
The Journal of Machine Learning Research
Volume 12
Print-Archive Edition

Pages 1149–2334

Microtome Publishing
Brookline, Massachusetts
www.mtome.com

The Journal of Machine Learning Research
Volume 12
Print-Archive Edition

The Journal of Machine Learning Research (JMLR) is an open
access journal. All articles published in JMLR are freely available
via electronic distribution. This Print-Archive Edition is published
annually as a means of archiving the contents of the journal in
perpetuity. The contents of this volume are articles published
electronically in JMLR in 2011.

JMLR is abstracted in ACM Computing Reviews, INSPEC, and
Psychological Abstracts/PsycINFO.

JMLR is a publication of Journal of Machine Learning Research,
Inc. For further information regarding JMLR, including open
access to articles, visit http://www.jmlr.org/.

JMLR Print-Archive Edition is a publication of Microtome
Publishing under agreement with Journal of Machine Learning
Research, Inc. For further information regarding the Print-Archive
Edition, including subscription and distribution information and
background on open-access print archiving, visit Microtome
Publishing at http://www.mtome.com/.

Collection copyright © 2011 The Journal of Machine Learning
Research, Inc. and Microtome Publishing. Copyright of individual
articles remains with their respective authors.

ISSN 1532-4435 (print)
ISSN 1533-7928 (online)

JMLR Editorial Board
Editor-in-Chief
Lawrence Saul, University of California, San Diego

Managing Editor
Aron Culotta, Southeastern Louisiana University

Production Editor
Rich Maclin, University of Minnesota, Duluth

JMLR Action Editors
Francis Bach, INRIA, France Mikhail Belkin, Ohio State University, USA Yoshua Bengio,

Université de Montréal, Canada David Blei, Princeton University, USA Léon Bottou, NEC Re-

search Institute, USA Germany Nicolò Cesa-Bianchi, Università degli Studi di Milano, Italy David
Maxwell Chickering, Microsoft Research, USA William W. Cohen, Carnegie-Mellon University,

USA Michael Collins, Massachusetts Institute of Technology, USA Corinna Cortes, Google, Inc.,

USA Sanjoy Dasgupta, University of California, San Diego, USA Peter Dayan, University Col-

lege, London, UK Rina Dechter, University of California, Irvine, USA Inderjit S. Dhillon, Uni-

versity of Texas, Austin, USA Luc De Raedt, Katholieke Universiteit Leuven, Belgium Charles
Elkan, University of California at San Diego, USA Yoav Freund, University of California at San

Diego, USA Kenji Fukumizu, The Institute of Statistical Mathematics, Japan Russ Greiner,

University of Alberta, Canada Isabelle Guyon, ClopiNet, USA Aapo Hyvärinen, University of

Helsinki, Finland Tommi Jaakkola, Massachusetts Institute of Technology, USA Tony Jebara,

Columbia University, USA Sathiya Keerthi, Yahoo! Research, USA Daphne Koller, Stanford

University, USA Athanasios Kottas, University of California, Santa Cruz, USA John Lafferty,

Carnegie Mellon University, USA Gert Lanckriet, University of California, San Diego, USA Neil
Lawrence, University of Manchester, UK Daniel Lee, University of Pennsylvania, USA Gábor Lu-
gosi, Pompeu Fabra University, Spain Sridhar Mahadevan, University of Massachusetts, Amherst,

USA Shie Mannor, McGill University, Canada and Technion, Israel Chris Meek, Microsoft Re-

search, USA Marina Meila, University of Washington, USA Mehryar Mohri, New York Uni-

versity, USA Manfred Opper, Technical University of Berlin, Germany Una-May O’Reilly,

Massachusetts Institute of Technology, USA Ronald Parr, Duke University, USA Joelle Pineau,

McGill University, Canada Saharon Rosset, IBM TJ Watson Research Center, USA John Shawe-
Taylor, Southampton University, UK Xiaotong Shen, University of Minnesota, USA Yoram
Singer, Google, Inc., USA Peter Spirtes, Carnegie Mellon University, USA Ingo Steinwart, Los

Alamos National Laboratory, USA Ben Taskar, University of Pennsylvania, USA Lyle Ungar,

University of Pennsylvania, USA Nicolas Vayatis, Ecole Normale Supérieure de Cachan, France

Ulrike von Luxburg, MPI for Biological Cybernetics, Germany Martin J. Wainwright, University

of California at Berkeley, USA Manfred Warmuth, University of California at Santa Cruz, USA

Stefan Wrobel, Fraunhofer IAIS and University of Bonn, Germany Bin Yu, University of California

at Berkeley, USA Tong Zhang, Rutgers University, USA Hui Zou, University of Minnesota, USA

JMLR-MLOSS Editors
Mikio L. Braun, Technical University of Berlin, Germany Geoffrey Holmes, University of Waikato,

New Zealand Cheng Soon Ong, MPI for Biological Cybernetics, Germany Sören Sonnenburg,

Fraunhofer FIRST, Germany

JMLR Editorial Board
Naoki Abe, IBM TJ Watson Research Center, USA Yasemin Altun, MPI for Biological Cybernet-

ics, Germany Jean-Yves Audibert, CERTIS, France Jonathan Baxter, Panscient Pty Ltd, Aus-

tralia Richard K. Belew, University of California at San Diego, USA Samy Bengio, Google,

Inc., USA Kristin Bennett, Rensselaer Polytechnic Institute, USA Christopher M. Bishop, Mi-

crosoft Research, UK Lashon Booker, The Mitre Corporation, USA Henrik Boström, Stockholm

University/KTH, Sweden Craig Boutilier, University of Toronto, Canada Koby Crammer, Uni-

versity of Pennsylvania, USA Nello Cristianini, UC Davis, USA Dennis DeCoste, Facebook,

USA Thomas Dietterich, Oregon State University, USA Jennifer Dy, Northeastern University,

USA Saso Dzeroski, Jozef Stefan Institute, Slovenia Douglas Fisher, Vanderbilt University, USA

Peter Flach, Bristol University, UK Dan Geiger, The Technion, Israel Claudio Gentile, Uni-

versità dell’Insubria, Italy Amir Globerson, The Hebrew University of Jerusalem, Israel Sally
Goldman, Washington University, St. Louis, USA Arthur Gretton, University College London,

UK Tom Griffiths, University of California at Berkeley, USA Carlos Guestrin, Carnegie Mellon

University, USA David Heckerman, Microsoft Research, USA Katherine Heller, University of

Cambridge, UK Larry Hunter, University of Colorado, USA Risi Kondor, University College

London, UK Erik Learned-Miller, University of Massachusetts, Amherst, USA Jure Leskovec,

Stanford University, USA Fei Fei Li, Stanford University, USA Yi Lin, University of Wisconsin,

USA Wei-Yin Loh, University of Wisconsin, USA Yishay Mansour, Tel-Aviv University, Israel

Jon McAuliffe, University of Pennsylvania, USA Andrew McCallum, University of Massachusetts,

Amherst, USA Tom Mitchell, Carnegie Mellon University, USA Raymond J. Mooney, University

of Texas, Austin, USA Klaus-Robert Muller, Technical University of Berlin, Germany Guillaume
Obozinski, INRIA, France Pascal Poupart, University of Waterloo, Canada Ben Recht, California

Institute of Technology, USA Cynthia Rudin, Massachusetts Institute of Technology, USA Robert
Schapire, Princeton University, USA Fei Sha, University of Southern California, USA Shai Shalev-
Shwartz, Toyota Technology Institute, USA Padhraic Smyth, University of California, Irvine, USA

Nathan Srebro, Toyota Technology Institute, USA Alexander Statnikov, New York University,

USA Richard Sutton, University of Alberta, Canada Csaba Szepesvari, University of Alberta,

Canada Yee Whye Teh, University College London, UK Jean-Philippe Vert, Mines ParisTech,

France Chris Watkins, Royal Holloway, University of London, UK Kilian Weinberger, Yahoo!

Research, USA Max Welling, University of California at Irvine, USA Chris Williams, University

of Edinburgh, UK

JMLR Advisory Board
Shun-Ichi Amari, RIKEN Brain Science Institute, Japan Andrew Barto, University of Massachusetts

at Amherst, USA Thomas Dietterich, Oregon State University, USA Jerome Friedman, Stanford

University, USA Stuart Geman, Brown University, USA Geoffrey Hinton, University of Toronto,

Canada Michael Jordan, University of California at Berkeley, USA Leslie Pack Kaelbling, Mas-

sachusetts Institute of Technology, USA Michael Kearns, University of Pennsylvania, USA Steven
Minton, University of Southern California, USA Thomas Mitchell, Carnegie Mellon University,

USA Stephen Muggleton, Imperial College London, UK Nils Nilsson, Stanford University, USA

Tomaso Poggio, Massachusetts Institute of Technology, USA Ross Quinlan, Rulequest Research

Pty Ltd, Australia Stuart Russell, University of California at Berkeley, USA Bernhard Schölkopf,
Max-Planck-Institut für Biologische Kybernetik, Germany Terrence Sejnowski, Salk Institute for

Biological Studies, USA Richard Sutton, University of Alberta, Canada Leslie Valiant, Harvard

University, USA Stefan Wrobel, Fraunhofer IAIS and University of Bonn, Germany

JMLR Web Master
Youngmin Cho, University of California, San Diego

Journal of Machine Learning Research
Volume 12, 2011

1 Exploitation of Machine Learning Techniques in Modelling Phrase Move-
ments for Machine Translation
Yizhao Ni, Craig Saunders, Sandor Szedmak, Mahesan Niranjan

31 Improved Moves for Truncated Convex Models
M. Pawan Kumar, Olga Veksler, Philip H.S. Torr

69 CARP: Software for Fishing Out Good Clustering Algorithms
Volodymyr Melnykov, Ranjan Maitra

75 Multitask Sparsity via Maximum Entropy Discrimination
Tony Jebara

111 Bayesian Generalized Kernel Mixed Models
Zhihua Zhang, Guang Dai, Michael I. Jordan

141 Training SVMs Without Offset
Ingo Steinwart, Don Hush, Clint Scovel

203 Logistic Stick-Breaking Process
Lu Ren, Lan Du, Lawrence Carin, David Dunson

241 Online Learning in Case of Unbounded Losses Using Follow the Per-
turbed Leader Algorithm
Vladimir V. V’yugin

267 A Bayesian Approximation Method for Online Ranking
Ruby C. Weng, Chih-Jen Lin

301 Cumulative Distribution Networks and the Derivative-sum-product Al-
gorithm: Models and Inference for Cumulative Distribution Functions
on Graphs
Jim C. Huang, Brendan J. Frey

349 Models of Cooperative Teaching and Learning
Sandra Zilles, Steffen Lange, Robert Holte, Martin Zinkevich

385 Operator Norm Convergence of Spectral Clustering on Level Sets
Bruno Pelletier, Pierre Pudlo

417 Approximate Marginals in Latent Gaussian Models
Botond Cseke, Tom Heskes

455 Posterior Sparsity in Unsupervised Dependency Parsing
Jennifer Gillenwater, Kuzman Ganchev, João Graça, Fernando Pereira, Ben
Taskar

491 Learning Multi-modal Similarity
Brian McFee, Gert Lanckriet

525 Minimum Description Length Penalization for Group and Multi-Task
Sparse Learning
Paramveer S. Dhillon, Dean Foster, Lyle H. Ungar

565 Variable Sparsity Kernel Learning
Jonathan Aflalo, Aharon Ben-Tal, Chiranjib Bhattacharyya, Jagarlapudi Saketha
Nath, Sankaran Raman

593 Regression on Fixed-Rank Positive Semidefinite Matrices: A Rieman-
nian Approach
Gilles Meyer, Silvère Bonnabel, Rodolphe Sepulchre

627 Parameter Screening and Optimisation for ILP using Designed Experi-
ments
Ashwin Srinivasan, Ganesh Ramakrishnan

663 Efficient Structure Learning of Bayesian Networks using Constraints
Cassio P. de Campos, Qiang Ji

691 Inverse Reinforcement Learning in Partially Observable Environments
Jaedeug Choi, Kee-Eung Kim

731 Information, Divergence and Risk for Binary Experiments
Mark D. Reid, Robert C. Williamson

819 Learning Transformation Models for Ranking and Survival Analysis
Vanya Van Belle, Kristiaan Pelckmans, Johan A. K. Suykens, Sabine Van Huf-
fel

863 Sparse Linear Identifiable Multivariate Modeling
Ricardo Henao, Ole Winther

907 Forest Density Estimation
Han Liu, Min Xu, Haijie Gu, Anupam Gupta, John Lafferty, Larry Wasserman

953 lp-Norm Multiple Kernel Learning
Marius Kloft, Ulf Brefeld, Sören Sonnenburg, Alexander Zien

999 Unsupervised Similarity-Based Risk Stratification for Cardiovascular Events
Using Long-Term Time-Series Data
Zeeshan Syed, John Guttag

1025 Two Distributed-State Models For Generating High-Dimensional Time
Series
Graham W. Taylor, Geoffrey E. Hinton, Sam T. Roweis

1069 Differentially Private Empirical Risk Minimization
Kamalika Chaudhuri, Claire Monteleoni, Anand D. Sarwate

1111 Anechoic Blind Source Separation Using Wigner Marginals
Lars Omlor, Martin A. Giese

1149 Laplacian Support Vector Machines Trained in the Primal
Stefano Melacci, Mikhail Belkin

1185 The Indian Buffet Process: An Introduction and Review
Thomas L. Griffiths, Zoubin Ghahramani

1225 DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian
Structural Equation Model
Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Aapo Hyvärinen, Yoshi-
nobu Kawahara, Takashi Washio, Patrik O. Hoyer, Kenneth Bollen

1249 Locally Defined Principal Curves and Surfaces
Umut Ozertem, Deniz Erdogmus

1287 Better Algorithms for Benign Bandits
Elad Hazan, Satyen Kale

1313 A Family of Simple Non-Parametric Kernel Learning Algorithms
Jinfeng Zhuang, Ivor W. Tsang, Steven C.H. Hoi

1349 Faster Algorithms for Max-Product Message-Passing
Julian J. McAuley, Tibério S. Caetano

1389 Clustering Algorithms for Chains
Antti Ukkonen

1425 Introduction to the Special Topic on Grammar Induction, Representa-
tion of Language and Language Learning
Dorota Głowacka, John Shawe-Taylor, Alex Clark, Colin de la Higuera, Mark
Johnson

1429 Learning a Robust Relevance Model for Search Using Kernel Methods
Wei Wu, Jun Xu, Hang Li, Satoshi Oyama

1459 Computationally Efficient Convolved Multiple Output Gaussian Processes
Mauricio A. Álvarez, Neil D. Lawrence

1501 Learning from Partial Labels
Timothee Cour, Ben Sapp, Ben Taskar

1537 Super-Linear Convergence of Dual Augmented Lagrangian Algorithm
for Sparsity Regularized Estimation
Ryota Tomioka, Taiji Suzuki, Masashi Sugiyama

1587 Double Updating Online Learning
Peilin Zhao, Steven C.H. Hoi, Rong Jin

1617 Learning High-Dimensional Markov Forest Distributions: Analysis of
Error Rates
Vincent Y.F. Tan, Animashree Anandkumar, Alan S. Willsky

1655 X-Armed Bandits
Sébastien Bubeck, Rémi Munos, Gilles Stoltz, Csaba Szepesvári

1697 Domain Decomposition Approach for Fast Gaussian Process Regression
of Large Spatial Data Sets
Chiwoo Park, Jianhua Z. Huang, Yu Ding

1729 A Bayesian Approach for Learning and Planning in Partially Observable
Markov Decision Processes
Stéphane Ross, Joelle Pineau, Brahim Chaib-draa, Pierre Kreitmann

1771 Learning Latent Tree Graphical Models
Myung Jin Choi, Vincent Y. F. Tan, Animashree Anandkumar, Alan S. Willsky

1813 Hyper-Sparse Optimal Aggregation
Stéphane Gaı̈ffas, Guillaume Lecué

1835 A Refined Margin Analysis for Boosting Algorithms via Equilibrium Mar-
gin
Liwei Wang, Masashi Sugiyama, Zhaoxiang Jing, Cheng Yang, Zhi-Hua Zhou,
Jufu Feng

1865 Stochastic Methods for l1-regularized Loss Minimization
Shai Shalev-Shwartz, Ambuj Tewari

1893 Internal Regret with Partial Monitoring: Calibration-Based Optimal Al-
gorithms
Vianney Perchet

1923 Dirichlet Process Mixtures of Generalized Linear Models
Lauren A. Hannah, David M. Blei, Warren B. Powell

1955 Kernel Regression in the Presence of Correlated Errors
Kris De Brabanter, Jos De Brabanter, Johan A.K. Suykens, Bart De Moor

1977 Generalized TD Learning
Tsuyoshi Ueno, Shin-ichi Maeda, Motoaki Kawanabe, Shin Ishii

2021 The arules R-Package Ecosystem: Analyzing Interesting Patterns from
Large Transaction Data Sets
Michael Hahsler, Sudheer Chelluboina, Kurt Hornik, Christian Buchta

2027 A Cure for Variance Inflation in High Dimensional Kernel Principal Com-
ponent Analysis
Trine Julie Abrahamsen, Lars Kai Hansen

2045 Exploiting Best-Match Equations for Efficient Reinforcement Learning
Harm van Seijen, Shimon Whiteson, Hado van Hasselt, Marco Wiering

2095 Information Rates of Nonparametric Gaussian Process Methods
Aad van der Vaart, Harry van Zanten

2121 Adaptive Subgradient Methods for Online Learning and Stochastic Op-
timization
John Duchi, Elad Hazan, Yoram Singer

2161 On the Relation between Realizable and Nonrealizable Cases of the Se-
quence Prediction Problem
Daniil Ryabko

2181 Discriminative Learning of Bayesian Networks via Factorized Condi-
tional Log-Likelihood
Alexandra M. Carvalho, Teemu Roos, Arlindo L. Oliveira, Petri Myllymäki

2211 Multiple Kernel Learning Algorithms
Mehmet Gönen, Ethem Alpaydın

2269 Smoothness, Disagreement Coefficient, and the Label Complexity of Ag-
nostic Active Learning
Liwei Wang

2293 MSVMpack: A Multi-Class Support Vector Machine Package
Fabien Lauer, Yann Guermeur

2297 Proximal Methods for Hierarchical Sparse Coding
Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, Francis Bach

2335 Producing Power-Law Distributions and Damping Word Frequencies with
Two-Stage Language Models
Sharon Goldwater, Thomas L. Griffiths, Mark Johnson

2383 Waffles: A Machine Learning Toolkit
Michael Gashler

2389 Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur, Kenji Fukumizu, Gert R.G. Lanckriet

2411 MULAN: A Java Library for Multi-Label Learning
Grigorios Tsoumakas, Eleftherios Spyromitros-Xioufis, Jozef Vilcek, Ioannis
Vlahavas

2415 Union Support Recovery in Multi-task Learning
Mladen Kolar, John Lafferty, Larry Wasserman

2437 Parallel Algorithm for Learning Optimal Bayesian Network Structure
Yoshinori Tamada, Seiya Imoto, Satoru Miyano

2461 Distance Dependent Chinese Restaurant Processes
David M. Blei, Peter I. Frazier

2489 LPmade: Link Prediction Made Easy
Ryan N. Lichtenwalter, Nitesh V. Chawla

2493 Natural Language Processing (Almost) from Scratch
Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
Pavel Kuksa

2539 Weisfeiler-Lehman Graph Kernels
Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
Karsten M. Borgwardt

2563 Kernel Analysis of Deep Networks
Grégoire Montavon, Mikio L. Braun, Klaus-Robert Müller

2583 Theoretical Analysis of Bayesian Matrix Factorization
Shinichi Nakajima, Masashi Sugiyama

2649 Bayesian Co-Training
Shipeng Yu, Balaji Krishnapuram, Rómer Rosales, R. Bharat Rao

2681 Convex and Network Flow Optimization for Structured Sparsity
Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, Francis Bach

2721 Large Margin Hierarchical Classification with Mutually Exclusive Class
Membership
Huixin Wang, Xiaotong Shen, Wei Pan

2749 Non-Parametric Estimation of Topic Hierarchies from Texts with Hier-
archical Dirichlet Processes
Elias Zavitsanos, Georgios Paliouras, George A. Vouros

2777 Structured Variable Selection with Sparsity-Inducing Norms
Rodolphe Jenatton, Jean-Yves Audibert, Francis Bach

2825 Scikit-learn: Machine Learning in Python
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Courna-
peau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay

2831 Neyman-Pearson Classification, Convexity and Stochastic Constraints
Philippe Rigollet, Xin Tong

2857 Efficient Learning with Partially Observed Attributes
Nicolò Cesa-Bianchi, Shai Shalev-Shwartz, Ohad Shamir

2879 Convergence Rates of Efficient Global Optimization Algorithms
Adam D. Bull

2905 On Equivalence Relationships Between Classification and Ranking Al-
gorithms
Şeyda Ertekin, Cynthia Rudin

2931 Hierarchical Knowledge Gradient for Sequential Sampling
Martijn R.K. Mes, Warren B. Powell, Peter I. Frazier

2975 High-dimensional Covariance Estimation Based On Gaussian Graphical
Models
Shuheng Zhou, Philipp Rütimann, Min Xu, Peter Bühlmann

3027 Robust Approximate Bilinear Programming for Value Function Approx-
imation
Marek Petrik, Shlomo Zilberstein

3065 The Stationary Subspace Analysis Toolbox
Jan Saputra Müller, Paul von Bünau, Frank C. Meinecke, Franz J. Király,
Klaus-Robert Müller

3071 In All Likelihood, Deep Belief Is Not Enough
Lucas Theis, Sebastian Gerwinn, Fabian Sinz, Matthias Bethge

3097 Efficient and Effective Visual Codebook Generation Using Additive Ker-
nels
Jianxin Wu, Wei-Chian Tan, James M. Rehg

3119 Unsupervised Supervised Learning II: Margin-Based Classification With-
out Labels
Krishnakumar Balasubramanian, Pinar Donmez, Guy Lebanon

3147 Adaptive Exact Inference in Graphical Models
¨ Ozgür Sümer, Umut A. Acar, Alexander T. Ihler, Ramgopal R. Mettu

3187 Group Lasso Estimation of High-dimensional Covariance Matrices
Jérémie Bigot, Rolando J. Biscay, Jean-Michel Loubes, Lillian Muñiz-Alvarez

3227 Robust Gaussian Process Regression with a Student-t Likelihood
Pasi Jylänki, Jarno Vanhatalo, Aki Vehtari

3259 The Sample Complexity of Dictionary Learning
Daniel Vainsencher, Shie Mannor, Alfred M. Bruckstein

3283 An Asymptotic Behaviour of the Marginal Likelihood for General Markov
Models
Piotr Zwiernik

3311 Semi-Supervised Learning with Measure Propagation
Amarnag Subramanya, Jeff Bilmes

3371 Learning with Structured Sparsity
Junzhou Huang, Tong Zhang, Dimitris Metaxas

3413 A Simpler Approach to Matrix Completion
Benjamin Recht

3431 Convergence of Distributed Asynchronous Learning Vector Quantiza-
tion Algorithms
Benoı̂t Patra

Journal of Machine Learning Research 12 (2011) 1149-1184 Submitted 10/09; Revised 2/10; Published 3/11

Laplacian Support Vector Machines Trained in the Primal

Stefano Melacci MELA@DII.UNISI.IT
Department of Information Engineering
University of Siena
Siena, 53100, ITALY

Mikhail Belkin MBELKIN@CSE.OHIO-STATE.EDU
Department of Computer Science and Engineering
Ohio State University
Columbus, OH 43210, USA

Editor: Sathiya Keerthi

Abstract

In the last few years, due to the growing ubiquity of unlabeled data, much effort has been spent by
the machine learning community to develop better understanding and improve the quality of classi-
fiers exploiting unlabeled data. Following the manifold regularization approach, Laplacian Support
Vector Machines (LapSVMs) have shown the state of the art performance in semi-supervised clas-
sification. In this paper we present two strategies to solve the primal LapSVM problem, in order
to overcome some issues of the original dual formulation. In particular, training a LapSVM in the
primal can be efficiently performed with preconditioned conjugate gradient. We speed up training
by using an early stopping strategy based on the prediction on unlabeled data or, if available, on
labeled validation examples. This allows the algorithm to quickly compute approximate solutions
with roughly the same classification accuracy as the optimal ones, considerably reducing the train-
ing time. The computational complexity of the training algorithm is reduced fromO(n3) to O(kn2),
where n is the combined number of labeled and unlabeled examples and k is empirically evaluated
to be significantly smaller than n. Due to its simplicity, training LapSVM in the primal can be the
starting point for additional enhancements of the original LapSVM formulation, such as those for
dealing with large data sets. We present an extensive experimental evaluation on real world data
showing the benefits of the proposed approach.

Keywords: Laplacian support vector machines, manifold regularization, semi-supervised learn-
ing, classification, optimization

1. Introduction

In semi-supervised learning one estimates a target classification/regression function from a few
labeled examples together with a large collection of unlabeled data. In the last few years there
has been a growing interest in the semi-supervised learning in the scientific community. Many
algorithms for exploiting unlabeled data in order to enhance the quality of classifiers have been
recently proposed, see, for example, Chapelle et al. (2006) and Zhu and Goldberg (2009). The
general principle underlying semi-supervised learning is that the marginal distribution, which can
be estimated from unlabeled data alone, may suggest a suitable way to adjust the target function.
The two commons assumption on such distribution that, explicitly or implicitly, are made by many
of semi-supervised learning algorithms are the cluster assumption (Chapelle et al., 2003) and the

c©2011 Stefano Melacci and Mikhail Belkin.

MELACCI AND BELKIN

manifold assumption (Belkin et al., 2006). The cluster assumption states that two points are likely
to have the same class label if they can be connected by a curve through a high density region.
Consequently, the separation boundary between classes should lie in the lower density region of
the space. For example, this intuition underlies the Transductive Support Vector Machines (Vapnik,
2000) and its different implementations, such as TSVM (Joachims, 1999) or S3VM (Demiriz and
Bennett, 2000; Chapelle et al., 2008). The manifold assumption states that the marginal probability
distribution underlying the data is supported on or near a low-dimensional manifold, and that the
target function should change smoothly along the tangent direction. Many graph based methods
have been proposed in this direction, but the most of them only perform transductive inference
(Joachims, 2003; Belkin and Niyogi, 2003; Zhu et al., 2003), that is classify the unlabeled data
given in training. Laplacian Support Vector Machines (LapSVMs) (Belkin et al., 2006) provide
a natural out-of-sample extension, so that they can classify data that becomes available after the
training process, without having to retrain the classifier or resort to various heuristics.

In this paper, we focus on the LapSVM algorithm, that has been shown to achieve state of the
art performance in semi-supervised classification. The original approach used to train LapSVM
in Belkin et al. (2006) is based on the dual formulation of the problem, in a traditional SVM-like
fashion. This dual problem is defined on a number of dual variables equal to l, the number of
labeled points. If the total number of labeled and unlabeled points is n, the relationship between the
l variables and the final n coefficients is given by a linear system of n equations and variables. The
overall cost of the process is O(n3).

Motivated by the recent interest in solving the SVM problem in the primal (Keerthi and DeCoste,
2005; Joachims, 2006; Chapelle, 2007; Shalev-Shwartz et al., 2007), we present a solution to the
primal LapSVM problem that can significantly reduce training times and overcome some issues of
the original training algorithm. Specifically, the contributions of this paper are the following:

1. We propose two methods for solving the LapSVM problem in the primal form (not limited
to the linear case), following the ideas presented by Chapelle (2007) for SVMs and pointing
out some important differences resulting from an additional regularization term. Our Matlab
library can be downloaded from:
http://sourceforge.net/projects/lapsvmp/

First, we show how to solve the problem using the Newton’s method and compare the result
with the supervised (SVM) case. Interestingly, it turns out that the advantages of the Newton’s
method for the SVM problem are lost in LapSVM due to the intrinsic norm regularizer, and
the complexity of this solution is still O(n3), same as in the original dual formulation.

The second method is preconditioned conjugate gradient, which seems better suited to the
LapSVM optimization problem. We see that preconditioning by the kernel matrix comes at
no additional cost, and each iteration has complexity O(n2). Empirically, we establish that
only a small number of iterations is necessary for convergence. Complexity can be further
reduced if the kernel matrix is sparse, increasing the scalability of the algorithm.

2. We note that the quality of an approximate solution of the traditional dual form and the re-
sulting approximation of the target optimal function are hard to relate due to the change of
variables when passing to the dual problem. Training LapSVMs in the primal overcomes this
issue, and it allows us to directly compute approximate solutions by controlling the number
of conjugate gradient iterations.

1150

LAPLACIAN SVMS TRAINED IN THE PRIMAL

3. An approximation of the target function with roughly the same classification accuracy as the
optimal one can be achieved with a small number of iterations due to the influence of the
intrinsic norm regularizer of LapSVMs on the training process. We investigate those effects,
showing that they make common stopping conditions for iterative gradient based algorithms
hard to tune, often leading to either a premature stopping of the iteration or to a large amount
of unnecessary iterations, which do not improve classification accuracy. Instead we suggest a
criterion dependent on the output of the classifier on the training data for terminating the iter-
ation of our algorithm. This criterion exploits the stability of the prediction on the unlabeled
data, or the classification accuracy on validation data (if available). A number of experiments
on several data sets support these types of criteria, showing that accuracy similar to that of
the optimal solution can be obtained in significantly reduced training time.

4. The primal solution of the LapSVM problem is based on an L2 hinge loss, that establishes
a direct connection to the Laplacian Regularized Least Square Classifier (LapRLSC) (Belkin
et al., 2006). We discuss the similarities between primal LapSVM and LapRLSC and we
show that the proposed fast solution can be straightforwardly applied to LapRLSC.

The rest of the paper is organized as follows. In Section 2 we recall the basic approach of
manifold regularization. Section 2.1 describes the LapSVM algorithm in its original formulation
while in Section 3 we discuss in detail the proposed solutions in the primal form. The quality of
an approximate solution and the data based early stopping criterion are discussed in Section 4. In
Section 5 a parallel with the primal solution of LapSVM and the solution for LapRLSC (Regularized
Least Squares) is drawn, describing some possible future work. An extensive experimental analysis
is presented in Section 6, and, finally, Section 7 concludes the paper.

2. Manifold Regularization

First, we introduce some notation that will be used in this section and in the rest of the paper. We
take n= l+u to be the number of m dimensional training examples xi ∈ X ⊂ IRm, collected in S =
{xi, i = 1, . . . ,n}. Examples are ordered so that the first l ones are labeled, with label yi ∈ {−1,1},
and the remaining u points are unlabeled. We put S = L ∪U, where L = {(xi,yi), i = 1, . . . , l}
is the labeled data set and U = {xi, i = l+ 1, . . . ,n} is the unlabeled data set. Labeled examples
are generated accordingly to the distribution P on X × IR, whereas unlabeled examples are drawn
according to the marginal distribution PX of P. Labels are obtained from the conditional probability
distribution P(y|x). L is the graph Laplacian associated to S , given by L = D−W , where W is
the adjacency matrix of the data graph (the entry in position i, j is indicated with wi j) and D is
the diagonal matrix with the degree of each node (i.e., the element dii from D is dii = ∑n

j=1wi j).

Laplacian can be expressed in the normalized form, L = D− 1
2LD− 1

2 , and iterated to a degree p
greater that one. By K ∈ IRn,n we denote the Gram matrix associated to the n points of S and the
i, j-th entry of such matrix is the evaluation of the kernel function k(xi,x j), k : X ×X → IR. The
unknown target function that the learning algorithm must estimate is indicated with f : X → IR,
where f is the vector of the n values of f on training data, f = [f (xi),xi ∈ S]T . In a classification
problem, the decision function that discriminates between classes is indicated with y(x) = g(f (x)),
where we overloaded the use of y to denote such function.

Manifold regularization approach (Belkin et al., 2006) exploits the geometry of the marginal
distribution PX . The support of the probability distribution of data is assumed to have the geometric

1151

MELACCI AND BELKIN

structure of a Riemannian manifold M . The labels of two points that are close in the intrinsic
geometry of PX (i.e., with respect to geodesic distances on M) should be the same or similar in
sense that the conditional probability distribution P(y|x) should change little between two such
points. This constraint is enforced in the learning process by an intrinsic regularizer ‖ f‖2I that is
empirically estimated from the point cloud of labeled and unlabeled data using the graph Laplacian
associated to them, sinceM is truly unknown. In particular, choosing exponential weights for the
adjacency matrix leads to convergence of the graph Laplacian to the Laplace-Beltrami operator on
the manifold (Belkin and Niyogi, 2008). As a result, we have

‖ f‖2I =
n

∑
i=1

n

∑
j=i

wi j(f (xi)− f (x j))
2 = f T L f . (1)

Consider that, in general, several natural choices of ‖‖I exist (Belkin et al., 2006).
In the established regularization framework for function learning, given a kernel function k(·, ·),

its associated Reproducing Kernel Hilbert Space (RKHS) Hk of functions X → IR with correspond-
ing norm ‖‖A, we estimate the target function by minimizing

f ∗ = argmin
f∈Hk

l

∑
i=1

V (xi,yi, f)+ γA‖ f‖2A+ γI‖ f‖2I (2)

where V is some loss function and γA is the weight of the norm of the function in the RKHS (or
ambient norm), that enforces a smoothness condition on the possible solutions, and γI is the weight
of the norm of the function in the low dimensional manifold (or intrinsic norm), that enforces
smoothness along the sampled M . For simplicity, we removed every normalization factor of the
weights of each term in the summation. The ambient regularizer makes the problem well-posed,
and its presence can be really helpful from a practical point of view when the manifold assumption
holds at a lesser degree.

It has been shown in Belkin et al. (2006) that f ∗ admits an expansion in terms of the n points of
S ,

f ∗(x) =
n

∑
i=1

α∗
i k(xi,x). (3)

The decision function that discriminates between class +1 and −1 is y(x) = sign(f ∗(x)). Figure 1
shows the effect of the intrinsic regularizer on the “clock” toy data set. The supervised approach
defines the classification hyperplane just by considering the two labeled examples, and it does not
benefit from unlabeled data (Figure 1(b)). With manifold regularization, the classification appears
more natural with respect to the geometry of the marginal distribution (Figure 1(c)).

The intrinsic norm of Equation 1 actually performs a transduction along the manifold that en-
forces the values of f in nearby points with respect to geodesic distances on M to be the “same”.
From a merely practical point of view, the intrinsic regularizer can be excessively strict in some
situations. Since the decision function y(x) relies only on the sign of the target function f (x), if
f has the same sign on nearby points along M then the graph transduction is actually complete.
Requiring that f assumes exactly the same value on a pair of nearby points could be considered as
over constraining the problem. We will use this consideration in Section 4 to early stop the training
algorithm.

This intuition is closely related to some recently proposed alternative formulations of the prob-
lem of Equation 2. In Tsang and Kwok (2006) the intrinsic regularizer is based on the ε-insensitive

1152

LAPLACIAN SVMS TRAINED IN THE PRIMAL

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(a)
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(b)
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(c)

Figure 1: (a) The two class “clock” data set. One class is the circular border of the clock, the
other one is the hour/minute hands. A large set of unlabeled examples (black squares)
and only one labeled example per class (red diamond, blue circle) are selected. - (b) The
result of a maximummargin supervised classification - (c) The result of a semi-supervised
classification with intrinsic norm from manifold regularization.

loss and the problem is mapped to a Minimal Enclosing Ball (MEB) formulation. Differently, the
Manifold Co-Regularization (MCR) framework (Sindhwani and Rosenberg, 2008) has been intro-
duced to overcome the degeneration of the intrinsic regularizer to the ambient one in some restricted
function spaces where it is not able to model some underlying geometries of the given data. MCR
is based on multi-view learning, and it has been shown that it corresponds to adding some extra
slack variables in the objective function of Equation 2 to better fit the intrinsic regularizer. Simi-
larly, Abernethy et al. (2008) use a slack based formulation to improve the flexibility of the graph
regularizer of their spam detector.

2.1 Laplacian Support Vector Machines

LapSVMs follow the principles behind manifold regularization (Equation 2), where the loss func-
tion V (x,y, f) is the linear hinge loss (Vapnik, 2000), or L1 loss. The interesting property of such
function is that well classified labeled examples are not penalized by V (x,y, f), independently by
the value of f .

In order to train a LapSVM classifier, the following problem must be solved

min
f∈Hk

l

∑
i=1

max(1− yi f (xi),0)+ γA‖ f‖2A+ γI‖ f‖2I . (4)

The function f (x) admits the expansion of Equation 3, where an unregularized bias term b can be
added as in many SVM formulations.

The solution of LapSVM problem proposed by Belkin et al. (2006) is based on the dual form. By
introducing the slack variables ξi, the unconstrained primal problem can be written as a constrained
one,

minα∈IRn
,ξ∈IRl ∑l

i=1 ξi+ γAαTKα+ γIαTKLKα

subject to: yi(∑n
j=1αik(xi,x j)+b)≥ 1−ξi, i= 1, . . . , l

ξi ≥ 0, i= 1, . . . , l.

1153

MELACCI AND BELKIN

After the introduction of two sets of n multipliers β, ς, the Lagrangian Lg associated to the
problem is

Lg(α,ξ,b,β,ς) =
l

∑
i=1

ξi+
1
2
αT (2γAK+2γIKLK)α−

−
l

∑
i=1

βi(yi(
n

∑
j=1

αik(xi,x j)+b)−1+ξi)−
l

∑
i=1

ςiξi.

In order to recover the dual representation we need to set

∂Lg
∂b

= 0 =⇒
l

∑
i=1

βiyi = 0,

∂Lg
∂ξi

= 0 =⇒ 1−βi− ςi = 0 =⇒ 0≤ βi ≤ 1,

where the bounds on βi consider that βi,ςi ≥ 0, since they are Lagrange multipliers. Using the
above identities, we can rewrite the Lagrangian as a function of α and β only. Assuming (as stated
in Section 2) that the points in S are ordered such that the first l are labeled and the remaining u
are unlabeled, we define with JL ∈ IRl,n the matrix [I 0] where I ∈ IRl,l is the identity matrix and
0 ∈ IRl,u is a rectangular matrix with all zeros. Moreover, Y ∈ IRl,l is a diagonal matrix composed
by the labels yi, i= 1, . . . , l. The Lagrangian becomes

Lg(α,β) =
1
2
αT (2γAK+2γIKLK)α−

l

∑
i=1

βi(yi(
n

∑
j=1

αik(xi,x j)+b)−1) =

=
1
2
αT (2γAK+2γIKLK)α−αTKJTLYβ+

l

∑
i=1

βi.

Setting to zero the derivative with respect to α establishes a direct relationships between the β
coefficients and the α ones,

∂Lg
∂α

= 0 =⇒ (2γAK+2γIKLK)α−KJTLYβ= 0

=⇒ α= (2γAI+2γIKL)−1JTLYβ. (5)

After substituting back in the Lagrangian expression, we get the dual problem whose solution
leads to the optimal β∗, that is

maxβ∈IRl ∑l
i=1βi− 1

2β
TQβ

subject to: ∑l
i=1βiyi = 0

0≤ βi ≤ 1, i= 1, . . . , l

where
Q= YJLK(2γAI+2γIKL)

−1JTLY. (6)

1154

LAPLACIAN SVMS TRAINED IN THE PRIMAL

Training the LapSVM classifier requires to optimize this l variable problem, for example using
a standard quadratic SVM solver, and then to solve the linear system of n equations and n variables
of Equation 5 in order to get the coefficients α∗ that define the target function f ∗.

The overall complexity of this solution is O(n3), due to the matrix inversion of Equation 5 (and
6). Even if the l coefficients β∗ are sparse, since they come from a SVM-like dual problem, the
expansion of f ∗ will generally involves all n coefficients α∗.

3. Training in the Primal

In this section we analyze the optimization of the primal form of the non linear LapSVM problem,
following the growing interest in training SVMs in the primal of the last few years (Keerthi and
DeCoste, 2005; Joachims, 2006; Chapelle, 2007; Shalev-Shwartz et al., 2007). Primal optimization
of a SVM has strong similarities with the dual strategy (Chapelle, 2007), and its implementation
does not require any particularly complex optimization libraries. The focus of researchers has been
mainly on the solution of the linear SVM primal problem, showing how it can be solved fast and
efficiently. In the Modified Finite Newton method of Keerthi and DeCoste (2005) the SVM problem
is optimized in the primal by a numerically robust conjugate gradient technique that implements the
Newton iterations. In the works of Joachims (2006) and Shalev-Shwartz et al. (2007) a cutting
plane algorithm and a stochastic gradient descent are exploited, respectively. Most of the existing
results can be directly extended to the non linear case by reparametrizing the linear output function
f (x) = 〈w,x〉+b with w= ∑l

i=1αixi and introducing the Gram matrix K. However this may result
in a loss of efficiency. Other authors (Chapelle, 2007; Keerthi et al., 2006) investigated efficient
solutions for the non linear SVM case.

Primal and dual optimization are two ways different of solving the same problem, neither of
which can in general be considered a “better” approach. Therefore why should a solution of the
primal problem be useful in the case of LapSVM? There are three primary reasons why such a
solution may be preferable. First, it allows us to efficiently solve the original problem without the
need of the computations related to the variable switching. Second, it allows us to very quickly
compute good approximate solutions, while the exact relation between approximate solutions of the
dual and original problems may be involved. Third, since it allows us to directly “manipulate” the α
coefficients of f without passing through the β ones, greedy techniques for incremental building of
the LapSVM classifier are easier to manage (Sindhwani, 2007). We believe that studying the primal
LapSVM problem is the basis for future investigations and improvements of this classifier.

We rewrite the primal LapSVM problem of Equation 4 by considering the representation of f
of Equation 3, the intrinsic regularizer of Equation 1, and by indicating with ki the i-th column of
the matrix K and with 1 the vector of n elements equal to 1:

min
α∈IRn

,b∈IR

l

∑
i=1

V (xi,yi,k
T
i α+b)+ γAα

TKα+ γI(α
TK+1T b)L(Kα+1b).

For completeness, we included the bias b in the expansion of f . Here and in all the following
derivations, L can be interchangeably used in its normalized or unnormalized version.

We use the squared hinge loss, or L2 loss, for the labeled examples. The differentiability of such
function and its properties have been investigated in Mangasarian (2002) and applied to kernel clas-
sifiers. Afterwards, it was also exploited by Keerthi and DeCoste (2005) and Chapelle (2007). L2
loss makes the LapSVM problem continuous and differentiable in f and so in α. The optimization

1155

MELACCI AND BELKIN

problem after adding the scaling constant 12 becomes

min
α∈IRn

,b∈IR
1
2
(
l

∑
i=1

max(1− yi(k
T
i α+b),0)2+ γAα

TKα+ γI(α
TK+1T b)L(Kα+1b)). (7)

We solved such convex problem by Newton’s method and by preconditioned conjugate gradient,
comparing their complexities and the complexity of the original LapSVM solution, and showing a
parallel with the SVM case. The two solution strategies are analyzed in the following Subsections,
while a large set of experimental results are collected in Section 6.

3.1 Newton’s Method

The problem of Equation 7 is piecewise quadratic and the Newton’s method appears a natural choice
for an efficient minimization, since it builds a quadratic approximation of the function. After indi-
cating with z the vector z= [b,αT]T , each Newton’s step consists of the following update

zt = zt−1− sH−1∇ (8)

where t is the iteration number, s is the step size, and ∇ and H are the gradient and the Hessian
of Equation 7 with respect to z. We will use the symbols ∇α and ∇b to indicate the gradient with
respect to α and to b.

Before continuing, we introduce the further concept of error vectors (Chapelle, 2007). The set
of error vectors E is the subset of L with the points that generate a L2 hinge loss value greater
than zero. The classifier does not penalize all the remaining labeled points, since the f function
on that points produces outputs with the same sign of the corresponding label and with absolute
value greater then or equal to it. In the classic SVM framework, error vectors correspond to support
vectors at the optimal solution. In the case of LapSVM, all points are support vectors in the sense
that they all generally contribute to the expansion of f .

We have

∇=

[
∇b

∇α

]
=

(
1T IE (Kα+1b)−1IEy+ γI1TL(Kα+1b)

KIE (Kα+1b)−KIEy+ γAKα+ γIKL(Kα+1b)

)
(9)

where y ∈ {−1,0,1}n is the vector that collects the l labels yi of the labeled training points and a set
of u zeros. The matrix IE ∈ IRn,n is a diagonal matrix where the only elements different from 0 (and
equal to 1) along the main diagonal are in positions corresponding to points of S that belong to E
at the current iteration. Note that if the graph Laplacian is not normalized, we have 1TL = 0T and,
equivalently, L1= 0.

The Hessian H is

H =

(
∇2b ∇b(∇α)

∇α(∇b) ∇2α

)
=

(
1T IE1+ γI1TL1 1T IEK+ γI1TLK
KIE1+ γIKL1 KIEK+ γAK+ γIKLK

)
=

=

(−γA 1T

0 K

)(
0 1T

IE1+ γIL1 IEK+ γAI+ γILK

)
.

Note that the criterion function of Equation 7 is not twice differentiable everywhere, so that H is
the generalized Hessian where the subdifferential in the breakpoint of the hinge function is set to

1156

LAPLACIAN SVMS TRAINED IN THE PRIMAL

0. This leaves intact the least square nature of the problem, as in the Modified Newton’s method
proposed by Keerthi and DeCoste (2005) for linear SVMs. In other words, the contribute to the
Hessian of the L2 hinge loss is the same as the one of a squared loss (yi− f (xi))2 applied to error
vectors only.

Combining the last two expressions we can write ∇=Hz−
(
1T

K

)
IEy, and we can plug it into

the Newton’s update of Equation 8,

zt = zt−1− sH−1∇= (1− s)zt−1+ sH−1
(
1T

K

)
IEy=

= (1− s)zt−1+ s

(
0 1T

IE1+ γIL1 IEK+ γAI+ γILK

)−1(−γA 1T

0 K

)−1(
1T

K

)
IEy=

= (1− s)zt−1+ s

(
0 1T

IE1+ γIL1 IEK+ γAI+ γILK

)−1(
0
IEy

)
.

(10)

The step size s must be computed by solving the one-dimensional minimization of Equation 7
restricted on the ray from zt−1 to zt , with exact line search or backtracking (Boyd and Vandenberghe,
2004). Convergence is declared when the set of error vectors does not change between two consec-
utive iterations of the algorithm. Exactly like in the case of primal SVMs (Chapelle, 2007), in our
experiments setting s= 1 did not result in any convergence problems.

3.1.1 COMPLEXITY ANALYSIS

Updating the α coefficients with the Newton’s method costs O(n3), due to the matrix inversion in
the update rule, the same complexity of the original LapSVM solution based on the dual problem
discussed in Section 2.1. Convergence is usually achieved in a tiny number of iterations, no more
than 5 in our experiments (see Section 6). In order to reduce the cost of each iteration, a Cholesky
factorization of the Hessian can be computed before performing the first matrix inversion, and it can
be updated using a rank-1 scheme during the following iterations, with cost O(n2) for each update
(Seeger, 2008). On the other hand, this does not allow us to simplify K in Equation 10, otherwise
the resulting matrix to be inverted will not be symmetric. Since a lot of time is wasted in the product
by K (that is usually dense), using the update of Cholesky factorization may not necessarily lead to
a reduction of the overall training time.

It is interesting to compare the training of SVMs in the primal with the one of LapSVMs for a
better insight in the Newton’s method based solution. Given the set E at a generic iteration, SVMs
only require to compute the inverse of the block of the Hessian matrix that is related to the error
vectors, and the complexity of the inversion is then O(|E |3) (see Chapelle, 2007). Exploiting this
useful aspect, the training algorithm can be run incrementally, reducing the complexity of the whole
training process. In the case of LapSVM those benefits are lost due to the presence of the intrinsic
norm f T L f . The additional penalty wi j(f (xi)− f (x j))2 makes the Hessian a full matrix, making the
block inversion impossible.

Finally, we are assuming that K and the matrix to invert on Equation 10 are non singular, other-
wise the final expansion of f will not be unique, even if the optimal value of the criterion function
of Equation 7 will be.

1157

MELACCI AND BELKIN

3.2 Preconditioned Conjugate Gradient

Instead of performing a costly Newton’s step, the vector z for which ∇ = 0 can be computed by
Conjugate Gradient (CG) descent. In particular if we look at Equation 9, we can write ∇= Hz− c
and, consequently, we have to solve the system Hz= c,

Hz= c=⇒
(
1T IE1+ γI1TL1 1T IEK+ γI1TLK
KIE1+ γIKL1 KIEK+ γAK+ γIKLK

)
z=

(
1T IEy
KIEy

)
. (11)

The convergence rate of CG is related to the condition number of H (Shewchuk, 1994). In the most
general case, the presence of the terms KIEK and KLK leads to a not so well conditioned system
and to a slow convergence rate.

In order to overcome this issue, Preconditioned Conjugate Gradient (PCG) can be exploited
(Shewchuk, 1994). Given a preconditioner P, the algorithm indirectly solves the system of Equa-
tion 11 by solving Ĥz = ĉ, where Ĥ = P−1H and ĉ = P−1c. P is selected so that the condition
number of Ĥz = ĉ is improved with respect to the initial system, leading to a faster convergence
rate of the iterative method. Moreover, P−1 must be easily computable for PCG to be efficient. In
the specific case of LapSVM, we can follow a similar strategy to the one investigated by Chapelle
(2007), due to the quadratic form of the intrinsic regularizer. In particular, we can factorize Equa-
tion 11 as(

1 0T

0 K

)(
1T IE1+ γI1TL1 1T IEK+ γI1TLK
IE1+ γIL1 IEK+ γAI+ γILK

)
z=

(
1 0T

0 K

)(
1T IEy
IEy

)
, (12)

and select as a preconditioner the symmetric matrix P=

(
1 0T

0 K

)
.We can see that P is a factor

of H and c, hence the terms Ĥ and ĉ (and, consequently, the preconditioned gradient ∇̂, given by
∇̂= P−1∇= Ĥz− ĉ) can be trivially computed without explicitly performing any matrix inversions.
The condition number of the preconditioned system is sensibly decreased with respect to the one of
Equation 11, since KIEK and KLK are reduced to IEK and LK. Note that Ĥ is not symmetric, and
it would not possible, for instance, to simply remove the factor P in both sides of Equation 12 and
solve it by standard CG. For those reasons, PCG is appropriate for an efficient optimization of our
problem. As in the Newton’s method, we are assuming that K is non singular, otherwise a small
ridge can be added to fix it.

The iterative solution of the LapSVM problem by means of PCG is reported in Algorithm 1. For
an easier comparison with the standard formulation of PCG, consider that the vectors of residual
of the original and preconditioned systems corresponds to −∇ and −∇̂, respectively. Nevertheless,
due to our choice of P, we do not need to compute ∇ first, and then ∇̂ = P−1∇. We can exchange
the order of those operations to avoid the matrix inversion, that is, first compute ∇̂ and then ∇= P∇̂.
Hence, P−1 never appears in Algorithm 1.

Classic rules for the update of the conjugate direction at each step are discussed by Shewchuk
(1994). After several iterations the conjugacy of the descent directions tends to get lost due to round-
off floating point error, so a restart of the preconditioned conjugate gradient algorithm is required.
The Fletcher-Reeves (FR) update is commonly used in linear optimization. Due to the piecewise
nature of the problem, defined by the IE matrix, we exploited the Polak-Ribiere (PR) formula,1

1. Note that in the linear case FR and PR are equivalent.

1158

LAPLACIAN SVMS TRAINED IN THE PRIMAL

where restart can be automatically performed when the update term becomes negative. In that case,
the ρ coefficient in Algorithm 1 becomes zero, and the following iteration corresponds to a steepest
descent one, as when PCG starts. We experimentally evaluated that for the LapSVM problem such
formula is generally the best choice, both for convergence speed and numerical stability.

Convergence is usually declared when the norm of the preconditioned gradient falls below a
given threshold (Chapelle, 2007), or when the current preconditioned gradient is roughly orthogonal
with the real gradient (Shewchuk, 1994). We will investigate these conditions in Section 4.

Algorithm 1 Preconditioned Conjugate Gradient (PCG) for primal LapSVMs.

Let t = 0, zt = 0, E = L , ∇̂t = [−1T y,−yT]T , dt =−∇̂t
repeat
t = t+1
Find s∗ by line search on the line zt−1+ sdt−1

zt = zt−1+ s∗dt−1

E = {xi ∈ L s.t. (kiαt +bt)yi < 1}

∇̂t = Ĥz− ĉ=

(
1T IE1+ γI1TL1 1T IEK+ γI1TLK
IE1+ γIL1 IEK+ γAI+ γILK

)
z−
(
1T IEy
IEy

)
∇t = Hz− c= PĤz−Pĉ= P∇̂t

ρ=max(∇
tT (∇̂t−∇̂t−1)
∇t−1T ∇̂t−1

,0)

dt =−∇̂t +ρdt−1

until Goal condition

3.2.1 LINE SEARCH

The optimal step length s∗ on the current direction of the PCG algorithm must be computed by
backtracking or exact line search. At a generic iteration t we have to solve

s∗ = argmin
s≥0

ob j(zt−1+ sdt−1) (13)

where ob j is the objective function of Equation 7.
The accuracy of the line search is crucial for the performance of PCG. When minimizing a

quadratic form that leads to a linear expression of the gradient, line search can be computed in
closed form. In our case, we have to deal with the variations of the set E (and of IE) for different
values of s, so that a closed form solution cannot be derived, and we have to compute the optimal s
in an iterative way.

Due to the quadratic nature of Equation 13, the 1-dimensional Newton’s method can be directly
used, but the average number of line search iterations per PCG step can be very large, even if the
cost of each of them is negligible with respect to the O(n2) of a PCG iteration. We can efficiently
solve the line search problem analytically, as suggested by Keerthi and DeCoste (2005) for SVMs.

In order to simplify the notation, we discard the iteration index t−1 in the following description.
Given the PCG direction d, we compute for each point xi ∈ L , being it an error vector or not, the
step length si for which its state switches. The state of a given error vector switches when it leaves

1159

MELACCI AND BELKIN

0 s1 s2 s3

ψ1(s)

ψ2(s)

ψ3(s)

ψ4(s)

s∗
ψ

(s
)

0
s

Figure 2: Example of the piecewise linear function ψ(s) (blue plot). ψ1(s), . . . ,ψ4(s) are the four
linear portions of ψ(s), and s1,s2,s3 are the break points. The optimal step length, s∗, is
the value for which ψ(s) crosses zero.

the E set, whether the state of a point initially not in E switches when it becomes an error vector.
We refer to the set of the former points with Q1 while the latter is Q2, with L = Q1 ∪Q2. The
derivative of Equation 13, ψ(s) = ∂ob j(z+ sd)/∂s, is piecewise linear, and si are the break points
of such function.

Let us consider, for simplicity, that si are in a non decreasing order, discarding the negative ones.
Starting from s= 0, they define a set of intervals where ψ(s) is linear and the E set does not change.
We indicate with ψ j(s) the linear portion of ψ(s) in the j-th interval. Starting with j = 1, if the
value s≥ 0 where the line ψ j(s) crosses zero is within such interval, then it is the optimal step size
s∗, otherwise the following interval must be checked. The convergence of the process is guaranteed
by the convexity of the function ob j. See Figure 2 for a basic example.

The zero crossing of ψ j(s) is given by s =
ψ j(0)

ψ j(0)−ψ j(1)
, where the two points (0,ψ j(0)) and

(1,ψ j(1)) determine the line ψ j(s). We indicate with fd(x) the function f (x) whose coefficients are
in d = [db,d

T
α]T , that is, fd(xi) = kTi dα+db, and f d = [fd(xi),xi ∈ S]T . We have

ψ j(0) = ∑xi∈E j
(f (xi)− yi) fd(xi)+ γAαTKdα+ γI f Td L f ,

ψ j(1) = ∑xi∈E j
(f (xi)+ fd(xi)− yi) fd(xi)+ γA(α+dα)TKdα+ γI f Td L(f + f d)

where E j is the set of error vectors for the j-th interval.
Given ψ1(0) and ψ1(1), their successive values for increasing j can be easily computed consid-

ering that only one point (that we indicate with x j) switches status moving from an interval to the
following one. From this consideration we derived the following update rules

ψ j+1(0) = ψ j(0)+ν j(f (x j)− y j) fd(x j),
ψ j+1(1) = ψ j(1)+ν j(f (x j)+ fd(x j)− yi) fd(x j)

where ν j is −1 if x j ∈ Q1 and it is +1 if r ∈ Q2.

3.2.2 COMPLEXITY ANALYSIS

Each PCG iteration requires to compute the Kα product, leading to a complexity of O(n2) to update
the α coefficients. The term LKα can then be computed efficiently from Kα, since the matrix L
is generally sparse. Note that, unlike the Newton’s method and the original dual solution of the
LapSVM problem, we never have to explicitly compute the LK product, always computing matrix
by vector products instead. Even if L is sparse, when the number of training points is large or

1160

LAPLACIAN SVMS TRAINED IN THE PRIMAL

L is iterated several times, a large amount of computation may be saved by avoiding such matrix
by matrix product, as we will show in Section 6. Moreover, if the kernel matrix is sparse, the
complexity drops to O(nnz), where nnz is the maximum number of non-zero elements between K
and L. Note that the algorithm does not necessarily need to hold the whole matrix K (and L) in
memory. The only requirement is a fast way to perform the product of K with the current α. On
the other hand, computing each kernel function evaluation on the fly may require a large number of
floating-point operations, so that some caching procedures must be devised.

Convergence of the conjugate gradient algorithm is theoretically declared in O(n) steps, but a
solution very close to the optimal one can be computed with far less iterations. The convergence
speed is related to the condition number of the Hessian (Shewchuk, 1994), that it is composed by a
sum of three contributes (Equation 11). As a consequence, their condition numbers and weighting
coefficients (γA, γI) have a direct influence in the convergence speed, and in particular the condition
number of the K matrix. For example, using a bandwidth of a Gaussian kernel that lead to a K
matrix close to the identity allows the algorithm to converge very quickly, but the accuracy of the
classifier may not be sufficient.

Finally, PCG can be efficiently seeded with an initial rough estimate of the solution (‘warm” or
“hot” start). For example, the solution computed for some given values of the γA and γI parameters
can be a good starting point when training the classifier with some just slightly different parameter
values (i.e., when cross-validating the model). Seeding is also crucial in schemes that allow the
classifier to be incrementally built with reduced complexity. They have been deeply investigated by
Keerthi et al. (2006) for the SVM classifier. Even if Keerthi et al. (2006) use the Newton optimiza-
tion, a similar approach could be studied for LapSVMs exploiting the useful properties of the PCG
algorithm.

4. Approximating the Optimal Solution

In order to reduce the training times, we want the PCG to converge as fast as possible to a good
approximation of the optimal solution. By appropriately selecting the goal condition of Algorithm
1, we can discard iterations that may not lead to significant improvement in the classifier quality.
This concept is widely used in optimization, where the early stop of the CG or PCG is exploited to
approximately solve the Newton system in truncated Newton methods (see, for example, the trust
region method for large-scale logistic regression of Lin et al., 2008).

The common goal conditions for the PCG algorithm and, more generally, for gradient based
iterative algorithms, rely on the norm of the gradient ‖∇‖ (Boyd and Vandenberghe, 2004), of the
preconditioned gradient ‖∇̂‖ (Chapelle, 2007), on the mixed product

√
∇̂T∇ (Shewchuk, 1994).

These values are usually normalized by the first estimate of each of them. The value of the objective
function ob j or its relative decrement between two consecutive iterations can also be checked, re-
quiring some additional computations since the PCG algorithm never explicitly computes it. When
one of such “stopping” values falls below the chosen threshold τ associated to it, the algorithm
terminates.2 Moreover, a maximum number tmax of iterations is generally specified. Tuning these
parameters is crucial both for the time spent running the algorithm and the quality of the resulting
solution.

2. Thresholds associated to different conditions are obviously different, but, for simplicity in the description, we will
refer to a generic threshold τ.

1161

MELACCI AND BELKIN

It is really hard to find a trade-off between good approximation and low number of iterations,
since τ and tmax are strictly problem dependent. As an example, consider that the surface of ob j,
the objective function of Equation 7, varies among different choices of its parameters. Increasing or
decreasing the values of γA and γI can lead to a less flat or a more flat region around the optimal point.
Fixing in advance the values of τ and tmax may cause an early stop too far from the optimal solution,
or it may result in the execution of a large number of iterations without a significant improvement
on the classification accuracy.

The latter situation can be particularly frequent for LapSVMs. As described in Section 2 the
choice of the intrinsic norm f T L f introduces the soft constraint f (xi) = f (x j) for nearby points xi,
x j along the underlying manifold. This allows the algorithm to perform a graph transduction and
diffuse the labels from points in L to the unlabeled dataU.

When the diffusion is somewhat complete and the classification hyperplane has assumed a quite
stable shape around the available training data, similar to the optimal one, the intrinsic norm will
keep contributing to the gradient until a balance with respect to the ambient norm (and to the L2 loss
on error vectors) is found. Due to the strictness of this constraint, it will still require some iterations
(sometimes many) to achieve the optimal solution with ‖∇‖ = 0, even if the decision function
y(x) = sign(f (x)) will remain substantially the same. The described common goal conditions do
not “directly” take into account the decision of the classifier, so that they do not appear appropriate
to early stop the PCG algorithm for LapSVMs.

We investigate our intuition on the “two moons” data set of Figure 3(a), where we compare the
decision boundary after each PCG iteration (Figure 3(b)-(e)) with the optimal solution (computed by
Newton’s method, Figure 3(f)). Starting with α = 0, the first iteration exploits only the gradient of
the L2 loss on labeled points, since both the regularizing norms are zero. In the following iterations
we can observe the label diffusion process along the manifold. After only 4 iterations we get a
perfect classification of the data set and a separating boundary not far from the optimal one. All
the remaining iterations until complete convergence are used to slightly asses the coherence along
the manifold required by the intrinsic norm and the balancing with the smoothness of the function,
as can be observed by looking at the function values after 25 iterations. The most of changes
influences regions far from the support of PX , and it is clear that an early stop after 4 PCG steps
would be enough to roughly approximate the accuracy of optimal solution.

In Figure 4 we can observe the values of the previously described general stopping criterion for
PCG. After 4 iterations they are still sensibly decreasing, without reflecting real improvements in
the classifier quality. The value of the objective function ob j starts to become more stable only after,
say, 16 iterations, but it is still slightly decreasing even if it appears quite horizontal on the graph,
due to its scale. It is clear that fixing in advance the parameters τ and tmax is random guessing and it
will probably result in a bad trade-off between training time and accuracy.

4.1 Early Stopping Conditions

Following these considerations, we propose to early stop the PCG algorithm exploiting the predic-
tions of the classifier on the available data.

Due to the high amount of unlabeled training points in the semi-supervised learning framework,
the stability of the decision y(x) = sign(f (x)) , x ∈ U, can be used as a reference to early stop
the gradient descent (stability check). Moreover, if labeled validation data (set V) is available for

1162

LAPLACIAN SVMS TRAINED IN THE PRIMAL

−1 0 1 2

(a) The “two moons” data set

−1 0 1 2

(b) 1 PCG iteration

−1 0 1 2

(c) 4 PCG iterations (0% error)

−1 0 1 2

(d) 8 PCG iterations

−1 0 1 2

(e) 25 PCG iterations

−1 0 1 2

(f) Optimal solution

Figure 3: (a) The “two moons” data set (200 points, 2 classes, 2 labeled points indicated with a red
diamond and a blue circle, whereas the remaining points are unlabeled) - (b-e) A LapSVM
classifier trained with PCG, showing the result after a fixed number of iterations. The dark
continuous line is the decision boundary (f (x) = 0) and the confidence of the classifier
ranges from red (f (x)≥ 1) to blue (f (x)≤−1) - (f) The optimal solution of the LapSVM
problem computed by means of Newton’s method

classifier parameters tuning, we can formulate a good stopping condition based on the classification
accuracy on it (validation check), that can be eventually merged to the previous one (mixed check).

In detail, when y(x) becomes quite stable between consecutive iterations or when err(V), the
error rate on V , is not decreasing anymore, then the PCG algorithm should be stopped. Due to
their heuristic nature, it is generally better to compare the predictions every θ iterations and within a
certain tolerance η. As a matter of fact, y(x)may slightly change also when we are very close to the
optimal solution, and err(V) is not necessarily an always decreasing function. Moreover, labeled
validation data in the semi-supervised setting is usually small with respect to the whole training
data, labeled and unlabeled, and it may not be enough to represent the structure of the data set.

We propose very simple implementations of such conditions, that we used to achieve the results
of Section 6. Starting from these, many different and more efficient variants can be formulated, but
it goes beyond the scope of this paper. They are sketched in Algorithms 2 and 3. We computed the
classifier decision every

√
n/2 iterations and we required the classifier to improve err(V) by one

correctly classifier example at every check, due to the usually small size of V . Sometimes this can
also help to avoid a slight overfitting of the classifier.

Generating the decision y(x) on unlabeled data does not require heavy additional machinery,
since the Kα product must be necessarily computed to perform every PCG iteration. Its overall cost
is O(u). Differently, computing the accuracy on validation data requires the evaluation of the kernel

1163

MELACCI AND BELKIN

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

t
N

or
m

al
iz

ed
 V

al
ue

obj
‖∇‖√

∇̂∇
‖∇̂‖

Figure 4: PCG example on the “two moons” data set. The norm of the gradient ‖∇‖, of the precon-
ditioned gradient ‖∇̂‖, the value of the objective function ob j and of the mixed product√
∇̂T∇ are displayed in function of the number of PCG iterations. The vertical line repre-

sents the number of iterations after which the error rate is 0% and the decision boundary
is quite stable.

Algorithm 2 The stability check for PCG stopping.

dold ← 0 ∈ IRu

η← 1.5%
θ←

√
n/2

Every θ iterations do the followings:
d = [y(x j),x j ∈U, j = 1, . . . ,u]T

τ= (100 ·‖d−dold‖1/u)%
if τ< η then
Stop PCG

else
dold = d

end if

Algorithm 3 The validation check for PCG stopping.
Require: V
errV old ← 100%
η← 100 · |V |−1%
θ←

√
n/2

Every θ iterations do the followings:
if err(V) > (errV old−η) then
Stop PCG

else
errV old = err(V)

end if

1164

LAPLACIAN SVMS TRAINED IN THE PRIMAL

function on validation points against the n training ones, and O(|V | ·n) products, that is negligible
with respect to the cost of a PCG iteration.

Please note that even if these are generally early stopping conditions, sometimes they can help
in the opposite situation. For instance they can also detect that the classifier needs to move some
more steps toward the optimal solution than the ones limited by the selected tmax.

The proposed stopping criteria could be exploited in the optimization of alternative formulations
of the LapSVM problem (following the improved models of Abernethy et al., 2008 and of Tsang
and Kwok, 2006), with the aim of reducing training times and getting a classifier with a roughly
comparable quality to the optimal one. Even with slightly different problem formulations, our cri-
teria are reasonably more appropriate than classical goal conditions due to their direct relationship
with the stability of the classifier prediction. In particular, some additional efficient solution strate-
gies may be devised by directly working in the primal and exploiting the ε-insensitive loss based
intrinsic regularizer of Tsang and Kwok (2006), where manifold regularization is applied to a large-
scale setting in the Minimum Enclosing Ball (MEB) framework. We note these directions for future
work.

5. Laplacian Regularized Least Squares

Laplacian Regularized Least Square Classifier (LapRLSC) has many analogies with the proposed L2
hinge loss based LapSVMs. LapRLSC uses a squared loss function to penalize wrongly classified
examples, leading to the following objective function

min
f∈Hk

l

∑
i=1

(yi− f (xi))
2+ γA‖ f‖2A+ γI‖ f‖2I .

The optimal α coefficients and the optimal bias b, collected in the vector z, can be obtained by
solving the linear system(|L |+ γI1TL1 1T ILK+ γI1TLK

KIL1+ γIKL1 KILK+ γAK+ γIKLK

)
z=

(
1T y
Ky

)
(14)

where IL is the diagonal matrix ∈ IRn,n with the first l elements equal to 1 and the remaining u
elements equal to zero.

Following the notation used for LapSVMs, in LapRLSCs we have a set of error vectors E that
is actually fixed and equal to L . As a matter of fact a LapRLSC requires the estimated function to
interpolate the given targets in order to not incur in a penalty. In a hypothetic situation where all the
labeled examples always belong to E during the training of a LapSVM classifier in the primal, then
the solution will be the same of LapRLSC.

Solving the least squares problem of LapRLSC can be performed by matrix inversion, after fac-
toring and simplifying the previously defined matrix P in Equation 14. Otherwise the proposed PCG
approach and the early stopping conditions can be directly used. In this case the classic instruments
for linear optimization apply, and the required line search of Equation 13 can be computed in closed
form without the need of an iterative process,

s∗ =− ∇T d

dTHd

where ∇ and H are no more functions of E .

1165

MELACCI AND BELKIN

As shown by Belkin et al. (2006); Sindhwani and Rosenberg (2008) and in the experimental
section of this paper, LapRLSC, LapSVM and primal LapSVM allow us to achieve similar clas-
sification performances. The interesting property of the LapSVM problem is that the effect of the
regularization terms at a given iteration can be decoupled by the one of the loss function on labeled
points, since the gradient of the loss function for correctly classified points is zero and do not dis-
turb classifier design. This characteristic can be useful as a starting point for the study of some
alternative formulations of the intrinsic norm regularizer.

6. Experimental Results

We ran a wide set of experiments to analyze the proposed solution strategies of the primal LapSVM
problem. In this section we describe the selected data sets, our experimental protocol and the details
on the parameter selection strategy. Then we show the main result of the proposed approach, very
fast training of the LapSVM classifier with reduced complexity by means of early stopped PCG. We
compare the quality of the L2 hinge loss LapSVMs trained in the primal by Newton’s method with
respect to the L1 hinge loss dual formulation and LapRLSCs. Finally, we describe the convergence
speed and the impact on performances of our early stopping conditions.

As a baseline reference for the performances in the supervised setting, we selected two popular
regularized classifiers, Support Vector Machines (SVMs) and Regularized Least Square Classifiers
(RLSCs). We implemented and tested all the algorithms using Matlab 7.6 on a 2.33Ghz machine
with 6GB of memory. The dual problem of LapSVM has been solved using the latest version of
Libsvm (Fan et al., 2005). Multiclass classification has been performed using the one-against-all
approach.

6.1 Data Sets

We selected eight popular data sets for our experiments. Most of them data sets has been already
used in previous works to evaluate several semi-supervised classification algorithms (Sindhwani
et al., 2005; Belkin et al., 2006; Sindhwani and Rosenberg, 2008), and all of them are available on
theWeb. G50C3 is an artificial data set generated from two unit covariance normal distributions with
equal probabilities. The class means are adjusted so that the Bayes error is 5%. The COIL20 data
set is a collection of pictures of 20 different objects from the Columbia University. Each object has
been placed on a turntable and at every 5 degrees of rotation a 32x32 gray scale image was acquired.
The USPST data set is a collection of handwritten digits form the USPS postal system. Images are
acquired at the resolution of 16x16 pixels. USPST refers to the test split of the original data set.
We analyzed the COIL20 and USPST data set in their original 20 and 10-class versions and also
in their 2-class versions, to discard the effects on performances of the selected multiclass strategy.
COIL20(B) discriminates between the first 10 and the last 10 objects, whereas USPST(B) from the
first 5 digits and the remaining ones. PCMAC is a two-class data set generated from the famous
20-Newsgroups collection, that collects posts on Windows and Macintosh systems. MNIST3VS8 is
the binary version of the MNIST data set, a collection of 28x28 gray scale handwritten digit images
from NIST. The goal is to separate digit 3 from digit 8. Finally, the FACEMIT data set of the Center
for Biological and Computational Learning at MIT contains 19x19 gray scale, PGM format, images
of faces and non-faces. The details of the described data sets are resumed in Table 1.

3. It can be downloaded from http://people.cs.uchicago.edu/˜vikass/manifoldregularization.html.

1166

LAPLACIAN SVMS TRAINED IN THE PRIMAL

Data Set Classes Size Attributes

G50C 2 550 50
COIL20(B) 2 1440 1024
PCMAC 2 1946 7511
USPST(B) 2 2007 256
COIL20 20 1440 1024
USPST 10 2007 256
MNIST3VS8 2 13966 784
FACEMIT 2 31022 361

Table 1: Details of the data sets that have been used in the experiments.

6.2 Experimental Protocol

All presented results has been obtained by averaging them on different splits of the available data.
In particular, a 4-fold cross-validation has been performed, randomizing the fold generation process
for 3 times, for a total of 12 splits. Each fold contains the same number of per class examples as
in the complete data set. For each split, we have 3 folds that are used for training the classifier
and the remaining one that constitutes the test set (T). Training data has been divided in labeled
(L), unlabeled (U) and validation sets (V), where the last one is only used to tune the classifier
parameters. The labeled and validation sets have been randomly selected from the training data such
that at least one example per class is assured to be present on each of them, without any additional
balancing constraints. A small number of labeled points has been generally selected, in order to
simulate a semi-supervised scenario where labeling data has a large cost. The MNIST3VS8 and
FACEMIT data set are already divided in training and test data, so that the 4-fold generation process
was not necessary, and just the random subdivision of training data has been performed (balancing
the class labels on training and validation data). In particular, on the MNIST3VS8 collection we
normalized the data vectors to unit norm, and on the FACEMIT data set we exchanged the original
training and test sets, since, as a matter of fact, the latter is sensibly larger that the former. In this
case our goal is just to show how we were able to handle a high amount of training data using
the proposed primal solution with PCG, whereas it was not possible to do it with the original dual
formulation of LapSVM. Due to the high unbalancing of such data set, we report the macro error
rates for it (1−TP/2+TN/2, where TP and TN are the rates of true positives and true negatives).
Details are collected in Table 2.

6.3 Parameters

We selected a Gaussian kernel function in the form k(xi,x j) = exp
(
−||xi−xj||

2σ2

)
for each experiment,

with the exception of the MNIST3VS8 where a polynomial kernel of degree 9 was used, as suggest
by Decoste and Schölkopf (2002). The other parameters were selected by cross-validating them
on the V set. In order to speedup this step, the values of the Gaussian kernel width and of the
parameters required to build the graph Laplacian (the number of neighbors, nn, and the degree, p)
for the first six data sets were fixed as specified by Sindhwani and Rosenberg (2008). For details
on the selection of such parameters please refer to Sindhwani and Rosenberg (2008); Sindhwani
et al. (2005). The graph Laplacian was computed by using its normalized expression. The optimal

1167

MELACCI AND BELKIN

Data Set |L | |U| |V | |T |
G50C 50 314 50 136
COIL20(B) 40 1000 40 360
PCMAC 50 1358 50 488
USPST(B) 50 1409 50 498
COIL20 40 1000 40 360
USPST 50 1409 50 498
MNIST3VS8 80 11822 80 1984
FACEMIT 2 23973 50 6997

Table 2: The number of data points in each split of the selected data sets, where L and U are the
sets of labeled and unlabeled training points, respectively, V is the labeled set for cross-
validating parameters whereas T is the out-of-sample test set.

weights of the ambient and intrinsic norms, γA, γI , were determined by varying them on the grid
{10−6,10−4,10−2,10−1,1,10,100} and chosen with respect to validation error. For the FACEMIT
data set also the value 10−8 was considered, due to the high amount of training points. The selected
parameter values are reported in Table 9 of Appendix A for reproducibility of the experiments.

6.4 Results

Before going into further detail, in Table 3 we report the training times of LapSVMs using the
original dual formulation and the primal training approach.4 The last column refers to LapSVMs
trained using the best (in terms of accuracy) of the proposed stopping heuristics for each specific data
set. As expected, training in the primal by the Newton’s method requires training times similar to
those for the dual formulation. On the other hand, training by PCG with the proposed early stopping
conditions shows an appreciable reduction of training times for all data sets. As the size of labeled
and unlabeled points increases, the improvement becomes very evident. On the MNIST3VS8 data
set we go from roughly half an hour to two minutes. Both in the dual formulation of LapSVMs and
in the primal one solved by means of Newton’s method, a lot of time is spent in computing the LK
matrix product. Even if L is sparse, the cost of this product could be quite high. Similar reductions
are observed for the PCMAC data set, where the training time drops from 15 seconds to only 2
seconds when solving with PCG. Finally, the memory requirements are also reduced, since, when
the PCG is used, there is no need to explicitly compute, store and invert the Hessian. To emphasize
this point, we had no difficulty training the classifier on the FACEMIT data set using PCG. On
the other hand, the high memory requirements of dual LapSVM and primal LapSVM solved with
Newton’s method, coupled with the high computational cost, made those methods impossible to
runt on our machine.

We now investigate the details of the solution of the primal LapSVM problem. In order to
compare the effects of the different loss functions of LapRLSCs, LapSVMs trained in the dual,
and LapSVMs trained in the primal, in Table 4 the classification errors of the described techniques
are reported. For this comparison, the solution of primal LapSVMs is computed by means of the
Newton’s method. The manifold regularization based techniques lead to comparable results, and,

4. For a fair comparison of the training algorithms, the Gram matrix and the Laplacian were precomputed.

1168

LAPLACIAN SVMS TRAINED IN THE PRIMAL

Data Set
Laplacian SVMs

Dual [Original] Primal - Newton Primal - PCG

G50C 0.155 (0.004) 0.134 (0.006) 0.043 (0.006)
COIL20(B) 0.311 (0.012) 0.367 (0.097) 0.097 (0.026)
PCMAC 14.82 (0.104) 15.756 (0.285) 1.967 (0.269)
USPST(B) 1.196 (0.015) 1.4727 (0.2033) 0.300 (0.030)
COIL20 6.321 (0.441) 7.26 (1.921) 3.487 (1.734)
USPST 12.25 (0.2) 17.74 (2.44) 2.032 (0.434)
MNIST3VS8 2064.18 (3.1) 2824.174 (105.07) 114.441 (0.235)
FACEMIT - - 35.728 (0.868)

Table 3: Our main result. Training times (in seconds) of Laplacian SVMs using different algo-
rithms (standard deviation in brackets). The time required to solve the original dual for-
mulation and the primal solution with Newton’s method are comparable, whereas solving
the Laplacian SVMs problem in the primal with early stopped preconditioned conjugate
gradient (PCG) offers a noticeable speedup.

as expected, all semi-supervised approaches show a sensible improvement over classical supervised
classification algorithms. The error rates of primal LapSVMs and LapRLSCs are quite close, due
to the described relationship of the L2 hinge loss and the squared loss. We reported the average
number of Newton’s steps required to compute the solution in Table 5. In all our experiments we
have observed convergence in less than 6 steps.

We compared the error rates of LapSVMs trained in the primal by Newton’s method with ones
of PCG training, in function of the number of gradient steps t. For this comparison, γA and γI were
selected by cross-validating with the former (see Appendix A), and experiments were performed
using all the described data sets. In Figure 5-7 we report the graphs in the case of the USPST,
MNIST3VS8 and COIL20 data as a reference. The horizontal line on each graph represents the
error rate of the non-approximated solution computed with the Newton’s method. The number of
iterations required to converge to a solution with the same accuracy of the non-approximated one is
sensibly smaller than n. Convergence is achieved really fast, and only in the COIL20 data set we
experienced a relatively slower rate with respect to the other data sets. The error surface of each
binary classifier is quite flat around optimum with the selected γA and γI , leading to some round-off
errors in gradient descent based techniques, stressed by the large number of classes and the one-
against-all approach. Moreover labeled training examples are highly unbalanced. As a matter of
fact, in the COIL20(B) data set we did not experience this behavior. Finally, in the FACEMIT data
set the algorithm perfectly converges in a few iterations, showing that in this data set the most of
information is contained in the labeled data (even if it is very small), and the intrinsic constraint is
easily fulfilled.

In Figure 8-9 we collected the values of the gradient norm ‖∇‖, of the preconditioned gradient
norm ‖∇̂‖, of the mixed product

√
∇̂T∇, and of the objective function ob j for each data set, nor-

malized by their respective values at t = 0. The vertical line is an indicative index of the number of
iterations after which the error rate on all partitions (L , U, V , T) becomes equal to the one at the
stationary point (when the gradient of the objective function is zero). The curves generally keep sen-

1169

MELACCI AND BELKIN

Data Set Classifier U V T

G50C

SVM 9.33 (2) 9.83 (3.46) 10.06 (2.8)
RLSC 10.43 (5.26) 10.17 (4.86) 11.21 (4.98)
LapRLSC 6.03 (1.32) 6.17 (3.66) 6.54 (2.11)
LapSVM Dual (Original) 5.52 (1.15) 5.67 (2.67) 5.51 (1.65)
LapSVM Primal (Newton) 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)

COIL20(B)

SVM 16.23 (2.63) 18.54 (6.2) 15.93 (3)
RLSC 16.22 (2.64) 18.54 (6.17) 15.97 (3.02)
LapRLSC 8.067 (2.05) 7.92 (3.96) 8.59 (1.9)
LapSVM Dual (Original) 8.31 (2.19) 8.13 (4.01) 8.68 (2.04)
LapSVM Primal (Newton) 8.16 (2.04) 7.92 (3.96) 8.56 (1.9)

PCMAC

SVM 19.65 (6.91) 20.83 (6.85) 20.09 (6.91)
RLSC 19.63 (6.91) 20.67 (6.95) 20.04 (6.93)
LapRLSC 9.67 (0.74) 7.67 (4.08) 9.34 (1.5)
LapSVM Dual (Original) 10.78 (1.83) 9.17 (4.55) 11.05 (2.94)
LapSVM Primal (Newton) 9.68 (0.77) 7.83 (4.04) 9.37 (1.51)

USPST(B)

SVM 17 (2.74) 18.17 (5.94) 17.1 (3.21)
RLSC 17.21 (3.02) 17.5 (5.13) 17.27 (2.72)
LapRLSC 8.87 (1.88) 10.17 (4.55) 9.42 (2.51)
LapSVM Dual (Original) 8.84 (2.2) 8.67 (4.38) 9.68 (2.48)
LapSVM Primal (Newton) 8.72 (2.15) 9.33 (3.85) 9.42 (2.34)

COIL20

SVM 29.49 (2.24) 31.46 (7.79) 28.98 (2.74)
RLSC 29.51 (2.23) 31.46 (7.79) 28.96 (2.72)
LapRLSC 10.35 (2.3) 9.79 (4.94) 11.3 (2.17)
LapSVM Dual (Original) 10.51 (2.06) 9.79 (4.94) 11.44 (2.39)
LapSVM Primal (Newton) 10.54 (2.03) 9.79 (4.94) 11.32 (2.19)

USPST

SVM 23.84 (3.26) 24.67 (4.54) 23.6 (2.32)
RLSC 23.95 (3.53) 25.33 (4.03) 24.01 (3.43)
LapRLSC 15.12 (2.9) 14.67 (3.94) 16.44 (3.53)
LapSVM Dual (Original) 14.36 (2.55) 15.17 (4.04) 14.91 (2.83)
LapSVM Primal (Newton) 14.98 (2.88) 15 (3.57) 15.38 (3.55)

MNIST3VS8

SVM 8.82 (1.11) 7.92 (4.73) 8.22 (1.36)
RLSC 8.82 (1.11) 7.92 (4.73) 8.22 (1.36)
LapRLSC 1.95 (0.05) 1.67 (1.44) 1.8 (0.3)
LapSVM Dual (Original) 2.29 (0.17) 1.67 (1.44) 1.98 (0.15)
LapSVM Primal (Newton) 2.2 (0.14) 1.67 (1.44) 2.02 (0.22)

FACEMIT
SVM 39.8 (2.34) 38 (1.15) 34.61 (3.96)
RLSC 39.8 (2.34) 38 (1.15) 34.61 (3.96)
LapSVM Primal (PCG) 29.97 (2.51) 36 (3.46) 27.97 (5.38)

Table 4: Comparison of the accuracy of LapSVMs trained by solving the primal (Newton’s method)
or the dual problem. The average classification error (standard deviation is reported brack-
ets) is reported. Fully supervised classifiers (SVMs, RLSCs) represent the baseline perfor-
mances. U is the set of unlabeled examples used to train the semi-supervised classifiers.
V is the labeled set for cross-validating parameters whereas T is the out-of-sample test
set. Results on the labeled training set L are omitted since all algorithms correctly classify
such a few labeled training points.

