assumption 1 is inspired by recent results in Bickel et al. (2009) on the consistency of Lasso es-
timators in the standard nonparametric regression model using a large dictionary of basis functions.
In Bickel et al. (2009), a general condition called restricted eigenvalue assumption is introduced to
control the minimal eigenvalues of the Gram matrix associated to the dictionary over sets of sparse
vectors. In the setting of nonparametric regression, a condition similar to Assumption 1 is given in
Bickel et al. (2009) as an example for which the restricted eigenvalue assumption holds.

Let us give some examples for which Assumption 1 is satisfied. If M ≤ n and the design points
are chosen such that the columns of the matrix G are orthonormal vectors in Rn, then for any
0< s≤M one has that ρmin(s) = 1 and θ(G) = 0 and thus Assumption 1 holds for any value of c0
and s.
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Now, suppose that the columns of G are normalized to one, that is, ‖Gk‖�2 = 1, k = 1, . . . ,M
implying thatGmax = 1. Let β ∈ RM . Then, for any J ⊂ {1, . . . ,M} with |J| ≤ s≤min(n,M)

β�J G
�GβJ ≥ ‖βJ‖2�2−θ(G)s‖βJ‖2�2 ,

which implies that
ρmin(s)≥ 1−θ(G)s.

Therefore, if (1−θ(G)(s−1))2 > c0θ(G)ρmax(G�G)s, then Assumption 1 is satisfied.

Let us now specify the law of the stochastic process X . For this, recall that for a real-valued
random variable Z, the ψα Orlicz norm of Z is

‖Z‖ψα := inf
{
C > 0 ; Eexp

( |Z|α
Cα

)
≤ 2

}
.

Such Orlicz norms are useful to characterize the tail behavior of random variables. Indeed, if
‖Z‖ψα < +∞ then this is equivalent to assuming that there exists two constants K1,K2 > 0 such
that for all x> 0

P(|Z| ≥ x)≤ K1 exp

(
− xα

Kα
2

)
,

(see for example Mendelson and Pajor, 2006 for more details on Orlicz norms of random variables)
. Therefore, if ‖Z‖ψ2 <+∞ then Z is said to have a sub-Gaussian behavior and if ‖Z‖ψ1 <+∞ then
Z is said to have a sub-Exponential behavior. In the next sections, oracle inequalities for the group
Lasso estimator will be derived under the following assumption on X :

Assumption 2 The random vectorX = (X (t1) , ...,X (tn))
� ∈ Rn is such that

(A1) There exists ρ(Σ)> 0 such that, for all vector β ∈ Rn with ‖β‖�2 = 1, then
(
E|X�β|4)1/4 <

ρ(Σ).

(A2) Set Z = ‖X‖�2 . There exists α≥ 1 such that ‖Z‖ψα <+∞.

Note that (A1) implies that ‖Σ‖2 ≤ ρ(Σ)2. Indeed, one has that

‖Σ‖2 = ρmax(Σ) = sup
β∈Rn, ‖β‖�2=1

β�Σβ= sup
β∈Rn, ‖β‖�2=1

Eβ�XX�β

= sup
β∈Rn, ‖β‖�2=1

E|β�X|2 ≤ sup
β∈Rn, ‖β‖�2=1

√
E|β�X|4 ≤ ρ2 (Σ) .

When X is a Gaussian process, it follows that for any β ∈ Rn with ‖β‖�2 = 1 then
(
E|X�β|4)1/4 =

31/4
(
β�Σβ

)1/2
since X�β ∼ N(0,β�Σβ). Therefore, under the assumption that X is a Gaussian

process, Assumption (A1) holds with ρ(Σ) = 31/4‖Σ‖1/22 .
Assumption (A2) requires that ‖Z‖ψα < +∞, where Z = ‖X‖�2 . The following proposition

provides some examples where such an assumption holds.

Proposition 5 Let Z = ‖X‖�2 =
(
∑n
i=1 |X(ti)|2

)1/2
. Then
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- If X is a Gaussian process
‖Z‖ψ2 <

√
8/3

√
tr(Σ).

- If the random process X is such that ‖Z‖ψ2 < +∞, and there exists a constant C1 such that

‖Σ−1/2
ii |X(ti)|‖ψ2 ≤C1 for all i= 1, . . . ,n, then

‖Z‖ψ2 <C1
√
tr(Σ).

- If X is a bounded process, meaning that there exists a constant R > 0 such that for all t ∈ T,
|X(t)| ≤ R, then for any α≥ 1,

‖Z‖ψα ≤
√
nR(log2)−1/α.

Assumption 2 will be used to control the deviation in operator norm between the sample covari-
ance matrix S and the true covariance matrix Σ in the sense of the following proposition whose
proof follows from Theorem 2.1 in Mendelson and Pajor (2006).

Proposition 6 Let X1, ...,XN be independent copies of the stochastic process X, let Z = ‖X‖�2
and Xi = (Xi (t1) , ...,Xi (tn))

� for i = 1, . . . ,N. Recall that S = 1
N

N
∑
i=1

XiX
�
i and Σ = E

(
XX�).

Suppose that X satisfies Assumption 2. Let d = min(n,N). Then, there exists a universal constant
δ∗ > 0 such that for all x> 0

P
(∥∥∥S−Σ

∥∥∥
2
� τd,N,nx

)
� exp

(
−(δ−1∗ x)

α
2+α

)
, (9)

where τN,n =max(A2N,n,BN,n), with

AN,n = ‖Z‖ψα
√
logd(logN)1/α√

N
and BN,n =

ρ2 (Σ)√
N

+‖Σ‖1/22 AN,n.

Let us briefly comment Proposition 6 in some specific cases. If X is Gaussian, then Proposition
5 implies that AN,n ≤ AN,n,1, where

AN,n,1 =
√
8/3

√
tr(Σ)

√
logd(logN)1/α√

N
≤
√
8/3 ‖Σ‖1/22

√
n
N

√
logd(logN)1/α, (10)

and in this case inequality (9) becomes

P
(∥∥∥S−Σ

∥∥∥
2
�max

(
A2N,n,1,BN,n,1

)
x
)
� exp

(
−(δ−1∗ x)

α
2+α

)
(11)

for all x> 0, where BN,n,1 =
ρ2(Σ)√

N
+‖Σ‖1/22 AN,n,1.

If X is a bounded process by some constant R > 0 , then using Proposition 5 and by letting
α→+∞, Proposition 6 implies that for all x> 0,

P
(∥∥∥S−Σ

∥∥∥
2
�max

(
A2N,n,2,BN,n,2

)
x
)
� exp

(−δ−1∗ x
)
, (12)
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where

AN,n,2 = R

√
n
N

√
logd and BN,n,2 =

ρ2 (Σ)√
N

+‖Σ‖1/22 AN,n,2. (13)

Contrary to the low-dimensional case (n << N), in a high-dimensional setting when n >> N
or when n and N are of the same magnitude ( nN → c> 0 as n,N→+∞), inequalities (11) and (12)

cannot be used to conclude that the norm
∥∥∥S−Σ

∥∥∥
2
concentrates around zero. Actually, it is well

known that the sample covariance S is a bad estimator of Σ in a high-dimensional setting, and
that without any further restriction on the structure of the covariance matrix Σ, then S cannot be
a consistent estimator. However, we would like to point out that Proposition 6 relates the quality
of S to the “true dimensionality” of the vector X = (X (t1) , ...,X (tn))

� ∈ Rn that is measured by
the quantity ‖Z‖ψα with Z = ‖X‖�2 . Indeed, if X is a low-dimensional Gaussian process such that
tr(Σ) = 1 then Proposition 6 and inequality (10) imply that

P
(∥∥∥S−Σ

∥∥∥
2
�max

(
A2N ,BN

)
x
)
� exp

(
−(δ−1∗ x)

1
2

)
(14)

for all x> 0, where AN =
√
8/3

√
logN(logN)1/α√

N
and BN = ρ2(Σ)√

N
+‖Σ‖1/22 AN . Hence, inequality (14)

shows that, under an assumption of low-dimensionality of the process X , the deviation in operator
norm between S and Σ depends on the ratio 1

N and not on
n
N , and thus the quality of S as an

estimator ofΣ is much better in such settings.
More generally, another assumption of low-dimensionality for the process X is to suppose that

it has a sparse representation in a dictionary of basis functions, which may also improve the quality
of S as an estimator ofΣ. To see this, consider the simplest case X = X0, where the process X0 has
a sparse representation in the basis (gm)1≤m≤M given by

X0(t) = ∑
m∈J∗

amgm(t), t ∈ T, (15)

where J∗ ⊂ {1, . . . ,M} is a subset of indices of cardinality |J∗| = s∗ and am, m ∈ J∗ are random
coefficients (possibly correlated). Under such an assumption, the following proposition holds.

Proposition 7 Suppose that X = X0 with X0 defined by (15) with s∗ ≤ min(n,M). Assume that
X satisfies Assumption 2 and that the matrix G�

J∗GJ∗ is invertible, where GJ∗ denotes the n×|J∗|
matrix obtained by removing the columns of G whose indices are not in J∗. Then, there exists a
universal constant δ∗ > 0 such that for all x> 0,

P
(∥∥∥S−Σ

∥∥∥
2
� τ̃N,s∗x

)
� exp

(
−(δ−1∗ x)

α
2+α

)
,

where τ̃N,s∗ =max(Ã
2
N,s∗ , B̃N,s∗), with

ÃN,s∗ = ρ1/2max
(
G�
J∗GJ∗

)
‖Z̃‖ψα

√
logd∗(logN)1/α√

N
,

and

B̃N,s∗ =

(
ρmax

(
G�
J∗GJ∗

)
ρmin

(
G�
J∗GJ∗

)) ρ2 (Σ)√
N

+

(
ρmax

(
G�
J∗GJ∗

)
ρmin

(
G�
J∗GJ∗

))1/2 ‖Σ‖1/22 Ãd∗,N,s∗ ,

with d∗ =min(N,s∗) and Z̃ = ‖aJ∗‖�2 , where aJ∗ = (G�
J∗GJ∗)

−1G�
J∗X ∈ Rs∗ .
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Using Proposition 5 and Proposition 7 it follows that

- If X = X0 is a Gaussian process then

ÃN,s∗ ≤
√
8/3

(
ρmax

(
G�
J∗GJ∗

)
ρmin

(
G�
J∗GJ∗

))1/2 ‖Σ‖1/22
√
s∗
N

√
logd∗(logN)1/α (16)

- If X = X0 is such that the random variables am are bounded by for some constant R> 0, then

ÃN,s∗ ≤ R‖g‖∞
√
s∗
N

√
logd∗ (17)

with ‖g‖∞ =max1≤m≤M ‖gm‖∞ where ‖gm‖∞ = supt∈T |gm(t)|.
Therefore, let us compare the bounds (16) and (17) with the inequalities (10) and (13). It follows

that, in the case X = X0, if the sparsity s∗ of X in the dictionary is small compared to the number
of time points n then the deviation between S and Σ is much smaller than in the general case
without any assumption on the structure of Σ. Obviously, the gain also depends on the control of

the ratio
ρmax(G�

J∗GJ∗)
ρmin(G�

J∗GJ∗)
. Note that in the case of an orthonormal design (M = n andG�G= In) then

ρmax
(
G�
J∗GJ∗

)
= ρmin

(
G�
J∗GJ∗

)
= 1 for any J∗, and thus the gain in operator norm between S and

Σ clearly depends on the size of s∗
N compared to

n
N . Supposing that X = X0 also implies that the

operator norm of the error term U in the matrix regression model (8) is controlled by the ratio s∗
N

instead of the ratio n
N when no assumptions are made on the structure of Σ. This means that if X

has a sparse representation in the dictionary then the error term U becomes smaller.

3.2 An Oracle Inequality for the Frobenius Norm

Consistency is first studied for the normalized Frobenius norm 1
n ‖A‖2F for an n× n matrix A.

The following theorem provides an oracle inequality for the group Lasso estimator Σ̂λ =GΨ̂λG
�.

Theorem 8 Assume that X satisfies Assumption 2. Let ε> 0 and 1≤ s≤min(n,M). Suppose that
Assumption 1 holds with c0 = 3+4/ε, and that the covariance matrixΣnoise = E(W1) of the noise
is positive-definite. Consider the group Lasso estimator Σ̂λ defined by (5) with the choices

γk = 2‖Gk‖�2
√
ρmax(GG�),

and

λ= ‖Σnoise‖2
(
1+

√
n
N
+

√
2δ logM

N

)2
for some constant δ> 1.

Then, with probability at least 1−M1−δ one has that

1
n

∥∥∥Σ̂λ−Σ

∥∥∥2
F

≤ (1+ ε) inf
Ψ ∈ SM
M (Ψ)≤ s

(
4
n

∥∥∥GΨG�−Σ

∥∥∥2
F
+
8
n
‖S−Σ‖2F (18)

+C(ε)
G2
maxρmax(G

�G)

κ2s,c0
‖Σnoise‖22

(
1+

√
n
N
+

√
2δ logM

N

)4
M (Ψ)

n

⎞⎠ ,
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where κ2s,c0 = ρmin(s)2− c0θ(G)ρmax(G�G)s, and C(ε) = 8 ε
1+ε(1+2/ε)

2.

The first term 1
n

∥∥GΨG�−Σ

∥∥2
F in inequality (18) is the bias of the estimator Σ̂λ. It reflects

the quality of the approximation ofΣ by the set of matrices of the formGΨG�, withΨ ∈ SM and
M (Ψ)≤ s. As an example, suppose that X = X0, where the process X0 has a sparse representation
in the basis (gm)1≤m≤M given by

X0(t) = ∑
m∈J∗

amgm(t), t ∈ T,

where J∗ ⊂ {1, . . . ,M} is a subset of indices of cardinality |J∗|= s∗ ≤ s and am,m ∈ J∗ are random
coefficients. Then, in this case, since s∗ ≤ s the bias term in (18) is equal to zero.

The second term 1
n ‖S−Σ‖2F in (18) is a variance term as the empirical covariance matrix

S is an unbiased estimator of Σ. Using the inequality 1
n ‖A‖2F ≤ ‖A‖22 that holds for any n× n

matrix A, it follows that 1n ‖S−Σ‖2F ≤ ‖S−Σ‖22. Therefore, under the assumption that X has a
sparse representation in the dictionary (for example when X = X0 as above) then the variance term
1
n ‖S−Σ‖2F is controlled by the ratio s∗

N ≤ s
N (see Proposition 7) instead of the ratio

n
N without any

assumption on the structure ofΣ.
The third term in (18) is also a variance term due to the noise in the measurements (1). If there

exists a constant c> 0 independent of n and N such that nN ≤ c then the decay of this third variance

term is essentially controlled by the ratio M (Ψ)
n ≤ s

n . Therefore, ifM (Ψ)≤ s with sparsity s much

smaller than n then the variance of the group Lasso estimator Σ̂λ is smaller than the variance of S̃.
This shows some of the improvements achieved by regularization (7) of the empirical covariance
matrix S̃ with a group Lasso penalty.

An important assumption of Theorem 8 is that the covariance matrix of the noise Σnoise =
E(W1) is positive definite. This restriction is clearly necessary as illustrated by the following
example: suppose that the contaminating process E (t) = ζg1(t) with ζ ∼ N(0,σ21), implying that
Σnoise = σ21g1g

�
1 with g1 = (g1(t1), . . . ,g1(tn))� has n−1 eigenvalues equal to zero. Now, suppose

that X(t) = a2g2(t) with a2 ∼ N(0,σ22). If σ1 > σ2 then the group LASSO regularization alone
cannot get rid of the additive error term without eliminating first the right component g2. Hence, in
such settings, group LASSO regularization does not yield to a consistent estimation ofΣ= σ22g2g

�
2

with g2 = (g2(t1), . . . ,g2(tn))�.

3.3 An Oracle Inequality for the Operator Norm

The “normalized” Frobenius norm 1
n

∥∥∥Σ̂λ−Σ

∥∥∥2
F
, that is, the average of the eigenvalues of(

Σ̂λ−Σ

)2
, can be viewed as a reasonable proxy for the operator norm

∥∥∥Σ̂λ−Σ

∥∥∥2
2
(maximum

eigenvalue of
(
Σ̂λ−Σ

)2
). It is thus expected that the results of Theorem 8 imply that the group

Lasso estimator Σ̂λ is a good estimator ofΣ in operator norm. Let us recall that controlling the oper-
ator norm enables to study the convergence of the eigenvectors and eigenvalues of Σ̂λ by controlling
of the angles between the eigenspaces of a population and a sample covariance matrix through the
use of the sin(θ) theorems in Davis and Kahan (1970).
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Now, let us consider the case where X consists in noisy observations of the process X0 (15)
meaning that

X̃(t j) = X0(t j)+E (t j) , j = 1, . . . ,n, (19)

where E is a second order Gaussian process E with zero mean and independent of X0. In this case,
one has that

Σ=GΨ
∗G�, whereΨ∗ = E

(
aa�

)
,

where a is the random vector of RM with am = am for m ∈ J∗ and am = 0 for m /∈ J∗. Therefore,
using Theorem 8 by replacing s by s∗ = |J∗|, since Ψ∗ ∈ {Ψ ∈ SM :M (Ψ)≤ s∗}, one can derive
the following corrollary:

Corollary 9 Suppose that the observations X̃i(t j) with i= 1, ...,N and j = 1, . . . ,n are i.i.d random
variables from model (19) and that the conditions of Theorem 8 are satisfied with 1 ≤ s = s∗ ≤
min(n,M). Then, with probability at least 1−M1−δ one has that

1
n

∥∥∥Σ̂λ−Σ

∥∥∥2
F
≤C0 (n,M,N,s∗,S,Ψ∗,G,Σnoise) ,

where

C0 (n,M,N,s∗,S,Ψ∗,G,Σnoise) = (1+ ε)

(
8
n

∥∥∥S−GΨ
∗G�

∥∥∥2
F
+C(ε)

G2
maxρmax(G

�G)

κ2s∗,c0
λ2
s∗
n

)
.

To simplify notations, write Ψ̂= Ψ̂λ, with Ψ̂λ given by (7). Define Ĵλ ⊂ {1, . . . ,M} as

Ĵλ ≡ Ĵ :=

{
k :

δk√
n

∥∥∥Ψ̂k

∥∥∥
�2
>C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise)

}
, with δk =

‖Gk‖�2
Gmax

, (20)

andC1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) =C1 with

C1 =max

(
γ−1maxn

−1/2 1+ ε
λ

∥∥∥S−GΨ
∗G�

∥∥∥2
F
;
4(1+ ε)

√
s∗

εκs∗,c0

√
C0 (n,M,N,s∗,S,Ψ∗,G,Σnoise)

)
.

(21)
with γmax = 2Gmax

√
ρmax(G�G). The set of indices Ĵ is an estimation of the set of active basis

functions J∗. Note that such thresholding procedure (20) does not lead immediately to a practical
way to choose the set Ĵ. Indeed the constant C1 in (20) depends on the a priori unknown sparsity
s∗ and on the amplitude of the noise in the matrix regression model (8) measured by the quantities
8
n

∥∥S−GΨ
∗G�∥∥2

F and ‖Σnoise‖22. Nevertheless, in Section 4 on numerical experiments we give a
simple procedure to automatically threshold the �2-norm of the columns of the matrix Ψ̂λ that are
two small.

Note that to estimate J∗ we did not simply take Ĵ = Ĵ0 :=

{
k :

∥∥∥Ψ̂k

∥∥∥
�2
�= 0

}
, but rather apply

a thresholding step to discard the columns of Ψ̂ whose �2-norm are too small. By doing so, we
want to stress the fact that to obtain a consistent procedure with respect to the operator norm it is
not sufficient to simply take Ĵ = Ĵ0. A similar thresholding step is proposed in Lounici (2008) and
Lounici et al. (2009) in the standard linear model to select a sparse set of active variables when
using regularization by a Lasso or group-Lasso penalty. In the paper (Lounici, 2008), the second
thresholding step used to estimate the true sparsity pattern depends on a unknown constant that is
related to the amplitude of the unknown coefficients to estimate.

Then, the following theorem holds.
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Theorem 10 Under the assumptions of Corollary 9, for any solution of problem (7), we have that
with probability at least 1−M1−δ,

max
1≤k≤M

δk√
n

∥∥∥Ψ̂k−Ψ
∗
k

∥∥∥
�2
≤C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) .

If in addition

min
k∈J∗

δk√
n
‖Ψ∗

k‖�2 > 2C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) (22)

then with the same probability the set of indices Ĵ, defined by (20), estimates correctly the true set
of active basis functions J∗, that is Ĵ = J∗ with probability at least 1−M1−δ.

The results of Theorem 10 indicate that if the �2-norm of the columns of Ψ∗
k for k ∈ J∗ are

sufficiently large with respect to the level of noise in the matrix regression model (8) and the sparsity
s∗, then Ĵ is a consistent estimation of the active set of variables. Indeed, ifM (Ψ∗) = s∗, then by
symmetry the columns of Ψ∗ such Ψ∗

k �= 0 have exactly s∗ non-zero entries. Hence, the condition
(22) means that the �2-norm ofΨ∗

k �= 0 (normalized by δk√
n ) has to be larger than

4(1+ε)
εκs∗ ,c0

√
s∗
√
C0. A

simple condition to satisfy such an assumption is that the amplitude of the s∗ non-vanishing entries
ofΨ∗

k �= 0 are larger than
√
n

δk
4(1+ε)
εκs∗,c0

√
C0 which can be interpreted as a kind of measure of the noise

in model (8). This suggests to take as a final estimator ofΣ the following matrix:

Σ̂Ĵ =GĴΨ̂ĴGĴ (23)

whereGĴ denotes the n×|Ĵ| matrix obtained by removing the columns ofG whose indices are not
in Ĵ, and

Ψ̂Ĵ = argmin
Ψ∈S|Ĵ|

{∥∥∥S̃−GĴΨG�
Ĵ

∥∥∥2
F

}
,

where S|Ĵ| denotes the set of |Ĵ|× |Ĵ| symmetric matrices. Note that ifG�
Ĵ
GĴ is invertible, then

Ψ̂Ĵ =
(
G�
Ĵ GĴ

)−1
G�
Ĵ S̃GĴ

(
G�
Ĵ GĴ

)−1
.

Let us recall that if the observations are i.i.d random variables from model (19) then

Σ=GΨ
∗G�,

whereΨ∗ = E
(
aa�), and a is the random vector of RM with am = am for m ∈ J∗ and am = 0 for

m /∈ J∗. Then, define the random vector aJ∗ ∈ RJ∗ whose coordinates are the random coefficients
am for m ∈ J∗. Let ΨJ∗ = E

(
aJ∗a

�
J∗
)
and denote by GJ∗ the n×|J∗| matrix obtained by removing

the columns ofG whose indices are not in J∗. Note that Σ=GJ∗ΨJ∗G
�
J∗ .

Assuming thatG�
J∗GJ∗ is invertible, define the matrix

ΣJ∗ =Σ+GJ∗(G
�
J∗GJ∗)

−1G�
J∗ΣnoiseGJ∗

(
G�
J∗GJ∗

)−1
G�
J∗ . (24)

Then, the following theorem gives a control of deviation between Σ̂Ĵ and ΣJ∗ in operator norm.
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Theorem 11 Suppose that the observations are i.i.d random variables from model (19) and that
the conditions of Theorem 8 are satisfied with 1≤ s= s∗ ≤min(n,M). Suppose that G�

J∗GJ∗ is an
invertible matrix, and that

min
k∈J∗

δk√
n
‖Ψ∗

k‖�2 > 2C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) ,

where C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) is the constant defined in (21). Let

Y =
(
G�
J∗GJ∗

)−1
G�
J∗X̃

and Z̃ = ‖Y ‖�2 . Let ρ(Σnoise) =
(
supβ∈Rn,‖β‖�2=1E|E

�β|4
)1/4

where E = (E (t1) , ...,E (tn))
�.

Then, with probability at least 1−M1−δ−M−( δ�δ∗ )
α
2+α

, with δ> 1 and δ� > δ∗ one has that∥∥∥Σ̂Ĵ−ΣJ∗
∥∥∥
2
≤ ρmax

(
G�
J∗GJ∗

)
τ̃N,s∗δ� (log(M))

2+α
α ,

where τ̃N,s∗ =max(Ã
2
N,s∗ , B̃N,s∗), with ÃN,s∗ = ‖Z̃‖ψα

√
logd∗(logN)1/α√

N
and

B̃N,s∗ =
ρ̃2(Σ,Σnoise)ρ

−1
min

(
G�
J∗GJ∗

)
√
N

+
(
‖ΨJ∗‖2+ρ−1min

(
G�
J∗GJ∗

)
‖Σnoise‖2

)1/2
ÃN,s∗ ,

where d∗ =min(N,s∗) and ρ̃(Σ,Σnoise) = 81/4
(
ρ4 (Σ)+ρ4 (Σnoise)

)1/4
.

First note that the above theorem gives a deviation in operator norm from Σ̂Ĵ to the matrix ΣJ∗

(24) which is not equal to the true covariance Σ of X at the design points. Indeed, even if we
know the true sparsity set J∗, the additive noise in the measurements in model (1) complicates the
estimation ofΣ in operator norm. However, althoughΣJ∗ �=Σ, they can have the same eigenvectors
if the structure of the additive noise matrix term in (24) is not too complex. As an example, consider
the case of an additive white noise, for which Σnoise = σ2In where σ is the level of noise and
In the n× n identity matrix. Under such an assumption, if we further suppose for simplicity that
(G�

J∗GJ∗)
−1 = Is∗ , then ΣJ∗ = Σ+ σ2GJ∗(G

�
J∗GJ∗)

−1G�
J∗ = Σ+ σ2In and clearly ΣJ∗ and Σ

have the same eigenvectors. Therefore, the eigenvectors of Σ̂Ĵ can be used as estimators of the
eigenvectors of Σ which is suitable for the sparse PCA application described in the next section on
numerical experiments.

Let us illustrate the implications of Theorem 11 on a simple example. If X is Gaussian, the
random vector Y =

(
G�
J∗GJ∗

)−1
G�
J∗ (X+E) is also Gaussian and Proposition 5 can be used to

prove that

‖Z̃‖ψ2 ≤
√
8/3

√
tr
((

G�
J∗GJ∗

)−1
G�
J∗ (Σ+Σnoise)GJ∗

(
G�
J∗GJ∗

)−1)
≤

√
8/3‖Σ+Σnoise‖1/22 ρ−1/2min

(
G�
J∗GJ∗

)√
s∗.

Then Theorem 11 implies that with high probability∥∥∥Σ̂Ĵ−ΣJ∗
∥∥∥
2
≤ ρmax

(
G�
J∗GJ∗

)
τ̃N,s∗,1δ(log(M))

2+α
α ,
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where τ̃N,s∗,1 =max(Ã
2
N,s∗,1, B̃N,s∗,1), with

ÃN,s∗,1 =
√
8/3‖Σ+Σnoise‖1/22 ρ−1/2min

(
G�
J∗GJ∗

)√
logd∗(logN)1/α

√
s∗
N

and

B̃N,s∗,1 =
ρ̃2(Σ,Σnoise)ρ

−1
min

(
G�
J∗GJ∗

)
√
N

+
(
‖ΨJ∗‖2+ρ−1min

(
G�
J∗GJ∗

)
‖Σnoise‖2

)1/2
ÃN,s∗,1.

Therefore, in the Gaussian case (but also under other assumptions for X such as those in Proposition

5) the above equations show that the operator norm
∥∥∥Σ̂Ĵ−ΣJ∗

∥∥∥2
2
depends on the ratio s∗

N . Recall

that ‖S−Σ‖22 depends on the ratio n
N . Thus, using Σ̂Ĵ clearly yields significant improvements if s∗

is small compared to n.
To summarize our results let us finally consider the case of an orthogonal design. Combining

Theorems 8, 10 and 11 one arrives at the following corrolary:

Corollary 12 Suppose that the observations are i.i.d random variables from model (19). Suppose
that M = n and that G�G = In (orthogonal design) and that X0 satisfies Assumption 2. Let ε > 0
and 1≤ s∗ ≤min(n,M). Consider the group Lasso estimator Σ̂λ defined by (5) with the choices

γk = 2,k = 1, . . . ,n and λ= ‖Σnoise‖2
(
1+

√
n
N
+

√
2δ logM

N

)2
for some constant δ> 1.

Suppose that min
k∈J∗

∥∥Ψ∗
k

∥∥
�2
> 2n1/2C̃1 (σ,n,s∗,N,δ) , where

C̃1 (σ,n,s,N,δ) =
4(1+ ε)

√
s∗

ε

√
C̃0 (σ,n,s∗,N,δ)

and

C̃0 (σ,n,s∗,N,δ)= (1+ε)

⎛⎝8
n

∥∥∥S−GΨ
∗G�

∥∥∥2
F
+C(ε)‖Σnoise‖22

(
1+

√
n
N
+

√
2δ logM

N

)4
s∗
n

⎞⎠ .

Take Ĵ :=

{
k :

∥∥∥Ψ̂k

∥∥∥
�2
> n1/2C̃1 (σ,n,s,N,δ)

}
. Let Y =G�

J∗X̃ and Z̃ = ‖Y ‖�2 . Then, with prob-

ability at least 1−M1−δ−M−( δ�δ∗ )
α
2+α

, with δ> 1 and δ� > δ∗ one has that∥∥∥Σ̂Ĵ−ΣJ∗
∥∥∥
2
≤ τ̃N,s∗δ� (log(M))

2+α
α ,

where τ̃N,s∗ = max(Ã2N,s∗ , B̃N,s∗), with ÃN,s∗ = ‖Z̃‖ψα
√
logd∗(logN)1/α√

N
and

B̃N,s∗ =
ρ̃2(Σ,Σnoise)√

N
+(‖ΨJ∗‖2+‖Σnoise‖2)1/2 ÃN,s∗ .
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3.4 Comparison with the Standard Lasso

In this work, we chose a Group Lasso estimation procedure rather than a standard Lasso. As
a matter of fact, for covariance estimation in our setting, the group structure enables to impose a
constraint on the number of non zero columns of the matrix Ψ and not on the single entries of the
matrix Ψ. This corresponds to the natural assumption of obtaining a sparse representation of the
process X(t) in the basis given by the functions gm’s and replacing its dimension by its sparsity.
Alternatively, the standard Lasso in our setting would be the estimator defined by

Ψ̂L = argmin
Ψ∈SM

{∥∥∥S̃−GΨG�
∥∥∥2
F
+2λ

M

∑
k=1

M

∑
m=1

γmk|Ψmk|
}
,

where λ≥ 0 is a regularization parameters and the γmk’s are positive weights. This procedure leads
to the following Lasso estimator of the covariance matrixΣ

Σ̂L =GΨ̂LG
� ∈ Rn×n.

In the orthogonal case (that is M = n and G�G = In), this gives rise to the estimator Ψ̂L obtained
by soft thresholding individually each entryYmk of the matrix Y =G�S̃Gwith the thresholds λγmk.
Proposition 13 (see below) allows a simple comparison of the statistical performances of the group
Lasso estimator Σ̂λ with those of the standard Lasso estimator Σ̂L in terms of upper bounds for the
Frobenius norm. To simplify the discussion, we only consider the orthogonal case and the simple
model

X̃(t j) = X0(t j)+E (t j) , j = 1, . . . ,n, (25)

where the process X0 is defined in (15). The statement of the result for the group Lasso is an
immediate consequence of Theorem 8, while the proof to obtain the upper bound for the standard
Lasso is an immediate adaptation of the arguments in the proof of Theorem 8.

Proposition 13 Assume that X satisfies model (25) and that the covariance matrixΣnoise =E(W1)
of the noise is positive-definite. Consider the group Lasso estimator Σ̂λ and the standard Lasso
estimator Σ̂L with the choices

γk = 2, γmk = 2, λ= ‖Σnoise‖2
(
2+

√
2δ logM

N

)2
for some constant δ> 1.

Then, there exist two positive constants C1,C2 not depending on n,N,s∗ such that with probability
at least 1−M1−δ one has that

1
n

∥∥∥Σ̂λ−Σ

∥∥∥2
F
≤ C1

n
‖S−Σ‖2F +C2‖Σnoise‖22

(
2+

√
2δ logn
N

)4
s∗
n
,

and

1
n

∥∥∥Σ̂L−Σ

∥∥∥2
F
≤ C1

n
‖S−Σ‖2F +C2‖Σnoise‖22

(
2+

√
2δ logn
N

)4
s2∗
n
.
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Proposition 13 illustrates the advantages of the Group Lasso over the standard Lasso. Indeed, the
second term in the upper bound for the group Lasso is much smaller (of the order s∗

n ) than the

second term in the upper bound for the standard Lasso (of the order s
2∗
n ). This comes from the fact

that the sparsity prior of the Group Lasso is on the number of vanishing columns of the matrix Ψ,
while the sparsity prior of the standard Lasso only controls the number of non-zero entries of Ψ.
However, to really demonstrate the benefits of our method when compared to the performances of
the standard Lasso, it is required to also derive lower bounds. This issue is a difficult task which has
been considered in few papers and that is beyond the scope of this paper. For recent work in this
direction, we refer to Huang and Zhang (2010) for regression models or Lounici et al. (2011) and
Lounici et al. (2009) for linear regression and multi-task learning.

However, the analysis in Huang and Zhang (2010); Lounici et al. (2011) of Group Lasso regular-
ization is carried out the setting of multiple regression models where the parameters to estimate are
vectors and with error terms that are centered. Therefore, the results in Huang and Zhang (2010);
Lounici et al. (2011) cannot be applied to the matrix regression model (4) since, in our setting, the
parameter to estimate is the matrixΣ and the error terms Ui+Wi in (4) are not centered.

4. Numerical Experiments and an Application to Sparse PCA

In this section we present some simulated examples to illustrate the practical behaviour of the
covariance matrix estimator by group Lasso regularization proposed in this paper. In particular,
we show its performances with an application to sparse Principal Components Analysis (PCA).
In the numerical experiments, we use the explicit estimator described in Proposition 1 in the case
M = n and an orthogonal design matrix G, and also the estimator proposed in the more general
situation when n < M. The programs for our simulations were implemented using the MATLAB
programming environment.

4.1 Description of the Estimating Procedure and the Data

We consider a noisy stochastic processes X̃ on T = [0,1] with values in R observed at fixed
location points t1, ..., tn in [0,1], generated according to

X̃(t j) = X0(t j)+σε j, j = 1, . . . ,n, (26)

where σ> 0 is the level of noise, ε1, . . . ,εn are i.i.d. standard Gaussian variables, and X0 is a random
process independent of the ε j’s. For the process X0 we consider two simple models. The first one is
given by

X0(t) = a f (t), (27)

where a is a Gaussian random coefficient such that Ea = 0, Ea2 = γ2, and f : [0,1] → R is an
unknown function. The second model for X0 is

X0(t) = a1 f1(t)+a2 f2(t), (28)

where a1 and a2 are independent Gaussian variables such that Ea1 = Ea2 = 0, Ea21 = γ21, Ea
2
2 = γ22

(with γ1 > γ2), and f1, f2 : [0,1] → R are unknown functions. The simulated data consists in a
sample of N independent observations of the process X̃ at the points t1, ..., tn, which are generated
according to (26). Therefore, throughout the numerical experiments, one has that

Σnoise = σ2In.
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In model (27), the covariance matrix Σ of the process X0 at the locations points is given by
Σ= γ2FF�, where by definition F = ( f (t1) , ..., f (t1))

� ∈ Rn. Note that the largest eigenvalue of
Σ is γ2‖F ‖2�2 with corresponding eigenvector F . We suppose that the signal f has some sparse rep-
resentation in a large dictionary of basis functions of sizeM, given by {gm, m= 1, . . . ,M}, meaning
that f (t) =∑M

m=1βmgm (t) , with J
∗ = {m,βm �= 0} of small cardinality s∗. Then, the process X0 can

be written as X0(t) = ∑M
m=1 aβmgm (t) , and thus Σ = γ2GΨJ∗G

�, where ΨJ∗ is an M×M matrix
with entries equal to βmβm′ for 1≤ m,m′ ≤M.

Similarly, in model (28), the covariance matrix Σ of the process X0 at the locations points is
given by Σ= γ21F1F

�
1 + γ22F2F

�
2 , where by definition

F1 = ( f1 (t1) , ..., f (t1))
� ∈ Rn and F2 = ( f2 (t1) , ..., f (t1))

� ∈ Rn.

In the following simulations, the functions f1 and f2 are chosen such that F1 and F2 are or-
thogonal vectors in Rn with ‖F1‖�2 = 1 and ‖F2‖�2 = 1. Under such an assumption and since
γ1 > γ2, the largest eigenvalue of Σ is γ21 with corresponding eigenvector F1, and the second
largest eigenvalue of Σ is γ22 with corresponding eigenvector F2. We suppose that the signals f1
and f2 have some sparse representations in a large dictionary of basis functions of size M, given
by f1 (t) = ∑M

m=1β
1
mgm (t) , and f2 (t) = ∑M

m=1β
2
mgm (t). Then, the process X

0 can be written as
X0(t) = ∑M

m=1(a1β
1
m+ a2β2m)gm (t) and thus Σ = G(γ21Ψ

1+ γ22Ψ
2)G�, where Ψ1,Ψ2 are M×M

matrix with entries equal to β1m(β
1
m)

′ and β2m(β2m)′ for 1≤ m,m′ ≤M respectively.
In models (27) and (28), we aim at estimating either F or F1,F2 by the eigenvectors corre-

sponding to the largest eigenvalues of the matrix Σ̂Ĵ defined in (23), in a high-dimensional setting
with n>N and by using different type of dictionaries. The idea behind this is that Σ̂Ĵ is a consistent
estimator of ΣJ∗ (see its definition in 24) in operator norm. Although the matrices ΣJ∗ and Σ may
have different eigenvectors (depending on the design points and chosen dictionary), the examples
below show the eigenvectors of Σ̂Ĵ can be used as estimators of the eigenvectors ofΣ.

The estimator Σ̂Ĵ of the covariance matrix Σ is computed as follows. Once the dictionary has
been chosen, we compute the covariance group Lasso (CGL) estimator Σ̂λ̂ =GΨ̂λ̂G

�, where Ψ̂λ̂
is defined in (7). We use a completely data-driven choice for the regularizarion parameter λ, given

by λ̂ = ‖Σ̂noise‖2
(
1+

√ n
N +

√
2δ logM

N

)2
, where ‖Σ̂noise‖2 = σ̂2 is the median absolute deviation

(MAD) estimator of σ2 used in standard wavelet denoising (see for example Antoniadis et al., 2001)
and δ= 1.1. Hence, the method to compute Σ̂λ̂ is fully data-driven. Furthermore, we will show in

the examples below that replacing λ by λ̂ into the penalized criterion yields a very good practical
performance of the covariance estimation procedure.

As a final step, one needs to compute the estimator Σ̂Ĵ of Σ, as in (23). For this, we need to
have an idea of the true sparsity s∗, since Ĵ defined in (20) depends on s∗ and also on unknown
upper bounds on the level of noise in the matrix regression model (8) . A similar problem arises
in the selection of a sparse set of active variables when using regularization by a Lasso penalty in
the standard linear model. As an example, recall that in Lounici (2008), a second thresholding step
is aso used to estimate the true sparsity pattern. However, the suggested thresholding procedure in
Lounici (2008) also depends on a priori unknown quantities (such as the amplitude of the coeffi-
cients to estimate). To overcome this drawback in our case, we can define the final covariance group
Lasso (FCGL) estimator as the matrix

Σ̂Ĵ =GĴΨ̂ĴG
�
Ĵ , (29)
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with Ĵ = Ĵε =

{
k :

∥∥∥Ψ̂k

∥∥∥
�2
> ε

}
, where ε is a positive constant. To select an appropriate value of

ε, one can plot the cardinality of Ĵε as a function of ε, and then use an L-curve criterion to only
keep in Ĵ the indices of the columns of Ψ̂λ̂ with a significant value in �2-norm. This choice for Ĵ is
sufficient for numerical purposes.

In the simulations, to measure the accuracy of the estimation procedure, we also use the empiri-
cal average of the Frobenius and operator norm of the estimators Σ̂λ̂ and Σ̂Ĵ with respect to the true

covariance matrixΣ defined by EAFN = 1
P

P
∑
p=1

∥∥∥Σ̂p

λ̂
−Σ

∥∥∥
F
and EAON = 1

P

P
∑
p=1

∥∥∥Σ̂p
Ĵ
−Σ

∥∥∥
2
respec-

tively, over a number P of iterations, where Σ̂p

λ̂
and Σ̂

p
Ĵ
are the CGL and FCGL estimators of Σ,

respectively, obtained at the p-th iteration. We also compute the empirical average of the operator

norm of the estimator Σ̂Ĵ with respect to the matrixΣJ∗ , defined by EAON∗ = 1
P

P
∑
p=1

∥∥∥Σ̂p
Ĵ
−ΣJ∗

∥∥∥
2
.

4.2 Model (27) - Case of an Orthonormal Design (With n=M)

First, the size of the dictionary M as well as the basis functions {gm,m= 1, ...,M} have to be
specified. In model (27), we will use for the test function f the signals HeaviSine and Blocks (see
for example Antoniadis et al., 2001 for a definition), and the Symmlet 8 and Haar wavelet basis for
the HeaviSine and Blocks signals respectively, which are implemented in the Matlab’s open-source
library WaveLab (see for example Antoniadis et al., 2001 for further references on wavelet methods
in nonparametric statistics). Then, we took n = M and the location points t1, ..., tn are given by
the equidistant grid of points t j =

j
M , j = 1, . . . ,M such that the design matrix G (using either the

Symmlet 8 or the Haar basis) is orthogonal.

In Figure 1 we display the results obtained for a particular simulated sample of size N = 25
according to (26), with n = M = 256, σ = 0.015, γ = 0.5 and with f being either the function
HeaviSine or the function Blocks. It can be observed in Figures 1(a) and 1(b) that, as expected
in this high dimensional setting (N < n), the empirical eigenvector of S̃ associated to its largest
empirical eigenvalue does not lead to a consistent estimator of F .

The CGL estimator Σ̂λ̂ is computed directly from Proposition 1. In Figures 1(c) and 1(d), we

display the eigenvector associated to the largest eigenvalue of Σ̂λ̂ as an estimator of F . Note that
this estimator behaves poorly. The estimation considerably improves by taking the FCGL estimator
Σ̂Ĵ defined in (29). Figures 1(e) and 1(f) illustrate the very good performance of the eigenvector
associated to the largest eigenvalue of the matrix Σ̂Ĵ as an estimator of F .

It is clear that the estimators Σ̂λ̂ and Σ̂Ĵ are random matrices that depend on the observed
sample. Tables 1 and 2 show the values of EAFN, EAON and EAON∗ corresponding to P = 100
simulated samples of different sizes N and different values of the level of noise σ. It can be observed
that for both signals the empirical averages EAFN, EAON and EAON∗ behaves similarly, being the
values of EAON smaller than its corresponding values of EAFN as expected. Observing each table
separately we can remark that, for N fixed, when the level of noise σ increases then the values of
EAFN, EAON and EAON∗ also increase. By simple inspection of the values of EAFN, EAON and
EAON∗ in the same position at Tables 1 and 2 we can check that, for σ fixed, when the number
of replicates N increases then the values of EAFN, EAON and EAON∗ decrease in all cases. We
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Figure 1: Orthonormal case - Model (27). Signal HeaviSine - (a) Eigenvector associated to the
largest eigenvalue of S̃, (c) Eigenvector associated to the largest eigenvalue of Σ̂λ̂, (e)

Eigenvector associated to the largest eigenvalue of Σ̂Ĵ . Signal Blocks - (b) Eigenvec-

tor associated to the largest eigenvalue of S̃, (d) Eigenvector associated to the largest
eigenvalue of Σ̂λ̂, (f) Eigenvector associated to the largest eigenvalue of Σ̂Ĵ .
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Signal σ 0.005 0.01 0.05 0.1 0.5 1
HeaviSine EAFN 0.0634 0.0634 0.2199 0.2500 0.2500 0.2500
HeaviSine EAON 0.0619 0.0569 0.1932 0.2500 0.2500 0.2500
HeaviSine EAON∗ 0.0619 0.0569 0.1943 0.2600 0.5000 1.2500
Blocks EAFN 0.0553 0.0681 0.2247 0.2500 0.2500 0.2500
Blocks EAON 0.0531 0.0541 0.2083 0.2500 0.2500 0.2500
Blocks EAON∗ 0.0531 0.0541 0.2107 0.2600 0.5000 1.2500

Table 1: Values of EAFN, EAON and EAON∗ corresponding to signals HeaviSine and Blocks for
M = n= 256, N = 25.

Signal σ 0.005 0.01 0.05 0.1 0.5 1
HeaviSine EAFN 0.0501 0.0524 0.1849 0.2499 0.2500 0.2500
HeaviSine EAON 0.0496 0.0480 0.1354 0.2496 0.2500 0.2500
HeaviSine EAON∗ 0.0496 0.0480 0.1366 0.2596 0.5000 1.2500
Blocks EAFN 0.0485 0.0494 0.2014 0.2500 0.2500 0.2500
Blocks EAON 0.0483 0.0429 0.1871 0.2500 0.2500 0.2500
Blocks EAON∗ 0.0483 0.0429 0.1893 0.2600 0.5000 1.2500

Table 2: Values of EAFN, EAON and EAON∗ corresponding to signals HeaviSine and Blocks for
M = n= 256, N = 40.

can also observe how the difference between EAON and EAON∗ is bigger as the level of noise
increases.

4.3 Model (28) - The Case M = 2n by Mixing Two Orthonormal Basis

Consider now the setting of model (28) with γ1 = 0.5, γ2 = 0.2, σ = 0.045, N = 25 and an
equidistant grid of design points t1, ..., tn given by t j =

j
n , j = 1, . . . ,n with n= 128. For the signals

f1 and f2 we took the test functions displayed in Figure 2(a) and 2(b). Obviously, the signal f1
has a sparse representation in a Haar basis while the signal f2 has a sparse representation in a
Fourier basis. Thus, this suggests to construct a dictionary by mixing two orthonormal basis. More
precisely, we construct a n× n orthogonal matrix G1 using the Haar basis and a n× n orthogonal
matrixG2 using a Fourier basis (cosine and sine at various frequencies) at the design points. Then,
we form the n×M design matrixG= [G1 G2] with M = 2n. The CGL estimator Σ̂λ̂ is computed
by the minimization procedure (7) using the Matlab package minConf of Schmidt et al. (2008).

In Figures 2(c) and 2(d), we display the eigenvector associated to the largest eigenvalue of Σ̂λ̂

as an estimator of F1, and the eigenvector associated to the second largest eigenvalue of Σ̂λ̂ as an
estimator of F2. Note that these estimators behaves poorly. The estimation considerably improves
by taking the FCGL estimator Σ̂Ĵ defined in (29). Figures 2(e) and 2(f) illustrate the very good
performance of the eigenvectors associated to the largest eigenvalue and second largest eigenvalue
of the matrix Σ̂Ĵ as estimators of F1 and F2.
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Finally, to illustrate the benefits of mixing two orthonormal basis, we also display in Figure 3
and Figure 4 the estimation of F1 and F2 when computing the matrix Σ̂Ĵ by using either only the
Haar basis (that isG=G1 and M = n) or only the Fourier basis (that isG=G1 and M = n). The
results are clearly much worse and not satisfactory.

4.4 Model (27) - Case of Non-Equispaced Design Points such that n<M

Let us now return to the setting of model (27). The test functions f are either the signal Heavi-
Sine and or the signal Blocks. We also use the Symmlet 8 and Haar wavelet basis for the HeaviSine
and Blocks functions respectively. However, we now choose to take a setting where the number of
design points n is smaller than the size M of the dictionary. Taking n <M, the location points are
given by a subset {t1, ..., tn} ⊂ { k

M : k= 1, ...,M} of size n, such that the design matrixG is an n×M
matrix (using either the Symmlet 8 and Haar basis). For a fixed value of n, the subset {t1, ..., tn}
is chosen by taking the first n points obtained from a random permutation of the elements of the
set { 1M , 2M , ...,1}. In Figure 5 we present the results obtained for a particular simulated sample of
size N = 25 according to (26), with n = 90, M = 128, σ = 0.02, γ = 0.5 and with f being either
the function HeaviSine or the function Blocks. It can be observed in Figures 5(a) and 5(c) that, as
expected in this high dimensional setting (N < n), the empirical eigenvector of S̃ associated to its
largest empirical eigenvalue are noisy versions of F . As explained previously, the CGL estimator
Σ̂λ̂ is computed by the minimization procedure (7) using the Matlab package minConf of Schmidt
et al. (2008). In Figures 5(c) and 5(d) is shown the eigenvector associated to the largest eigenvalue
of Σ̂λ̂ as an estimator of F . Note that this estimator is quite noisy. Again, the eigenvector associated

to the largest eigenvalue of the matrix Σ̂Ĵ defined in (29) is much a better estimator of F . This is
illustrated in Figures 5(e) and 5(f). To compare the accuracy of the estimators for different simu-
lated samples, we compute the values of EAFN, EAON and EAON∗ with fixed values of σ= 0.05,
M = 128, N = 40, P= 50 for different values of the number of design points n. For all the values
of n considered, the design points t1, ..., tn are selected as the first n points obtained from the same
random permutation of the elements of the set { 1M , 2M , ...,1}. The chosen subset {t1, ..., tn} is used
for all the P iterations needed in the computation of the empirical averages (fixed design over the
iterations). Figure 6 shows the values of EAFN, EAON and EAON∗ obtained for each value of n
for both signals HeaviSine and Blocks. It can be observed that the values of the empirical averages
EAON and EAON∗ are much smaller than its corresponding values of EAFN as expected. We can
remark that, when n increases, the values of EAFN, EAON and EAON∗ first increase and then de-
crease, and the change of monotony occurs when n>N. Note that the case n=M= 128 is included
in these results.
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Figure 2: Case M = 2n (Haar + Fourier basis). (a) Signal F1, (c) Signal F1 and eigenvector associ-
ated to the largest eigenvalue of Σ̂λ̂, (e) Signal F1 and eigenvector associated to the largest

eigenvalue of Σ̂Ĵ with G = [G1 G2]. (b) Signal F2, (d) Signal F2 and eigenvector asso-

ciated to the second largest eigenvalue of Σ̂λ̂, (f) Signal F2 and eigenvector associated to

the second largest eigenvalue of Σ̂Ĵ withG= [G1 G2].
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Figure 3: Orthonormal case M = n (Haar). (a) Signal F1 and Eigenvector associated to the largest
eigenvalue of Σ̂Ĵ with G =G1, (b) Signal F2 and Eigenvector associated to the second

largest eigenvalue of Σ̂Ĵ withG=G1.
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Figure 4: Orthonormal caseM= n (Fourier). (a) Signal F1 and Eigenvector associated to the largest
eigenvalue of Σ̂Ĵ with G =G2, (b) Signal F2 and Eigenvector associated to the second

largest eigenvalue of Σ̂Ĵ withG=G2.
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Appendix A.

This appendix contains the proof of the main results of the paper.

A.1 Notations

First let us introduce some notations and properties that will be used throughout this Ap-
pendix. The vectorization of a p× q matrix A = (ai j)1≤i≤p,1≤ j≤q is the pq× 1 column vector
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Figure 5: Non equi-spaced points with n < M. Signal HeaviSine - (a) Eigenvector associated to
the largest eigenvalue of S̃, (c) Eigenvector associated to the largest eigenvalue of Σ̂λ̂,

(e) Eigenvector associated to the largest eigenvalue of Σ̂Ĵ . Signal Blocks - (b) Eigen-

vector associated to the largest eigenvalue of S̃, (d) Eigenvector associated to the largest
eigenvalue of Σ̂λ̂, (f) Eigenvector associated to the largest eigenvalue of Σ̂Ĵ .
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Figure 6: (a) Values of EAFN, EAON and EAON∗ for Signal HeaviSine as a function of n, (b)
Values of EAFN, EAON and EAON∗ for Signal Blocks as a function of n.

denoted by vec(A), obtain by stacking the columns of the matrix A on top of one another. That
is vec(A) = [a11, ...,ap1,a12, ...,ap2, ...,a1q, ...,apq]�. If A = (ai j)1≤i≤k,1≤ j≤n is a k×n matrix and
B = (bi j)1≤i≤p,1≤ j≤q is a p×q matrix, then the Kronecker product of the two matrices, denoted by
A⊗B, is the kp×nq block matrix

A⊗B =

⎡⎢⎢⎢⎢⎣
a11B . . . a1nB
. . .
. . .
. . .

ak1B . . . aknB

⎤⎥⎥⎥⎥⎦ .

In what follows, we repeatedly use the fact that the Frobenius norm is invariant by the vec operation
meaning that

‖A‖2F = ‖vec(A)‖2�2 , (30)

and the properties that

vec(ABC) =
(
C�

⊗A
)
vec(B) , (31)

and
(A⊗B)(C⊗D) =AC⊗BD, (32)

provided the above matrix products are compatible.

A.2 Proof of Proposition 1

Lemma 14 Let Ψ̂= Ψ̂λ denotes the solution of (7). Then, for k = 1, . . . ,M[
(G⊗G)�

(
vec(S̃)− (G⊗G)vec(Ψ̂)

)]k
= λγk

Ψ̂k

‖Ψ̂k‖�2
if Ψk �= 0∥∥∥∥[(G⊗G)�

(
vec(S̃)− (G⊗G)vec(Ψ̂)

)]k∥∥∥∥
�2

≤ λγk if Ψ̂k = 0
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where Ψ̂k denotes the k-th column of the matrix Ψ̂ and the notation [β]k denotes the vector
(βk,m)m=1,...,M in RM for a vector β= (βk,m)k,m=1,...,M ∈ RM2

.

Proof of Lemma 14 ForΨ ∈ RM×M define

L(Ψ) =
∥∥∥S̃−GΨG�

∥∥∥2
F
=
∥∥∥vec(S̃)− (G⊗G)vec(Ψ)

∥∥∥2
�2
,

and remark that Ψ̂ is the solution of the convex optimization problem

Ψ̂= argmin
Ψ∈SM

{
L(Ψ)+2λ

M

∑
k=1

γk

√
M

∑
m=1

Ψ2mk

}
.

It follows from standard arguments in convex analysis (see for example Boyd and Vandenberghe,
2004), that Ψ̂ is a solution of the above minimization problem if and only if

−∇L(Ψ̂) ∈ 2λ∂
(

M

∑
k=1

γk

√
M

∑
m=1

Ψ̂2mk

)

where ∇L(Ψ̂) denotes the gradient of L at Ψ̂ and ∂ denotes the subdifferential given by

∂

(
M

∑
k=1

γk

√
M

∑
m=1

Ψ2mk

)
=

{
Θ ∈ RM×M :Θk = γk

Ψk

‖Ψk‖�2
ifΨk �= 0,‖Θk‖�2 ≤ γk ifΨk = 0

}

whereΘk denotes the k-th column ofΘ ∈ RM×M which completes the proof. 	

Now, let Ψ ∈ SM with M = n and suppose that G�G = In. Let Y = (Ymk)1≤m,k≤M =G�S̃G
and remark that vec(Y ) = (G⊗G)� vec(S̃). Then, by using Lemma 14 and the fact thatG�G=
In implies that (G⊗G)� (G⊗G) = In2 , it follows that Ψ̂ = Ψ̂λ satisfies for k = 1, . . . ,M the
following equations

Ψ̂k

⎛⎝1+ λγk√
∑M
m=1 Ψ̂

2
mk

⎞⎠= Yk for all Ψ̂k �= 0,

and √
M

∑
m=1

Y 2
mk ≤ λγk for all Ψ̂k = 0.

where Ψ̂k = (Ψ̂mk)1≤m≤M ∈ RM and Yk = (Ymk)1≤m≤M ∈ RM, which implies that the solution is
given by

Ψ̂mk =

⎧⎪⎪⎨⎪⎪⎩
0 if

√
∑M
m=1Y

2
mk ≤ λγk

Ymk

(
1− λγk√

∑Mj=1Y
2
jk

)
if

√
∑M
m=1Y

2
mk > λγk

which completes the proof of Proposition 1. 	
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A.3 Proof of Proposition 5

First suppose that X is Gaussian. Then, remark that for Z = ‖X‖�2 , one has that ‖Z‖ψ2 < +∞

which implies that ‖Z‖ψ2 = ‖Z2‖1/2ψ1 . Since Z
2 = ∑n

i=1 |X(ti)|2 it follows that

‖Z2‖ψ1 ≤
n

∑
i=1

‖Z2i ‖ψ1 =
n

∑
i=1

‖Zi‖2ψ2 =
n

∑
i=1

Σii‖Σ−1/2
ii Zi‖2ψ2 ,

where Zi = X(ti), i= 1, . . . ,n andΣii denotes the ith diagonal element ofΣ. Then, the result follows
by noticing that ‖Y‖ψ2 ≤

√
8/3 if Y ∼N(0,1). The proof for the case where X is such that ‖Z‖ψ2 <

+∞ and there exists a constant C1 such that ‖Σ−1/2
ii Zi‖ψ2 ≤C1 for all i = 1, . . . ,n follows from the

same arguments.
Now, consider the case where X is a bounded process. Since there exists a constant R> 0 such

that for all t ∈ T, |X(t)| ≤ R, it follows that for Z = ‖X‖�2 then Z ≤ √
nR which implies that for

any α≥ 1, ‖Z‖ψα ≤
√
nR(log2)−1/α, (by definition of the norm ‖Z‖ψα) which completes the proof

of Proposition 5. 	

A.4 Proof of Proposition 7

Under the assumption that X = X0, it follows that Σ = GΨ
∗G� with Ψ

∗ = E
(
aa�), where

a is the random vector of RM with am = am for m ∈ J∗ and am = 0 for m /∈ J∗. Then, define
the random vector aJ∗ ∈ RJ∗ whose coordinates are the random coefficients am for m ∈ J∗. Let
ΨJ∗ =E

(
aJ∗a

�
J∗
)
. Note thatΣ=GJ∗ΨJ∗G

�
J∗ and S =GJ∗Ψ̂J∗G

�
J∗ , with Ψ̂J∗ =

1
N ∑

N
i=1a

i
J∗(a

i
J∗)

�,
where aiJ∗ ∈ RJ∗ denotes the random vector whose coordinates are the random coefficients aim for
m ∈ J∗ such that Xi(t) = ∑m∈J∗ aimgm(t), t ∈ T.

Therefore, Ψ̂J∗ is a sample covariance matrix of size s∗ × s∗ and we can control its deviation
in operator norm from Ψ̂J∗ by using Proposition 6. For this we simply have to verify conditions
similar to (A1) and (A2) in Assumption 2 for the random vector aJ∗ = (G�

J∗GJ∗)
−1G�

J∗X ∈ Rs∗ .

First, let β ∈ Rs∗ with ‖β‖�2 = 1. Then, remark that a�
J∗β = X�β̃ with β̃ = GJ∗

(
G�
J∗GJ∗

)−1
β.

Since ‖β̃‖�2 ≤
(
ρmin

(
G�
J∗GJ∗

))−1/2
and using that X satisfies Assumption 2 it follows that(

E|a�
J∗β|4

)1/4
≤ ρ(Σ)ρ−1/2min

(
G�
J∗GJ∗

)
. (33)

Now let Z̃ = ‖aJ∗‖�2 ≤ ρ−1/2min

(
G�
J∗GJ∗

)‖X‖�2 . Given our assumptions on X it follows that there
exists α≥ 1 such that

‖Z̃‖ψα ≤ ρ−1/2min

(
G�
J∗GJ∗

)
‖Z‖ψα <+∞, (34)

where Z = ‖X‖�2 . Hence, using the relations (33) and (34), and Proposition 6 (with aJ∗ instead of
X), it follows that there exists a universal constant δ∗ > 0 such that for all x> 0,

P
(∥∥∥Ψ̂J∗ −ΨJ∗

∥∥∥
2
� τ̃d∗,N,s∗,1x

)
� exp

(
−(δ−1∗ x)

α
2+α

)
,

where τ̃d∗,N,s∗,1 = max(Ã2d∗,N,s∗,1, B̃d∗,N,s∗,1), with Ãd∗,N,s∗,1 = ‖Z̃‖ψα
√
logd∗(logN)1/α√

N
, B̃d∗,N,s∗,1 =

ρ2(Σ)ρ−1min(G�
J∗GJ∗)√

N
+‖ΨJ∗‖1/22 Ãd∗,N,s∗,1 and d

∗ =min(N,s∗). Then, using the inequality ‖S−Σ‖2 ≤
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ρmax
(
G�
J∗GJ∗

)‖Ψ̂J∗ −ΨJ∗‖2, it follows that

P
(
‖S−Σ‖2 ≥ ρmax

(
G�
J∗GJ∗

)
τ̃d∗,N,s∗,1x

)
≤ P

(
ρmax

(
G�
J∗GJ∗

)∥∥∥Ψ̂J∗ −ΨJ∗
∥∥∥
2
� ρmax

(
G�
J∗GJ∗

)
τ̃d∗,N,s∗,1x

)
= P

(∥∥∥Ψ̂J∗ −ΨJ∗
∥∥∥
2
� τ̃d∗,N,s∗,1x

)
� exp

(
−(δ−1∗ x)

α
2+α

)
.

Hence, the result follows with

τ̃N,s∗ = ρmax
(
G�
J∗GJ∗

)
τ̃d∗,N,s∗,1

= max(ρmax
(
G�
J∗GJ∗

)
Ã2d∗,N,s∗,1,ρmax

(
G�
J∗GJ∗

)
B̃d∗,N,s∗,1)

= max(Ã2d∗,N,s∗ , B̃d∗,N,s∗),

where Ãd∗,N,s∗ = ρ1/2max
(
G�
J∗GJ∗

)‖Z̃‖ψα √logd∗(logN)1/α√
N

and, using the inequality

‖ΨJ∗‖2 =
∥∥∥∥(G�

J∗GJ∗
)−1

G�
J∗ΣGJ∗

(
G�
J∗GJ∗

)−1∥∥∥∥
2
≤ ρ−1min

(
G�
J∗GJ∗

)
‖Σ‖2 ,

B̃d∗,N,s∗ =

(
ρmax(G�

J∗GJ∗)
ρmin(G�

J∗GJ∗)

)
ρ2(Σ)√

N
+

(
ρmax(G�

J∗GJ∗)
ρmin(G�

J∗GJ∗)

)1/2
‖Σ‖1/22 Ãd∗,N,s∗ .

A.5 Proof of Theorem 8

Let us first prove the following lemmas.

Lemma 15 Let E1, ...,EN be independent copies of a second order Gaussian process E with zero

mean. LetW = 1
N

N
∑
i=1

Wi with

Wi = EiE�
i ∈ Rn×n and Ei = (Ei (t1) , ...,Ei (tn))� , i= 1, . . . ,N.

Suppose that Σnoise = E(W1) is positive-definite. For 1 ≤ k ≤M, let ηk be the k-th column of the
matrixG�WG. Then, for any x> 0,

P

⎛⎝‖ηk‖�2 ≥ ‖Gk‖�2
√
ρmax(GG�)‖Σnoise‖2

(
1+

√
n
N
+

√
2x
N

)2⎞⎠≤ exp(−x).

Proof of Lemma 15: by definition one has that ‖ηk‖2�2 =G�
k WGG�WGk whereGk denotes the

k-th column ofG. Hence

‖ηk‖2�2 ≤ ‖Gk‖2�2ρmax(GG�)‖W ‖22. (35)
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Using the assumption that Σnoise is positive-definite define the random vectors Zi = Σ
−1/2
noiseEi, i =

1, . . . ,n. Note that the Zi’s are i.i.d. Gaussian vectors in Rn with zero mean and covariance matrix
the identity. Then, define the N×n matrix

Γ=
1√
N

⎛⎜⎝ Z�1
...
Z�N

⎞⎟⎠ .

Since Γ is a matrix with i.i.d. entries following a Gaussian distribution with zero mean and variance
1/N, it follows from the arguments in the proof of Theorem II.13 in Davidson and Szarek (2001)
that for any x> 0

P

⎛⎝‖Γ�
Γ‖2 ≥

(
1+

√
n
N
+

√
2x
N

)2⎞⎠≤ exp(−x). (36)

Now, since W = Σ
1/2
noiseΓ

�ΓΣ1/2
noise it follows that ‖W ‖2 ≤ ‖Σnoise‖2‖Γ�Γ‖2. Hence, inequality

(36) implies that for any x> 0

P

⎛⎝‖W ‖2 ≥ ‖Σnoise‖2
(
1+

√
n
N
+

√
2x
N

)2⎞⎠≤ exp(−x),

and the result finally follows from inequality (35). 	

Lemma 16 Let 1 ≤ s ≤ min(n,M) and suppose that Assumption 1 holds for some c0 > 0. Let
J ⊂ {1, . . . ,M} be a subset of indices of cardinality |J| ≤ s. LetΔ ∈ SM and suppose that

∑
k∈Jc

‖Δk‖�2 ≤ c0∑
k∈J

‖Δk‖�2 ,

whereΔk denotes the k-th column ofΔ. Let

κs,c0 =
(
ρmin(s)

2− c0θ(G)ρmax(G
�G)s

)1/2
.

Then, ∥∥∥GΔG�
∥∥∥2
F
≥ κ2s,c0 ‖ΔJ‖2F ,

whereΔJ denotes the M×M matrix obtained by setting to zero the rows and columns ofΔ whose
indices are not in J.

Proof of Lemma 16: first let us introduce some notations. For Δ ∈ SM and J ⊂ {1, . . . ,M}, then
ΔJc denotes theM×M matrix obtained by setting to zero the rows and columns ofΔwhose indices
are not in the complementary Jc of J. Now, remark that∥∥∥GΔG�

∥∥∥2
F

=
∥∥∥GΔJG

�
∥∥∥2
F
+
∥∥∥GΔJcG

�
∥∥∥2
F
+2tr

(
GΔJG

�GΔJcG
�
)

≥
∥∥∥GΔJG

�
∥∥∥2
F
+2tr

(
GΔJG

�GΔJcG
�
)
. (37)
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LetA=GΔJG
� andB =GΔJcG

�. Using that tr
(
A�B

)
= vec(A)�vec(B) and the properties

(30) and (32) it follows that

tr
(
GΔJG

�GΔJcG
�
)
= vec(ΔJ)

�
(
G�G⊗G�G

)
vec(ΔJc). (38)

Let C =G�G⊗G�G and note that C is a M2×M2 matrix whose elements can be written in the
form ofM×M block matrices given by

Ci j = (G�G)i jG
�G, for 1≤ i, j ≤M.

Now, write the M2× 1 vectors vec(ΔJ) and vec(ΔJc) in the form of block vectors as vec(ΔJ) =
[(ΔJ)

�
i ]

�
1≤i≤M and vec(ΔJc) = [(ΔJc)

�
j ]
�
1≤ j≤M, where (ΔJ)i ∈ RM (ΔJc) j ∈ RM for 1 ≤ i, j ≤M.

Using (38) it follows that

tr
(
GΔJG

�GΔJcG
�
)

= ∑
1≤i, j≤M

(ΔJ)
�
i Ci j(ΔJc) j

= ∑
i∈J
∑
j∈Jc

(G�G)i j(ΔJ)
�
i G

�G(ΔJc) j.

Now, using that
∣∣(G�G)i j

∣∣≤ θ(G) for i �= j and that∣∣∣(ΔJ)
�
i G

�G(ΔJc) j

∣∣∣≤ ‖G(ΔJ)i‖�2‖G(ΔJc) j‖�2 ≤ ρmax(G�G)‖(ΔJ)i‖�2‖(ΔJc) j‖�2 ,

it follows that

tr
(
GΔJG

�GΔJcG
�
)
≥−θ(G)ρmax(G�G)

(
∑
i∈J

‖(ΔJ)i‖�2
)(

∑
j∈Jc

‖(ΔJc) j‖�2
)
.

Now, using the assumption that ∑k∈Jc ‖Δk‖�2 ≤ c0∑k∈J ‖Δk‖�2 it follows that

tr
(
GΔJG

�GΔJcG
�
)

≥ −c0θ(G)ρmax(G
�G)

(
∑
i∈J

‖(ΔJ)i‖�2
)2

≥ −c0θ(G)ρmax(G
�G)s‖ΔJ‖2F , (39)

where, for the inequality, we have used the properties that for the positive reals ci = ‖(ΔJ)i‖�2 , i∈ J
then (∑i∈J ci)

2 ≤ |J|∑i∈J c2i ≤ s∑i∈J c2i and that ∑i∈J ‖(ΔJ)i‖2�2 = ‖ΔJ‖2F .

Using the properties (30) and (31) remark that∥∥∥GΔJG
�
∥∥∥2
F

= ‖GJ⊗GJ vec(Δ̃J)‖2�2
≥ ρmin (GJ⊗GJ)‖vec(Δ̃J)‖2�2
≥ ρmin(s)

2 ‖ΔJ‖2F , (40)

where vec(Δ̃J) = [(ΔJ)
�
i ]

�
i∈J . Therefore, combining inequalities (37), (39) and (40) it follows that∥∥∥GΔG�

∥∥∥2
F
≥
(
ρmin(s)2− c0θ(G)ρmax(G�G)s

)
‖ΔJ‖2F ,
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which completes the proof of Lemma 16. 	

Let us now proceed to the proof of Theorem 8. Part of the proof is inspired by results in Bickel
et al. (2009). Let s ≤ min(n,M) and Ψ ∈ SM with M (Ψ) ≤ s. Let J = {k ;Ψk �= 0}. To simplify
the notations, write Ψ̂= Ψ̂λ. By definition of Σ̂λ =GΨ̂G� one has that

∥∥∥S̃−GΨ̂G�
∥∥∥2
F
+2λ

M

∑
k=1

γk‖Ψ̂k‖�2 ≤
∥∥∥S̃−GΨG�

∥∥∥2
F
+2λ

M

∑
k=1

γk‖Ψk‖�2 . (41)

Using the scalar product associated to the Frobenius norm 〈A,B〉F = tr
(
A�B

)
then∥∥∥S̃−GΨ̂G�

∥∥∥2
F

=
∥∥∥S+W −GΨ̂G�

∥∥∥2
F

= ‖W ‖2F +
∥∥∥S−GΨ̂G�

∥∥∥2
F
+2

〈
W ,S−GΨ̂G�

〉
F
. (42)

Putting (42) in (41) we get

∥∥∥S−GΨ̂G�
∥∥∥2
F
+2λ

M

∑
k=1

γk‖Ψ̂k‖�2 ≤
∥∥∥S−GΨG�

∥∥∥2
F
+2

〈
W ,G

(
Ψ̂−Ψ

)
G�

〉
F

+2λ
M

∑
k=1

γk‖Ψk‖�2 .

For k = 1, . . . ,M define the M×M matrix Ak with all columns equal to zero except the k-th
which is equal to Ψ̂k−Ψk. Then, remark that〈
W ,G

(
Ψ̂−Ψ

)
G�

〉
F

=
M

∑
k=1

〈
W ,GAkG

�
〉
F
=

M

∑
k=1

〈
G�WG,Ak

〉
F
=

M

∑
k=1

η�
k (Ψ̂k−Ψk)

≤
M

∑
k=1

‖ηk‖�2‖Ψ̂k−Ψk‖�2 ,

where ηk is the k-th column of the matrixG�WG. Define the event

A =
M⋂
k=1

{2‖ηk‖�2 ≤ λγk} . (43)

Then, the choices

γk = 2‖Gk‖�2
√
ρmax(GG�), λ= ‖Σnoise‖2

(
1+

√
n
N
+

√
2δ logM

N

)2
,

and Lemma 15 imply that the probability of the complementary event Ac satisfies

P(Ac)≤
M

∑
k=1

P(2‖ηk‖�2 > λγk)≤M1−δ.
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Then, on the event A one has that∥∥∥S−GΨ̂G�
∥∥∥2
F

≤
∥∥∥S−GΨG�

∥∥∥2
F
+λ

M

∑
k=1

γk‖Ψ̂k−Ψk‖�2

+2λ
M

∑
k=1

γk
(
‖Ψk‖�2−‖Ψ̂k‖�2

)
.

Adding the term λ∑M
k=1 γk‖Ψ̂k−Ψk‖�2 to both sides of the above inequality yields on the event A∥∥∥S−GΨ̂G�

∥∥∥2
F
+λ

M

∑
k=1

γk‖Ψ̂k−Ψk‖�2 ≤
∥∥∥S−GΨG�

∥∥∥2
F

+2λ
M

∑
k=1

γk
(
‖Ψ̂k−Ψk‖�2 +‖Ψk‖�2−‖Ψ̂k‖�2

)
.

Now, remark that for all k /∈ J, then ‖Ψ̂k−Ψk‖�2+‖Ψk‖�2−‖Ψ̂k‖�2 = 0, which implies that on the
event A ∥∥∥S−GΨ̂G�

∥∥∥2
F
+λ

M

∑
k=1

γk‖Ψ̂k−Ψk‖�2 ≤
∥∥∥S−GΨG�

∥∥∥2
F

(44)

+4λ∑
k∈J

γk‖Ψ̂k−Ψk‖�2

≤
∥∥∥S−GΨG�

∥∥∥2
F

(45)

+4λ
√
M (Ψ)

√
∑
k∈J

γ2k‖Ψ̂k−Ψk‖2�2 .

where for the last inequality we have used the property that for the positive reals ck = γk‖Ψ̂k −
Ψk‖�2 , k ∈ J then (∑k∈J ck)

2 ≤M (Ψ)∑k∈J c2k .
Let ε> 0 and define the event

A1 =

{
4λ∑

k∈J
γk‖Ψ̂k−Ψk‖�2 > ε

∥∥∥S−GΨG�
∥∥∥2
F

}
. (46)

Note that on the event A ∩Ac
1 then the result of the theorem trivially follows from inequality (44).

Now consider the event A ∩A1 (all the following inequalities hold on this event). Using (44) one
has that

λ
M

∑
k=1

γk‖Ψ̂k−Ψk‖�2 ≤ 4(1+1/ε)λ∑
k∈J

γk‖Ψ̂k−Ψk‖�2 . (47)

Therefore, on A ∩A1

∑
k/∈J

γk‖Ψ̂k−Ψk‖�2 ≤ (3+4/ε)∑
k∈J

γk‖Ψ̂k−Ψk‖�2 .

Let Δ be the M×M symmetric matrix with columns equal to Δk = γk
(
Ψ̂k−Ψk

)
,k = 1, . . . ,M,

and c0 = 3+ 4/ε. Then, the above inequality means that ∑k∈Jc ‖Δk‖�2 ≤ c0∑k∈J ‖Δk‖�2 and thus
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Assumption 1 and Lemma 16 imply that

κ2s,c0∑
k∈J

γ2k‖Ψ̂k−Ψk‖2�2 ≤
∥∥∥GΔG�

∥∥∥2
F
≤ 4G2

maxρmax(G
�G)

∥∥∥G(Ψ̂−Ψ)G�
∥∥∥2
F
. (48)

Let γ2max = 4G
2
maxρmax(G

�G). Combining the above inequality with (45) yields∥∥∥S−GΨ̂G�
∥∥∥2
F

≤
∥∥∥S−GΨG�

∥∥∥2
F
+4λκ−1s,c0γmax

√
M (Ψ)

∥∥∥G(Ψ̂−Ψ)G�
∥∥∥
F

≤
∥∥∥S−GΨG�

∥∥∥2
F
+4λκ−1s,c0γmax

√
M (Ψ)

(∥∥∥GΨ̂G�−S

∥∥∥
F

+
∥∥∥GΨG�−S

∥∥∥
F

)
Now, arguing as in Bickel et al. (2009), a decoupling argument using the inequality 2xy ≤ bx2+

b−1y2 with b> 1, x= 2λκ−1s,c0γmax
√
M (Ψ) and y being either

∥∥∥GΨ̂G�−S

∥∥∥
F
or
∥∥GΨG�−S

∥∥
F

yields the inequality

∥∥∥S−GΨ̂G�
∥∥∥2
F
≤
(
b+1
b−1

)∥∥∥S−GΨG�
∥∥∥2
F
+

8b2γ2max
(b−1)κ2s,c0

λ2M (Ψ).

Then, taking b = 1 + 2/ε and using the inequalities
∥∥∥Σ−GΨ̂G�

∥∥∥2
F

≤
2‖S−Σ‖2F + 2

∥∥∥S−GΨ̂G�
∥∥∥2
F
and

∥∥S−GΨG�∥∥2
F ≤ 2‖S−Σ‖2F + 2

∥∥Σ−GΨG�∥∥2
F com-

pletes the proof of Theorem 8. 	

A.6 Proof of Theorem 10

Part of the proof is inspired by the approach followed in Lounici (2008) and Lounici et al.
(2009). Note first that

max
1≤k≤M

γk
∥∥∥Ψ̂k−Ψ

∗
k

∥∥∥
�2
≤

M

∑
k=1

γk
∥∥∥Ψ̂k−Ψ

∗
k

∥∥∥
�2
.

Since Ψ∗ ∈ {Ψ ∈ SM :M (Ψ)≤ s∗}, we can use some results from the proof of Theorem (8). On
the event A ∩A1, with A defined by (43) and A1 defined by (46), inequality (47) implies that

M

∑
k=1

γk
∥∥∥Ψ̂k−Ψ

∗
k

∥∥∥
�2

≤ 4

(
1+

1
ε

)
∑
k∈J∗

γk
∥∥∥Ψ̂k−Ψ

∗
k

∥∥∥
�2

≤ 4

(
1+

1
ε

)√
s∗

√
∑
k∈J∗

γ2k

∥∥∥Ψ̂k−Ψ
∗
k

∥∥∥2
�2
.

LetΔ∗ be the M×M symmetric matrix with columns equal toΔ∗
k = γk

(
Ψ̂k−Ψ

∗
k

)
, k = 1, . . . ,M,

let γmax = 2Gmax

√
ρmax(G�G) and c0 = 3+ 4/ε. Then, the above inequality and (48) imply that

on the event A ∩A1
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M

∑
k=1

γk
∥∥∥Ψ̂k−Ψ

∗
k

∥∥∥
�2

≤ 4
(
1+ 1

ε

)√
s∗

κs∗,c0

∥∥∥GΔ
∗G�

∥∥∥
F
≤ 4

(
1+ 1

ε

)√
s∗

κs∗,c0
γmax

∥∥∥G(
Ψ̂−Ψ

∗
)
G�

∥∥∥
F

=
4(1+ ε)

√
s∗

εκs∗,c0
γmax

∥∥∥Σ̂λ−Σ

∥∥∥
F

≤ 4(1+ ε)
√
s∗

εκs∗,c0
γmax

√
n
√
C0 (n,M,N,s∗,S,Ψ∗,G,Σnoise),

Then, using (44) one has that on the event A ∩Ac
1

M

∑
k=1

γk
∥∥∥Ψ̂k−Ψ

∗
k

∥∥∥
�2
≤ 1+ ε

λ

∥∥∥S−GΨ
∗G�

∥∥∥2
F
.

Therefore, by definition of C1, the previous inequalities imply that on the event A (of probability
1−M1−δ )

M

∑
k=1

‖Gk‖�2√
nGmax

∥∥∥Ψ̂k−Ψ
∗
k

∥∥∥
�2
≤C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) . (49)

Hence max
1≤k≤M

δk√
n

∥∥∥Ψ̂k−Ψ
∗
k

∥∥∥
�2
≤ C1 (σ,n,M,N,s∗,G,Σnoise) with probability at least 1−M1−δ,

which proves the first assertion of Theorem 10.

Then, to prove that Ĵ = J∗ we use that δk√
n

∣∣∣∣∥∥∥Ψ̂k

∥∥∥
�2
−∥∥Ψ∗

k

∥∥
�2

∣∣∣∣ ≤ δk√
n

∥∥∥Ψ̂k−Ψ
∗
k

∥∥∥
�2
for all k =

1, . . . ,M. Then, by (49)∣∣∣∣ δk√n ∥∥∥Ψ̂k

∥∥∥
�2
− δk√

n
‖Ψ∗

k‖�2
∣∣∣∣≤C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) ,

which is equivalent to

−C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise)≤ δk√
n

∥∥∥Ψ̂k

∥∥∥
�2
− δk√

n
‖Ψ∗

k‖�2 ≤C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) .

(50)

If k ∈ Ĵ then δk√
n

∥∥∥Ψ̂k

∥∥∥
�2
>C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise). Inequality

δk√
n

∥∥∥Ψ̂k

∥∥∥
�2
− δk√

n

∥∥Ψ∗
k

∥∥
�2
≤

C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) from (50) imply that δk√
n

∥∥Ψ∗
k

∥∥
�2

≥
δk√
n

∥∥∥Ψ̂k

∥∥∥
�2
−C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) > 0, where the last inequality is obtained using that

k ∈ Ĵ. Hence
∥∥Ψ∗

k

∥∥
�2

> 0 and therefore k ∈ J∗. If k ∈ J∗ then
∥∥Ψ∗

k

∥∥
�2
�= 0. Inequality

−C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) ≤ δk√
n

∥∥∥Ψ̂k

∥∥∥
�2
− δk√

n

∥∥Ψ∗
k

∥∥
�2
from (50) imply that δk√

n

∥∥∥Ψ̂k

∥∥∥
�2
+

C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) ≥ δk√
n

∥∥Ψ∗
k

∥∥
�2
> 2C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise), where the last

inequality is obtained using Assumption (22) on δk√
n

∥∥Ψ∗
k

∥∥
�2
. Hence δk√

n

∥∥∥Ψ̂k

∥∥∥
�2

>

2C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) − C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) =
C1 (n,M,N,s∗,S,Ψ∗,G,Σnoise) and therefore k ∈ Ĵ. This completes the proof of Theorem 10.
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A.7 Proof of Theorem 11

Under the assumptions of Theorem 11, we have shown in the proof of Theorem 10 that Ĵ = J∗

on the event A defined by (43). Therefore, under the assumptions of Theorem 11 it can be checked
that on the event A (of probability 1−M1−δ)

Σ̂Ĵ = Σ̂J∗ =GJ∗Ψ̂J∗G
�
J∗ ,

with

Ψ̂J∗ =
(
G�
J∗GJ∗

)−1
G�
J∗S̃GJ∗

(
G�
J∗GJ∗

)−1
.

Now, from the definition (24) ofΣJ∗ it follows that on the event A∥∥∥Σ̂Ĵ−ΣJ∗
∥∥∥
2
≤ ρmax

(
G�
J∗GJ∗

)∥∥∥Ψ̂J∗ −ΛJ∗
∥∥∥
2

(51)

where ΛJ∗ =ΨJ∗ +(G�
J∗GJ∗)

−1G�
J∗ΣnoiseGJ∗

(
G�
J∗GJ∗

)−1
. Let Yi =

(
G�
J∗GJ∗

)−1
G�
J∗X̃i for i =

1, . . . ,N and remark that

Ψ̂J∗ =
1
N

N

∑
i=1

YiY
�
i with EΨ̂J∗ = ΛJ∗ .

Therefore, Ψ̂J∗ is a sample covariance matrix of size s∗ × s∗ and we can control its deviation in
operator norm from ΛJ∗ by using Proposition 6. For this we simply have to verify conditions similar
to (A1) and (A2) in Assumption 2 for the random vector Y =

(
G�
J∗GJ∗

)−1
G�
J∗X̃ ∈ Rs∗ . First,

let β ∈ Rs∗ with ‖β‖�2 = 1. Then, remark that Y �β = X̃�β̃ with β̃ = GJ∗
(
G�
J∗GJ∗

)−1
β. Since

‖β̃‖�2 ≤
(
ρmin

(
G�
J∗GJ∗

))−1/2
it follows that(

E|Y �β|4
)1/4

≤ ρ̃(Σ,Σnoise)ρ
−1/2
min

(
G�
J∗GJ∗

)
, (52)

where ρ̃(Σ,Σnoise) = 81/4
(
ρ4 (Σ)+ρ4 (Σnoise)

)1/4
. Now let

Z̃ = ‖Y ‖�2 ≤ ρ−1/2min

(
G�
J∗GJ∗

)
‖X̃‖�2 .

Given our assumptions on the process X̃ = X+E it follows that there exists α≥ 1 such that

‖Z̃‖ψα ≤ ρ−1/2min

(
G�
J∗GJ∗

)(‖Z‖ψα +‖W‖ψα
)
<+∞, (53)

where Z = ‖X‖�2 and W = ‖E‖�2 , with X = (X (t1) , ...,X (tn))
� and E = (E (t1) , ...,E (tn))

�.
Finally, remark that

‖ΛJ∗‖2 ≤ ‖ΨJ∗‖2+ρ−1min
(
G�
J∗GJ∗

)
‖Σnoise‖2 . (54)

Hence, using the relations (52) and (53), the bound (54) and Proposition 6 (with Y instead ofX),
it follows that there exists a universal constant δ∗ > 0 such that for all x> 0,

P
(∥∥∥Ψ̂J∗ −ΛJ∗

∥∥∥
2
� τ̃N,s∗x

)
� exp

(
−(δ−1∗ x)

α
2+α

)
, (55)

3222



GROUP LASSO ESTIMATION OF HIGH-DIMENSIONAL COVARIANCE MATRICES

where τ̃N,s∗ =max(Ã
2
N,s∗ , B̃N,s∗), with ÃN,s∗ = ‖Z̃‖ψα

√
logd∗(logN)1/α√

N
and

B̃N,s∗ =
ρ̃2(Σ,Σnoise)ρ

−1
min

(
G�
J∗GJ∗

)
√
N

+
(
‖ΨJ∗‖2+ρ−1min

(
G�
J∗GJ∗

)
‖Σnoise‖2

)1/2
ÃN,s∗ ,

with d∗ =min(N,s∗). Then, define the event

B =
∥∥∥Ψ̂J∗ −ΛJ∗

∥∥∥
2
� τ̃N,s∗δ� (log(M))

2+α
α ,

and note that, for x= δ� (log(M))
2+α
α with δ� > δ∗, inequality (55) implies that P(B)≥ 1−M−( δ�δ∗ )

α
2+α
.

Therefore, on the event A ∩B (of probability at least 1−M1−δ−M−( δ�δ∗ )
α
2+α
), using inequality (51)

and the fact that Ĵ = J∗ one obtains∥∥∥Σ̂Ĵ−ΣJ∗
∥∥∥
2
≤ ρmax

(
G�
J∗GJ∗

)
τ̃N,s∗δ� (log(M))

2+α
α ,

which completes the proof of Theorem 11. 	
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Abstract

This paper considers the robust and efficient implementation of Gaussian process regression with
a Student-t observation model, which has a non-log-concave likelihood. The challenge with the
Student-t model is the analytically intractable inference which is why several approximative meth-
ods have been proposed. Expectation propagation (EP) has been found to be a very accurate method
in many empirical studies but the convergence of EP is known to be problematic with models con-
taining non-log-concave site functions. In this paper we illustrate the situations where standard EP
fails to converge and review different modifications and alternative algorithms for improving the
convergence. We demonstrate that convergence problems may occur during the type-II maximum
a posteriori (MAP) estimation of the hyperparameters and show that standard EP may not converge
in the MAP values with some difficult data sets. We present a robust implementation which relies
primarily on parallel EP updates and uses a moment-matching-based double-loop algorithm with
adaptively selected step size in difficult cases. The predictive performance of EP is compared with
Laplace, variational Bayes, and Markov chain Monte Carlo approximations.

Keywords: Gaussian process, robust regression, Student-t distribution, approximate inference,
expectation propagation

1. Introduction

In many regression problems observations may include outliers which deviate strongly from the
other members of the sample. Such outliers may occur, for example, because of failures in the

c©2011 Pasi Jylänki, Jarno Vanhatalo and Aki Vehtari.
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measurement process or absence of certain relevant explanatory variables in the model. In such
cases, a robust observation model is required.

Robust inference has been studied extensively. De Finetti (1961) described how Bayesian in-
ference on the mean of a random sample, assuming a suitable observation model, naturally leads to
giving less weight to outlying observations. However, in contrast to simple rejection of outliers, the
posterior depends on all data but in the limit, as the separation between the outliers and the rest of
the data increases, the effect of outliers becomes negligible. More theoretical results on this kind of
outlier rejection were presented by Dawid (1973) who gave sufficient conditions on the observation
model p(y|θ) and the prior distribution p(θ) of an unknown location parameter θ, which ensure that
the posterior expectation of a given function m(θ) tends to the prior as y→ ∞. He also stated that
the Student-t distribution combined with a normal prior has this property.

A more formal definition of robustness was given by O’Hagan (1979) in terms of an outlier-
prone observation model. The observation model is defined to be outlier-prone of order n, if
p(θ|y1, ...,yn+1) → p(θ|y1, ...,yn) as yn+1 → ∞. That is, the effect of a single conflicting obser-
vation to the posterior becomes asymptotically negligible as the observation approaches infinity.
O’Hagan (1979) showed that the Student-t distribution is outlier prone of order 1, and that it can
reject up to m outliers if there are at least 2m observations altogether. This contrasts heavily with
the commonly used Gaussian observation model in which each observation influences the posterior
no matter how far it is from the others.

In nonlinear Gaussian process (GP) regression context the outlier rejection is more complicated
and one may consider the posterior distribution of the unknown function values fi = f (xi) locally
near some input locations xi. Depending on the smoothness properties defined through the prior
on fi, m observations can be rejected locally if there are at least 2m data points nearby. However,
already two conflicting data points can render the posterior distribution multimodal making the
posterior inference challenging (these issues will be illustrated in the upcoming sections).

In this work, we adopt the Student-t observation model for GP regression because of its good
robustness properties which can be altered continuously from a very heavy tailed distribution to the
Gaussian model with the degrees of freedom parameter. This allows the extent of robustness to be
determined from the data through hyperparameter inference. The Student-t observation model was
studied in linear regression by West (1984) and Geweke (1993), and Neal (1997) introduced it for
GP regression. Other robust observation models which have been used in GP regression include, for
example, mixtures of Gaussians (Kuss, 2006; Stegle et al., 2008), the Laplace distribution (Kuss,
2006), and input dependent observation models (Goldberg et al., 1998; Naish-Guzman and Holden,
2008).

The challenge with the Student-t model is the analytically intractable inference. A common
approach has been to use the scale-mixture representation of the Student-t distribution (Geweke,
1993), which enables Gibbs sampling (Geweke, 1993; Neal, 1997), and a factorizing variational ap-
proximation (fVB) for the posterior inference (Tipping and Lawrence, 2005; Kuss, 2006). Recently
Vanhatalo et al. (2009) compared fVB with the Laplace approximation (see, e.g., Rasmussen and
Williams, 2006) and showed that Laplace’s method provided slightly better predictive performance
with less computational burden. They also showed that fVB tends to underestimate the posterior
uncertainties of the predictions because it assumes the scales and the unknown function values a
posteriori independent. Another variational approach called variational bounds (VB) is available
in the GPML software package (Rasmussen and Nickisch, 2010). The method is based on form-
ing an un-normalized Gaussian lower bound for each non-Gaussian likelihood term independently
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(see Nickisch and Rasmussen, 2008, for details and comparisons in GP classification). Yet an-
other related variational approach is described by Opper and Archambeau (2009) who studied the
Cauchy observation model (Student-t with degrees of freedom 1). This method is similar to the
KL-divergence minimization approach (KL) described by Nickisch and Rasmussen (2008) and the
VB approach can be regarded as a special case of KL. The extensive comparisons by Nickisch and
Rasmussen (2008) in GP classification suggest that VB provides better predictive performance than
the Laplace approximation but worse marginal likelihood estimates than KL or expectation propa-
gation (EP) (Minka, 2001a). According to the comparisons of Nickisch and Rasmussen (2008), EP
is the method of choice since it is much faster than KL, at least in GP classification. The problem
with EP, however, is that the Student-t likelihood is not log-concave which may lead to convergence
problems (Seeger, 2008).

In this paper, we focus on establishing a robust EP implementation for the Student-t observa-
tion model. We illustrate the convergence problems of standard EP with simple one-dimensional
regression examples and discuss how damping, fractional EP updates (or power EP) (Minka, 2004;
Seeger, 2005), and double-loop algorithms (Heskes and Zoeter, 2002) can be used to improve the
convergence. We present a robust implementation which relies primarily on parallel EP updates
(see, e.g., van Gerven et al., 2009) and uses a moment-matching-based double-loop algorithm with
adaptively selected step size to find stationary solutions in difficult cases. We show that the imple-
mentation enables a robust type-II maximum a posteriori (MAP) estimation of the hyperparameters
based on the approximative marginal likelihood. The proposed implementation is general so that it
could be applied also to other models having non-log-concave likelihoods. The predictive perfor-
mance of EP is compared to the Laplace approximation, fVB, VB, and Markov chain Monte Carlo
(MCMC) using one simulated and three real-world data sets.

2. Gaussian Process Regression with the Student-t Observation Model

We will consider a regression problem, with scalar observations yi = f (xi)+ εi, i = 1, ...,n at in-
put locations X = {xi}ni=1, and where the observation errors ε1, ...,εn are zero-mean exchangeable
random variables. The object of inference is the latent function f (x) : ℜd → ℜ, which is given a
Gaussian process prior

f (x)|θ∼ GP
(
m(x),k(x,x′|θ)) , (1)

where m(x) and k(x,x′|θ) are the mean and covariance functions of the process controlled by hyper-
parameters θ. For notational simplicity we will assume a zero mean GP. By definition, a Gaussian
process prior implies that any finite subset of latent variables, f = { f (xi)}ni=1, has a multivariate
Gaussian distribution. In particular, at the observed input locations X the latent variables are dis-
tributed as p(f|X,θ) = N (f|0,K), where K is the covariance matrix with entries Ki j = k(xi,x j|θ).
The covariance function encodes the prior assumptions on the latent function, such as the smooth-
ness and scale of the variation, and can be chosen freely as long as the covariance matrices which it
produces are symmetric and positive semi-definite. An example of a stationary covariance function
is the squared exponential

kse(xi,x j|θ) = σ2se exp

(
−

d

∑
k=1

(xi,k− x j,k)2

2l2k

)
, (2)
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where θ= {σ2se, l1, ..., ld}, σ2se is a magnitude parameter which scales the overall variation of the un-
known function, and lk is a length-scale parameter which governs how fast the correlation decreases
as the distance increases in the input dimension k.

The traditional assumption is that given f the error terms εi are i.i.d. Gaussian: εi ∼N (0,σ2). In
this case, the marginal likelihood p(y|X,θ,σ2) and the conditional posterior of the latent variables
p(f|D,θ,σ2), where D = {y,X}, have an analytical solution. This is computationally convenient
since approximate methods are needed only for the inference on the hyperparameters θ and σ2. The
robust Student-t observation model

p(yi| fi,σ2,ν) = Γ((ν+1)/2)
Γ(ν/2)

√
νπσ

(
1+

(yi− fi)2

νσ2

)−(ν+1)/2

,

where fi = f (xi), ν is the degrees of freedom and σ the scale parameter (Gelman et al., 2004), is
computationally challenging. The marginal likelihood and the conditional posterior p(f|D,θ,σ2,ν)
are not anymore analytically tractable but require some method for approximate inference.

3. Approximate Inference

In this section, we review the approximate inference methods considered in this paper. First we give
a short description of MCMC and the Laplace approximation, as well as two variational methods,
fVB and VB. Then we give a more detailed description of the EP algorithm and review ways to
improve the convergence in more difficult problems.

3.1 Markov Chain Monte Carlo

The MCMC approach is based on drawing samples from p(f,θ,σ2,ν|D) and using these samples to
represent the posterior distribution and to numerically approximate integrals over the latent variables
and the hyperparameters. Instead of implementing aMarkov chain sampler directly for the Student-t
model, a more common approach is to use the Gibbs sampling based on the following scale mixture
representation of the Student-t distribution

yi| fi,Vi ∼N ( fi,Vi),

Vi|ν,σ2 ∼ Inv-χ2(ν,σ2), (3)

where each observation has its own Inv-χ2-distributed noise variance Vi (Neal, 1997; Gelman et al.,
2004). Sampling of the hyperparameters θ can be done with any general sampling algorithm, such
as the Slice sampling or the hybrid Monte Carlo (HMC) (see, e.g., Gelman et al., 2004). The
Gibbs sampler on the scale mixture (3) converges often slowly and may get stuck for long times
in small values of σ2 because of the dependence between Vi and σ2. This can be avoided by re-
parameterization Vi = α2Ui, where Ui ∼ Inv-χ2(ν,τ2), p(τ2) ∝ 1/τ2, and p(α2) ∝ 1/α2 (Gelman
et al., 2004). This improves mixing of the chains and reduces the autocorrelations but introduces
an implicit prior for the scale parameter σ2 = α2τ2 of the Student-t model. An alternative param-
eterization proposed by Liu and Rubin (1995), where Vi = σ2/γi and γi ∼ Gamma(ν/2,ν/2), also
decouples σ2 and Vi but does not introduce the additional scale parameter τ. It could also lead to
better mixing without the implicit scale prior but in the experiments we used the decomposition of
Gelman et al. (2004) because the results were not sensitive to the choice of prior on σ2.
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3.2 Laplace Approximation (LA)

The Laplace approximation for the conditional posterior of the latent function is constructed from
the second order Taylor expansion of log p(f|D,θ,σ2,ν) around the mode f̂, which gives a Gaussian
approximation to the conditional posterior

p(f|D,θ,σ2,ν)≈ q(f|D,θ,σ2,ν) =N (f|f̂,ΣLA),

where f̂ = argmaxf p(f|D,θ,σ2,ν) (Rasmussen and Williams, 2006). Σ
−1
LA is the Hessian of the

negative log conditional posterior at the mode, that is,

Σ
−1
LA =−∇∇ log p(f|D,θ,σ2,ν)|f=f̂ =K−1+W, (4)

whereW is a diagonal matrix with entriesWii = ∇ fi∇ fi log p(y| fi,σ2,ν)| fi= f̂i
.

The inference in the hyperparameters is done by approximating the conditional marginal likeli-
hood p(y|X,θ,σ2,ν) with Laplace’s method and searching for the approximate maximum a poste-
rior estimate for the hyperparameters

{θ̂, σ̂2, ν̂}= argmax
θ,σ2,ν

[
logq(θ,σ2,ν|D)

]
= argmax

θ,σ2,ν

[
logq(y|X,θ,σ2,ν)+ log p(θ,σ2,ν)] ,

where p(θ,σ2,ν) is the prior of the hyperparameters. The gradients of the approximate log marginal
likelihood can be solved analytically, which enables the MAP estimation of the hyperparameters
with gradient based optimization methods. Following Williams and Barber (1998) the approxima-
tion scheme is called the Laplace method, but essentially the same approach is named Gaussian
approximation by Rue et al. (2009) in their Integrated nested Laplace approximation (INLA) soft-
ware package for Gaussian Markov random field models (Vanhatalo et al., 2009), (see also Tierney
and Kadane, 1986).

The implementation of the Laplace algorithm for this particular model requires care since the
Student-t likelihood is not log-concave and thus p(f|D,θ,σ2,ν) may be multimodal and some of
theWii negative. It follows that the standard implementation presented by Rasmussen and Williams
(2006) requires some modifications in determining the mode f̂ and the covariance ΣLA which are
discussed in detail by Vanhatalo et al. (2009). Later on Hannes Nickisch proposed a slightly dif-
ferent implementation (personal communication) where the stabilized Newton algorithm is used for
finding f̂ instead of the EM algorithm and LU decomposition for determiningΣLA instead of rank-1
Cholesky updates (see also Section 4.1). This alternative approach is used at the moment in the
GPML software package (Rasmussen and Nickisch, 2010).

3.3 Factorizing Variational Approximation (fVB)

The scale-mixture decomposition (3) enables a computationally convenient variational approxima-
tion if the latent values f and the residual variance terms V = [V1, ...,Vn] are assumed a posteriori
independent:

q(f,V) = q(f)
n

∏
i=1

q(Vi). (5)

This kind of factorizing variational approximation was introduced by Tipping and Lawrence (2003)
to form a robust observation model for linear models within the relevance vector machine frame-
work. For robust Gaussian process regression with the Student-t model it was applied by Kuss
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(2006) and essentially the same variational approach has also been used for approximate inference
on linear models with the automatic relevance determination prior (see, e.g., Tipping and Lawrence,
2005). Assuming the factorizing posterior (5) and minimizing the KL-divergence from q(f,V) to
the true posterior p(f,V|D,θ,σ2,ν) results in a Gaussian approximation for the latent values, and
inverse-χ2 (or equivalently inverse gamma) approximations for the residual variancesVi. The param-
eters of q(f) and q(Vi) can be estimated by maximizing a variational lower bound for the marginal
likelihood p(y|X ,θ,σ2,ν) with an expectation maximization (EM) algorithm. In the E-step of the
algorithm the lower bound is maximized with respect to q(f) and q(Vi) given the current point esti-
mate of the hyperparameters and in the M-step a new estimate of the hyperparameters is determined
with fixed q(f) and q(Vi).

The drawback with a factorizing approximation determined by minimizing the reverse KL-
divergence is that it tends to underestimate the posterior uncertainties (see, e.g., Bishop, 2006).
Vanhatalo et al. (2009) compared fVB with the previously described Laplace and MCMC approxi-
mations, and found that fVB provided worse predictive variance estimates compared to the Laplace
approximation. In addition, the estimation of ν based on maximizing the variational lower bound
was found less robust with fVB.

3.4 Variational Bounds (VB)

This variational bounding method was introduced for binary GP classification by Gibbs andMacKay
(2000) and comparisons to other approximative methods for GP classification were done by Nick-
isch and Rasmussen (2008). The method is based on forming a Gaussian lower bound for each
likelihood term independently:

p(yi| fi)≥ exp(− f 2i /(2γi)+bi fi−h(γi)/2),

which can be used to construct a lower bound on the marginal likelihood: p(y|X,θ,ν,σ) ≥ ZVB.
With fixed hyperparameters, γi and bi can be determined by maximizing ZVB to obtain a Gaus-
sian approximation for p(f|D,θ,ν,σ2) and an approximation for the marginal likelihood. With the
Student-t observation model only the scale parameters γi need to be optimized because the location
parameter is determined by the corresponding observations: bi = yi/γi. Similarly to the Laplace ap-
proximation and EP, MAP-estimation of the hyperparameters can be done by optimizing ZVB with
gradient-based methods. In our experiments we used the implementation available in the GPML-
package (Rasmussen and Nickisch, 2010) augmented with the same hyperprior definitions as with
the other approximative methods.

3.5 Expectation Propagation

The EP algorithm is a general method for approximating integrals over functions that factor into
simple terms (Minka, 2001a). It approximates the conditional posterior with

q(f|D,θ,σ2,ν) =
1
ZEP

p(f|θ)
n

∏
i=1

t̃i( fi|Z̃i, μ̃i, σ̃2i ) =N (μ,Σ), (6)

where ZEP ≈ p(y|X,θ,σ2,ν), and the parameters of the approximate conditional posterior distribu-
tion are given byΣ= (K−1+ Σ̃

−1)−1, μ=ΣΣ̃
−1μ̃, Σ̃= diag[σ̃21, ..., σ̃

2
n], and μ̃= [μ̃1, ..., μ̃n]T. In

Equation (6) the likelihood terms p(yi| fi,σ2,ν) are approximated by un-normalized Gaussian site
functions t̃i( fi|Z̃i, μ̃i, σ̃2i ) = Z̃iN ( fi|μ̃i, σ̃2i ).
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The EP algorithm updates the site parameters Z̃i, μ̃i and σ̃2i and the posterior approximation (6)
sequentially. At each iteration (i), first the i’th site is removed from the i’th marginal posterior to
obtain a cavity distribution

q−i( fi) ∝ q( fi|D,θ,σ2,ν)t̃i( fi)
−1.

Then the i’th site is replaced with the exact likelihood term to form a tilted distribution p̂i( fi) =
Ẑ−1i q−i( fi)p(yi| fi) which is a more refined non-Gaussian approximation to the true i’th marginal
distribution. Next the algorithm attempts to match the approximative posterior marginal q( fi) =
q( fi|D,θ,σ2,ν) with p̂i( fi) by finding first a Gaussian q̂i( fi) satisfying

q̂i( fi) =N ( fi|μ̂i, σ̂2i ) = argmin
qi

KL(p̂i( fi)||qi( fi)) ,

which is equivalent to matching μ̂i and σ̂2i with the mean and variance of p̂i( fi). Then the parameters
of the local approximation t̃i are updated so that the moments of q( fi) match with q̂i( fi):

q( fi|D,θ,σ2,ν) ∝ q−i( fi)t̃i( fi)≡ ẐiN ( fi|μ̂i, σ̂2i ). (7)

Finally, the parameters μ and Σ of the approximate posterior (6) are updated according to the
changes in site t̃i. These steps are repeated for all the sites at some order until convergence.
Since only the means and variances are needed in the Gaussian moment matching only μ̃i and
σ̃2i need to be updated during the iterations. The normalization terms Z̃i are required for the
marginal likelihood approximation ZEP ≈ p(y|X,θ,σ2,ν) which is computed after convergence
of the algorithm, and they can be determined by integrating over fi in Equation (7) which gives
Z̃i = Ẑi(

∫
q−i( fi)N ( fi|μ̃i, σ̃2i )d fi)−1.

In the traditional EP algorithm (from now on referred to as sequential EP), the posterior approx-
imation (6) is updated sequentially after each moment matching (7). Recently an alternative parallel
update scheme has been used especially in models with a very large number of unknowns (see, e.g.,
van Gerven et al., 2009). In parallel EP the site updates are calculated with fixed posterior marginals
μ and diag(Σ) for all t̃i, i = 1, ...,n, in parallel, and the posterior approximation is refreshed only
after all the sites have been updated. Although the theoretical cost for one sweep over the sites is
the same (O(n3)) for both sequential and parallel EP, in practice one re-computation ofΣ using the
Cholesky decomposition is much more efficient than n sequential rank-one updates. In our exper-
iments, the number of sweeps required for convergence was roughly the same for both schemes in
easier cases where standard EP converges.

The marginal likelihood approximation is given by

logZEP =− 1
2
log |K+ Σ̃|− 1

2
μ̃T

(
K+ Σ̃

)−1
μ̃+

n

∑
i=1

log Ẑi(σ2,ν)+CEP, (8)

where CEP = − n
2 log(2π)−∑i log

∫
q−i( fi)N ( fi|μ̃i, σ̃2i )d fi collects terms that are not explicit func-

tions of θ, σ2 or ν. If the algorithm has converged, that is, p̂i( fi) is consistent (has the same means
and variances) with q( fi) for all sites, CEP, Σ̃ and μ̃ can be considered constants when differentiat-
ing (8) with respect to the hyperparameters (Seeger, 2005; Opper and Winther, 2005). This enables
efficient MAP estimation with gradient based optimization methods.

There is no guarantee of convergence for either sequential or parallel EP. When the likelihood
terms are log-concave and the approximation is initialized to the prior, the algorithm converges
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fine in many cases (see, e.g., Nickisch and Rasmussen, 2008). However, in case of a non-log-
concave likelihood such as the Student-t likelihood, convergence problems may arise and these will
be discussed in Section 5. The convergence can be improved either by damping the EP updates
(Minka and Lafferty, 2002) or by using a robust but slower double-loop algorithm (Heskes and
Zoeter, 2002). In damping, the site parameters in their natural exponential forms, τ̃i = σ̃−2i and
ν̃i = σ̃−2i μ̃i, are updated to a convex combination of the old and proposed new values, which results
in the following update rules:

Δτ̃i = δ(σ̂−2i −σ−2i ) and Δν̃i = δ(σ̂−2i μ̂i−σ−2i μi), (9)

where μi and σ2i are the mean and variance of q( fi|D,θ,σ2,ν), and δ∈ (0,1] is a step size parameter
controlling the amount of damping. Damping can be viewed as using a smaller step size within a
gradient-based search for saddle points of the same objective function as is used in the double-loop
algorithm (Heskes and Zoeter, 2002).

3.6 Expectation Propagation, the Double-Loop Algorithm

When either sequential or parallel EP does not converge one may still find approximations satisfying
the moment matching conditions (7) by a double loop algorithm. For example, Heskes and Zoeter
(2002) present simulation results with linear dynamical systems where the double loop algorithm
is able to find useful approximations when damped EP fails to converge. For the model under con-
sideration, the fixed points of the EP algorithm correspond to the stationary points of the following
objective function (Minka, 2001b; Opper and Winther, 2005)

min
λs

max
λ−

−
n

∑
i=1

log
∫
p(yi| fi)exp

(
ν−i fi− τ−i

f 2i
2

)
d fi− log

∫
p(f)

n

∏
i=1
exp

(
ν̃i fi− τ̃i

f 2i
2

)
df

+
n

∑
i=1

log
∫
exp

(
νsi fi− τsi

f 2i
2

)
d fi (10)

where λ− = {ν−i,τ−i}, λ̃ = {ν̃i, τ̃i}, and λs = {νsi ,τsi} are the natural parameters of the cavity
distributions q−i( fi), the site approximations t̃i( fi), and approximate marginal distributions qsi( fi) =
N (τ−1si νsi ,τ

−1
si ) respectively. The min-max problem needs to be solved subject to the constraints

ν̃i = νsi − ν−i and τ̃i = τsi − τ−i, which resemble the moment matching conditions in (7). The
objective function in (10) is equal to− logZEP defined in (6) and is also equivalent to the expectation
consistent (EC) free energy approximation presented by Opper andWinther (2005). A unifying view
of the EC and EP approximations as well as the connection to the Bethe free energies is presented
by Heskes et al. (2005).

Equation (10) suggests a double-loop algorithm where the inner loop consist of maximization
with respect to λ− with fixed λs and the outer loop of minimization with respect to λs. The inner
maximization affects only the first two terms and ensures that the marginal moments of the current
posterior approximation q(f) are equal to the moments of the tilted distributions p̂i( fi) for fixed λs.
The outer minimization ensures that the moments qsi( fi) are equal to marginal moments of q(f). At
the convergence, q( fi), p̂i( fi), and qsi( fi) share the same moments up to the second order. If p(yi| fi)
are bounded, the objective is bounded from below and consequently there exists stationary points
satisfying these expectation consistency constraints (Minka, 2001b; Opper and Winther, 2005). In
the case of multiple stationary points the solution with the smallest free energy can be chosen.
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Since the first two terms in (10) are concave functions of λ− and λ̃ the inner maximization
problem is concave with respect to λ− (or equivalently λ̃) after substitution of the constraints λ̃ =
λsi −λ− (Opper and Winther, 2005). The Hessian of the first term with respect to λ− is well
defined (and negative semi-definite) only if the tilted distributions p̂i( fi)∝ p(yi| fi)q−i( fi) are proper
probability distributions with finite moments up to the fourth order. Therefore, to ensure that the
product of q−i( fi) and the Student-t site p(yi| fi) has finite moments and that the inner-loop moment
matching remains meaningful, the cavity precisions τ−i have to be kept positive. Furthermore, since
the cavity distributions can be regarded as estimates for the leave-one-out (LOO) distributions of
the latent values, τ−i = 0 would correspond to a situation where q( fi|y−i,X) has infinite variance,
which does not make sense given the Gaussian prior assumption (1). On the other hand, τ̃i may
become negative for example when the corresponding observation yi is an outlier (see Section 5).

3.7 Fractional EP Updates

Fractional EP (or power EP, Minka, 2004) is an extension of EP which can be used to reduce the
computational complexity of the algorithm by simplifying the tilted moment evaluations and to im-
prove the robustness of the algorithm when the approximation family is not flexible enough (Minka,
2005) or when the propagation of information is difficult due to vague prior information (Seeger,
2008). In fractional EP the cavity distributions are defined as q−i( fi) ∝ q( fi|D,θ,ν,σ2)/t̃i( fi)η

and the tilted distribution as p̂i( fi) ∝ q−i( fi)p(yi| fi)η for a fraction parameter η ∈ (0,1]. The site
parameters are updated so that the moments of q−i( fi)t̃i( fi)η ∝ q( fi) match with q−i( fi)p(yi| fi)η.
Otherwise the procedure is similar and standard EP can be recovered by setting η= 1. In fractional
EP the natural parameters of the cavity distribution are given by

τ−i = σ−2i −ητ̃i and ν−i = σ−2i μi−ην̃i, (11)

and the site updates (with damping factor δ) by

Δτ̃i = δη−1(σ̂−2i −σ−2i ) and Δν̃i = δη−1(σ̂−2i μ̂i−σ−2i μi). (12)

The fractional update step minqKL( p̂i( fi)||q( fi)) can be viewed as minimization of the α-
divergence withα=η (Minka, 2005). Compared to the KL-divergence, minimizing theα-divergence
with 0 < α < 1 does not force q( fi) to cover as much of the probability mass of p̂i( fi) whenever
p̂i( fi)> 0. As a consequence, fractional EP tends to underestimate the variance and normalization
constant of q−i( fi)p(yi| fi)η, and also the approximate marginal likelihood ZEP. On the other hand,
we also found that minimizing the KL-divergence in standard EP may overestimate the marginal
likelihood with some data sets. In case of multiple modes, the approximation tries to represent the
overall uncertainty in p̂i( fi) the more exactly the closer α is to 1. In the limit α→ 0 the reverse KL-
divergence is obtained which is used in some form, for example, in the fVB and KL approximations
(Nickisch and Rasmussen, 2008). Also the double-loop objective function (10) can be modified
according to the different divergence measure of fractional EP (Cseke and Heskes, 2011; Seeger
and Nickisch, 2011).

Fractional EP has some benefits over standard EP with the non-log-concave Student-t sites.
First, when evaluating the moments of q−i( fi)p(yi| fi)η, setting η < 1 flattens the likelihood term
which alleviates the possible converge problems related to multimodality. This is related to the ap-
proximating family being too inflexible and the benefits of different divergence measures in these
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cases are considered by Minka (2005). Second, the fractional updates help to avoid the cavity preci-
sions becoming too small, or even negative. Equation (11) shows that by choosing η< 1, a fraction
(1−η) of the precision τ̃i of the i:th site is left in the cavity. This decreases the cavity variances
which in turn makes the tilted moment integrations and the subsequent EP updates (12) more ro-
bust. Problems related to cavity precision becoming too small can be present also with log-concave
sites when the prior information is vague. For example, Seeger (2008) reports that with an under-
determined linear model combined with a log-concave Laplace prior the cavity precisions remain
positive but they may become very small which induces numerical inaccuracies in the analytical
moment evaluations. These inaccuracies may accumulate and even cause convergence problems.
Seeger (2008) reports that fractional updates improve numerical robustness and convergence in
such cases.

4. Robust Implementation of the Parallel EP Algorithm

The sequential EP updates are shown to be stable for models in which the exact site terms (in
our case the likelihood functions p(yi| fi)) are log-concave (Seeger, 2008). In this case, all site
variances, if initialized to non-negative values, remain non-negative during the updates. It follows
that the variances of the cavity distributions q−i( fi) are positive and thus also the subsequent moment
evaluations of q−i( fi)p(yi| fi) are numerically robust. The non-log-concave Student-t likelihood is
problematic because both the conditional posterior p(f|D,θ,ν,σ) as well as the tilted distributions
p̂i( fi) may become multimodal. Therefore extra care is needed in the implementation and these
issues are discussed in this section.

The double-loop algorithm is a rigorous approach that is guaranteed to converge to a stationary
point of the objective function (10) when the site terms p(yi| fi) are bounded from below. The
downside is that the double-loop algorithm can be much slower than for example parallel EP because
it spends much computational effort during the inner loop iterations, especially in the early stages
when qsi( fi) are poor approximations for the true marginals. An obvious improvement would be to
start with damped parallel updates and to continue with the double-loop method if necessary. Since
in our experiments parallel EP has proven quite efficient with many easier data sets, we adopt this
approach and propose few modifications to improve the convergence in difficult cases. A parallel
EP initialization and a double-loop backup is also used by Seeger and Nickisch (2011) in their fast
EP algorithm.

Parallel EP can also be interpreted as a variant of the double-loop algorithm where only one
inner-loop optimization step is done by moment matching (7) and each such update is followed by
an outer-loop refinement of the marginal approximations qsi( fi). The inner-loop step consists of
evaluating the tilted moments {μ̂i, σ̂2i |i = 1, ...,n} with qsi( fi) = q( fi) = N (μi,Σii), updating the
sites (9), and updating the posterior (6). The outer-loop step consists of setting qsi( fi) equal to
the new marginal distributions q( fi). Connections between the message passing updates and the
double-loop methods together with considerations of different search directions for the inner-loop
optimization can be found in the extended version of Heskes and Zoeter (2002). The robustness of
parallel EP can be improved by the following modifications.

1. After each moment matching step check that the objective (10) increases. If the objective does
not increase, decrease the damping coefficient δ until increase is obtained. The downside is
that this requires one additional evaluation of the tilted moments for every site per iteration,
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but if these one-dimensional integrals are implemented efficiently this is a reasonable price
for stability.

2. Before updating the sites (9) check that the new cavity variances τ−i = τsi − (τ̃i+Δτ̃i) are
positive. If they are negative, choose a smaller damping factor δ so that τ−i > 0. This com-
putationally cheap precaution ensures that the increase of the objective (10) can be verified
according to modification 1.

3. With modifications 1 and 2 the site parameters can still oscillate (see Section 5 for an illustra-
tion) but according to our experiments the convergence is obtained with all hyperparameters
values eventually. The oscillations can be reduced by updating qsi( fi) only after the moments
of p̂i( fi) and q( fi) are consistent for all i = 1, ...,n with some small tolerance, for example
10−4. At each update, check also that the new cavity precisions are positive, and if not, con-
tinue the inner-loop iterations with the previous qsi( fi) until better moment consistency is
achieved or switch to fractional updates. Actually, this modification corresponds to the max-
imization in (10) and it results in a double-loop algorithm where the inner-loop optimization
is done by moment matching (7). If no parallel initialization is done, often during the first
5-10 iterations when the step size δ is limited according to modification 2, the consistency
between p̂i( fi) and q( fi) cannot be achieved. This is an indication of q(f) being a too inflex-
ible approximation for the tilted distributions with the current qsi( fi). An outer-loop update
qsi( fi) = q( fi) usually helps in these cases.

4. If sufficient increase of the objective is not achieved after an inner-loop update (modification
1), use the gradient information to obtain a better step size δ. The gradients of (10) with
respect to the site parameters ν̃i and τ̃i can be calculated without additional evaluations of
the objective function for fixed λs. With these gradients, it is possible to determine g(δ), the
gradient of the inner-loop objective function with respect to δ in the current search direction.
For parallel EP the search direction is defined by (9) with fixed site updates Δτ̃i = σ̂−2i −σ−2i
and Δν̃i = σ̂−2i μ̂i−σ−2i μi for i = 1, ...,n. In case of a too large step, g(δ) becomes negative.
Then, for example, spline interpolation with derivative constraints at the end points can be
used to approximate the objective as a function of δ. From this approximation a better estimate
for the step size δ can be determined efficiently. In case of a too short step, g(δ) becomes
positive and a better step size can be obtained by extrapolating with constraints based on
approximate second order derivatives. This modification corresponds to an approximative
line search in the concave inner-loop maximization.

In the comparisons of Section 6 we start with 10 damped (δ = 0.8) parallel iterations because
with a sensible hyperparameter initialization this is enough to achieve convergence in most hyper-
parameter optimization steps with the empirical data sets. If no convergence is achieved this parallel
initialization also speeds up the convergence of the subsequent double-loop iterations (see Section
5.3). If after any of the initial parallel updates the posterior covariance Σ becomes ill-conditioned,
that is, many of the τ̃i are too negative, or any of the cavity variances become negative we reject the
new site configuration and proceed with more robust updates using the previously described modifi-
cations. To reduce the computational costs we limited the maximum number of inner loop iterations
(modification 3) to two with two possible additional step size adjustment iterations (modification
4). This may not be enough to suppress all oscillations of the site parameters but in practice more
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frequent outer loop refinements of qsi( fi) were found to require fewer computationally expensive
objective evaluations for convergence.

In some rare cases, for example, when the noise level σ is very small, the outer-loop update of
qsi( fi) may result in negative values for some of the cavity variances even though the inner-loop
optimality is satisfied. In practise this means that [Σii]

−1 is smaller than τ̃i for some i. This may
be a numerical problem or an indication of a too inflexible approximating family but switching to
fractional updates helps. However, in our experiments, this happened only when the noise level
was set to too small values and with a sensible hyperparameter initialization such problems did not
emerge.

4.1 Other Implementation Details

The EP updates require evaluation of moments mk =
∫
f ki gi( fi)d fi for k = 0,1,2, where we have

defined gi( fi) = q−i( fi)p(yi| fi)η. With the Student-t likelihood and an arbitrary η ∈ (0,1] numer-
ical integration is required. Instead of the standard Gauss quadrature we used the adaptive Gauss-
Kronrod quadrature described by Shampine (2008) because it can save function evaluations by re-
using the existing nodes during the adaptive interval subdivisions. For further computational savings
all the required moments were calculated simultaneously using the same function evaluations. The
integrand gi( fi) may have one or two modes between the cavity mean μ−i and the observation yi.
In the two-modal case the first mode is near μ−i and the other near μ∞ = σ2∞(σ

−2
−i μ−i+ηiσ−2yi),

where μ∞ and σ2∞ = (σ−2−i +ηiσ−2)−1 correspond to the mean and variance of the limiting Gaussian
tilted distribution as ν→ ∞. The integration limits were set to min(μ−i− 6σ−i,μ∞− 10σ∞) and
max(μ−i+6σ−i,μ∞+10σ∞) to cover all the relevant mass around the both possible modes.

Both the hyperparameter estimation and monitoring the convergence of EP requires that the
marginal likelihood q(y|X,θ,σ2,ν) can be evaluated in a numerically robust manner. Assuming a
fraction parameter η the marginal likelihood is given by

logZEP =
1
η

n

∑
i=1

(
log Ẑi+

1
2
logτsiτ

−1
−i +

1
2
τ−1−i ν

2
−i−

1
2
τ−1si ν

2
si

)
− 1
2
log |I+KΣ̃−1|− 1

2
ν̃Tμ,

where νsi = ν−i+ην̃i and τsi = τ−i+ητ̃i. The first sum term can be evaluated safely if the cavity
precisions τ−i and the tilted variances σ̂2i remain positive during the EP updates because at conver-
gence τsi = σ̂−2i .

Evaluation of |I+KΣ̃−1| and Σ = (K−1+ Σ̃
−1)−1 needs some care because many of the di-

agonal entries of Σ̃−1 = diag[τ̃1, ..., τ̃n] may become negative due to outliers and thus the standard
approach presented by Rasmussen and Williams (2006) is not suitable. One option is to use the
rank one Cholesky updates as described by Vanhatalo et al. (2009) or the LU decomposition as is
done in the GPML implementation of the Laplace approximation (Rasmussen and Nickisch, 2010).
In our parallel EP implementation we process the positive and negative sites separately. We define
W1 = diag(τ̃1/2i ) for τ̃i ≥ 0 and W2 = diag(|τ̃i|1/2) for τ̃i < 0, and divide K into corresponding
blocks K11, K22, and K12 = KT21. We compute the Cholesky decompositions of two symmetric
matrices

L1LT1 = I+W1K11W1 and L2LT2 = I−W2(K22−U2UT2 )W2,

where U2 = K21W1L−T1 . The required determinant is given by |I+KΣ̃−1| = |L1|2|L2|2. The
dimension ofL1 is typically much larger than that ofL2 and it is always positive definite. L2 may not
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be positive definite if the site precisions have too small negative values, and therefore if the second
Cholesky decomposition fails after a parallel EP update we reject the proposed site parameters and
reduce the step size. The posterior covariance can be evaluated asΣ=K−UUT+VVT, where U=
[K11,K12]TW1L−T1 and V = [K21,K22]TW2L−T2 −UUT2W2L−T2 . The regular observations reduce
the posterior uncertainty through U and the outliers increase uncertainty through V.

5. Properties of EP with a Student-t Likelihood

In GP regression the outlier rejection property of the Student-t model depends heavily on the data
and the hyperparameters. If the hyperparameters and the resulting unimodal approximation (6) are
suitable for the data there are usually only a few outliers and there is enough information to han-
dle them given the smoothness assumptions of the GP prior and the regular observations. This
is usually the case during the MAP estimation if the hyperparameters are initialized sensibly. On
the other hand, unsuitable hyperparameters may produce a very large number of outliers and also
considerable uncertainty on whether certain data points are outliers or not. For example, a small ν
combined with a too small σ and a too large lengthscale (i.e., a too inflexible model) can result into
a very large number of outliers because the model is unable to explain large quantity of the obser-
vations. Unsuitable hyperparameters may not necessarily induce convergence problems for EP if
there exists only one plausible posterior hypothesis capable of handling the outliers. However, if the
conditional posterior distribution has multiple modes, convergence problems may occur unless suf-
ficient amount of damping is used. In some difficult cases either fractional updates or double-loop
iterations may be needed to achieve convergence. In this section we discuss the convergence prop-
erties of EP with the Student-t likelihood, demonstrate the effects of the different EP modifications
described in the sections 3 and 4, and also compare the quality of the EP approximation to the other
methods described in Section 3 with the help of simple regression examples.

An outlying observation yi increases the posterior uncertainty on the unknown function at the
input space regions a priori correlated with xi. The amount of increase depends on how far the
posterior mean estimate of the unknown function value, E( fi|D), is from the observation yi. Some
insight into this behavior is obtained by considering the negative Hessian of log p(yi| fi,ν,σ2), that
is, Wi = −∇2fi log p(yi| fi), as a function of fi (compare to the Laplace approximation in Section
3.2). Wi is positive when yi − σ

√
ν < fi < yi + σ

√
ν, attains its negative minimum when fi =

yi±σ
√
3ν and approaches zero as | fi|→∞. Thus, with the Laplace approximation, yi satisfying f̂i−

σ
√
ν< yi < f̂i+σ

√
ν can be interpreted as regular observations because they decrease the posterior

covariance Σ−1
LA in Equation (4). The rest of the observations increase the posterior uncertainty and

can therefore be interpreted as outliers. Observations that are far from the mode f̂i are clear outliers
in the sense that they have very little effect on the posterior uncertainty. Observations that are
close to f̂i±σ

√
3ν are not clearly outlying because they increase the posterior uncertainty the most.

The most problematic situations arise when the hyperparameters are such that many f̂i are close to
yi±σ

√
3ν. However, despite the negativeWii, the covariance matrix ΣLA is positive definite if f̂ is

a local maximum of the conditional posterior.
EP behaves similarly as well. If there is a disagreement between the cavity distribution q−i( fi) =

N (μ−i,σ2−i) and the likelihood p(yi| fi) but the observation is not a clear outlier, the uncertainty in
the tilted distribution increases towards the observation and the tilted distribution can even become
two-modal. The moment matching (7) results in an increase of the marginal posterior variance,
σ̂2i > σ2i , which causes τ̃i to decrease (9) and possibly to become negative. Sequential EP usually
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runs smoothly when all the outliers are clear and p(f|D,θ,ν,σ2) has a unique mode. The site
precisions corresponding to the outlying observations may become negative but their absolute values
remain small compared to the site precisions of the regular observations. However, if some of the
negative sites become very small they may notably decrease the approximate marginal precisions
τi= σ−2i of the a priori dependent sites because of the prior correlations defined byK. It follows that
the uncertainty in the cavity distributions may increase considerably, that is, the cavity precisions,
τ−i = τi− τ̃i, may become very small or negative. This may cause both stability and convergence
problems which will be illustrated in the following sections with the help of simple regression
examples.

5.1 Simple Regression Examples

Figure 1 shows two one-dimensional regression problems in which standard EP may run into prob-
lems. In example 1 (the left subfigures), there are two outliers y1 and y2 providing conflicting
information in a region with no regular observations (1 < x < 3). In this example the posterior
mass of the length-scale is concentrated to sufficiently large value so that the GP prior is stiff and
keeps the marginal posterior p(f|D) (shown in the lower left panel) and the conditional posterior
p(f|D, θ̂, ν̂, σ̂2) at the MAP estimate unimodal. Both sequential and parallel EP converge with the
MAP estimate for the hyperparameters.

The corresponding predictive distribution is visualized in the upper left panel of Figure 1 show-
ing a considerable increase in the posterior uncertainty when 1< x< 3. The lower left panel shows
comparison of the predictive distribution of f (x) at x = 2 obtained with the different approxima-
tions described in Section 3. The hyperparameters are estimated separately for each method. The
smooth MCMC estimate of the predictive density of the latent value f∗ = f (x∗) at input location x∗
is calculated by integrating analytically over f for each posterior draw of the residual variances V
and averaging the resulting Gaussian distributions q( f∗|x∗,V,θ). The MCMC estimate (with inte-
gration over the hyperparameters) is unimodal but shows small side bumps when the latent function
value is close to the observations y1 and y2. The standard EP estimate covers well the posterior
uncertainty on the latent value but both the Laplace method and fVB underestimate it. At the other
input locations where the uncertainty is small, all methods give very similar estimates.

Even though EP remains stable in example 1 with the MAP estimates of the hyperparameters, it
is not stable with all hyperparameter values. If ν and σ2 were sufficiently small, so that the likelihood
p(yi| fi) was narrow as a function of fi, and the length-scale was small inducing small correlations
between inputs far apart, there would be significant posterior uncertainty about the unknown f (x)
when 1 < x < 3 and the true conditional posterior would be multimodal. Due to the small prior
covariances of the observations y1 and y2 with the other data points y3, ...,yn, the cavity distributions
q−1( f1) and q−2( f2) would differ strongly from the approximative marginal posterior distributions
q( f1) and q( f2). This difference would lead to a very small (or even negative) cavity precisions τ−1
and τ−2 during the EP iterations which causes stability problems as will be illustrated in section 5.2.

The second one-dimensional regression example, visualized in the upper right panel of Figure 1,
is otherwise similar with example 1 except that the nonlinearity of the true function is much stronger
when −5< x< 0, and the observations y1 and y2 are closer in the input space. The stronger nonlin-
earity requires a much smaller length-scale for a good data fit and the outliers y1 and y2 provide more
conflicting information (and stronger multimodality) due to the larger prior covariance. The lower
right panel shows comparison of the approximative predictive distributions of f (x) when x = 2.
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Figure 1: The upper row: Two one-dimensional regression examples, where standard EP may fail
to converge with certain hyperparameter values, unless damped sufficiently. The EP ap-
proximations obtained by both the regular updates η= 1 (EP) and the fractional updates
η = 0.5 (fEP) are visualized. The lower row: Comparison of the approximative predic-
tive distributions of the latent value f (x) at x = 2. With MCMC all the hyperparameters
are sampled and for all the other approximations (except fVB in example 2, see the text
for explanation) the hyperparameters are fixed to the corresponding MAP estimates. No-
tice that the MCMC estimate of the predictive distribution is unimodal in example 1
and multimodal in example 2. With smaller lengthscale values the conditional posterior
p(f|D,θ,ν,σ2) can be multimodal also in example 1.

The MCMC estimate has two separate modes near the observations y1 and y2. The Laplace and
fVB approximations are sharply localized at the mode near y1 but the standard EP approximation
(EP1) is very wide trying to preserve the uncertainty about the both modes. Contrary to example
1, also the conditional posterior q(f|D,θ,ν,σ) is two-modal if the hyperparameters are set to their
MAP-estimates.

5.2 EP Updates with the Student-t Sites

Next we discuss the problems with the standard EP updates with the help of example 1. Figure
2 illustrates a two-dimensional tilted distribution of the latent values f1 and f2 related to the ob-
servations y1 and y2 in example 1. A relatively small lengthscale (0.9) is chosen so that there is
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Figure 2: An illustration of a two-dimensional tilted distribution related to the two problematic
data points y1 and y2 in example 1. Compared to the MAP value used in Figure 1,
shorter lengthscale (0.9) is selected so that the true conditional posterior is multimodal.
Panel (a) visualizes the joint likelihood p(y1| f1)p(y2| f2) together with the generalized
2-dimensional cavity distribution q( f1, f2|y3, ...,yn) obtained by one round of undamped
sequential EP updates on sites t̃i( fi), for i= 3, ...,n. Panel (b) visualizes the corresponding
two-dimensional tilted distribution p̂i( f1, f2) ∝ q( f1, f2|y3, ...,yn)p(y1| f1)p(y2| f2). Pan-
els (c) and (d) show the same with only a fraction η= 0.5 of the likelihood terms included
in the tilted distribution, which corresponds to fractional EP updates on these sites.

quite strong prior correlation between f1 and f2. Suppose that all other sites have already been
updated once with undamped sequential EP starting from a zero initialization (τ̃i = 0 and ν̃i = 0 for
i= 1, ...,n). Panel (a) visualizes a generalized 2-dimensional cavity distribution q( f1, f2|y3, . . . ,yn)
together with the joint likelihood p(y1,y2| f1, f2) = p(y2| f2)p(y2| f2), and panel (b) shows the con-
tours of the resulting two dimensional tilted distribution which has two separate modes. If the site
t̃1( f1) is updated next in the sequential manner with no damping, τ̃1 will get a large positive value
and the approximation q( f1, f2) fits tightly around the mode near the observation y1. After this, when
the site t̃2( f2) is updated, it gets a large negative precision, τ̃2 < 0, since the approximation needs
to be expanded towards the observation y2. It follows that, the marginal precision of f1 is updated
to a smaller value than τ̃1. Therefore, during the second sweep the cavity precision τ−1 = σ−21 − τ̃1
becomes negative, and site 1 can no longer be updated. If the EP updates were done in parallel,
both the cavity and the site precisions would be positive after the first posterior update, but q( f1, f2)
would be tightly centered between the modes. After a couple of parallel loops over all the sites, one
of the problematic sites gets a too small negative precision because the approximation needs to be
expanded to cover all the marginal uncertainty in the tilted distributions which leads to a negative
cavity precision for the other site.

Skipping updates on the sites with negative cavity variances can keep the algorithm numeri-
cally stable (see, for example, Minka and Lafferty, 2002). Also increasing damping reduces Δτ̃i so
that the negative cavity precisions are less likely to emerge. However, these modifications are not
enough to ensure convergence. After a few EP iterations, the marginal posterior distribution of a
problematic site, for instance q( f1), is centered between the observations (see, for example, Figure
1). At the same time, the respective cavity distribution, q−1( f1), is centered near the other problem-
atic observation, y2. Combining such cavity distribution with the likelihood term, p(y1| f1), gives a
tilted distribution with significant mass around both observations. If the site precisions, τ̃1 and τ̃2,
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are sufficiently large (corresponding to a tight posterior approximation), the variance of the tilted
distribution will be larger than that of the marginal posterior and thus the site precision, τ̃1 will be
decreased. The same happens for the other site. The site precisions are decreased for a few itera-
tions after which the posterior marginals are so wide that the variances of the tilted distributions are
smaller than the posterior marginal variances. At this point the site precisions start again to increase
gradually. This leads to oscillation between small and large site precisions as illustrated in Figure 3.

With a smaller δ the oscillations are slower and with a sufficiently small δ the amplitude of
the oscillations may gradually decrease leading to convergence, as in the panel (b) of Figure 3.
However, the convergence is not guaranteed since the conditions of the inner-loop maximization
in (10) are not guaranteed to be fulfilled in sequential or parallel EP. For example, a sequential EP
update can be considered as a one inner-loop step where only one site is updated, followed by an
outer-loop step which updates all the marginal posteriors as qsi( fi) = q( fi). Since the update of one
site does not maximize the inner-loop objective, the conditions used to form the upper bound of the
convex part in (10) are not met (Opper and Winther, 2005). Therefore, the outer-loop objective is
not guaranteed to decrease and the new approximate marginal posteriors may be worse than in the
previous iteration.

Example 2 is more difficult in the sense that convergence requires damping at least with δ= 0.5.
With sequential EP the convergence depends also on the update order of the sites and δ < 0.3 is
needed for convergence with all permutations. Furthermore, if the double-loop approach of Section
4 is considered, the best step size, that minimizes the inner-loop objective in the current search
direction, can change (and also increase) considerably between subsequent inner-loop iterations
which makes the continuous step-size adjustments very useful.

Also fractional updates improve the stability of EP. Figures 2(c)–(d) illustrate the same approx-
imate tilted distribution as Figures 2(a)–(b) but now only a fraction η= 0.5 of the likelihood terms
are included. This corresponds to the first round fractional updates on these sites with zero initial-
ization. Because of the flattened likelihood p(y1| f1)ηp(y2| f2)η the 2-dimensional tilted distribution
is still two-modal but less sharply peaked compared to standard EP on the left. It follows that also
the one-dimensional tilted distributions have smaller variances and the consecutive fractional up-
dates (12) of the sites 1 and 2 do not widen the marginal variances σ21 and σ

2
2 as much. This helps to

keep the cavity precisions positive by increasing the approximate marginal posterior precisions and
reducing the possible negative increments on the site precisions τ̃1 and τ̃2. This is possible because
the different divergence measure allows for a more localized approximation at 1< x < 3. In addi-
tion, the property that a fraction (1−η) of the site precisions is left in the cavity distributions helps
to keep the cavity precisions positive during the algorithm. Figure 1 shows a comparison of standard
(EP) and fractional EP (fEP, η= 0.5) with the MAP estimates of the hyperparameters. In example
1 both methods produce very similar predictive distribution because the posterior is unimodal. In
example 2 (the lower right panel) fractional EP gives a much smaller predictive uncertainty esti-
mate when x = 2 than standard EP which in turn puts more false posterior mass in the tails when
compared to MCMC.

The practical guidelines presented in Section 4 bring additional stability in the above described
problematic situations. Modification 1 helps to avoid immediate problems from a too large step
size by ensuring that each parallel EP update increases the inner-loop objective defined by (10).
Modification 2 reduces the step size δ so that the cavity variances, defined as τ−i = τsi − τ̃i with
fixed λs = {νsi ,τsi}, will remain positive during the inner-loop updates. Modification 3 reduces
the oscillations by ensuring that the inner-loop maximization is done within some tolerance, that is,
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Figure 3: A convergence comparison between sequential and parallel EP as well as the double-
loop algorithm in example 2 (the right panel in Figure 1). For each method both the
objective− logZEP and the site precisions τ̃i related to data points y1, ...,y4 (see Figure 1)
are shown. See Section 5.3 for explanation.

the moments of p̂i( fi) and q( fi) are consistent for fixed λs before updating qsi( fi). For example, a
poor choice of δ may require many iterations for achieving inner-loop consistency in the examples
1 or 2, and a too large δ can easily lead to a decrease of the inner-loop objective function or even
negative cavity precisions for the sites 1 or 2. Finally, if an unsuccessful update is made due to an
unsuitable δ, modification 4 enables automatic determination of a better step size by making use of
the concavity of the inner-loop maximization as well as the tilted and marginal moments evaluated
at the previous steps with the same λs.

5.3 Convergence Comparisons

Figure 3 illustrates the convergence properties of the different EP algorithms using the data from
example 2. The hyperparameters were set to: ν = 2, σ = 0.1, σse = 3 and lk = 0.88. Panel (a)
shows the negative marginal likelihood approximation during the first 100 sweeps with sequential
EP and the damping set to δ = 0.8. The panel below shows the site precisions corresponding to
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the observations y1, ...,y4 marked in the upper right panel of Figure 1. With this damping level the
site parameters keep oscillating with no convergence and there are also certain parameter values
between iterations 50-60 where the marginal likelihood is not defined because of negative cavity
precisions (the updates for such sites are skipped until the next iteration). Whenever τ̃1 and τ̃2
become very small they also inflict large decrease in the site precisions of the nearby sites 3 and 4.
These fluctuations affect other sites the more the larger their prior correlations are (defined by the
GP prior) with the sites 1 and 2. Panel (b) shows the same graphs with larger amount of damping
δ = 0.5. Now the oscillations gradually decrease as more iterations are done but convergence is
still very slow. Panel (c) shows the corresponding data with parallel EP and the same amount
of damping. The algorithm does not converge and the oscillations are much larger compared to
sequential EP. Also the marginal likelihood is not defined at many iterations because of negative
cavity precisions.

Panel (d) in Figure 3 illustrates the convergence of the double-loop algorithm with no parallel
initialization. There are no oscillations present because the increase of the objective (10) is verified
at every iteration and sufficient inner-loop optimality is obtained before proceeding with the outer-
loop minimization. However, compared to sequential or parallel EP, the convergence is very slow
and it takes over 100 iterations to get the site parameters to the level that sequential EP attains
with only a couple of iterations. Panel (e) shows that much faster convergence can be obtained
by initializing with 5 parallel iterations and then switching to the double-loop algorithm. There is
still some slow drift visible in the site parameters after 20 iterations but changes in the marginal
likelihood estimate are very small. Small changes in the site parameters indicate inconsistencies in
the moment matching conditions (7) and consequently also the gradient of the marginal likelihood
estimate may be slightly inaccurate if the implicit derivatives of logZEP with respect to λ− and
λs are assumed zero in the gradient evaluations (Opper and Winther, 2005). Panel (f) shows that
parallel EP converges without damping if fractional updates with η = 0.5 are applied. Because of
the different divergence measure the posterior approximation is more localized (see Figure 1) and
also the cavity distributions are closer to the respective marginal distributions. It follows that the
site precisions related to y1 and y2 are larger and no damping is required to keep the updates stable.

5.4 The Marginal Likelihood Approximation

Figure 4 shows contours of the approximate log marginal likelihood with respect to log(lk) and
log(σ2se) in the examples of Figure 1. The contours in the first column are obtained by applying
first sequential EP with δ = 0.8 and using the double-loop algorithm if it does not converge. The
hyperparameter values for which the sequential algorithm does not converge are marked with black
dots and the maximum marginal likelihood estimate of the hyperparameters is marked with (×).
The second column shows the corresponding results obtained with fractional EP (η = 0.5) and
the corresponding hyperparameter estimates are marked with (◦). For comparison, log marginal
likelihood estimates determined with the annealed importance sampling (AIS) (Neal, 2001) are
shown in the third column.

In the both examples there is an area of problematic EP updates with smaller length-scales which
corresponds to the previously discussed ambiguity about the unknown function near data points y1
and y2 in Figure 1. There is also a second area of problematic updates at larger length-scale values
in example 2. With larger length-scales the model is too stiff and it is unable to explain large pro-
portion of the data points in the strongly nonlinear region (−4 < x < −1) and consequently there

3245
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Example 2, AIS

Figure 4: The approximate log marginal likelihood log p(y|X,θ,ν,σ2) as a function of the log-
length-scale log(l2k ) and the log-magnitude log(σ

2
se) in the examples shown in Figure 1.

The marginal likelihood approximation is visualized with both standard EP (η = 1) and
fractional EP (η = 0.5). The mode of the hyperparameters is marked with × and ◦ for
standard and fractional EP respectively. For comparison the marginal is also approxi-
mated by annealed importance sampling (AIS). For both standard and fractional EP the
mean absolute errors (MAE) over the region with respect to the AIS estimate are also
shown. The noise parameter σ2 and the degrees of freedom ν are fixed to the MAP-
estimates obtained with η = 1. The hyperparameter values in which sequential EP with
δ= 0.8 does not converge are marked with black dots in the two leftmost panels.

exist no unique unimodal solution. It is clear that with the first artificial example the optimization of
the hyperparameters with sequential EP can fail if not initialized carefully or not enough damping
is used. In the second example the sequential EP approximation corresponding to the MAP values
cannot even be evaluated because the mode lies in the area of nonconvergent hyperparameter val-
ues. In visual comparison with AIS both standard and fractional EP give very similar and accurate
approximations in the first example (the contours are drawn at the same levels for each method).
In the second example there are more visible differences: standard EP tends to overestimate the
marginal likelihood due to the larger posterior uncertainties (see Figure 1) whereas fractional EP
underestimates it slightly. This is congruent with the properties of the different divergence measure
used in the moment matching. The difference between the hyperparameter values at the modes be-
tween standard and fractional EP is otherwise less than 5% except that in the second example σ and
ν are ca. 30% larger with fractional EP.
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Figure 5: A comparison of the approximative predictive means E( f∗|x∗,D), standard deviations
std( f∗|x∗,D), and predictive densities q(y∗|x∗,D) provided by the different approxima-
tion methods using 10-fold cross-validation on the Boston housing data. The hyperpa-
rameters are fixed to the posterior means obtained by a MCMC run on all data. Each dot
corresponds to one data point for which the x-coordinate is the MCMC estimate and the
y-coordinate the corresponding approximative value obtained with LA, EP, fVB, or VB.

6. Experiments

Four data sets are used to compare the approximative methods: 1) An artificial regression example
by Friedman (1991) involving a nonlinear function of 5 inputs. To create a feature selection problem,
five irrelevant input variables were added to the data. We generated 10 data sets with 100 training
points and 10 randomly selected outliers as described by Kuss (2006). 2) Boston housing data with
506 observations for which the task is to predict the median house prices in the Boston metropolitan
area with 13 input variables (see, e.g., Kuss, 2006). 3) Data that involves the prediction of concrete
quality based on 27 input variables for 215 experiments (Vehtari and Lampinen, 2002). 4) Data for
which the task is to predict the compressive strength of concrete based on 8 input variables for 1030
observations (Yeh, 1998).

6.1 Predictive Comparisons with Fixed Hyperparameters

First we compare the quality of the approximate predictive distributions q( f∗|x∗,D,θ,ν,σ2), where
x∗ is the prediction location and f∗ = f (x∗), between all the approximative methods. We ran a full
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MCMC on the housing data to determine the posterior mean estimates for the hyperparameters.
Then the hyperparameters were fixed to these values and a 10-fold cross-validation was done with
all the approximations including MCMC. The predictive means and standard deviations of the latent
values as well as the predictive densities of the test observations obtained with Laplace’s method
(LA), EP, fVB, and VB are plotted against the MCMC estimate in Figure 5. Excluding MCMC, the
predictive densities were approximated by numerically integrating over the Gaussian approximation
of f∗ in q(y∗|x∗,D,θ,ν,σ2) =

∫
p(y∗| f∗,ν,σ2)q( f∗|x∗,D,θ,ν,σ2)d f∗. EP gives the most accurate

estimates for all the predictive statistics, and clear differences to MCMC can only be seen in the
predictive densities of y∗ which indicates that accurate mean and variance estimates of the latent
value may not always be enough when deriving other predictive statistics. This contrast somewhat to
the corresponding results in GP classification where Gaussian approximation was shown to be very
accurate in estimating predictive probabilities (Nickisch and Rasmussen, 2008). Both fVB and VB
approximate the mean well but are overconfident in the sense that they underestimate the standard
deviations, overestimate the larger predictive densities, and underestimate the smaller predictive
densities. LA gives similar mean estimates with the VB approximations, but approximates the
standard deviations slightly better especially with larger values. Put together, all methods provide
decent estimates with fixed hyperparameters but larger performance differences are possible with
other hyperparameter values (depending on the non-Gaussianity of the true conditional posterior)
and especially when the hyperparameters are optimized.

6.2 Predictive Comparisons with Estimation of the Hyperparameters

In this section we compare the predictive performance of LA, EP, fVB, VB, and MCMC with esti-
mation of the hyperparameters. The predictive performance was measured with the mean absolute
error (MAE) and the mean log predictive density (MLPD). These were evaluated for the Friedman
data using a test set of 1000 latent variables for each of the 10 simulated data sets. A 10-fold
cross validation was used for the Boston housing and concrete quality data whereas a 2-fold cross-
validation was used for the compressive strength data because of the large number of observations.
To assess the significance of the differences between the model performances, 95% credible inter-
vals of the MLPD measures were approximated by Bayesian bootstrap as described by Vehtari and
Lampinen (2002). Gaussian observation model (GA) is selected as a baseline model for compar-
isons. With GA, LA, EP, and VB the hyperparameters were estimated by optimizing the marginal
posterior densities whereas with MCMC all parameters were sampled. The fVB approach was
implemented following Kuss (2006) where the hyperparameters are adapted in the M-step of the
EM-algorithm. The variational lower bound associated with the M-step was augmented with the
same hyperpriors that were used with the other methods.

Since the MAP inference on the degrees of freedom parameter ν proved challenging due to
possible identifiability issues, the LA, EP, fVB, and VB approximations are tested both with ν fixed
to 4 (LA1, EP1, fVB1, VB1) and optimized together with the other hyperparameters (LA2, EP2,
fVB2, VB2). ν = 4 was chosen as a robust default alternative to the normal distribution which
allows for outliers but still has finite variance compared to the extremely wide-tailed alternatives
with ν ≤ 2. With EP we also tested a simple approach (from now on EP3) to approximate the
integration over the posterior uncertainty of ν. We selected 15 values ν j from the interval [1.5,20]
linearly in the log-log scale and ran the optimization of all the other hyperparameters with ν fixed
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to these values. The conditional posterior of the latent values was approximated as

p( f∗|x∗,D)≈∑
j

w jq( f∗|x∗,D,θ j,σ2j ,ν j),

where {θ j,σ2j} = argmaxθ,σ2 q(θ,σ
2|D,ν j) and wj = q(θ j,σ2j ,ν j|D)/

(
∑k q(θk,σ

2
k ,νk|D)

)
. This

can be viewed as a crude approximation of the integration over ν where p(θ,σ2|ν,D) is assumed to
be very narrowly distributed around the mode. This approximation requires optimization of θ and
σ2 with all the preselected values of ν and therefore θ and σ2 were initialized to the previous mode
to speed up the computations.

The squared exponential covariance (2) was used for all models. Uniform priors were assumed
for θ and σ2 on log-scale and for ν on log-log-scale. The input and target variables were scaled to
zero mean and unit variances. ν was initialized to 4, σ to 0.5 and the magnitude σ2se to 1. The opti-
mization was done with different random initializations for the length-scales l1, ..., ld and the result
with the highest posterior marginal density q(θ,ν,σ2|D) was chosen. The MCMC inference on the
latent values was done with both Gibbs sampling based on the scale-mixture model (3) and direct
application of the scaled HMC as described by Vanhatalo and Vehtari (2007). The sampling of the
hyperparameters was tested with both slice sampling and HMC. The scale-mixture Gibbs sampling
(SM) combined with the slice sampling of the hyperparameters resulted in the best mixing of the
chains and gave the best predictive performance which is why only those results are reported. The
convergence and quality of the MCMC runs was checked by both visual inspections as well as by
calculating the potential scale reduction factors, the effective number of independent samples, and
the autocorrelation times (Gelman et al., 2004; Geyer, 1992). Based on the convergence diagnos-
tics, burn-in periods were excluded from the beginning of the chains and the remaining draws were
thinned to form the final MCMC estimates.

Figures 6(a), (c), (e) and (g) show the MLPD values together with their 95% credible intervals
for all the methods in the four data sets. To illustrate the differences between the approximations
more clearly figures 6(b), (d), (f) and (h) show the pairwise comparisons of the log posterior predic-
tive densities to SM. The mean values of the pairwise differences together with their 95% credible
intervals are visualized. The Student-t model with the SM implementation is significantly better
than the Gaussian model with a probability above 95% in all data sets. SM also performs signifi-
cantly better than all the other approximations on the Friedman and compressive strength data, and
on the housing data only EP1 is not significantly worse. The differences are considerably smaller
in the concrete quality data on which EP1 actually performs better than SM. One possible explana-
tion for this is a wrong assumption on the noise model (evidence for a covariate dependent noise
was found in other experiments). Another possibility is the experimental design used in the data
collection; a large proportion of the observations can be classified based on one of the input vari-
ables with a very small length scale which is why averaging over this parameter may lead to worse
performance.

Additional pairwise comparisons not shown in Figure 6 reveal that either EP1 or EP2 is signifi-
cantly better than LA, VB, and fVB in all data sets except the compressive strength data for which
significant difference is not found when compared to LA1. If the better performing method for
estimating ν is selected in either LA, fVB, or VB, LA is better than fVB and VB on the Friedman
data and the compressive strength data. No significant differences were found between fVB or VB
in pairwise comparisons.
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Figure 6: Left column: The mean log posterior predictive density (MLPD) and its 95% central
credible interval. The Gaussian observation model (GA) is shown for reference. The
Student-t model is inferred with LA, EP, fVB, VB, and scale-mixture based Gibbs sam-
pling (SM). Number 1 after a method means that ν is fixed, number 2 that it is optimized,
and number 3 stands for the simple approximative numerical integration over ν. Right
column: Pairwise comparisons of the log posterior predictive densities with respect to
SM. The mean together with its 95% central credible interval are shown. Values greater
than zero indicate that a method is better than SM.

The optimization of ν proved challenging and sensitive to the initialization of the hyperparam-
eters. The most difficult was fVB for which ν often drifted slowly towards infinity. This may be
due to our implementation that was made following Kuss (2006) or more likely to the EM style
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GA LA1 LA2 EP1 EP2 EP3 fVB1 fVB2 VB1 VB2 SM
mean 0.07 1.0 0.8 0.8 7.0 13 15 8.9 1.6 1.8 280
max 0.09 1.0 1.2 1.1 16 26 39 22 3.3 3.8 440
fixed 0.1 1.0 5.5 2.4 1.9 –

Table 1: Two upper rows: The relative CPU times required for the hyperparameter inference. The
times are scaled to yield 1 for LA1 separately for each of the four data sets. Both the
relative mean (mean) as well as the maximum (max) over the data sets are reported. The
third row: The average relative CPU times over the four data sets with the hyperparameters
fixed to 28 preselected configurations.

optimization of the hyperparameters. With LA, EP, and VB the integration over f is redone in the
inner-loop for all objective evaluations in the hyperparameter optimization, whereas with fVB the
optimization is pursued with fixed approximation q(f|D,θ,ν,σ2). The EP-based marginal likeli-
hood estimate was the most robust with regards to the hyperparameter initialization. According to
pairwise comparisons LA2 was significantly worse than LA1 only in the compressive strength data.
EP2 was significantly better than EP1 in the housing and compressive strength data but significantly
worse with the housing data. With fVB and VB optimization of ν gave significantly better per-
formance only with the simulated Friedman data, and significant decrease was observed with VB2
in the housing and compressive strength data. In pairwise comparisons, the crude numerical inte-
gration over ν (EP3) was significantly better than EP1 and EP2 with the housing and compressive
strength data, but never significantly worse. These results give evidence that the EP approximation
is more reliable in the hyperparameter inference because of the more accurate marginal likelihood
estimates which is in line with the results in GP classification (Nickisch and Rasmussen, 2008).

In terms of MAE the Student-t model was significantly better than GA in all data sets besides the
concrete quality data, in which only EP1 gave better results. If the best performing hyperparameter
inference scheme is selected for each method, EP is significantly better than the others on all the data
sets excluding the compressive strength data in which the differences were not significant. EP was
better than SM on the Friedman and concrete quality data but no other significant differences were
found in comparisons with SM. LA was significantly better than fVB and VB on the compressive
strength data whereas on the simulated Friedman data VB was better than LA and fVB.

Table 1 summarizes the total CPU times required for the posterior inference including the hy-
perparameter optimization and the predictions. The CPU times are scaled to give one for LA1 and
both the mean and maximum over the four data sets are reported. The running times of the fastest
Student-t approximations are roughly 10-fold compared to the baseline method GA. EP1, where
ν= 4, is surprisingly fast compared to LA but it gets much slower with the optimization of ν (EP2).
This is explained by the increasing number of double-loop iterations required to achieve conver-
gence with the larger number of difficult posterior distributions as ν gets smaller values. EP3 is
clearly more demanding compared to EP1 or EP2 because the optimization has to be repeated with
every preselected value of ν. fVB is quite slow compared to LA or VB because of the slowly pro-
gressing EM-based hyperparameter adaptation. The running times of LA and VB are quite similar
with ν both fixed and optimized. The running times are suggestive since they depend much on the
implementations, convergence thresholds and the hyperparameter initializations. Table 1 shows also
the average relative running times over the four data sets (excluding MCMC) with the hyperparam-
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JYLÄNKI, VANHATALO AND VEHTARI

eters fixed to 28 different configurations (fixed). The configurations were created by first including
the MCMC mean for each data set and then generating all combinations of three clearly different
values of ν, σ, and σse around the MCMC mean with randomly selected lengthscales. The average
relative running time is higher with EP because many difficult hyperparameter configurations were
created.

7. Discussion

Much research has been done on EP and it has been found very accurate and computationally ef-
ficient in many practical applications. Although non-log-concave site functions may be problem-
atic for EP it has been used and found effective for many potentially difficult models such as the
Gaussian mixture likelihoods (Kuss, 2006; Stegle et al., 2008) as well as ”spike and slab” priors
(Hernández-Lobato et al., 2008). Modifications such as the damping and fractional updates as well
as alternative double-loop algorithms have been proposed to improve the stability in difficult cases
but the practical implementation issues have not been discussed that much. In this work we have
given another demonstration of the good predictive performance of EP in a challenging model but
also analyzed the convergence problems and the EP improvements from a practical point of view.
In addition, we have presented practical guidelines for a robust parallel EP implementation that can
be applied for other non-log-concave likelihoods as well.

We have described the properties of the EP algorithm and its modifications with the Student-t
observation model, but the same key challenges can also be considered with respect to a general
observation model with a non-log-concave likelihood. With a Gaussian prior on f and a log-concave
likelihood, each site approximation increases the posterior precision and all the site precisions re-
main positive throughout the EP iterations as was shown by Seeger (2008). With a non-log-concave
likelihood, however, negative site precisions may occur. The negative site precisions are natural
and well justified because a non-log-concave likelihood can generate local increases of the posterior
uncertainty which cannot otherwise be modeled with the Gaussian approximation. For example, as
discussed here and by Vanhatalo et al. (2009), with the Student-t model the negative site precisions
correspond to the outlying observations. Through the prior covariances of f, the negative site preci-
sions decrease also the approximate marginal posterior precisions of the other site approximations
with positive site precisions. This may become a problem during the sequential or the parallel EP
iterations if some of the approximate marginal posterior precisions decrease close to the level of
the corresponding site precisions. In such cases the respective cavity precisions become very small
which can both induce numerical instabilities in the tilted moment integrations (Seeger, 2008) and
make the respective sites very sensitive to the subsequent EP updates. If the EP updates are not con-
strained some of the cavity precisions may also become negative in which case the tilted moments
and the following updates are no longer well defined.

Both of the well-known EP modifications help to alleviate the above described problem. Damp-
ing takes more conservative update steps so that the negative site precision increments are less likely
to decrease the other cavity precisions too much. Fractional EP keeps the cavity precisions larger
by leaving a fraction of the site precisions in the cavity but leads to different approximation which
may underestimate the posterior uncertainties. The double-loop algorithm is computationally de-
manding but admissible steps in the concave inner-loop maximization ensure that the cavity and the
tilted distributions remain well defined at all times. And most importantly, the inner-loop maximiza-
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tion forms an upper-bound which provably converges to a stationary solution satisfying the moment
matching conditions (7).

The general modifications described in Section 4 bring additional stability with reasonable com-
putational cost. Modification 1 is a principled way to avoid immediate problems arising from a too
large step size. It ensures that each parallel EP update results in an increase of the inner-loop
objective, and it is computationally cheap with likelihoods for which the tilted moments can be de-
termined analytically (e.g., finite Gaussian mixtures). Modification 2 is also computationally cheap
and it ensures that the cavity distributions (defined with fixed λs) remain well defined at all times.
If the current step size does not result in a sufficient decrease of the energy the extra tilted moment
evaluations required in modification 1 can be used in determining a better step length based on the
gradient information according to modification 4 with little additional computational cost.

Modification 3 comes with a considerable computational cost if a small tolerance is required for
the inner-loop iterations. However, in our experiments with the Student-t model, a relaxed double-
loop scheme with a maximum of two inner-loop iterations and two step-size adjustments steps (only
if required) were sufficient to achieve convergence. In practice this requires at most three additional
matrix inversions per iteration compared to the regular parallel EP but unfortunately also the number
of outer loop iterations tended to increase with the more difficult data sets and hyperparameter
values. In these cases the main challenge was the difficult inner-loop moment matching which can
be partly related to a too inflexible approximating family and partly to a suboptimal search direction
defined by parallel EP. Considering the better convergence properties of sequential EP (see Section
5.3), for instance a scheme, where the inner-loop optimization of the more difficult sites (whose
cavity distributions differ notably from the respective marginals) was done sequentially and the
remaining sites were optimized with parallel updates, could lead to better overall performance.

The nonlinear GP regression combined with the Student-t model makes the inference problem
challenging because the potential multimodality of the conditional posterior depends on the hyper-
parameter values. As we have demonstrated by examples, standard EP may not converge with the
MAP estimates of the hyperparameters. Therefore, in practical applications, one cannot simply
discard all problematic hyperparameter values. Instead some estimate of the marginal likelihood is
required also in the more difficult cases. In our examples these situations were related to two modes
in the conditional posterior (caused by two outliers) quite far away from each other which requires
a very large local increase of the marginal variances from the unimodal posterior approximation.
(It should also be noted that moderately damped sequential EP worked fine with many other mul-
timodal posterior distributions.) The globally unimodal assumption is not the best in such cases
although the true underlying function is unimodal, but we think that it is important to get some
useful posterior approximation. Whether one prefers the possible false certainty provided by the
Laplace or VB approximations, or the possible false uncertainty of EP, is a matter of taste but we
prefer the latter one.

It is also important that the inference procedure gives some clue of the potential inadequacy
of the approximating family so that more elaborate models can be considered. In addition to the
examination of the posterior approximation, the need for double-loop iterations with the MAP hy-
perparameter estimates may be one indication of an unsuitable model. One can also compare the
cavity distributions, which can be regarded as the LOO estimates of the latent values, with the re-
spective marginal approximations. If for certain sites most of the LOO information comes from
the corresponding site approximations there is reason to suspect that the approximation is not suit-
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able. Our EP implementation enables a robust way of forming such approximations and in case of
problems it also enables automatic switching to fractional updates.

The presented EP approach for approximative inference with GP models is implemented in the
freely available GPstuff software package (http://www.lce.hut.fi/research/mm/gpstuff/).
The software also allows experimenting with other non-log-concave likelihoods by implementing
the necessary tilted moment integrations in a separate likelihood function.
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Abstract

A large set of signals can sometimes be described sparsely using a dictionary, that is, every element
can be represented as a linear combination of few elements from the dictionary. Algorithms for
various signal processing applications, including classification, denoising and signal separation,
learn a dictionary from a given set of signals to be represented. Can we expect that the error
in representing by such a dictionary a previously unseen signal from the same source will be of
similar magnitude as those for the given examples? We assume signals are generated from a fixed
distribution, and study these questions from a statistical learning theory perspective.

We develop generalization bounds on the quality of the learned dictionary for two types of con-
straints on the coefficient selection, as measured by the expected L2 error in representation when
the dictionary is used. For the case of l1 regularized coefficient selection we provide a general-

ization bound of the order of O
(√

np ln(mλ)/m
)
, where n is the dimension, p is the number of

elements in the dictionary, λ is a bound on the l1 norm of the coefficient vector and m is the number
of samples, which complements existing results. For the case of representing a new signal as a
combination of at most k dictionary elements, we provide a bound of the order O(

√
np ln(mk)/m)

under an assumption on the closeness to orthogonality of the dictionary (low Babel function). We
further show that this assumption holds for most dictionaries in high dimensions in a strong prob-
abilistic sense. Our results also include bounds that converge as 1/m, not previously known for
this problem. We provide similar results in a general setting using kernels with weak smoothness
requirements.