1170

LAPLACIAN SVMS TRAINED IN THE PRIMAL

Data Set Newton’s Steps

G50C 1 (0)
COIL20(B) 2.67 (0.78)
PCMAC 2.33 (0.49)
USPST(B) 4.17 (0.58)
COIL20 2.67 (0.75)
USPST 4.26 (0.76)
MNIST3VS8 5 (0)

Table 5: Newton’s steps required to compute the solution of the primal Laplacian SVM problem.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

t

E
rr

or
 R

at
e

(%
)

PCG (L)
Newton (L)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

t

E
rr

or
 R

at
e

(%
)

PCG (U)
Newton (U)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

t

E
rr

or
 R

at
e

(%
)

PCG (V)
Newton (V)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

t

E
rr

or
 R

at
e

(%
)

PCG (T)
Newton (T)

Figure 5: USPST data set: error rate on L , U, V , T of the Laplacian SVM classifier trained in
the primal by preconditioned conjugate gradient (PCG), with respect to the number of
gradient steps t. The error rate of the primal solution computed by means of Newton’s
method is reported as a horizontal line.

sibly decreasing even after such line, without reflecting real improvements in the classifier accuracy,
and they differ by orders of magnitude among the considered data set, showing their strong problem
dependency (differently from our proposed conditions). As described in Section 4, we can see how
it is clearly impossible to define a generic threshold on them to appropriately stop the PCG descent
(i.e., to find a good trade-off between number of iterations and accuracy). Moreover, altering the
values of the classifier parameters can sensibly change the shape of the error function, requiring a
different threshold every time. In those data sets where points keep entering and leaving the E set
as t increases (mainly during the first steps) the norm of the gradient can show an instable behavior
between consecutive iterations, due to the piecewise nature of the problem, making the threshold
selection task ulteriorly complex. This is the case of the PCMAC and USPST(B) data set. In the
MNIST data, the elements of kernel matrix non belonging to the main diagonal are very small due
to the high degree of the polynomial kernel, so that the gradient and the preconditioned gradient are
close.

1171

MELACCI AND BELKIN

0 50 100 150 200
0

10

20

30

40

50

t

E
rr

or
 R

at
e

(%
)

PCG (L)
Newton (L)

0 50 100 150 200
0

10

20

30

40

50

t

E
rr

or
 R

at
e

(%
)

PCG (U)
Newton (U)

0 50 100 150 200
0

10

20

30

40

50

t

E
rr

or
 R

at
e

(%
)

PCG (V)
Newton (V)

0 50 100 150 200
0

10

20

30

40

50

t

E
rr

or
 R

at
e

(%
)

PCG (T)
Newton (T)

Figure 6: MNIST3VS8 data set: error rate on L , U, V , T of the Laplacian SVM classifier trained
in the primal by preconditioned conjugate gradient (PCG), with respect to the number of
gradient steps t. The error rate of the primal solution computed by means of Newton’s
method is reported as a horizontal line.

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

t

E
rr

or
 R

at
e

(%
)

PCG (L)
Newton (L)

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

t

E
rr

or
 R

at
e

(%
)

PCG (U)
Newton (U)

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

t

E
rr

or
 R

at
e

(%
)

PCG (V)
Newton (V)

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

t

E
rr

or
 R

at
e

(%
)

PCG (T)
Newton (T)

Figure 7: COIL20 data set: error rate on L , U, V , T of the Laplacian SVM classifier trained in
the primal by preconditioned conjugate gradient (PCG), with respect to the number of
gradient steps t. The error rate of the primal solution computed by means of Newton’s
method is reported as a horizontal line.

Using the proposed PCG goal conditions (Section 4), we cross-validated the primal LapSVM
classifier trained by PCG, and the selected parameters are reported in Table 10 of Appendix A. In
the USPST(B), COIL20(B), and MNIST3VS8 data sets, larger values for γA or γI are selected by
the validation process, since the convergence speed of PCG is enhanced. In the other data sets,
parameter values remain substantially the same of the ones selected by solving with the Newton’s

1172

LAPLACIAN SVMS TRAINED IN THE PRIMAL

G50C

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

N
or

m
al

iz
ed

 V
al

ue

obj
‖∇‖√

∇̂∇
‖∇̂‖

COIL20(B)

0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

t

N
or

m
al

iz
ed

 V
al

ue

obj
‖∇‖√

∇̂∇
‖∇̂‖

PCMAC

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

N
or

m
al

iz
ed

 V
al

ue

obj
‖∇‖√

∇̂∇
‖∇̂‖

USPST(B)

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

t

N
or

m
al

iz
ed

 V
al

ue

obj
‖∇‖√

∇̂∇
‖∇̂‖

Figure 8: Details of each PCG iteration. The value of the objective function ob j, of the gradient

norm ‖∇‖, of the preconditioned gradient norm ‖∇̂‖, and of the mixed product
√
∇̂T∇ are

displayed in function of the number of PCG iterations (t). The vertical line represents the
number of iterations after which the error rate on all partitions (L , U, V , T) is roughly
the same to the one at the stationary point.

method, suggesting that a reliable and fast cross-validation can be performed with PCG and the
proposed early stopping heuristics.

In Table 6 the training times, the number of PCG and line search iterations are collected, whereas
in Table 7 the corresponding classification error rates are reported, for a comparison with the non-
approximated solution computed using Newton’s method. As already stressed, the training times
appreciably drop down when training a LapSVM in the primal using PCG and our goal conditions,
independently by the data set. Early stopping allows us to obtain results comparable to the New-
ton’s method or to the original two step dual formulation, showing a direct correlation between the
proposed goal conditions and the quality of the classifier. Moreover, our conditions are the same for
each problem or data set, overcoming all the issues of the previously described ones. In the COIL20
data set we can observe performances less close to the one of the solution computed with Newton’s
method. This is due to the already addressed motivations, and it also suggests that the stopping

1173

MELACCI AND BELKIN

Data Set Laplacian SVM Training Time PCG Iters LS Iters

G50C

Dual 0.155 (0.004) - -
Newton 0.134 (0.006) - -
PCG [Stability Check] 0.044 (0.006) 20 (0) 1 (0)
PCG [Validation Check] 0.043 (0.006) 20.83 (2.89) 1 (0)
PCG [Mixed Check] 0.044 (0.006) 20.83 (2.89) 1 (0)

COIL20(B)

Dual 0.311 (0.012) - -
Newton 0.367 (0.097) - -
PCG [Stability Check] 0.198 (0.074) 74.67 (28.4) 2.41 (1.83)
PCG [Validation Check] 0.097 (0.026) 37.33 (10.42) 1 (0)
PCG [Mixed Check] 0.206 (0.089) 78.67 (34.42) 2.38 (1.79)

PCMAC

Dual 14.8203 (0.104) - -
Newton 15.756 (0.285) - -
PCG [Stability Check] 1.897 (0.040) 38.00 (0) 1.16 (0.45)
PCG [Validation Check] 1.967 (0.269) 39.58 (5.48) 1.15 (0.44)
PCG [Mixed Check] 1.997 (0.258) 39.58 (5.48) 1.15 (0.44)

USPST(B)

Dual 1.196 (0.015) - -
Newton 1.4727 (0.2033) - -
PCG [Stability Check] 0.300 (0.030) 58.58 (5.48) 1.74 (0.90)
PCG [Validation Check] 0.281 (0.086) 55.42 (17.11) 1.68 (0.90)
PCG [Mixed Check] 0.324 (0.059) 63.33 (12.38) 1.70 (0.89)

COIL20

Dual 6.321 (0.441) - -
Newton 7.26 (1.921) - -
PCG [Stability Check] 3.297 (1.471) 65.47 (30.35) 2.53 (1.90)
PCG [Validation Check] 1.769 (0.299) 34.07 (6.12) 3.37 (2.22)
PCG [Mixed Check] 3.487 (1.734) 69.53 (35.86) 2.48 (1.87)

USPST

Dual 12.25 (0.2) - -
Newton 17.74 (2.44) - -
PCG [Stability Check] 1.953 (0.403) 41.17 (8.65) 3.11 (1.73)
PCG [Validation Check] 2.032 (0.434) 42.91 (9.38) 3.13 (1.73)
PCG [Mixed Check] 2.158 (0.535) 45.60 (11.66) 3.12 (1.72)

MNIST3VS8

Dual 2064.18 (3.1) - -
Newton 2824.174 (105.07) - -
PCG [Stability Check] 114.441 (0.235) 110 (0) 5.58 (2.79)
PCG [Validation Check] 124.69 (0.335) 110 (0) 5.58 (2.79)
PCG [Mixed Check] 124.974 (0.414) 110 (0) 5.58 (2.79)

FACEMIT
PCG [Stability Check] 35.728 (0.868) 3 (0) 1 (0)
PCG [Validation Check] 35.728 (0.868) 3 (0) 1 (0)
PCG [Mixed Check] 35.728 (0.868) 3 (0) 1 (0)

Table 6: Training time comparison among the Laplacian SVMs trained in the dual (Dual), LapSVM
trained in the primal by means of Newton’s method (Newton) and by means of precondi-
tioned conjugate gradient (PCG) with the proposed early stopping conditions (in square
brackets). Average training times (in seconds) and their standard deviations, the number
of PCG iterations, and of Line Search (LS) iterations (per each PCG one) are reported.

1174

LAPLACIAN SVMS TRAINED IN THE PRIMAL

Data Set Laplacian SVM U V T

G50C

Newton 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)
PCG [Stability Check] 6.13 (1.46) 6.17 (3.46) 7.27 (2.87)
PCG [Validation Check] 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)
PCG [Mixed Check] 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)

COIL20(B)

Newton 8.16 (2.04) 7.92 (3.96) 8.56 (1.9)
PCG [Stability Check] 8.81 (2.23) 8.13 (3.71) 8.84 (1.93)
PCG [Validation Check] 8.32 (2.28) 8.96 (4.05) 8.45 (1.58)
PCG [Mixed Check] 8.84 (2.28) 8.13 (3.71) 8.84 (1.96)

PCMAC

Newton 9.68 (0.77) 7.83 (4.04) 9.37 (1.51)
PCG [Stability Check] 9.65 (0.78) 7.83 (4.04) 9.42 (1.50)
PCG [Validation Check] 9.67 (0.76) 7.83 (4.04) 9.40 (1.50)
PCG [Mixed Check] 9.67 (0.76) 7.83 (4.04) 9.40 (1.50)

USPST(B)

Newton 8.72 (2.15) 9.33 (3.85) 9.42 (2.34)
PCG [Stability Check] 9.11 (2.14) 10.50 (4.36) 9.70 (2.55)
PCG [Validation Check] 9.10 (2.17) 10.50 (4.36) 9.75 (2.59)
PCG [Mixed Check] 9.09 (2.17) 10.50 (4.36) 9.70 (2.55)

COIL20

Newton 10.54 (2.03) 9.79 (4.94) 11.32 (2.19)
PCG [Stability Check] 12.42 (2.68) 10.63 (4.66) 12.92 (2.14)
PCG [Validation Check] 13.07 (2.73) 12.08 (4.75) 13.52 (2.12)
PCG [Mixed Check] 12.43 (2.69) 10.42 (4.63) 12.87 (2.20)

USPST

Newton 14.98 (2.88) 15 (3.57) 15.38 (3.55)
PCG [Stability Check] 15.60 (3.45) 15.67 (3.60) 16.11 (3.95)
PCG [Validation Check] 15.40 (3.38) 15.67 (3.98) 15.94 (4.04)
PCG [Mixed Check] 15.45 (3.53) 15.50 (3.92) 15.94 (4.08)

MNIST3VS8

Newton 2.2 (0.14) 1.67 (1.44) 2.02 (0.22)
PCG [Stability Check] 2.11 (0.06) 1.67 (1.44) 1.93 (0.2)
PCG [Validation Check] 2.11 (0.06) 1.67 (1.44) 1.93 (0.2)
PCG [Mixed Check] 2.11 (0.06) 1.67 (1.44) 1.93 (0.2)

FACEMIT
PCG [Stability Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)
PCG [Validation Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)
PCG [Mixed Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)

Table 7: Average classification error (standard deviation is reported brackets) of Laplacian SVMs
trained in the primal by means of Newton’s method (Newton) and of preconditioned con-
jugate gradient (PCG) with the proposed early stopping conditions (in square brackets).
U is the set of unlabeled examples used to train the classifiers. V is the labeled set for
cross-validating parameters whereas T is the out-of-sample test set. Results on the labeled
training set L are omitted since all algorithms correctly classify such a few labeled training
points.

1175

MELACCI AND BELKIN

COIL20

0 20 40 60 80 100 120 140 160
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

t

N
or

m
al

iz
ed

 V
al

ue

obj
‖∇‖√

∇̂∇
‖∇̂‖

USPST

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

t

N
or

m
al

iz
ed

 V
al

ue

obj
‖∇‖√

∇̂∇
‖∇̂‖

MNIST3VS8

0 50 100 150 200
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

t

N
or

m
al

iz
ed

 V
al

ue

obj
‖∇‖√

∇̂∇
‖∇̂‖

FACEMIT

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−5

t

N
or

m
al

iz
ed

 V
al

ue

obj
‖∇‖√

∇̂∇
‖∇̂‖

Figure 9: Details of each PCG iteration. The value of the objective function ob j, of the gradient

norm ‖∇‖, of the preconditioned gradient norm ‖∇̂‖, and of the mixed product
√
∇̂T∇ are

displayed in function of the number of PCG iterations (t). The vertical line represents the
number of iterations after which the error rate on all partitions (L , U, V , T) is roughly
the same to the one at the stationary point.

condition should probably be checked while training in parallel the 20 binary classifiers, instead of
separately checking it on each of them. A better tuning of the goal conditions or a different formu-
lation of them can move the accuracy closer to the one of primal LapSVM trained with Newton’s
method, but it goes beyond to the scope of this paper.

The number of PCG iterations is noticeably smaller than n. Obviously it is function of the
gap between each checking of a stopping criterion, that we set to

√
n/2. The number of iterations

from the stability check is sometimes larger that the one from the validation check (COIL20(B),
USPST, COIL20). As a matter of fact, labeled validation data is more informative than a stable, but
unknown, decision on the unlabeled one. On the other hand validation data could not represent test
data enough accurately. Using a mixed strategy makes sense in those cases, as can be observed in
the COIL20 data set. In our experiments the mixed criterion has generally the same behavior of the
most strict of the two heuristics for each specific set of data. In the FACEMIT data set complete

1176

LAPLACIAN SVMS TRAINED IN THE PRIMAL

Data Set Laplacian RLSC Training Time PCG Iters T

PCMAC

Matrix Inversion 14.21 (0.067) - 9.34 (1.5)
PCG [Stability Check] 1.818 (0.016) 38 (0) 9.34 (1.46)
PCG [Validation Check] 1.82 (0.05) 38 (0) 9.34 (1.46)
PCG [Mixed Check] 1.821 (0.047) 38 (0) 9.34 (1.46)

Table 8: Training time comparison among the Laplacian RLSCs trained by solving Equation 14
with matrix inversion and by means of preconditioned conjugate gradient (PCG) with the
proposed early stopping conditions (in square brackets). Average training times (in sec-
onds), the number of PCG iterations, and the average classification error on test data T are
shown. Standard deviations are reported brackets.

convergence is achieved in just a few iterations, independently by the heuristics. The number of line
search iterations is usually very small and negligible with respect to the computational cost of the
training algorithm.

For the sake of completeness, we show an example of the application of our early stopped PCG
to LapRLSC, as described in Section 5. In Table 8 we report the training times, the PCG iterations,
and the error rate (on test points) in the case of PCMAC data. The reduction of training times is
significant, and positively influenced by the non iterative line search procedure.

7. Conclusions and Future Work

In this paper we described investigated in detail two strategies for solving the optimization prob-
lem of Laplacian Support Vector Machines (LapSVMs) in the primal. A very fast solution can be
achieved using preconditioned conjugate gradient coupled with an early stopping criterion based on
the stability of the classifier decision. Detailed experimental results on real world data show the
validity of such strategy. The computational cost for solving the problem reduces from O(n3) to
O(kn2), where n is the total number of training points, both labeled and unlabeled, and k is em-
pirically evaluated to be significantly smaller than n, without the need of storing in memory the
Hessian matrix and its inverse. Training times are significantly reduced on all selected benchmarks,
in particular, as the amount of training data increases. This solution can be a useful starting point
for applying greedy techniques for incremental classifier building or for studying the effects of a
sparser kernel expansion of the classification function. Moreover, some recently proposed domain
decomposition techniques for large scale RLSC (Li et al., 2007) could be investigated to solve the
primal LapSVM problem, that we will address in future work.

Acknowledgments

We would like to acknowledge the NSF for supporting this research.

1177

MELACCI AND BELKIN

Appendix A.

This Appendix collects all the parameters selected using our experimental protocol, for reproducibil-
ity of the experiments (Table 9 and Table 10). Details of the cross-validation procedure are described
in Section 6.

In the most of the data sets, parameter values selected using the PCG solution remain sub-
stantially the same of the ones selected by solving the primal problem with the Newton’s method,
suggesting that a reliable and fast cross-validation can be performed with PCG and the proposed
early stopping heuristics. In the USPST(B), COIL20(B), and MNIST3VS8 data sets, larger val-
ues for γA or γI are selected when using PCG, since the convergence speed of gradient descent is
enhanced.

To emphasize this behavior, the training times and the resulting error rates of the PCG solution
computed using γA and γI tuned by means of the Newton’s method (instead of the ones computed by
PCG with each specific goal condition) are reported in Table 11 and in Table 12. Comparing these
results with the ones presented in Section 6, it can be appreciated that both the convergence speed
(Table 6) and the accuracy of the PCG solution (Table 7) benefit from an appropriate parameter
selection. Note that the performance gaps between Newton’s method and PCG of a given data set
sometimes are slightly different among U, V , and T . As a matter of fact, the balancing of class
labels may not be exactly the same among the three sets, due to the random sampling of V (and L)
from non-test data, as described in Section 6.

References

J. Abernethy, O. Chapelle, and C. Castillo. Witch: A new approach to web spam detection. Techni-
cal Report 2008-001, Yahoo! Research, 2008.

M. Belkin and P. Niyogi. Using manifold stucture for partially labeled classification. Advances in
Neural Information Processing Systems, pages 953–960, 2003.

M. Belkin and P. Niyogi. Towards a theoretical foundation for Laplacian-based manifold methods.
Journal of Computer and System Sciences, 74(8):1289–1308, 2008.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples. The Journal of Machine Learning Research, 7:
2399–2434, 2006.

S.P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge university press, 2004.

O. Chapelle. Training a support vector machine in the primal. Neural Computation, 19(5):1155–
1178, 2007.

O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels for semi-supervised learning. In Advances
in Neural Information Processing Systems, pages 585–592. Cambridge, MA, USA: MIT Press,
2003.

O. Chapelle, B. Schölkopf, and A. Zien. Semi-supervised learning. MIT press, 2006.

O. Chapelle, V. Sindhwani, and S.S. Keerthi. Optimization techniques for semi-supervised support
vector machines. The Journal of Machine Learning Research, 9:203–233, 2008.

1178

LAPLACIAN SVMS TRAINED IN THE PRIMAL

Data Set Classifier σ nn p γA γI

G50C

SVM 17.5 - - 10−1 -
RLSC 17.5 - - 1 -
LapRLSC 17.5 50 5 10−6 10−2
LapSVM Dual (Original) 17.5 50 5 1 10
LapSVM Primal (Newton) 17.5 50 5 10−1 10

COIL20(B)

SVM 0.6 - - 10−6 -
RLSC 0.6 - - 10−6 -
LapRLSC 0.6 2 1 10−6 1
LapSVM Dual (Original) 0.6 2 1 10−2 100
LapSVM Primal (Newton) 0.6 2 1 10−6 1

PCMAC

SVM 2.7 - - 10−6 -
RLSC 2.7 - - 10−6 -
LapRLSC 2.7 50 5 10−6 10−2

LapSVM Dual (Original) 2.7 50 5 10−6 10−4

LapSVM Primal (Newton) 2.7 50 5 10−6 1

USPST(B)

SVM 9.4 - - 10−6 -
RLSC 9.4 - - 10−1 -
LapRLSC 9.4 10 2 10−4 10−1

LapSVM Dual (Original) 9.4 10 2 10−6 10−2

LapSVM Primal (Newton) 9.4 10 2 10−6 10−2

COIL20

SVM 0.6 - - 10−6 -
RLSC 0.6 - - 10−6 -
LapRLSC 0.6 2 1 10−6 1
LapSVM Dual (Original) 0.6 2 1 10−6 10
LapSVM Primal (Newton) 0.6 2 1 10−6 1

USPST

SVM 9.4 - - 10−1 -
RLSC 9.4 - - 10−6 -
LapRLSC 9.4 10 2 10−6 10−1

LapSVM Dual (Original) 9.4 10 2 10−6 10−2
LapSVM Primal (Newton) 9.4 10 2 10−4 1

MNIST3VS8

SVM 9 - - 10−6 -
RLSC 9 - - 10−6 -
LapRLSC 9 20 3 10−6 10−2

LapSVM Dual (Original) 9 20 3 10−6 10−2

LapSVM Primal (Newton) 9 20 3 10−6 10−2

FACEMIT
SVM 4.3 - - 10−6 -
RLSC 4.3 - - 10−6 -
LapSVM Primal (PCG) 4.3 6 1 10−6 10−8

Table 9: Parameters selected by cross-validation for supervised algorithms (SVM, RLSC) and
semi-supervised ones based on manifold regularization, using different loss functions
(LapRLSC, LapSVM trained in the dual formulation and in the primal one by means of
Newton’s method). The parameter σ is the bandwidth of the Gaussian kernel or, in the
MNIST3VS8, the degree of the polynomial one.

1179

MELACCI AND BELKIN

Data Set Laplacian SVM γA γI

G50C

Newton 10−1 10
PCG [Stability Check] 10−1 10
PCG [Validation Check] 10−1 10
PCG [Mixed Check] 10−1 10

COIL20(B)

Newton 10−6 1
PCG [Stability Check] 10−6 1
PCG [Validation Check] 1 100
PCG [Mixed Check] 10−6 1

PCMAC

Newton 10−6 1
PCG [Stability Check] 10−4 1
PCG [Validation Check] 10−4 1
PCG [Mixed Check] 10−6 10−1

USPST(B)

Newton 10−6 10−2

PCG [Stability Check] 10−6 1
PCG [Validation Check] 10−6 1
PCG [Mixed Check] 10−6 1

COIL20

Newton 10−6 1
PCG [Stability Check] 10−6 1
PCG [Validation Check] 10−6 1
PCG [Mixed Check] 10−6 1

USPST

Newton 10−4 1
PCG [Stability Check] 10−4 1
PCG [Validation Check] 10−4 1
PCG [Mixed Check] 10−4 1

MNIST3VS8

Newton 10−6 10−2

PCG [Stability Check] 10−6 10−1

PCG [Validation Check] 10−6 10−1

PCG [Mixed Check] 10−6 10−1

FACEMIT
PCG [Stability Check] 10−6 10−8

PCG [Validation Check] 10−6 10−8

PCG [Mixed Check] 10−6 10−8

Table 10: A comparison of the parameters selected by cross-validation for Laplacian SVMs trained
in the primal by means of Newton’s method (Newton) and preconditioned conjugate gra-
dient (PCG) with the proposed early stopping conditions (in square brackets).

1180

LAPLACIAN SVMS TRAINED IN THE PRIMAL

Data Set Laplacian SVM Training Time PCG Iters LS Iters

G50C

Dual 0.155 (0.004) - -
Newton 0.134 (0.006) - -
PCG [Stability Check] 0.044 (0.006) 20 (0) 1 (0)
PCG [Validation Check] 0.043 (0.006) 20.83 (2.89) 1 (0)
PCG [Mixed Check] 0.044 (0.006) 20.83 (2.89) 1 (0)

COIL20(B)

Dual 0.311 (0.012) - -
Newton 0.367 (0.097) - -
PCG [Stability Check] 0.198 (0.074) 74.67 (28.4) 2.41 (1.83)
PCG [Validation Check] 0.095 (0.018) 36 (7.24) 3.26 (2.21)
PCG [Mixed Check] 0.206 (0.089) 78.67 (34.42) 2.38 (1.79)

PCMAC

Dual 14.8203 (0.104) - -
Newton 15.756 (0.285) - -
PCG [Stability Check] 1.901 (0.022) 38.00 (0) 1.18 (0.45)
PCG [Validation Check] 1.970 (0.265) 39.58 (5.48) 1.18 (0.44)
PCG [Mixed Check] 1.969 (0.268) 39.58 (5.48) 1.18 (0.44)

USPST(B)

Dual 1.196 (0.015) - -
Newton 1.4727 (0.2033) - -
PCG [Stability Check] 0.496 (0.172) 95.00 (33.40) 6.56 (3.18)
PCG [Validation Check] 0.279 (0.096) 52.25 (18.34) 6.83 (3.44)
PCG [Mixed Check] 0.567 (0.226) 107.67 (43.88) 6.49 (3.15)

COIL20

Dual 6.321 (0.441) - -
Newton 7.26 (1.921) - -
PCG [Stability Check] 3.297 (1.471) 65.47 (30.35) 2.53 (1.90)
PCG [Validation Check] 1.769 (0.299) 34.07 (6.12) 3.37 (2.22)
PCG [Mixed Check] 3.487 (1.734) 69.53 (35.86) 2.48 (1.87)

USPST

Dual 12.25 (0.2) - -
Newton 17.74 (2.44) - -
PCG [Stability Check] 1.953 (0.403) 41.17 (8.65) 3.11 (1.73)
PCG [Validation Check] 2.032 (0.434) 42.91 (9.38) 3.13 (1.73)
PCG [Mixed Check] 2.158 (0.535) 45.60 (11.66) 3.12 (1.72)

MNIST3VS8

Dual 2064.18 (3.1) - -
Newton 2824.174 (105.07) - -
PCG [Stability Check] 188.775 (0.237) 165 (0) 6.78 (3.65)
PCG [Validation Check] 207.986 (35.330) 183.33 (31.75) 6.65 (3.57)
PCG [Mixed Check] 207.915 (35.438) 183.33 (31.75) 6.65 (3.57)

FACEMIT
PCG [Stability Check] 35.728 (0.868) 3 (0) 1 (0)
PCG [Validation Check] 35.728 (0.868) 3 (0) 1 (0)
PCG [Mixed Check] 35.728 (0.868) 3 (0) 1 (0)

Table 11: Training time comparison among the Laplacian SVMs trained in the dual (Dual),
LapSVM trained in the primal by means of Newton’s method (Newton) and by means
of preconditioned conjugate gradient (PCG) with the proposed early stopping conditions
(in square brackets). Parameters of the classifiers were tuned using the Newton’s method.
Average training times (in seconds) and their standard deviations, the number of PCG
iterations, and of Line Search (LS) iterations (per each PCG one) are reported.

1181

MELACCI AND BELKIN

Data Set Laplacian SVM U V T

G50C

Newton 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)
PCG [Stability Check] 6.13 (1.46) 6.17 (3.46) 7.27 (2.87)
PCG [Validation Check] 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)
PCG [Mixed Check] 6.16 (1.48) 6.17 (3.46) 7.27 (2.87)

COIL20(B)

Newton 8.16 (2.04) 7.92 (3.96) 8.56 (1.9)
PCG [Stability Check] 8.81 (2.23) 8.13 (3.71) 8.84 (1.93)
PCG [Validation Check] 8.97 (2.32) 9.17 (3.74) 8.96 (1.64)
PCG [Mixed Check] 8.84 (2.28) 8.13 (3.71) 8.84 (1.96)

PCMAC

Newton 9.68 (0.77) 7.83 (4.04) 9.37 (1.51)
PCG [Stability Check] 9.65 (0.76) 7.83 (4.04) 9.42 (1.43)
PCG [Validation Check] 9.65 (0.76) 7.83 (4.04) 9.40 (1.43)
PCG [Mixed Check] 9.65 (0.76) 7.83 (4.04) 9.40 (1.43)

USPST(B)

Newton 8.72 (2.15) 9.33 (3.85) 9.42 (2.34)
PCG [Stability Check] 11.07 (2.27) 13.33 (4.21) 11.49 (2.55)
PCG [Validation Check] 12.02 (2.22) 14.67 (2.99) 12.01 (2.14)
PCG [Mixed Check] 10.81 (2.39) 12.83 (4.78) 11.31 (2.71)

COIL20

Newton 10.54 (2.03) 9.79 (4.94) 11.32 (2.19)
PCG [Stability Check] 12.42 (2.68) 10.63 (4.66) 12.92 (2.14)
PCG [Validation Check] 13.07 (2.73) 12.08 (4.75) 13.52 (2.12)
PCG [Mixed Check] 12.43 (2.69) 10.42 (4.63) 12.87 (2.20)

USPST

Newton 14.98 (2.88) 15 (3.57) 15.38 (3.55)
PCG [Stability Check] 15.60 (3.45) 15.67 (3.60) 16.11 (3.95)
PCG [Validation Check] 15.40 (3.38) 15.67 (3.98) 15.94 (4.04)
PCG [Mixed Check] 15.45 (3.53) 15.50 (3.92) 15.94 (4.08)

MNIST3VS8

Newton 2.2 (0.14) 1.67 (1.44) 2.02 (0.22)
PCG [Stability Check] 3.16 (0.15) 2.5 (1.25) 2.4 (0.38)
PCG [Validation Check] 2.89 (0.62) 2.50 (1.25) 2.37 (0.44)
PCG [Mixed Check] 2.89 (0.62) 2.5 (1.25) 2.37 (0.44)

FACEMIT
PCG [Stability Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)
PCG [Validation Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)
PCG [Mixed Check] 29.97 (2.51) 36 (3.46) 27.97 (5.38)

Table 12: Average classification error (standard deviation is reported brackets) of Laplacian SVMs
trained in the primal by means of Newton’s method and of preconditioned conjugate gra-
dient (PCG) with the proposed early stopping conditions (in square brackets). Parameters
of the classifiers were tuned using the Newton’s method. U is the set of unlabeled ex-
amples used to train the classifiers. V is the labeled set for cross-validating parameters
whereas T is the out-of-sample test set. Results on the labeled training set L are omitted
since all classifiers perfectly fit such few labeled training points.

1182

LAPLACIAN SVMS TRAINED IN THE PRIMAL

D. Decoste and B. Schölkopf. Training invariant support vector machines. Machine Learning, 46
(1):161–190, 2002.

A. Demiriz and K. Bennett. Optimization approaches to semi-supervised learning. Complementar-
ity: Applications, Algorithms and Extensions, 50:1–19, 2000.

R.E. Fan, P.H. Chen, and C.J. Lin. Working set selection using second order information for training
support vector machines. The Journal of Machine Learning Research, 6:1889–1918, 2005.

T. Joachims. Transductive inference for text classification using support vector machines. In Pro-
ceedings of the International Conference on Machine Learning, pages 200–209, 1999.

T. Joachims. Transductive learning via spectral graph partitioning. In Proceedings of the Interna-
tional Conference on Machine Learning, volume 20, pages 290–297, 2003.

T. Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 217–226. ACM New
York, NY, USA, 2006.

S.S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large scale linear
SVMs. The Journal of Machine Learning Research, 6(1):341–361, 2005.

S.S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector machines with reduced classifier
complexity. The Journal of Machine Learning Research, 7:1493–1515, 2006.

W. Li, K.-H. Lee, and K.-S. Leung. Large-scale RLSC learning without agony. In Proceedings of
the 24th International Conference on Machine learning, pages 529–536, New York, NY, USA,
2007. ACM.

C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton methods for large-scale logistic
regression. The Journal of Machine Learning Research, 9:627–650, 2008.

O. L. Mangasarian. A finite newton method for classification. Optimization Methods and Software,
17(5):913–929, 2002.

M. Seeger. Low rank updates for the Cholesky decomposition. Department of EECS, University of
California at Berkeley, Technical Report, 2008.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for
SVM. In Proceedings of the International Conference on Machine Learning, pages 807–814,
2007.

J.R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain.
School of Computer Science, Carnegie Mellon University, Techical Report, 1994.

V. Sindhwani. On Semi-supervised Kernel Methods. PhD thesis, University of Chicago, 2007.

V. Sindhwani and D.S. Rosenberg. An RKHS for multi-view learning and manifold co-
regularization. In Proceedings of the International Conference on Machine Learning, pages
976–983, 2008.

1183

MELACCI AND BELKIN

V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: From transductive to semi-
supervised learning. In Proceedings of the International Conference on Machine Learning, vol-
ume 22, pages 825–832, 2005.

I.W. Tsang and J.T. Kwok. Large-scale sparsified manifold regularization. Advances in Neural
Information Processing Systems, 19:1401–1408, 2006.

V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, 2000.

X. Zhu and A.B. Goldberg. Introduction to Semi-Supervised Learning. Morgan and Claypool, 2009.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and har-
monic functions. In Proceedings of the International Conference on Machine Learning, 2003.

1184

Journal of Machine Learning Research 12 (2011) 1185-1224 Submitted 3/10; Revised 3/11; Published 4/11

The Indian Buffet Process: An Introduction and Review

Thomas L. Griffiths TOM GRIFFITHS@BERKELEY.EDU
Department of Psychology
University of California, Berkeley
Berkeley, CA 94720-1650, USA

Zoubin Ghahramani∗ ZOUBIN@ENG.CAM.AC.UK
Department of Engineering
University of Cambridge
Cambridge CB2 1PZ, UK

Editor: David M. Blei

Abstract
The Indian buffet process is a stochastic process defining a probability distribution over equiva-
lence classes of sparse binary matrices with a finite number of rows and an unbounded number of
columns. This distribution is suitable for use as a prior in probabilistic models that represent objects
using a potentially infinite array of features, or that involve bipartite graphs in which the size of at
least one class of nodes is unknown. We give a detailed derivation of this distribution, and illustrate
its use as a prior in an infinite latent feature model. We then review recent applications of the Indian
buffet process in machine learning, discuss its extensions, and summarize its connections to other
stochastic processes.

Keywords: nonparametric Bayes, Markov chain Monte Carlo, latent variable models, Chinese
restaurant processes, beta process, exchangeable distributions, sparse binary matrices

1. Introduction

Unsupervised learning aims to recover the latent structure responsible for generating observed data.
One of the key problems faced by unsupervised learning algorithms is thus determining the amount
of latent structure—the number of clusters, dimensions, or variables—needed to account for the
regularities expressed in the data. Often, this is treated as a model selection problem, choosing
the model with the dimensionality that results in the best performance. This treatment of the prob-
lem assumes that there is a single, finite-dimensional representation that correctly characterizes the
properties of the observed objects. An alternative is to assume that the amount of latent structure is
actually potentially unbounded, and that the observed objects only manifest a sparse subset of those
classes or features (Rasmussen and Ghahramani, 2001).

The assumption that the observed data manifest a subset of an unbounded amount of latent
structure is often used in nonparametric Bayesian statistics, and has recently become increasingly
popular in machine learning. In particular, this assumption is made in Dirichlet process mixture
models, which are used for nonparametric density estimation (Antoniak, 1974; Escobar and West,
1995; Ferguson, 1983; Neal, 2000). Under one interpretation of a Dirichlet process mixture model,
each datapoint is assigned to a latent class, and each class is associated with a distribution over

∗. Also at the Machine Learning Department, Carnegie Mellon University, Pittsburgh PA 15213, USA.

c©2011 Thomas L. Griffiths and Zoubin Ghahramani.

GRIFFITHS AND GHAHRAMANI

observable properties. The prior distribution over assignments of datapoints to classes is specified
in such a way that the number of classes used by the model is bounded only by the number of
objects, making Dirichlet process mixture models “infinite” mixture models (Rasmussen, 2000).

Recent work has extended Dirichlet process mixture models in a number of directions, making
it possible to use nonparametric Bayesian methods to discover the kinds of structure common in
machine learning: hierarchies (Blei et al., 2004; Heller and Ghahramani, 2005; Neal, 2003; Teh
et al., 2008), topics and syntactic classes (Teh et al., 2004) and the objects appearing in images
(Sudderth et al., 2006). However, the fact that all of these models are based upon the Dirichlet
process limits the kinds of latent structure that they can express. In many of these models, each
object described in a data set is associated with a latent variable that picks out a single class or
parameter responsible for generating that datapoint. In contrast, many models used in unsupervised
learning represent each object as having multiple features or being produced by multiple causes.
For instance, we could choose to represent each object with a binary vector, with entries indicating
the presence or absence of each feature (e.g., Ueda and Saito, 2003), allow each feature to take on
a continuous value, representing datapoints with locations in a latent space (e.g., Jolliffe, 1986), or
define a factorial model, in which each feature takes on one of a discrete set of values (e.g., Zemel
and Hinton, 1994; Ghahramani, 1995). Infinite versions of these models are difficult to define using
the Dirichlet process.

In this paper, we summarize recent work exploring the extension of this nonparametric approach
to models in which objects are represented using an unknown number of latent features. Following
Griffiths and Ghahramani (2005, 2006), we provide a detailed derivation of a distribution that can be
used to define probabilistic models that represent objects with infinitely many binary features, and
can be combined with priors on feature values to produce factorial and continuous representations.
This distribution can be specified in terms of a simple stochastic process called the Indian buffet
process, by analogy to the Chinese restaurant process used in Dirichlet process mixture models. We
illustrate how the Indian buffet process can be used to specify prior distributions in latent feature
models, using a simple linear-Gaussian model to show how such models can be defined and used.

The Indian buffet process can also be used to define a prior distribution in any setting where the
latent structure expressed in data can be expressed in the form of a binary matrix with a finite number
of rows and infinite number of columns, such as the adjacency matrix of a bipartite graph where one
class of nodes is of unknown size, or the adjacency matrix for a Markov process with an unbounded
set of states. As a consequence, this approach has found a number of recent applications within
machine learning. We review these applications, summarizing some of the innovations that have
been introduced in order to use the Indian buffet process in different settings, as well as extensions
to the basic model and alternative inference algorithms. We also describe some of the interesting
connections to other stochastic processes that have been identified. As for the Chinese restaurant
process, we can arrive at the Indian buffet process in a number of different ways: as the infinite limit
of a finite model, via the constructive specification of an infinite model, or by marginalizing out an
underlying measure. Each perspective provides different intuitions, and suggests different avenues
for designing inference algorithms and generalizations.

The plan of the paper is as follows. Section 2 summarizes the principles behind infinite mixture
models, focusing on the prior on class assignments assumed in these models, which can be defined in
terms of a simple stochastic process—the Chinese restaurant process. We then develop a distribution
on infinite binary matrices by considering how this approach can be extended to the case where
objects are represented with multiple binary features. Section 3 discusses the role of a such a

1186

INDIAN BUFFET PROCESS

distribution in defining infinite latent feature models. Section 4 derives the distribution, making use
of the Indian buffet process. Section 5 illustrates how this distribution can be used as a prior in a
nonparametric Bayesian model, defining an infinite-dimensional linear-Gaussian model, deriving a
sampling algorithm for inference in this model, and applying it to two simple data sets. Section 6
describes further applications of this approach, both in latent feature models and for inferring graph
structures, and Section 7 discusses recent work extending the Indian buffet process and providing
connections to other stochastic processes. Section 8 presents conclusions and directions for future
work.

2. Latent Class Models

Assume we have N objects, with the ith object having D observable properties represented by a row
vector xi. In a latent class model, such as a mixture model, each object is assumed to belong to
a single class, ci, and the properties xi are generated from a distribution determined by that class.
Using the matrix X=

[
xT1 x

T
2 · · · xTN

]T
to indicate the properties of all N objects, and the vector c=

[c1 c2 · · · cN]T to indicate their class assignments, the model is specified by a prior over assignment
vectors P(c), and a distribution over property matrices conditioned on those assignments, p(X|c).1
These two distributions can be dealt with separately: P(c) specifies the number of classes and their
relative probability, while p(X|c) determines how these classes relate to the properties of objects.
In this section, we will focus on the prior over assignment vectors, P(c), showing how such a prior
can be defined without placing an upper bound on the number of classes.

2.1 Finite Mixture Models

Mixture models assume that the assignment of an object to a class is independent of the assignments
of all other objects. If there are K classes, we have

P(c|θ) =
N

∏
i=1

P(ci|θ) =
N

∏
i=1

θci ,

where θ is a multinomial distribution over those classes, and θk is the probability of class k under
that distribution. Under this assumption, the probability of the properties of all N objects X can be
written as

p(X|θ) =
N

∏
i=1

K

∑
k=1

p(xi|ci = k)θk. (1)

The distribution from which each xi is generated is thus a mixture of the K class distributions
p(xi|ci = k), with θk determining the weight of class k.

The mixture weights θ can be treated as a parameter to be estimated. In Bayesian approaches
to mixture modeling, θ is assumed to follow a prior distribution p(θ), with a standard choice being
a symmetric Dirichlet distribution. The Dirichlet distribution on multinomials over K classes has
parameters α1,α2, . . . ,αK , and is conjugate to the multinomial (e.g., Bernardo and Smith, 1994).

1. We will use P(·) to indicate probability mass functions, and p(·) to indicate probability density functions. We will
assume that xi ∈ R

D, and p(X|c) is thus a density, although variants of the models we discuss also exist for discrete
data.

1187

GRIFFITHS AND GHAHRAMANI

The probability density for the parameter θ of a multinomial distribution is given by

p(θ) =
∏K
k=1θ

αk−1
k

D(α1,α2, . . . ,αK)
,

in which D(α1,α2, . . . ,αK) is the Dirichlet normalizing constant

D(α1,α2, . . . ,αK) =
∫
ΔK

K

∏
k=1

θαk−1k dθ

=
∏K
k=1Γ(αk)

Γ(∑K
k=1αk)

, (2)

where ΔK is the simplex of multinomials over K classes, and Γ(·) is the gamma, or generalized
factorial, function, with Γ(m) = (m− 1)! for any non-negative integer m. In a symmetric Dirichlet
distribution, all αk are equal. For example, we could take αk = α

K for all k. In this case, Equation 2
becomes

D(αK ,
α
K , . . . ,

α
K) =

Γ(αK)
K

Γ(α)
,

and the mean of θ is the multinomial that is uniform over all classes.
The probability model that we have defined is

θ |α ∼ Dirichlet(αK , αK , . . . , αK),
ci |θ ∼ Discrete(θ)

where Discrete(θ) is the multiple-outcome analogue of a Bernoulli event, where the probabilities
of the outcomes are specified by θ (i.e., P(ci = k|θ) = θk). The dependencies among variables in
this model are shown in Figure 1. Having defined a prior on θ, we can simplify this model by
integrating over all values of θ rather than representing them explicitly. The marginal probability of
an assignment vector c, integrating over all values of θ, is

P(c) =
∫
ΔK

n

∏
i=1

P(ci|θ) p(θ)dθ

=
∫
ΔK

∏K
k=1θ

mk+α/K−1
k

D(αK ,
α
K , . . . ,

α
K)

dθ

=
D(m1+ α

K ,m2+
α
K , . . . ,mk+

α
K)

D(αK ,
α
K , . . . ,

α
K)

=
∏K
k=1Γ(mk+

α
K)

Γ(αK)
K

Γ(α)
Γ(N+α)

, (3)

where mk = ∑N
i=1 δ(ci = k) is the number of objects assigned to class k. The tractability of this

integral is a result of the fact that the Dirichlet is conjugate to the multinomial.
Equation 3 defines a joint probability distribution for all class assignments c in which individual

class assignments are not independent. Rather, they are exchangeable (Bernardo and Smith, 1994),
with the probability of an assignment vector remaining the same when the indices of the objects are
permuted. Exchangeability is a desirable property in a distribution over class assignments, because

1188

INDIAN BUFFET PROCESS

θ ziα
N

Figure 1: Graphical model for the Dirichlet-multinomial model used in defining the Chinese restau-
rant process. Nodes are variables, arrows indicate dependencies, and plates (Buntine,
1994) indicate replicated structures.

we have no special knowledge about the objects that would justify treating them differently from
one another. However, the distribution on assignment vectors defined by Equation 3 assumes an
upper bound on the number of classes of objects, since it only allows assignments of objects to up
to K classes.

2.2 Infinite Mixture Models

Intuitively, defining an infinite mixture model means that we want to specify the probability of X in
terms of infinitely many classes, modifying Equation 1 to become

p(X|θ) =
N

∏
i=1

∞

∑
k=1

p(xi|ci = k)θk,

where θ is an infinite-dimensional multinomial distribution. In order to repeat the argument above,
we would need to define a prior, p(θ), on infinite-dimensional multinomials, and compute the prob-
ability of c by integrating over θ. This is essentially the strategy that is taken in deriving infinite
mixture models from the Dirichlet process (Antoniak, 1974; Ferguson, 1983; Ishwaran and James,
2001; Sethuraman, 1994). Instead, we will work directly with the distribution over assignment
vectors given in Equation 3, considering its limit as the number of classes approaches infinity (cf.,
Green and Richardson, 2001; Neal, 1992, 2000).

Expanding the gamma functions in Equation 3 using the recursion Γ(x) = (x− 1)Γ(x− 1) and
cancelling terms produces the following expression for the probability of an assignment vector c:

P(c) =
(α
K

)K+

(
K+

∏
k=1

mk−1
∏
j=1

(j+ α
K)

)
Γ(α)

Γ(N+α)
, (4)

where K+ is the number of classes for which mk > 0, and we have re-ordered the indices such that
mk > 0 for all k ≤ K+. There are KN possible values for c, which diverges as K → ∞. As this
happens, the probability of any single set of class assignments goes to 0. Since K+ ≤ N and N is
finite, it is clear that P(c)→ 0 as K→ ∞, since 1

K → 0. Consequently, we will define a distribution
over equivalence classes of assignment vectors, rather than the vectors themselves.

Specifically, we will define a distribution on partitions of objects. In our setting, a partition
is a division of the set of N objects into subsets, where each object belongs to a single subset
and the ordering of the subsets does not matter. Two assignment vectors that result in the same
division of objects correspond to the same partition. For example, if we had three objects, the class

1189

GRIFFITHS AND GHAHRAMANI

assignments {c1,c2,c3}= {1,1,2} would correspond to the same partition as {2,2,1}, since all that
differs between these two cases is the labels of the classes. A partition thus defines an equivalence
class of assignment vectors, which we denote [c], with two assignment vectors belonging to the same
equivalence class if they correspond to the same partition. A distribution over partitions is sufficient
to allow us to define an infinite mixture model, provided the prior distribution on the parameters is
the same for all classes. In this case, these equivalence classes of class assignments are the same as
those induced by identifiability: p(X|c) is the same for all assignment vectors c that correspond to
the same partition, so we can apply statistical inference at the level of partitions rather than the level
of assignment vectors.

Assume we have a partition of N objects into K+ subsets, and we have K = K0+K+ class
labels that can be applied to those subsets. Then there are K!

K0!
assignment vectors c that belong to

the equivalence class defined by that partition, [c]. We can define a probability distribution over
partitions by summing over all class assignments that belong to the equivalence class defined by
each partition. The probability of each of those class assignments is equal under the distribution
specified by Equation 4, so we obtain

P([c]) = ∑
c∈[c]

P(c)

=
K!
K0!

(α
K

)K+

(
K+

∏
k=1

mk−1
∏
j=1

(j+ α
K)

)
Γ(α)

Γ(N+α)
.

Rearranging the first two terms, we can compute the limit of the probability of a partition as K→∞,
which is

lim
K→∞

αK+ · K!
K0!KK+

·
(

K+

∏
k=1

mk−1
∏
j=1

(j+ α
K)

)
· Γ(α)
Γ(N+α)

= αK+ · 1 ·
(

K+

∏
k=1

(mk−1)!
)
· Γ(α)
Γ(N+α)

. (5)

The details of the steps taken in computing this limit are given in Appendix A. These limiting
probabilities define a valid distribution over partitions, and thus over equivalence classes of class
assignments, providing a prior over class assignments for an infinite mixture model. Objects are
exchangeable under this distribution, just as in the finite case: the probability of a partition is not
affected by the ordering of the objects, since it depends only on the counts mk.

As noted above, the distribution over partitions specified by Equation 5 can be derived in a vari-
ety of ways—by taking limits (Green and Richardson, 2001; Neal, 1992, 2000), from the Dirichlet
process (Blackwell and MacQueen, 1973), or from other equivalent stochastic processes (Ishwaran
and James, 2001; Sethuraman, 1994). We will briefly discuss a simple process that produces the
same distribution over partitions: the Chinese restaurant process.

2.3 The Chinese Restaurant Process

The Chinese restaurant process (CRP) was named by Jim Pitman and Lester Dubins, based upon
a metaphor in which the objects are customers in a restaurant, and the classes are the tables at
which they sit (the process first appears in Aldous 1985, where it is attributed to Pitman, although

1190

INDIAN BUFFET PROCESS

...

2

10

6 7

93

1 4

8 5

Figure 2: A partition induced by the Chinese restaurant process. Numbers indicate customers (ob-
jects), circles indicate tables (classes).

it is identical to the extended Polya urn scheme introduced by Blackwell and MacQueen 1973).
Imagine a restaurant with an infinite number of tables, each with an infinite number of seats.2 The
customers enter the restaurant one after another, and each choose a table at random. In the CRP
with parameter α, each customer chooses an occupied table with probability proportional to the
number of occupants, and chooses the next vacant table with probability proportional to α. For
example, Figure 2 shows the state of a restaurant after 10 customers have chosen tables using this
procedure. The first customer chooses the first table with probability α

α = 1. The second customer
chooses the first table with probability 1

1+α , and the second table with probability
α
1+α . After the

second customer chooses the second table, the third customer chooses the first table with probability
1
2+α , the second table with probability

1
2+α , and the third table with probability

α
2+α . This process

continues until all customers have seats, defining a distribution over allocations of people to tables,
and, more generally, objects to classes. Extensions of the CRP and connections to other stochastic
processes are pursued in depth by Pitman (2002).

The distribution over partitions induced by the CRP is the same as that given in Equation 5. If
we assume an ordering on our N objects, then we can assign them to classes sequentially using the
method specified by the CRP, letting objects play the role of customers and classes play the role of
tables. The ith object would be assigned to the kth class with probability

P(ci = k|c1,c2, . . . ,ci−1) =
{ mk

i−1+α k ≤ K+
α

i−1+α k = K+1

where mk is the number of objects currently assigned to class k, and K+ is the number of classes for
which mk > 0. If all N objects are assigned to classes via this process, the probability of a partition
of objects c is that given in Equation 5. The CRP thus provides an intuitive means of specifying a
prior for infinite mixture models, as well as revealing that there is a simple sequential process by
which exchangeable class assignments can be generated.

2.4 Inference by Gibbs Sampling

Inference in an infinite mixture model is only slightly more complicated than inference in a mixture
model with a finite, fixed number of classes. The standard algorithm used for inference in infinite
mixture models is Gibbs sampling (Bush and MacEachern, 1996; Neal, 2000). Gibbs sampling

2. Pitman and Dubins, both statisticians at the University of California, Berkeley, were inspired by the apparently infinite
capacity of Chinese restaurants in San Francisco when they named the process.

1191

GRIFFITHS AND GHAHRAMANI

is a Markov chain Monte Carlo (MCMC) method, in which variables are successively sampled
from their distributions when conditioned on the current values of all other variables (Geman and
Geman, 1984). This process defines a Markov chain, which ultimately converges to the distribution
of interest (see Gilks et al., 1996). Recent work has also explored variational inference algorithms
for these models (Blei and Jordan, 2006), a topic we will return to later in the paper.

Implementing a Gibbs sampler requires deriving the full conditional distribution for all variables
to be sampled. In a mixture model, these variables are the class assignments c. The relevant full
conditional distribution is P(ci|c−i,X), the probability distribution over ci conditioned on the class
assignments of all other objects, c−i, and the data, X. By applying Bayes’ rule, this distribution can
be expressed as

P(ci = k|c−i,X) ∝ p(X|c)P(ci = k|c−i),
where only the second term on the right hand side depends upon the distribution over class assign-
ments, P(c). Here we assume that the parameters associated with each class can be integrated out,
so we that the probability of the data depends only on the class assignment. This is possible when a
conjugate prior is used on these parameters. For details, and alternative algorithms that can be used
when this assumption is violated, see Neal (2000).

In a finite mixture model with P(c) defined as in Equation 3, we can compute P(ci = k|c−i) by
integrating over θ, obtaining

P(ci = k|c−i) =
∫
P(ci = k|θ)p(θ|c−i)dθ

=
m−i,k+ α

K

N−1+α
, (6)

where m−i,k is the number of objects assigned to class k, not including object i. This is the posterior
predictive distribution for a multinomial distribution with a Dirichlet prior.

In an infinite mixture model with a distribution over class assignments defined as in Equation 5,
we can use exchangeability to find the full conditional distribution. Since it is exchangeable, P([c])
is unaffected by the ordering of objects. Thus, we can choose an ordering in which the ith object
is the last to be assigned to a class. It follows directly from the definition of the Chinese restaurant
process that

P(ci = k|c−i) =
⎧⎨⎩

m−i,k
N−1+α m−i,k > 0

α
N−1+α k = K−i,++1
0 otherwise

(7)

where K−i,+ is the number of classes for which m−i,k > 0. The same result can be found by taking
the limit of the full conditional distribution in the finite model, given by Equation 6 (Neal, 2000).

When combined with some choice of p(X|c), Equations 6 and 7 are sufficient to define Gibbs
samplers for finite and infinite mixture models respectively. Demonstrations of Gibbs sampling
in infinite mixture models are provided by Neal (2000) and Rasmussen (2000). Similar MCMC
algorithms are presented in Bush and MacEachern (1996), West et al. (1994), Escobar and West
(1995) and Ishwaran and James (2001). Algorithms that go beyond the local changes in class
assignments allowed by a Gibbs sampler are given by Jain and Neal (2004) and Dahl (2003).

2.5 Summary

Our review of infinite mixture models serves three purposes: it shows that infinite statistical models
can be defined by specifying priors over infinite combinatorial objects; it illustrates how these priors

1192

INDIAN BUFFET PROCESS

can be derived by taking the limit of priors for finite models; and it demonstrates that inference in
these models can remain possible, despite the large hypothesis spaces they imply. However, infinite
mixture models are still fundamentally limited in their representation of objects, assuming that each
object can only belong to a single class. In the next two sections, we use the insights underlying
infinite mixture models to derive methods for representing objects in terms of infinitely many latent
features, leading us to derive a distribution on infinite binary matrices.

3. Latent Feature Models

In a latent feature model, each object is represented by a vector of latent feature values fi, and the
properties xi are generated from a distribution determined by those latent feature values. Latent fea-
ture values can be continuous, as in factor analysis (Roweis and Ghahramani, 1999) and probabilis-
tic principal component analysis (PCA; Tipping and Bishop, 1999), or discrete, as in cooperative
vector quantization (CVQ; Zemel and Hinton, 1994; Ghahramani, 1995). In the remainder of this
section, we will assume that feature values are continuous. Using the matrix F =

[
fT1 f

T
2 · · · fTN

]T
to

indicate the latent feature values for all N objects, the model is specified by a prior over features,
p(F), and a distribution over observed property matrices conditioned on those features, p(X|F). As
with latent class models, these distributions can be dealt with separately: p(F) specifies the number
of features, their probability, and the distribution over values associated with each feature, while
p(X|F) determines how these features relate to the properties of objects. Our focus will be on p(F),
showing how such a prior can be defined without placing an upper bound on the number of features.

We can break the matrix F into two components: a binary matrix Z indicating which features
are possessed by each object, with zik = 1 if object i has feature k and 0 otherwise, and a second
matrix V indicating the value of each feature for each object. F can be expressed as the elementwise
(Hadamard) product ofZ andV, F=Z⊗V, as illustrated in Figure 3. In many latent feature models,
such as PCA and CVQ, objects have non-zero values on every feature, and every entry of Z is 1. In
sparse latent feature models (e.g., sparse PCA; d’Aspremont et al., 2004; Jolliffe and Uddin, 2003;
Zou et al., 2006) only a subset of features take on non-zero values for each object, and Z picks out
these subsets.

A prior on F can be defined by specifying priors for Z and V separately, with p(F) = P(Z)p(V).
We will focus on defining a prior on Z, since the effective dimensionality of a latent feature model is
determined by Z. Assuming that Z is sparse, we can define a prior for infinite latent feature models
by defining a distribution over infinite binary matrices. Our analysis of latent class models provides
two desiderata for such a distribution: objects should be exchangeable, and inference should be
tractable. It also suggests a method by which these desiderata can be satisfied: start with a model
that assumes a finite number of features, and consider the limit as the number of features approaches
infinity.

4. A Distribution on Infinite Sparse Binary Matrices

In this section, we derive a distribution on infinite binary matrices by starting with a simple model
that assumes K features, and then taking the limit as K→∞. The resulting distribution corresponds
to a simple generative process, which we term the Indian buffet process.

1193

GRIFFITHS AND GHAHRAMANI

(c)
ob
je
ct
s

N
K features

ob
je
ct
s

N

K features

0

0

0

0 0

0

−0.1

1.8

−3.2

0.9

0.9

−0.3

0.2 −2.8

1.4

ob
je
ct
s

N

K features

5

0

0

0

0 0

0

2

5

1

1

4

4

3

3

(a) (b)

Figure 3: Feature matrices. A binary matrix Z, as shown in (a), can be used as the basis for sparse
infinite latent feature models, indicating which features take non-zero values. Element-
wise multiplication of Z by a matrix V of continuous values gives a representation like
that shown in (b). IfV contains discrete values, we obtain a representation like that shown
in (c).

4.1 A Finite Feature Model

We have N objects and K features, and the possession of feature k by object i is indicated by a
binary variable zik. Each object can possess multiple features. The zik thus form a binary N×K
feature matrix, Z. We will assume that each object possesses feature k with probability πk, and that
the features are generated independently. In contrast to the class models discussed above, for which
∑k θk = 1, the probabilities πk can each take on any value in [0,1]. Under this model, the probability
of a matrix Z given π= {π1,π2, . . . ,πK}, is

P(Z|π) =
K

∏
k=1

N

∏
i=1

P(zik|πk) =
K

∏
k=1

πmkk (1−πk)N−mk ,

where mk = ∑N
i=1 zik is the number of objects possessing feature k.

We can define a prior on π by assuming that each πk follows a beta distribution. The beta
distribution has parameters r and s, and is conjugate to the binomial. The probability of any πk
under the Beta(r,s) distribution is given by

p(πk) =
πr−1k (1−πk)s−1

B(r,s)
,

where B(r,s) is the beta function,

B(r,s) =
∫ 1

0
πr−1k (1−πk)s−1 dπk

=
Γ(r)Γ(s)
Γ(r+ s)

. (8)

We will take r = α
K and s= 1, so Equation 8 becomes

B(αK ,1) =
Γ(αK)

Γ(1+ α
K)

= K
α ,

1194

INDIAN BUFFET PROCESS

zikπkα
N

K

Figure 4: Graphical model for the beta-binomial model used in defining the Indian buffet process.
Nodes are variables, arrows indicate dependencies, and plates (Buntine, 1994) indicate
replicated structures.

exploiting the recursive definition of the gamma function.3

The probability model we have defined is

πk |α ∼ Beta(αK ,1),
zik |πk ∼ Bernoulli(πk). (9)

Each zik is independent of all other assignments, conditioned on πk, and the πk are generated in-
dependently. A graphical model illustrating the dependencies among these variables is shown in
Figure 4. Having defined a prior on π, we can simplify this model by integrating over all values for
π rather than representing them explicitly. The marginal probability of a binary matrix Z is

P(Z) =
K

∏
k=1

∫ (N

∏
i=1

P(zik|πk)
)
p(πk)dπk

=
K

∏
k=1

B(mk+
α
K ,N−mk+1)

B(αK ,1)

=
K

∏
k=1

α
KΓ(mk+

α
K)Γ(N−mk+1)

Γ(N+1+ α
K)

. (10)

Again, the result follows from conjugacy, this time between the binomial and beta distributions.
This distribution is exchangeable, depending only on the counts mk.

This model has the important property that the expectation of the number of non-zero entries
in the matrix Z, E

[
1TZ1

]
= E [∑ik zik], has an upper bound that is independent of K. Since each

column of Z is independent, the expectation is K times the expectation of the sum of a single
column, E

[
1T zk
]
. This expectation is easily computed,

E
[
1T zk
]
=

N

∑
i=1

E(zik) =
N

∑
i=1

∫ 1

0
πk p(πk) dπk = N

α
K

1+ α
K

, (11)

where the result follows from the fact that the expectation of a Beta(r,s) random variable is r
r+s .

Consequently, E
[
1TZ1

]
= KE

[
1T zk
]
= Nα

1+ α
K
. For finite K, the expectation of the number of entries

in Z is bounded above by Nα.

3. The motivation for choosing r = α
K will be clear when we take the limit K→ ∞ in Section 4.3, while the choice of

s= 1 will be relaxed in Section 7.1.

1195

GRIFFITHS AND GHAHRAMANI

lof

Figure 5: Binary matrices and the left-ordered form. The binary matrix on the left is transformed
into the left-ordered binary matrix on the right by the function lo f (·). This left-ordered
matrix was generated from the exchangeable Indian buffet process with α = 10. Empty
columns are omitted from both matrices.

4.2 Equivalence Classes

In order to find the limit of the distribution specified by Equation 10 as K→ ∞, we need to define
equivalence classes of binary matrices—the analogue of partitions for assignment vectors. Identi-
fying these equivalence classes makes it easier to be precise about the objects over which we are
defining probability distributions, but the reader who is satisfied with the intuitive idea of taking the
limit as K→ ∞ can safely skip the technical details presented in this section.

Our equivalence classes will be defined with respect to a function on binary matrices, lo f (·).
This function maps binary matrices to left-ordered binary matrices. lo f (Z) is obtained by order-
ing the columns of the binary matrix Z from left to right by the magnitude of the binary number
expressed by that column, taking the first row as the most significant bit. The left-ordering of a
binary matrix is shown in Figure 5. In the first row of the left-ordered matrix, the columns for which
z1k = 1 are grouped at the left. In the second row, the columns for which z2k = 1 are grouped at the
left of the sets for which z1k = 1. This grouping structure persists throughout the matrix.

Considering the process of placing a binary matrix in left-ordered form motivates the defini-
tion of a further technical term. The history of feature k at object i is defined to be (z1k, . . . ,z(i−1)k).
Where no object is specified, we will use history to refer to the full history of feature k, (z1k, . . . ,zNk).
We will individuate the histories of features using the decimal equivalent of the binary numbers cor-
responding to the column entries. For example, at object 3, features can have one of four histories:
0, corresponding to a feature with no previous assignments, 1, being a feature for which z2k = 1
but z1k = 0, 2, being a feature for which z1k = 1 but z2k = 0, and 3, being a feature possessed by
both previous objects were assigned. Kh will denote the number of features possessing the history
h, with K0 being the number of features for which mk = 0 and K+ = ∑2

N−1
h=1 Kh being the number of

features for which mk > 0, so K = K0+K+. The function lo f thus places the columns of a matrix
in ascending order of their histories.

lo f (·) is a many-to-one function: many binary matrices reduce to the same left-ordered form,
and there is a unique left-ordered form for every binary matrix. We can thus use lo f (·) to define a
set of equivalence classes. Any two binary matricesY and Z are lo f -equivalent if lo f (Y) = lo f (Z),
that is, if Y and Z map to the same left-ordered form. The lo f -equivalence class of a binary matrix
Z, denoted [Z], is the set of binary matrices that are lo f -equivalent to Z. lo f -equivalence classes

1196

INDIAN BUFFET PROCESS

are preserved through permutation of either the rows or the columns of a matrix, provided the same
permutations are applied to the other members of the equivalence class. Performing inference at
the level of lo f -equivalence classes is appropriate in models where feature order is not identifiable,
with p(X|F) being unaffected by the order of the columns of F. Any model in which the probability
of X is specified in terms of a linear function of F, such as PCA or CVQ, has this property.

We need to evaluate the cardinality of [Z], being the number of matrices that map to the same
left-ordered form. The columns of a binary matrix are not guaranteed to be unique: since an object
can possess multiple features, it is possible for two features to be possessed by exactly the same set
of objects. The number of matrices in [Z] is reduced if Z contains identical columns, since some
re-orderings of the columns of Z result in exactly the same matrix. Taking this into account, the

cardinality of [Z] is
(

K
K0...K2N−1

)
= K!

∏2
N−1
h=0 Kh!

, where Kh is the count of the number of columns with

full history h.
lo f -equivalence classes play the same role for binary matrices as partitions do for assignment

vectors: they collapse together all binary matrices (assignment vectors) that differ only in column
ordering (class labels). This relationship can be made precise by examining the lo f -equivalence
classes of binary matrices constructed from assignment vectors. Define the class matrix generated
by an assignment vector c to be a binary matrix Z where zik = 1 if and only if ci = k. It is straight-
forward to show that the class matrices generated by two assignment vectors that correspond to the
same partition belong to the same lo f -equivalence class, and vice versa.

4.3 Taking the Infinite Limit

Under the distribution defined by Equation 10, the probability of a particular lo f -equivalence class
of binary matrices, [Z], is

P([Z]) = ∑
Z∈[Z]

P(Z)

=
K!

∏2N−1
h=0 Kh!

K

∏
k=1

α
KΓ(mk+

α
K)Γ(N−mk+1)

Γ(N+1+ α
K)

. (12)

In order to take the limit of this expression as K → ∞, we will divide the columns of Z into two
subsets, corresponding to the features for which mk = 0 and the features for which mk > 0. Re-
ordering the columns such that mk > 0 if k ≤ K+, and mk = 0 otherwise, we can break the product
in Equation 12 into two parts, corresponding to these two subsets. The product thus becomes

K

∏
k=1

α
KΓ(mk+

α
K)Γ(N−mk+1)

Γ(N+1+ α
K)

=

(α
KΓ(

α
K)Γ(N+1)

Γ(N+1+ α
K)

)K−K+ K+

∏
k=1

α
KΓ(mk+

α
K)Γ(N−mk+1)

Γ(N+1+ α
K)

=

(α
KΓ(

α
K)Γ(N+1)

Γ(N+1+ α
K)

)K K+

∏
k=1

Γ(mk+
α
K)Γ(N−mk+1)

Γ(αK)Γ(N+1)

=

(
N!

∏N
j=1(j+

α
K)

)K (α
K

)K+
K+

∏
k=1

(N−mk)!∏
mk−1
j=1 (j+ α

K)

N!
, (13)

1197

GRIFFITHS AND GHAHRAMANI

where we have used the fact that Γ(x) = (x− 1)Γ(x− 1) for x > 1. Substituting Equation 13 into
Equation 12 and rearranging terms, we can compute our limit

lim
K→∞

αK+

∏2N−1
h=1 Kh!

· K!
K0!KK+

·
(

N!

∏N
j=1(j+

α
K)

)K
·
K+

∏
k=1

(N−mk)!∏
mk−1
j=1 (j+ α

K)

N!

=
αK+

∏2N−1
h=1 Kh!

· 1 · exp{−αHN} ·
K+

∏
k=1

(N−mk)!(mk−1)!
N!

, (14)

where HN is the Nth harmonic number, HN = ∑N
j=1

1
j . The details of the steps taken in computing

this limit are given in Appendix A. Again, this distribution is exchangeable: neither the number of
identical columns nor the column sums are affected by the ordering on objects.

4.4 The Indian Buffet Process

The probability distribution defined in Equation 14 can be derived from a simple stochastic process.
As with the CRP, this process assumes an ordering on the objects, generating the matrix sequen-
tially using this ordering. We will also use a culinary metaphor in defining our stochastic process,
appropriately adjusted for geography.4 Many Indian restaurants offer lunchtime buffets with an
apparently infinite number of dishes. We can define a distribution over infinite binary matrices by
specifying a procedure by which customers (objects) choose dishes (features).

In our Indian buffet process (IBP), N customers enter a restaurant one after another. Each cus-
tomer encounters a buffet consisting of infinitely many dishes arranged in a line. The first customer
starts at the left of the buffet and takes a serving from each dish, stopping after a Poisson(α) number
of dishes as his plate becomes overburdened. The ith customer moves along the buffet, sampling
dishes in proportion to their popularity, serving himself with probability mk

i , where mk is the number
of previous customers who have sampled a dish. Having reached the end of all previous sampled
dishes, the ith customer then tries a Poisson(αi) number of new dishes.

We can indicate which customers chose which dishes using a binary matrix Z with N rows and
infinitely many columns, where zik = 1 if the ith customer sampled the kth dish. Figure 6 shows
a matrix generated using the IBP with α = 10. The first customer tried 17 dishes. The second
customer tried 7 of those dishes, and then tried 3 new dishes. The third customer tried 3 dishes tried
by both previous customers, 5 dishes tried by only the first customer, and 2 new dishes. Vertically
concatenating the choices of the customers produces the binary matrix shown in the figure.

Using K(i)
1 to indicate the number of new dishes sampled by the ith customer, the probability of

any particular matrix being produced by this process is

P(Z) =
αK+

∏N
i=1K

(i)
1 !

exp{−αHN}
K+

∏
k=1

(N−mk)!(mk−1)!
N!

. (15)

As can be seen from Figure 6, the matrices produced by this process are generally not in left-ordered
form. However, these matrices are also not ordered arbitrarily because the Poisson draws always
result in choices of new dishes that are to the right of the previously sampled dishes. Customers
are not exchangeable under this distribution, as the number of dishes counted as K(i)

1 depends upon

4. This work was started when both authors were at the Gatsby Computational Neuroscience Unit in London, where the
Indian buffet is the dominant culinary metaphor.

1198

INDIAN BUFFET PROCESS

Dishes

1

2

3

4

5

6

7

8

9

10

11

12

C
us
to
m
er
s

13

14

15

16

17

18

19

20

Figure 6: A binary matrix generated by the Indian buffet process with α= 10.

the order in which the customers make their choices. However, if we only pay attention to the
lo f -equivalence classes of the matrices generated by this process, we obtain the exchangeable dis-

tribution P([Z]) given by Equation 14: ∏N
i=1K

(i)
1 !

∏2
N−1
h=1 Kh!

matrices generated via this process map to the same

left-ordered form, and P([Z]) is obtained by multiplying P(Z) from Equation 15 by this quantity.
It is possible to define a similar sequential process that directly produces a distribution on lo f

equivalence classes in which customers are exchangeable, but this requires more effort on the part
of the customers. In the exchangeable Indian buffet process, the first customer samples a Poisson(α)
number of dishes, moving from left to right. The ith customer moves along the buffet, and makes
a single decision for each set of dishes with the same history. If there are Kh dishes with history h,
under which mh previous customers have sampled each of those dishes, then the customer samples a
Binomial(mhi ,Kh) number of those dishes, starting at the left. Having reached the end of all previous
sampled dishes, the ith customer then tries a Poisson(αi) number of new dishes. Attending to the
history of the dishes and always sampling from the left guarantees that the resulting matrix is in
left-ordered form, and it is easy to show that the matrices produced by this process have the same
probability as the corresponding lo f -equivalence classes under Equation 14.

4.5 A Distribution over Collections of Histories

In Section 4.2, we noted that lo f -equivalence classes of binary matrices generated from assignment
vectors correspond to partitions. Likewise, lo f -equivalence classes of general binary matrices cor-
respond to simple combinatorial structures: vectors of non-negative integers. Fixing some ordering
of N objects, a collection of feature histories on those objects can be represented by a frequency

1199

GRIFFITHS AND GHAHRAMANI

vector K = (K1, . . . ,K2N−1), indicating the number of times each history appears in the collection.
A collection of feature histories can be translated into a left-ordered binary matrix by horizontally
concatenating an appropriate number of copies of the binary vector representing each history into
a matrix. A left-ordered binary matrix can be translated into a collection of feature histories by
counting the number of times each history appears in that matrix. Since partitions are a subset
of all collections of histories—namely those collections in which each object appears in only one
history—this process is strictly more general than the CRP.

This connection between lo f -equivalence classes of feature matrices and collections of feature
histories suggests another means of deriving the distribution specified by Equation 14, operating
directly on the frequencies of these histories. We can define a distribution on vectors of non-negative
integers K by assuming that each Kh is generated independently from a Poisson distribution with
parameter αB(mh,N−mh+ 1) = α (mh−1)!(N−mh)!

N! where mh is the number of non-zero elements in
the history h. This gives

P(K) =
2N−1
∏
h=1

(
α (mh−1)!(N−mh)!

N!

)Kh
Kh!

exp

{
−α(mh−1)!(N−mh)!

N!

}

=
α∑

2N−1
h=1 Kh

∏2N−1
h=1 Kh!

exp{−αHN}
2N−1
∏
h=1

(
(mh−1)!(N−mh)!

N!

)Kh
,

which is easily seen to be the same as P([Z]) in Equation 14. The harmonic number in the expo-

nential term is obtained by summing (mh−1)!(N−m)!
N! over all histories h. There are

(
N
j

)
histories for

which mh = j, so we have

2N−1
∑
h=1

(mh−1)!(N−mh)!
N!

=
N

∑
j=1

(Nj)
(j−1)!(N− j)!

N!
=

N

∑
j=1

1
j
= HN . (16)

4.6 Properties of this Distribution

These different views of the distribution specified by Equation 14 make it straightforward to derive
some of its properties. First, the effective dimension of the model, K+, follows a Poisson(αHN)
distribution. This is easily shown using the generative process described in Section 4.5: K+ =

∑2
N−1
h=1 Kh, and under this process is thus the sum of a set of Poisson distributions. The sum of a set
of Poisson distributions is a Poisson distribution with parameter equal to the sum of the parameters
of its components. Using Equation 16, this is αHN . Alternatively, we can use the fact that the
number of new columns generated at the ith row is Poisson(αi), with the total number of columns
being the sum of these quantities.

A second property of this distribution is that the number of features possessed by each object
follows a Poisson(α) distribution. This follows from the definition of the exchangeable IBP. The
first customer chooses a Poisson(α) number of dishes. By exchangeability, all other customers must
also choose a Poisson(α) number of dishes, since we can always specify an ordering on customers
which begins with a particular customer.

Finally, it is possible to show that Z remains sparse as K→ ∞. The simplest way to do this is to
exploit the previous result: if the number of features possessed by each object follows a Poisson(α)
distribution, then the expected number of entries in Z is Nα. This is consistent with the quantity

1200

INDIAN BUFFET PROCESS

obtained by taking the limit of this expectation in the finite model, which is given in Equation 11:
limK→∞E

[
1TZ1

]
= limK→∞

Nα
1+ α

K
= Nα.

4.7 Inference by Gibbs Sampling

We have defined a distribution over infinite binary matrices that satisfies one of our desiderata—
objects (the rows of the matrix) are exchangeable under this distribution. It remains to be shown
that inference in infinite latent feature models is tractable, as was the case for infinite mixture mod-
els. We will derive a Gibbs sampler for sampling from the distribution defined by the IBP, which
suggests a strategy for inference in latent feature models in which the exchangeable IBP is used as
a prior. We will consider alternative inference algorithms later in the paper.

To sample from the distribution defined by the IBP, we need to compute the conditional distri-
bution P(zik = 1|Z−(ik)), where Z−(ik) denotes the entries of Z other than zik. In the finite model,
where P(Z) is given by Equation 10, it is straightforward to compute the conditional distribution
for any zik. Integrating over πk gives

P(zik = 1|z−i,k) =
∫ 1

0
P(zik|πk)p(πk|z−i,k)dπk

=
m−i,k+ α

K

N+ α
K

, (17)

where z−i,k is the set of assignments of other objects, not including i, for feature k, and m−i,k is the
number of objects possessing feature k, not including i. We need only condition on z−i,k rather than
Z−(ik) because the columns of the matrix are generated independently under this prior.

In the infinite case, we can derive the conditional distribution from the exchangeable IBP. Choos-
ing an ordering on objects such that the ith object corresponds to the last customer to visit the buffet,
we obtain

P(zik = 1|z−i,k) = m−i,k
N

, (18)

for any k such that m−i,k > 0. The same result can be obtained by taking the limit of Equation 17
as K → ∞. Similarly the number of new features associated with object i should be drawn from a
Poisson(αN) distribution. This can also be derived from Equation 17, using the same kind of limiting
argument as that presented above to obtain the terms of the Poisson.

This analysis results in a simple Gibbs sampling algorithm for generating samples from the
distribution defined by the IBP. We start with an arbitrary binary matrix. We then iterate through the
rows of the matrix, i. For each column k, if m−i,k is greater than 0 we set zik = 1 with probability
given by Equation 18. Otherwise, we delete that column. At the end of the row, we add Poisson(αN)
new columns that have ones in that row. After sufficiently many passes through the rows, the
resulting matrix will be a draw from the distribution P(Z) given by Equation 15.

This algorithm suggests a heuristic strategy for sampling from the posterior distribution P(Z|X)
in a model that uses the IBP to define a prior on Z. In this case, we need to sample from the full
conditional distribution

P(zik = 1|Z−(ik),X) ∝ p(X|Z)P(zik = 1|Z−(ik))

where p(X|Z) is the likelihood function for the model, and we assume that parameters of the like-
lihood have been integrated out. We can proceed as in the Gibbs sampler given above, simply

1201

GRIFFITHS AND GHAHRAMANI

incorporating the likelihood term when sampling zik for columns for which m−i,k is greater than 0
and drawing the new columns from a distribution where the prior is Poisson(αN) and the likelihood
is given by P(X|Z).5

5. An Example: A Linear-Gaussian Latent Feature Model with Binary Features

We have derived a prior for infinite sparse binary matrices, and indicated how statistical inference
can be done in models defined using this prior. In this section, we will show how this prior can be
put to use in models for unsupervised learning, illustrating some of the issues that can arise in this
process. We will describe a simple linear-Gaussian latent feature model, in which the features are
binary. As above, we will start with a finite model and then consider the infinite limit.

5.1 A Finite Linear-Gaussian Model

In our finite model, the D-dimensional vector of properties of an object i, xi is generated from a
Gaussian distribution with mean ziA and covariance matrix ΣX = σ2XI, where zi is a K-dimensional
binary vector, and A is a K×D matrix of weights. In matrix notation, E [X] = ZA. If Z is a feature
matrix, this is a form of binary factor analysis. The distribution of X given Z, A, and σX is matrix
Gaussian:

p(X|Z,A,σX) = 1

(2πσ2X)
ND/2

exp{− 1

2σ2X
tr((X−ZA)T (X−ZA))} (19)

where tr(·) is the trace of a matrix. This makes it easy to integrate out the model parameters A. To
do so, we need to define a prior on A, which we also take to be matrix Gaussian:

p(A|σA) = 1

(2πσ2A)
KD/2

exp{− 1

2σ2A
tr(ATA)}, (20)

where σA is a parameter setting the diffuseness of the prior. The dependencies among the variables
in this model are shown in Figure 7.

Combining Equations 19 and 20 results in an exponentiated expression involving the trace of

1

σ2X
(X−ZA)T (X−ZA)+ 1

σ2A
ATA

=
1

σ2X
XTX− 1

σ2X
XTZA− 1

σ2X
ATZTX+AT (

1

σ2X
ZTZ+

1

σ2A
I)A

=
1

σ2X
(XT (I−ZMZT)X)+(MZTX−A)T (σ2XM)−1(MZTX−A),

5. As was pointed out by an anonymous reviewer, this is a heuristic strategy rather than a valid algorithm for sampling
from the posterior because it violates one of the assumptions of Markov chain Monte Carlo algorithms, with the order
in which variables are sampled being dependent on the state of the Markov chain. This is not an issue in the algorithm
for sampling from P(Z), since the columns of Z are independent, and the kernels corresponding to sampling from
each of the conditional distributions thus act independently of one another.

1202

INDIAN BUFFET PROCESS

Z

X

AσA

α

σX

Figure 7: Graphical model for the linear-Gaussian model with binary features.

where I is the identity matrix,M= (ZTZ+ σ2X
σ2A
I)−1, and the last line is obtained by completing the

square for the quadratic term in A in the second line. We can then integrate out A to obtain

p(X|Z,σX ,σA)
=

∫
p(X|Z,A,σX)p(A|σA)dA

=
1

(2π)(N+K)D/2σNDX σKDA
exp{− 1

2σ2X
tr(XT (I−ZMZT)X)}

∫
exp{−1

2
tr((MZTX−A)T (σ2XM)−1(MZTX−A))}dA

=
|σ2XM|D/2

(2π)ND/2σNDX σKDA
exp{− 1

2σ2X
tr(XT (I−ZMZT)X)}

=
1

(2π)ND/2σ(N−K)DX σKDA |ZTZ+ σ2X
σ2A
I|D/2

exp{− 1

2σ2X
tr(XT (I−Z(ZTZ+ σ2X

σ2A
I)−1ZT)X)}. (21)

This result is intuitive: the exponentiated term is the difference between the inner product matrix
of the raw values of X and their projections onto the space spanned by Z, regularized to an extent
determined by the ratio of the variance of the noise in X to the variance of the prior on A. This is
simply the marginal likelihood for a Bayesian linear regression model (Minka, 2000).

We can use this derivation of p(X|Z,σX ,σA) to infer Z from a set of observations X, provided
we have a prior on Z. The finite feature model discussed as a prelude to the IBP is such a prior. The
full conditional distribution for zik is given by:

P(zik|X,Z−(i,k),σX ,σA) ∝ p(X|Z,σX ,σA)P(zik|z−i,k). (22)

While evaluating p(X|Z,σX ,σA) always involves matrix multiplication, it need not always involve
a matrix inverse. ZTZ can be rewritten as ∑i z

T
i zi, allowing us to use rank one updates to efficiently

1203

GRIFFITHS AND GHAHRAMANI

compute the inverse when only one zi is modified. DefiningM−i = (∑ j 	=i zTj z j+
σ2X
σ2A
I)−1, we have

M−i = (M−1− zTi zi)−1

= M− MzTi ziM
ziMzTi −1

, (23)

M = (M−1−i + z
T
i zi)

−1

= M−i−M−iz
T
i ziM−i

ziM−izTi +1
. (24)

Iteratively applying these updates allows p(X|Z,σX ,σA), to be computed via Equation 21 for dif-
ferent values of zik without requiring an excessive number of inverses, although a full rank update
should be made occasionally to avoid accumulating numerical errors. The second part of Equation
22, P(zik|z−i,k), can be evaluated using Equation 17.

5.2 Taking the Infinite Limit

Tomake sure that we can define an infinite version of this model, we need to check that p(X|Z,σX ,σA)
remains well-defined if Z has an unbounded number of columns. Z appears in two places in Equa-

tion 21: in |ZTZ+ σ2X
σ2A
I| and in Z(ZTZ+ σ2X

σ2A
I)−1ZT . We will examine how these behave as K→ ∞.

If Z is in left-ordered form, we can write it as [Z+ Z0], where Z+ consists of K+ columns with
sums mk > 0, and Z0 consists of K0 columns with sums mk = 0. It follows that the first of the two
expressions we are concerned with reduces to∣∣∣∣ZTZ+ σ2X

σ2A
I

∣∣∣∣ =

∣∣∣∣[ZT+Z+ 0
0 0

]
+
σ2X
σ2A
IK

∣∣∣∣
=

(
σ2X
σ2A

)K0 ∣∣∣∣ZT+Z++
σ2X
σ2A
IK+

∣∣∣∣ . (25)

The appearance of K0 in this expression is not a problem, as we will see shortly. The abundance of
zeros in Z leads to a direct reduction of the second expression to

Z(ZTZ+
σ2X
σ2A
I)−1ZT = Z+(ZT+Z++

σ2X
σ2A
IK+)

−1ZT+,

which only uses the finite portion of Z. Combining these results yields the likelihood for the infinite
model

p(X|Z,σX ,σA) =
1

(2π)ND/2σ(N−K+)D
X σK+D

A |ZT+Z++
σ2X
σ2A
IK+ |D/2

exp{− 1

2σ2X
tr(XT (I−Z+(ZT+Z++

σ2X
σ2A
IK+)

−1ZT+)X)}. (26)

The K+ in the exponents of σA and σX appears as a result of introducing D/2 multiples of the factor

of
(
σ2X
σ2A

)K0
from Equation 25. The likelihood for the infinite model is thus just the likelihood for the

finite model defined on the first K+ columns of Z.