Keywords: dictionary learning, generalization bound, sparse representation

1. Introduction

A common technique in processing signals from X = Rn is to use sparse representations; that is,
to approximate each signal x by a “small” linear combination a of elements di from a dictionary
D ∈ X p, so that x≈ Da= ∑

p
i=1 aidi. This has various uses detailed in Section 1.1. The smallness of

a is often measured using either ‖a‖1, or the number of non zero elements in a, often denoted ‖a‖0.
The approximation error is measured here using a Euclidean norm appropriate to the vector space.

c©2011 Daniel Vainsencher, Shie Mannor and Alfred M. Bruckstein.
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We denote the approximation error of x using dictionary D and coefficients from a set A by

hA,D(x) =min
a∈A

‖Da− x‖ , (1)

where A is one of the following sets determining the sparsity required of the representation:

Hk = {a : ‖a‖0 ≤ k}

induces a “hard” sparsity constraint, which we also call k sparse representation, while

Rλ = {a : ‖a‖1 ≤ λ}

induces a convex constraint that is considered a “relaxation” of the previous constraint.
The dictionary learning problem is to find a dictionary D minimizing

E(D) = Ex∼νhA,D(x), (2)

where ν is a distribution over signals that is known to us only through samples from it. The prob-
lem addressed in this paper is the “generalization” (in the statistical learning sense) of dictionary
learning: to what extent does the performance of a dictionary chosen based on a finite set of sam-
ples indicate its expected error in (2)? This clearly depends on the number of samples and other
parameters of the problem such as the dictionary size. In particular, an obvious algorithm is to
represent each sample using itself, if the dictionary is allowed to be as large as the sample, but the
performance on unseen signals is likely to disappoint.

To state our goal more quantitatively, assume that an algorithm finds a dictionary D suited to k
sparse representation, in the sense that the average representation error Em(D) on the m examples
given to the algorithm is low. Our goal is to bound the generalization error ε, which is the additional
expected error that might be incurred:

E(D)≤ (1+η)Em(D)+ ε, (3)

where η≥ 0 is sometimes zero, and the bound ε depends on the number of samples and problem pa-
rameters. Since efficient algorithms that find the optimal dictionary for a given set of samples (also
known as empirical risk minimization, or ERM, algorithms) are not known for dictionary learning,
we prove uniform convergence bounds that apply simultaneously over all admissible dictionariesD,
thus bounding from above the sample complexity of the dictionary learning problem. In particular,
such a result means that every procedure for approximate minimization of empirical error (empirical
dictionary learning) is also a procedure for approximate dictionary learning (as defined above) in a
similar sense.

Many analytic and algorithmic methods relying on the properties of finite dimensional Euclidean
geometry can be applied in more general settings by applying kernel methods. These consist of
treating objects that are not naturally represented in Rn as having their similarity described by
an inner product in an abstract feature space that is Euclidean. This allows the application of
algorithms depending on the data only through a computation of inner products to such diverse
objects as graphs, DNA sequences and text documents (Shawe-Taylor and Cristianini, 2004). Is
it possible to extend the usefulness of dictionary learning techniques to this setting? We address
sample complexity aspects of this question as well.
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1.1 Background and Related Work

Sparse representations are by now standard practice in diverse fields such as signal processing,
natural language processing, etc. Typically, the dictionary is assumed to be known. The motivation
for sparse representations is indicated by the following results, in which we assume the signals come
from X =Rn are normalized to have length 1, and the representation coefficients are constrained to
A= Hk where k < n, p and typically hA,D(x)� 1.

• Compression: If a signal x has an approximate sparse representation in some commonly
known dictionary D, it can be stored or transmitted more economically with reasonable pre-
cision. Finding a good sparse representation can be computationally hard but if D fulfills
certain geometric conditions, then its sparse representation is unique and can be found effi-
ciently (see, e.g., Bruckstein et al., 2009).

• Denoising: If a signal x has a sparse representation in some known dictionaryD, and x̃= x+ν,
where the random noise ν is Gaussian, then the sparse representation found for x̃ will likely
be very close to x (for example Chen et al., 2001).

• Compressed sensing: Assuming that a signal x has a sparse representation in some known dic-
tionary D that fulfills certain geometric conditions, this representation can be approximately
retrieved with high probability from a small number of random linear measurements of x. The
number of measurements needed depends on the sparsity of x in D (Candes and Tao, 2006).

The implications of these results are significant when a dictionary D is known that sparsely rep-
resents simultaneously many signals. In some applications the dictionary is chosen based on prior
knowledge, but in many applications the dictionary is learned based on a finite set of examples. To
motivate dictionary learning, consider an image representation used for compression or denoising.
Different types of images may have different properties (MRI images are not similar to scenery
images), so that learning a dictionary specific to each type of images may lead to improved perfor-
mance. The benefits of dictionary learning have been demonstrated in many applications (Protter
and Elad, 2007; Peyré, 2009).

Two extensively used techniques related to dictionary learning are Principal Component Anal-
ysis (PCA) and K-means clustering. The former finds a single subspace minimizing the sum of
squared representation errors which is very similar to dictionary learning with A = Hk and p = k.
The latter finds a set of locations minimizing the sum of squared distances between each signal and
the location closest to it which is very similar to dictionary learning with A = H1 where p is the
number of locations. Thus we could see dictionary learning as PCA with multiple subspaces, or as
clustering where multiple locations are used to represent each signal. The sample complexities of
both algorithms are well studied (Bartlett et al., 1998; Biau et al., 2008; Shawe-Taylor et al., 2005;
Blanchard et al., 2007).

This paper does not address questions of computational cost, though they are very relevant.
Finding optimal coefficients for k sparse representation (that is, minimizing (1) with A=Hk) is NP-
hard in general (Davis et al., 1997). Dictionary learning as the optimization problem of minimizing
(2) is less well understood, even for empirical ν (consisting of a finite number of samples), despite
over a decade of work on related algorithms with good empirical results (Olshausen and Field, 1997;
Lewicki et al., 1998; Kreutz-Delgado et al., 2003; Aharon et al., 2006; Lee et al., 2007; Mairal et al.,
2010).
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The only prior work we are aware of that addresses generalization in dictionary learning, by
Maurer and Pontil (2010), addresses the convex representation constraint A = Rλ; we discuss the
relation of our work to theirs in Section 2.

2. Results

Except where we state otherwise, we assume signals are generated in the unit sphere Sn−1. Our
results are:

A new approach to dictionary learning generalization. Our first main contribution is an ap-
proach to generalization bounds in dictionary learning that is complementary to the approach used
by Maurer and Pontil (2010). The previous result, given below in Theorem 6 has generalization
error bounds (the ε of inequality (3)) of order

O

(√
pmin(p,n)

(
λ+

√
ln(mλ)

)2
/m

)
on the squared representation error. A notable feature of this result is the weak dependence on the
signal dimension n. In Theorem 1 we quantify the complexity of the class of functions hA,D over
all dictionaries whose columns have unit length, where A ⊂ Rλ. Combined with standard methods

of uniform convergence this results in generalization error bounds ε of order O
(√

np ln(mλ)/m
)

when η = 0. While our bound does depend strongly on n, this is acceptable in the case n < p,
also known in the literature as the “over-complete” case (Olshausen and Field, 1997; Lewicki et al.,
1998). Note that our generalization bound applies with different constants to the representation error
itself and many variants including the squared representation error, and has a weak dependence on
λ. The dependence on λ is significant, for example, when ‖a‖1 is used as a weighted penalty term
by solving mina ‖Da−X‖+ γ · ‖a‖1; in this case λ= O

(
γ−1

)
may be quite large.

Fast rates. For the case η > 0 our methods allow bounds of order O(np ln(λm)/m). The main
significance of this is in that the general statistical behavior they imply occurs in dictionary learn-
ing. For example, generalization error has a “proportional” component which is reduced when the
empirical error is low. Whether fast rates results can be proved in the dimension free regime is an
interesting question we leave open. Note that due to lower bounds by Bartlett et al. (1998) of order√
m−1 on the k-means clustering problem, which corresponds to dictionary learning for 1-sparse

representation, fast rates may be expected only with η> 0, as presented here.
We now describe the relevant function class and the bounds on its complexity, which are proved

in Section 3. The resulting generalization bounds are given explicitly at the end of this section.

Theorem 1 For every ε> 0, the function class

Gλ =
{
hRλ,D : S

n−1→ R : D ∈ Rn×p,‖di‖ ≤ 1
}
,

taken as a metric space with the distance induced by ‖·‖∞, has a subset of cardinality at most
(4λ/ε)np, such that every element from the class is at distance at most ε from the subset.

While we give formal definitions in Section 3, such a subset is called an ε cover, and such a
bound on its cardinality is called a covering number bound.

Extension to k sparse representation. Our second main contribution is to extend both our ap-
proach and that of Maurer and Pontil (2010) to provide generalization bounds for dictionaries for k
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sparse representations, by using a bound λ on the l1 norm of the representation coefficients when the
dictionaries are close to orthogonal. Distance from orthogonality is measured by the Babel function
(which, for example, upper bounds the magnitude of the maximal inner product between distinct
dictionary elements) defined below and discussed in more detail in Section 4.

Definition 2 (Babel function, Tropp 2004) For any k ∈ N, the Babel function μk : Rn×m → R+ is
defined by:

μk (D) = max
i∈{1,...,p}

max
Λ⊂{1,...,p}\{i};|Λ|=k∑j∈Λ

∣∣〈d j,di〉∣∣ .
The following proposition, which is proved in Section 3, bounds the 1-norm of the dictionary

coefficients for a k sparse representation and also follows from analysis previously done by Donoho
and Elad (2003) and Tropp (2004).

Proposition 3 Let each column di of D fulfill ‖di‖ ∈ [1,γ] and μk−1 (D) ≤ δ < 1, then a coeffi-
cient vector a ∈ Rp minimizing the k-sparse representation error hHk,D(x) exists which has ‖a‖1 ≤
γk/(1−δ).

We now consider the class of all k sparse representation error functions. We prove in Section 3
the following bound on the complexity of this class.

Corollary 4 The function class

Fδ,k =
{
hHk,D : S

n−1→ R : μk−1(D)< δ,di ∈ Sn−1
}
,

taken as a metric space with the metric induced by ‖·‖∞, has a covering number bound of at most
(4k/(ε(1−δ)))np.

The dependence of the last two results on μk−1(D) means that the resulting bounds will be
meaningful only for algorithms which explicitly or implicitly prefer near orthogonal dictionaries.
Contrast this to Theorem 1 which does not require significant conditions on the dictionary.

Asymptotically almost all dictionaries are near orthogonal. A question that arises is what values
of μk−1 can be expected for parameters n, p,k? We shed some light on this question through the
following probabilistic result, which we discuss in Section 4 and prove in Appendix B.

Theorem 5 Suppose that D consists of p vectors chosen uniformly and independently from Sn−1.
Then we have

P(μk > δ)≤
√
π
2
p(p−1)exp

⎛⎜⎝−
(n−2)

(
δ
k

)2
2

⎞⎟⎠ .

Since low values of the Babel function have implications to representation finding algorithms,
this result is of interest also outside the context of dictionary learning. Essentially it means that
random dictionaries whose cardinality is sub-exponential in (n−2)/k2 have low Babel function.

New generalization bounds for l1 case. The covering number bound of Theorem 1 implies sev-
eral generalization bounds for the problem of dictionary learning for l1 regularized representations
which we give here. These differ from bounds by Maurer and Pontil (2010) in depending more
strongly on the dimension of the space, but less strongly on the particular regularization term. We
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first give the relevant specialization of the result by Maurer and Pontil (2010) for comparison and
for reference as we will later build on it. This result is independent of the dimension n of the un-
derlying space, thus the Euclidean unit ball B may be that of a general Hilbert space, and the errors
measured by hA,D are in the same norm.

Theorem 6 (Maurer and Pontil 2010) Let A⊂ Rλ, and let ν be any distribution on the unit sphere
B. Then with probability at least 1− e−x over the m samples in Em drawn according to ν, for all
dictionaries D⊂ B with cardinality p:

Eh2A,D ≤ Emh
2
A,D+

√√√√ p2
(
14λ+1/2

√
ln(16mλ2)

)2
m

+

√
x
2m

.

Using the covering number bound of Theorem 1 and a bounded differences concentration in-
equality (see Lemma 21), we obtain the following result. The details are given in Section 3.

Theorem 7 Let λ> e/4, with ν a distribution on Sn−1. Then with probability at least 1− e−x over
the m samples in Em drawn according to ν, for all D with unit length columns:

EhRλ,D ≤ EmhRλ,D+

√
np ln(4

√
mλ)

2m
+

√
x
2m

+

√
4
m
.

Using the same covering number bound and the general result Corollary 23 (given in Section
3), we obtain the following fast rates result. A slightly more general result is easily derived by using
Proposition 22 instead.

Theorem 8 Let λ> e/4, np≥ 20 and m≥ 5000with ν a distribution on Sn−1. Then with probability
at least 1−e−x over the m samples in Em drawn according to ν, for all D with unit length columns:

EhRλ,D ≤ 1.1EmhRλ,D+9
np ln(4λm)+ x

m
.

Note that the absolute loss hRλ,D in the new bounds can be replaced with the quadratic loss h
2
Rλ,D

used in Theorem 6, at a small cost: an added factor of 2 inside the ln, and the same applies to many
other loss functions. This applies also to the cover number based bounds given below.

Generalization bounds for k sparse representation. Proposition 3 and Corollary 4 imply certain
generalization bounds for the problem of dictionary learning for k sparse representations, which we
give here.

A straight forward combination of Theorem 2 of Maurer and Pontil (2010) (given here as The-
orem 6) and Proposition 3 results in the following theorem.

Theorem 9 Let δ< 1 with ν a distribution on Sn−1. Then with probability at least 1− e−x over the
m samples in Em drawn according to ν, for all D s.t. μk−1(D)≤ δ and with unit length columns:

Eh2Hk,D ≤ Emh
2
Hk,D+

p√
m

⎛⎝ 14k
1−δ

+
1
2

√√√√ln

(
16m

(
k

1−δ

)2)⎞⎠+

√
x
2m

.
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In the case of clustering we have k = 1 and δ = 0 and this result approaches the rates of Biau
et al. (2008).

The following theorems follow from the covering number bound of Corollary 4 and applying
the general results of Section 3 as for the l1 sparsity results.

Theorem 10 Let δ < 1 with ν a distribution on Sn−1. Then with probability at least 1− e−x over
the m samples in Em drawn according to ν, for all D s.t. μk−1(D)≤ δ and with unit length columns:

EhHk,D ≤ EmhHk,D+

√
np ln 4

√
mk

1−δ
2m

+

√
x
2m

+

√
4
m
.

Theorem 11 Let δ< 1, np≥ 20 and m≥ 5000 with ν a distribution on Sn−1. Then with probability
at least 1−e−x over the m samples in Em drawn according to ν, for all D s.t. μk−1(D)≤ δ and with
unit length columns:

EhHk,D ≤ 1.1EmhHk,D+9
np ln

(
4
√
mk

1−δ
)
+ x

m
.

Generalization bounds for dictionary learning in feature spaces. We further consider applica-
tions of dictionary learning to signals that are not represented as elements in a vector space, or that
have a very high (possibly infinite) dimension.

In addition to providing an approximate reconstruction of signals, sparse representation can also
be considered as a form of analysis, if we treat the choice of non zero coefficients and their magni-
tude as features of the signal. In the domain of images, this has been used to perform classification
(in particular, face recognition) by Wright et al. (2008). Such analysis does not require that the data
itself be represented in Rn (or in any vector space); it is enough that the similarity between data
elements is induced from an inner product in a feature space. This requirement is fulfilled by using
an appropriate kernel function.

Definition 12 Let R be a set of data representations, then a kernel function κ : R 2 → R and a
feature mapping φ : R →H are such that:

κ(x,y) = 〈φ(x) ,φ(y)〉H
where H is some Hilbert space.

As a concrete example, choose a sequence of n words, and let φmap a document to the vector of
counts of appearances of each word in it (also called bag of words). Treating κ(a,b) = 〈φ(a),φ(b)〉
as the similarity between documents a and b, is the well known “bag of words” approach, appli-
cable to many document related tasks (Shawe-Taylor and Cristianini, 2004). Then the statement
φ(a)+φ(b)≈ φ(c) does not imply that c can be reconstructed from a and b, but we might consider
it indicative of the content of c. The dictionary of elements used for representation could be de-
cided via dictionary learning, and it is natural to choose the dictionary so that the bags of words of
documents are approximated well by small linear combinations of those in the dictionary.

As the example above suggests, the kernel dictionary learning problem is to find a dictionary D
minimizing

Ex∼νhφ,A,D(x),
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where we consider the representation error function

hφ,A,D(x) =min
a∈A

‖(ΦD)a−φ(x)‖H ,

in which Φ acts as φ on the elements of D, A ∈ {Rλ,Hk}, and the norm ‖·‖H is that induced by the
kernel on the feature space H .

Analogues of all the generalization bounds mentioned so far can be replicated in the kernel
setting. The dimension free results of Maurer and Pontil (2010) apply most naturally in this setting,
and may be combined with our results to cover also dictionaries for k sparse representation, under
reasonable assumptions on the kernel.

Proposition 13 Let ν be any distribution on R such that x ∼ ν implies that φ(x) is in the unit ball
BH of H with probability 1. Then with probability at least 1−e−x over the m samples in Em drawn
according to ν, for all D⊂ R with cardinality p such that ΦD⊂ BH and μk−1(ΦD)≤ δ< 1:

Eh2φ,Hk,D ≤ Emh
2
φ,Hk,D+

√√√√√√ p2

(
14k/(1−δ)+1/2

√
ln

(
16m

(
k
1−δ

)2))2
m

+

√
x
2m

.

Note that in μk−1(ΦD) the Babel function is defined in terms of inner products in H , and can
therefore be computed efficiently by applications of the kernel.

In Section 5 we prove the above result and also cover number bounds as in the linear case
considered before. In the current setting, these bounds depend on the Hölder smoothness order α of
the feature mapping φ. Formal definitions are given in Section 5 but as an example, the well known
Gaussian kernel has α= 1. We give now one of the generalization bounds using this method.

Theorem 14 Let R have ε covers of order (C/ε)n. Let κ : R 2 → R+ be a kernel function s.t.
κ(x,y) = 〈φ(X),φ(Y )〉, for φ which is uniformly L-Hölder of order α > 0 over R , and let γ =
maxx∈R ‖φ(x)‖H . Let δ < 1, and ν any distribution on R , then with probability at least 1− e−x

over the m samples in Em drawn according to ν, for all dictionaries D ⊂ R of cardinality p s.t.
μk−1(ΦD)≤ δ< 1 (where Φ acts like φ on columns):

EhHk,D ≤ EmhHk,D+ γ

⎛⎜⎜⎝
√√√√np ln

(√
mCα kγ

2L
1−δ

)
2αm

+

√
x
2m

⎞⎟⎟⎠+

√
4
m
.

The covering number bounds needed to prove this theorem and analogs for the other general-
ization bounds are proved in Section 5.

3. Covering Numbers of Gλ and Fδ,k
The main content of this section is the proof of Theorem 1 and Corollary 4. We also show that in
the k sparse representation setting a finite bound on λ does not occur generally thus an additional
restriction, such as the near-orthogonality on the set of dictionaries on which we rely in this setting,
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is necessary. Lastly, we recall known results from statistical learning theory that link covering
numbers to generalization bounds.

We recall the definition of the covering numbers we wish to bound. Anthony and Bartlett (1999)
give a textbook introduction to covering numbers and their application to generalization bounds.

Definition 15 (Covering number) Let (M,d) be a metric space and S ⊂M. Then the ε covering
number of S defined as N (ε,S,d) = min{|A| |A⊂M and S⊂ (

⋃
a∈ABd (a,ε))} is the size of the

minimal ε cover of S using d.

To prove Theorem 1 and Corollary 4 we first note that the space of all possible dictionaries is a
subset of a unit ball in a Banach space of dimension np (with a norm specified below). Thus (see
formalization in Proposition 5 of Cucker and Smale, 2002) the space of dictionaries has an ε cover
of size (4/ε)np. We also note that a uniformly L Lipschitz mapping between metric spaces converts
ε/L covers into ε covers. Then it is enough to show thatΨλ defined as D �→ hRλ,D and Φk defined as
D �→ hHk,D are uniformly Lipschitz (whenΦk is restricted to the dictionaries with μk−1(D)≤ c< 1).
The proof of these Lipschitz properties is our next goal, in the form of Lemmas 18 and 19.

The first step is to be clear about the metrics we consider over the spaces of dictionaries and of
error functions.

Definition 16 (Induced matrix norm) Let p,q≥ 1, then a matrix A ∈ Rn×m can be considered as
an operator A :

(
Rm,‖·‖p

)
→

(
Rn,‖·‖q

)
. The p,q induced norm is ‖A‖p,q � supx∈Rm‖x‖p=1 ‖Ax‖q.

Lemma 17 For any matrix D, ‖D‖1,2 is equal to the maximal Euclidean norm of any column in D.

Proof That the maximal norm of a column bounds ‖D‖1,2 can be seen geometrically; Da/‖a‖1 is a
convex combination of column vectors, then ‖Da‖2 ≤ maxdi ‖di‖2 ‖a‖1 because a norm is convex.
Equality is achieved for a= ei, where di is the column of maximal norm.

The images of Ψλ and Φk are sets of representation error functions—each dictionary induces
a set of precisely representable signals, and a representation error function is simply a map of
distances from this set. Representation error functions are clearly continuous, 1-Lipschitz, and into
[0,1]. In this setting, a natural norm over the images is the supremum norm ‖·‖∞.

Lemma 18 The function Ψλ is λ-Lipschitz from
(
Rn×m,‖·‖1,2

)
to C

(
Sn−1

)
.

Proof Let D and D′ be two dictionaries whose corresponding elements are at most ε > 0 far from
one another. Let x be a unit signal and Da an optimal representation for it. Then ‖(D−D′)a‖2 ≤
‖D−D′‖1,2 ‖a‖1 ≤ ελ. If D′a is very close to Da in particular it is not a much worse repre-
sentation of x, and replacing it with the optimal representation under D′, we have hRλ,D′(x) ≤
hRλ,D(x)+ ελ. By symmetry we have |Ψλ(D)(x)−Ψλ(D

′)(x)| ≤ λε. This holds for all unit sig-
nals, then ‖Ψλ(D)−Ψλ(D

′)‖∞ ≤ λε.

This concludes the proof of Theorem 1. We now provide a proof for Proposition 3 which is used
in the corresponding treatment for covering numbers under k sparsity.
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Proof (Of Proposition 3) LetDk be a submatrix ofDwhose k columns fromD achieve the minimum

on hHk,D(x) for x ∈ Sn−1. We now consider the Gram matrix G=
(
Dk
)�
Dk whose diagonal entries

are the norms of the elements of Dk, therefore at least 1. By the Gersgorin theorem (Horn and
Johnson, 1990), each eigenvalue of a square matrix is “close” to a diagonal entry of the matrix; the
absolute difference between an eigenvalue and its diagonal entry is upper bounded by the sum of
the absolute values of the remaining entries of the same row. Since a row in G corresponds to the
inner products of an element from Dk with every element from Dk, this sum is upper bounded by δ
for all rows. Then we conclude the eigenvalues of the Gram matrix are lower bounded by 1−δ> 0.
Then in particular G has a symmetric inverseG−1 whose eigenvalues are positive and bounded from
above by 1/(1−δ). The maximal magnitude of an eigenvalue of a symmetric matrix coincides with
its induced norm ‖·‖2,2, therefore

∥∥G−1∥∥
2,2 ≤ 1/(1−δ).

Linear dependence of elements of Dk would imply a non-trivial nullspace for the invertible G.
Then the elements of Dk are linearly independent, which implies that the unique optimal represen-
tation of x as a linear combination of the columns of Dk is Dka with

a=

((
Dk
)�

Dk
)−1(

Dk
)�

x.

Using the above and the definition of induced matrix norms, we have

‖a‖2 ≤
∥∥∥∥∥
((

Dk
)�

Dk
)−1∥∥∥∥∥

2,2

∥∥∥∥(Dk
)�

x

∥∥∥∥
2
≤ (1−δ)−1

∥∥∥∥(Dk
)�

x

∥∥∥∥
2
.

The vector
(
Dk
)�
x is in Rk and by the Cauchy Schwartz inequality 〈di,x〉 ≤ γ, then

∥∥∥(Dk
)�
x
∥∥∥
2
≤

√
k
∥∥∥(Dk

)�
x
∥∥∥
∞
≤√

kγ. Since only k entries of a are non zero, ‖a‖1 ≤
√
k‖a‖2 ≤ kγ/(1−δ).

Lemma 19 The function Φk is a k/(1−δ)-Lipschitz mapping from the set of normalized dictionar-
ies with μk−1(D)< δ with the metric induced by ‖·‖1,2 to C

(
Sn−1

)
.

The proof of this lemma is the same as that of Lemma 18, except that a is taken to be an
optimal representation that fulfills ‖a‖1 ≤ λ = k/(1−μk−1(D)), whose existence is guaranteed by
Proposition 3. As outlined in the beginning of the current section, this concludes the proof of
Corollary 4.

The next theorem shows that unfortunately, Φ is not uniformly L-Lipschitz for any constant L,
requiring its restriction to an appropriate subset of the dictionaries.

Theorem 20 For any 1 < k < n, p, there exists c > 0 and q, such that for every ε > 0, there exist
D,D′ such that ‖D−D′‖1,2 < ε but |(hHk,D(q)−hHk,D′(q))|> c.

Proof First we show that for any dictionary D there exist c> 0 and x ∈ Sn−1 such that hHk,D(x)> c.
Let νSn−1 be the uniform probability measure on the sphere, and Ac the probability assigned by it to
the set within c of a k dimensional subspace. As c↘ 0, Ac also tends to zero, then there exists c> 0
s.t.

(p
k

)
Ac < 1. Then for that c and any dictionary D there exists a set of positive measure on which
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hHk,D > c, let q be a point in this set. Since hHk,D(x) = hHk,D(−x), we may assume without loss of
generality that 〈e1,q〉 ≥ 0.

We now fix the dictionary D; its first k− 1 elements are the standard basis {e1, . . . ,ek−1}, its
kth element is dk =

√
1− ε2/4e1+ εek/2, and the remaining elements are chosen arbitrarily. Now

construct D′ to be identical to D except its kth element is v =
√
1− ε2/4e1+ lq choosing l so that

‖v‖2 = 1. Then there exist a,b ∈ R such that q= aD′
1+bD′

k and we have hHk,D′(q) = 0, fulfilling
the second part of the theorem. On the other hand, since 〈e1,q〉 ≥ 0, we have l ≤ ε/2, and then we
find ‖D−D′‖1,2 = ‖εek/2− lq‖2 ≤ ‖εek/2‖+‖lq‖= ε/2+ l ≤ ε.

To conclude the generalization bounds of Theorems 7, 8, 10, 11 and 14 from the covering
number bounds we have provided, we use the following results. Both specialize well known results
to the case of l∞ cover number bounds, thereby improving constants and simplifying the proofs. The
first proof is simple enough we include it at the end of this section. The second result1 (along with
its corollary) gives fast rate bounds as in the more general results by Mendelson (2003) and Bartlett
et al. (2005).

Lemma 21 Let F be a class of [0,B] functions with covering number bound (C/ε)d > e/B2 under
the supremum norm. Then for every x > 0, with probability of at least 1− e−x over the m samples
in Em chosen according to ν, for all f ∈ F :

E f ≤ Em f +B

(√
d ln(C

√
m)

2m
+

√
x
2m

)
+

√
4
m
.

Proposition 22 Let F be a class of [0,1] functions that can be covered for any ε > 0 by at most
(C/ε)d balls of radius ε in the L∞ metric where C ≥ e and β > 0. Then with probability at least
1− exp(−x), we have for all f ∈ F :

E f ≤ (1+β)Em f +K (d,m,β)
d ln(Cm)+ x

m
,

where K (d,m,β) =

√
2
(

9√
m +2

)(
d+3
3d

)
+1+

(
9√
m +2

)(
d+3
3d

)
+1+ 1

2β .

The corollary we use to obtain Theorems 8 and 11 follows because K (d,m,β) is non-increasing
in d,m.

Corollary 23 Let F ,x be as above. For d ≥ 20, m≥ 5000 and β= 0.1 we have with probability at
least 1− exp(−x) for all f ∈ F :

E f ≤ 1.1Em f +9d ln(Cm)+ x
m

.

Proof (Of Lemma 21) We wish to bound sup f∈F E f −Em f . Take Fε to be a minimal ε cover of
F , then for an arbitrary f , denoting fε an ε close member of Fε, E f −Em f ≤ E fε−Em fε+2ε. In
particular, sup f∈F E f −Em f ≤ 2ε+ sup f∈Fε E f −Em f . To bound the supremum on the now finite

1. We thank Andreas Maurer for suggesting this result and a proof elaborated in Appendix A.
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class of functions, note that E f −Em f is an average of m independent copies of the identical zero
mean bounded variable E f −E1 f .

Applying Hoeffding’s inequality, we have P(E f −Em f > t)≤ exp(−2mB−2t2).
The probability that any of the |Fε| differences under the supremum is larger than t may be

bounded as P
(
sup f∈Fε E f −Em f ≥ t

)≤ |Fε| · exp
(−2mB−2t2)≤ exp(d ln(C/ε)−2mB−2t2).

In order to control the probability with x as in the statement of the lemma, we take −x =
d ln(C/ε)−2mB−2t2 or equivalently we choose t =

√
B2/2m

√
d ln(C/ε)+ x. Then with probabil-

ity 1−e−x we bound sup f∈F E f −Em f ≤ 2ε+ t. Using the covering number bound assumption and
the sublinearity of

√·, we have by sup f∈F E f −Em f ≤ 2ε+B
(√

d ln(C/ε)/2m+
√
x/2m

)
. The

proof is completed by taking ε= 1/
√
m.

4. On the Babel Function

The Babel function is one of several metrics defined in the sparse representations literature to quan-
tify an ”almost orthogonality” property that dictionaries may enjoy. Such properties have been
shown to imply theoretical properties such as uniqueness of the optimal k sparse representation. In
the algorithmic context, Donoho and Elad (2003) and Tropp (2004) use the Babel function to show
that particular efficient algorithms for finding sparse representations fulfill certain quality guaran-
tees when applied to such dictionaries. This reinforces the practical importance of the learnability
of this class of dictionary. We proceed to discuss some elementary properties of the Babel function,
and then state a bound on the proportion of dictionaries having sufficiently good Babel function.

Measures of orthogonality are typically defined in terms of inner products between the elements
of the dictionary. Perhaps the simplest of these measures of orthogonality is the following special
case of the Babel function.

Definition 24 The coherence of a dictionary D is μ1(D) =maxi�= j

∣∣〈di,d j〉∣∣.
The proof of Proposition 3 demonstrates that the Babel function quantifies the effects of non orthog-
onality on the representation of a signal with particular level k+ 1 of sparsity. Is enough to bound
the Babel function using coherence? only at a cost of significantly tightening our requirements on
dictionaries. While the coherence and Babel measures are indeed related by the inequalities

μ1 (D)≤ μk (D)≤ kμ1 (D) ,

the factor k gap between the bounds cannot be improved. The tightness of the right inequality is
witnessed by a dictionary including k+ 1 copies of the same element. That of the left inequality
is witnessed by the following example. Let D consist of k pairs of elements, so that the subspace
spanned by each pair is orthogonal to all other elements, and such that the inner product between
the elements of any single pair is half. In this case μk(D) = μ1(D) = 1/2. However note that to
ensure μk < 1 only restricting μ1 requires the constraint μ1(D) < 1/k, which is not fulfilled in our
example.

To better understand μk (D), we consider first its extreme values. When μk (D) = 0, for any
k > 1, this means that D is an orthogonal set (therefore p ≤ n). The maximality of μk (D) = k we
have seen before.
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A well known generic class of dictionaries with more elements than a basis is that of frames (see
Duffin and Schaeer, 1952), which includes many wavelet systems and filter banks. Some frames
can be trivially seen to fulfill our condition on the Babel function.

Proposition 25 Let D ∈ Rn×p be a frame of Rn, so that for every v ∈ Sn−1 we have that
∑n
i=1 |〈v,di〉|2 ≤ B, with ‖di‖2 = 1 for all i, and B< 1+1/k. Then μk−1(D)< 1.

This may be easily verified by considering the inner products of any dictionary element with
any other k elements as a vector in Rk; the frame condition bounds its squared Euclidean norm by
B− 1 (we remove the inner product of the element with itself in the frame expression). Then use
the equivalence of l1 and l2 norms.

4.1 Proportion of Dictionaries with μk−1(D)< δ

We return to the question of the prevalence of dictionaries having μk−1< δ. Are almost all dictionar-
ies such? If the answer is affirmative, it implies that Theorem 11 is quite strong, and representation
finding algorithms such as basis pursuit are almost always exact, which might help prove proper-
ties of dictionary learning algorithms. If the opposite is true and few dictionaries have low Babel
function, the results of this paper are weak. While there might be better probability measures on the
space of dictionaries, we consider one that seems natural: suppose that a dictionary D is constructed
by choosing p unit vectors uniformly from Sn−1; what is the probability that μk−1(D) < δ? how
does this depend on p,k?

Theorem 5 gives us the following answer to these questions. Asymptotically almost all dictio-
naries under the uniform measure are learnable with Õ(np) examples, as long as k ln p= o(

√
n).

5. Dictionary Learning in Feature Spaces

We propose in Section 2 a scenario in which dictionary learning is performed in a feature space
corresponding to a kernel function. Here we show how to adapt the different generalization bounds
discussed in this paper for the particular case of Rn to more general feature spaces, and the de-
pendence of the sample complexities on the properties of the kernel function or the corresponding
feature mapping. We begin with the relevant specialization of the results of Maurer and Pontil
(2010) which have the simplest dependence on the kernel, and then discuss the extensions to k
sparse representation and to the cover number techniques presented in the current work.

A general feature space, denoted H , is a Hilbert space to which Theorem 6 applies as is, under
the simple assumption that the dictionary elements and signals are in its unit ball; this assumption
is guaranteed by some kernels such as the Gaussian kernel. Then we take ν on the unit ball of H to
be induced by some distribution ν′ on the domain of the kernel, and the theorem applies to any such
ν′ on R . Nothing more is required if the representation is chosen from Rλ. The corresponding gen-
eralization bound for k sparse representations when the dictionary elements are nearly orthogonal
in the feature space is given in Proposition 13.
Proof (Of Proposition 13) Proposition 3 applies with the Euclidean norm ofH , and γ= 1. We apply
Theorem 6 with λ= k/(1−δ).

The results so far show that generalization in dictionary learning can occur despite the poten-
tially infinite dimension of the feature space, without considering practical issues of representation
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and computation. We now make the domain and applications of the kernel explicit in order to
address a basic computational question, and allow the use of cover number based generalization
bounds to prove Theorem 14. We now consider signals represented in a metric space (R ,d), in
which similarity is measured by the kernel κ corresponding to the feature map φ : R → H . The
elements of a dictionary D are now from R , and we denote ΦD their mapping by φ to H . The
representation error function used is hφ,A,D.

We now show that the approximation error in the feature space is a quadratic function of the
coefficient vector; the quadratic function for particular D and x may be found by applications of the
kernel.

Proposition 26 Computing the representation error at a given x,a,D requires O
(
p2
)
kernel appli-

cations in general, and only O
(
k2+ p

)
when a is k sparse.

The squared error expands to

p

∑
i=1

ai
p

∑
j=1

a jκ(di,d j)+κ(x,x)−2
p

∑
i=1

aiκ(x,di) .

We note that the k sparsity constraint on a poses algorithmic difficulties beyond those addressed
here. Some of the common approaches to these, such as orthogonal matching pursuit (Chen et al.,
1989), also depend on the data only through their inner products, and may therefore be adapted to
the kernel setting.

The cover number bounds depend strongly on the dimension of the space of dictionary elements.
Taking H as the space of dictionary elements is the simplest approach, but may lead to vacuous
or weak bounds, for example in the case of the Gaussian kernel whose feature space is infinite
dimensional. Instead we propose to use the space of data representations R , whose dimensions are
generally bounded by practical considerations. In addition, we will assume that the kernel is not
“too wild” in the following sense.

Definition 27 Let L,α> 0, and let (A,d′) and (B,d) be metric spaces. We say a mapping f : A→ B
is uniformly L Hölder of order α on a set S⊂ A if ∀x,y ∈ S, the following bound holds:

d ( f (x), f (y))≤ L ·d′(x,y)α.

The relevance of this smoothness condition is as follows.

Lemma 28 A Hölder function maps an ε cover of S to an Lεα cover of its image f (S). Thus, to
obtain an ε cover of the image of S, it is enough to begin with an (ε/L)1/α cover of S.

A Hölder feature map φ allows us to bound the cover numbers of the dictionary elements in H
using their cover number bounds in R . Note that not every kernel corresponds to a Hölder feature
map (the Dirac δ kernel is a counter example: any two distinct elements are mapped to elements at a
mutual distance of 1), and sometimes analyzing the feature map is harder than analyzing the kernel.
The following lemma bounds the geometry of the feature map using that of the kernel.

Lemma 29 Let κ(x,y) = 〈φ(x),φ(y)〉, and assume further that κ fulfills a Hölder condition of order
α uniformly in each parameter, that is, |κ(x,y)−κ(x+h,y)| ≤ L‖h‖α. Then φ uniformly fulfills a
Hölder condition of order α/2 with constant

√
2L.
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This result is not sharp. For example, for the Gaussian case, both kernel and the feature map are
Hölder order 1.
Proof Using the Hölder condition, we have that ‖φ(x)−φ(y)‖2H = κ(x,x)− κ(x,y) + κ(y,y)−
κ(x,y)≤ 2L‖x− y‖α. All that remains is to take the square root of both sides.

For a given feature mapping φ, set of representations R , we define two families of function
classes so:

Wφ,λ =
{
hφ,Rλ,D : D ∈D p}and

Qφ,k,δ =
{
hφ,Hk,D : D ∈D p∧μk−1 (ΦD)≤ δ

}
.

The next proposition completes this section by giving the cover number bounds for the repre-
sentation error function classes induced by appropriate kernels, from which various generalization
bounds easily follow, such as Theorem 14.

Proposition 30 Let R be a set of representations with a cover number bound of (C/ε)n, and let
either φ be uniformly L Hölder condition of order α onR , or κ be uniformly L Hölder of order 2α on
R in each parameter, and let γ= supd∈R ‖φ(d)‖H . Then the function classesWφ,λ and Qφ,k,δ taken

as metric spaces with the supremum norm, have ε covers of cardinalities at most
(
C (λγL/ε)1/α

)np
and

(
C
(
kγ2L/(ε(1−δ))

)1/α)np
, respectively.

Proof We first consider the case of l1 constrained coefficients. If ‖a‖1 ≤ λ and maxd∈D ‖φ(d)‖H ≤
γ then by considerations applied in Section 3, to obtain an ε cover of the image of dictionaries
{mina ‖(ΦD)a−φ(x)‖H : D ∈D}, it is enough to obtain an ε/(λγ) cover of {ΦD : D ∈D}. If
also the feature mapping φ is uniformly L Hölder of order α over R then an (λγL/ε)−1/α cover
of the set of dictionaries is sufficient, which as we have seen requires at most

(
C (λγL/ε)1/α

)np
elements.

In the case of l0 constrained representation, the bound on λ due to Proposition 3 is γk (1−δ),
and the result follows from the above by substitution.

6. Conclusions

Our work has several implications on the design of dictionary learning algorithms as used in signal,
image, and natural language processing. First, the fact that generalization is only logarithmically
dependent on the l1 norm of the coefficient vector widens the set of applicable approaches to pe-
nalization. Second, in the particular case of k sparse representation, we have shown that the Babel
function is a key property for the generalization of dictionaries. It might thus be useful to modify
dictionary learning algorithms so that they obtain dictionaries with low Babel functions, possibly
through regularization or through certain convex relaxations. Third, mistake bounds (e.g., Mairal
et al. 2010) on the quality of the solution to the coefficient finding optimization problem may lead to
generalization bounds for practical algorithms, by tying such algorithms to k sparse representation.
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The upper bounds presented here invite complementary lower bounds. The existing lower
bounds for k = 1 (vector quantization) and for k = p (representation using PCA directions) are
applicable, but do not capture the geometry of general k sparse representation, and in particular
do not clarify the effective dimension of the unrestricted class of dictionaries for it. We have not
excluded the possibility that the class of unrestricted dictionaries has the same dimension as that of
those with a small Babel function. The best upper bound we know for the larger class, being the
trivial one of order O

((p
k

)
n2
/
m), leaves a significant gap for future exploration.

We view the dependence on μk−1 from an “algorithmic luckiness” perspective (Herbrich and
Williamson, 2003): if the data are described by a dictionary with low Babel function the general-
ization bounds are encouraging.
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Appendix A. Generalization with Fast Rates

In this appendix we give a proof, essentially due to Andreas Maurer, of the fast rates result Proposi-
tion 22. The assumption of l∞ cover numbers allows a much simpler argument than that in the more
general results by Mendelson (2003) and Bartlett et al. (2005), which also leads to better constants
for this case.
Proof (Of Proposition 22) We take G to be an 1

m cover of F as guaranteed by the assumption. Then
for any f ∈ F , there exists g ∈ G such that ‖ f −g‖∞ ≤ 1

m , and Lemmas 31 and 33 apply. we have
with probability at least 1− exp(−x), for every f ∈ F :

E f −Em f ≤ Eg+
1
m
−
(
Emg− 1

m

)
(4)

=
2
m
+Eg−Emg

≤ 2
m
+

√
2Varg(d ln(Cm)+ x)

m
+
2(d ln(Cm)+ x)

3m
(5)

≤ 2
m
+

(√
Var f +

2
m

)√
2(d ln(Cm)+ x)

m
+
2(d ln(Cm)+ x)

3m
(6)

Inequality (4) follows from Lemma 33 and

E f ≤ Eg+
1
m
and Em f ≥ Emg− 1

m
.

Inequality (5) follows from Lemma 31:

Pr

(
∃g ∈ G : Eg> Emg+

√
2Varg(d ln(Cm)+ x)

m
+
2(d ln(Cm)+ x)

3m

)
≤ e−x.
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Inequality (6) follows from Lemma 33 because√
2Varg(d ln(Cm)+ x)

m
=
√
Varg

√
2(d ln(Cm)+ x)

m
≤
(√

Var f +
2
m

)√
2(d ln(Cm)+ x)

m
.

After slight rearrangement, we have

E f −Em f ≤
√
2Var f (d ln(Cm)+ x)

m
+
2
m

√
2(d ln(Cm)+ x)

m
+
2(d ln(Cm)+ x)

3m
+
2
m

≤
√
2Var f (d ln(Cm)+ x)

m
+

(
9√
m
+2

)
(d ln(Cm)+ x)

3m
+
2
m

(7)

≤
√
2E f (d ln(Cm)+ x)

m
+

(
9√
m
+2

)
d ln(Cm)+ x

3m
+
2
m

(8)

≤
√
2E f (d ln(Cm)+ x)

m
+

(
9√
m
+2

)(
d+3
3d

)
d ln(Cm)+ x

m
(9)

Simple algebra, the fact that Var f ≤E f for a [0,1] valued function f and Lemma 37 respectively
justify inequalities (7), (8) and (9).

For convenience, we denote K =
(

9√
m +2

)(
d+3
3d

)
. We also denote A = Em f +K d ln(Cm)+x

m and

B= (d ln(Cm)+ x)/m, and note we have shown that with probability at least 1−exp(−x) we have
E f −A ≤ √

2BE f , which by Lemma 34 implies E f ≤ A+B+
√
2AB+B2. By substitution and

Lemma 36 we conclude that then:

E f ≤ A+B+
√
2AB+B2

= Em f +K
d ln(Cm)+ x

m
+B+

√
2BEm f +2BK

d ln(Cm)+ x
m

+B2

≤ Em f +K
d ln(Cm)+ x

m
+B+

√
2BEm f +

√
2BK

d ln(Cm)+ x
m

+B2

= Em f +

√
2Em f

d ln(Cm)+ x
m

+
(√

(2K+1)+K+1
) d ln(Cm)+ x

m

using Lemma 36 for the second inequality.
From Lemma 35 with a= Em f and b= 2(d ln(Cm)+ x)/m we find that for every λ> 0√

2Em f (d ln(Cm)+ x)/m≤ λEm f +
1
2λ

(d ln(Cm)+ x)/m

and the proposition follows.

The following lemma encapsulates the probabilistic part of the analysis.

Lemma 31 Let G be a class of [0,1] functions, of finite cardinality |G | ≤ (Cm)d. Then

Pr

(
∃g ∈ G : Eg> Emg+

√
2Varg(d ln(Cm)+ x)

m
+
2(d ln(Cm)+ x)

3m

)
≤ e−x.
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In proving Lemma 31, we use the following well known fact, which we recall for its notations.

Lemma 32 (Bernstein Inequality) Let Xi be independent zero mean variables with |Xi| ≤ c almost

surely then Pr
(
1
m ∑

m
i=1Xi > ε

)≤ exp(− mε2

2σ2+2cε/3

)
Proof (Of Lemma 31) Denote Xi = Eg−g(si), where {si}mi=1 is a set of IID random variables, we
recall the notation Emg= (1/m)∑m

i=1 g(si), then ∑
m
i=1Xi =∑m

i=1 (Eg−g(si)) =mEg−∑m
i=1 g(si) =

m(Eg−Em)⇒ 1
m ∑

m
i=1Xi = Eg−Em.

Using the fact our Xi are IID and the translation invariance of variance, we have

σ2 =
1
m

m

∑
i=1

Var(Xi)

= Var(Xi)

= Var(Eg−g(si))

= Varg.

Since ‖g‖∞ ≤ 1, we also know|Xi| ≤ 1.
Applying the Bernstein Inequality we get Pr (Eg−Emg> ε)≤ exp

(
− mε2
2Varg+2ε/3

)
for any ε>

0. We wish to bound the probability of a large deviation by exp(−y), so it is enough for ε to satisfy:

exp

(
− mε2

2Varg+2ε/3

)
≤ exp(−y) ⇐⇒ − mε2

2Varg+2ε/3
≤−y

⇐⇒ y≤ mε2

2Varg+2ε/3

⇐⇒ y

(
2Varg+

2ε
3

)
≤ mε2

⇐⇒ 0≤ ε2− 2y
3m

ε− 2yVarg
m

.

This quadratic inequality in ε has the roots:

(
2y/(3m)±

√
(2y/(3n))2+8yVarg/m

)
/2 and

a positive coefficient for ε2, then we require ε to not be between the roots. The root closer to −∞
is always negative because

√
(2y/(3m))2+8yVarg/m ≥

√
(2y/(3m))2 = 2y/(3m), but the other

is always strictly positive, so it is enough to take ε greater than both. In particular, by Lemma 36,

we may choose ε = 2y/(3m)+
√
2yVarg/m ≥

(
2y/(3m)±

√
(2y/(3m))2+8yVarg/m

)
/2, and

conclude that

Pr

(
Eg−Eng>

2y
3m

+

√
2yVarg
m

)
≤ exp(−y) .

3276



THE SAMPLE COMPLEXITY OF DICTIONARY LEARNING

Taking a union bound over all |G |, we have:

Pr

(
∃g ∈ G : Eg−Emg> y/

2y
3m

+

√
2yVarg
m

)
≤ |G |exp(−y) ⇐⇒

Pr

(
∃g ∈ G : Eg−Emg>

2y
3m

+

√
2yVarg
m

)
≤ exp(ln |G |− y)⇒

Pr

(
∃g ∈ G : Eg−Emg>

2y
3m

+

√
2yVarg
m

)
≤ exp

(
ln(Cm)d− y

)
.

Then we take −x= ln(Cm)d− y ⇐⇒ y= ln(Cm)d+ x and have:

Pr

⎛⎜⎜⎝∃g ∈ G : Eg−Emg>
2d ln(Cm)+ x

3m
+

√√√√2Varg
(
ln(Cm)d+ x

)
m

⎞⎟⎟⎠≤ exp(−x) .

Lemma 33 Let ‖ f −g‖∞ ≤ ε. Then under any distribution we have |E f −Eg| ≤ ε, and
√
Varg−√

Var f ≤ 2ε

Proof The first part is clear. For the second, we need mostly the triangle inequality for norms:

√
Var f −

√
Varg=

√
E ( f −E f )2−

√
E (g−Eg)2

= ‖ f −E f‖L2−‖g−Eg‖L2
≤ ‖ f −E f −g+Eg‖L2
≤ ‖ f −g‖L2 +‖E f −Eg‖L2
≤ ‖ f −g‖∞+‖E ( f −g)‖L2
≤ 2‖ f −g‖∞
≤ 2ε.

Lemma 34 If A,B≥ 0 and E f −A≤√
2E fB then E f ≤ A+B+

√
2AB+B2.
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Proof First note that if E f < A, we are done, because A,B≥ 0, then we assume E f ≥ A. Squaring
both sides of E f −A≤√

2E fB we find

(E f −A)2 ≤ 2E fB ⇐⇒ (E f )2−2E fA+A2 ≤ 2E fB
⇐⇒ (E f )2−2E fA−2E fB≤−A2
⇐⇒ (E f )2−2E fA−2E fB+(A+B)2 ≤−A2+(A+B)2

⇐⇒ (E f )2−2E f (A+B)+(A+B)2 ≤−A2+(A+B)2

⇐⇒ (E f − (A+B))2 ≤−A2+(A+B)2(√· of non-negative expressions)
⇐⇒ E f − (A+B)≤+

√
(A+B)2−A2

⇐⇒ E f ≤ (A+B)+
√
2AB+B2.

We omit the easy proofs of the next two lemmata.

Lemma 35 For β> 0,
√
2ab≤ βa+ b

2β .

Lemma 36 For any a,b≥ 0, √a+b≤√
a+

√
b

Lemma 37 For d,m≥ 1, x≥ 0 and C ≥ e we have(
9√
m
+2

)
d ln(Cm)+ x

3m
+
2
m
≤
(
9√
m
+2

)(
d+3
3d

)
d ln(Cm)+ x

m
.

Proof By the assumptions, 9√
m +2≥ 2 (fact(a)) and d ≤ d ln(Cm)+ x (fact (b)). Then

(
9√
m
+2

)
d ln(Cm)+ x

3m
+
2
m

=

(
9√
m
+2

)
d ln(Cm)+ x

3m
+
2
m

≤
(
9√
m
+2

)
d ln(Cm)+ x+3

3m

=

(
9√
m
+2

)
d ln(Cm)+ x+ 3

d d

3m

≤
(
9√
m
+2

)
d ln(Cm)+ x+ 3

d (d ln(Cm)+ x)

3m

=

(
9√
m
+2

)(
d+3
3d

)
d ln(Cm)+ x

m
.
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Appendix B. Proof of Theorem 5

In the proof we will use an isoperimetric inequality about the sphere in high dimensions.

Definition 38 The ε expansion of a set S in a metric space (X ,d) is defined as

Sε = {x ∈ X |d (x,S)≤ ε} ,

where d(x,A) = infa∈A d(x,a).

Lemma 39 (Lévy’s isoperimetric inequality 1951) Let C be one half of Sn−1, then

μ
((
Sn−1\Cε

))≤√
π
8 exp

(
− (n−2)ε2

2

)
.

Proof (Of Theorem 5) For any p ∈ N we denote [p] = {1, . . . , p} and for i ∈ [p], we define Wi =
maxΛ⊂[p]\i,|Λ|=k∑λ∈Λ |〈di,dλ〉|. Then it is enough to prove that P(∃i ∈ [p] :Wi ≥ δ) ≤√
π/2p(p−1)exp

(
−(n−2)

(
δ
k

)2
/2

)
.

Wi are identically distributed variables, then by a union bound, P(∃i ∈ [p] :Wi ≥ δ) ≤
pP(W1 ≥ δ).

By definition, P(W1 ≥ δ) =P
(
maxΛ⊂[p]\1,|Λ|=k∑ j∈Λ

∣∣〈d1,d j〉∣∣≥ δ
)
and since∑ j∈Λ

∣∣〈d1,d j〉∣∣≤
kmax j �=1

∣∣〈d1,d j〉∣∣ always,
P(W1 ≥ δ)≤ P

(
kmax

j �=1
∣∣〈d1,d j〉∣∣≥ δ

)
= P

(
max
j �=1

∣∣〈d1,d j〉∣∣≥ δ
k

)
Note that max j �=1

∣∣〈d1,d j〉∣∣ ≥ δ/k ⇐⇒ ∃ j ∈ [p]\i : ∣∣d1,d j∣∣ ≥ δ/k. Noting the random variables∣∣〈d1,d j〉∣∣ are identically distributed, and using a union bound on the choice of j, we have
P(W1 ≥ δ)≤ (p−1)P(|〈d1,d2〉| ≥ δ/k).

Since 〈d1,d2〉 is invariant to applying to d1 and d2 the same orthonogonal transformation,
we may assume without loss of generality that d2 = e1, and with another union bound note that
P(|〈d1,d2〉| ≥ δ/k) = P(|〈e1,d1〉| ≥ δ/k)≤ 2P(〈e1,d1〉 ≥ δ/k).

The fraction δ
k is positive, then the set of d1 on which 〈e1,d1〉< δ/k holds includes the negative

half sphere, and any point within δ/k of it. Then by the isoperimetric inequality of Lemma 39,

2P(〈e1,d1〉 ≥ δ/k)≤
√
π/2exp

(
−(n−2)(δ/k)2 /2

)
.

The theorem results by substitution.
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Abstract

The standard Bayesian Information Criterion (BIC) is derived under regularity conditions which
are not always satisfied in the case of graphical models with hidden variables. In this paper we
derive the BIC for the binary graphical tree models where all the inner nodes of a tree represent
binary hidden variables. This provides an extension of a similar formula given by Rusakov and
Geiger for naive Bayes models. The main tool used in this paper is the connection between the
growth behavior of marginal likelihood integrals and the real log-canonical threshold.

Keywords: BIC, marginal likelihood, singular models, tree models, Bayesian networks, real log-
canonical threshold

1. Introduction

A key step in the Bayesian learning of graphical models is to compute the marginal likelihood of
the data, which is the likelihood function averaged over the parameters with respect to the prior
distribution. Given a fully observed system, the theory of graphical models provides a simple way
to obtain the marginal likelihood. This was explained for example by Cooper and Herskovits (1992)
and Heckerman et al. (1995). However, when some of the variables in the system are hidden (never
observed), the exact determination of the marginal likelihood is typically intractable (for example
Chickering and Heckerman, 1997). This motivates the search for efficient techniques to approxi-
mate the marginal likelihood. In this paper we focus on the large sample behavior of the marginal
likelihood called the Bayes Information Criterion (BIC).

To present basic results on the BIC we need to introduce some notation. Let X be a random
variable with values in [m] := {1, . . . ,m}. Its distribution q = (q1, . . . ,qm) can be identified with
a point in the probability simplex Δm−1 = {x ∈ Rm : ∑i xi = 1, xi ≥ 0} ⊆ Rm. Consider a map
p : Θ→ Δm−1 and letM = p(Θ) be a parametric discrete model for X with the parameter space Θ
and parametrization p. Let X (N) = X1, . . . ,XN be a random sample from the distribution q ∈ Δm−1.
By ZN we denote the marginal likelihood and by L(θ;X (N),M ) = P(X (N)|M ,θ) the likelihood
function. Thus

ZN = P(X (N)|M ) =
∫
Θ
L(θ;X (N),M )ϕ(θ)dθ,

c©2011 Piotr Zwiernik.
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where θ denotes the model parameters and ϕ(θ) is a prior distribution on Θ. The stochastic com-
plexity is defined by

FN =− logZN
and the entropy function by

S=−
m

∑
i=1

qi logqi.

In statistical theory to obtain the BIC we usually require that the asymptotic limit of the likeli-
hood function, as N → ∞, is maximized over a unique point in the interior of the parameter space
where the Jacobian matrix of the parametrization is full rank. For the class of problems for which
this assumption is satisfied Schwarz (1978) and Haughton (1988) showed that, as N→ ∞,

EFN = NS+
d
2
logN+O(1),

where d = dimΘ (Watanabe, 2009, Corollary 1.15 and Section 6). The same formula works if the
limit of the likelihood is maximized over a finite number of points in the interior of Θ. Geometri-
cally, for large sample sizes function ZN concentrates around the maxima. This enables us to apply
the Laplace approximation locally in the neighborhood of each maximum.

It can be proved (see Proposition 5) that the above formula can be generalized for the case when
the set, over which the limit of the likelihood is maximized, forms a sufficiently regular compact
subset of the parameter space. Denote this subset by Θ̂. Then, as N→ ∞,

EFN = NS+
d−d′

2
logN+O(1), (1)

where d′ = dimΘ̂. Note that in our case Θ̂ is a set of zeros of a real analytic function. Therefore,
it will be always a semi-analytic set, that is given by {g1(θ) ≥ 0, . . . ,gr(θ) ≥ 0}, where gi are all
analytic functions. It follows that the dimension is well defined (Bierstone and Milman, 1988,
Remark 2.12).

In the case of models with hidden variables the locus of the points maximizing the limit of
the likelihood may not be sufficiently regular. In this case the likelihood will have a different
asymptotic behavior around different points and relatively more mass of the marginal likelihood
integral will be related to neighborhoods of singular points (see Figure 1). For these points we
cannot use the Laplace approximation. Nevertheless, the computation of the BIC is still possible
using results of Watanabe (2009) and some earlier works of Arnold, Varchenko and collaborators
(Arnold et al., 1988). This formula will differ from the standard BIC. First, the coefficient of logN
can be different from d−d′

2 in (1). Second, we sometimes encounter an additional log logN term
affecting the asymptotics (see Theorem 4).

Let again q be the true data generating distribution andM = p(Θ) a discrete parametric statisti-
cal model with the parameter space Θ. Let ϕ :Θ→ R be a prior distribution. Throughout the paper
we always assume:

(A1) The prior distribution ϕ is strictly positive, bounded and smooth on Θ.

(A2) There exists θ ∈ Θ such that p(θ) = q and q lies in the interior of the probability simplex.

(A3) The set Θ⊆ Rd is a compact and semianalytic set of dimension d.
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Figure 1: The case when the likelihood is maximized over a singular subset of Θ = [−1,1]2 given
by θ1θ2 = 0.

In this paper we consider an important class of parametric models with large number of hidden
variables, called general Markov models, assuming for simplicity that all the random variables in
the system are binary. This model class is extensively used in phylogenetics (Semple and Steel,
2003, Chapter 8) and in the analysis of causal systems (see Pearl and Tarsi, 1986). We begin with a
quick informal introduction to general Markov models which is then formalized in Section 3.1. Let
T = (V,E) be an undirected tree with the vertex setV and the edge set E. Let T r denote T rooted in
r, that is a tree with one distinguished vertex r and all the edges directed away from r. Consider the
Markov process Y = (Yv)v∈V on T r, which by definition is the Bayesian network on T r. Then, the
general Markov model is a family of marginal distributions over the subvector of Y corresponding
to the leaves of T r. It is well known that this model class does not depend on the rooting. Therefore,
we denote this model class, omitting the rooting, byMT .

For a tree T with n leaves we denote the subvector of Y corresponding to the leaves of T by
X = (X1, . . . ,Xn) with some arbitrary numbering of leaves. The subvector of Y corresponding to the
inner nodes is denoted by H. By construction the general Markov model is a statistical model for
X . Let q ∈MT be the true distribution and Σ̂ = [μ̂i j] be the covariance matrix of X . A surprising
fact proved in this paper is that the zeros in Σ̂, or equivalently, marginal independencies between
components of X , completely determine the asymptotics for the marginal likelihood.

We say that two nodes u,v of T are separated by another node w, if w lies on the unique
path between u and v. Let l2 denote the number of inner nodes v of T such that for each triple
i, j,k of leaves separated in T by v we have μ̂i jμ̂ikμ̂jk = 0 but there exist leaves i, j separated by v
such that μ̂i j �= 0. In terms of the conditional independence defining the general Markov model,
an inner node v contributes to l2 if for every three leaves i, j,k such that Xi ⊥⊥ Xj ⊥⊥ Xk|Hv at least
two are marginally independent but there exist two leaves i, j such that Xi ⊥⊥ Xj|Hv but not Xi ⊥⊥ Xj.
In addition, we say that an inner node v is degenerate (or q-degenerate) if for any two leaves i, j
separated by v we have μ̂i j = 0. In other words v is degenerate if for every i, j such that Xi ⊥⊥ Xj|Hv
also Xi ⊥⊥ Xj. All other nodes are called nondegenerate.

We denote by ne the number of edges of T and by nv the number of its nodes. The following
result is a special instance of (Watanabe, 2009, the Main Formula II, p. 34):
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Theorem 1 Let T r = (V,E) be a tree rooted in r and X (N) be a random sample from q. With
assumptions (A1), (A2) and (A3), if there are no q-degenerate nodes then, as N→ ∞,

EFN = NS+
nv+ne−2l2

2
logN+O(1).

Note, in particular, that the above formula is independent of the rooting.

Example 1 Let n= 4 and assume that data are generated from the Bayesian network given by the
quartet tree in Figure 2. If q is such that Σ̂ has no zeros then l2 = 0 and the coefficient of logN is

Figure 2: A quartet tree rooted in r.

11
2 . This corresponds to the classical BIC since the dimension of the parameter space is 11. If the
true distribution q∈MT satisfies in addition the marginal independence condition X1 ⊥⊥ (X2,X3,X4)
then μ̂1i = 0 for i = 2,3,4 and r contributes to l2. We depict this situation on the left hand side in
Figure 3. Here the dashed edge means that for every pair i, j of leaves separated by this edge μ̂i j = 0
and an inner node contributes to l2 if its valency, in the forest with the dashed edges removed, is 2.
In this case l2 = 1 and the coefficient of logN is 92 . If, in addition, q satisfies X1 ⊥⊥ X3 ⊥⊥ (X2,X4)
then l2 = 2 and hence the coefficient is 7

2 . The corresponding graph is depicted in the middle of
Figure 3.

Example 2 (Naive Bayes model) Consider a star tree with one inner node and n leaves. If there
are no degenerate nodes this corresponds to q being either a regular point or a type 1 singularity as
defined by Rusakov and Geiger (2005). If l2 = 0 then q is a regular point and the coefficient of logN
is equal to 2n+1

2 . If l2 = 1 then q is a type 1 singularity and the coefficient is equal to 2n−1
2 . This

corresponds exactly to (Rusakov and Geiger, 2005, Theorem 4). If the inner node is degenerate this
corresponds to the type 2 singularity which does not satisfy assumptions of Theorem 1.

If q is such that there are degenerate nodes the computation of the BIC is much harder because
the likelihood in this case maximizes over a singular subset of the parameter space. The case of star

Figure 3: Three graphs representing submodels of the quartet tree model with some additional
marginal independencies. In the third case the root is degenerate.
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trees was investigated by Rusakov and Geiger (2005). In this paper we obtain a closed form formula
for the BIC in the case of trivalent trees, whose all inner nodes have valency three. This is provided
in Theorem 2 which together with Theorem 1 are the main results of this paper. The importance of
trivalent trees follows mainly from the fact that any other tree model is a submodel of a model for a
trivalent tree. They also form a natural class for models of evolution in biology.

If T is trivalent then for every inner node v ∈ V there exist A,B,C ⊆ [n] such that A∪B∪C =
[n] and A,B,C are separated by v. By the defining conditional independence conditions we have
that XA ⊥⊥ XB ⊥⊥ XC|Yv, where XA = (Xi)i∈A. In this case we call v degenerate if q is such that
XA ⊥⊥ XB ⊥⊥ XC. Let l0 denote the number of degenerate nodes.

Theorem 2 Let T r =(V,E) be a rooted trivalent tree with n≥ 3 leaves and root r. With assumptions
(A1), (A2) and (A3) if r is degenerate but all its neighbors are not, then, as N→ ∞,

EFN = NS+

(
nv+ne−2l2

2
− 5l0+1

4

)
logN+O(1).

In all other cases, as N→ ∞,

EFN = NS+

(
nv+ne−2l2

2
− 5l0
4

)
logN− c log logN+O(1),

where c is a nonnegative integer. Moreover c = 0 always if either both r is nondegenerate or if r
and all its neighbors are degenerate.

The coefficients of logN above are given in this special form to show the correction term with
respect to the coefficient in the smooth case in Theorem 1.

Example 3 Consider again the quartet model from Example 1. If Σ̂ has no zeros then l2 = 0, l0 = 0
and we get the same formula as previously with coefficient 112 . Now assume that q is such that
in addition the marginal independence X1 ⊥⊥ X2 ⊥⊥ (X3,X4) holds. The situation is depicted on the
right hand side in Figure 3. The edge (r,a) is dashed since for any two leaves separated by this edge
the corresponding covariance is zero. In this case l2 = 1, l0 = 1, the root is degenerate but all its
neighbors are not and hence, by Theorem 2, the coefficient of logN is 3 and c= 0. Consider finally
the case when all off-diagonal elements of Σ̂ are zero. In this case l2 = 0 and l0 = 2 and hence the
coefficient of logN is also 3. However, later in Example 5 and Remark 29 we will see that c may be
strictly greater than zero in this case.

Following Rusakov and Geiger (2005), the main method of the proof is to change the coordi-
nates of the model so that the induced parameterization becomes simple. This gives us a much better
insight into the model structure which is described by Zwiernik and Smith (2011b) and Zwiernik
and Smith (2011a). Since the BIC is invariant with respect to these changes, the reparameterized
problem still gives the solution to the original question. Our main analytical tool is the real log-
canonical threshold (see for example Watanabe, 2009). This is an important geometric invariant
which in certain cases can be computed in a relatively simple way using discrete geometry. The rel-
evance of this invariant to the BIC is given by Theorem 4. We remark that the techniques developed
in this paper can be applied to obtain the BIC also in the case of non-trivalent trees.

The paper is organized as follows. In Section 2, following Watanabe (2009), we provide the
theory of asymptotic expansion of marginal likelihood integrals. This theory enables us to analyze
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the asymptotic behavior of the marginal likelihood without the standard regularity assumptions.
In Section 3 we define Bayesian networks on rooted trees. We also obtain a basic result on the
BIC in the case when the observed likelihood is maximised over a sufficiently smooth subset of the
parameter space. This gives a simple proof of Theorem 1. The proof of Theorem 2 is more technical
and hence divided into three main steps split between Sections 4, 5 and 6. Finally, in Section 7, we
combine all these results.

2. Asymptotics of Marginal Likelihood Integrals

In this section we introduce the real log-canonical threshold and link it to the asymptotic behavior
of marginal likelihood integrals. We present how this enables us to obtain the BIC in the case of a
general class of statistical models, which is mostly based on previous results of Sumio Watanabe.

2.1 The Real Log-canonical Threshold

Given θ0 ∈ Rd , let Aθ0(R
d) be the ring of real-valued functions f : Rd → R that are analytic at θ0.

Given a subset Θ ⊂ Rd satisfying (A3), let AΘ(R
d) be the ring of real functions analytic at each

point θ0 ∈ Θ. If f ∈ AΘ(R
d), then for every θ0 ∈ Θ, f can be locally represented as power series

centered at θ0. Denote by A≥
Θ (R

d) the subset of AΘ(R
d) consisting of all non-negative functions.

Usually the ambient space is clear from the context and in this case we omit it in our notation writing
Aθ0 , AΘ and A≥

Θ .

Definition 3 (The real log-canonical threshold) Given a compact semianalytic set Θ ⊆ Rd such
that dimΘ = d, a real analytic function f ∈ A≥

Θ (R
d) and a smooth positive function ϕ : Rd → R,

consider the zeta function defined as

ζ(z) =
∫
Θ
f (θ)−zϕ(θ)dθ. (2)

By Theorem 2.4 of Watanabe (2009) this function is extended to a meromorphic function on the
entire complex line and its poles are real and positive. The real log-canonical threshold of f de-
noted by rlctΘ( f ;ϕ) is the smallest pole of ζ(z). By multΘ( f ;ϕ) we denote the multiplicity of this
pole. By convention if ζ(z) has no poles then rlctΘ( f ;ϕ) = ∞ and multΘ( f ;ϕ) = d. If ϕ(θ) ≡ 1
then we omit ϕ in the notation writing rcltΘ( f ) and multΘ( f ). Define RLCTΘ( f ;ϕ) to be the pair
(rlctΘ( f ;ϕ),multΘ( f ;ϕ)), and we order these pairs so that (r1,m1)> (r2,m2) if r1 > r2, or r1 = r2
and m1 < m2.

LetM = p(Θ) ⊆ Δm−1 be a parametric discrete model and q ∈ Δm−1 be a probability distribu-
tion. WithM and q fixed the Kullback-Leibler distance K : Θ→ R is defined by

K(θ) =
m

∑
i=1

qi log
qi
pi(θ)

. (3)

It is well known that K(θ) ≥ 0 on Θ and K(θ) = 0 if and only if p(θ) = q. If q is the true data
generating distribution then assumption (A2) means that Θ̂= {θ : K(θ) = 0} is non-empty.

The following theorem gives the motivation to study the real log-canonical threshold in the
statistical context.
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Theorem 4 (Watanabe) Let M be a parametric discrete statistical model, q the true data gener-
ating distribution and K the corresponding Kullback-Leibler distance. With assumptions (A1), (A2)
and (A3), as N→ ∞,

EFN = NS+ rlctΘ(K;ϕ) logN+(multΘ(K;ϕ)−1) loglogN+O(1).

To compute the real log-canonical threshold we split the integral in (2) into a sum of finitely
many integrals over small neighbourhoods Θ0 of some points θ0 ∈ Θ for which we have efficient
tools of computation. We can always do this using the partition of unity since Θ is compact. For
each of the local integrals we use Hironaka’s theorem to reduce it to a locally monomial case. The
details are presented by Watanabe (2009).

Let θ0 ∈ Θ and letW0 be any sufficiently small open ball around θ0 in Rd . Then, by Theorem
2.4 of Watanabe (2009), RLCTW0( f ;ϕ) does not depend on the choice ofW0 and hence it is denoted
by RLCTθ0( f ;ϕ). If f (θ0) �= 0 then RLCTW0( f ;ϕ) = (∞,d) and hence we can constrain only to
points θ0 such that f (θ0) = 0. In our context this means that we consider only points in the q-fiber
Θ̂.

The local computations give the answer to the global question because, by (Lin, 2011, Proposi-
tion 2.5), the set of pairs RLCTΘ0( f ;ϕ) for θ0 ∈ Θ has a minimum and

RLCTΘ( f ;ϕ) = min
θ0∈Θ

RLCTΘ0( f ;ϕ), (4)

where Θ0 =W0 ∩Θ is the neighbourhood of θ0 in Θ. For each θ0 ∈ Θ to compute RLCTΘ0( f ;ϕ)
we consider two cases. If θ0 lies in the interior of Θ then we can assume Θ0 =W0 and hence
RLCTΘ0( f ;ϕ) = RLCTθ0( f ;ϕ). If θ0 ∈ bd(Θ), where bd(Θ) denotes the set of boundary points of
Θ, the computations may change significantly because the real log-canonical threshold depends on
the boundary conditions (cf. Example 2.7 of Lin, 2011). Nevertheless, it can be showed that at least
if there exists an open subsetU ⊆ Rd such thatU ⊃Θ0 and f ∈ A≥

U (R
d) then

RLCTΘ0( f )≥ RLCTθ0( f ). (5)

Because in this case ∫
W0
( f (θ))−zdθ=

∫
Θ0
( f (θ))−zdθ+

∫
W0\Θ0

( f (θ))−zdθ

which implies that RLCTθ0( f ) =min{RLCTΘ0( f ),RLCTW0\Θ0( f )}.
Finally, whenever Θ̂ �= /0 we have

RLCTΘ(K) = min
θ0∈Θ̂

RLCTΘ0(K). (6)

The following result enables us to obtain the BIC in the smooth case.

Proposition 5 Let M be a parametric statistical model with parametrization p, and q be the true
data generating distribution. Let K ∈A≥

Θ (R
d) be the Kullback-Leibler distance defined in (3). Given

(A1), (A2) and (A3) assume that there exists a smooth manifold M⊆Rd satisfying Θ̂=M∩Θ. Then,
as N→ ∞,

EFN = NS+
d−d′

2
logN+O(1),

where d′ = dim Θ̂.
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Proof By assumption (A1) there exist two constants c,C> 0 such that c<ϕ(θ)<C onΘ. Therefore

c
∫
Θ
(K(θ))−zdθ< ζ(z)<C

∫
Θ
(K(θ))−zdθ

and it follows that RLCTΘ(K;ϕ) = RLCTΘ(K). By Theorem 4 it suffices to prove the following
lemma which generalises Proposition 3.3 of Saito (2007).

Lemma 6 Let Θ ⊂ Rd be a compact semianalytic set and f ∈ A≥
Θ (R

d). If there exists a smooth

manifold M ⊆ Rd such that Θ̂ = M ∩Θ and θ0 ∈ Θ̂ then RLCTθ0( f ) = RLCTΘ( f ) = ( d−d
′

2 ,1)

where d′ = dimΘ̂.

To prove this recall that the real log-canonical threshold RLCTθ0( f ) does not depend on the choice
of a sufficiently small neighborhood W0 of θ0. Since Θ̂ = M ∩Θ and M is a smooth manifold it
follows that for each point θ0 of Θ̂ there exists an open neighborhood W0 of θ0 in Rd with local
coordinates w1, . . . ,wd centered at θ0 such that the local equation of Θ̂ is w21+ · · ·+w2c = 0, where
c= d−d′. A single blow-up π at the origin satisfies all the conditions of Hironaka’s Theorem since
in the new coordinates over one of the charts f (π(u)) = u21a(u) where a(u) is nowhere vanishing
and π′(u) = uc−11 . For other charts the situation is the same and hence RLCTθ0( f ) = (c/2,1). Since
by (4) RLCTΘ( f ) = minθ0∈ΘRLCTW0∩Θ( f ) it suffices to show that if θ0 is a boundary point of Θ
then RLCTW0∩Θ( f )≥ (c/2,1). But this follows from (5) and the fact that RLCTθ0( f ) = (c/2,1) as
θ0 is a smooth point ofM. The lemma is hence proved.

3. General Markov Models

In this section we formally define the general Markov modelMT and give in Theorem 1 the asymp-
totic expansion of the marginal likelihood when q andMT satisfy conditions of Proposition 5.

3.1 Definition of the Model Class

All random variables considered in this paper are assumed to be binary with the value either 0 or 1.
Let T r = (V,E) be a rooted tree. For any directed edge e= (k, l)∈ E we say that k and l are adjacent
and k is a parent of l and we denote it by k= pa(l). For every β∈{0,1}V let pβ=P(

⋂
v∈V{Yv= βv}).

TheMarkov process on T r is a sequence Y = (Yv)v∈V of binary random variables such that for each
β= (βv)v∈V ∈ {0,1}V

pβ(θ) = θ(r)βr ∏
v∈V\r

θ(v)βv|βpa(v) , (7)

where θ(v)βv|βpa(v) = P(Yv = βv|Ypa(v) = βpa(v)) and θ
(r)
βr

= P(Yr = βr). In a more standard statistical

language these models are just fully observed Bayesian networks on rooted trees. Recall that ne =
|E| and nv = |V |. Since θ(v)0|i + θ(v)1|i = 1 for all v ∈ V and i = 0,1 then the Markov process on T r

defined by (7) has exactly 2ne+1 free parameters in the vector θ: one for the root distribution θ
(r)
1

and two for each edge (u,v) ∈ E given by θ(v)1|0 and θ
(v)
1|1. The parameter space is ΘT = [0,1]2ne+1.

The general Markov model on T r is induced from the Markov process on T r by assuming
that all the inner nodes represent hidden random variables. Hence we consider induced marginal
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probability distributions over the leaves of T r. The set of leaves is denoted by L. We assume that
T r has n leaves and hence we can associate L with the set [n] given some arbitrary numbering of
the leaves. Let Y = (X ,H) where X = (X1, . . . ,Xn) denotes the variables represented by the leaves
of T r and H denotes the vector of variables represented by inner nodes, that is X = (Yv)v∈L and
H = (Yv)v∈V\L. We define the general Markov modelMT to be the model in the probability simplex
Δ2n−1 obtained by summing out in (7) over all possible values of the inner nodes. By definitionMT

is the image of the map p :ΘT → Δ2n−1 given by

pα(θ) =∑
H
θ(r)βr ∏

v∈V\r
θ(v)βv|βpa(v) for any α ∈ {0,1}L,

where H is the set of all vectors β= (βv)v∈V such that (βv)v∈L = α. Because the model class does
not depend on the rooting we usually omit the root r in the notation. For a more detailed treatment
see (Semple and Steel, 2003, Chapter 8).

3.2 The BIC in the Smooth Case

For q ∈ MT let Σ̂ = [μ̂i j] ∈ Rn×n be the corresponding covariance matrix of the random vector
represented by the leaves of T . We define the q-fiber as

Θ̂T = {θ ∈ ΘT : p(θ) = q} = {θ ∈ ΘT : K(θ) = 0}.
The geometry of Θ̂T is directly related to the real log-canonical threshold of the Kullback-Leibler
distance. We now show that this geometry is determined by zeros in Σ̂. For this we need to introduce
some new concepts. We say that that an edge e ∈ E is isolated relative to q if μ̂i j = 0 for all i, j ∈ [n]
such that e ∈ E(i j), where E(i j) denotes the set of edges in the path joining i and j. By Ê ⊆ E we
denote the set of all edges of T which are isolated relative to q. By T̂ = (V,E \ Ê) we denote the
forest obtained from T by removing edges in Ê.

We now define relations on Ê and E \ Ê. For two edges e,e′ with either {e,e′} ⊂ Ê or {e,e′} ⊂
E \ Ê write e∼ e′ if either e= e′ or e and e′ are adjacent and all the edges that are incident with both
e and e′ are isolated relative to q. Let us now take the transitive closure of ∼ restricted to pairs of
edges in Ê to form an equivalence relation on Ê. Similarly, take the transitive closure of∼ restricted
to the pairs of edges in E \ Ê to form an equivalence relation in E \ Ê. We will let [Ê] and [E \ Ê]
denote the set of equivalence classes of Ê and E \ Ê respectively.

By construction all the inner nodes of T have either degree zero in T̂ or the degree is strictly
greater than one. We say that a node v ∈V is non-degenerate with respect to q if either v is a leaf of
T or degv ≥ 2 in T̂ . Otherwise we say that the node is degenerate with respect to q. Note that this
coincides with the definition of a degenerate node given in the introduction. Moreover, the isolated
edges in Examples 1 and 3 correspond precisely to the dashed edges in Figure 3. The set of all
nodes which are degenerate with respect to q is denoted by V̂ .

Proposition 7 (Zwiernik and Smith, 2011b) Let T be a tree with n leaves. Let q ∈MT and let
T̂ be defined as above. If each of the inner nodes of T has degree at least two in T̂ then Θ̂T is a
manifold with corners and dimΘ̂T = 2l2, where l2 is the number of nodes which have degree two in
T̂ .

In this way we can compute the asymptotic behavior of the marginal likelihood in the case when
assumptions of Proposition 7 are satisfied.
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Proposition 8 Let T be a tree and MT be the corresponding general Markov model. Let q ∈MT

be the real distribution generating the data such that each inner node of T has degree at least two
in T̂ . Then

RLCTΘT (K) =

(
nv+ne−2l2

2
,1

)
.

Proof Since every inner node of T has degree at least two in T̂ then by Proposition 7 there exists
a smooth manifold M ⊆ Rnv+ne such that Θ̂T =M∩ΘT and dimΘ̂ = 2l2. The result follows from
Proposition 5 and the fact that dimΘT = 2ne+1= nv+ne.

By Theorem 4, Proposition 8 implies Theorem 1 since l2 in its statement is exactly the number
of inner nodes v such that the degree of v in T̂ is two.

Remark 9 Theorem 1 is still true if (A1) is replaced by the assumption that the prior distribution is
bounded on ΘT and there exists an open subset of ΘT with a non-empty intersection with Θ̂T where

the prior is strictly positive. In particular we can use conjugate Beta priors θ(v)1|i ∼ Beta(α
(v)
i ,β(v)i )

as long as α(v)
i ,β(v)i ≥ 1.

4. The Ideal-theoretic Approach

In this section we define the real log-canonical threshold of an ideal. Theorem 11 translates the
problem of finding the real log-canonical threshold of the Kullback-Leibler distance into algebra.
We then analyse general Markov models from this perspective. In Theorem 14 we apply a useful
change of coordinates which enables us to work out the real log-canonical threshold in the singular
case.

4.1 The Real Log-canonical Threshold of an Ideal

Let f1, . . . , fr ∈ AΘ then the ideal generated by f1, . . . , fr is a subset of AΘ denoted by

〈 f1, . . . , fr〉= { f ∈ AΘ : f (θ) =
r

∑
i=1

hi(θ) fi(θ),hi ∈ AΘ}.

Following Lin (2011) we generalize the notion of the real log-canonical thresholds to the ideal
I = 〈 f1, . . . , fr〉. This mirrors the analytic definition of the log-canonical threshold of an ideal (see
for example Lazarsfeld, 2004, Section 9.3.D). By definition

RLCTΘ(I;ϕ) = RLCTΘ(〈 f1, . . . , fr〉;ϕ) := RLCTΘ( f ;ϕ),

where f (θ) = f 21 (θ)+ · · ·+ f 2r (θ). By (Lin, 2011, Proposition 4.5) the real log-canonical threshold
does not depend on the choice of generators of I.

The following important proposition enables us to use the full power of the ideal-theoretic ap-
proach.

Proposition 10 Let f ,g ∈ AΘ(R
d) and let I be an ideal in AΘ(R

d). Then
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i Let ρ :Ω→Θ be a proper real analytic isomorphism and ρ∗I = { f ◦ρ : f ∈ I} be the pullback of
I to AΩ. Then,

RLCTΘ(I;ϕ) = RLCTΩ(ρ∗I;(ϕ◦ρ)|ρ′|),
where |ρ′| denotes the Jacobian of ρ.

ii If ϕ is positive and bounded on Θ then

RLCTΘ(I;ϕ) = RLCTΘ(I).

iii If there exist constants c,c′> 0 such that cg(θ)≤ f (θ)≤ c′g(θ) for every θ∈Θ thenRLCTΘ( f )=
RLCTΘ(g).

iv Let I = 〈 f1, . . . , fr〉 and J = 〈g1, . . . ,gr〉 where gi = ui fi for i = 1, . . . ,r and there exist positive
constants c,C such that c< ui(θ)<C for all θ∈Θ and for all i= 1, . . . ,r. Then RLCTΘ(I) =
RLCTΘ(J).

The ideal-theoretic approach proves to be useful in a fairly general statistical context:

Theorem 11 (Lin, 2011) Let p = (p1, . . . , pm) : Θ→ Δm−1 be a polynomial mapping and M =
p(Θ) be the statistical model of X with values in [m]. For a given point q ∈M define

I = 〈p1(θ)−q1, . . . , pm(θ)−qm〉 ⊂ AΘ. (8)

Let q denote the true data generating distribution and K(θ) be the corresponding Kullback-Leibler
distance defined in (3). Moreover, let ϕ the prior distribution on Θ satisfying (A1). Then

RLCTΘ(K;ϕ) = RLCTΘ(I ;ϕ) = RLCTΘ(I ), (9)

where the second equation in (9) follows from Proposition 10 ii.

We now perform the change of coordinates fθω : ΘT → ΩT , fpκ : Δ2n−1 → KT discussed in
detail by Zwiernik and Smith (2011b). We have the following diagram, where the top row is the
original parametrization and where the induced parameterisation ψT is given in the bottom row.

ΘT

fθω
��

p
�� Δ2n−1

fpκ
��

ΩT

fωθ

��

ψT
�������� KT

fκp

��

Here fθω and fpκ are polynomial isomorphisms, and hence, by Proposition 10 (i), in our compu-
tations of the real-log canonical threshold, we can alternatively constrain to the bottom row of the
diagram. We denote the coordinates of KT by κ = (κI) for I ⊆ [n], I �= /0. The coordinates of ΩT

are denoted by ω= ((sv),(ηuv)) for all v ∈V and (u,v) ∈ E. Both ω and κ have a statistical mean-
ing as described by Zwiernik and Smith (2011b). However, in this work we use them in a purely
algebraic manner. We just note that the coordinates of KT are certain functions of the moments. In
particular, κi = EXi for i = 1, . . . ,n and each κi j corresponds to the covariance between Xi and Xj.
Interpretation of other coordinates is more complicated.
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Simple linear constraints definingΘT become only slightly more complicated when expressed in
the new parameters. The choice of parameter values is not free anymore in the sense that constraints
for each of the parameters involve other parameters. The new parameter space ΩT is given by
sr ∈ [−1,1] and for each (u,v) ∈ E (cf. Equation (19) in Zwiernik and Smith, 2011b)

−(1+ sv)≤ (1− su)ηuv ≤ (1− sv)
−(1− sv)≤ (1+ su)ηuv ≤ (1+ sv).

(10)

In the new coordinate system the situation is more tractable because ψT has a simpler structure.

Proposition 12 (Zwiernik and Smith, 2011b) Let T r = (V,E) be a rooted trivalent tree with n
leaves. Then for each i= 1, . . . ,n one has κi(ω) = 1

2(1− si) and

κI(ω) =
1
4
(1− s2r(I)) ∏

v∈V (I)\I
sdegv−2v ∏

(u,v)∈E(I)
ηuv for all |I| ≥ 2,

where the degree of v ∈ V (I) is considered in T (I) = (V (I),E(I)), which is the smallest subtree of
T containing I.

Let I denote the pullback of the ideal I ⊆ AΘT to the ideal in AΩT induced by fθω. Thus
I = f ∗ωθI = { f ◦ fωθ : f ∈ I }. The ideal describes Ω̂T = fθω(Θ̂T ) as a subset of ΩT . Let [n]≥k
denote all subsets of [n] with at least k elements. Then the pullback of I satisfies

I = 〈κ1− κ̂1, . . . ,κn− κ̂n〉+
(
∑

I∈[n]≥2
〈κI(ω)− κ̂I〉

)
, (11)

where κ̂I are the corresponding coordinates of fpκ(q). Here the sum of ideals results in another ideal
with the generating set which is the sum of generating sets of the summands.

For local computations we use the following reduction.

Proposition 13 (Lin, 2011) Let I ⊆ Ax0(Rm), J ⊆ Ay0(Rn) be two ideals. If RLCTx0(I) = (λx,mx)
and RLCTy0(J) = (λy,my) then

RLCT(x0,y0)(I+ J) = (λx+λy,mx+my−1).

Theorem 14 Let T r be a rooted tree with n leaves and q ∈MT . Let I be the ideal defined by (8)
and I the ideal defined by (11). Then

RLCTΘT (I ) = RLCTΩT (I ) = min
ω0∈Ω̂T

RLCTΩ0(I ),

whereΩ0 is a sufficiently small neighborhood of ω0 inΩT . Moreover, letJ =∑I∈[n]≥2〈κI(ω)− κ̂I〉.
Then, for every ω0 ∈ Ω̂T

RLCTω0(I ) =
(n
2
,0
)
+RLCTω0(J ). (12)
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Proof Since fωθ is an isomorphism with a constant Jacobian then the first part of the theorem
follows from Proposition 10 (i). Let nowW be an ε-box around ω0 = ((s0v),(η

0
uv)). If T is rooted

in an inner leaf then by Proposition 12 the ideal J does not depend on s1, . . . ,sn. Since for every
i= 1, . . . ,n the expression κi− κ̂i depends only on si then

RLCTω0(〈κ1− κ̂1, . . . ,κn− κ̂n〉) = (
n
2
,1),

which can be easily checked (see for example Proposition 3.3 of Saito, 2007). Equation (12) follows
from Proposition 13.

Now assume that T is rooted in one of the leaves. In this case both 〈κ1− κ̂1, . . . ,κn− κ̂n〉 and
J depend on sr because κI(ω) = (1− s2r ) fI(ω) for some monomial fI(ω) whenever r ∈ I. There-
fore, we cannot use Proposition 13 directly. However, by assumption (A2), q lies in the interior of
the probability simplex and hence κ̂i ∈ (0,1) for i = 1, . . . ,n which is equivalent to s0i ∈ (−1,1).
Therefore, for each ω0 one can find two positive constants c,C such that c ≤ 1− s2r ≤C inW . By
Proposition 10 (iv) the real log canonical threshold of J in W is equal to the real log-canonical
threshold of a an ideal with generators induced from the generators ofJ by replacing each 1− s2r
by 1. Now again (12) follows from Proposition 13.

5. The Main Reduction Step

Recall that κ̂i j = Cov(Xi,Xj). In this section we prove a technical result which enables us to reduce
the computations of RLCTω0(J ) to two simpler cases. First, when q is such that κ̂i j �= 0 for all
i, j ∈ [n]. Second, when q is such that κ̂i j = 0 for all i, j ∈ [n]. Moreover, the second case is reduced
to computations for monomial ideals which are amenable to various combinatorial techniques.

Let T be a trivalent tree with n ≥ 3 leaves and let q ∈MT . If all the equivalence classes in [Ê]
are singletones or [Ê] is empty, which is equivalent to every inner node being of degree at least two
in T̂ , then Theorem 1 gives us the asymptotic behavior of the marginal likelihood. Thus, let assume
that there is at least one class in [Ê] which is not a singleton. Let T1, . . . ,Tk denote trees representing
the equivalence classes in [Ê] and let S1, . . . ,Sm denote trees induced by the connected components
of E \ Ê. Let L1, . . .Lk denote the sets of leaves of T1, . . . ,Tk. For each Si i= 1, . . . ,m by Remark 5.2
(iv) of Zwiernik and Smith (2011b) its set of leaves denoted by [ni] is a subset of [n]. For each Si
the number of nodes, edges and nodes of degree 2 in T̂ is denoted by niv, n

i
e and l

i
2 respectively. We

illustrate this notation in Figure 4 where the dashed edges represent edges in Ê. Simpler examples
are given in Figure 3.

Lemma 15 Let T = (V,E) be a trivalent rooted tree with n ≥ 4 leaves and let q ∈MT . Let J =

∑I∈[n]≥2〈κI(ω)− κ̂I〉 as in Theorem 14. If ω0 ∈ Ω̂T then

RLCTω0(J ) =
m

∑
i=1

RLCTω0(J (Si))+
k

∑
i=1

RLCTω0(J (Ti))+(0,1−m− k), (13)

whereJ (Si)=∑I∈[ni]≥2〈κI(ω)− κ̂I〉 for i= 1, . . . ,m andJ (Ti)=∑w,w′∈Li〈κww′(ω)〉 for i= 1, . . . ,k.

Proof We first show that ∑I:κ̂I=0〈κI(ω)〉 = ∑i, j:κ̂i j=0〈κi j(ω)〉. The inclusion “⊇” is clear. We now
show “⊆”. First note that for every I ∈ [n]≥2 if κ̂I = 0 then either η0e = 0 for an edge e ∈ E(I) or
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Figure 4: An example of a forest T̂ induced by a point q.

s2r(I) = 1. There exist i, j ∈ I such that such that κ̂i j = 0 and the r(i j) = r(I). It follows by Proposition
12 that κI(ω) = κi j(ω) f (ω) for a polynomial f (ω) and therefore the inclusion “⊆” is also true. This
implies

J = ∑
I:κ̂I �=0

〈κI(ω)− κ̂I〉+ ∑
I:κ̂I=0

〈κI(ω)〉=
m

∑
i=1

J (Si)+ ∑
i, j:κ̂i j=0

〈κi j(ω)〉.

Hence, to proof the lemma, it suffices to show that for every ω0 ∈ Ω̂T

RLCTω0(
m

∑
i=1

J (Si)+ ∑
i, j:κ̂i j=0

〈κi j(ω)〉) (14)

is equal to the right hand side of (13).
If e ∈ E \ Ê then by definition there exist i, j ∈ [n] such that κ̂i j �= 0 and e ∈ E(i j). Since,

by Proposition 12, κ̂i j = η0e f (ω0) for a polynomial f then in particular η
0
e �= 0. It follows that

for a sufficiently small ε for each E ′ ⊆ E \ Ê one can find positive constants c(ε),C(ε) such that
c(ε) ≤ ∏e∈E ′ ηe ≤ C(ε) holds in the ε-box around ω0. Similarly if v /∈ V̂ (cf. Section 3.2) then
there exist positive constants d(ε),D(ε) such that d(ε) ≤ (1− s2v) ≤ D(ε) in the ε-box around ω0.
It follows by Proposition 10 (iv) that in computations of the real log-canonical threshold in (14) we
can replace each κi j(ω) by

(1− s2r(i j))
δr(i j) ∏

e∈E(i j)∩Ê
ηe (15)

where δr(i j) = 1 if r(i j) ∈ V̂ and δr(i j) = 0 otherwise. Thus, in (14) we can replace the ideal

∑i, j:κ̂i j=0〈κi j(ω)〉 by the ideal J1 = ∑i, j: κ̂i j=0〈(1− s2r(i j))
δr(i j)∏e∈E(i j)∩Ê ηe〉. However, if we de-

fine

J2 =
k

∑
i=1

∑
w,w′∈Li

〈(1− s2r(ww′))
δr(ww′) ∏

e∈E(ww′)
ηe〉 (16)

then it can be checked thatJ1 = J2. To show that J2 ⊆ J1, fix j = 1, . . . ,k and w,w′ ∈ Lj, and
show that the corresponding generator of J2 lies in J1. Note that by construction each of w,w′

either has degree two in T̂ or is a leaf of T . Hence, by the definition of Ê, there exist i, j ∈ [n] such
that E(i j)∩ Ê = E(ww′). It follows that each generator in (16) is also in the set of generators ofJ1

and hence J2 ⊆ J1. To show the opposite inclusion, note that, if E(i j) intersects with more than
one component T1, . . . ,Tk then the corresponding generator in (15) is a product of some generators
in (16) and hence it lies inJ2.
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Since the generators of everyJ (Si) for i= 1, . . . ,m and every

∑
w,w′∈Lj

〈(1− s2r(ww′))
δr(ww′) ∏

e∈E(ww′)
ηe〉

for j = 1, . . . ,k involve disjoint sets of variables then by Proposition 13 the term in (14) is equal to

m

∑
i=1

RLCTω0(J (Si))+
k

∑
i=1

RLCTω0

(
∑

w,w′∈Lj
〈(1− s2r(ww′))

δr(ww′) ∏
e∈E(ww′)

ηe〉
)
+(0,1−m− k).

Again by Proposition 10 (iv) for each i= 1, . . . ,k

RLCTω0

(
∑

w,w′∈Li
〈(1− s2r(ww′))

δr(ww′) ∏
e∈E(ww′)

ηe〉
)

= RLCTω0(J (Ti))

which finishes the proof.

We note that, by Proposition 8 and the formula in (12) for each Si:

RLCT(J (Si))+
ni
2
=
niv+nie−2li2

2
. (17)

6. The Case of Zero Covariances

In this subsection we assume that q ∈MT is such that κ̂i j = 0 for all i, j ∈ [n]. This implies the full
joint marginal independence X1 ⊥⊥ ·· · ⊥⊥ Xn. The aim is to prove the following proposition.

Proposition 16 Let T be a trivalent tree with n �= 3 leaves rooted in r ∈V. Let q ∈MT be such that
κ̂i j = 0 for all i, j ∈ [n]. Let J be the ideal defined in Theorem 14. Then

min
ω0∈Ω̂T

RLCTω0(J ) =
(n
4
,m

)
,

where m= 1 if either r is a leaf of T or r together with all its neighbors are all inner nodes of T . In
all other cases we cannot obtain an explicit upper bound for m and hence m≥ 1.

The strategy of the proof of Proposition 16 is as follows. First, in Section 6.1, we show that
the local computations can be restricted to a special subset of Ω̂T over which J can be replaced
by a monomial ideal. Then, in Section 6.2, we present a method to compute the real log-canonical
threshold of a monomial ideal. We use this method in Section 6.3.

6.1 The Deepest Singularity

Note that, by Lemma 15, RLCTω0(J ) = RLCTω0(∑i, j∈[n]〈κi j(ω)〉) so without loss of generality
we will assume in this section that J = ∑i, j∈[n]〈κi j(ω)〉. Moreover, for each v ∈ V these ideals
depend on sv only through the value of s2v . It follows that the computations can be reduced only to
points satisfying sv ≥ 0 for all inner nodes v of T . Henceforth, in this section, we always assume
this is the case. We define the deepest singularity of Ω̂T as

Ω̂deep := {ω ∈ Ω̂T : ηe = 0 for all e ∈ Ê, sv = 1 for all v ∈ V̂}.
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We note that, since κ̂i j = 0 for all i, j ∈ [n], then Ê = E and V̂ is equal to the set of all inner nodes
of T . It follows that Ω̂deep is an affine subspace constrained to ΩT with all coordinates either 0 or 1.

Proposition 17 Let T be a tree with n leaves. Let q ∈MT such that κ̂i j = 0 for all i, j ∈ [n]. Then

min
ω0∈Ω̂T

RLCTω0(J ) = min
ω0∈Ω̂deep

RLCTω0(J ).

Proof We first show that Ω̂T is a union of affine subspaces constrained to ΩT with a common
intersection given by Ω̂deep. Let V0 ⊆ V̂ and E0 ⊆ Ê and

Ω(V0,E0) = {ω ∈ Ω̂T : sv = 1 for all v ∈V0, ηuv = 0 for all (u,v) ∈ E0}.

We say that (V0,E0) isminimal for Σ̂ if for every pointω inΩ(V0,E0) and for every i, j∈ [n] κi j(ω)= 0,
and furthermore, that (V0,E0) is minimal with such a property (with respect to inclusion on both
coordinates). We now show that

Ω̂T =
⋃

(V0,E0) min.
Ω(V0,E0).

The first inclusion “⊆” follows from the fact that if ω ∈ Ω̂T then κi j(ω) = κ̂i j = 0 for all i, j ∈ [n].
Therefore ω ∈Ω(V0,E0) for some minimal (V0,E0). The second inclusion is obvious.

Each Ω(V0,E0) is an affine subspace in R|V |+|E|, denoted by M(V0,E0), constrained to ΩT . Let S
denote the intersection lattice of all M(V0,E0) for (V0,E0) minimal with ordering denoted by ≤. For
each i ∈ S letM(i) denote the corresponding intersection and define

Si =M(i) \
⋃
j<i

M( j).

In this way we obtain an S -induced decomposition of R|V |+|E| (cf. Section 3.1 in Goresky and
MacPherson, 1988).

By (Lazarsfeld, 2004, Example 9.3.17) the function ω �→ rlctω(J ) is lower semicontinuous
(the argument used there works over the real numbers). This means that for every ω0 ∈ ΩT and
ε> 0 there exists a neighborhoodU of ω0 such that rlctω0(J )≤ rlctω(J )+ε for all ω ∈U . Since
the set of values of the real log-canonical threshold is discrete this means that for every ω0 ∈ Ω̂T

and any sufficiently small neighborhoodW0 of ω0, one has rlctω0(J ) ≤ rlctω(J ) for all ω ∈W0.
Moreover, rlct(J ) is constant on each Si. Since for any neighborhoodW0 of ω0 ∈ Ω̂deep we have
W0∩Si �= /0 for all i∈ S then necessarily the minimum of the real log-canonical threshold is attained
for a point in the deepest singularity.

Proposition 17 shows that in the singular case we can restrict our analysis to the neighborhood
of Ω̂deep. Often however, we also consider points in a bigger set

Ω̂0 = {ω ∈ Ω̂T : ηuv = 0 for all (u,v) ∈ Ê}.
Note that Ω̂deep lies on the boundary of ΩT (cf. (10)) but Ω̂0 also contains internal points of ΩT

which will be crucial for some of the arguments later.
We now formulate another technical lemma which enables us to reduce computations to the

monomial case.
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Lemma 18 Assume that q ∈MT is such that κ̂i j = 0 for all i, j ∈ [n]. Let J (ω0) be the ideal J
translated to the origin. Then for every ω0 ∈ Ω̂0

RLCT0(J (ω0)) = RLCT0(J ′), (18)

where J ′ is a monomial ideal such that each κi j(ω+ω0) in the set of generators of J (ω0) is
replaced either by

sr(i j)∏(u,v)∈E(i j)ηuv if s0r(i j) = 1, or by

∏(u,v)∈E(i j)ηuv if s0r(i j) �= 1.

Proof Let i, j ∈ [n] and assume that ω0 = ((s0v),(η
0
e)) ∈ Ω̂0 so that η0e = 0 for all e ∈ E. Then, by

Proposition 12:

κi j(ω+ω0) =
1
4
(1− (sr(i j) + s0r(i j))

2) ∏
e∈E(i j)

ηe. (19)

If s0r(i j) �= 1 for a sufficiently small ε > 0 there exist positive constants c(ε), C(ε) such that c(ε) <
1− (sr(i j) + s0r(i j))

2 <C(ε) for sr(i j) ∈ (−ε,ε). Therefore, by Proposition 10 (iv), we can replace this
term in (19) with 1. If s0r(i j) = 1 rewrite 1− (1+ s2r(i j))

2 as −sr(i j)(2+ sr(i j)). For a sufficiently small
ε we can find two positive constants c(ε),C(ε) such that c< 2+ sr(i j) <C whenever sr(i j) ∈ (−ε,ε).
Again, by Proposition 10 (iv), we can replace 2+ sr(i j) with 1. This proves Equation (18).

Since J ′ is a monomial ideal then, by (Lin, 2011, Proposition 4.11) and Theorem 20 below, we
can compute RLCT0(J ′) using the method of Newton diagrams. We present this method in the
following subsection.

6.2 Newton Diagram Method

Given an analytic function f ∈A0(Rd) we pick local coordinates x= (x1, . . . ,xd) in a neighborhood
of the origin. This allows us to represent f as a power series in x1, . . . ,xd such that f (x) = ∑α cαx

α.
The exponents of terms of the polynomial f are vectors in Nd . The Newton polyhedron of f denoted
by Γ+( f ) is the convex hull of the subset

{α+α′ : cα �= 0,α′ ∈ Rd
≥0}.

A subset γ⊂ Γ+( f ) is a face of Γ+( f ) if there exists β ∈ Rd such that

γ= {α ∈ Γ+( f ) : 〈α,β〉 ≤ 〈α′,β〉 for all α′ ∈ Γ+( f )}.

If γ is a subset of Γ+( f ) then we define fγ(x) = ∑α∈γ∩Nd cαxα. The principal part of f is, by
definition, the sum of all terms of f supported on all compact faces of Γ+( f ).

Example 4 Let f (x,y) = x3+2xy+6x2y+3x4y+ y2. Then the Newton diagram looks as follows:
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where the dots correspond to the terms of f . There are only two bounded facets of Γ+( f ) and the
principal part of f is equal to x3+ xy+ y2.

Definition 19 The principal part of the power series f with real coefficients is R-nondegenerate if
for all compact faces γ of Γ+( f ){

x ∈ Rn :
∂ fγ
∂x1

(x) = · · ·= ∂ fγ
∂xn

(x) = 0

}
⊆ {ω ∈ Rn : x1 · · ·xn = 0} .

From the geometric point of view this condition means that the singular locus of the hypersurface
defined by fγ(x) = 0 lies outside of (R∗)n for all compact faces γ of Γ+( f ).

The following theorem shows that, if the principal part of f is R-nondegenerate and f ∈A≥
Θ , the

computations are greatly facilitated. An example of an application of these methods in statistical
analysis can be found in Yamazaki and Watanabe (2004).

Theorem 20 (Arnold et al., 1988) Let f ∈ A≥
0 (R

d) and f (0) = 0. If the principal part of f is R-
nondegenerate then RLCT0( f ) = ( 1t ,c) where t is the smallest number such that the vector (t, . . . , t)
hits the polyhedron Γ+( f ) and c is the codimension of the face it hits.

For a proof see Theorem 4.8, Lin (2011).
Let now f ∈ A≥

θ0
such that f (θ0) = 0. We can then center f at θ0 obtaining a function in A≥

0 .
Then we can use Theorem 20 to compute RLCTθ0( f ).

Remark 21 Note that this theorem in general will not give us RLCTΘ0( f ) if 0 is a boundary point
of Θ in which case we also need to resolve the defining inequalities. For a discussion see (Arnold
et al., 1988, Section 8.3.4) and Example 2.7 in Lin (2011).

6.3 Proof of Proposition 16

Let n≥ 4. For each ω0 ∈ Ω̂0, let δ= δ(ω0) ∈ {0,1}V denote the indicator vector satisfying δv = 1
if v ∈V is such that s0v = 1 and δv = 0 otherwise. In particular δi = 0 for all i= 1, . . . ,n because the
leaves, by (A2), are assumed to be non-degenerate. LetVδ=Rne+|δ|=R|δ|×Rne , where |δ|=∑v δv,
be the real space with variables representing the edges (xe)e∈E and nodes (yv) for all v such that
δv = 1. With some arbitrary numbering of the nodes and edges we order the variables as follows:
y1 ≺ ·· · ≺ y|δ| ≺ xe1 ≺ ·· · ≺ xene . In Lemma 18, for each ω0 ∈ Ω̂0, we reduced our computations
to the analysis of RLCT0(J ′) where J ′ has a simple monomial form. Let Qδ be a polynomial
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function on ΩT defined as a sum of squares of generators of J ′. In particular RLCT0(J ′) =
RLCT0(Qδ). The exponents of terms of the polynomial Qδ(ω) are vectors in {0,2}ne+|δ|. We have
that

Qδ(ω) = ∑
i�= j∈[n]

s
2δr(i j)
r(i j) ∏

(u,v)∈E(i j)
η2uv. (20)

The convex hull, in Vδ, of the exponents of the terms in Qδ is called the Newton polytope
of Qδ and denoted Γ(Qδ). We now investigate this polytope which is needed to understand the
polyhedron Γ+(Qδ), which is needed to use Theorem 20. Since each term of Qδ corresponds to a
path between two leaves then the construction of the Newton polytope Γ(Qδ) ⊂ Vδ gives a direct
relationship between paths in T and the points generating the polytope. Convex combinations of
points corresponding to paths give rise to points in the polytope. Let E0 ⊆ E be the subset of edges
of T such that one of the ends is in the set of leaves of T . We call these edges terminal. Note that
each point generating Γ(Qδ) satisfies ∑e∈E0 xe = 4. This follows from the fact that each of these
points corresponds to a path between two leaves in T and every such a path need to cross exactly
two terminal edges. Consequently each point of Γ(Qδ) needs to satisfy this equation as well. The
induced facet of the Newton polyhedron Γ+(Qδ) is given as

F0 = {(y,x) ∈ Γ+(Qδ) : ∑
e∈E0

xe = 4} (21)

and each point of Γ+(Qδ) satisfies ∑e∈E0 xe ≥ 4.
The following lemma proves one part of Proposition 16.

Lemma 22 (The real log-canonical threshold ofJ ) Under assumptions of Proposition 16 we have
that rclt0(J ′) = n

4 .

Proof If n= 2 then, since s01,s
0
2 �= 1, by Lemma 18 we have that

RLCTω0(J
′) = RLCT0(η212) =

(
1
2
,1

)
.

Therefore Proposition 16 holds in this case. Now assume that n ≥ 4. By Theorem 20 we have to
show that t = 4

n is the smallest t such that the vector (t, . . . , t) hits Γ+(Qδ). To show that
4
n1∈Γ+(Qδ)

we construct a point q∈Γ(Qδ) such that q≤ 4
n1 coordinatewise. The point is constructed as follows.

Construction 23 Let T = (V,E) be a trivalent tree with n ≥ 4 leaves, rooted in r. We present two
constructions of networks of paths between the leaves of T .

The first construction is for the case when the root is degenerate, δr = 1. In this case T is
necessarily rooted in an inner node. If n = 4 then the network consists of the two paths within
cherries counted with multiplicity two.

Each of the paths corresponds to a point in Γ(Qδ). We order the coordinates of Vδ =R5+|δ| by ya ≺
yb ≺ x1 ≺ ·· · ≺ x5 where ya,yb are included only if δa,δb = 1. For example the point corresponding
to the path involving edges e1 and e2 is (2,0;2,2,0,0,0). The barycenter of the points corresponding
to all the four paths in the network is (1,1;1,1,0,1,1) both if T is rooted in a or b.
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If n> 4 then we build the network recursively. Assume that T is rooted in an inner node a and
pick an inner edge (a,b). Label the edges incident with a and b as for the quartet tree above and
consider the subtree given by the quartet tree. Draw four paths as on the picture above. Let v be any
leaf of the quartet subtree which is not a leaf of T and label the two additional edges incident with
v by e6 and e7. Now we extend the network by adding e6 to one of the paths terminating in v and
e7 to the other. Next we add an additional path involving only e6 and e7 like on the picture below.
By construction v is the root of the additional path. We extend the network cherry by cherry until it
covers all terminal edges.

Note that we have made some choices building up the network and hence the construction is not
unique. However, each of the inner nodes is always a root of at least one and at most two paths.
Moreover, each edge is covered at most twice and each terminating edge is covered exactly two
times. We have n paths in the network, all representing points of Γ(Qδ) denoted by q1, . . . ,qn. Let
q= 1

n ∑
n
i=1 qi then q ∈ Γ(Qδ) is given by xab = 0, xe =

4
n for all e ∈ E \ (a,b). The other coordinates

by construction satisfy ya = 4
n , yb =

4
n if δb = 1, and yv =

2
n for all v ∈V \{a,b} such that δv = 1.

If δr = 0 then we proceed as follows. For n= 4 consider a network of all the possible paths all
counted with multiplicity one apart from the cherry paths (paths of length two) counted with mul-
tiplicity two. This makes eight paths and each edge is covered exactly four times. The coordinates
of the point representing the barycenter of all paths in the network satisfy xe = 1 for all e ∈ E and
yv = 1

2 for all v such that δv = 1. This construction generalizes recursively in a similar way as the
one for T rooted in an inner node. We always have 2n paths and each edge is covered exactly four
times. The network induces a point q ∈ Γ(Qδ) with coordinates given by yv =

2
n for all v ∈ V such

that δv = 1 and xe = 4
n for e ∈ E. (This finishes the construction.)

The point 4n 1 lies in Γ+(Qδ), which follows from Construction 23 and the fact that the constructed
point q ∈ Γ(Qδ) satisfies q ≤ 4

n 1. Moreover, for any s <
4
n the point s(1, . . . ,1) does not satisfy

∑e∈E0 xe ≥ 4 and hence it cannot be in Γ+(Qδ). It follows that
4
n is the smallest t such that t1 ∈

Γ+(Qδ) and therefore rlct0(J ′) = n
4 . Note that the result does not depend on δ.

To compute the multiplicity of the real log-canonical threshold of Qδ we have to get a better
understanding of the polyhedron Γ+(Qδ). According to Theorem 20 we need to find the codimen-
sion of the face of Γ+(Qδ) hit by the vector

4
n1. First we find the hyperplane representation of the

Newton polytope Γ(Qδ) reducing the problem to a simpler but equivalent one.

Definition 24 (A pair-edge incidence polytope) Let T =(V,E) be a trivalent tree with n≥ 4 leaves.
We define a polytope Pn ⊂ Rne , where ne = 2n− 3, as the convex combination of points (qi j)i, j∈[n]
where k-th coordinate of qi j is one if the k-th edge is in the path between i and j and there is zero
otherwise. We call Pn a pair-edge incidence polytope by analogy to the pair-edge incidence matrix
defined in (Mihaescu and Pachter, 2008, Definition 1).
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The reason to study the pair-edge incidence polytope is that its structure can be handled easily
and it can be shown to be affinely equivalent to Γ(Qδ). The latter is immediate if δ= (0, . . . ,0) since
Q0 = 2Pn. For an arbitrary δ fix a rooting r of T and define a linear map fr : Rne → R|δ| as follows.
For each v ∈V \ r such that δv = 1 set

yv =
1
2
(xvch1(v) + xvch2(v)− xpa(v)v),

where ch1(v), ch2(v) denotes the two children of v. If δr = 1 then set

yr =
1
2
(xrch1(r) + xrch2(r) + xrch3(r)).

The map (id× fr) :Rne →Rne×R|δ| satisfies (id× fr)(2Pn) = Γ(Qδ) because, for each point, yr = 2
if and only if the path crosses r and for any other node yv = 2 if and only if the path crosses v and v
is the root of the path, that is if the path crosses both children of v.

Lemma 25 Let Pn ⊂ Rne be the pair-edge incidence polytope for a trivalent tree with n leaves
where n ≥ 4. Then dim(Pn) = ne− 1 = 2n− 4. The unique equation defining the affine span of Pn
is ∑e∈E0 xe = 2. For each inner node v ∈ V let e1(v), e2(v), e3(v) denote the three adjacent edges.
Then exactly 3(n−2) facets define Pn and they are given by

xe1(v) + xe2(v)− xe3(v) ≥ 0, xe2(v) + xe3(v)− xe1(v) ≥ 0, (22)

and xe3(v) + xe1(v)− xe2(v) ≥ 0 for all v ∈V.

Proof Let Mn be the pair-edge incidence matrix, that is a
(n
2

)×ne matrix with rows corresponding
to the points defining Pn. By (Mihaescu and Pachter, 2008, Lemma 1) the matrix has full rank and
hence Pn has codimension one in Rne . Moreover since each path necessarily crosses two terminal
edges then each point generating Pn satisfies the equation ∑e∈E0 xe = 2 and hence this is the equation
defining the affine subspace containing Pn.

Now we show that the inequalities give a valid facet description for Pn. This can be checked
directly for n= 4 using POLYMAKE Gawrilow and Joswig (2005). Assume this is true for all k< n.
By Qn we will denote the polyhedron defined by the equation ∑e∈E0 xe = 2 and 3(n−2) inequalities
given by (22). We want to show that Pn = Qn. It is obvious that Pn ⊆ Qn since all points generating
Pn satisfy the equation and the inequalities. We show that the opposite inclusion also holds.

Consider any cherry {e1,e2} ⊂ E in the tree given by two leaves, which we denote by 1, 2, and
the separating inner node a. Define a projection π :Rne →Rne−2 on the coordinates related to all the
edges apart from the two in the cherry. We now show that π(Qn) = Q̂n−1, where P̂= conv{0,P} is a
cone with the base given by P. The projection π(Qn) is described by all the triples of inequalities for
all the inner nodes apart from the one incident with the cherry and the defining equation becomes
an inequality

∑
e∈E0\{e1,e2}

xe ≤ 2.

Denote the edge incident with e1,e2 by e3 and the related coordinates of x by xe1 ,xe2 ,xe3 . The three
inequalities involving xe1 and xe2 do not affect the projection since they imply that

max{xe1− xe2 ,xe2− xe1} ≤ xe3 ≤ xe1 + xe2
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and hence in particular if xe1 = xe2 the constraint becomes [0,2xe1 ]. Consequently the set given by
xe1 + xe2 − xe3 ≥ 0, xe1 + xe3 − xe2 ≥ 0, xe2 + xe3 − xe1 ≥ 0 projects down to R≥0. However, since
Q̂n−1 is contained in the nonnegative orthant, there are no additional constraints on xe3 . Inequalities
in (22) define a polyhedral cone and the equation ∑e∈E0\{e1,e2} xe = t for t ≥ 0 cuts out a bounded
slice of the cone which is equal to t ·Pn−1. The sum of all these for t ∈ [0,2] is exactly Q̂n−1.

Since Q̂n−1= P̂n−1 by induction, then each π(x) for x∈Qn is a convex combination of the points
generating Pn−1 and zero, that is π(x) = ∑ci j pi j where the sum is over all i �= j ∈ {a,3, . . . ,n} and
ci j ≥ 0, ∑ci j ≤ 1. Next, we lift this combination back to Qn, and show, that any such a lift has to lie
in Pn. This would imply that in particular x ∈ Pn. Let y denote a lift of π(x) to Qn. We have

y=∑ci jri j+
(
1−∑ci j

)
r0,

where ri j is a lift of π(pi j) and r0 is a lift of the origin. It suffices to show that each ri j and r0
necessarily lie in Pn.

Consider the following three cases. First, if pi j ∈ Pn−1 is such that xe3 = 0. Since Pn−1 = Qn−1
and Qn−1 satisfy the equation ∑e∈E0\{e1,e2} xe+ xe3 = 2, sum of all the other coordinates related to
the terminal edges of the smaller tree is 2. Hence, if we lift π(pi j) to Qn, then xe3 = 0 and

xe1 + xe2 ≥ 0, xe1− xe2 ≥ 0, xe2− xe1 ≥ 0
by plugging xe3 = 0 into the three inequalities for the node a. But since ri j ∈ Qn must also satisfy
the equation ∑e∈E0 xe = 2, and, since we already have

∑
e∈E0\{e1,e2}

xe = 2,

then xe1 + xe2 = 0 and hence xe1 = xe2 = 0. Consequently, ri j is a vertex of Pn corresponding to the
path between i and j. Second, if pi j is a vertex of Pn−1 such that xe3 = 1, then the sum of all the
other coordinates of pi j related to the terminal edges of the smaller tree is 1. Because the lift lies in
Qn we have xe1 + xe2 = 1. The additional inequalities give that xe1 ,xe2 ≥ 0. Hence in this case ri j is
a convex combination of two points in Pn corresponding to paths terminating in either of the nodes
1 or 2. Finally, we can easily check that zero lifts uniquely to a point in Pn corresponding to the path
E(12) joining the leaves 1 and 2. Indeed, from the equation defining Qn we have xe1 + xe2 = 2 and
from the inequalities since xe3 = 0 we have xe1 = xe2 = 1. Therefore every lift y of π(x) to Qn can
be written as a convex combination of points generating Pn and hence y ∈ Pn. Consequently x ∈ Pn
and hence Qn ⊆ Pn.

Lemma 25 shows that Pn has an extremely simple structure. The inequalities give a polyhedral
cone and the equation cuts out the polytope Pn as a slice of this cone. The result gives us also the
representation of Γ(Qδ) in terms of the defining equations and inequalities.

Proposition 26 (Structure of Γ(Qδ)) Polytope Γ(Qδ) ⊂ Vδ is given as an intersection of the sets
defined by the inequalities in (22) together with |δ|+1 equations given by

2yv = xvch1(v) + xvch2(v)− xpa(v)v for all v �= r such that δv = 1,
2yr = xrch1(r) + xrch2(r) + xrch3(r) if δr = 1, and
∑e∈E0 xe = 4.

(23)
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From this we can partially understand the structure of Γ+(Qδ). First note that Γ+( f ) = Γ( f )+
Rd
≥0, where the plus denotes the Minkowski sum. The Minkowski sum of two polyhedra is by
definition

Γ1+Γ2 = {x+ y ∈ Rd : x ∈ Γ1,y ∈ Γ2}.
Lemma 27 Let Γ ⊂ Rn

≥0 be a polytope and let Γ+ be the Minkowski sum of Γ and the standard
cone Rn

≥0. Then all the facets of Γ+ are of the form ∑i aixi ≥ c, where ai ≥ 0 and c≥ 0.
Now we are ready to compute multiplicities of the real log-canonical threshold RLCT0(Qδ) at

least in certain cases. This completes the proof of Proposition 16.

Lemma 28 (Computing multiplicities) Let T be a trivalent tree with n≥ 4 leaves, rooted in r. Let
q∈MT be such that κ̂i j = 0 for all i, j ∈ [n] and ω0 ∈ Ω̂0. Let δ= δ(ω0) be such that δv = 1 if s0v = 1
and it is zero otherwise. Define Qδ(ω) as in (20). If either: (i) δr = 0 or (ii) δr = 1 and δv = 1 for
all (r,v) ∈ E then mult0(Qδ) = 1.

Proof A standard result for Minkowski sums says that each face of a Minkowski sum of two
polyhedra can be decomposed as a sum of two faces of the summands and this decomposition is
unique. Each facet of Γ+(Qδ) is decomposed as a face of the standard cone R

ne+|δ|
≥0 ⊂Vδ plus a face

of Γ(Qδ). We say that a face of Γ(Qδ) induces a facet of Γ+(Qδ) if there exists a face of the standard

cone Rne+|δ|
≥0 such that the Minkowski sum of these two faces gives a facet of Γ+(Qδ). Since the

dimension Γ(Qδ) is lower than the dimension of the resulting polyhedron it turns out that one face
of Γ(Qδ) can induce more than one facet of Γ+(Qδ). In particular Γ(Qδ) itself induces more than
one facet where one of them is F0 given by (21).

Every facet of Γ+(Qδ) containing the point
4
n1, after normalizing the coefficients to sum to n,

that is ∑vαv+∑eβe = n, is of the form

∑
v
αvyv+∑

e
βexe ≥ 4, (24)

where by Lemma 27 we can assume that αv,βe ≥ 0. Our approach can be summarized as follows.
Using Construction 23 we provide coordinates of a point p ∈ Γ(Qδ) such that

4
n1 lies on the bound-

ary of p+R
ne+|δ|
≥0 . Then 4

n1 can only lie on faces of Γ+(Qδ) induced by faces of Γ(Qδ) containing
p. To show that the multiplicity is exactly 1 we need to show that 4n1 lies in the interior of F0.

First, assume that δr = 0 which corresponds to the case when the root r represents a non-
degenerate random variable. Consider the point p ∈ Γ(Qδ) induced by the network of 2n paths
given in the second part of Construction 23. Since xe = 4

n for all e ∈ E then from the description of
Γ(Qδ) in Lemma 26 we can check that all defining inequalities are strict for this point. Therefore p
lies in the interior of Γ(Qδ) and the only facets of Γ+(Qδ) containing p are these induced by Γ(Qδ)
itself. The equation defining a facet induced by Γ(Qδ) has to be obtained as a combination of the
defining equations: ∑e∈E0 xe = 4 and |δ| equations

2yv− xvch1(v)− xvch2(v) + xpa(v)v = 0 (25)

for all v ∈ V such that δv = 1. We check possible combinations such that the form of the induced
inequality in (24) is attained. The first inequality, defining F0, is already of this form (cf. (21)).
The sum of all the coefficients is n since there are n terminal edges. Any other facet has to be
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obtained by adding to the first equation (since the right hand side in (24) is 4) a non-negative (since
the coefficients in front of yv need to be non-negative) combination of equations in (25). However,
since the sum of the coefficients in (25) is +1, this contradicts the assumption that the sum of
coefficients in the defining inequality is n. Consequently, if δr = 0 the codimension of the face hit
by 4

n1 is 1 and hence by Theorem 20 we have that mult0(Qδ) = 1.

Second, if δr = 1 and δv = 1 for all children of r in T then since all the nodes adjacent to r
(denote them by a,b,c) are inner we have three different ways of conducting the construction of the
n-path network in Construction 23 (by omitting each of the incident edges). Hence we get three
different points and their barycenter satisfies xra = xrb = xrc = 8

3n and xe =
4
n for all the other edges;

yr = 4
n , ya = yb = yc = 8

3n and yv =
2
n for all the other inner nodes. Denote this point by p and note

that p≤ 4
n1. By the facet description of Γ(Qδ) derived in Proposition 26 we can check that this point

cannot lie in any of the facets defining Γ(Qδ) and hence it is an interior point of the polytope. As in
the first case it means that the facets of Γ+(Qδ) containing p are induced by Γ(Qδ). By Proposition
26 the affine span is given by (23). Since the sum of coefficients in the equation involving yr is
negative we cannot use the same argument as in the first case. Instead, we add to ∑e∈E0 xe = 4 a
non-negative combination of equations in (25) each with coefficient tv ≥ 0 and then add the equation
in (23) involving yr with coefficient ∑v�=r tv. The sum of coefficients in the resulting equation will be
n by construction. The coefficient of xra is ta−∑v�=r tv =−∑v�=r,a tv. Since it has to be non-negative
it follows that tv = 0 for all v apart from a. However, by checking the coefficient of xrb one deduces
that tv = 0 for all inner nodes v. Consequently the only possible facet of Γ+(Qδ) containing

4
n1 is

F0 and hence again mult0(Qδ) = 1.

The following example shows that in certain cases mult0(Qδ) can be strictly greater than 1.

Example 5 Consider the quartet tree model with q such that κ̂i j = 0 for all i, j = 1,2,3,4. In this
case Γ(Qδ) ⊆ R7 has six vertices (2,0;2,2,0,0,0), (2,0;2,0,2,2,0), (2,0;2,0,2,0,2),
(2,0;2,0,2,2,0), (2,0;0,2,2,0,2) and (0,2;0,0,0,2,2). The facet description of the Newton poly-
hedron Γ+(Qδ) can be easily computed using POLYMAKE Gawrilow and Joswig (2005). From
this description it is easily checked that the point (1,1;1,1,1,1,1) lies on two facets of Γ+(Qδ). It
follows that the codimension of the face hit by this vector is two, or equivalently, mult0(Qδ) = 2.

7. Proof of Theorem 2

In this section we complete the proof of Theorem 2 using results from the previous sections. We
split it into three steps.

7.1 Step 1

To analyze the asymptotic behavior of the stochastic complexity FN , by Theorem 4, equivalently we
can compute RLCTΘT (K;ϕ), where K is the Kullback-Leibler distance defined in (3) and ϕ is the
prior distribution satisfying (A1). By Theorem 11 and Theorem 14 this real log-canonical threshold
is equal to RLCTΩT (I ), where I is the ideal defined by (11).
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7.2 Step 2

We compute separately RLCTΩT (I ) in the case when n = 3. If T is rooted in the inner node the
expansion for EFN follows from Theorem 4 in Rusakov and Geiger (2005). Thus if Ê = E, which
in Rusakov and Geiger (2005) corresponds to the type 2 singularity, then

EFN = NS+2logN+O(1) or RLCTΩT (I ) = (2,1). (26)

Since all the neighbours of the root are leaves and hence, by (A2), they are non-degenerate we need
only to make sure that the first equation in Theorem 2 gives (26). This follows from the fact that
l2 = 0 and l0 = 1, where li i = 0,1,2,3 defined in the introduction is the number of inner nodes of
T whose degree in T̂ is i. In the case when |Ê|= 1 (type 1 singularity) we have

EFN = NS+
5
2
logN+O(1) or RLCTΩT (I ) =

(
5
2
,1

)
.

The second equation in Theorem 2 holds since l2 = 1, l0 = 0 and c= 0. If Ê = /0 we have

EFN = NS+
7
2
logN+O(1) or RLCTΩT (I ) =

(
7
2
,1

)
,

which again is true since l2 = 0, l0 = 0 and c= 0.
Now assume that T is rooted in a leaf, say 1. If there exists i, j = 1,2,3 such that κ̂i j �= 0 (or

equivalently |Ê| ≤ 1) then V̂ = /0 and by Proposition 8

EFN = NS+
7−2l2
2

+O(1) or RLCTΩT (I ) =

(
7−2l2
2

,1

)
.

If Ê = E then V̂ �= /0 and by Theorem 14 for every ω0 ∈ Ω̂T

RLCTω0(I ) =

(
3
2
,0

)
+RLCTω0(J ).

Moreover, by Lemma 18, for every ω0 ∈ Ω̂0
RLCTω0(J ) = RLCT0(〈η1hηh2,η1hηh3,sδhh ηh2ηh3〉),

where δh = 1 if s0h = 1 and δh = 1 otherwise. It can be checked directly by using the Newton
diagram method and Theorem 20 that RLCTω0(J ) = ( 34 ,1) both if δh = 0 and δh = 1 and hence

RLCTω0(I ) = ( 94 ,1). Since the points in Ω̂0 such that s
0
h �= 1 lie in the interior of ΩT then for these

points RLCTω0(I ) = RLCTΩ0(I ) where Ω0 is a neighborhood of ω0 in ΩT . Hence, by (6), we
have that

RLCTΩT (I ) = min
ω0∈Ω̂T

RLCTΩ0(I )≤ min
ω0∈Ω̂0

RLCTΩ0(I ) =

(
9
4
,1

)
.

On the other hand, by (5) and then Proposition 17, we obtain the following inequalities

RLCTΩT (I )≥ min
ω0∈Ω̂T

RLCTω0(I )≥ min
ω0∈Ω̂deep

RLCTω0(I ) =

(
9
4
,1

)
.

It follows that

EFN = NS+
9
4
logN+O(1) or RLCTΩT (I ) =

(
9
4
,1

)
,

which gives the the second equation in Theorem 2 since in this case l2 = c= 0 and l0 = 1.
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7.3 Step 3, Case 1

Assume now that n≥ 4 and r /∈ V̂ . In this case, using notation from Section 5, every Ti for i= 1, . . . ,k
is rooted in one of its leaves. Hence RLCTω0(J (Ti)) = ( |Li|4 ,1) for every i= 1, . . .k. If |Li| �= 3 this
follows from Proposition 16. If |Li|= 3 it follows from Case 2 above. By Lemma 15 and Equation
(17), for every ω0 ∈ Ω̂0 we have that

rlctω0(I ) =
n
2
+

m

∑
i=1

niv+nie−ni−2li2
2

+
k

∑
i=1

|Li|
4

,

where niv, n
i
e, l

i
2 are respectively the number of vertices, edges and and degree two nodes in T̂ of

Si; and Li is the set of leaves of Ti. Let mi denote the number of nodes of T̂ whose degree is
i. Note that m2 = l2 but m0 does not necessarily equal l0. We now use three simple formulas:
∑i n

i
v = m1+m2+m3 (that is only degree zero nodes of T̂ do not lie in the Si’s), ∑i n

i
e = |E \ Ê|

(that is E \ Ê is the set of all edges of all the Si’s) and ∑i |Li| = m2+ n−m1 (that is the leaves
of all the Ti’s are precisely the degree two nodes of T̂ and these leaves of T which have degree
zero in T̂ ). Moreover, for any graph with the vertex set V and the edge set E, ∑v∈V deg(v) =
2ne (see Semple and Steel, 2003, Corollary 1.2.2). Therefore, with the formula applied for the
forest T̂ , we have m1+ 2m2+ 3m3 = 2|E \ Ê|. Using these four formulas together we show that
rlctω0(I ) = 1

4(3n+m2+ 5m3). The final formula for the coefficient follows from the fact that

l2 = m2 and l0 = nv− n−m2−m3. Moreover, since δr = 0 for all ω0 ∈ Ω̂0 then, by Lemma 28,
mult0(J (Ti)) = 1 for every ω0 ∈ Ω̂0. Therefore,

RLCTω0(I ) =

(
nv+ne−2l2

2
− 5l0
4
,1

)
. (27)

Now we show that RLCTΩT (I ) also has the same form. Let ω2 be a point in Ω̂0 such that sv �= 1
for all v ∈ V and let ω1 ∈ Ω̂deep. Equation (27) is true both if ω0 = ω1 and ω0 = ω2 and hence
RLCTω1(I ) = RLCTω2(I ). However, since ω2 is an inner point of ΩT , it follows from the defini-
tion of RLCTΩT (I ) as the minimum over all points in ΩT , that

RLCTΩT (I )≤ RLCT0(Iω2).

On the other hand by (5) and Proposition 17

RLCT0(Iω1) = min
ω0∈Ω̂T

RLCT0(Iω0)≤ min
ω0∈Ω̂T

RLCTΩ0(Iω0) = RLCTΩT (I ).

Therefore, if r /∈ V̂ , then in fact RLCTΩT (I ) = (λ,1), where λ is the coefficient in (27), and

EFN = NS+λ logN+O(1).

The main formula in Theorem 2 is proved in this case because c= 0.

7.4 Step 3, Case 2

Let now n ≥ 4 and r ∈ V̂ . Let 1 ≤ j ≤ k be such that r is an inner node of Tj and ω0 ∈ Ω̂0. For
all i �= j, Ti is rooted in one of its leaves. Therefore, by Lemma 22, Lemma 28 and Step 2 above
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for all i �= j we have that RLCTω0(J (Ti)) = (|Li|/4,1). It remains to compute RLCTω0(J (Tj)).
If |Lj| = 3 then RLCTω0(J (Tj)) = (1/2,1) = ((|Lj|−1)/4,1) by the Step 2 above, (cf. (26)). In
this case the computations are the same as in Step 3, Case 1 but with a difference of 14 in the real
log-canonical threshold. We obtain

EFN = NS+

(
nv+ne−2l2

2
− 5l0+1

4

)
logN+O(1).

However, if |Lj| ≥ 4 then, by Lemma 22, rlct0(J (Tj)) = |Lj|/4 and hence as in Step 3, Case
1 we have ∑k

i=1 rlct0(Jω0(Ti)) =
1
4(n−m1 +m2). Therefore rlctΩT (I ) = λ. We compute the

multiplicity by considering different subcases. If all the neighbours of r are degenerate then for all
points ω0 ∈ Ω̂deep we have that δr = 1 and δv = 1 for all neighbours v or r. It follows from Lemma
28 that multω0(J (Tj)) = 1 and hence multΩT (I ) = 1. Therefore,

EFN = NS+
1
4
(3n+ l2+5l3) logN+O(1).

Otherwise we do not have explicit bounds on the multiplicity. Since multΩT (I )≥ 1 then

EFN = NS+
1
4
(3n+ l2+5l3) logN− (m−1) log logN+O(1),

where m≥ 1. This finishes the proof of Theorem 2. 	

Remark 29 Example 5 showed that multω0(I ) may be strictly greater than 1 for some bound-
ary points of ΩT . The analysis of how it affects the computation of multΩT (I ) is highly compli-
cated as it involves resolution of the boundary constraints. Typically we are just able to provide
upper bounds. For example, since in Example 5 we have multΩ0(I ) = multω0(I ) then, by (5),
multΩ0(I )≤multω0(I ) = 2.

Acknowledgments

I am especially grateful to Shaowei Lin for a number of illuminating discussions and introducing
me to the theory of log-canonical thresholds. I also want to thank Diane Maclagan and the referees
for helpful comments.

References

Vladimir I. Arnold, Sabir M. Guseı̆n-Zade, and Aleksandr N. Varchenko. Singularities of Differen-
tiable Maps, volume II. Birkhäuser, 1988.
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Abstract
We describe a new objective for graph-based semi-supervised learning based on minimizing the
Kullback-Leibler divergence between discrete probability measures that encode class membership
probabilities. We show how the proposed objective can be efficiently optimized using alternating
minimization. We prove that the alternating minimization procedure converges to the correct op-
timum and derive a simple test for convergence. In addition, we show how this approach can be
scaled to solve the semi-supervised learning problem on very large data sets, for example, in one
instance we use a data set with over 108 samples. In this context, we propose a graph node or-
dering algorithm that is also applicable to other graph-based semi-supervised learning approaches.
We compare the proposed approach against other standard semi-supervised learning algorithms
on the semi-supervised learning benchmark data sets (Chapelle et al., 2007), and other real-world
tasks such as text classification on Reuters and WebKB, speech phone classification on TIMIT
and Switchboard, and linguistic dialog-act tagging on Dihana and Switchboard. In each case, the
proposed approach outperforms the state-of-the-art. Lastly, we show that our objective can be gen-
eralized into a form that includes the standard squared-error loss, and we prove a geometric rate of
convergence in that case.

Keywords: graph-based semi-supervised learning, transductive inference, large-scale semi-supervised
learning, non-parametric models

1. Introduction

In many applications, annotating training data is time-consuming, costly, tedious, and error-prone.
For example, training an accurate speech recognizer requires large amounts of well annotated speech
data (Evermann et al., 2005). In the case of document classification for Internet search, it is not
feasible to accurately annotate sufficient number of web-pages for all categories of interest. The
process of training classifiers with small amounts of labeled data and relatively large amounts of
unlabeled data is known as semi-supervised learning (SSL). SSL lends itself as a useful technique
in many machine learning applications as one only needs to annotate small amounts of data for
training models.

While SSL may be used to solve a variety of learning problems, such as clustering and re-
gression, in this paper we address only the semi-supervised classification problem—henceforth,
SSL will refer to semi-supervised classification. Examples of SSL algorithms include self-training
(Scudder, 1965) and co-training (Blum and Mitchell, 1998). A thorough survey of SSL algorithms
is given in Seeger (2000), Zhu (2005b), Chapelle et al. (2007) and Blitzer and Zhu (2008). SSL
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is also related to the problem of transductive learning (Vladimir, 1998). In general, a learner is
transductive if it is designed only for a closed data set, where the test set is revealed at training time.
In practice, however, transductive learners can be modified to handle unseen data (Sindhwani et al.,
2005; Zhu, 2005b). Chapelle et al. (2007, Chapter 25) gives a nice discussion on the relationship
between SSL and transductive learning.

Graph-based SSL algorithms are an important sub-class of SSL techniques that have received
much attention in the recent past (Zhu, 2005b; Chapelle et al., 2007). Here one assumes that the
data (both labeled and unlabeled) is embedded within a low-dimensional manifold that may be rea-
sonably expressed by a graph. Each data sample is represented by a vertex in a weighted graph with
the weights providing a measure of similarity between vertices. Most graph-based SSL algorithms
fall under one of two categories – those that use the graph structure to spread labels from labeled to
unlabeled samples (Szummer and Jaakkola, 2001; Zhu and Ghahramani, 2002a) and those that op-
timize a loss function based on smoothness constraints derived from the graph (Blum and Chawla,
2001; Zhu et al., 2003; Joachims, 2003; Belkin et al., 2005; Corduneanu and Jaakkola, 2003; Tsuda,
2005). In some cases, for example, label propagation (Zhu and Ghahramani, 2002a) and the har-
monic functions algorithm (Zhu et al., 2003; Bengio et al., 2007), it can be shown that the two
categories optimize a similar loss function (Zhu, 2005a; Bengio et al., 2007).

A large number of graph-based SSL algorithms attempt to minimize a loss function that is
inherently based on squared-loss (Zhu et al., 2003; Bengio et al., 2007; Joachims, 2003). While
squared-loss is optimal under a Gaussian noise model, it is not optimal in the case of classification
problems. Another potential drawback in the case of some graph-based SSL algorithms (Blum and
Chawla, 2001; Joachims, 2003) is that they assume binary classification tasks and thus require the
use of sub-optimal (and often computationally expensive) approaches such as one vs. rest to solve
multi-class problems. While it is often argued that the use of binary classifiers within a one vs. rest
framework performs as well as true multi-class solutions (Rifkin and Klautau, 2004), our results on
SSL problems suggest otherwise (see Section 7.2.2).

Further, there is a lack of principled approaches to incorporate label priors in graph-based SSL
algorithms. Approaches such as class mass normalization (CMN) and label bidding are used as a
post-processing step rather than being tightly integrated with the inference (Zhu and Ghahramani,
2002a). In this context, it is important to distinguish label priors from balance priors. Balance priors
are used in some algorithms such as Joachims (2003) and discourage the scenario where all the
unlabeled samples are classified as belonging to a single class (i.e., a degenerate solution). Balance
priors impose selective pressure collectively on the entire set of resulting answers. Label priors, on
the other hand, select the more desirable configuration for each answer individually without caring
about properties of the overall set of resulting answers. In addition, many SSL algorithms, such as
Joachims (2003) and Belkin et al. (2005), are unable to handle label uncertainty, where there may
be insufficient evidence to justify only a single label for a labeled sample.

Another area for improvement over previous work in graph-based SSL (and SSL in general) is
the lack of algorithms that scale to very large data sets. SSL is based on the premise that unlabeled
data is easily obtained, and adding large quantities of unlabeled data leads to improved performance.
Thus practical scalability (e.g., parallelization), is important to apply SSL algorithms on large real-
world data sets. Collobert et al. (2006) and Sindhwani and Keerthi (2006) discuss the application
of TSVMs to large-scale problems. Delalleau et al. (2005) suggests an algorithm for improving the
induction speed in the case of graph-based algorithms. Karlen et al. (2008) solve a graph transduc-
tion problem with 650,000 samples. To the best of our knowledge, the largest graph-based problem
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solved to date had about 900,000 samples (includes both labeled and unlabeled data) (Tsang and
Kwok, 2006). Clearly, this is a fraction of the amount of unlabeled data at our disposal. For exam-
ple, on the Internet alone, we create 1.6 billion blog posts, 60 billion emails, 2 million photos and
200,000 videos every day (Tomkins, 2008). In general, graph-based SSL algorithms that use matrix
inversion (Zhu et al., 2003; Belkin et al., 2005) or eigen-based matrix decomposition (Joachims,
2003) do not scale very easily.

In Subramanya and Bilmes (2008), we proposed a new framework for graph-based SSL that in-
volves optimizing a loss function based on Kullback-Leibler divergence (KLD) between probability
measures defined for each graph vertex. These probability measures encode the class membership
probabilities. The advantages of this new convex objective are: (a) it is naturally amenable to multi-
class (> 2) problems; (b) it can handle label uncertainty; and (c) it can integrate priors. Furthermore,
the use of probability measures allows the exploitation of other well-defined functions of measures,
such as entropy, to improve system performance. Subramanya and Bilmes (2008) also showed how
the proposed objective can be optimized using alternating minimization (AM) (Csiszar and Tus-
nady, 1984) leading to simple update equations. This new approach to graph-based SSL was shown
to outperform other state-of-the-art SSL algorithms for the document and web page classification
tasks. In this paper we extend the above work along the following lines –

1. We prove that AM on the proposed convex objective for graph-based SSL converges to the
global optima. In addition we derive a test for convergence that does not require the compu-
tation of the objective.

2. We compare the performance of the proposed approach against other state-of-the-art SSL
approaches, such as manifold regularization (Belkin et al., 2005), label propagation (Zhu and
Ghahramani, 2002a), and spectral graph transduction (Joachims, 2003) on a variety of tasks
ranging from synthetic data sets to SSL benchmark data sets (Chapelle et al., 2007) to real-
world problems such as phone classification, text classification, web-page classification and
dialog-act tagging.

3. We propose a graph node ordering algorithm that is cache cognizant and makes obtaining a
linear speedup with a parallel symmetric multi-processor (SMP) implementation more likely.
As a result, the algorithms are able to scale to very large data sets. The node ordering al-
gorithm is quite general and can be applied to graph-based SSL algorithms such as Zhu and
Ghahramani (2002a); Zhu et al. (2003). In one instance, we solve a SSL problem over a
graph with 120 million vertices (which is quite a bit more than the previous largest size of
900,000 vertices). A useful byproduct of this experiment is the semi-supervised switchboard
transcription project (S3TP) which consists of phone level annotations of the Switchboard-
I corpus generated in a semi-supervised manner (see Section 8.1, Subramanya and Bilmes,
2009).

4. We propose a graph-based SSL objective using Bregman divergence in Section 9.1. This
objective generalizes previously proposed approaches such as label propagation (Zhu and
Ghahramani, 2002a), the harmonic functions algorithm (Zhu et al., 2003), the quadratic cost
criterion (Bengio et al., 2007) and our proposed approach. This objective can potentially be
optimized using AM which portends well for solving general learning problems over objects
for which a Bregman divergence can be defined (Tsuda et al., 2005).
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5. A specific case of the Bregman divergence form is the standard squared-loss based objective,
and we prove a geometric rate of convergence in this case in Appendix F

6. We discuss a principled approach to integrating label priors into the proposed objective (see
Section 9.2).

7. We also show how our proposed objective can be extended to directed graphs (see Sec-
tion 9.3).

2. Graph Construction

Let Dl = {(xi,ri)}li=1 be the set of labeled samples, Du = {xi}l+ui=l+1 the set of unlabeled samples
and D � {Dl,Du}. Here ri is an encoding of the labeled data and will be explained shortly. We are
interested in solving the transductive learning problem, that is, given D , the task is to predict the
labels of the samples in Du (for inductive see Section 7.4). We are given an undirected weighted
graph G = (V,E), where the vertices (nodes) V = {1, . . . ,m} (m � l+ u) are the data points in D
and the edges E ⊆ V ×V . Let V = Vl ∪Vu where Vl is the set of labeled vertices and Vu the set of
unlabeled vertices. G may be represented via a matrixW referred to as the weight or affinity matrix.

There are many ways of constructing the graph. In some applications, it might be a natural
result of relationship between the samples in D , for example, consider the case where each vertex
represents a web-page and the edges represent the links between web-pages. In other cases, such as
the work of Fei and Changshui (2006), the graph is generated by performing an operation similar to
local linear embedding (LLE) but constraining the LLE weights to be non-negative. In a majority of
the applications, including those considered in this paper, we use k-nearest neighbor (NN) graphs.
In our case here, we make use of symmetric k-NN graphs and so the edge weight wi j = [W]i j is
given by

wi j =

{
sim(xi,x j) if j ∈ K (i) or i ∈ K ( j)

0 otherwise

where K (i) is the set of k-NN of xi (|K (i)| = k, ∀i) and sim(xi,x j) is a measure of similarity
between xi and x j (which are represented by nodes i and j). It is assumed that the similarity measure
is symmetric, that is, sim(x,y) = sim(y,x). Further sim(x,y)≥ 0. Some popular similarity measures
include

sim(xi,x j) = e−
‖xi−x j‖22

2σ or sim(xi,x j) = cos(xi,x j) =
〈xi,x j〉

‖ xi ‖2‖ x j ‖2
where ‖ xi ‖2 is the �2 norm, and 〈xi,x j〉 is the inner product of xi and x j. The first similarity
measure is a radial-basis function (RBF) kernel of width σ applied to the squared Euclidean distance
while the second is cosine similarity. Choosing the correct similarity measure and k are crucial
steps in the success of any graph-based SSL algorithm as it determines the graph. At this point,
graph construction “is more of an art, than science” (Zhu, 2005a) and is an active research area
(Alexandrescu and Kirchhoff, 2007b). The choice of W depends on a number of factors such as,
whether xi is continuous or discrete and characteristics of the problem at hand. We discuss more
about the choice ofW in the context of the appropriate problem in Section 7.
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3. Proposed Approach for Graph-based Semi-Supervised Learning

For each i ∈ V and j ∈ Vl , we define discrete probability measures pi and r j respectively over the
measurable space (Y,Y ). That is, for each vertex in the graph, we define a measure pi and for all
the labeled vertices, in addition to the p’s we also define ri (recall, Dl = {(xi,ri)}li=1). Here Y is
the σ-field of measurable subsets of Y and Y ⊂ N (the set of natural numbers) is the discrete space
of classifier outputs. Thus |Y|= 2 yields binary classification while |Y|> 2 yields multi-class. As
we only consider classification problems here, pi and ri are in essence multinomial distributions and
so pi(y) represents the probability that the sample represented by vertex i belongs to class y. We
assume that there is at least one labeled sample for every class. Note that the objective we propose
is actually more general and can be easily extended to other learning problems such as regression.

The {ri}i’s represent the labels of the supervised portion of the training data and are derived in
one of the following ways: (a) if ŷi is the single supervised label for input xi then ri(y) = δ(y= ŷi),

which means that ri gives unity probability for y equaling the label ŷi; (b) if ŷi = {ŷ(1)i , . . . , ŷ(t)i },
t ≤ |Y| is a set of possible outputs for input xi, meaning an object validly falls into all of the
corresponding categories, we set ri(y) = (1/k)δ(y ∈ ŷi) meaning that ri is uniform over only the
possible categories and zero otherwise; (c) if the labels are somehow provided in the form of a set
of non-negative scores, or even a probability distribution itself, we just set ri to be equal to those
scores (possibly) normalized to become a valid probability distribution. As can be seen, the ri’s can
handle a wide variety of inputs ranging from the most certain case where a single input yields a
single output to cases where there is an uncertainty associated with the output for a given input. It
is important to distinguish between the classical multi-label problem and the use of uncertainty in
r j. In our case, if there are two non-zero outputs during training as in r j(  y1),r j(  y2)> 0,  y1,  y2 ∈ Y,
it does not imply that the input x j necessarily possesses the properties of the two corresponding
classes. Rather, this means that there is uncertainty regarding truth, and we use a discrete probability
measure over the labels to represent this uncertainty.

As pi and ri are discrete probability measures, we have that∑y pi(y) = 1, pi(y)≥ 0, ∑y ri(y) = 1,
and ri(y) ≥ 0. In other words, pi and ri lie within a |Y|-dimensional probability simplex which we
represent using 
|Y| and so pi,ri ∈
|Y| (henceforth denoted as 
). Also p � (p1, . . . , pm) ∈
m

denotes the set of measures to be learned, and r � (r1, . . . ,rl) ∈
l are the set of measures that are
given. Here, 
m

�
 × . . .× 
 (m times). Finally let u be the uniform probability measure on
(Y,Y ), that is, u(y) = 1

|Y| ∀ y ∈ Y. In other words, u evenly distributes all the available probability
mass across all possible assignments.

Consider the optimization problem PKL : min
p∈
m

CKL(p) where

CKL(p) =
l

∑
i=1

DKL
(
ri||pi

)
+μ

m

∑
i=1

∑
j∈N (i)

wi jDKL
(
pi||p j

)−ν
n

∑
i=1

H(pi).

Here H(p) = −∑y p(y) log p(y) is the Shannon entropy of p and DKL(pi||q j) is the KLD between

measures pi and q j and is given by DKL(p||q) =∑y p(y) log p(y)
q(y) . (μ,ν) are hyper-parameters whose

choice we discuss in Section 7. Given a vertex i∈V , N (i) denotes the set of neighbors of the vertex
in the graph corresponding to wi j and thus |N (i)| represents vertex i’s degree.

Lemma 1 If μ,ν,wi j ≥ 0, ∀ i, j then CKL(p) is convex.
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Proof This follows as DKL(pi||q j) is convex in the pair (pi,q j), negative entropy is convex (Cover
and Thomas, 1991), and we have a non-negative weighted combination of convex functions.

The goal of the above objective is to find the best set of measures pi that attempt to: 1) agree
with the labeled data r j wherever it is available (the first term in CKL); 2) agree with each other when
they are close according to a graph (the second graph-regularizer term in CKL); and 3) be smooth in
some way (the last term in CKL). In essence, SSL on a graph consists of finding a labeling for Du

that is consistent with both the labels provided in Dl and the geometry of the data induced by the
graph. In the following we discuss each of the above terms in detail.

The first term of CKL will penalize the solution pi, i ∈ {1, . . . , l}, when it is far away from the
labeled training data Dl , but it does not insist that pi = ri, as allowing for deviations from ri can
help especially with noisy labels (Bengio et al., 2007) or when the graph is extremely dense in
certain regions. As explained above, our framework allows for the case where supervised training
is uncertain or ambiguous.

The second term of CKL penalizes a lack of consistency with the geometry of the data and can
be seen as a graph regularizer. If wi j is large, we prefer a solution in which pi and p j are close
in the KLD sense. One question about the objective relates to the asymmetric nature of KLD (i.e.,
DKL(p||q) �=DKL(q||p)) (see Section 9.3 for a discussion about this issue in the directed graph case).

Lemma 2 While KLD is asymmetric, given an undirected graphG , the second term in the proposed
objective, CKL(p), is inherently symmetric.

Proof As we have an undirected graph, W is symmetric, that is, wi j = wji and for every
wi jDKL(pi||p j), we also have wjiDKL(p j||pi).

The last term encourages each pi to be close to the uniform distribution (i.e., a maximum en-
tropy configuration) if not preferred to the contrary by the first two terms. This acts as a guard
against degenerate solutions commonly encountered in graph-based SSL (Blum and Chawla, 2001;
Joachims, 2003). For example, consider the case where a part of the graph is almost completely
disconnected from any labeled vertex—that is, a “pendant” graph component. This occurs some-
times in the case of k-NN graphs. In such situations the third term ensures that the nodes in this
disconnected region are encouraged to yield a uniform distribution, validly expressing the fact that
we do not know the labels of these nodes based on the nature of the graph. More generally, we
conjecture that by maximizing the entropy of each pi, the classifier has a better chance of producing
high entropy results in graph regions of low confidence (e.g., close to the decision boundary and/or
low density regions). This overcomes a common drawback of a large number of state-of-the-art
classifiers (e.g., Gaussian mixture models, multi-layer perceptrons, Gaussian kernels) that tend to
be confident even in regions far from the decision boundary.

Finally, while the second graph-regularizer term encourages high-entropy solutions for nodes
that have high entropy neighbors, the graph regularizer alone is insufficient to yield high-entropy
solutions in other cases where it may be desirable. For example, consider a connected pendant
component that is “separated” from the rest of the graph by labeled nodes that have the same value.
We can view this as a “lolly-pop” component, where the base of the stem is labeled, but the rest of
the stem and the round portion of the lolly-pop are unlabeled. In such a configuration, the optimum
configuration will set the label of all nodes to be equal to the labels of the stem. There can be cases,
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however, where more uncertainty should be expressed about such a large mass of unlabeled nodes
distantly situated from the nearest labeled node. The last term in the objective allows a solution
where uncertainty is encouraged when a node is geodesically very distant from any label.

We conclude this section by summarizing some of the highlights and features of our framework:

1. Manifold assumption: CKL uses the “manifold assumption” for SSL (see chapter 2 in Chapelle
et al., 2007)—it assumes that the input data may be reasonably embedded within a low-
dimensional manifold which in turn can be represented by a graph.

2. Naturally multiclass: As the objective is defined in terms of probability distributions over
integers rather than just integers (or real-valued relaxations of integers Joachims, 2003; Zhu
et al., 2003), the framework generalizes in a straightforward manner to multi-class problems.
As a result, all the parameters are estimated jointly (compare to one vs. rest approaches which
involve solving |Y| independent classification problems).

3. Label uncertainty: The objective is capable of handling uncertainty in the labels (encoded
using ri) (Pearl, 1990). We present an example of this in the scenario of text classification in
Section 7.3.

4. Ability to incorporate priors: Priors can be incorporated by either

(a) minimizing the KLD between an agglomerative measure and a prior, that is, C ′
KL(p) =

CKL(p)+ κDKL(p0|| p̃) where p̃ can for example be the arithmetic or geometric mean
over pi’s or

(b) minimizing the KLD between pi and the prior p0. First note that CKL(p) may be re-
written as CKL(p) =∑l

i=1DKL
(
ri||pi

)
+μ∑i, j wi jDKL

(
pi||p j

)
+ν∑i DKL

(
pi||u

)
where u

is uniform measure. This follows as DKL
(
pi||u

)
= −H(pi)+ const. Now if we replace

the uniform measure, u, in the above by p0 then we are asking for each pi to be close to
p0. Even more generally, we may replace the uniform measure by a distinct fixed prior
distribution for each vertex.

While the former is more global, in the latter case, the prior effects each vertex individually.
Also, the global prior is closer to the balance prior used in the case of algorithms like spectral
graph transduction (Joachims, 2003). In both of the above cases, the resulting objective re-
mains convex. It is also important to point out that using one of the above does not preclude
us from using the other. We consider this to be a unique feature of our approach as we can
incorporate both the balance and label priors simultaneously.

5. Directed graphs: The proposed objective can be used with directed graphs without any mod-
ification (see Section 9.3).

3.1 Solving PKL

As CKL is convex and the constraints are linear, PKL is a convex programming problem (Bertsekas,
1999). However, PKL does not admit a closed form solution because the gradient of CKL(p) w.r.t.
pi(y) is of the form, k1pi(y) log pi(y)+ k2pi(y)+ k3 (k1, k2, k3 are constants). Further, optimizing
the dual of PKL requires solving a similar equation. One of the reasons that PKL does not admit
a closed form solution is because we are optimizing w.r.t. to both variables in a KLD. Thus, we
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are forced to use one of the numerical convex optimization techniques (Boyd and Vandenberghe,
2006) such as barrier methods (a type of interior point method, or IPM) or penalty methods (e.g., the
method of multipliers (Bertsekas, 1999)). In the following we explain how method of multipliers
(MOM) with quadratic penalty may be used to solve PKL. We choose a MOM based solver as it has
been shown to be more numerically stable and has similar rates of convergence as other gradient
based convex solvers (Bertsekas, 1999).

It can be shown that the update equations for pi(y) for solving PKL using MOM are given by
(see appendix A for details)

p(n)i (y) =

[
p(n−1)i (y)−α(n−1)

(
∂LCKL(p,Λ)
∂pi(y)

)
{p=p(n−1),Λ=Λ(n−1),c=c(n−1)}

]+

where n = 1, . . . , is the iteration index, α(n−1) is the learning rate which is determined using the
Armijo rule (Bertsekas, 1999), [x]+ =max(x,0) and

∂LCKL(p,Λ)
∂pi(y)

= μ ∑
j∈N (i)

[
we j

(
1+ log pi(y)− log p j(y)

)− wjep j(y)

pi(y)

]
− ri(y)
pi(y)

δ(e≤ l)

+ν(log pi(y)+1)+λi+2c
(
1−∑

y
pi(y)

)
.

In the above Λ= {λi} are the Lagrange multipliers and c is the MOM coefficient (see appendix A).
While the MOM-based approach to solving PKL is simple to derive, it has a number of draw-

backs:

1. Hyper(Extraneous)-Parameters: Solving PKL using MOM requires the careful tuning of a
number of extraneous parameters including, the learning rate (α) which is obtained using
the Armijo rule which has 3 other parameters, MOM penalty parameter (c), stopping criteria
(ζ), and penalty update parameters (γ and β). In general, in the interest of scalability, it is
advantageous to have as few tuning parameters in an algorithm as possible, especially in the
case of SSL where there is relatively little labeled data available to “hold out” for use in cross
validation tuning. The success of MOM based optimization depends on the careful tuning
of all the 7 extraneous parameters (this is in addition to μ and ν, the hyper-parameters in
the original objective). This is problematic as settings of these parameters that yield good
performance on a particular data set have no generalization guarantees. In Section 7.2.1, we
present an analysis that shows sensitivity of MOM to the settings of these parameters.

2. Convergence guarantees: For most problems, MOM lacks convergence guarantees. Bert-
sekas (1999) only provides a proof of convergence for cases when c(n) → ∞, a condition
rarely satisfied in practice.

3. Computational cost: The termination criteria for the MOM based solver for PKL requires
that one compute the value of the objective function for every iteration leading to increased
computational complexity.

4. Lack of intuition in update equations: While the update equations for pi(y) are easy to obtain,
they lack an intuitive explanation.
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As stated above, there are other alternatives for numerical optimization of convex functions. In
particular, we could use an IPM for solving PKL, but barrier methods also have their own drawbacks
(e.g., each step involves solving n linear equations). It is important to point out that we are not
arguing against the use of gradient based approaches in general as they been quite successful for
training multi-layer perceptrons, hidden conditional random fields, and so on where the objective
is inherently non-convex. Sometimes even when the objective is convex, we need to rely on MOM
or IPM for optimization like in our case in Section 9.2. However, as PKL is a convex optimization
problem, in this paper we explore and prefer other techniques for its optimization which do not have
the aforementioned drawbacks.

4. Alternating Minimization (AM)

Given a distance function d(p,q) between objects p ∈ P ,q ∈ Q where P ,Q are sets, consider the
problem finding the p,q that minimizes d(p,q). Sometimes solving this problem directly is hard,
and in such cases the method of alternating minimization (AM) lends itself as a valuable tool for
efficient optimization. AM refers to the case where we alternately minimize d(p,q) with respect to
p while q is held fixed and then vice-versa, that is,

p(n) = argmin
p∈P

d(p,q(n−1)) and q(n) = argmin
q∈Q

d(p(n),q).

Figure 1 illustrates the two steps of AM over two convex sets. We start with an initial arbitrary
Q0 ∈ Q which is held fixed while we minimize w.r.t. P ∈ P which leads to P1. The objective is
then held fixed w.r.t. P at P = P1 and minimized over Q ∈ Q and this leads to Q1. The above is
then repeated with Q1 playing the role of Q0 and so on until (in the best of cases) convergence. The
Expectation-Maximization (EM) (Dempster et al., 1977) algorithm is an example of AM. Moreover,
the above objective over two variables can be extended to an objective over n variables. In such cases
n− 1 variables are held fixed while the objective is optimized with respect to the one remaining
variable and the procedure iterates in a similar round-robin fashion.

An AM procedure might or might not have the following properties: 1) a closed-form solution
to each of the alternating minimization steps of AM; 2) convergence to a final solution, and 3)
convergence to a correct minimum of d(p,q). In some cases, even when there is no closed-form
solution to the direct minimization of d(p,q), each step of AM has a closed form solution. In other
cases, however (see Corduneanu and Jaakkola, 2003), one or both the steps of AM do not have
closed form solutions.

Depending on d(p,q) and on the nature of P ,Q , an AM procedure might never converge. Even
when AM does converge, it might not converge to the true correct minimum of d(p,q). In general,
certain conditions need to hold for AM to converge to the correct solution. Some approaches, such
as Cheney and Goldstien (1959), Zangwill (1969) and Wu (1983), rely on the topological properties
of the objective and the space over which it is optimized, while others such as Csiszar and Tusnady
(1984) use geometrical arguments. Still others (Gunawardena, 2001) use a combination of the
above.

In this paper, we take the information geometry approach proposed by Csiszar and Tusnady
(1984) where the so-called 5-points property (5-pp) is fundamental to determining whether AM on
an objective converges to the global optima. 5-pp is defined as follows:
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Figure 1: Alternating Minimization

Figure 2: Illustration of the 5-point property

Definition 3 If P, Q are convex sets of finite measures, given a divergence d(p,q), p ∈ P, q ∈ Q,
then the 5-pp is said to hold for p ∈ P if ∀ q,q0 ∈ Q we have

d(p,q)+d(p,q0)≥ d(p,q1)+d(p1,q1)

where p1 ∈ argmin
p∈P

d(p,q0) and q1 ∈ argmin
q∈Q

d(p1,q).

Figure 2 shows an illustration of 5-pp. Here we start with some Q0 ∈ Q , P1 = argmin
P∈P

d(P,Q0)

and Q1 = argmin
Q∈Q

d(P1,Q). 5-pp is said hold for d(P,Q) if for any P ∈ P and any Q ∈ Q , the sum

of the lengths of the red lines is greater than or equal to the sum of the lengths of the blue lines in
Figure 2. Here the lengths are measured using the objective d(P,Q). Csiszar and Tusnady (1984)
have shown that the 5-pp holds for all p when d(p,q) = DKL(p||q).

So now the question is whether our proposed objective CKL(p) can be optimized using AM and
whether it converges to the correct optimum. This is the topic of discussion in the next section.
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4.1 Graph-based SSL using AM

PKL cannot be solved using AM and so we reformulate it in a manner amenable to AM. The follow-
ing are the desired properties of such a reformulation –

1. The new (reformulated) objective should be a valid graph-based SSL criterion.

2. AM on the reformulated objective should converge to the global optimum of this objective.

3. The optimal solution in the case of the original (PKL) and reformulated problem should be
identical.

4. Each step of the AM process should have a closed form and easily computable solution.

5. The resulting algorithm should scale to large data sets.

In this section, we formulate an objective that satisfies all of these properties. Consider the
following reformulated objective –

PMP : min
p,q∈
m

CMP(p,q) where

CMP(p,q) =
l

∑
i=1

DKL
(
ri||qi

)
+μ

m

∑
i=1

∑
j∈N ′

(i)

w′
i jDKL

(
pi||q j

)−ν
m

∑
i=1

H(pi)

where for each vertex i in G , we define a third discrete probability measure qi over the measurable
space (Y,Y ), w′

i j =
[
W

′
]
i j
,W

′
=W+αIn,N

′
(i) = {i}∪N (i) and α≥ 0. Here the qi’s play a sim-

ilar role as the pi’s and can potentially be used to obtain a final classification result (argmaxy qi(y)).
Thus, it would seem that we now have two classification results for each sample – one the most
likely assignment according to pi and another given by qi. However, CMP includes terms of the
form (wii+α)DKL(pi||qi) which encourage pi and qi to be close to each other. Thus α, which is a
hyper-parameter, plays an important role in ensuring that pi = qi, ∀ i. It should be clear that

argmin
p∈
n

CKL(p) = lim
α→∞

argmin
p,q∈
n

CMP(p,q).