1204

INDIAN BUFFET PROCESS

The heuristic Gibbs sampling algorithm defined in Section 4.7 can now be used in this model.
Assignments to classes for which m−i,k > 0 are drawn in the same way as for the finite model, via
Equation 22, using Equation 26 to obtain p(X|Z,σX ,σA) and Equation 18 for P(zik|z−i,k). As in
the finite case, Equations 23 and 24 can be used to compute inverses efficiently. The distribution
over the number of new features can be approximated by truncation, computing probabilities for
a range of values of K(i)

1 up to some reasonable upper bound. For each value, p(X|Z,σX ,σA) can
be computed from Equation 26, and the prior on the number of new classes is Poisson(αN). More
elaborate samplers which do not require truncation are presented in Meeds et al. (2007) and in Teh
et al. (2007).

5.3 Demonstrations

As a first demonstration of the ability of this algorithm to recover the latent structure responsible
for having generated observed data, we applied the Gibbs sampler for the infinite linear-Gaussian
model to a simulated data set consisting of 100 6×6 images, each generated by randomly assigning
a feature to each image to a class with probability 0.5, and taking a linear combination of the
weights associated with features to which the images were assigned (a similar data set was used by
Ghahramani, 1995). Some of these images are shown in Figure 8, together with the weights A that
were used to generate them. The non-zero elements of A were all equal to 1.0, and σX was set to
0.5, introducing a large amount of noise.

The algorithm was initialized with K+ = 1, choosing the feature assignments for the first column
by setting zi1 = 1 with probability 0.5. σA was set to 1.0. The Gibbs sampler rapidly discovered
that four classes were sufficient to account for the data, and converged to a distribution focused on
matrices Z that closely matched the true class assignments. The results are shown in Figure 8. Each
of the features is represented by the posterior mean of the feature weights, A, given X and Z, which
is

E[A|X,Z] = (ZTZ+
σ2X
σ2A
I)−1ZTX.

for a single sample Z. The results shown in the figure are from the 200th sample produced by the
algorithm.

These results indicate that the algorithm can recover the features used to generate simulated
data. In a further test of the algorithm with more realistic data, we applied it to a data set consisting
of 100 240× 320 pixel images. We represented each image, xi, using a 100-dimensional vector
corresponding to the weights of the mean image and the first 99 principal components. Each image
contained up to four everyday objects—a $20 bill, a Klein bottle, a prehistoric handaxe, and a
cellular phone. The objects were placed in fixed locations, but were put into the scenes by hand,
producing some small variation in location. The images were then taken with a low resolution
webcam. Each object constituted a single latent feature responsible for the observed pixel values.
The images were generated by sampling a feature vector, zi, from a distribution under which each
feature was present with probability 0.5, and then taking a photograph containing the appropriate
objects using a LogiTech digital webcam. Sample images are shown in Figure 9 (a). The only noise
in the images was the noise from the camera.

The Gibbs sampler was initialized with K+ = 1, choosing the feature assignments for the first
column by setting zi1 = 1 with probability 0.5. σA, σX , and α were initially set to 0.5, 1.7, and
1 respectively, and then sampled by adding Metropolis steps to the MCMC algorithm. Figure 9

1205

GRIFFITHS AND GHAHRAMANI

1 0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 0 0 1 0 1 1 1 0

0 20 40 60 80 100 120 140 160 180 200
−3800

−3600

−3400

−3200

 lo
g

P
(

X
 ,

 Z
)

Iteration

0 20 40 60 80 100 120 140 160 180 200
2

3

4

5

N
um

be
r

of
 c

la
ss

es
 (

 K
+
)

Iteration

(a)

(b)

(c)

(d)

Figure 8: Demonstration of the linear-Gaussian model described in the text, using a binary repre-
sentation. (a) 100 images were generated as binary linear combinations of four sets of
class weights, shown in the images on the left. The images on the right are the posterior
mean weights A for a single sample of Z after 200 iterations, ordered to match the true
classes. (b) The images on the left show four of the datapoints to which the model was
applied. The numbers above each image indicate the classes responsible for generating
that image, matching the order above. The images on the right show the predictions of
the model for these images, based on the posterior mean weights, together with the class
assignments from the sampled Z. (c) Trace plot of logP(X,Z) over 200 iterations. (d)
Trace plot of K+, the number of classes, over 200 iterations. The data were generated
from a model with K+ = 4.

1206

INDIAN BUFFET PROCESS

(a)

(Positive)

(b)

(Negative) (Negative) (Negative)

0 0 0 0

(c)

0 1 0 0 1 1 1 0 1 0 1 1

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

 K
+

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

α

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

σ
X

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

σ
A

Iteration

Figure 9: Data and results for the application of the infinite linear-Gaussian model to photographic
images. (a) Four sample images from the 100 in the data set. Each image had 320×240
pixels, and contained from zero to four everyday objects. (b) The posterior mean of the
weights (A) for the four most frequent binary features from the 1000th sample. Each
image corresponds to a single feature. These features perfectly indicate the presence or
absence of the four objects. The first feature indicates the presence of the $20 bill, the
other three indicate the absence of the Klein bottle, the handaxe, and the cellphone. (c)
Reconstructions of the images in (a) using the binary codes inferred for those images.
These reconstructions are based upon the posterior mean of A for the 1000th sample. For
example, the code for the first image indicates that the $20 bill is absent, while the other
three objects are not. The lower panels show trace plots for the dimensionality of the
representation (K+) and the parameters α, σX , and σA over 1000 iterations of sampling.
The values of all parameters stabilize after approximately 100 iterations.

1207

GRIFFITHS AND GHAHRAMANI

shows trace plots for the first 1000 iterations of MCMC for the number of features used by at least
one object, K+, and the model parameters σA, σX , and α. All of these quantities stabilized after
approximately 100 iterations, with the algorithm finding solutions with approximately seven latent
features.

Figure 9 (b) shows the posterior mean of ak for the four most frequent features in the 1000th
sample produced by the algorithm. These features perfectly indicated presence and absence of
the four objects. Three less common features coded for slight differences in the locations of those
objects. Figure 9 (c) shows the feature vectors zi from this sample for the four images in Figure 9(b),
together with the posterior means of the reconstructions of these images for this sample, ziE[A|X,Z].
Similar reconstructions are obtained by averaging over all values of Z produced by the Markov
chain. The reconstructions provided by the model clearly pick out the relevant content of the images,
removing the camera noise in the original images.

These applications of the linear-Gaussian latent feature model are intended primarily to demon-
strate that this nonparametric Bayesian approach can efficiently learn satisfying representations
without requiring the dimensionality of those representations to be fixed a priori. The data set
consisting of images of objects was constructed in a way that removes many of the basic challenges
of computer vision, with objects appearing in fixed orientations and locations. Dealing with these
issues requires using a more sophisticated image representation or a more complex likelihood func-
tion than the linear-Gaussian model. Despite its simplicity, the example of identifying the objects in
images illustrates the kind of problems for which the IBP provides an appropriate prior. We describe
a range of other applications of the Indian buffet process in detail in the next section.

6. Further Applications and Alternative Inference Algorithms

We now outline six applications of the Indian buffet process, each of which uses the same prior
over infinite binary matrices, P(Z), but different choices for the likelihood relating such matrices to
observed data. These applications provide an indication of the potential uses of the IBP in machine
learning, and have also led to a number of alternative inference algorithms, which we will describe
briefly.

6.1 Choice Behavior

Choice behavior refers to our ability to decide between several options. Models of choice behavior
are of interest to psychology, marketing, decision theory, and computer science. Our choices are
often governed by features of the different options. For example, when choosing which car to buy,
one may be influenced by fuel efficiency, cost, size, make, etc. Görür et al. (2006) present a non-
parametric Bayesian model based on the IBP which, given the choice data, infers latent features of
the options and the corresponding weights of these features. The likelihood function is taken from
Tversky’s (1972) classic “elimination by aspects” model of choice, with the probability of choosing
option A over option B being proportional to the sum of the weights of the distinctive features of A.
The IBP is the prior over these latent features, which are assumed to be either present or absent.

The likelihood function used in this model does not have a natural conjugate prior, meaning that
the approach taken in our Gibbs sampling algorithm—integrating out the parameters associated with
the features—cannot be used. This led Görür et al. to develop a similar Markov chain Monte Carlo
algorithm for use with a non-conjugate prior. The basic idea behind the algorithm is analogous to
Algorithm 8 of Neal (2000) for Dirichlet process mixture models, using a set of auxiliary variables

1208

INDIAN BUFFET PROCESS

to represent the weights associated with features that are currently not possessed by any of the
available options. These auxiliary variables effectively provide a Monte Carlo approximation to the
sum over parameters used in our Gibbs sampler (although there is no approximation error introduced
through this step).

6.2 Modeling Protein Interactions

Proteomics aims to understand the functional interactions of proteins, and is a field of growing
importance to modern biology and medicine. One of the key concepts in proteomics is a protein
complex, a group of several interacting proteins. Protein complexes can be experimentally deter-
mined by doing high-throughput protein-protein interaction screens. Typically the results of such
experiments are subjected to mixture-model based clustering methods. However, a protein can be-
long to multiple complexes at the same time, making the mixture model assumption invalid. Chu
et al. (2006) proposed a nonparametric Bayesian approach based on the IBP for identifying protein
complexes and their constituents from interaction screens. The latent binary feature zik indicates
whether protein i belongs to complex k. The likelihood function captures the probability that two
proteins will be observed to bind in the interaction screen as a function of how many complexes they
both belong to, ∑∞

k=1 zikz jk. The approach automatically infers the number of significant complexes
from the data and the results are validated using affinity purification/mass spectrometry experimen-
tal data from yeast RNA-processing complexes.

6.3 Binary Matrix Factorization for Modeling Dyadic Data

Many interesting data sets are dyadic: there are two sets of objects or entities and observations are
made on pairs with one element from each set. For example, the two sets might consist of movies
and viewers, and the observations are ratings given by viewers to movies. Alternatively, the two sets
might be genes and biological tissues and the observations may be expression levels for particular
genes in different tissues. Dyadic data can often be represented as matrices and many models
of dyadic data can be expressed in terms of matrix factorization. Models of dyadic data make it
possible to predict, for example, the ratings a viewer might give to a movie based on ratings from
other viewers, a task known as collaborative filtering. A traditional approach to modeling dyadic
data is bi-clustering: simultaneously clustering both the rows (e.g., viewers) and the columns (e.g.,
movies) of the observation matrix using coupled mixture models. However, as we have discussed,
mixture models provide a very limited latent variable representation of data. Meeds et al. (2007)
presented a more expressive model of dyadic data based on the two-parameter version of the Indian
buffet process. In this model, both movies and viewers are represented by binary latent vectors
with an unbounded number of elements, corresponding to the features they might possess (e.g.,
“likes horror movies”). The two corresponding infinite binary matrices interact via a real-valued
weight matrix which links features of movies to features of viewers, resulting in a binary matrix
factorization of the observed ratings.

The basic inference algorithm used in this model was similar to the non-conjugate version of
the Gibbs sampler outlined above, but the authors also developed a number of novel Metropolis-
Hastings proposals that are mixed with the steps of the Gibbs sampler. One proposal directly han-
dles the number of new features associated with each object, facilitating one of the more difficult
aspects of non-conjugate inference. Another proposal is a “split-merge” move, analogous to similar
proposals used in models based on the CRP (Jain and Neal, 2004; Dahl, 2003). In contrast to the

1209

GRIFFITHS AND GHAHRAMANI

Gibbs sampler, which slowly affects the number of features used in the model by changing a single
feature allocation for a single object at a time, the split-merge proposal explores large-scale moves
such as dividing a single feature into two, or collapsing two features together. Combining these
large-scale moves with the Gibbs sampler can result in a Markov chain Monte Carlo algorithm that
explores the space of latent matrices faster.

6.4 Extracting Features from Similarity Judgments

One of the goals of cognitive psychology is to determine the kinds of representations that underlie
people’s judgments. In particular, the additive clustering method has been used to infer people’s
beliefs about the features of objects from their judgments of the similarity between them (Shepard
and Arabie, 1979). Given a square matrix of judgments of the similarity between N objects, where
si j is the similarity between objects i and j, the additive clustering model seeks to recover a N×K
binary feature matrix F and a vector of K weights associated with those features such that si j ≈
∑K
k=1wk fik f jk. A standard problem for this approach is determining the value of K, for which a
variety of heuristic methods have been used. Navarro and Griffiths (2007) presented a nonparametric
Bayesian solution to this problem, using the IBP to define a prior on F and assuming that si j has
a Gaussian distribution with mean ∑

K+

k=1wk fik f jk (following Tenenbaum, 1996). Using this method
provides a posterior distribution over the effective dimension of F, K+, and gives both a weight and
a posterior probability for the presence of each feature.

Samples from the posterior distribution over feature matrices reveal some surprisingly rich rep-
resentations expressed in classic similarity data sets. Performing posterior inference makes it possi-
ble to discover that there are multiple sensible sets of features that could account for human similar-
ity judgments, while previous approaches that had focused on finding the single best set of features
might only find one such set. For example, the nonparametric Bayesian model reveals that people’s
similarity judgments for numbers from 0-9 can be accounted for by a set of features that includes
both the odd and the even numbers, while previous additive clustering analyses (e.g., Tenenbaum,
1996) had only produced the odd numbers.

The additive clustering model, like the choice model discussed above, is another case in which
non-conjugate inference is necessary. In this case, the inference algorithm is rendered simpler by
the fact that no attempt is made to model the similarity of an object to itself, sii. As a consequence, a
feature possessed by a single object has no effect on the likelihood, and the number of such features
and their associated weights can be drawn directly from the prior. Inference thus proceeds using an
algorithm similar to the Gibbs sampler derived above, with the addition of a Metropolis-Hastings
step to update the weights associated with each feature.

6.5 Latent Features in Link Prediction

Network data, indicating the relationships among a group of people or objects, have been analyzed
by both statisticians and sociologists. A basic goal of these analyses is predicting which unobserved
relationships might exist. For example, having observed friendly interactions among several pairs
of people, a sociologist might seek to predict which other people are likely to be friends with one
another. This problem of link prediction can be solved using a probabilistic model for the structure
of graphs. One popular class of models, known as stochastic blockmodels, assume that each entity
belongs to a single latent class, and that the probability of a relationship existing between two en-
tities depends only on the classes of those entities (Nowicki and Snijders, 2001; Wang and Wong,

1210

INDIAN BUFFET PROCESS

1987). This is analogous to a mixture model, in which the probability that an object has certain
observed properties depends only on its latent class. Nonparametric versions of stochastic block-
models can be defined using the Chinese restaurant process (Kemp et al., 2006), corresponding to
an underlying stochastic process that generalizes the Dirichlet process (Roy and Teh, 2009).

Just as allowing objects to have latent features rather than a single latent class makes it possible
to go beyond mixture models, this approach allows us to define models for link prediction that
are richer than stochastic blockmodels. Miller et al. (2010) defined a class of nonparametric latent
feature models that can be used for link prediction. The key idea is to define the probability of the
existence of a link between two entities in terms of a “squashing function” (such as the logistic or
probit) applied to a real-valued score for that link. The scores then depend on the features of the
two entities. For a set of N entities, the pairwise scores are given by the N ×N matrix ZWZT ,
where Z is a binary feature matrix, as used throughout this paper, andW is a matrix of real-valued
feature weights. Since the feature weights can be positive or negative, features can interact to either
increase or decrease the probability of a link. The resulting model is strictly more expressive than a
stochastic blockmodel and produces more accurate predictions, particularly in cases where multiple
factors interact to influence the existence of a relationship (such as in the decision to co-author a
paper, for example).

6.6 Independent Components Analysis and Sparse Factor Analysis

Independent Components Analysis (ICA) is a model which explains observed signals in terms of a
linear superposition, or mixing, of independent hidden sources (Comon, 1994; Bell and Sejnowski,
1995; MacKay, 1996; Cardoso, 1998). ICA has been used to solve the problem of “blind source
separation” in which the goal is to unmix the hidden sources from the observed mixed signals
without assuming much knowledge of the hidden source distribution. This models, for example, a
listener in a cocktail party who may want to unmix the signals received on his two ears into the many
independent sound sources that produced them. ICA is closely related to factor analysis, except that
while in factor analysis the sources are assumed to be Gaussian distributed, in ICA the sources are
assumed to have any distribution other than the Gaussian.

One of the key practical problems in ICA is determining the number of hidden sources. Knowles
and Ghahramani (2007) provided a solution to this problem by devising a non-parametric Bayesian
model for ICA based on the IBP. The basic assumption of this ICA model is that the number of
potential sources is unbounded, but that any particular source is typically not present in a given
signal. The IBP provides a natural model for determining which sources are present in each signal.
In the notation of Section 3, the observed signals are represented by a matrix X, the presence or
absence of the hidden sources by the IBP distributed matrix Z, and the value taken by the sources by
the matrix V. Knowles and Ghahramani (2007) considered several variants of the model, including
ICA models where the elements of V have Laplacian distributions, sparse FA models where the
elements of V have Gaussian distributions, and one and two parameter versions of the IBP in both
cases. The model was applied to discovering gene signatures from gene expression microarray data
from an ovarian cancer study.

Rai and Daumé (2009) developed two interesting extensions of this model also motivated by
applications to gene expression data. First they considered both factor analysis and factor regression
models, where the latter refers to solving a regression problem with a typically large number of
input features by making predictions based solely on the factor representation. Second, they used

1211

GRIFFITHS AND GHAHRAMANI

an IBP to model the sparsity in the factor loading matrix (rather than the factor or source matrix in
nonparametric ICA) and they moreover assume that the factors are related to each other through a
hierarchy. They used Kingman’s coalescent as a nonparametric Bayesian model for this hierarchy,
following the inference algorithms developed in Teh et al. (2008). This paper shows a nice example
of how the IBP can be integrated with other nonparametric Bayesian distributions in a fairly modular
manner to solve useful inference problems.

6.7 Bipartite Graphs and Learning Hidden Causes

Wood et al. (2006) used the IBP as part of an algorithm for learning the structure of graphical
models. Specifically, they focused on the case where an unknown number of hidden variables (e.g.,
diseases) are causes for some set of observed variables (e.g., symptoms). Rather than defining a prior
over the number of hidden causes, Wood et al. used a non-parametric Bayesian approach based on
the IBP to model the structure of graphs with countably infinitely many hidden causes. The binary
variable zik indicates whether hidden variable k has a direct causal influence on observed variable
i; in other words whether k is a parent of i in the graph. The data being modeled were the values
of the set of observed variables over a number of trials, where each variable was either present or
absent on each trial. Each hidden variable could be either present or absent on a particular trial, with
the probabilities of these states being determined by a parameter of the model, and hidden variables
were assumed to combine via a noisy-OR (Pearl, 1988) to influence the observed variables.

Wood et al. (2006) described an MCMC algorithm for inference in this model. Like many of the
cases discussed in this section, this model lacked natural conjugate priors. Inference was done using
a variant on the Gibbs sampler introduced above, with additional steps to modify the values of the
hidden variables. The sampling step for the introduction of new hidden causes into the graph was
facilitated by an analytic result making it possible to sum out the values of the variables associated
with those causes in a way that is analogous to summing out the parameters in a conjugate model.
However, Wood and Griffiths (2007) developed a sequential Monte Carlo algorithm for use in this
model, similar to algorithms that have been developed for use with the CRP (such as Fearnhead,
2004). This algorithm is a form of particle filter, updating the posterior distribution on Z one row
at a time (in this case, as new observed variables are added to the data). The particle filter provides
an efficient and straightforward alternative for inference in models that lack conjugate priors, and
generalizes naturally to other models using the IBP.

6.8 Structuring Markov Transition Matrices

Discrete Markov processes are widely used in machine learning, as part of hidden Markov models
and state-space models. Nonparametric Bayesian methods have been used to define “infinite” ver-
sions of these models, allowing the number of states in a hidden Markov model to be unbounded
(Beal et al., 2002). An infinite discrete Markov process can be defined by assuming that transitions
from each state follow a Chinese restaurant process, with transitions that have been made frequently
in the past being more likely in the future. When a new transition is generated, the next state is
drawn from a higher-level Chinese restaurant process that is shared across all states. The resulting
distribution can also be obtained from a hierarchical Dirichlet process (Teh et al., 2004).

Fox et al. (2010) recently explored another way of defining an infinite discrete Markov process,
which allows for more structure in the transition matrix. In this model, it is assumed that each state
can only make transitions to a subset of other states. Thus, each state is associated with a binary

1212

INDIAN BUFFET PROCESS

vector indicating whether or not it makes transitions to other states. With an infinite set of states,
a distribution over these vectors can be defined using the IBP. This approach was used to define a
nonparametric autoregressive hidden Markov model, in which a sequence of continuous variables
were predicted as a linear function of the variables at the previous timestep, but the parameters of
the function were determined by a latent Markov process. The resulting model was able to identify
meaningful action components in motion capture data. In addition to introducing a novel model, this
paper explored the use of “birth and death” moves in the Markov chain Monte Carlo algorithm used
for inference, in which entire columns of the matrix produced by the IBP were created or destroyed.

6.9 Other Inference Algorithms

The broad range of settings in which the IBP has been applied have encouraged the development of
more efficient methods for probabilistic inference in the resulting nonparametric Bayesian models.
As discussed above, several innovations have been used to speed mixing in the Markov chain Monte
Carlo algorithms used with specific models. Other work has explored schemes for making inference
in the linear-Gaussian model discussed in Section 5 more efficient and scalable to larger data sets.
For example, if instead of integrating out the weight matrix A, the posterior distribution over A is
maintained, it is possible to use an alternative sampling scheme that still mixes quickly where the
time for each iteration scales linearly in N (Doshi-Velez and Ghahramani, 2009a). This observation
also provides the basis for a parallelization scheme in which the features of different objects are
computed on different machines, with the potential to make large-scale applications of this linear-
Gaussian model possible (Doshi-Velez et al., 2010). Similar principles may apply in the other
models using the IBP discussed in this section.

An alternative approach to probabilistic inference is to reject the stochastic approximations pro-
vided by MCMC algorithms in favor of deterministic approximations, using variational inference to
approximate the posterior. A mean field approximation to the IBP was developed by Doshi-Velez
et al. (2009), building on similar approximations for Dirichlet process mixture models (Blei and
Jordan, 2006). This variational inference method was applied to the infinite ICA model discussed
in Section 6.6, and compared against sampling schemes on both synthetic and real data. The results
of these comparisons suggested that the variational approach provides a more efficient strategy for
inference in this model when the dimensionality of the observed data is high. Variational inference
may thus be useful in working with some of the other models discussed in this section, at least in
specific regimes.

7. Extensions and Connections to Other Processes

The Indian buffet process gives a way to characterize our distribution on infinite binary matrices in
terms of a simple stochastic process. In this section we review how the IBP can be extended to yield
more general classes of distributions, and summarize some of the connections between the IBP and
other stochastic processes. Our derivation of the IBP was based on considering the infinite limit
of a distribution on finite binary matrices. As with the CRP, this distribution can also be derived
via a stick-breaking construction, or by marginalizing out an underlying measure. These different
views of the IBP yield different generalizations of the distribution, and different opportunities for
developing inference algorithms.

1213

GRIFFITHS AND GHAHRAMANI

7.1 A Two-Parameter Generalization

As was discussed in Section 4.6, the distribution on the number of features per object and on the
total number of features produced by the IBP are directly coupled, through α. This is an undesirable
constraint, as the sparsity of a matrix and its dimensionality should be able to vary independently.
Ghahramani et al. (2007) introduced a two-parameter generalization of the IBP that separates these
two aspects of the distribution.6 This generalization keeps the average number of features per object
at α as before, but allows the overall number of represented features to range from α, an extreme
where all features are shared between all objects, to Nα, an extreme where no features are shared at
all. Between these extremes lie many distributions that capture the amount of sharing appropriate
for different domains.

As the one-parameter model, this two-parameter model can be derived by taking the limit of
a finite model, but using πk|α,β ∼ Beta(αβK ,β) instead of Equation 9. Here we will focus on the
equivalent sequential generative process. To return to the language of the Indian buffet, the first
customer starts at the left of the buffet and samples Poisson(α) dishes. The ith customer serves
himself from any dish previously sampled by mk > 0 customers with probability mk/(β+ i− 1),
and in addition from Poisson(αβ/(β+ i−1)) new dishes. The parameter β is introduced in such a
way as to preserve the expected number of features per object, α, but the expected overall number of
features is α∑N

i=1
β

β+i−1 , and the distribution of K+ is Poisson with this mean. The total number of
features used thus increases as β increases. For finite β, the expected number of features increases
as αβ lnN, but if β� 1 the logarithmic regime is preceded by linear growth at small N < β.

Figure 10 shows three matrices drawn from the two-parameter IBP, all with α = 10 but with
β= 0.2, β= 1, and β= 5 respectively. Although all three matrices have roughly the same number
of non-zero entries, the number of features used varies considerably. At small values of β features
become likely to be shared by all objects. At high values of β features are more likely to be spe-
cific to particular objects. Further details about the properties of this distribution are provided in
Ghahramani et al. (2007).

ob
je

ct
s

(c
us

to
m

er
s)

features (dishes)

Prior sample from IBP
 with α=10 β=0.2

0 5 10 15

0

10

20

30

40

50

60

70

80

90

100

ob
je

ct
s

(c
us

to
m

er
s)

features (dishes)

Prior sample from IBP with α=10 β=1

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

90

100

ob
je

ct
s

(c
us

to
m

er
s)

features (dishes)

Prior sample from IBP with α=10 β=5

0 20 40 60 80 100 120 140 160

0

10

20

30

40

50

60

70

80

90

100

Figure 10: Three samples from the two-parameter Indian buffet process with α = 10 and β = 0.2
(left), β= 1 (middle), and β= 5 (right).

7.2 A Stick-Breaking Construction

Our strategy of taking the limit of a finite exchangeable distribution in deriving the IBP was inspired
by the derivation of the CRP as the limit of a Dirichlet-multinomial model. However, there are many

6. The original idea and analysis was described in an unpublished note by Sollich (2005).

1214

INDIAN BUFFET PROCESS

other routes by which the CRP can be derived. One of these is via the Dirichlet process (Ferguson,
1973). A simple way to think about the Dirichlet process is in terms of a probability measure over
probability measures. The parameters of the process are its concentration α and a base measure
G0. In a typical use, we would draw a measure G from the Dirichlet process, and then generate
parameters for a model φi by sampling them independently from G. Since the Dirichlet process
generates discrete measures with probability 1, it is possible for multiple parameters φi and φ j
drawn from G to take the same value. We can thus imagine indexing the values taken by the φi with
discrete variables zi, such that zi = z j if and only if φi = φ j. The zi thus index unique values of φi,
and correspond to a partition of the indices of the φi. The distribution over partitions z produced by
the Dirichlet process, integrating over G, is the CRP (Blackwell and MacQueen, 1973).

A straightforward way to understand how the Dirichlet process allocates probabilities to a dis-
crete set of atoms is to think about assigning probabilities in terms of breaking off pieces of a stick.
The stick is one unit in length, corresponding to the fact that our probabilities must sum to one.
Each piece of stick we break off represents the probability assigned to another discrete atom. After
breaking off each piece, we then consider how much of the remainder to break off as the next piece.
Sethuraman (1994) showed that if this process is repeated infinitely often, with a proportion of the
stick drawn from a Beta(α,1) distribution being broken off at each step, the lengths of the pieces
of broken stick are equivalent to the probabilities assigned to a discrete set of atoms by the Dirich-
let process with parameter α. This stick-breaking representation of the Dirichlet process is useful
in deriving its properties, and in developing inference algorithms such as the variational inference
algorithm proposed by Blei and Jordan (2006).

Teh et al. (2007) showed that a similar stick-breaking construction can be defined for the IBP.
First, we imagine sorting the πk representing the probability of each feature being possessed by
an object from largest to smallest. Then, if we consider the proportion of the stick that is broken
off and discarded at each break in the stick-breaking construction for the Dirichlet process, the
distribution of the sequence of stick lengths corresponds exactly to the distribution of these ordered
probabilities. This stick-breaking construction identifies an interesting relationship between the IBP
and the Dirichlet process, and is useful for exactly the same reasons. In particular, the stick-breaking
construction was used in defining the variational inference algorithm summarized in Section 6.9, and
can also be used to derive other inference algorithms for the IBP, such as slice sampling (Teh et al.,
2007).

7.3 Connections to the Beta Process

The relationship between the CRP and the Dirichlet process is an instance of a more general re-
lationship between exchangeable distributions and underlying probability measures. The results
summarized in the previous paragraph indicate that we can write

P(z) =
∫ N

∏
i=1

P(zi|G)p(G)dG,

where the zi are drawn independently from the measure G, which is generated from the Dirichlet
process. The fact that we can represent the exchangeable distribution P(z) as the result of generating
the zi independently from a latent measure is a specific instance of the more general principle stated
in de Finetti’s exchangeability theorem, which indicates that any exchangeable distribution can be
represented in this way (see Bernardo and Smith, 1994, for details). This raises a natural question:
is there a similar measure underlying the exchangeable distribution produced by the IBP?

1215

GRIFFITHS AND GHAHRAMANI

Thibaux and Jordan (2007) provided an answer to this question, showing that the exchangeable
distribution produced by the IBP corresponds to the use of a latent measure based on the beta process
(Hjort, 1990). The beta process provides a source of Bernoulli parameters πk associated with the
elements of a (possibly continuous) index set. Sampling each of the zik independently according
to the distribution defined by the appropriate parameter results in the same distribution on Z as
the IBP. This perspective also makes it straightforward to define analogues of the two-parameter
process described in Section 7.1, and to extend the IBP to a hierarchical model that can capture
correlations in the features exhibited in multiple data sets. Teh and Görür (2010) also recently
used the relationship to the beta process to define a variant of the IBP that produces a power-law
distribution in feature frequencies, exploiting a connection to stable processes. Variants of this kind
may be useful in settings where power-law distributions are common, such as natural language
processing.

7.4 Relaxing the Assumption of Exchangeability

The IBP assumes independence between the columns of Z, and only the kind of weak dependency
implied by exchangeability for the rows of Z. Both of these assumptions have been relaxed in sub-
sequent work. Producing correlations between the columns of Z can be done by supplementing the
IBP with a secondary process capturing patterns in the latent features (Doshi-Velez and Ghahramani,
2009b). Modifying the assumption of exchangeability is potentially more problematic. Exchange-
ability was one of our original desiderata, since it is a reasonable assumption in many settings and
simplifies probabilistic inference. However, this assumption is not warranted in cases where we
have additional information about the properties of our observations, such as the fact that they were
produced in a particular temporal sequence, or reflect a known pattern of correlation. The chal-
lenge is thus to identify how the assumption of exchangeability can be relaxed while maintaining
the tractability of probabilistic inference. Two recent papers have presented strategies for modifying
the IBP to capture different forms of dependency between the rows of Z.

The first kind of dependency can arise as the consequence of observations being generated in a
specific sequence. In such a case, it might be appropriate to assume that the latent features associated
with observations made closer in time should be more correlated. A strategy for modifying the IBP
to capture this kind of dependency was introduced by Van Gael et al. (2009). In this model—the
Markov Indian buffet process—it is assumed that the rows of Z are generated via a Markov process,
where the values in each column are generated based on the corresponding values in the previous
row. This Markov process has two parameters, giving the probability of a 0 in the previous row
changing to a 1, and the probability of a 1 in the previous row remaining unchanged. By assuming
that these parameters are generated from a Beta distribution and taking a limit analogous to that used
in the derivation of the IBP, it is possible to define a distribution over equivalence classes of binary
matrices in which the rows of the matrix reflect a Markov dependency structure. This model can be
used to define richer nonparametric models for temporal data, such as an infinite factorial hidden
Markov model, and probabilistic inference can be carried out using a slice sampler (see Van Gael
et al., 2009, for details).

A second kind of dependency can be the result of known degrees of relatedness among observa-
tions. For example, one might seek to draw inferences about a group of people with known genetic
relationships, or about a set of organisms or languages with a known evolutionary history. In cases
where the degrees of relatedness can be expressed in a tree, the phylogenetic Indian buffet process

1216

INDIAN BUFFET PROCESS

(Miller et al., 2008) can be used. In this model, the tree expresses the dependency structure that
governs the rows of Z, and each column is generated independently by sampling from a stochastic
process defined on the tree. The parameters of the stochastic process are specified in a way that
guarantees the total number of columns follows a Poisson distribution, and the original IBP is re-
covered as the special case where the tree is degenerate, with all branches meeting at the root. Trees
can be used to capture a wide range of dependency structures, including partial exchangeability, and
probabilistic inference by MCMC remains tractable because belief propagation on the tree can be
used to efficiently compute the relevant conditional probabilities.

8. Conclusions and Future Work

The methods that have been used to define infinite latent class models can be extended to models in
which objects are represented in terms of a set of latent features, and used to derive distributions on
infinite binary matrices that can be used as priors for such models. We used this method to derive a
prior that is the infinite limit of a simple distribution on finite binary matrices, and showed that the
same distribution can be specified in terms of a simple stochastic process—the Indian buffet process.
This distribution satisfies our two desiderata for a prior for infinite latent feature models: objects
are exchangeable, and inference remains tractable. When used as a prior in models that represent
objects using latent features, this distribution can be used to automatically infer the number of
features required to account for observed data. More generally, it can be used as a prior in any
setting where a sparse binary matrix with a finite number of rows and infinite number of columns is
appropriate, such as estimating the adjacency matrix of a bipartite graph where the size of one class
of nodes is unknown.

Recent work has made significant progress on turning this nonparametric approach to inferring
latent features into a tool that can be used to solve a wide range of machine learning problems. These
advances include more sophisticated MCMC algorithms, schemes for parallelizing probabilistic
inference, and deterministic methods for approximating posterior distributions over latent feature
matrices. The connections between the IBP and other stochastic processes provide the groundwork
for further understanding and extending this class of probabilistic models, making it possible to
modify the distribution over feature assignments and to capture different patterns of dependency
that might exist among the latent features of objects. As with the CRP, the different views of the
IBP that result from considering the stick-breaking construction or the underlying measure that is
marginalized out to obtain the combinatorial stochastic process each support different extensions,
generalizations, and inference algorithms.

Despite the wide array of successful applications of the IBP and related distributions, we view
one of the primary contributions of this work to be the idea that we can define richer nonparametric
Bayesian models to suit the unique challenges of machine learning. Our success in transferring
the strategy of taking the limit of a finite model from latent classes to latent features suggests that
the same strategy might be applied with other representations, broadening the kinds of latent struc-
ture that can be recovered through unsupervised learning. This idea receives support both from
other examples of new nonparametric models defined via a similar strategy (e.g., Titsias, 2008),
and from theoretical analyses of the conditions under which infinite models remain well defined
when obtained as limits of finite models (Orbanz, 2010). We anticipate that there will be other
combinatorial structures for which this strategy will result in new and useful distributions.

1217

GRIFFITHS AND GHAHRAMANI

Acknowledgments

This work was presented at the Neural Information Processing Systems conference, and draws on
the conference paper (Griffiths and Ghahramani, 2006) and associated technical report (Griffiths
and Ghahramani, 2005). The preparation of this article was supported by grants BCS-0631518 and
IIS-0845410 from the National Science Foundation, and grant FA-9550-10-1-0232 from the Air
Force Office of Scientific Research. We thank three anonymous reviewers for their comments on
the manuscript.

Appendix A. Details of Limits

This appendix contains the details of the limits of three expressions that appear in Equations 5 and
14.

The first expression is

K!
K0!KK+

=
∏
K+

k=1(K− k+1)
KK+

=
KK+− (K+−1)K+

2 KK+−1+ · · ·+(−1)K+−1(K+−1)!K
KK+

= 1− (K+−1)K+

2K
+ · · ·+ (−1)K+−1(K+−1)!

KK+−1 .

For finite K+, all terms except the first go to zero as K→ ∞.
The second expression is

mk−1
∏
j=1

(j+ α
K) = (mk−1)!+ α

K

mk−1
∑
j=1

(mk−1)!
j

+ · · ·+ (αK)mk−1 .
For finite mk and α, all terms except the first go to zero as K→ ∞.

The third expression is

(
N!

∏N
j=1(j+

α
K)

)K
=

(
∏N

j=1 j

∏N
j=1(j+

α
K)

)K

=

(
N

∏
j=1

j
(j+ α

K)

)K

=
N

∏
j=1

⎛⎝ 1

1+
α 1j
K

⎞⎠K

. (27)

We can now use the fact that

lim
K→∞

(
1

1+ x
K

)K
= exp{−x}

1218

INDIAN BUFFET PROCESS

to compute the limit of Equation 27 as K→ ∞, obtaining

lim
K→∞

N

∏
j=1

⎛⎝ 1

1+
α 1j
K

⎞⎠K

=
N

∏
j=1
exp{−α 1j}

= exp{−α
N

∑
j=1

1
j}

= exp{−αHN},

as desired.

References

D. Aldous. Exchangeability and related topics. In École d’été de probabilités de Saint-Flour, XIII—
1983, pages 1–198. Springer, Berlin, 1985.

C. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric prob-
lems. The Annals of Statistics, 2:1152–1174, 1974.

M. J. Beal, Z. Ghahramani, and C. E. Rasmussen. The infinite hidden Markov model. Machine
Learning, pages 29–245, 2002.

A. J. Bell and T. J. Sejnowski. An information maximisation approach to blind separation and blind
deconv olution. Neural Computation, 7(6):1129–1159, 1995.

J. M. Bernardo and A. F. M. Smith. Bayesian Theory. Wiley, New York, 1994.

D. Blackwell and J. MacQueen. Ferguson distributions via Polya urn schemes. The Annals of
Statistics, 1:353–355, 1973.

D. Blei and M. Jordan. Variational inference for Dirichlet process mixtures. Journal of Bayesian
Analysis, 1:121–144, 2006.

D. Blei, T. Griffiths, M. Jordan, and J. Tenenbaum. Hierarchical topic models and the nested Chi-
nese restaurant process. In Advances in Neural Information Processing Systems 16. MIT Press,
Cambridge, MA, 2004.

C. A. Bush and S. N. MacEachern. A semi-parametric Bayesian model for randomized block
designs. Biometrika, 83:275–286, 1996.

J.-F. Cardoso. Blind signal separation: statistical principles. Proceedings of the IEEE, 86(10):
2009–2025, Oct 1998.

W. Chu, Z. Ghahramani, R. Krause, and D. L. Wild. Identifying protein complexes in high-
throughput protein interaction screens using an infinite latent feature model. In BIOCOMPUTING
2006: Proceedings of the Pacific Symposium, volume 11, pages 231–242, 2006.

P. Comon. Independent component analysis: A new concept. Signal Processing, 36:287–314, 1994.

1219

GRIFFITHS AND GHAHRAMANI

D. B. Dahl. An improved merge-split sampler for conjugate Dirichlet process mixture models.
Technical Report 1086, Department of Statistics, University of Wisconsin, 2003.

A. d’Aspremont, L. El Ghaoui, I. Jordan, and G. R. G. Lanckriet. A direct formulation for sparse
PCA using semidefinite programming. Technical Report UCB/CSD-04-1330, Computer Science
Division, University of California, Berkeley, 2004.

F. Doshi-Velez and Z. Ghahramani. Accelerated Sampling for the Indian Buffet Process. In Inter-
national Conference on Machine Learning (ICML 2009), 2009a.

F. Doshi-Velez and Z. Ghahramani. Correlated non-parametric latent feature models. In Proceedings
of the Proceedings of the Twenty-Fifth Conference Annual Conference on Uncertainty in Artificial
Intelligence (UAI-09), pages 143–150, 2009b.

F. Doshi-Velez, K.T. Miller, J. Van Gael, and Y.W. Teh. Variational Inference for the Indian Buffet
Process. In Artificial Intelligence and Statistics Conference (AISTATS 2009), 2009.

F. Doshi-Velez, D. Knowles, S. Mohamed, and Z. Ghahramani. Large scale nonparametric Bayesian
inference: Data parallelisation in the Indian buffet process. In Advances in Neural Information
Processing Systems 22, 2010.

M. D. Escobar and M. West. Bayesian density estimation and inference using mixtures. Journal of
the American Statistical Association, 90:577–588, 1995.

P. Fearnhead. Particle filters for mixture models with an unknown number of components. Statistics
and Computing, 14:11–21, 2004.

T. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1:
209–230, 1973.

T. S. Ferguson. Bayesian density estimation by mixtures of normal distributions. In M. Rizvi,
J. Rustagi, and D. Siegmund, editors, Recent Advances in Statistics, pages 287–302. Academic
Press, New York, 1983.

E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky. Sharing features among dynamical
systems with beta processes. In Advances in Neural Information Processing Systems 22, 2010.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration
of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–741, 1984.

Z. Ghahramani. Factorial learning and the EM algorithm. In Advances in Neural Information
Processing Systems 7. Morgan Kaufmann, San Francisco, CA, 1995.

Z. Ghahramani, T. L. Griffiths, and P. Sollich. Bayesian nonparametric latent feature models. In
Bayesian Statistics 8. Oxford University Press, Oxford, 2007.

W.R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain Monte Carlo in Practice.
Chapman and Hall, Suffolk, UK, 1996.

1220

INDIAN BUFFET PROCESS

D. Görür, F. Jäkel, and C. E. Rasmussen. A choice model with infinitely many latent features.
In Proceedings of the 23rd International Conference on Machine Learning (ICML 2006), pages
361–368, New York, 2006. ACM Press.

P. Green and S. Richardson. Modelling heterogeneity with and without the Dirichlet process. Scan-
dinavian Journal of Statistics, 28:355–377, 2001.

T. L. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process.
Technical Report 2005-001, Gatsby Computational Neuroscience Unit, 2005.

T. L. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In
Advances in Neural Information Processing Systems 18, Cambridge, MA, 2006. MIT Press.

K. A. Heller and Z. Ghahramani. Bayesian hierarchical clustering. In International Conference on
Machine Learning (ICML 2005), 2005.

N. L. Hjort. Nonparametric Bayes estimators based on Beta processes in models for life history
data. Annals of Statistics, 18:1259–1294, 1990.

H. Ishwaran and L. F. James. Gibbs sampling methods for stick-breaking priors. Journal of the
American Statistical Association, 96:1316–1332, 2001.

S. Jain and R. M. Neal. A split-merge Markov chain Monte Carlo procedure for the Dirichlet
Process mixture model. Journal of Computational and Graphical Statistics, 13:158–182, 2004.

I. T. Jolliffe. Principal component analysis. Springer, New York, 1986.

I. T. Jolliffe and M. Uddin. A modified principal component technique based on the lasso. Journal
of Computational and Graphical Statistics, 12:531–547, 2003.

C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and N. Ueda. Learning systems of concepts
with an infinite relational model. In Proceedings of the 21st National Conference on Artificial
Intelligence, 2006.

D. Knowles and Z. Ghahramani. Infinite sparse factor analysis and infinite independent compo-
nents analysis. In 7th International Conference on Independent Component Analysis and Signal
Separation (ICA 2007), Lecture Notes in Computer Science Series (LNCS). Springer, 2007.

D. J. C. MacKay. Maximum likelihood and covariant algorithms for independent component anal-
ysis. Technical Report Draft 3.7, Cavendish Laboratory, University of Cambridge, Madingley
Road, Cambridge CB3 0HE, December 1996.

E. Meeds, Z. Ghahramani, R. Neal, and S. T. Roweis. Modeling dyadic data with binary latent
factors. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems, Cambridge, MA, 2007. MIT Press.

K. T. Miller, T. L. Griffiths, and M. I. Jordan. The phylogenetic Indian buffet process: A non-
exchangeable nonparametric prior for latent features. In Proceedings of the Twenty-Fourth Con-
ference on Uncertainty in Artificial Intelligence (UAI 2008), 2008.

1221

GRIFFITHS AND GHAHRAMANI

K. T. Miller, T. L. Griffiths, and M. I. Jordan. Nonparametric latent feature models for link predic-
tions. In Advances in Neural Information Processing Systems 22, 2010.

T. Minka. Bayesian linear regression. Technical report, MIT Media Lab, 2000.
http://research.microsoft.com/en-us/um/people/minka/papers/linear.html.

D. J. Navarro and T. L. Griffiths. A nonparametric Bayesian model for inferring features from
similarity judgments. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural
Information Processing Systems 19, Cambridge, MA, 2007. MIT Press.

R. M. Neal. Bayesian mixture modeling. InMaximum Entropy and Bayesian Methods: Proceedings
of the 11th International Workshop on Maximum Entropy and Bayesian Methods of Statistical
Analysis, pages 197–211. Kluwer, Dordrecht, 1992.

R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of
Computational and Graphical Statistics, 9:249–265, 2000.

R. M. Neal. Density modeling and clustering using dirichlet diffusion trees. In J. M. Bernardo et al.,
editor, Bayesian Statistics 7, pages 619–629, 2003.

K. Nowicki and T. A. B. Snijders. Estimation and prediction for stochastic blockstructures. Journal
of the American Statistical Association, 96:1077–1087, 2001.

P. Orbanz. Construction of nonparametric Bayesian models from parametric Bayes equations. In
Advances in Neural Information Processing Systems 22, 2010.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Francisco, CA,
1988.

J. Pitman. Combinatorial stochastic processes, 2002. Notes for Saint Flour Summer School.

P. Rai and H. Daumé. The infinite hierarchical factor regression model. In Advances in Neural
Information Processing Systems, volume 21, 2009.

C. Rasmussen. The infinite Gaussian mixture model. In Advances in Neural Information Processing
Systems 12. MIT Press, Cambridge, MA, 2000.

C. E. Rasmussen and Z. Ghahramani. Occam’s razor. In Advances in Neural Information Processing
Systems 13. MIT Press, Cambridge, MA, 2001.

S. Roweis and Z. Ghahramani. A unifying review of linear Gaussian models. Neural Computation,
11:305–345, 1999.

D. M. Roy and Y. W. Teh. The mondrian process. In Advances in Neural Information Processing
Systems 21, 2009.

J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4:639–650, 1994.

R. Shepard and P. Arabie. Additive clutering: Representation of similarities as combinations of
discrete overlapping properties. Psychological Review, 86:87–123, 1979.

1222

INDIAN BUFFET PROCESS

P. Sollich. Indian buffet process with tunable feature repulsion, 2005.

E. Sudderth, A. Torralba, W. Freeman, and A. Willsky. Describing visual scenes using transformed
Dirichlet processes. In Advances in Neural Information Processing Systems 18, Cambridge, MA,
2006. MIT Press.

Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical Dirichlet processes. In Advances in Neural
Information Processing Systems 17. MIT Press, Cambridge, MA, 2004.

Y. W. Teh and D. Görür. Indian buffet processes with power-law behavior. In Advances in Neural
Information Processing Systems 22, 2010.

Y. W. Teh, D. Görür, and Z. Ghahramani. Stick-breaking construction for the Indian buffet process.
In Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS 2007),
San Juan, Puerto Rico, 2007.

Y. W. Teh, H. Daumé, and D. M. Roy. Bayesian agglomerative clustering with coalescents. In
Advances in Neural Information Processing Systems, volume 20, 2008.

J. B. Tenenbaum. Learning the structure of similarity. In D. S. Touretzky, M. C. Mozer, and M. E.
Hasselmo, editors, Advances in neural information processing systems 8, pages 3–9. MIT Press,
Cambridge, MA, 1996.

R. Thibaux and M. I. Jordan. Hierarchical Beta processes and the Indian buffet process. In Eleventh
International Conference on Artificial Intelligence and Statistics (AISTATS 2007), 2007.

M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. Journal of the Royal
Statistical Society, Series B, 61:611–622, 1999.

M. Titsias. The infinite gamma-poisson feature model. In J.C. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press, Cam-
bridge, MA, 2008.

A. Tversky. Elimination by aspects: A theory of choice. Psychological Review, 79:281–299, 1972.

N. Ueda and K. Saito. Parametric mixture models for multi-labeled text. In Advances in Neural
Information Processing Systems 15, Cambridge, 2003. MIT Press.

J. Van Gael, Y.W. Teh, and Z. Ghahramani. The infinite factorial hiddenMarkov model. In Advances
in Neural Information Processing Systems, volume 21, 2009.

Y. J. Wang and G. Y. Wong. Stochastic blockmodels for directed graphs. Journal of the American
Statistical Association, 82:8–19, 1987.

M. West, P. Muller, and M. Escobar. Hierarchical priors and mixture models, with application in
regression and density estimation. In P. Freeman and A. Smith, editors, Aspects of Uncertainty,
pages 363–386. Wiley, New York, 1994.

F. Wood and T. L. Griffiths. Particle filtering for nonparametric Bayesian matrix factorization.
In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing
Systems 19, pages 1513–1520. MIT Press, Cambridge, MA, 2007.

1223

GRIFFITHS AND GHAHRAMANI

F. Wood, T. L. Griffiths, and Z. Ghahramani. A non-parametric Bayesian method for inferring
hidden causes. In Proceedings of the 22nd Conference in Uncertainty in Artificial Intelligence
(UAI ’06), 2006.

R. S. Zemel and G. E. Hinton. Developing population codes by minimizing description length. In
Advances in Neural Information Processing Systems 6. Morgan Kaufmann, San Francisco, CA,
1994.

H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of Computa-
tional and Graphical Statistics, 15:262–286, 2006.

1224

Journal of Machine Learning Research 12 (2011) 1225-1248 Submitted 1/11; Published 4/11

DirectLiNGAM: A Direct Method for Learning a Linear
Non-Gaussian Structural Equation Model

Shohei Shimizu SSHIMIZU@AR.SANKEN.OSAKA-U.AC.JP
Takanori Inazumi INAZUMI@AR.SANKEN.OSAKA-U.AC.JP
Yasuhiro Sogawa SOGAWA@AR.SANKEN.OSAKA-U.AC.JP
The Institute of Scientific and Industrial Research
Osaka University
Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan

Aapo Hyvärinen AAPO.HYVARINEN@HELSINKI.FI
Department of Computer Science and Department of Mathematics and Statistics
University of Helsinki
Helsinki Institute for Information Technology
FIN-00014, Finland

Yoshinobu Kawahara KAWAHARA@AR.SANKEN.OSAKA-U.AC.JP
Takashi Washio WASHIO@AR.SANKEN.OSAKA-U.AC.JP
The Institute of Scientific and Industrial Research
Osaka University
Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan

Patrik O. Hoyer PATRIK.HOYER@HELSINKI.FI
Helsinki Institute for Information Technology
University of Helsinki
FIN-00014, Finland

Kenneth Bollen BOLLEN@UNC.EDU
Department of Sociology, CB 3210 Hamilton Hall
University of North Carolina
Chapel Hill, NC 27599-3210
U.S.A.

Abstract

Structural equation models and Bayesian networks have been widely used to analyze causal rela-
tions between continuous variables. In such frameworks, linear acyclic models are typically used to
model the data-generating process of variables. Recently, it was shown that use of non-Gaussianity
identifies the full structure of a linear acyclic model, that is, a causal ordering of variables and their
connection strengths, without using any prior knowledge on the network structure, which is not
the case with conventional methods. However, existing estimation methods are based on iterative
search algorithms and may not converge to a correct solution in a finite number of steps. In this pa-
per, we propose a new direct method to estimate a causal ordering and connection strengths based
on non-Gaussianity. In contrast to the previous methods, our algorithm requires no algorithmic
parameters and is guaranteed to converge to the right solution within a small fixed number of steps
if the data strictly follows the model, that is, if all the model assumptions are met and the sample
size is infinite.

Keywords: structural equation models, Bayesian networks, independent component analysis,
non-Gaussianity, causal discovery

c©2011 Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Aapo Hyvärinen, Yoshinobu Kawahara, Takashi Washio, Patrik O. Hoyer
and Kenneth Bollen

SHIMIZU, INAZUMI, SOGAWA, HYVÄRINEN, KAWAHARA, WASHIO, HOYER AND BOLLEN

1. Introduction

Many empirical sciences aim to discover and understand causal mechanisms underlying various
natural phenomena and human social behavior. An effective way to study causal relationships is
to conduct a controlled experiment. However, performing controlled experiments is often ethically
impossible or too expensive in many fields including social sciences (Bollen, 1989), bioinformatics
(Rhein and Strimmer, 2007) and neuroinformatics (Londei et al., 2006). Thus, it is necessary and
important to develop methods for causal inference based on the data that do not come from such
controlled experiments.

Structural equation models (SEM) (Bollen, 1989) and Bayesian networks (BN) (Pearl, 2000;
Spirtes et al., 1993) are widely applied to analyze causal relationships in many empirical studies.
A linear acyclic model that is a special case of SEM and BN is typically used to analyze causal
effects between continuous variables. Estimation of the model commonly uses only the covariance
structure of the data and in most cases cannot identify the full structure, that is, a causal ordering and
connection strengths, of the model with no prior knowledge on the structure (Pearl, 2000; Spirtes
et al., 1993).

In Shimizu et al. (2006), a non-Gaussian variant of SEM and BN called a linear non-Gaussian
acyclic model (LiNGAM) was proposed, and its full structure was shown to be identifiable without
pre-specifying a causal order of the variables. This feature is a significant advantage over the con-
ventional methods (Spirtes et al., 1993; Pearl, 2000). A non-Gaussian method to estimate the new
model was also developed in Shimizu et al. (2006) and is closely related to independent component
analysis (ICA) (Hyvärinen et al., 2001). In the subsequent studies, the non-Gaussian framework has
been extended in various directions for learning a wider variety of SEM and BN (Hoyer et al., 2009;
Hyvärinen et al., 2010; Lacerda et al., 2008). In what follows, we refer to the non-Gaussian model
as LiNGAM and the estimation method as ICA-LiNGAM algorithm.

Most of major ICA algorithms including Amari (1998) and Hyvärinen (1999) are iterative search
methods (Hyvärinen et al., 2001). Therefore, the ICA-LiNGAM algorithms based on the ICA algo-
rithms need some additional information including initial guess and convergence criteria. Gradient-
based methods (Amari, 1998) further need step sizes. However, such algorithmic parameters are
hard to optimize in a systematic way. Thus, the ICA-based algorithms may get stuck in local optima
and may not converge to a reasonable solution if the initial guess is badly chosen (Himberg et al.,
2004).

In this paper, we propose a new direct method to estimate a causal ordering of variables in the
LiNGAM with no prior knowledge on the structure. The new method estimates a causal order of
variables by successively subtracting the effect of each independent component from given data
in the model, and this process is completed in steps equal to the number of the variables in the
model. It is not based on iterative search in the parameter space and needs no initial guess or
similar algorithmic parameters. It is guaranteed to converge to the right solution within a small
fixed number of steps if the data strictly follows the model, that is, if all the model assumptions
are met and the sample size is infinite. These features of the new method enable more accurate
estimation of a causal order of the variables in a disambiguated and direct procedure. Once the
causal orders of variables is identified, the connection strengths between the variables are easily
estimated using some conventional covariance-based methods such as least squares and maximum
likelihood approaches (Bollen, 1989). We also show how prior knowledge on the structure can be
incorporated in the new method.

1226

DIRECTLINGAM: A DIRECT METHOD FOR A LINEAR NON-GAUSSIAN SEM

The paper is structured as follows. First, in Section 2, we briefly review LiNGAM and the ICA-
based LiNGAM algorithm. We then in Section 3 introduce a new direct method. The performance
of the new method is examined by experiments on artificial data in Section 4, and experiments on
real-world data in Section 5. Conclusions are given in Section 6. Preliminary results were presented
in Shimizu et al. (2009), Inazumi et al. (2010) and Sogawa et al. (2010).

2. Background

In this section, we first review LiNGAM and the ICA-LiNGAM algorithm (Shimizu et al., 2006) in
Sections 2.1-2.3 and next mention potential problems of the ICA-based algorithm in Section 2.4.

2.1 A Linear Non-Gaussian Acyclic Model: LiNGAM

In Shimizu et al. (2006), a non-Gaussian variant of SEM and BN, which is called LiNGAM, was
proposed. Assume that observed data are generated from a process represented graphically by
a directed acyclic graph, that is, DAG. Let us represent this DAG by a m×m adjacency matrix
B={bi j} where every bi j represents the connection strength from a variable x j to another xi in the
DAG. Moreover, let us denote by k(i) a causal order of variables xi in the DAG so that no later
variable determines or has a directed path on any earlier variable. (A directed path from xi to x j is a
sequence of directed edges such that x j is reachable from xi.) We further assume that the relations
between variables are linear. Without loss of generality, each observed variable xi is assumed to
have zero mean. Then we have

xi = ∑
k(j)<k(i)

bi jx j+ ei, (1)

where ei is an external influence. All external influences ei are continuous random variables having
non-Gaussian distributions with zero means and non-zero variances, and ei are independent of each
other so that there are no latent confounding variables (Spirtes et al., 1993).

We rewrite the model (1) in a matrix form as follows:

x= Bx+ e, (2)

where x is a p-dimensional random vector, and B could be permuted by simultaneous equal row
and column permutations to be strictly lower triangular due to the acyclicity assumption (Bollen,
1989). Strict lower triangularity is here defined as a lower triangular structure with all zeros on the
diagonal. Our goal is to estimate the adjacency matrix B by observing data x only. Note that we do
not assume that the distribution of x is faithful (Spirtes et al., 1993) to the generating graph.

We note that each bi j represents the direct causal effect of x j on xi and each ai j, the (i, j)-th
element of the matrix A=(I−B)−1, the total causal effect of x j on xi (Hoyer et al., 2008).

We emphasize that xi is equal to ei if no other observed variable x j (j 	=i) inside the model has
a directed edge to xi, that is, all the bi j (j 	=i) are zeros. In such a case, an external influence ei is
observed as xi. Such an xi is called an exogenous observed variable. Otherwise, ei is called an error.
For example, consider the model defined by

x2 = e2,

x1 = 1.5x2+ e1,

x3 = 0.8x1−1.5x2+ e3,

1227

SHIMIZU, INAZUMI, SOGAWA, HYVÄRINEN, KAWAHARA, WASHIO, HOYER AND BOLLEN

where x2 is equal to e2 since it is not determined by either x1 or x3. Thus, x2 is an exogenous
observed variable, and e1 and e3 are errors. Note that there exists at least one exogenous observed
variable xi(=ei) due to the acyclicity and the assumption of no latent confounders.

An exogenous observed variable is usually defined as an observed variable that is determined
outside of the model (Bollen, 1989). In other words, an exogenous observed variable is a variable
that any other observed variable inside the model does not have a directed edge to. The definition
does not require that it is equal to an independent external influence, and the external influences
of exogenous observed variables may be dependent. However, in the LiNGAM (2), an exogenous
observed variable is always equal to an independent external influence due to the assumption of no
latent confounders.

2.2 Identifiability of the Model

We next explain how the connection strengths of the LiNGAM (2) can be identified as shown in
Shimizu et al. (2006). Let us first solve Equation (2) for x. Then we obtain

x= Ae, (3)

where A = (I−B)−1 is a mixing matrix whose elements are called mixing coefficients and can
be permuted to be lower triangular as well due to the aforementioned feature of B and the nature
of matrix inversion. Since the components of e are independent and non-Gaussian, Equation (3)
defines the independent component analysis (ICA) model (Hyvärinen et al., 2001), which is known
to be identifiable (Comon, 1994; Eriksson and Koivunen, 2004).

ICA essentially can estimate A (andW = A−1 = I−B), but has permutation, scaling and sign
indeterminacies. ICA actually givesWICA=PDW, where P is an unknown permutation matrix, and
D is an unknown diagonal matrix. But in LiNGAM, the correct permutation matrix P can be found
(Shimizu et al., 2006): the correct P is the only one that gives no zeros in the diagonal of DW since
B should be a matrix that can be permuted to be strictly lower triangular andW = I−B. Further,
one can find the correct scaling and signs of the independent components by using the unity on
the diagonal of W=I−B. One only has to divide the rows of DW by its corresponding diagonal
elements to obtainW. Finally, one can compute the connection strength matrix B= I−W.

2.3 ICA-LiNGAM Algorithm

The ICA-LiNGAM algorithm presented in Shimizu et al. (2006) is described as follows:

ICA-LiNGAM algorithm

1. Given a p-dimensional random vector x and its p× n observed data matrix X, apply an ICA
algorithm (FastICA of Hyvärinen 1999 using hyperbolic tangent function) to obtain an estimate
of A.

2. Find the unique permutation of rows ofW=A−1 which yields a matrix W̃ without any zeros on
the main diagonal. The permutation is sought by minimizing ∑i 1/|W̃ii|.

3. Divide each row of W̃ by its corresponding diagonal element, to yield a new matrix W̃′ with all
ones on the diagonal.

1228

DIRECTLINGAM: A DIRECT METHOD FOR A LINEAR NON-GAUSSIAN SEM

4. Compute an estimate B̂ of B using B̂= I−W̃′.
5. Finally, to estimate a causal order k(i), find the permutation matrix P̃ of B̂ yielding a matrix
B̃ = P̃B̂P̃T which is as close as possible to a strictly lower triangular structure. The lower-
triangularity of B̃ can be measured using the sum of squared bi j in its upper triangular part

∑i≤ j b̃2i j for small number of variables, say less than 8. For higher-dimensional data, the fol-
lowing approximate algorithm is used, which sets small absolute valued elements in B̃ to zero
and tests if the resulting matrix is possible to be permuted to be strictly lower triangular:

(a) Set the p(p+1)/2 smallest (in absolute value) elements of B̂ to zero.

(b) Repeat

i. Test if B̂ can be permuted to be strictly lower triangular. If the answer is yes, stop
and return the permuted B̂, that is, B̃.

ii. Additionally set the next smallest (in absolute value) element of B̂ to zero.

2.4 Potential Problems of ICA-LiNGAM

The original ICA-LiNGAM algorithm has several potential problems: i) Most ICA algorithms in-
cluding FastICA (Hyvärinen, 1999) and gradient-based algorithms (Amari, 1998) may not converge
to a correct solution in a finite number of steps if the initially guessed state is badly chosen (Himberg
et al., 2004) or if the step size is not suitably selected for those gradient-based methods. The appro-
priate selection of such algorithmic parameters is not easy. In contrast, our algorithm proposed in
the next section is guaranteed to converge to the right solution in a fixed number of steps equal to the
number of variables if the data strictly follows the model. ii) The permutation algorithms in Steps 2
and 5 are not scale-invariant. Hence they could give a different or even wrong ordering of variables
depending on scales or standard deviations of variables especially when they have a wide range
of scales. However, scales are essentially not relevant to the ordering of variables. Though such
bias would vanish for large enough sample sizes, for practical sample sizes, an estimated ordering
could be affected when variables are normalized to make unit variance for example, and hence the
estimation of a causal ordering becomes quite difficult.

3. A Direct Method: DirectLiNGAM

In this section, we present a new direct estimation algorithm named DirectLiNGAM.

3.1 Identification of an Exogenous Variable Based on Non-Gaussianity and Independence

In this subsection, we present two lemmas and a corollary1 that ensure the validity of our algorithm
proposed in the next subsection 3.2. The basic idea of our method is as follows. We first find an
exogenous variable based on its independence of the residuals of a number of pairwise regressions
(Lemma 1). Next, we remove the effect of the exogenous variable from the other variables using
least squares regression. Then, we show that a LiNGAM also holds for the residuals (Lemma 2)
and that the same ordering of the residuals is a causal ordering for the original observed variables as

1. We prove the lemmas and corollary without assuming the faithfulness (Spirtes et al., 1993) unlike our previous work
(Shimizu et al., 2009).

1229

SHIMIZU, INAZUMI, SOGAWA, HYVÄRINEN, KAWAHARA, WASHIO, HOYER AND BOLLEN

well (Corollary 1). Therefore, we can find the second variable in the causal ordering of the original
observed variables by analyzing the residuals and their LiNGAM, that is, by applying Lemma 1 to
the residuals and finding an “exogenous” residual. The iteration of these effect removal and causal
ordering estimates the causal order of the original variables.

We first quote Darmois-Skitovitch theorem (Darmois, 1953; Skitovitch, 1953) since it is used to
prove Lemma 1:

Theorem 1 (Darmois-Skitovitch theorem) Define two random variables y1 and y2 as linear com-
binations of independent random variables si(i=1, · · · , q):

y1 =
q

∑
i=1

αisi, y2 =
q

∑
i=1

βisi.

Then, if y1 and y2 are independent, all variables s j for which α jβ j 	= 0 are Gaussian.

In other words, this theorem means that if there exists a non-Gaussian s j for which α jβ j 	=0, y1 and
y2 are dependent.

Lemma 1 Assume that the input data x strictly follows the LiNGAM (2), that is, all the model

assumptions are met and the sample size is infinite. Denote by r(j)i the residual when xi is regressed

on x j: r
(j)
i = xi− cov(xi,x j)

var(x j)
x j (i 	= j). Then a variable x j is exogenous if and only if x j is independent

of its residuals r(j)i for all i 	= j.

Proof (i) Assume that x j is exogenous, that is, x j=e j. Due to the model assumption and Equa-

tion (3), one can write xi=ai jx j+ e(j)i (i	= j), where e(j)i =∑h 	= j aiheh and x j are independent, and ai j
is a mixing coefficient from x j to xi in Equation (3). The mixing coefficient ai j is equal to the re-

gression coefficient when xi is regressed on x j since cov(xi,x j)=ai jvar(x j). Thus, the residual r(j)i
is equal to the corresponding error term, that is, r(j)i = e(j)i . This implies that x j and r(j)i (= e(j)i) are
independent.

(ii) Assume that x j is not exogenous, that is, x j has at least one parent. Let Pj denote the (non-
empty) set of the variable subscripts of parent variables of x j. Then one can write x j =∑h∈Pj b jhxh+
e j, where xh and e j are independent and each b jh is non-zero. Let a vector xPj and a column vector
bPj collect all the variables in Pj and the corresponding connection strengths, respectively. Then,
the covariances between xPj and x j are

E(xPjx j) = E{xPj(bTPjxPj + e j)}
= E(xPjb

T
PjxPj)+E(xPje j)

= E(xPjx
T
Pj)bPj . (4)

The covariance matrix E(xPjx
T
Pj) is positive definite since the external influences eh that correspond

to those parent variables xh in Pj are mutually independent and have positive variances. Thus, the
covariance vector E(xPjx j) = E(xPjx

T
Pj)bPj in Equation (4) cannot equal the zero vector, and there

must be at least one variable xi (i ∈ Pj) with which x j covaries, that is, cov(xi,x j) 	=0. Then, for such

1230

DIRECTLINGAM: A DIRECT METHOD FOR A LINEAR NON-GAUSSIAN SEM

a variable xi (i ∈ Pj) that cov(xi,x j) 	=0, we have

r(j)i = xi− cov(xi,x j)var(x j)
x j

= xi− cov(xi,x j)var(x j)

(
∑
h∈Pj

b jhxh+ e j

)

=

{
1− b jicov(xi,x j)

var(x j)

}
xi− cov(xi,x j)var(x j)

∑
h∈Pj,h 	=i

b jhxh

−cov(xi,x j)
var(x j)

e j.

Each of those parent variables xh (including xi) in Pj is a linear combination of external influences
other than e j due to the relation of xh to e j that x j =∑h∈Pj b jhxh+e j =∑h∈Pj b jh

(
∑k(t)≤k(h) ahtet

)
+

e j , where et and e j are independent. Thus, the r
(j)
i and x j can be rewritten as linear combinations

of independent external influences as follows:

r(j)i =

{
1− b jicov(xi,x j)

var(x j)

}(
∑
l 	= j

ailel

)
− cov(xi,x j)

var(x j)
∑

h∈Pj,h 	=i
b jh

(
∑
t 	= j

ahtet

)

−cov(xi,x j)
var(x j)

e j, (5)

x j = ∑
h∈Pj

b jh

(
∑
t 	= j

ahtet

)
+ e j. (6)

The first two terms of Equation (5) and the first term of Equation (6) are linear combinations of
external influences other than e j, and the third term of Equation (5) and the second term of Equa-
tion (6) depend only on e j and do not depend on the other external influences. Further, all the
external influences including e j are mutually independent, and the coefficient of non-Gaussian e j
on r(j)i and that on x j are non-zero. These imply that r

(j)
i and x j are dependent since r

(j)
i , x j and e j

correspond to y1, y2, s j in Darmois-Skitovitch theorem, respectively.
From (i) and (ii), the lemma is proven.

Lemma 2 Assume that the input data x strictly follows the LiNGAM (2). Further, assume that a

variable x j is exogenous. Denote by r(j) a (p-1)-dimensional vector that collects the residuals r
(j)
i

when all xi of x are regressed on x j (i	= j). Then a LiNGAM holds for the residual vector r(j):
r(j) = B(j)r(j) + e(j), where B(j) is a matrix that can be permuted to be strictly lower-triangular by
a simultaneous row and column permutation, and elements of e(j) are non-Gaussian and mutually
independent.

Proof Without loss of generality, assume that B in the LiNGAM (2) is already permuted to be
strictly lower triangular and that x j=x1. Note that A in Equation (3) is also lower triangular (al-
though its diagonal elements are all ones). Since x1 is exogenous, ai1 are equal to the regression
coefficients when xi are regressed on x1 (i 	= 1). Therefore, after removing the effects of x1 from xi

1231

SHIMIZU, INAZUMI, SOGAWA, HYVÄRINEN, KAWAHARA, WASHIO, HOYER AND BOLLEN

by least squares estimation, one gets the first column of A to be a zero vector, and x1 does not affect
the residuals r(1)i . Thus, we again obtain a lower triangular mixing matrix A

(1) with all ones in the
diagonal for the residual vector r(1) and hence have a LiNGAM for the vector r(1).

Corollary 1 Assume that the input data x strictly follows the LiNGAM (2). Further, assume that a

variable x j is exogenous. Denote by kr(j) (i) a causal order of r
(j)
i . Recall that k(i) denotes a causal

order of xi. Then, the same ordering of the residuals is a causal ordering for the original observed
variables as well: kr(j) (l)<kr(j)(m)⇔ k(l)<k(m).

Proof As shown in the proof of Lemma 2, when the effect of an exogenous variable x1 is removed
from the other observed variables, the second to p-th columns of A remain the same, and the sub-
matrix of A formed by deleting the first row and the first column is still lower triangular. This shows
that the ordering of the other variables is not changed and proves the corollary.

Lemma 2 indicates that the LiNGAM for the (p−1)-dimensional residual vector r(j) can be
handled as a new input model, and Lemma 1 can be further applied to the model to estimate the
next exogenous variable (the next exogenous residual in fact). This process can be repeated until
all variables are ordered, and the resulting order of the variable subscripts shows the causal order of
the original observed variables according to Corollary 1.

To apply Lemma 1 in practice, we need to use a measure of independence which is not restricted
to uncorrelatedness since least squares regression gives residuals always uncorrelated with but not
necessarily independent of explanatory variables. A common independence measure between two
variables y1 and y2 is their mutual informationMI(y1,y2) (Hyvärinen et al., 2001). In Bach and Jor-
dan (2002), a nonparametric estimator of mutual information was developed using kernel methods.2

Let K1 and K2 represent the Gram matrices whose elements are Gaussian kernel values of the sets of
n observations of y1 and y2, respectively. The Gaussian kernel values K1(y

(i)
1 ,y(j)1) and K2(y

(i)
2 ,y(j)2)

(i, j = 1, · · · ,n) are computed by

K1(y
(i)
1 ,y(j)1) = exp

(
− 1
2σ2
‖y(i)1 − y(j)1 ‖2

)
,

K2(y
(i)
2 ,y(j)2) = exp

(
− 1
2σ2
‖y(i)2 − y(j)2 ‖2

)
,

where σ>0 is the bandwidth of Gaussian kernel. Further let κ denote a small positive constant.
Then, in Bach and Jordan (2002), the kernel-based estimator of mutual information is defined as:

M̂Ikernel(y1,y2) =−12 log
detKκ

detDκ
,

where

Kκ =

[(
K1+ nκ

2 I
)2

K1K2
K2K1

(
K2+ nκ

2 I
)2
]
,

Dκ =

[(
K1+ nκ

2 I
)2

0

0
(
K2+ nκ

2 I
)2
]
.

2. Matlab codes can be downloaded at http://www.di.ens.fr/˜fbach/kernel-ica/index.htm.

1232

DIRECTLINGAM: A DIRECT METHOD FOR A LINEAR NON-GAUSSIAN SEM

As the bandwidth σ of Gaussian kernel tends to zero, the population counterpart of the estimator
converges to the mutual information up to second order when it is expanded around distributions
with two variables y1 and y2 being independent (Bach and Jordan, 2002). The determinants of the
Gram matrices K1 and K2 can be efficiently computed by using the incomplete Cholesky decompo-
sition to find their low-rank approximations of rank M (� n). In Bach and Jordan (2002), it was
suggested that the positive constant κ and the width of the Gaussian kernel σ are set to κ= 2×10−3,
σ= 1/2 for n > 1000 and κ= 2×10−2, σ= 1 for n ≤ 1000 due to some theoretical and computa-
tional considerations.

In this paper, we use the kernel-based independence measure. We first evaluate pairwise in-
dependence between a variable and each of the residuals and next take the sum of the pairwise
measures over the residuals. Let us denote by U the set of the subscripts of variables xi, that is,
U={1, · · · , p}. We use the following statistic to evaluate independence between a variable x j and
its residuals r(j)i = xi− cov(xi,x j)

var(x j)
x j when xi is regressed on x j:

Tkernel(x j;U) = ∑
i∈U,i	= j

M̂Ikernel(x j,r
(j)
i). (7)

Many other nonparametric independence measures (Gretton et al., 2005; Kraskov et al., 2004) and
more computationally simple measures that use a single nonlinear correlation (Hyvärinen, 1998)
have also been proposed. Any such proposed method of independence could potentially be used
instead of the kernel-based measure in Equation (7).

3.2 DirectLiNGAM Algorithm

We now propose a new direct algorithm called DirectLiNGAM to estimate a causal ordering and
the connection strengths in the LiNGAM (2):

DirectLiNGAM algorithm

1. Given a p-dimensional random vector x, a set of its variable subscripts U and a p× n data
matrix of the random vector as X, initialize an ordered list of variables K := /0 and m := 1.

2. Repeat until p−1 subscripts are appended to K:

(a) Perform least squares regressions of xi on x j for all i ∈U\K (i 	= j) and compute the
residual vectors r(j) and the residual data matrix R(j) from the data matrix X for all
j ∈U\K. Find a variable xm that is most independent of its residuals:

xm = arg min
j∈U\K

Tkernel(x j;U\K),

where Tkernel is the independence measure defined in Equation (7).

(b) Append m to the end of K.

(c) Let x := r(m), X := R(m).

3. Append the remaining variable to the end of K.

1233

SHIMIZU, INAZUMI, SOGAWA, HYVÄRINEN, KAWAHARA, WASHIO, HOYER AND BOLLEN

4. Construct a strictly lower triangular matrix B by following the order in K, and estimate the
connection strengths bi j by using some conventional covariance-based regression such as
least squares and maximum likelihood approaches on the original random vector x and the
original data matrix X. We use least squares regression in this paper.

3.3 Computational Complexity

Here, we consider the computational complexity of DirectLiNGAM compared with the
ICA-LiNGAM with respect to sample size n and number of variables p. A dominant part of Di-
rectLiNGAM is to compute Equation (7) for each x j in Step 2(a). Since it requires O(np2M2+
p3M3) operations (Bach and Jordan, 2002) in p−1 iterations, complexity of the step is O(np3M2+
p4M3), where M (� n) is the maximal rank found by the low-rank decomposition used in the
kernel-based independence measure. Another dominant part is the regression to estimate the matrix
B in Step 4. The complexity of many representative regressions including the least square algorithm
is O(np3). Hence, we have a total budget of O(np3M2+ p4M3). Meanwhile, the ICA-LiNGAM re-
quires O(p4) time to find a causal order in Step 5. Complexity of an iteration in FastICA procedure
at Step 1 is known to be O(np2). Assuming a constant numberC of the iterations in FastICA steps,
the complexity of the ICA-LiNGAM is considered to be O(Cnp2+ p4). Though general evaluation
of the required iteration numberC is difficult, it can be conjectured to grow linearly with regards to
p. Hence the complexity of the ICA-LiNGAM is presumed to be O(np3+ p4).

Thus, the computational cost of DirectLiNGAM would be larger than that of ICA-LiNGAM
especially when the low-rank approximation of the Gram matrices is not so efficient, that is, M is
large. However, we note the fact that DirectLiNGAM has guaranteed convergence in a fixed number
of steps and is of known complexity, whereas for typical ICA algorithms including FastICA, the
run-time complexity and the very convergence are not guaranteed.

3.4 Use of Prior Knowledge

Although DirectLiNGAM requires no prior knowledge on the structure, more efficient learning can
be achieved if some prior knowledge on a part of the structure is available because then the number
of causal orders and connection strengths to be estimated gets smaller.

We present three lemmas to use prior knowledge in DirectLiNGAM. Let us first define a matrix
Aknw=[aknwji] that collects prior knowledge under the LiNGAM (2) as follows:

aknwji :=

⎧⎪⎪⎨⎪⎪⎩
0 if xi does not have a directed path to x j
1 if xi has a directed path to x j
−1 if no prior knowledge is available to know if either

of the two cases above (0 or 1) is true.

Due to the definition of exogenous variables and that of prior knowledge matrixAknw, we readily
obtain the following three lemmas.

Lemma 3 Assume that the input data x strictly follows the LiNGAM (2). An observed variable x j
is exogenous if aknwji is zero for all i	= j.

Lemma 4 Assume that the input data x strictly follows the LiNGAM (2). An observed variable x j
is endogenous, that is, not exogenous, if there exist such i	= j that aknwji is unity.

1234

DIRECTLINGAM: A DIRECT METHOD FOR A LINEAR NON-GAUSSIAN SEM

Lemma 5 Assume that the input data x strictly follows the LiNGAM (2). An observed variable x j
does not receive the effect of xi if aknwji is zero.

The principle of making DirectLiNGAM algorithm more accurate and faster based on prior
knowledge is as follows. We first find an exogenous variable by applying Lemma 3 instead of
Lemma 1 if an exogenous variable is identified based on prior knowledge. Then we do not have to
evaluate independence between any observed variable and its residuals. If no exogenous variable
is identified based on prior knowledge, we next find endogenous (non-exogenous) variables by
applying Lemma 4. Since endogenous variables are never exogenous we can narrow down the
search space to find an exogenous variable based on Lemma 1. We can further skip to compute
the residual of an observed variable and take the variable itself as the residual if its regressor does
not receive the effect of the variable due to Lemma 5. Thus, we can decrease the number of causal
orders and connection strengths to be estimated, and it improves the accuracy and computational
time. The principle can also be used to further analyze the residuals and find the next exogenous
residual because of Corollary 1. To implement these ideas, we only have to replace Step 2a in
DirectLiNGAM algorithm by the following steps:

2a-1 Find such a variable(s) x j (j ∈ U\K) that the j-th row of Aknw has zero in the i-th column
for all i ∈U\K (i 	= j) and denote the set of such variables by Uexo. If Uexo is not empty, set
Uc :=Uexo. IfUexo is empty, find such a variable(s) x j (j ∈U\K) that the j-th row of Aknw has
unity in the i-th column for at least one of i ∈U\K (i 	= j), denote the set of such variables by
Uend and setUc :=U\K\Uend .

2a-2 Denote by V (j) a set of such a variable subscript i ∈U\K (i 	= j) that aknwi j = 0 for all j ∈Uc.
First set r(j)i := xi for all i ∈ V (j), next perform least squares regressions of xi on x j for all
i ∈U\K\V (j) (i 	= j) and estimate the residual vectors r(j) and the residual data matrix R(j)

from the data matrix X for all j ∈Uc. If Uc has a single variable, set the variable to be xm.
Otherwise, find a variable xm inUc that is most independent of the residuals:

xm = argmin
j∈Uc

Tkernel(x j;U\K),

where Tkernel is the independence measure defined in Equation (7).

4. Simulations

We first randomly generated 5 data sets based on sparse networks under each combination of number
of variables p and sample size n (p=10, 20, 50, 100; n=500, 1000, 2000):

1. We constructed the p× p adjacency matrix with all zeros and replaced every element in the
lower-triangular part by independent realizations of Bernoulli random variables with success
probability s similarly to Kalisch and Bühlmann (2007). The probability s determines the
sparseness of the model. The expected number of adjacent variables of each variable is given
by s(p−1). We randomly set the sparseness s so that the number of adjacent variables was 2
or 5 (Kalisch and Bühlmann, 2007).

2. We replaced each non-zero (unity) entry in the adjacency matrix by a value randomly chosen
from the interval [−1.5,−0.5] ∪ [0.5,1.5] and selected variances of the external influences

1235

SHIMIZU, INAZUMI, SOGAWA, HYVÄRINEN, KAWAHARA, WASHIO, HOYER AND BOLLEN

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

Figure 1: Left: Scatterplots of the estimated bi j by DirectLiNGAM versus the true values for sparse
networks. Right: Scatterplots of the estimated bi j by ICA-LiNGAM versus the true values
for sparse networks.

ei from the interval [1,3] as in Silva et al. (2006). We used the resulting matrix as the data-
generating adjacency matrix B.

3. We generated data with sample size n by independently drawing the external influence vari-
ables ei from various 18 non-Gaussian distributions used in Bach and Jordan (2002) including
(a) Student with 3 degrees of freedom; (b) double exponential; (c) uniform; (d) Student with
5 degrees of freedom; (e) exponential; (f) mixture of two double exponentials; (g)-(h)-(i)
symmetric mixtures of two Gaussians: multimodal, transitional and unimodal; (j)-(k)-(l) non-
symmetric mixtures of two Gaussians, multimodal, transitional and unimodal; (m)-(n)-(o)
symmetric mixtures of four Gaussians: multimodal, transitional and unimodal; (p)-(q)-(r)
nonsymmetric mixtures of four Gaussians: multimodal, transitional and unimodal. See Fig-
ure 5 of Bach and Jordan (2002) for the shapes of the probability density functions.

4. The values of the observed variables xi were generated according to the LiNGAM (2). Finally,
we randomly permuted the order of xi.

Further we similarly generated 5 data sets based on dense (full) networks, that is, full DAGs with ev-
ery pair of variables is connected by a directed edge, under each combination of number of variables
p and sample size n. Then we tested DirectLiNGAM and ICA-LiNGAM on the data sets generated
by sparse networks or dense (full) networks. For ICA-LiNGAM, the maximum number of iterations
was taken as 1000 (Shimizu et al., 2006). The experiments were conducted on a standard PC using
Matlab 7.9. Matlab implementations of the two methods are available on the web:
DirectLiNGAM: http://www.ar.sanken.osaka-u.ac.jp/˜inazumi/dlingam.html,
ICA-LiNGAM: http://www.cs.helsinki.fi/group/neuroinf/lingam/.

We computed the distance between the true B and ones estimated by DirectLiNGAM and ICA-
LiNGAM using the Frobenius norm defined as√

trace{(Btrue− B̂)T (Btrue− B̂)}.

1236

DIRECTLINGAM: A DIRECT METHOD FOR A LINEAR NON-GAUSSIAN SEM

Sparse networks Sample size
500 1000 2000

DirectLiNGAM dim. = 10 0.48 0.31 0.21
dim. = 20 1.19 0.70 0.50
dim. = 50 2.57 1.82 1.40
dim. = 100 5.75 4.61 2.35

ICA-LiNGAM dim. = 10 3.01 0.74 0.65
dim. = 20 9.68 3.00 2.06
dim. = 50 20.61 20.23 12.91
dim. = 100 40.77 43.74 36.52

DirectLiNGAM with dim. = 10 0.48 0.30 0.24
prior knowledge (50%) dim. = 20 1.00 0.71 0.49

dim. = 50 2.47 1.75 1.19
dim. = 100 4.94 3.89 2.27

Dense (full) networks Sample size
500 1000 2000

DirectLiNGAM dim. = 10 0.45 0.46 0.20
dim. = 20 1.46 1.53 1.12
dim. = 50 4.40 4.57 3.86
dim. = 100 7.38 6.81 6.19

ICA-LiNGAM dim. = 10 1.71 2.08 0.39
dim. = 20 6.70 3.38 1.88
dim. = 50 17.28 16.66 12.05
dim. = 100 34.95 34.02 32.02

DirectLiNGAM with dim. = 10 0.45 0.31 0.19
prior knowledge (50%) dim. = 20 0.84 0.90 0.41

dim. = 50 2.48 1.86 1.56
dim. = 100 4.67 3.60 2.61

Table 1: Median distances (Frobenius norms) between true B and estimated B of DirectLiNGAM
and ICA-LiNGAM with five replications.

Tables 1 and 2 show the median distances (Frobenius norms) and median computational times (CPU
times), respectively. In Table 1, DirectLiNGAMwas better in distances of B and gave more accurate
estimates of B than ICA-LiNGAM for all of the conditions. In Table 2, the computation amount of
DirectLiNGAM was rather larger than ICA-LiNGAM when the sample size was increased. A main
bottleneck of computation was the kernel-based independence measure. However, its computation
amount can be considered to be still tractable. In fact, the actual elapsed times were approximately
one-quarter of their CPU times respectively probably because the CPU had four cores. Interestingly,
the CPU time of ICA-LiNGAM actually decreased with increased sample size in some cases. This
is presumably due to better convergence properties.

To visualize the estimation results, Figures 1 and 2 give combined scatterplots of the estimated
elements of B of DirectLiNGAM and ICA-LiNGAM versus the true ones for sparse networks and

1237

SHIMIZU, INAZUMI, SOGAWA, HYVÄRINEN, KAWAHARA, WASHIO, HOYER AND BOLLEN

Sparse networks Sample size
500 1000 2000

DirectLiNGAM dim. = 10 15.16 sec. 37.21 sec. 66.75 sec.
dim. = 20 1.56 min. 5.75 min. 17.22 min.
dim. = 50 16.25 min. 1.34 hrs. 2.70 hrs.
dim. = 100 2.35 hrs. 21.17 hrs. 19.90 hrs.

ICA-LiNGAM dim. = 10 0.73 sec. 0.41 sec. 0.28 sec.
dim. = 20 5.40 sec. 2.45 sec. 1.14 sec.
dim. = 50 14.49 sec. 21.47 sec. 32.03 sec.
dim. = 100 46.32 sec. 58.02 sec. 1.16 min.

DirectLiNGAM with dim. = 10 4.13 sec. 17.75 sec. 30.95 sec.
prior knowledge (50%) dim. = 20 28.02 sec. 1.64 min. 4.98 min.

dim. = 50 7.62 min. 28.89 min. 1.09 hrs.
dim. = 100 48.28 min. 1.84 hrs. 7.51 hrs.

Dense (full) networks Sample size
500 1000 2000

DirectLiNGAM dim. = 10 8.05 sec. 24.52 sec. 49.44 sec.
dim. = 20 1.00 min. 4.23 min. 6.91 min.
dim. = 50 16.18 min. 1.12 hrs. 1.92 hrs.
dim. = 100 2.16 hrs. 8.59 hrs. 17.24 hrs.

ICA-LiNGAM dim. = 10 0.97 sec. 0.34 sec. 0.27 sec.
dim. = 20 5.35 sec. 1.25 sec. 4.07 sec.
dim. = 50 15.58 sec. 21.01 sec. 31.57 sec.
dim. = 100 47.60 sec. 56.57 sec. 1.36 min.

DirectLiNGAM with dim. = 10 2.67 sec. 5.66 sec. 12.31 sec.
prior knowledge (50%) dim. = 20 5.02 sec. 31.70 sec. 38.35 sec.

dim. = 50 46.74 sec. 2.89 min. 5.00 min.
dim. = 100 3.19 min. 10.44 min. 19.80 min.

Table 2: Median computational times (CPU times) of DirectLiNGAM and ICA-LiNGAMwith five
replications.

dense (full) networks, respectively. The different plots correspond to different numbers of variables
and different sample sizes, where each plot combines the data for different adjacency matricesB and
18 different distributions of the external influences p(ei). We can see that DirectLiNGAM worked
well and better than ICA-LiNGAM, as evidenced by the grouping of the data points onto the main
diagonal.

Finally, we generated data sets in the same manner as above and gave some prior knowledge
to DirectLiNGAM by creating prior knowledge matrices Aknw as follows. We first replaced every
non-zero element by unity and every diagonal element by zero in A=(I−B)−1 and subsequently
hid each of the off-diagonal elements, that is, replaced it by −1, with probability 0.5. The bottoms
of Tables 1 and 2 show the median distances and median computational times. It was empirically
confirmed that use of prior knowledge gave more accurate estimates and less computational times

1238

DIRECTLINGAM: A DIRECT METHOD FOR A LINEAR NON-GAUSSIAN SEM

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

0 2

0

2

Figure 2: Left: Scatterplots of the estimated bi j by DirectLiNGAM versus the true values for dense
(full) networks. Right: Scatterplots of the estimated bi j by ICA-LiNGAM versus the true
values for dense (full) networks.

in most cases especially for dense (full) networks. The reason would probably be that for dense
(full) networks more prior knowledge about where directed paths exist were likely to be given and
it narrowed down the search space more efficiently.

5. Applications to Real-world Data

We here apply DirectLiNGAM and ICA-LiNGAM on real-world physics and sociology data. Both
DirectLiNGAM and ICA-LiNGAM estimate a causal ordering of variables and provide a full DAG.
Then we have two options to do further analysis (Hyvärinen et al., 2010): i) Find significant di-
rected edges or direct causal effects bi j and significant total causal effects ai j with A=(I−B)−1; ii)
Estimate redundant directed edges to find the underlying DAG. We demonstrate an example of the
former in Section 5.1 and that of the latter in Section 5.2.

5.1 Application to Physical Data

We applied DirectLiNGAM and ICA-LiNGAM on a data set created from a physical system called
a double-pendulum, a pendulum with another pendulum attached to its end (Meirovitch, 1986) as
in Figure 3. The data set was first used in Kawahara et al. (2011). The raw data consisted of four
time series provided by Ibaraki University (Japan) filming the pendulum system with a high-speed
video camera at every 0.01 second for 20.3 seconds and then reading out the position using an image
analysis software. The four variables were θ1: the angle between the top limb and the vertical, θ2:
the angle between the bottom limb and the vertical, ω1: the angular speed of θ1 or θ̇1 and ω2: the
angular speed of θ2 or θ̇2. The number of time points was 2035. The data set is available on the
web: http://www.ar.sanken.osaka-u.ac.jp/˜inazumi/data/furiko.html.

In Kawahara et al. (2011), some theoretical considerations based on the domain knowledge
implied that the angle speeds ω1 and ω2 are mainly determined by the angles θ1 and θ2 in both
cases where the swing of the pendulum is sufficiently small (θ1,θ2 ≈ 0) and where the swing is not

1239

SHIMIZU, INAZUMI, SOGAWA, HYVÄRINEN, KAWAHARA, WASHIO, HOYER AND BOLLEN

Figure 3: Abstract model of the double-pendulum used in Kawahara et al. (2011).

Figure 4: Left: The estimated network by DirectLiNGAM. Only significant directed edges are
shown with 5% significance level. Right: The estimated network by ICA-LiNGAM.
No significant directed edges were found with 5% significance level.

Figure 5: Left: The estimated network by PC algorithm with 5% significance level. Right: The
estimated network by GES. An undirected edge between two variables means that there
is a directed edge from a variable to the other or the reverse.

very small. Further, in practice, it was reasonable to assume that there were no latent confounders
(Kawahara et al., 2011).

As a preprocessing, we first removed the time dependency from the raw data using the ARMA
(AutoRegressive Moving Average) model with 2 autoregressive terms and 5 moving average terms
following Kawahara et al. (2011). Then we applied DirectLiNGAM and ICA-LiNGAM on the

1240

DIRECTLINGAM: A DIRECT METHOD FOR A LINEAR NON-GAUSSIAN SEM

preprocessed data. The estimated adjacency matrices B of θ1, θ2, ω1 and ω2 were as follows:

DirectLiNGAM :

⎛⎜⎜⎝
θ1 θ2 ω1 ω2

θ1 0 0 0 0
θ2 −0.23 0 0 0
ω1 90.39 −2.88 0 0
ω2 5.65 94.64 −0.11 0

⎞⎟⎟⎠,

ICA−LiNGAM :

⎛⎜⎜⎝
θ1 θ2 ω1 ω2

θ1 0 0 0 0
θ2 1.45 0 0 0
ω1 108.82 −52.73 0 0
ω2 216.26 112.50 −1.89 0

⎞⎟⎟⎠.

The estimated orderings by DirectLiNGAM and ICA-LiNGAM were identical, but the estimated
connection strengths were very different. We further computed their 95% confidence intervals by
using bootstrapping (Efron and Tibshirani, 1993) with the number of bootstrap replicates 10000.
The estimated networks by DirectLiNGAM and ICA-LiNGAM are graphically shown in Figure 4,
where only significant directed edges (direct causal effects) bi j are shown with 5% significance
level.3 DirectLiNGAM found that the angle speeds ω1 and ω2 were determined by the angles θ1
or θ2, which was consistent with the domain knowledge. Though the directed edge from θ1 to θ2
might be a bit difficult to interpret, the effect of θ1 on θ2 was estimated to be negligible since the
coefficient of determination (Bollen, 1989) of θ2, that is, 1−var(ê2)/var(θ̂2), was very small and
was 0.01. (The coefficient of determination of ω1 and that of ω2 were 0.46 and 0.49, respectively.)
On the other hand, ICA-LiNGAM could not find any significant directed edges since it gave very
different estimates for different bootstrap samples.

For further comparison, we also tested two conventional methods (Spirtes and Glymour, 1991;
Chickering, 2002) based on conditional independences. Figure 5 shows the estimated networks by
PC algorithm (Spirtes and Glymour, 1991) with 5% significance level and GES (Chickering, 2002)
with the Gaussianity assumption. We used the Tetrad IV4 to run the two methods. PC algorithm
found the same directed edge from θ1 on ω1 as DirectLiNGAM did, but did not found the directed
edge from θ2 on ω2. GES found the same directed edge from θ1 on θ2 as DirectLiNGAM did, but
did not find that the angle speeds ω1 and ω2 were determined by the angles θ1 or θ2.

We also computed the 95% confidence intervals of the total causal effects ai j using bootstrap.
DirectLiNGAM found significant total causal effects from θ1 on θ2, from θ1 on ω1, from θ1 on ω2,
from θ2 on ω1, and from θ2 on ω2. These significant total effects would also be reasonable based
on similar arguments. ICA-LiNGAM only found a significant total causal effect from θ2 on ω2.

Overall, although the four variables θ1, θ2, ω1 and ω2 are likely to be nonlinearly related ac-
cording to the domain knowledge (Meirovitch, 1986; Kawahara et al., 2011), DirectLiNGAM gave
interesting results in this example.

5.2 Application to Sociology Data

We analyzed a data set taken from a sociological data repository on the Internet called General
Social Survey (http://www.norc.org/GSS+Website/). The data consisted of six observed vari-

3. The issue of multiple comparisons arises in this context, which we would like to study in future work.
4. Tetrad IV is available at http://www.phil.cmu.edu/projects/tetrad/.

1241

SHIMIZU, INAZUMI, SOGAWA, HYVÄRINEN, KAWAHARA, WASHIO, HOYER AND BOLLEN

Figure 6: Status attainment model based on domain knowledge (Duncan et al., 1972). A directed
edge between two variables in the figure means that there could be a directed edge be-
tween the two. A bi-directed edge between two variables means that the relation is not
modeled. For instance, there could be latent confounders between the two, there could be
a directed edge between the two, or the two could be independent.

ables, x1: father’s occupation level, x2: son’s income, x3: father’s education, x4: son’s occupation
level, x5: son’s education, x6: number of siblings. (x6 is discrete but is relatively close to be contin-
uous since it is an ordinal scale with many points.) The sample selection was conducted based on
the following criteria: i) non-farm background; ii) ages 35 to 44; iii) white; iv) male; v) in the labor
force at the time of the survey; vi) not missing data for any of the covariates; vii) years 1972-2006.
The sample size was 1380. Figure 6 shows domain knowledge about their causal relations (Duncan
et al., 1972). As shown in the figure, there could be some latent confounders between x1 and x3, x1
and x6, or x3 and x6. An objective of this example was to see how our method behaves when such a
model assumption of LiNGAM could be violated that there is no latent confounder.

The estimated adjacency matrices B by DirectLiNGAM and ICA-LiNGAM were as follows:

DirectLiNGAM :

⎛⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6
x1 0 0 3.19 0.10 0.41 0.21
x2 33.48 0 452.84 422.87 1645.45 347.96
x3 0 0 0 0 0.55 −0.18
x4 0 0 0.17 0 4.61 −0.19
x5 0 0 0 0 0 −0.12
x6 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠,

ICA−LiNGAM :

⎛⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6
x1 0 0 0.93 0 −0.68 −0.20
x2 50.70 0 −31.82 200.84 65.63 336.04
x3 0 0 0 0 0.24 −0.27
x4 0.17 0 −0.40 0 −0.14 −0.14
x5 0 0 0 0 0 0
x6 0 0 0 0 −0.08 0

⎞⎟⎟⎟⎟⎟⎟⎠.

1242

DIRECTLINGAM: A DIRECT METHOD FOR A LINEAR NON-GAUSSIAN SEM

We subsequently pruned redundant directed edges bi j in the full DAGs by repeatedly apply-
ing a sparse method called Adaptive Lasso (Zou, 2006) on each variable and its potential parents.
See Appendix A for some more details of Adaptive Lasso. We used a matlab implementation in
Sjöstrand (2005) to run the Lasso. Then we obtained the following pruned adjacency matrices B:

DirectLiNGAM :

⎛⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6
x1 0 0 3.19 0 0 0
x2 0 0 0 422.87 0 0
x3 0 0 0 0 0.55 0
x4 0 0 0 0 4.61 0
x5 0 0 0 0 0 −0.12
x6 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠,

ICA−LiNGAM :

⎛⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x4 x5 x6
x1 0 0 0.93 0 0 0
x2 0 0 0 200.84 0 0
x3 0 0 0 0 0.24 0
x4 0 0 0 0 −0.14 0
x5 0 0 0 0 0 0
x6 0 0 0 0 −0.08 0

⎞⎟⎟⎟⎟⎟⎟⎠.

The estimated networks by DirectLiNGAM and ICA-LiNGAM are graphically shown in Fig-
ure 7 and Figure 8, respectively. All the directed edges estimated by DirectLiNGAM were reason-
able to the domain knowledge other than the directed edge from x5: son’s education to x3: father’s
education. Since the sample size was large and yet the estimated model was not fully correct, the
mistake on the directed edge between x5 and x3 might imply that some model assumptions might be
more or less violated in the data. ICA-LiNGAM gave a similar estimated network but did one more
mistake that x6: number of siblings is determined by x5: son’s education.

Further, Figure 9 and Figure 10 show the estimated networks by PC algorithm with 5% signif-
icance level and GES with the Gaussianity assumption. Both of the conventional methods did not
find the directions of many edges. The two conventional methods found a reasonable direction of
the edge between x1: father’s occupation and x3: father’s education, but they gave a wrong direction
of the edge between x1: father’s occupation and x4: son’s occupation.

6. Conclusion

We presented a new estimation algorithm for the LiNGAM that has guaranteed convergence to
the right solution in a fixed number of steps if the data strictly follows the model, that is, if all
the model assumptions are met and the sample size is infinite. Further, the new algorithm has
known computational complexity. This is the first algorithm specialized to estimate the LiNGAM.
Simulations implied that the new method often provides better statistical performance than a state of
the art method based on ICA. In real-world applications to physics and sociology, interesting results
were obtained. Future works would include i) assessment of practical performance of statistical tests
to detect violations of the model assumptions including tests of independence (Gretton and Györfi,
2010); ii) implementation issues of our algorithm to improve the practical computational efficiency;
iii) extensions of our algorithm to more general cases including the cases with latent confounders

1243

SHIMIZU, INAZUMI, SOGAWA, HYVÄRINEN, KAWAHARA, WASHIO, HOYER AND BOLLEN

Figure 7: The estimated network by DirectLiNGAM and Adaptive Lasso. A red solid directed edge
is reasonable to the domain knowledge.

Figure 8: The estimated network by ICA-LiNGAM and Adaptive Lasso. A red solid directed edge
is reasonable to the domain knowledge.

(Hoyer et al., 2008; Kawahara et al., 2010) or nonlinear relations (Hoyer et al., 2009; Mooij et al.,
2009) and iv) comparison of our method and related algorithms on many other real-world data sets.

Acknowledgments

We are very grateful to Hiroshi Hasegawa (College of Science, Ibaraki University, Japan) for pro-
viding the physics data and Satoshi Hara and Ayumu Yamaoka for interesting discussion. We thank
the three anonymous reviewers whose comments helped to improve the exposition of the paper.
This work was partially carried out at Department of Mathematical and Computing Sciences and
Department of Computer Science, Tokyo Institute of Technology, Japan. S.S., Y.K. and T.W. were
partially supported by MEXT Grant-in-Aid for Young Scientists #21700302, by JSPS Grant-in-Aid
for Young Scientists #20800019 and by Grant-in-Aid for Scientific Research (A) #19200013, re-
spectively. S.S. and Y.K. were partially supported by JSPS Global COE program ‘Computationism

1244

DIRECTLINGAM: A DIRECT METHOD FOR A LINEAR NON-GAUSSIAN SEM

Figure 9: The estimated network by PC algorithm with 5% significance level. An undirected edge
between two variables means that there is a directed edge from a variable to the other or
the reverse. A red solid directed edge is reasonable to the domain knowledge.

Figure 10: The estimated network by GES. An undirected edge between two variables means that
there is a directed edge from a variable to the other or the reverse. A red solid directed
edge is reasonable to the domain knowledge.

as a Foundation for the Sciences’. A.H. was partially supported by the Academy of Finland Centre
of Excellence for Algorithmic Data Analysis.

Appendix A. Adaptive Lasso

We very briefly review the adaptive Lasso (Zou, 2006), which is a variant of the Lasso (Tibshirani,
1996). See Zou (2006) for more details. The adaptive Lasso is a regularization technique for variable
selection and assumes the same data generating process as LiNGAM:

xi = ∑
k(j)<k(i)

bi jx j+ ei.

1245

SHIMIZU, INAZUMI, SOGAWA, HYVÄRINEN, KAWAHARA, WASHIO, HOYER AND BOLLEN

A big difference is that the adaptive Lasso assumes that the set of such potential parent variables
x j that k(j)<k(i) is known and LiNGAM estimates the set of such variables. The adaptive Lasso
penalizes connection strengths bi j in L1 penalty by minimizing the objective function defined as:∥∥∥∥∥xi− ∑

k(j)<k(i)

bi jx j

∥∥∥∥∥
2

+λ ∑
k(j)<k(i)

|bi j|
|b̂i j|γ

,

where λ and γ are tuning parameters and b̂i j is a consistent estimate of bi j. In Zou (2006), it was
suggested to select the tuning parameters by five-fold cross validation and to obtain b̂i j by ordinary
least squares regression. The adaptive Lasso has a very attractive property that it asymptotically
selects the right set of such variables x j that bi j is not zero, where k(j)<k(i).

References

S. Amari. Natural gradient learning works efficiently in learning. Neural Computation, 10:251–276,
1998.

F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal of Machine Learning
Research, 3:1–48, 2002.

K. A. Bollen. Structural Equations with Latent Variables. John Wiley & Sons, 1989.

D. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning
Research, 3:507–554, 2002.

P. Comon. Independent component analysis, a new concept? Signal Processing, 36:62–83, 1994.

G. Darmois. Analyse générale des liaisons stochastiques. Review of the International Statistical
Institute, 21:2–8, 1953.

O. D. Duncan, D. L. Featherman, and B. Duncan. Socioeconomic Background and Achievement.
Seminar Press, New York, 1972.

B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, New York, 1993.

J. Eriksson and V. Koivunen. Identifiability, separability, and uniqueness of linear ICA models.
IEEE Signal Processing Letters, 11:601–604, 2004.

A. Gretton and L. Györfi. Consistent nonparametric tests of independence. Journal of Machine
Learning Research, 11:1391–1423, 2010.

A. Gretton, O. Bousquet, A. J. Smola, and B. Schölkopf. Measuring statistical dependence
with Hilbert-Schmidt norms. In Algorithmic Learning Theory: 16th International Conference
(ALT2005), pages 63–77. 2005.

J. Himberg, A. Hyvärinen, and F. Esposito. Validating the independent components of neuroimaging
time-series via clustering and visualization. NeuroImage, 22:1214–1222, 2004.

1246

DIRECTLINGAM: A DIRECT METHOD FOR A LINEAR NON-GAUSSIAN SEM

P. O. Hoyer, S. Shimizu, A. Kerminen, and M. Palviainen. Estimation of causal effects using
linear non-gaussian causal models with hidden variables. International Journal of Approximate
Reasoning, 49(2):362–378, 2008.

P. O. Hoyer, D. Janzing, J. Mooij, J. Peters, and B. Schölkopf. Nonlinear causal discovery with
additive noise models. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances
in Neural Information Processing Systems 21, pages 689–696. 2009.

A. Hyvärinen. New approximations of differential entropy for independent component analysis and
projection pursuit. In Advances in Neural Information Processing Systems, volume 10, pages
273–279. 1998.

A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE
Transactions on Neural Networks, 10:626–634, 1999.

A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. Wiley, New York, 2001.

A. Hyvärinen, K. Zhang, S. Shimizu, and P. O. Hoyer. Estimation of a structural vector autoregres-
sive model using non-Gaussianity. Journal of Machine Learning Research, 11:1709–1731, May
2010.

T. Inazumi, S. Shimizu, and T. Washio. Use of prior knowledge in a non-Gaussian method for learn-
ing linear structural equation models. In Proc. 9th International Conference on Latent Variable
Analysis and Signal Separation (LVA/ICA2010), pages 221–228, 2010.

M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the PC-
algorithm. Journal of Machine Learning Research, 8:613–636, 2007.

Y. Kawahara, K. Bollen, S. Shimizu, and T. Washio. GroupLiNGAM: Linear non-Gaussian acyclic
models for sets of variables. arXiv:1006.5041, June 2010.

Y. Kawahara, S. Shimizu, and T. Washio. Analyzing relationships among ARMA processes based
on non-Gaussianity of external influences. Neurocomputing, 2011. Forthcoming.

A. Kraskov, H. Stögbauer, and P. Grassberger. Estimating mutual information. Physical Review E,
69(6):066138, 2004.

G. Lacerda, P. Spirtes, J. Ramsey, and P. O. Hoyer. Discovering cyclic causal models by indepen-
dent components analysis. In Proceedings of the 24th Conference on Uncertainty in Artificial
Intelligence (UAI2008), pages 366–374, 2008.

A. Londei, A. D’Ausilio, D. Basso, and M. O. Belardinelli. A new method for detecting causality
in fMRI data of cognitive processing. Cognitive processing, 7(1):42–52, March 2006.

L. Meirovitch. Elements of Vibration Analysis (2nd ed.). McGraw-Hill, 1986.

J. Mooij, D. Janzing, J. Peters, and B. Schölkopf. Regression by dependence minimization and its
application to causal inference in additive noise models. In Proceedings of the 26th International
Conference on Machine Learning (ICML2009), pages 745–752, 2009.

1247

SHIMIZU, INAZUMI, SOGAWA, HYVÄRINEN, KAWAHARA, WASHIO, HOYER AND BOLLEN

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000. (2nd ed.
2009).

R. O. Rhein and K. Strimmer. From correlation to causation networks: a simple approximate
learning algorithm and its application to high-dimensional plant gene expression data. BMC
Systems Biology, 1:1–37, 2007.

S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen. A linear non-gaussian acyclic model for
causal discovery. Journal of Machine Learning Research, 7:2003–2030, 2006.

S. Shimizu, A. Hyvärinen, Y. Kawahara, and T. Washio. A direct method for estimating a causal
ordering in a linear non-gaussian acyclic model. In Proceedings of the 25th Conference on Un-
certainty in Artificial Intelligence (UAI2009), Montreal, Canada, pages 506–513. AUAI Press,
2009.

R. Silva, R. Scheines, C. Glymour, and P. Spirtes. Learning the structure of linear latent variable
models. Journal of Machine Learning Research, 7:191–246, Feb 2006.

K. Sjöstrand. Matlab implementation of LASSO, LARS, the elastic net and SPCA, June 2005. URL
http://www2.imm.dtu.dk/pubdb/p.php?3897. Version 2.0.

W. P. Skitovitch. On a property of the normal distribution. Doklady Akademii Nauk SSSR, 89:
217–219, 1953.

Y. Sogawa, S. Shimizu, Y. Kawahara, and T. Washio. An experimental comparison of linear non-
Gaussian causal discovery methods and their variants. In Proceedings of 2010 International Joint
Conference on Neural Networks (IJCNN2010), pages 768–775, 2010.

P. Spirtes and C. Glymour. An algorithm for fast recovery of sparse causal graphs. Social Science
Computer Review, 9:67–72, 1991.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. Springer Verlag, 1993.
(2nd ed. MIT Press 2000).

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of Royal Statistical Society:
Series B, 58(1):267–288, 1996.

H. Zou. The adaptive Lasso and its oracle properties. Journal of the American Statistical Associa-
tion, 101:1418–1429, 2006.

1248

Journal of Machine Learning Research 12 (2011) 1249-1286 Submitted 3/09; Revised 10/10; Published 4/11

Locally Defined Principal Curves and Surfaces

Umut Ozertem UMUT@YAHOO-INC.COM
Yahoo! Labs
701 First Ave.
Sunnyvale, CA 94086, USA

Deniz Erdogmus ERDOGMUS@ECE.NEU.EDU
Department of Electrical and Computer Engineering
409 Dana Research Center, 360 Huntington Avenue
Northeastern University
Boston, MA 02115, USA

Editor: Saharon Rosset

Abstract

Principal curves are defined as self-consistent smooth curves passing through themiddle of the data,
and they have been used in many applications of machine learning as a generalization, dimension-
ality reduction and a feature extraction tool. We redefine principal curves and surfaces in terms of
the gradient and the Hessian of the probability density estimate. This provides a geometric under-
standing of the principal curves and surfaces, as well as a unifying view for clustering, principal
curve fitting and manifold learning by regarding those as principal manifolds of different intrinsic
dimensionalities. The theory does not impose any particular density estimation method can be used
with any density estimator that gives continuous first and second derivatives. Therefore, we first
present our principal curve/surface definition without assuming any particular density estimation
method. Afterwards, we develop practical algorithms for the commonly used kernel density esti-
mation (KDE) and Gaussian mixture models (GMM). Results of these algorithms are presented in
notional data sets as well as real applications with comparisons to other approaches in the principal
curve literature. All in all, we present a novel theoretical understanding of principal curves and
surfaces, practical algorithms as general purpose machine learning tools, and applications of these
algorithms to several practical problems.

Keywords: unsupervised learning, dimensionality reduction, principal curves, principal surfaces,
subspace constrained mean-shift

1. Introduction

Principal components analysis (PCA)—also known as Karhunen-Loeve Transform–is perhaps the
most commonly used dimensionality reduction method (Jolliffe, 1986; Jackson, 1991), which is
defined using the linear projection that maximizes the variance in the projected space (Hotelling,
1933). For a data set, principal axes are the set of orthogonal vectors onto which the variance of
the projected data points remains maximal. Another closely related property of PCA is that, for
Gaussian distributions, the principal line is also self-consistent. That is, any point on the principal
line is the conditional expectation of the data on the orthogonal hyperplane. In fact, this forms
the basic idea behind the original principal curve definition by Hastie (1984); Hastie and Stuetzle
(1989).

c©2011 Umut Ozertem and Deniz Erdogmus.

OZERTEM AND ERDOGMUS

Due to the insufficiency of linear methods for dimensionality reduction, many nonlinear pro-
jection approaches have been studied. A common approach is to use a mixture of linear models
(Bishop, 1997). Mixture models are attractive, since they arevsimple and analyzable as linear meth-
ods; however, assuming a suitable model order, they are able to provide much more powerful tools
as compared to linear methods. Although model order selection is a tough discrete optimization
problem, and mixture methods suffer from the problems introduced by improper selection of model
order, there are principled ways to approach this problem such as Dirichlet process mixtures (Fergu-
son, 1973). Techniques based on local PCA include most well-known examples for mixture models
(Fukunaga and Olsen, 1971; Meinicke and Ritter, 1999; Kambhatla and Leen, 1994, 1997).

Another common way of developing nonlinear projections is to use generalized linear models
(McCullagh and Nelder, 1989; Fahrmeir and Tutz, 1994). This is based on the idea of constructing
the nonlinear projection as a linear combination of nonlinear basis functions. All reproducing kernel
Hilbert space techniques such as the well-known kernel PCA (Schölkopf et al., 1998) and kernel
LDA (Baudat and Anouar, 2000) belong to this family. The main idea here is to map the data into a
high dimensional space and perform the original linear method in this space, where the dot products
are computed via a kernel function using the so-called kernel trick. More recent methods in this
category replace the widely used Gaussian kernel with similarity metrics stemming from a weighted
neighborhood graph. These methods are referred to as graph-based kernel methods (Shawe-Taylor
and Singer, 2004; Ham et al., 2004).

If the data dimensionality is very high, the most successful methods are manifold learning algo-
rithms, which are based on generating the locality information of data samples using a data proxim-
ity graph. Most well known methods that fall into this category include Isomap, local linear embed-
ding, Laplacian eigenmaps, and maximum variance unfolding (Tenenbaum et al., 2000; Roweis and
Saul, 2000; Belkin and Niyogi, 2003; Weinberger and Saul, 2006). The idea of defining geodesic
distances using the data neighborhood graphs assumes that the graph does not have any gaps in the
manifold, as well as the graph also does not go outside the data manifold. This requires a care-
ful tuning of the parameters of graph construction (K or ε, as in the case of most commonly used
K-nearest neighbor or ε-ball graphs), since the efficiency of the dimensionality reduction methods
depend on the quality of the neighborhood graph.

At the time, Hastie and Stuetzle’s proposition of self consistent principal curves (Hastie, 1984;
Hastie and Stuetzle, 1989) pointed out a different track for nonlinear dimensionality reduction.
They defined self-consistency over the local conditional data expectations, and generalized the self-
consistency property of the principal line into nonlinear structures to introduce the concept of prin-
cipal curves. Hastie and Stuetzle define the principal curve as an infinitely differentiable finite length
curve that passes through the middle of the data. Self-consistency means that every point on the
curve is the expected value of the data points projecting onto this point.

Hastie and Stuetzle’s major theoretical contributions are the following: (i) they show that if
a straight line is self-consistent, it is a principal component (ii) based on the MSE criterion, self-
consistent principal curves are saddle points of the distance function. They use this second property
to develop an algorithm that starts from the principal line and iteratively finds the principal curve by
minimizing the average squared distance of the data points and the curve (Hastie, 1984; Hastie and
Stuetzle, 1989). Although they cannot prove the convergence of their algorithm, Hastie and Stuetzle
claim that principal curves are by definition a fixed point of their algorithm, and if the projection
step of their algorithm is replaced with least squares line fitting, the algorithm converges to the
principal line. Since there is no proof of convergence for Hastie-Stuetzle algorithm, existence of

1250

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

principal curves could only be proven for special cases such as elliptical distributions or distributions
concentrated around a smooth curve, until Duchamp and Stuetzle’s studies on principal curves on
the plane (Duchamp and Stuetzle, 1996a,b).

Banfield and Raftery extend the Hastie-Stuetzle principal curve algorithm to closed curves and
and propose an algorithm that reduces the estimation bias (Banfield and Raftery, 1992). Tibshirani
approaches the problem from a mixture model point-of-view, and provides an algorithm that uses
expectation maximization (Tibshirani, 1992). Delicado’s proposition uses another property of the
principal line rather than self-consistency (Delicado, 1998). Delicado’s method is based on the
total variance and conditional means and finds the principal curve of oriented points of the data set.
Stanford and Raftery propose another approach that improves on the outlier robustness capabilities
of principal curves (Stanford and Raftery, 2000). Probabilistic principal curves approach, which
uses a cubic spline over a mixture of Gaussians to estimate the principal curves/surfaces (Chang
and Grosh, 2002), is known to be among the most successful methods to overcome the common
problem of bias introduced in the regions of high curvature. Verbeek and coworkers used local
principal lines to construct principal curves (Verbeek et al., 2002), and a soft version of the algorithm
is also available (Verbeek et al., 2001), known as K-segments and soft K-segments methods.

Algorithmically, Manifold Parzen Windows method (Vincent and Bengio, 2003; Bengio et al.,
2006) the most similar method in the literature to our approach. They use a kernel density esti-
mation (and in their later paper, a Gaussian mixture model with a regularized covariance) based
density estimate that takes the leading eigenvectors of the local covariance matrices into account.
Many principal curve approaches in the literature, including the original Hastie-Stuetzle algorithm,
are based on the idea of minimizing mean square projection error. An obvious problem with such
approaches is overfitting, and there are different methods in the literature to provide regulariza-
tion. Kegl and colleagues provide a regularized version of Hastie’s definition by bounding the total
length of the principal curve to avoid overfitting (Kegl et al., 2000), and they also show that prin-
cipal curves of bounded length always exist, if the data distribution has finite second moments.
Sandilya and Kulkarni define the regularization in another way by constraining bounds on the turns
of the principal curve (Sandilya and Kulkarni, 2002). Similar to Kegl’s principal curve definition
of bounded length, they also show that principal curves with bounded turn always exist if the data
distribution has finite second moments. Later, Kegl later applies this algorithm to skeletonization
of handwritten digits by extending it into the Principal Graph algorithm (Kegl and Kryzak, 2002).
At this point, note that the original Hastie-Stuetzle definition requires the principal curve not to
intersect itself, which is quite restrictive, and perhaps, Kegl’s Principal Graph algorithm is the only
approach in the principal curves literature that can handle self-intersecting data.

Overall, the original principal curve definition by Hastie and Stuetzle forms a strong basis for
many, possibly all, principal curve algorithms. The idea of using least squares regression or mini-
mum squared projection error properties of linear principal component analysis to build a nonlinear
counterpart brings the problem of overfitting. Hence, algorithms based on these definitions have
to introduce a regularization term. Here we take a bold step by defining the principal curves with
no explicit smoothness constraint at all; we assume that smoothness of principal curves/surfaces is
inherent in the smoothness of the underlying probability density (estimate). Providing the defini-
tion in terms of data probability density allows us to link open ended problems of principal curve
fitting literature—like optimal regularization constraints and outlier robustness—to well established
principles in density estimation literature.

1251

OZERTEM AND ERDOGMUS

In this paper we emphasize the following messages: (i) principal curves and surfaces are geo-
metrically interesting structures of the theoretical probability distribution that underlies the data as
opposed to the particular data set realization, (ii) optimal density estimation (in some sense) does
not necessarily result in optimal principal surface estimation. The first point illuminates the fact
that one should not seek to solve a problem such as manifold learning without precisely character-
izing the sought solution; defining the sought manifold as the solution to one’s optimality criterion
of choice is incorrect, the solution should be defined geometrically first, and then it should be ap-
proximated and its optimality properties should be discovered, leading to optimal approximation
algorithms. The second point highlights the fact that a maximum likelihood density estimate, for
instance, might not lead to a maximum likelihood estimate of the principal surfaces. Statistically
optimal and consistent estimation procedures for the latter must be sought by the community.

The following sections try to address the first issue mentioned above but the second issue will
be left as future work; we are confident that the community will eventually propose much better al-
gorithms for identifying principal surfaces than the ones we provide, given the framework presented
here. Consequently, the subspace constrained mean shift algorithm presented later is not implied
to be optimal in any statistical sense—its choice in this paper is merely due to (i) the familiarity
of our audience with the mean shift clustering algorithm (which suffers from all the drawbacks we
suffer, such as curse of dimensionality for kernel density estimation), (ii) the fact that it includes
parametric mixture distributions as a special case of the formulation (i.e., the same formulas apply
to both kernel density and mixture model estimates with minor modifications), (iii) the convergence
of the algorithm to a point on the principal surface with appropriate dimensionality is guaranteed
for any initial point, since mean-shift is a convergent procedure.

2. Principal Curves/Surfaces

We start with an illustration to give some intuition to our approach, and then we provide a formal
definition of the principal curves and surfaces, study special cases and connections to PCA, exis-
tence conditions, limitations and ambiguities. All this will be conducted in terms of the gradient
and the Hessian of the data pdf, and throughout this section, the data pdf is assumed to be known
or can be estimated either parametrically or non-parametrically from the data samples. In the next
section we will go back to the data samples themselves while we develop a practical algorithm.

2.1 An Illustration

Before we go into the details of the formal definition, we will present a simple illustration. Our
principal curve definition essentially corresponds to the ridge of the probability density function.
Principal curve definitions in the literature are based on local expectations and self-consistency.
Hastie’s self-consistency principle states that every point on the principal curve is the expected value
of the points in the orthogonal subspace of the principal curve at that point—and this orthogonal
space rotates along the curve. In our view, every point on the principal surface is the local maximum,
not the expected value, of the probability density in the local orthogonal subspace.

Consider the modes (local maxima) of the pdf. On the modes, the gradient of the pdf is equal to
zero and the eigenvectors of the Hessian matrix are all negative, so that the pdf is decreasing in all
directions. The definition of the ridge of the pdf can be given very similarly in terms of the gradient
and the Hessian of the pdf. On the ridge of the pdf, one of the eigenvectors of the Hessian is parallel
with the gradient. Furthermore, the eigenvalues of the all remaining eigenvectors (which in fact

1252

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

4

5

6

−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

4

5

6

Figure 1: An illustration of the principal curve on a two Gaussian mixtures.
.

span the orthogonal space of the principal curve) are all negative, so that the pdf is decreasing in all
these directions; hence the point is on a ridge, not in a valley.

Figure 1 presents two illustrations on two Gaussian mixtures. On the left, a comparison of
the proposed principal curve projection, and the trajectories of the gradient of the pdf is presented.
Consider a Gaussian mixture with 3 components with the pdf contour plot shown. Following the
local gradient (top left) essentially coincides with well-known mean shift algorithm (Cheng, 1995;
Comaniciu and Meer, 2002), and maps the points to the modes of the pdf, whereas following the
eigenvectors of the local covariance (bottom left) gives an orthogonal projection onto the principal
curve. The principal curve—the ridge—of this 3-component Gaussian mixture is also shown with
the dashed line. On the right, we present the principal curve of a 7-component Gaussian mixture
from two different points of view.

2.2 Formal Definition of Principal Curves and Surfaces

We assert that principal surfaces are geometrically well defined structures that underly the theoreti-
cal, albeit usually unknown, probability distribution function of the data; consequently, one should

1253

OZERTEM AND ERDOGMUS

define principal surfaces with the assumption that the density is known—finite sample estimators
of these surfaces is a question to be answered based on this characterization. Inspired by differ-
ential geometry where principal lines of curvature are well-defined and understood, we define the
principal curves and surfaces in terms of the first and second order derivatives of the assumed prob-
ability density function. Next, we define critical, principal, and minor surfaces of all dimensions
and point out facts relating to these structures—proofs are generally trivial and are omitted for most
statements.

Given a random vector x ∈ R
n, let p(x) be its pdf, g(x) be the transpose of the local gradient,

and H(x) be the local Hessian of the probability density function. To avoid mathematical compli-
cations, we assume that the data distribution p(x) > 0 for all x, and is at least twice differentiable.
Also let {(λ1(x),q1(x)), . . . ,(λn(x),qn(x))} be the eigenvalue-eigenvector pairs of H(x), where the
eigenvalues are sorted such that λ1(x)> λ2(x)> .. . > λn(x) and λi 	= 0.1
Definition 1. A point x is an element of the d-dimensional critical set, denoted by C d iff the inner
product of g(x) with at least (n-d) eigenvectors of H(x) is zero.

The definition above is an intentional extension of the familiar notion of critical points in calcu-
lus; thus local maxima, minima, and saddle points of the pdf become the simplest special case.
Fact 1. C 0 consists of and only of the critical points (where gradient is zero) of p(x). Furthermore,
C d ⊂ C d+1.

In practice, this fact points to the possibility of designing dimension reduction algorithms where
each data is projected to a critical manifold of one lower dimension sequentially (deflation). Alter-
natively, one could trace out critical curves starting off from critical points (inflation). This property
of linear PCA has been extensively used in the design of on-line algorithms in the 90’s (Kung et al.,
May 1994; Wong et al., 2000; Hegde et al., 2006).
Definition 2. A point x ∈ C d −C d−1 is called a regular point of C d . Otherwise, it is an irregular
point.
Fact 2. If x is a regular point of C d , then there exists an index set I⊥ ⊂ {1, . . . ,n} with cardinality
|I⊥|=(n−d) such that 〈g(x),qi(x)〉= 0 iff i∈ I⊥. If x is an irregular point of C d , then |I⊥|> (n−d).

Regular points of a critical set are the set of points that are not also in the lower dimensional
critical sets. At regular points, the gradient is orthogonal to exactly (n− d) eigenvectors of the
Hessian, thus these points locally lie on a surface with an intrinsic dimensionality of d. Naturally,
these surfaces have their tangent and orthogonal spaces locally.
Definition 3. Let x be a regular point of C d with I⊥. Let I‖ = {1, . . . ,n}− I⊥. The tangent subspace
is C d

‖ (x) = span{qi(x)|i ∈ I‖} and the normal/orthogonal subspace is C d
⊥(x) = span{qi(x)|i ∈ I⊥}.

Definition 4. A regular point x of C d with I⊥ is (assuming no zero-eigenvalues exist for simplicity):

1. a regular point in the principal set P d iff λi(x) < 0 ∀i ∈ I⊥; that is, x is a local maximum in
C d
⊥(x).

2. a regular point in the minor set M d iff λi(x) > 0 ∀i ∈ I⊥; that is, x is a local minimum in
C d
⊥(x).

3. a regular point in the saddle set S d otherwise; that is, x is a saddle in C d
⊥(x).

1. Strict inequalities are assumed here for the theoretical analysis, because in the case of repeated eigenvalues local
uncertainties similar to those in PCA will occur. We also assume non-zero eigenvalues for the Hessian of the pdf.
These assumptions are not critical to the general theme of the paper and generalized conclusions can be relatively
easily obtained. These ambiguities will later be discussed in Section 2.6.

1254

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

Regular and irregular points in these special cases are defined similarly. Also, tangent and orthogo-
nal subspaces are defined identically.

Clearly, (P d,M d ,S d) is a partition of C d . In practice, while principal surfaces might be useful
in dimension reduction as in manifold learning, minor surfaces, valleys in the probability density
function, can be useful in semi-supervised learning. A common theme in semi-supervised learning
employs the so-called cluster hypothesis, where the valleys in the data probability density function
have to be identified (Chapelle et al., 2006), like in the well-known Low Density Separation algo-
rithm (Chapelle and Zien, 2005). Note that allowing zero-eigenvalues would result in local plateaus
in pdf, and allowing repeated eigenvalues would result in ill-defined regular points. While concep-
tually the consequences are clear, we avoid discussing all possible such circumstance for now for
the sake of simplicity. We give a detailed discussion on these limitations in Section 2.6.

By construction, we have x ∈ P 0 iff x is a local maximum of p(x); x ∈M 0 iff x is a local
minimum of p(x); x∈ S 0 iff x is a saddle point of p(x). Furthermore, P d ⊂ P d+1 andM d ⊂M d+1.2

In mean shift clustering, projections of data points to P 0 are used to find the solution (Cheng, 1995;
Comaniciu and Meer, 2002). In fact, the attraction basin3 of each mode of the pdf can be taken as
a local chart that has a curvilinear orthogonal coordinate system determined by the eigenvectors of
the Hessian of the pdf (or a nonlinear function of it—consequences of the choice of the nonlinear
function will be discussed soon).

Note that the definitions and properties above allow for piecewise smooth principal surfaces
and opportunities are much broader than techniques that seek a globally smooth optimal manifold,
which does not generally exist according to our interpretation of the geometry. Figure 2 illustrates
a simple density where a globally smooth curve (for instance a principle line) can not provide a
satisfactory underlying manifold; in fact such a case would likely be handled using local PCA—a
solution which essentially approximates the principal curve definition we advocate above.

At this point we note that due to the assumption of a second-order continuously differentiable
pdf model, the Hessian matrix and its eigenvectors and eigenvalues are continuous everywhere.
Consequently, at any point on the d-dimensional principal set (or critical or minor sets) in a small
open ball around this point, the points in the principal set form a continuous surface. Considering
the union of open balls around points in the d−1-dimensional principal surface, we can note that the
continuouty of the d-dimensional surface implies continuity of the d−1-dimensional subsurface as
well as the 1-dimensional projection trajectories in the vicinity. Furthermore, if we assume that the
pdf models are three-times continuously differentiable, the projection trajectories (following local
Hessian eigenvectors) are not only locally continuous, but also locally continuously differentiable).
In general, the order of continuous differentiability of the underlying pdf model is reflected to the
emerging principal surfaces and projection trajectories accordingly.

2.3 Principal Surfaces of a Nonlinear Function of the PDF

In this section we show that for a pdf the set of points that constitute P d is identical to the set of
points that constitute P d

f of the function f (p(x)) where f (ξ) is monotonically increasing. The same

2. Observe this inclusion property by revisiting Figure 1, as the major principal curve (show in the figures on the right)
passes through all local maxima of the Gaussian mixture density.

3. The attraction basin is defined as the set of points in the feature space such that initial conditions chosen in this set
evolve to a particular attractor -modes of the pdf for this particular case. In the context of mean-shift the underlying
criterion is the KDE of the data. In this case, attraction basins are regions bounded by minor curves, and the attractors
are the modes of the pdf.

1255

OZERTEM AND ERDOGMUS

conclusion can be drawn and shown similarly for the minor and critical surfaces; details of this will
not be provided here.

Consider x, a regular point of P d with pdf p(x) and its gradient-transpose g(x) and Hessian
H(x). Then, the eigenvectors and eigenvalues of the Hessian at this point can be partitioned into the
parallel and orthogonal subspace contributions: H(x) = Q‖Λ‖QT

‖ +Q⊥Λ⊥Q
T
⊥, where the parallel

subspace is spanned by d eigenvectors in the columns ofQ‖ and the orthogonal subspace is spanned
by (n− d) eigenvectors in Q⊥. At a regular point the gradient is in the tangent space, therefore,
g(x) = Q‖β for some suitable vector β of linear combination coefficients. The gradient-transpose
and Hessian of the function f (p(x)) are:

g f (x) = f ′(p(x))g(x)
= f ′(p(x))Q‖β ,

H f (x) = f ′(p(x))H f (x)+ f ′′(p(x))g(x)gT (x)
=
(
f ′(p(x))Q‖Λ‖QT

‖ + f ′′(p(x))Q‖ββTQT
‖
)
+ f ′(p(x))Q⊥Λ⊥QT

⊥ .

We observe that at x the gradient g f (x) is also in the original d-dimensional tangent space. Further,
the orthogonal subspace and the sign of its eigenvalues remain unchanged (since f ′(ξ) > 0). This
shows that if x is a regular point of P d , then it is also a regular point of P d

f . The converse statement
can also be shown by switching the roles of the two functions and considering the inverse of f as
the nonlinear mapping.

Note that we simply proved that the principal surface (as a set of points) of a given dimension
remains unchanged under monotonic transformations of the pdf. If one projects points in higher
dimensional surfaces to lower dimensional principal surfaces following trajectories traced by the
Hessian of f (p((x))), these projection trajectories will depend on f . This brings us to the connection
with PCA.

2.4 Special Case of Gaussian Distributions, Connections to PCA

For a jointly Gaussian pdf, choosing f (ξ) = log(ξ) yields a quadratic function of x, thus the local
Hessian Hlog(x) = −(1/2)Σ−1 becomes independent of position. Consequently, the local Hessian
eigendirections form linear trajectories and principal surfaces become hyperplanes spanned by the
eigenvectors of the Gaussian’s covariance matrix. If this connection to PCA is desired, that is, if
the density becomes Gaussian, principal surface projections of points coincide with those one would
obtain via linear PCA, then the choice log p(x) becomes attractive. Otherwise, one can seek choices
of f that brings other benefits or desirable properties. For this reason, using log as the nonlinearity,
we introduce the concept of local covariance matrix.

Definition 5. The local covariance-inverse of a pdf at any point x is given by −2 times the Hessian
of the logarithm of the pdf. Specifically, in terms of the gradient-transpose and the Hessian of the
pdf, this corresponds toΣ−1(x) =−p−1(x)H(x)+ p−2g(x)gT (x). If we assume that its eigenvalue-
vector pairs are {γi(x),vi(x)} for i ∈ {1, . . . ,n} and if the eigenvalues (some of which might be
negative) are sorted as follows: γ1 < .. . < γn, the local ordering of critical directions from most
principal to least follows the same indexing scheme (i.e., γn is the first to go when projecting to
lower dimensions).

1256

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

Figure 2: A T-shaped Gaussian mixture
.

2.5 Existence of Principal Curves and Surfaces

Considering Hastie’s principal curve definition, the existence proof of principal curves is limited to
some special cases, such as elliptical or spherical distributions concentrated around a smooth curve.
It should also be noted that this definition of the principal curve requires the principal curve not
to intersect itself. The principal curve definition of Kegl et al. (2000) and Sandilya and Kulkarni
(2002) are theoretically more appealing in this context, since by their definition, the principal curve
always exists if the distribution has finite second moments.

According to our definition, the principal curve exists as long as the data probability density
is twice differentiable, such that the Hessian is nonzero. There is no restriction of finite moments,
which is an improvement on existing methods. However, also note that by our definition the prin-
cipal curve does not exist for uniform distributions.4 In practice, however, since we will build our
algorithms based on KDE with Gaussian kernels or GMM, even if the true underlying distribution
is uniform, KDE or GMM guarantee that the gradient and Hessian are continuous.

2.6 Local Ranking of the Principal Curves and Ambiguities

In PCA, the ordering of the principal component directions are naturally given by sorting the corre-
sponding eigenvalues of the covariance matrix in a descending order. Note that, since it coincides
with PCA for Gaussian distributions, our principal curve definition also has the ambiguity that oc-
curs in PCA; the principal surface of a spherically symmetric distribution is not well-defined.

Conditional expectation or mean squared projection error based definitions have driven the prin-
cipal curves research, but in general, the definition is limited to the nonlinear counterpart of the first
principal component. In fact, there is no definition of second, third, etc. principal curve in the
literature that we are aware of. Considering the connection to PCA, one can see that our principal
curve definition is not limited to the nonlinear counterpart of the first principal component, under
the assumption that the Hessian matrix has distinct eigenvalues, one can obtain the local ordering
for any d-dimensional principal manifold.

In general, data densities may take complex forms and counterintuitive scenarios may arise.
Hence, generally, local information may not always indicate the global rank, and a global ordering

4. Note that one can always convolve a distribution with a spherical Gaussian or other circularly symmetric unimodal
kernel to introduce continuous first and second derivatives without distorting the geometry of the principal surfaces.

1257

OZERTEM AND ERDOGMUS

in a principal set of given dimensionality may not be possible. To illustrate this fact, consider
again the T-shaped Gaussian mixture consisting of two components. Note that both branches of this
principal graph correspond to the leading eigenvector of the local covariance at different portions of
the feature space and a global ranking is not possible.

3. Subspace Constrained Mean Shift (SCMS)

Consider the fact that P 0, principal surface of dimensionality zero, is by construction the local
maxima points of the p(x). This presents a strong connection to clustering, since mapping to the
local maxima points of the data pdf is a widely accepted clustering solution, achieved by the well-
known mean shift algorithm (Cheng, 1995; Comaniciu and Meer, 2002). In this section we present
a subspace constrained likelihood maximization idea that stems from Definition 4; a point on P d is
a local maximum in the orthogonal space. We provide an algorithm which is very similar to mean-
shift in spirit. This lays an algorithmic connection between clustering and principal curve/surface
fitting that accompanies the theoretical connection.

Mean-shift assumes an underlying KDE probability density of the data and implements a fixed-
point iteration that maps the data points to the closest mode (local maximum) of the pdf, and the
mean-shift update at any point on the feature space is parallel with the gradient of the KDE (Cheng,
1995; Comaniciu and Meer, 2002). A point is on the one dimensional principal surface iff the local
gradient is an eigenvector of the local Hessian—since the gradient has to be orthogonal to the other
(n− 1) eigenvectors—and the corresponding (n− 1) eigenvalues are negative. Again via the same
underlying KDE assumption, a simple modification of the mean-shift algorithm by constraining the
fixed-point iterations in the orthogonal space of corresponding (n−1) eigenvector directions at the
current point in the trajectory leads to an update that converges to the principal curves and not to the
local maxima. For this case, the orthogonal space of corresponding (n− 1) eigenvector directions
of the local covariance is the parallel space of the leading eigenvector of the local covariance. The
algorithm could be modified to converge to the d-dimensional principal manifold Pd trivially, by
selecting the constrained subspace as the subspace spanned by corresponding (n− d) eigenvectors
of the local covariance to constrain the mean-shift iterations into the subspace spanned by d leading
eigenvectors of the local covariance. To provide both parametric and nonparametric variations, we
will present an algorithm that can be used for well-known KDE and GMM density estimators.

Consider the data samples {xi}Ni=1, where xi ∈ ℜn. The KDE of this data set (using Gaussian
kernels) is given as

p(x) = (1/N)
N

∑
i=1

GΣi(x−xi) , (1)

where Σi is the kernel covariance for xi; GΣi(y) = CΣi e
−yTΣ−1i y/2. Note that for in (1) we use the

general case of anisotropic variable (data-dependent) kernel functions. For isotropic kernels one
can use a scalar value instead of a full covariance, or for fixed kernel functions one can constrain
the data dependency and drop the sample index i. Again for the general case, the gradient and the
Hessian of the KDE are

g(x) = −N−1
N

∑
i=1

ciui ,

H(x) = N−1
N

∑
i=1

ci(uiuTi −Σ−1i) ,

1258

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

1. Initialize the trajectories to a mesh or data points and set t = 0. Input the Gaussian kernel
bandwidth σ (or kernel covariance matrix for anisotropic Gaussian kernels) to the algorithm.

2. For every trajectory evaluatem(x(t)) using (2) and (3).

3. Evaluate the gradient, the Hessian, and perform the eigendecomposition ofΣ−1(x(t)) =VΓV
(in specific cases, the full eigendecomposition could be avoided).

4. Let V⊥ = [v1 . . .vn−d] be the (n−d) largest eigenvectors of Σ−1

5. x̃(k) = V⊥VT⊥m(x)

6. If | gT (x)VT⊥g(x) | /(‖g(x)‖ ·‖VT⊥g(x)‖)< ε then stop, else x(t+1)← x̃, increment t and go
to step 2.

Table 1: KDE-based SCMS Algorithm

Σ
−1(x) = −p−1(x)H(x)+ p−2g(x)gT (x) (2)

where ui = Σ−1i (x−xi) and ci = GΣi(x−xi) .

Let {(γ1(x),v1(x)), . . . ,(γn(x),vn(x))} be the eigenvalue-eigenvector pairs ofΣ−1(x) as defined
in (2) ordered from smallest to largest and the mean-shift update emerging from (2) is

x←m(x) = (∑N
i=1 ciΣ

−1
i)−1∑N

i=1 ciΣ
−1
i xi. (3)

At x, the subspace mean-shift update is performed by projecting x into the constrained space x̃k =
(V⊥VT⊥m(x)). The stopping criterion can be constructed from definition directly to check if the
gradient is orthogonal to the subspace spanned by the selected n− d eigenvectors when projecting
the data from n to d dimensions: | gT (x)VT⊥g(x) | /(‖g(x)‖ ·‖VT⊥g(x)‖)< ε. For the special case of
d = 1, an equivalent stopping criterion is that the gradient becomes an eigenvector of the Hessian,
so one can employ: | gT (x)Hg(x) | /(‖g(x)‖ · ‖Hg(x)‖)> 1− ε. Alternatively, the more traditional
(but rather more risky) stopping criterion of ‖x̃k−xk‖< ε can be used.

The iterations can be used to find the principal curve projection of any arbitrary point of interest
in the feature space.5 To find the principal curve projections of the data samples, a suitable way is
to initialize the projection trajectories to the data samples themselves, as in mean-shift clustering.
The general version of SCMS algorithm that converges to the d-dimensional principal manifold is
presented in Table 1, and SCMS principal curve algorithm can simply be obtained by setting d = 1.

Following the derivation of the KDE with Gaussian kernel functions, using SCMS for GMM
density estimates is trivial, by replacing the data samples with Gaussian mixture centers and the
kernel bandwidth/covariance with the Gaussian mixture bandwidth/covariances. From now on, we
will refer these as KDE-SCMS and GMM-SCMS, and we will present results based on both KDE
and GMM density estimates in the next section.

5. Note that these fixed-point-update-based projections are relatively coarse approximations and more accurate pro-
jections can be obtained via numerical integration of the corresponding differential equations, for instance using
Runge-Kutta order-4 method.

1259

OZERTEM AND ERDOGMUS

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

−2

−1

0

1

2

−2

−1

0

1

2

0

100

200

−2

−1

0

1

2

−2

−1

0

1

2
0

100

200

Figure 3: Curves buried in noise (left) and finite bandwidth (middle) and variable bandwidth (right)
KDE

3.1 Properties of KDE-SCMS

Before proceeding to experiments we would like to briefly discuss some properties of SCMS. We
believe these properties are important since they connect many open-ended questions in principal
curves literature to well-studied results in density estimation. Outlier robustness and regularization
properties are just some examples of the properties that are adopted from the particular density
estimation method—KDE in our case. Similar algorithms that stem from the definitions in Section
2 can be designed for other density estimation methods as well. The properties presented here are a
few of many possibilities to illustrate the connections.

3.1.1 COMPUTATIONAL LOAD

The computational complexity of KDE-SCMS is O(N2× n3), where N is the number of samples,
and n is the data dimensionality. The n3 dependency comes from the eigendecomposition of the
Hessian matrix. For GMM-SCMS, the complexity becomes O(N×m× n3), where m is the number
of Gaussians in the mixture density estimate.6 Note that the computational load required by SCMS
is only slightly higher than the mean-shift algorithm that has been practically implemented in many
application domains. The literature is rich in approaches to accelerate mean shift, all of which
are directly applicable for our algorithm as well. These methods vary from simple heuristics to
more principled methods like Fast Gaussian Transform (Yang et al., 2003b), quasi-Newton methods
(Yang et al., 2003a) or Gaussian Blurring Mean Shift (Carreira-Perpinan, 2006). The cubic compu-
tational dependency may become the bottleneck for very high dimensional data. One solution to this
problem might be to look for the d leading eigenvalues of the Hessian matrix sequentially, instead
of the full eigendecomposition (as in Hegde et al., 2006), which will drop the complexity down to
O(N2× d3) where d is the target dimensionality (d = 1 for principal curves). However note that if
this is the case, the computational bottleneck is not the only problem. If we have d3� N2, density
estimation will also suffer from the curse of dimensionality and our approach—that is based on the
density estimation—will fail. In the experimental result section we will show results with such high
dimensional data.

6. Note that this excludes the computational load required for the expectation-maximization training to fit the GMM.

1260

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

3.1.2 STATISTICAL CONSISTENCY

Our algorithmic approach has used the powerful kernel density estimation (KDE) technique to es-
timate principal surface structures that underly data densities. The convergence properties of KDE
have been well understood and bandwidth selection, especially in the case of fixed-bandwidth mod-
els, have been rigorously investigated leading to a variety of criteria for KDE construction with opti-
mal density estimate convergence properties. In principal surfaces, however, we rely on the accurate
estimation of the first and second derivatives of the multivariate data density along with the density
itself. Consequently, an important question that one needs to ask (the authors thank the reviewer
who posed this question) is whether the first and second order derivatives of the KDE will converge
to the true corresponding derivatives, thus leading to the convergence of the principal surface struc-
tures of the KDE to those of the actual data density. Literature on the convergence properties of
KDE in estimating derivatives of densities is relatively less developed—however, some work exists
on the convergence of KDE derivatives in probability using isotropic kernels with dependent data
and general bandwidth sequences (Hansen, 2008). In particular, a timely result on general kernel
bandwidth matrices for fixed-bandwidth KDE derivatives, albeit slightly more restrictive since it
uses convergence in the mean squared error sense, partly answers this question for us under rela-
tively reasonable assumptions considering typical machine learning applications involving manifold
learning (Chacon et al., 2011).

Specifically and without going into too much detail, Chacon et al. (2011) demonstrate that under
the assumptions that the (unstructured but fixed) kernel bandwidth matrix converges to zero fast
enough, and the underlying density and the kernel have continuous square integrable derivatives up
to the necessary order or more (density must have square integrable derivatives 2 orders more than
the kernel), and that the kernel has a finite covariance, the integrated mean squared error between
the vector of order-r derivatives of the KDE converge to those of the true density of the data (from
Theorems 1-3). The order of convergence for the integrated mean squared error has been given,
from Theorems 2 & 3, as: o(n−4/(d+2r+4))+o(n−1|H|−1/2trr(H−1)+ tr2H)

This demonstrates that as the number of samples N goes to infinity, given a sufficiently smooth
density and kernel, the derivatives will also converge. Consequently, principal surfaces character-
ized by first and second derivatives as in our definition will also converge.

3.1.3 OUTLIER ROBUSTNESS

Outlier robustness is another key issue in principal curve literature. Principal curve definitions
that involve conditional sample expectations and mean squared projection error do not incorporate
any data likelihood prior; hence, they treat each data sample equally. Such approaches are known
to be sensitive to noise, and presence of outlier data samples, of course, will bias the principal
curve towards outliers. Stanford and Raftery present an algorithm that improves upon the outlier
robustness of the earlier approaches (Stanford and Raftery, 2000).

Outlier robustness is a well-known property of variable bandwidth KDE. In this approach, a data
dependent kernel function is evaluated for each sample such that the width of the kernel is directly
proportional with the likelihood that sample is an outlier. This can be implemented in various ways,
and the most commonly used methods are the K-nearest neighbor based approaches, namely: (i) the
mean/median distance to the K-nearest neighbor data points, (ii) sum of the weights of K-nearest
neighbor data points in a weighted KDE. Hence, the kernel bandwidth increases for the samples
that are in a sparse neighborhood of data samples. Figure 3 (left) presents a data set consisting

1261

OZERTEM AND ERDOGMUS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

−0.5

0

0.5

1

1.5

2 −0.4

−0.2

0

0.2

0.4

0

500

1000

−0.5
0

0.5
1

1.5
2

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0

200

400

−0.5
0

0.5
1

1.5
2

−0.4

−0.2

0

0.2

0.4

0

100

200

300

Figure 4: Mean projection error vs. overfitting tradeoff as a kernel bandwidth selection problem.
Three density estimates are presented—a narrow bandwidth (left) Maximum Likelihood
kernel bandwidth (middle) and a wide kernel bandwidth (right)

of two crescent-like clusters buried in noise. In fact, this data set is similar to the illustration that
Stanford and Raftery use as they propose their noise robust principal curve approach (Stanford and
Raftery, 2000). We present the fixed and variable bandwidth—using K-nearest neighbor method
(i) mentioned above and selecting K = N1/4—KDE of the data set in Figure 3 in middle and right,
respectively. Note that in the resulting density estimate the variable size KDE eliminates the ef-
fects of the outliers without oversmoothing or distorting the pdf significantly in the support of the
data. Selecting the kernel functions in a data dependent manner, can make KDE-based SCMS ro-
bust to outliers in the data. However, additional computational load of variable kernel bandwidth
evaluations may increase the overall computational complexity.

3.1.4 REGULARIZATION AND OVERFITTING

If a problem is formulated over sample expectations or minimization of the average projection error,
the issue of overfitting arises. In the context of principal curves and surfaces, most explicitly, Kegl
brings up this question in his PhD dissertation (Kegl, 1999). Considering the data set and principal
curves in Figure 4 (left), Kegl asks, which of the curves is the right one. ”Is the solid curve following
the data too closely, or is the dashed curve generalizing too much?” In general, of course, this is an
open ended question and the answer depends on the particular application.

Still, density estimation methods can provide many approaches to define the regularization,
varying from heuristics to theoretically well-founded approaches like maximum likelihood. In other
words, instead of trying for different length (Kegl et al., 2000) or curvature (Sandilya and Kulkarni,

1262

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

2002) parameters, density estimation can provide purely data-driven approaches, where the regular-
ization parameters are learned from the data directly using cross-validation.

Figure 4 shows density estimates obtained using KDE for different kernel bandwidth selections
for the data set presented. In SCMS, the trade-off between projection error and overfitting can be
adjusted by setting the kernel width. One can select the kernel bandwidth manually by observing the
data or exploiting domain specific knowledge. This is, of course, not much different than observing
the data and selecting a suitable length or curvature constraint. However, the real advantage here
is the rich literature on how to select the kernel function from the data samples directly. There
are many theoretically well-founded ways of optimizing the kernel width according to maximum
likelihood or similar criteria (Silverman, 1986; Parzen, 1962; Comaniciu, 2003; Sheather and Jones,
1991; Jones et al., 1996; Raykar and Duraiswami, 2006).

Furthermore, anisotropic and/or variable size kernel functions naturally implement many types
of constraints that cannot be defined by any length or bound of turn. By selecting anisotropic kernel
functions, one can define the regularization constraint at different scales along different directions.
This can also be achieved by lenghth/curvature constraints by scaling the data differently among
different dimensions. However, data-dependent variable bandwidth kernels can define varying con-
straints throughout the space. This is not possible to achieve by a constant curvature or length
penalty of any sort.

In summary, our KDE based principal curve projection algorithm not only connects the trade off
between the projection error and generalization into well studied results of density estimation field, it
also allows one to derive data-dependent constraints that vary throughout the space, which cannot be
given by any length or curvature constraint whatsoever. Although this still cannot ultimately answer
the open-ended question on the trade-off between the regularization and projection error, it provides
a principled way to approach the problem and proves to be effective in many real applications as we
will show next.

4. Experimental Results

This section consists of three parts. In the first part, we provide comparisons with some earlier
principal curve algorithms in the literature. We perform simulations on notional data sets and give
performance and computation times. In the second part, we focus on real applications, where we
briefly mention some applications with pointers to our recent publications and also provide results in
some areas that principal curves has (feature extraction for OCR) or has not been (time-frequency
distribution sharpening, MIMO channel equalization) used before. In these applications we use
SCMS directly. Surely, pre- and post-processing steps can be added to improve performance of
these applications, however our aim is to show the versatility of the approach not to optimize every
implementation detail. In the third and final part, we focus on the limitations of the method.

Same as the principal line, principal curves—in our definition—extend to infinity. In general
though, what one is really interested in is not the whole structure, but the projections of samples
onto the underlying structure. Therefore, throughout this section, rather than populating samples on
the curve that extend to infinity, we prefer representing the principal curve with the data samples
projected onto the principal curve, so that the curves in the plots remain in the support of the data.
For the same reason, although the underlying structure is continuous (and can be populated into any
desired density), the presented principal curves sometimes do not look continuous where the data is
sparse.

1263

OZERTEM AND ERDOGMUS

−0.4 −0.2 0 0.2 0.4 0.6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5: Zig-zag data set, and Hastie-Stuetzle principal curve

4.1 Comparisons with Other Principal Curve Methods

In this section we present comparisons with original Hastie-Stuezle principal curve method (Hastie,
1984; Hastie and Stuetzle, 1989) and the Polygonal Line Algorithm by Kegl et al. (Kegl et al.,
2000), and we provide both computation time and performance comparisons.

4.1.1 ZIG-ZAG DATA SET

Zig-Zag data set has been used in an earlier principal curve paper by Kegl et al. (2000) (This data
set is provided by Kegl). Figure 5 shows the data samples and result of Hastie’s algorithm. Figure 6
presents the results of Kegl’s polygonal line algorithm for different penalty coefficients. The length
penalty coefficient is equal to 0.1, 0.3, 0.5, and 0.7, respectively. Polygonal Line algorithm with the
right length penalty seems to be working the best for this dataset with high curvature on the corners.

In Figure 7 we compare results of the SCMS algorithm based on three different density esti-
mates: (i) KDE with constant bandwidth, (ii) KDE with variable (data-dependent) covariance (iii)
Gaussian mixture with 4 components. For (i) and (ii), the bandwidth and covariance of the Gaussian
kernel are selected according to the leave-one-out maximum likelihood criterion (Duda et al., 2000).
For the Gaussian mixture model, the correct model order is assumed to be known and a standard
expectation-maximization algorithm is used to estimate the parameters (Duda et al., 2000).

Here all density estimates lead to very similar results. Since it allows one to learn the kernel
covariances elongated with the data, (ii) gives a sharper KDE estimate as compared to (i). However,
since there is no significant difference between the principal curve projections of these two, (ii)
might be regarded as somewhat overfitting, since too many parameters (d2 additional parameters
per sample, as the constant kernel bandwidth is replaced by a full data-dependent covariance) are
learned, leading to no significant changes. The result shown in (iii) is a good example which shows
that good results can be obtained if the parametric family fits the distribution very well. Of course,
as you can imagine, the GMM based results might have been much worse for an unsuitable selection
of the number of components, or if EM converges to a suboptimal result due to poor initialization,
whereas KDE is much more robust in this sense. Also note an analogy to Kegl’s approach, using

1264

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

Figure 6: Zig-zag data set, and result of the Polygonal Line Algorithm

GMM-SCMS leads to a piecewise linear structure if the Gaussian components are sufficiently far
(in Mahalanobis distance sence) from each other. In the vicinity of the Gaussian component centers,
except when components significantly overlap or get close, the principal curves can be approximated
well linearly by piecewise local components.

Note that theoretically the principal curves in (i) and (ii) extend to infinity on both ends; and for
the GMM based example in (iii), each component crosses and extends to infinity. Here—and also
for the rest of the paper—we present the data projected onto principal curve only, that depicts the
portion of the principal curve in the support of the input data. The nature of the curves outside this
region is obvious from the definition and the density estimate plots.

4.1.2 SPIRAL DATA SET

Since many principal curve algorithms are based on the idea of starting with the principal line
and adding complexity to the structure (for example adding a vertex to piecewise linear curve) to
minimize mean projected error, a data set that folds onto itself may lead to counterintuitive results,
and spiral data set is a benchmark data set that has been used in manifold learning and principal
curve algorithm literature (Kegl et al., 2000; Vincent and Bengio, 2003) (again, this data set is
provided by Kegl).

1265

OZERTEM AND ERDOGMUS

Figure 7: Zig-zag data set, and its principal curve projections obtained for KDE with isotropic
constant bandwidth (top), KDE with anisotropic and data-dependent covariance (middle),
and Gaussian mixture with 4 components (bottom). The underlying density estimates are
shown on the right column.

1266

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8: Spiral data set, and Hastie-Stuetzle principal curve

Similar to the previous example, we start with the results of Hastie-Stuetzle algorithm and Kegl’s
polygonal line algorithm. Figure 8 shows the data samples and the result of Hastie’s algorithm.
Figure 9 presents the results of Kegl’s polygonal line algorithm for different penalty coefficients.
The length penalty coefficient is equal to 0.1, 0.2, 0.4, and 0.5, respectively.

As in the previous example, in SCMS uses the leave-one-out ML kernel bandwidth for this
data set. Figure 10 shows the same spiral data set along with the results of KDE-SCMS. Comparing
Figure 9 and Figure 10, one can see that both Polygonal Line algorithm—with suitable parameters—
and our locally defined principal curve can achieve satisfactory results. Therefore, we create a more
challenging scenario, where the spiral this time has some substantial noise around the underlying
generating curve and has fewer samples. Figure 11 shows the result of KDE-SCMS, and Figure 12
shows results of Polygonal Line algorithm for different penalty coefficients; 0.05, 0.1, 0.2, and 0.3.

On the noisy spiral data set, we also provide quantitative results for different noise levels and
compare the computation times. At each noise level, we find the principal curve using both methods
using the same noisy data set, and afterwards we take another 200 samples from the same generating
curve and add same amount of radial noise to use as the test set. We present the MSE between the
projection of the test samples and their original points on the noiseless generating curve. Results
for KDE-SCMS, and Polygonal Line algorithm are presented in Table 2 along with corresponding
running times for 50 Monte Carlo runs of this experiment. Since results are presented for the leave-
one-out ML kernel bandwidth, the running times for SCMS include this ML training as well. For
the Polygonal Line algorithm we performed a manual parameter tuning for each noise level and best
results are presented.

Overall, as the noise level increases, the computation time of SCMS increases, presumably due
to more iterations being required for convergence; still, the computation time is much less than
that of the Polygonal Line algorithm. In terms of MSE between the estimated and the true curve,
SCMS provides similar or better performance as compared to the Polygonal Line algorithm. For

1267

OZERTEM AND ERDOGMUS

Figure 9: Spiral data set, and result of the Polygonal Line Algorithm

some noise levels the difference in performance is very small; however, note that the real advantage
of SCMS is that it provides the similar/better results nonparametrically—as compared to the best
result of several runs of the Polygonal Line algorithm with different parameters.

4.1.3 LOOPS, SELF-INTERSECTIONS, AND BIFURCATIONS

Since they are specifically designed to fit smooth curves to the data, traditional principal curve fitting
approaches in the literature have difficulties if there are loops, bifurcations and self intersections in
the data. Perhaps the most efficient algorithm in this context is Kegl’s principal graph algorithm
(Kegl and Kryzak, 2002), where Kegl modifies his polygonal line algorithm (Kegl et al., 2000)
with a table of predefined rules to handle these irregularities. On the other hand, in the presence of

1268

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 10: Spiral data set, and KDE-SCMS principal curve

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 11: Noisy spiral data set, and KDE-SCMS principal curve

such irregularities, our definition yields a principal graph—a collection of smooth curves. Since the
ridges of the pdf can intersect each other, KDE-SCMS can handle such data sets with no additional
effort/parameter. Results of KDE-SCMS on a synthetically-created snow crystal data set that has a
number of loops, self intersections, and bifurcation points is presented in Figure 13.

1269

OZERTEM AND ERDOGMUS

Figure 12: Noisy spiral data set, and result of the Polygonal Line Algorithm

4.1.4 EXTENDING THE DEFINITION TO HIGHER DIMENSIONAL MANIFOLDS

The generalization of principal curves to principal surfaces and higher order manifolds is naturally
achieved with our definition. Here we present the results of KDE-SCMS for d = 1 and d = 2
for a three-dimensional helix data set in Figure 14. (For d = 2, we present the surface built by the
Delaunay triangulations Delaunay, 1934 of the principal surface projections for better visualization.)
Here, note that the covariance of the helix data around the principal curve is not symmetric, and the
horizontal dimension has a higher variance (and this is why the principal surface is spanned along
this dimension). If the helix had been symmetric around the principal curve, the principal surface
would have been ill-defined.

1270

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

Computation time Mean squared projection error σnoise
SCMS 3.237 sec. 0.003184 0.005
PL 18.422 sec. 0.017677 0.005

SCMS 3.508 sec. 0.011551 0.01
PL 20.547 sec. 0.024497 0.01

SCMS 3.986 sec. 0.062832 0.02
PL 22.671 sec. 0.066665 0.02

SCMS 6.257 sec. 0.194560 0.04
PL 27.672 sec. 0.269184 0.04

SCMS 7.198 sec. 0.433269 0.06
PL 19.093 sec. 0.618819 0.06

SCMS 8.813 sec 0.912748 0.08
PL 19.719 sec 1.883287 0.08

Table 2: Computation Time and MSE Performance Comparisons

Figure 13: Snow crystal data set, and KDE-based SCMS result

4.2 Applications of Principal Curves

In the following, we will present a number of applications of our approach; on time series denoising,
independent components analysis, time-frequency reassignment, channel equalization, and optical
character skeletonization.

1271

OZERTEM AND ERDOGMUS

−1.5−1−0.500.511.5

−1

0

1
0

0.5

1

1.5

2

Figure 14: Helix data set, and KDE-based SCMS result for d = 1 (top) and d = 2 (bottom)

4.2.1 TIME SERIES SIGNAL DENOISING

KDE-SCMS finds use in many applications of time series denoising. In general, the feature space for
such problems can be constructed using the time index as one of the features, yielding an embedded
structure of the—possibly multidimensional—time signal. In such spaces, we show that KDE-
SCMS can successfully be used for denoising (Ozertem and Erdogmus, 2009; Ozertem et al., 2008).
In the following, first we will briefly mention our previous work on applying KDE-SCMS to signal
denoising applications, and proceed with preliminary results in two other application domains.

We proposed to use principal curve projections as a nonparametric denoising filter at the pre-
processing stage of time warping algorithms, which in general are prone to noise (Ozertem and
Erdogmus, 2009). In this setting, time embedding is used in the scatter plot of the pair of signals

1272

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

that we want to find the time warping function in between. We use a slightly different variant of
KDE-based SCMS for this purpose that exploits the application specific case that the time embed-
ding dimension is not a random variable, and shown improvement in time series classification and
clustering.

A common problem in signal denoising is that if the signal has a blocky, in other words, a
piecewise-smooth structure, traditional frequency domain filtering techniques may lead to over-
smoothings in discontinuities. One idea to overcome this is to take discrete wavelet transform
(DWT), do the filtering (or thresholding) in this domain and recover the smoothed signal by taking
inverse DWT. The shortcoming of this is high frequency artifacts (similar to Gibbs-effect) at both
ends of the discontinuities. We show that KDE-SCMS can be used for this purpose (Ozertem et al.,
2008). Since at the discontinuities, KDE will not be much affected by the signal samples of the
other end of the discontinuity, the algorithms leads to a piecewise-smooth denoising result without
introducing oversmoothings or any artifacts at the discontinuities.

4.2.2 NONLINEAR INDEPENDENT COMPONENT ANALYSIS

The proposed principal surface definition can be viewed in a differential geometric framework as
follows: at each point x, the solutions to the differential equations that characterize curve whose
tangents are the eigenvectors of the local covariance of the pdf form a local curvilinear coordinate
system that is isomorphic to an Euclidean space in some open ball around x. The trajectories that
take a point x to its projection on the d-dimensional principal surface can be used to obtain these
curvilinear coordinates that specify the point with respect to some reference critical point that can be
assumed to be the origin. Consequently, for instance, for x, the lengths of curves during its projec-
tion from n-dimensional space to the (n−1)-dimensional principal surface, and then subsequently
to (n−2), . . . ,1, and eventually to a local maximum (the one that has been recognized as the origin)
could, in some cases when a global manifold unfolding is possible, lead to a nonlinear coordinate
vector. This manifold unfolding strategy can be used in many applications including visualization
and nonlinear blind source separation. As we do not aim to focus on the manifold unwrapping
aspects of the proposed framework in this paper (because that, in principle, requires solving differ-
ential equations accurately and the proposed algorithm is not at a desired level of accuracy for that
purpose), we simply point out that the definition presented here allows for a principled coordinate
unfolding strategy as demonstrated in nonlinear blind source separation (Erdogmus and Ozertem,
2007). Developing fast feedforward approximations (via parametric or nonparametric mappings) to
this manifold unwrapping strategy remains as a critical future work.

4.2.3 TIME-FREQUENCY DISTRIBUTION REASSIGNMENT

Time-frequency reassignment is a known problem in signal processing literature and yields another
example, where KDE-SCMS can be applied directly. As any other bilinear energy distribution, the
spectrogram is faced with an unavoidable trade-off between the reduction of misleading interference
terms and a sharp localization of the signal components. To reduce the smoothing effects introduced
by the window function in short-term Fourier transform, reassignment methods are used to sharpen
the time-frequency representation by using the rate of change of phase of the signal, which finds
numerous applications in speech signal processing and signal roughness analysis (Fulop and Fitz,
2007; K. Fitz and L. Haken and P. Christensen, 2000). Parameter envelopes of spectral components
are obtained by following ridges on the smooth time-frequency surface, using the reassignment

1273

OZERTEM AND ERDOGMUS

(a) The Wigner-Ville distribution

20 40 60 80 100 120

10

20

30

40

50

60

(b) Smoothed Wigner-Ville distribution and its
principal curve

Figure 15: Wigner-Ville distribution in time-frequency domain, its smoothed version and principal
curve of the smoothed distribution

method (Auger and Flandrin, May 1995) to improve the time and frequency estimates for the en-
velope breakpoints. Figure 15 shows our preliminary results for a synthetic time frequency surface
with multiple components in some time intervals that yield cross interference terms. Wigner-Ville
distribution of the signal, and the smoothed Wigner-Ville distribution, where the cross-terms in the
original spectogram are eliminated are shown in Figure 15(a). Figure 15(b) shows the principal
curve of this time-frequency surface obtained by KDE-SCMS.

Furthermore, in the presence of the auto-cross terms, a much more challenging scenario appears
(Ozdemir and Arikan, 2000; Ozdemir et al., 2001). In these cases a rotation invariant reassignment
method is required and traditional methods that are based on the rate of change of the phase cannot
answer this need. KDE-SCMS, on the other hand, is still directly applicable to this problem because
it is invariant to rotations in the input data.

4.2.4 TIME-VARYING MIMO CHANNEL EQUALIZATION

Recently, multiple-input multiple-output wireless communication systems have drawn considerable
attention, and there are reliable and computationally inexpensive symbol detection algorithms in the
literature (Foschini et al., Nov 1999). On the other hand, applications in time-varying environments
pose a harder problem to the changing channel state, and some supervised algorithms have been
proposed to tackle this issue, where an initialization phase is used in the beginning for training
purpose (Rontogiannis et al., May 2006; Karami and Shiva, 2006; Choi et al., Nov. 2005).

Blind channel equalization approaches in the literature are based on clustering (Chen et al., Jul
1993). However, these approaches mostly focus on time-invariant single-input single-output chan-
nels. Recently, a spectral clustering technique is proposed that extends the applications into time-
varying multiple-input multiple-output channels as well (Van Vaerenbergh et al., 2007; Vaerenbergh
and Santamaria, 2008). Van Vaerenbergh and Santamaria introduce the time embedding into the fea-
ture space before employing the clustering algorithm to untangle the clusters. The same idea proves
to be effective in Post-Nonlinear Blind Source Separation as well (Vaerenbergh and Santamarı́a,
2006).

1274

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

The original clustering problem in four dimensions presented in Figure 16(a). The fast time-
varying nature of the channel poses a very difficult clustering problem with overlapping clusters.
With the time embedding, the overlapping clusters become intertwined threads as shown in Figure
16(b) with two three-dimensional subspace projections of the data. Van Vaerenbergh and Santa-
maria employ a spectral clustering algorithm to solve the channel equalization problem with no
supervision. At this point, one can improve noise robustness of the clustering by using the fact that
the clusters are curves in the feature space by using the spectral clustering of the principal curve
projections instead of the data samples. Figure 17 shows a result of KDE-SCMS for the same data
set at signal to noise ratio of 5dB, along with the average normalized MSE (and ± one standard de-
viation) between the actual noisefree signal and the principal curve projection over 20 Monte Carlo
runs. The principal curve projection result can give a good estimate of the noisefree signal even in
signal to noise ratio levels even lower than 0dB—where the noise power is greater than the signal
power itself.

4.2.5 SKELETONIZATION OF OPTICAL CHARACTERS

Optical character skeletonization can be used for two purposes: feature extraction for optical char-
acter recognition and compression. Principal curves have been used for this application (Kegl and
Kryzak, 2002). One significant problem with applying principal curve algorithms to skeletonization
of optical characters is that, by definition, algorithms are seeking for a smooth curve. In general,
data may have loops, self intersections, and bifurcation points, which is obviously the case for opti-
cal characters. Kegl’s principal graph algorithm is perhaps the only method in the literature that can
successfully handle such irregularities (Kegl and Kryzak, 2002). In this approach, Kegl reshapes
his polygonal line algorithm (Kegl et al., 2000) to handle loops, and self intersections by modifying
it with a table of rules and adding preprocessing and postprocessing steps. Using the handwritten
digits data set provided by Kegl, we show the results of KDE-SCMS. Figure 18 shows the binary
images along with the principal curve projection of the pixels. SCMS gives satisfactory results
without any rule or model based special treatment for the self intersections.

4.3 Limitations, Finite Sample Effects, and the Curse of Dimensionality

Since our principal curve definition assumes the pdf to be given, it depends on the reliability of the
preceding density estimation step, which in general may not be an easy task. Stated by Bellman
as the curse of dimensionality (Bellman, 1961), it is a very well-known fact that density estimation
becomes a much harder problem as the dimensionality of the data increases. Therefore, before we
move on to applications on real data, in this section we will present the performance of our principal
curve fitting results for various density estimates with different number of samples and dimensions.

The first comparison is with principal line estimation based on eigendecomposition of the data
covariance, where the true underlying probability distribution is Gaussian. The second comparison
examines the model order estimation using a Gaussian mixture model, which in the limiting case,
where the number of Gaussian mixtures is equal to the number of samples, converges to KDE. In all
comparisons presented below principal curve projections are obtained by the KDE-SCMS algorithm
using the leave-one-out ML kernel bandwidth.