In the following we will show that there exists a finite α such that at a minima, pi(y) = qi(y) ∀ i,y
(henceforth we will denote this as either pi = qi ∀ i or p= q).

We note that the new objective CMP(p,q) can itself be seen as an intrinsically valid SSL criterion.
While the first term encourages qi for the labeled vertices to be close to the labels, ri, the last term
encourages higher entropy p’s. The second term, in addition to acting as a graph regularizer, also
acts as a glue between the p’s and q’s.

A natural question that arises at this point is why we choose this particular form for CMP and
not other alternatives. First note that −H(pi) =DKL(pi||u)+const where u is the uniform measure.
KLD is a function of two variables (say the left and the right). In CMP, the p’s always occur on the
left hand side while the q’s occur on the right. Recall that the reason CKL did not admit a closed
form solution is because we were attempting to optimize w.r.t. both the variables in a KLD. Thus
going from CKL to CMP accomplishes two goals – (a) it makes optimization via AM possible, and
(b) as we see shortly, it leads to closed form updates. Next we address the question of whether AM
on CMP converges to the correct optimum.
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Lemma 4 If μ,ν,w′
i j ≥ 0 ∀ i, j then CMP(p,q) is convex.

Proof This follows as DKL(p||q) is convex in the pair, and we have a weighted sum of convex
functions with non-negative weights.

The previous lemma guarantees that any local minimum is a global minimum. The next theorem
gives the powerful result that the AM procedure on our objective CMP is guaranteed to converge to
the true global minimum of CMP.

Theorem 5 (Convergence of AM on CMP, see appendix B) If

p(n) = argmin
p∈
m

CMP(p,q(n−1)), q(n) = argmin
q∈
m

CMP(p(n),q) and q
(0)
i (y)> 0 ∀ y ∈ Y, ∀i then

(a) CMP(p,q)+CMP(p,p(0))≥ CMP(p,q(1))+CMP(p(1),q(1)) for all p,q ∈
m, and

(b) lim
n→∞

CMP(p(n),q(n)) = infp,q∈
m CMP(p,q).

Next we address the issue of showing that the solutions obtained in the case of the original
and reformulated objectives are the same. We already know that if α→ ∞ then we have equality,
but we are interested in obtaining a finite lower-bound on α for which this is still the case. In the
below, we let CMP(p,q;{w′

ii= 0}i) be the objective CMP shownwith the weight matrix parameterized
with w′

ii = 0 for all i, and we let CMP(p,q;α) be the objective function shown with a particular
parameterized value of α. For the proof of the next lemma and the two theorems that follow, see
appendix C.

Lemma 6 We have that

min
p,q∈
m

CMP(p,q;w′
ii = 0)≤ min

p∈
m
CKL(p).

Theorem 7 Given any A,B,S ∈
m (i.e., A = [a1, . . . ,an] , B = [b1, . . . ,bn] , S = [s1, . . . ,sn]) such
that ai(y),bi(y),si(y) > 0, ∀ i,y and A �= B (i.e., not all ai(y) = bi(y)) then there exists a finite α
such that

CMP(A,B)≥ CMP(S,S) = CKL(S).

The above theorem states that there exists a finite α that ensures CMP(p,q) evaluated on any
positive p �= q will be larger than any CKL(·). This is a stronger statement than we need, since we
are interested only in what happens at the objective functions’ minima. The following theorem does
just this.

Theorem 8 (Equality of Solutions of CKL and CMP) Let

p̂= argmin
p∈
m

CKL(p) and (p∗α̃,q
∗
α̃) = argmin

p,q∈
m
CMP(p,q; α̃)

for an arbitrary α̃ > 0 where p∗̃α = (p∗1;α̃, · · · , p∗m;α̃) and q∗̃α = (q∗1;α̃, · · · ,q∗m;α̃). Then there exists a
finite α̂ such that at convergence of AM, we have that p̂ = p∗α̂ = q∗α̂. Further, it is the case that if
p∗̃α �= q∗̃α, then

α̂≥ CKL(p̂)−CMP(p∗̃α,q
∗̃
α;α= 0)

μ∑n
i=1DKL(p∗i;α̃||q∗i;α̃)

and if p∗̃α = q
∗̃
α then α̂≥ α̃.
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We note that the above theorem guarantees the existence of a finite α that equates the minimum
of CKL and CMP but it does not say how to find it since we do not know the true optimum of CMP.
Nevertheless, if we use an α such that we end up with p∗ = q∗ (or in practice, approximately so)
then we are assured that this is the true optimum for CKL.

As mentioned above, AM is not always guaranteed to have closed form updates at each step,
but in our case closed form updates may be achieved. The AM updates (see Appendix E for the
derivation) are given by

p(n)i (y) =
exp{ μ

γi ∑ j w
′
i j logq

(n−1)
j (y)}

∑y exp{ μ
γi ∑ j w

′
i j logq

(n−1)
j (y)}

and

q(n)i (y) =
ri(y)δ(i≤ l)+μ∑ j w

′
ji p

(n)
j (y)

δ(i≤ l)+μ∑ j w
′
ji

where γi = ν+μ∑ j w
′
i j.

Thus, CMP satisfies all the desired properties of the reformulation. In addition, it is also possible
to derive a test for convergence that does not require that one compute the value of CMP(p,q) (i.e.,
evaluate the objective).

Theorem 9 (Test for convergence, see Appendix D) If {(p(n),q(n))}∞n=1 is generated by AM of CMP(p,q)
and CMP(p∗,q∗)� inf

p,q∈
n
CMP(p,q) then

CMP(p(n),q(n))−CMP(p∗,q∗)≤
n

∑
i=1

(
δ(i≤ l)+di

)
βi,

βi � logsup
y

q(n)i (y)

q(n−1)i (y)
, d j =∑

i

wi j.

While a large number of optimization procedures resort to computing the change in the objective
function with n (iteration index), in this case we have a simple check for convergence. This test
does not require that one compute the value of the objective function which can be computationally
expensive especially in the case of large graphs. Table 1 summarizes the advantages of the proposed
AM approach to solving PMP over that of using MOM to directly solve PKL. We also provide an
empirical comparison of these approaches in Section 7.2.1. Henceforth, we refer to the process of
using AM to solve PMP as measure propagation (MP).

5. Squared-Loss Formulation

In this section, we show how the popular squared-loss objective may be formulated over measures.
We then discuss its relationship to the proposed objective. Consider the optimization problem PSQ :
min
p∈
m

CSQ(p) where

CSQ(p) =
l

∑
i=1

‖ ri− pi ‖2 +
m

∑
i=1

∑
j∈N (i)

wi j ‖ pi− p j ‖2 +ν
m

∑
i=1

‖ pi−u ‖2

and ‖ p ‖2=∑y p
2(y). PSQ can also be seen as a multi-class extension of the quadratic cost criterion

(Bengio et al., 2007) or as a variant of one of the objectives in Zhu and Ghahramani (2002b).
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Criteria MOM AM

Iterative YES YES
Learning Rate Armijo Rule None

Number of Hyper-parameters 7 1 (α)
Test for Convergence Requires Tuning Automatic
Update Equations Not Intuitive Intuitive and easily Parallelized

Table 1: There are two ways to solving the proposed objective, namely, the popular numerical op-
timization tool method of multipliers (MOM), and the proposed approach based on alter-
nating minimization (AM). This table compares the two approaches on various fronts.

Lemma 10 (Relationship between CKL and CSQ) We have that

CKL(p)≥ CSQ(p)
log4

−mν log |Y|.

Proof By Pinsker’s inequality we have that DKL(p||q) ≥ (1/ log4)
(
∑y |p(y) − q(y)|)2 ≥

(1/ log4)∑y |p(y)−q(y)|2. As a result

CKL(p) =
l

∑
i=1

DKL
(
ri||pi

)
+μ

m

∑
i=1

∑
j∈N (i)

wi jDKL
(
pi||p j

)−ν
m

∑
i=1

H(pi)

=
l

∑
i=1

DKL
(
ri||pi

)
+μ

m

∑
i=1

∑
j∈N (i)

wi jDKL
(
pi||p j

)
+ν

m

∑
i=1

DKL(pi||u)−mν log |Y|

≥ 1
log4

[
l

∑
i=1

‖ ri− pi ‖2 +
m

∑
i=1

∑
j∈N (i)

wi j ‖ pi− p j ‖2 +ν
m

∑
i=1

‖ pi−u ‖2
]
−mν log |Y|

=
CSQ(p)
log4

−mν log |Y|.

PSQ can be reformulated as the following equivalent optimization problem PSQ : min
p∈
m

CSQ(p)

where

CSQ(p) = Tr
(
(Sp− r′)(Sp− r′)T )+2μTr(LppT )+νTr((p−u)(p−u)T ),

S�

(
Il 0
0 0

)
, r′ �

(
r 0
0 0

)
, u� (u, . . . ,u) ∈
m,

1m ∈ Rm is a column vector of 1’s, and Il is the l × l identity matrix. Here L � D−W is the
unnormalized graph Laplacian, D is a diagonal matrix given by di = [D]ii =∑ j wi j. CSQ is convex if
μ,ν≥ 0 and, as the constraints that ensure p ∈
 are linear, we can make use of the KKT conditions
(Bertsekas, 1999) to show that the solution to PSQ is given by

p̂= (S+2μL+νIn)−1
[
Sr+νu+

2μ
|Y|L1n1

T
c

]
.
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The above closed-form solution involves inverting a matrix of size m×m. Henceforth we refer to
the above closed form solution of PSQ as SQ-Loss-C (C stands for closed form). Returning to the
original formulation, using Lagrange multipliers, setting the gradient to zero and solving for the
multipliers we get the update for pi’s to be

p(n)i (y) =
ri(y)δ(i≤ l)+νu(y)+μ∑ j wi j p

(n−1)
j (y)

δ(i≤ l)+ν+μ∑ j wi j
. (1)

Here n is the iteration index. It can be shown that p(n) → p̂ (Bengio et al., 2007). In the following
we refer to the iterative method of solving PSQ as SQ-Loss-I. There has not been any work in the
past addressing the rate at which p(n) → p̂ in the case of SQ-Loss-I. We address this issue in the
following but first we define the rate of convergence of a sequence.

Definition 11 (Rate of Convergence Bertsekas, 1999 ) Let {xn} be a convergent sequence such
that xn → 0. It is said to have a linear rate of convergence if either

xn ≤ qηn ∀ n or limsup
n→∞

xn
xn−1

≤ η

where η ∈ (0,1) and q> 0.

As “geometric” rate of convergence is a more appropriate description of linear convergence, we use
this term in the paper.

Theorem 12 (Rate of Convergence for SQ-Loss, see Appendix D) If

(a) ν> 0, and

(b) W has at least one non-zero off-diagonal element in every row (i.e.,W is irreducible)

then the sequence of updates given in Equation 1 has a geometric rate of convergence for all i and
y.

Thus we have that p(n) → p̂ very quickly. It is interesting to consider a reformulation of CSQ in
a manner similar to CMP (see Section 4.1), as we do next.

5.1 AM Amenable Formulation of PSQ

Consider the following reformulation of CSQ

C ′
SQ(p,q) =

l

∑
i=1

‖ ri−qi ‖2 +
n

∑
i=1

∑
j∈N (i)

w′
i j ‖ pi−q j ‖2 +ν

n

∑
i=1

‖ pi−u ‖2 .

This form is amenable to AM and can be shown to satisfy 5-pp. Further the updates for two steps
of AM have a closed form solution and are given by

p(n)i (y) =
νu(y)+μ∑ j w

′
i jq

(n−1)
j (y)

ν+∑ j w
′
i j

,
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q(n)i (y) =
ri(y)δ(i≤ l)+μ∑ j w

′
ji p

(n)
j (y)

δ(i≤ l)+μ∑ j w
′
ji

.

We call this method SQ-Loss-AM. It is important to point out that for solving PSQ, one always
resorts to either SQ-Loss-I or SQ-Loss-C depending on the nature of the problem. We will be using
SQ-Loss-AM in the next section to provide more insights into the relationship between PKL and
PSQ.

6. Connections to Other Approaches

In this section we explore connections between our proposed approach and other previously pro-
posed SSL algorithms.

6.1 Squared-Loss Based Algorithms

A majority of previously proposed graph-based SSL algorithms (Zhu et al., 2003; Joachims, 2003;
Belkin et al., 2005; Bengio et al., 2007) are based on minimizing squared-loss. In the following we
refer to the squared-loss based SSL algorithm proposed in Zhu and Ghahramani (2002a) as label
propagation (LP) (this is the standard version of label propagation, see Table 2), the algorithm in
Zhu et al. (2003) as the harmonic functions algorithms (HF). Also QC denotes the quadratic cost
criterion (Bengio et al., 2007). While the objectives used in the case of LP, HF and QC are similar in
spirit to our CSQ, there are some important differences. In the case of both HF and QC, the objective
is defined over the reals whereas in our case CSQ is defined over discrete probability measures. This
leads to two important benefits – (a) it allows easy generalization to multi-class problems, (b) it
allows us to exploit well-defined functions of measures in order to improve performance. Further,
both the HF and LP algorithms do not have guards against degenerate solutions (i.e., the third term
in CSQ). QC, on the other hand, employs a regularizer similar to the third term in CSQ but QC is
limited to only two-class problems (for multi-class problems one resorts to one vs. rest). Both the LP
and HF algorithms optimize the same objective but LP uses a iterative solution while HF employs
the closed form solution (it has been shown that LP converges to the solution given by HF Zhu,
2005a). QC is a generalization of HF and has been shown to outperform it (Bengio et al., 2007).
Our squared-loss formulation, CSQ, is a generalization of QC for multi-class problems and as we
show in Section 7.2.2, it outperforms QC. Thus, to compare against squared-loss based objectives,
we simply use our formulation CSQ.

Table 2 summarizes the update equations in the case of some of the graph-based SSL algorithms.
It is interesting to compare the update equations for SQ-Loss-AM and MP. It can be seen that the
update equations for qi(y) in the case of SQ-Loss-AM and MP are the same. In the case of MP, the
pi(y) update may be re-written as

p(n)i (y) =
∏ j

(
q(n−1)j (y)

)μw′i j
∑y∏ j

(
q(n−1)j (y)

)μw′i j .
Thus, while squared loss makes use of a weighted arithmetic-mean, MP uses a weighted geometric-
mean to update pi(y). In other words, while squared-error leads to additive updates, the use of KLD
leads to multiplicative updates.
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Algorithm Update Equation(s)

MP

p(n)i (y) =
exp{ μ

γi
∑ j w

′
i j logq

(n−1)
j (y)}

∑y exp{ μ
γi
∑ j w

′
i j logq

(n−1)
j (y)}

q(n)i (y) =
ri(y)δ(i≤l)+μ∑ j w

′
ji p

(n)
j (y)

δ(i≤l)+μ∑ j w
′
ji

γi = ν+μ∑ j w
′
i j

SQ-Loss-C
p̂= (S+2μL+νIm)−1

[
Sr+νu+ 2μ

|Y|L1m1
T
c

]
L� D−W, [D]ii = ∑ j wi j

SQ-Loss-I p(n)i (y) =
ri(y)δ(i≤l)+νu(y)+μ∑ j wi j p

(n−1)
j (y)

δ(i≤l)+ν+μ∑ j wi j

SQ-Loss-AM
p(n)i (y) =

νu(y)+μ∑ j w
′
i jq

(n−1)
j (y)

ν+∑ j w
′
i j

q(n)i (y) =
ri(y)δ(i≤l)+μ∑ j w

′
ji p

(n)
j (y)

δ(i≤l)+μ∑ j w
′
ji

LP p(n)i (y) =
ri(y)δ(i≤l)+δ(i>l)∑ j wi j p

(n−1)
j (y)

δ(i≤l)+δ(i>l)∑ j wi j

Table 2: A summary of update equations for various graph-based SSL algorithms. MP stands for
our proposed measure propagation approach, SQ-Loss-C, SQ-Loss-I and SQ-Loss-AM
represent the closed-form, iterative and alternative-minimization based solutions for the
objective based on squared-error. LP is label propagation (Zhu and Ghahramani, 2002a).
In all cases μ and ν are hyper-parameters.

Spectral graph transduction (SGT) (Joachims, 2003) is an approximate solution to the NP-hard
norm-cut problem. The use of norm-cut instead of a mincut (as in Blum and Chawla, 2001) ensures
that the number of unlabeled samples in each of the cuts is more balanced. SGT requires that
one compute the eigen-decomposition of a m×m matrix which can be challenging for very large
data sets. Manifold regularization (Belkin et al., 2005) proposes a general framework in which
a parametric loss function that is defined over the labeled samples and is regularized by graph
smoothness term defined over both the labeled and unlabeled samples. When the loss function
satisfies certain conditions, it can be shown that the representer theorem applies and so the solution is
a weighted sum over kernel computations. Thus the goal of the learning process is to discover these
weights. When the parametric loss function is based on least squares, the approach is referred to as
Laplacian regularized least squares (LapRLS) (Belkin et al., 2005) and when the loss function is
based on hinge loss, the approach is called Laplacian support vector machines (LapSVM)) (Belkin
et al., 2005). In the case of LapRLS, the weights have a closed form solution which involves
inverting a m×m matrix while in the case of LapSVM, optimization techniques used for SVM
training may be used to solve for the weights. In general, it has been observed that LapRLS and
LapSVM give similar performance (see Chapter 11 in Chapelle et al., 2007). It very important
to point out here that while LapSVM minimizes hinge loss (over the labeled samples) which is
considered more appropriate than squared loss for classification, the graph regularizer is still based
on squared error.
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So is there a reason to prefer KLD based loss over squared-error? In this context we quote two
relevant statements from Bishop (1995)

1. Page 226: “ In fact, the sum-of-squares error function is not the most appropriate for clas-
sification problems. It was derived from maximum likelihood on the assumption of Gaussian
distributed target data. However, the target values for a l-of-c coding scheme are binary, and
hence far from having a Gaussian distribution.”

2. Page 235: “Minimization of the cross-entropy error function tends to result in similar relative
errors on both small and large target values. By contrast, the sum-of-squares error function
tends to give similar absolute errors for each pattern, and will therefore give large relative
errors for small output values. This suggests that the cross-entropy error function is likely to
perform better than sum-of-squares at estimating small probabilities.”

While the above quotes were made in the context of a multi-layered perceptron (MLP), they apply
to learning in general. While squared-error has worked well in the case of regression problems
(Bishop, 1995),1 for classification, it is often argued that squared-loss is not the optimal criterion and
alternative loss functions such as the cross-entropy (Bishop, 1995), logistic (Ng and Jordan, 2002),
hinge-loss (Vladimir, 1998) have been proposed. When attempting to measure the dissimilarity
between measures, KLD is said to be asymptotically consistent w.r.t. the underlying probability
distributions (Bishop, 1995). The second quote above furthers the case in favor of adopting KLD
based loss as it is based on relative error rather absolute error as in the case of squared-error. In
addition, KLD is an ideal measure for divergence of probability distributions as it has description-
length consequences (coding with the wrong distribution will lead to longer description bit length
than necessary). Most importantly, as we will show in Section 7, MP outperforms the squared-
error based PSQ on a number of tasks. We also present further empirical comparison of these two
objectives in Section 7.2.4.

We would like to note that Wang et al. (2008) proposed a graph-based SSL algorithm that
also employs alternating minimization style optimization. However, it is inherently squared-loss
based which MP outperforms (see Section 7). Further, they do not provide or state convergence
guarantees and one side of their updates is not only not in the closed-form, but also it approximates
an NP-complete optimization problem.

6.2 Information Regularization (Corduneanu and Jaakkola, 2003)

The information regularization (IR) (Corduneanu and Jaakkola, 2003) algorithm also makes use of
a KLD based loss for SSL but is different from our proposed approach in following ways

1. IR is motivated from a different perspective. Here the input space is divided into regions
{Ri} which may or may not overlap. For a given point x j ∈ Ri, IR attempts to minimize the
KLD between p j(y|x j) and p̂Ri(y), the agglomerative distribution for region Ri. The intuition
behind this is that, if a particular sample is a member of a region, then its posterior must be
similar to the posterior of the other members. Given a graph, one can define a region to be
a vertex and its neighbors thus making IR amenable to graph-based SSL. In Corduneanu and
Jaakkola (2003), the agglomeration is performed by a simple averaging (arithmetic mean).

1. Assuming a Gaussian noise model in a regression problem leads to an objective based on squared-loss.
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2. While IR suggests (without proof of convergence) the use of AM for optimization, one of the
steps of the optimization does not admit a closed-form solution. This is a serious practical
drawback especially in the case of large data sets.

3. It does not make use of a entropy regularizer. But as our results show, the entropy regularizer
leads to much improved performance.

Tsuda (2005) (hereafter referred to as PD) is an extension of the IR algorithm to hyper-graphs where
the agglomeration is performed using the geometric mean. This leads to closed form solutions in
both steps of the AM procedure. However, like IR, PD does not make use of a entropy regularizer.
Further, the update equation for one of the steps of the optimization in the case of PD (Equation 13
in Tsuda, 2005) is actually a special case of our update equation for pi(y) and may be obtained by
setting wi j = 1/2. Further, our work here can be easily extended to hyper-graphs (see Section 9.3).

7. Results

Table 3 lists the data sets that we use in this paper. These corpora come from a diverse set of
domains, including image processing (handwritten digit recognition), natural language processing
(document classification, webpage classification, dialog-act tagging), and speech processing (phone
classification). The sizes vary from m = 400 (BCI) to the largest data set, Switchboard, which has
120 million samples. The number of classes vary from |Y| = 2 to |Y| = 72 in the case of Dihana.
The goal is to show that the proposed approach performs well on both small and large data sets,
for binary and multi-class problems. Further, in each case we compare the performance of MP
against the state-of-the-art algorithm for that task. Each data set is described in detail in the relevant
sections.

7.1 Synthetic 2D Two-Moon Data Set

In order to understand the advantages of MP over other state-of-the-art SSL algorithms, we eval-
uated their performance on the synthetic 2D two-moon data set. This is a binary classification
problem. We compare against SQ-Loss-I (see Section 5), LapRLS (Belkin et al., 2005), and SGT
(Joachims, 2003). For all approaches, we constructed a symmetrized 10-NN graph using an RBF
kernel. In the case of LapRLS and SGT, the hyper-parameter values were set in accordance to the
recipe in Belkin et al. (2005) and Joachims (2003) respectively. In the case of MP, we set μ= 0.2,
ν= 0.001 and α= 1.0. For SQ-Loss-I, we set μ= 0.2 and ν= 0.001. These values were found to
give reasonable performance for most data sets.

We used three different types of labelings: (a) two labeled samples from each class, (b) 4 sam-
ples from one class and 1 sample from the other class, and (c) 10 samples from one class and 1
sample from the other class. While the first represents the ‘balanced’ case, that is, equal number of
labeled samples from the two classes, the others are ‘imbalanced’ conditions. In other words, (b)
and (c) are representative of cases where the distribution over the labeled samples is not reflective of
the underlying distribution over the classes (there are equal number of samples in each class). The
results for each of the different labeling are shown in Figure 3. The first column shows the results
obtained using SQ-Loss-I, the second column shows the results of LapRLS, the third is SGT and
the fourth (last) column is MP. The following observations can be made from these results
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Data Set m |Y| HN(p0) Task

2D Two-Moon 500 2 1 Synthetic
BCI 400 2 1 Brain Computer Interface
USPS 1500 2 0.7 HandWritten Digits
Digit1 1500 2 1 Synthetic
COIL 1500 6 1 Image Recognition
Text 1500 2 1 Newsgroups Newswires

OPT-Digits 1797 10 1 HandWritten Digits
Reuters-21578 9603 10 0.8 Document Classification
WebKB 8282 4 0.9 Webpage Classification
Dihana 23,500 72 0.8 Dialog-Act Tagging

Switchboard-DA 185,000 18 0.6 Dialog-Act Tagging
TIMIT 1.4 million 48 0.9 Phone Classification

Switchboard 120 million 53 0.8 Phone Classification

Table 3: List of Data Sets we used to compare the performance of various SSL algorithms.
HN(p0) = H(p0)/ log |Y| is the normalized entropy of the prior and a value of 1 indi-
cates a perfectly balanced data set while values closer to 0 imply imbalance. In the case of
the Switchboard data set, HN(p0) was computed over the STP data (see Section 8.1).
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Figure 3: Results on the 2D two-moon data set. Each row shows results for different labelings and
in each case the labeled points are shown in “black”. The first column shows results
obtained using SQ-Loss-I, the second column results were obtained using LapRLS, SGT
was used for the third column and the last column shows the results in the case of MP.
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1. MP is able to achieve perfect classification in the first two cases, and essentially perfect (2
errors) in the third case.

2. In the balanced case (first row), all approaches achieve perfect classification. Here, all ap-
proaches are able to correctly learn the nature of the manifold.

3. In the imbalanced cases (second and third rows), all three other approaches (SQ-Loss-I,
LapRLS, and SGT) fail to correctly classify a significant portion of samples. This is not
surprising and has been observed by others in the past (see Figure 1 in Wang et al., 2008).

4. Finally, in the case of SQ-Loss-I, we tried using class mass normalization (CMN) (Zhu and
Ghahramani, 2002a) as a post-processing step. While the results did not change in the bal-
anced case, CMN in fact resulted in worse error rate performance in the imbalanced cases.
Note that Figure 3 for SQ-Loss-I does not include CMN.

7.2 Results on Benchmark SSL Data Sets

We also evaluated the performance of MP on a number of benchmark SSL data sets including,
USPS, Text, Digit1, BCI, COIL and Opt-Digits. All the above data sets, with the exception of
Opt-Digits (obtained from the UCI machine learning repository), came from http://www.kyb.
tuebingen.mpg.de/ssl-book. Digit1 is a synthetic data set, USPS is a handwritten digit recog-
nition task, BCI involves classifying signals obtained from a brain computer interface, COIL is a
part of the Columbia object image recognition library and involves classifying objects using images
taken at different orientations. Text involves classifying IBM vs. the rest for documents taken from
the top 5 categories in comp.* newswire. Opt-Digits is also a handwritten digit recognition task. We
note that most of these data sets are perfectly balanced (see Table 3)—further details may be found
in Chapelle et al. (2007).

We compare MP against four other algorithms: 1) k-nearest neighbors; 2) Spectral Graph Trans-
duction (SGT) (Joachims, 2003); 3) Laplacian Regularized Least Squares (LapRLS) (Belkin et al.,
2005); and 4) PSQ solved using SQ-Loss-I. Here k-nearest neighbors is the fully-supervised ap-
proach, while others are graph-based SSL approaches. We used the standard features supplied with
the corpora without any further processing. For the graph-based approaches we constructed sym-
metrized k-NN graphs using an RBF kernel. We discuss the choice of k and the width of the kernel
shortly. For each data set, we generated transduction sets with different number of labeled samples,
l ∈ {10,20,50,80,100,150}. In each case, we generated 11 different transduction sets. The first set
was used to tune the hyper-parameters which were then held fixed over the remaining sets. In the
case of the k-nearest neighbors approach, we tried k ∈ {1,2,4,5,10,20,30,40,50,70,90,100,120,
140,150,160,180,200}. For the graph-based approaches, k (for the k-NN graph) was tuned on the
first transduction set over the following values k ∈ {2,5,10,50,100,200,m}. The optimal width of
the RBF kernel, σ, in the case of SQ-Loss-I, SGT and MP was determined over the following set
σ ∈ {ga/3 : a ∈ {2,3, · · · ,10}} where ga is the average distance between each sample and its ath
nearest neighbor over the entire data set (Bengio et al., 2007).

In the case of LapRLS, we followed the setup described in Section 21.2.5 of Chapelle et al.
(2007). Here, as per the recipe in Joachims (2003), the optimal σwas determined in a slightly differ-
ent manner—we tried σ∈ {σ08 , σ04 , σ02 ,σ0,2σ0,4σ0,8σ0}where σ0 is the average norm of the feature
vectors. In addition the hyper-parameters γA, r (see Belkin et al., 2005) associated with LapRLS
were tuned over the following values: γA ∈ {1e–6, 1e–4, 1e–2, 1, 100}, r ∈ {0, 1e–4, 1e–2, 1, 100,
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USPS Digit1
l 10 20 50 80 100 150 10 20 50 80 100 150

k-NN 80.0 80.4 90.7 92.7 93.6 94.9 67.6 79.5 90.2 93.2 91.2 95.2
SGT 86.2 87.9 94.0 95.7 96.0 97.0 92.1 93.6 96.2 97.1 97.4 97.7

LapRLS 83.9 86.9 93.7 94.7 95.4 95.9 92.4 95.3 95.7 96.2 97.1 97.4
SQ-Loss-I 81.4 82.0 93.6 95.8 95.2 95.2 91.2 94.9 96.9 96.6 97.2 97.1
MP 88.1 90.4 93.9 95.0 96.2 96.8 92.1 95.1 96.1 97.4 97.4 97.8

BCI Text
l 10 20 50 80 100 150 10 20 50 80 100 150

k-NN 48.5 52.4 53.3 50.6 53.1 53.5 60.2 64.2 71.6 72.4 72.3 74.5
SGT 49.7 50.4 52.2 52.4 53.6 54.5 70.4 70.9 73.1 76.9 77.0 78.1

LapRLS 53.3 53.4 52.7 53.6 53.9 56.1 68.2 69.1 71.2 73.4 74.2 76.2
SQ-Loss-I 51.0 51.3 50.7 53.2 53.3 53.1 67.9 72.0 74.1 76.8 76.8 76.6
MP 53.0 53.2 52.8 53.9 54.0 57.0 70.3 72.6 73.0 75.9 75.4 77.9

COIL OPT
l 10 20 50 80 100 150 10 20 50 80 100 150

k-NN 34.5 53.9 66.9 77.9 79.2 83.5 79.6 83.9 85.5 90.5 92.0 93.8
SGT 40.1 61.2 78.0 88.5 89.0 89.9 90.4 90.6 91.4 94.7 97.4 97.4

LapRLS 49.2 61.4 78.4 80.1 84.5 87.8 89.7 91.2 92.3 96.1 97.6 97.3
SQ-Loss-I 48.9 63.0 81.0 87.5 89.0 90.9 92.2 90.2 95.9 97.2 97.3 97.7
MP 47.7 65.7 78.5 89.6 90.2 91.1 90.6 90.8 94.7 96.6 97.0 97.1

Table 4: Comparison of accuracies for different number of labeled samples (l) across USPS, Digit1,
BCI, Text, COIL and Opt-Digits data sets. In each column, the best performing system
and all approaches that are not significantly different at the 0.001 level (according to the
difference of proportions significance test) are shown bold-faced.

1e4, 1e6}. Also, as per Belkin et al. (2005), we set p = 5 in the case of Text data set and p = 2
for all the other data sets. In the case of SGT, the search was over c ∈ {3000, 3200, 3400, 3800,
5000, 100000} (Joachims, 2003). Finally, the trade-off parameters, μ and ν (associated with both
MP and SQ-Loss-I) were tuned over the following sets: μ∈ {1e–8, 1e–6, 1e–4, 1e–2, 0.1, 1, 10}
and ν ∈ {1e–8, 1e–6, 1e–4, 1e–2, 0.1}. In the case of SQ-Loss-I, the results were obtained after
the application of CMN as a post-processing step as this has been shown to be beneficial to the
performance on benchmark data sets (Chapelle et al., 2007). For MP, we initialized p(0) such that
all assignments had non-zero probability mass as this is a required condition for convergence and
set α = 1. As LapRLS and SGT assume binary classification problems, results for the multi-class
data sets (COIL and OPT) were obtained using one vs. rest.

The mean accuracies over the 10 transduction sets (i.e., excluding the set used for tuning the
hyper-parameters) for each corpora is shown in Table 4. The following observations may be made
from these results

1. As expected, for all approaches, an increase in number of labeled samples leads to increased
accuracy.
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USPS Text Digit1 BCI COIL Opt-Digits
LP-3 77.2 65.1 70.1 51.5 31.3 81.2
MOM 88.1 70.3 91.4 53.0 46.1 91.2
MP 88.2 70.3 92.1 53.0 47.7 93.4
MOM′ 81.1 67.6 79.4 51.7 41.2 90.4

Table 5: Comparison of performance of MOM andMP. Results are in accuracies for the l= 10 case.
We also show the results obtained after three iterations of LP (LP-3) (Zhu and Ghahramani,
2002a) as this was used to initialize MOM. MOM′ are the results obtained using the MOM
setup with a small change in the setting of the hyper-parameters.

2. MP performs best in 15 out of the 36 cases, SQ-Loss is best in 10 out of the 36 cases, SGT
in 8 out of the 36 cases and LapRLS in 7 out of the 36 cases. In 13 of cases in which MP
was not the best, it was not significantly different compared to the winner (we characterize an
improvement as being significant if it is significant at the 0.001 level according to a difference
of proportions significance test).

3. It can be seen that SGT does best in the case of the Text corpus for a majority of the values
of l, while MP is the best in a majority of the cases in the COIL and BCI data sets. SQ-Loss
does best in the case of OPT. Thus in the case of the two multi-class data sets, the two true
multi-class approaches perform better than the SSL approaches that use one vs. rest.

4. We also tried SQ-Loss-C and SQ-Loss-AM for solving the squared-loss based objective and
in a majority of the cases the performance was the same as SQ-Loss-I. In other cases, the
difference was insignificant. It should however be noted that using SQ-Loss-C to solve large
problems can be rather difficult.

5. While there are no silver bullets in SSL (Zhu, 2005b), our MP algorithm outperforms other
approaches in a majority of the cases. We would like to point out the diversity of the data sets
used in the above experiment.

6. Finally note that while we have a used a simple approach to hyper-parameter selection, there
are other ways of choosing them such as Goldberg and Zhu (2009)

7.2.1 MP VS. MOM

In this section we compare the results obtained from using MP against results obtained by directly
optimizing the original objective, CKL (henceforth we refer to this as MOM). As explained in Sec-
tion 3.1, implementing MOM requires the careful tuning of a number optimization related hyper-
parameters (in addition to μand ν). After extensive experimentation, we found that setting, γ= 0.25,
β= 5 and ζ=1e–6 gave reasonable results. Further, as MOM is gradient based, we initialized p(0)

(see Section 3.1) to the distributions obtained after 3 iterations of the label propagation algorithm
described in Zhu and Ghahramani (2002a) (henceforth referred to as LP-3).

Table 5 shows average accuracies over all transduction sets for l = 10 (the trends were similar
for other values of l) in the case of the corpora described in the previous section for (a) LP-3, (b)
MOM (c) MP, and (d) MOM′. In the case of MOM′, we changed the values of the optimization
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related hyper-parameters to γ = 0.2 and β = 3. The goal here is to show the sensitivity of MOM′

to the exact settings of the hyper-parameter values. The following observations can be made from
these results

1. MOM outperforms LP-3. This implies MOM is able to learn over and beyond the set of
distributions that result from 3 iterations of LP.

2. In the case of USPS, Digit1, COIL, Opt-Digits, MP outperforms MOM. Further, the per-
formance gap between MP and MOM grows with the size of the data set. MP significantly
outperforms MOM at the 0.0001 level in the case of the Opt-Digits. This might seem surpris-
ing because when we have that p∗ = q∗ in the case of MP, the results obtained using MOM
cannot be any worse than those obtained using MP (because the objective is convex). We con-
jecture that this is because MOM involves using a penalty parameter c(n) that tends to increase
with n leading to slow convergence. This is more likely to happen in the neighborhood of p∗

(Bertsekas, 1999). As a result MOM is terminated when the rate of the change of p(n) falls
below some ζ and so it is possible that the objective has not attained the optimal value. In the
case of MP, on the other hand, no such issues exist. Further we have a test for convergence
(see Theorem 9).

3. The results obtained in the case of MOM′ show that this approach can be very sensitive to the
settings of the hyper-parameters. While it may be possible to tune the various MOM related
hyper-parameters in the case of small data sets, it is much less feasible in the case of large
data sets.

7.2.2 ONE VS. REST AGAINST TRUE MULTI-CLASS

It is often argued binary classifiers when used within a one vs. rest framework perform at least as
well as true multi-class solutions (Rifkin and Klautau, 2004). In this section, we test this claim in
the context of SSL. We make use of the two multi-class data sets, COIL and OPT-Digits. Figure 4
shows a comparison of the performance of PSQ (solved using SQ-Loss-C) and QC (Bengio et al.,
2007). Even though SQ-Loss-I converges to SQ-Loss-C, in this case we used SQ-Loss-C as the size
of the data set is small. As QC can handle only binary classification problems, the results for QC
were generated using one vs. rest. Note that SQ-Loss-C is simply the closed form solution of PSQ
which is the multi-class extension of the QC objective. In the case of both the approaches, (a) the
graph was generated by using an RBF kernel over the Euclidean distance, (b) we used the closed
form solution, and (c) hyper-parameter search was done over exactly the same set of values. It can
be seen that SQ-Loss-C outperforms QC in all cases. As the objectives are both inherently based
on squared-error, the performance improvement in going from QC to PSQ is likely because PSQ is a
true multi-class objective, that is, all the parameters are estimated jointly.

7.2.3 EFFECTS OF ENTROPY REGULARIZATION

We also wish to explore the effects of the entropy regularizer. We ran MP using the same setup
described in Section 7.2 but with ν= 0. The results in the l = 10 case are shown in Table 6. Similar
trends were observed in the case of other values of l. It can be seen that entropy regularization
leads to improved performance in the case of all data sets. We moreover have seen this trend in the
other data sets (results not reported herein). The entropy regularizer encourages solutions closer to
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Figure 4: Comparison of the one vs. rest approach against true multi-class classifier. Figures show
accuracy (in %) vs. Number of Labeled Samples (l) for (a)-left COIL and (b)-right OPT-
DIGITS data sets. SQ-Loss-I is the solution to a true multi-class objective while QC
makes use of one vs. rest approach for multi-class problems.

USPS Text Digit1 BCI COIL Opt-Digits
MP (ν= 0) 85.7 70.0 91.7 51.1 45.2 89.5

MP 88.2 70.3 92.1 53.0 47.7 93.4

Table 6: Comparison of performance of MP with and without (ν = 0) entropy regularization. Re-
sults are in accuracies for the l = 10 case.

the uniform distribution, and we mentioned above that this helps to retain uncertainty in portions
of graph very isolated from label information. To explain why this could lead to actual improved
performance, however, we speculate that the entropy term is beneficial for the same reason as that
of maximum entropy estimation—except for evidence to the contrary, we should prefer solutions
that are as indifferent as possible.

7.2.4 SENSITIVITY OF MP AND SQ-LOSS-I TO σ

In this section, we examine the effects of change in hyper-parameters settings on the performance
of PSQ (solved using SQ-Loss-I) and MP. In particular, we look at the effects of varying the width of
the RBF kernel used to generate the weighted graph. Figure 5 shows results obtained for the l = 50
case in the USPS and Opt-Digits data sets (in each case the value of σ at the mode of each curve
is its optimal value). It can be seen that in the case of both the data sets, the performance variation
is larger in the case of SQ-Loss-I while MP is more robust to the value of σ. Note that in the case
of Opt-Digits, at the optimal value for σ, SQ-Loss-I outperforms MP. Similar trends were observed
in the case of other data sets. As the choice of hyper-parameters in an issue in SSL, we prefer
approaches that are more robust to the value of the hyper-parameters. We believe the robustness
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Figure 5: Figures showing the variation of accuracy with change in the width (σ) of the RBF kernel.
The left figure was generated using the USPS data set for the l = 50 case while the right
figure was generated using the Opt-Digits data set for the l = 50 case. The vertical lines
(blue for SQ-Loss-I and red for MP) depict the σ given by the algorithm described in the
previous section.

of MP is due to the fact that it is inherently based on KLD which is more suited for classification
compared to squared error.

7.3 Text Classification

Text classification involves automatically assigning a given document to a fixed number of semantic
categories. Each document may belong to one, many, or none of the categories. In general, text clas-
sification is amulti-class problem (more than 2 categories). Training fully-supervised text classifiers
requires large amounts of labeled data whose annotation can be expensive (Dumais et al., 1998). As
a result there has been interest is using SSL techniques for text classification (Joachims, 1999,
2003). However past work in semi-supervised text classification has relied primarily on one vs.
rest approaches to overcome the inherent multi-class nature of this problem. We compare our algo-
rithm (MP) with other state-of-the-art text categorization algorithms, namely: (a) SVM (Joachims,
1999); (b) Transductive-SVM (TSVM) (Joachims, 1999); (c) Spectral Graph Transduction (SGT)
(Joachims, 2003); and (d) PSQ solved using SQ-Loss-I. Apart from MP, SGT and SQ-Loss-I are
graph-based algorithms, while SVM is fully-supervised (i.e., it does not make use of any of the un-
labeled data). As shown by the results in Joachims (2003), SGT outperforms other SSL algorithms
for this task. Thus we choose to compare against SGT. We implemented SVM and TSVM using
SVM Light (Joachims, 2002) and SGT using SGT Light (Joachims, 2004). In the case of SVM,
TSVM and SGT we trained |Y| classifiers (one for each class) in a one vs. rest manner precisely
following Joachims (2003). We used two real-world data sets: (a) Reuters-21578 and (b) WebKB.
In the following we discuss the application of the above algorithms to these data sets.
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7.3.1 REUTERS-21578

We used the “ModApte” split of the Reuters-21578 data set collected from the Reuters newswire in
1987 (Lewis et al., 1987). The corpus has 9,603 training (not to be confused with D) and 3,299 test
documents (which represents Du). Of the 135 potential topic categories only the 10 most frequent
categories are used (Joachims, 1999). Categories outside the 10 most frequent were collapsed into
one class and assigned a label “other”. For each document i in the data set, we extract features
xi in the following manner: stop-words are removed followed by the removal of case and infor-
mation about inflection (i.e., stemming) (Porter, 1980). We then compute TFIDF features for each
document (Salton and Buckley, 1987). We constructed symmetrized k-NN graphs with weights
generated using cosine similarity between TFIDF features generated as explained above.

For this task Y= { earn, acq, money, grain, crude, trade, interest, ship, wheat, corn, average}.
For SQ-Loss-I and MP, we use the output space Y′ = Y∪{ other }. For documents in Dl that are
labeled with multiple categories, we initialize ri to have equal non-zero probability for each such
category. For example, if document i is annotated as belonging to classes { acq, grain, wheat},
then ri(acq) = ri(grain) = ri(wheat) = 1/3. Note that there might be other (non-uniform) ways of
initializing ri (e.g., using word counts).

We created 21 transduction sets by randomly sampling l documents from the standard Reuters
training set with the constraint that each of 11 categories (top 10 categories and the class other) are
represented at least once in each set. These samples constitute Dl . All algorithms used the same
transduction sets. In the case of SGT, SQ-Loss-I and MP, the first transduction set was used to tune
the hyper-parameters which we then held fixed for all the remaining 20 transduction sets. For all the
graph-based approaches, we ran a search over k ∈ {2, 10, 50, 100, 250, 500, 1000, 2000, m} (note
k=m represents a fully connected graph, i.e., a clique). In addition, in the case of MP, we set α= 2
for all experiments, and we ran a search over μ∈ {1e–8, 1e–4, 0.01, 0.1, 1, 10, 100} and ν ∈ {1e–8,
1e–6, 1e–4, 0.01, 0.1}. In the case of SGT, the search was over c ∈ {3000, 3200, 3400, 3800, 5000,
100000} (Joachims, 2003).

We report precision-recall break even point (PRBEP) results on the 3,299 test documents in
Table 7. PRBEP has been a popular measure in information retrieval (see, e.g., Raghavan et al.,
1989). It is defined as that value for which precision and recall are equal. Results for each category
in Table 7 were obtained by averaging the PRBEP over the 20 transduction sets. The final row
“average” was obtained by macro-averaging (average of averages). The optimal value of the hyper-
parameters in case of SQ-Loss-I was k= 100; in case of MP, k= 1000, μ= 1e–4, ν= 1e–4; and in
the case of SGT, k = 100, c = 3400. The results show that MP outperforms the state-of-the-art on
6 out of 10 categories and is competitive in 3 of the remaining 4 categories. Further it significantly
outperforms all other approaches in case of the macro-averages. MP is significantly better at the
0.001 level over its nearest competitor (SGT) according to a difference of proportions significance
test.

Figure 6 shows the variation of “average” PRBEP (last row in Table 7) against the number of
labeled documents (l). For each value of l, we tuned the hyper-parameters over the first transduction
set and used these values for all the other 20 sets. Figure 6 also shows error-bars (± standard
deviation) for all the experiments. As expected, the performance of all the approaches improves
with increasing number of labeled documents. Once again in this case, MP, outperforms the other
approaches for all values of l.
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Category SVM TSVM SGT SQ-Loss-I MP
earn 91.3 95.4 90.4 96.3 97.9
acq 67.8 76.6 91.9 90.8 97.2
money 41.3 60.0 65.6 57.1 73.9
grain 56.2 68.5 43.1 33.6 41.3
crude 40.9 83.6 65.9 74.8 55.5
trade 29.5 34.0 36.0 56.0 47.0
interest 35.6 50.8 50.7 47.9 78.0
ship 32.5 46.3 49.0 26.4 39.6
wheat 47.9 44.4 59.1 58.2 64.3
corn 41.3 33.7 51.2 55.9 68.3

average 48.9 59.3 60.3 59.7 66.3

Table 7: P/R Break Even Points (PRBEP) for the top 10 categories in the Reuters data set with
l = 20 and u = 3299. All results are averages over 20 randomly generated transduction
sets. The last row is the macro-average over all the categories.
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Figure 6: Average PRBEP over all classes vs. number of labeled documents (l) for Reuters data set

7.3.2 WEBKB COLLECTION

World Wide Knowledge Base (WebKB) is a collection of 8282 web pages obtained from four aca-
demic domains. The web pages in the WebKB set are labeled using two different polychotomies.
The first is according to topic and the second is according to web domain. In our experiments we
only considered the first polychotomy, which consists of 7 categories: course, department, faculty,
project, staff, student, and other. Following Nigam et al. (1998) we only use documents from cat-
egories course, department, faculty, project which gives 4199 documents for the four categories.
Each of the documents is in HTML format containing text as well as other information such as
HTML tags, links, etc. We used both textual and non-textual information to construct the feature
vectors. In this case we did not use either stop-word removal or stemming as this has been found
to hurt performance on this task (Nigam et al., 1998). As in the case of the Reuters data set we
extracted TFIDF features for each document and constructed the graph using cosine similarity.
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Figure 7: Average PRBEP over all classes vs. number of labeled documents (l) for WebKB collec-
tion.

Class SVM TSVM SGT SQ-Loss-I MP
course 46.5 43.9 29.9 45.0 67.6
faculty 14.5 31.2 42.9 40.3 42.5
project 15.8 17.2 17.5 27.8 42.3
student 15.0 24.5 56.6 51.8 55.0

average 23.0 29.2 36.8 41.2 51.9

Table 8: P/R Break Even Points (PRBEP) for the WebKB data set with l = 48 and u = 3148. All
results are averages over 20 randomly generated transduction sets. The last row is the
macro-average over all the classes

As in Bekkerman et al. (2003), we created four roughly-equal random partitions of the data set.
In order to obtainDl , we first randomly choose a split and then sampled l documents from that split.
The other three splits constitute Du. We believe this is more realistic than sampling the labeled
web-pages from a single university and testing web-pages from the other universities (Joachims,
1999). This method of creating transduction sets allows us to better evaluate the generalization
performance of the various algorithms. Once again we create 21 transduction sets and the first set
was used to tune the hyper-parameters. Further, we ran a search over the same grid as used in
the case of Reuters. We report precision-recall break even point (PRBEP) results on the 3,148 test
documents in Table 8. For this task, we found that the optimal value of the hyper-parameter were:
in the case of SQ-Loss-I, k = 1000; in case of AM, k = 1000, μ= 1e–2, ν = 1e–4; and in case
of SGT, k = 100, c = 3200. Once again, MP significantly outperforms the state-of-the-art (results
are significant at the 0.0001 level). Figure 7 shows the variation of PRBEP with number of labeled
documents (l) and was generated in a similar fashion as in the case of the Reuters data set.
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7.4 TIMIT Phone Recognition

The TIMIT corpus of read speech was designed to provide speech data for acoustic-phonetic stud-
ies and for the development and evaluation of automatic speech recognition systems (Zue et al.,
1990). TIMIT contains broadband recordings of 630 speakers of eight major dialects of American
English, each reading ten phonetically rich sentences. The corpus includes time-aligned phonetic
transcriptions and has standard training (3896 utterances) and test (196 utterances) sets. For hyper-
parameter tuning, as TIMIT does not define a development set, we created one with 50 TIMIT
utterances (independent of the training and test sets). In the past, TIMIT has been used almost
exclusively to evaluate the performance of supervised learning algorithms (Halberstadt and Glass,
1997; Somervuo, 2003). Here, we use it to evaluate SSL algorithms by using fractions of the stan-
dard TIMIT training set obtained by random sampling. This simulates the case when only small
amounts of data are labeled. We compare the performance of MP against that of

(a) �2 regularized 2-layer multi-layered perceptron (MLP) (Bishop, 1995), and

(b) PSQ solved using SQ-Loss-I.

Recall that, while MLPs are fully-supervised, SQ-Loss-I and MP are both graph-based SSL algo-
rithms. We choose �2 regularized MLPs as they have been shown to beat SVMs for the phone
classification task (Li and Bilmes, 2006).

To obtain the acoustic observations, xi, the signal was first pre-emphasized (α= 0.97) and then
windowed using a Hamming window of size 25ms at 100Hz. We then extracted 13 mel-frequency
cepstral coefficients (MFCCs) (Lee and Hon, 1989) from these windowed features. Deltas were
appended to the above resulting in 26 dimensional features. As phone classification performance
is improved by context information, we appended each frame with 3 frames from the immediate
left and right contexts and used these 182 dimensional feature vectors as inputs to the classifier.
These features were used to construct a symmetrized 10-NN graph over the entire training and
development sets. This graph had 1,382,342 vertices. The weights are given by

wi j = sim(xi,x j) = exp{−(xi−x j)TΣ−1(xi−x j)}

where Σ is the covariance matrix computed over the entire TIMIT training set. We follow the
standard practice of mapping the original set of 61 phones in TIMIT down to 48 phones for modeling
(|Y|= 48) and then a further mapping to 39 phones for scoring (Lee and Hon, 1989).

For each approach the hyper-parameters were tuned on the development set by running an ex-
tensive search. In the case of the MLP, the hyper-parameters include the number of hidden units
and the regularization coefficient. For MP and SQ-Loss-I, the hyper-parameters were tuned over
the following sets μ∈ {1e–8, 1e–4, 0.01, 0.1} and ν ∈ {1e–8, 1e–6, 1e–4, 0.01, 0.1}. We found
that setting α= 1 in the case of MP ensured that p= q at convergence. As both MP and SQ-Loss-I
are transductive, in order to measure performance on an independent test set, we induce the labels
using the Nadaraya-Watson estimator, that is, given an input sample, x̂, that we wish to classify, the
output is given by

ŷ= argmax
y∈Y

p̂(y) where p̂(y) =
∑ j∈N (x̂) sim(x̂,x j)p

∗
j(y)

∑ j∈N (x̂) sim(x̂,x j)
,
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Figure 8: Phone Accuracy (PA) on the TIMIT development set (left) and TIMIT NIST core eval-
uation/test set (right). The x-axis shows the percentage of standard TIMIT training data
that was treated as being labeled.

N (x̂) is the set of nearest neighbors of x̂ in the training data (i.e., all the samples over which
the graph was constructed) and p∗j is the converged value of p j. In our experiments we have that
|N (x̂)|= 50.

The left plot in Figure 8 shows the phone classification results on the TIMIT development set
while the right plot shows the results on the NIST Core test set. The y-axis shows phone ac-
curacy (PA) which represents the percentage of frames correctly classified and the x-axis shows
the fraction f of the training set that was treated as being labeled. We show results for f ∈
{0.005,0.05,0.1,0.25,0.3}. Note that in each case we use the same graph, that is, only the set
of labeled verticesVl changes depending on f . The following observations may be made from these
results:

1. MP outperforms the SQ-Loss-I objective for all cases of f . This lends further weight to the
claim that KLD based loss is more suitable for classification problems.

2. When little labeled training data is available, both SQ-Loss-I andMP significantly outperform
the MLP. For example when 0.5% of the training set is labeled, the PA in the case of MP was
52.3% while in the MLP gave a PA of 19.6%. This is not surprising as the MLP does not make
use of the unlabeled data. It remains to be tested if semi-supervised MLP training (Malkin
et al., 2009) would reduce or reverse this difference.

3. Even when 10% of the original TIMIT training set is used, MP gives a PA of about 60% and
outperforms both the MLP and SQ-Loss-I.

4. It is interesting to note that an MLP trained using the entire training set (i.e., it had 100% of
the labeled samples) resulted in a PA of 63.1%. But using about 30% of this data, MP gives a
PA of about 62.4%.
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Bigram Trigram
SQ-Loss-I 75.6% 76.9%
MP 81.0% 81.9%

Table 9: Dialog-Act Tagging Accuracy results on the Dihana Corpus. The results are for the case
of classifying user turns. The baseline DA accuracy was 76.4% (Martı́nez-Hinarejos et al.,
2008)

5. We also found that for larger values of f (e.g., at f = 1), the performances of MLP andMP did
not differ significantly. But those are more representative of the supervised training scenarios
which is not the focus here.

6. A comparison of the curves for MP with and without entropy regularization illustrates the
importance of the graph-regularizer (second term in CKL and CMP).

7.5 Dialog-Act Tagging

Discourse patterns in natural conversations and meetings are well known indicators of interesting
and useful information about human conversational behavior. Dialog acts (DA) which reflect the
functions that utterances serve in discourse are one type of such patterns. Detecting and understand-
ing dialog act patterns can provide benefit to systems such as automatic speech recognition, machine
translation and general natural language processing (NLP). In this section we present dialog-act tag-
ging results on two tasks: (a) Dihana, and (b) SWB.

7.5.1 DIHANA DA TAGGING

Dihana is a Spanish dialog corpus. It is composed of 900 task-oriented computer-human spoken
dialogs collected via a train reservation system. Typical topics include timetables, fares, and services
offered on trains. The size of the vocabulary is 823 words. Dihana was acquired from 225 different
speakers (153 male and 72 female). On average, each dialog consisted of 7 user turns and 10
system turns, with an average of 7.7 words per user turn. The corpus has three tasks which include
classifying the DAs of the (a) user turns, (b) system turns, and (c) both user and system turns.
Each of these tasks has training, test and development sets setup for 5-fold cross validation. As the
system turns are more structured compared to the user turns, the task of classifying user turns is
more challenging. For more information, see Martı́nez-Hinarejos et al. (2008).

Here we compare the performance of MP against that of SQ-Loss-I and a HMM-based DA
tagging system described in Martı́nez-Hinarejos et al. (2008). We extracted two sets of features
from the text: (a) bigram TFIDF and (b) trigram TFIDF (Salton and Buckley, 1987). We constructed
symmetrized k-NN graphs using each of the above features making use of cosine similarity. The
graphs were defined over the training, test and development sets for the task that involved classifying
user turns. The hyper-parameters were tuned over k ∈ {2,10,20,50,100}, μ∈ {1e–8, 1e–4, 0.01,
0.1, 1, 10, 100} and ν ∈ {1e–8, 1e–6, 1e–4, 0.01, 0.1} on the development set. In the case of MP,
we found that setting α= 2 gave p= q at convergence.

The DA tagging results averaged over the 5-folds for the Dihana corpus are shown in Table 9.
Unlike previous experiments, in this case, we treat the entire training set as being labeled, whereas
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Bigram Trigram
SQ-Loss-I 79.1% 81.3%
MP 83.2% 85.6%

Table 10: Dialog-Act Tagging Accuracy results on the Switchboard DA Corpus. The baseline DA
accuracy was 84.2% (Ji and Bilmes, 2005)

the test set is unlabeled. This simulates the case when SSL algorithms are used for supervised
learning but in a transductive manner (i.e., the test set is assumed to be given). The HMM-based
DA tagger which was trained on the same set gave an accuracy of 76.4%. It can be seen from
Table 9 that MP outperforms both SQ-Loss-I and the HMM based tagger in both the bigram-TFIDF
and trigram-TFIDF cases. We conjecture that the performance improvement of MP over HMM is
due to two reasons: (a) MP is a discriminative model while the HMM was trained in a generative
fashion, (b) as MP is transductive, it is able to exploit the knowledge of the graph over the test set.

7.5.2 SWITCHBOARD DA TAGGING

The goal of the Switchboard discourse language modeling project was to annotate the utterances
in the Switchboard-I (SWB) training set with their corresponding discourse acts (Jurafsky and Ess-
Dykema, 1997). SWB is a collection of telephone conversations (see Section 8.1). Every utterance
in a each conversation was given one of the 42 different dialog act tags (see Table 2 in Jurafsky and
Ess-Dykema, 1997). For our work here we only use the 11 most frequent tags. This covers more
than 86% of all the utterances in SWB. These utterances were split into training, development and
test sets containing 180314, 5192 and 4832 utterances respectively.

As in the case of Dihana, we generated both bigram and trigram TFIDF features and constructed
graphs in the manner described above. Here we compare the performance of MP and SQ-Loss-
I against the performance of a parametric dynamic Bayesian Network (DBN) that makes use of a
hidden back-off model (Ji and Bilmes, 2005). The DBN, however, made use of only bigram features.
The hyper-parameters were tuned over k ∈ {2,10,20}, μ∈ {1e–8, 1e–4, 0.01, 0.1, 1, 10, 100} and
ν ∈ {1e–8, 1e–6, 1e–4, 0.01, 0.1} on the development set. In the case of MP, we found that setting
α= 2 ensured that p= q at convergence.

The test set DA tagging accuracy is shown in Table 10. We see that when we use trigram TFIDF
features, MP outperforms the bigram DBN. More importantly, it performs better than SQ-Loss-I in
all cases.

8. Parallelism and Scalability to Large Data Sets

In this section we discuss how MP can be scaled to very large data sets. We use the Switchboard
I (SWB) data set which is a collection of about 2,400 two-sided telephone conversations among
543 speakers (302 male, 241 female) from all areas of the United States (Godfrey et al., 1992). A
computer-driven system handled the calls, giving the caller appropriate recorded prompts, selecting
and dialing another person (the callee) to take part in a conversation, introducing a topic for discus-
sion and recording the speech from the two subjects into separate channels until the conversation
was finished. SWB is very popular in the speech recognition community and is used almost ubiq-
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uitously for the training of large vocabulary conversational speech recognition systems (Evermann
et al., 2005; Subramanya et al., 2007) and consists of about 300 hours of speech data.

In order to construct a graph using the SWB data, we exact features xi in the following manner—
the wave files were first segmented and then windowed using a Hamming window of size 25ms at
100Hz. We then extracted 13 perceptual linear prediction (PLP) coefficients from these windowed
features and appended both deltas and double-deltas resulting in a 39 dimensional feature vector.
As phone classification performance is improved by context, we used a 7 frame context window (3
frames in the past and 3 in the future) yielding a 273 dimensional xi. This procedure resulted in 120
million samples.

Due to the large size m= 120M of the SWB data set, it is not currently feasible to generate the
graph using the conventional brute-force search which is O(m2). Nearest neighbor search is a well
researched problem with many approximate solutions. A large number of solutions to this problem
are based on variations of the classic kd-tree data structure (Friedman et al., 1977). Here we make
use of the Approximate Nearest Neighbor (ANN) library (see http://www.cs.umd.edu/˜mount/
ANN/) (Arya and Mount, 1993; Arya et al., 1998). It constructs a modified version of the kd-tree
data structure which is then used to query the NNs. The query process requires that one specify an
error term, ε, and guarantees that

d(xi,N (xi))
d(xi,Nε(xi))

≤ 1+ ε

where N (xi) is a function that returns the actual NN of xi while Nε(xi) returns the approximate
NN. Larger values of ε improve the speed of the nearest neighbor search at the cost of accuracy. For
more details about the algorithm, see Arya and Mount (1993); Arya et al. (1998). In our case we
constructed a symmetrized 10-NN graph with ε= 2.0.

Next we describe how MP can be parallelized on a shared-memory symmetric multiprocessor
(SMP). The update equations in the case ofMP are amenable to a parallel implementation and also to
further optimizations that lead to a near linear speedup. In the MP update equations (see Section 3),
we see that one set of measures is held fixed while the other set is updated without any required
communication amongst set members, so there is no write contention. This immediately yields a
T -threaded implementation where the graph is evenly T -partitioned and each thread operates over
only a size m/T = (l+u)/T subset of the graph nodes.

We used the graph constructed using the SWB data above and ran a timing test on a 16 core
symmetric multiprocessor with 128GB of RAM, each core operating at 1.6GHz. We varied the
number T of threads from 1 (single-threaded) up to 16, in each case running 3 iterations of MP (i.e.,
3 each of p and q updates). Each experiment was repeated 10 times, and we measured the minimum
CPU time over these 10 runs. CPU time does not include the time taken to load data-structures
from disk. The speedup for T threads is typically defined as the ratio of time taken for single thread
to time taken for T threads. The solid (black) line in Figure 9(a) represents the ideal case (a linear
speedup), that is, when using T threads results in a speedup of T . The pointed (green) line shows the
actual speedup of the above procedure, typically less than ideal due to inter-process communication
and poor shared L1 and/or L2 microprocessor cache interaction. When T ≤ 4, the speedup (green)
is close to ideal, but for increasing T the algorithm increasingly falls away from the ideal case. Note
that in the figure (and henceforth) we refer to the green pointed line as ‘speech temporal ordering’
as the nodes in the graph are ordered based on the sequence in which they occur in the utterance.
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Our contention is that the sub-linear speedup is due to the poor cache cognizance of the al-
gorithm. At a given point in time, suppose thread t ∈ {1, . . . ,T} is operating on node it . The
collective set of neighbors that are being used by these T threads are {∪Tt=1N (it)} and this, along
with nodes ∪Tt=1{it} (and all memory for the associated measures), constitute the current working
set. The working set should be made as small as possible to increase the chance it will fit in any
shared machine caches, but this becomes decreasingly likely as T increases since the working set
is monotonically increasing with T . Our goal, therefore, is for the nodes that are being simultane-
ously operated on to have a large amount of neighbor overlap thus minimizing the working set size.
Viewed as the optimization problem, we must find a partition (V1,V2, . . . ,Vm/T ) of V that minimizes
max j∈{1,...,m/T} |∪v∈VjN (v)|. With such a partition, we may also order the subsets so that the neigh-
bors of Vi would have maximal overlap with the neighbors of Vi+1. We then schedule the T nodes
in Vj to run simultaneously, and schedule the Vj sets successively.

Algorithm 1: Graph Node Ordering Algorithm Pseudocode, SMP Case
Input: A Graph G= (V,E)
Result: A node ordering, by when they are marked.
Select an arbitrary node v ;
while There are unselected nodes remaining do

Select an unselected v′ ∈N 2(v) that maximizes |N (v)∩N (v′)|. If the intersection is
empty, select an arbitrary unselected v′. ;
Mark v′ as selected.; // v′ is next node in the order
v← v′. ;

Of course, the time to produce such a partition cannot dominate the time to run the algorithm
itself. Therefore, we propose a simple fast node ordering procedure (Algorithm 1) that can be run
once before the parallelization begins. The algorithm orders the nodes such that successive nodes are
likely to have a high amount of neighbor overlap with each other and, by transitivity, with nearby
nodes in the ordering. It does this by, given a node v, choosing another node v′ (from amongst
v’s neighbors’ neighbors, meaning the neighbors of v’s neighbors) that has the highest neighbor
overlap. We need not search allV nodes for this, since anything other than v’s neighbors’ neighbors
has no overlap with the neighbors of v. Given such an ordering, the tth thread operates on nodes
{t, t +m/T, t + 2m/T, . . .}. If the threads proceed synchronously (which we do not enforce) the
set of nodes being processed at any time instant are {1+ jm/T,2+ jm/T, . . . ,T + jm/T}. This
assignment is beneficial not only for maximizing the set of neighbors being simultaneously used,
but also for successive chunks of T nodes since once a chunk of T nodes have been processed, it is
likely that many of the neighbors of the next chunk of T nodes will already have been pre-fetched
into the caches. With the graph represented as an adjacency list, and sets of neighbor indices sorted,
our algorithm is O(mk3) in time and linear in memory since the intersection between two sorted
lists may be computed in O(k) time. This is typically even better than O(m logm) since k3 < logm
for large m.

We ordered the SWB graph nodes, and ran timing tests as explained above. The CPU time
required for the node ordering step is included in each run along with the time for MP. The results
are shown in Figure 9(a) (pointed red line) where the results are much closer to ideal, and there are
no obvious diminishing returns like in the unordered case. Running times are given in Figure 9(b).
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Figure 9: (a) speedup vs. number of threads for the SWB graph (see Section 7). The process was
run on a 128GB, 16 core machine with each core at 1.6GHz. (b) The actual CPU times
in seconds on a log scale vs. number of threads for with and without ordering cases.
“Random” corresponds to the case where we choose a random unselected node rather
than the one with maximum overlap (see Algorithm 1).

Moreover, the ordered case showed better performance even for a single thread T = 1. Note that
since we made use of speech data to generate the graph, it is already naturally well-ordered by
time. This is because human speech is a slowly changing signal, so the nodes corresponding to
consecutive frames are similar, and can be expected to have similar neighbors. Therefore, we expect
our “baseline” speech graph to be better than an arbitrary order, one that might be encountered in a
different application domain. In order to measure performance for such arbitrarily ordered graphs,
we took the original graph and reordered uniformly at random (a uniform node shuffle). We ran
timing experiments on the resulting graph and the results are shown in Figure 9 as “Random”. As
can be seen, there is indeed a benefit from the speech order, and relative to this random baseline,
our node ordering heuristic improves machine efficiency quite significantly.

We conclude this section by noting that (a) re-ordering may be considered a pre-processing
(offline) step, (b) the SQ-Loss algorithm may also be implemented in a multi-threaded manner and
this is supported by our implementation, (c) our re-ordering algorithm is general and fast and can be
used for any graph-based algorithm where the iterative updates for a given node are a function of its
neighbors (i.e., the updates are harmonic w.r.t. the graph Zhu et al., 2003), and (d) while the focus
here was on parallelization across different processors on a SMP, a similar approach also applies for
distributed processing across a network with a shared disk (Bilmes and Subramanya, 2011).

8.1 Switchboard Phonetic Annotation

In this section we consider how MP can be used to annotate the SWB data set. Recall that SWB
consists of 300 hours of speech with word-level transcriptions. In addition, less reliable phone level
annotations generated in an automatic manner by a speech recognizer with a non-zero error rate are
also available (Deshmukh et al., 1998). The Switchboard Transcription Project (STP) (Greenberg,
1995) was undertaken to accurately annotate SWB at the phonetic and syllable levels. One of the
goals was that such data could then be used to improve the performance of conversational speech
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Figure 10: Phone Accuracy vs. Percentage of switchboard (SWB) I training data. STP portion of
SWB was excluded. Phone Accuracy was measured on the STP data. Note that when
all the Switchboard I data was added, the resulting graph had 120 million vertices. The
dashed black line shows the performance of a MLP measured using the s = 0% case
over the same training, development and test sets as MP and LP.

recognition systems. As the task was time-consuming, costly, and error-prone, only 75 minutes of
speech segments selected from different SWB conversations were annotated at the phone level and
about 150 minutes annotated at the syllable level. Having access to such annotations for all of SWB
could be useful for large vocabulary speech recognition research and speech science research in
general. Thus, this an ideal real-world task for SSL.

For our experiments here we only make use of the phonetic labels ignoring the syllable anno-
tations. Our goal here is two-fold: (a) treat the phonetically annotated portion of STP as labeled
data and use it to annotate all of SWB in STP style, that is, at the phonetic level, yielding the S3TP
corpus and (b) show that our approach scales to very large data sets.

We randomly split the 75 minute phonetically annotated part of STP into three sets, one each for
training, development and testing containing 70%, 10% and 20% of the data respectively (the size
of the development set is considerably smaller than the size of the training set). This procedure was
repeated 10 times (i.e., we generated 10 different training, development and test sets by random
sampling). In each case, we trained a phone classifier using the training set, tuned the hyper-
parameters on the development set and evaluated the performance on the test set. In the following,
we refer to SWB that is not a part of STP as SWB-STP. We added the unlabeled SWB-STP data
in stages. The percentage, s, of unlabeled data included, 0%, 2%, 5%, 10%, 25%, 40%, 60%, and
100% of SWB-STP. We ran both MP and SQ-Loss-I in each case. When s=100%, there were about
120 million nodes in the graph. As far as we know, this is by far the largest (by about two orders of
magnitude) size graph ever reported for an SSL procedure.

We constructed graphs using the STP data and s% of (unlabeled) SWB-STP data following the
recipe described in the previous section. For all the experiments here we used a symmetrized 10-
NN graph and ε = 2.0. The labeled and unlabeled points in the graph changed based on training,
development and test sets used. In each case, we ran both theMP and SQ-Loss-I objectives. For each
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set, we ran a search over μ∈ {1e–8, 1e–4, 0.01, 0.1} and ν ∈ {1e–8, 1e–6, 1e–4, 0.01, 0.1} for both
the approaches. The best value of the hyper-parameters were chosen based on the performance on
the development set and the same value was used to measure the accuracy on the test set. The mean
phone accuracy over the different test sets (and the standard deviations) are shown in Figure 10 for
the different values of s. We would like to point out that our results at s=0% outperform the state-
of-the-art. As a reference, at s =0%, an �2 regularized MLP with a 9 frame context window gave
a mean phone accuracy of 37.2% and standard deviation of 0.83 (note that this MLP was trained
fully-supervised). Phone classification in the case of conversational speech is a much harder task
compared to phone classification of read speech (Morgan, 2009). It can be seen that MP outperforms
SQ-Loss-I in all cases. More importantly, we see that the performance on the STP data improves
with the addition of increasing amounts of unlabeled data, and MP seems to get a better benefit with
this additional unlabeled data, although even SQ-Loss-I has not reached the point where unlabeled
data starts becoming harmful (Nadler et al., 2010).

9. Discussion

In this section, we discuss possible extensions of the proposed approach.

9.1 Generalizing Graph-based Learning via Bregman Divergence

Given a strictly convex real-valued function φ :
→R, the Bregman divergence Bφ(ψ1||ψ2) between
two measures ψ1,ψ2 ∈
 is given by Lafferty et al. (1997)

Bφ(ψ1||ψ2)� φ(ψ1)−φ(ψ2)−〈�φ(ψ2),ψ1−ψ2〉.

It can be shown that a number of popular distance measures, such as Euclidean distance, KLD,
Itakura-Satio distance are special cases of Bregman divergence (Banerjee et al., 2005). Consider
the optimization problem PBR : min

p∈
m
CBR(p) where

CBR(p) =
l

∑
i=1

Bφ
(
ri||pi

)
+μ

m

∑
i=1

∑
j∈N (i)

wi jBφ
(
pi||p j

)
+ν

m

∑
i=1

Bφ(pi||u).

When Bφ(p||q) is convex in the pair (p,q) (Banerjee et al., 2005), CBR is also convex. Clearly CBR is
a valid graph-based learning objective and it can be seen that it generalizes objectives based on both
squared loss (φ = ∑y p

2(y)) and KLD based loss (φ = ∑y p(y) log p(y)). While in the case graph
Laplacian-based techniques, one can generate a large family of regularizers by iterating the Lapla-
cian or taking various transformations of its spectrum to create new ways of measuring smoothness
on the graph, here in the Bregman case, the same can be achieved by using different φ’s.

The graph regularizer is central to any graph-based SSL algorithm, and there are two factors that
effect this regularizer: (a) the graph weights and (b) the loss function used to measure the disparity
between the distributions. In the cases we have discussed thus far, the loss function has been either
based on squared-error or KLD. Further, while there have been efforts in the past to learn the graph
(and thus the graph weights) (Zhu and Ghahramani, 2002a; Zhang and Lee, 2006; Zhu et al., 2005;
Alexandrescu and Kirchhoff, 2007a), to the best of our knowledge, there has been no efforts directed
towards learning the loss function. So the natural question is whether it is possible to learn φ jointly
with p?
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One simple idea would be to set φ=∑y

(
λp2(y)+(1−λ)p(y) log p(y)

)
which leads to a combi-

nation of the popular squared loss and proposed KLD based loss objectives (henceforth we refer to
this as C ′

BR(p,λ)). We then need to learn λ jointly with p. However, directly minimizing C ′
BR w.r.t.

both p and λ will always leads to λ∗ = 1 as KLD is lower bounded by squared loss (by Pinsker’s
inequality). Thus other criteria such as those based on minimizing the leave-one-out error (Zhang
and Lee, 2006) or minimum description length may be required. There might also be other con-
vex parametrization of φ. This would amount to learning the loss function while the actual graph
weights are held fixed.

While we have defined Bregman divergence over simplices, they are actually quite general and
can be defined over other general sets of objects such as vectors or matrices (Tsuda et al., 2005). This
can be used to solve general learning problems using alternating-minimization using a reformulation
similar to the one suggested in Section 4. We believe that this is another contribution of our work
here as our proposed objective, and the use of alternating-minimization to efficiently optimize it are
in fact very general and can be used to solve other learning problems (Tsuda et al., 2005).

9.2 Incorporating Priors

As discussed in Section 1, there are two types of priors in SSL—label priors and balance priors.
They are useful in the case of imbalanced data sets. We have seen that MP is less sensitive to
imbalance compared to other graph-based SSL approaches (see the results in the cases of two-
moon, USPS, Reuters, TIMIT and SWB data sets). However, in cases of extreme imbalance, even
the performance of MP might suffer and so we show how to modify our proposed objective to
handle both the above priors in a principled manner. Label priors are useful when the underlying
data set is imbalanced. For example, in the case of phone classification, as a result of the nature
of human speech and language production, some classes of sounds tend to occur at a higher rate
compared to others. Clearly ignoring such domain knowledge can hurt performance particularly in
the case of SSL where labeled data is sparse. On the other hand, balance priors are useful to prevent
degenerate solutions. An extreme example of a degenerate solution would be all unlabeled samples
being classified as belonging to the same class when the underlying data set has a uniform prior.
This can occur due to a number of reasons such as, (a) improper graph construction, (b) improperly
sampled labeled data, that is, the case where a majority of the labeled samples come from one class
(similar to the scenario discussed in the case of the 2D two-moon data set).

Label Priors: This is more akin to the classical integration of priors within a Bayesian learn-
ing setting. There has been some work in the past directed towards integrating priors for para-
metric (non-graph-based) SSL (Mann and McCallum, 2007). In the case of graph-based SSL,
class mass normalization (CMN) (Zhu and Ghahramani, 2002a; Bengio et al., 2007) and label bid-
ding (Zhu and Ghahramani, 2002a), are the two approaches that have been used to-date. How-
ever, these are applicable only after the inference process has converged. In other words, they
represent ways in which the posteriors may be influenced so that the average probability mass
over all the posteriors for a given class matches that given by the prior. Ideally, like in gen-
eral Bayesian learning, it is imperative that the priors are tightly integrated in to the inference
process rather than influencing the results at a later point. Our proposed objective can be ex-
tended to incorporate label priors. We first remind the reader that CKL(p) may be re-written as
CKL(p) = ∑l

i=1DKL
(
ri||pi

)
+μ∑i, j wi jDKL

(
pi||p j

)
+ ν∑i DKL

(
pi||u

)
where u is uniform measure.
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Now consider minimizing over p ∈
m

C ′
KL(p) =

l

∑
i=1

DKL
(
ri||pi

)
+μ∑

i, j

wi jDKL
(
pi||p j

)
+ν∑

i

DKL
(
pi||p0

)
.

The above objective is convex and the last term encourages each pi to be close to p0 without actually
insisting that pi(y) = p0(y) ∀ i,y. It is possible to reformulate the above objective as

C ′
MP(p,q) =

l

∑
i=1

DKL
(
ri||qi

)
+μ∑

i, j

w′
i jDKL

(
pi||q j

)
+ν∑

i

DKL
(
pi||p0

)
.

which can be easily solved using AM. Further each of the update equations has a closed form
solution. This represents the case where the prior effects each vertex directly (i.e., a more local
influence) .

Balance Priors: There has been some work in graph-based SSL for incorporating balance priors.
SGT (Joachims, 2003) which is an approximation to the NP-hard norm cut problem attempts to
incorporate priors by influencing the nature of the final cut. But there are other drawbacks associated
with SGT such as computational complexity. We can incorporate a balance term in our objective by
first defining p̃(y) as the agglomerative measure over all the p’s and then minimizing

C′
1(p) = CKL(p)+κDKL(p0|| p̃)

where p0(y) is the prior probability that Y = y. The above retains the nice convexity properties of
the original objective. There are many ways of defining p̃, such as,

p̃(y) =
1
n

n

∑
i=1

pi(y) or p̃(y) ∝
n

∏
i=1

(pi(y)+ ε).

The first case above represents the arithmetic mean while the second one is the geometric mean.
Here the prior only indirectly influences the individual p’s, that is, via p̃. Unfortunately, this form
cannot be optimized in the closed form using alternating-minimization. However, the MOM ap-
proach proposed in Section 3.1 or IPMs or any other numerical convex optimization approach may
be used to solve the above problem.

9.3 Directed Graphs

In some applications, the graphs are directed in nature. Examples include the Internet (a vertex
might represent a web-page and directed links for hyper-links between pages), or a graph repre-
senting the routes taken by a delivery system. In such applications there is useful information that
is expressed by the direction of the connection between two vertices. While we could convert any
given directed graph into an undirected one, SSL algorithms in this case should exploit the informa-
tion in the directed links. Thus far we have been using symmetrized k-NN graphs, but without the
symmetrization step, k-NN graphs are not necessarily symmetric.

As KLD is an asymmetric measure of dissimilarity between measures, our proposed objective
can very easily be extended to work for directed graphs. Note that, as in the case of an undirected
graph, a directed graph can also be represented as a matrixW, but here the matrix is asymmetric.
There has been some work on graph-based SSL using directed graphs. For example, Zhou et al.

3350



GRAPH-BASED SEMI-SUPERVISED LEARNING WITH MEASURE PROPAGATION

(2005), use a squared-loss based objective on directed graphs. We believe that this may not be ideal,
as squared error is symmetric and as a result it might be difficult to fully exploit the information
encoded by the directed links. An asymmetric measure of dissimilarity would have a better chance
of correctly representing the problem of SSL on directed graphs.

It turns our that CMP may be modified for directed graphs. We assume that if j is a NN of i
then there is a directed arrow from i to j. There are in fact two scenarios that one needs to consider.
Given a node i ∈ V , let N (in)(i) be the set of nodes that have directed edges that lead into vertex i.
Consider the following objective

C (D1)
MP (p,q) =

l

∑
i=1

DKL
(
ri||pi

)
+μ

m

∑
i=1

∑
j∈N (in)(i)

wi jDKL
(
pi||q j

)−ν
m

∑
i=1

H(pi).

In this case, for node i, the second term in the above objective encourages pi to be close to the
q’s of all its neighbors, N (in)(i). In other words, the above form expresses the rule “each vertex
should resemble its neighbors but not necessarily vice-versa.” In a similar manner we can define
a complementary form—let N (out)(i) be the set of nodes which are on the other end of out-going
links from node i ∈V . Consider minimizing

C (D2)
MP (p,q) =

l

∑
i=1

DKL
(
ri||pi

)
+μ

m

∑
i=1

∑
j∈N (out)(i)

wi jDKL
(
pi||q j

)−ν
m

∑
i=1

H(pi).

This form encourages, “the neighbors of a vertex should resemble it but not necessarily vice-versa.”
Both C (D1)

MP (p,q) and C (D2)
MP (p,q) can be efficiently optimized using our alternating-minimization

(the update equations are similar to MP). In a similar manner as the above, our objective can also
be easily extended to hyper-graphs.

9.4 Connections to Entropy Minimization (Grandvalet and Bengio, 2005)

Entropy Minimization uses the entropy of the unlabeled data as a regularizer while optimizing a
parametric loss function over the labeled data. The loss function here is given by

C(Θ) =−
l

∑
i=1

log p(yi|xi;Θ)+ν
l+u

∑
i=l+1

H(Yi|Xi;Θ)

where H(Yi|Xi;Θ) is the Shannon entropy of the probability distribution p(yi|xi;Θ). While both our
proposed approach and entropy minimization make use of the Shannon entropy as a regularizer,
there are several important differences between the two approaches:

1. entropy minimization is not graph-based,

2. entropy minimization is parametric whereas our proposed approach is non-parametric

3. the objective in case of entropy minimization is not convex, whereas in our case we have a
convex formulation with simple update equations and convergence guarantees.

4. most importantly, entropy minimization attempts to minimize entropy while the proposed
approach aims to maximize entropy. While this may seem a triviality, it has significant con-
sequences on the optimization problem.
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It is however possible to derive an interesting relationship between the proposed objective and
entropy minimization. Consider

CKL(p) =
l

∑
i=1

DKL
(
ri||pi)

)
+μ

n

∑
i, j=1

wi jDKL
(
pi||p j

)−ν
n

∑
i=1

H(pi)

≤
l

∑
i=1

DKL
(
ri||pi)

)−μ
n

∑
i, j=1

wi j∑
y
pi(y) log p j(y)

as wi j,ν,H(pi)≥ 0. Consider a degenerate graph in which wi j = δ(i= j∧ i> l) then

CKL(p)≤
l

∑
i=1

DKL
(
ri||pi)

)−μ
n

∑
i=l+1

∑
y
pi(y) log pi(y)

=
l

∑
i=1
∑
y

(
ri(y) logri(y)− ri(y) log pi(y)

)
+μ

n

∑
i=l+1

H(pi)

≤−
l

∑
i=1
∑
y
ri(y) log pi(y)+μ

n

∑
i=l+1

H(pi).