1275

OZERTEM AND ERDOGMUS

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.8−0.6−0.4−0.200.20.40.60.8 dim 1di
m

 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2−1.5−1−0.500.511.52 dim 3di
m

 4
(a) Four dimensional data, coming from four symbols

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dim 2dim 1

t

−2

0

2

−2−1.5−1−0.500.511.52

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

dim 3

dim 4

t

(b) Four dimensional data with time embedding

Figure 16: Symbol clustering problem for a MIMO channel

4.4 Comparison with Eigenvector Estimation

Asmentioned before, the reason why we prefer to use KDE is its ability to adapt to different complex
shapes that data may take. Indeed, results previously presented in this section show that KDE based
principal curve estimation proves to be efficient in adapting to many real-life data distributions of a
diverse set of applications. However, one well-known disadvantage of KDE is the required number

1276

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

−1

−0.5

0

0.5

1 −0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−2

−1

0

1

2

−2−1.5−1−0.500.511.52

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−5 0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Signal to noise ratio

M
S

E
 ±

 σ

Figure 17: Signal samples and their principal curve projections, normalized MSE vs signal to noise
ratio (in dB).

of samples as the dimensionality of the data increases. Here we discuss the case where the true
underlying probability density is Gaussian; hence, the claim of the requirement to adapt to complex
shapes in the data is an obvious overstatement. In this scenario, we will compare the principal line
estimator based on PCA to the principal curve based on KDE, for different number of dimensions.

Consider the data set {xNi=1} Gaussian distributed in d-dimensional space, where v denotes the
true principal line of this distribution, and v∗ denotes the principal line obtained by sample PCA.
What we are going to compare here is the following:

1. mean squared distance between the projection of the data samples onto the true first eigen-
vector and the estimated first principal component, E{‖vTx−vT∗ x‖}

2. mean squared distance between the projection of the data samples onto the true eigenvector
and the principal curve projection x̃, E{‖vTx− x̃‖}.

Figure 19 presents the MSE of the principal line (dashed curve) and principal curve (solid curve)
projections for 2, 3, 4, 5, 10, 20, 30,and 40 dimensions, and average log MSE for 100 Monte Carlo

1277

OZERTEM AND ERDOGMUS

Figure 18: SCMS results in optical characters

simulations is shown. For all cases the MSE decreases for both methods as the number of samples
increase. Principal line projection always results in better accuracy and the performance of principal
curve projections drop exponentially for increasing dimensions.

4.5 Effects of the Model Order Estimation

An important problem in parametric density estimation is model order selection. In the real appli-
cations presented above, we work with KDE-SCMS to provide a general purpose nonparametric
algorithm, and to avoid model order selection problems. However, using a parametric model has
two main advantages:

1. As opposed toO(N2) complexity of the KDE-SCMS, the computational complexity of GMM-
SCMS is O(MN), where M is the number of mixtures in the Gaussian mixture and N is the
number of samples, since typicallyM� N.

2. As also implied in the previous section, with the comparison against PCA on a Gaussian data
set, a parametric approach with a suitablemodel order, the algorithm would need less samples
to achieve good principal curve estimates.

Here we will evaluate the stability of principal curve estimation with GMM-SCMS for improper
model order selections in the GMM density estimation step, and compare the principal curve pro-
jection results for a Gaussian mixture with 3 components. Since the true underlying density is
known to have 3 components, we measure the performance as of principal curve projection results

1278

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−8

−7

−6

−5

−4

−3

−2
2 dimensions

Number of samples in logscale

lo
g(

M
S

E
)

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−7

−6

−5

−4

−3

−2

−1
3 dimensions

Number of samples in logscale

lo
g(

M
S

E
)

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−7

−6

−5

−4

−3

−2

−1

0
4 dimensions

Number of samples in logscale

lo
g(

M
S

E
)

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−6

−5

−4

−3

−2

−1

0
5 dimensions

Number of samples in logscale

lo
g(

M
S

E
)

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−6

−5

−4

−3

−2

−1

0

1
10 dimensions

Number of samples in logscale

lo
g(

M
S

E
)

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−5

−4

−3

−2

−1

0

1

2

3
20 dimensions

Number of samples in logscale

lo
g(

M
S

E
)

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−4

−3

−2

−1

0

1

2

3

4
30 dimensions

Number of samples in logscale

lo
g(

M
S

E
)

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
−4

−3

−2

−1

0

1

2

3

4
40 dimensions

Number of samples in logscale

lo
g(

M
S

E
)

Figure 19: Mean projection error in loge scale for principal line (dashed) and principal curve (solid).
Average of 100 Monte Carlo simulations is shown.

1279

OZERTEM AND ERDOGMUS

−10 −5 0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 20: One realization of the 3-component Gaussian mixture data used in performance evalua-
tions

for different number of components in the density estimate as the distance to the principal curve
projections obtained with three components

Jd = E{(x̃3(x)− x̃d(x))2} ,
where d = 1,2,3,4,5,6,10,15,25,50,100,200,400 .

The data set x has 400 samples in 2-dimensional space. Figure 20 shows a realization of the Gaus-
sian mixture, and Figure 21 presents the performance of the principal curve projections for different
number of components in the Gaussian mixture estimation, and results of 50 Monte Carlo simula-
tions is shown. Note that for increasing model orders, if the GMM has more number of components
than the true underlying distribution, the generalization performance of the principal curve does not
change significantly.

5. Discussions

We proposed a novel definition that characterizes the principal curves and surfaces in terms of the
gradient and the Hessian of the density estimate. Unlike traditional machine learning papers on
manifold learning, which tend to focus on criteria such as reconstruction error of available samples,
we focus on the definition of the underlying manifold from a more (differential—though not em-
phasized here) geometric point of view. There are strong connections between our definition and the
literature. If the ridge cross-section is a unimodal and symmetric density, our definition coincides
with the original Hastie & Stuetzle definition. There is a strong connection to Kegl’s piecewise
linear curve proposition, when the underlying density is selected to be a Gaussian mixture. How-
ever, the connections are less obvious when considering a principal curve or manifold definition

1280

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

0 1 2 3 4 5 6
0

100

200

300

400

500

600

700

800

900

number of components in log scale

M
S

E
 b

et
w

ee
n

pc
3(x

)
an

d
pc

m
(x

)

Figure 21: Principal curve projections for different number of components in the density estimate
in loge scale. Specifically, d = 1,2,3,4,5,6,10,15,25,50,100,200,400.

that is not explicit (e.g., the principal curve is the solution to some optimization problem without an
analytical expression or property).

Providing the definition in terms of the probability density estimate of the data allows us to
exclude any smoothness or regularization constraints from the definition, and adopt them from the
density estimation literature directly. Although this cannot ultimately answer the question of the
trade-off between generalization and overfitting, using the connection to density estimation yields
data-driven nonparametric solutions for handling regularization and outlier robustness. In the def-
inition, we also do not assume any parametric model and since the ridges of the pdf can intersect
each other, handling self-intersecting data structures requires no additional effort.

An important property of the definition is that it yields a unified framework for clustering, princi-
pal curve fitting and manifold learning. Similar to PCA, for an n-dimensional data set, our definition
contains all the d-dimensional principal manifolds, where d < n. Theoretically, the principal set of
d = 0 yields the modes of the probability density, which coincides with a widely accepted clustering
solution. We accompany this with an algorithmic connection by showing that principal curves can
be achieved using the SCMS idea, very similar to the well-known mean-shift clustering algorithm.
KDE-based SCMS implementation is significantly faster than the most commonly used method in
principal curves literature. Besides, it does not require significantly more time or memory storage
as compared to mean shift, which already has been used in many practical application domains.

In high dimensional spaces, density estimation becomes impractical due to the curse of dimen-
sionality. Therefore, similar to existing methods in principal curves literature, the proposed method
is not an alternative for proximity graph based manifold learning methods like Isomap, Laplacian
eigenmaps etc. Still, we show that there are many real applications in lower dimensional spaces
suitable for KDE-based SCMS. We show results on a family of applications in time series signal
processing, as well as an earlier proposed application of principal curves (OCR).

1281

OZERTEM AND ERDOGMUS

Acknowledgments

The authors would like to thank Jose C. Principe, Miguel A. Carreira-Perpinan, Sudhir Rao, Engin
Tola, M. Emre Sargin, and Cagri Akargun for valuable discussions, and B. Kegl for providing some
of the data sets and implementations of the Polygonal Line algorithm used for the comparisons in
the experiments. This work is partially supported by NSF grants ECS-0524835, and ECS-0622239.

References

F. Auger and P. Flandrin. Improving the readability of time-frequency and time-scale representations
by the reassignment method. IEEE Transactions on Signal Processing, 43(5):1068–1089, May
1995.

J. D. Banfield and A. E. Raftery. Ice floe identification in satellite images using mathematical mor-
phology and clustering about principal curves. Journal of the American Statistical Association,
87(417):7–16, 1992.

G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach. Neural
Computation, 12(10):2385–2404, 2000.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation, 15(6):1373–1396, June 2003.

R. E. Bellman. Adaptive Control Processes. Princeton University Press, Princeton, NJ, 1961.

Y. Bengio, H. Larochelle, and P. Vincent. Non-local manifold parzen windows. In Advances in
Neural Information Processing Systems 18, pages 115–122. MIT Press, 2006.

C. M. Bishop. Neural Networks for Pattern Recognition, 1st Ed. Clarendon Press, Oxford, 1997.

M. A. Carreira-Perpinan. Fast nonparametric clustering with gaussian blurring mean-shift. In ICML
’06: Proceedings of the 23rd International Conference on Machine learning, pages 153–160,
New York, NY, USA, 2006. ACM. ISBN 1595933832.

J. E. Chacon, T. Duong, and M. P. Wand. Asymptotics for general multivariate kernel density
derivative estimators. Statistica Sinica, in press, 2011.

K. Chang and J. Grosh. A unified model for probabilistic principal surfaces. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(1):59–74, 2002.

O. Chapelle and A. Zien. Semi-supervised classification by low density separation. In R. G. Cow-
ell and Z. Ghahramani, editors, Proc. of the Tenth Int. Workshop on Artificial Intelligence and
Statistics (AISTATS 2005), pages 57–64, Barbados, January 6–8 2005.

O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT Press, Cambridge,
MA, 2006. URL http://www.kyb.tuebingen.mpg.de/ssl-book.

S. Chen, B. Mulgrew, and P. M. Grant. A clustering technique for digital communications channel
equalization using radial basis function networks. IEEE Transactions on Neural Networks, 4(4):
570–590, Jul 1993.

1282

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

Y. Cheng. Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Analysis and Machine
Intelligence,, 17(8):790–799, 1995.

J. Choi, H. Yu, and Y. H. Lee. Adaptive mimo decision feedback equalization for receivers with
time-varying channels. Signal Processing, IEEE Transactions on [see also Acoustics, Speech,
and Signal Processing, IEEE Transactions on], 53(11):4295–4303, Nov. 2005.

D. Comaniciu. An algorithm for data-driven bandwidth selection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25(2):281–288, 2003.

D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002.

B. N. Delaunay. Sur la sphère vide. Bulletin of Academy of Sciences of the USSR, (6):793–800,
1934.

P. Delicado. Principal curves and principal oriented points. 1998. URL http://www.econ.upf.
es/deehome/what/wpapers/postscripts/309.pdf.

T. Duchamp and W. Stuetzle. Geometric properties of principal curves in the plane. Robust Statis-
tics, Data Analysis, and Computer Intensive Methods: In Honor of Peter Huber’s 60th Birthday,
109:135–152, 1996a.

T. Duchamp and W. Stuetzle. Extremal properties of principal curves in the plane. The Annals of
Statistics, 24(4):1511–1520, 1996b.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience Publication,
2000.

D. Erdogmus and U. Ozertem. Nonlinear coordinate unfolding via principal curve projections with
application to bss. In 14th International Conference on Neural Information Processing, 2007.

L. Fahrmeir and G. Tutz. Multivariate Statistical Modelling Based on Generalized Linear Models.
Springer-Verlag, New York, 1994.

T. S. Ferguson. A bayesian analysis of some nonparametric problems. The Annals of Statistics, 1
(2):209–230, 1973.

G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky. Simplified processing for
high spectral efficiency wireless communication employing multi-element arrays. IEEE Journal
on Selected Areas in Communications, 17(11):1841–1852, Nov 1999.

K. Fukunaga and D.R. Olsen. An algorithm for finding intrinsic dimensionality of data. IEEE
Transactions on Computers, 20(2):176–183, 1971.

S. A. Fulop and K. Fitz. Separation of components from impulses in reassigned spectrograms.
Acoustical Society of America Journal, 121:1510–1517, 2007.

J. Ham, D. Lee, S. Mika, and B. Scholkopf. A kernel view of the dimensionality reduction of
manifolds. In Proceedings of the Twenty First International Conference on Machine Learning
(ICML-04), pages 369–376, 2004.

1283

OZERTEM AND ERDOGMUS

B. E. Hansen. Uniform convergence rates for kernel estimation with dependent data. Econo-
metric Theory, 24(03):726–748, June 2008. URL http://ideas.repec.org/a/cup/etheor/
v24y2008i03p726-748_08.html.

T. Hastie. Principal Curves and Surfaces. PhD thesis, Stanford University, 1984.

T. Hastie and W. Stuetzle. Principal curves. Journal of American Statistical Association, 84:502–
516, 1989.

A. Hegde, J. C. Principe, D. Erdogmus, U. Ozertem, Y. N. Rao, and H. Peddaneni. Perturbation-
based eigenvector updates for on-line principal components analysis and canonical correlation
analysis. Journal of VLSI Signal Processing Systems, 45(1-2):85–95, 2006.

H. Hotelling. Analysis of a complex of statistical variables into principal components. J. Educ.
Psychol., 24, 1933.

J. E. Jackson. A User’s Guide to Principal Components. John Wiley and Sons, New York, 1991.

I. T. Jolliffe. Principal Components Analysis. Springer-Verlag, Berlin, 1986.

M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of bandwidth selection for density
estimation. Journal of the American Statistical Association, 91(433):401–407, 1996.

K. Fitz and L. Haken and P. Christensen. Transient preservation under transformation in an additive
sound model. Proceedings of International Computer Music Conference, pages 392–395, 2000.

N. Kambhatla and T. K. Leen. Fast non-linear dimension reduction. In Neural Information Pro-
cessing Systems, pages 152–159, 1994.

N. Kambhatla and T. K. Leen. Dimension reduction by local principal component analysis. Neural
Computation, 9(7):1493–1516, 1997.

E. Karami and M. Shiva. Decision-directed recursive least squares mimo channels tracking.
EURASIP Journal of Wireless Communication Networks, 2006(2):7–7, 2006.

B. Kegl. Principal Curves: Learning, Design, And Applications. PhD thesis, Concordia University,
Montreal, Canada, 1999.

B. Kegl and A. Kryzak. Piecewise linear skeletonization using principal curves. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24(1):59–74, 2002.

B. Kegl, A. Kryzak, T. Linder, and K. Zeger. Learning and design of principal curves. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(3):281–297, 2000.

S. Y. Kung, K. I. Diamantaras, and J. S. Taur. Adaptive principal component extraction (apex) and
applications. IEEE Transactions on Signal Processing, 42(5):1202–1217, May 1994.

P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman & Hall/CRC, London, 1989.

P. Meinicke and H. Ritter. Local pca learning with resolution-dependent mixtures of gaussians.
Proceedings of 9th International Conference on Artificial Neural Networks, pages 497–502, 1999.

1284

LOCALLY DEFINED PRINCIPAL CURVES AND SURFACES

A. K. Ozdemir and O. Arikan. A high resolution time frequency representation with significantly re-
duced cross-terms. IEEE International Conference on Acoustics, Speech, and Signal Processing,
2:693–696, 2000.

A. K. Ozdemir, L. Durak, and O. Arikan. High resolution time-frequency analysis by fractional
domain warping. IEEE International Conference on Acoustics, Speech, and Signal Processing,
6:3553–3556, 2001.

U. Ozertem and D. Erdogmus. Principal curve time warping. IEEE Transactions on Signal Pro-
cessing, 57(6):2041–2049, 2009.

U. Ozertem, D. Erdogmus, and O. Arikan. Piecewise smooth signal denoising via principal curve
projections. In IEEE Int. Conf. on Machine Learning for Signal Processing, pages 426 – 431,
2008.

E. Parzen. On estimation of a probability density function and mode. The Annals of Mathematical
Statistics, 33(3):1065–1076, 1962.

V. C. Raykar and R. Duraiswami. Fast optimal bandwidth selection for kernel density estimation.
In J. Ghosh, D. Lambert, D. Skillicorn, and J. Srivastava, editors, Proceedings of the sixth SIAM
International Conference on Data Mining, pages 524–528, 2006.

A.A. Rontogiannis, V. Kekatos, and K. Berberidis. A square-root adaptive v-blast algorithm for fast
time-varying mimo channels. IEEE Signal Processing Letters, 13(5):265–268, May 2006.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, December 2000.

S. Sandilya and S. R. Kulkarni. Principal curves with bounded turn. IEEE Transactions on Infor-
mation Theory, 48(10):2789–2793, 2002.

B. Schölkopf, A. Smola, and K. Müller. Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation, 10(5):1299–1319, 1998.

John Shawe-Taylor and Yoram Singer, editors. Regularization and Semi-supervised Learning on
Large Graphs, volume 3120 of Lecture Notes in Computer Science, 2004. Springer.

S. J. Sheather and M. C. Jones. A reliable data-based bandwidth selection method for kernel density
estimation. Journal of the Royal Statistical Society. Series B (Methodological), 53(3):683–690,
1991.

B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC, April
1986. ISBN 0412246201.

D. C. Stanford and A. E. Raftery. Finding curvilinear features in spatial point patterns: Principal
curve clustering with noise. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(6):601–609, 2000.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, December 2000.

1285

OZERTEM AND ERDOGMUS

R. Tibshirani. Principal curves revisited. Statistics and Computation, 2:183–190, 1992.

S. Van Vaerenbergh and I. Santamarı́a. A spectral clustering approach to underdetermined post-
nonlinear blind source separation of sparse sources. IEEE Transactions on Neural Networks, 17
(3):811–814, May 2006.

S. Van Vaerenbergh and I. Santamaria. A spectral clustering approach for blind decoding of mimo
transmissions over time-correlated fading channels. In E. Hines and M. Martinez, editors, Intel-
ligent Systems: Techniques and Applications. Shaker Publishing, 2008.

S. Van Vaerenbergh, E. Estébanez, and I. Santamarı́a. A spectral clustering algorithm for decod-
ing fast time-varying BPSK MIMO channels. In 15th European Signal Processing Conference,
Poznan, Poland, September 2007.

J. J. Verbeek, N. A. Vlassis, and B. Kröse. A soft k-segments algorithm for principal curves. In
ICANN ’01: Proceedings of the International Conference on Artificial Neural Networks, pages
450–456, London, UK, 2001. Springer-Verlag. ISBN 3-540-42486-5.

J. J. Verbeek, N. Vlassis, and B. Kröse. A k-segments algorithm for finding principal curves. Pattern
Recognition Letters, 23(8):1009–1017, 2002.

P. Vincent and Y. Bengio. Manifold parzen windows. In Advances in Neural Information Processing
Systems 15, pages 825–832, 2003.

K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite pro-
gramming. International Journal of Computer Vision, 70(1):77–90, 2006.

A. S. Wong, K. Wong, and C. Wong. A practical sequential method for principal component analy-
sis. Neural Processing Letters, 11(2):107–112, 2000.

C. Yang, R. Duraiswami, D. Dementhon, and L. Davis. Mean-shift analysis using quasi-newton
methods. In Proceedings of the International Conference on Image Processing, pages 447–450,
2003a.

C. Yang, R. Duraiswami, N. A. Gumerov, and L. Davis. Improved fast gauss transform and efficient
kernel density estimation. In Ninth IEEE International Conference on Computer Vision, pages
664–671 vol.1, 2003b.

1286

Journal of Machine Learning Research 12 (2011) 1287-1311 Submitted 8/09; Revised 10/12; Published 4/11

Better Algorithms for Benign Bandits

Elad Hazan EHAZAN@IE.TECHNION.AC.IL
Department of IE&M
Technion–Israel Institute of Technology
Haifa 32000, Israel

Satyen Kale∗ SKALE@YAHOO-INC.COM
Yahoo! Research
4301 Great America Parkway
Santa Clara, CA, USA

Editor: Nicolo Cesa-Bianchi

Abstract
The online multi-armed bandit problem and its generalizations are repeated decision making prob-
lems, where the goal is to select one of several possible decisions in every round, and incur a cost
associated with the decision, in such a way that the total cost incurred over all iterations is close
to the cost of the best fixed decision in hindsight. The difference in these costs is known as the
regret of the algorithm. The term bandit refers to the setting where one only obtains the cost of the
decision used in a given iteration and no other information.

A very general form of this problem is the non-stochastic bandit linear optimization problem,
where the set of decisions is a convex set in some Euclidean space, and the cost functions are linear.
Only recently an efficient algorithm attaining Õ(

√
T) regret was discovered in this setting.

In this paper we propose a new algorithm for the bandit linear optimization problem which
obtains a tighter regret bound of Õ(

√
Q), where Q is the total variation in the cost functions. This

regret bound, previously conjectured to hold in the full information case, shows that it is possible to
incur much less regret in a slowly changing environment even in the bandit setting. Our algorithm
is efficient and applies several new ideas to bandit optimization such as reservoir sampling.

Keywords: multi-armed bandit, regret minimization, online learning

1. Introduction

Consider a person who commutes to work every day. Each morning, she has a choice of routes to
her office. She chooses one route every day based on her past experience. When she reaches her
office, she records the time it took her on that route that day, and uses this information to choose
routes in the future. She doesn’t obtain any information on the other routes she could have chosen
to work. She would like to minimize her total time spent commuting in the long run; however,
knowing nothing of how traffic patterns might change, she opts for the more pragmatic goal of
trying to minimize the total time spent commuting in comparison with the time she would have
spent had she full knowledge of the future traffic patterns but had to choose the same fixed route
every day. This difference in cost (using time as a metric of cost) measures how much she regrets
not knowing traffic patterns and avoiding the hassle of choosing a new path every day.

∗. Work done while the author was at Microsoft Research.

c©2011 Elad Hazan and Satyen Kale.

HAZAN AND KALE

This scenario, and many more like it, are modeled by the multi-armed bandit problem and
its generalizations. It can be succinctly described as follows: iteratively an online learner has to
choose an action from a set of n available actions. She then suffers a cost (or receives a reward)
corresponding to the action she took and no other information as to the merit of other available
actions. Her goal is to minimize her regret, which is defined as the difference between her total cost
and the total cost of the best single action knowing the costs of all actions in advance.

Various models of the “unknown” cost functions have been considered in the last half a cen-
tury. Robbins (1952) pioneered the study of various stochastic cost functions, followed by Hannan
(1957), Lai and Robbins (1985) and others. It is hard to do justice to the numerous contributions
and studies and we refer the reader to the book of Cesa-Bianchi and Lugosi (2006) for references.
In their influential paper, Auer et al. (2003) considered an adversarial non-stochastic model of costs,
and gave an efficient algorithm that attains the optimal regret1 in terms of the number of iterations,
T , a bound of Õ(

√
T).2 The sublinear (in T) regret bound implies that on average, the algorithm’s

cost converges to that of the best fixed action in hindsight.
The latter paper (Auer et al., 2003) was followed by a long line of work (Awerbuch and Klein-

berg, 2004; McMahan and Blum, 2004; Flaxman et al., 2005; Dani et al., 2008) which considered
the more general case of bandit online linear optimization over a convex domain. In this problem,
the learner has to choose a sequence of points from the convex domain and obtains their cost from an
unknown linear cost function. The objective, again, is to minimize the regret, that is, the difference
between the total cost of the algorithm and that of the best fixed point in hindsight. This generality
is crucial to allow for efficient algorithms for problems with a large decision space, such as online
shortest path problem considered at the beginning. This line of work finally culminated in the work
of Abernethy et al. (2008), who obtained the first algorithm to give Õ(

√
T) regret with polynomial

running time.
Even though the Õ(

√
T) dependence on T was a great achievement, this regret bound is weak

from the point of view of real-world bandit scenarios. Rarely would we encounter a case where
the cost functions are truly adversarial. Indeed, the first work on this problem assumed a stochastic
model of cost functions, which is a very restrictive assumption in many cases. One reasonable
way to retain the appeal of worst-case bounds while approximating the steady-state nature of the
stochastic setting is to consider the variation in the cost vectors.

For example, our office commuter doesn’t expect the traffic gods to conspire against her every
day. She might expect a certain predictability in traffic patterns. Most days the traffic pattern is
about the same, except for some fluctuations depending on the day of the week, time of the day, etc.
Coming up with a stochastic model for traffic patterns would be simply too onerous. An algorithm
that quickly learns the dominant pattern of the traffic, and achieves regret bounded by the (typically
small) variability in day-to-day traffic, would be much more desirable. Such regret bounds naturally
interpolate between the stochastic models of Robbins and the worst case models of Auer et al.

In this paper3 we present the first such bandit optimization algorithm in the worst-case adver-
sarial setting, with regret bounded by Õ(

√
Q), where Q is the total observed variation in observed

costs, defined as the sum of squared deviations of the cost vectors from their mean. This regret

1. Strictly speaking, here we talk about expected regret, as all algorithms that attain non-trivial guarantees must use
randomization.

2. We use the notation Õ to hide all constant terms (such as dependence on the dimension of the problem, or the diameter
of the decision set) and other lower order terms which grow at a poly-logarithmic rate with T .

3. A preliminary version of this result was presented in Hazan and Kale (2009a).

1288

BETTER ALGORITHMS FOR BENIGN BANDITS

degrades gracefully with increasing Q, and in the worst case, we recover the regret bound Õ(
√
T)

of Abernethy et al. (2008). Our algorithm is efficient, running in polynomial time per iteration.

The conjecture that the regret of online learning algorithms should be bounded in terms of the
total variation was put forth by Cesa-Bianchi et al. (2007) in the full information model (where the
online player is allowed to observe the costs of actions she did not choose). This conjecture was
recently resolved on the affirmative in Hazan and Kale (2008), in two important online learning
scenarios, viz. online linear optimization and expert prediction. In addition, in Hazan and Kale
(2009b), we give algorithms with regret bounds of O(log(Q)) for the Universal Portfolio Selection
problem and its generalizations. In this paper, we prove the surprising fact that such a regret bound
of Õ(

√
Q) is possible to obtain even when the only information available to the player is the cost

she incurred (in particular, we may not even be able to estimate Q accurately in this model).

To prove our result we need to overcome the following difficulty: all previous approaches for the
non-stochastic multi-armed bandit problem relied on the main tool of “unbiased gradient estimator”,
that is, the use of randomization to extrapolate the missing information (cost function). The variation
in these unbiased estimators is unacceptably large even when the underlying cost function sequence
has little or no variation.

To overcome this problem we introduce two new tools: first, we use historical costs to construct
our gradient estimators. Next, in order to construct these estimators, we need an accurate method
of accumulating historical data. For this we use a method from data streaming algorithms known as
“reservoir sampling”. This method allows us to maintain an accurate “sketch” of history with very
little overhead.

An additional difficulty which arises is the fact that a learning rate parameter η needs to be
set based on the total variation Q to obtain the Õ(

√
Q) regret bound. Typically, in other scenarios

where square root regret bound in some parameter is desired, a simple η-halving trick works, but
requires the algorithm to be able to compute the relevant parameter after every iteration. However,
as remarked earlier, even estimatingQ is non-trivial problem. We do manage to bypass this problem
by using a novel approach that implicitly mimics the η-halving procedure.

2. Preliminaries

Throughout the paper we use the standard asymptotic O() notation to hide dependence on (ab-
solute, problem-independent) constants. For convenience of notation, we use the Õ() notation to
hide dependence on (problem-dependent) constants as well as polylog(T) factors: g = Õ(f) if
g < c f logd(T) for some problem-dependent constant c > 0 and and a problem-independent con-
stant d > 0. Specifically, in the Õ() notation we also hide terms which depend on the dimension n,
since this is fixed: we use this notation in order highlight the dependence on the parameter which
grows with time, viz. the quadratic variation. Unless specified otherwise, all vectors live in Rn, and
all matrices in Rn×n. The vector norm ‖ · ‖ denotes the standard �2 norm.

We consider the online linear optimization model in which iteratively the online player chooses
a point xt ∈ K , where K ⊆ R

n is a convex compact set called the decision set. After her choice, an
adversary supplies a linear cost function ft , and the player incurs a cost of ft(xt). In this paper we
assume an oblivious adversary, which can choose arbitrary cost functions ft in advance, with prior
knowledge of the player’s algorithm, but the adversary does not have access to the random bits used
by the player (see Dani and Hayes, 2006 for more details on various models of adversaries).

1289

HAZAN AND KALE

With some abuse of notation, we use ft to also denote the cost vector such that ft(x) = f�t x.
The only information available to the player is the cost incurred, that is, the scalar ft(xt). Denote
the total number of game iterations by T . The standard game-theoretic measure of performance is
regret, defined as

RegretT =
T

∑
t=1

ft(xt)−min
x∈K

T

∑
t=1

ft(x).

We make some normalizations on the cost vectors and the convex domain K to keep the pre-
sentation clean. We assume that the cost vectors are scaled so that their norms are bounded by one,
that is, ‖ft‖ ≤ 1. This scaling only changes the regret bound by a constant factor: if G is a known
upper bound on the norms of the cost vectors, we can scale down the cost vectors by G and run the
algorithm; the actual regret is G times larger than the bound obtained here. Next, we assume K is
scaled to fit inside the unit ball (in the �2 norm) centered at the origin, that is, for all x ∈K , we have
‖x‖ ≤ 1. We also assume that for some parameter γ ∈ (0,1), all the vectors γe1, . . . ,γen, where ei is
the standard basis vector with 1 in the i-th coordinate and 0 everywhere else, are in the decision set
K .

The above assumptions can be met by translating and scaling K appropriately. This only
changes the regret bound by a constant factor: if D is a known upper bound on the diameter of
K , then we can translate K so that it contains the origin and scaled coordinate vectors γ′ei for some
γ′ > 0, and then scale it down by D to make its diameter 1 and run the algorithm; the actual regret
is D times larger than the bound obtained here. In certain specific cases, one can certainly obtain
tighter constants by using a set of n linearly independent vectors contained inside K , but here we
make this simplifying assumption for the sake of cleanliness of presentation.

We denote by QT the total quadratic variation in cost vectors, that is,

QT :=
T

∑
t=1

‖ft −μ‖2,

where μ= 1
T ∑

T
t=1 ft is the mean of all cost vectors.

A symmetric matrix A is called positive semidefinite (denoted by A� 0 if all its eigenvalues are
non-negative. If all eigenvalues of A are strictly positive, the matrix is called positive definite. For
symmetric matrices we denote by A� B the fact that the matrix B−A is positive semidefinite. For
a positive definite matrix A we denote its induced norm by ‖x‖A =

√
x�Ax. We make use of the

following simple generalization of the Cauchy-Schwarz inequality:

x�y ≤ ‖x‖A · ‖y‖A−1 . (1)

This inequality follows by applying the usual Cauchy-Schwarz inequality to the vectors A1/2x and
(A1/2)−1y, where A1/2 is the matrix square root of the positive definite matrix A, that is, a matrix B
which satisfies BB= A.

For a twice differentiable function f :Rn→R, we denote its gradient by ∇ f and its Hessian by
∇2 f .

2.1 Reservoir Sampling

A crucial ingredient in our algorithm is a sampling procedure ubiquitously used in streaming algo-
rithms known as “reservoir sampling” (Vitter, 1985). In a streaming problem the algorithm gets to

1290

BETTER ALGORITHMS FOR BENIGN BANDITS

see a stream of data in one pass, and not allowed to re-visit previous data. Suppose the elements
of the stream are real numbers f1, f2, . . . and our goal is to maintain a randomized estimate of the
current mean μt :=

1
t ∑

t
τ=1 fτ. The main constraint which precludes the trivial solution is that we

desire a sampling scheme that touches (i.e., observes the value of) very few elements in the stream.
The reservoir sampling method is to maintain a randomly chosen (without replacement) subset

S of size k (also called a “reservoir”) from the stream, and then use the average of the sample as
an estimator. This works as follows. Initialize S by including the first k elements f1, f2, . . . , fk in
the stream. For every subsequent element ft , we decide to include it in S with probability k

t . If the
decision to include it is made, then a random element of S is replaced by ft .

The following lemma is standard (see Vitter, 1985) and we include a simple inductive proof for
completeness:

Lemma 1 For every t ≥ k, the set S is random subset chosen without replacement uniformly from
{f1, f2, . . . , ft}.
Proof We prove this by induction on t. The statement is trivially true for t = k. Assume that the
statement is true for some t ≥ m, and we now show t + 1. Let S be an arbitrary subset of size k
of {f1, f2, . . . , ft}. We now show that the probability that the chosen set in the t + 1-th round is S
is 1

(t+1k)
. For this, we have two cases: ft+1 /∈ S and ft+1 ∈ S. In the first case, the probability that

S is the chosen subset at the end of t-th round is 1
(tk)
by the induction hypothesis. The conditional

probability that it survives the t+ 1-th is 1− k
t+1 , so the overall probability that S is the chosen set

at the end of t+1-th round is (1− k
t+1) · 1(tk) =

1
(t+1k)

.

In the second case, S will be the chosen set at the end of t+1-th round if the set S′ chosen at the
end of the t-th round is one of the t+1− k sets obtained from S by replacing ft+1 by an element of
{f1, f2, . . . , ft}\S, which gets replaced by ft+1 in the t+1-th round. The probability of this happen-
ing is t+1−k

(tk)
· k
t+1 · 1k = 1

(t+1k)
, as required.

Now suppose we define μ̃t to be the average of the k chosen numbers in S, then the following
lemma is immediate:

Lemma 2 For every t ≥ k, we have E[μ̃t] = μt and VAR[μ̃t]≤ 1
kt ∑

t
τ=1(fτ−μt)2 = 1

kt Qt .

The bound on the variance follows because the variance of a single randomly chosen element of
the stream is 1t ∑

t
τ=1(fτ−μt)2. So the variance of the average of k randomly chosen elements with

replacement is 1kt ∑
t
τ=1(fτ−μt)2. Since we choose the k elements in the sample without replacement,

the variance is only smaller.
The main reason reservoir sampling is useful in our context is because it samples every element

obliviously, that is, a decision to sample is made without looking at the element. This implies that
the expected number of elements touched by the reservoir sampling based estimation procedure for
μt is k+∑T

t=k+1
k
t = O(k log(T)), which is very small compared to the length of the stream, T , if k

is set to some small value, like O(log(T)) as in our applications.

2.2 Self-concordant Functions and the Dikin Ellipsoid

In this section we give a few definition and properties of self-concordant barriers that we will cru-
cially need in the analysis. Our treatment of this subject follows Abernethy et al. (2008), who in-

1291

HAZAN AND KALE

troduced self-concordant functions to online learning. Self-concordance in convex optimization is a
beautiful and deep topic, and we refer the reader to Nesterov and Nemirovskii (1994) and Ben-Tal
and Nemirovski (2001) for a thorough treatment on the subject.

Definition 1 A convex function R (x) defined on the interior of the convex compact set K , and
having three continuous derivatives, is said to be a ϑ-self-concordant barrier (where ϑ > 0 is the
self-concordance parameter) if the following conditions hold:

1. (Barrier property) R (xi)→∞ along every sequence of points xi in the interior of K converg-
ing to a boundary point of K .

2. (Differential properties) R satisfies

|∇3R (x)[h,h,h]| ≤ 2(h�[∇2R (x)]h)3/2,

|∇R (x)�h| ≤ ϑ1/2
[
h�∇2R (x)h]

]1/2
.

where x is a point in the interior ofK , and h is an arbitrary vector inRn. Here,∇R (x),∇2R (x)
denote the Gradient and Hessian, respectively, of R at point x, and

∇3R (x)[h1,h2,h3] =
∂3

∂t1∂t2∂t3
R (x+ t1h1+ t2h2+ t3h3)

∣∣∣∣
t1=t2=t3=0

Any n-dimensional closed convex set admits an O(n)-self-concordant barrier. However, such a
barrier may not necessarily be efficiently computable.

More concretely, the standard logarithmic barrier for a half-space u�x≤ b is given by

R (x) = − log(b−u�x),

and is 1-self-concordant. For polytopes defined by m halfspaces, the standard logarithmic barrier
(which is just the sum of all barriers for the defining half-spaces) has the self-concordance parameter
ϑ= m.

Definition 2 For a given x ∈ K , and any h ∈ R
n, define the norm induced by the Hessian, and its

dual norm, to be

‖h‖x :=
√
h�[∇2R (x)]h, and

‖h‖�x :=
√
h�[∇2R (x)]−1h.

Definition 3 The Dikin ellipsoid of radius r centered at x is the set

Wr(x) = {y ∈ R
n : ‖y−x‖x ≤ r}.

When a radius is unspecified, it is assumed to be 1; so “the Dikin ellipsoid at x” refers to the Dikin
ellipsoid of radius 1 centered at x.

1292

BETTER ALGORITHMS FOR BENIGN BANDITS

Definition 4 For any two distinct points x and y in the interior ofK , theMinkowsky function πx(y)
on K is

πx(y) = inf{t ≥ 0 : x+ t−1(y−x) ∈K }.

The Minkowsky function measures the distance from x to y as a portion of the total distance on the
ray from x to the boundary of K through the point y, and hence πx(y) ∈ [0,1].

The following facts about the Dikin ellipsoid and self concordant barriers will be used in the
sequel (we refer to Nemirovskii, 2004 for proofs):

1. W1(x) ⊆ K for any x ∈ K . This is crucial for most of our sampling steps (the “ellipsoidal
sampling”), since we sample from the Dikin ellipsoid W1(xt). Since W1(xt) is contained in
K , the sampling procedure yields feasible points.

2. The lengths of the principal axes of the ellipsoidW1(x) are 2/
√
λi, where λi, for i= 1,2, . . . ,n

are the eigenvalues of ∇2R (x). Thus, the fact thatW1(x)⊆ K and that K is contained in the
unit ball implies that 2/

√
λi ≤ 2 for all i, or in other words, 1/λi ≤ 1 for all i. This implies

that [∇2R (x)]−1 ≤ I, where I is the identity matrix. Thus, we can relate the ‖ · ‖�x norm to the
standard �2 norm ‖ · ‖: for any vector h,

‖h‖�x =
√
h�[∇2R (x)]−1h ≤

√
h�Ih = ‖h‖. (2)

3. In the interior of the Dikin ellipsoid at x, the Hessian of R is “almost constant”: for any
h ∈ R

n such that ‖h‖x < 1, we have

(1−‖h‖x)2∇2R (x) � ∇2R (x+h) � (1−‖h‖x)−2∇2R (x).

4. For any ϑ-self-concordant barrier on K , and for any two distinct points x and y in the interior
of K , it holds that (see Nemirovskii, 2004)

R (y)−R (x)≤ ϑ ln
(

1
1−πx(y)

)
. (3)

Definition 5 Let x◦ be the analytic center of K with respect to the self-concordant barrier R , that
is, the point inside K in which ∇R (x◦) = 0. For any δ> 0, define the convex body Kδ ⊆ K by

Kδ := {x|πx◦(x)≤ (1−δ)}.

The following properties holds for Kδ :

Lemma 3 For any x ∈K , there exists a u ∈Kδ such that ‖x−u‖ ≤ 2δ which satisfies

R (u)−R (x◦) ≤ ϑ ln
1
δ
.

Proof Let u= δx◦+(1−δ)x. Since

x = x◦+
‖x−x◦‖
‖u−x◦‖(u−x

◦),

1293

HAZAN AND KALE

and x ∈K , we have that

πx◦(u) ≤ ‖u−x
◦‖

‖x−x◦‖ =
‖(1−δ)(x−x◦)‖
‖x−x◦‖ = 1−δ,

which implies that u ∈Kδ. Next, note that

‖x−u‖= ‖δ(x−x◦)‖ ≤ 2δ,

since K is contained in the unit ball.
Finally, since R is a ϑ-self-concordant barrier, we have by (3)

R (u)−R (x◦) ≤ ϑ log
1

1−πx◦(u) ≤ ϑ log
1

1− (1−δ) = ϑ ln
1
δ
.

3. The Main Theorem and Algorithm

Main result. Before describing the algorithm, let us state the main result of this paper formally.

Theorem 4 Let K be the underlying decision set in an online linear optimization instance, such
that K admits an efficiently computable ϑ-self-concordant barrier. Then there exists a polynomial
time algorithm for this online linear optimization problem (Algorithm 1 below coupled with the
halving procedure of Section 5) whose expected regret is bounded as follows. Let QT be the total
variation of a cost function sequence in the online linear optimization instance. Then

E[RegretT] = O
(
n
√
ϑQT logT +n log2T +nϑ log(T)

)
.

This theorem can be used with the well known logarithmic barrier to derive regret bounds for
the online-shortest-paths problem and other linearly constrained problems, and of course applicable
much more generally.

The non-stochastic multi-armed bandit problem. A case of particular interest, which has been
studied most extensively, is the “basic” multi-armed bandit (MAB) problem where in each iteration
the learner pulls the arm of one out of n slot machines and obtains an associated reward, assumed
to be in the range [0,1]. The learner’s objective is to minimize his regret, that is, the difference
between his cumulative reward and that of the best fixed slot machine in hindsight.

This is a special case of the more general problem considered earlier and corresponds to taking
the convex set K to be the n-dimensional simplex of probability distributions over the arms. Since
the n-dimensional simplex admits a simple n-self-concordant barrier, an immediate corollary of our
main theorem is:

Corollary 5 There exists an efficient algorithm for the multi-armed-bandit problem whose expected
regret is bounded by

E[RegretT] = O
(
n2
√
QT log(T)+n1.5 log2(T)+n2.5 log(T)

)
.

The additional factor of
√
n factor is because our results assume that ‖ft‖ ≤ 1, and so we need to

scale the costs down by
√
n to apply our bounds. In comparison, the best previously known bounds

for this problem is O(
√
nT) (Audibert and Bubeck, 2010). Even though our bound is worse in the

dependence on n, the dependence on the parameter which grows, viz. T , is much better.

1294

BETTER ALGORITHMS FOR BENIGN BANDITS

3.1 Overview of the Algorithm

The underlying scheme of our algorithm follows the recent approach of Abernethy et al. (2008),
who use the Follow-The-Regularized-Leader (FTRL) methodology with self concordant barrier
functions as a regularization (see also exposition in Hazan and Kale 2008). At the top level, at
every iteration this algorithm simply chooses the point that would have minimized the total cost so
far, including an additional regularization cost function R (x), that is, we predict with the point

xt = argmin
K

[
η
t−1
∑
τ=1
f̃�τ (x)+R (x)

]
,

where η is a learning rate parameter.
Here, f̃t is an estimator for the vector ft , which is carefully constructed to have low variance.

In the full-information setting, when we can simply set f̃t = ft , such an algorithm can be shown to
achieve low regret (see exposition in Abernethy et al., 2008 and references therein). In the bandit
setting, a variety of “one-point-gradient-estimators” are used (Flaxman et al., 2005; Abernethy et al.,
2008) which produce an unbiased estimator f̃t of ft by evaluating ft at just one point.

In order to obtain variation based bounds on the regret, we modify the unbiased estimators of
previous approaches by incorporating our experience with previous cost vector as a “prior belief” on
the upcoming cost vector. Essentially, we produce an unbiased estimator of the difference between
the average cost vector in the past and the current cost vector.

This brings out the issue that the past cost vectors are unfortunately also unknown. However,
since we had many opportunities to learn about the past and it is an aggregate of many functions,
our knowledge about the past cumulative cost vector is much better than the knowledge of any one
cost vector in particular. We denote by μ̃t our estimator of

1
t ∑

t
τ=1 fτ. The straightforward way of

maintaining this estimator would be to average all previous estimators f̃t . However, this estimator is
far from being sufficiently accurate for our purposes.

Instead, we use the reservoir sampling idea of Section 2.1 to construct this μ̃t . For each coor-
dinate i ∈ [n], we maintain a reservoir of size k, Si,1,Si,2, . . . ,Si,k. The estimator for μt(i) is then
μ̃t(i) =

1
k ∑

k
j=1 Si, j. The first nk rounds we devote to initialize these reservoirs with samples from the

stream. This increases the overall regret of our algorithm by a constant of nk.
Our current approach is to use separate exploration steps in order to construct μ̃t . While it is

conceivable that there are more efficient methods of integrating exploration and exploitation, as
done by the algorithm in the other iterations, reservoir sampling turns out to be extremely efficient
and incurs only a logarithmic penalty in regret.

The general scheme is given in Algorithm 1. It is composed of exploration steps, called SIM-
PLEXSAMPLE steps, and exploration-exploitation steps, called ELLIPSOIDSAMPLE steps. Note that
we use the notation yt for the actual point in K chosen by the algorithm in either of these steps.

It remains to precisely state the SIMPLEXSAMPLE and ELLIPSOIDSAMPLE procedures. The
SIMPLEXSAMPLE procedure is the simpler of the two. It essentially performs reservoir sampling
on all the coordinates with a reservoir of size k. The initial nk time iterations are used to initialize
this reservoir to have correct expectation (i.e., in these iterations we sample with probability one
and fill all buckets Si j), and incur an additional additive regret of at most nk.

Now, the SIMPLEXSAMPLE procedure is invoked with probability nk
t for any time period t > nk.

Once invoked, it samples a coordinate it ∈ [n] with the uniform distribution. The point yt chosen

1295

HAZAN AND KALE

Algorithm 1 Bandit Online Linear Optimization
1: Input: η> 0, ϑ-self-concordant R , reservoir size parameter k
2: Initialization: for all i ∈ [n], j ∈ [k], set Si, j = 0. Set x1 = argminx∈K [R (x)] and μ̃0 = 0. Let
π : {1,2 . . . ,nk}→ {1,2, . . . ,nk} be a random permutation.

3: for t = 1 to T do
4: Set r = 1 with probability min

{
nk
t ,1
}
, and 0 with probability 1−min{nkt ,1}.

5: if r = 1 then
6: // SIMPLEXSAMPLE step
7: if t ≤ nk then
8: Set it = (π(t) mod n)+1.
9: else
10: Set it uniformly at random from {1,2, . . . ,n}.
11: end if
12: Set μ̃t ← SIMPLEXSAMPLE(it).
13: Set f̃t = 0.
14: else
15: // ELLIPSOIDSAMPLE step
16: Set μ̃t = μ̃t−1.
17: Set f̃t ← ELLIPSOIDSAMPLE(xt , μ̃t).
18: end if

19: Update xt+1 = argminx∈K

[
η

t

∑
τ=1
f̃�τ x+R (x)

]
︸ ︷︷ ︸

Φt(x)

20: end for

by the algorithm is the corresponding vertex γeit of the (γ-scaled) n-dimensional simplex (which is
assumed to be contained inside of K) to obtain the coordinate ft(it) as the cost.

It then chooses one of the samples Sit ,1,Sit ,2, . . . ,Sit ,k uniformly at random and replaces it with
the value ft(it), and updates μ̃t . This exactly implements the reservoir sampling for each coordinate,
and detailed in Algorithm 2.

As for the ELLIPSOIDSAMPLE procedure, it is a modification of the sampling procedure of
Abernethy et al. (2008). The point yt chosen by the algorithm is uniformly at random chosen from
the endpoints of the principal axes of the Dikin ellipsoid W1(xt) centered at xt . The analysis of
Abernethy et al. (2008) already does the hard work of making certain that the ellipsoidal sampling
is unbiased and has low variation with respect to the regularization. However, to take advantage
of the low variation in the data, we incorporate the previous information in the form of μ̃. This
modification seems to be applicable more generally, not only to the algorithm of Abernethy et al.
(2008). However, plugged into this recent algorithm we obtain the best possible regret bounds and
also an efficient algorithm.

Before we proceed with the analysis, let us make a small formal claim that our estimates of μt
are unbiased for t ≥ nk:

1296

BETTER ALGORITHMS FOR BENIGN BANDITS

Algorithm 2 SIMPLEXSAMPLE(it)
1: Predict yt = γeit , that is, the it-th standard basis vector scaled by γ.
2: Observe the cost f�t yt = ft(it).
3: if some bucket for it is empty then
4: Set j to the index of the empty bucket.
5: else
6: Set j uniformly at random from {1, . . . ,k}.
7: end if
8: Update the sample Sit , j =

1
γ ft(it).

9: if t < nk then
10: Return μ̃t = 0.
11: else
12: Return μ̃t defined as: ∀i ∈ {1,2, . . . ,n}, set μ̃t(i) := 1

k ∑
k
j=1 Si, j.

13: end if

Algorithm 3 ELLIPSOIDSAMPLE(xt , μ̃t)
1: Let {v1, . . . ,vn} and {λ1, . . . ,λn} be the set of orthogonal eigenvectors and eigenvalues of
∇2R (xt).

2: Choose it uniformly at random from {1, . . . ,n} and εt =±1 with probability 1/2.
3: Predict yt = xt + εtλ

−1/2
it vit .

4: Observe the cost f�t yt .
5: Return f̃t defined as:

f̃t = μ̃t + g̃t

Where g̃t := n
(
f�t yt − μ̃�t yt

)
εtλ

1/2
it vit .

Claim 1 For all t ≥ nk, and for all i = 1,2, . . . ,n, the reservoir for i, Si = {Si,1,Si,2, . . . ,Si,k} is a
random subset of size k chosen without replacement from {f1(i), f2(i), . . . , ft(i)}. Hence, we have
E[μ̃t] = μt .

Proof For t = nk the claim follows because the choice of the random permutation π ensures that
the set of times {t : (π(t) mod n)+1= i} is a random subset of size k chosen without replacement
from {1,2, . . . ,nk}.

For t > nk the claim follows from the properties of reservoir sampling, as we show now. This
is because SIMPLEXSAMPLE simulates reservoir sampling. We just showed that at time t = nk, the
claim is true. Then, at time t = nk+1 and onwards, reservoir sampling performs select-and-replace
with probability k

t (i.e., it selects ft(i) with probability
k
t and replaces a random element of the pre-

vious Si with it). The algorithm does exactly the same thing: SIMPLEXSAMPLE is invoked with
probability nk

t , and with probability
1
n , we have it = i. Thus, the overall probability of sample-and-

replace is k
t , exactly as in reservoir sampling.

1297

HAZAN AND KALE

4. Analysis

In this section, we prove a regret bound, in a slightly easier setting where we know an upper bound
Q on the total variation QT . The main theorem proved here is the following:

Theorem 6 Let Q be an estimated upper bound on QT . Suppose that Algorithm 1 is run with

η=min
{√

logT
n2Q , 1

25n

}
and k= log(T). Then, if QT ≤Q, the expected regret is bounded as follows:

E[RegretT] = O
(
n
√
ϑQ logT +n log2(T)+nϑ log(T)

)
.

Although this bound requires an estimate of the total variation, we show in the Section 5 how to
remove this dependence, thereby proving Theorem 4. In this section we sketch the simpler proof of
Theorem 6 and give precise proofs of the main lemmas involved.
Proof For clarity, we present the proof as a series of lemmas whose complete proofs appear after
this current proof.

We first relate the expected regret of Algorithm 1 which plays the points yt , for t = 1,2, . . . with
the ft cost vectors to the expected regret of another algorithm that plays the points xt with the f̃t cost
vectors.

Lemma 7 For any u ∈K ,

E

[
T

∑
t=1

f�t (yt −u)
]
≤ E

[
T

∑
t=1

f̃�t (xt −u)
]
+2n log2(T).

Intuitively, this bound holds since in every ELLIPSOIDSAMPLE step, the expectation of f̃t and yt
(conditioned on all previous randomization) are ft and xt respectively, the expected costs for both
algorithms is the same in such rounds. In the SIMPLEXSAMPLE steps, we have f̃t = 0 and we can
bound |f�t (yt−u)| by 2. The expected number of such steps is O(nk log(T)) =O(n log2(T)), which
yields the extra additive term.

We therefore turn to bounding ∑T
t=1 f̃

�
t (xt −u). For this, we apply standard techniques (origi-

nally due to Kalai and Vempala 2005) which bounds the regret of any follow-the-leader type algo-
rithm by terms which depend on the stability of the algorithm, measured by how close the successive
predictions xt and xt+1 are:

Lemma 8 For any sequence of cost vectors f̃1, . . . , f̃T ∈ R
n, the FTRL algorithm with a ϑ-self con-

cordant barrier R has the following regret guarantee: for any u ∈K , we have

T

∑
t=1

f̃�t (xt −u) ≤
T

∑
t=1

f̃�t (xt −xt+1)+
2
η
ϑ logT.

We now turn to bounding the term f̃�t (xt−xt+1). The following main lemma gives such bounds,
and forms the main part of the theorem. We go into detail of its proof in the next section, as it
contains the main new ideas.

Lemma 9 Let t be an ELLIPSOIDSAMPLE step. Then we have

f̃�t (xt −xt+1) ≤ 64ηn2‖ft −μt‖2+64ηn2‖μt − μ̃t‖2+2μ�t (xt −xt+1). (4)

1298

BETTER ALGORITHMS FOR BENIGN BANDITS

A similar but much easier statement can be made for SIMPLEXSAMPLE steps. Trivially, since we
set f̃t = 0 in such steps, we have xt = xt+1. Thus, we have

f̃�t (xt −xt+1) = 0 = 2μ�t (xt −xt+1).
By adding the non-negative term 64ηn2‖ft −μt‖2, we get that for any SIMPLEXSAMPLE step t, we
have

f̃�t (xt −xt+1) ≤ 64ηn2‖ft −μt‖2+2μ�t (xt −xt+1). (5)

Let TE be the set of all ELLIPSOIDSAMPLE steps t. Summing up either (4) or (5), as the case may
be, over all time periods t we get

T

∑
t=1

f̃�t (xt −xt+1) ≤ 64ηn2
T

∑
t=1

‖ft −μt‖2+64ηn2 ∑
t∈TE
‖μt − μ̃t‖2+2

T

∑
t=1

μt(xt −xt+1) (6)

We bound each term of the inequality (6) above separately. The first term can be easily bounded by
the total variation, even though it is the sum of squared deviations from changing means. Essentially,
the means don’t change very much as time goes on.

Lemma 10 ∑T
t=1 ‖ft −μt‖2 ≤ QT .

The second term, in expectation, is just the variance of the estimators μ̃t of μt , which can be
bounded in terms of the size of the reservoir and the total variation (see Lemma 2).

Lemma 11 E
[
∑t∈TE ‖μt − μ̃t‖2

]≤ logT
k QT .

The third term can be bounded by the sum of successive differences of the means, which, in
turn, can be bounded the logarithm of the total variation.

Lemma 12 ∑T
t=1μ

�
t (xt −xt+1) ≤ 2log(QT +1)+4.

Let Q≥QT be a given upper bound. Plugging the bounds from Lemmas 10, 11, and 12 into (6),
and using the value k = log(T), we obtain

T

∑
t=1

f�t (xt −xt+1) ≤ 128ηn2Q+4log(QT +1)+8.

where we will choose η≥ log(QT+1)
8n2Q so that log(QT +1)≤ 8ηn2Q. Hence, via Lemmas 8 and 7, we

have for any u ∈K ,

E

[
T

∑
t=1

f�t (yt −u)
]
≤ 128ηn2Q+

2ϑ
η
logT +2n log2(T)+4log(QT +1)+8.

Now, choosing η = min
{√

ϑ log(T)
n2Q , 1

25n

}
, for the upper bound Q ≥ QT , and we get the following

regret bound:

E

[
T

∑
t=1

f�t (yt −u)
]
≤ O

(
n
√
ϑQ logT +nϑ log(T)+n log2(T)

)
.

Here, we absorb the lower order terms 4log(QT +1)+8 in the other terms using the O(·) notation.
The restriction that η≤ 1

25n arises from the proof of Lemma 13 below.

1299

HAZAN AND KALE

4.1 Proof of Main Lemmas

Proof [Lemma 7]
Let t be an ELLIPSOIDSAMPLE step. We first show that E[f̃t] = ft . We condition on all the random-
ness prior to this step, thus, μ̃t is fixed. In the following, Et denotes this conditional expectation.
Now, condition on the choice it and average over the choice of εt :

Et [g̃t |it] = ∑
εt∈{1,−1}

1
2
n
(
(ft − μ̃t)�(xt + εtλ

−1/2
it vit)

)
λ1/2it εtvit = n((ft− μ̃t)�vit)vit .

Hence,

Et [g̃t] =
n

∑
i=1

1
n
·n((ft− μ̃t)�vi)vi = ft − μ̃t ,

since the vi form an orthonormal basis. Thus, Et [f̃t] = Et [g̃t]+ μ̃t = ft .
Furthermore, it is easy to see that Et [yt] = xt , since yt is drawn from a symmetric distribution

centered at xt (namely, the uniform distribution on the endpoints of the principal axes of the Dikin
ellipsoid centered at xt). Thus, we conclude that

Et [f�t (yt −u)] = f�t (xt −u) = Et [f̃�t (xt −u)],

and hence, taking expectation over all the randomness, we have

E[f�t (yt −u)] = E[f̃�t (xt −u)].

Now, let t be a SIMPLEXSAMPLE step or alternatively t ≤ nk. In this case, we have |f�t (yt −
u)‖ ≤ ‖ft‖‖yt −u‖ ≤ 2, and f̃�t (xt −u) = 0 since f̃t = 0. Thus,

E[f�t (yt −u)] ≤ E[f̃�t (xt −u)]+2.

Overall, if X is the number of SIMPLEXSAMPLE sampling steps or initialization steps, we have

E[f�t (yt −u)] ≤ Et [f̃�t (xt −u)]+2E[X].

Finally, using the fact that E[X] = nk+∑T
t=nk+1

nk
t ≤ nk(log(T)+1)≤ 2n log2(T), the proof is com-

plete.

Proof [Lemma 8]
By Lemma 15 (see Section 4.2) applied to the sequence {xt} as defined in (19), for any u ∈K

T

∑
t=1

f̃�t (xt −u) ≤
T

∑
t=1

f̃�t (xt −xt+1)+
1
η
[R (u)−R (x1)].

1300

BETTER ALGORITHMS FOR BENIGN BANDITS

By Lemma 3, there exists a vector u1 ∈Kδ ⊆K for δ= 1
T , such that ‖u1−u‖ ≤ 2

T and in addition,
R (u1)−R (x1)≤ ϑ log(T). Hence,

T

∑
t=1

f̃�t (xt −u) ≤
T

∑
t=1

f̃�t (xt −u1) +
T

∑
t=1

f̃�t (u1−u)

≤
T

∑
t=1

f̃�t (xt −xt+1)+
1
η
[R (u1)−R (x1)]+

T

∑
t=1

‖ft‖‖u1−u‖

≤
T

∑
t=1

f̃�t (xt −xt+1)+
ϑ
η
logT +

T

∑
t=1

2
T

≤
T

∑
t=1

f̃�t (xt −xt+1)+
2ϑ
η
logT.

In the last step, we upper bound ∑T
t=1

2
T ≤ ϑ

η logT , which is valid for η< 1/4, say.

Now we turn to proving Lemma 9. We first develop some machinery to assist us. Lemmas 13
and 14 are essentially generalizations of similar lemmas from Abernethy et al. (2008) to the case in
which we have both sampling and ellipsoidal steps.

Lemma 13 For any time period t ≥ nk, the next minimizer xt+1 is “close” to xt :

xt+1 ∈W1
2
(xt).

Proof If t is a SIMPLEXSAMPLE step, then xt = xt+1 and the lemma is trivial. So assume that t is
an ELLIPSOIDSAMPLE step. Now, recall that

xt+1 = argmin
x∈K

Φt(x) and xt = argmin
x∈K

Φt−1(x),

where Φt(x) = η∑ts=1 f̃
�
t x+R (x). Since the barrier function R goes to infinity as we get close to

the boundary, the points xt and xt+1 are both in the interior of K . We now show that all points on
the boundary of W1

2
(xt) have higher Φt value than Φt(xt), and since xt+1 is the minimizer of the

strictly convex function Φt , we conclude that xt+1 must lie in the interior ofW1
2
(xt).

First, note that since xt is in the interior ofK , the first order optimality condition gives∇Φt−1(xt)=
0, and we conclude that ∇Φt(xt) = ηf̃t . Now consider any point in z on the boundary of W1

2
(xt),

that is, y= xt +h for some vector h such that ‖h‖xt = 1
2 . Using the multi-variate Taylor expansion,

we get

Φt(y) = Φt(xt +h) = Φt(xt)+∇Φt(xt)�h+
1
2
h�∇2Φt(ξ)h = Φt(xt)+ηf̃�t h+

1
2
h�∇2Φt(ξ)h

(7)
for some ξ on the line segment between xt and xt+h. This latter fact also implies that ‖ξ−xt‖xt ≤
‖h‖xt ≤ 1

2 . Hence, by (3),

∇2R (ξ) � (1−‖ξ−xt‖xt)2∇2R (xt) � 1
4
∇2R (xt).

1301

HAZAN AND KALE

Thus h�∇2R (ξ)h ≥ 1
4‖h‖xt = 1

8 . Next, we bound |f̃�t h| as follows:

|f̃�t h| ≤ ‖f̃t‖�xt‖h‖xt ≤
1
2
‖f̃t‖�xt .

Claim 2 ‖f̃t‖�xt ≤ 3n.

Proof We have f̃t = μ̃t + g̃t , where g̃t = n
(
(ft − μ̃t)�yt

)
εtλ

1/2
it vit . We have

‖g̃t‖�2xt =
[
n
(
(ft − μ̃t)�yt

)
εtλ

1/2
it vit

]�
[∇2R (xt)]−1

[
n
(
(ft − μ̃t)�yt

)
εtλ

1/2
it vit

]
= n2

(
(ft − μ̃t)�yt

)2
,

since v�it [∇
2R (xt)]−1vit = 1/λit . Hence,

‖f̃t‖�xt ≤ ‖μ̃t‖�xt +‖g̃t‖�xt ≤ ‖μ̃t‖+n|(ft− μ̃t)�yt | ≤ 3n,

since ‖μ̃t‖�xt ≤ ‖μ̃t‖ ≤ 1. We also used the facts that ‖yt‖ ≤ 1 and ‖ft − μ̃t‖ ≤ 2.

Hence, from (7) we get

Φt(y) ≥ Φt(xt)−η · 3n2 +
1
16

> Φt(xt),

since η ≤ 1
25n . This concludes the proof that all boundary points of W1

2
(xt) have higher Φt value

than Φt(xt).

Lemma 14 For any time period t ≥ nk, we have

‖xt −xt+1‖2xt ≤ 4ηf̃�t (xt −xt+1).

Proof Applying the Taylor series expansion to the function Φt around the point xt , we get that for
some point zt on the line segment joining xt to xt+1, we have

Φt(xt) = Φt(xt+1)+∇Φt(xt+1)�(xt−xt+1)+(xt+1−xt)�∇2Φt(zt)(xt+1−xt) = Φt(xt+1)+‖xt+1−xt‖2zt ,

because ∇Φt(xt+1) = 0 since xt+1, the minimizer of Φt , is in the interior of K . We also used the
fact that ∇2Φt(zt) = ∇2R (zt). Thus, we have

‖xt+1−xt‖2zt = Φt(xt)−Φt(xt+1) = Φt−1(xt)−Φt−1(xt+1)+ηf̃�t (xt−xt+1) ≤ ηf̃�t (xt−xt+1),

since xt is the minimizer of Φt−1 in K . It remains to show that 14‖xt+1−xt‖2xt ≤ ‖xt+1−xt‖2zt , for
which it suffices to show 1

4∇
2R (xt)� ∇2R (zt).

By Lemma 13 we have xt+1 ∈W1/2(xt), and hence zt ∈W1/2(xt) (since zt is on the line segment
between xt and xt+1). Therefore, using (3) we have 14∇

2R (xt)� ∇2R (zt) as required.

1302

BETTER ALGORITHMS FOR BENIGN BANDITS

Proof [Lemma 9]
First, we have

(f̃t −μt)�(xt −xt+1) ≤ ‖f̃t −μt‖�xt · ‖xt −xt+1‖xt (by (1))

≤ ‖f̃t −μt‖�xt ·
√
4ηf̃�t (xt −xt+1) (Lemma 14)

≤ 2η‖f̃t −μt‖�2xt +
1
2
f̃�t (xt −xt+1).

The last inequality follows using the fact that ab ≤ 1
2(a

2+ b2) for real numbers a,b. Simplifying,
we get that

f̃�t (xt −xt+1) ≤ 4η‖f̃t −μt‖�2xt +2μ�t (xt −xt+1)
≤ 8η

(‖f̃t − μ̃t‖�2xt +‖μt − μ̃t‖�2xt)+2μ�t (xt −xt+1)
≤ 32η

(‖g̃t‖�2xt +‖μt − μ̃t‖2)+2μ�t (xt −xt+1).
The last inequality is because ‖ · ‖�x ≤ 2‖ · ‖ from (2) and the assumption that K is contained inside
the unit ball.

Using the definition of g̃t from Algorithm 3, we get that

‖g̃t‖�2xt = n2
(
(ft − μ̃t)�yt

)2
λit ·
(
v�it [∇

2R (xt)]−1vit
)

= n2
(
(ft − μ̃t)�yt

)2
≤ n2‖ft − μ̃t‖2
≤ 2n2[‖ft −μt‖2+‖μt − μ̃t‖2].

The first inequality follows by applying Cauchy-Schwarz and using the fact that ‖yt‖ ≤ 1. Plugging
this bound into the previous bound we conclude that

f̃�t (xt −xt+1) ≤ 64ηn2‖ft −μt‖2+64ηn2‖μt − μ̃t‖2+2μ�t (xt −xt+1).

Proof [Lemma 10]

Recall that μt = argminμ∑
t
τ=1 ‖fτ−μ‖2. As a first step, we show that

T

∑
τ=1
‖ft −μt‖2 ≤

T

∑
τ=1
‖ft −μT‖2.

1303

HAZAN AND KALE

This is proved by induction on t. For T = 1 the inequality is trivial; we actually have equality.
Assume correctness for some T −1. Moving to T , we have

T

∑
t=1

‖ft −μt‖2 =
T−1
∑
t=1

‖ft −μt‖2+‖fT −μT‖2

≤
T−1
∑
t=1

‖ft −μT−1‖2+‖fT −μT‖2 (By inductive hypothesis)

≤
T−1
∑
t=1

‖ft −μT‖2+‖fT −μT‖2 (μT−1 = argminx∑
T−1
t=1 ‖ft −x‖2)

=
T

∑
t=1

‖ft −μT‖2.

Hence,
T

∑
τ=1
‖ft −μt‖2 ≤

T

∑
τ=1
‖ft −μ‖2 = QT .

Proof [Lemma 11]
Any ELLIPSOIDSAMPLE step t must have t ≥ nk, so by Claim 1 the algorithm exactly implements
reservoir sampling with a reservoir of size k for each of the n coordinates.

Now, for any coordinate i, μ̃t(i) is the average of a k samples chosen without replacement from
Ft . Thus, we have E[μ̃t(i)] = μt(i), and hence E[(μ̃t(i)−μt(i))2] = VAR[μ̃t(i)].

Now consider another estimator νt(i), which averages k samples chosen with replacement from
Ft . It is a well-known statistical fact (see, e.g., Rice, 2001) that VAR[μ̃t(i)]≤ VAR[νt(i)]. Thus, we
bound VAR[νt(i)] instead.

Suppose t > nk. Let μ= 1
T ∑

T
t=1 ft . Since E[νt(i)] = μt(i), we have

VAR[νt(i)] = E[(νt(i)−μt(i))2] ≤ E[(νt(i)−μ(i))2]

=
1
k

t

∑
τ=1

1
t
(fτ(i)−μ(i))2

Summing up over all coordinates i, we get

E[‖μ̃t −μt‖2] ≤ ∑
i

VAR[νt(i)] ≤ 1
kt
Qt ≤ 1

kt
QT .

Summing up over all ELLIPSOIDSAMPLE steps t, we get

E

[
∑
t∈TE
‖μ̃t −μt‖2

]
≤ ∑

t∈TE

1
kt
QT ≤ log(T)

k
QT .

1304

BETTER ALGORITHMS FOR BENIGN BANDITS

Proof [Lemma 12]
We have

T

∑
t=1

μ�t (xt −xt+1) =
T

∑
t=1

xt+1(μt+1−μt)+μ1x1−xT+1μT+1.

Thus, since ‖xt‖ ≤ 1 and ‖μt‖ ≤ 1, we have
T

∑
t=1

μ�t (xt −xt+1) ≤
T

∑
t=2

‖μt+1−μt‖+4.

To proceed, we appeal to Lemma 16 (see Section 4.2), and apply it for xt := ‖ft − μt‖. Let
μ= 1

T ∑
T
t=1 ft . Arguing as in Lemma 10, we have

∑
t
x2t =

T

∑
t=1

‖ft −μt‖2 ≤
T

∑
t=1

‖ft −μ‖2 ≤ QT .

Notice that

μt −μt−1 =
1
t

t

∑
τ=1
fτ− 1

t−1
t−1
∑
τ=1
fτ =

1
t
ft +(

1
t
− 1
t−1)

t−1
∑
τ=1
fτ =

1
t
(ft −μt−1).

Hence,

‖μt −μt−1‖ =
1
t
‖ft −μt−1‖ ≤

1
t
xt +

1
t
‖μt −μt−1‖,

from which we conclude that for all t ≥ 2 we have ‖μt −μt−1‖ ≤ t−1
1−t−1 xt ≤ ∑t

2
t xt . Now, we apply

Lemma 16 to conclude that

T

∑
t=2

‖μt+1−μt‖+4 ≤ 2log(QT +1)+4.

4.2 Auxiliary Lemmas

In this section, we give a number of auxiliary lemmas that are independent of the analysis of the
algorithm. These lemmas give useful bounds that are used in the main analysis.

The first lemma gives a general regret bound for any follow-the-regularized-leader style algo-
rithm. The proof of this bound is essentially due to Kalai and Vempala (2005).

Lemma 15 Consider an online linear optimization instance over a convex set K , with a regular-
ization function R and a sequence {xt} defined by

xt = argmin
x∈K

{
t−1
∑
τ=1
f�τ x+R (x)

}
.

For every u ∈K , the sequence {xt} satisfies the following regret guarantee
T

∑
t=1

fTt (xt −u) ≤
T

∑
t=1

fTt (xt −xt+1)+
1
η
[R (u)−R (x1)].

1305

HAZAN AND KALE

Proof For convenience, denote by f0 = 1
ηR , and assume we start the algorithm from t = 0 with an

arbitrary x0. The lemma is now proved by induction on T .
In the base case, for T = 1, by definition we have that x1 = argminx{R (x)}, and thus f0(x1)≤

f0(u) for all u, thus f0(x0)− f0(u)≤ f0(x0)− f0(x1).
Now assume that that for some T ≥ 1, we have

T

∑
t=0

ft(xt)− ft(u) ≤
T

∑
t=0

ft(xt)− ft(xt+1).

We now prove the claimed inequality for T +1. Since xT+2 = argminx{∑T+1
t=0 ft(x)} we have:

T+1

∑
t=0

ft(xt)−
T+1

∑
t=0

ft(u) ≤
T+1

∑
t=0

ft(xt)−
T+1

∑
t=0

ft(xT+2)

=
T

∑
t=0

(ft(xt)− ft(xT+2))+ fT+1(xT+1)− fT+1(xT+2)

≤
T

∑
t=0

(ft(xt)− ft(xt+1))+ fT+1(xT+1)− fT+1(xT+2)

=
T+1

∑
t=0

ft(xt)− ft(xt+1).

In the third line we used the induction hypothesis for u= xT+2. We conclude that

T

∑
t=1

ft(xt)− ft(u) ≤
T

∑
t=1

ft(xt)− ft(xt+1)+ [−f0(x0)+ f0(u)+ f0(x0)− f0(x1)]

=
T

∑
t=1

ft(xt)− ft(xt+1)+ 1
η
[R (u)−R (x1)] .

Lemma 16 Suppose we have real numbers x1,x2, . . . ,xT such that 0≤ xt ≤ 1 and ∑t x2t ≤ Q. Then
T

∑
t=1

1
t
xt ≤ log(Q+1)+1.

Proof By Lemma 17 below, the values of xt that maximize ∑T
t=1

1
t xt must have the following

structure: there is a k such that for all t ≤ k, we have xt = 1, and for any index t > k, we have
xk+1/xt ≥ 1

k/
1
t , which implies that xt ≤ k/t. We first note that k ≤ Q, since Q≥ ∑k

t=1 x
2
t = k. Now,

we can bound the value as follows:

T

∑
t=1

1
t
xt ≤

k

∑
t=1

1
t
+

T

∑
t=k+1

k
t2
≤ log(k+1)+ k · 1

k
≤ log(Q+1)+1.

1306

BETTER ALGORITHMS FOR BENIGN BANDITS

Lemma 17 Let a1 ≥ a2 ≥ . . .aT > 0. Then the optimal solution of

max∑
i

aixi subject to

∀i : 0≤ xi ≤ 1
∑
i

x2i ≤ Q

has the following properties: x1 ≥ x2 ≥ . . .xT , and for any pair of indices i, j, with i < j, either
xi = 1, xi = 0 or xi/x j ≥ ai/a j.

Proof The fact that in the optimal solution x1 ≥ x2 ≥ . . .xT is obvious, since otherwise we could
permute the xi’s to be in decreasing order and increase the value.

The second fact follows by the Karush-Kuhn-Tucker (KKT) optimality conditions, which imply
the existence of constants μ,λ1, . . . ,λT ,ρ1, . . . ,ρT for which the optimal solution satisfies

∀i : −ai+2μxi+λi+ρi = 0.

Furthermore, the complementary slackness condition says that the constants λi,ρi are equal to zero
for all indices of the solution which satisfy xi /∈ {0,1}. For such xi, the KKT equation is

−ai+2μxi = 0,

which implies the lemma.

5. Tuning the Learning Rate: Proof of Theorem 4

Theorem 6 requires a priori knowledge of a good bound Q on the total quadratic variation QT . This
may not be possible in many situations. Typically, in online learning scenarios where a regret bound
of O(

√
AT) for some quantity AT which grows with T is desired, one first gives an online learning

algorithm L(η) where η≤ 1 is a learning rate parameter which obtains a regret bound of

RegretT ≤ ηAT +O(1/η).

Then, we can obtain a master online learning algorithm whose regret grows likeO(
√
AT) as follows.

We start with η = 1, and run the learning algorithm L(η). Then, the master algorithm tracks how
AT grows with T . As soon as AT quadruples, the algorithm resets η to half its current value, and
restarts with L(η). This simple trick can be shown to obtain O(

√
AT) regret.

Unfortunately, this trick doesn’t work in our case, where AT = QT , since we cannot even com-
pute QT accurately in the bandit setting. For this reason, obtaining a regret bound of Õ(

√
QT)

becomes quite non-trivial. In this section, we give a method to obtain such a regret bound. At its
heart, we still make use of the η-halving trick, but in a subtle way. We assume that we know a good
bound on log(T) in advance. This is not a serious restriction, it can be circumvented by standard
tricks, but we make this assumption in order to simplify the exposition.

We design our master algorithm in the following way. Let L(η) be Algorithm 1 with the given
parameter η and k = log(T). We initialize η0 = 1

25n . The master algorithm then runs in phases

1307

HAZAN AND KALE

indexed by i = 0,1,2, In phase i, the algorithm runs L(ηi) where ηi = η0/2i. The decision to
end a phase i and start phase i+1 is taken in the following manner: let ti be first period of phase i,
and let t be the current period. We start phase i+1 as soon as

t

∑
τ=ti

f̃�τ (xτ−xτ+1) ≥
2
ηi
ϑ log(T).

Thus, phase i ends at time period t − 1, and the point xt computed by L(ηi) is discarded by the
master algorithm since L(ηi+1) starts at this point and xt is reset to the initial point of L(ηi+1).
Note that this sum can be computed by the algorithm, and hence the algorithm is well-defined. This
completes the description of the master algorithm.

5.1 Analysis

Define Ii = {ti, ti+1, . . . , ti+1−1}, that is, the interval of time periods which constitute phase i.
By Lemma 8, for any u ∈K , we have

∑
t∈Ii
f̃�t (xt −u) ≤ ∑

t∈Ii
f̃�t (xt −xt+1)+

2
ηi
ϑ log(T) ≤ 4

ηi
ϑ log(T).

Note that this inequality uses the fact that the sum ∑tτ=ti f̃
�
τ (xτ−xτ+1) is a monotonically increasing

as t increases, since by Lemma 14, we have that f̃�t (xt −xt+1)≥ 0.
Let i� be the index of the final phase. Summing up this bound over all phases, we have

T

∑
t=1

f̃�t (xt −u) ≤
i�

∑
i=0

4
ηi
ϑ log(T) ≤ 8

ηi�
ϑ log(T).

Then, using Lemma 7 we get that the expected regret of this algorithm is bounded by

E

[
T

∑
t=1

f�t (yt −u)
]
≤ E

[
1
ηi�

]
· (8ϑ log(T))+O(n log2(T)). (8)

We now need to bound E
[
1
ηi�

]
. If the choice of the randomness in the algorithm is such that i� = 0,

then 1
ηi�
≤ 25n is an upper bound.

Otherwise, i� > 0, and so the phase i�−1 is well-defined. For brevity, let J = Ii�−1 ∪ {ti�},
and let JE be the ELLIPSOIDSAMPLE steps in J. For this interval, we have (here, xti� is the point
computed by L(ηi�−1), which is discarded by the master algorithm when phase i� starts):

∑
t∈J
f̃�t (xt −xt+1) ≥

2
ηi�−1

ϑ log(T) =
1
ηi�

ϑ log(T).

Applying the bound (6), and using the fact that ηi�−1 = 2ηi� , we get

∑
t∈J
f̃�t (xt −xt+1) ≤ 128ηi�n2∑

t∈J
‖ft −μt‖2+128ηi�n2 ∑

t∈JE
‖μt − μ̃t‖2+2∑

t∈J
μ�t (xt −xt+1).

Putting these together, and dividing by ηi� , we get

1

η2i�
ϑ log(T) ≤ 128n2∑

t∈J
‖ft −μt‖2+128n2 ∑

t∈JE
‖μt − μ̃t‖2+

2
ηi�
∑
t∈J
μ�t (xt −xt+1). (9)

1308

BETTER ALGORITHMS FOR BENIGN BANDITS

Lemmas 10 and 12 give us the following upper bounds:

∑
t∈J
‖ft −μt‖2 ≤ QT and ∑

t∈J
μ�t (xt −xt+1) ≤ 2log(QT +1)+4.

Denote the expectation of a random variable conditioned on all the randomness before phase i�−1
by Ei�−1. By Lemma 11 we have the bound

Ei�−1

[
∑
t∈JE
‖μt − μ̃t‖2

]
≤ log(T)

k
QT .

Taking the expectation conditioned on all the randomness before phase i�−1 on both sides of in-
equality (9) and applying the above bounds, and using k = log(T), we get

1

η2i�
ϑ log(T) ≤ 256n2QT +

4log(QT +1)+8
ηi�

.

Hence, one of 256n2QT or 2
ηi�
log(QT) must be at least 1

2η2i�
ϑ log(T). In the first case, we get the

bound 1
ηi�
≤ 25n

√
QT

ϑ log(T) . In the second case, we get the bound
1
ηi�
≤ 8log(QT+1)+16

ϑ log(T) .

In all cases (including the case when i� = 0), we have 1
ηi�
≤ O
(
n
√

QT
ϑ log(T) +n

)
, and hence we

can bound

E
[
1
ηi�

]
· (ϑ log(T)) = O

(
n
√
ϑQT logT +nϑ log(T)

)
.

Plugging this into (8), and for k = log(T), we get that the expected regret is bounded by

E

[
T

∑
t=1

f�t (yt −u)
]

= O
(
n
√
ϑQT log(T)+n log2(T)+nϑ log(T)

)
.

6. Conclusions and Open Problems

In this paper, we gave the first bandit online linear optimization algorithm whose regret is bounded
by the square-root of the total quadratic variation of the cost vectors. These bounds naturally inter-
polate between the worst-case and stochastic models of the problem.4

This algorithm continues a line of work which aims to prove variation-based regret bounds for
any online learning framework. So far, such bounds have been obtained for four major online learn-
ing scenarios: expert prediction, online linear optimization, portfolio selection (and exp-concave
cost functions), and bandit online linear optimization in this paper.

The concept of variational regret bounds in the setting of the ubiquitous multi-armed bandit
problem opens many interesting directions for further research and open questions:

1. Improve upon the bounds presented in this paper by removing the dependence on the number
of iterations completely - that is, remove the poly(log(T)) terms in the regret bound.

4. In the stochastic multi-armed bandit setting, the regret is known to be bounded by a logarithm in the number of
iterations rather than square root (Auer et al., 2002). However, note that the regret is defined differently in the
stochastic case, which makes the logarithmic dependency even possible. In this paper we consider a stronger notion
of worst-case regret.

1309

HAZAN AND KALE

2. For the special case of the classic non-stochastic MAB problem, obtain regret bounds which
depend on the variation of the best action in hindsight (vs. the total variation).

3. Is it possible to improve regret for the classic non-stochastic multi-armed bandit problem
without using the self-concordance methodology (perhaps by extending the algorithm in
Hazan and Kale (2008) to the bandit setting)?

References

J. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark: An efficient algorithm for bandit
linear optimization. In The 21st Annual Conference on Learning Theory (COLT)., 2008.

J. Audibert and S. Bubeck. Regret bounds and minimax policies under partial monitoring. J. Mach.
Learn. Res., 9999:2785–2836, December 2010. ISSN 1532-4435. URL http://portal.acm.
org/citation.cfm?id=1953011.1953023.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit prob-
lem. Mach. Learn., 47(2-3):235–256, 2002. ISSN 0885-6125. doi: http://dx.doi.org/10.1023/A:
1013689704352.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit
problem. SIAM J. Comput., 32(1):48–77, 2003. ISSN 0097-5397.

B. Awerbuch and R. D. Kleinberg. Adaptive routing with end-to-end feedback: distributed learning
and geometric approaches. In STOC, pages 45–53, 2004. ISBN 1-58113-852-0.

A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algorithms,
and Engineering Applications, volume 2 ofMPS/SIAM Series on Optimization. SIAM, Philadel-
phia, 2001.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,
2006.

N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for prediction with
expert advice. Mach. Learn., 66(2-3):321–352, 2007. ISSN 0885-6125.

V. Dani and T. P. Hayes. Robbing the bandit: less regret in online geometric optimization against
an adaptive adversary. In SODA, pages 937–943, 2006. ISBN 0-89871-605-5.

V. Dani, T. Hayes, and S. Kakade. The price of bandit information for online optimization. In NIPS,
2008.

A. D. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the bandit setting:
gradient descent without a gradient. In SODA, pages 385–394, 2005. ISBN 0-89871-585-7.

J. Hannan. Approximation to bayes risk in repeated play. In M. Dresher, A. W. Tucker, and P. Wolfe,
editors, Contributions to the Theory of Games, volume III, pages 97–139, 1957.

E. Hazan and S. Kale. Extracting certainty from uncertainty: Regret bounded by variation in costs.
In The 21st Annual Conference on Learning Theory (COLT)., 2008.

1310

BETTER ALGORITHMS FOR BENIGN BANDITS

E. Hazan and S. Kale. Better algorithms for benign bandits. In SODA ’09: Proceedings of the
twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 38–47, Philadelphia,
PA, USA, 2009a. Society for Industrial and Applied Mathematics.

E. Hazan and S. Kale. On stochastic and worst-case models for investing. In Advances in Neural
Information Processing Systems (NIPS) 22, 2009b.

A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal of Computer
and System Sciences, 71(3):291–307, 2005.

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied
Mathematics, 6:4–22, March 1985.

H. B. McMahan and A. Blum. Online geometric optimization in the bandit setting against an
adaptive adversary. In COLT, pages 109–123, 2004.

A.S. Nemirovskii. Interior point polynomial time methods in convex programming, 2004. Lecture
Notes.

Y. E. Nesterov and A. S. Nemirovskii. Interior Point Polynomial Algorithms in Convex Program-
ming. SIAM, Philadelphia, 1994.