Setting wi j = δ(i = j∧ i > l) amounts to not using a graph regularizer. If we assume hard labels
(i.e., H(ri) = 0) and that each pi is parameterized by, say θi, then we can rewrite the above as

CKL(p)≤−
l

∑
i=1

log pi(yi;θi)+μ
n

∑
i=l+1

H(pi;θi).

Now if all the θi were tied to a single θ then we have that

CKL(p)≤−
l

∑
i=1

log pi(yi;θ)+μ
n

∑
i=l+1

H(pi;θ)

which is equal to the entropy minimization objective. Thus entropy minimization minimizes a non-
convex upper bound on a special case of our proposed loss function. This is perhaps one of the
reasons why graph-based approaches outperform entropy minimization on manifold-like data sets
(see chapter 21 in Chapelle et al., 2007).

9.5 Rate of Convergence of MP

Recall that in Section 5 we showed that the rate of convergence of SQ-Loss-I is geometric (linear).
Here we empirically compare the rate of convergence of MP and SQ-Loss-I. While we have so
far been unable to derive theoretical bounds on the convergence rate of MP, our empirical analysis
shows that MP convergences faster than SQ-Loss-I. The difficulties associated with analyzing the
rate of convergence of MP are mostly due to the non-linear nature of the update equation for p(n)i (y).

We ran both MP and SQ-Loss-I to convergence on a number of data sets taken from a variety of
domains (see Table 3). For both algorithms we measured

f (n) =
C(n)−C∗

C(n−1)−C∗ (2)
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Figure 11: Plots showing the rate of convergence of MP and SQ-Loss-I in the case of the Text and
USPS corpora. The x-axis represents iteration index and the y-axis rate of convergence,
f (n) (see Equation 2).

and the plots of these quantities are shown in Figure 11 (similar trends were observed in the case of
other data sets). In the above, C is the appropriate objective (i.e., CMP in case of MP and CSQ in the
case of SQ-Loss-I) and C∗ is the corresponding optimum value. While we have a standard test for
convergence in the case of MP (see Theorem 9), for the purposes of comparison against SQ-Loss-I
here, we use the following criteria: in either case we say that the algorithm has converged if the
rate of change of the parameters falls below 0.5%. Figure 11 shows that MP converges faster in
comparison to SQ-Loss-I. Based on these results, we make the following conjecture:

Conjecture 13 MP has a geometric convergence rate, if not better.

Finally a note on how to set α. Recall α is the hyperparameter that ensures that p= q in the final
solution in the case of MP. Recall that in theorem 8, we have shown that there exists a finite value
of α such that p∗ = q∗. In practice, we found that setting α = 2 ensures the equality of p and q at
convergence. As expected, we also found that increasing α leads to a slower rate of convergence in
practice.

10. Conclusions

In this paper we presented a objective based on KLD for graph-based SSL. We have shown how the
objective can be efficiently solved using alternating-minimization. In addition, we showed that the
sequence of updates has a closed form solution and that it converges to the correct optima. We also
derived a test for convergence of the iterative procedure that does not require the computation of
the objective. A version of the squared-error graph-based SSL objective defined over measures was
also presented. In this context we showed that squared-error has a geometric rate of convergence.

Our results show that MP is able to outperform other state-of-the-art graph-based SSL algo-
rithms on a number of tasks from diverse set of domains ranging from speech to natural language
to image processing. We have also shown how our algorithm can be scaled to very large data sets.
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Appendix A. Solving PKL using Method of Multipliers

The first step in the application of MOM to solve PKL is the construction of the augmented La-
grangian function for CKL(p) which is given by

LC1(p,Λ) = CKL(p)+
n

∑
i=1

λi

(
1−∑

y
pi(y)

)
+ c

n

∑
i=1

(
1−∑

y
pi(y)

)2
where Λ = {λ1, . . . ,λn} are the Lagrange multipliers and c ≥ 0 is the penalty parameter. Recall
that we require ∑y pi(y) = 1, ∀ i and that pi(y)≥ 0, ∀ i,y. Notice that the objective LC1(p,Λ) only
penalizes deviations from the equality constraints. In order to ensure that the inequality constraints
in PKL are met we make use of the gradient projection method (Bertsekas, 1999). Thus the update
equation is given by

p(n)i (y) =

[
p(n−1)i (y)−α(n−1)

(
∂LC1(p,Λ)
∂pi(y)

)
{p=p(n−1),Λ=Λ(n−1)}

]+
.

Here n= 1, . . . , is the iteration index, α(n−1) is the learning rate, and [x]+ =max(x,0). Determining
an appropriate learning rate is often one of the biggest challenges associated with the application
of gradient descent based optimization approaches. We use the Armijo rule (Bertsekas, 1999) to
compute the learning rate, α. It can be shown that

∂LC1(p,Λ)
∂pi(y)

= μ
n

∑
j=1

[
we j

(
1+ log pi(y)− log p j(y)

)− wjep j(y)

pi(y)

]
− ri(y)
pi(y)

δ(e≤ l)+

ν(log pi(y)+1)+λi+2c
(
1−∑

y
pi(y)

)
.

Under MOM, the update equation for the Lagrange multipliers is

λ(n)i = λ(n−1)i + c(n−1)
(
∑
y
p(n−1)i (y)−1

)
and the penalty parameter is updated using

c(n) =

⎧⎨⎩βc(n−1) if ∑i

(
τ(n)i − γτ(n−1)i

)
> 0

c(n−1) otherwise

where τ(n)i =
(
1−∑y p

(n)
i (y)

)2
. Intuitively, the above update rule for the penalty parameter increases

its value only if the constraint violation is not decreased by a factor γ over the previous iteration.
The iterative procedure terminates when

LC1(p(n−1),Λ(n−1))−LC1(p(n),Λ(n))

LC1(p(n−1),Λ(n−1))
≤ ζ.
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Appendix B. Proof of Convergence

In this section we show that AM on CMP converges to the correct optimum. We first show that
the three-and-four points properties (to be defined shortly) hold for CMP which then implies that
the five-points property holds for CMP. We note that our proof is inspired by Csiszar and Tusnady
(1984).

Definition 14 If P, Q are convex sets of finite measures, given a divergence d(p,q), p ∈ P, q ∈ Q,
then the “three points property” (3-pp) is said to hold for p ∈ P if ∀ q,q(0) ∈ Q we have

δ(p,p(1))+d(p(1),q(0))≤ d(p,q(0)) where p(1) ∈ argmin
p∈P

d(p,q(0)) and

δ(p, p(1)) : P×P→ R+ is arbitrary and δ(p, p) = 0.

Lemma 15 CMP(p,q) satisfies the 3-pp.

Proof Let

δ(p,p(1))� μ
n

∑
i, j=1

w′
i jDKL(pi||p(1)i ), f (t)� CMP(p(t),q(0))

where p(t) = (1− t)p+ tp(1), 0< t ≤ 1 and thus p(t)i = (1− t)pi+ t p(1)i . As f (t) attains its minimum
at t = 1, f (1)≤ f (t), ∀ 0< t ≤ 1 and so

f (1)− f (t)
1− t ≤ 0. (3)

We have that

f (t) =
l

∑
i=1
∑
y∈Y

ri log
ri

q(0)i

+μ
n

∑
i, j=1

w′
i j ∑
y∈Y

p(t)i log
p(t)i
q(0)j

+ν
n

∑
i=1
∑
y∈Y

p(t)i log
p(t)i
u

where we ignore the argument y in every measure for brevity (e.g., ri is ri(y)). Using the above in
Equation 3 and taking the limit as t→ 1, we get

lim
t→1

(
μ

n

∑
i, j=1

w′
i j ∑
y∈Y

1
1− t

(
p(1)i log

p(1)i

q(0)j
− p(t)i log

p(t)i
q(0)j

)
+ν

n

∑
i=1
∑
y∈Y

1
1− t

(
p(1)i log

p(1)i

u
− p(t)i log

p(t)i
u

))
(a)
=μ

n

∑
i, j=1

w′
i j ∑
y∈Y

lim
t→1

[
1
1− t

(
p(1)i log

p(1)i

q(0)j
− p(t)i log

p(t)i
q(0)j

)]

+ν
n

∑
i=1
∑
y∈Y

lim
t→1

[
1
1− t

(
p(1)i log

p(1)i

u
− p(t)i log

p(t)i
u

)]
(b)
=μ

n

∑
i, j=1

w′
i j ∑
y∈Y

[
∂
∂t

(
p(t)i log

p(t)i
q(0)j

)]
t=1

+ν
n

∑
i=1
∑
y∈Y

[
∂
∂t

(
p(t)i log

p(t)i
u

)]
t=1
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where (a) follows as both p(t)i log
p(t)i
q(0)j

and p(t)i log
p(t)i
u are convex in t, and thus the terms within

the summations are difference quotients of convex functions which are non-increasing. As a result
we can use the monotone convergence theorem (MCT) (see page 87, Theorem 6 in H.L.Royden,
1988) to exchange the limit with the summations. Finally (b) follows from the definition of the
derivative. Note that (a) can also be explained via the dominated convergence theorem (DCT) (see

page 84, proposition 6 in H.L.Royden, 1988). If q(0)j (y)> 0, ∀ y, j then there exists γ< ∞ such that

p(1)i log p(1)i
q(0)j

− p(t)i log
p(t)i
q(0)j

< γ because the difference of two finite real numbers is always bounded

above which implies that the DCT can be used to distribute the limits within the summations. Thus
we have that

0≥ μ
n

∑
i, j=1

w′
i j ∑
y∈Y

[
∂
∂t

(
p(t)i log

p(t)i
q(0)j

)]
t=1

+ν
n

∑
i=1
∑
y∈Y

[
∂
∂t

(
p(t)i log

p(t)i
u

)]
t=1

= μ
n

∑
i, j=1

w′
i j ∑
y∈Y

(
p(1)i log

p(1)i

q(0)j
− pi log

p(1)i

q(0)j

)
+ν

n

∑
i=1
∑
y∈Y

(
p(1)i log

p(1)i

u
− pi log

p(1)i

u

)
.

The last equation follows as ∑y∈Y(p
(1)
i − pi) = 0. As a result we have that

0≥ μ
n

∑
i, j=1

w′
i j ∑
y∈Y

(
p(1)i log

p(1)i

q(0)j
− pi log

p(1)i

q(0)j

)
+ν

n

∑
i=1
∑
y∈Y

(
p(1)i log

p(1)i

u
− pi log

p(1)i

u

)

= μ
n

∑
i, j=1

w′
i jDKL(p

(1)
i ||q(0)j )+ν

n

∑
i=1

DKL(p
(1)
i ||u)−

(
μ

n

∑
i, j=1

w′
i j ∑
y∈Y

pi log
p(1)i

q(0)j
+ν

n

∑
i=1
∑
y∈Y

pi log
p(1)i

u

)

From the definition of CMP(p,q) we have that

μ
n

∑
i, j=1

w′
i jDKL(p

(1)
i ||q(0)j )+ν

n

∑
i=1

DKL(p
(1)
i ||u) = CMP(p(1),q(0))−

l

∑
i=1

DKL
(
ri||q(0)i

)
.

Using the above we get

0≥ CMP(p(1),q(0))−
l

∑
i=1

DKL
(
ri||q(0)i

)−(
μ

n

∑
i, j=1

w′
i j ∑
y∈Y

pi log
p(1)i

q(0)j
+ν

n

∑
i=1
∑
y∈Y

pi log
p(1)i

u

)
. (4)

Consider

∑
y∈Y

pi log
p(1)i

q(0)j
= ∑

y∈Y
pi log

p(1)i

q(0)j

pi
pi

= ∑
y∈Y

pi

(
log

pi

q(0)j
+ log

p(1)i

pi

)
= DKL(pi||q(0)j )−DKL(pi||p(1)i ).

Similarly

∑
y∈Y

pi log
p(1)i

u
= ∑

y∈Y
pi log

p(1)i

u
pi
pi

= ∑
y∈Y

pi

(
log

pi
u
+ log

p(1)i

pi

)
= DKL(pi||u)−DKL(pi||p(1)i ).
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Using the above two equations in Equation 4 we have that

0≥ CMP(p(1),q(0))−
l

∑
i=1

DKL
(
ri||q(0)i

)−μ
n

∑
i, j=1

w′
i j

(
DKL(pi||q(0)j )−DKL(pi||p(1)i )

)
−ν

n

∑
i=1

(
DKL(pi||u)−DKL(pi||p(1)i )

)
(a)
≥CMP(p(1),q(0))−CMP(p,q(0))+μ

n

∑
i, j=1

w′
i jDKL(pi||p(1)i )

= CMP(p(1),q(0))−CMP(p,q(0))+δ(p,p(1))

where (a) follows as ν≥ 0 and DKL(pi||p(1)i )≥ 0.

Thus we have show that 3-pp holds for CMP.

Definition 16 If P, Q are convex sets of finite measures, given a divergence d(p,q), p ∈ P, q ∈ Q,
then the “four points property” (4-pp) is said to hold for q ∈ Q if ∀ p, p(1) ∈ P we have

d(p,q(1))≤ δ(p, p(1))+d(p,q)

where q(1) ∈ argmin
q∈Q

d(p(1),q) and δ(p, p(1)) should match the definition of δ(., .) used in 3-pp.

Lemma 17 CMP(p,q) satisfies the 4-pp.

Proof Let

g(t)� CMP(p(1),q(t))

where q(t) = (1− t)q+ tq(1), 0< t ≤ 1 and thus q(t)i = (1− t)qi+ tq(1)i and q(1) is as defined above.

Also recall that δ(p,p(1))� μ∑n
i, j=1w

′
i jDKL(pi||p(1)i ). The proof for this lemma proceeds in a man-

ner similar to the proof of lemma 15. It should be clear that g(t) achieves its minimum at t = 1 and
as a result we have that

g(1)−g(t)
1− t ≤ 0 (5)

and

g(t) =
l

∑
i=1
∑
y∈Y

ri log
ri

q(t)i
+μ

n

∑
i, j=1

w′
i j ∑
y∈Y

p(1)i log
p(1)i

q(t)j
+ν

n

∑
i=1
∑
y∈Y

p(1)i log
p(1)i

u
.
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Using the above in Equation 5 and passing it to the limit we get

lim
t→1

( l

∑
i=1
∑
y∈Y

1
1− t

(
ri log

ri

q(1)i

− ri log
ri

q(t)i

)
+μ

n

∑
i, j=1

w′
i j ∑
y∈Y

1
1− t

(
p(1)i log

p(1)i

q(1)j
− p(1)i log

p(1)i

q(t)j

))
(a)
=

l

∑
i=1
∑
y∈Y

lim
t→1

[
1
1− t

(
ri log

ri

q(1)i

− ri log
ri

q(t)i

)]
+μ

n

∑
i, j=1

w′
i j ∑
y∈Y

lim
t→1

[
1
1− t

(
p(1)i log

p(1)i

q(1)j
− p(1)i log

p(1)i

q(t)j

)]
(b)
=

l

∑
i=1
∑
y∈Y

[
∂
∂t

(
ri log

ri

q(t)i

)]
t=1

+μ
n

∑
i, j=1

w′
i j ∑
y∈Y

[
∂
∂t

(
p(1)i log

p(1)i

q(t)j

)]
t=1

=−
l

∑
i=1
∑
y∈Y

ri+
l

∑
i=1
∑
y∈Y

ri

q(1)i

qi−μ
n

∑
i, j=1

w′
i j ∑
y∈Y

p(1)i +μ
n

∑
i, j=1

w′
i j ∑
y∈Y

p(1)i

q(1)j
q j

where (a) once again follows from using DCT. This is because CMP(p,q(1)), CMP(p,q) < ∞ (else
4-pp trivially holds) and as CMP(p,q) is the sum of all positive terms, it implies each term is finite
and thus bounded above. Also (b) follows from the definition of the derivative. As a result we have
that

0≥−
l

∑
i=1
∑
y∈Y

ri+
l

∑
i=1
∑
y∈Y

ri

q(1)i

qi−μ
n

∑
i, j=1

w′
i j ∑
y∈Y

p(1)i +μ
n

∑
i, j=1

w′
i j ∑
y∈Y

p(1)i

q(1)j
q j

=−l−μ
n

∑
i, j=1

w′
i j+

l

∑
i=1
∑
y∈Y

ri

q(1)i

qi+μ
n

∑
i, j=1

w′
i j ∑
y∈Y

p(1)i

q(1)j
q j. (6)

Now consider

CMP(p,q)−CMP(p,q(1))

=
l

∑
i=1
∑
y∈Y

(
ri log

ri
qi
− ri log

ri

q(1)i

)
+μ

n

∑
i, j=1

w′
i j ∑
y∈Y

(
pi log

pi
q j

− pi log
pi

q(1)j

)

=
l

∑
i=1
∑
y∈Y

ri log
q(1)i

qi
+μ

n

∑
i, j=1

w′
i j ∑
y∈Y

pi log
q(1)j pi

q j p
(1)
i

−μ
n

∑
i, j=1

w′
i jDKL(pi||p(1)i ).

Thus we have that

CMP(p,q)−CMP(p,q(1))+δ(p,p(1))

=
l

∑
i=1
∑
y∈Y

ri log
q(1)i

qi
+μ

n

∑
i, j=1

w′
i j ∑
y∈Y

pi log
q(1)j pi

q j p
(1)
i

.
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Using the variational inequality − log(x)≥ (1− x) in the above we get

CMP(p,q)−CMP(p,q(1))+δ(p,p(1))

≥
l

∑
i=1
∑
y∈Y

ri

(
1− qi

q(1)i

)
+μ

n

∑
i, j=1

w′
i j ∑
y∈Y

pi

(
1− q j p

(1)
i

q(1)j pi

)

= l+μ
n

∑
i, j=1

w′
i j−

l

∑
i=1
∑
y∈Y

ri

q(1)i

qi−μ
n

∑
i, j=1

w′
i j ∑
y∈Y

p(1)i

q(1)j
q j

(a)
≥0

where (a) follows from Equation 6.

Which implies 4-pp holds for CMP.

Theorem 18 CMP(p,q) satisfies the 5-pp.

Proof Follows as CMP(p,q) satisfies both 3-pp and 4-pp.

Theorem 5 (Convergence of AM on CMP) If

p(n) = argmin
p∈
m

CMP(p,q(n−1)), q(n) = argmin
q∈
m

CMP(p(n),q) and q
(0)
i (y)> 0 ∀ y ∈ Y, ∀i then

(a) CMP(p,q)+CMP(p,p(0))≥ CMP(p,q(1))+CMP(p(1),q(1)) for all p,q ∈
m, and

(b) lim
n→∞

CMP(p(n),q(n)) = infp,q∈
m CMP(p,q).

Proof (a) follows as a result of Theorem 18. (b) is the direct result of (a) and theorem 3 in Csiszar
and Tusnady (1984).

Appendix C. Equality of Solutions

Lemma 19 If p= q= p̃ then we have that CMP(p̃, p̃) = CKL(p̃).

Proof Follows from the definitions of CKL and CMP.

Lemma 6 We have that

min
p,q∈
m

CMP(p,q;w′
ii = 0)≤ min

p∈
m
CKL(p).
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Proof Follows from the observation that

min
p∈
m

CKL(p) = min
p,q∈
m,p=q

CMP(p,q;w′
ii = 0)≥ min

p,q∈
m
CMP(p,q;w′

ii = 0 ∀ i)

The last step follows since the unconstrained minimum can never be larger than the constrained
minimum.

Theorem 7 Given any A,B,S ∈
m (i.e., A = [a1, . . . ,am] , B = [b1, . . . ,bm] , S = [s1, . . . ,sm]) such
that ai(y),bi(y),si(y) > 0, ∀ i,y and A �= B (i.e., not all ai(y) = bi(y)) then there exists a finite α
such that

CMP(A,B)≥ CMP(S,S) = CKL(S).

Proof First

CMP(A,B) =
l

∑
i=1

DKL
(
ri||bi

)
+μ

n

∑
i=1

∑
j∈N ′

(i)

w′
i jDKL

(
ai||b j

)−ν
n

∑
i=1

H(ai)

=
l

∑
i=1

DKL
(
ri||bi

)
+μ

n

∑
i=1

∑
j∈N (i)

wi jDKL
(
ai||b j

)−ν
n

∑
i=1

H(ai)

+μ
m

∑
i=1

(wii+α)DKL
(
ai||bi

)
and so we want

l

∑
i=1

DKL
(
ri||bi

)
+μ

n

∑
i=1

∑
j∈N (i)

wi jDKL
(
ai||b j

)−ν
n

∑
i=1

H(ai)

+μ
m

∑
i=1

(wii+α)DKL
(
ai||bi

)−CMP(S,S)≥ 0

which holds if

α≥ CMP(S,S)−∑l
i=1DKL

(
ri||bi

)−μ∑i, j wi jDKL
(
ai||b j

)
+ν∑i H(ai)

μ∑i DKL
(
ai||bi

)
=
CMP(S,S)−CMP(A,B;α= 0)

μ∑i DKL
(
ai||bi

) =
CKL(S)−CMP(A,B;α= 0)

μ∑i DKL
(
ai||bi

) .

Theorem 8 (Equality of Solutions of CKL and CMP) Let

p̂= argmin
p∈
m

CKL(p) and (p∗α̃,q
∗
α̃) = argmin

p,q∈
m
CMP(p,q; α̃)

3360



GRAPH-BASED SEMI-SUPERVISED LEARNING WITH MEASURE PROPAGATION

for an arbitrary α= α̃> 0 where p∗̃α = (p∗1;α̃, · · · , p∗m;α̃) and q∗̃α = (q∗1;α̃, · · · ,q∗m;α̃). Then there exists
a finite α̂ such that at convergence of AM, we have that p̂ = p∗α̂ = q∗α̂. Further, it is the case that if
p∗̃α �= q∗̃α, then

α̂≥ CKL(p̂)−CMP(p∗̃α,q
∗̃
α;α= 0)

μ∑n
i=1DKL(p∗i;α̃||q∗i;α̃)

and if p∗̃α = q
∗̃
α then α̂≥ α̃.

Proof First if p∗̃α = q∗̃α, this means the minimum of the unconstrained version at α̃ resulted in
equality, and since this also considers all solutions where p = q, and since both CKL and CMP
are strictly convex, we must have CMP(p∗̃α,q

∗̃
α; α̃) = CKL(p̂). Also, since for any p �= q we have

CMP(p,q; α̂)> CMP(p,q; α̃) whenever α̂≥ α̃, then for all α̂≥ α̃, CMP(p∗α̂,q
∗
α̂; α̂) = CKL(p̂). Next if

p∗̃α �= q∗̃α, then from Theorem 7 we have that if

∞> α̂≥ CKL(p̂)−CMP(p∗̃α,q
∗̃
α;α= 0)

μ∑n
i=1DKL(p∗i;α̃||q∗i;α̃)

we are guaranteed that p∗α̂ = q
∗
α̂, thereby making the first case applicable.

Appendix D. Test for Convergence

Theorem 9 (Test for Convergence) If {(p(n),q(n))}∞n=1 is generated by AM of CMP(p,q) and
CMP(p∗,q∗)� inf

p,q∈
n
CMP(p,q) then

CMP(p(n),q(n))−CMP(p∗,q∗)≤
n

∑
i=1

(
δ(i≤ l)+di

)
βi,

βi � logsup
y

q(n)i (y)

q(n−1)i (y)
, d j =∑

i

wi j.

Proof As CMP(p,q) satisfies the 5-pp we have that

CMP(p,q)+CMP(p,q(n−1))≥ CMP(p,q(n))+CMP(p(n),q(n)) ∀p,q ∈ P.

Rearranging the terms we have that

CMP(p(n),q(n))−CMP(p,q)≤ CMP(p,q(n−1))−CMP(p,q(n)).

As the above holds for all p,q ∈ P, it follows that

CMP(p(n),q(n))−CMP(p∗,q∗)≤ CMP(p∗,q(n−1))−CMP(p∗,q(n)).
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Now

CMP(p∗,q(n−1))−CMP(p∗,q(n)) =
l

∑
i=1
∑
y
ri(y) log

q(n)i (y)

q(n−1)i (y)
+μ

m

∑
i, j=1

wi j∑
y
p∗i (y) log

q(n)j (y)

q(n−1)j (y)

=
l

∑
i=1

Eri

[
log

q(n)i (y)

q(n−1)i (y)

]
+μ

m

∑
i, j=1

wi j Ep∗i

[
log

q(n)j (y)

q(n−1)j (y)

]
(a)
≤

l

∑
i=1

sup
y

[
log

q(n)i (y)

q(n−1)i (y)

]
+μ

m

∑
i, j=1

wi j sup
y

[
log

q(n)j (y)

q(n−1)j (y)

]

=
l

∑
i=1

logsup
y

[
q(n)i (y)

q(n−1)i (y)

]
+μ

m

∑
i, j=1

wi j logsup
y

[
q(n)j (y)

q(n−1)j (y)

]

=
m

∑
i=1

(
δ(i≤ l)+di

)
logsup

y

q(n)i (y)

q(n−1)i (y)

where (a) follows as E( f (x))≤ sup f (x) and recall d j = ∑i wi j.

Appendix E. Update Equations for p(n) and q(n)

The Lagrangian (ignoring the non-negativity constraints) for solving min
p∈
n

CMP(p,q(n−1)) is given by

L(p,Λ) =
l

∑
i=1

DKL
(
ri||qi

)
+μ

n

∑
i, j=1

w′
i jDKL

(
pi||q(n−1)j

)−ν
n

∑
i=1

H(pi)+∑
i

λi

(
∑
y
pi(y)−1

)

where Λ= {λ1, . . . ,λn}. As KKT conditions apply (since we have a convex optimization problem),
we have that �pi(y)L(p,Λ) = 0 and p ∈
n at the optimal solution. Solving the above we have

log pi(y) =
−λi−β(n−1)i (y)

αi
.

Recall αi= ν+μ∑ j w
′
i j, β

(n−1)
i (y) =−ν+μ∑ j w

′
i j(logq

(n−1)
j (y)−1). Using the above in Equation 7

leads to the dual problem in Λ which admits a closed form solution given by

λi = αi log

(
∑
y
exp

β
(n−1)
i (y)
αi

)
=⇒ p(n)i (y) =

1
Zi
exp

β
(n−1)
i (y)

αi .

Clearly p(n)i (y)≥ 0, ∀ i,y.
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The update for q(n) may be obtained by constructing the Lagrangian for the optimization prob-
lem min

q∈
n
CMP(p(n),q) which is given by

L(q,Λ) =
l

∑
i=1

DKL
(
ri||qi

)
+μ

n

∑
i, j=1

w
′
i jDKL

(
p(n)i ||q j

)−ν
n

∑
i=1

H(p(n)i )

+∑
i

λi

(
∑
y
qi(y)−1

)
+∑

i,y

σiyqi(y)

where Λ = {λ1, . . . ,λn,σ11, . . . ,σn|Y|}. In this case KKT conditions require that �qi(y)L(q,Λ) = 0,
∑y qi(y)−1 ∀ y, σiyqi(y) = 0 ∀ i,y solving which yields

q(n)i (y) =
ri(y)δ(i≤ l)+μ∑j w

′
jip

(n)
j (y)

δ(i≤ l)+μ∑j w
′
ji

.

Appendix F. Convergence Rate of SQ-Loss

Lemma 21 (Linear Rate of Convergence, see page 64 in Bertsekas, 1999) If {xn} is a convergent
sequence such that xn → 0 and xn > 0 ∀ n, then xn is said to converge linearly if

limsup
n→∞

xn
xn−1

≤ η

where η ∈ (0,1).

Theorem 11 (Geometric Rate of Convergence for SQ-Loss) If

(a) ν> 0, and

(b) W has at least one non-zero off-diagonal element in every row (i.e.,W is irreducible)

then the sequence of updates

p(n)i (y) =
ri(y)δ(i≤ l)+νu(y)+μ∑ j wi j p

(n−1)
j (y)

δ(i≤ l)+ν+μ∑ j wi j

has a linear (geometric) rate of convergence for all i and y.

Proof
The updates can re-written in matrix form as

p(n) = [S+νIm+μD]−1
(
r′+

ν
|Y|1m×|Y|+μWp(n−1)

)
where

S�

(
Il 0
0 0

)
, r′ �

(
r

0(m−l)×|Y|

)
,
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[D]ii = ∑ j wi j, 1m×|Y| is a matrix of all 1’s of size m×|Y| and 0(m−l)×|Y| is similarly defined to be
matrix of all 0’s . It can be shown that p(n) → p∗ and so we have that

p∗ = [S+νIm+μD]−1
(
r′+

ν
|Y|1m×|Y|+μWp∗

)
.

As a result

p(n)−p∗ = [S+νIm+μD]−1
(
μW(p(n−1)−p∗))

which implies that

‖ p(n)−p∗ ‖=‖ [S+νIm+μD]−1
(
μW(p(n−1)−p∗)) ‖

where ‖ A ‖ is the 2-norm (Euclidean norm) of the matrix A. Thus
‖ p(n)−p∗ ‖=‖ [S+νIm+μD]−1

(
μW(p(n−1)−p∗)) ‖

≤ μ‖ [S+νIm+μD]−1W ‖ ‖ p(n−1)−p∗ ‖
and so

‖ p(n)−p∗ ‖
‖ p(n−1)−p∗ ‖ ≤ μ‖ [S+νIm+μD]−1W ‖ .

Let Z �
1
μS+

ν
μIm+D and so

‖ p(n)−p∗ ‖
‖ p(n−1)−p∗ ‖ ≤ ‖ Z−1W ‖ .

It should be clear that Z is a diagonal matrix.
The Perron-Frobenius theorem states that given any irreducible matrix A such that ai j ≥ 0 and

ai j are real then

min
i
∑
j

ai j ≤ λmax(A)≤max
i
∑
j

ai j

where λmax(A) represents the maximum eigenvalue of A. If we apply the above theorem to the
matrix D−1W, then we have that λmax(D−1W) = 1. If we apply the same to Z−1W, then we have
that

min
i
∑
j

wi j
1
μδ(i≤ l)+ ν

μ+∑k wik
≤ λmax(Z−1W)≤max

i
∑
j

wi j
1
μδ(i≤ l)+ ν

μ+∑k wik
.

But we have that

∑
j

wi j
∑k wik

= 1 (7)

and so if ν> 0 then we have that

∑
j

wi j
1
μδ(i≤ l)+ ν

μ+∑k wik
< 1.
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As a result

min
i
∑
j

wi j
1
μδ(i≤ l)+ ν

μ+∑k wik
≤ λmax(Z−1W)< 1.

In addition we also have that ∑ j wi j > 0 for all i and so

0< λmax(Z−1W)< 1.

As a result

‖ Z−1W ‖=
√
λmax

(
(Z−1W)TZ−1W

)
=

√
λmax

(
Z−1W

)2
= λmax(Z−1W).

The above implies that

limsup
n→∞

‖ p(n)−p∗ ‖
‖ p(n−1)−p∗ ‖ ≤ ‖ Z−1W ‖= λmax(Z−1W).

As 0< λmax(Z−1W)< 1, we have that p(n) has a linear rate of convergence.
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Abstract

This paper investigates a learning formulation called structured sparsity, which is a natural exten-
sion of the standard sparsity concept in statistical learning and compressive sensing. By allowing
arbitrary structures on the feature set, this concept generalizes the group sparsity idea that has
become popular in recent years. A general theory is developed for learning with structured spar-
sity, based on the notion of coding complexity associated with the structure. It is shown that if
the coding complexity of the target signal is small, then one can achieve improved performance
by using coding complexity regularization methods, which generalize the standard sparse regu-
larization. Moreover, a structured greedy algorithm is proposed to efficiently solve the structured
sparsity problem. It is shown that the greedy algorithm approximately solves the coding complexity
optimization problem under appropriate conditions. Experiments are included to demonstrate the
advantage of structured sparsity over standard sparsity on some real applications.

Keywords: structured sparsity, standard sparsity, group sparsity, tree sparsity, graph sparsity,
sparse learning, feature selection, compressive sensing

1. Introduction

We are interested in the sparse learning problem under the fixed design condition. Consider a
fixed set of p basis vectors {x1, . . . ,xp} where x j ∈ Rn for each j. Here, n is the sample size.
Denote by X the n× p data matrix, with column j of X being x j. Given a random observation
y = [y1, . . . ,yn] ∈ Rn that depends on an underlying coefficient vector  β ∈ Rp, we are interested in
the problem of estimating  β under the assumption that the target coefficient  β is sparse. Throughout
the paper, we consider fixed design only. That is, we assume X is fixed, and randomization is with
respect to the noise in the observation y.
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We consider the situation that the true mean of the observation Ey can be approximated by a
sparse linear combination of the basis vectors. That is, there exists a target vector  β ∈ Rp such that
either Ey= X  β or Ey−X  β is small. Moreover, we assume that  β is sparse. Define the support of a
vector β ∈ Rp as

supp(β) = { j : β j �= 0},
and ‖β‖0 = |supp(β)|. A natural method for sparse learning is L0 regularization:

β̂L0 = arg min
β∈Rp

Q̂(β) subject to ‖β‖0 ≤ s, (1)

where s is the desired sparsity. For simplicity, unless otherwise stated, the objective function con-
sidered throughout this paper is the least squares loss

Q̂(β) = ‖Xβ−y‖2
2,

where ‖ · ‖2 denotes the Euclidean norm.
Since this optimization problem is generally NP-hard, in practice, one often considers approxi-

mate solutions. A standard approach is convex relaxation of L0 regularization to L1 regularization,
often referred to as Lasso (Tibshirani, 1996). Another commonly used approach is greedy algo-
rithms, such as the orthogonal matching pursuit (OMP) (Tropp and Gilbert, 2007).

In practical applications, one often knows a structure on the coefficient vector  β in addition to
sparsity. For example, in group sparsity, one assumes that variables in the same group tend to be
zero or nonzero simultaneously. The purpose of this paper is to study the more general estimation
problem under structured sparsity. If meaningful structures exist, we show that one can take advan-
tage of such structures to improve the standard sparse learning. Specifically, we study the following
natural extension of L0 regularization to structured sparsity problems. It replaces the L0 constraint
in (1) by a more general term c(β), which we call coding complexity. The precise definition will be
given later in Section 2, and some concrete examples will be given later in Section 4.

β̂constr = arg min
β∈Rp

Q̂(β) subject to c(β)≤ s. (2)

In this formulation, s is a tuning parameter. Alternatively, we may also consider the penalized
formulation

β̂pen = arg min
β∈Rp

[
Q̂(β)+λc(β)

]
, (3)

where λ > 0 is a regularization parameter that can be tuned. Since (2) and (3) penalize the coding
complexity c(β), we shall call this approach coding complexity regularization.

The optimization of either (2) or (3) is generally hard. For related problems, there are two com-
mon approaches to alleviate this difficulty. One is convex relaxation (L1 regularization to replace L0

regularization for standard sparsity); the other is forward greedy selection (also called orthogonal
matching pursuit or OMP). We do not know any extensions of L1 regularization like convex relax-
ation methods that can handle general structured sparsity formulations with provable performance
guarantees. In particular, the theoretical analysis in our companion paper (Huang and Zhang, 2010)
for group Lasso fails to yield meaningful bounds for more complex convex relaxation methods that
are proposed for general structured sparsity formulations considered in this paper. For this reason,
we present an extension of the standard greedy OMP algorithm that can be applied to general struc-
tured sparsity problems, and more importantly, meaningful sparse recovery bounds can be obtained
for this algorithm. We call the resulting procedure structured greedy algorithm or StructOMP, which
approximately solves (2). The details will be described later in Section 3.
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1.1 Related Work

The idea of using structure in addition to sparsity has been explored before. An example is group
structure, which has received much attention recently. For example, group sparsity has been con-
sidered for simultaneous sparse approximation (Wipf and Rao, 2007) and multi-task compressive
sensing and learning (Argyriou et al., 2008; Ji et al., 2008) from the Bayesian hierarchical modeling
point of view. Under the Bayesian hierarchical model framework, data from all sources contribute
to the estimation of hyper-parameters in the sparse prior model. The shared prior can then be in-
ferred from multiple sources. He et al. recently extend the idea to the tree sparsity in the Bayesian
framework (He and Carin, 2009a,b). Although the idea can be justified using standard Bayesian
intuition, there are no theoretical results showing how much better (and under what kind of condi-
tions) the resulting algorithms perform. In the statistical literature, Lasso has been extended to the
group Lasso when there exist group/block structured dependencies among the sparse coefficients
(Yuan and Lin, 2006).

However, none of the above mentioned work was able to show advantage of using group struc-
ture. Although some theoretical results were developed in Bach (2008) and Nardi and Rinaldo
(2008), neither showed that group Lasso is superior to the standard Lasso. Koltchinskii and Yuan
(2008) showed that group Lasso can be superior to standard Lasso when each group is an infinite
dimensional kernel, by relying on the fact that meaningful analysis can be obtained for kernel meth-
ods in infinite dimension. Obozinski et al. (2008) considered a special case of group Lasso in the
multi-task learning scenario, and showed that the number of samples required for recovering the
exact support set is smaller for group Lasso under appropriate conditions. Huang and Zhang (2010)
developed a theory for group Lasso using a concept called strong group sparsity, which is a special
case of the general structured sparsity idea considered here. It was shown in Huang and Zhang
(2010) that group Lasso is superior to standard Lasso for strongly group-sparse signals, which pro-
vides a convincing theoretical justification for using group structured sparsity. Related results can
also be found in Chesneau and Hebiri (2008) and Lounici et al. (2009).

While group Lasso works under the strong group sparsity assumption, it doesn’t handle the more
general structures considered in this paper. Several limitations of group Lasso were mentioned
by Huang and Zhang (2010). For example, group Lasso does not correctly handle overlapping
groups (in that overlapping components are over-counted); that is, a given coefficient should not
belong to different groups. This requirement is too rigid for many practical applications. To address
this issue, a method called composite absolute penalty (CAP) is proposed in Zhao et al. (2009)
which can handle overlapping groups. A satisfactory theory remains to be developed to rigorously
demonstrate the effectiveness of the approach. In a related development, Kowalski and Torresani
(2009) generalized the mixed norm penalty to structured shrinkage, which can identify structured
significance maps and thus can handle the case of the overlapping groups. However, there were no
additional theory to justify their methods.

It is also worth pointing out that independent of this paper, two recent work (Jacob et al., 2009;
Jenatton et al., 2009) considered structured sparsity in the convex relaxation setting, and extended
group Lasso to more complicated sparse regularization conditions. These work complement the idea
considered in this paper, which focuses on a natural non-convex formulation of general structured
sparsity, as well as its greedy approximation. Again, since convex relaxation methods are more dif-
ficult to analyze in the structured sparsity setting with overlapping groups, a satisfactory theoretical
justification remains an open challenge. For example the analysis in our companion work (Huang
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and Zhang, 2010) on group Lasso does not correctly generalize to the above mentioned convex
relaxation formulations because a straight-forward application leads to a bound proportional to the
number of overlapping groups covering a true variable. Unfortunately, at least for some of the struc-
tures considered in this paper (such as hierarchical tree structure), in order to show the effectiveness
of using the extra structural information, we need Ω(log2(p)) groups to cover each variable, which
leads to a bound showing no benefits over standard Lasso if we directly apply the analysis of Huang
and Zhang (2010). It is worth noting that the lack of analysis doesn’t mean that formulations in Ja-
cob et al. (2009) and Jenatton et al. (2009) are ineffective. For example, some algorithmic techniques
are employed by Jenatton et al. (2009) to address the over-counting issue we mentioned above, but
the resulting procedures are non-trivial to analyze. In comparison the greedy algorithm is easier
to analyze and (being non-convex) doesn’t suffer from the above mentioned problem. Therefore
this paper focuses on developing a direct generalization of the popular OMP algorithm to handle
structured sparsity.

In addition to the above mentioned work, other structures have also been explored in the liter-
ature. For example, so-called tonal and transient structures were considered for sparse decomposi-
tion of audio signals in Daudet (2004). Grimm et al. (2007) investigated positive polynomials with
structured sparsity from an optimization perspective. The theoretical result there did not address
the effectiveness of such methods in comparison to standard sparsity. The closest work to ours is a
recent paper by Baraniuk et al. (2010). In that paper, model based sparsity was considered and the
structures comes from the predefined models. It is important to note that some theoretical results
were obtained there to show the effectiveness of their method in compressive sensing. Moreover a
generic algorithmic template was presented for structured sparsity. A drawback of the template is
that it relies on finding the pruning of residue or signal estimates to a subset of variables with small
structured complexity. These steps have to be specifically designed for different data models under
specialized assumptions. In this regard, while the algorithmic template is generic, the actual imple-
mentation for the pruning steps will be quite different for different types of structures (for example,
see Cevher et al., 2009a,b). In other words, it does not provide a common scheme to represent their
"models" for different structured sparsity data. Different structure representation schemes have to
be built for different "models". It thus remains as an open issue how to develop a general theory
for structured sparsity, together with a general algorithm based on a generic structure representa-
tion scheme that can be applied to a wide class of such problems. The Structured OMP algorithm,
which is proposed in this paper, is an attempt to address this issue. Although each type of structures
requires an appropriately chosen block set (see Section 3 and Section 4), the algorithmic implemen-
tation based on a generic structure representation scheme is the same for different structures. We
note that in general it is much easier to pick an appropriate block set than to design a new pruning
algorithm.

We see from the above discussion that there exists extensive literature on combining sparsity
with structured priors, with empirical evidence showing that one can achieve better performance by
imposing additional structures. However, it is still useful to establish a general theoretical frame-
work for structured sparsity that can quantify its effectiveness, as well as an efficient algorithmic
implementation. The goal of this paper is to develop such a general theory that addresses the fol-
lowing issues, where we pay special attention to the benefit of structured sparsity over the standard
non-structured sparsity:

• quantifying structured sparsity;
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• the minimal number of measurements required in compressive sensing;

• estimation accuracy under stochastic noise;

• an efficient algorithm that can solve a wide class of structured sparsity problems with mean-
ingful sparse recovery performance bounds.

2. Coding Complexity Regularization

In structured sparsity, not all sparse patterns are equally likely. For example, in group sparsity, coef-
ficients within the same group are more likely to be zeros or nonzeros simultaneously. This means
that if a sparse coefficient vector’s support set is consistent with the underlying group structure, then
it is more likely to occur, and hence incurs a smaller penalty in learning. One contribution of this
work is to formulate how to define structure on top of sparsity, and how to penalize each sparsity
pattern. We then develop a theory for the corresponding penalized estimators (2) and (3).

2.1 Structured Sparsity and Coding Complexity

In order to formalize the idea of structured sparsity, we denote by I = {1, . . . , p} the index set of
the coefficients. Consider any sparse subset F ⊂ {1, . . . , p}, we assign a cost cl(F). In structured
sparsity, the cost of F is an upper bound of the coding length of F (number of bits needed to
represent F by a computer program) in a pre-chosen prefix coding scheme. It is a well-known fact
in information theory (e.g., Cover and Thomas, 1991) that mathematically, the existence of such a
coding scheme is equivalent to

∑
F⊂I

2−cl(F) ≤ 1.

From the Bayesian statistics point of view, 2−cl(F) can be regarded as a lower bound of the proba-
bility of F . The probability model of structured sparse learning is thus: first generate the sparsity
pattern F according to probability 2−cl(F); then generate the coefficients in F .

Definition 1 A cost function cl(F) defined on subsets of I is called a coding length (in base-2) if

∑
F⊂I ,F �= /0

2−cl(F) ≤ 1.

We give /0 a coding length 0. The corresponding structured sparse coding complexity of F is defined
as

c(F) = |F|+ cl(F).
A coding length cl(F) is sub-additive if

cl(F ∪F ′)≤ cl(F)+ cl(F ′),

and a coding complexity c(F) is sub-additive if

c(F ∪F ′)≤ c(F)+ c(F ′).
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Clearly if cl(F) is sub-additive, then the corresponding coding complexity c(F) is also sub-
additive. Note that for simplicity, we do not introduce a trade-off between |F| and cl(F) in the
definition of c(F). However, in real applications, such a trade-off may be beneficial: for example
we may define c(F) = γ|F|+ cl(F), where γ is considered a tuning parameter in the algorithm.

Based on the structured coding complexity of subsets of I , we can now define the structured
coding complexity of a sparse coefficient vector  β ∈ Rp.

Definition 2 Giving a coding complexity c(F), the structured sparse coding complexity of a coeffi-
cient vector  β ∈ Rp is

c(  β) = min{c(F) : supp(  β)⊂ F}.
We will later show that if a coefficient vector  β has a small coding complexity c(  β), then  β

can be effectively learned, with good in-sample prediction performance (in statistical learning) and
reconstruction performance (in compressive sensing). In order to see why the definition requires
adding |F| to cl(F), we consider the generative model for structured sparsity mentioned earlier. In
this model, the number of bits to encode a sparse coefficient vector is the sum of the number of bits to
encode F (which is cl(F)) and the number of bits to encode nonzero coefficients in F (this requires
O(|F|) bits up to a fixed precision). Therefore the total number of bits required is cl(F)+O(|F|).
This information theoretical result translates into a statistical estimation result: without additional
regularization, the learning complexity for least squares regression within any fixed support set F
is O(|F|). By adding the model selection complexity cl(F) for each support set F , we obtain an
overall statistical estimation complexity ofO(cl(F)+ |F|). We would like to mention that the coding
complexity approach in this paper is related to but extends the Union-of-Subspaces model of Lu and
Do (2008), which corresponds to a hard assignment of cl(F) to be either a constant c or +∞.

While the idea of using coding based penalization is clearly motivated by the minimum de-
scription length (MDL) principle, the actual penalty we obtain for structured sparsity problems is
different from the standard MDL penalty for model selection. Moreover, our analysis differs from
some other MDL based analysis (such as Haupt and Nowak, 2006) that only deals with minimization
over a countably many candidate coefficients  β (the candidates are chosen a priori). This difference
is important in sparse learning, and analysis as in Haupt and Nowak (2006) cannot be applied to
the estimators of (2) or (3). Therefore in order to prevent confusion, we avoid using MDL in our
terminology. Nevertheless, one may consider our framework as a natural combination of the MDL
idea and the modern sparsity analysis. We will consider detailed examples of cl(F) in Section 4.

2.2 Theory of Coding Complexity Regularization

We assume sub-Gaussian noise as follows.

Assumption 1 Assume that {yi}i=1,...,n are independent (but not necessarily identically distributed)
sub-Gaussians: there exists a constant σ≥ 0 such that ∀i and ∀t ∈ R,

Eyi e
t(yi−Eyi) ≤ eσ

2t2/2.

Both Gaussian and bounded random variables are sub-Gaussian using the above definition. For
example, if a random variable ξ ∈ [a,b], then Eξe

t(ξ−Eξ) ≤ e(b−a)
2t2/8. If a random variable is

Gaussian: ξ∼ N(0,σ2), then Eξe
tξ ≤ eσ

2t2/2.
The following property of sub-Gaussian noise is important in our analysis. Our simple proof

yields a sub-optimal choice of the constants.
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Proposition 3 Let P ∈ Rn×n be a projection matrix of rank k, and y satisfies Assumption 1. Then
for all η ∈ (0,1), with probability larger than 1−η:

‖P(y−Ey)‖2
2 ≤ σ2[7.4k+2.7ln(2/η)].

We also need to generalize sparse eigenvalue condition, used in the modern sparsity analysis. It
is related to (and weaker than) the RIP (restricted isometry property) assumption (Candes and Tao,
2005) in the compressive sensing literature. This definition takes advantage of coding complexity,
and can be also considered as (a weaker version of) structured RIP. We introduce a definition.

Definition 4 For all F ⊂ {1, . . . , p}, define

ρ−(F) = inf

{
1
n
‖Xβ‖2

2/‖β‖2
2 : supp(β)⊂ F

}
,

ρ+(F) =sup

{
1
n
‖Xβ‖2

2/‖β‖2
2 : supp(β)⊂ F

}
.

Moreover, for all s> 0, define

ρ−(s) = inf{ρ−(F) : F ⊂ I ,c(F)≤ s},
ρ+(s) =sup{ρ+(F) : F ⊂ I ,c(F)≤ s}.

In the theoretical analysis, we need to assume that ρ−(s) is not too small for some s that is
larger than the signal complexity. Since we only consider eigenvalues for submatrices with small
cost c(  β), the sparse eigenvalue ρ−(s) can be significantly larger than the corresponding ratio for
standard sparsity (which will consider all subsets of {1, . . . , p} up to size s). For example, for ran-
dom projections used in compressive sensing applications, the coding length c(supp(  β)) is O(k ln p)
in standard sparsity, but can be as low as c(supp(  β)) = O(k) in structured sparsity (if we can guess
supp(  β) approximately correctly. Therefore instead of requiring n = O(k ln p) samples, we require
only O(k+ cl(supp(  β))). The difference can be significant when p is large and the coding length
cl(supp(  β))� k ln p. An example for this is group sparsity, where we have p/k0 even sized groups,
and variables in each group are simultaneously zero or nonzero. The coding length of the groups are
(k/k0) ln(p/k0), which is significantly smaller than k ln p when p is large (see Section 4 for details).

More precisely, we have the following random projection sample complexity bound for the
structured sparse eigenvalue condition. The theorem implies that the structured RIP condition is sat-
isfied with sample size n = O(k + (k/k0) ln(p/k0)) in group sparsity (where s =
O(k+(k/k0) ln(p/k0))) rather than n = O(k ln(p)) in standard sparsity (where s = O(k ln p)). For
hierarchical tree sparsity (see Section 4 for details), it requires n= O(k) examples (with s= O(k)),
which matches the result of Baraniuk et al. (2010). Therefore Theorem 6 shows that in the com-
pressive sensing applications, it is possible to reconstruct signals with fewer number of random
projections by using structured sparsity.

Proposition 5 (Structured-RIP) Suppose that elements in X are iid standard Gaussian random
variables N(0,1). For any t > 0 and δ ∈ (0,1), let

n≥ 8
δ2 [ln3+ t+ s ln(1+8/δ)].
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Then with probability at least 1−e−t , the randommatrix X ∈Rn×p satisfies the following structured-
RIP inequality for all vector  β ∈ Rp with coding complexity no more than s:

(1−δ)‖  β‖2 ≤ 1√
n
‖X  β‖2 ≤ (1+δ)‖  β‖2. (4)

Although in the theorem, we assume Gaussian random matrix in order to state explicit constants,
it is clear that similar results hold for other sub-Gaussian random matrices. Note that the proposed
generalization of RIP extends related results in compressive sensing and statistics (Baraniuk et al.,
2010; Huang and Zhang, 2010).

The following result gives a performance bound for constrained coding complexity regulariza-
tion in (2). The 2-norm parameter estimation bound ‖β̂−  β‖2 requires that ρ−(·) > 0 (otherwise,
the bound becomes trivial). For random design matrix X , the lower-bound in (4) is thus needed.

Theorem 6 Suppose that Assumption 1 is valid. Consider any fixed target  β ∈ Rp. Then with
probability exceeding 1−η, for all ε≥ 0 and β̂ ∈ Rp such that: Q̂(β̂)≤ Q̂(  β)+ ε, we have

‖X β̂−Ey‖2 ≤ ‖X  β−Ey‖2 +σ
√

2ln(6/η)+2(7.4σ2c(β̂)+4.7σ2 ln(6/η)+ ε)1/2.

Moreover, if the coding scheme c(·) is sub-additive, then
nρ−(c(β̂)+ c(  β))‖β̂−  β‖2

2 ≤ 10‖X  β−Ey‖2
2 +37σ2c(β̂)+29σ2 ln(6/η)+2.5ε.

This theorem immediately implies the following result for (2): ∀  β such that c(  β)≤ s,

1√
n
‖X β̂constr−Ey‖2 ≤ 1√

n
‖X  β−Ey‖2 +

σ√
n

√
2ln(6/η)+

2σ√
n
(7.4s+4.7ln(6/η))1/2,

‖β̂constr−  β‖2
2 ≤

1

ρ−(s+ c(  β))n

[
10‖X  β−Ey‖2

2 +37σ2s+29σ2 ln(6/η)
]
.

Although for simplicity this paper does not consider the problem of estimating ρ−(s+ c(  β)), it is
possible to estimate it approximately (for example, using ideas of d’Aspremont et al., 2008). We
can generally expect ρ−(s+ c(  β)) = O(1) by assuming that the sample size is sufficiently large
according to Proposition 5. The result immediately implies that as sample size n→ ∞ and s/n→
0, the root mean squared error prediction performance ‖X β̂−Ey‖2/

√
n converges to the optimal

prediction performance infc(  β)≤s ‖X  β−Ey‖2/
√
n. This result is agnostic in that even if ‖X  β−

Ey‖2/
√
n is large, the result is still meaningful because it says the performance of the estimator β̂

is competitive to the best possible estimator in the class c(  β)≤ s.
In compressive sensing applications, we take σ = 0, and we are interested in recovering  β

from random projections. For simplicity, we let X  β = Ey = y, and our result shows that the con-
strained coding complexity penalization method achieves exact reconstruction β̂constr =  β as long as
ρ−(2c(  β))> 0 (by setting s= c(  β)). According to Proposition 5, this is possible when the number
of random projections (sample size) reaches n=O(c(  β)). This is a generalization of corresponding
results in compressive sensing (Candes and Tao, 2005). As we have pointed out earlier, this num-
ber can be significantly smaller than the standard sparsity requirement of n = O(‖  β‖0 ln p), if the
structure imposed in the formulation is meaningful.

As an example, for group sparsity (see Section 4), we consider m pre-defined groups, each of
size k0. If the support of  β is covered by g of the m groups, we know from Section 4 that the
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complexity can be defined as s= g log2(2m)+gk0. In comparison, the standard sparsity complexity
is given by s = ‖  β‖0 log2(2p), which may be significantly larger if g� ‖  β‖0 (that is, the group
structure is meaningful). It can be shown that the group-Lasso estimator may also achieve the group
sparsity complexity of s = g log2(2m) + gk0 (Huang and Zhang, 2010; Lounici et al., 2009), but
the result for group-Lasso requires a stronger condition involving structured-RIP. Note that the first
bound in Theorem 6 does not require any RIP assumption, while the second bound only requires a
very weak dependency of the form ρ−(·)> 0. In contrast, the required dependency for group Lasso
is significantly stronger, and details can be seen in Huang and Zhang (2010), Lounici et al. (2009)
and Nardi and Rinaldo (2008). Although the result for the coding complexity estimator (2) is better
due to weaker RIP dependency, we shall point out that it doesn’t mean that for group sparsity, we
should use (2) instead of group-Lasso in practice. This is because solving (2) requires non-convex
optimization, while group-Lasso is a convex formulation. This is why we will consider an efficient
algorithm to approximately solve (2) in Section 3.

Similar to Theorem 6, we can obtain the following result for (3). A related result for standard
sparsity under Gaussian noise can be found in Bunea et al. (2007).

Theorem 7 Suppose that Assumption 1 is valid. Consider any fixed target  β ∈ Rp. Then with
probability exceeding 1−η, for all λ> 7.4σ2 and a≥ 7.4σ2/(λ−7.4σ2), we have

‖X β̂pen−Ey‖2
2 ≤ (1+a)2‖X  β−Ey‖2

2 +(1+a)λc(  β)+σ2(10+5a+7a−1) ln(6/η).

Unlike the result for (2), the prediction performance ‖X β̂pen−Ey‖2 of the estimator in (3) is compet-
itive to (1+a)‖X  β−Ey‖2, which is a constant factor larger than the optimal prediction performance
‖X  β−Ey‖2. By optimizing λ and a, it is possible to obtain a similar result as that of Theorem 6.
However, this requires tuning λ, which is not as convenient as tuning s in (2). Note that both results
presented here, and those in Bunea et al. (2007) are superior to the more traditional least squares
regression results with λ explicitly fixed (for example, theoretical results for AIC). This is because
one can only obtain the form presented in Theorem 6 by tuning λ. Such tuning is important in real
applications.

3. Structured Greedy Algorithm

In this section, we describe a generalization of the OMP algorithm for standard sparsity. Our gen-
eralization, which we refer to as structured greedy algorithm or simply StructOMP, takes advantage
of block structures to approximately solve the structured sparsity formulation (2). It would be
worthwhile to mention that the notion of block structures here is different from block sparsity in
model-based compressive sensing (Baraniuk et al., 2010).

Note that in this algorithm, we assume that c(F) is relatively easy to compute (up to a constant)
for any given F . For this purpose, we may use a relatively easy to compute upper bound of c(F).
For example, for graph structured sparsity described later in Section 4, we may simply use the right
hand side of Proposition 11 as the definition of c(F). If the maximum degree of a graph is small,
we can simply use c(F) = g ln(p)+ |F|, where g is the number of connected components in F . For
practical purposes, a multiplicative constant in the definition of c(F) is not important because it can
be absorbed into the tuning parameter s.
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3.1 Algorithm Description

The main idea of StructOMP is to limit the search space of the greedy algorithm to small blocks. We
will show that if a coding scheme can be approximated with blocks, then StructOMP is effective.
Additional discussion of block approximation can be found in Section 4.

Formally, we consider a subset B ⊂ 2I . That is, each element (which we call a block or a
base block) of B is a subset of I . We call B a block set if I = ∪B∈BB and all single element
sets { j} belong to B ( j ∈ I ). Note that B may contain additional non single-element blocks. The
requirement of B containing all single element sets is for notational convenience, as it implies that
every subset F ⊂ I can be expressed as the union of blocks in B . Mathematically this requirement
is non-important because we may simply assign ∞ coding length to single-element blocks, which is
equivalent to excluding these single element sets.

Input: (X ,y), B ⊂ 2I , s> 0
Output: F(k) and β(k)

let F(0) = /0 and β(0) = 0
for k = 1,2, . . .
select B(k) ∈ B to maximize progress (∗)
let F(k) = B(k)∪F(k−1)

let β(k) = argminβ∈Rp Q̂(β) subject to supp(β)⊂ F(k)

if (c(β(k))> s) break
end

Figure 1: Structured Greedy Algorithm

In Figure 1, we are given a set of blocks B that contains subsets of I . Instead of searching all
subsets F ⊂ I up to a certain complexity |F|+c(F), which is computationally infeasible, we search
only the blocks restricted to B . It is assumed that searching over B is computationally manageable.
In practice, the computational cost is linear in the number of base blocks |B|.

At each step (∗), we try to find a block from B to maximize progress. It is thus necessary to
define a quantity that measures progress. Our idea is to approximately maximize the gain ratio:

Q̂(β(k−1))− Q̂(β(k))
c(β(k))− c(βk−1)

,

which measures the reduction of objective function per unit increase of coding complexity. This
greedy criterion is a natural generalization of the standard greedy algorithm, and essential in our
analysis. For least squares regression, we can define the gain ratio as follows:

φ(B) =
‖PB−F(k−1) (Xβ(k−1)−y)‖22
c(B∪F(k−1))− c(F(k−1))

, (5)

where
PF = XF(X

�
F XF)

+X�
F

is the projection matrix to the subspaces generated by columns of XF . Here (X�
F XF)

+ denotes the
Moore-Penrose pseudo-inverse.
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More precisely, for least squares regression, at each step (∗) of Figure 1, we select a block B(k)

that satisfies the condition
φ(B(k))≥ νmax

B∈B
φ(B) (6)

for some ν ∈ (0,1]. We may regard ν as a fixed approximation ratio (to ensure the quality of
approximate optimization) that will appear in our analysis, although the algorithm does not have to
pick ν a priori.

The reason to allow approximate maximization in (6) is that our practical implementation of
StructOMP maximizes a simpler quantity

φ̃(B) =
‖X�

B−F(k−1) (Xβ
(k−1)−y)‖2

2

c(B∪F(k−1))− c(F(k−1))
, (7)

which is more efficient to compute (especially when blocks are overlapping). Since the ratio

‖X�
B−F(k−1)r‖2

2/‖PB−F(k−1)r‖2
2

is bounded between ρ+(B) and ρ−(B) (these quantities are defined in Definition 4), we know that
maximization of φ̃(B) leads to an approximate maximization of φ(B) with ν≥ ρ−(B)/ρ+(B). That
is, maximization of (7) in our practical StructOMP implementation corresponds to an approximate
maximization in (6). Moreover, ν only appears in our analysis, and it does not appear explicitly in
our implementation.

Note that we shall ignore B ∈ B such that B⊂ F(k−1), and just let the corresponding gain to be
0. Moreover, if there exists a base block B �⊂ F(k−1) but c(B∪F(k−1)) ≤ c(F(k−1)), we can always
select B and let F(k) = B∪F(k−1) (this is because it is always beneficial to add more features into
F(k) without additional coding complexity). We assume this step is always performed if such a
B ∈ B exists. The non-trivial case is c(B∪F(k−1))> c(F(k−1)) for all B ∈ B; in this case both φ(B)
and φ̃(B) are well defined.

3.2 Convergence Analysis

It is important to understand that the block structure is only used to limit the search space in the
structured greedy algorithm. However, our theoretical analysis shows that if in addition, the un-
derlying coding scheme can be approximated by block coding using base blocks employed in the
greedy algorithm, then the algorithm is effective in minimizing (2). Although one does not need to
know the specific approximation in order to use the greedy algorithm, knowing its existence (which
can be shown for the examples discussed in Section 4) guarantees the effectiveness of the algorithm.
It is also useful to understand that our result does not imply that the algorithm won’t be effective if
the actual coding scheme cannot be approximated by block coding.

We shall introduce a definition before stating our main results.

Definition 8 Given B ⊂ 2I , define

ρ0(B) = max
B∈B

ρ+(B), c0(B) = max
B∈B

c(B)

and

c(  β,B) = min

{
b

∑
j=1

c(  Bj) : supp(  β)⊂
b⋃
j=1

 Bj (  Bj ∈ B);b≥ 1

}
.
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The following theorem shows that if c(  β,B) is small, then one can use the structured greedy algo-
rithm to find a coefficient vector β(k) that is competitive to  β, and the coding complexity c(β(k)) is
not much worse than that of c(  β,B). This implies that if the original coding complexity c(  β) can be
approximated by block complexity c(  β,B), then we can approximately solve (2).

Theorem 9 Suppose the coding scheme is sub-additive. Consider  β and ε such that

ε ∈ (0,‖y‖2
2−‖X  β−y‖2

2]

and

s≥ ρ0(B)c(  β,B)
νρ−(s+ c(  β))

ln
‖y‖2

2 −‖X  β−y‖2
2

ε
.

Then at the stopping time k, we have

Q̂(β(k))≤ Q̂(  β)+ ε.

By Theorem 6, the result in Theorem 9 implies that

‖Xβ(k)−Ey‖2 ≤ ‖X  β−Ey‖2 +σ
√

2ln(6/η)+2σ
√

7.4(s+ c0(B))+4.7ln(6/η)+ ε/σ2,

‖β(k)−  β‖2
2 ≤

10‖X  β−Ey‖2
2 +37σ2(s+ c0(B))+29σ2 ln(6/η)+2.5ε

ρ−(s+ c0(B)+ c(  β))n
.

The result shows that in order to approximate a signal  β up to accuracy ε, one needs to use
coding complexity O(ln(1/ε))c(  β,B). Now, consider the case that B contains small blocks and
their sub-blocks with equal coding length, and the actual coding scheme can be approximated (up
to a constant) by block coding generated by B; that is, c(  β,B) = O(c(  β)). In this case we need
O(s ln(1/ε)) to approximate a signal with coding complexity s. For this reason, we will extensively
discuss block approximation in Section 4.

In order to improve forward greedy procedures, backward greedy strategies can be employed,
as shown in various recent works such as Zhang (2011). For simplicity, we will not analyze such
strategies in this paper. It is worth mentioning that in practice, greedy algorithm is often adequate.
In particular theO(ln(1/ε)) factor vanishes for a weakly sparse target signal  β, where the magnitude
of its coefficients gradually decrease to zero. This concept has been considered in previous work
such as Donoho (2006) and Baraniuk et al. (2010). In such case, we may choose an appropriate
optimal stopping point to avoid the O(ln(1/ε)) factor. In fact, practitioners often observe that OMP
can be more effective than Lasso for weakly sparse target signals (in spite of stronger theoretical
results for Lasso with strongly sparse target signals). This will be confirmed in our experiments
as well. Without cluttering the main text, we leave the detailed analysis of StructOMP for weakly
sparse signals to Appendix F. Our analysis is the first theoretical justification of this empirical
phenomenon.

4. Structured Sparsity Examples

Before giving detailed examples, we describe a general coding scheme called block coding, which
is an expansion of Definition 8. The basic idea of block coding is to define a coding scheme on
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a small number of base blocks (a block is a subset of I ), and then define a coding scheme on all
subsets of I using these base blocks.

Consider block set B ⊂ 2I . We assume that every subset F ⊂ I can be expressed as the union
of blocks in B . Let cl0 be a code length on B:

∑
B∈B

2−cl0(B) ≤ 1,

we define cl(B) = cl0(B)+1 for B ∈ B . It not difficult to show that the following cost function on
F ⊂ I is a coding length

clB(F) =min

{
b

∑
j=1

cl(Bj) : F =
b⋃
j=1

Bj (Bj ∈ B)

}
.

This is because

∑
F⊂I ,F �= /0

2−cl(F) ≤ ∑
b≥1

∑
B�∈B:1≤�≤b

2−∑
b
�=1 cl(B�) ≤ ∑

b≥1

b

∏
�=1
∑
B�∈B

2−cl(B�) ≤ ∑
b≥1
2−b = 1.

We call the coding scheme clB block coding. It is clear from the definition that block coding is
sub-additive.

From Theorem 9 and the discussions thereafter, we know that under appropriate conditions, a
target coefficient vector with a small block coding complexity can be approximately learned using
the structured greedy algorithm. This means that the block coding scheme has important algorithmic
implications. That is, if a coding scheme can be approximated by block coding with a small number
of base blocks, then the corresponding estimation problem can be approximately solved using the
structured greedy algorithm.

For this reason, we shall pay special attention to block coding approximation schemes for ex-
amples discussed below. In particular, a coding scheme cl(·) can be polynomially approximated
by block coding if there exists a block coding scheme clB with polynomial (in p) number of base
blocks in B , such that there exists a positive constantCB independent of p:

clB(F)≤CB cl(F).

That is, up to a constant, the block coding scheme clB() is dominated by the coding scheme cl().
While it is possible to work with blocks with non-uniform coding schemes, for simplicity ex-

amples provided in this paper only consider blocks with uniform coding, which is similar to the
representation used in the Union-of-Subspaces model of Lu and Do (2008).

4.1 Standard Sparsity

A simple coding scheme is to code each subset F ⊂ I of cardinality k using k log2(2p) bits, which
corresponds to block coding with B consisted only of single element sets, and each base block has
a coding length cl0 = log2 p. This corresponds to the complexity for the standard sparse learning.

A more general version is to consider single element blocks B = {{ j} : j ∈ I}, with a non-
uniform coding scheme cl0({ j}) = c j, such that ∑ j 2

−c j ≤ 1. It leads to a non-uniform coding
length on I as

cl(B) = |B|+∑
j∈B

c j.
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In particular, if a feature j is likely to be nonzero, we should give it a smaller coding length c j, and
if a feature j is likely to be zero, we should give it a larger coding length. In this case, a subset
F ⊂ I has coding length cl(F) = ∑ j∈F(1+ c j).

4.2 Group Sparsity

The concept of group sparsity has appeared in various recent work, such as the group Lasso in Yuan
and Lin (2006) or multi-task learning in Argyriou et al. (2008). Consider a partition of I = ∪mj=1Gj

into m disjoint groups. Let BG contain the m groups {Gj}, and B1 contain p single element blocks.
The strong group sparsity coding scheme is to give each element in B1 a code-length cl0 of ∞,
and each element in BG a code-length cl0 of log2m. Then the block coding scheme with blocks
B = BG ∪B1 leads to group sparsity, which only looks for signals consisted of the groups. The
resulting coding length is: cl(B) = g log2(2m) if B can be represented as the union of g disjoint
groups Gj; and cl(B) = ∞ otherwise.

Note that if the support of the target signal F can be expressed as the union of g groups, and
each group size is k0, then the group coding length g log2(2m) can be significantly smaller than the
standard sparsity coding length of |F| log2(2p) = gk0 log2(2p). As we shall see later, the smaller
coding complexity implies better learning behavior, which is essentially the advantage of using
group sparse structure. It was shown by Huang and Zhang (2010) that strong group sparsity defined
above also characterizes the performance of group Lasso. Therefore if a signal has a pre-determined
group structure, then group Lasso is superior to the standard Lasso.

An extension of this idea is to allow more general block coding length for cl0(Gj) and cl0({ j})
so that

m

∑
j=1

2−cl0(Gj) +
p

∑
j=1

2−cl0({ j}) ≤ 1.

This leads to non-uniform coding of the groups, so that a group that is more likely to be nonzero
is given a smaller coding length. If feature set F can be represented as the union of g groups
Gj1 , . . . ,Gjg , then its coding length is cl(F) = g+∑

g
j=1 cl0(Gj).

Figure 2: Group sparsity: nodes are variables, and black nodes are selected variables

Group sparsity is a special case of graph sparsity discussed below. Figure 2 shows an example
of group sparsity, where the variables are represented by nodes, and the selected variables are rep-
resented by black nodes. Each pre-defined group is represented as a connected components in the
graph, and the example contains six groups. Two groups, the first and the third from the left, are se-
lected in the example. The number of selected variables (black nodes) is seven. Therefore we have
g= 2 and |F|= 7. If we encode each group uniformly, then the coding length is cl(F) = 2log2(12).
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4.3 Hierarchical Sparsity

One may also create a hierarchical group structure. A simple example is wavelet coefficients of a
signal (Mallat, 1999). Another simple example is a binary tree with the variables as leaves, which
we describe below. Each internal node in the tree is associated with three options: only left child,
only right child, or both children; each option can be encoded in log2 3 bits.

Given a subset F ⊂ I , we can go down from the root of the tree, and at each node, decide
whether only left child contains elements of F , or only right child contains elements of F , or both
children contain elements of F . Therefore the coding length of F is log2 3 times the total number
of internal nodes leading to elements of F . Since each leaf corresponds to no more than log2 p
internal nodes, the total coding length is no worse than log2 3 log2 p|F|. However, the coding length
can be significantly smaller if nodes are close to each other or are clustered. In the extreme case,
when the nodes are consecutive, we have O(|F|+ log2 p) coding length. More generally, if we
can order elements in F as F = { j1, . . . , jq}, then the coding length can be bounded as cl(F) =
O(|F|+ log2 p+∑

q
s=2 log2min�<s | js− j�|).

If all internal nodes of the tree are also variables in I (for example, in the case of wavelet
decomposition), then one may consider feature set F with the following property: if a node is
selected, then its parent is also selected. This requirement is very effective in wavelet compression,
and often referred to as the zero-tree structure (Shapiro, 1993). Similar requirements have also been
applied in statistics (Zhao et al., 2009) for variable selection and in compressive sensing (Baraniuk
et al., 2010). The argument presented in this section shows that if we require F to satisfy the zero-
tree structure, then its coding length is at most O(|F|), without any explicit dependency on the
dimensionality p. This is because one does not have to reach a leave node. Figure 3 shows an
example of hierarchical sparsity, where the nodes of the tree are variables, and black nodes indicate
those variables that are selected. The total number of selected variables (number of black nodes)
is |F| = 8. This example obeys the requirement that if a node is selected, then its parent is also
selected. Therefore the complexity is measured by O(|F|).

Figure 3: Hierarchical sparsity: nodes are variables, and black nodes are selected variables

The tree-based coding scheme discussed in this section can be polynomially approximated by
block coding using no more than p1+δ base blocks (δ> 0). The idea is similar to that of the image
coding example in the more general graph sparsity scheme which we discuss next.
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4.4 Graph Sparsity

We consider a generalization of the hierarchical and group sparsity ideas by employing a (directed
or undirected) graph structure G on I . To the best of our knowledge, this general structure has not
been considered in any previous work.

In graph sparsity, each variable (an element of I ) is a node of G but G may also contain ad-
ditional nodes that are not variables. In order to take advantage of the graph structure, we favor
connected regions (that is, nodes that are grouped together with respect to the graph structure). The
following result defines a coding length on graphs based on the underlying graph structure. We
leave its analysis to Appendix A.

Proposition 10 Let G be a graph with maximum degree dG. There exists a constant CG≤ 2log2(1+
dG) such that for any probability distribution q on G (∑v∈G q(v) = 1 and q(v) ≥ 0 for v ∈ G), the
following quantity (which we call graph coding) is a coding length on 2G:

cl(F) =CG|F|+g−
g

∑
j=1

max
v∈Fj

log2(q(v)),

where F ⊂ 2G can be decomposed into the union of g connected components F = ∪gj=1Fj.
Note that graph coding is sub-additive. As a concrete example, we consider image processing,

where each image is a rectangle of pixels (nodes); each pixel is connected to four adjacent pixels,
which forms the underlying graph structure. We may take q(v) = 1/p for all v ∈ G, where p= |G|
is the number of variables. Proposition 10 implies that if F is composed of g connected regions,
then the coding length is g log2(2p)+ 2log2(5)|F|, which can be significantly better than standard
sparse coding length of |F| log2(2p). For example, Figure 4 shows an image grid, where nodes are
variables and selected variables are denoted by black nodes. In this example, the selected variables
have two connected components (that is, g= 2): one in the top-left part, and the other in the bottom-
right part of the grid. The total number of selected variables (the number of black nodes) is |F|= 11.

Figure 4: Graph sparsity: nodes are variables, and black nodes are selected variables

Note that group sparsity is a special case of graph sparsity, where each group is one connected
region, as shown in Figure 2. We may also link adjacent groups to form the more general line-
structured sparsity as in Figure 2. The advantage of line structure over group structure is that we do
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not need to know the specific group divisions a priori as in Figure 2. From Proposition 10, similar
coding complexity can be obtained as long as F can be covered by a small number of connected
regions. Tree-structured hierarchical sparsity is also a special case of graph sparsity with a single
connected region containing the root (we may take q(root) = 1). In fact, one may generalize this
concept as follows. We consider a special case of sparse sparsity where we limit F to be a connected
region that contains a fixed starting node v0. We can simply let q(v0) = 1, and the coding length of
F is O(|F|), which is independent of the dimensionality p. This generalizes the similar claim for
the zero-tree structure described earlier.

Figure 5: Line-structured sparsity: nodes are variables, and black nodes are selected variables

The following result shows that under uniform encoding of the nodes q(v) = 1/p for v ∈ G,
general graph coding schemes can be polynomially approximated with block coding. The idea is to
consider relatively small sized base blocks consisted of nodes that are close together with respect to
the graph structure, and then use the induced block coding scheme to approximate the graph coding.

Proposition 11 Let G be a graph with maximum degree dG, and p= |G|. Consider any number δ>
0 such that L= δ log2 p is an even integer. Let B be the set of connected nodes of size up to L; that is,
B∈B is a connected region in G such that |B| ≤ L. Then there exists a constantCG≤ 2log2(1+dG),
such that |B| ≤ p1+CGδ. If we consider the uniform code-length cl0(B) = (1+CGδ) log2 p for all
B ∈ B , then the induced block-coding scheme clB satisfies

clB(F)≤ g(1+CGδ) log2 p+2(CG+δ−1)|F|.

where g is the number of connected regions in F.

The result means that graph sparsity can be polynomially approximated with a block coding
scheme if we let q(v) = 1/p for all v ∈ G. As we have pointed out, block approximation is useful
because the latter is required in the structured greedy algorithm which we propose in this paper.

Note that a refined result holds for hierarchical sparsity (where we have q(root) = 1) using
block approximation that does not explicitly depend on log2 p. In this case, for each tree depth
� = 1,2,3, . . ., we can restrict the underlying tree upto depth �, and apply Proposition 11 on the
restricted tree. Using this idea, the coding length for F depends explicitly on the maximum depth
of F in the tree instead of log2 p.

4.5 Random Field Sparsity

Let z j ∈ {0,1} be a random variable for j ∈ I that indicates whether j is selected or not. The most
general coding scheme is to consider a joint probability distribution of z = [z1, . . . ,zp]. The coding
length for F can be defined as − log2 p(z1, . . . ,zp) with z j = I( j ∈ F) indicating whether j ∈ F or
not.

Such a probability distribution can often be conveniently represented as a binary random field
on an underlying graph. In order to encourage sparsity, on average, the marginal probability p(z j)
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should take 1 with probability close to O(1/p), so that the expected number of j’s with z j = 1
is O(1). For disconnected graphs (z j are independent), the variables z j are iid Bernoulli random
variables with probability 1/p being one. In this case, the coding length of a set F is |F| log2(p)−
(p−|F|) log2(1−1/p)≈ |F| log2(p)+1. This is essentially the probability model for the standard
sparsity scheme. In a more sophisticated situation, one may also let E(z j) to grow with sample size
n. This is useful in non-parametric statistics.

We note that random field model has been considered in Cevher et al. (2009a). For many such
models, it is possible to approximate a general random field coding scheme with block coding by
using approximation methods in the graphical model literature. However, such approximations are
problem specific, and the details are beyond the scope of this paper.

5. Experiments

The purpose of these experiments is to demonstrate the advantage of structured sparsity over stan-
dard sparsity. We compare the proposed StructOMP to OMP and Lasso, which are standard algo-
rithms to achieve sparsity but without considering structure (Tibshirani, 1996; Tropp and Gilbert,
2007). For graph sparsity, the choice of c(F) is simply c(F) = g log2 p+ |F|, where g is the number
of connected regions of F . This is adequate based on the discussion in Section 3. However, as
pointed out after Definition 1, a better method is to use c(F) = g log2 p+ γ|F|, where we tune γ
appropriately. We observe that in practice, such tuning often improves performance. Nevertheless,
in our experiments, we only report results with fixed γ = 1 for simplicity. This also means our ex-
periments only demonstrate the advantage of StructOMP very conservatively without fine-tuning.
The base blocks used in StructOMP are described in each experiment. Parameters (such as s in
StructOMP or λ in Lasso) are tuned by cross-validation on the training data. We test various aspects
of our theory to check whether the experimental results are consistent with the theory. Although
in order to fully test the theory, one should also verify the RIP (or structured RIP) assumptions, in
practice this is difficult to check precisely (however, it is possible to verify it approximately using
ideas of d’Aspremont et al., 2008). Therefore in the following, we shall only study whether the ex-
perimental results are consistent with what can be expected from our theory, without verifying the
detailed assumptions. The experimental protocols follow the setup of compressive sensing, where
the original signals are projected using random projections, with noise added. Our goal is to recover
the original signals from the noise corrupted projections.

In the experiments, we use Lasso-modified least angle regression (LARS/Lasso) as the solver of
Lasso (B. Efron and Tibshirani, 2004). In order to quantitatively compare performance of different
algorithms, we use recovery error, defined as the relative difference in 2-norm between the estimated
sparse coefficient vector β̂est and the ground-truth sparse coefficient  β: ‖β̂est −  β‖2/‖  β‖2. Our
experiments focus on graph sparsity, with several different underlying graph structures. Note that
graph sparsity is more general than group sparsity; in fact connected regions may be regarded as
dynamic groups that are not pre-defined. However, for illustration, we include a comparison with
group Lasso using some 1D simulated examples, where the underlying structure can be more easily
approximated by pre-defined groups. Since additional experiments involving more complicated
structures are more difficult to approximate by pre-defined groups, we exclude group-Lasso in those
experiments.

All experiments were conducted on a 2.4GHz PC in Matlab. The code for our implementation
of StructOMP can be obtained from http://ranger.uta.edu/~huang/Downloads.htm. In the
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simulation experiments, we use k to denote the sparsity (number of nonzeros) of the true signal, and
this should not be confused with the number of iterations k which we used earlier in the description
of the StructOMP algorithm.

5.1 Simulated 1D Signals with Line-Structured Sparsity

In the first experiment, we randomly generate a 1D structured sparse signal with values ±1, where
data dimension p = 512, sparsity number k = 64 and group number g = 4. The support set of
these signals is composed of g connected regions. Here, each component of the sparse coefficient
is connected to two of its adjacent components, which forms the underlying graph structure. The
graph sparsity concept introduced earlier is used to compute the coding length of sparsity patterns
in StructOMP. The projection matrix X is generated by creating an n× p matrix with i.i.d. draws
from a standard Gaussian distribution N(0,1). For simplicity, the rows of X are normalized to unit
magnitude. Zero-mean Gaussian noise with standard deviation σ = 0.01 is added to the measure-
ments. Our task is to compare the recovery performance of StructOMP to those of OMP, Lasso and
group Lasso for these structured sparsity signals under the framework of compressive sensing.

Figure 6 shows one instance of generated signal and the corresponding recovered results by
different algorithms when n = 160. Since the sample size n is not big enough, OMP and Lasso do
not achieve good recovery results, whereas the StructOMP algorithm achieves near perfect recovery
of the original signal. We also include group Lasso in this experiment for illustration. We use
predefined consecutive groups that do not completely overlap with the support of the signal. Since
we do not know the correct group size, we just try group Lasso with several different group sizes
(gs=2, 4, 8, 16). Although the results obtained with group Lasso are better than those of OMP
and Lasso, they are still inferior to the results with StructOMP. As mentioned, this is because the
pre-defined groups do not completely overlap with the support of the signal, which reduces the
efficiency. In StructOMP, the base blocks are simply small connected line segments of size gs=3:
that is, one node plus its two neighbors. This choice is only for simplicity, and it already produces
good results in our experiments. If we include larger line segments into the base blocks (e.g.,
segments of size gs=4,5, etc), one can expect even better performance from StructOMP.

To study how the sample size n effects the recovery performance, we vary the sample size and
record the recovery results by different algorithms. To reduce the randomness, we perform the
experiment 100 times for each sample size. Figure 7(a) shows the recovery performance in terms
of Recovery Error and Sample Size, averaged over 100 random runs for each sample size. As
expected, StructOMP is better than the group Lasso and far better than the OMP and Lasso. The
results show that the proposed StructOMP can achieve better recovery performance for structured
sparsity signals with less samples. Figure 7(b) shows the recovery performance in terms of CPU
Time and Sample Size, averaged over 100 random runs for each sample size. The computation
complexities of StructOMP and OMP are far lower than those of Lasso and Group Lasso.

It is worth noting that the performance of StructOMP is less stable than the other algorithms
when the sample size n is small. This is because for randomly generated design matrix, the struc-
tured RIP condition is only satisfied probabilistically. For small n, the necessary structured RIP
condition can be violated with relatively large probability, and in such case StructOMP does not
have much advantage (at least theoretically). This implies the relatively large variance. The effect
is much less noticeable with weakly sparse signal in Figure 11(a) because the necessary structured
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RIP condition is easier to satisfied for weakly sparse signals (based on our theory). Therefore the
experimental results are consistent with our theory.
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Figure 6: Recovery results of 1D signal with strongly line-structured sparsity. (a) original data;
(b) recovered results with OMP (error is 0.9921); (c) recovered results with Lasso (er-
ror is 0.8660);; (d) recovered results with Group Lasso (error is 0.4832 with group size
gs=2); (e) recovered results with Group Lasso (error is 0.4832 with group size gs=4);(f)
recovered results with Group Lasso (error is 0.2646 with group size gs=8);(g) recovered
results with Group Lasso (error is 0.3980 with group size gs=16); (h) recovered results
with StructOMP (error is 0.0246).

To study how the additive noise affects the recovery performance, we adjust the noise power σ
and then record the recovery results by different algorithms. In this case, we fix the sample size at
n= 3k = 192, and perform the experiment 100 times for each noise level tested. Figure 8(a) shows
the recovery performance in terms of Recovery Error and Noise Level, averaged over 100 random
runs for each noise level. As expected, StructOMP is also better than the group Lasso and far better
than the OMP and Lasso. Figure 8(b) shows the recovery performance in terms of CPU Time and
Noise Level, averaged over 100 random runs for each sample size. The computational complexities
of StructOMP and OMP are lower than those of Lasso and Group Lasso.

To further study the performance of the StructOMP, we also compare it to two other methods
for structured sparsity including OverlapLasso (Jacob et al., 2009) and ModelCS (Baraniuk et al.,
2010) using the implementations available from the web. For fair comparisons, the same structures
are used in OverlapLasso, ModelCS and StructOMP. As mentioned before, in these experiments,
we use small connected line segments of size gs=3 (including one node plus its two neighbors) as
base blocks in StructOMP. Therefore in OverlapLasso, the groups are also connected line segments
of size gs=3; in ModelCS, this structure leads to the model assumption that if one node is nonzero,
then its two neighbors has a high probability of being nonzeros. Figure 9(a) shows the recovery
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Figure 7: Recovery performance: (a) Recovery Error vs. Sample Size Ratio (n/k); (b) CPU Time
vs. Sample Size Ratio (n/k)
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Figure 8: Recovery performance in terms of Noise Levels: (a) Recovery Error vs. Noise Level; (b)
CPU Time vs. Noise Level
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performance in terms of Recovery Error and Sample Size, averaged over 100 random runs for each
sample size. At least for this problem, StructOMP achieves better performance than OverlapLasso
and ModelCS, which shows that the proposed StructOMP algorithm can achieve better recovery
performance than other structured sparsity algorithms for some problems. Figure 9(b) shows the
recovery performance in terms of CPU Time and Sample Size, averaged over 100 random runs for
each sample size. Although it is difficult to see from the figure, the computational complexity of
StructOMP is lower than that of ModelCS (about half CPU time) and are far lower than that of
OverlapLasso, at least based on the implementation of Jacob et al. (2009).
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Figure 9: Performance Comparisons between methods related with structured spar-
sity(OverlapLasso (Jacob et al., 2009), ModelCS (Baraniuk et al., 2010), StructOMP):
(a) Recovery Error vs. Sample Size Ratio (n/k); (b) CPU Time vs. Sample Size Ratio
(n/k)

Note that Lasso performs better than OMP in the first example. This is because the signal is
strongly sparse (that is, all nonzero coefficients are significantly different from zero). In the second
experiment, we randomly generate a 1D structured sparse signal with weak sparsity, where the
nonzero coefficients decay gradually to zero, but there is no clear cutoff. One instance of generated
signal is shown in Figure 10 (a). Here, p = 512 and all coefficient of the signal are not zeros.
We define the sparsity k as the number of coefficients that contain 95% of the image energy. The
support set of these signals is composed of g = 2 connected regions. Again, each element of the
sparse coefficient is connected to two of its adjacent elements, which forms the underlying 1D line
graph structure. The graph sparsity concept introduced earlier is used to compute the coding length
of sparsity patterns in StructOMP. The projection matrix X is generated by creating an n× p matrix
with i.i.d. draws from a standard Gaussian distribution N(0,1). For simplicity, the rows of X are
normalized to unit magnitude. Zero-mean Gaussian noise with standard deviation σ= 0.01 is added
to the measurements.

Figure 10 shows one generated signal and its recovered results by different algorithms when
k = 32 and n = 48. Again, we observe that OMP and Lasso do not achieve good recovery results,
whereas the StructOMP algorithm achieves near perfect recovery of the original signal. As we do
not know the predefined groups for group Lasso, we just try group Lasso with several different
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group sizes (gs=2, 4, 8, 16). Although the results obtained with group Lasso are better than those
of OMP and Lasso, they are still inferior to the results with StructOMP. In order to study how the
sample size n effects the recovery performance, we vary the sample size and record the recovery
results by different algorithms. To reduce the randomness, we perform the experiment 100 times
for each of the sample sizes.

Figure 11(a) shows the recovery performance in terms of Recovery Error and Sample Size,
averaged over 100 random runs for each sample size. As expected, StructOMP algorithm is superior
in all cases. What’s different from the first experiment is that the recovery error of OMP becomes
smaller than that of Lasso. This result is consistent with our theory, which predicts that if the
underlying signal is weakly sparse, then the relatively performance of OMP becomes comparable
to Lasso. Figure 11(b) shows the recovery performance in terms of CPU Time and Sample Size,
averaged over 100 random runs for each sample size. The computational complexities of StructOMP
and OMP are far lower than those of Lasso and Group Lasso.
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Figure 10: Recovery results of 1D weakly sparse signal with line-structured sparsity. (a) original
data; (b) recovered results with OMP (error is 0.5599); (c) recovered results with Lasso
(error is 0.6686); (d) recovered results with Group Lasso (error is 0.4732 with group size
gs=2); (e) recovered results with Group Lasso (error is 0.2893 with group size gs=4);(f)
recovered results with Group Lasso (error is 0.2646 with group size gs=8);(g) recovered
results with Group Lasso (error is 0.5459 with group size gs=16); (h) recovered results
with StructOMP (error is 0.0846).
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Figure 11: Recovery performance for 1D Weak Line-Sparsity: (a) Recovery Error vs. Sample Size
Ratio (n/k); (b) CPU Time vs. Sample Size Ratio (n/k)

5.2 2D Image Compressive Sensing with Tree-structured Sparsity

It is well known that 2D natural images are sparse in a wavelet basis. Their wavelet coefficients
have a hierarchical tree structure, which is widely used for wavelet-based compression algorithms
(Shapiro, 1993). Figure 12(a) shows a widely used example image with size 64×64: cameraman.
Note that we use a reduced image instead of the original for computational efficiency since the
experiments is run many times with different random matrices. This reduction should not affect the
relative performance among various algorithms.

In this experiment, each 2D wavelet coefficient of this image is connected to its parent co-
efficient and child coefficients, which forms the underlying hierarchical tree structure (which is
a special case of graph sparsity). In our experiment, we choose Haar-wavelet to obtain its tree-
structured sparsity wavelet coefficients. The projection matrix X and noises are generated with the
same method as that for 1D structured sparsity signals. OMP, Lasso and StructOMP are used to
recover the wavelet coefficients from the random projection samples respectively. Then, the inverse
wavelet transform is used to reconstruct the images with these recovered wavelet coefficients. Our
task is to compare the recovery performance of the StructOMP to those of OMP and Lasso under
the framework of compressive sensing.

For Lasso, we use identical regularization parameter for all coefficients (without varying reg-
ularization parameters based on bands or tree depth). For StructOMP, a simple block-structure is
used, where each block corresponds to a node in the tree, plus its ancestors leading to the root. This
corresponds to setting δ= 0 in Proposition 11. We use this block set for efficiency only because the
number of blocks is only linear in p.

Figure 12 shows one example of the recovered results by different algorithms with sparsity
number k = 1133 and sample size n = 2048. It shows that StructOMP obtains the best recovered
result. Figure 13(a) shows the recovery performance in terms of Sample Size and Recovery Error,
averaged over 100 random runs for each sample size. The StructOMP algorithm is better than both
Lasso and OMP in this case. Since real image data are weakly sparse, the performance of standard
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OMP (without structured sparsity) is similar to that of Lasso. Figure 13(b) shows the recovery
performance in terms of Sample Size and CPU Time, averaged over 100 random runs for each
sample size. The computational complexity of StructOMP is comparable to that of OMP and lower
than that of Lasso.

(a) (b) (c) (d)

Figure 12: Recovery results with sample size n= 2048: (a) cameraman image, (b) recovered image
with OMP (error is 0.1886; CPU time is 46.16s), (c) recovered image with Lasso (error is
0.1670; CPU time is 60.26s) and (d) recovered image with StructOMP (error is 0.0375;
CPU time is 48.99s)
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Figure 13: Recovery performance for 2D wavelet tree sparsity: (a) Recovery Error vs. Sample Size;
(b) CPU Time vs. Sample size

5.3 Background Subtracted Images for Robust Surveillance

Background subtracted images are typical structure sparsity data in static video surveillance appli-
cations. They generally correspond to the foreground objects of interest. Unlike the whole scene,
these images are not only spatially sparse but also inclined to cluster into groups, which corre-
spond to different foreground objects. Thus, the StructOMP algorithm can obtain superior recovery
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from compressive sensing measurements that are received by a centralized server from multiple
and randomly placed optical sensors. In this experiment, the testing video is downloaded from
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/. The background subtracted images are
obtained with the software (Zivkovic and Heijden, 2006). One sample image frame is shown in Fig-
ure 14(a). The support set of 2D images is thus composed of several connected regions. Here, each
pixel of the 2D background subtracted image is connected to four of its adjacent pixels, forming
the underlying graph structure in graph sparsity. We randomly choose 100 background subtracted
images as test images.

Note that color images have three channels. We can consider three channels separately and per-
form sparse recovery independently for each channel. On the other hand, since in this application,
three channels of the color background subtracted image share the same support set, we can enforce
group sparsity across the color channels for each pixel. That is, a pixel in the color image can be
considered as a triplet with three color intensities. We will thus consider both cases in our compar-
isons. In the latter case, we simply replace OMP and Lasso by Group OMP (which has also been
studied by Lozano et al., 2009) and Group Lasso respectively.

(a) (b) (c) (d)

Figure 14: Recovery results with sample size n = 900: (a) the background subtracted image, (b)
recovered image with OMP (error is 1.1833), (c) recovered image with Lasso (error is
0.7075) and (d) recovered image with StructOMP (error is 0.1203)

In this experiment, we firstly consider the 3 color channel independently, and use OMP, Lasso
and StructOMP to separately recover each channel. The results shown in Figure 14 demonstrates
that the StructOMP outperforms both OMP and Lasso in recovery. Figure 15(a) shows the recovery
performance as a function of increasing sample size ratios. It demonstrates again that StructOMP
significantly outperforms OMP and Lasso in recovery performance on video data. Comparing to
the image compression example in the previous section, the background subtracted images have a
more clearly defined sparsity pattern where nonzero coefficients are generally distinct from zero
(that is, stronger sparsity); this explains why Lasso performs better than the OMP on this particular
data. The results is again consistent with our theory. Figure 17(b) shows the recovery performance
in terms of Sample Size and CPU Time, averaged over 100 random runs for each sample size. The
computational complexity of StructOMP is again comparable to that of OMP and lower than that of
Lasso.

If we consider a pixel as a triplet in the background subtracted image, we replace OMP and
Lasso by Group OMP and Group Lasso (across the color channels), and compare their perfor-
mance to StructOMP. The results in Figure 16 indicate that StructOMP is still superior, although
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Figure 15: Recovery performance: (a) Recovery Error vs. Sample Size; (b) CPU Time vs. Sample
size

as expected, the recovery performance of Group OMP (or Group Lasso) improves that of OMP
(or Lasso). Figure 17(a) shows the recovery performance as a function of increasing sample size
ratios. It demonstrates again that StructOMP outperforms Group OMP and Group Lasso in this
application. Figure 17(b) shows the recovery performance in terms of Sample Size and CPU Time,
averaged over 100 random runs for each sample size. The computational complexity of StructOMP
is again comparable to that of Group OMP and lower than that of Group Lasso.

(a) (b) (c) (d)

Figure 16: Recovery results with sample size n = 600: (a) the background subtracted image, (b)
recovered image with Group OMP (error is 1.1340), (c) recovered image with Group
Lasso (error is 0.6972) and (d) recovered image with StructOMP (error is 0.0808)

6. Discussion

This paper develops a theory for structured sparsity where prior knowledge allows us to prefer
certain sparsity patterns to others. Some examples are presented to illustrate the concept. The
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Figure 17: Recovery performance: (a) Recovery Error vs. Sample Size; (b) CPU Time vs. Sample
size

general framework established in this paper includes the recently popularized group sparsity idea as
a special case.

In structured sparsity, the complexity of learning is measured by the coding complexity c(  β)≤
‖  β‖0 + cl(supp(  β)) instead of ‖  β‖0 ln p which determines the complexity in standard sparsity. Us-
ing this notation, a theory parallel to that of the standard sparsity is developed. The theory shows
that if the coding length cl(supp(  β)) is small for a target coefficient vector  β, then the complexity
of learning  β can be significantly smaller than the corresponding complexity in standard sparsity.
Experimental results demonstrate that significant improvements can be obtained on some real prob-
lems that have natural structures.

The structured greedy algorithm presented in this paper is the first efficient algorithm proposed
to handle the general structured sparsity learning. It is shown that the algorithm is effective under
appropriate conditions. Future work include additional computationally efficient methods such as
convex relaxation methods (e.g. L1 regularization for standard sparsity, and group Lasso for strong
group sparsity) and backward greedy strategies to improve the forward greedy method considered
in this paper.

Appendix A. Proof of Proposition 10 and Proposition 11

Proof of Proposition 10.
First we show that we can encode all connected regions F (that is, with g = 1) using no more

than

CG|F|−max
v∈F

log2 q(v) (8)

bits. We consider the following procedure to encode F : first, we pick a node v∗ from F achieving
−maxv∈F log2 q(v), which requires −maxv∈F log2 q(v) bits. We then push v∗ into a stack S. We
encode the remaining nodes in F using the following algorithm: until the stack S is empty, we take
the top element v out of the stack S, and do the following
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(a) Encode the number of neighbors of v in F that has not been visited so far, with no more than
log2(1+dG) bits.

(b) For each neighbor v′ of v in F that has not been visited, we encode it (i.e., the associated edge
between v and v′) with no more than log2 dG bits. We then push v′ into the stack S.

Since F is connected, after this procedure finishes (the stack becomes empty), we have visited
all nodes in F . Since step (a) can be invoked only |F| times, the total number of bits in step (a) is no
more than |F| log2(1+dG). The number of bits in step (b) is no more than the number of nodes in F
(except for node v∗) times the bits to encode each node, which is no more than (|F|−1) log2(1+dG).
Therefore the total number of bits in step (a) and (b) is less thanCG|F|. This proves (8).

For g > 1, we may encode each connected component Fj of F sequentially, using number of
bits according to (8). Then after encoding each connected region Fj, we use 1 bit to encode whether
j = g or not (that is, whether we should stop or encode an additional connected component). This
gives the formula in Proposition 10.

Proof of Proposition 11.
We first prove the following two lemmas.

Lemma 12 Given a positive even integer L. Let F be a connected region of G such that |F| ≥ L+1.
Then it is possible to partition F as the union of two connected regions F1 and F2 such that: F =
F1∪F2, |F1∩F2|= 1, and

• either min(|F1|, |F2|)≥ 0.5L+1;
• or 0.5L+1≤ |F1| ≤ L.

Proof We consider the following algorithm. Start with a node v of F and set F1 = {v} and let
u1 = v. Repeat the following procedure

(a) If |F1| ≥ 0.5L+1, then exit the procedure with the current F1 and F2 = (F−F1)∪{u1}.
(b) If F−F1 is connected: let v be a node in F−F1 that is connected to F1. We add v to F1, and

set u1 = v. We then repeat the procedure (a)(b)(c).

(c) If F−F1 is not connected: (F−F1)∪{u1} is connected by construction. Merge the smallest
connected component of F−F1 into F1. Repeat the procedure (a)(b)(c).

Clearly the procedure eventually will end at step (a) because each iteration |F1| is increased by at
least 1. When it ends, F1∩F2 = {u1}. Moreover, there were two possible scenarios in the previous
iteration:

(1) Step (b) was invoked. That is, |F1| was increased by 1 in the previous iteration, and hence
|F1|= 0.5L+1≤ L. Moreover, F2 is connected.

(2) Step (c) was invoked. Still, F2 is connected by the construction of u1. If |F1| was increased
by no more than L/2 in the previous step (c), then |F1| ≤ L and the lemma holds. Otherwise,
F−F1 has more than L/2 nodes because this scenario implies that even the smallest connected
component has more than L/2 nodes in the previous step (c). Therefore in this case we have
|F2|> 0.5L+1.
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Lemma 13 Given a positive even integer L. Any connected region F such that |F| ≥ 0.5L+1 can
be covered by at most 2(|F|−1)/L connected regions, each of size no more than L.

Proof We fix L and prove the claim by induction on |F|. If 0.5L+1 ≤ |F | ≤ L, then F is covered
by itself, and the claim is trivial. If L< |F| ≤ 1.5L, then by Lemma 12, we can partition F into two
connected regions, each ≤ L. Therefore the claim also holds trivially.

Now assume that the claim holds for |F| ≤ k with k ≥ 1.5L. For F such that |F| = k+ 1, we
apply Lemma 12 and partition it into two regions F = F1∪F2 such that min(|F1|, |F2|) ≥ 0.5L+ 1
and |F1|+ |F2| = |F|+ 1. Therefore by the induction hypothesis, we can cover each Fj ( j = 1,2)
by 2(|Fj| − 1)/L connected regions, each of size no more than L. It follows that the total number
of connected regions to cover both F1 and F2 is no more than 2(|F1|+ |F2|− 2)/L = 2(|F|− 1)/L,
which completes the induction.

We are now ready to prove Proposition 11. First, from (8), we know that CG|B|+ log2 p is a
coding-length for connected regions B ∈ B . Therefore

2−(CGL+log2 p)|B| ≤ ∑
B∈B

2−(CG|B|+log2 p) ≤ 1.

This implies that |B| ≤ p1+CGδ.
Since Lemma 13 implies that each connected component Fj of F can be covered by 1+2(|Fj|−

1)/L connected regions from B , we have clB(Fj) ≤ (1+ 2(|Fj|− 1)/L)(1+CGδ) log2 p under the
uniform coding on B . By summing over the connected components, we obtain the desired bound.

Appendix B. Proof of Proposition 3

Lemma 14 Consider a fixed vector x ∈ Rn, and a random vector y ∈ Rn with independent sub-
Gaussian components: Eet(yi−Eyi) ≤ eσ

2t2/2 for all t and i, then ∀ε> 0:

Pr
(∣∣∣x�y−Ex�y

∣∣∣≥ ε
)
≤ 2e−ε2/(2σ2‖x‖22).

Proof Let sn=∑n
i=1(xiyi−Exiyi); then by assumption, E(etsn+e−tsn)≤ 2e∑i x2i σ2t2/2, which implies

that Pr(|sn| ≥ ε)etε ≤ 2e∑i x2i σ2t2/2. Now let t = ε/(∑i x
2
i σ
2), we obtain the desired bound.

The following lemma is taken from Pisier (1989).

Lemma 15 Consider the unit sphere Sk−1 = {x : ‖x‖2 = 1} in Rk (k ≥ 1). Given any ε > 0, there
exists an ε-cover Q⊂ Sk−1 such that minq∈Q ‖x−q‖2 ≤ ε for all ‖x‖2 = 1, with |Q| ≤ (1+2/ε)k.

B.1 Proof of Proposition 3

According to Lemma 15, given ε1 > 0, there exists a finite set Q= {qi} with |Q| ≤ (1+2/ε1)k such
that ‖Pqi‖2 = 1 for all i, and mini ‖Pz−Pqi‖2 ≤ ε1 for all ‖Pz‖2 = 1. To see the existence of Q,
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we consider a rotation of the coordinate system (which does not change 2-norm) so that Pz is the
projection of z ∈ Rn to its first k coordinates in the new coordinate system. Lemma 15 can now be
directly applied to the first k coordinates in the new system, implying that we can pick qi such that
Pqi = qi.

For each i, Lemma 14 implies that ∀ε2 > 0:

Pr
(∣∣∣q�i P(y−Ey)

∣∣∣≥ ε2
)
≤ 2e−ε22/(2σ2).

Taking union bound for all qi ∈ Q, we obtain with probability exceeding 1−2(1+2/ε1)ke−ε22/2σ2 :∣∣∣q�i P(y−Ey)
∣∣∣≤ ε2

for all i.
Let z= P(y−Ey)/‖P(y−Ey)‖2, then there exists i such that ‖Pz−Pqi‖2 ≤ ε1. We have

‖P(y−Ey)‖2 =z�P(y−Ey)

≤‖Pz−Pqi‖2‖P(y−Ey)‖2+ |q�i P(y−Ey)|
≤ε1‖P(y−Ey)‖2+ ε2.

Therefore

‖P(y−Ey)‖2 ≤ ε2/(1− ε1).

Let ε1 = 2/15, and η= 2(1+2/ε1)ke−ε
2
2/2σ

2
, we have

ε22 = 2σ
2[(4k+1) ln2− lnη],

and thus

‖P(y−Ey)‖2 ≤ 15
13
σ
√
2(4k+1) ln2−2lnη.

This simplifies to the desired bound.

Appendix C. Proof of Proposition 5

We use the following lemma from Huang and Zhang (2010).

Lemma 16 Suppose X is generated according to Proposition 5. For any fixed set F ⊂ I with |F|= k
and 0< δ< 1, we have with probability exceeding 1−3(1+8/δ)ke−nδ2/8:

(1−δ)‖β‖2 ≤ 1√
n
‖XFβ‖2 ≤ (1+δ)‖β‖2

for all β ∈ Rk.
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C.1 Proof of Proposition 5

Since cl(F) is a coding length, we have (for any fixed γ< 1)

∑
F :|F |+cl(F)≤s

(1+8/δ)|F| ≤ ∑
F :|F |+γcl(F)≤s

(1+8/δ)|F|

≤∑
F

(1+8/δ)s−γcl(F) = (1+8/δ)s∑
F

2−cl(F) ≤ (1+8/δ)s,

where in the above derivation, we take γ= 1/ log2(1+8/δ).

For each F , we know from Lemma 16 that for all β such that supp(β)⊂ F :

(1−δ)‖β‖2 ≤ 1√
n
‖Xβ‖2 ≤ (1+δ)‖β‖2

with probability exceeding 1−3(1+8/δ)|F|e−nδ2/8.
We can thus take the union bound over F : |F|+ cl(F) ≤ s, which shows that with probability

exceeding

1− ∑
F :|F |+cl(F)≤s

3(1+8/δ)|F|e−nδ
2/8,

the structured RIP in Equation (4) holds. Since

∑
F :|F |+cl(F)≤s

3(1+8/δ)|F|e−nδ
2/8 ≤ 3(1+8/δ)se−nδ2/8 ≤ e−t ,

we obtain the desired bound.

Appendix D. Proof of Theorem 6 and Theorem 7

Lemma 17 Suppose that Assumption 1 is valid. For any fixed subset F ⊂ I , with probability 1−η,
∀β such that supp(β)⊂ F, and a> 0, we have

‖Xβ−Ey‖22 ≤ (1+a)[‖Xβ−y‖22−‖y−Ey‖22]+ (2+a+a−1)σ2[7.4|F|+4.7ln(4/η)].

Proof Let

PF = XF(X
�
F XF)

+X�
F

be the projection matrix to the subspace generated by columns of XF . Here XF may not be full-rank,
and (X�

F XF)
+ denotes the Moore-Penrose pseudo-inverse. Since Xβ belongs to this subspace, we

have PFXβ= Xβ.
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Let z= (I−PF)Ey/‖(I−PF)Ey‖2, δ1 = ‖PF(y−Ey)‖2 and δ2 = |z�(y−Ey)|, we have
‖Xβ−Ey‖22

=‖Xβ−y‖22−‖y−Ey‖22+2(y−Ey)�(Xβ−Ey)

=‖Xβ−y‖22−‖y−Ey‖22+2(y−Ey)�(Xβ−PFEy)−2z�(y−Ey)‖(I−PF)Ey‖2
=‖Xβ−y‖22−‖y−Ey‖22+2(y−Ey)�PF(Xβ−PFEy)−2z�(y−Ey)‖(I−PF)Ey‖2
≤‖Xβ−y‖22−‖y−Ey‖22+2δ1‖Xβ−PFEy‖2+2δ2‖(I−PF)Ey‖2
≤‖Xβ−y‖22−‖y−Ey‖22+2

√
δ21+δ22

√
‖Xβ−PFEy‖22+‖(I−PF)Ey‖22

=‖Xβ−y‖22−‖y−Ey‖22+2
√
δ21+δ22‖Xβ−Ey‖2.

Note that in the above derivation, the first two equalities are simple algebra. The third equal-
ity uses the fact that PFXβ = Xβ. The first inequality uses the Cauchy-Schwartz inequality and
the definitions of δ1 and δ2. The second inequality uses the Cauchy-Schwartz inequality of the

form δ1a1+δ2a2 ≤
√
δ21+δ22

√
a21+a22. The last equality uses the fact that ‖Xβ−PFEy‖22+‖(I−

PF)Ey‖22 = ‖Xβ−Ey‖22, which is a consequence of the fact that PF is a projection matrix and
PFXβ= Xβ.

Now, by solving the above displayed inequality with respect to ‖Xβ−Ey‖2, we obtain

‖Xβ−Ey‖22 ≤
[√

‖Xβ−y‖22−‖y−Ey‖22+δ21+δ22+
√
δ21+δ22

]2
≤(1+a)[‖Xβ−y‖22−‖y−Ey‖22]+ (2+a+1/a)(δ21+δ22).

The desired bound now follows easily from Proposition 3 and Lemma 14, where we know that with
probability 1−η/2,

δ21 = (y−Ey)�PF(y−Ey)≤ σ2(7.4|F|+2.7ln(4/η)),
and with probability 1−η/2,

δ22 = |z�(y−Ey)|2 ≤ 2σ2 ln(4/η).
We obtain the desired result by substituting the above two estimates and simplify.

Lemma 18 Suppose that Assumption 1 is valid. Then we have with probability 1−η, ∀β ∈Rp and
a> 0:

‖Xβ−Ey‖22 ≤ (1+a)
[‖Xβ−y‖22−‖y−Ey‖22

]
+(2+a+1/a)σ2[7.4c(β)+4.7ln(4/η)].

Proof Note that for each F , with probability 2−cl(F)η, we obtain from Lemma 17 that ∀supp(β)∈F ,
‖Xβ−Ey‖22 ≤ (1+a)

[‖Xβ−y‖22−‖y−Ey‖22
]
+(2+a+1/a)σ2[7.4(|F|+cl(F))+4.7ln(4/η)].

Since ∑F⊂I ,F �= /0 2
−cl(F)η≤ η, the result follows from the union bound.
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Lemma 19 Consider a fixed subset  F ⊂ I . Given any η ∈ (0,1), we have with probability 1−η:

|‖X  β−y‖2
2−‖y−Ey‖2

2| ≤ ‖X  β−Ey‖2
2 +2σ

√
2ln(2/η)‖X  β−Ey‖2.

Proof Let ã= (X  β−Ey)/‖X  β−Ey‖2, we have

|‖X  β−y‖2
2−‖y−Ey‖2

2|
=|−2(X  β−Ey)�(y−Ey)+‖X  β−Ey‖2

2|
≤2‖X  β−Ey‖2|ã�(y−Ey)|+‖Ey−X  β‖2

2.

The desired result now follows from Lemma 14.

Lemma 20 Suppose that Assumption 1 is valid. Consider any fixed target  β ∈ Rp. Then with
probability exceeding 1−η, for all λ≥ 0,ε≥ 0, β̂∈Rp such that: Q̂(β̂)+λc(β̂)≤ Q̂(  β)+λc(  β)+ε,
and for all a> 0, we have

‖X β̂−Ey‖2
2 ≤(1+a)[‖X  β−Ey‖2

2 +2σ
√

2ln(6/η)‖X  β−Ey‖2]

+ (1+a)λc(  β)+a′c(β̂)+b′ ln(6/η)+(1+a)ε,

where a′ = 7.4(2+ a+ a−1)σ2 − (1+ a)λ and b′ = 4.7σ2(2+ a+ a−1). Moreover, if the coding
scheme c(·) is sub-additive, then
nρ−(c(β̂)+c(  β))‖β̂−  β‖2

2 ≤ 10‖X  β−Ey‖2
2+2.5λc(  β)+(37σ2−2.5λ)c(β̂)+29σ2 ln(6/η)+2.5ε.

Proof We obtain from the union bound of Lemma 18 (with probability 1−η/3) and Lemma 19
(with probability 1−2η/3) that with probability 1−η:

‖X β̂−Ey‖2
2

≤(1+a)
[
‖X β̂−y‖2

2−‖y−Ey‖2
2

]
+(2+a+a−1)[7.4σ2c(β̂)+4.7σ2 ln(6/η)]

≤(1+a)
[‖X  β−y‖2

2−‖y−Ey‖2
2 +λc(  β)+ ε

]
+a′c(β̂)+b′ ln(6/η)

≤(1+a)[‖X  β−Ey‖2
2 +2σ

√
2ln(6/η)‖X  β−Ey‖2]+ (1+a)λc(  β)+a′c(β̂)

+b′ ln(6/η)+(1+a)ε.

This proves the first claim of the lemma.
The first claim with a= 1 implies that

‖X β̂−X  β‖2
2 ≤ [‖X β̂−Ey‖2 +‖X  β−Ey‖2]

2

≤1.25‖X β̂−Ey‖2
2 +5‖X  β−Ey‖2

2

≤7.5‖X  β−Ey‖2
2 +5σ

√
2ln(6/η)‖X  β−Ey‖2 +2.5λc(  β)+1.25(29.6σ2−2λ)c(β̂)

+1.25×18.8σ2 ln(6/η)+2.5ε

≤10‖X  β−Ey‖2
2 +2.5λc(  β)+(37σ2−2.5λ)c(β̂)+29σ2 ln(6/η)+2.5ε.

Since c(β̂−  β)≤ c(β̂)+ c(  β), we have ‖X β̂−X  β‖2
2 ≥ nρ−(c(β̂)+ c(  β))‖β̂−  β‖2

2. This implies the
second claim.
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D.1 Proof of Theorem 6

We take λ= 0 in Lemma 20, and obtain:

‖X β̂−Ey‖2
2 ≤(1+a)[‖X  β−Ey‖2

2 +2σ
√

2ln(6/η)‖X  β−Ey‖2]

+7.4(2+a+a−1)σ2c(β̂)+4.7σ2(2+a+a−1) ln(6/η)+(1+a)ε

=(‖X  β−Ey‖2 +σ
√

2ln(6/η))2 +14.8σ2c(β̂)+7.4σ2 ln(6/η)+ ε

+a[(‖X  β−Ey‖2 +σ
√

2ln(6/η))2 +7.4σ2c(β̂)+2.7σ2 ln(6/η)+ ε]

+a−1[7.4σ2c(β̂)+4.7σ2 ln(6/η)].

Now let z= ‖X  β−Ey‖2 +σ
√

2ln(6/η), and we choose a to minimize the right hand side as:

‖X β̂−Ey‖2
2 ≤z2 +14.8σ2c(β̂)+7.4σ2 ln(6/η)+ ε

+2[z2 +7.4σ2c(β̂)+2.7σ2 ln(6/η)+ ε]1/2[7.4σ2c(β̂)+4.7σ2 ln(6/η)]1/2

≤[(z2 +7.4σ2c(β̂)+2.7σ2 ln(6/η)+ ε)1/2 +(7.4σ2c(β̂)+4.7σ2 ln(6/η))1/2]2

≤[z+2(7.4σ2c(β̂)+4.7σ2 ln(6/η)+ ε)1/2]2.

This proves the first inequality. The second inequality follows directly from Lemma 20 with λ= 0.

D.2 Proof of Theorem 7

The desired bound is a direct consequence of Lemma 20, by noticing that

2σ
√

2ln(6/η)‖X  β−Ey‖2 ≤ a‖X  β−Ey‖2
2 +a−12σ2 ln(6/η),

a′ ≤ 0, and
b′+a−12σ2 ≤ (10+5a+7a−1)σ2.

Appendix E. Proof of Theorem 9

The following lemma is an adaptation of a similar result in Zhang (2011) on greedy algorithms for
standard sparsity.

Lemma 21 Suppose the coding scheme is sub-additive. Consider any  β, and a cover of  β by B:

supp(  β)⊂  F = ∪bj=1
 Bj (  Bj ∈ B).

Let c(  β,B) = ∑b
j=1 c(  Bj). Let ρ0 = max j ρ+(  Bj). Then consider F such that ∀ j : c(  Bj∪F)≥ c(F),

we define
β= arg min

β′∈Rp
‖Xβ′ −y‖2

2 subject to supp(β′)⊂ F.

If ‖Xβ−y‖2
2 ≥ ‖X  β−y‖2

2, we have

max
j
φ(  Bj)≥ ρ−(F ∪  F)

ρ0c(  β,B)
[‖Xβ−y‖2

2−‖X  β−y‖2
2],

where as in (5), we define

φ(B) =
‖PB−F(Xβ−y)‖2

2

c(B∪F)− c(F)
.
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Proof For all � ∈ F , ‖Xβ+αXe�− y‖2
2 achieves the minimum at α = 0 (where e� is the vector of

zeros except for the �-th component, which is one). This implies that

x�� (Xβ−y) = 0

for all � ∈ F . Therefore we have

(Xβ−y)� ∑
�∈  F−F

(  β�−β�)x�

=(Xβ−y)� ∑
�∈  F∪F

(  β�−β�)x� = (Xβ−y)�(X  β−Xβ)

=− 1
2
‖X(  β−β)‖2

2 +
1
2
‖X  β−y‖2

2−
1
2
‖Xβ−y‖2

2.

Now, let  B′j ⊂  Bj−F be disjoint sets such that ∪ j  B′j =  F −F . The above inequality leads to the
following derivation ∀η> 0:

−∑
j

φ(  Bj)(c(  Bj ∪F)− c(F))

≤∑
j

⎡⎢⎣
∥∥∥∥∥∥Xβ+η ∑

�∈  B′j

(  β�−β�)x�−y
∥∥∥∥∥∥

2

2

−‖Xβ−y‖2
2

⎤⎥⎦
≤η2 ∑

�∈  F−F
(  β�−β�)

2ρ0n+2η(Xβ−y)� ∑
�∈  F−F

(  β�−β�)x�

≤η2 ∑
�∈  F−F

(  β�−β�)
2ρ0n−η‖X(  β−β)‖2

2 +η‖X  β−y‖2
2−η‖Xβ−y‖2

2.

Note that we have used the fact that ‖PB−F(Xβ−y)‖2
2 ≥ ‖Xβ−y‖2

2 −‖Xβ−y+XΔβ‖2
2 for all Δβ

such that supp(Δβ)⊂ B−F . By optimizing over η, we obtain

max
j
φ(  Bj)∑

j

c(  Bj)≥∑
j

φ(  Bj)(c(  Bj ∪F)− c(F))

≥ [‖X(  β−β)‖2
2 +‖Xβ−y‖2

2−‖X  β−y‖2
2]

2

4∑�∈  F−F(  β�−β�)2ρ0n

≥4‖X(  β−β)‖2
2[‖Xβ−y‖2

2−‖X  β−y‖2
2]

4∑�∈  F−F(  β�−β�)2ρ0n

≥ρ−(F ∪
 F)

ρ0
[‖Xβ−y‖2

2−‖X  β−y‖2
2].

This leads to the desired bound. In the above derivation, the first inequality is simple algebra; the
second inequality is by optimizing over η mentioned earlier; the third inequality is of the form
[a1 +a2]

2 ≥ 4a1a2. The last inequality uses the definition of ρ−(·).
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E.1 Proof of Theorem 9

Let

ν′ =
νρ−(s+ c(  F))

ρ0(B)c(  β,B)
.

By Lemma 21, we have at any step k > 0:

‖Xβ(k−1)−y‖2
2−‖Xβ(k)−y‖2

2 ≥ ν′[‖Xβ(k−1)−y‖2
2−‖X  β−y‖2

2](c(β
(k))− c(β(k−1)),

which implies that

max[0,‖Xβ(k)−y‖2
2−‖X  β−y‖2

2]≤ max[0,‖Xβ(k−1)−y‖2
2−‖X  β−y‖2

2]e
−ν′(c(β(k))−c(β(k−1)).

Therefore at stopping, we have

‖Xβ(k)−y‖2
2−‖X  β−y‖2

2

≤[‖y‖2
2−‖X  β−y‖2

2]e
−ν′c(β(k))

≤[‖y‖2
2−‖X  β−y‖2

2]e
−ν′s ≤ ε.

This proves the theorem.

Appendix F. Performance of StructOMP for Weakly Sparse Signals

Theorem 22 Suppose the coding scheme is sub-additive. Given a sequence of targets  β j such that
Q̂(  β0)≤ Q̂(  β1)≤ ·· · and c(  β j,B)≤ c(  β0,B)/2 j. If

s≥ ρ0(B)
νmin j ρ−(s+ c(  β j))

c(  β0,B)

[
3.4+

∞

∑
j=0

2− j ln
Q̂(  β j+1)− Q̂(  β0)+ ε

Q̂(  β j)− Q̂(  β0)+ ε

]
for some ε> 0. Then at the stopping time k, we have

Q̂(β(k))≤ Q̂(  β0)+ ε.

Proof For simplicity, let f j = Q̂(  β j). For each k = 1,2, . . . before the stopping time, let jk be the
largest j such that

Q̂(β(k))≥ f j+ f j− f0 + ε.

Let ν′ = (νmin j ρ−(s+ c(  β j)))/(ρ0(B)c(  β0,B)).
We prove by contradiction. Suppose that the theorem does not hold, then for all k before stop-

ping, we have jk ≥ 0.
For each k > 0 before stopping, if jk = jk−1 = j, then we have from Lemma 21 (with  β=  β j)

c(β(k))≤ c(β(k−1))+ν′−12− j ln
‖Xβ(k−1)−y‖2

2− f j
‖Xβ(k)−y‖2

2− f j
.

Therefore for each j ≥ 0, we have:

∑
k: jk= jk−1= j

[c(β(k))− c(β(k−1))]≤ ν′−12− j ln
2( f j+1− f0 + ε)

f j− f0 + ε
.
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Moreover, for each j ≥ 0, Lemma 21 (with  β=  β j) implies that

∑
k: jk= j, jk−1> j

[c(β(k))− c(β(k−1))]≤ ν′−12− j.

Therefore we have

∑
k: jk= j

[c(β(k))− c(β(k−1))]≤ ν′−12− j
[

1.7+ ln
f j+1− f0 + ε
f j− f0 + ε

]
.

Now by summing over j ≥ 0, we have

c(β(k))≤ 3.4ν′−1 +ν′−1
∞

∑
j=0

2− j ln
f j+1− f0 + ε
f j− f0 + ε

≤ s.

This is a contradiction because we know at stopping, we should have c(β(k))> s.

In the above theorem, we can see that if the signal is only weakly sparse, in that (Q̂(  β j+1)−
Q̂(  β0)+ε)/(Q̂(  β j)− Q̂(  β0)+ε) grows sub-exponentially in j, then we can choose s=O(c(  β0,B)).
This means that we can find β(k) of complexity s = O(c(  β0,B)) to approximate a signal  β0. The
worst case scenario is when Q̂(  β1)≈ Q̂(0), which reduces to the s=O(c(  β0,B) log(1/ε)) complex-
ity in Theorem 9.

As an application, we introduce the following concept of weakly sparse compressible target
that generalizes the corresponding concept of compressible signal in standard sparsity from the
compressive sensing literature (Donoho, 2006). A related extension has also appeared in Baraniuk
et al. (2010).

Definition 23 The target Ey is (a,q)-compressible with respect to block B if there exist constants
a,q> 0 such that for each s> 0, ∃  β(s) such that c(  β(s),B)≤ s and

1
n
‖X  β(s)−Ey‖2

2 ≤ as−q.

Corollary 24 Suppose that the target is (a,q)-compressible with respect to B . Then with probabil-
ity 1−η, at the stopping time k, we have

Q̂(β(k))≤ Q̂(  β(s′))+2na/s′q+2σ2[ln(2/η)+1],

where
s′ ≤ s ν

(10+3q)ρ0(B)
min
u≤s′

ρ−(s+ c(  β(u))).

Proof Given s′, we consider f j = min�≥ j Q̂(  β(s′/2�)). We also assume that f0 is achieved at �0 ≥ 0.
Note that by Lemma 19, we have with probability 1−2− j−1η:

|Q̂(  β(s′/2 j))−‖y−Ey‖2
2| ≤2‖X  β(s′/2 j)−Ey‖2

2 +2σ2[ j+1+ ln(2/η)]

≤2an2q j/s′q+2σ2[ j+1+ ln(2/η)].
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This means the above inequality holds for all j with probability 1−η. Therefore

f j+1− f0 ≤Q̂(  β(s′/2 j+1))− Q̂(  β(s′))

≤|Q̂(  β(s′/2 j+1))−‖y−Ey‖2
2|+ |Q̂(  β(s′))−‖y−Ey‖2

2|
≤4an2q( j+1)/s′q+4σ2[0.5 j+1+ ln(2/η)].

Now, by taking ε= 2an/s′q+2σ2[ln(2/η)+1] in Theorem 22, we obtain

∞

∑
j=0

2− j ln
f j+1− f0 + ε
f j− f0 + ε

≤
∞

∑
j=�0

2− j ln(1+( f j+1− f0)/ε)

≤
∞

∑
j=�0

2− j ln(4+2(0.5 j+2q( j+1)))

≤
∞

∑
j=�0

2− j(2+0.5 j+ ln2+q( j+1) ln2)≤ 4.4+4(0.5+q ln2),

where we have used the simple inequality ln(α+2β)≤ 0.5α+ ln(2β) when α,β≥ 1. Therefore,

s≥ ρ0(B)s′

νminu≤s′ ρ−(s+ c(  β(u)))
(10+3q)

≥ ρ0(B)s′

νminu≤s′ ρ−(s+ c(  β(u)))

[
3.4+

∞

∑
j=0

2− j ln
f j+1− f0 + ε
f j− f0 + ε

]
.

This means that Theorem 22 can be applied to obtain the desired bound.

If we assume the underlying coding scheme is block coding generated by B , then we have
minu≤s′ ρ−(s+c(  β(u)))≤ ρ−(s+ s′). The corollary shows that we can approximate a compressible
signal of complexity s′ with complexity s= O(qs′) using greedy algorithm. This means the greedy
algorithm obtains optimal rate for weakly-sparse compressible signals. The sample complexity
suffers only a constant factor O(q). Combine this result with Theorem 6, and take union bound, we
have with probability 1−2η, at stopping time k:

1√
n
‖Xβ(k)−Ey‖2 ≤

√
a
s′q

+σ

√
2ln(6/η)

n
+2σ

√
7.4(s+ c0(B))+6.7ln(6/η)

n
+

2a
σ2s′q

,

‖β(k)−  β(s′)‖2
2 ≤

1
ρ−(s+ s′+ c0(B))

[
15a
s′q

+
37σ2(s+ c0(B))+34σ2 ln(6/η)

n

]
.

Given a fixed n, we can obtain a convergence result by choosing s (and thus s′) to optimize the
right hand side. The resulting rate is optimal for the special case of standard sparsity, which im-
plies that the bound has the optimal form for structured q-compressible targets. In particular, in
compressive sensing applications where σ= 0, we obtain when sample size reaches n=O(qs′), the
reconstruction performance is

‖  β(k)−  β‖2
2 = O(a/s′q),

which matches that of the constrained coding complexity regularization method in (2) up to a con-
stantO(q). Since many real data involve weakly sparse signals, our result provides strong theoretical
justification for the use of OMP in such problems. Our experiments are consistent with the theory.
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Abstract
This paper provides the best bounds to date on the number of randomly sampled entries required
to reconstruct an unknown low-rank matrix. These results improve on prior work by Candès and
Recht (2009), Candès and Tao (2009), and Keshavan et al. (2009). The reconstruction is accom-
plished by minimizing the nuclear norm, or sum of the singular values, of the hidden matrix subject
to agreement with the provided entries. If the underlying matrix satisfies a certain incoherence
condition, then the number of entries required is equal to a quadratic logarithmic factor times the
number of parameters in the singular value decomposition. The proof of this assertion is short,
self contained, and uses very elementary analysis. The novel techniques herein are based on recent
work in quantum information theory.
Keywords: matrix completion, low-rank matrices, convex optimization, nuclear norm minimiza-
tion, random matrices, operator Chernoff bound, compressed sensing

1. Introduction

Recovering a low-rank matrix from a partial sampling of its entries is a recurring problem in collab-
orative filtering (Rennie and Srebro, 2005; Koren et al., 2009) and dimensionality reduction (Wein-
berger and Saul, 2006; So and Ye, 2007). Estimating of low-rank models also arise in embedding
problems (Linial et al., 1995) and multi-class learning (Argyriou et al., 2008; Obozinski et al., 2009).
While a variety of heuristics have been developed across many disciplines, the general problem of
finding the lowest rank matrix satisfying equality constraints is NP-hard. All known algorithms
which can compute the lowest rank solution for all instances require time at least exponential in the
dimensions of the matrix in both theory and practice (Chistov and Grigoriev, 1984).

In sharp contrast to such worst case pessimism, Candès and Recht (2009) showed that most
low-rank matrices could be recovered from most sufficiently large sets of entries by computing
the matrix of minimum nuclear norm that agreed with the provided entries, and furthermore the
revealed set of entries could comprise a vanishing fraction of the entire matrix. The nuclear norm is
equal to the sum of the singular values of a matrix and is the best convex lower bound of the rank
function on the set of matrices whose singular values are all bounded by 1. The intuition behind this
heuristic is that whereas the rank function counts the number of nonvanishing singular values, the
nuclear norm sums their amplitude, much like how the �1 norm is a useful surrogate for counting the
number of nonzeros in a vector. Moreover, the nuclear norm can be minimized subject to equality
constraints via semidefinite programming.

Nuclear norm minimization had long been observed to produce very low-rank solutions in prac-
tice (see, for example, Beck and D’Andrea, 1998; Fazel, 2002; Fazel et al., 2001; Srebro, 2004;

c©2011 Benjamin Recht.
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Mesbahi and Papavassilopoulos, 1997), but only very recently was there any theoretical basis for
when it produced the minimum rank solution. The first paper to provide such foundations was
Recht et al. (2010), where the authors developed probabilistic techniques to study average case
behavior and showed that the nuclear norm heuristic could solve most instances of the linearly-
constrained rank-minimization problem assuming the number of linear constraints was sufficiently
large. The results in Recht et al. (2010) inspired a groundswell of interest in theoretical guarantees
for rank minimization, and these results lay the foundation for Candès and Recht (2009). Candès
and Recht’s bounds were subsequently improved by Candès and Tao (2009) and Keshavan et al.
(2009) to show that one could, in special cases, reconstruct a low-rank matrix by observing a set of
entries of size at most a polylogarithmic factor larger than the intrinsic dimension of the variety of
rank r matrices.

This paper sharpens the results in Candès and Tao (2009) and Keshavan et al. (2009) to provide
a bound on the number of entries required to reconstruct a low-rank matrix which is optimal up to
a small numerical constant and one logarithmic factor. The main theorem makes minimal assump-
tions about the low-rank matrix of interest. Moreover, the proof is very short and relies on mostly
elementary analysis.

In order to precisely state the main result, we need one definition. Candès and Recht observed
that it is impossible to recover a matrix which is equal to zero in nearly all of its entries unless all
of the entries of the matrix are observed (consider, for example, the rank one matrix which is equal
to 1 in one entry and zeros everywhere else). In other words, the matrix cannot be mostly equal to
zero on the observed entries. This motivated the following definition

Definition 1 Let U be a subspace of Rn of dimension r and PU be the orthogonal projection onto
U. Then the coherence of U (vis-à-vis the standard basis (ei)) is defined to be

μ(U)≡ n
r
max
1≤i≤n

‖PUei‖2.

Note that for any subspace, the smallest μ(U) can be is 1, achieved, for example, ifU is spanned by
vectors whose entries all have magnitude 1/

√
n. The largest possible value for μ(U) is n/r which

would correspond to any subspace that contains a standard basis element. If a matrix has row and
column spaces with low coherence, then each entry can be expected to provide about the same
amount of information.

Recall that the nuclear norm of an n1× n2 matrix X is the sum of the singular values of X ,
‖X‖∗ = ∑

min{n1,n2}
k=1 σk(X), where, here and below, σk(X) denotes the kth largest singular value of

X . The main result of this paper is the following

Theorem 2 Let M be an n1 × n2 matrix of rank r with singular value decomposition UΣV ∗.
Without loss of generality, impose the conventions n1 ≤ n2, Σ is r× r, U is n1× r and V is n2× r.
Assume that

A0 The row and column spaces have coherences bounded above by some positive μ0.

A1 The matrix UV ∗ has a maximum entry bounded by μ1
√
r/(n1n2) in absolute value for some

positive μ1.

Suppose m entries ofM are observed with locations sampled uniformly at random. Then if

m≥ 32max{μ21,μ0}r(n1+n2) β log
2(2n2) (1)
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for some β> 1, the minimizer to the problem

minimize ‖X‖∗
subject to Xi j =Mi j (i, j) ∈Ω. (2)

is unique and equal toM with probability at least 1−6log(n2)(n1+n2)2−2β−n2−2β
1/2

2 .

The assumptions A0 and A1 were introduced in Candès and Recht (2009). Both μ0 and μ1
may depend on r, n1, or n2. Moreover, note that μ1 ≤ μ0

√
r by the Cauchy-Schwarz inequality.

As shown in Candès and Recht (2009), both subspaces selected from the uniform distribution and
spaces constructed as the span of singular vectors with bounded entries are not only incoherent with
the standard basis, but also obey A1 with high probability for values of μ1 at most logarithmic in n1
and/or n2. Applying this theorem to the models studied in Section 2 of Candès and Recht (2009),
we find that there is a numerical constant cu such that cur(n1+n2) log5(n2) entries are sufficient to
reconstruct a rank rmatrix whose row and column spaces are sampled from the Haar measure on the
Grassmann manifold. If r > log(n2), the number of entries can be reduced to cur(n1+n2) log4(n2).
Similarly, there is a numerical constant ci such that ciμ20r(n1+ n2) log3(n2) entries are sufficient to
recover a matrix of arbitrary rank r whose singular vectors have entries with magnitudes bounded
by

√
μ0/n1.
Theorem 2 greatly improves upon prior results. First of all, it has the weakest assumptions

on the matrix to be recovered. In addition to assumption A1, Candès and Tao (2009) require a
“strong incoherence condition” which is considerably more restrictive than the assumption A0 in
Theorem 2. Many of their results also require restrictions on the rank ofM , and their bounds depend
superlinearly on μ0. Keshavan et al. (2009) require the matrix rank to be no more than log(n2), and
require bounds on the maximum magnitude of the entries inM and the ratios σ1(M)/σr(M) and
n2/n1. Theorem 2 makes no such assumptions about the rank, aspect ratio, nor condition number
ofM . Moreover, (1) has a smaller log factor than Candès and Tao (2009), and features numerical
constants that are both explicit and small.

Also note that there is not much room for improvement in the bound for m. It is a consequence
of the coupon collector’s problem that at least n2 logn2 uniformly sampled entries are necessary
just to guarantee that at least one entry in every row and column is observed with high probability.
In addition, rank r matrices have r(n1+ n2− r) parameters, a fact that can be verified by counting
the number of degrees of freedom in the singular value decomposition. Interestingly, Candès and
Tao (2009) showed that Cμ0n2r log(n2) entries were necessary for completion when the entries are
sampled uniformly at random. Hence, (1) is optimal up to a small numerical constant times log(n2).

Most importantly, the proof of Theorem 2 is short and straightforward. Candès and Recht
employed sophisticated tools from the study of random variables on Banach spaces including de-
coupling tools and powerful moment inequalities for the norms of random matrices. Candès and
Tao rely on intricate moment calculations spanning over 30 pages. The present work only uses basic
matrix analysis, elementary large deviation bounds, and a noncommutative version of Bernstein’s
Inequality proven here in the Appendix.

The proof of Theorem 2 is adapted from a recent paper by Gross et al. (2010) in quantum infor-
mation which considered the problem of reconstructing the density matrix of a quantum ensemble
using as few measurements as possible. Their work extended results from Candès and Recht (2009)
to the quantum regime by using special algebraic properties of quantum measurements. Their proof
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followed a methodology analogous to the approach of Candès and Recht but had three main differ-
ences: they used a sampling with replacement model as a proxy for uniform sampling, deployed
a powerful noncommutative Chernoff bound developed by Ahlswede and Winter (2002) for use in
quantum information theory, and devised a simplified appeal to convex duality to guarantee exact
recovery. In this paper, I adapt these strategies from Gross et al. (2010) to the matrix completion
problem. In Section 3 I show how the sampling with replacement model bounds probabilities in the
uniform sampling model, and present very short proofs of some of the main results in Candès and
Recht (2009). Surprisingly, this yields a simple proof of Theorem 2, provided in Section 4, which
has the least restrictive assumptions of any assertion proven thus far.1

2. Preliminaries and Notation

Before continuing, let us survey the notations used throughout the paper. I closely follow the con-
ventions established in Candès and Recht (2009), and invite the reader to consult this reference for
a more thorough discussion of the matrix completion problem and the associated convex geometry.
A thorough introduction to the necessary matrix analysis used in this paper can be found in Recht
et al. (2010).

Matrices are bold capital, vectors are bold lowercase and scalars or entries are not bold. For
example, X is a matrix, and Xi j its (i, j)th entry. Likewise x is a vector, and xi its ith component.
If uk ∈ Rn for 1≤ k ≤ d is a collection of vectors, [u1, . . . ,ud] will denote the n×d matrix whose
kth column is uk. ek will denote the kth standard basis vector in Rd , equal to 1 in component k and
0 everywhere else. The dimension of ek will always be clear from context. X∗ and x∗ denote the
transpose of matricesX and vectors x respectively.

A variety of norms on matrices will be discussed. The spectral norm of a matrix is denoted by
‖X‖. The Euclidean inner product between two matrices is 〈X,Y 〉 = Tr(X∗Y ), and the corre-
sponding Euclidean norm, called the Frobenius or Hilbert-Schmidt norm, is denoted ‖X‖F . That
is, ‖X‖F = 〈X,X〉1/2. The nuclear norm of a matrixX is ‖X‖∗. The maximum entry ofX (in
absolute value) is denoted by ‖X‖∞ ≡ maxi j |Xi j|. For vectors, the only norm applied is the usual
Euclidean �2 norm, simply denoted as ‖x‖.

Linear transformations that act on matrices will be denoted by calligraphic letters. In particular,
the identity operator will be denoted by I . The spectral norm (the top singular value) of such an
operator will be denoted by ‖A‖= supX:‖X‖F≤1 ‖A(X)‖F .

Fix once and for all a matrixM obeying the assumptions of Theorem 2. Letuk (respectively vk)
denote the kth column ofU (respectively V ). SetU ≡ span(u1, . . . ,ur), and V ≡ span(v1, . . . ,vr).
Also assume, without loss of generality, that n1 ≤ n2. It is convenient to introduce the orthogonal
decomposition Rn1×n2 = T ⊕ T⊥ where T is the linear space spanned by elements of the form
uky

∗ and xv∗k , 1 ≤ k ≤ r, where x and y are arbitrary, and T⊥ is its orthogonal complement. T⊥

is the subspace of matrices spanned by the family (xy∗), where x (respectively y) is any vector
orthogonal toU (respectively V ).

The orthogonal projection PT onto T is given by

PT (Z) = PUZ+ZPV −PUZPV , (3)

1. Shortly after the appearance of a preprint of this manuscript, Gross (2011) announced a far reaching generalization
of the techniques in Gross et al. (2010), providing bounds on recovering low-rank matrices in almost any basis. This
work is more general than the work presented here, but the present paper achieves tighter constants and bounds and
work directly with non-Hermitian matrices. The interested reader should consult Gross (2011) for more details.
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where PU and PV are the orthogonal projections onto U and V respectively. Note here that while
PU and PV are matrices, PT is a linear operator mapping matrices to matrices. The orthogonal
projection onto T⊥ is given by

PT⊥(Z) = (I −PT )(Z) = (In1−PU)Z(In2−PV )

where Id denotes the d×d identity matrix. It follows from the definition (3) of PT that

PT (eae∗b) = (PUea)e
∗
b+ea(PVeb)

∗ − (PUea)(PVeb)
∗.

This gives

‖PT (eae∗b)‖2F = 〈PT (eae∗b),eae∗b〉= ‖PUea‖2+‖PVeb‖2−‖PUea‖2 ‖PVeb‖2 .

Since ‖PUea‖2 ≤ μ(U)r/n1 and ‖PVeb‖2 ≤ μ(V )r/n2,

‖PT (eae∗b)‖2F ≤max{μ(U),μ(V )}rn1+n2
n1n2

≤ μ0r
n1+n2
n1n2

. (4)

I will make frequent use of this calculation throughout the sequel.

3. Sampling with Replacement

As discussed above, the main contribution of this work is an analysis of uniformly sampled sets
of entries via the study of a sampling with replacement model. All of the previous work (e.g.,
Candès and Recht, 2009; Candès and Tao, 2009; Keshavan et al., 2009) studied a Bernoulli sam-
pling model as a proxy for uniform sampling. There, each entry was revealed independently with
probability equal to p. In all of these results, the theorem statements concerned sampling sets of
m entries uniformly, but it was shown that probability of failure under Bernoulli sampling with
p= m

n1n2
closely approximated the probability of failure under uniform sampling. The present work

will analyze the situation where each entry index is sampled independently from the uniform distri-
bution on {1, . . . ,n1}×{1, . . . ,n2}. This modification of the sampling model gives rise to all of the
simplifications below.

It would appear that sampling with replacement is not suitable for analyzing matrix completion
as one might encounter duplicate entries. However, just as is the case with Bernoulli sampling,
bounding the likelihood of error when sampling with replacement allows us to bound the probability
of the nuclear norm heuristic failing under uniform sampling.

Proposition 3 The probability that the nuclear norm heuristic fails when the set of observed entries
is sampled uniformly from the collection of sets of size m is less than or equal to the probability that
the heuristic fails when m entries are sampled independently with replacement.

Proof The proof follows the argument in Section II.C of Candés et al. (2006). LetΩ′ be a collection
ofm entries, each sampled independently from the uniform distribution on {1, . . . ,n1}×{1, . . . ,n2}.
Let Ωk denote a set of entries of size k sampled uniformly from all collections of entries of size k.
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It follows that

P(Failure(Ω′)) =
m

∑
k=0

P(Failure(Ω′) | |Ω′|= k)P(|Ω′|= k)

=
m

∑
k=0

P(Failure(Ωk))P(|Ω′|= k)

≥ P(Failure(Ωm))
m

∑
k=0

P(|Ω′|= k) = P(Failure(Ωm)) .

Where the inequality follows because P(Failure(Ωm)) ≥ P(Failure(Ωm′)) if m ≤ m′. That is, the
probability decreases as the number of entries revealed is increased.

Surprisingly, changing the sampling model makes most of the theorems from Candès and Recht
(2009) simple consequences of a noncommutative variant of Bernstein’s Inequality.

Theorem 4 (Noncommutative Bernstein Inequality) Let X1, . . . ,XL be independent zero-mean
randommatrices of dimension d1×d2. Suppose ρ2k =max{‖E[XkX

∗
k ]‖,‖E[X∗

kXk]‖} and ‖Xk‖≤
M almost surely for all k. Then for any τ> 0,

P

[∥∥∥∥∥ L

∑
k=1

Xk

∥∥∥∥∥> τ

]
≤ (d1+d2)exp

( −τ2/2
∑L
k=1ρ

2
k+Mτ/3

)
.

Note that in the case that d1= d2= 1, this is precisely the two sided version of the standard Bernstein
Inequality. When the Xk are diagonal, this bound is the same as applying the standard Bernstein
Inequality and a union bound to the diagonal of the matrix summation. Furthermore, observe that
the right hand side is less than (d1 + d2)exp(− 3

8τ
2/(∑L

k=1ρ
2
k)) as long as τ ≤ 1

M ∑
L
k=1ρ

2
k . This

condensed form of the inequality will be used exclusively throughout. Theorem 4 is a corollary
of an Chernoff bound for finite dimensional operators developed by Ahlswede and Winter (2002).
A similar inequality for symmetric i.i.d. matrices is proposed in Gross et al. (2010). The proof is
provided in the Appendix.

Let us now record two theorems, proven for the Bernoulli model in Candès and Recht (2009),
that admit very simple proofs in the sampling with replacement model. The theorem statements re-
quires some additional notation. LetΩ= {(ak,bk)}lk=1 be a collection of indices sampled uniformly
with replacement. Set RΩ to be the operator

RΩ(Z) =
|Ω|
∑
k=1

〈eake∗bk ,Z〉eake∗bk .

Note that the (i, j)th component of RΩ(X) is zero unless (i, j) ∈Ω. For (i, j) ∈Ω, RΩ(X) is equal
to Xi j times the multiplicity of (i, j) ∈Ω. Unlike in previous work on matrix completion, RΩ is not
a projection operator if there are duplicates in Ω. Nonetheless, this does not adversely affect the
argument, and RΩ(X) = 0 if and only if Xab = 0 for all (a,b) ∈Ω. Moreover, we can show that the
maximum duplication of any entry is always less than 8

3 log(n2) with very high probability.

Proposition 5 With probability at least 1−n2−2β2 , the maximum number of repetitions of any entry
in Ω is less than 8

3β log(n2) for n2 ≥ 9 and β> 1.
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Proof This assertion can be proven by applying a standard Chernoff bound for the Bernoulli dis-
tribution. Note that for a fixed entry, the probability it is sampled more than t times is equal to the
probability of more than t heads occurring in a sequence of m tosses where the probability of a head
is 1

n1n2
. This probability can be upper bounded by

P[more than t heads in m trials]≤
(

m
n1n2t

)t

exp

(
t− m

n1n2

)
(see Hagerup and Rüb, 1990, for example). Applying the union bound over all of the n1n2 entries
and the fact that m

n1n2
< 1, we have

P[any entry is selected more than 8
3β log(n2) times]

≤n1n2
(
8
3β log(n2)

)− 83β log(n2) exp(83β log(n2))
≤n2−2β2

when n2 ≥ 9.

This application of the Chernoff bound is very crude, and much tighter bounds can be derived
using more careful analysis. For example in Gonnet (1981), the maximum oversampling is shown to
be bounded byO( log(n2)

log log(n2)
). For our purposes here, the loose upper bound provided by Proposition 5

will be more than sufficient.
In addition to this bound on the norm of RΩ, the following theorem asserts that the operator

PTRΩPT is also very close to an isometry on T if the number of sampled entries is sufficiently
large. This result is analgous to the Theorem 4.1 in Candès and Recht (2009) for the Bernoulli
model, whose proof uses several powerful theorems from the study of probability in Banach spaces.
Here, one only needs to compute a few low order moments and then apply Theorem 4.

Theorem 6 Suppose Ω is a set of entries of size m sampled independently and uniformly with
replacement. Then for all β> 1,

n1n2
m

∥∥∥∥PTRΩPT − m
n1n2

PT
∥∥∥∥≤

√
16μ0r(n1+n2)β log(n2)

3m

with probability at least 1−2n2−2β2 provided that m> 16
3 μ0r(n1+n2)β log(n2).

Proof Decompose any matrix Z as Z = ∑ab〈Z,eae
∗
b〉eae∗b so that

PT (Z) =∑
ab

〈PT (Z),eae
∗
b〉eae∗b =∑

ab

〈Z,PT (eae∗b)〉eae∗b. (5)

For k = 1, . . . ,m sample (ak,bk) from {1, . . . ,n1}×{1, . . . ,n2} uniformly with replacement. Then
RΩPT (Z) = ∑m

k=1 〈Z,PT (eake∗bk)〉eake∗bk which gives

(PTRΩPT )(Z) =
m

∑
k=1

〈Z,PT (eake
∗
bk)〉PT (eake∗bk).
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Now the fact that the operator PTRΩPT does not deviate from its expected value

E(PTRΩPT ) = PT (ERΩ)PT = PT (
m
n1n2

I )PT =
m
n1n2

PT

in the spectral norm can be proven using the Noncommutative Bernstein Inequality.
To proceed, define the operator Tab which maps Z to 〈PT (eae∗b),Z〉PT (eae∗b). This operator is

rank one, has operator norm ‖Tab‖ = ‖PT (eae∗b)‖2F , and we have PT = ∑a,bTab by (5). Hence, for
k = 1, . . . ,m, E[Takbk ] =

1
n1n2

PT .
Observe that ifA andB are positive semidefinite, we have ‖A−B‖≤max{‖A‖,‖B‖}. Using

this fact, we can compute the bound

‖Takbk − 1
n1n2

PT‖ ≤max{‖PT (eake∗bk)‖2F , 1
n1n2

} ≤ μ0r
n1+n2
n1n2

,

where the final inequality follows from (4). We also have

‖E[(Takbk − 1
n1n2

PT )2]‖= ‖E[‖PT (eake∗bk)‖2FTakbk ]−
1

n21n
2
2

PT ]‖

≤max{‖E[‖PT (eake∗bk)‖2FTakbk ]‖,
1

n21n
2
2

}

≤max{‖E[Takbk ]‖μ0r
n1+n2
n1n2

,
1

n21n
2
2

} ≤ μ0r
n1+n2
n21n

2
2

.

The theorem now follows by applying the Noncommutative Bernstein Inequality.

The next theorem is an analog of Theorem 6.3 in Candès and Recht (2009) or Lemma 3.2 in
Keshavan et al. (2009). This theorem asserts that for a fixed matrix, if one sets all of the entries not
in Ω to zero it remains close to a multiple of the original matrix in the operator norm.

Theorem 7 Suppose Ω is a set of entries of size m sampled independently and uniformly with
replacement and let Z be a fixed n1× n2 matrix. Assume without loss of generality that n1 ≤ n2,
Then for all β> 1,

∥∥∥(n1n2
m

RΩ− I
)
(Z)

∥∥∥≤
√
8βn1n22 log(n1+n2)

3m
‖Z‖∞

with probability at least 1− (n1+n2)1−β provided that m> 6βn1 log(n1+n2).

Proof First observe that the operator norm can be upper bounded by a multiple of the matrix infinity
norm

‖Z‖= sup
‖x‖=1
‖y‖=1

∑
a,b

Zabyaxb ≤
(
∑
a,b

Z2aby
2
a

)1/2(
∑
a,b

x2b

)1/2

≤√
n2max

a

(
∑
b

Z2ab

)1/2
≤√

n1n2‖Z‖∞ .
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Note that n1n2m RΩ(Z)−Z = 1
m ∑

m
k=1 n1n2Zakbkeake

∗
bk
−Z. This is a sum of zero-mean random

matrices, and ‖n1n2Zakbkeake∗bk −Z‖ ≤ ‖n1n2Zakbkeake∗bk‖+ ‖Z‖ < 3
2n1n2‖Z‖∞ for n1 ≥ 2. We

also have

‖E[(n1n2Zakbkeake∗bk −Z)∗(n1n2Zakbkeake
∗
bk −Z)]‖

=

∥∥∥∥∥n1n2∑c,d Z2cdede∗d−Z∗Z

∥∥∥∥∥
≤max

{∥∥∥∥∥n1n2∑c,d Z2cdede∗d
∥∥∥∥∥ ,‖Z∗Z‖

}
≤n1n22‖Z‖2∞

where we again use the fact that ‖A−B‖ ≤ max{‖A‖,‖B‖} for positive semidefinite A and B.
A similar calculation holds for (n1n2Zakbkeake

∗
bk
−Z)(n1n2Zakbkeake

∗
bk
−Z)∗. The theorem now

follows by the Noncommutative Bernstein Inequality.

Finally, the following Lemma is required to prove Theorem 2. Succinctly, it says that for a fixed
matrix in T , the operator PTRΩ does not increase the matrix infinity norm.

Lemma 8 Suppose Ω is a set of entries of size m sampled independently and uniformly with re-
placement and let Z ∈ T be a fixed n1×n2 matrix. Assume without loss of generality that n1 ≤ n2.
Then for all β> 2, ∥∥∥n1n2

m
PTRΩ(Z)−Z

∥∥∥
∞
≤
√
8βμ0r(n1+n2) logn2

3m
‖Z‖∞

with probability at least 1−2n2−β2 provided that m> 8
3βμ0r(n1+n2) logn2.

Proof This lemma can be proven using the standard Bernstein Inequality. For each matrix index
(c,d), sample (a,b) uniformly at random to define the random variable ξcd =
〈ece∗d ,n1n2〈eae∗b,Z〉PT (eae∗b)−Z〉. We have E[ξcd] = 0, |ξcd| ≤ μ0r(n1+n2)‖Z‖∞, and

E[ξ2cd] =
1

n1n2
∑
a,b

〈ece∗d ,n1n2〈eae∗b,Z〉PT (eae∗b)−Z〉2

= n1n2∑
a,b

〈PT (ece∗d),eae∗b〉2〈eae∗b,Z〉2−Z2cd

≤ n1n2‖PT (ece∗d)‖2F‖Z‖2∞ ≤ μ0r(n1+n2)‖Z‖2∞ .

Since the (c,d) entry of n1n2m PTRΩ(Z)−Z is identically distributed to 1
m ∑

m
k=1 ξ

(k)
cd , where ξ

(k)
cd are

i.i.d. copies of ξcd , we have by Bernstein’s Inequality and the union bound:

Pr

[∥∥∥n1n2
m

PTRΩ(Z)−Z

∥∥∥
∞
>

√
8βμ0r(n1+n2) log(n2)

3m
‖Z‖∞

]
≤ 2n2−β2 .
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4. Proof of Theorem 2

The proof follows the program developed in Gross et al. (2010) which itself adapted the strategy
proposed in Candès and Recht (2009). The main idea is to approximate a dual feasible solution
of (2) which certifies thatM is the unique minimum nuclear norm solution. In Candès and Recht
(2009) such a certificate was constructed via an infinite series using a construction developed in
the compressed sensing literature (See, for example Candés et al., 2006; Fuchs, 2004). The terms
in this series were then analyzed individually using the decoupling inequalities of de la Peña and
Montgomery-Smith (1995). Truncating the infinite series after 4 terms gave their result. In Candès
and Tao (2009), the authors bounded the contribution of O(log(n2)) terms in this series using inten-
sive combinatorial analysis of each term. The insight in Gross et al. (2010) was that, when sampling
observations with replacement, a dual feasible solution could be closely approximated by a mod-
ified series where each term involved the product of independent random variables. This change
in the sampling model allows one to avoid decoupling inequalities and gives rise to the dramatic
simplification here.

To proceed, recall again that by Proposition 3 it suffices to consider the scenario when the entries
are sampled independently and uniformly with replacement. I will first develop the main argument
of the proof assuming many conditions hold with high probability. The proof is completed by
subsequently bounding probability that all of these events hold. Suppose that

n1n2
m

∥∥∥∥PTRΩPT − m
n1n2

PT
∥∥∥∥≤ 1

2
, ‖RΩ‖ ≤ 8

3β
1/2 log(n2) . (6)

Also suppose there exists a Y in the range of RΩ such that

‖PT (Y )−UV ∗‖F ≤
√

r
2n2

, ‖PT⊥(Y )‖< 1
2
. (7)

If (6) holds, then for any Z ∈ kerRΩ, PT (Z) cannot be too large. Indeed, we have

0= ‖RΩ(Z)‖F ≥ ‖RΩPT (Z)‖F −‖RΩPT⊥(Z)‖F .
Now observe that

‖RΩPT (Z)‖2F = 〈Z,PTR 2
ΩPT (Z)〉 ≥ 〈Z,PTRΩPT (Z)〉 ≥ m

2n1n2
‖PT (Z)‖2F

and ‖RΩPT⊥(Z)‖F ≤ 8
3β
1/2 log(n2)‖PT⊥(Z)‖F . Collecting these facts gives that for any Z ∈

kerRΩ,

‖PT⊥(Z)‖F ≥
√

9m

128βn1n2 log2(n2)
‖PT (Z)‖F >

√
2r
n2
‖PT (Z)‖F .

Now recall that ‖A‖∗ = sup‖B‖≤1〈A,B〉. For Z ∈ kerRΩ, pick U⊥ and V⊥ such that [U ,U⊥] and
[V ,V⊥] are unitary matrices and that 〈U⊥V ∗

⊥ ,PT⊥(Z)〉= ‖PT⊥(Z)‖∗. Then it follows that
‖M +Z‖∗ ≥ 〈UV ∗+U⊥V ∗

⊥ ,M +Z〉
= ‖M‖∗+ 〈UV ∗+U⊥V ∗

⊥ ,Z〉
= ‖M‖∗+ 〈UV ∗ −PT (Y ),PT (Z)〉+ 〈U⊥V ∗

⊥ −PT⊥(Y ),PT⊥(Z)〉

> ‖M‖∗ −
√

r
2n2

‖PT (Z)‖F + 12‖PT⊥(Z)‖∗ ≥ ‖M‖∗ .
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The first inequality holds from the variational characterization of the nuclear norm. We also used
the fact that 〈Y ,Z〉 = 0 for all Z ∈ kerRΩ. Thus, if a Y exists obeying (7), we have that for any
X obeying RΩ(X−M) = 0, ‖X‖∗ > ‖M‖∗. That is, any ifX has Mab = Xab for all (a,b) ∈Ω,
X has strictly larger nuclear norm than M , and hence M is the unique minimizer of (2). The
remainder of the proof shows that such a Y exists with high probability.

To this end, partition 1, . . . ,m into p partitions of size q. By assumption, we may choose

q≥ 128
3
max{μ0,μ21}r(n1+n2)β log(n1+n2) and p≥ 3

4
log(2n2) .

LetΩ j denote the set of indices corresponding to the jth partition. Note that each of these partitions
are independent of one another when the indices are sampled with replacement. Assume that

n1n2
q

∥∥∥∥PTRΩkPT −
q

n1n2
PT

∥∥∥∥≤ 1
2

(8)

for all k. Define W0 = UV ∗ and set Yk = n1n2
q ∑k

j=1RΩ j(W j−1), Wk = UV ∗ −PT (Yk) for k =
1, . . . , p. Then

‖Wk‖F =

∥∥∥∥Wk−1− n1n2
q

PTRΩk(Wk−1)
∥∥∥∥
F

=

∥∥∥∥(PT − n1n2
q

PTRΩkPT )(Wk−1)
∥∥∥∥
F

≤ 1
2
‖Wk−1‖F ,

and it follows that ‖Wk‖F ≤ 2−k‖W0‖F = 2−k
√
r. Since p≥ 3

4 log(2n2)≥ 1
2 log2(2n2)= log2

√
2n2,

then Y = Yp will satisfy the first inequality of (7). Also suppose that

∥∥∥∥Wk−1− n1n2
q

PTRΩk(Wk−1)
∥∥∥∥
∞
≤ 1
2
‖Wk−1‖∞, (9)∥∥∥∥(n1n2q RΩ j − I

)
(W j−1)

∥∥∥∥≤
√
8n1n22β log(n1+n2)

3q
‖W j−1‖∞ (10)

for k = 1, . . . , p.
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To see that ‖PT⊥(Yp)‖ ≤ 1
2 when (9) and (10) hold, observe ‖Wk‖∞ ≤ 2−k‖UV ∗‖∞, and it

follows that

‖PT⊥Yp‖ ≤
p

∑
j=1

‖ n1n2q PT⊥RΩ jW j−1‖

=
p

∑
j=1

‖PT⊥( n1n2q RΩ jW j−1−W j−1)‖

≤
p

∑
j=1

‖( n1n2q RΩ j − I )(W j−1)‖

≤
p

∑
j=1

√
8n1n22β log(n1+n2)

3q
‖W j−1‖∞

= 2
p

∑
j=1

2− j

√
8n1n22β log(n1+n2)

3q
‖UV ∗‖∞ <

√
32μ21rn2β log(n1+n2)

3q
< 1/2

since q > 128
3 μ

2
1rn2β log(n1+ n2). The first inequality follows from the triangle inequality. The

second line follows becauseW j−1 ∈ T for all j. The third line follows because, for any Z,
‖PT⊥(Z)‖= ‖(In1−PU)Z(In2−PV )‖ ≤ ‖Z‖ .

The fourth line applies (10). The next line follows from (9). The final line follows from the assump-
tion A1.

All that remains is to bound the probability that all of the invoked events hold. Withm satisfying
the bound in the main theorem statement, the first inequality in (6) fails to hold with probability at

most 2n2−2β2 by Theorem 6, and the second inequality fails to hold with probability at most n2−2β
1/2

2

by Proposition 5. For all k, (8) fails to hold with probability at most 2n2−2β2 , (9) fails to hold with

probability at most 2n2−2β2 , and (10) fails to hold with probability at most (n1+n2)1−2β. Summing
these all together, all of the events hold with probability at least

1−6log(n2)(n1+n2)
2−2β−n2−2β

1/2

2

by the union bound. This completes the proof.

5. Discussion and Conclusions

The results proven here are nearly optimal, but small improvements can possibly be made. The
numerical constant 32 in the statement of the theoremmay be reducible by more clever bookkeeping,
and it may be possible to derive a linear dependence on the logarithm of the matrix dimensions. But
further reduction is not possible because of the necessary conditions provided by Candès and Tao.
One minor improvement that could be made would be to remove the assumption A1. For instance,
while μ1 is known to be small in most of the models of low-rank matrices that have been analyzed,
no one has shown that an assumption of the form A1 is necessary for completion. Nonetheless, all
prior results on matrix completion have imposed an assumption like A1 (i.e., Candès and Recht,
2009; Candès and Tao, 2009; Keshavan et al., 2009), and it would be interesting to see if it can be
removed as a requirement, or if it is somehow necessary.
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In many matrix completion scenarios of interest in machine learning, the provided entries are
corrupted by noise. While Theorem 2 only addresses the noise-free case, we can immediately extend
our results to the noisy case. Specifically, suppose we observe Xi j =Mi j+νi j on the set Ω and we
are guaranteed that

∑
(i, j)∈Ω

ν2i j ≤ δ2 .

Then if we solve the quadratically constrained problem

minimize ‖X‖∗
subject to ∑(i, j)∈Ω(Xi j−Mi j)

2 ≤ δ2 .
(11)

we will have that any optimal solution, M̂ of (11) satisfies

‖M̂ −M‖F ≤
⎛⎝2+

√
48n21n2
m

⎞⎠δ .

This claim follows directly from the argument of Candès and Plan (2009). Indeed, the only nec-
essary requirements for such stable recovery is that (6) and (7) hold. Hence, under the sampling
assumptions of Theorem 2, low-rank matrices can be approximated from noisy data by solving a
quadratically constrained nuclear norm problem.

We conclude by noting that much of the simplicity of the argument presented here arises from an
application of new large deviation inequalities for matrices. The noncommutative versions of Cher-
noff and Bernstein’ s Inequalities may be useful throughout machine learning and statistical signal
processing, and a fruitful line of inquiry would examine how to apply these tools from quantum
information to the study of classical signals and systems.
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Appendix A. Operator Chernoff Bounds

In this section, I present a proof of 4 based on foundational results needed from Quantum Informa-
tion Theory. For completeness, I also provide proofs of Theorems 9 and 10 which were originally
proven in Ahlswede and Winter (2002). I have made minor modifications to the original arguments,
but the assertions remain the same.

To review, a symmetric matrixA is positive semidefinite if all of its eigenvalues are nonnegative.
If A and B are positive semidefinite matrices, A )B means B−A is positive semidefinite. For
square matricesA, the matrix exponential will be denoted exp(A) and is given by the power series

exp(A) =
∞

∑
k=0

Ak

k!
.
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The following theorem is a generalization of Markov’s inequality originally proven in Ahlswede
and Winter (2002). Unlike the original proof, the following argument closely follows the standard
proof of the traditional Markov inequality and does not rely on discrete summations.

Theorem 9 (Operator Markov Inequality) Let X be a random positive semidefinite matrix and
A a fixed positive definite matrix. Then

P [X �)A]≤ Tr(E[X]A−1) .

Proof Note that ifX �)A, thenA−1/2XA−1/2 �) I , and hence ‖A−1/2XA−1/2‖> 1. Let IX �)A

denote the indicator of the eventX �)A. Then IX �)A ≤ Tr(A−1/2XA−1/2) as the right hand side is
always nonnegative, and, if the left hand side equals 1, the trace of the right hand side must exceed
the norm of the right hand side which is greater than 1. Thus we have

P[X �)A] = E[IX �)A]≤ E[Tr(A−1/2XA−1/2)] = Tr(E[X]A−1) .

where the last equality follows from the linearity and cyclic properties of the trace.

Next I will derive a noncommutative version of the Chernoff bound. This was also proven in
Ahlswede and Winter (2002) for i.i.d. matrices. The version stated here is more general in that the
random matrices need not be identically distributed, but the proof is essentially the same.