J. A. Rice. Mathematical Statistics and Data Analysis. Duxbury Press, April
2001. ISBN 0534399428. URL http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20\&path=ASIN/0534399428.

H. Robbins. Some aspects of the sequential design of experiments. Bull. Amer. Math. Soc., 58(5):
527–535, 1952.

J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57, 1985.

1311

Journal of Machine Learning Research 12 (2011) 1313-1347 Submitted 3/10; Revised 10/10; Published 4/11

A Family of Simple Non-Parametric Kernel Learning Algorithms

Jinfeng Zhuang ZHUA0016@NTU.EDU.SG
Ivor W. Tsang IVORTSANG@NTU.EDU.SG
Steven C.H. Hoi CHHOI@NTU.EDU.SG
School of Computer Engineering
Nanyang Technological University
50 Nanyang Avenue, Singapore 639798

Editor: Tony Jebara

Abstract

Previous studies of Non-Parametric Kernel Learning (NPKL) usually formulate the learning task
as a Semi-Definite Programming (SDP) problem that is often solved by some general purpose SDP
solvers. However, for N data examples, the time complexity of NPKL using a standard interior-
point SDP solver could be as high as O(N6.5), which prohibits NPKL methods applicable to real
applications, even for data sets of moderate size. In this paper, we present a family of efficient
NPKL algorithms, termed “SimpleNPKL”, which can learn non-parametric kernels from a large
set of pairwise constraints efficiently. In particular, we propose two efficient SimpleNPKL algo-
rithms. One is SimpleNPKL algorithm with linear loss, which enjoys a closed-form solution that
can be efficiently computed by the Lanczos sparse eigen decomposition technique. Another one is
SimpleNPKL algorithm with other loss functions (including square hinge loss, hinge loss, square
loss) that can be re-formulated as a saddle-point optimization problem, which can be further re-
solved by a fast iterative algorithm. In contrast to the previous NPKL approaches, our empirical
results show that the proposed new technique, maintaining the same accuracy, is significantly more
efficient and scalable. Finally, we also demonstrate that the proposed new technique is also ap-
plicable to speed up many kernel learning tasks, including colored maximum variance unfolding,
minimum volume embedding, and structure preserving embedding.

Keywords: non-parametric kernel learning, semi-definite programming, semi-supervised learn-
ing, side information, pairwise constraints

1. Introduction

Kernel methods have been successfully applied in various real applications ranging from data min-
ing, computer vision and bioinformatics, and often show the state-of-the-art performance (refer to
Hofmann, Schölkopf, and Smola, 2008 and references therein). Empirical evidences show that the
generalization performance of kernel methods is often dominated by the chosen kernel function.
Inappropriate kernels could lead to sub-optimal or even poor results. Therefore, the choice of an
effective kernel plays a crucial role in many kernel based machine learning methods. Typically,
traditional kernel methods, for example, Support Vector Machines (SVMs), often adopt a prede-
fined kernel function that is empirically chosen from a pool of parametric kernel functions, such
as polynomial and Gaussian kernels. One major limitation of such an approach is that choosing an
appropriate kernel function manually may require a certain level of expert knowledge, which may

c©2011 Jinfeng Zhuang, Ivor W. Tsang and Steven C.H. Hoi.

ZHUANG, TSANG AND HOI

be difficult in some situations. Another limitation lies in the difficulty of tuning optimal parameters
for the predefined parametric kernel functions.

To address these limitations, a bunch of research on learning effective kernels from data auto-
matically has been actively explored recently. An example technique is Multiple Kernel Learning
(MKL) (Lanckriet et al., 2004; Bach et al., 2004), which aims at learning a convex combination of
several predefined parametric kernels in order to identify a good target kernel for the applications.
MKL has been actively studied in many applications, including bio-informatics (Sonnenburg et al.,
2006a,b), computer vision (Duan et al., 2009; Sun et al., 2009; Vedaldi et al., 2009), and natural
language processing (Mao and Tsang, 2011), etc. Despite some encouraging results reported, these
techniques often assume the target kernel function is of some parametric forms, which limits their
capacity of fitting diverse patterns in real complex applications.

Instead of assuming some parametric forms for the target kernel, an emerging group of kernel
learning studies are devoted to Non-Parametric Kernel Learning (NPKL) methods, which aim to
learn a Positive Semi-Definite (PSD) kernel matrix directly from the data. Example techniques
include Cristianini et al. (2002), Lanckriet et al. (2004), Zhu et al. (2005), Zhang and Ando (2006),
Kulis et al. (2006), Hoi et al. (2007), Kulis et al. (2009) and Li et al. (2009); Mao and Tsang (2010).
NPKL provides a flexible learning scheme of incorporating prior/side information into the known
similarity measures such that the learned kernel can exhibit better ability to characterize the data
similarity. However, due to the PSD constraint, the resulting optimization task of NPKL is often in
the form of Semi-Definite Programing (SDP). Many existing studies have simply solved such SDP
problems by some general purpose SDP solvers, which often have the time complexity of O(N6.5),
making the NPKL solution infeasible to real world large-scale applications.

In this paper, we aim at addressing the efficiency and scalability issues related to the NPKL
techniques proposed by Hoi et al. (2007) and Zhuang et al. (2009), which have shown the state-
of-the-art empirical performance in several applications (Zhuang and Hoi, 2010). In particular, the
main contributions of this paper include:

1. We propose a family of Simple Non-Parametric Kernel Learning (SimpleNPKL) algorithms
for efficient and scalable non-parametric kernel learning.

2. We present the first SimpleNPKL algorithm with linear loss function to learn non-parametric
kernels from pairwise constraints. The algorithm enjoys a closed-form solution that can be
computed efficiently by sparse eigen-decomposition techniques, for example, the Lanczos
algorithm.

3. To achieve more robust performance, we propose the second SimpleNPKL algorithm that has
other loss functions (including square hinge loss, hinge loss and square loss), which can be
re-formulated as a mini-max optimization problem. This optimization can be solved by an
efficient iterative projection algorithm that mainly involves the computation of sparse eigen
decomposition.

4. To further speed up the SimpleNPKL algorithm of other loss functions, we investigate some
active constraint selection techniques to reduce the computation cost at each iteration step.

5. We conducted extensive experiments, which show that SimpleNPKL is significantly more
efficient than existing NPKL methods. With the same linear loss function, SimpleNPKL is

1314

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

on average 40 times faster than the original NPKL using a standard SDP solver. This makes
the NPK learning techniques practical to large-scale applications.

6. We extend the proposed SimpleNPKL scheme to resolve other non-parametric kernel learn-
ing problems, including colored maximum variance unfolding (Song et al., 2008), minimum
volume embedding (Shaw and Jebara, 2007), and structure preserving embedding (Shaw and
Jebara, 2009). The encouraging results show that our technique is able to speed up the existing
non-parametric kernel learning solutions significantly for several real-world applications.

The rest of this paper is organized as follows. Section 2 presents some background of kernel
learning, briefly reviews some representative work on kernel learning research, and indicates the
motivations of our work. Section 3 introduces a framework of Non-parametric Kernel Learning
(NPKL) from pairwise constraints proposed by Hoi et al. (2007). Section 4 describes our proposed
SimpleNPKL algorithms, which aim to resolve the NPKL task efficiently. Section 5 discusses some
implementation issues for developing a fast solver in practice. Section 6 extends our technique
to speed up other kernel learning methods. Section 7 gives our empirical results and Section 8
concludes this work.

2. Background Review and Related Work

In this Section, we review some backgrounds of kernel methods, and related work on kernel learning
research.

2.1 Notations

For the notation throughout the paper, we adopt bold upper case letter to denote a matrix, for exam-
ple, A ∈ R

m×n, and Ai j to denote the entry at the ith row and jth column of the matrix A, and bold
lower case letter to denote a vector, for example, x ∈ R

d . We use 0 and 1 to denote the column vec-
tors with all zeros and all ones, respectively, and I to denote an identity matrix. For some algebraic
operations:

• x′ denotes the transpose of x;
• [x]i denotes the ith element of x;
• xp denotes the element-wise power of x with degree p;
• |x| denotes the vector with entries equal to the absolute value of the entries of x;
• ‖x‖p denotes p-norm of x, that is, p

√
∑i[xp]i;

• xi ◦x j denotes the element-wise multiplication between two vectors xi and x j;
• x≥ 0 means all entries in x is larger than or equal to 0;
• K� 0 denotes a matrix K ∈ R

n×n that is symmetric and positive semi-definite;
• Kp denotes the power of a symmetric matrix K with degree p;
• trK= ∑i Kii denotes the trace of a matrix K;
• 〈A,B〉 = tr AB = ∑i j Ai jBi j computes the inner product between two square matrices A and
B. We also use it to denote general inner product of two square matrices.

• ‖K‖F =
√
∑i j K

2
i j =
√
trKK denotes the Frobenius norm of a matrix K;

• A◦B denotes the element-wise multiplication between two matrices A and B.

1315

ZHUANG, TSANG AND HOI

2.2 Kernel Methods

In general, kernel methods work by embedding data in some Hilbert spaces, and searching for
linear relations in the Hilbert spaces. The embedding is often done implicitly by only specifying
inner products between any pair of examples (Hofmann et al., 2008). More formally, given an input
space X , and an embedding space F , we can define a mapping Φ : X → F . For any two examples
xi ∈X and x j ∈X , the function k that returns the inner product between the two embedded examples
in the space F is known as the kernel function, that is,

k(xi,x j) = 〈Φ(xi),Φ(x j)〉.
Given the kernel function k, a matrixK∈Rn×n is called a kernel matrix, also known as gram matrix,
if Ki j = k(xi,x j) for a collection of examples x1, . . . ,xn ∈ X . Note that the choice of kernel plays a
central role for the success of kernel methods. However, the selection of proper kernels is nontrivial.
An inappropriate kernel could result in sub-optimal or even poor performances. Therefore, learning
kernels from data has become an active research topic.

2.3 Kernel Learning

We refer the term kernel learning to the problem of learning a kernel function or a kernel matrix
from given data, corresponding to the inductive and transductive learning setting, respectively. Due
to the large volume of works on this topic, we do not intend to make this Section encyclopedic.
Instead, we summarize some key ideas behind representative kernel learning schemes. We discuss
the strengths and limitations of existing NPKLmethods, which motivates our efficient SimpleNPKL
solution.

2.3.1 MULTIPLE KERNEL LEARNING AND BEYOND

Multiple kernel learning (MKL), initiated by Lanckriet et al. (2004), has been widely studied in
classical supervised learning tasks. The goal is to learn both the associated kernel of a Reproducing
Kernel Hilbert Space (RKHS) and the classifier in this space simultaneously:

minK∈K maxα α′1− 1
2
〈(α◦y)(α◦y)′,K〉 (1)

s.t. α′y= 0, 0≤ αi ≤C,
where the solution space K is assumed to be in a convex hull spanned from m basic kernels: K =
{∑i piKi : 0 ≤ pi ≤ 1, i = 1, . . . ,m}. Thus the optimization over K is reduced to optimizing the
weight vector p. Many studies have been focused on how to efficiently solve the optimization in (1)
(Bach et al., 2004; Sonnenburg et al., 2006b; Rakotomamonjy et al., 2008; Xu et al., 2008).

The assumption of MKL on the target kernel K = ∑i piKi implies to concatenate the mapped
feature spaces. Therefore, MKL is a natural choice where the data has multiple views or heteroge-
neous representations. Apparently, there is “no free lunch” for kernel selection. Based on different
assumptions about the optimization domain K , one can propose different objective functions. For
example, generating a series of base kernels by varying the free kernel parameters could make the
cardinality |K | arbitrarily large. Argyriou et al. (2005) and Gehler and Nowozin (2008) discussed
some interesting techniques for such situation. Other variants of MKL techniques can also be found
in Lewis et al. (2006), Gönen and Alpaydin (2008), Varma and Babu (2009) and Zhuang et al.
(2011).

1316

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

One basic motivation of kernel learning is to further relax the optimization domain K such
that the learned kernel can be as flexible as possible to fit the complex data. This motivates Non-
Parametric Kernel Learning (NPKL) methods, which do not assume any parametric form of the
target kernel functions/matrices.

2.3.2 NON-PARAMETRIC KERNEL LEARNING

By simply relaxing the optimization domain K , one can turn a regular kernel learning scheme to
some NPKL formulations. For example, a recent approach, called indefinite kernel learning (Luss
and d’Aspremont, 2008; Chen and Ye, 2008; Ying et al., 2010), extends the MKL formulation to
learn non-parametric kernels from an indefinite kernel K0, which does not assume the convex hull
assumption. The indefinite kernel learning rewrites the objective function of (1) as follows:

minK�0maxα α′1− 1
2
〈(α◦y)(α◦y)′,K〉+ γ‖K−K0‖2F , (2)

where K0 is an initial kernel, which could be indefinite.
The kernel learning formulation discussed above aims to optimize both the classifier and the

kernel matrix simultaneously. Some theoretical foundations, such as existence and uniqueness of
the target kernel, were given in Micchelli and Pontil (2005) and Argyriou et al. (2005).

Another line of kernel learning research mainly focuses on optimizing the kernel only with re-
spect to some criteria under some prior constraints or heuristics. An important technique is the
kernel target alignment criterion proposed in Cristianini et al. (2002), which guides the kernel learn-
ing task to optimize the kernel by maximizing the alignment between the training data examples
and the class labels of the training examples:

maxK�0
〈KNl ,T〉√〈KNl ,KNl 〉〈T,T〉

, (3)

where T= yy′ is the outer product of labels,KNl is the sub-matrix of which the entry values are ker-
nel evaluation on Nl labeled data examples. Note that T could be obtained by empirical experiments
and more general than class labels. The objective (3) only involves the labeled data. A popular
assumption is to treatK to be spanned by the eigen-vectors of some known kernel defined over both
the labeled and unlabeled data (Chapelle et al., 2003; Zhu et al., 2005; Hoi et al., 2006; Zhang and
Ando, 2006; Johnson and Zhang, 2008): K = {∑iλivv

′ : λi ≥ 0}. Thus the optimization variables
are reduced from the entire kernel matrix K to the kernel spectrum λ.

Recently Hoi et al. (2007) proposed an NPKL technique that aims to learn a fully non-parametric
kernel matrix from pairwise constraints. The target kernel is maximally aligned to the constraint
matrix T and minimally aligned to the graph Laplacian. The objective can be deemed as a form of
kernel target alignment without normalization. Since our proposed family of SimpleNPKL algo-
rithms follows this framework, we will discuss the details of this formulation in Section 3.

Besides the normalized inner product, which measures the similarity between K and the tar-
get T, researchers have also proposed dissimilarity based criteria. In fact, the preceding indefinite
kernel learning (2) employs the Euclidean distance to measure the dissimilarity between kernels.
Besides, another example in Kulis et al. (2006) employed the Bregman divergence to measure dis-
tance between K and a known kernel K0:

minK�0 Dφ(K,K0)� trKK−10 − logdet(KK−10)−N, (4)

1317

ZHUANG, TSANG AND HOI

where Dφ is a Bregman divergence (Kulis et al., 2006).
The optimization over the above learning objective function (3) or (4) will simply return the

trivial solution K0 without additional constraints, which would make NPKL meaningless. In prac-
tice, some prior knowledge about the target kernel will be added to constrain the solution space K .
Most of the existing constraints over the entries ofK could be expressed by trKT≤ b. For example,
as discussed in Kwok and Tsang (2003), the square of distance between two data examples xi and
x j in the feature space can be expressed by ‖Φ(xi)−Φ(x j)‖22 = Kii+Kj j− 2Ki j = trKTi j, where
Ti j is a matrix of N×N only taking non-zeros at Tii = Tj j = 1,Ti j = Tji = −1. Moreover, one can
introduce slack variables for soft constraints.

Besides, some regularization terms over kernel K are often included during the optimization
phase. For example, fixing the trace trK= 1 is rather common in SDP solvers.

At last, we summarize the typical schemes of existing NPKL methods:
• To encourage the similarity (e.g., kernel target alignment) or penalize the distance (e.g., Breg-
man divergence) to some prior similarity information;
• To enforce some constraints to the kernel K with prior heuristics, such as distance constraint
Kii+Kj j−2Ki j = d2i j, or side information, etc; and
• To include regularization terms over K to control capacity, such as trK= 1.
By the above steps, NPKL provides a flexible scheme to incorporate more prior information

into the target kernel. Due to the non-parametric nature, the solution space K is capable of fitting
diverse empirical data such that the learned kernel K can be more effective and powerful to achieve
better empirical performance than traditional parametric kernel functions.

2.3.3 OPTIMIZATION ASPECTS

Despite the powerful capacity achieved by NPKL, one key challenge with NPKL is the difficulty of
the resulting optimization problem, in which
• the whole gram matrix K is treated as the optimization variable, that is, O(N2) variables;
• the kernel matrix K must be positive semi-definite.

As a result, NPKL is often turned into a Semi-Definite Programming (SDP) problem. For instance,
a NPKL problem to learn a kernel matrix K with m linear constraints is written as follows:

max
K�0

tr CK : tr Ti jK= bi j, (5)

where C and Ti j’s are N×N symmetric matrices and bi j’s are scalars, and its dual problem can be
rewritten as:

min
y
b′y : C−∑

(i, j)

Ti jyi j� 0, (6)

where y is the vector of dual variables yi j’s for the linear constraints in (5) and b is the vector of
bi j’s.

Typically, this SDP problem of NPKL is usually solved by applying a general purpose SDP
solver. Among various SDP solvers, the interior-point algorithm is one of the state-of-the-art solu-
tions (Boyd and Vandenberghe, 2004). From Lobo et al. (1998), the time complexity per iteration of
the SDP problem (6) is O(m2N2). Using the primal-dual method for solving this SDP, the accuracy
of a given solution can be improved by an absolute constant factor in O(

√
N) iterations (Nesterov

1318

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

and Nemirovskii, 1994). Whenm approaches toO(N2), the overall computation complexity is often
as high as O(N6.5), which makes NPKL inapplicable to real applications.

In this work, we focus on solving the efficiency and scalability issues of NPKL (Zhuang et al.,
2009). In particular, we propose a family of efficient SimpleNPKL algorithms that can solve large-
scale NPKL problems efficiently. Moreover, we also show that the proposed algorithms are rather
general, which can be easily extended to solving other kernel learning applications, including di-
mensionality reduction and data embedding applications.

3. A Framework of Non-Parametric Kernel Learning from Pairwise Constraints

In this Section, we introduce the framework of Non-Parametric Kernel Learning (NPKL) (Hoi et al.,
2007; Zhuang et al., 2009), which aims to learn non-parametric kernels from side information,
which is presented in a collection of must-link and cannot-link pairs.

3.1 Side / Label Information

Let U = {x1,x2, . . . ,xN} denote the entire data collection, where each data point xi ∈ X . Consider
a set of Nl labeled data examples, L = {(x1,y1) . . . ,(xNl ,yNl)}, one can use yiy j as the similarity
measurement for any two patterns xi and x j. Sometimes, it is possible that the class label informa-
tion is not readily available, while it is easier to obtain a collection of similar (positive) pairwise
constraints S (known as “must-links”, that is, the data pairs share the same class) and a collection
of dissimilar (negative) pairwise constraintsD (known as “cannot-links”, that is, the data pairs have
different classes). These pairwise constraints are often referred to as side information.

In general, kernel learning with labeled data can be viewed as a special case of kernel learning
with side information (Kwok and Tsang, 2003; Kulis et al., 2006; Hoi et al., 2007), that is, one can
construct the sets of pairwise constraints S and D from L . In real applications, it is often easier to
detect pairwise constraint while the class label is difficult to obtain. For example, in bioinformatics,
the interaction between two proteins can be identified by empirical experiments. These interactions
are expressed naturally by pairwise constraints. However, it could be very difficult to judge the
protein function, which corresponds to class labels. In the sequel, we focus on learning kernels
from pairwise constraints.

Given S andD , we construct a similarity matrix T∈RN×N to represent the pairwise constraints,
that is,

Ti j =

⎧⎨⎩
+1 (xi,x j) ∈ S
−1 (xi,x j) ∈D
0 otherwise.

(7)

A straightforward and intuitive principle for kernel learning is that the kernel entry Ki j should be
aligned with the side information Ti j as much as possible (Cristianini et al., 2002), that is, the
alignment Ti jKi j of each kernel entry is maximized.

3.2 Locality Preserving Regularization

In addition to side/label information, preserving the intrinsic geometric structure of the data have
also been explored to improve the performance of kernel learning. Typically, most existing ker-
nel learning approaches (Kulis et al., 2006; Hoi et al., 2007; Hoi and Jin, 2008) adopt the low

1319

ZHUANG, TSANG AND HOI

dimensional data manifold (Sindhwani et al., 2005) for preserving the locality of the data in kernel
learning. The following reviews an approach for exploring low dimensional data manifold in kernel
learning (Hoi et al., 2007).

Let us denote by f (x,x′) a similarity function that measures the similarity between any two
data points xi and x j, and S ∈ R

N×N is a similarity matrix where each element Si j = f (xi,x j) ≥ 0.
Note that f (·, ·) does not have to be a kernel function that satisfies the Mercer’s condition. For a
given N data examples, a kernel matrix K can be expressed as K=V′V� 0, where V= [v1, . . . ,vN]
is the matrix of the embedding of the N data examples. The regularizer of the kernel matrix K,
which captures the local dependency between the embedding of vi and v j (i.e., the low dimensional
embedding of similar data examples should be similar w.r.t. the similarity Si j), can be defined as:

Ω(V,S) =
1
2

N

∑
i, j=1

Si j

∥∥∥∥∥ vi√Di
− v j√

Dj

∥∥∥∥∥
2

2

= tr (VLV
′
) = tr (LK), (8)

where L is the graph Laplacian matrix defined as:

L= I−D−1/2SD−1/2, (9)

where D = diag(D1,D2, . . . ,DN) is a diagonal matrix with the diagonal elements defined as Di =

∑N
j=1 Si j.

3.3 Formulation of Non-Parametric Kernel Learning

Taking into consideration of both the side information in (7) and the regularizer in (8), the NPKL
problem is then formulated into the loss + regularization framework (Hoi et al., 2007) as follows:

min
K�0

tr LK+C∑(i, j)∈(S∪D) �
(
Ti jKi j

)
, (10)

which generally belongs to a Semi-Definite Programming (SDP) problem (Boyd and Vandenberghe,
2004). Here,C> 0 is a tradeoff parameter to control the empirical loss1 �(·) of the alignment Ti jKi j
of the target kernel and the dependency among data examples with respect to the intrinsic data
structure.

4. SimpleNPKL: Simple Non-Parametric Kernel Learning

In this Section, we present a family of efficient algorithms for solving the NPKL problem in (10).
We refer to the proposed efficient algorithms as “SimpleNPKL” for short.

4.1 Regularization on K

As aforementioned, the solution space of NPKL has been relaxed to boost its flexibility and capacity
of fitting diverse patterns. However, arbitrarily relaxing the solution space K could result in over-
fitting. To alleviate this problem, we introduce a regularization term:

tr (Kp), (11)

1. The common choice of the loss function �(·) can be hinge loss, square hinge loss or linear loss.

1320

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

where p ≥ 1 is a parameter to regulate the capacity of K. Similar regularization terms on K have
also been adopted in previous kernel learning studies. For example, Cristianini et al. (2002) used
‖K‖F =

√〈K,K〉 =√tr (K2) in the objective to penalize the complexity of K; while Lanckriet
et al. (2004) proposed to adopt a hard constraint tr (K)≤ B, where B> 0 a constant, to control the
capacity of K.

We refer the modified NPK learning problem with the regularization term (11) either in the ob-
jective or in the constraint to as Simple Non-Parametric Kernel Learning (SimpleNPKL), which can
be solved efficiently without engaging any standard SDP solvers. Next we present two SimpleNPKL
algorithms that adopt several different types of loss functions.

4.2 SimpleNPKL with Linear Loss

First of all, we consider a linear loss function �(f) =− f , and rewrite the formulation of (10) as the
SimpleNPKL formulation:

min
K
tr

((
L−C ∑

(i, j)∈(S∪D)

Ti j

)
K

)
: K� 0, trKp≤B, (12)

where Ti j is the matrix of setting the (i, j)-th entry to Ti j and other entries to 0. To solve this
problem, we first present a proposition below.

Proposition 1 Given A is any symmetric matrix such that A = Pdiag(σ)P′, where P contains
columns of orthonormal eigenvectors of A and σ is a vector of the corresponding eigenvalues,
and B is any positive constant, the optimal solution K∗ to the following SDP problem for p> 1:

max
K

tr AK : K� 0, trKp ≤ B, (13)

can be expressed as the following closed-form solution:

K∗ =

⎛⎝ B

tr A
p

p−1
+

⎞⎠ 1
p

A
1
p−1
+ (14)

where A+ = Pdiag(σ+)P′, and σ+ is a vector with entries equal to max(0, [σ]i).
For p= 1, the optimal solution K∗ can be expressed as the following closed-form solution:

K∗ = BA1

where A1 = Pdiag(σ1)P′, and σ1 is a vector with entries equal to 1
∑i:[σ]i=maxi [σ]i

1 for all i that [σ]i =

maxi[σ]i; otherwise, the entries are zeros.

Proof By introducing a dual variable γ≥ 0 for the constraint trKp≤ B, and Z∈ S n+ (S n+ is self-dual)
for the constraint K� 0, we have the Lagrangian of (13):

L(K;γ,Z) = tr AK+ γ(B− trKp)+ trKZ.

By the Karush-Kuhn-Tucker (KKT) conditions, we have:

A− γpKp−1+Z= 0 and trKZ= 0.

1321

ZHUANG, TSANG AND HOI

First, we show that tr (KZ) = 0 is equivalent to KZ = ZK = 0. Since K� 0,Z� 0, we have
tr (KZ) = tr (K1/2K1/2Z1/2Z1/2) = ‖K1/2Z1/2‖2F . Thus, tr (KZ) = 0 follows that K1/2Z1/2 = 0.
Pre-multiplying by K1/2 and post-multiplying by Z1/2 yields KZ= 0, which in turn implies KZ=
0= (KZ)′ = ZK. Hence, K and Z can be simultaneously diagonalized by the same set of orthonor-
mal eigenvectors (Alizadeh et al., 1997). From the first KKT condition we have A = γpKp−1−Z.
Consequently, A can also be diagonalized with the same eigenvectors as K and Z.

Assume A = Pdiag(σ)P′, where P contains columns of orthonormal eigenvectors of A, and σ
is the vector of the corresponding eigenvalues. Then, K = Pdiag(λ)P′ and Z = Pdiag(μ)P′, where
λ≥ 0 and μ≥ 0 denote the vector of the eigenvalues of K and Z respectively. Therefore, we have

trKp = ‖λ‖pp ≤ B, (15)

tr AK = λ′σ, (16)

σ = γpλp−1−μ, (17)

λ′μ = 0. (18)

Together with λ≥ 0 and μ≥ 0, and from (18), [λ]i and [μ]i cannot be both non-zeros. Hence, from
(17), we know σ+ = γpλp−1 contains all positive components of σ. Moreover, from (16) and λ≥ 0,
together with the constraint (15), the SDP problem (13) is reduced to

max
λ

λ′σ+ : ‖λ‖pp ≤ B.

By Hölder inequality, we have λ′σ+ ≤ ‖λ‖p‖σ+‖q, where it holds for 1/p+1/q= 1. The equality
is achieved if and only if |λ|p and |σ+|q are linearly dependent. Thus we can scaleK satisfying (15)
to arrive at the closed-form solution of K in (14) for p> 1.

For p = 1, from Equations (15) and (16), the optimization task is simplified as maxλ′σ :
λ ≥ 0,‖λ‖1 ≤ B. Due to the linearity, the maximum objective value is obtained by choosing
[λ]i = B/∑i:[σ]i=maxi[σ]i 1 for all i that [σ]i =maxi[σ]i; otherwise, [λ]i = 0.

Based on Proposition 1, we can easily solve the SimpleNPKL problem. In particular, by setting
A =C∑(i, j)∈(S∪D)Ti j−L, we can directly compute the optimal K∗ to SimpleNPKL of (12) using
sparse eigen-decomposition as in (14). Thus the computation cost of SimpleNPKL with linear loss
is dominated by eigen-decomposition. It is clear that this can significantly reduce the time cost for
the NPKL tasks. Alternatively, we add tr (Kp) directly into the objective, and arrive at the following
formulation:

min
K
tr

((
L−C ∑

(i, j)∈(S∪D)

Ti j

)
K

)
+
G
p
trKp : K� 0,

where G> 0 is a tradeoff parameter. To solve this problem, we first present a proposition below.

Proposition 2 Given A is any symmetric matrix such that A = Pdiag(σ)P′, where P contains
columns of orthonormal eigenvectors of A and σ is a vector of the corresponding eigenvalues,
and B is any positive constant, the optimal solution K∗ to the following SDP problem for p> 1:

max
K

tr AK− G
p
trKp : K� 0, (19)

1322

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

can be expressed as the following closed-form solution:

K∗ =
(
1
G
A+

) 1
p−1

(20)

where A+ = Pdiag(σ+)P′, and σ+ is a vector with entries equal to max(0, [σ]i).

Following the techniques in the proof of Proposition 1, we obtain (20) immediately. If we set

G =

(
1
B tr A

p
p−1
+

) p−1
p

, these two formulations result in exactly the same solution. Moreover, if we

set B= tr A
p

p−1
+ , it means we just use the projection A+ as K. No re-scaling of A+ is performed. In

the sequel, we consider the regularization trKp with p= 2 for its simplicity and smoothness.

4.3 SimpleNPKL with Square Hinge Loss

Although the formulation with linear loss in (12) gives rise to a closed-form solution for the NPKL,
one limitation of the NPKL formulation with linear loss is that it may be sensitive to noisy data
due to the employment of the linear loss function. To address this issue, in this section, we present
another NPKL formulation that uses (square) hinge loss �(f) = (max(0,1− f))d/d, which some-
times can be more robust, where d = 1 (hinge loss) or 2 (square hinge loss). We first focus on
the NPKL formulation with square hinge loss, which can be written into the following constrained
optimization:

minK,εi j tr LK+
C
2 ∑

(i, j)∈(S∪D)

ε2i j (21)

s.t. ∀(i, j)∈(S ∪D), Ti jKi j≥1−εi j, (22)

K� 0, trKp ≤ B.
Note that we ignore the constraints εi j ≥ 0 since they can be satisfied automatically. However, (21)
is not in the form of (13), and thus there is no longer a closed-form solution for K.

4.3.1 DUAL FORMULATION: THE SADDLE-POINT MINIMAX PROBLEM

By Lagrangian theory, we introduce dual variables αi j’s (αi j ≥ 0) for the constraints in (22), and
derive a partial Lagrangian of (21):

tr LK+
C
2 ∑

(i, j)

ε2i j−∑
(i, j)

αi j(Ti jKi j−1+ εi j). (23)

For simplicity, we use ∑(i, j) to replace ∑(i, j)∈(S∪D) in the sequel. By setting the derivatives of
(23) w.r.t. the primal variables εi j’s to zeros, we have

∀(i, j) ∈ (S ∪D), Cεi j = αi j ≥ 0
and substituting them back into (23), we arrive at the following saddle-point minimax problem
J(K,α):

maxαminK tr

((
L−∑

(i, j)

αi jTi j

)
K

)
− 1
2C ∑

(i, j)

α2i j+∑
(i, j)

αi j (24)

s.t. K� 0, trKp ≤ B, ∀(i, j) ∈ S ∪D, αi j≥0,

1323

ZHUANG, TSANG AND HOI

where α= [ai j] denotes a matrix of dual variables αi j’s for (i, j)∈ S ∪D , and other entries are zeros.
This problem is similar to the optimization problem of DIFFRAC (Bach and Harchaoui, 2008), in
which K and α can be solved by an iterative manner.

4.3.2 ITERATIVE ALGORITHM

In this subsection, we present an iterative algorithm which follows the similar update strategy in
Boyd and Xiao (2005): 1) For a fixed αt−1, we can let A=∑(i, j)α

t−1
i j Ti j−L. Based on Proposition

1, we can compute the closed form solution Kt to (24) using (14); 2) For a fixed Kt , we can update
αt using αt = (αt−1+ηt∇Jt)+; 3) Step 1) and 2) are iterated until convergence. Here J denotes the
objective function (24), ∇Jt abbreviates the derivative of J at αt , and ηt > 0 is a step size param-
eter. The following Lemma guarantees the differentiable properties of the optimal value function
(Bonnans and Shapiro, 1996; Ying et al., 2010):

Lemma 3 Let X be a metric space and U be a normed space. Suppose that for all x ∈ X the
function f (x, ·) is differentiable and that f (x,u) and ∇u f (x,u) are continuous on X ×U, and Q be a
compact subset of X . Then the optimal value function f (u) := infx∈Q f (x,u) is differentiable. When
the minimizer x(u) of f (·,u) is unique, the gradient is given by ∇ f (u) = ∇u f (u,x(u)).

From Proposition 1, we see that the minimizer K(α) is unique for some fixed α. Together with
the above lemma, we compute the gradient at the point α by:

∇Ji j = 1− tr Ti jK− 1Cαi j, (25)

where K=

(
B

tr A
p

p−1
+

) 1
p

A
1
p−1
+ , A= ∑(i, j)α

t
i jTi j−L.

Similarly, for the another formulation:

minK,εi j tr LK+
C
2 ∑

(i, j)∈(S∪D)

ε2i j+
G
p
trKp (26)

s.t. ∀(i, j)∈(S ∪D), Ti jKi j≥1−εi j,
we can derive the corresponding saddle-point minimax problem of (26):

maxαminK tr

((
L−∑

(i, j)

αi jTi j

)
K

)
− 1
2C ∑

(i, j)

α2i j+∑
(i, j)

αi j+
G
p
trKp

s.t. K� 0, ∀(i, j) ∈ S ∪D, αi j≥0.
Again, from the Proposition 2, we observe that the minimizer K(α) is unique for some fixed α.
Together with Lemma 3, we compute the gradient at the point αt in the same way as in (25) by

settingK=
(
1
GA+

) 1
p−1 , A=∑(i, j)α

t
i jTi j−L. The alternative optimization algorithm is summarized

in Algorithm 1.

4.3.3 ESTIMATING THE RANK OF K

According to Proposition 1 or Proposition 2, we are required to locate the positive spectrums of A,
which can be achieved by full eigen-decomposition of A. However, this can be computationally

1324

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

Algorithm 1 SimpleNPKL with (square) hinge loss.
Input: Pairwise constraint matrix T, parametersC and B (or G), k
Output: α and K.

1: Construct graph Laplacian L using k nearest neighbors;
2: Initialize α0;
3: repeat
4: Set A= ∑(i, j)α

t−1
i j Ti j−L;

5: Compute the closed-form solution Kt =
(
B/tr Ap/(p−1)

+

)1/pA1/(p−1)+

//For the formulation (19), use Kt =
(
A+/G

)1/(p−1)
instead;

6: Compute the gradient ∇Ji j = 1− tr Ti jKt − 1
Cαi j;

7: Determine a step size ηt , update αti j using α
t
i j =
(
αt−1i j +ηt∇Ji j

)
+
;

8: until convergence

prohibitive for large scale data sets. Moreover, the computation on the negative eigen-vectors of
A should be avoided. The following proposition (Pataki, 1995) bounds the rank of matrix K in a
general SDP setting.

Proposition 4 The rank r of K in the SDP problem: maxK�0 tr (A0K) with m linear constraints on

K, follows the bound

(
r+1
2

)
≤ m.

Moreover, from the empirical study in Alizadeh et al. (1997), the rank r is usually much smaller
than this bound. This implies that the full decomposition of matrix A0 is not required. Our formula-
tion (21) has an additional constraint: trK2 ≤ B for p = 2. This condition equivalently constraints
tr (K), which is a common assumption in SDP problems (Krishnan and Mitchell, 2006). To show
this, we have B≥ trKK= 1

N ∑iλ
2
i N ≥ 1

N (∑iλi ·1)2 = 1
N (trK)

2, where the second inequality is re-
sulted from the Cauchy inequality. Hence, we have trK ≤ √BN. Therefore, we can make use of
the r estimated from Proposition 4 as a suggestion to estimate the rank of K.

4.3.4 DETERMINING THE CONVERGENCE PROPERTIES

When the ηt is small enough or a universal choice of ηt = O(1/t) is used, the whole optimization
problem is guaranteed to converge (Boyd and Xiao, 2005). Practically, the value of η plays an
important role for the convergence speed. Therefore, it is worth studying the influence of η on the
convergence rate, which requires to lower bound the increment of Jαt at each step. We first establish
the Lipschitz property of ∇J(α).

Lemma 5 Assume we use the formulation of Proposition 2 at each iteration of Algorithm 1, then
the gradient of the objective function given by (25) is Lipschitz continuous with Lipschitz constant
L= m

G + 1
C , where m= |S ∪D| is the number of nonzeros in T. That is,

‖∇J(α1)−∇J(α2)‖F ≤
(m
G
+
1
C

)‖α1−α2‖F .
Proof For an αt , we use Kt denote the corresponding minimizer of J computed by (14). For a
spectral function λ defined on S+, which is Lipschitz continuous with Lipschitz constant κ, we have

‖λ(K1)−λ(K2)‖F ≤ κ‖K1−K2‖F .

1325

ZHUANG, TSANG AND HOI

For our case, the p.s.d. projection is defined by λ(K) = ∑imax(0,λi)
2. The Lipschitz constant κ of

this function is 1. Therefore, for any K1 and K2 given by (14), we have

‖K1−K2‖F = ‖A1+−A2+‖F
≤
∥∥∥ 1
G

(
∑
(i, j)

α(1)
i j Ti j−L

)
− 1
G

(
∑
(i, j)

α(2)
i j Ti j−L

)∥∥∥
F

=
1
G

∥∥∥∑
(i, j)

(
α(1)
i j −α(2)

i j

)
Ti j
∥∥∥
F

≤ 1
G
‖α1−α2‖F‖T‖F =

√
m
G
‖α1−α2‖F .

Consequently, we have,

‖∇J(α1)−∇J(α2)‖F =

√
∑
(i, j)

((
1− tr Ti jK1− 1Cα

(1)
i j

)− (1− tr Ti jK2− 1Cα(2)
i j

))2
=

√
∑
(i, j)

(
tr Ti j

(
K2−K1

)
+
1
C

(
α(2)
i j −α(1)

i j

))2
≤ ‖T‖F‖K1−K2‖F + 1

C
‖α1−α2‖F

≤ (m
G
+
1
C

)‖α1−α2‖F .

With the Lipschitz property of ∇J, we can further show each iteration of Algorithm 1 makes
progress towards the optimal solution. Interestingly, we are aware that the proof is very similar to
the analysis of indefinite kernel learning, which is proposed very recently by Ying et al. (2010).
This result is developed based on non-smooth optimization algorithm of Nesterov (2005). To make
the paper complete, we expose the detailed proof in the following proposition.

Proposition 6 Assume we use the formulation of Proposition 2, and η≥ m
G + 1

C at each iteration of
Algorithm 1. The iteration sequence {αt} generated in Algorithm 1 satisfy:

J(αt+1)≥ J(αt)+ η
2
‖αt+1−αt‖2F ,

and

max
α
J(α)− J(αt)≤ η

2t
‖α0−α∗‖2F ,

where α∗ is the optimal solution of maxα J(α).

1326

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

Proof Let L= m
G + 1

C abbreviate the Lipschitz constant of ∇J(α), then we have

J(α)− J(αt)−〈∇J(αt),α−αt〉 =
∫ α

αt
∇J(α)dα−〈∇J(αt),α−αt〉

=
∫ 1

0
〈∇J(θα+(1−θ)αt)−∇J(αt),α−αt〉dθ

≥ −
∫ 1

0
‖∇J(θα+(1−θ)αt)−∇J(αt)‖‖α−αt‖Fdθ

≥ −L
∫ 1

0
θ‖α−αt‖2Fdθ

≥ −η
2
‖α−αt‖2F .

Applying this inequality with α= αt+1, we have

−J(αt)−〈∇J(αt),αt+1−αt〉 ≥ −J(αt+1)− η
2
‖αt+1−αt‖2F . (27)

From step 5 in Algorithm 1, it is easy to verify that

αt+1 = argmin
α
‖(α−αt)−∇J(αt)/η‖2F

= argmin
α
−2〈α−αt ,∇J(αt)/η〉+‖α−αt‖2F

= argmin
α
−∇J(αt)−〈α−αt ,∇J(αt)〉+ η

2
‖α−αt‖2F . (28)

Let f (α) denote the right side of (28). From the first-order optimality condition over αt+1, for any
α we have 〈∇ f (αt+1),α−αt+1〉 ≥ 0, that is,

−〈∇J(αt),α−αt+1〉 ≥ η〈αt+1−αt ,αt+1−α〉. (29)

Adding (27) and (29) together yields that−J(αt)−〈∇J(αt),α−αt〉 ≥−J(αt+1)+η〈αt−αt+1,α−
αt〉+ η

2‖αt −αt+1‖2F . Note that −J is convex, −J(α)≥−J(αt)−〈∇J(αt),α−αt〉. Thus we have

J(αt+1)≥ J(α)+η〈αt −αt+1,α−αt〉+ η
2
‖αt −αt+1‖2F .

Applying α= αt , we have that

J(αt+1)≥ J(αt)+ η
2
‖αt+1−αt‖2F .

Applying α= α∗, we have that

J(α∗)− J(αi+1)≤−η〈αi−αi+1,α∗ −αi〉− η
2
‖αi−αi+1‖2F =

η
2
‖α∗ −αi‖2F −

η
2
‖α∗ −αi+1‖2F .

(30)
Taking summation over i from 0 to t−1, we have

t−1
∑
i=0

(J(α∗)− J(αi+1))≤ η
2
‖α∗ −α0‖2F .

1327

ZHUANG, TSANG AND HOI

From (30), we see that the sequence {J(αt)} increase monotonically. Thus we obtain

t(J(α∗)− J(αt))≤ η
2
‖α∗ −α0‖2F ,

which completes the proof.

4.4 SimpleNPKL with Square Loss

In this subsection, we consider square alignment loss for the SimpleNPKL framework:

minK,εi j tr LK+
C
2 ∑

(i, j)∈(S∪D)

ε2i j

s.t. ∀(i, j)∈(S ∪D), Ti jKi j=1−εi j,
K� 0, trKp ≤ B.

Here we need not to enforce ε ≥ 0. With the standard techniques of Section 4.3, we derive the
following min-max problem:

max
α
min
K
tr

(
L−∑

i j

αi jTi j

)
K+∑

i j

αi j− 1
2C∑i j

α2i j : K� 0, trKp ≤ B.

Therefore, we can compute the gradient of J w.r.t. α:

∇Ji j = 1− tr Ti jK− 1Cαi j.
The whole analysis of Section 4.3 still holds. The difference just lies in the way of computing
gradient ∇J. We will show an application of square loss in Section 6.

4.5 SimpleNPKL with Hinge Loss

In this subsection, we consider hinge loss for the SimpleNPKL framework:

minK,εi j tr LK+C ∑
(i, j)∈(S∪D)

εi j

s.t. ∀(i, j)∈(S ∪D), Ti jKi j≥1−εi j,εi j ≥ 0
K� 0, trKp ≤ B.

Following the standard techniques of Lagrangian dual, we arrive at the min-max problem:

max
α
min
K
tr

(
L−∑

i j

αi jTi j

)
K+∑

i j

αi j : K� 0, trKp ≤ B, 0≤ αi j ≤C.

Therefore, we can compute the gradient of J w.r.t. α:

∇Ji j = 1− tr Ti jK
The whole analysis of Section 4.3 still holds. The difference just lies in the way of computing
gradient ∇J. Note that the gradient updating α = α+η∇J may jump out of the range [0,C]. We
need to project α into this region at each iteration. We will also show an example of Hinge loss in
Section 6.

1328

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

5. Implementation Issues

In this Section, we discuss some implementation issues that are important to the success of the
proposed SimpleNPKL algorithms.

5.1 Building a Sparse Graph Laplacian

Recall that the graph Laplacian L in (9) is often sparse, in particular, which is usually computed by
finding k-nearest neighbors for the purpose of constructing the similarity matrix S. Specifically, an
entry S(i, j) = 1 if and only if data examples i and j are among each other’s k-nearest neighbors;
otherwise, it is set to 0. So, there are at most k nonzero entries on each row of L.

A naı̈ve implementation of finding k-nearest neighbors often takesO(N2 logN) time. To enforce
the data examples i and j are among each other’s k-nearest neighbors, one can use B-matching
algorithm (Jebara and Shchogolev, 2006) to find the k-nearest neighbors. However, when the data
set is very large, the construction of L becomes non-trivial and very expensive. To address this
challenge, we suggest to first construct the cover tree structure (Beygelzimer et al., 2006), which
takes O(N logN) time. The similar idea to construct a tree structure for distance metric learning
was discussed in Weinberger and Saul (2008). With the aid of this data structure, the batch query of
finding k-nearest neighbors on the whole data set can be done within O(N) time. Hence, the graph
Laplacian L can be constructed efficiently for large-scale problems.

5.2 Fast Eigendecomposition by Lanczos Algorithm

Among various existing SDP approaches (Boyd and Vandenberghe, 2004), the interior-point method
is often deemed as the most efficient one. However, as discussed in previous subsection, the graph
Laplacian L is often sparse. In addition, the number of pairwise constraints is usually small due to
expensive cost of human labels. Therefore, L−∑(i, j)αi jTi j is also sparse. Such sparse structure
is not yet exploited in such general algorithms. According to Proposition 1, the time cost of each
iteration in Algorithm 1 is dominated by eigen-decomposition. Moreover, from Proposition 4, the
rank r of the kernel matrix K is upper bounded by the number of active constraints. Therefore,
we can estimate the rank for sparse eigen-decomposition, which can be solved efficiently using the
so-called Implicitly Restarted Lanczos Algorithm (IRLA) (Lehoucq et al., 1998). Its computational
cost is dominated by matrix-vector multiplication. Specifically, the time cost of IRLA is linear with
the number of non-zeros inA. Assume k nearest neighbors are used to construct the graph Laplacian
L, then the number of non-zeros in A is at most Nk+m, where m is the number of nonzeros in T,
and A is very sparse. Moreover, the time cost of computing gradient is O(m). Therefore, the time
complexity per iteration of SimpleNPKL is O(Nk+m).

5.3 Active Constraint Selection

As shown in Algorithm 1, the computational cost of the update procedure is highly depends on the
number of pairwise constraints. However, some less informative constraints often do not contribute
much to the learning of the kernel matrix K, and fitting some noisy pairwise constraints may also
lead to the poor generalization. Moreover, as discussed in Section 4.3.3, the rank ofK is lower when
there are fewer active constraints in (22). Therefore, selecting pairwise constraints for SimpleNPKL
may improve both the efficiency and the generalization of the NPK learning.

1329

ZHUANG, TSANG AND HOI

To speed up the eigen-decomposition process, instead of engaging all pairwise constraints, we
propose to sample a subset of Ti j’s for SimpleNPKL. Instead of acquiring class label information
for kernel learning; here, we consider another simple active constraint selection scheme. Recall that
a general principle in active learning is to request the label of the data points that are most uncertain
for their predictions. Following this idea, we adopt the margin criterion to measure the uncertainty
of the prediction value on a data point. In particular, given a data point xi, assume that we have the
prediction function in the form:

f (xi) =∑
j

y jK(xi,x j).

We can use |yi f (xi)| to measure the uncertainty of prediction, where yi ∈ {−1,+1} is the class label
of data point xi. As a result, for a data point xi, we choose the constraints involving point i:

i∗ = argmin
i

∣∣∣∣1li∑j yiy jK(xi,x j)
∣∣∣∣

= argmin
i

∣∣∣∣1li ∑j,Ti j 	=0Ti jK(xi,x j)
∣∣∣∣,

where we deem Ti j as an entry of yy′, and li= |{ j : (i, j)∈ S∪D},Ti j 	= 0}| is used as a normalization
of the margin value. Based on the above formula, we choose a subset of k data points Sk that are
most uncertain according to the margin measure. Then, we choose all the Ti j’s that involve any point
i ∈ Sk as pairwise constraints to form a new set of constraints. Finally, we run SimpleNPKL based
on this new set of constraints.

5.4 Low Rank Approximation of K

Since the rank r of K often satisfies r < n, we may express K as K = VEV′, where the columns
of Vn×r are eigenvectors of K. If we fix the base V, the number of variables is reduced from n2 to
r2. With this approximation scheme, the A matrix in Algorithm 1 becomes A=V′(L−∑αi jTi j)V.
Note V′LV can be pre-computed and V′∑αi jTi jV can be computed efficiently by virtue of the
sparseness. Therefore, SimpleNPKL can be significantly faster with this approximation.

6. Applications of SimpleNPKL

In this Section, we extend the proposed SimpleNPKL technique to other similar machine learning
problems where the goal of the optimization is to find an optimal matrix such that its inner prod-
uct with another matrix is maximized or minimized. In particular, we consider the data embedding
problems, where the goal is to find a new data representation that preserves some similarity/distance
constraints between pairs of data points. These problems typically can be implemented by con-
straining the alignment of the target kernel matrix to some prior affinity or distance structures. As a
result, the kernel matrix K= V′V implies a data embedding with a natural interpretation, in which
the column vector of V corresponds to the new data representation. We discuss several important
data embedding methods below.

6.1 Colored Maximum Variance Unfolding

Colored MVU (Song et al., 2008) is an improvement of Maximum Variance Unfolding (MVU)
(Weinberger et al., 2004), which produces a low-dimensional representation of the data by maximiz-

1330

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

ing the trace of a matrix K subject to some positive definiteness, centering and distance-preserving
constraints, that is:

minK −trK : K� 0,∑
i j

Ki j = 0, trKTi j = Di j, ∀(i, j) ∈N .

where trKTi j = Kii+Kj j−2Ki j is the square distance between xi and x j.
CMVU interprets MVU from a statistical perspective. It maximizes the dependence between

the domain of input pattern x and the domain of label y, which is measured by the Hilbert- Schmidt
Independence Criterion (Gretton et al., 2005; Song et al., 2008). Here we introduce slack vari-
ables ξ to measure the violations of distance constraints and penalize the corresponding square loss.
Consequently the optimization task of colored MVU is reformulated as:

minK,ξ −trHKHY+
C
2∑ξ2i j, : K� 0, trKTi j = Di j−ξi j, ∀(i, j) ∈N

where Hi j = δi j−N−1 such that HKH centers K, Y = yy′ is the kernel matrix over labels. Appar-
ently this belongs to an SDP problem.

Following the SimpleNPKL algorithms, we derive the minimax optimization problem by intro-
ducing dual variables for the inequality constraints:

maxαminK tr

(
−HYH−∑

i j

αi jTi j

)
K+∑

i j

αi jDi j− 1
2C∑i j

α2i j : K� 0, trKK≤ B.

(31)

By substituting the following results

A=HYH+∑
i j

αi jTi j and ∇Jti j = Di j− tr Ti jK− 1Cα
t
i j

back into Algorithm 1, the problem of (31) can be solved immediately.

6.2 Minimum Volume Embedding

Minimum Volume Embedding (MVE) is another improvement of MVU (Shaw and Jebara, 2007).
One limitation of MVU is that it simply maximizes the trace of K, which may result in the solution
that engages considerably more dimensions than necessity. To address this problem, Shaw and
Jebara (2007) proposed to grow the top few eigenvalues of K while shrinking the remaining ones.
In particular, letK=∑iλiviv

′
i, λ1 ≥, . . . ,≥ λn, andK0 =∑d

i=1 viv
′
i−∑n

i=d+1 viv
′
i. When the intrinsic

dimensionality d is available, MVE formulates the data embedding problem as follows:

minK −trKK0 : the same set of constraints of MVU. (32)

After obtaining the solution Kt at each step, MVE proceeds by substituting K0 = Kt back to the
optimization of (32) and repeatedly solving the optimization. Hence, MVE improves MVU by de-
creasing the energy of the small eigen components of K. To find the solution, every Kt is computed
by applying a general SDP solver in Shaw and Jebara (2007).

1331

ZHUANG, TSANG AND HOI

To speed up the solution, following the similar derivation in the above CMVU, we can solve (32)
by eigen-decomposition in an iterative manner. Specifically, we make the following modifications:

A=K0+∑
i j

αi jTi j and ∇Jti j = Di j− tr Ti jK− 1Cα
t
i j

By substitute the above results back into Algorithm 1, we can solve the MVE problem efficiently.

6.3 Structure Preserving Embedding

Structure Preserving Embedding (SPE) (Shaw and Jebara, 2009) is a machine learning technique
that embeds graphs in low-dimensional Euclidean space such that the embedding preserves the
global topological properties of the input graph. Suppose we have a connectivity matrixW, where
Wi j = 1 if xi and x j are connected andWi j = 0 otherwise. SPE learns a kernel matrix K such that
the similarity trKW is maximized while the global topological properties of the input graph are
preserved. More formally, the SPE problem is formulated into the following SDP optimization:

minK −trKW+Cξ : Di j > (1−Wi j)max
m

(WimDim)−ξ, ξ≥ 0

where Di j = Kii+Kj j−2Ki j = trKTi j is the squared distance between xi and x j.
Let [n] = {1, . . . ,n} and Ni denote the set of indices of points which are among the nearest

neighbors of xi. Then for each point xi, SPE essentially generates (n−|Ni|)×|Ni| constraints:

trKTi j > trKTik−ξ, ∀i ∈ [n], j ∈ [n]−Ni,k ∈Ni.

In order to speed up the SPE algorithm, we apply the SimpleNPKL technique to turn the SPE
optimization into the following minimax optimization problem:

maxαminK tr

(
∑
i
∑
k∈Ni

∑
j/∈Ni

αi jk(Tik−Ti j)−W
)
K : K� 0, trKK≤ B,∑αi jk ∈ [0,C].

Similarly, we can derive the following results:

A=W−∑
i jk

αi jk(Tik−Ti j) and ∇Jti jk = trK(Tik−Ti j).

Substituting them back into Algorithm 1 leads to an efficient solution for the SPE problem.

7. Experiments

In this Section, we conduct extensive experiments to examine the efficacy and efficiency of the
proposed SimpleNPKL algorithms.

7.1 Experimental Setup

We examine both efficacy and efficiency of the proposed SimpleNPKL using side information to
learn a kernel matrix for kernel k-means clustering. As shown in Hoi et al. (2007), the learned
kernel matrix of the Non-Parametric Kernel Learning (NPKL) outperforms other kernel learning
methods in the task of clustering using side information. For simplicity, we only compare our

1332

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

proposed SimpleNPKL algorithms with the NPKL method in Hoi et al. (2007) for kernel k-means
clustering. The results of k-means clustering and constrained k-means clustering using Euclidean
metric are also reported as the performance of the baseline methods. The abbreviations of different
approaches are described as follows:

• k-means: k-means clustering using Euclidean metric;
• ck-means: The constrained k-means clustering algorithm using Euclidean metric and side
information;

• SimpleNPKL+LL: The proposed SimpleNPKL with linear loss defined in (12);
• SimpleNPKL+SHL: The proposed SimpleNPKL with squared hinge loss defined in (21);
• NPKL+LL: NPKL in (10) using linear loss;
• NPKL+HL: NPKL in (10) using hinge loss.

To construct the graph Laplacian matrixL in NPKL, we adopt the cover tree data structure.2 The
sparse eigen-decomposition used in SimpleNPKL is implemented by the popular Arpack toolkit.3

We also adopt the standard SDP solver, SDPT3,4 as the baseline solution for NPKL. The pair-wise
constraint is assigned for randomly generated pairs of points according to their ground truth labels.
The number of constraints is controlled by the resulted amount of connected components as defined
in previous studies (Xing et al., 2003; Hoi et al., 2007). Note that typically the larger the number of
constraints, the smaller the number of connected components.

Several parameters are involved in both NPKL and SimpleNPKL. Their notation and settings
are given as follows:

• k : The number of nearest neighbors for constructing the graph Laplacian matrix L, we set it
to 5 for small data sets in Table 1, and 50 for Adult database in Table 6;

• r : The ratio of the number of connected components compared with the data set size N. In
our experiments, we set r ≈ 70%N which follows the setting of Hoi et al. (2007);

• B : The parameter that controls the capacity of the learned kernel in (11). We fix B = N for
the adult data sets and fix B= 1 for the data sets in Table 1 and;

• C : The regularization parameter for the loss term in NPKL and SimpleNPKL. We fix C = 1
for the adult data sets and several constant values in the range (0, 1] for the data sets in Table 1.

In our experiments, all clustering results were obtained by averaging the results from 20 different
random repetitions. All experiments were conducted on a 32bit Windows PC with 3.4GHz CPU and
3GB RAM.

7.2 Comparisons on Benchmark Data Sets

To evaluate the clustering performance, we adopt the clustering accuracy used in Hoi et al. (2007):

Cluster Accuracy=∑
i> j

1{ci = c j}= 1{ĉi = ĉ j}
0.5n(n−1) .

2. The cover tree data structure is described at http://hunch.net/˜jl/projects/cover_tree/cover_tree.html.
3. The Arpack toolkit can be found at http://www.caam.rice.edu/software/ARPACK/.
4. SDPT3 can be found at http://www.math.nus.edu.sg/˜mattohkc/sdpt3.html.

1333

ZHUANG, TSANG AND HOI

Data Set #Classes #Instances #Features
Chessboard 2 100 2
Glass 6 214 9
Heart 2 270 13
Iris 3 150 4
Protein 6 116 20
Sonar 2 208 60
Soybean 4 47 35
Spiral 2 100 3
Wine 3 178 12

Table 1: The statistics of the data sets used in our experiments.

This metric measures the percentage of data pairs that are correctly clustered together. We compare
the proposed SimpleNPKL algorithms with NPKL on the nine data sets from UCI machine learning
repositories,5 as summarized in Table 1. The same data sets were also adopted in the NPKL study
of Hoi et al. (2007).

The clustering accuracy and CPU time cost (the clustering time was excluded) of different
NPKL methods are reported in Table 2 and 3. As can be observed from Table 2, all NPKL meth-
ods outperform the baseline k-means clustering and the constrained k-means clustering methods,
which use Euclidean metric for k-means clustering. The proposed SimpleNPKL with square hinge
loss produces very competitive clustering performance to the results of NPKL with hinge loss (as
reported in Hoi et al., 2007). SimpleNPKL with square hinge loss and NPKL with hinge loss often
perform better than the NPKL methods using linear loss.

For the CPU time cost, the time costs of SimpleNPKL and NPKL using linear loss are usually
lower than those of their counterparts with (square) hinge loss. Regarding the efficiency evaluation
in Table 3, our SimpleNPKL with linear loss or squared hinge loss is about 5 to 10 times faster than
NPKL using the SDPT3 solver. For some cases of linear loss, SimpleNPKL can be even 100 times
faster.

Recall that our key Proposition 1 provides a closed-form solution to the learned kernel matrixK
for p≥ 1, in which the capacity parameter B can be omitted for SimpleNPKL+linear loss. To show
the influence of the capacity parameter B for SimpleNPKL + square hinge loss, we present some
results in Table 4 with a fixed p = 2. To clearly show the influence on convergence, we present
the number of iterations instead of elapsed CPU time. We observe that SimpleNPKL + square
hinge loss is not sensitive to B on the both Iris and Protein data sets. It even produces the identical
accuracy on the Iris data set for B ∈ {2.5,3,3.5,4}. However, it affects the number of steps it takes
to converge. Similar phenomena can be observed on other data sets.

We also study the clustering performance of varying p in Table 5. We fixed B = 1 in this ex-
periment. From Table 5, we can observe that SimpleNPKL+square hinge loss produces the best
clustering accuracy for the Iris data set when p = 4, but the improvement is not significant com-
paring with p= 2. For the Protein data set, our algorithm achieves the best results when p= 2. In
general, when p< 2, the clustering performance drops significantly.

5. The data sets are available at http://archive.ics.uci.edu/ml/.

1334

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

Data Set k-means ck-means
NPKL SimpleNPKL
LL HL LL SHL

Chessboard 49.8 ±0.2 50.1±0.3 61.1± 6.9 56.3± 6.1 60.2± 0.0 58.8± 0.8
Glass 69.7 ±1.9 69.2±1.7 74.4± 3.7 79.1± 4.9 73.0± 2.5 73.5± 2.9
Heart 51.5 ±0.1 52.3±3.7 86.0± 0.3 86.2± 0.0 86.8± 0.0 89.4± 0.1
Iris 84.5 ±6.5 89.4±8.5 96.0± 6.1 97.4± 0.0 97.4± 0.0 97.4± 0.0
Protein 76.2 ±2.0 80.7±3.1 78.2± 3.2 86.4± 3.8 81.8± 1.8 75.9± 2.0
Sonar 50.2 ±0.1 50.8±0.2 76.8± 0.3 64.5± 6.8 70.2± 10 78.0± 0.0
Soybean 82.1 ±6.1 83.8±8.3 90.2± 7.7 100.0± 0.0 95.3± 5.1 95.4± 4.9
Spiral 50.1 ±0.6 50.6±1.3 86.5± 0.0 94.1± 0.0 92.2± 0.0 94.1± 0.0
Wine 71.2 ±1.2 76.1±2.8 78.1± 1.7 85.5± 5.3 83.7± 4.8 85.0± 2.6

Table 2: Clustering accuracy of SimpleNPKL, compared with the results of NPKL in (10) using a
standard SDP solver, and k-means.

Data Set
NPKL SimpleNPKL

Speedup
LL HL LL SHL

Chessboard 1.38±0.07 5.23±0.06 0.05±0.00 0.13±0.00 27.6
Glass 1.85±0.04 32.36±0.37 0.11±0.00 2.95±0.00 16.8
Heart 2.64±0.10 63.84±0.68 0.17±0.01 13.15±0.08 15.5
Iris 1.36±0.03 1.65±0.04 0.04±0.00 3.45±0.01 34.0
Protein 1.80±0.06 8.16±0.11 0.05±0.00 1.32±0.00 36.0
Sonar 1.77±0.08 30.38±0.24 0.11±0.00 3.91±0.03 16.1
Soybean 1.51±0.05 3.25±0.04 0.01±0.00 0.16±0.00 151.0
Spiral 1.78±0.10 6.23±0.08 0.05±0.00 1.95±0.00 36.6
Wine 2.54±0.04 30.91±1.30 0.09±0.00 1.53±0.01 28.2

Table 3: CPU time of SimpleNPKL, compared with the results of NPKL in (10) using a standard
SDP solver. (The best results are in bold and the last “Speedup” column is listed only for
the linear loss case.)

7.3 Scalability Study on Adult Data Set

In this Section, we evaluate our SimpleNPKL algorithms on another larger data set to examine
the efficiency and scalability. We adopt the Adult database, which is available at the website of
LibSVM.6 The database has a series of partitions: A1a, A2a, · · · , A5a (see Table 6). Since the
training time complexity of NPKL using standard SDP solvers is O(N6.5), which cannot be applied
on this database for comparison. We only report the results of both k-means and constrained k-
means clustering as the baseline comparison.

Table 7 shows the clustering performance and CPU time cost (the clustering time was excluded)
of SimpleNPKL on the Adult database. From the results, we can draw several observations. First
of all, we can see that by learning better kernels from pairwise constraints, both SimpleNPKL al-
gorithms produce better clustering performance than that of k-means clustering and constrained

6. LibSVM can be found at http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/.

1335

ZHUANG, TSANG AND HOI

DataSet B 1 1.5 2 2.5 3 3.5 4

Iris
Accur.(%) 94.8±0.0 94.8±0.0 95.2±0.4 95.7±0.0 95.7±0.0 95.7±0.0 95.7±0.0
#Iterations 11 13 14 10 10 31 26

Protein
Accur.(%) 74.5±0.8 73.6±1.6 74.4±0.8 74.3±0.9 74.1±1.0 73.7±1.1 73.7±1.0
#Iterations 51 32 51 11 14 27 19

Table 4: Results of varying capacity parameter B with fixed p = 2 and C = 1 on Iris and protein
data sets.

Data Set p 1 1.5 2 2.5 3 3.5 4

Iris
Accur.(%) 61.6±3.5 58.6±4.0 94.8±0.0 94.8±0.0 95.1±0.4 94.8±0.0 95.6±0.2
#Iterations 51 6 11 9 19 10 9

Protein
Accur.(%) 72.3±1.3 72.8±2.2 74.5±0.8 73.6±1.5 73.6±1.6 73.5±1.6 73.5±1.6
#Iterations 32 35 51 40 11 11 21

Table 5: Results of varying p in the p-norm regularization over K with fixed B = 1 and C = 1 on
Iris and protein data sets.

 1420

 1430

 1440

 1450

 1460

 1470

 1480

 2 4 6 8 10 12 14 16 18 20

O
bj

ec
tiv

e
V

al
ue

#Iterations

 1860

 1880

 1900

 1920

 1940

 1960

 1980

 2000

 2 4 6 8 10 12 14 16 18 20

O
bj

ec
tiv

e
V

al
ue

#Iterations

(a) A1a (b) A2a

Figure 1: Convergence of SimpleNPKL using square hinge loss on A1a and A2a. The parameters
areC = 1, B= N.

k-means clustering methods using Euclidean metric. Further, comparing the two algorithms them-
selves, in terms of clustering accuracy, they perform quite comparably, in which SimpleNPKL+SHL
outperforms slightly. However, in terms of CPU time cost, SimpleNPKL+LL with linear loss is con-
siderably lower than SimpleNPKL+SHL using square hinge loss.

We also plot the objective value J(K,α) of SimpleNPKL on two data sets A1a and A2a in Fig-
ure 1. We observe that SimpleNPKL with square hinge loss often converges quickly within 10
iterations. Similar results can be observed from the other data sets.

1336

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

Data Set† A1a A2a A3a A4a A5a
#Instances 1,605 2,265 3,185 4,781 6,414

†: #Classes=2, #Features=123

Table 6: The statistics of the Adult database.

Accuracy(%) CPU Time(s)
Data Set #Constraints

k-means ck-means
SimpleNPKL SimpleNPKL
LL SHL LL SHL

A1a 4,104 56.4±3.5 59.0±2.3 61.4±1.7 60.7±2.7 8.5 322.9
A2a 5,443 57.3±3.6 60.2±0.1 61.1±1.3 61.4±1.2 15.3 637.2
A3a 7,773 57.8±3.5 59.2±3.0 61.1±1.7 61.5±2.0 28.8 1,160.8
A4a 12,465 58.8±1.6 59.3±3.9 61.6±1.3 61.4±1.5 66.3 2,341.3
A5a 16,161 57.7±3.1 59.8±2.2 60.8±3.1 61.9±1.7 79.6 3,692.1

Table 7: Evaluation results on Adult data set. (The best results are in bold.)

7.4 Comparisons on Constraint Selection

In this Section, we study the active constraint selection scheme for SimpleNPKL. Figure 2 shows
the clustering performance of active constraint selection by the approach described in Section 5.3.

Several observations can be drawn from the results: 1) Comparing with the original approach
using all constraints, the computation time is reduced by choosing a small amount of pairwise
constraints. This is because the Lanczos algorithm can perform the sparse eigen-decomposition
faster on a sparse matrix with fewer nonzero entries; 2) Though the active constraint selection
costs more time than random selection, the former usually achieves better clustering (accuracy)
performance than the latter with the same amount of constraints; 3) Using the proposed active
constraint selection method to choose about half of the pairwise constraints for SimpleNPKL can
often produce comparable or even better clustering performance than that using all constraints.

7.5 Evaluations on Data Embedding Applications

In this Section, we evaluate the performance of the proposed SimpleNPKL algorithms with appli-
cations to speed up three data embedding techniques, that is, CMVU, MVE, and SPE, respectively.
Our goal is to show that SimpleNPKL is capable of producing similar empirical results to the base-
line counterpart with significant efficiency gain. All the data sets are publicly available in the UCI
machine learning repository. In all the experiments, we simply fix C = 1 for all the three methods,
and set B= m×N, m ∈ {0.1,1,2,10}.

7.5.1 COLORED MAXIMUM VARIANCE UNFOLDING

The first experiment is to examine the efficiency by applying the proposed SimpleNPKL tech-
nique to solve the CMVU problem. In particular, we examine the CMVU task for learning low-
dimensional embedding on three data sets which were used in Song et al. (2008). Two approaches
are compared:

• CMVU: An approximate efficient method employed by Song et al. (2008). Suppose K =
VAV′, where V (of size n× d, d < n) is fixed to be the bottom d eigenvectors of the graph

1337

ZHUANG, TSANG AND HOI

 59

 59.5

 60

 60.5

 61

 61.5

 62

 10 15 20 25 30 35

C
lu

st
er

in
g

A
cc

ur
ac

y
(%

)

#Constraints(K)

Active Selection
Random Selection

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35

C
P

U
 T

im
e

(S
)

#Constraints(K)

Active Selection
Random Selection

(a) Clustering Accuracy (b) CPU Time

Figure 2: Comparisons of clustering accuracy and CPU time by active constraint selection and ran-
dom selection (constraint selection time is included) on A1a with parameters: B=N,C=
1,k = 20,r = 0.6. Using all 3.9K constraints directly, the accuracy is 60.8±2.9 and the
CPU time is 81.6 seconds.

Laplacian of the neighborhood graph via N . Thus the number of variables is reduced from
n2 to d2.
• CMVU+NPKL: Our SimpleNPKL method introduced in Section 6.1. Unlike the above
CMVU algorithm by approximation, our method is able to obtain the global optimal solu-
tion using the SimpleNPKL scheme without approximation.

Figure 3, 4 and 5 show the experimental results of visualizing the embedding results in a 2D
space and the CPU time cost of CMVU. The time costs of CMVU+NPKL were also indicated
in the captions of those figures. As we can observe from the visualization results, the proposed
CMVU+NPKL is able to produce comparable embedding results as those by the original CMVU in
most cases. Further, by examining the time cost, we found that the time cost of CMVU increases
with dimensionality d exponentially due to the intensive computational cost of solving the SDP
problem. In contrast, the proposed CMVU+NPKL is able to find the global optima efficiently, which
is much faster than CMVU when d is large. Although CMVU could be faster than CMVU+NPKL
for very small d values, it is important to note that the optimal d value is often unknown for many
applications. The proposed CMVU+NPKL approach can efficiently and directly resolve the CMVU
problem without soliciting the approximation step.

7.5.2 MINIMUM VOLUME EMBEDDING AND STRUCTURE PRESERVING EMBEDDING

This experiment is to examine the embedding performance of the SimpleNPKL technique with
applications to MVE (Shaw and Jebara, 2007) and SPE (Shaw and Jebara, 2009) tasks. In particular,
five approaches are compared:

• KPCA: The classical Kernel Principle Component Analysis algorithm;
• MVE: The algorithm summarized in Table 1 in Shaw and Jebara (2007). Pay attention to the
SDP solver in Step 5 and 6, which is the key for the success of MVE.
• MVE+NPKL: The embedding algorithm based on our SimpleNPKL algorithm. Refer to
Section 6.2 for detailed discussion.

1338

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

 1

 10

 100

 400

 1600

 10 12 14 16 18 20

C
P

U
 T

im
e

(S
)

rank(K)

CPU Time of CMVU
CPU Time of CMVU+NPK

(a) Time cost of CMVU with the rank.

Senates

NDPAG

GWA
GRN

LIB
NCP

Nat Lib
IND

IND Lib

ALP

LM

AD DLP

PHON

FFP

CLP

NDP
AG
GWA
GRN
LIB
NCP
Nat Lib
IND
IND Lib
ALP
LM
AD
DLP
PHON
FFP
CLP

(b) Embedding of CMVU.

Senates

NDPAG

GWA
GRN

LIB
NCP

Nat Lib

IND

IND Lib

ALP

LM
AD

DLP

PHON

FFP

CLP

NDP
AG
GWA
GRN
LIB
NCP
Nat Lib
IND
IND Lib
ALP
LM
AD
DLP
PHON
FFP
CLP

(c) Embedding of CMVU+NPKL.

Figure 3: Comparisons of CMVU and CMVU+NPKL on senate data set. Time cost of
CMVU+NPK is 1.50±0.06 seconds.

 20

 40

 80

 160

 320

 640

 10 12 14 16 18 20

C
P

U
 T

im
e

(S
)

rank(K)

CPU Time of CMVU
CPU Time of CMVU+NPK

(a) Time cost of CMVU with the rank.

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
News20

(b) Embedding of CMVU.

−2 −1 0 1 2
−3

−2

−1

0

1

2

3
News20

(c) Embedding of CMVU+NPKL.

Figure 4: Comparisons of CMVU and CMVU+NPK on news20 data set. Time cost of
CMVU+NPKL is 120.4±1.7 seconds.

 10

 20

 100

 400

 1600

 10 12 14 16 18 20

C
P

U
 T

im
e

(S
)

rank(K)

CPU Time of CMVU
CPU Time of CMVU+NPK

(a) Time cost of CMVU with the rank.

−200 0 200
−40

−20

0

20

(b) Embedding of CMVU.

−100 0 100
−30

−20

−10

0

10

20

(c) Embedding of CMVU+NPKL.

Figure 5: Comparisons of CMVU and CMVU+NPKL on usps data set. Time cost of
CMVU+NPKL is 28.95±1.8 seconds.

• SPE: The algorithm summarized in Table 1 of Shaw and Jebara (2009).
• SPE+NPKL: The embedding algorithm based on the proposed SimpleNPKL algorithm. Re-
fer to Section 6.3;

1339

ZHUANG, TSANG AND HOI

To examine the embedding results quantitatively, we follow the previous studies (Shaw and Jebara,
2007, 2009) to evaluate the classification performance on the embedding data by performing k-
nearest neighbor classification. Similar to the settings in Shaw and Jebara (2009), we randomly
choose 100 points from the largest two classes for each data set, and then divide the data examples
into training/validation/test sets at the ratios of 60:20:20. The validation set is used to find the best
parameter of k for k-NN classification.

Table 8 shows the comparison of the classification results by five different approaches. From
the results, we can see that the two proposed algorithms, MVE+NPKL and SPE+NPKL, are gen-
erally able to achieve the competitive classification results that are comparable to the other two
original algorithms using a standard SDP solver. Among all compared algorithms, MVE+NPKL
tends to achieve slightly better performance than the other approaches. All these results show that
the proposed algorithms are effective to produce comparable embedding performance.

Data Set KPCA MVE MVE+NPKL SPE SPE+NPKL
Wine 90.5 ±5.6 91.9 ±6.6 90.9±5.8 75.2 ±0.09 87.1 ±7.9

Ionosphere 79.8±7.3 86.3 ±7.3 84.2±8.5 80.4 ±10.4 83.6 ±7.8
Heart 65.6 ±8.4 62.4 ±9.8 62.9 ±9.8 54.9 ±10.2 62.2 ±11.1
Sonar 58.2 ±12.4 59.2 ±10.2 59.8 ±12.2 57.4 ±11.1 59.4 ±11.4
Glass 70.7 ±9.8 73.5 ±7.8 74.5 ±10.4 61.7 ±9.7 69.4 ±8.7
Spiral 98.7 ±2.4 69.1 ±9.8 98.8 ±2.4 76.7 ±0.07 82.9 ±8.4

Australian 63.2 ±9.8 61.3 ±8.2 63.8 ±9.3 60.1 ± 0.10 59.5 ±10.1
Breast cancer 91.9 ±5.4 92.9 ±4.6 92.4 ±5.8 93.4 ±0.07 94.4 ±5.5

Table 8: k-NN classification accuracy on the 2D embedded results. (The best results are bolded.)

Next we compare the computational cost of the proposed algorithms against their original meth-
ods, respectively. Table 9 shows the summary of average CPU time cost of the compared algorithms.
From the results, it is clear to see that the two proposed algorithms, MVE+NPKL and SPE+NPKL,
are significantly more efficient than the other two original algorithms, respectively. By comparing
MVE and MVE+NPKL, we found that MVE+NPKL achieves about 10 to 30 times speedups over
the original MVE algorithm; the speedup values are even more significant for the SPE problem,
where the proposed SPE+NPKL algorithm attains about 50 to 90 times speedup over the original
SPE algorithm. These promising results again validate the proposed SimpleNPKL is effective for
improving the efficiency and scalability of the three data embedding tasks.

To further illustrate the scalability of SPE+NPKL, we propose to solve a real-world embedding
task on a large data set. In particular, we crawled a Flickr7 data set, which consists of 3,660 Flickr
user profiles and a collection of 3.7 million photos uploaded by these users. Each photo was an-
notated with a set of textual tags by users. Accordingly the photos for a particular Flickr user are
described by tiling these tags. In total, our data set has 359,832 tags and 93,692 unique tags. Each
Flickr user has a contact list, which is a collection of Flickr users who may share similar tastes /
interests in their photo sharing. In our data set, every user has 19.1 contacts on average. We thus set
|N | to 20 in both MVE and SPE. Moreover, there are 97,212 interest groups, and each Flickr user
could belong to one or more interest groups. We compute tf-idf weight for the tags to represent a
Flickr user (here the document frequency for a tag is actually the number of users annotated with

7. Flickr can be found at http://www.flickr.com/.

1340

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

Data Set MVE MVE+NPKL SpeedUp SPE SPE+NPKL SpeedUp
Wine 2.92 ±0.06 0.34 ±0.04 8.5 47.72 ±0.29 0.51 ±0.01 93.6

Ionosphere 16.98 ±0.16 1.14 ±0.01 14.9 30.07 ±1.25 0.60 ±0.01 50.1
Heart 9.64 ±0.00 0.38 ±0.02 25.3 48.18 ±0.31 0.51 ±0.11 94.5
Sonar 7.50 ±0.13 0.46 ±0.01 16.3 30.40 ±1.16 0.61 ±0.02 49.8
Glass 11.08 ±0.26 0.39 ±0.01 28.2 29.10 ±0.12 0.53 ±0.01 54.9
Spiral 18.28 ±0.28 0.46 ±0.00 39.7 47.91 ±0.91 0.48 ±0.01 99.8

Australian 4.61 ±0.03 0.30 ±0.02 15.4 28.94 ±0.11 0.53 ±0.01 54.6
Breast cancer 16.59 ±0.10 0.49 ±0.02 33.9 48.72 ±0.26 0.56 ±0.01 87.0

Table 9: The evaluation of CPU time cost of different algorithms and the speedup of the Sim-
pleNPKL method over the standard SDP solver. (The best results are bolded.)

that tag, that is, one or more photos of this user annotated with the tag). The k-nearest neighbor
graph for MVE is constructed using cosine similarity between Flickr users. For SPE, we further
constrain that the intra-group distance is smaller than the inter-group distance. In general, people
who are friends or similar to each other tend to join the same interest group. Our goal is to apply the
proposed MVE+NPKL and SPE+NPKL algorithms on these Flickr users in order to draw the 2D
embedding results of the Flickr users exclusively belonging to two different interest groups: B&W8

and Catchy Colors9 as shown in Figure 7.

Figure 6: Sample photos from two Flickr interest groups: B&W and Catchy Colors.

Specifically, the theme of the group B&W is related to a collection of photos with black and
white color only. The corresponding top 5 annotated tags for B&W are {bw, black and white,
black, white, portrait}. In contrast, the top 5 tags for CatchyColors include {red, blue, green,
flower, yellow}. Therefore, photos in the latter group are more colorful than the ones in B&W. An
illustration of photos belonging to these two groups are depicted in Figure 6. However, the semantics
of photos of these two groups are highly overlapping. Accordingly, the embedding results of MVE
are highly overlapped as shown in Figure 7 (a), though it drives the spectral information into the top

8. B&W can be found at http://www.flickr.com/groups/blackwhite/.
9. Catchy Colors can be found at http://www.flickr.com/groups/catchy/.

1341

ZHUANG, TSANG AND HOI

(a) MVE+NPKL

(b) SPE+NPKL

Figure 7: The 2D embedding result of Flickr users exclusively belonging to the interest group B&W
(blue points) and Catchy Colors (red points). The CPU time cost of MVE+NPKL and
SPE+NPKL are 27.2 minutes and 196.4 minutes, respectively.

1342

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

eigenvectors of the learned kernel matrix. On the other hand, by constraining intra-group distance
less that inter-group distance, SPE can preserve the topology structure of these two groups as shown
in Figure 7 (b). The 2D embedding shows the cluster structure rather clearly.

Note that the original algorithms using general SDP solvers cannot directly apply on the above
large real data set. The proposed SimpleNPKL framework makes it feasible to analyze the emerging
social networking problems using kernel learning methods. We hope our preliminary attempt in this
paper could shed a light on a series of important applications in the future, including: 1) Visualiza-
tion: as illustrated in Figure 7, we are able to obtain an intuitive understanding about the distribution
of the entities in a social networking community. From Figure 7 (b), one can also observe the ab-
normal entities (e.g., the red dot on the right upper corner) and prototypes (the ones located at the
centers of clusters). This may also benefit spam user detection and important user identification ap-
plications; 2) Friend suggestion: Given a Flickr userUi, we can rank the other usersUj according
to their similarity toUi computed by the learned non-parametric kernelKi j. With such information, a
user can quickly find the other users of similar interests/tastes in photo sharing so as to facilitate the
social communication between the users; 3) Interest group recommendation: It is interesting and
beneficial to develop an intelligent scheme for recommending a Flickr user some interest groups.
By applying the proposed kernel learning techniques to find similarity between Flickr users, it is
possible for us to develop some recommendation scheme that suggests a Flickr user some interest
groups that received the highest numbers of votes from its neighbors.

8. Conclusion

In this paper, we investigated a family of SimpleNPKL algorithms for improving the efficiency and
scalability of the Non-Parametric Kernel Learning (NPKL) from large sets of pairwise constraints.
We demonstrated that the proposed SimpleNPKL algorithm with linear loss for the pairwise con-
straints enjoys a closed-form solution, which can be simply computed by efficient sparse eigen-
decomposition, such as the Lanczos algorithm. Moreover, our SimpleNPKL algorithm using other
loss functions (including square hinge loss, hinge loss, and square loss) can be transformed into a
saddle-point minimax optimization problem, which can be solved by an efficient iterative optimiza-
tion procedure that only involves sparse eigen-decomposition computation. In contrast to the previ-
ous standard SDP solution, empirical results show that our approach achieved the same/comparable
accuracy, but is significantly more efficient and scalable for large-scale data sets. We also explore
some active constraint selection scheme to reduce the pairwise constraints in SimpleNPKL, which
can further improve both computational efficiency and the clustering performance. Finally, we also
demonstrate that the proposed family of SimpleNPKL algorithms can be applicable to other similar
machine learning problems, in which we studied three example applications on data embedding
problems. In the future, we will extend our technique for solving other SDP related machine learn-
ing problems.

Acknowledgments

We thank Dale Schuurmans’ valuable comments and discussions. We also thank the valuable com-
ments by the Action Editor and the anonymous reviewers. This research was in part supported by

1343

ZHUANG, TSANG AND HOI

Singapore MOE Tier-1 Grant (RG67/07), Tier-2 Grant (T208B2203), Tier-1 Grant (RG15/08), and
A* SERC Grant (102 158 0034).

References

F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Complementarity and nondegeneracy in semidef-
inite programming. Mathematical Programming, 77:111–128, 1997.

A. Argyriou, C. A. Micchelli, and M. Pontil. Learning convex combinations of continuously param-
eterized basic kernels. In Proceedings of Annual Conference on Learning Theory, pages 338–352,
2005.

F. R. Bach and Z. Harchaoui. DIFFRAC: a discriminative and flexible framework for clustering. In
Advances in Neural Information Processing Systems, pages 49–56, 2008.

F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the
smo algorithm. In Proceedings of International Conference on Machine Learning, 2004.

A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In Proceedings of
International Conference on Machine Learning, pages 97–104, 2006.

J. F. Bonnans and E. Shapiro. Optimization problems with perturbations, a guided tour. SIAM
Review, 40:228–264, 1996.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

S. Boyd and L. Xiao. Least-squares covariance matrix adjustment. SIAM Journal onMatrix Analysis
and Applications, 27(2):532–546, 2005.

O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels for semi-supervised learning. In Advances
in Neural Information Processing Systems 15, pages 585–592, 2003.

J. Chen and J. Ye. Training SVM with indefinite kernels. In International Conference on Machine
Learning, pages 136–143, 2008.

N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. S. Kandola. On kernel-target alignment. In
Advances in Neural Information Processing Systems 14, pages 367–373, 2002.

L. Duan, I.W. Tsang, D. Xu, and S.J. Maybank. Domain transfer SVM for video concept detection.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2009.

P. V. Gehler and S. Nowozin. Infinite kernel learning. In TECHNICAL REPORT NO. TR-178,Max
Planck Institute for Biological Cybernetics, 2008.

M. Gönen and E. Alpaydin. Localized multiple kernel learning. In Proceedings of International
Conference on Machine Learning, pages 352–359, 2008.

A. Gretton, O. Bousquet, A. J. Smola, and B. Schölkopf. Measuring statistical dependence with
hilbert-schmidt norms. In Proceedings of International Conference on Algorithmic Learning
Theory, pages 63–77, 2005.

1344

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel methods in machine learning. Annals of
Statistics, 36(3):1171–1220, 2008.

S. C. H. Hoi and R. Jin. Active kernel learning. In Proceedings of International Conference on
Machine Learning, pages 400–407, 2008.

S. C. H. Hoi, M. R. Lyu, and E. Y. Chang. Learning the unified kernel machines for classification.
In Proceedings of ACM SIGKDD conference on Knowledge Discovery and Data Mining, pages
187–196, 2006.

S. C. H. Hoi, R. Jin, and M. R. Lyu. Learning nonparametric kernel matrices from pairwise con-
straints. In Proceedings of International Conference on Machine Learning, pages 361–368, 2007.

T. Jebara and V. Shchogolev. B-matching for spectral clustering. In European Conference on
Machine Learning, pages 679–686, September 2006.

R. Johnson and T. Zhang. Graph-based semi-supervised learning and spectral kernel design. IEEE
Transactions on Information Theory, 54(1):275–288, 2008.

K. Krishnan and J. E. Mitchell. A unifying framework for several cutting plane methods for semidef-
inite programming. Optimization Methods and Software, 21(1):57–74, 2006.

B. Kulis, M. Sustik, and I. S. Dhillon. Learning low-rank kernel matrices. In Proceedings of
International Conference on Machine Learning, pages 505–512, 2006.

B. Kulis, M. A. Sustik, and I. S. Dhillon. Low-rank kernel learning with bregman matrix diver-
gences. Journal of Machine Learning Research, 10:341–376, 2009.

J. Kwok and I. W. Tsang. Learning with idealized kernels. In Proceedings of International Confer-
ence on Machine Learning, pages 400–407, 2003.

G. R. G. Lanckriet, N. Cristianini, P. L. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel
matrix with semidefinite programming. Journal of Machine Learning Research, 5:27–72, 2004.

R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK users guide: Solution of large scale eigen-
value problems with implicitly restarted arnoldi methods. Technical report, 1998.

D. P. Lewis, T. Jebara, and W. S. Noble. Nonstationary kernel combination. In Proceedings of
International Conference on Machine Learning, pages 553–560, 2006.

F. Li, Y. Fu, Y.-H. Dai, C. Sminchisescu, and J. Wang. Kernel learning by unconstrained opti-
mization. In Proceedings of International Conference on Artificial Intelligence and Statistics,
2009.

M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone program-
ming. Linear Algebra Applications, 284:193–228, 1998.

R. Luss and A. d’Aspremont. Support vector machine classification with indefinite kernels. In
Advances in Neural Information Processing Systems 20, 2008.

1345

ZHUANG, TSANG AND HOI

Q. Mao and I. W. Tsang. Parameter-free spectral kernel learning. In Conference on Uncertainty in
Artificial Intelligence, 2010.

Q. Mao and I. W. Tsang. Multiple template learning for structured prediction. arXiv CoRR
1103.0890, Mar 2011.

C. A. Micchelli and M. Pontil. Learning the kernel function via regularization. Journal of Machine
Learning Research, 6:1099–1125, 2005.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103:
127–152, 2005.

Y. Nesterov and A. Nemirovskii. Interior-point Polynomial Algorithms in Convex Programming.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 1994.

G. Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal
eigenvalues. Technical Report MSRR-604, Carnegie Mellon University, August 1995.

F. R. Rakotomamonjy, A.and Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal of Machine
Learning Research, 9:2491–2521, 2008.

B. Shaw and T. Jebara. Minimum volume embedding. In Proceedings of International Conference
on Artificial Intelligence and Statistics, 2007.

B. Shaw and T. Jebara. Structure preserving embedding. In Proceedings of Interational Conference
on Machine Learning, page 118, 2009.

V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: from transductive to semi-
supervised learning. In Proceedings of International Conference on Machine Learning, pages
824–831, 2005.

L. Song, A. J. Smola, K. M. Borgwardt, and A. Gretton. Colored maximum variance unfolding. In
Advances in Neural Information Processing Systems 20, 2008.

S. Sonnenburg, G. Rätsch, and C. Schäfer. A general and efficient multiple kernel learning algo-
rithm. In Advances in Neural Information Processing Systems 18, 2006a.

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning.
Journal of Machine Learning Research, 7:1531–1565, 2006b.

J. Sun, X. Wu, S. Yan, L.-F. Cheong, T.-S. Chua, and J. Li. Hierarchical spatio-temporal context
modeling for action recognition. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2009.

M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. In Proceedings of
Interational Conference on Machine Learning, page 134, 2009.

A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for object detection. In
Proceedings of IEEE International Conference on Computer Vision, 2009.

1346

A FAMILY OF SIMPLE NON-PARAMETRIC KERNEL LEARNING ALGORITHMS

K. Q. Weinberger and L. K. Saul. Fast solvers and efficient implementations for distance metric
learning. In Proceedings of International Conference on Machine Learning, pages 1160–1167,
2008.

K. Q. Weinberger, F. Sha, and L. K. Saul. Learning a kernel matrix for nonlinear dimensionality
reduction. In Proceedings of International Conference on Machine Learning, 2004.

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning with application to
clustering with side-information. In Advances in Neural Information Processing Systems 15,
2003.

Z. Xu, R. Jin, I. King, and M. R. Lyu. An extended level method for efficient multiple kernel
learning. In Advances in Neural Information Processing Systems, pages 1825–1832, 2008.

Y. Ying, C. Campbell, and M. Girolami. Analysis of SVM with indefinite kernels. In Advances in
Neural Information Processing Systems, 2010.

T. Zhang and R. Ando. Analysis of spectral kernel design based semi-supervised learning. In
Advances in Neural Information Processing Systems 18, 2006.

X. Zhu, J. S. Kandola, Z. Ghahramani, and J. D. Lafferty. Nonparametric transforms of graph
kernels for semi-supervised learning. In Advances in Neural Information Processing Systems,
2005.

J. Zhuang and S. C. H. Hoi. Non-parametric kernel ranking approach for social image retrieval.
In Proceedings of the 9th ACM International Conference on Image and Video Retrieval, pages
26–33, 2010.

J. Zhuang, I. W. Tsang, and S. C. H. Hoi. SimpleNPKL: simple non-parametric kernel learning. In
Proceedings of Interational Conference on Machine Learning, 2009.

J. Zhuang, I. W. Tsang, and S. C. H. Hoi. Two-layer multiple kernel learning. In Proceedings of
Interational Conference on Artificial Intelligence and Statistics, 2011.

1347

Journal of Machine Learning Research 12 (2011) 1349-1388 Submitted 4/10; Revised 1/11; Published 4/11

Faster Algorithms for Max-Product Message-Passing∗

Julian J. McAuley† JULIAN.MCAULEY@NICTA.COM.AU
Tibério S. Caetano† TIBERIO.CAETANO@NICTA.COM.AU
Statistical Machine Learning Group
NICTA
Locked Bag 8001
Canberra ACT 2601, Australia

Editor: Tommi Jaakkola

Abstract
Maximum A Posteriori inference in graphical models is often solved via message-passing algo-
rithms, such as the junction-tree algorithm or loopy belief-propagation. The exact solution to this
problem is well-known to be exponential in the size of the maximal cliques of the triangulated
model, while approximate inference is typically exponential in the size of the model’s factors. In
this paper, we take advantage of the fact that many models have maximal cliques that are larger than
their constituent factors, and also of the fact that many factors consist only of latent variables (i.e.,
they do not depend on an observation). This is a common case in a wide variety of applications
that deal with grid-, tree-, and ring-structured models. In such cases, we are able to decrease the
exponent of complexity for message-passing by 0.5 for both exact and approximate inference. We
demonstrate that message-passing operations in such models are equivalent to some variant of ma-
trix multiplication in the tropical semiring, for which we offer an O(N2.5) expected-case solution.

Keywords: graphical models, belief-propagation, tropical matrix multiplication

1. Introduction

It is well-known that exact inference in tree-structured graphical models can be accomplished ef-
ficiently by message-passing operations following a simple protocol making use of the distributive
law (Aji and McEliece, 2000; Kschischang et al., 2001). It is also well-known that exact inference
in arbitrary graphical models can be solved by the junction-tree algorithm; its efficiency is deter-
mined by the size of the maximal cliques after triangulation, a quantity related to the tree-width of
the graph.

Figure 1 illustrates an attempt to apply the junction-tree algorithm to some graphical models
containing cycles. If the graphs are not chordal ((a) and (b)), they need to be triangulated, or made
chordal (red edges in (c) and (d)). Their clique-graphs are then guaranteed to be junction-trees,
and the distributive law can be applied with the same protocol used for trees; see Aji and McEliece
(2000) for a beautiful tutorial on exact inference in arbitrary graphs. Although the models in these

∗. Preliminary versions of this work appeared in The 27th International Conference on Machine Learning (ICML 2010),
and the 13th International Conference on Artificial Intelligence and Statistics (AISTATS 2010), The NIPS 2009
Workshop on Learning with Orderings, The NIPS 2009 Workshop on Discrete Optimization in Machine Learning,
and in Learning and Intelligent Optimization (LION 4).

†. Also at Research School of Information Sciences and Engineering, Australian National University, Canberra ACT
0200, Australia.

c©2011 Julian J. McAuley and Tibério S. Caetano.

MCAULEY AND CAETANO

(a) (b) (c) (d)

Figure 1: The models at left ((a) and (b)) can be triangulated ((c) and (d)) so that the junction-
tree algorithm can be applied. Despite the fact that the new models have larger maximal
cliques, the corresponding potentials are still factored over pairs of nodes only. Our
algorithms exploit this fact.

(a) (b) (c) (d)

Figure 2: Some graphical models to which our results apply: factors conditioned upon observations
have fewer latent variables than purely latent factors. White nodes correspond to latent
variables, gray nodes to an observation. In other words, factors containing a gray node
encode the data likelihood, whereas factors containing only white nodes encode priors.
Expressed more simply, the ‘node potentials’ depend upon the observation, while the
‘edge potentials’ do not.

examples contain only pairwise factors, triangulation has increased the size of their maximal cliques,
making exact inference substantially more expensive. Hence approximate solutions in the original
graph (such as loopy belief-propagation, or inference in a loopy factor-graph) are often preferred
over an exact solution via the junction-tree algorithm.

Even when the model’s factors are the same size as its maximal cliques, neither exact nor ap-
proximate inference algorithms take advantage of the fact that many factors consist only of latent
variables. In many models, those factors that are conditioned upon the observation contain fewer
latent variables than the purely latent factors. Examples are shown in Figure 2. This encompasses
a wide variety of models, including grid-structured models for optical flow and stereo disparity as
well as chain and tree-structured models for text or speech.

In this paper, we exploit the fact that the maximal cliques (after triangulation) often have po-
tentials that factor over subcliques, as illustrated in Figure 1. We will show that whenever this is
the case, the expected computational complexity of message-passing between such cliques can be
improved (both the asymptotic upper-bound and the actual runtime).

Additionally, we will show that this result can be applied in cliques whose factors that are
conditioned upon an observation contain fewer latent variables than those factors consisting purely

1350

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

of latent variables; the ‘purely latent’ factors can be pre-processed offline, allowing us to achieve
the same benefits as described in the previous paragraph.

We show that these properties reveal themselves in a wide variety of real applications.
A core operation encountered in the junction-tree algorithm is that of computing the inner-

product of two vectors va and vb. In the max-product semiring (used for MAP inference), the
‘inner-product’ becomes

max
i∈{1...N}

{va[i]×vb[i]} . (1)

Our results stem from the realization that while (Equation 1) appears to be a linear time operation,
it can be decreased to O(

√
N) (in the expected case) if we know the permutations that sort va and

vb (i.e., the order statistics of va and vb). These permutations can be obtained efficiently when the
model factorizes as described above.

Preliminary versions of this work have appeared in McAuley and Caetano (2009), McAuley and
Caetano (2010a), and McAuley and Caetano (2010b).

1.1 Summary of Results

A selection of the results to be presented in the remainder of this paper can be summarized as
follows:

• Our speedups apply to the operation of passing a single message. As a result, our method can
be used regardless of the message-passing protocol.

• We are able to lower the asymptotic expected running time of max-product message-passing
for any discrete graphical model whose cliques factorize into lower-order terms.

• The results obtained are exactly those that would be obtained by the traditional version of the
algorithm, that is, no approximations are used.

• Our algorithm also applies whenever factors that are conditioned upon an observation contain
fewer latent variables than those factors that are not conditioned upon an observation, as in
Figure 2 (in which case certain computations can be taken offline).

• For pairwise models satisfying the above properties, we obtain an expected speed-up of at
least Ω(

√
N) (assuming N states per node;Ω denotes an asymptotic lower-bound). For exam-

ple, in models with third-order cliques containing pairwise terms, message-passing is reduced
from Θ(N3) to O(N2

√
N), as in Figure 1(d). For pairwise models whose edge potential is not

conditioned upon an observation, message-passing is reduced from Θ(N2) to O(N
√
N), as in

Figure 2.

• For cliques composed ofK-ary factors, the expected speed-up generalizes to at leastΩ(1KN
1
K),

though it is never asymptotically slower than the original solution.

• The expected-case improvement is derived under the assumption that the order statistics of
different factors are independent.

• If the different factors have ‘similar’ order statistics, the performance will be better than the
expected case.

1351

MCAULEY AND CAETANO

• If the different factors have ‘opposite’ order statistics, the performance will be worse than the
expected case, but is never asymptotically more expensive than the traditional version of the
algorithm.

Our results do not apply for every semiring (⊕,⊗), but only to those whose ‘addition’ oper-
ation defines an order (for example, min or max); we also assume that under this ordering, our
‘multiplication’ operator ⊗ satisfies

a< b∧ c< d ⇒ a⊗ c< b⊗d. (2)

Thus our results certainly apply to the max-sum and min-sum (‘tropical’) semirings (as well as max-
product andmin-product, assuming non-negative potentials), but not for sum-product (for example).
Consequently, our approach is useful for computing MAP-states, but cannot be used to compute
marginal distributions. We also assume that the domain of each node is discrete.

We shall initially present our algorithm in terms of pairwise graphical models such as those
shown in Figure 2. In such models message-passing is precisely equivalent to matrix-vector mul-
tiplication over our chosen semiring. Later we shall apply our results to models such as those in
Figure 1, wherein message-passing becomes some variant of matrix multiplication. Finally we shall
explore other applications besides message-passing that make use of tropical matrix multiplication
as a subroutine, such all-pairs shortest-path problems.

1.2 Related Work

There has been previous work on speeding-up message-passing algorithms by exploiting different
types of structure in certain graphical models. For example, Kersting et al. (2009) study the case
where different cliques share the same potential function. In Felzenszwalb and Huttenlocher (2006),
fast message-passing algorithms are provided for cases in which the potential of a 2-clique is only
dependent on the difference of the latent variables (which is common in some computer vision
applications); they also show how the algorithm can be made faster if the graphical model is a
bipartite graph. In Kumar and Torr (2006), the authors provide faster algorithms for the case in
which the potentials are truncated, whereas in Petersen et al. (2008) the authors offer speed-ups for
models that are specifically grid-like.

The latter work is perhaps the most similar in spirit to ours, as it exploits the fact that certain
factors can be sorted in order to reduce the search space of a certain maximization problem.

Another course of research aims at speeding-up message-passing algorithms by using ‘informed’
scheduling routines, which may result in faster convergence than the random schedules typically
used in loopy belief-propagation and inference in factor graphs (Elidan et al., 2006). This branch of
research is orthogonal to our own in the sense that our methods can be applied independently of the
choice of message passing protocol.

Another closely related paper is that of Park and Darwiche (2003). This work can be seen to
compliment ours in the sense that it exploits essentially the same type of factorization that we study,
though it applies to sum-product versions of the algorithm, rather than the max-product version that
we shall study. Kjærulff (1998) also exploits factorization within cliques of junction-trees, albeit a
different type of factorization than that studied here.

In Section 4, we shall see that our algorithm is closely related to a well-studied problem known
as ‘tropical matrix multiplication’ (Kerr, 1970). The worst-case complexity of this problem has been
studied in relation to the all-pairs shortest-path problem (Alon et al., 1997; Karger et al., 1993).

1352

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

Example description

A;B capital letters refer to sets of nodes (or similarly, cliques);
A∪B;A∩B;A\B standard set operators are used (A \B denotes set differ-

ence);
dom(A) the domain of a set; this is just the Cartesian product of

the domains of each element in the set;
P bold capital letters refer to arrays;
x bold lower-case letters refer to vectors;
x[a] vectors are indexed using square brackets;
P[n] similarly, square brackets are used to index a row of a 2-d

array,
P[n] or a row of an (|n|+1)-dimensional array;
PX ;va superscripts are just labels, that is, PX is an array, va is a

vector;
va constant subscripts are also labels, that is, if a is a con-

stant, then va is a constant vector;
xi;xA variable subscripts define variables; the subscript defines

the domain of the variable;
n|X if n is a constant vector, then n|X is the restriction of that

vector to those indices corresponding to variables in X
(assuming that X is an ordered set);

ΦA;ΦA(xA) a function over the variables in a set A; the argument xA
will be suppressed if clear, given that ‘functions’ are es-
sentially arrays for our purposes;

Φi, j(xi,x j) a function over a pair of variables (xi,x j);
ΦA(n|B;xA\B) if one argument to a function is constant (here n|B), then

it becomes a function over fewer variables (in this case,
only xA\B is free);

Table 1: Notation

2. Background

The notation we shall use is briefly defined in Table 1. We shall assume throughout that the max-
product semiring is being used, though our analysis is almost identical for any suitable choice.

MAP-inference in a graphical model G consists of solving an optimization problem of the form

x̂= argmax
x

∏
C∈C

ΦC(xC),

where C is the set of maximal cliques in G . This problem is often solved via message-passing
algorithms such as the junction-tree algorithm, loopy belief-propagation, or inference in a factor-
graph (Aji and McEliece, 2000; Weiss, 2000; Kschischang et al., 2001).

Often, the clique-potentials ΦC(xC) shall be decomposable into several smaller factors, that is,

ΦC(xC) = ∏
F⊆C

ΦF(xF).

1353

MCAULEY AND CAETANO

Some simple motivating examples are shown in Figure 3: a model for pose estimation from Sigal
and Black (2006), a ‘skip-chain CRF’ from Galley (2006), and a model for shape-matching from
Coughlan and Ferreira (2002). In each case, the triangulated model has third-order cliques, but the
potentials are only pairwise. Other examples have already been shown in Figure 1; analogous cases
are ubiquitous in many real applications.

It will often be more convenient to express our objective function as being conditioned upon
some observation, y. Thus our optimization problem becomes

x̂(y) = argmax
x

∏
C∈C

ΦC(xC|y) (3)

(for simplicity when we discuss ‘cliques’ we are referring to sets of latent variables).
Further factorization may be possible if we express (Equation 3) in terms of those factors that

depend upon the observation y, and those that do not:

x̂(y) = argmax
x

∏
C∈C

{
∏
F⊆C

ΦF(xF)︸ ︷︷ ︸
data-independent

×∏
Q⊆C

ΦQ(xQ|y)︸ ︷︷ ︸
data-dependent

}
,

We shall say that those factors that are not conditioned on the observation are ‘data-independent’.
Our results shall apply to message-passing equations in those cliques C where for each data-

independent factor F we have F ⊂ C, or for each data-dependent factor Q we have Q ⊂ C, that
is, when all F or all Q in C are proper subsets of C. In such cases we say that the clique C is
factorizable.

The fundamental step encountered in message-passing algorithms is defined below. The mes-
sage from a clique X to an intersecting clique Y (both sets of latent variables) is defined by

mX→Y (xX∩Y) =max
xX\Y

{
ΦX(xX) ∏

Z∈Γ(X)\Y
mZ→X(xX∩Z)

}
(4)

(where Γ(X) is the set of neighbors of the clique X , that is, the set of cliques that intersect with X).
If such messages are computed after X has received messages from all of its neighbors except Y
(i.e., Γ(X) \Y), then this defines precisely the update scheme used by the junction-tree algorithm.
The same update scheme is used for loopy belief-propagation, though it is done iteratively in a
randomized fashion.

After all messages have been passed, the MAP-state for a set of latent variables M (assumed to
be a subset of a single clique X) is computed using

mM(xM) =max
xX\M

{
ΦX(xX) ∏

Z∈Γ(X)
mZ→X(xX∩Z)

}
. (5)

For cliques that are factorizable (according to our previous definition), both (Equation 4) and
(Equation 5) take the form

mM(xM) =max
xX\M

{
∏
F⊆X

ΦF(xF)∏
Q⊆X

ΦQ(xQ|y)
}
. (6)

1354

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

(a) (b) (c)

Figure 3: (a) A model for pose reconstruction from Sigal and Black (2006); (b) A ‘skip-chain CRF’
from Galley (2006); (c) A model for deformable matching from Coughlan and Ferreira
(2002). Although the (triangulated) models have cliques of size three, their potentials
factorize into pairwise terms.

Note that we always have Z∩X ⊂X for messages Z→X , meaning that the presence of the messages
has no effect on the ‘factorizability’ of (Equation 6).

Algorithm 1 gives the traditional solution to this problem, which does not exploit the factor-
ization of ΦX(xX). This algorithm runs in Θ(N|X |), where N is the number of states per node, and
|X | is the size of the clique X (for a given xX , we treat computing ∏F⊂XΦF(xF) as a constant time
operation, as our optimizations shall not modify this cost).

In the following sections, we shall consider the two types of factorizability separately: first, in
Section 3, we shall consider cliques X whose messages take the form

mM(xM) =max
xX\M

{
ΦX(xX)∏

Q⊂X
ΦQ(xQ|y)

}
.

We say that such cliques are conditionally factorizable (since all conditional terms factorize); ex-
amples are shown in Figure 2. Next, in Section 4, we consider cliques whose messages take the
form

mM(xM) =max
xX\M

∏
F⊂X

ΦF(xF).

We say that such cliques are latently factorizable (since terms containing only latent variables fac-
torize); examples are shown in Figure 1.

3. Optimizing Algorithm 1: Conditionally Factorizable Models

In order to specify a more efficient version of Algorithm 1, we begin by considering the simplest
nontrivial conditionally factorizablemodel: a pairwise model in which each latent variable depends
upon the observation, that is,

x̂(y) = argmax
x

∏
i∈N

Φi(xi|y)︸ ︷︷ ︸
node potential

× ∏
(i, j)∈E

Φi, j(xi,x j)︸ ︷︷ ︸
edge potential

. (7)

This is the type of model depicted in Figure 2 and encompasses a large class of grid- and tree-
structured models. Using our previous definitions, we say that the node potentials are ‘data-dependent’,
whereas the edge potentials are ‘data-independent’.

1355

MCAULEY AND CAETANO

Algorithm 1 Brute-force computation of max-marginals
Input: a clique X whose max-marginal mM(xM) (where M ⊂ X) we wish to compute; assume that

each node in X has domain {1 . . .N}
1: for m ∈ dom(M) {i.e., {1 . . .N}|M|} do
2: max :=−∞
3: for z ∈ dom(X \M) do
4: if ∏F⊂XΦF(m|F ;z|F)> max then
5: max :=∏F⊂XΦF(m|F ;z|F)
6: end if
7: end for {this loop takes Θ(N|X\M|)}
8: mM(m) := max
9: end for {this loop takes Θ(N|X |)}
10: Return: mM

Message-passing in models of the type shown in (Equation 7) takes the form

mA→B(xi) =Φi(xi|y)×max
x j

Φ j(x j|y)×Φi, j(xi,x j) (8)

(where A = {i, j} and B = {i,k}). Note once again that in (Equation 8) we are not concerned
solely with exact inference via the junction-tree algorithm. In many models, such as grids and
rings, (Equation 7) shall be solved approximately by means of either loopy belief-propagation, or
inference in a factor-graph, which consists of solving (Equation 8) according to protocols other than
the optimal junction-tree protocol.

It is useful to consider Φi, j in (Equation 8) as an N×N matrix, and Φ j as an N-dimensional
vector, so that solving (Equation 8) is precisely equivalent to matrix-vector multiplication in the
max-product semiring. For a particular value xi = q, (Equation 8) becomes

mA→B(q) =Φi(q|y)×max
x j

Φ j(x j|y)︸ ︷︷ ︸
va

×Φi, j(q,x j)︸ ︷︷ ︸
vb

, (9)

which is precisely the ‘max-product inner-product’ operation that we claimed was critical in Section
1.

As we have previously suggested, it will be possible to solve (Equation 9) efficiently if we
know the order statistics of va and vb, that is, if we know the permutations that sort Φ j and every
row of Φi, j in (Equation 8). Sorting Φ j takes Θ(N logN), whereas sorting every row of Φi, j takes
Θ(N2 logN) (Θ(N logN) for each of N rows). The critical point to be made is that Φi, j(xi,x j) does
not depend on the observation, meaning that its order statistics can be obtained offline in several
applications.

The following elementary lemma is the key observation required in order to solve (Equation 1),
and therefore (Equation 9) efficiently:

Lemma 1 For any index q, the solution to p= argmaxi∈{1...N} {va[i]×vb[i]}must have va[p]≥ va[q]
or vb[p]≥ vb[q]. Therefore, having computed va[q]×vb[q], we can find ‘p’ by computing only those
products va[i]×vb[i] where either va[i]> va[q] or vb[i]> vb[q].

1356

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

Algorithm 2 Find i such that va[i]×vb[i] is maximized
Input: two vectors va and vb, and permutation functions pa and pb that sort them in decreasing

order (so that va[pa[1]] is the largest element in va)
1: Initialize: start := 1, enda := p−1a [pb[1]], endb := p−1b [pa[1]] {if endb = k, then the largest
element in va has the same index as the kth largest element in vb}

2: best := pa[1], max := va[best]×vb[best]
3: if va[pb[1]]×vb[pb[1]]> max then
4: best := pb[1], max := va[best]×vb[best]
5: end if
6: while start< enda {in practice, we could also stop if start< endb, but the version given here is
the one used for analysis in Appendix A} do

7: start := start+1
8: if va[pa[start]]×vb[pa[start]]> max then
9: best := pa[start]
10: max := va[best]×vb[best]
11: end if
12: if p−1b [pa[start]]< endb then
13: endb := p−1b [pa[start]]
14: end if
15: {repeat lines 8–14, interchanging a and b}
16: end while {this loop takes expected time O(√N)}
17: Return: best

This observation is used to construct Algorithm 2. Here we iterate through the indices starting
from the largest values of va and vb, stopping once both indices are ‘behind’ the maximum value
found so far (which we then know is the maximum). This algorithm is demonstrated pictorially
in Figure 4. Note that Lemma 1 only depends upon the relative values of elements in va and vb,
meaning that the number of computations that must be performed is purely a function of their order
statistics (i.e., it does not depend on the actual values of va or vb).

If Algorithm 2 can solve (Equation 9) inO(f (N)), then we can solve (Equation 8) inO(N f (N)).
Determining precisely the running time of Algorithm 2 is not trivial, and will be explored in depth
in Appendix A. At this stage we shall state an upper-bound on the true complexity in the following
theorem:

Theorem 2 The expected running time of Algorithm 2 is O(
√
N), yielding a speed-up of at least

Ω(
√
N) in cliques containing pairwise factors. This expectation is derived under the assumption

that va and vb have independent order statistics.

Algorithm 3 uses Algorithm 2 to solve (Equation 8), where we assume that the order statistics
of the rows of Φi, j have been obtained offline.

While the offline cost of sorting is not problematic in situations where the model is to be re-
peatedly reused on several observations, it can be avoided in two situations. Firstly, many models
have a ‘homogeneous’ prior, that is, the same prior is shared amongst every edge (or clique) of the
model. In such cases, only a single ‘copy’ of the prior needs to be sorted, meaning that in any model

1357

MCAULEY AND CAETANO

Step 1:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Step 2:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Step 3:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Step 4:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Step 5:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Figure 4: Algorithm 2, explained pictorially. The arrows begin at pa[start] and pb[start]; the red
dashed line connects enda and endb, behind which we need not search; a dashed arrow
is used when a new maximum is found. Note that in the event that va and vb contain
repeated elements, they can be sorted arbitrarily.

containingΩ(logN) edges, speed improvements can be gained over the naı̈ve implementation. Sec-
ondly, where an iterative algorithm (such as loopy belief-propagation) is to be used, the sorting step
need only take place prior to the first iteration; if Ω(logN) iterations of belief-propagation are to
be performed (or in a homogeneous model, if the number of edges multiplied by the number of

1358

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

Algorithm 3 Solve (Equation 8) using Algorithm 2
Input: a potentialΦi, j(a,b)×Φi(a|yi)×Φ j(b|y j)whose max-marginalmi(xi)we wish to compute,

and a set of permutation functions P such that P[i] sorts the ith row of Φi, j (in decreasing order).
1: compute the permutation function pa by sorting Ψ j {takes Θ(N logN)}
2: for q ∈ {1 . . .N} do
3: (va,vb) := (Ψ j,Φi, j(q,x j|yi,y j))
4: best := Algorithm2(va,vb, pa,P[q]) {O(

√
N)}

5: mA→B(q) :=Φi(q)×Φ j(best)×Φi, j(q,best|yi,y j)
6: end for {this loop takes expected time O(N√N)}
7: Return: mA→B

iterations is Ω(logN)), we shall again gain speed improvements even when the sorting step is done
online.

In fact, the second of these conditions obviates the need for ‘conditional factorizability’ (or
‘data-independence’) altogether. In other words, in any pairwise model in whichΩ(logN) iterations
of belief-propagation are to be performed, the pairwise terms need to be sorted only during the first
iteration. Thus these improvements apply to those models in Figure 1, so long as the number of
iterations of belief-propagation is Ω(logN).

4. Latently Factorizable Models

Just as we considered the simplest conditionally factorizable model in Section 3, we now consider
the simplest nontrivial latently factorizablemodel: a clique of size three containing pairwise factors.
In such a case, our aim is to compute

mi, j(xi,x j) =max
xk

Φi, j,k(xi,x j,xk), (10)

which we have assumed takes the form

mi, j(xi,x j) =max
xk

Φi, j(xi,x j)×Φi,k(xi,xk)×Φ j,k(x j,xk).

For a particular value of (xi,x j) = (a,b), we must solve

mi, j(a,b) =Φi, j(a,b)×max
xk

Φi,k(a,xk)︸ ︷︷ ︸
va

×Φ j,k(b,xk)︸ ︷︷ ︸
vb

, (11)

which again is in precisely the form shown in (Equation 1).
Just as (Equation 8) resembled matrix-vector multiplication, there is a close resemblance be-

tween (Equation 11) and the problem of matrix-matrix multiplication in the max-product semiring
(often referred to as ‘tropical matrix multiplication’, ‘funny matrix multiplication’, or simply ‘max-
product matrix multiplication’). While traditional matrix multiplication is well-known to have a
subcubic worst-case solution (see Strassen, 1969), the version in (Equation 11) has no known sub-
cubic solution (the fastest known solution is O(N3/ logN), but there is no known solution that runs
in O(N3−ε) (Chan, 2007); Kerr (1970) shows that no subcubic solution exists under certain mod-
els of computation). The worst-case complexity of solving (Equation 11) can also be shown to be

1359

MCAULEY AND CAETANO

Algorithm 4 Use Algorithm 2 to compute the max-marginal of a 3-clique containing pairwise fac-
tors
Input: a potential Φi, j,k(a,b,c) = Φi, j(a,b) × Φi,k(a,c) × Φ j,k(b,c) whose max-marginal

mi, j(xi,x j) we wish to compute
1: for n ∈ {1 . . .N} do
2: compute Pi[n] by sorting Φi,k(n,xk) {takes Θ(N logN)}
3: compute P j[n] by sorting Φ j,k(n,xk) {Pi and P j are N ×N arrays, each row of which is

a permutation; Φi,k(n,xk) and Φ j,k(n,xk) are functions over xk, since n is constant in this
expression}

4: end for {this loop takes Θ(N2 logN)}
5: for (a,b) ∈ {1 . . .N}2 do
6: (va,vb) :=

(
Φi,k(a,xk),Φ j,k(b,xk)

)
7: (pa, pb) :=

(
Pi[a],P j[b]

)
8: best := Algorithm2(va,vb, pa, pb) {takes O(

√
N)}

9: mi, j(a,b) :=Φi, j(a,b)×Φi,k(a,best)×Φ j,k(b,best)
10: end for {this loop takes O(N2√N)}
{the total running time is O(N2 logN+N2

√
N), which is dominated by O(N2

√
N)}

11: Return: mi, j

equivalent to the all-pairs shortest-path problem, which is studied in Alon et al. (1997). Although
we shall not improve the worst-case complexity, Algorithm 2 leads to far better expected-case per-
formance than existing solutions.

In principle Strassen’s algorithm could be used to perform sum-product inference in the set-
ting we discuss here, and indeed there has been some work on performing sum-product infer-
ence in graphical models that factorize (Park and Darwiche, 2003). Interestingly, there is also
a sub-quadratic solution to sum-product matrix-vector multiplication that requires preprocessing
(Williams, 2007), that is, the sum-product version of the setting we discussed in Section 3.

A prescription of how Algorithm 2 can be used to solve (Equation 10) is given in Algorithm 4.
As we mentioned in Section 3, the expected-case running time of Algorithm 2 is O(

√
N), meaning

that the time taken to solve Algorithm 4 is O(N2
√
N).

5. Extensions

So far we have only considered the case of pairwise graphical models, though as mentioned our
results can in principle be applied to any conditionally or latently factorizable models, no matter the
size of the factors. Essentially our results about matrices become results about tensors. We first treat
latently factorizable models, after which the same ideas can be applied to conditionally factorizable
models.

5.1 An Extension to Higher-Order Cliques with Three Factors

The simplest extension that we can make to Algorithms 2, 3, and 4 is to note that they can be
applied even when there are several overlapping terms in the factors. For instance, Algorithm 4 can

1360

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

Step 1:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Figure 5: The reasoning applied in Algorithm 2 applies even when the elements of pa and pb are

multidimensional indices.

be adapted to solve

mi, j(xi,x j) =max
xk,xm

Φi, j(xi,x j)×Φi,k,m(xi,xk,xm)×Φ j,k,m(x j,xk,xm), (12)

and similar variants containing three factors. Here both xk and xm are shared byΦi,k,m andΦ j,k,m. We
can follow precisely the reasoning of the previous section, except that when we sortΦi,k,m (similarly
Φ j,k,m) for a fixed value of xi, we are now sorting an array rather than a vector (Algorithm 4, lines 2
and 3); in this case, the permutation functions pa and pb in Algorithm 2 simply return pairs of
indices. This is illustrated in Figure 5. Effectively, in this example we are sorting the variable xk,m
whose domain is dom(xk)×dom(xm), which has state space of size N2.

As the number of shared terms increases, so does the improvement to the running time. While
(Equation 12) would take Θ(N4) to solve using Algorithm 1, it takes only O(N3) to solve using
Algorithm 4 (more precisely, if Algorithm 2 takes O(f (N)), then (Equation 12) takes O(N2 f (N2)),
which we have mentioned is O(N2

√
N2) = O(N3)). In general, if we have S shared terms, then the

running time is O(N2
√
NS), yielding a speed-up ofΩ(

√
NS) over the naı̈ve solution of Algorithm 1.

5.2 An Extension to Higher-Order Cliques with Decompositions Into Three Groups

By similar reasoning, we can apply our algorithm to cases where there are more than three factors, in
which the factors can be separated into three groups. For example, consider the clique in Figure 6(a),
which we shall call G (the entire graph is a clique, but for clarity we only draw an edge when the
corresponding nodes belong to a common factor). Each of the factors in this graph have been
labeled using either differently colored edges (for factors of size larger than two) or dotted edges
(for factors of size two), and the max-marginal we wish to compute has been labeled using colored
nodes. We assume that it is possible to split this graph into three groups such that every factor is
contained within a single group, along with the max-marginal we wish to compute (Figure 6, (b)).
If such a decomposition is not possible, we will have to resort to further extensions to be described
in Section 5.3.

Ideally, we would like these groups to have size " |G|/3, though in the worst case they will
have size no larger than |G| − 1. We call these groups X , Y , Z, where X is the group containing
the max-marginal M that we wish to compute. In order to simplify the analysis of this algorithm,
we shall express the running time in terms of the size of the largest group, S = max(|X |, |Y |, |Z|),
and the largest difference, S\ = max(|Y \X |, |Z \X |). The max-marginal can be computed using
Algorithm 5.

The running times shown in Algorithm 5 are loose upper-bounds, given for the sake of express-
ing the running time in simple terms. More precise running times are given in Table 2; any of the

1361

MCAULEY AND CAETANO

(a) (b)

(a) We begin with a set of factors (indicated using colored lines), which are assumed to belong to some clique in our
model; we wish to compute the max-marginal with respect to one of these factors (indicated using colored nodes); (b)
The factors are split into three groups, such that every factor is entirely contained within one of them (Algorithm 5, line 1).

(c) (d) (e)

(c) Any nodes contained in only one of the groups are marginalized (Algorithm 5, lines 2, 3, and 4); the problem is now
very similar to that described in Algorithm 4, except that nodes have been replaced by groups; note that this essentially
introduces maximal factors in Y ′ and Z′; (d) For every value (a,b) ∈ dom(x3,x4), ΨY (a,b,x6) is sorted (Algorithm 5,
lines 5–7); (e) For every value (a,b) ∈ dom(x2,x4), ΨZ(a,b,x6) is sorted (Algorithm 5, lines 8–10).

(f) (g)

(f) For every n ∈ dom(X ′), we choose the best value of x6 by Algorithm 2 (Algorithm 5, lines 11–16); (g) The result is
marginalized with respect toM (Algorithm 5, line 17).

Figure 6: Algorithm 5, explained pictorially. In this case, the most computationally intensive step
is the marginalization of Z (in step (c)), which takes Θ(N5). However, the algorithm can
actually be applied recursively to the group Z, resulting in an overall running time of
O(N4

√
N), for a max-marginal that would have taken Θ(N8) to compute using the naı̈ve

solution of Algorithm 1.

1362

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

Algorithm 5 Compute the max-marginal of G with respect toM, where G is split into three groups
Input: potentials ΦG(x) =ΦX(xX)×ΦY (xY)×ΦZ(xZ); each of the factors should be contained in

exactly one of these terms, and we assume thatM ⊆ X (see Figure 6)
1: Define: X ′ := ((Y ∪Z)∩X)∪M; Y ′ := (X ∪Z)∩Y ; Z′ := (X ∪Y)∩Z {X ′ contains the variables
in X that are shared by at least one other group; alternately, the variables in X \X ′ appear only
in X (sim. for Y ′ and Z′)}

2: compute ΨX(xX ′) := maxX\X ′ΦX(xX) {we are marginalizing over those variables in X that
do not appear in any of the other groups (or in M); this takes Θ(NS) if done by brute-force
(Algorithm 1), but may also be done by a recursive call to Algorithm 5}

3: compute ΨY (xY ′) :=maxY\Y ′ΦY (xY)
4: compute ΨZ(xZ′) :=maxZ\Z′ΦZ(xZ)
5: for n ∈ dom(X ∩Y) do
6: compute PY [n] by sorting ΨY (n;xY ′\X) {takes Θ(S\NS\ logN); ΨY (n;xY ′\X) is free over

xY ′\X , and is treated as an array by ‘flattening’ it; PY [n] contains the |Y ′ \X |= |(Y ∩Z)\X |-
dimensional indices that sort it}

7: end for {this loop takes Θ(S\NS logN)}
8: for n ∈ dom(X ∩Z) do
9: compute PZ[n] by sorting ΨZ(n;xZ′\X)
10: end for {this loop takes Θ(S\NS logN)}
11: for n ∈ dom(X ′) do
12: (va,vb) :=

(
ΨY (n|Y ′ ;xY ′\X ′),ΨZ(n|Z′ ;xZ′\X ′)

) {n|Y ′ is the ‘restriction’ of the vector n to those
indices inY ′ (meaning that n|Y ′ ∈ dom(X ′ ∩Y ′)); henceΨY (n|Y ′ ;xY ′\X ′) is free in xY ′\X ′ , while
n|Y ′ is fixed}

13: (pa, pb) :=
(
PY [n|Y ′],PZ[n|Z′]

)
14: best := Algorithm2(va,vb, pa, pb) {takes O(

√
S\)}

15: mX(n) :=ΨX(n)×ΨY (best;n|Y ′)×ΨZ(best;n|Z′)
16: end for
17: mM(xM) := Algorithm1(mX ,M) {i.e., we are using Algorithm 1 to marginalize mX(xX) with

respect toM; this takes Θ(NS)}

terms shown in Table 2 may be dominant. Some example graphs, and their resulting running times
are shown in Figure 7.

5.2.1 APPLYING ALGORITHM 5 RECURSIVELY

The marginalization steps of Algorithm 5 (lines 2, 3, and 4) may further decompose into smaller
groups, in which case Algorithm 5 can be applied recursively. For instance, the graph in Figure 7(a)
represents the marginalization step that is to be performed in Figure 6(c) (Algorithm 5, line 4). Since
this marginalization step is the asymptotically dominant step in the algorithm, applying Algorithm 5
recursively lowers the asymptotic complexity.

Another straightforward example of applying recursion in Algorithm 5 is shown in Figure 8,
in which a ring-structured model is marginalized with respect to two of its nodes. Doing so takes
O(MN2

√
N); in contrast, solving the same problem using the junction-tree algorithm (by triangulat-

ing the graph) would takeΘ(MN3). Loopy belief-propagation takesΘ(MN2) per iteration, meaning

1363

MCAULEY AND CAETANO

Description lines time

Marginalization of ΦX , without recursion 2 Θ(N|X |)
Marginalization of ΦY 3 Θ(N|Y |)
Marginalization of ΦZ 4 Θ(N|Z|)
Sorting ΦY 5–7 Θ(|Y ′\X |N|Y ′| logN)
Sorting ΦZ 8–10 Θ(|Z′\X |N|Z′| logN)
Running Algorithm 2 on the sorted values 11–16 O(N|X

′|√N|(Y ′∩Z′)\X ′|)

Table 2: Detailed running time analysis of Algorithm 5; any of these terms may be asymptotically
dominant

Graph:

{A complete
graph KM ,
with pairwise
terms}

(a) (b) (c) (d) (e)
Algorithm 1: Θ(N5) Θ(N3) Θ(N11) Θ(N6) Θ(NM)

Algorithm 5: O(N3
√
N) O(N2

√
N) O(N6

√
N) O(N5) O(N5M/6)

Speed-up: Ω(N
√
N) Ω(

√
N) Ω(N4

√
N) Ω(N) Ω(NM/6)

Figure 7: Some example graphs whose max-marginals are to be computed with respect to the col-
ored nodes, using the three regions shown. Factors are indicated using differently colored
edges, while dotted edges always indicate pairwise factors. (a) is the region Z from Fig-
ure 6 (recursion is applied again to achieve this result); (b) is the graph used to motivate
Algorithm 4; (c) shows a query in a graph with regular structure; (d) shows a complete
graph with six nodes; (e) generalizes this to a clique withM nodes.

that our algorithm will be faster if the number of iterations is Ω(
√
N). Naturally, Algorithm 4 could

be applied directly to the triangulated graph, which would again take O(MN2
√
N).

5.3 A General Extension to Higher-Order Cliques

Naturally, there are cases for which a decomposition into three terms is not possible, such as

mi, j,k(xi,x j,xk) =max
xm

Φi, j,k(xi,x j,xk)×Φi, j,m(xi,x j,xm)×
Φi,k,m(xi,xk,xm)×Φ j,k,m(x j,xk,xm) (13)

(i.e., a clique of size four with all possible third-order factors). However, if the model contains
factors of size K, it must always be possible to split it into K+ 1 groups (e.g., four in the case of
Equation 13).

Our optimizations can easily be applied in these cases simply by adapting Algorithm 2 to solve
problems of the form

max
i∈{1...N}

{v1[i]×v2[i]×·· ·×vK [i]} . (14)

1364

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

O(N2)

+

O(2N2
√
N)

+

O(4N2
√
N) (by Algorithm 4)

Figure 8: In the above example, lines 2–4 of Algorithm 5 are applied recursively, achieving a total
running time of O(MN2

√
N) for a loop with M nodes (our algorithm achieves the same

running time in the triangulated graph).

Step 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Figure 9: Algorithm 2 can easily be extended to cases including more than two sequences.

Pseudocode for this extension is presented in Algorithm 6. Note carefully the use of the variable
read: we are storing which indices have been read to avoid re-reading them; this guarantees that
our Algorithm is never asymptotically worse than the naı̈ve solution. Figure 9 demonstrates how
such an algorithm behaves in practice. Again, we shall discuss the running time of this extension in
Appendix A. For the moment, we state the following theorem:

Theorem 3 Algorithm 6 generalizes Algorithm 2 to K lists with an expected running time of O(KN
K−1
K),

yielding a speed-up of at least Ω(1KN
1
K) in cliques containing K-ary factors. It is never worse than

the naı̈ve solution, meaning that it takes O(min(N,KN
K−1
K)).

Using Algorithm 6, we can similarly extend Algorithm 5 to allow for any number of groups
(pseudocode is not shown; all statements about the groups Y and Z simply become statements

1365

MCAULEY AND CAETANO

Algorithm 6 Find i such that ∏K
k=1 vk[i] is maximized

Input: K vectors v1 . . .vK ; permutation functions p1 . . . pK that sort them in decreasing order; a
vector read indicating which indices have been read, and a unique value T /∈ read {read is
essentially a boolean array indicating which indices have been read; since creating this array is
anO(N) operation, we create it externally, and reuse itO(N) times; setting read[i] = T indicates
that a particular index has been read; we use a different value of T for each call to this function
so that read can be reused without having to be reinitialized}

1: Initialize: start := 1,
max :=maxp∈{p1...pK}∏

K
k=1 vk[p[1]],

best := argmaxp∈{p1...pK}∏
K
k=1 vk[p[1]]

2: for k ∈ {1 . . .K} do
3: endk :=maxq∈{p1...pK} p

−1
k [q[1]]

4: read[pk[1]] = T
5: end for
6: while start <max{end1 . . .endK} do
7: start := start+1
8: for k ∈ {1 . . .K} do
9: if read[pk[start]] := T then
10: continue
11: end if
12: read[pk[start]] := T
13: m :=∏K

x=1 vx[pk[start]]
14: if m> max then
15: best := pk[start]
16: max := m
17: end if
18: ek :=maxq∈{p1...pK} p

−1
k [q[start]]

19: endk :=min(ek,endk)
20: end for
21: end while {see Appendix A for running times}
22: Return: best

about K groups {G1 . . .GK}, and calls to Algorithm 2 become calls to Algorithm 6). The one
remaining case that has not been considered is when the sequences v1 · · ·vK are functions of different
(but overlapping) variables; naı̈vely, we can create a new variable whose domain is the product
space of all of the overlapping terms, and still achieve the performance improvement guaranteed by
Theorem 3; in some cases, better results can again be obtained by applying recursion, as in Figure 7.

As a final comment we note that we have not provided an algorithm for choosing how to split
the variables of a model into (K+ 1)-groups. We note even if we split the groups in a naı̈ve way,
we are guaranteed to get at least the performance improvement guaranteed by Theorem 3, though
more ‘intelligent’ splits may further improve the performance.

Furthermore, in all of the applications we have studied, K is sufficiently small that it is inexpen-
sive to consider all possible splits by brute-force.

1366

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

5.4 Extensions for Conditionally Factorizable Models

Just as in Section 5.2, we can extend Algorithm 3 to factors of any size, so long as the purely latent
cliques contain more latent variables than those cliques that depend upon the observation. The
analysis for this type of model is almost exactly the same as that presented in Section 5.2, except
that any terms consisting of purely latent variables are processed offline.

As we mentioned in 5.2, if a model contains (non-maximal) factors of size K, we will gain a
speed-up of Ω(1KN

1
K). If in addition there is a factor (either maximal or non-maximal) consisting

of purely latent variables, we can still obtain a speed-up of Ω(1
K+1N

1
K+1), since this factor merely

contributes an additional term to (Equation 14). Thus when our ‘data-dependent’ terms contain only
a single latent variable (i.e., K = 1), we gain a speed-up of Ω(

√
N), as in Algorithm 3.

6. Performance Improvements in Existing Applications

Our results are immediately compatible with several applications that rely on inference in graphical
models. As we have mentioned, our results apply to any model whose cliques decompose into
lower-order terms.

Often, potentials are defined only on nodes and edges of a model. A Dth-order Markov model
has a tree-width of D, despite often containing only pairwise relationships. Similarly ‘skip-chain
CRFs’ (Sutton and McCallum, 2006; Galley, 2006), and junction-trees used in SLAM applications
(Paskin, 2003) often contain only pairwise terms, and may have low tree-width under reasonable
conditions. These are examples of latently factorizable models. In each case, if the tree-width is
D, Algorithm 5 takes O(MND

√
N) (for a model with M nodes and N states per node), yielding a

speed-up of Ω(
√
N).

Models for shape-matching and pose reconstruction often exhibit similar properties (Tresadern
et al., 2009; Donner et al., 2007; Sigal and Black, 2006). In each case, third-order cliques factorize
into second-order terms; hence we can apply Algorithm 4 to achieve a speed-up of Ω(

√
N).

Another similar model for shape-matching is that of Felzenszwalb (2005); this model again
contains third-order cliques, though it includes a ‘geometric’ term constraining all three variables.
Here, the third-order term is independent of the input data, meaning that each of its rows can be
sorted offline, as described in Section 3. This is an example of a conditionally factorizable model.
In this case, those factors that depend upon the observation are pairwise, meaning that we achieve a
speed-up of Ω(N

1
3). Further applications of this type shall be explored in Section 7.4.

In Coughlan and Ferreira (2002), deformable shape-matching is solved approximately using
loopy belief-propagation. Their model has only second-order cliques, meaning that inference takes
Θ(MN2) per iteration. Although we cannot improve upon this result, we note that we can typically
do exact inference in a single iteration in O(MN2

√
N); thus our model has the same running time as

O(
√
N) iterations of the original version. This result applies to all second-order models containing

a single loop (Weiss, 2000).
InMcAuley et al. (2008), a model is presented for graph-matching using loopy belief-propagation;

the maximal cliques for D-dimensional matching have size (D+ 1), meaning that inference takes
Θ(MND+1) per iteration (it is shown to converge to the correct solution); we improve this to
O(MND

√
N).

Interval graphs can be used to model resource allocation problems (Fulkerson and Gross, 1965);
each node encodes a request, and overlapping requests form edges. Maximal cliques grow with the

1367

MCAULEY AND CAETANO

Reference description running time our method
McAuley et al. (2008) D-d graph-matching Θ(MND+1) (iter.) O(MND

√
N) (iter.)

Sutton and McCallum (2006) Width-D skip-chain O(MND) O(MND−1
√
N)

Galley (2006) Width-3 skip-chain Θ(MN3) O(MN2
√
N)

Tresadern et al. (2009) Deformable matching Θ(MN3) O(MN2
√
N)

Coughlan and Ferreira (2002) Deformable matching Θ(MN2) (iter.) O(MN2
√
N)

Sigal and Black (2006) Pose reconstruction Θ(MN3) O(MN2
√
N)

Felzenszwalb (2005) Deformable matching Θ(MN3) Θ(MN
8
3) (online)

Fulkerson and Gross (1965) Width-D interval graph O(MND+1) O(MND
√
N)

Table 3: Some existing work to which our results can be immediately applied (M is the number of
nodes in the model, N is the number of states per node. ‘iter.’ denotes that the algorithm
is iterative).

number of overlapping requests, though the constraints are only pairwise, meaning that we again
achieve an Ω(

√
N) improvement.

Finally, in Section 7.4 we shall explore a variety of applications in which we have pairwise
models of the form shown in (Equation 7). In all of these cases, we see an (expected) reduction of
a Θ(MN2) message-passing algorithm to O(MN

√
N).

Table 3 summarizes these results. Reported running times reflect the expected case. Note that
we are assuming that max-product belief-propagation is being used in a discrete model; some of the
referenced articles may use different variants of the algorithm (e.g., Gaussian models, or approxi-
mate inference schemes). We believe that our improvements may revive the exact, discrete version
as a tractable option in these cases.

7. Experiments

We present experimental results for two types of models: latently factorizable models, whose cliques
factorize into smaller terms, as discussed in Section 4, and conditionally factorizable models, whose
factors that depend upon the observation contain fewer latent variables than their maximal cliques,
as discussed in Section 3.

We begin with an asymptotic analysis of the running time of our algorithm on the ‘inner product’
operations of (Equation 1) and (Equation 14), in order to assess Theorems 2 and 3 experimentally.

7.1 Comparison Between Asymptotic Performance and Upper-Bounds

For our first experiment, we compare the performance of Algorithms 2 and 6 to the naı̈ve solution of
Algorithm 1. These are core subroutines of each of the other algorithms, meaning that determining
their performance shall give us an accurate indication of the improvements we expect to obtain in
real graphical models.

For each experiment, we generate N i.i.d. samples from [0,1) to obtain the lists v1 . . .vK . N is
the domain size; this may refer to a single node, or a group of nodes as in Algorithm 6; thus large
values of N may appear even for binary-valued models. K is the number of lists in (Equation 14);
we can observe this number of lists only if we are working in cliques of size K+ 1, and then only
if the factors are of size K (e.g., we will only see K = 5 if we have cliques of size 6 with factors

1368

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

0 200 400 600 800 1000
N

0

10

20

30

40

50

60
N

u
m

b
e
r

o
f
e
n
tr

ie
s

re
a
d

Performance and bounds for 2 lists

N

E1(M)

min(N, 2
√

N)

experimental

0 200 400 600 800 1000
N

0

50

100

150

200

250

300

N
u
m

b
e
r

o
f
e
n
tr

ie
s

re
a
d

Performance and bounds for 3 lists

N

min(N, 3N
2

3)

experimental

0 200 400 600 800 1000
N

0

100

200

300

400

500

600

700

N
u
m

b
e
r

o
f
e
n
tr

ie
s

re
a
d

Performance and bounds for 4 lists

N

min(N, 4N
3

4)

experimental

Figure 10: Performance of our algorithm and bounds. For K = 2, the exact expectation is shown,
which appears to precisely match the average performance (over 100 trials). The dotted
lines show the bound of (Equation 23). While the bound is close to the true performance
for K = 2, it becomes increasingly loose for larger K.

of size 5); therefore smaller values of K are probably more realistic in practice (indeed, all of the
applications in Section 6 have K = 2).

The performance of our algorithm is shown in Figure 10, for K = 2 to 4 (i.e., for 2 to 4 lists).
When K = 2, we execute Algorithm 2, while Algorithm 6 is executed for K ≥ 3. The performance
reported is simply the number of elements read from the lists (which is at most K× start). This
is compared to N itself, which is the number of elements read by the naı̈ve algorithm. The upper-
bounds we obtained in (Equation 23) are also reported, while the true expected performance (i.e.,
Equation 19) is reported for K = 2. Note that the variable read was introduced into Algorithm 6 in
order to guarantee that it can never be asymptotically slower than the naı̈ve algorithm. If this variable
is ignored, the performance of our algorithm deteriorates to the point that it closely approaches the
upper-bounds shown in Figure 10. Unfortunately, this optimization proved overly complicated to
include in our analysis, meaning that our upper-bounds remain highly conservative for large K.

7.2 Performance Improvement for Dependent Variables

The expected-case running time of our algorithm was derived under the assumption that each list
has independent order statistics, as was the case for our previous experiment. We suggested that we
will obtain worse performance in the case of negatively correlated variables, and better performance
in the case of positively correlated variables; we shall assess these claims in this experiment.

Figure 11 shows how the order statistics of va and vb can affect the performance of our algo-
rithm. Essentially, the running time of Algorithm 2 is determined by the level of ‘diagonalness’ of
the permutation matrices in Figure 11; highly diagonal matrices result in better performance than
the expected case, while highly off-diagonal matrices result in worse performance. The expected
case was simply obtained under the assumption that every permutation is equally likely.

We report the performance for two lists (i.e., for Algorithm 2), where each (va[i],vb[i]) is an
independent sample from a 2-dimensional Gaussian with covariance matrix

Σ=

[
1 c
c 1

]
,

1369

MCAULEY AND CAETANO

← best case

permutation:

operations: 1 1 3 3 5

worst case→

permutation

operations: 7 7 9 10 10

Figure 11: Different permutation matrices and their resulting cost (in terms of entries
read/multiplications performed). Each permutation matrix transforms the sorted val-
ues of one list into the sorted values of the other, that is, it transforms va as sorted by pa
into vb as sorted by pb. The red (lighter) squares show the entries that must be read be-
fore the algorithm terminates (each corresponding to one multiplication). See Figure 23
for further explanation.

meaning that the two lists are correlated with correlation coefficient c (here we are working in the
max-sum semiring). This dependence between the values of the two lists leads to a dependence in
their order statistics, so that in the case of Gaussian random variables, the correlation coefficient
precisely captures the ‘diagonalness’ of the matrices in Figure 11. Performance is shown in Fig-
ure 12 for different values of c (c = 0, is not shown, as this is the case observed in the previous
experiment).

7.3 Message-Passing in Latently Factorizable Models

In this section we present experiments in models whose cliques factorize into smaller terms, as
discussed in Section 4.

7.3.1 2-DIMENSIONAL GRAPH-MATCHING

Naturally, Algorithm 5 has additional overhead compared to the naı̈ve solution, meaning that it
will not be beneficial for small N. In this experiment, we aim to assess the extent to which our
approach is faster in real applications. We reproduce the model from McAuley et al. (2008), which
performs 2-dimensional graph-matching, using a loopy graph with cliques of size three, containing
only second-order potentials (as described in Section 6); the Θ(NM3) performance of McAuley
et al. (2008) is reportedly state-of-the-art. We also show the performance on a graphical model with
random potentials, in order to assess how the results of the previous experiments are reflected in
terms of actual running time.

1370

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

0 200 400 600 800 1000
N

0

10

20

30

40

50

60
N

u
m

b
e
r

o
f
e
n
tr

ie
s

re
a
d

Performance and bounds for c = 0.2

N

E1(M)

min(N, 2
√

N)

experimental

0 200 400 600 800 1000
N

0

10

20

30

40

50

60

N
u
m

b
e
r

o
f
e
n
tr

ie
s

re
a
d

Performance and bounds for c = 0.5

N

E1(M)

min(N, 2
√

N)

experimental

0 200 400 600 800 1000
N

0

10

20

30

40

50

60

N
u
m

b
e
r

o
f
e
n
tr

ie
s

re
a
d

Performance and bounds for c = 1.0

N

E1(M)

min(N, 2
√

N)

experimental

0 200 400 600 800 1000
N

0

20

40

60

80

100

N
u
m

b
e
r

o
f
e
n
tr

ie
s

re
a
d

Performance and bounds for c = −0.2

N

E1(M)

min(N, 2
√

N)

experimental

0 200 400 600 800 1000
N

0

50

100

150

200

N
u
m

b
e
r

o
f
e
n
tr

ie
s

re
a
d

Performance and bounds for c = −0.5

N

E1(M)

min(N, 2
√

N)

experimental

0 200 400 600 800 1000
N

0

200

400

600

800

1000

N
u
m

b
e
r

o
f
e
n
tr

ie
s

re
a
d

Performance and bounds for c = −1.0

N

E1(M)

min(N, 2
√

N)

experimental

Figure 12: Performance of our algorithm for different correlation coefficients. The top three plots
show positive correlation, the bottom three show negative correlation. Correlation coef-
ficients of c= 1.0 and c= −1.0 capture precisely the best and worst-case performance
of our algorithm, resulting in O(1) andΘ(N) performance, respectively (when c=−1.0
the linear curve obscures the experimental curve).

We perform matching between a template graph withM nodes, and a target graph with N nodes,
which requires a graphical model withM nodes and N states per node (see McAuley et al. 2008 for
details). We fixM = 10 and vary N.

Figure 13 (left) shows the performance on random potentials, that is, the performance we hope
to obtain if our model assumptions are satisfied. Figure 13 (right) shows the performance for graph-
matching, which closely matches the expected-case behavior. Fitted curves are shown together with
the actual running time of our algorithm, confirming its O(MN2

√
N) performance. The coefficients

of the fitted curves demonstrate that our algorithm is useful even for modest values of N.
We also report results for graph-matching using graphs from the MPEG-7 data set (Bai et al.,

2009), which consists of 1,400 silhouette images (Figure 14). Again we fix M = 10 (i.e., 10 points
are extracted in each template graph) and vary N (the number of points in the target graph). This
experiment confirms that even when matching real-world graphs, the assumption of independent
order statistics appears to be reasonable.

7.3.2 HIGHER-ORDER MARKOV MODELS

In this experiment, we construct a simple Markov model for text denoising. Random noise is applied
to a text segment, which we try to correct using a prior extracted from a text corpus. For instance

1371

MCAULEY AND CAETANO

0 100 200 300 400 500 600 700 800
N (number of states)

0

50

100

150

200

250

300

350

400

450
A

ve
ra

g
e

w
a
ll

ti
m

e
(s

e
c
o
n
d
s
)

Random potentials (5 iterations)

naı̈ve method

0.00000079N3 (r = 546.33)

our method

0.00000388N2.5 (r = 30.06)

0 100 200 300 400 500 600 700 800
N (size of target graph)

0

100

200

300

400

500

A
ve

ra
g
e

w
a
ll

ti
m

e
(s

e
c
o
n
d
s
)

2D Graph matching

naı̈ve method

0.00000083N3 (r = 361.61)

our method

0.00000422N2.5 (r = 11.60)

Figure 13: The running time of our method on randomly generated potentials, and on a graph-
matching experiment (both graphs have the same topology). Fitted curves are also ob-
tained by performing least-squares regression; the residual error r indicates the ‘good-
ness’ of the fitted curve.

0 100 200 300 400 500
N (size of target graph)

0

5

10

15

20

25

30

35

A
ve

ra
g
e

w
a
ll

ti
m

e
(s

e
c
o
n
d
s
)

2D Graph matching (MPEG-7 data)

naı̈ve method

0.00000018N3 (r = 14.73556)

our method

0.00000095N2.5 (r = 0.01651)

Figure 14: The running time of method our on graphs from the MPEG-7 data set.

wondrous sight of th4 ivory Pequod is corrected to wondrous sight of the ivory
Pequod.

In such a model, we would like to exploit higher-order relationships between characters, though
the amount of data required to construct an accurate prior grows exponentially with the size of the
maximal cliques. Instead, our prior consists entirely of pairwise relationships between characters (or
‘bigrams’); higher-order relationships are encoded by including bigrams of non-adjacent characters.

1372

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

Figure 15: Left: Our model for denoising. Its computational complexity is similar to that of a
skip-chain CRF, and models for named-entity recognition (right).

Specifically, our model takes the form

ΦX(xX) =
|X |−1
∏
i=1

Φi,i+1(xi,xi+1)×
|X |−2
∏
i=1

Φi,i+2(xi,xi+2)

where
Φi, j(xi,x j) = ψi, j(xi,x j)p(xi|oi)p(x j|o j).

Here ψ is our prior (extracted from text statistics), and p is our ‘noise model’ (given the observation
o). The computational complexity of inference in this model is similar to that of the skip-chain CRF
shown in Figure 3(b), as well as models for part-of-speech tagging and named-entity recognition,
as in Figure 15. Text denoising is useful for the purpose of demonstrating our algorithm, as there
are several different corpora available in different languages, allowing us to explore the effect that
the domain size (i.e., the size of the language’s alphabet) has on running time.

We extracted pairwise statistics based on 10,000 characters of text, and used this to correct a
series of 25 character sequences, with 1% random noise introduced to the text. The domain was
simply the set of characters observed in each corpus. The Japanese data set was not included, as the
Θ(MN2)memory requirements of the algorithm made it infeasible with N � 2000; this is addressed
in Section 7.4.1.

The running time of our method, compared to the naı̈ve solution, is shown in Figure 16. One
might expect that texts from different languages would exhibit different dependence structures in
their order statistics, and therefore deviate from the expected case in some instances. However, the
running times appear to follow the fitted curve closely, that is, we are achieving approximately the
expected-case performance in all cases.

Since the prior ψi,i+1(xi,xi+1) is data-independent, we shall further discuss this type of model
in reference to Algorithm 3 in Section 7.4.

7.4 Experiments with Conditionally Factorizable Models

In each of the following experiments we perform belief-propagation in models of the form given in
(Equation 7). Thus each model is completely specified by defining the node potentials Φi(xi|yi), the
edge potentials Φi, j(xi,x j), and the topology (N ,E) of the graph.

Furthermore we assume that the edge potentials are homogeneous, that is, that the potential for
each edge is the same, or rather that they have the same order statistics (for example, they may
differ by a multiplicative constant). This means that sorting can be done online without affecting
the asymptotic complexity. When subject to heterogeneous potentials we need merely sort them
offline; the online cost shall be similar to what we report here.

1373

MCAULEY AND CAETANO

0 200 400 600 800 1000 1200
N (alphabet size)

0

200

400

600

800

1000

1200

T
o
ta

l
w

a
ll

ti
m

e
(s

e
c
o
n
d
s
)

Korean

Text denoising

naı̈ve method

0.00000076N3 (r = 6.35880)

our method

0.00000146N2.5 (r = 0.00079)

70 80 90 100 110 120 130 140 150
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 16: The running time of our method compared to the naı̈ve solution. A fitted curve is also
shown, whose coefficient estimates the computational overhead of our model.

7.4.1 CHAIN-STRUCTURED MODELS

In this section, we consider chain-structured graphs. Here we have nodesN = {1 . . .Q}, and edges
E = {(1,2),(2,3) . . .(Q−1,Q)}. The max-product algorithm is known to compute the maximum-
likelihood solution exactly for tree-structured models.

Figure 17 (left) shows the performance of our method on a model with random potentials, that
is, Φi(xi|yi) =U [0,1), Φi,i+1(xi,xi+1) =U [0,1), where U [0,1) is the uniform distribution. Fitted
curves are superimposed onto the running time, confirming that the performance of the standard
solution grows quadratically with the number of states, while ours grows at a rate of N

√
N. The

residual error r shows how closely the fitted curve approximates the running time; in the case of
random potentials, both curves have almost the same constant.

Figure 17 (right) shows the performance of our method on the text denoising experiment. This
experiment is essentially identical to that shown in Section 7.3.2, except that the model is a chain
(i.e., there is no Φi,i+2), and we exploit the notion of data-independence (i.e., the fact that Φi,i+1

does not depend on the observation). Since the same Φi,i+1 is used for every adjacent pair of nodes,
there is no need to perform the ‘sorting’ step offline—only a single copy ofΦi,i+1 needs to be sorted,
and this is included in the total running time shown in Figure 17.

7.4.2 GRID-STRUCTURED MODELS

Similarly, we can apply our method to grid-structured models. Here we resort to loopy belief-
propagation to approximate the MAP solution, though indeed the same analysis applies in the case
of factor-graphs (Kschischang et al., 2001). We construct a 50×50 grid model and perform loopy
belief-propagation using a random message-passing schedule for five iterations. In these experi-
ments our nodes are N = {1 . . .50}2, and our edges connect the 4-neighbors, that is, the node (i, j)
is connected to both (i+1, j) and (i, j+1) (similar to the grid shown in Figure 2(a)).

1374

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

0 100 200 300 400 500
N (number of states)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
T
o
ta

l
w

a
ll

ti
m

e
(s

e
c
o
n
d
s
)

Random potentials (2500 node chain)

naı̈ve method

0.00002N2 (r = 0.00514)

our method

0.00002N1.5 (r = 0.00891)

0 500 1000 1500 2000
N (alphabet size)

0

10

20

30

40

50

60

70

80

T
o
ta

l
w

a
ll

ti
m

e
(s

e
c
o
n
d
s
)

Korean

Japanese

Text denoising

naı̈ve method

0.00002N2 (r = 0.15)

our method

0.00015N1.5 (r = 5.38)

75 90 105 120 135 150
0.00

0.15

0.30

0.45

0.60

Figure 17: Running time of inference in chain-structured models: random potentials (left), and text
denoising (right). Fitted curves confirm that the exponent of 1.5 given theoretically is
maintained in practice (r denotes the sum of residuals, that is, the ‘goodness’ of the fitted
curve).

Figure 18 (left) shows the performance of our method on a grid with random potentials (similar
to the experiment in Section 7.4.1). Figure 18 (right) shows the performance of our method on an
optical flow task (Lucas and Kanade, 1981). Here the states encode flow vectors: for a node with
N states, the flow vector is assumed to take integer coordinates in the square [−√

N/2,
√
N/2)2 (so

that there are N possible flow vectors). For the unary potential we have

Φ(i, j)(x|y) =
∥∥Im1[i, j]− Im2[(i, j)+ f (x)]

∥∥,
where Im1[a,b] and Im2[a,b] return the gray-level of the pixel at (a,b) in the first and second images
(respectively), and f (x) returns the flow vector encoded by x. The pairwise potentials simply encode
the Euclidean distance between two flow vectors. Note that a variety of low-level computer vision
tasks (including optical flow) are studied in Felzenszwalb and Huttenlocher (2006), where the highly
structured nature of the potentials in question often allows for efficient solutions.

Our fitted curves in Figure 18 show O(N
√
N) performance for both random data and for optical

flow. Clearly the fitted curve for optical flow deviates somewhat from that obtained for random data;
naturally the potentials are highly structured in this case, as exploited by Felzenszwalb and Hutten-
locher (2006); it appears that some aspect of this structure is slightly harmful to our algorithm,
though a more thorough analysis of this type of potential remains as future work. More ‘harmful’
structures are explored in the following section.

7.4.3 FAILURE CASES

In our previous experiments on graph-matching, text denoising, and optical flow we observed run-
ning times similar to those for random potentials, indicating that there is no prevalent dependence
structure between the order statistics of the messages and the potentials.

1375

MCAULEY AND CAETANO

0 100 200 300 400 500
N (number of states)

0

10

20

30

40

50

60

70

80

90
T
o
ta

l
w

a
ll

ti
m

e
(s

e
c
o
n
d
s
)

Random potentials (50 × 50 grid, 5 iterations)

naı̈ve method

0.00034N2 (r = 24.26)

our method

0.00252N1.5 (r = 15.26)

0 100 200 300 400 500
N (number of states)

0

20

40

60

80

100

T
o
ta

l
w

a
ll

ti
m

e
(s

e
c
o
n
d
s
)

Optical flow (50 × 50 grid, 5 iterations)

naı̈ve method

0.00038N2 (r = 28.04)

our method

0.00386N1.5 (r = 1.76)

Figure 18: Running time of inference in grid-structured models: random potentials (left), and opti-
cal flow (right).

In certain applications the order statistics of these terms are highly dependent in a way that
is detrimental to our algorithm. This behavior is observed for certain types of concave potentials
(or convex potentials in a min-sum formulation). For instance, in a stereo disparity experiment,
the unary potentials encode the fact that the output should be ‘close to’ a certain value; the pairwise
potentials encode the fact that neighboring nodes should take similar values (Scharstein and Szeliski,
2001; Sun et al., 2003).

In these applications, the permutation matrices that transform the sorted values of va to the
sorted values of vb are block-off-diagonal (see the sixth permutation in Figure 11). In such cases,
our algorithm only decreases the number of multiplication operations by a multiplicative constant,
and may in fact be slower due to its computational overhead. This is precisely the behavior shown
in Figure 19 (left), in the case of stereo disparity.

It should be noted that there exist algorithms specifically designed for this class of potential
functions (Kolmogorov and Shioura, 2007; Felzenszwalb and Huttenlocher, 2006), which are prefer-
able in such instances.

We similarly perform an experiment on image denoising, where the unary potentials are again
convex functions of the input (see Geman and Geman, 1984; Lan et al., 2006). Instead of using a
pairwise potential that merely encodes smoothness, we extract the pairwise statistics from image
data (similar to our experiment on text denoising); thus the potentials are no longer concave. We see
in Figure 19 (right) that even if a small number of entries exhibit some ‘randomness’ in their order
statistics, we begin to gain a modest speed improvement over the naı̈ve solution (though indeed, the
improvements are negligible compared to those shown in previous experiments).

7.5 Other Applications of Tropical Matrix Multiplication

As we have mentioned, our improvements to message-passing in graphical models arise from a
fast solution to matrix multiplication in the max-product semiring. In this section we discuss other

1376

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

0 100 200 300 400 500
N (number of states)

0

20

40

60

80

100

120
T
o
ta

l
w

a
ll

ti
m

e
(s

e
c
o
n
d
s
)

Stereo disparity (50 × 50 grid, 5 iterations)

naı̈ve method

0.00033N2 (r = 15.21)

our method

0.00852N1.5 (r = 253.57)

0 100 200 300 400 500
N (number of states)

0

20

40

60

80

100

T
o
ta

l
w

a
ll

ti
m

e
(s

e
c
o
n
d
s
)

Image denoising (50 × 50 grid, 5 iterations)

naı̈ve method

0.00037N2 (r = 43.63)

our method

0.00727N1.5 (r = 14.04)

Figure 19: Two experiments whose potentials and messages have highly dependent order statistics:
stereo disparity (left), and image denoising (right).

problems which include max-product (or ‘tropical’) matrix multiplication as a subroutine. Williams
and Williams (2010) discusses the relationship between this type of matrix multiplication problem
and various other problems.

7.5.1 MAX-PRODUCT LINEAR PROGRAMMING

In Sontag et al. (2008), a method is given for exact MAP-inference in graphical models using LP-
relaxations. Where exact solutions cannot be obtained by considering only pairwise factors, ‘clus-
ters’ of pairwise terms are introduced in order to refine the solution. Message-passing in these clus-
ters turns out to take exactly the form that we consider, as third-order (or larger) clusters are formed
from pairwise terms. Although a number of applications are presented in Sontag et al. (2008), we
focus on protein design, as this is the application in which we typically observe the largest domain
sizes. Other applications with larger domains may yield further benefits.

Without going into detail, we simply copy the two equations from Sontag et al. (2008) to which
our algorithm applies. The first of these is concerned with passing messages between clusters, while
the second is concerned with choosing new clusters to add. Below are the two equations, reproduced
verbatim from Sontag et al. (2008):

λc→e(xe) ← − 2
3

(
λe→e(xe)+ ∑

c′ �=c,e∈c′
λc′→e(xe)

)
+
1
3
max
xc\e

[
∑

e′∈c\e

(
λe′→e′(xe′)+ ∑

c′ �=c,e′∈c′
λc′→e′(xe′)

)]
(15)

(see Sontag et al., 2008, Figure 1, bottom), which consists of marginalizing a cluster (c) that decom-
poses into edges (e), and

d(c) =∑
e∈c
max
xe

be(xe)−max
xc

[
∑
e∈c

be(xe)

]
, (16)

1377

MCAULEY AND CAETANO

(see Sontag et al., 2008, (Equation 4)), which consists of finding the MAP-state in a ring-structured
model.

As the code from Sontag et al. (2008) was publicly available, we simply replaced the appropriate
functions with our own (in order to provide a fair comparison, we also replaced their implementation
of the naı̈ve algorithm, as ours proved to be faster than the highly generic matrix library used in their
code).

In order to improve the running time of our algorithm, we made the following two modifications
to Algorithm 2:

• We used an adaptive sorting algorithm (i.e., a sorting algorithm that runs faster on nearly-
sorted data). While Quicksort was used during the first iteration of message-passing, sub-
sequent iterations used insertion sort, as the optimal ordering did not change significantly
between iterations.

• We added an additional stopping criterion to the algorithm. Namely, we terminate the algo-
rithm if va[pa[start]]×vb[pb[start]]<max. In other words, we check how large the maximum
could be given the best possible permutation of the next elements (i.e., if they have the same
index); if this value could not result in a new maximum, the algorithm terminates. This check
costs us an additional multiplication, but it means that the algorithm will terminate faster in
cases where a large maximum is found early on.

Results for these two problems are shown in Figure 20. Although our algorithm consistently
improves upon the running time of Sontag et al. (2008), the domain size of the variables in question
is not typically large enough to see a marked improvement. Interestingly, neither method follows
the expected running time closely in this experiment. This is partly due to the fact that there is
significant variation in the variable size (note that N only shows the average variable size), but it
may also suggest that there is a complicated structure in the potentials which violates our assumption
of independent order statistics.

7.5.2 ALL-PAIRS SHORTEST-PATH

The ‘all-pairs shortest-path’ problem consists of finding the shortest path between every pair of
nodes in a graph. Although the most commonly used solution is probably the well-known Floyd-
Warshall algorithm (Floyd, 1962), the state-of-the-art expected-case solution to this problem is that
of Karger et al. (1993), whose expected-case running time is O(N2 logN) when applied to graphs
with distances sampled from the uniform distribution.

Unfortunately, the solution of Karger et al. (1993) requires a Fibonacci heap or similar data
structure in order to achieve the reported running time (i.e., a heap withO(1) insertion and decrease-
key operations); such data structures are known to be inefficient in practice (Fredman and Tarjan,
1987). When their algorithm is implemented using a standard priority queue, it has running time
O(N2 log2N).

In Aho et al. (1983), a transformation is shown between the all-pairs shortest-path problem
and min-sum matrix multiplication. Using our algorithm, this gives us an expected-case O(N2

√
N)

solution to the all-pairs shortest-path problem, assuming that the subproblems created by this trans-
formation have i.i.d. order statistics; this assumption is notably different than the assumption of
uniformity made in Karger et al. (1993).

1378

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

20 30 40 50 60 70 80 90
N (average variable size)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
A

ve
ra

g
e

w
a
ll

ti
m

e
(s

e
c
o
n
d
s

p
e
r

it
e
ra

ti
o
n
)

Protein design (Equation 15)

naı̈ve method

our method

20 30 40 50 60 70 80 90
N (average variable size)

0

5

10

15

20

25

A
ve

ra
g
e

w
a
ll

ti
m

e
(s

e
c
o
n
d
s
)

Protein design (Equation 16)

naı̈ve method

our method

Figure 20: The running time of our method on protein design problems from Sontag et al. (2008).
In this figure, N reflects the average domain size amongst all variables involved in the
problem; fitted curves are not shown due to the highly variable nature of the domain
sizes included in each problem instance.

In Figure 21, we show the performance of our method on i.i.d. uniform graphs, compared to the
Floyd-Warshall algorithm, and that of Karger et al. (1993). On graph sizes of practical interest, our
algorithm is found to give the fastest performance, in spite of its more expensive asymptotic cost.
Our solution is comparable to that of Karger et al. (1993) for the largest graph size shown; larger
graph sizes could not be shown due to memory constraints. Note that while these algorithms are fast
in practice, each has Θ(N3) worst-case performance; more ‘exotic’ solutions that improve upon the
worst-case bound are discussed in Alon et al. (1997) and Chan (2007), among others, though none
are truly subcubic (i.e., O(N3−ε)).

It should also be noted that the transformations given in Aho et al. (1983) apply in both direc-
tions, that is, solutions to the all-pairs shortest-path problem can be used to solve min-sum matrix
multiplication. Thus any subcubic solution to the all-pairs shortest-path problem can be applied to
the inference problems in graphical models presented in Section 4. However, the transformation
of Aho et al. (1983) introduces a very high computational overhead (namely, solving min-sum ma-
trix multiplication for an N×N matrix requires solving all-pairs shortest-path in a graph with 3N
nodes), and moreover it violates the assumptions on the graph distribution required for fast infer-
ence given in Karger et al. (1993). In practice, we were unable to produce an implementation of
min-sum matrix multiplication based on this transformation that was faster than the naı̈ve solution.

Interestingly, a great deal of attention has been focused on expected-case solutions to all-pairs
shortest-path, while to our knowledge ours is the first work to approach the expected-case analy-
sis of min-sum matrix multiplication. Given the strong relationship between the two problems, it
remains a promising open problem to assess whether the analysis from these solutions to all-pairs
shortest-path can be applied to produce max-product matrix multiplication algorithms with similar
asymptotic running times.

1379

MCAULEY AND CAETANO

28 29 210 211 212

N (size of graph)

2−7

2−5

2−3

2−1

21

23

25

27

29
W

a
ll

ti
m

e
(s

e
c
o
n
d
s
)

All-Pairs Shortest-Path

Floyd/Warshall O(N3)

Karger et al. w/ Fibonacci heap O(N2 log N)

Karger et al. w/ std::set O(N2 log2
N)

Aho et al. w/ naı̈ve method O(N3)

Aho et al. w/ our method O(N2
√

N)∗

* assumes that subproblems have i.i.d. order statistics

Figure 21: Our algorithm applied to the ‘all-pairs shortest-path’ problem. The expected-case run-
ning times of each algorithm are shown at right.

7.5.3 L∞ DISTANCES

The problem of computing an inner product in the max-sum semiring is closely related to computing
the L∞ distance between two vectors

||va−vb||∞ = max
i∈{1...N}

∣∣va[i]−vb[i]∣∣. (17)

Naı̈vely, we would like to solve (Equation 17) by applying Algorithm 2 to va and−vb with the mul-
tiplication operator replaced by a×b= |a+b|, however this violates the condition of (Equation 2),
since the optimal solution may arise either when both va[i] and −vb[i] are large, or when both va[i]
and −vb[i] are small (in fact, this operation violates the semiring axiom of associativity).

We address this issue by running Algorithm 2 twice, first considering the largest values of va
and −vb, before re-running the algorithm starting from the smallest values. This ensures that the
maximum solution is found in either case.

Pseudocode for this solution is given in Algorithm 7, which adapts Algorithm 4 to the problem
of computing an L∞ distance matrix. Similarly, we can adapt Algorithm 3 to solve L∞ nearest-
neighbor problems, where an array ofM points in RN is processed offline, allowing us compute the
distance of a query point to allM other points O(M

√
N).

Figure 22 shows the running time of our algorithm for computing an L∞ distance matrix (where
M = N), and the online cost of performing a nearest-neighbor query. Again the expected speedup
over the naı̈ve solution is Ω(

√
N) for both problems, though naturally our algorithm requires larger

values of N than does Algorithm 4 in order to be beneficial, since Algorithm 2 must be executed
twice in order to solve (Equation 17).

A similar trick can be applied to compute message in the max-product semiring even for poten-
tials that contain negative values, though this may require up to four executions of Algorithm 2, so
it is unlikely to be practical.

1380

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

Algorithm 7 Use Algorithm 2 to compute an L∞ distance matrix

Input: anM×N array A containingM points in RN

1: initialize anM×M distance matrix D := 0
2: for x ∈ {1 . . .M} do
3: compute

−→
P [x] by sorting A[x] {takes ΘN logN}

4: compute
←−
P [x] by sorting −A[x] {i.e., −→P [x] in reverse order}

5: end for {this loop takes Θ(MN logN)}
6: for x ∈ {1 . . .M} do
7: for y ∈ {x+1 . . .M} do
8: best1 := Algorithm2

(
A[x],−A[y],−→P [x],←−P [y]

)
{takes O(

√
N); Algorithm 2 uses the operator a×b= |a+b|}

9: best2 := Algorithm2
(
A[y],−A[x],−→P [y],←−P [x]

)
10: D[x,y] :=max

(∣∣A[x,best1]−A[y,best1]∣∣, ∣∣A[x,best2]−A[y,best2]∣∣)
11: D[y,x] := D[x,y]
12: end for
13: end for {this loop takes expected time O(M2

√
N)}

0 1000 2000 3000 4000 5000 6000 7000 8000
N (dimensionality of each vector)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
ve

ra
g
e

w
a
ll

ti
m

e
(s

e
c
o
n
d
s
)

L
∞ nearest neighbor

naı̈ve method

5.4e − 09N2 (r = 0.00002)

our method

1.9e − 07N
√

N (r = 0.00008)

0 500 1000 1500 2000 2500 3000 3500 4000
N (dimensionality of each vector)

0

50

100

150

200

250

A
ve

ra
g
e

w
a
ll

ti
m

e
(s

e
c
o
n
d
s
)

L
∞ distance matrix

naı̈ve method

2.7e − 09N3 (r = 0.76253)

our method

8.3e − 08N2
√

N (r = 2.07389)

Figure 22: The running time of our method compared to the naı̈ve solution. A fitted curve is also
shown, whose coefficient estimates the computational overhead of our model.