Theorem 10 (Noncommutative Chernoff Bound) LetX1, . . . ,Xn be independent symmetric ran-
dom matrices inRd×d. LetA be an arbitrary symmetric matrix. Then for any invertible d×d matrix
T

P

[
n

∑
k=1

Xk �) nA

]
≤ d

n

∏
k=1

‖E[exp(TXkT
∗ −TAT ∗)]‖ .

Proof The proof relies on an estimate of Golden (1965) and Thompson (1965) which is stated here
without proof.

Lemma 11 (Golden-Thompson inequality) For any symmetric matricesA andB,

Tr(exp(A+B))≤ Tr((expA)(expB)) .
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Much like the proof of the standard Chernoff bound, the theorem now follows from a long chain of
inequalities.

P

[
n

∑
k=1

Xk �) nA

]
= P

[
n

∑
k=1

(Xk−A) �) 0
]

= P

[
n

∑
k=1

T (Xk−A)T ∗ �) 0
]

= P

[
exp

(
n

∑
k=1

T (Xk−A)T ∗
)
�) Id

]

≤ Tr
(
E

[
exp

(
n

∑
k=1

T (Xk−A)T ∗
)])

= E

[
Tr

(
exp

(
n

∑
k=1

T (Xk−A)T ∗
))]

≤ E

[
Tr

(
exp

(
n−1
∑
k=1

T (Xk−A)T ∗
)
exp(T (Xn−A)T ∗)

)]

≤ E1,...,n−1

[
Tr

(
exp

(
n−1
∑
k=1

T (Xk−A)T ∗
)
E[exp(T (Xn−A)T ∗)]

)]

≤ ‖E[exp(T (Xn−A)T ∗)]‖E1,...,n−1
[
Tr

(
exp

(
n−1
∑
k=1

T (Xk−A)T ∗
))]

≤
n

∏
k=2

‖E[exp(T (Xk−A)T ∗)]‖E [Tr(exp(T (X1−A)T ∗))]

≤ d
n

∏
k=1

‖E[exp(T (Xk−A)T ∗)]‖ .

Here, the first three lines follow from standard properties of the semidefinite ordering. The fourth
line invokes the Operator Markov Inequality. The sixth line follows from the Golden-Thompson
inequality. The seventh line follows from independence of theXk. The eighth line follows because
for positive definite matrices Tr(AB) ≤ Tr(A)‖B‖. This is just another statement of the duality
between the nuclear and operator norms. The ninth line iteratively repeats the previous two steps.
The final line follows because for a positive definite matrixA, Tr(A) is the sum of the eigenvalues
ofA, and all of the eigenvalues are at most ‖A‖.

Let us now turn to proving the Noncommutative Bernstein Inequality presented in Section 3.
Gross et al. (2010) proposed a similar inequality for symmetric i.i.d. randommatrices with a slightly
worse constant. The proof here is more general and follows the standard derivation of Bernstein’s
inequality.
Proof [of Theorem 4] Set

Yk =

[
0 Xk

X∗
k 0

]
.
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Then Yk are symmetric random variables, and for all k

‖E[Y 2
k ]‖=

∥∥∥∥E[[ XkX
∗
k 0

0 X∗
kXk

]]∥∥∥∥=max{‖E[XkX
∗
k ]‖,‖E[X∗

kXk]‖}= ρ2k .

Moreover, the maximum singular value of ∑L
k=1Xk is equal to the maximum eigenvalue of ∑L

k=1Yk.
By Theorem 10, we have for all λ> 0

P

[∥∥∥∥∥ L

∑
k=1

Xk

∥∥∥∥∥> Lt

]
= P

[
L

∑
k=1

Yk �) LtI

]
≤ (d1+d2)exp(−Lλt)

L

∏
k=1

‖E[exp(λYk)]‖ .

For each k, let Yk =UkΛkU
∗
k be an eigenvalue decomposition, whereΛk is the diagonal matrix

of the eigenvalues of Yk. In turn, it follows that for s> 0

−MsY 2
k )−UkM

s
Λ
2
kU

∗
k )UkΛ

2+s
k U ∗

k = Y 2+s
k )UkM

s
Λ
2
kU

∗
k )MsY 2

k ,

which then implies

‖E[Y s+2
k ]‖ ≤Ms‖E[Y 2

k ]‖ . (12)

For fixed k, we have

‖E[exp(λYk)]‖ ≤ ‖I‖+
∞

∑
j=2

λ j

j!
‖E[Y j

k ]‖

≤ 1+
∞

∑
j=2

λ j

j!
‖E[Y 2

k ]‖Mj−2

= 1+
ρ2k
M2

∞

∑
j=2

λ j

j!
Mj = 1+

ρ2k
M2 (exp(λM)−1−λM)

≤ exp
(
ρ2k
M2 (exp(λM)−1−λM)

)
.

The first inequality follows from the triangle inequality and the fact that E[Yk] = 0, the second
inequality follows from (12), and the final inequality follows from the fact that 1+ x ≤ exp(x) for
all x. Putting this together gives

P

[∥∥∥∥∥ L

∑
k=1

Xk

∥∥∥∥∥> Lt

]
≤ (d1+d2)exp

(
−λLt+ ∑L

k=1ρ
2
k

M2 (exp(λM)−1−λM)

)
.

This final expression is now just a real number, and only has to be minimized as a function of λ.
The theorem now follows by algebraic manipulation: the right hand side is minimized by setting
λ= 1

M log(1+
tLM

∑Lk=1 ρ
2
k
), then basic approximations can be employed to complete the argument (see,

for example, Panchenko, 2007, Lectures 4 and 5).
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Abstract
Motivated by the problem of effectively executing clustering algorithms on very large data sets,
we address a model for large scale distributed clustering methods. To this end, we briefly recall
some standards on the quantization problem and some results on the almost sure convergence of the
competitive learning vector quantization (CLVQ) procedure. A general model for linear distributed
asynchronous algorithms well adapted to several parallel computing architectures is also discussed.
Our approach brings together this scalable model and the CLVQ algorithm, and we call the resulting
technique the distributed asynchronous learning vector quantization algorithm (DALVQ). An in-
depth analysis of the almost sure convergence of the DALVQ algorithm is performed. A striking
result is that we prove that the multiple versions of the quantizers distributed among the processors
in the parallel architecture asymptotically reach a consensus almost surely. Furthermore, we also
show that these versions converge almost surely towards the same nearly optimal value for the
quantization criterion.
Keywords: k-means, vector quantization, distributed, asynchronous, stochastic optimization, scal-
ability, distributed consensus

1. Introduction

Distributed algorithms arise in a wide range of applications, including telecommunications, dis-
tributed information processing, scientific computing, real time process control and many others.
Parallelization is one of the most promising ways to harness greater computing resources, whereas
building faster serial computers is increasingly expensive and also faces some physical limits such
as transmission speeds and miniaturization. One of the challenges proposed for machine learning
is to build scalable applications that quickly process large amounts of data in sophisticated ways.
Building such large scale algorithms attacks several problems in a distributed framework, such as
communication delays in the network or numerous problems caused by the lack of shared memory.

Clustering algorithms are one of the primary tools of unsupervised learning. From a practical
perspective, clustering plays an outstanding role in data mining applications such as text mining,
web analysis, marketing, medical diagnostics, computational biology and many others. Clustering
is a separation of data into groups of similar objects. As clustering represents the data with fewer
clusters, there is a necessary loss of certain fine details, but simplification is achieved. The popular

∗. Also at LOKAD SAS, 70 rue Lemercier, 75017 Paris, France, email: benoit.patra@lokad.com.

c©2011 Benoı̂t Patra.
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competitive learning vector quantization (CLVQ) algorithm (see Gersho and Gray, 1992) provides a
technique for building reliable clusters characterized by their prototypes. As pointed out by Bottou
and Bengio (1995), the CLVQ algorithm can also be viewed as the on-line version of the widespread
Lloyd’s method (see Lloyd 2003, for the definition) which is referred to as batch k-means in Bottou
and Bengio (1995). The CLVQ also belongs to the class of stochastic gradient descent algorithms
(for more information on stochastic gradient descent procedures we refer the reader to Benveniste
et al. 1990).

The analysis of parallel stochastic gradient procedures in a machine learning context has re-
cently received a great deal of attention (see for instance Zinkevich et al. 2009 and McDonald et al.
2010). In the present paper, we go further by introducing a model that brings together the original
CLVQ algorithm and the comprehensive theory of asynchronous parallel linear algorithms devel-
oped by Tsitsiklis (1984), Tsitsiklis et al. (1986) and Bertsekas and Tsitsiklis (1989). The resulting
model will be called distributed asynchronous learning vector quantization (DALVQ for short). At a
high level, the DALVQ algorithm parallelizes several executions of the CLVQ method concurrently
on different processors while the results of these algorithms are broadcast through the distributed
framework asynchronously and efficiently. Here, the term processor refers to any computing in-
stance in a distributed architecture (see Bullo et al. 2009, chap. 1, for more details). Let us remark
that there is a series of publications similar in spirit to this paper. Indeed in Frasca et al. (2009)
and in Durham et al. (2009), a coverage control problem is formulated as an optimization problem
where the functional cost to be minimized is the same of the quantization problem stated in this
manuscript.

Let us provide a brief mathematical introduction to the CLVQ technique and DALVQ algo-
rithms. The first technique computes quantization scheme for d dimensional samples z1,z2, . . .
using the following iterations on a

(
Rd

)κ
vector,

w(t+1) = w(t)− εt+1H (zt+1,w(t)) , t ≥ 0.

In the equation above, w(0)∈ (
Rd

)κ
and the εt are positive reals. The vector H(z,w) is the opposite

of the difference between the sample z and its nearest component in w. Assume that there are
M computing entities, the data are split among the memory of these machines: zi1,z

i
2, . . ., where

i∈ {1, . . . ,M}. Therefore, the DALVQ algorithms are defined by theM iterations {wi(t)}∞t=0, called
versions, satisfying (with slight simplifications)

wi(t+1) =
M

∑
j=1

ai, j(t)wj(τi, j(t))− εit+1H
(
zit+1,w

i(t)
)
, i ∈ {1, . . . ,M} and t ≥ 0.

The time instants τi, j(t) ≥ 0 are deterministic but unknown and the delays satisfy the inequality
t− τi, j(t)≥ 0. The families {ai, j(t)}Mj=1 define the weights of convex combinations.

As a striking result, we prove that multiple versions of the quantizers, distributed among the
processors in a parallel architecture, asymptotically reach a consensus almost surely. Using the
materials introduced above, it writes

wi(t)−wj(t)−−→
t→∞

0, (i, j) ∈ {1, . . . ,M}2, almost surely (a.s.).

Furthermore, we also show that these versions converge almost surely towards (the same) nearly
optimal value for the quantization criterion. These convergence results are similar in spirit to the
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most satisfactory almost sure convergence theorem for the CLVQ algorithm obtained by Pagès
(1997).

For a given time span, our parallel DALVQ algorithm is able to process much more data than a
single processor execution of the CLVQ procedure. Moreover, DALVQ is also asynchronous. This
means that local algorithms do not have to wait at preset points for messages to become available.
This allows some processors to compute faster and execute more iterations than others, and it also
allows communication delays to be substantial and unpredictable. The communication channels are
also allowed to deliver messages out of order, that is, in a different order than the one in which
they were transmitted. Asynchronism can provide two major advantages. First, a reduction of the
synchronization penalty, which could bring a speed advantage over a synchronous execution. Sec-
ond, for potential industrialization, asynchronism has greater implementation flexibility. Tolerance
to system failures and uncertainty can also be increased. As in the case with any on-line algorithm,
DALVQ also deals with variable data loads over time. In fact, on-line algorithms avoid tremendous
and non scalable batch requests on all data sets. Moreover, with an on-line algorithm, new data may
enter the system and be taken into account while the algorithm is already running.

The paper is organized as follows. In Section 2 we review some standard facts on the clustering
problem. We extract the relevant material from Pagès (1997) without proof, thus making our ex-
position self-contained. In Section 3 we give a brief exposition of the mathematical framework for
parallel asynchronous gradient methods introduced by Tsitsiklis (1984), Tsitsiklis et al. (1986) and
Bertsekas and Tsitsiklis (1989). The results of Blondel et al. (2005) on the asymptotic consensus
in asynchronous parallel averaging problems are also recalled. In Section 4, our main results are
stated and proved.

2. Quantization and CLVQ Algorithm

In this section, we describe the mathematical quantization problem and the CLVQ algorithm. We
also recall some convergence results for this technique found by Pagès (1997).

2.1 Overview

Let μ be a probability measure on Rd with finite second-order moment. The quantization prob-
lem consists in finding a “good approximation” of μ by a set of κ vectors of Rd called quantizer.
Throughout the document the κ quantization points (or prototypes) will be seen as the components
of a

(
Rd

)κ
-dimensional vector w = (w1, . . . ,wκ). To measure the correctness of a quantization

scheme given by w, one introduces a cost function called distortion, defined by

Cμ(w) =
1
2

∫
Rd
min
1≤�≤κ

‖z−w�‖2 dμ(z).

Under some minimal assumptions, the existence of an optimal
(
Rd

)κ
-valued quantizer vector w◦ ∈

argminw∈(Rd)
κCμ(w) has been established by Pollard (1981) (see also Sabin and Gray 1986, Ap-

pendix 2).

In a statistical context, the distribution μ is only known through n independent random observa-
tions z1, . . . ,zn drawn according to μ. Denote by μn the empirical distribution based on z1, . . . ,zn,
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that is, for every Borel subset A of Rd

μn(A) =
1
n

n

∑
i=1

1{zi∈A}.

Much attention has been devoted to the convergence study of the quantization scheme provided by
the empirical minimizers

w◦
n ∈ argmin

w∈(Rd)
κ
Cμn(w).

The almost sure convergence ofCμ(w◦
n) towards minw∈(Rd)

κCμ(w)was proved by Pollard (1981,

1982a) and Abaya and Wise (1984). Rates of convergence and nonasymptotic performance bounds
have been considered by Pollard (1982b), Chou (1994), Linder et al. (1994), Bartlett et al. (1998),
Linder (2001, 2000), Antos (2005) and Antos et al. (2005). Convergence results have been estab-
lished by Biau et al. (2008) where μ is a measure on a Hilbert space. It turns out that the mini-
mization of the empirical distortion is a computationally hard problem. As shown by Inaba et al.
(1994), the computational complexity of this minimization problem is exponential in the number
of quantizers κ and the dimension of the data d. Therefore, exact computations are intractable for
most of the practical applications.

Based on this, our goal in this document is to investigate effective methods that produce accurate
quantizations with data samples. One of the most popular procedure is Lloyd’s algorithm (see
Lloyd, 2003) sometimes refereed to as batch k-means. A convergence theorem for this algorithm is
provided by Sabin and Gray (1986). Another celebrated quantization algorithm is the competitive
learning vector quantization (CLVQ), also called on-line k-means. The latter acronym outlines
the fact that data arrive over time while the execution of the algorithm and their characteristics
are unknown until their arrival times. The main difference between the CLVQ and the Lloyd’s
algorithm is that the latter run in batch training mode. This means that the whole training set is
presented before performing an update, whereas the CLVQ algorithm uses each item of the training
sequence at each update.

The CLVQ procedure can be seen as a stochastic gradient descent algorithm. In the more general
context of gradient descent methods, one cannot hope for the convergence of the procedure towards
global minimizers with a non convex objective function (see for instance Benveniste et al. 1990). In
our quantization context, the distortion mappingCμ is not convex (see for instance Graf and Luschgy
2000). Thus, just as in Lloyd’s method, the iterations provided by the CLVQ algorithm converge
towards local minima ofCμ.

Assuming that the distribution μhas a compact support and a bounded density with respect to the
Lebesgue measure, Pagès (1997) states a result regarding the almost sure consistency of the CLVQ
algorithm towards critical points of the distortionCμ. The author shows that the set of critical points
necessarily contains the global and local optimal quantizers. The main difficulties in the proof arise
from the fact that the gradient of the distortion is singular on κ-tuples having equal components and
the distortion functionCμ is not convex. This explains why standard theories for stochastic gradient
algorithm do not apply in this context.

2.2 The Quantization Problem, Basic Properties

In the sequel, we denote by G the closed convex hull of supp(μ), where supp(μ) stands for the
support of the distribution. Observe that, with this notation, the distortion mapping is the function
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C :
(
Rd

)κ −→ [0,∞) defined by

C(w)�
1
2

∫
G
min
1≤�≤κ

‖z−w�‖2 dμ(z), w= (w1, . . . ,wκ) ∈
(
Rd

)κ
.

Throughout the document, with a slight abuse of notation, ‖.‖ means both the Euclidean norm of
Rd or

(
Rd

)κ
. In addition, the notation Dκ∗ stands for the set of all vector of

(
Rd

)κ
with pairwise

distinct components, that is,

Dκ
∗ �

{
w ∈

(
Rd

)κ
| w� �= wk if and only if � �= k

}
.

Under some extra assumptions on μ, the distortion function can be rewritten using space partition
set called Voronoı̈ tessellation.

Definition 1 Let w ∈ (
Rd

)κ
, the Voronoı̈ tessellation of G related to w is the family of open sets

{W�(w)}1≤�≤κ defined as follows:

• If w ∈Dκ∗ , for all 1≤ �≤ κ,

W�(w) =

{
v ∈ G

∣∣∣∣ ‖w�− v‖<min
k �=�

‖wk− v‖
}
.

• If w ∈ (
Rd

)κ \Dκ∗ , for all 1≤ �≤ κ,

– if �=min{k | wk = w�},

W�(w) =

{
v ∈ G

∣∣∣∣ ‖w�− v‖< min
wk �=w�

‖wk− v‖
}

– otherwise, W�(w) = /0.

As an illustration, Figure 1 shows Voronoı̈ tessellations associated to a vector w lying in ([0,1]×
[0,1])50 whose components have been drawn independently and uniformly. This figure also high-
lights a remarkable property of the cell borders, which are portions of hyperplanes (see Graf and
Luschgy, 2000).

Observe that if μ(H) is zero for any hyperplaneH ofRd (a property which is sometimes referred
to as strong continuity) then using Definition 1, it is easy to see that the distortion takes the form:

C(w) =
1
2

κ

∑
�=1

∫
W�(w)

‖z−w�‖2 dμ(z), w ∈
(
Rd

)κ
.

The following assumption will be needed throughout the paper. This assumption is similar to
the peak power constraint (see Chou 1994 and Linder 2000). Note that most of the results of this
subsection are still valid if μ satisfies the weaker strong continuity property.

Assumption 1 (Compact supported density) The probability measure μ has a bounded density
with respect to the Lebesgue measure on Rd. Moreover, the support of μ is equal to its convex hull
G , which in turn, is compact.
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Figure 1: Voronoı̈ tessellation of 50 points of R2 drawn uniformly in a square.

The next proposition states the differentiability of the distortion C, and provides an explicit
formula for the gradient ∇C whenever the distortion is differentiable.

Proposition 1 (Pagès 1997) Under Assumption 1, the distortion C is continuously differentiable at
every w= (w1, . . . ,wκ) ∈Dκ∗ . Furthermore, for all 1≤ �≤ κ,

∇�C(w) =
∫
W�(w)

(w�− z)dμ(z).

Some necessary conditions on the location of the minimizers of C can be derived from its dif-
ferentiability properties. Therefore, Proposition 2 below states that the minimizers ofC have parted
components and that they are contained in the support of the density. Thus, the gradient is well
defined and these minimizers are necessarily some zeroes of ∇C. For the sequel it is convenient to

let
◦
A be the interior of any subset A of

(
Rd

)κ
.

Proposition 2 (Pagès 1997) Under Assumption 1, we have

argmin
w∈(Rd)

κ
C(w)⊂ argminloc

w∈Gκ
C(w)⊂

◦
Gκ ∩{∇C = 0}∩Dκ

∗ ,

where argminlocw∈GκC(w) stands for the set of local minimizers of C over Gκ.

For any z ∈ Rd and w ∈ (
Rd

)κ
, let us define the following vector of

(
Rd

)κ
H(z,w)�

(
(w�− z)1{z∈W�(w)}

)
1≤�≤κ . (1)
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On Dκ∗ , the function H may be interpreted as an observation of the gradient. With this notation,
Proposition 1 states that

∇C(w) =
∫
G
H(z,w)dμ(z), w ∈Dκ∗ .

Let �A stands for the complementary in
(
Rd

)κ
of a subset A⊂ (

Rd
)κ
. Clearly, for all w ∈ �Dκ∗ ,

the mapping H(.,w) is integrable. Therefore, ∇C can be extended on
(
Rd

)κ
via the formula

h(w)�
∫
G
H(z,w)dμ(z), w ∈ (

Rd
)κ
. (2)

Note however that the function h, which is sometimes called the average function of the algorithm,
is not continuous.

Remark 1 Under Assumption 1, a computation for all w ∈Dκ∗ of the Hessian matrix ∇2C(w) can
be deduced from Theorem 4 of (Fort and Pagès, 1995). In fact, the formula established in this
theorem is valid for cost functions which are more complex than C (they are associated to Kohonen
Self Organizing Maps, see Kohonen 1982 for more details). In Theorem 4, letting σ(k) = 1{k=0},
provides the result for our distortion C. The resulting formula shows that h is singular on �Dκ∗ and,
consequently, that this function cannot be Lipschitz on Gκ.

2.3 Convergence of the CLVQ Algorithm

The problem of finding a reliable clustering scheme for a data set is equivalent to find optimal
(or at least nearly optimal) minimizers for the mapping C. A minimization procedure by a usual
gradient descent method cannot be implemented as long as ∇C is unknown. Thus, the gradient is
approximated by a single example extracted from the data. This leads to the following stochastic
gradient descent procedure

w(t+1) = w(t)− εt+1H (zt+1,w(t)) , t ≥ 0, (3)

where w(0) ∈
◦
Gκ ∩ Dκ∗ and z1,z2 . . . are independent observations distributed according to the

probability measure μ.
The algorithm defined by the iterations (3) is known as the CLVQ algorithm in the data analysis

community. It is also called the Kohonen Self Organizing Map algorithm with 0 neighbor (see for
instance Kohonen 1982) or the on-line k-means procedure (see MacQueen 1967 and Bottou 1998)
in various fields related to statistics. As outlined by Pagès in Pagès (1997), this algorithm belongs
to the class of stochastic gradient descent methods. However, the almost sure convergence of this
type of algorithm cannot be obtained by general tools such as Robbins-Monro method (see Robbins
and Monro, 1951) or the Kushner-Clark’s Theorem (see Kushner and Clark, 1978). Indeed, the
main difficulty essentially arises from the non convexity of the function C, its non coercivity and
the singularity of h at �Dκ∗ (we refer the reader to Pagès 1997, Section 6, for more details).

The following assumption set is standard in a gradient descent context. It basically upraises
constraints on the decreasing speed of the sequence of steps {εt}∞t=0.

Assumption 2 (Decreasing steps) The (0,1)-valued sequence {εt}∞t=0 satisfies the following two
constraints:
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1. ∑∞
t=0 εt = ∞.

2. ∑∞
t=0 ε

2
t < ∞.

An examination of identities (3) and (1) reveals that if zt+1 ∈W�0 (w(t)), where the integer
�0 ∈ {1, . . . ,M} then

w�0(t+1) = (1− εt+1)w�0(t)+ εt+1zt+1.

The component w�0(t+1) can be viewed as the image of w�0(t) by a zt+1-centered homothety with
ratio 1− εt+1 (Figure 2 provides an illustration of this fact). Thus, under Assumptions 1 and 2, the

trajectories of {w(t)}∞t=0 stay in
◦
Gκ ∩Dκ∗ . More precisely, if

w(0) ∈
◦
Gκ ∩Dκ

∗

then

w(t) ∈
◦
Gκ ∩Dκ

∗ , t ≥ 0, a.s.

Figure 2: Drawing of a portion of a 2-dimensional Voronoı̈ tessellation. For t ≥ 0, if the vector
zt+1 ∈W�0 (w(t)) then w�(t+1) = w�(t) for all � �= �0 and w�0(t+1) lies in the segment
[w�0(t),zt+1]. The update of the vector w�0(t) can also be viewed as a zt+1-centered
homothety with ratio 1− εt+1.

Although ∇C is not continuous some regularity can be obtained. To this end, we need to in-
troduce the following materials. For any δ > 0 and any compact set L ⊂ Rd , let the compact set
Lκδ ⊂

(
Rd

)κ
be defined as

Lκδ �

{
w ∈ Lκ | min

k �=�
‖w�−wk‖ ≥ δ

}
. (4)

The next lemma that states on the regularity of ∇C will prove to be extremely useful in the proof of
Theorem 4 and throughout Section 4.
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Lemma 2 (Pagès 1997) Assume that μ satisfies Assumption 1 and let L be a compact set of Rd.
Then, there is some constant Pδ such that for all w and v in Lκδ with [w,v]⊂Dκ∗ ,

‖∇C(w)−∇C(v)‖ ≤ Pδ ‖w− v‖ .

The following lemma, called G-lemma in Pagès (1997) is an easy-to-apply convergence results
on stochastic algorithms. It is particularly adapted to the present situation of the CLVQ algorithm
where the average function of the algorithm h is singular.

Theorem 3 (G-lemma, Fort and Pagès 1996) Assume that the iterations (3) of the CLVQ algo-
rithm satisfy the following conditions:

1. ∑∞
t=1 εt = ∞ and εt −−→

t→∞
0.

2. The sequences {w(t)}∞t=0 and {h(w(t))}∞t=0 are bounded a.s.

3. The series ∑∞
t=0 εt+1 (H(zt+1,w(t))−h(w(t))) converge a.s. in

(
Rd

)κ
.

4. There exists a lower semi-continuous function G :
(
Rd

)κ −→ [0,∞) such that

∞

∑
t=0

εt+1G(w(t))< ∞, a.s.

Then, there exists a random connected component Ξ of {G= 0} such that

dist(w(t),Ξ)−−→
t→∞

0, a.s.,

where the symbol dist denotes the usual distance function between a vector and a subset of
(
Rd

)κ
.

Note also that if the connected components of {G= 0} are singletons then there exists ξ ∈ {G= 0}
such that w(t)−−→

t→∞
ξ a.s.

For a definition of the topological concept of connected component, we refer the reader to Choquet
(1966). The interest of the G-lemma depends upon the choice of G. In our context, a suitable lower
semi-continuous function is Ĝ defined by

Ĝ(w)� liminf
v∈Gκ∩Dκ∗ , v→w

‖∇C(v)‖2 , w ∈ Gκ. (5)

The next theorem is, as far as we know, the first almost sure convergence theorem for the
stochastic algorithm CLVQ.

Theorem 4 (Pagès 1997) Under Assumptions 1 and 2, conditioned on the event{
liminf
t→∞

dist
(
w(t),�Dκ

∗
)
> 0

}
, one has

dist(w(t),Ξ∞)−−→
t→∞

0, a.s.,

where Ξ∞ is some random connected component of {∇C = 0}.
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The proof is an application of the above G-lemma with the mapping Ĝ defined by Equation (5).
Theorem 4 states that the iterations of the CLVQ necessarily converge towards some critical points
(zeroes of ∇C). From Proposition 2 we deduce that the set of critical points necessarily contains

optimal quantizers. Recall that without more assumption than w(0) ∈
◦
Gκ ∩ Dκ∗ , we have already

discussed the fact that the components of w(t) are almost surely parted for all t ≥ 0. Thus, it is
easily seen that the two following events only differ on a set of zero probability{

liminf
t→∞

dist
(
w(t),�Dκ

∗
)
> 0

}
and {

inf
t≥0
dist

(
w(t),�Dκ

∗
)
> 0

}
.

Some results are provided by Pagès (1997) for asymptotically stuck components but, as pointed out
by the author, they are less satisfactory.

3. General Distributed Asynchronous Algorithm

We present in this section some materials and results of the asynchronous parallel linear algorithms
theory.

3.1 Model Description

Let s(t) be any
(
Rd

)κ
-valued vector and consider the following iterations

w(t+1) = w(t)+ s(t), t ≥ 0. (6)

Here, the model of discrete time described by iterations (6) can only be performed by a single
computing entity. Therefore, if the computations of the vectors s(t) are relatively time consuming
then not many iterations can be achieved for a given time span. Consequently, a parallelization
of this computing scheme should be investigated. The aim of this section is to discuss a precise
mathematical description of a distributed asynchronous model for the iterations (6). This model
for distributed computing was originally proposed by Tsitsiklis et al. (1986) and was revisited in
Bertsekas and Tsitsiklis (1989, Section 7.7).

Assume that we dispose of a distributed architecture withM computing entities called processors
(or agents, see for instance Bullo et al. 2009). Each processor is labeled, for simplicity of notation,
by a natural number i ∈ {1, . . . ,M}. Throughout the paper, we will add the superscript i on the
variables possessed by the processor i. In the model we have in mind, each processor has a buffer
where its current version of the iterated vector is kept, that is, local memory. Thus, for agent i such
iterations are represented by the

(
Rd

)κ
-valued sequence

{
wi(t)

}∞
t=0.

Let t ≥ 0 denote the current time. For any pair of processors (i, j) ∈ {1, . . . ,M}2, the value
kept by agent j and available for agent i at time t is not necessarily the most recent one, wj(t),
but more probably and outdated one, wj(τi, j(t)), where the deterministic time instant τi, j(t) satisfy
0 ≤ τi, j(t) ≤ t. Thus, the difference t − τi, j(t) can be seen as a communication delay. This is a
modeling of some aspects of the network: latency and bandwidth finiteness.

We insist on the fact that there is a distinction between “global” and “local” time. The time
variable we refer above to as t corresponds to a global clock. Such a global clock is needed only for
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analysis purposes. The processors work without knowledge of this global clock. They have access
to a local clock or to no clock at all.

The algorithm is initialized at t = 0, where each processor i ∈ {1, . . . ,M} has an initial ver-
sion wi(0) ∈ (

Rd
)κ
in its buffer. We define the general distributed asynchronous algorithm by the

following iterations

wi(t+1) =
M

∑
j=1

ai, j(t)wj(τi, j(t))+ si(t), i ∈ {1, . . . ,M} and t ≥ 0. (7)

The model can be interpreted as follows: at time t ≥ 0, processor i receives messages from other
processors containing wj(τi, j(t)). Processor i incorporates these new vectors by forming a convex
combination and incorporates the vector si(t) resulting from its own “local” computations. The
coefficients ai, j(t) are nonnegative numbers which satisfy the constraint

M

∑
j=1

ai, j(t) = 1, i ∈ {1, . . . ,M} and t ≥ 0. (8)

As the combining coefficients ai, j(t) depend on t, the network communication topology is some-
times referred to as time-varying. The sequences

{
τi, j(t)

}∞
t=0 need not to be known in advance by

any processor. In fact, their knowledge is not required to execute iterations defined by Equation
(7). Thus, we do not necessary dispose of a shared global clock or synchronized local clocks at the
processors.

As for now the descent terms
{
si(t)

}∞
t=0 will be arbitrary

(
Rd

)κ
-valued sequences. In Section 4,

when we define the distributed asynchronous learning vector quantization (DALVQ), the definition
of the descent terms will be made more explicit.

3.2 The Agreement Algorithm

This subsection is devoted to a short survey of the results, found by Blondel et al. (2005), for a
natural simplification of the general distributed asynchronous algorithm (7). This simplification is
called agreement algorithm by Blondel et al. and is defined by

xi(t+1) =
M

∑
j=1

ai, j(t)x j(τi, j(t)), i ∈ {1, . . . ,M} and t ≥ 0. (9)

where xi(0) ∈ (
Rd

)κ
. An observation of these equations reveals that they are similar to iterations

(7), the only difference being that all descent terms equal 0.
In order to analyse the convergence of the agreement algorithm (9), Blondel et al. (2005) define

two sets of assumptions that enforce some weak properties on the communication delays and the
network topology. As shown in Blondel et al. (2005), if the assumptions contained in one of these
two set hold, then the distributed versions of the agreement algorithm, namely the xi, reach an
asymptotical consensus. This latter statement means that there exists a vector x� (independent of i)
such that

xi(t)−−→
t→∞

x�, i ∈ {1, . . . ,M}.

The agreement algorithm (9) is essentially driven by the communication times τi, j(t) assumed to
be deterministic but do not need to be known a priori by the processors. The following Assumption
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Figure 3: Illustration of the time delays introduced in the general distributed asynchronous algo-
rithm. Here, there are M = 4 different processors with their own computations of the
vectors w(i), i ∈ {1,2,3,4}. Three arbitrary values of the global time t are represented (t1,
t2 and t3), with τi,i(tk) = tk for all i ∈ {1,2,3,4} and 1 ≤ k ≤ 3. The dashed arrows head
towards the versions available at time tk for an agent i ∈ {1,2,3,4} represented by the tail
of the arrow.

3 essentially ensures, in its third statement, that the communication delays t− τi, j(t) are bounded.
This assumption prevents some processor from taking into account some arbitrarily old values com-
puted by others processors. Assumption 3 1. is just a convention: when ai, j(t) = 0 the value τi, j(t)
has no effect on the update. Assumption 3 2. is rather natural because processors have access to
their own most recent value.

Assumption 3 (Bounded communication delays)

1. If ai, j(t) = 0 then one has τi, j(t) = t, (i, j) ∈ {1, . . . ,M}2 and t ≥ 0,

2. τi,i(t) = t, i ∈ {1, . . . ,M} and t ≥ 0.

3. There exists a positive integer B1 such that

t−B1 < τi, j(t)≤ t, (i, j) ∈ {1, . . . ,M}2 and t ≥ 0.

The next Assumption 4 states that the value possessed by agent i at time t+1, namely xi(t+1),
is a weighted average of its own value and the values that it has just received from other agents.
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Assumption 4 (Convex combination and threshold) There exists a positive constant α > 0 such
that the following three properties hold:

1. ai,i(t)≥ α, i ∈ {1, . . . ,M} and t ≥ 0.
2. ai, j(t) ∈ {0}∪ [α,1], (i, j) ∈ {1, . . . ,M}2 and t ≥ 0.
3. ∑M

j=1 a
i, j(t) = 1, i ∈ {1, . . . ,M} and t ≥ 0.

Let us mention one particular relevant case for the choice of the combining coefficients ai, j(t).
Let i ∈ {1, . . . ,M} and t ≥ 0, the set

Ni(t)�
{
j ∈ {1, . . . ,M} ∈ {1, . . . ,M} | ai, j(t) �= 0}

corresponds to the set of agents whose version is taken into account by processor i at time t. For all
(i, j) ∈ {1, . . . ,M}2 and t ≥ 0, the weights ai, j(t) are defined by

ai, j(t) =

{
1/#Ni(t) if j ∈ Ni(t);

0 otherwise;

where #A denotes the cardinal of any finite set A. The above definition on the combining coefficients
appears to be relevant for practical implementations of the model DALVQ introduced in Section 4.
For a discussion on others special interest cases regarding the choices of the coefficients ai, j(t) we
refer the reader to Blondel et al. (2005).

The communication patterns, sometimes refereed to as the network communication topology,
can be expressed in terms of directed graph. For a thorough introduction to graph theory, (see
Jungnickel, 1999).

Definition 5 (Communication graph) Let us fix t ≥ 0, the communication graph at time t, (V ,E(t)),
is defined by

• the set of vertices V is formed by the set of processors V = {1, . . . ,M},
• the set of edges E(t) is defined via the relationship

( j, i) ∈ E(t) if and only if ai, j(t)> 0.

Assumption 5 is a minimal condition required for a consensus among the processors. More pre-
cisely, it states that for any pair of agents (i, j)∈ {1, . . . ,M}2 there is a sequence of communications
where the values computed by agent i will influence (directly or indirectly) the future values kept
by agent j.

Assumption 5 (Graph connectivity) The graph (V ,∪s≥tE(s)) is strongly connected for all t ≥ 0.
Finally, we define two supplementary assumptions. The combination of one of the two following

assumptions with the three previous ones will ensure the convergence of the agreement algorithm.
As mentioned above, if Assumption 5 holds then there is a communication path between any pair
of agents. Assumption 6 below expresses the fact that there is a finite upper bound for the length of
such paths.
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Assumption 6 (Bounded communication intervals) If i communicates with j an infinite number
of times then there is a positive integer B2 such that

(i, j) ∈ E(t)∪E(t+1)∪ . . .∪E(t+B2−1), t ≥ 0.
Assumption 7 is a symmetry condition: if agent i ∈ {1, . . . ,M} communicates with agent j ∈

{1, . . . ,M} then j has communicated or will communicate with i during the time interval (t−B3, t+
B3) where B3 > 0.

Assumption 7 (Symmetry) There exists some B3 > 0 such that whenever the pair (i, j) ∈ E(t),
there exists some τ that satisfies |t− τ|< B3 and ( j, i) ∈ E(τ).

To shorten the notation, we set

(AsY)1 ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Assumption 3;

Assumption 4;

Assumption 5;

Assumption 6.

(AsY)2 ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Assumption 3;

Assumption 4;

Assumption 5;

Assumption 7;
We are now in a position to state the main result of this section. The Theorem 6 expresses the

fact that, for the agreement algorithm, a consensus is asymptotically reached by the agents.

Theorem 6 (Blondel et al. 2005) Under the set of Assumptions (AsY)1 or (AsY)2, there is a con-
sensus vector x� ∈ (

Rd
)κ
(independent of i) such that

lim
t→∞

∥∥xi(t)− x�
∥∥= 0, i ∈ {1, . . . ,M}.

Besides, there exist ρ ∈ [0,1) and L> 0 such that∥∥xi(t)− xi(τ)
∥∥≤ Lρt−τ, i ∈ {1, . . . ,M} and t ≥ τ≥ 0.

3.3 Asymptotic Consensus

This subsection is devoted to the analysis of the general distributed asynchronous algorithm (7).
For this purpose, the study of the agreement algorithm defined by Equations (9) will be extremely
fruitful. The following lemma states that the version possessed by agent i ∈ {1, . . . ,M} at time
t ≥ 0, namely wi(t), depends linearly on the others initialization vectors wj(0) and the descent

subsequences
{
s j(τ)

}t−1
τ=−1, where j ∈ {1, . . . ,M}.

Lemma 7 (Tsitsiklis 1984) For all (i, j) ∈ {1, . . . ,M}2 and t ≥ 0, there exists a real-valued se-

quence
{
φi, j (t,τ)

}t−1
τ=−1 such that

wi(t) =
M

∑
j=1

φi, j (t,−1)wj(0)+
t−1
∑
τ=0

M

∑
j=1

φi, j (t,τ)s j(τ).

For all (i, j) ∈ {1, . . . ,M}2 and t ≥ 0, the real-valued sequences {φi, j (t,τ)}t−1τ=−1 do not depend
on the value taken by the descent terms si(t). The real numbers φi, j (t,τ) are determined by the
sequences

{
τi, j(τ)

}t
τ=0 and

{
ai, j(τ)

}t
τ=0 which do not depend on w. These last sequences are un-

known in general, but some useful qualitative properties can be derived, as expressed in Lemma 8
below.
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Lemma 8 (Tsitsiklis 1984) For all (i, j) ∈ {1, . . . ,M}2, let {φi, j (t,τ)}t−1τ=−1 be the sequences de-
fined in Lemma 7.

1. Under Assumption 4,

0≤ φi, j (t,τ)≤ 1, (i, j) ∈ {1, . . . ,M}2 and t > τ≥−1.

2. Under Assumptions (AsY)1 or (AsY)2, we have:

(a) For all (i, j) ∈ {1, . . . ,M}2 and τ≥−1, the limit of φi, j (t,τ) as t tends to infinity exists
and is independent of j. It will be denoted φi(τ).

(b) There exists some η> 0 such that

φi(τ)> η, i ∈ {1, . . . ,M} and τ≥−1.

(c) There exist a constant A> 0 and ρ ∈ (0,1) such that∣∣φi, j (t,τ)−φi(τ)
∣∣≤ Aρt−τ, (i, j) ∈ {1, . . . ,M}2 and t > τ≥−1.

Take t ′ ≥ 0 and assume that the agents stop performing update after time t ′, but keep com-
municating and merging the results. This means that s j(t) = 0 for all t ≥ t ′. Then, Equations (7)
write

wi(t+1) =
M

∑
j=1

ai, j(t)wj (τi, j(t)), i ∈ {1, . . . ,M} and t ≥ t ′.

If Assumptions (AsY)1 or (AsY)2 are satisfied then Theorem 6 shows that there is a consensus
vector, depending on the time instant t ′. This vector will be equal to w�(t ′) defined below (see
Figure 4). Lemma 8 provides a good way to define the sequence {w�(t)}∞t=0 as shown in Definition
9. Note that this definition does not involve any assumption on the descent terms.

Definition 9 (Agreement vector) Assume that Assumptions (AsY)1 or (AsY)2 are satisfied. The
agreement vector sequence {w�(t)}∞t=0 is defined by

w�(t)�
M

∑
j=1

φ j (−1)wj(0)+
t−1
∑
τ=0

M

∑
j=1

φ j (τ)s j(τ), t ≥ 0.

It is noteworthy that the agreement vector sequence w� satisfies the following recursion formula

w�(t+1) = w�(t)+
M

∑
j=1

φ j(t)s j(t), t ≥ 0. (10)

4. Distributed Asynchronous Learning Vector Quantization

This section is devoted to the distributed asynchronous learning vector quantization techniques. We
provide a definition and investigate the almost sure convergence properties of the techniques.
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Figure 4: The agreement vector at time t ′, w�(t ′) corresponds to the common value asymptotically
achieved by all processors if computations integrating descent terms have stopped after
t ′, that is, s j(t) = 0 for all t ≥ t ′.

4.1 Introduction, Model Presentation

From now on, and until the end of the paper, we assume that one of the two set of Assumptions
(AsY)1 or (AsY)2 holds, as well as the compact-supported density Assumption 1. In addition, we
will also assume that 0 ∈ G . For the sake of clarity, all the proofs of the main theorems as well as
the lemmas needed for these proofs have been postponed at the end of the paper, in Annex.

Tsitsiklis (1984), Tsitsiklis et al. (1986) and Bertsekas and Tsitsiklis (1989) studied distributed
asynchronous stochastic gradient optimization algorithms. In this series of publications, for the
distributed minimization of a cost function F :

(
Rd

)κ −→ R, the authors considered the general
distributed asynchronous algorithm defined by Equation (7) with specific choices for stochastic
descent terms si. Using the notation of Section 3, the algorithm writes

wi(t+1) =
M

∑
j=1

ai, j(t)wj(τi, j(t))+ si(t), i ∈ {1, . . . ,M} and t ≥ 0,

with stochastic descent terms si(t) satisfying

E
{
si(t)

∣∣ s j(τ), j ∈ {1, . . . ,M} and t > τ≥ 0}=−εit+1∇F
(
wi(t)

)
,

i ∈ {1, . . . ,M} and t ≥ 0. (11)

where
{
εit
}∞
t=0 are decreasing steps sequences. The definition of the descent terms in Bertsekas

and Tsitsiklis (1989) and Tsitsiklis et al. (1986) is more general than the one appearing in Equation
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(11). We refer the reader to Assumption 3.2 and 3.3 in Tsitsiklis et al. (1986) and Assumption 8.2
in Bertsekas and Tsitsiklis (1989) for the precise definition of the descent terms. As discussed in
Section 2, the CLVQ algorithm is also a stochastic gradient descent procedure. Unfortunately, the
results from Tsitisklis et al. do not apply with our distortion function, C, since the authors assume
that F is continuously differentiable and ∇F is Lipschitz. Therefore, the aim of this section is to
extend the results of Tsitsiklis et al. to the context of vector quantization and on-line clustering.

We first introduce the distributed asynchronous learning vector quantization (DALVQ) algo-
rithm. To prove its almost sure consistency, we will need an asynchronous G-lemma, which is in-
spired from the G-lemma, Theorem 3, presented in Section 2. This theorem may be seen as an easy-
to-apply tool for the almost sure consistency of a distributed asynchronous system where the average
function is not necessary regular. Our approach sheds also some new light on the convergence of
distributed asynchronous stochastic gradient descent algorithms. Precisely, Proposition 8.1 in Tsit-
siklis et al. (1986) claims that the next asymptotic equality holds: liminft→∞

∥∥∇F(wi(t))∥∥ = 0,
while our main Theorem 12 below states that limt→∞

∥∥∇C(wi(t))∥∥ = 0. However, there is a price
to pay for this more precise result with the non Lipschitz gradient ∇C. Similarly to Pagès (1997),
who assumes that the trajectory of the CLVQ algorithm has almost surely asymptotically parted
components (see Theorem 4 in Section 2), we will suppose that the agreement vector sequence has,
almost surely, asymptotically parted component trajectories.

Recall that the goal of the DALVQ is to provide a well designed distributed algorithm that
processes quickly (in term of wall clock time) very large data sets to produce accurate quantization.
The data sets (or streams of data) are distributed among several queues sending data to the different
processors of our distributed framework. Thus, in this context the sequence zi1,z

i
2, . . . stands for the

data available for processor, where i ∈ {1, . . . ,M}. The random variables

z11,z
1
2, . . . ,z

2
1,z

2
2, . . .

are assumed to be independent and identically distributed according to μ.
In the definition of the CLVQ procedure (3), the term H (zt+1,w(t)) can be seen as an observa-

tion of the gradient ∇C (w(t)). Therefore, in our DALVQ algorithm, each processor i ∈ {1, . . . ,M}
is able to compute such observations using its own data zi1,z

i
2, . . .. Thus, the DALVQ procedure is

defined by Equation (7) with the following choice for the descent term si:

si(t) =

{
−εit+1H

(
zit+1,w

i(t)
)

if t ∈ T i;
0 otherwise;

(12)

where
{
εit
}∞
t=0 are (0,1)-valued sequences. The sets T

i contain the time instants where the version
wi, kept by processor i, is updated with the descent terms. This fine grain description of the algo-
rithm allows some processors to be idle for computing descent terms (when t /∈ T i). This reflects
the fact that the computing operations might not take the same time for all processors, which is
precisely the core of asynchronous algorithms analysis. Similarly to time delays and combining
coefficients, the sets T i are supposed to be deterministic but do not need to be known a priori for
the execution of the algorithm.

In the DALVQ model, randomness arises from the data z. Therefore, it is natural to let {Ft}∞t=0
be the filtration built on the σ-algebras

Ft � σ
(
zis, i ∈ {1, . . . ,M} and t ≥ s≥ 0) , t ≥ 0.
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An easy verification shows that, for all j ∈ {1, . . . ,M} and t ≥ 0, w�(t) and wj(t) are Ft-
measurable random variables.

For simplicity, the assumption on the decreasing speed of the sequences
{
εit
}∞
t=0 is strengthened

as follows. The notation a∨b stands for the maximum of two reals a and b.

Assumption 8 There exist two real numbers K1 > 0 and K2 ≥ 1 such that
K1
t ∨1 ≤ εit+1 ≤

K2
t ∨1 , i ∈ {1, . . . ,M} and t ≥ 0.

If Assumption 8 holds then the sequences
{
εit
}∞
t=0 satisfy the standard Assumption 2 for stochastic

optimization algorithms. Note that the choice of steps proportional to 1/t has been proved to be
a satisfactory learning rate, theoretically speaking and also for practical implementations (see for
instance Murata 1998 and Bottou and LeCun 2004).

For practical implementation, the sequences
{
εit+1

}∞
t=0 satisfying Assumption 8 can be imple-

mented without a global clock, that is, without assuming that the current value of t is known by the
agents. This assumption is satisfied, for example, by taking the current value of εit proportional to
1/nit , where n

i
t is the number of times that processor i as performed an update, that is, the cardinal

of the set T i ∩{0, . . . , t}. For a given processor, if the time span between consecutive updates is
bounded from above and from below, a straightforward examination shows that the sequence of
steps satisfy Assumption 8.

Finally, the next assumption is essentially technical in nature. It enables to avoid time instants
where all processors are idle. It basically requires that, at any time t ≥ 0, there is at least one
processor i ∈ {1, . . . ,M} satisfying si(t) �= 0.

Assumption 9 One has ∑M
j=11{t∈T j} ≥ 1 for all t ≥ 0.

4.2 The Asynchronous G-lemma

The aim of this subsection is to state a useful theorem similar to Theorem 3, but adapted to our
asynchronous distributed context. The precise Definition 9 of the agreement vector sequence should
not cast aside the intuitive definition. The reader should keep in mind that the vector w�(t) is also the
asymptotical consensus if descent terms are zero after time t. Consequently, even if the agreement
vector {w�(t)}∞t=0 is adapted to the filtration {Ft}∞t=0, the vector w�(t) cannot be accessible for a
user at time t. Nevertheless, the agreement vector w�(t) can be interpreted as a “probabilistic state”
of the whole distributed quantization scheme at time t. This explains why the agreement vector
is a such convenient tool for the analysis of the DALVQ convergence and will be central in our
adaptation of G-lemma, Theorem 10.

Let us remark that Equation (10), writes for all t ≥ 0,

w�(t+1) = w�(t)+
M

∑
j=1

φ j(t)s j(t)

= w�(t)−
M

∑
j=1

1{t∈T j}φ
j(t)ε jt+1H

(
z jt+1,w

j(t)
)
.

We recall the reader that the [0,1]-valued functions φ j’s are defined in Lemma 7.
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Using the function h defined by identity (2) and the fact that the random variables w�(t) and
wj(t) are Ft-measurable then it holds

h(w�(t)) = E{H (z,w�(t)) | Ft} , t ≥ 0.
and

h(wj(t)) = E
{
H
(
z,wj(t)

) | Ft} , j ∈ {1, . . . ,M} and t ≥ 0.
where z is a random variable of law μ independent of Ft .

For all t ≥ 0, set
ε�t+1 �

M

∑
j=1

1{t∈T j}φ
j(t)ε jt+1. (13)

Clearly, the real numbers ε�t are nonnegative. Their strictly positiveness will be discussed in
Proposition 3.

Set

ΔM(1)
t �

M

∑
j=1

1{t∈T j}φ
j(t)ε jt+1

(
h(w�(t))−h(wj(t))

)
, t ≥ 0, (14)

and

ΔM(2)
t �

M

∑
j=1

1{t∈T j}φ
j(t)ε jt+1

(
h(wj(t))−H

(
z jt+1,w

j(t)
))

, t ≥ 0. (15)

Note that E
{
ΔM(2)

t

}
= 0 and, consequently, that the random variables ΔM(2)

t can be seen as the

increments of a martingale with respect to the filtration {Ft}∞t=0.
Finally, with this notation, equation (10) takes the form

w�(t+1) = w�(t)− ε�t+1h(w
�(t))+ΔM(1)

t +ΔM(2)
t , t ≥ 0. (16)

We are now in a position to state our most useful tool, which is similar in spirit to the G-lemma,
but adapted to the context of distributed asynchronous stochastic gradient descent algorithm.

Theorem 10 (Asynchronous G-lemma) Assume that (AsY)1 or (AsY)2 and Assumption 1 hold
and that the following conditions are satisfied:

1. ∑∞
t=0 ε

�
t = ∞ and ε�t −−→t→∞

0.

2. The sequences {w�(t)}∞t=0 and {h(w�(t))}∞t=0 are bounded a.s.

3. The series ∑∞
t=0ΔM

(1)
t and ∑∞

t=0ΔM
(2)
t converge a.s. in

(
Rd

)κ
.

4. There exists a lower semi-continuous function G :
(
Rd

)κ −→ [0,∞) such that

∞

∑
t=0

ε�t+1G(w�(t))< ∞, a.s.

Then, there exists a random connected component Ξ of {G= 0} such that
dist(w�(t),Ξ)−−→

t→∞
0, a.s.
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4.3 Trajectory Analysis

The Pagès’s proof in Pagès (1997) on the almost sure convergence of the CLVQ procedure required
a careful examination of the trajectories of the process {w(t)}∞t=0. Thus, in this subsection we
investigate similar properties and introduce the assumptions that will be needed to prove our main
convergence result, Theorem 12.

The next Assumption 10 ensures that, for each processor, the quantizers stay in the support of
the density.

Assumption 10 One has

P
{
wj(t) ∈ Gκ}= 1, j ∈ {1, . . . ,M} and t ≥ 0.

Firstly, let us mention that since the set Gκ is convex, if Assumption 10 holds then

P{w�(t) ∈ Gκ}= 1, t ≥ 0.

Secondly, note that the Assumption 10 is not particularly restrictive. This assumption is satisfied
under the condition: for each processor, no descent term is added while a combining computation
is performed. This writes

ai, j(t) = δi, j and τ
i,i(t) = t, (i, j) ∈ {1, . . . ,M}2 and t ∈ T i.

This requirement makes sense for practical implementations.
Recall that if t /∈ T i, then si(t) = 0. Thus, Equation (7) takes the form

wi(t+1) =

⎧⎪⎨⎪⎩
wi(t+1) = wi(t)− εit+1

(
wi(t)− zit+1

)
=
(
1− εit+1

)
wi(t)+ εit+1z

i
t+1

if t ∈ T i;

wi(t+1) = ∑M
j=1 a

i, j(t)wj(τi, j(t)) otherwise.

Since Gκ is a convex set, it follows easily that if wj(0) ∈ Gκ, then wj(t) ∈ Gκ for all j ∈
{1, . . . ,M} and t ≥ 0 and, consequently, that Assumption 10 holds.

The next Lemma 11 provides a deterministic upper bound on the differences between the dis-
tributed versions wi and the agreement vector. For any subset A of

(
Rd

)κ
, the notation diam(A)

stands for the usual diameter defined by

diam(A) = sup
x,y∈A

{‖x− y‖} .

Lemma 11 Assume (AsY)1 or (AsY)2 holds and that Assumptions 1, 8 and 10 are satisfied then

‖w�(t)−wi(t)‖ ≤ √
κM diam(G)AK2θt , i ∈ {1, . . . ,M} and t ≥ 0, a.s.,

where θt � ∑t−1τ=−1
1
τ∨1ρ

t−τ, A and ρ are the constants introduced in Lemma 8, K2 is defined in
Assumption 8.

The sequence {θt}∞t=0 defined in Lemma 11 satisfies

θt −−→
t→∞

0 and
∞

∑
t=0

θt
t
< ∞. (17)
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We give some calculations justifying the statements at the end of the Annex.
Thus, under Assumptions 8 and 10, it follows easily that

w�(t)−wi(t)−−→
t→∞

0, i ∈ {1, . . . ,M}, a.s.,

and
wi(t)−wj(t)−−→

t→∞
0, (i, j) ∈ {1, . . . ,M}2, a.s. (18)

This shows that the trajectories of the distributed versions of the quantizers reach asymptotically
a consensus with probability 1. In other words, if one of the sequences

{
wi(t)

}∞
t=0 converges then

they all converge towards the same value. The rest of the paper is devoted to prove that this common
value is in fact a zero of ∇C, that is, a critical point.

To prove the result mentioned above, we will need the following assumption, which basically
states that the components ofw� are parted, for every time t but also asymptotically. This assumption
is similar in spirit to the main requirement of Theorem 4.

Assumption 11 One has

1. P{w�(t) ∈Dκ∗ }= 1, t ≥ 0.
2. P

{
liminft→∞ dist

(
w�(t),�Dκ∗

)
> 0

}
= 1, t ≥ 0.

4.4 Consistency of the DALVQ

In this subsection we state our main theorem on the consistency of the DALVQ. Its proof is based
on the asynchronous G-lemma, Theorem 10. The goal of the next proposition is to ensure that the
first assumption of Theorem 10 holds.

Proposition 3 Assume (AsY)1 or (AsY)2 holds and that Assumptions 1, 8 and 9 are satisfied then
ε�t > 0, t ≥ 0, ε�t −−→t→∞

0 and ∑∞
t=0 ε

�
t = ∞.

The second condition required in Theorem 10 deals with the convergence of the two series
defined by Equations (14) and (15). The next Proposition 4 provides sufficient condition for the
almost sure convergence of these series.

Proposition 4 Assume (AsY)1 or (AsY)2 holds and that Assumptions 1, 8, 10 and 11 are satisfied

then the series ∑∞
t=0ΔM

(1)
t and ∑∞

t=0ΔM
(2)
t converge almost surely in

(
Rd

)κ
.

This next proposition may be considered has the most important step in the proof of the conver-
gence of the DALVQ. It establishes the convergence of a series of the form ∑∞

t=0 εt+1 ‖∇C (w(t))‖2.
The analysis of the convergence of this type of series is standard for the analysis of stochastic gra-
dient method (see for instance Benveniste et al. 1990 and Bottou 1991). In our context, we pursue
the fruitful use of the agreement vector sequence, {w�(t)}∞t=0, and its related “steps”, {ε�t }∞t=0.

Note that under Assumption 11, we have h(w�(t)) = ∇C (w�(t)) for all t ≥ 0, almost surely,
therefore the sequence {∇C (w�(t))}∞t=0 below is well defined.
Proposition 5 Assume (AsY)1 or (AsY)2 holds and that Assumptions 1, 8, 10 and 11 are satisfied
then
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1. C (w�(t))−−→
t→∞

C∞, a.s.,

where C∞ is a [0,∞)-valued random variable,

2.
∞

∑
t=0

ε�t+1 ‖∇C (w�(t))‖2 < ∞, a.s. (19)

Remark that from the convergence of the series given by Equation (19) one can only deduce that
liminft→∞ ‖∇C (w�(t))‖= 0.

We are now in a position to state the main theorem of this paper, which expresses the conver-
gence of the distributed version towards some zero of the gradient of the distortion. In addition, the
convergence results (18) imply that if a version converges then all the versions converge towards
this value.

Theorem 12 (Asynchronous theorem) Assume (AsY)1 or (AsY)2 holds and that Assumptions 1,
8, 9, 10 and 11 are satisfied then

1. w∗(t)−wi(t)−−→
t→∞

0, i ∈ {1, . . . ,M}, a.s.,

2. wi(t)−wj(t)−−→
t→∞

0, (i, j) ∈ {1, . . . ,M}2, a.s.,

3. dist(w�(t),Ξ∞)−−→
t→∞

0, a.s.,

4. dist
(
wi,Ξ∞

)−−→
t→∞

0, i ∈ {1, . . . ,M}, a.s.,

where Ξ∞ is some random connected component of the set {∇C = 0}∩Gκ.

4.5 Annex

Sketch of the proof of asynchronous G-lemma 10. The proof is an adaptation of the one found by
Fort and Pagès, Theorem 4 in Fort and Pagès (1996). The recursive equation (16) satisfied by the
sequence {w�(t)}∞t=0 is similar to the iterations (2) in Fort and Pagès (1996), with the notation of
this paper:

Xt+1 = Xt − εt+1h
(
Xt
)
+ εt+1

(
ΔMt+1+ηt+1

)
, t ≥ 0.

Thus, similarly, we define a family of continuous time stepwise function {u �→ w̌(t,u)}∞t=1.

w̌� (0,u)� w�(s), if u ∈ [ε�1+ . . .+ ε�s ,ε
�
1+ . . .+ ε�s+1), u ∈ [0,∞).

and if u< ε�1, w̌
� (0,u) = w�(0).

w̌� (t,u)� w̌� (0,ε�1+ . . .+ ε�t +u) , t ≥ 1 and u ∈ [0,∞).

Hence, for every t ∈ N,

w̌�(t,u) = w̌�(0, t)−
∫ u

0
h(w̌�(t,v))dv+Ru(t), u ∈ [0,∞),
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where, for every t ≥ 1 and u ∈ [ε�1+ . . .+ ε�t+t ′ ,ε
�
1+ . . .+ ε�t+t ′+1),

Ru(t)�
∫ ε�1+...+ε�t +u

ε�t +...+ε�
t+t′

w̌�(0,v)dv+
t+t ′

∑
s=t+1

(
ΔM(1)

s +ΔM(2)
s

)
.

The only difference between the families of continuous time functions {w̌(t,u)}∞t=1 and
{
X (t)

}∞
t=1

defined in Fort and Pagès (1996) is the remainder term Ru(t). The convergence

sup
u∈[0,T ]

‖Ru(t)‖ −−→
t→∞

0, T > 0.

follows easily from the third assumption of Theorem 10. The rest of the proof follows similarly as
in Fort and Pagès (1996, Theorem 4).

Proof of Lemma 11 For all i ∈ {1, . . . ,M}, and all t ≥ 0, and all 1≤ �≤ κ, we may write

∥∥wi�(t)−w�
�(t)

∥∥
=

∥∥∥∥∥ M

∑
j=1

((
φi, j(t,−1)−φ j(−1))wj

�(0)+
t−1
∑
τ=0

(
φi, j(t,τ)−φ j(t)

)
s j�(τ)

)∥∥∥∥∥
(by Definition 9 and Lemma 7)

≤
M

∑
j=1

∣∣φi, j(t,−1)−φ j(−1)∣∣∥∥∥wj
�(0)

∥∥∥+ t−1
∑
τ=0

M

∑
j=1

∣∣φi, j(t,τ)−φ j(t)
∣∣∥∥∥s j�(τ)∥∥∥

≤ Aρt+1
M

∑
j=1

∥∥∥wj
�(0)

∥∥∥+A
t−1
∑
τ=0

M

∑
j=1

ρt−τ
∥∥∥s j�(τ)∥∥∥

(by Lemma 8).

Thus,

∥∥wi�(t)−w�
�(t)

∥∥
≤ Aρt+1

M

∑
j=1

∥∥∥wj
�(0)

∥∥∥+A
t−1
∑
τ=0

M

∑
j=1

ρt−τε jτ+11{τ∈T j}
∥∥∥H(z jτ+1,w

j(τ))�
∥∥∥

(by Equation (12))

≤ Aρt+1
M

∑
j=1

∥∥∥wj
�(0)

∥∥∥
+A

t−1
∑
τ=0

M

∑
j=1

ρt−τε jτ+11τ∈T j1{z jτ+1∈W�(wj(τ))}
∥∥∥wj

�(τ)− z jτ+1
∥∥∥ .
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Therefore, ∥∥wi�(t)−w�
�(t)

∥∥
≤ AM diam(G)ρt+1+Adiam(G)K2M

t−1
∑
τ=0

1
τ∨1ρ

t−τ

(because 0 ∈ G and by Assumptions 8 and 10)

≤ Adiam(G)K2M
t−1
∑
τ=−1

1
τ∨1ρ

t−τ.

Consequently, ∥∥w�(t)−wi(t)
∥∥

=

√
κ

∑
�=1

∥∥wi�(t)−w�
�(t)

∥∥2
≤√

κM diam(G)AK2
t−1
∑
τ=−1

1
τ∨1ρ

t−τ.

This proves the desired result.

Let us now introduce the following events: for any δ> 0 and t ≥ 0,
Atδ �

{
w�(τ) ∈ Gκ

δ , t ≥ τ≥ 0} .
Recall that the Gκ

δ is a compact subset of G
κ defined by Equality (4). The next lemma establishes

a detailed analysis of security regions for the parted components of the sequences {w�(t)}∞t=0 and{
wj(t)

}∞
t=0.

Lemma 13 Let Assumptions 8 and 10 hold. Then,

1. there exists an integer t1δ ≥ 1 such that
Atδ ⊂ At+1δ/2 , t ≥ t1δ .

Moreover,
w�(t) ∈ Gκ

δ ⇒ [w�(t),w�(t+1)]⊂ Gκ
δ/2, t ≥ t1δ .

2. There exists an integer t2δ ≥ 1 such that
w�(t) ∈ Gκ

δ ⇒ [w�(t),wi(t)]⊂ Gκ
δ/2, i ∈ {1, . . . ,M} and t ≥ t2δ .

Proof of Lemma 13 Proof of statement 1. The proof starts with the observation that under Assump-
tion 10 we have wj(t) ∈ Gκ, for all i ∈ {1, . . . ,M} and t ≥ 0. It follows that, for any 1≤ �≤ κ,∥∥∥H (

z jt+1,w
j(t)

)
�

∥∥∥≤ ∥∥∥z jt+1−wj
�(t)

∥∥∥
≤ diam(G).
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Let us now provide an upper bound on the norm of the differences between two consecutive
values of the agreement vector sequence. We may write, for all t ≥ 0 and all 1≤ �≤M,

‖w�
�(t+1)−w�

�(t)‖

=

∥∥∥∥∥ M

∑
j=1

φ j(t)s j�(t)

∥∥∥∥∥
≤

M

∑
j=1

φ j(t)
∥∥∥s j�(t)∥∥∥

≤
M

∑
j=1

ε jt+11{t∈T j}
∥∥∥H (

z jt+1,w
j(t)

)
�

∥∥∥
(by Equation (12) and statement 1. of Lemma 8)

≤ M diam(G)K2
t ∨1 (20)

(by Assumption 8).

Take t ≥ 4
δM diam(G)K2 and 1≤ k �= �≤M. Let α be a real number in the interval [0,1].

If w�(t) ∈ Gκ
δ then

‖(1−α)w�
�(t)+αw�

�(t+1)− (1−α)w�
k(t)−αw�

k(t+1)‖
= ‖w�

�(t)−w�
k(t)+α(w�

�(t+1)−w�
�(t))+α(w�

k(t)−w�
k(t+1))‖

≥ ‖w�
�(t)−w�

k(t)‖−‖α(w�
�(t+1)−w�

�(t))+α(w�
k(t)−w�

k(t+1))‖
≥ ‖w�

�(t)−w�
k(t)‖−α‖w�

�(t+1)−w�
�(t)‖−α‖w�

k(t)−w�
k(t+1)‖

≥ δ−2αδ
4

≥ δ/2.

This proves that the whole segment [w�(t),w�(t+1)] is contained in Gκ
δ/2.

Proof of statement 2. Take t ≥ 1 and 1≤ �≤M. If w�(t) ∈ Gκ
δ then by Lemma 11, there exists

t2δ such that ∥∥w�
�(t)−wi�(t)

∥∥≤ δ
4
, i ∈ {1, . . . ,M} and t ≥ t2δ .

Let k and � two distinct integers between 1 andM. For any t ≥ t2δ ,∥∥αwik(t)+(1−α)w�
k(t)−αwi�(t)− (1−α)w�

�(t)
∥∥

=
∥∥w�

k(t)−w�
�(t)+α(wik(t)−w�

k(t))+α(w�
�(t)−wi�(t))

∥∥
≥ ‖w�

k(t)−w�
�(t)‖−α

∥∥wik(t)−w�
k(t)

∥∥−α
∥∥w�

�(t)−wi�(t)
∥∥

≥ δ−2αδ
4

≥ δ/2.

This implies [w�(t),wi(t)]⊂ Gκ
δ/2, as desired.
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Proof of Proposition 3 By definition ε�t+1 equals ∑
M
j=11{t∈T j}φ j(t)ε

j
t+1, for all t ≥ 0 .

On the one hand, since the real number φ j(t) belongs to the interval [η,1] (by Lemma 8) ε�t+1 is
bounded from above by MK2

t∨1 using the right-hand side inequality of Assumption 8.
On the other hand, ε�t+1 is bounded from below by the nonnegative real number η

K1
t∨1 using the

left-hand side inequality of Assumption 8. Note also that as Assumption 9 holds, this real number
is a positive one. Therefore, it follows that

ε�t −−→t→∞
0

and
∞

∑
t=0

ε�t = ∞.

Proof of Proposition 4 Consistency of ∑∞
t=0ΔM

(1)
t . Let δ be a positive real number and let t ≥ t2δ ,

where t2δ is given by Lemma 19. We may write

1Atδ

M

∑
j=1

1{t∈T j}φ
j(t)ε jt+1

∥∥h(w�(t))−h
(
wj(t)

)∥∥
≤ 1{

[w�(t),wj(t)]⊂Gκ
δ/2

} M

∑
j=1

φ j(t)ε jt+1
∥∥∇C (w�(t))−∇C

(
wj(t)

)∥∥
(using statement 2. of Lemma 13 and the fact that ∇C = h on Dκ∗ )

≤ 1{
[w�(t),wj(t)]⊂Gκ

δ/2

}Pδ/2 M

∑
j=1

ε jt+1
∥∥w�(t)−wj(t)

∥∥
(by Lemma 2)

≤√
κdiam(G)AK22Pδ/2M

2θt
t

(by Lemma 11).

Thus, since ∑∞
t=0

θt
t < ∞, the series

∞

∑
t=0

1Atδ

M

∑
j=1

1{t∈T j}φ
j(t)ε jt+1

∥∥h(w�(t))−h
(
wj(t)

)∥∥
is almost surely convergent. Under Assumption 11, we have

P

{⋃
δ>0

⋂
t≥0

Atδ

}
= 1.

It follows that the series ∑∞
t=0ΔM

(1)
t converges almost surely in

(
Rd

)κ
.
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Consistency of ∑∞
t=0ΔM

(2)
t . The sequence of random variablesM(2)

t defined, for all t ≥ 0, by

M(2)
t �

t

∑
τ=0

ΔM(2)
τ

=
t

∑
τ=0

M

∑
j=1

1{τ∈T j}ε
j
τ+1φ

j(τ)
(
h
(
wj(τ)

)−H
(
z jτ+1,w

j(τ)
))

.

is a vector valued martingale with respect to the filtration {Ft}∞t=0. It turns out that this martin-
gale has square integrable increments. Precisely,

∞

∑
t=0

E

{∥∥∥M(2)
t+1−M(2)

t

∥∥∥2 ∣∣∣ Ft}=
∞

∑
t=1

E

{∥∥∥ΔM(2)
t

∥∥∥2 ∣∣∣ Ft}< ∞.

Indeed, for all j ∈ {1, . . . ,M} and t ≥ 1,

t

∑
τ=1

E

{∥∥∥1{τ∈T j}ε
j
τ+1

(
h
(
wj(τ)

)−H
(
z jτ+1(τ),w

j(τ)
))∥∥∥2 ∣∣ Fτ}

≤
t

∑
τ=1

(
ε jτ+1

)2
E

{∥∥∥h(wj(τ)
)−H

(
z jτ+1(τ),w

j(τ)
)∥∥∥2 ∣∣ Fτ}

≤ 2
t

∑
τ=1

(
ε jτ+1

)2
E

{∥∥h(wj(τ)
)∥∥2+∥∥∥H (

z jτ+1(τ),w
j(τ)

)∥∥∥2 ∣∣ Fτ}
≤ 4κdiam(G)2

t

∑
τ=1

(
ε jτ+1

)2
(using Assumption 10)

≤ 4κdiam(G)2K22
t

∑
τ=1

1
τ2
.

We conclude that the series ∑t≥1ΔM
(2)
t is almost surely convergent.

Proof of Proposition 5 Denote by 〈x,y〉 the canonical inner product of two vectors x,y ∈ Rd and
also, with a slight abuse of notation, the canonical inner product of two vectors x,y ∈ (

Rd
)κ
. Let δ

be a positive real number. Take any t ≥ max{t1δ , t2δ}, where t1δ and t2δ are defined as in Lemma 13.
One has,

1At+1δ
C (w�(t+1))≤ 1Atδ

C (w�(t+1)) .

(by definition At+1δ ⊂ Atδ)
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Consequently,

1At+1δ
C (w�(t+1))

≤ 1Atδ
C (w�(t))+1Atδ

〈∇C(w�(t)),w�(t+1)−w�(t)〉
+1{

[w�(t),w�(t+1)]⊂Gκ
δ/2

}

×
[

sup
z∈[w�(t),w�(t+1)]

{‖∇C(z)−∇C(w�(t))‖}‖w�(t+1)−w�(t)‖
]

≤ 1Atδ
C (w�(t))+1Atδ

〈∇C(w�(t)),w�(t+1)−w�(t)〉
+Pδ/2 ‖w�(t+1)−w�(t)‖2
(using Lemma 2.)

The first inequality above holds since the bounded increment formula above is valid by statement 1
of Lemma 13. Let us now bound separately the right hand side members of the second inequality.

Firstly, the next inequality holds by Inequality (20) provided in the proof of Lemma 13,

Pδ/2 ‖w�(t+1)−w�(t)‖2 ≤ κPδ/2

(
K2M diam(G)

t

)2
.

Secondly,

1Atδ
〈∇C(w�(t)),w�(t+1)−w�(t)〉

= 1Atδ
〈∇C(w�(t)),

M

∑
j=1

φ j(t)s j(t)〉

(by Equation (10))

= 1Atδ

M

∑
j=1

〈∇C(wj(t)),φ j(t)s j(t)〉

+1Atδ

M

∑
j=1

〈∇C(w�(t))−∇C(wj(t)),φ j(t)s j(t)〉.
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Thus,

1Atδ
〈∇C(w�(t)),w�(t+1)−w�(t)〉

≤ 1Atδ

M

∑
j=1

〈∇C(wj(t)),φ j(t)s j(t)〉

+1Atδ

M

∑
j=1

∣∣〈∇C(w�(t))−∇C(wj(t)),φ j(t)s j(t)〉∣∣
≤ 1Atδ

M

∑
j=1

〈∇C(wj(t)),φ j(t)s j(t)〉

+
M

∑
j=1

1Atδ

∥∥∇C(w�(t))−∇C(wj(t))
∥∥∥∥φ j(t)s j(t)∥∥

(using Cauchy-Schwarz inequality).

Therefore,

1Atδ
〈∇C(w�(t)),w�(t+1)−w�(t)〉

≤ 1Atδ

M

∑
j=1

〈∇C(wj(t)),φ j(t)s j(t)〉

+
M

∑
j=1

1{
[w�(t),wj(t)]⊂Gκ

δ/2

}∥∥∇C(w�(t))−∇C(wj(t))
∥∥∥∥φ j(t)s j(t)∥∥

(by statement 2 of Lemma 13)

≤ 1Atδ

M

∑
j=1

〈∇C(wj(t)),φ j(t)s j(t)〉

+Pδ/2
M

∑
j=1

∥∥w�(t)−wj(t)
∥∥∥∥φ j(t)s j(t)∥∥

(using Lemma 2)

1Atδ
〈∇C(w�(t)),w�(t+1)−w�(t)〉

≤ 1Atδ

M

∑
j=1

〈∇C(wj(t)),φ j(t)s j(t)〉

+Pδ/2AK
2
2κM

2 diam(G)2
θt
t

(using Lemma 11 and the upper bound (20)).
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Finally,

1At+1δ
C (w�(t+1))

≤ 1Atδ
C (w�(t))+1Atδ

M

∑
j=1

〈∇C(wj(t)),φ j(t)s j(t)〉

+Pδ/2AK
2
2κM

2 diam(G)2
θt
t

+κPδ/2

(
K2M diam(G)

t

)2
. (21)

Set

Ω1δ � Pδ/2AK
2
2κM

2 diam(G)2

and

Ω2δ � κPδ/2 (K2M diam(G))2 .

In the sequel, we shall need the following lemma.

Lemma 14 For all t ≥ max{t1δ , t2δ}, the quantity Wt below is a nonnegative supermartingale with
respect to the filtration {Ft}∞t=0:

Wt � 1Atδ
C (w�(t))+ηK1

t−1
∑
τ=0

1Aτδ

1
τ

M

∑
j=1

1{τ∈T j}
∥∥∇C(wj(τ)

)∥∥2
+Ω1δ

∞

∑
τ=t

θ(τ)
τ

+Ω2δ
∞

∑
τ=t

1
τ2
, t ≥ 1.
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Proof of Lemma 14 Indeed, using the upper bound provided by Equation (21),

E
{
1At+1δ

C (w�(t+1))
∣∣∣ Ft}

≤ 1Atδ
C (w�(t))+1Atδ

M

∑
j=1

E
{〈∇C(wj(t)),φ j(t)s j(t)〉 ∣∣ Ft}

+Ω1δ
1
t
θt +Ω2δ

1
t2

= 1Atδ
C (w�(t))

+1Atδ

M

∑
j=1

〈
∇C(wj(t)),E

{
−1{t∈T j}φ

j(t)ε jt+1H(z jt+1,w
j(t))〉

∣∣∣ Ft}〉
+Ω1δ

θt
t
+Ω2δ

1
t2

= 1Atδ
C (w�(t))

−1Atδ

M

∑
j=1

1{t∈T j}φ
j(t)ε jt+1

∥∥∇C(wj(t))
∥∥2+Ω1δ

θt
t
+Ω2δ

1
t2

≤ 1Atδ
C (w�(t))

− ηK1
t

1Atδ

M

∑
j=1

1{t∈T j}
∥∥∇C(wj(t))

∥∥2+Ω1δ
θt
t
+Ω2δ

1
t2
.

In the last inequality we used the fact that φ j(t)≥ η (Lemma 8) and ε jt+1 ≥ K1
t (Assumption 8).

It is straightforward to verify that, we haveWt−E{Wt+1|Ft} ≥ 0 which prove the desired result.

Proof of Proposition 5 (continued) Since {Wt}∞t=1 is a nonnegative supermartingale (by Lemma
14),Wt converges almost surely as t→ ∞ (see for instance Durrett 1990). Then, as ∑∞

τ=t
θ(τ)
τ −−→

t→∞
0

and ∑∞
τ=t

1
τ2 −−→t→∞

0, we have

1Atδ
C(w�(t))−−→

t→∞
C∞, a.s., (22)

where C∞ ∈ [0,∞) and, because the origin of the expression is increasing in t, the following series
converges

∞

∑
τ=0

1Aτδ

1
τ∨1

M

∑
j=1

1{τ∈T j}
∥∥∇C(wj(τ)

)∥∥2 < ∞, a.s. (23)

Proof of statement 1. Assumption 11 means that

P

{⋃
δ>0

⋂
t≥0

Atδ

}
= 1.

Statement 1 follows easily from the convergence (22).
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Proof of statement 2. The required convergence (19) is proven as follows. We have
t

∑
τ=0

ε�τ+11Aτδ ‖∇C (w�(τ))‖2

≤
t

∑
τ=0

M

∑
j=1

φ j(τ)1{τ∈T j}1Aτδε
j
τ+1 ‖∇C (w�(τ))‖2

(using Equality (13))

≤ 2K2
t

∑
τ=0

1Aτδ

1
τ∨1

M

∑
j=1

1{τ∈T j}
∥∥∇C(wj(τ)

)∥∥2
(using Assumption 9)

+2K2
t

∑
τ=0

1{
[w�(τ),wj(τ)]⊂Gκ

δ/2

} 1
τ∨1

M

∑
j=1

∥∥∇C(wj(τ)
)−∇C (w�(τ))

∥∥2
(using Assumption 9 and statement 2 of Lemma 13.)

Thus,
t

∑
τ=0

ε�τ+11Aτδ ‖∇C (w�(τ))‖2

≤ 2K2
t

∑
τ=0

1Aτδ

1
τ∨1

M

∑
j=1

1{τ∈T j}
∥∥∇C(wj(τ)

)∥∥2
+2K2P

2
δ/2

t

∑
τ=0

1{
[w�(τ),wj(τ)]⊂Gκ

δ/2

} 1
τ∨1

M

∑
j=1

∥∥wj(τ)−w�(τ)
∥∥2

(by Lemma 2).

Thus,
t

∑
τ=0

ε�τ+11Aτδ ‖∇C (w�(τ))‖2

≤ 2K2
t

∑
τ=0

1Aτδ

1
τ∨1

M

∑
j=1

1{τ∈T j}
∥∥∇C(wj(τ)

)∥∥2
+2P2δ/2K

3
2κM

3A2 diam(G)2
t

∑
τ=1

1
τ∨1θ

2
τ

(by Lemma 11).

Finally, using the convergence (23), one has
∞

∑
τ=0

ε�τ+11Aτδ ‖∇C (w�(τ))‖2 < ∞, a.s.,

and the conclusion follows from the fact that Assumption 11 implies

P

{⋃
δ>0

⋂
t≥0

Atδ

}
= 1.
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Proof of Theorem 12 The proof consists in verifying the assumptions of Theorem 10 with the
function Ĝ defined by Equation (5).

It has been outlined that Assumption 10 implies that w�(t) lie in the compact set Gκ, almost
surely, for all t ≥ 0. Consequently, in the definition of Ĝ(w�) the liminf symbol can be omitted. For
all z∈G and all t ≥ 0, we have ‖H(z,w�(t))‖≤√

κdiam(G), almost surely, whereas {h(w�(t))}∞t=0
satisfies

h(w�(t)) = E{H (z,w�(t)) | Ft} , t ≥ 0, a.s.
Thus, the sequences {w�(t)}∞t=0 and {h(w�(t))}∞t=0 are bounded almost surely.

Proposition 3, respectively Proposition 4, respectively Proposition 5 show that the first assump-
tion, respectively the third assumption, respectively the fourth assumption of Theorem 10 hold. This
concludes the proof of the theorem.

Justification of the statements (17). Recall that the definition of θ is provided in Lemma 11. Let
us remark that it is sufficient to analyse the behavior in t of the quantity ∑t−1τ=1ρ

t−τ/τ. Let ε> 0 then
for all t ≥ +1/ε,+1, we have

t−1
∑
τ=1

ρt−τ

τ

=
+1/ε,
∑
τ=1

ρt−τ

τ
+

t−1
∑

τ=+1/ε,+1

ρt−τ

τ

≤
+1/ε,
∑
τ=1

ρt−τ+ ε
t−1
∑

τ=+1/ε,+1
ρt−τ

≤ ρt−+1/ε,

1−ρ
+

ε
1−ρ

(using the fact that ρ ∈ (0,1)).

Consequently, for t sufficiently large we have

t−1
∑
τ=1

ρt−τ

τ
≤ 2ε
1−ρ

which proves the first claim.
The second claim follows the same technique by letting “ε= 1/

√
t”.

Thus, for t ≥ 1 we have
θt ≤ ρt−+

√
t,−1

1−ρ
+
1/
√
t

1−ρ
.

Finally, for T ≥ 1, it holds
T

∑
t=1

t−1
∑
τ=1

ρt−τ

τ
≤ 1
1−ρ

(
T

∑
t=1

ρn−+
√
n,−1+

T

∑
t=1

1

n3/2

)
.

The two partial sums in the above parenthesis have finite limits which prove the second statement.
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