8. Discussion and Future Work

We have briefly discussed the application of our algorithm to the all-pairs shortest-path problem, and
also mentioned that a variety of other problems are related to max-product matrix multiplication via
a series of subcubic transformations (Williams and Williams, 2010). To our knowledge, of all these
problems only all-pairs shortest-paths has received significant attention in terms of expected-case
analysis. The analysis in question centers around two types of model: the uniform model, where
edge weights are sampled from a uniform distribution, and the endpoint-independent model, which

1381

MCAULEY AND CAETANO

essentially makes an assumption on the independence of outgoing edge weights from each vertex
(Moffat and Takaoka, 1987), which seems very similar to our assumption of independent order
statistics. It remains to be seen whether this analysis can lead to better solutions to the problems
discussed here, and indeed if the analysis applied to uniform models can be applied in our setting to
uniform matrices.

It is interesting to consider the fact that our algorithm’s running time is purely a function of the
input data’s order statistics, and in fact does not depend on the data itself. While it is pleasing that
our assumption of independent order statistics appears to be a weak one, and is satisfied in a wide
variety of applications, it ignores the fact that stronger assumptions may be reasonable in many
cases. In factors with a high dynamic range, or when different factors have different scales, it may
be possible to identify the maximum value very quickly, as we attempted to do in Section 7.5.1.
Deriving faster algorithms that make stronger assumptions about the input data remains a promising
avenue for future work.

Our algorithm may also lead to faster solutions for approximately passing a single message.
While the stopping criterion of our algorithm guarantees that the maximum value is found, it is
possible to terminate the algorithm earlier and state that the maximum has probably been found.
A direction for future work would be to adapt our algorithm to determine the probability that the
maximum has been found after a certain number of steps; we could then allow the user to specify
an error probability, or a desired running time, and our algorithm could be adapted accordingly.

9. Conclusion

We have presented a series of approaches that allow us to improve the performance of exact and
approximate max-product message-passing for models with factors smaller than their maximal
cliques, and more generally, for models whose factors that depend upon the observation contain
fewer latent variables than their maximal cliques. We are always able to improve the expected com-
putational complexity in any model that exhibits this type of factorization, no matter the size or
number of factors.

Acknowledgments

We would like to thank Pedro Felzenszwalb, Johnicholas Hines, and David Sontag for comments on
initial versions of this paper, and James Petterson and Roslyn Lau for helpful discussions. NICTA
is funded by the Australian Government’s Backing Australia’s Ability initiative, and the Australian
Research Council’s ICT Centre of Excellence program.

Appendix A. Asymptotic Performance of Algorithm 2 and Extensions

In this section we shall determine the expected-case running times of Algorithm 2 and Algorithm 6.
Algorithm 2 traverses va and vb until it reaches the smallest value of m for which there is some
j ≤ m for which m ≥ p−1b [pa[j]]. If M is a random variable representing this smallest value of m,
then we wish to find E(M). While E(M) is the number of ‘steps’ the algorithms take, each step
takes Θ(K) when we have K lists. Thus the expected running time is Θ(KE(M)).

To aid understanding our algorithm, we show the elements being read for specific examples of
va and vb in Figure 23. This figure reveals that the actual values in va and vb are unimportant, and

1382

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

start = 1 start = 2 start = 3 start = 4

(a) (b)

Figure 23: (a) The lists va and vb before sorting; (b) Black squares show corresponding elements
in the sorted lists (va[pa[i]] and vb[pb[i]]); red squares indicate the elements read during
each step of the algorithm (va[pa[start]] and vb[pb[start]]). We can imagine expanding a
gray box of size start× start until it contains an entry; note that the maximum is found
during the first step.

(a) (b) (c) (d)

Figure 24: (a) As noted in Figure 23, a permutation can be represented as an array, where there is
exactly one non-zero entry in each row and column; (b) We want to find the smallest
value of m such that the gray box includes a non-zero entry; (c) A pair of permutations
can be thought of as a cube, where every two-dimensional plane contains exactly one
non-zero entry; we are now searching for the smallest gray cube that includes a non-zero
entry; the faces show the projections of the points onto the exterior of the cube (the third
face is determined by the first two); (d) For the sake of establishing an upper-bound, we
consider a shaded region of width f (N) and height m.

it is only the order statistics of the two lists that determine the performance of our algorithm. By
representing a permutation of the digits 1 to N as shown in Figure 24 ((a), (b), and (d)), we observe
that m is simply the width of the smallest square (expanding from the top left) that includes an
element of the permutation (i.e., it includes i and p[i]).

Simple analysis reveals that the probability of choosing a permutation that does not contain a
value inside a square of size m is

P(M > m) =
(N−m)!(N−m)!

(N−2m)!N! . (18)

This is precisely 1−F(m), where F(m) is the cumulative density function of M. It is immediately
clear that 1≤M ≤ 	N/2
, which defines the best and worst-case performance of Algorithm 2.

1383

MCAULEY AND CAETANO

Using the identity E(X) = ∑∞
x=1P(X ≥ x), we can write down a formula for the expected value

of M:

E(M) =
	N/2

∑
m=0

(N−m)!(N−m)!
(N−2m)!N! . (19)

The case where we are sampling from multiple permutations simultaneously (i.e., Algorithm 6)
is analogous. We consider K− 1 permutations embedded in a K-dimensional hypercube, and we
wish to find the width of the smallest shaded hypercube that includes exactly one element of the
permutations (i.e., i, p1[i], . . . , pK−1[i]). This is represented in Figure 24(c) for K = 3. Note carefully
that K is the number of lists in (Equation 14); if we have K lists, we require K−1 permutations to
define a correspondence between them.

Unfortunately, the probability that there is no non-zero entry in a cube of size mK is not trivial
to compute. It is possible to write down an expression that generalizes (Equation 18), such as

PK(M > m) =
1

N!K−1
× ∑

σ1∈SN
· · · ∑
σK−1∈SN

m∧
i=1

(
max

k∈{1...K−1}
σk(i)> m

)
(20)

(in which we simply enumerate over all possible permutations and ‘count’ which of them do not fall
within a hypercube of size mK), and therefore state that

EK(M) =
∞

∑
m=0

PK(M > m). (21)

However, it is very hard to draw any conclusions from (Equation 20), and in fact it is intractable
even to evaluate it for large values of N and K. Hence we shall instead focus our attention on
finding an upper-bound on (Equation 21). Finding more computationally convenient expressions
for (Equation 20) and (Equation 21) remains as future work.

A.1 An Upper-Bound on EK(M)

Although (Equation 19) and (Equation 21) precisely define the running times of Algorithm 2 and
Algorithm 6, it is not easy to ascertain the speed improvements they achieve, as the values to which
the summations converge for large N are not obvious. Here, we shall try to obtain an upper-bound
on their performance, which we assessed experimentally in Section 7. In doing so we shall prove
Theorems 2 and 3.
Proof [Proof of Theorem 2] (see Algorithm 2) Consider the shaded region in Figure 24(d). This
region has a width of f (N), and its height m is chosen such that it contains precisely one non-zero
entry. Let Ṁ be a random variable representing the height of the gray region needed in order to
include a non-zero entry. We note that

E(Ṁ) ∈ O(f (N)) ⇒ E(M) ∈ O(f (N));

our aim is to find the smallest f (N) such that E(Ṁ) ∈ O(f (N)). The probability that none of the
first m samples appear in the shaded region is

P(Ṁ > m) =
m

∏
i=0

(
1− f (N)

N− i

)
.

1384

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

Next we observe that if the entries in our N×N grid do not define a permutation, but we instead
choose a random entry in each row, then the probability (now for M̈) becomes

P(M̈ > m) =

(
1− f (N)

N

)m
(22)

(for simplicity we allow m to take arbitrarily large values). We certainly have that P(M̈ > m) ≥
P(Ṁ > m), meaning that E(M̈) is an upper-bound on E(Ṁ), and therefore on E(M). Thus we
compute the expected value

E(M̈) =
∞

∑
m=0

(
1− f (N)

N

)m
.

This is just a geometric progression, which sums to N/ f (N). Thus we need to find f (N) such that

f (N) ∈ O
(

N
f (N)

)
.

Clearly f (N) ∈ O(
√
N) will do. Thus we conclude that

E(M) ∈ O(
√
N).

Proof [Proof of Theorem 3] (see Algorithm 6) We would like to apply the same reasoning in the
case of multiple permutations in order to compute a bound on EK(M). That is, we would like to
consider K−1 random samples of the digits from 1 to N, rather than K−1 permutations, as random
samples are easier to work with in practice.

To do so, we begin with some simple corollaries regarding our previous results. We have shown
that in a permutation of length N, we expect to see a value less than or equal to f after N/ f steps.
There are now f − 1 other values that are less than or equal to f amongst the remaining N−N/ f
values; we note that

f −1
N− N

f

=
f
N
.

Hence we expect to see the next value less than or equal to f in the next N/ f steps also. A conse-
quence of this fact is that we not only expect to see the first value less than or equal to f earlier in
a permutation than in a random sample, but that when we sample m elements, we expect more of
them to be less than or equal to f in a permutation than in a random sample.

Furthermore, when considering the maximum of K− 1 permutations, we expect the first m el-
ements to contain more values less than or equal to f than the maximum of K− 1 random sam-
ples. (Equation 20) is concerned with precisely this problem. Therefore, when working in a K-
dimensional hypercube, we can consider K− 1 random samples rather than K− 1 permutations in
order to obtain an upper-bound on (Equation 21).

Thus we define M̈ as in (Equation 22), and conclude that

P(M̈ > m) =

(
1− f (N,K)K−1

NK−1

)m
.

1385

MCAULEY AND CAETANO

Thus the expected value of M̈ is again a geometric progression, which this time sums to (N/ f (N,K))K−1.
Thus we need to find f (N,K) such that

f (N,K) ∈ O
((

N
f (N,K)

)K−1)
.

Clearly

f (N,K) ∈ O
(
N

K−1
K

)
will do. As mentioned, each step takes Θ(K), so the final running time is O(KN

K−1
K).

To summarize, for problems decomposable into K+ 1 groups, we will need to find the index
that chooses the maximal product amongst K lists; we have shown an upper-bound on the expected
number of steps this takes, namely

EK(M) ∈ O
(
N

K−1
K

)
. (23)

References

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms. Addison-
Wesley, 1983.

Srinivas M. Aji and Robert J. McEliece. The generalized distributive law. IEEE Transactions on
Information Theory, 46(2):325–343, 2000.

Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path problem.
Journal of Computer and System Sciences, 54(2):255–262, 1997.

Xiang Bai, Xingwei Yang, Longin Jan Latecki, Wenyu Liu, and Zhuowen Tu. Learning context-
sensitive shape similarity by graph transduction. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(5):861–874, 2009.

Timothy M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. In Annual ACM
Symposium on Theory of Computing, pages 590–598, 2007.

James M. Coughlan and Sabino J. Ferreira. Finding deformable shapes using loopy belief propaga-
tion. In ECCV, 2002.

René Donner, Georg Langs, and Horst Bischof. Sparse MRF appearance models for fast anatomical
structure localisation. In BMVC, 2007.

Gal Elidan, Ian Mcgraw, and Daphne Koller. Residual belief propagation: informed scheduling for
asynchronous message passing. In UAI, 2006.

Pedro F. Felzenszwalb. Representation and detection of deformable shapes. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 27(2):208–220, 2005.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation for early vision.
International Journal of Computer Vision, 70(1):41–54, 2006.

1386

FASTER ALGORITHMS FOR MAX-PRODUCT MESSAGE-PASSING

Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, 1962.

Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

Delbert R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific Journal of
Mathematics, (15):835–855, 1965.

Michel Galley. A skip-chain conditional random field for ranking meeting utterances by importance.
In EMNLP, 2006.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distribution and the bayesian restora-
tion of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–741,
1984.

David R. Karger, Daphne Koller, and Steven J. Phillips. Finding the hidden path: time bounds for
all-pairs shortest paths. SIAM Journal of Computing, 22(6):1199–1217, 1993.

Leslie R. Kerr. The effect of algebraic structure on the computational complexity of matrix multi-
plication. PhD Thesis, 1970.

Kristian Kersting, Babak Ahmadi, and Sriraam Natarajan. Counting belief propagation. In UAI,
2009.

Uffe Kjærulff. Inference in bayesian networks using nested junction trees. In Proceedings of the
NATO Advanced Study Institute on Learning in Graphical Models, 1998.

Vladimir Kolmogorov and Akiyoshi Shioura. New algorithms for the dual of the convex cost net-
work flow problem with application to computer vision. Technical report, University College
London, 2007.

Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger. Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory, 47(2):498–519, 2001.

M. Pawan Kumar and Philip Torr. Fast memory-efficient generalized belief propagation. In ECCV,
2006.

Xiang-Yang Lan, Stefan Roth, Daniel P. Huttenlocher, and Michael J. Black. Efficient belief prop-
agation with learned higher-order markov random fields. In ECCV, 2006.

Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an application to
stereo vision. In IJCAI, 1981.

Julian J. McAuley and Tibério S. Caetano. Exact inference in graphical models: is there more to it?
CoRR, abs/0910.3301, 2009.

Julian J. McAuley and Tibério S. Caetano. Exploiting within-clique factorizations in junction-tree
algorithms. AISTATS, 2010a.

Julian J. McAuley and Tibério S. Caetano. Exploiting data-independence for fast belief-propagation.
ICML, 2010b.

1387

MCAULEY AND CAETANO

Julian J. McAuley, Tibério S. Caetano, and Marconi S. Barbosa. Graph rigidity, cyclic belief prop-
agation and point pattern matching. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 30(11):2047–2054, 2008.

Alistair Moffat and Tadao Takaoka. An all pairs shortest path algorithm with expected time
O(n2 logn). SIAM Journal of Computing, 16(6):1023–1031, 1987.

James D. Park and Adnan Darwiche. A differential semantics for jointree algorithms. In NIPS,
2003.

Mark A. Paskin. Thin junction tree filters for simultaneous localization and mapping. In IJCAI,
2003.

Kersten Petersen, Janis Fehr, and Hans Burkhardt. Fast generalized belief propagation for MAP
estimation on 2D and 3D grid-like markov random fields. In DAGM, 2008.

Daniel Scharstein and Richard S. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision, 47(1–3):7–42, 2001.

Leonid Sigal and Michael J. Black. Predicting 3D people from 2D pictures. In AMDO, 2006.

David Sontag, Talya Meltzer, Amir Globerson, Tommi Jaakkola, and Yair Weiss. Tightening LP
relaxations for MAP using message passing. In UAI, 2008.

Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 14(3):354–356,
1969.

Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum. Stereo matching using belief propagation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7):787–800, 2003.

Charles Sutton and Andrew McCallum. Introduction to Conditional Random Fields for Relational
Learning. MIT Press, 2006.

Philip A. Tresadern, Harish Bhaskar, Steve A. Adeshina, Chris J. Taylor, and Tim F. Cootes. Com-
bining local and global shape models for deformable object matching. In BMVC, 2009.

Yair Weiss. Correctness of local probability propagation in graphical models with loops. Neural
Computation, 12:1–41, 2000.

Ryan Williams. Matrix-vector multiplication in sub-quadratic time (some preprocessing required).
In SODA, pages 1–11, 2007.

Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path, matrix,
and triangle problems. In FOCS, 2010.

1388

Journal of Machine Learning Research 12 (2011) 1389-1423 Submitted 8/09; Revised 9/10; Published 4/11

Clustering Algorithms for Chains

Antti Ukkonen AUKKONEN@YAHOO-INC.COM
Yahoo! Research
Av. Diagonal 177
08018 Barcelona, Spain

Editor:Marina Meila

Abstract

We consider the problem of clustering a set of chains to k clusters. A chain is a totally ordered
subset of a finite set of items. Chains are an intuitive way to express preferences over a set of
alternatives, as well as a useful representation of ratings in situations where the item-specific scores
are either difficult to obtain, too noisy due to measurement error, or simply not as relevant as the
order that they induce over the items. First we adapt the classical k-means for chains by proposing
a suitable distance function and a centroid structure. We also present two different approaches for
mapping chains to a vector space. The first one is related to the planted partition model, while the
second one has an intuitive geometrical interpretation. Finally we discuss a randomization test for
assessing the significance of a clustering. To this end we present an MCMC algorithm for sampling
random sets of chains that share certain properties with the original data. The methods are studied
in a series of experiments using real and artificial data. Results indicate that the methods produce
interesting clusterings, and for certain types of inputs improve upon previous work on clustering
algorithms for orders.

Keywords: Lloyd’s algorithm, orders, preference statements, planted partition model, randomiza-
tion testing

1. Introduction

Clustering (see, e.g., Alpaydin, 2004; Hand et al., 2001) is a traditional problem in data analysis.
Given a set of objects, the task is to divide the objects to homogeneous groups based on some crite-
ria, typically a distance function between the objects. Cluster analysis has applications in numerous
fields, and a myriad of different algorithms for various clustering problems have been developed
over the past decades. The reader is referred to the surveys by Xu and Wunsch (2005) and Berkhin
(2006) for a more general discussion about clustering algorithms and their applications.

This work is about clustering a set of orders, a problem previously studied by Murphy and Mar-
tin (2003), Busse et al. (2007), and Kamishima and Akaho (2009). Rankings of items occur naturally
in various applications, such as preference surveys, decision analysis, certain voting systems, and
even bioinformatics. As an example, consider the Single transferable vote system (Tideman, 1995),
where a vote is an ordered subset of the candidates. By clustering such votes, the set of voters can
be divided to a number of groups based on their political views. Or, in gene expression analysis it
is sometimes of interest to analyze the order of genes induced by the expression levels instead of
the actual numeric values (Ben-Dor et al., 2002). In this case a clustering groups genes according
to their activity for example under various environmental conditions.

c©2011 Antti Ukkonen.

UKKONEN

We focus on a particular subclass of (partial) orders, called chains. Informally, chains are totally
ordered subsets of a set of items, meaning that for all items that belong to a chain we know the order,
and for items not belonging to the chain the order is unknown. For example, consider a preference
survey about movies where the respondents are requested to rank movies they have seen from best
to worst. In this scenario chains are a natural representation for the preference statements, as it is
very unlikely that everyone would list the same movies. In a clustering of the responses people with
similar preferences should be placed in the same cluster, while people who strongly disagree should
be placed in different clusters.

This example also illustrates a very useful property of chains as preference statements: inde-
pendence of the “scale” used by the respondents when assigning scores to the alternatives. For
example, suppose that person A gives movie X three stars, and movie Y five stars. Person B gives
movies X and Y one and three stars, respectively. While these ratings are very different, both A
and B prefer movie Y to movie X. If we represent a response as a vector of ratings, there is a risk
of obtaining clusters that are based on the general level of ratings instead the actual preferences.
That is, one cluster might contain respondents who tend to give low ratings, while another cluster
contains respondents who give high ratings. Clearly this is not a desirable outcome if the purpose is
to study the preferences of the respondents. Statements in the form of chains let us directly focus on
the relationships between the alternatives. Moreover, the use of chains can also facilitate preference
elicitation, as people may find it easier to rank a small set of items instead of assigning scores to
individual items.

Fundamentally the problem of clustering orders does not differ much from the problem of clus-
tering any set of objects for which a distance function can be defined. There are some issues,
however. First, defining a good distance function for chains is not straightforward. One option is
to use existing distance functions for permutations, such as Kendall’s tau or Spearman’s rho. The
usual approach to accommodate these for chains, as taken for example by Kamishima and Akaho
(2009), is to only consider the common items of two chains. However, if the chains have no over-
lap, which can in practice happen quite often, their distance has to be defined in some arbitrary way.
The second issue is the computational complexity of some of the operations that are commonly used
by clustering algorithms. For instance, running Lloyd’s algorithm (often called k-means) requires
the computation of the mean of a set of objects. While this is very easy for numerical inputs and
common distance functions, in case of orders one has to solve the rank aggregation problem that is
computationally nontrivial; for some choices of the distance function rank aggregation is NP-hard
(Dwork et al., 2001). We tackle the aforementioned issues on one hand by formulating the cluster-
ing problem in a way that no computationally hard subproblems are involved (Section 2), and on
the other hand by by mapping the chains to a vector space (Section 3). By taking the latter approach
the problem of clustering chains is reduced to that of clustering vectors in Rn.

In general clustering algorithms will always produce a clustering. However, it is not obvious
whether this clustering is reflecting any real phenomena present in the input. Chances are that the
output is simply a consequence of random noise. Therefore, in addition to algorithms for finding
a clustering, we also propose a method for assessing the validity of the clusterings we find. Our
approach falls in the framework of randomization testing (Good, 2000), where the statistical signif-
icance of a data analysis result is evaluated by running the same analysis on a number of random
data sets. If clusterings of a number of random data sets are indistinguishable from a clustering of
real data (according to a relevant test statistic), the validity of the clustering found in real data can

1390

CLUSTERING ALGORITHMS FOR CHAINS

be questioned. To make use of this approach we propose a method for generating random sets of
chains that share some properties with our original input (Section 4).

1.1 Related Work

Previous research on cluster analysis in general is too numerous to be covered here in full. Instead,
we refer the readers to recent surveys by Xu and Wunsch (2005) and Berkhin (2006). For the
problem of clustering orders, surprisingly little work has been done. The problem discussed in this
paper is also studied by Kamishima and Akaho (2009), and earlier by Kamishima and Fujiki (2003).
Murphy and Martin (2003) propose a mixture model for clustering orders. However, they only
consider inputs that consist of total orders, that is, every chain in the input must order all items inM.
This restriction is not made by Busse et al. (2007) who study a setting similar to ours. An important
aspect of their approach is to represent a chain using the set of total orders that are compatible
with the chain. This idea can also be found in the work by Critchlow (1985), and is a crucial
component of a part of our work in Section 3. Recently Clémençon and Jakubowicz (2010) propose
a distance function for permutations based on earth mover’s distance between doubly stochastic
matrices. While this framework seems quite interesting, extending it for chains seems nontrivial.
The use of randomization testing (Good, 2000) in the context of data mining was first proposed
by Gionis et al. (2007). Theoretical aspects of the sampling approach are discussed by Besag and
Clifford (1989) and Besag and Clifford (1991).

1.2 Organization and Contributions of This Paper

The contributions of this paper are the following:

• In Section 2 we adapt Lloyd’s algorithm (Lloyd, 1982) for chains. The main problem is the
lack of a good distance function for chains, as well as the computational complexity of rank
aggregation. At the core of our approach is to consider the probabilities of pairs of items to
precede one another in the cluster.

• In Section 3 we present two methods for mapping chains to high-dimensional vector spaces.
The first method aims to preserve the distance between two chains that are assumed to origi-
nate from the same component in a simple generative model. The second method represents
each chain as the mean of the set of linear extensions of the chain. Our main contribution here
is Theorem 5 stating that this can be achieved with a very simple mapping. In particular, it is
not necessary to enumerate the set of linear extensions of a chain.

• In Section 4 we present an MCMC algorithm for uniformly sampling sets of chains that share
a number of characteristics with a given set of chains. The random sets of chains are used for
significance testing.

• In Section 5 we conduct a number of experiments to compare the proposed method with
existing algorithms for clustering chains. Turns out that the algorithms are in some sense
orthogonal. For smaller data sets the algorithms by Kamishima and Akaho (2009) give in
most cases a better result. However, as the input size increases, the method proposed in this
paper outperforms other algorithms.

Many of the results presented have appeared previously as a part of the author’s doctoral dis-
sertation (Ukkonen, 2008). Theorem 5 in Section 3.2 was presented earlier by Ukkonen (2007) but

1391

UKKONEN

Algorithm 1 Lloyd’s algorithm
1: k-means(D, k) {Input: D, set of points; k, number of clusters. Output: The clustering C =

{D1, . . . ,Dk}.}
2: {D1, . . . ,Dk}← PickInitialClusters(D, k);
3: e← ∑k

i=1∑x∈Di d(π,Centroid(Di));
4: repeat
5: e0 ← e;
6: C0 ←{D1, . . . ,Dk};
7: for i← 1, . . . ,k do
8: Di ←{x ∈ D | i= argmin j d(x,Centroid(Dj)};
9: end for
10: e← ∑k

i=1∑x∈Di d(x,Centroid(Di));
11: until e= e0 ;
12: return C0;

its proof was omitted. Also contents of Section 4 have appeared in less detail in previous work by
Ukkonen and Mannila (2007).

2. Adapting Lloyd’s Algorithm for Chains

Lloyd’s algorithm, also known as k-means, is one of the most common clustering algorithms. In
this section we address questions related to the use of Lloyd’s algorithm with chains. We start with
the basic definitions used throughout this paper.

2.1 Basic Definitions

Let M be a set of m items. A chain π is a subset of M together with a total order τπ on the items,
meaning that for every u,v ∈ π ⊆ M we have either (u,v) ∈ τπ or (v,u) ∈ τπ. We use a slightly
simplified notation, and say that the pair (u,v) belongs to π, denoted (u,v)∈ π, whenever (u,v)∈ τπ.
Whenever (u,v) belongs to π, we say that u precedes v according to π. For items inM \π, the chain
π does not specify the order in any way. The chain π is therefore a partial order. When π is defined
over the entire setM of items, we say it is a total order. Let D be a multiset of n chains. A clustering
of D is a disjoint partition of D to k subsets, denoted D1, . . . ,Dk, so that every π ∈ D belongs to one
and only one Di.

Lloyd’s algorithm (Duda and Hart, 1973; Lloyd, 1982; Ball and Hall, 1967) finds a clustering
of D1, . . . ,Dk so that its reconstruction error, defined as

k

∑
i=1
∑
x∈Di

d(x,Centroid(Di)), (1)

is at a local minimum. Here d is a distance function, Di is a cluster, and Centroid(Di) refers to a
“center point” of Di. With numerical data one typically uses the mean as the centroid and squared
Euclidean distance as d. The algorithm is given in Algorithm 1. On every iteration Lloyd’s algo-
rithm updates the clustering by assigning each point x ∈ D to the cluster with the closest centroid.
The PickInitialClusters function on line 2 of Algorithm 1 can be implemented for example by se-
lecting k total orders at random, and assigning each chain to the the closest one. More sophisticated

1392

CLUSTERING ALGORITHMS FOR CHAINS

techniques, such as the one suggested by Arthur and Vassilvitskii (2007) can also be considered.
The algorithm terminates when the clustering error no longer decreases. Note that the resulting
clustering is not necessarily a global optima of Equation 1, but the algorithm can end up at a local
minimum.

2.2 Problems with Chains

Clustering models are usually based on the concept of distance. In the case of hierarchical clus-
tering we must be able to compute distances between two objects in the input, while with Lloyd’s
algorithm we have to compute distances to a centroid. Usually the centroid belongs to the same
family of objects as the ones in D that we are clustering. However, it can also be something else,
and in particular for the problem of clustering chains, the centroid does not have to be a chain or
even a total order. This is very useful, because defining a good distance function for chains is not
straightforward. For example, given the chains (1,4,5) and (2,3,6), it is not easy to say anything
about their similarity, as they share no common items. We return to this question later in Section 3.1,
but before this we will describe an approach where the distance between two chains is not required.

Another issue arises from the centroid computation. If we use a total order for representing
the centroid we have to solve the rank aggregation problem: given all chains belonging to the
cluster Ci, we have to compute a total order that is in some sense the “average” of the chains in Ci.
This is not trivial, but can be solved by several different approaches. Some of them have theoretical
performance guarantees, such as the algorithms by Ailon et al. (2005) and Coppersmith et al. (2006),
and some are heuristics that happen to give reasonable results in practice (Kamishima and Akaho,
2006). The hardness of rank aggregation also depends on the distance function. For the Kendall’s
tau the problem is always NP-hard (Dwork et al., 2001), but for Spearman’s rho it can be solved in
polynomial time if all chains in the input happen to be total orders. In the general case the problem
is NP-hard also for Spearman’s rho (Dwork et al., 2001). Our approach is to replace the centroid
with a structure that can be computed more efficiently.

2.3 Distances and Centroids

Next we discuss the choice of a centroid and a distance function so that Algorithm 1 can be used
directly with an input consisting of chains. Suppose first that the centroid of a cluster is the total
order τ. Observe that τ can be represented by a matrix Xτ, where Xτ(u,v) = 1 if and only if we have
(u,v) ∈ τ, otherwise Xτ(u,v) = 0. We can view Xτ as an order relation. This relation is completely
deterministic, since each pair (u,v) either belongs, or does not belong to τ. Moreover, if (u,v) does
not belong to τ, the pair (v,u) has to belong to τ.

A simple generalization of this is to allow the centroid to contain fractional contributions for
the pairs. That is, the pair (u,v) may belong to the centroid with a weight that is a value between 0
and 1. We restrict the set of possible weights so that they satisfy the probability constraint, defined
as X(u,v)+X(v,u) = 1 for all u,v ∈ M. In this case the centroid corresponds to a probabilistic
order relation. Below we show that for a suitable distance function this approach leads to a natural
generalization of the case where the centroids are represented by total orders together with Kendall’s
tau as the distance function. However, this relaxation lets us avoid the rank aggregation problem
discussed above.

1393

UKKONEN

Consider the following general definition of a centroid. Given a set D of objects and the class Q
of centroids for D, we want to find a X∗ ∈ Q, so that

X∗ = argmin
X∈Q

∑
π∈D

d(π,X),

where d(π,X) is a distance between π and X . Intuitively X∗ must thus reside at the “center” of the
set D. We let Q be set of probabilistic order relations on M, that is, the set of |M| × |M| matrices
satisfying the probability constraint. Given a matrix X ∈ Q and a chain π, we define the distance
d(π,X) as

d(π,X) = ∑
(u,v)∈π

X(v,u)2. (2)

This choice of d(π,X) leads to a simple way of computing the optimal centroid, as is shown below.
Note that this distance function is equivalent with Kendall’s tau if X is a deterministic order relation.
To find the centroid of a given set D of chains, we must find a matrix X ∈ Q such that the cost

c(X ,D) = ∑
π∈D

∑
(u,v)∈π

X(v,u)2

is minimized. By writing the sum in terms of pairs of items instead of chains, we obtain

c(X ,D) = ∑
u∈M

∑
v∈M

CD(u,v)X(v,u)
2,

whereCD(u,v) denotes the number of chains in D where u appears before v. LetU denote the set of
all unordered pairs of items fromM. UsingU the above can be written as

c(X ,D) = ∑
{u,v}∈U

(
CD(u,v)X(v,u)

2+CD(v,u)X(u,v)
2).

As X must satisfy the probability constraint, this becomes

c(X ,D) = ∑
{u,v}∈U

(
CD(u,v)(1−X(u,v))2+CD(v,u)X(u,v)

2︸ ︷︷ ︸
c(X ,{u,v})

)
. (3)

To minimize Equation 3 it is enough to independently minimize the individual parts of the sum
corresponding to the pairs inU , denoted c(X ,{u,v}). Setting the first derivative of this with respect
to X(u,v) equal to zero gives

X∗(u,v) =
CD(u,v)

CD(u,v)+CD(v,u)
. (4)

That is, the optimal centroid is represented by a matrix X∗ where X∗(u,v) can be seen as a simple
estimate of the probability of item u ∈M to precede item v ∈M in the input D. This is a natural way
of expressing the the ordering information present in a set of chains without having to construct an
explicit total order.

It is also worth noting that long chains will be consistently further away from the centroid than
short chains, because we do not normalize Equation 2 with the length of the chain. This is not a
problem, however, since we are only using the distance to assign a chain to one of the k centroids.

1394

CLUSTERING ALGORITHMS FOR CHAINS

Distances of two chains of possibly different lengths are not compared. We also emphasize that
even if longer chains in some sense contribute more to the centroid, as they contain a larger number
of pairs, the contribution to an individual element of the matrix X is independent of chain length.

We propose thus to use Lloyd’s algorithm as shown in Algorithm 1 with the distance function in
Equation 2 and the centroid as defined by Equation 4. The algorithm converges to a local optimum,
as the reconstruction error decreases on every step. When assigning chains to updated centroids the
error can only decrease (or stay the same) because the chains are assigned to clusters that minimize
the error (line 8 of Alg. 1). When we recompute the centroids given the new assignment of chains
to clusters, the error is non-increasing as well, because the centroid X∗ (Equation 4) by definition
minimizes the error for every cluster.

3. Mappings to Vector Spaces

In this section we describe an alternative approach to clustering chains. Instead of operating directly
on the chains, we first map them to a vector space. This makes it possible to compute the clustering
using any algorithm that clusters vectors. Note that this will lead to a clustering that does not
minimize the same objective function as the algorithm described in the previous section. However,
the two approaches are complementary: we can first use the vector space representation to compute
an initial clustering of the chains, and then refine this with Lloyd’s algorithm using the centroid and
distance function of the previous section. Note that these mappings can also be used to visualize
sets of chains (Ukkonen, 2007; Kidwell et al., 2008).

3.1 Graph Representation

The mapping that we describe in this section is based on the adjacency matrices of two graphs where
the chains of the input D appear as vertices. These graphs can be seen as special cases of the so
called planted partition model (Condon and Karp, 2001; Shamir and Tsur, 2002).

3.1.1 MOTIVATION

We return to the question of computing the distance between two chains. Both Spearman’s rho
and Kendall’s tau can be modified for chains so that they only consider the common items. If the
chains π1 and π2 have no items in common, we have to use a fixed distance between π1 and π2.
This is done for example by Kamishima and Fujiki (2003), where the distance between two chains
is given by 1−ρ, where ρ ∈ [−1,1] is Spearman’s rho. For two fully correlated chains the distance
becomes 0, and for chains with strong negative correlation the distance is 2. If the chains have no
common items we have ρ= 0 and the distance is 1. We could use the same approach also with the
Kendall distance by defining the distance between the chains π1 and π2 as the (normalized) Kendall
distance between the permutations that are induced by the common items in π1 and π2. If there
are no common items we set the distance to 0.5. Now consider the following example. Let π1 =
(1,2,3,4,5), π2 = (6,7,8,9,10), and π3 = (4,8,2,5,3). By definition we have dK(π1,π2) = 0.5,
and a simple calculation gives dK(π1,π3) = 0.5 as well. Without any additional information this is
a valid approach.

However, suppose that the input D has been generated by the following model: We are given
k partial orders Π j, j = 1, . . . ,k, on M. A chain π is generated by first selecting one of the Π js at
random, then choosing one linear extension τ of Π j at random, and finally picking a random subset

1395

UKKONEN

of l items and creating the chain by projecting τ on this subset. (This model is later used in the
experiments in Section 5).

Continuing the example, let π1, π2, and π3 be defined as above, assume for simplicity that the
Π js of the generative model are total orders, and that π1 and π2 have been generated by the same
component, the total order (1,2,3,4,5,6,7,8,9,10), and that π3 is generated by another component,
the total order (6,7,9,10,4,8,2,5,3,1). Under this assumption it no longer appears meaningful
to have dK(π1,π2) = dK(π1,π3), as the clustering algorithm should separate chains generated by
different components from each other. We would like to have dK(π1,π2) < dK(π1,π3). Of course
we can a priori not know the underlying components, but when computing a clustering we are
assuming that they exist.

3.1.2 AGREEMENT AND DISAGREEMENT GRAPHS

Next we propose a method for mapping the chains to Rn so that the distances between the vectors
that correspond to π1, π2 and π3 satisfy the inequality of the example above. In general we want
chains that are generated by the same component to have a shorter distance to each other than
to chains that originate from other components. To this end, we define the distance between two
chains in D as the distance between their neighborhoods in appropriately constructed graphs. If the
neighborhoods are similar, that is, there are many chains in D that are (in a sense to be formalized
shortly) “close to” both π1 and π2, we consider also π1 and π2 similar to each other. Note that this
definition of distance between two chains is dependent on the input D. In other words, the distance
between π1 and π2 can change if other chains in D are modified.

We say that chains π1 and π2 agree if for some items u and v we have (u,v)∈ π1 and (u,v) ∈ π2.
Likewise, the chains π1 and π2 disagree if for some u and v we have (u,v) ∈ π1 and (v,u) ∈ π2.
Note that π1 and π2 can simultaneously both agree and disagree. We define the agreement and
disagreement graphs:

Definition 1 Let Ga(D) and Gd(D) be undirected graphs with chains in D as vertices. The graph
Ga(D) is the agreement graph, where two vertices are connected by an edge if their respective
chains agree and do not disagree. The graph Gd(D) is the disagreement graph, where two vertices
are connected by an edge if their respective chains disagree and do not agree.

The distance between chains π1 and π2 will be a function of the sets of neighboring vertices of π1
and π2 in Ga(D) and Gd(D). Before giving the precise definition we discuss some theory related to
the graph Ga(D). This will shed some light on the hardness of finding a clustering if the input D is
very sparse.

3.1.3 THE PLANTED PARTITION MODEL

Consider the following stochastic model for creating a random graph of n vertices. First partition
the set of vertices to k disjoint subsets denoted V1, . . . ,Vk. Then, independently generate edges
between the vertices as follows: add an edge between two vertices that belong to the same subset
with probability p, and add an edge between two vertices that belong to different subsets with
probability q < p. This model, called the planted partition model, was first discussed by Condon
and Karp (2001) and subsequently by Shamir and Tsur (2002). They also proposed algorithms for
recovering the underlying clustering as long as the gap Δ= p−q is not too small.

Assuming a simple process that generates the input D we can view the agreement graph Ga(D)
as an instance of the planted partition model with values of p and q that depend on the characteristics

1396

CLUSTERING ALGORITHMS FOR CHAINS

of the input D. More specifically, let D be generated by k total orders on the set of items M, so that
each chain π ∈ D is the projection of one of the total orders on some l-sized subset of M. In theory
we can compute a clustering ofD by applying one of the existing algorithms for the planted partition
model on the graph Ga(D). However, this approach may fail in practice. We argue that for realistic
inputsD the graphGa(D) is unlikely to satisfy the condition on the gap Δ required by the algorithms
given by Condon and Karp (2001) and Shamir and Tsur (2002). Also, these algorithms are rather
complex to implement.

We start by considering the probability of observing an edge between two vertices in the graph
Ga(D) when D is generated using the model outlined above. This happens when two independent
events are realized. First, the chains corresponding to the vertices must have at least 2 common
items, the probability of which we denote by Pr(|π1 ∩ π2| ≥ 2). Observe that this is the disjoint
union of events where there are exactly i common items, i∈ [2, l]. Therefore, we have Pr(|π1∩π2| ≥
2) = ∑l

i=2 Pr(|π1 ∩π2| = i). Second, the common items must be ordered in the same way in both
of the chains. Denote the probability of this by Pr(π1⊥iπ2) for the case of i common items. The
probability of observing an edge between π1 and π2 is thus given by the sum

l

∑
i=2

Pr(|π1∩π2|= i)Pr(π1⊥iπ2). (5)

Next we use this to derive the probabilities p and q of observing an edge between two chains that
belong either to the same, or two different components, respectively. Clearly we have Pr(|π1∩π2|=
i) =
(l
i

)(m−l
l−i
)(m

l

)−1
in both cases, as the number of common items is independent of their ordering.

The only part that matters is thus Pr(π1⊥iπ2). When π1 and π2 belong to the same component, this
probability is equal to 1, because π1 and π2 are always guaranteed to order every subset of items in
the same way. Hence Equation 5 gives

p=

(
m
l

)−1 l

∑
i=2

(
l
i

)(
m− l
l− i

)
. (6)

When π1 and π2 belong to different components, we must make sure that the component that emits
π2 orders the common items in the same way as π1. (To simplify matters we allow the second
component to be identical to the one that has generated π1. This will not significantly affect the
subsequent analysis.) The number of permutations on m items where the order of i items is fixed is
m!/i!. Since the component of π2 is sampled uniformly at random from all possible permutations,
we have Pr(π1⊥iπ2) = m!

i!m! = 1/i!. This together with Equation 5 yields

q=

(
m
l

)−1 l

∑
i=2

(l
i

)(m−l
l−i
)

i!
. (7)

The algorithm of Condon and Karp (2001) requires a gap Δ of order Ω(n−
1
2+ε) given an input

of size n to find the correct partitioning (for k = 2). The improved algorithm by Shamir and Tsur
(2002) is shown to produce a correct output with Δ of order Ω(kn−

1
2 logn). Another way of seeing

these results is that as Δ decreases more and more data is needed (nmust increase) for the algorithms
to give good results. Next we study how the gap Δ behaves in Ga(D) as a function of m= |M| and
the length l of the chains. (Assuming that all chains are of equal length.) Since we have

Δ= p−q=
∑l
i=2

(l
i

)(m−l
l−i
)(
1− 1

i!

)
(m
l

) ,

1397

UKKONEN

where (1− 1
i!) is significantly less than 1 only for very small i (say, i≤ 3), it is reasonable to bound

Δ by using an upper bound for p. We obtain the following theorem:

Theorem 2 Let p and q be defined as in Equations 6 and 7, respectively, and let Δ = p− q. For
l < m/2, we have

Δ< p= O
(l2
m

)
.

Proof See Appendix A.1.

The bound expresses how the density of the graph Ga(D) depends on the number of items m and the
length of the chains l. The gap Δ becomes smaller as m increases and l decreases. This, combined
with the existing results concerning Δ, means that for short chains over a largeM the input D has to
be very large for the algorithms of Condon and Karp (2001) and Shamir and Tsur (2002) to produce
good results. For example with l = 5 and m = 200, Theorem 2 gives an upper bound of 1/8 for
Δ. But for example the algorithm of Shamir and Tsur (2002) requires Δ to be lower bounded by
kn−

1
2 log(n) (up to a constant factor). To reach 1/8 with k = 2, n must in this case be of order

105, which can be tricky for applications such as preference surveys. Therefore, we conclude that
for these algorithms to be of practical use a relatively large number of chains is needed if the data
consists of short chains over a large number of different items. Also, even though Theorem 2 is
related to the graph Ga(D), it gives some theoretical justification to the intuition that increasing the
length of the chains should make the clusters easier to separate.

3.1.4 USING Ga(D) AND Gd(D)

In the agreement graph, under ideal circumstances the chain π is mostly connected to chains gen-
erated by the same component as π. Also, it is easy to see that in the disagreement graph the chain
π is (again under ideal circumstances) not connected to any of the chains generated by the same
component, and only to chains generated by the other components. This latter fact makes it possible
to find the correct clustering by finding a k-coloring of Gd(D). Unfortunately this has little practical
value as in real data sets we expect to observe noise that will distort both Ga(D) and Gd(D).

Above we argued that representations of two chains emitted by the same component should be
more alike than representations of two chains emitted by different components. Consider the case
where k = 2 and both clusters are of size n/2. Let fπ ∈ R

n be the row of the adjacency matrix of
Ga(D) that corresponds to chain π. Let chain π1 be generated by the same component as π, and let
π2 be generated by a different component. Also, define the similarity s between fπ and fπ′ as the
number of elements where both fπ and fπ′ have the value 1. Consider the expected value of this
similarity under the planted partition model. We have:

E[s(fπ, fπ1)] =
n
2
p2+

n
2
q2 =

n
2
(p2+q2),

E[s(fπ, fπ2)] =
n
2
pq+

n
2
qp= nqp.

It is easy to see that E[s(fπ, fπ1)]> E[fπ, fπ2] if we let p= cq, with c> 1. (This is true if p and q are
defined as in Equations 6 and 7.) Therefore, at least under these simple assumptions the expected
distance between two chains from the same component is always less than the expected distance
between two chains from different components. In practice we can combine the adjacency matrices
of Ga(D) and Gd(D) to create the final mapping:

1398

CLUSTERING ALGORITHMS FOR CHAINS

Definition 3 Let Gad =Ga(D)−Gd(D), where Ga(D) and Gd(D) denote the adjacency matrices of
the agreement and disagreement graphs. The representation of the chain π in Rn is the row of Gad

that corresponds to π.

While the analysis above only concerns Ga(D), we chose to combine both graphs in the final repre-
sentation. This can be motivated by the following example. As above, let fπ denote the row of the
adjacency matrix of Ga(D) that corresponds to the chain π, and let gπ denote the same for Gd(D).
Suppose that the chain π1 agrees with the chain π, meaning that fπ1(π) = 1 and gπ1(π) = 0, and
let the chain π2 disagree with π, meaning that fπ2(π) = 0 and gπ2(π) = 1. Also, assume that the
chain π3 neither agrees nor disagrees with π, meaning that fπ3(π) = gπ3(π) = 0. Intuitively, in this
example the distance between π1 and π2 should be larger than the distance between π1 and π3. With
Gad(D) this property is satisfied, as now in the final representations, defined as hπi = fπi − gπi , we
have hπ1(π) = 1, hπ2(π) = −1, and hπ3(π) = 0. Using only Ga(D) fails to make this distinction,
because fπ2(π) = fπ3(π).

Using the agreement and disagreement graphs has the obvious drawback that the adjacency
matrices ofGa(D) andGd(D) are both of size n×n, and computing one entry takes time proportional
to l2. Even though Ga(D) and Gd(D) have the theoretically nice property of being generated by
the planted partition model, using them in practice can be prohibited by these scalability issues.
However, there is some experimental evidence that the entire Gad graph is not necessarily needed
(Ukkonen, 2008).

3.2 Hypersphere Representation

Next we devise a method for mapping chains to an m-dimensional (as opposed to n-dimensional)
vector space. The mapping can be computed in time O(nm). This method has a slightly different
motivation than the one discussed above. Let f be the mapping from the set of all chains to Rm and
let d be a distance function in Rm. Furthermore, let π be a chain and denote by πR the reverse of π,
that is, the chain that orders the same items as π, but in exactly the opposite way. The mapping f
and distance d should satisfy

d(f (π), f (πR)) = max
π′

{d(f (π), f (π′))} (8)

d(f (π1), f (π
R
1)) = d(f (π2), f (π

R
2)) for all π1 and π2. (9)

Less formally, we want the reversal of a chain to be furthest away from it in the vector space (8), and
the distance between π and πR should be the same for all chains (9). We proceed by first defining
a mapping for total orders that satisfy the conditions above and then generalize this for chains. In
both cases the mappings have an intuitive geometrical interpretation.

3.2.1 A MAPPING FOR TOTAL ORDERS

We define a function f that maps total orders to Rm as follows: Let τ be a total order on M, and let
τ(u) denote the position of u ∈M in τ. For example, if M = {1, . . . ,8} and τ= (5,1,6,3,7,2,8,4),
we have τ(5) = 1. Consider the vector fτ where

fτ(u) =−m+1
2

+ τ(u) (10)

for all u ∈M. We define the mapping f such that f (τ) = fτ/‖fτ‖ = f̂τ. Note that this mapping is a
simple transformation of the Borda count (see, e.g., Moulin, 1991), where candidates in an election

1399

UKKONEN

are given points based on their position in the order specified by a vote. Returning to the example,
according to Equation 10 we have

fτ = (−2.5,1.5,−0.5,3.5,−3.5,−1.5,0.5,2.5),

and as ‖fτ‖= 6.48, we have

f (τ) = f̂τ = (−0.39,0.23,−0.08,0.54,−0.54,−0.23,0.08,0.39).

When d is the cosine distance between two vectors, which in this case is simply 1− f̂Tτ f̂τ′ as the vec-
tors are normalized, it is straightforward to check that f̂τ satisfies Equations 8 and 9. This mapping
has a geometrical interpretation: all permutations are points on the surface of an m-dimensional
unit-sphere centered at the origin. Moreover, the permutation τ and its reversal τR are on exactly
opposite sides of the sphere. That is, the image of τR is found by mirroring the image of τ at the
origin.

3.2.2 A MAPPING FOR CHAINS

To extend the above for chains we apply the technique used also by Critchlow (1985) and later by
Busse et al. (2007). The idea is to represent a chain π on M by the set of total orders on M that are
compatible with π. That is, we view π as a partial order on M and use the set of linear extensions1

of π to construct the representation f (π). More precisely, we want f (π) to be the center of the
points in the set { f (τ) : τ ∈E(π)}, where f is the mapping for permutations defined in the previous
section, and E(π) is the set of linear extensions of π. Our main contribution in this section is that
despite the size of E(π) is

(m
l

)
(m− l)!, we can compute f (π) very efficiently. We start by giving a

definition for f (π) that is unrelated to E(π).

Definition 4 Let π be a chain over M and define the vector fπ so that

fπ(u) =
{

−|π|+1
2 +π(u) iff u ∈ π,

0 iff u �∈ π,
(11)

for all u ∈M. The mapping f is defined so that f (π) = fπ/‖fπ‖= f̂π.

This is a generalization of the mapping for total orders to the case where only a subset of the items
has been ordered. The following theorem states that this definition makes f (π) the center of the set
{ f (τ) : τ ∈ E(π)}.

Theorem 5 If the vector fτ is defined as in Equation 10, and the vector fπ is defined as in Equa-
tion 11, then there exists a constant Q so that

fπ(u) = Q ∑
τ∈E(π)

fτ(u) (12)

for all u ∈M.

1. A linear extension of a partial order π is a total order τ so that (u,v) ∈ π→ (u,v) ∈ τ.

1400

CLUSTERING ALGORITHMS FOR CHAINS

Proof See Appendix A.2.

What does this theorem mean in practice? We want f (π) to be the mean of the points that represent
the linear extensions of π, normalized to unit length. Theorem 5 states that this mean has a simple
explicit formula that is given by Equation 11. Thus, when normalizing fπ we indeed get the normal-
ized mean vector without having to sum over all linear extensions of π. This is very important, as
E(π) is so large that simply enumerating all its members is computationally infeasible.

The first advantage of the hypersphere representation over the agreement and disagreement
graphs is efficiency. Computing the vectors fπ for all chains in the input is of order O(nm), which
is considerably less than the requirement of O(n2m2) for the graph based approach. As a downside
we lose the property of having a shorter distance between chains generated by the same component
than between chains generated by different components. The second advantage of the hypersphere
mapping is size. Storing the full graph representation requires O(n2) memory, while storing the
hypersphere representation needs only O(nm) of storage. This is the same as needed for storing D,
and in most cases less than O(n2) as usually we have m� n.

4. Assessing the Significance of Clusterings

Clustering algorithms will in general always produce a clustering of the input objects. However,
it is not obvious that these clusterings are meaningful. If we run one of the algorithms discussed
above on a random set of chains, we obtain a clustering as a result. But clearly this clustering has
in practice no meaning. To assess the significance of a clustering of the input D, we compare its
reconstruction error with the errors of clusterings obtained from random (in a sense made precise
below) sets of chains. If the error from real data is smaller than the errors from random data, we
have evidence for the clustering to be meaningful. The random sets of chains must share certain
aspects with our original input D. In this section we define these aspects precisely, and devise a
method for sampling randomized sets of chains that share these aspects with a given input D.

4.1 Randomization Testing and Empirical p-values

For a thorough discussion of randomization testing, we refer the reader to the textbook by Good
(2000). Below we give only a brief outline and necessary definitions. Denote by A a data analysis
algorithm that takes D as the input and produces some output, denoted A(D). We can assume that
A(D) is in fact the value of a test statistic that we are interested in. For the remainder of this
paper A is a clustering algorithm and A(D) is the reconstruction error of the clustering found by A .
Moreover, denote by D̃1, . . . , D̃h a sequence of random sets of chains that share certain properties
with D. These will be defined more formally later.

If the value A(D) considerably deviates from the values A(D̃1), . . . ,A(D̃h), we have some ev-
idence for the output of A to be meaningful. In practice this means we can rule out the common
properties of the real and random data sets as the sole causes for the results found. As usual in
statistical testing we can speak of a null hypothesis H0 and an alternative hypothesis H1. These are
defined as follows:

H0 : A(D) ≥ min
i
{A(D̃i)},

H1 : A(D) < min
i
{A(D̃i)}.

1401

UKKONEN

In statistics the p-value of a test usually refers to the probability of making an error when
rejecting H0 (and accepting H1). In order to determine the p-value one typically needs to make
some assumptions of the distribution of the test statistic. In general, if we cannot, or do not want
to make such assumptions, we can compute the empirical p-value based on the randomized data
sets. This is defined simply as the fraction of cases where the value of A(D̃i) is more extreme than
the value A(D). Or more formally, for the one-tailed case where A(D) is expected to be small
according to H1, we have

p̂=
|{D̃i : A(D̃i)≤ A(D)}|+1

h+1
.

One problem with using p̂ is that in order to get useful values the number of randomized data
sets must be fairly high. For instance, to have p̂ = 0.001 we must sample at least 999 data sets.
Depending on the complexity of generating one random data set this may be difficult. Of course,
already with 99 data sets we can obtain an empirical p-value of 0.01 if all random data sets have a
larger value of the test statistic. This should be enough for many practical applications.

4.2 Equivalence Classes of Sets of Chains

The random data sets must share some characteristics with the original data D. Given D, we define
an equivalence class of sets of chains, so that all sets belonging to this equivalence class have the
same properties as D.

Definition 6 Let D1 and D2 be two sets of chains on items of the set M. D1 and D2 belong to the
same equivalence class whenever the following three conditions hold.

1. The number of chains of length l is the same in D1 as in D2 for all l.

2. For all M′ ⊆M, the number of chains that contain M′ as a subset is the same in D1 and D2.

3. We have CD1(u,v) =CD2(u,v) for all u,v ∈ M, where CD(u,v) is the number of chains in D
that rank u before v.

Given a set D of chains, we denote the equivalence class specified by D with C (D). Next we
discuss an algorithm for sampling uniformly from C (D). But first we elaborate why it is useful to
maintain the properties listed above when testing the significance of A(D).

When analyzing chains over the items in M, the most interesting property is how the chains
actually order the items. In other words, the clustering should reflect the ordering information
present in D. This is only one property of D, however. Other properties are those that we mention
in the conditions above. Condition 1 is used to rule out the possibility that the value of A(D) is
somehow caused only by the length distribution of the chains in D. Note that this requirement also
implies that D1 and D2 are of the same size. Likewise, condition 2 should rule out the possibility
that the result is not a consequence of the rankings, but simply the co-occurrences of the items.

Maintaining CD(u,v) is motivated from a slightly different point of view. If D contained real-
valued vectors instead of chains, it would make sense to maintain the empirical mean of the obser-
vations. The intuition with chains is the same: we view D as a set of points in the space of chains.
The random data sets should be located in the same region of this space as D. By maintaining
CD(u,v) the randomized data sets D̃i will (in a way) have the same mean as D. This is because the
rank aggregation problem, that is, finding the mean of a set of permutations, can be solved using
only theCD(u,v) values (Ukkonen, 2008).

1402

CLUSTERING ALGORITHMS FOR CHAINS

4.3 An MCMC Algorithm for Sampling from C (D)

Next we will discuss a Markov chain Monte Carlo algorithm that samples uniformly from a subset
of C (D) given D. We can only guarantee that the sample will be from a neighborhood ofD in C (D).
Whether this neighborhood covers all of C (D) is an open problem.

4.3.1 ALGORITHM OVERVIEW

The MCMC algorithm we propose can be seen as a random walk on an undirected graph with C (D)
as the set of vertices. Denote this graph by G(D). The vertices D1 and D2 of G(D) are connected by
an edge if we obtain D2 from D1 by performing a small local modification to D1 (and vice versa).
We call this local modification a swap and will define it in detail below. First, let us look at a high
level description of the algorithm.

In general, when using MCMC to sample from a distribution, we must construct the Markov
Chain so that its stationary distribution equals the target distribution we want to sample from. If
all vertices of G(D) are of equal degree, the stationary distribution will be the uniform distribution.
As we want to sample uniformly from C (D), this would be optimal. However, it turns out that the
way we have defined the graph G(D) does not result in the vertices having the same number of
neighboring vertices. To remedy this, we use the Metropolis-Hastings algorithm (see, e.g., Gelman
et al., 2004) for picking the next state. Denote by N(Di) the set of neighbors of the vertex Di in
G(D). When the chain is at Di, we pick uniformly at random the vertex Di+1 from N(Di). The
chain moves to Di+1 with probability

min(
|N(Di)|
|N(Di+1)|

,1), (13)

that is, the move is accepted always when Di+1 has a smaller degree, and otherwise we move with a
probability that decreases as the degree of Di+1 increases. If the chain does not move, it stays at the
state Di and attempts to move again (possibly to some other neighboring vertex) in the next step.

It is easy to show that this modified random walk has the desired property of converging to
a uniform distribution over the set of vertices. Denote by p(Di) the target distribution we want
to sample from. In this case p(Di) is the uniform distribution over C (D). Hence, we must have
p(Di) = p(Di+1) = |C (D)|−1. The Metropolis-Hastings algorithm jumps to the next state Di+1 with
probability min(r,1), where

r =
p(Di+1)/J(Di+1|Di)

p(Di)/J(Di|Di+1)
. (14)

Above J(·|·) is a proposal distribution, which in this case is simply the uniform distribution over the
neighbors of Di for all i. That is, we have J(Di+1|Di) = |N(Di)|−1 and J(Di|Di+1) = |N(Di+1)|−1.
When this is substituted into Equation 14 along with the fact that p(Di) = p(Di+1) we obtain Equa-
tion 13.

Given D, a simple procedure for sampling one D̃ uniformly from C (D) works as follows: we
start from D = D0, run the Markov chain resulting in slightly modified data Di on every step i.
After s steps we are at the set Ds which is our D̃. We repeat this process until enough samples from
C (D) have been obtained. It is very important to run the Markov chain long enough (have a large
enough s), so that the samples are as uncorrelated as possible with the starting point D, as well as
independent of each other. We will discuss a heuristic for assessing the correct number steps below.

1403

UKKONEN

However, guaranteeing that the samples are independent is nontrivial. Therefore we only require
the samples to be exchangeable. The following approach, originally proposed by Besag and Clifford
(1989), draws h sets of chains from C (D) so that the samples satisfy the exchangeability condition.
We first start the Markov chain from D and run it backwards for s steps. (In practice the way we
define our Markov chain, running it backwards is equivalent to running it forwards.) This gives us
the set D̃0. Next, we run the chain forwards h− 1 times for s steps, each time starting from D̃0.
This way the samples are not dependent on each other, but only on D̃0. And since we obtained D̃0
by running the Markov chain backwards from D, the samples depend on D̃0 in the same way as D
depends on D̃0. Note that a somewhat more efficient approach is proposed by Besag and Clifford
(1991).

4.3.2 THE SWAP

Above we defined the Markov chain as a random walk over the elements of C (D), where two states
D and D′ are connected if one can be obtained from the other by a local modification operator. We
call this local modification a swap for reasons that will become apparent shortly. Since the Markov
chain must remain in C (D), the swap may never result in a set of chains D̂ �∈ C (D). More precisely,
if Di+1 is obtained from Di by the swap and Di ∈ C (D), then Di+1 must belong to C (D) as well.
Next we define a swap that has this property.

Formally we define a swap as the tuple (π1,π2, i, j), where π1 and π2 are chains, i is an index of
π1, and j an index of π2. To execute the swap (π1,π2, i, j), we transpose the items at positions i and
i+1 in π1, and at positions j and j+1 in π2. For example, if π1=(1,2,3,4,5) and π2=(3,2,6,4,1),
the swap (π1,π2,2,1)will result in the chains π′1=(1,3,2,4,5) and π′2=(2,3,6,4,1). The positions
of items 2 and 3 are changed in both π1 and π2.

Clearly this swap does not affect the number of chains, lengths of any chain, nor the occurrence
frequencies of any itemset as items are not inserted or removed. To guarantee that also theCD(u,v)s
are preserved, we must pose one additional requirement for the swap. When transposing two adja-
cent items in the chain π1, say, u and v with u originally before v, CD(u,v) is decremented by one
as there is one instance less of u preceding v after the transposition, and CD(v,u) is incremented by
one as now there is one instance more where v precedes u. Obviously, if the swap would change
only π1, the resulting data set would no longer belong to C (D) asCD(u,v) andCD(v,u) are changed.
But the second transposition we carry out in π2 cancels out the effect the first transposition had on
CD(u,v) andCD(v,u), and the resulting set of chains remains in C (D).

Definition 7 Let D be a set of chains and let π1 and π2 belong to D. The tuple (π1,π2, i, j) is a valid
swap for D, if the item at the ith position of π1 is the same as the item at the j+1th position of π2,
and if the item at i+1th position of π1 is the same as the item at the jth position of π2.

The swap we show in the example above is thus a valid swap.
Given the data D, we may have several valid swaps to choose from. To see how the set of valid

swaps evolves in a single step of the algorithm, consider the following example. Let Di contain the
three chains below:

π1 : (1,2,3,4,5) π2 : (7,8,4,3,6) π3 : (3,2,6,4,1)

The valid swaps in this case are (π1,π3,2,1) and (π1,π2,3,3). If we apply the swap (π1,π2,3,3) we
obtain the chains

π′1 : (1,2,4,3,5) π′2 : (7,8,3,4,6) π3 : (3,2,6,4,1)

1404

CLUSTERING ALGORITHMS FOR CHAINS

Obviously (π1,π2,3,3) is still a valid swap, as we can always revert the previous swap. But notice
that (π1,π2,2,1) is no longer a valid swap as the items 2 and 3 are not adjacent in π′1. Instead
(π′2,π3,4,3) is introduced as a new valid swap since now 4 and 6 are adjacent in π

′
2.

Given this definition of the swap, is C (D) connected with respect to the valid swaps? Meaning,
can we reach every member of C (D) starting from D? This is a desirable property as we want to
sample uniformly from C (D), but so far this remains an open question.

4.3.3 CONVERGENCE

Above it was mentioned that we must let the Markov chain run long enough to make sure D̃s is not
correlated with the starting state D0. The chain should have mixed, meaning that when we stop it
the probability of landing at a particular state Ds actually corresponds to the probability Ds has in
the stationary distribution of the chain. Determining when a simulated Markov chain has converged
to its stationary distribution is not easy.

Hence we resort to a fairly simple heuristic. An indicator of the current sample Di being uncor-
related to D0 = D is the following measure:

δ(D,Di) = |D|−1
|D|
∑
j=1

dK(D(j),Di(j)), (15)

where D(j) is the jth chain in D. Note that δ(D,Di) is always defined, as the chain Di(j) is a
permutation of D(j). The distance defined in Equation 15 is thus the average Kendall distance
between the permutations in D and Di. To assess the convergence we observe how δ(D,Di) behaves
as i grows. When δ(D,Di) has converged to some value or is not increasing only at a very low
rate, we assume the current sample is not correlated with D0 more strongly than with most other
members of C (D).

Note that here we are assuming that the chains inD are labeled. To see what this means consider
the following example with the sets D and Di both containing four chains.

D(1) : 1,2,3 Di(1) : 2,1,3
D(2) : 4,5,6 Di(2) : 6,5,4
D(3) : 2,1,3 Di(3) : 1,2,3
D(4) : 6,5,4 Di(4) : 4,5,6

Here we have obtained Di from D with the multiple swap operations. The distance δ(D,Di) is 2
even though D and Di clearly are identical as sets. Hence, the measure of Equation 15 can not be
used for testing this identity. To do this we should compute the Kendall distance between D(j) and
Di(h(j)), where h is a bijective mapping between chains in D and Di that minimizes the sum of the
pairwise distances. However, we consider this simple approach sufficient for the purposes of this
paper.

4.3.4 IMPLEMENTATION ISSUES

Until now we have discussed the approach at a general level. There’s also a practical issue when im-
plementing the proposed algorithm. The number of valid swaps at a given state is of order O(m2n2)
in the worst case, which can get prohibitively large for storing each valid swap as a tuple explicitly.
Hence, we do not store the tuples, but only maintain two sets that represent the entire set of swaps

1405

UKKONEN

but use a factor of n less space. We let

AD = {{u,v} | ∃π1 ∈ Dst.uv ∈ π1∧∃π2 ∈ Dst.vu ∈ π2},
where uv ∈ π denotes that u and v are adjacent in π with u before v. This is the set of swappable
pairs of items. The size of AD is of order O(m2) in the worst case. In addition, we also have the sets

SD(u,v) = {π ∈ D | uv ∈ π}
for all (u,v) pairs. This is simply a list that contains the set of chains where we can transpose u and
v. Note that SD(u,v) and SD(v,u) are not the same set. In SD(u,v) we have chains where u appears
before v, while in SD(v,u) are chains where v appears before u. The size of each SD(u,v) is of order
O(n) in the worst case, and the storage requirement for AD and SD is hence only O(m2n), a factor
of n less than storing the tuples explicitly.

The sets AD and SD indeed fully represent all possible valid swaps. A valid swap is constructed
from AD and SD by first picking a swappable pair {u,v} from AD, and then picking two chains,
one from SD(u,v) and the other from SD(v,u). It is easy to see that a swap constructed this way
must be a valid swap. Also, verifying that there are no valid swaps not described by AD and SD is
straightforward.

There is still one concern. Recall that we want to use the Metropolis-Hastings approach to
sample from the uniform distribution over C (D). In order to do this we must be able to sample
uniformly from the neighbors of Di, and we have to know the precise size of Di’s neighborhood.
The size of the neighborhood N(Di) is precisely the number of valid swaps at Di, and is given by

|N(Di)|= ∑
{u,v}∈ADi

|SDi(u,v)| · |SDi(v,u)|,

which is easy to compute given ADi and SDi .
To sample a neighbor of Di uniformly at random using ADi and SDi , we first pick the swappable

pair {u,v} from ADi with the probability

Pr({u,v}) = |SDi(u,v)| · |SDi(v,u)|
|N(Di)|

, (16)

which is simply the fraction of valid swaps in N(Di) that affect items u and v. Then π1 and π2
are sampled uniformly from SD(u,v) and SD(v,u) with probabilities |SD(u,v)|−1 and |SD(v,u)|−1,
respectively. Thus we have

Pr({u,v}) · |SD(u,v)|−1 · |SD(v,u)|−1 =
1

|N(Di)|
as required.

The final algorithm that we call SWAP-PAIRS is given in Algorithm 2. It takes as arguments the
data D and the integer s that specifies the number of rounds the algorithm is run. On lines 2–6 we
initialize the sets AD and SD, while lines 8–20 contain the main loop. First, on line 9 the pair {u,v}
is sampled from AD with the probability given in Equation 16. The SAMPLE-UNIFORM function
simply samples an element from the set it is given as the argument. On lines 13 and 15 we compute
the neighborhood sizes before and after the swap, respectively. The actual swap is carried out by the
APPLY-SWAP function, that modifies π and τ in D and updates AD and SD accordingly. Lines 16–
18 implement the Metropolis-Hastings step. Note that it is easier to simply perform the swap and
backtrack if the jump should not have been accepted. A swap can be canceled simply by applying it
a second time. The function RAND() returns a uniformly distributed number from the interval [0,1].

1406

CLUSTERING ALGORITHMS FOR CHAINS

Algorithm 2 The SWAP-PAIRS algorithm for sampling uniformly from C (D).
1: SWAP-PAIRS(D, s)
2: AD ←{{u,v} | ∃π1 ∈ Dst.uv ∈ π1∧∃π2 ∈ Dst.vu ∈ π2}
3: for all {u,v} ∈ AD do
4: SD(u,v)←{π ∈ D | uv ∈ π}
5: SD(v,u)←{π ∈ D | vu ∈ π}
6: end for
7: i← 0
8: while i< n do
9: {u,v}← SAMPLE-PAIR(AD,SD)
10: π← SAMPLE-UNIFORM(SD(u,v))
11: τ← SAMPLE-UNIFORM(SD(v,u))
12: s← (π,τ,π(u),τ(v))
13: Nbefore ← ∑{u,v}∈AD |SD(u,v)| · |SD(v,u)|
14: APPLY-SWAP(s,D,AD,SD)
15: Nafter ← ∑{u,v}∈AD |SD(u,v)| · |SD(v,u)|
16: if RAND()≥ Nbefore

Nafter
then

17: APPLY-SWAP(s,D,AD,SD)
18: end if
19: i← i+1
20: end while
21: return D

5. Experiments

In this section we discuss experiments that demonstrate how our algorithms perform on various
artificial and real data sets. We consider a two-step algorithm that either starts with random initial
clusters (RND), or a clustering that is computed with standard k-means (initialized with random cen-
troids) in the graph (GR) or hypersphere (HS) representation. This initial clustering is subsequently
refined with the variant of Lloyd’s algorithm discussed in Section 2 to obtain the final clustering.
We also compare our method against existing approaches by Kamishima and Akaho (2006). These
algorithms, called TMSE and EBC, are similar clustering algorithms for sets of chains, but they are
based on slightly different distance functions and types of centroid. We used original implementa-
tions of TMSE and EBC that were obtained from the authors.

5.1 Data Sets

The artificial data sets are generated by the procedure described in Section 3.1.1. In addition to
artificial data we use four real data sets that are all based on publicly available sources. The data
consist of preference rankings that are either explicit, derived, or observed. We say a preference
ranking is explicit if the preferences are directly given as a ranked list of alternatives. A preference
ranking is derived if the ranking is based on item-specific scores, such as movie ratings. Finally,
a preference ranking is observed if it originates from a source where preferences over alternatives
only manifest themselves indirectly in different types of behavior, such as web server access logs.

1407

UKKONEN

SUSHI MLENS DUBLIN MSNBC
n 5000 2191 5000 5000
m 100 207 12 17
min. l 10 6 4 6
avg. l 10 13.3 4.8 6.5
max. l 10 15 6 8

Table 1: Key statistics for different real data sets. The number of chains, the number of items, and
the length of a chain are denoted by n, m, l, respectively.

Key statistics of the data sets are summarized in Table 1. More details are given below for each data
set.

5.1.1 SUSHI

These data are explicit preference rankings of subsets of 100 items. Each chain is a response from
a survey2 where participants were asked to rank 10 flavors of sushi in order of preference. Each set
of 10 flavors was chosen randomly from a total set of 100 flavors. The data consists of 5000 such
responses.

5.1.2 MLENS

These data are derived preference rankings of subsets of 207 items. The original data consists of
movie ratings (1–5 stars) collected by the GroupLens3 research group at University of Minnesota.
We discarded movies that had been ranked by fewer than 1000 users and were left with 207 movies.
Next we pruned users who have not used the entire scale of five stars in their ratings and were left
with 2191 users. We generate one chain per user by first sampling a subset of movies the user has
rated, so that at most three movies having the same rating are in the sample. Finally we order the
sample according to the ratings and break ties in ratings arbitrarily.

5.1.3 DUBLIN

These data are explicit preference rankings of subsets of 12 items. Each chain is a vote placed in the
2002 general elections in Ireland.4 and ranks a subset of 12 candidates from the electoral district of
northern Dublin. We only consider votes that rank at least 4 and at most 6 candidates and are left
with 17737 chains. Of this we took a random sample of 5000 chains for the analysis.

5.1.4 MSNBC

These data are observed preference rankings over 17 items. Each chain shows the order in which
a user accessed a subset of 17 different sections of a web site (msnbc.com).5 Each chain contains
only the first occurrence of a category, subsequent occurrences were removed. Also, we selected a

2. The SUSHI data be found at http://www.kamishima.net/sushi (29 April 2011).
3. The MLENS data can be found at http://www.grouplens.org/node/12 (29 April 2011).
4. At the time of publication this data can be found by accessing old versions of http://www.

dublincountyreturningofficer.com/ in the Internet Archive at http://waybackmachine.org.
5. MSNBC data can be found at http://kdd.ics.uci.edu/databases/msnbc/ (29 April 2011).

1408

CLUSTERING ALGORITHMS FOR CHAINS

subset of the users who had visited at least 6 and at most 8 different categories and were left with
14598 chains. Again we used a random subset of 5000 chains for the analysis.

5.2 Recovering a Planted Clustering

In this section we discuss experiments on artificial data, with the emphasis on studying the per-
formance of the algorithms under different conditions. These conditions can be characterized by
parameters of the input data, such as length of the chains or total number of items. The task is to
recover a “true” clustering that was planted in the input data.

5.2.1 EXPERIMENTAL SETUP

The notion of correctness is difficult to define when it comes to clustering models. With real data
we do not in general know the correct structure, or if there even is any structure to be found. To have
a meaningful definition of a correct clustering, we generate synthetic data that contains a planted
clustering. We compare this with the clusterings found by the algorithms.

To measure the similarity between two clusterings we use a variant of the Rand Index (Rand,
1971) called the Adjusted Rand Index (Lawrence and Phipps, 1985). The basic Rand Index essen-
tially counts the number of pairs of points where two clusterings agree (either both assign the points
in the same cluster, or both assign the points in different clusters), normalized by the total number
of pairs. The maximum value for two completely agreeing clusterings is thus 1. The downside with
this approach is that as the number of clusters increases, even random partitions will have a score
close to 1, which makes it difficult to compare algorithms. The Adjusted Rand Index corrects for
this by normalizing the scores with respect to the expected value of the score under the assumption
that the random partition follows a generalized hypergeometric distribution (Lawrence and Phipps,
1985).

Artificial sets of chains are created with the procedure described in Section 3.1.1. Instead of
arbitrary partial orders as the components, we use bucket orders (or ordered partitions) ofM. More
specifically, a bucket order onM is a totally ordered set of disjoint subsets (buckets) ofM that cover
all items in M. If the items u and v both belong to the bucket Mi ⊆ M, they are unordered. If
u ∈Mi ⊆M and v ∈Mj ⊆M, and Mi precedes Mj, then also u precedes v. We used bucket orders
with 10 buckets in the experiments.

Input size n is fixed to 2000. We varied the following parameters: length of a chain l, total
number of items m, and number of clusters in the true clustering κ. We ran the algorithms on
various combinations of these with different values of k, that is, we also wanted to study how the
algorithms behave when the correct number of clusters is not known in advance.

5.2.2 COMPARING INITIALIZATION STRATEGIES

Results for our variant of Lloyd’s algorithm with the three different initialization strategies (HS, GR,
and RND) are shown in Figure 1 for a number of combinations of k and m. Here we only plot cases
where k = κ, meaning that the algorithm was given the correct number of clusters in advance. The
grey lines are 95 percent confidence intervals. As on one hand suggested by intuition, and on the
other hand by Theorem 2, finding a planted clustering becomes easier as the length of the chains
increase. With l = 9 the original clustering is found almost always independent of the values of m
and k. For smaller values of l the effect of m and k is stronger. The problem becomes more difficult
as m and k increase. When comparing the initialization strategies, HS and GR outperform RND.

1409

UKKONEN

3 4 5 6 7 8 9
0

0.5

1
m = 20

K
 =

 2

3 4 5 6 7 8 9
0

0.5

1
m = 50

3 4 5 6 7 8 9
0

0.5

1
m = 100

3 4 5 6 7 8 9

0.5

1

K
 =

 4

3 4 5 6 7 8 9

0.5

1

3 4 5 6 7 8 9
0

0.5

1

3 4 5 6 7 8 9

0.5

1

K
 =

 6

3 4 5 6 7 8 9

0.5

1

3 4 5 6 7 8 9
0

0.5

1

3 4 5 6 7 8 9

0.5

1

K
 =

 8

3 4 5 6 7 8 9

0.5

1

3 4 5 6 7 8 9
0

0.5

1

3 4 5 6 7 8 9

0.5

1

K
 =

 1
0

3 4 5 6 7 8 9

0.5

1

3 4 5 6 7 8 9
0

0.5

1

Figure 1: The Adjusted Rand Index (median over 25 trials) between a recovered clustering and the
true clustering as a function of the length of a chain in random data sets consisting of 2000
chains each. Initialization methods are ◦: GR, +: HS, and �: RND. Gray lines indicate 95
percent confidence intervals.

5.2.3 COMPARING AGAINST EXISTING METHODS

We compared how our approach using the HS initialization compares with existing algorithms. The
HS-based variant was chosen because of fairness: The process we use to generate artificial data
exactly matches the assumption underlying the GR approach, and hence may give this algorithm an
unfair advantage. Also, the HS initialization is faster to compute.

Results are shown in Figure 2 for m= 10 and m= 100, and k ∈ {2,6,10}. The total number of
items m has a strong effect on the performance. As above, the problem or recovering the clustering
becomes harder as m increases and l decreases. Our algorithm suffers from very poor performance

1410

CLUSTERING ALGORITHMS FOR CHAINS

3 4 5 6
0

0.5

1

m
 =

 1
0

K = 2

3 4 5 6

0.5

1
K = 6

3 4 5 6

0.5

1
K = 10

3 4 5 6
0

0.5

1

m
 =

 1
00

3 4 5 6

0.5

1

3 4 5 6

0.5

1

Figure 2: The Adjusted Rand Index (median over 25 trials) between a recovered clustering and
the true clustering as a function of the length of a chain. Labels are: +: our algorithm
initialized using HS, ◦: EBC, �: TMSE.

with m = 100, while the EBC and TMSE algorithms can recover the planted clustering rather well
also in this case. In contrast, for m = 10 and small l, our approach yields better results especially
for k > 2. Recall that our algorithm relies on the pairwise probabilities of one item to precede an
other. When m= 100 we have 4950 distinct pairs of items, when m= 10 this number is merely 45.
With a large m it is therefore likely that our estimates of the pairwise probabilities are noisy simply
because there are less observations of individual pairs since the input size is fixed. By increasing
the size of the input these estimates should become more accurate.

We tested this hypothesis by running an experiment with random data sets ten times larger, that
is, with an input of 20000 chains on m = 100 items. We concentrated on two cases: k = 2 with
l = 4, and k = 6 with l = 6. The first corresponds to a situation where there is a small gap between
the performance of TMSE/EBC and our method, and all algorithms show mediocre performance (see
Fig. 2, 2nd row, left column). The second combination of k and l covers a case where this gap is
considerably bigger, and TMSE/EBC both do rather well in recovering the planted clustering (see
Fig. 2, 2nd row, middle column). Results are shown in Table 2. Increasing the size of the input
leads to a considerable increase in performance of our algorithm. This suggests that for large data
sets the approach based on pairwise probabilities may yield results superior to those obtained with
existing algorithms.

5.2.4 UNKNOWN SIZE OF TRUE CLUSTERING

So far we have only considered cases where k = κ, that is, the algorithms were given the correct
number of clusters. When analyzing real data κ is obviously unknown. We studied the algorithms’
sensitivity to the value of k. Figure 3 shows the Adjusted Rand Index for our algorithm with HS
initialization, and the EBC and TMSE algorithms when m = 20, and κ = 6. All three algorithms

1411

UKKONEN

2 3 4 5 6 7 8 9 10

0.5

1
l = 4

2 3 4 5 6 7 8 9 10

0.5

1
l = 5

2 3 4 5 6 7 8 9 10

0.5

1
l = 6

Figure 3: Adjusted Rand Index (median over 25 trials) as a function of k for different algorithms.
We have κ= 6, and m= 20 in each case, the value of l is shown above each curve. Labels
are: +: our algorithm initialized using HS, ◦: EBC, �: TMSE.

perform similarly. For short chains (l = 4) the differences are somewhat stronger. While our HS-
based method seems to be marginally better in recovering the original clustering, there is a lot of
overlap in the confidence intervals, and none of the algorithms is able to find the true clustering
exactly. We also acknowledge that the stronger performance of our method with l = 5 and l = 6
may be attributed to an implementation detail: Our algorithm is not guaranteed to return k clusters,
it may return a number less than k if one of the clusters becomes empty during the computation. It
is not clear how the implementations of TMSE and EBC deal with empty clusters.

5.3 Experiments with Real Data

This experiment was carried out by computing a k-way clustering of each data set described in Sec-
tion 5.1 with k ranging from 2 to 10. Performance is measured by the clustering error as defined in
Equation 1, using the centroid and distance function that are described in Section 2.3. Each com-
bination of algorithm, data, and k was repeated 25 times with a randomly chosen initial clustering.
(Note that even if we initialize our method by computing a clustering using either of the vector
space representations, the algorithms that compute these must be initialized somehow.)

Figure 4 shows the reconstruction error as a function of k. Note that values on the y-axis have
been normalized by the baseline error of having all chains in the same cluster. The error bars indicate
95 percent confidence intervals. The EBC algorithm is omitted from the figures, as this method was
consistently outperformed by the TMSE algorithm. This result is also in line with previous empirical

EBC TMSE HS init.
k = 2, l = 4 0.817 (0.816, 0.822) 0.818 (0.816, 0.822) 0.891 (0.891, 0.892)
k = 6, l = 6 0.935 (0.932, 0.938) 0.937 (0.934, 0.939) 0.974 (0.973, 0.976)

Table 2: Adjusted Rand Index (median over 25 trials) for different methods computed from artificial
data consisting of 20000 chains with m= 100 and the shown values for k and l. Numbers
in parenthesis indicate 95 percent confidence intervals.

1412

CLUSTERING ALGORITHMS FOR CHAINS

Figure 4: Reconstruction error as expressed in Equation 1 with the definitions of distance and cen-
troid from Section 2.3 as a function of k. The y-axis has been normalized to show the
error as a fraction of the baseline error of k= 1. Legend: �: only standard k-means in GR
representation, ◦: only standard k-means in HS representation, +: our variant of Lloyd’s
algorithm with RND init., ∗: the TMSE algorithm.

evidence reported by Kamishima and Akaho (2006). We also left out results obtained with our
algorithm using either of the vector space representations to compute an initial clustering. (The
curves for HS and GR therefore show performance that is obtained simply by mapping chains to
the respective vector spaces and running standard k-means.) Contrary to random data (see results
of Section 5.2), these initialization strategies did not give significantly better results than simple
random initialization.

Our k-means procedure outperforms the TMSE algorithm with the MSNBC and DUBLIN data
sets. With SUSHI and MLENS the situation is reversed. This statement holds for all values of k, and
seems robust as the confidence intervals do not overlap. Also, when measuring clustering quality
in this way, the results obtained by using only the vector space representations are considerably
inferior to the other methods. Of course this is not an entirely fair comparison as the objective
functions differ. In Figure 5 we plot the reconstruction error computed with the distance function
and centroid representation used by TMSE. For details, please see Kamishima and Akaho (2006,
Section 3.1). Using this measure, the SUSHI and MLENS data sets demonstrate an even stronger
difference between the methods. With MSNBC and DUBLIN our algorithm continues to perform
somewhat better, albeit this time the confidence intervals overlap. Interestingly, if an algorithm is
better, it is better independent of the cost function used to evaluate the result. For instance, with
MSNBC and DUBLIN our algorithm marginally outperforms TMSE even in terms of TMSE’s own

1413

UKKONEN

Figure 5: Reconstruction error of a clustering as expressed in Equation 1 with the definitions of dis-
tance and centroid from Kamishima and Akaho (2006) as a fraction of the baseline error
of k = 1. Legend: +: our algorithm with random initialization, ∗: the TMSE algorithm.

cost function, and vice versa with SUSHI and MLENS. These results are in line with the ones we
obtain with artificial data. As can be seen in Table 1, the data sets MSNBC and DUBLIN have a
considerably smaller m. The experiments in Section 5.2.3 suggest that by collecting more data we
could improve our result for the SUSHI and MLENS data sets.

5.4 Testing Clustering Validity

We use the randomization method of Section 4 to test the interestingness of the found clusterings. A
clustering is assumed to be interesting if its test statistic substantially differs from the ones we obtain
from randomized data. The test statistic we use is the reconstruction error given in Equation 1. The
methods use their respective definitions of distance and centroid to compute the error.

To carry out the test, we must first estimate how many swaps are needed to obtain a single
sample that is uncorrelated with the original data. To this end we run the SWAP-PAIRS algorithm for
10× 106 swaps on each data set and measure δ(D,Di) every 0.1× 106 swaps. The assumption is
that the data Di are uncorrelated with the initial state D when δ(D,Di) no longer increases. Figure 6
shows how the distance δ(D,Di) develops with the number of swaps i for the data sets. From this
we can read the number of swaps that are needed to obtain approximately uncorrelated samples. For
SUSHI and MLENS the Markov chain seems to converge after approximately 5× 106 swaps, for
DUBLIN the distance δ(D,Di) stabilizes already after about 0.5×106 swaps, while with MSNBC
this happens after roughly 3×106 swaps. The randomized data used in the remaining analysis are

1414

CLUSTERING ALGORITHMS FOR CHAINS

Figure 6: The distance δ(D,Di) as a function of the number of swaps i.

computed using these swap counts, respectively. Here we also want to point out that randomization
is computationally intensive. The table below shows the times to perform 10× 106 swaps for the
different data sets.

SUSHI MLENS DUBLIN MSNBC
t (seconds) 297 670 73 81

We observe that n, the number of chains in the input, does not affect the running time t, but the
number of items m plays a significant part. (See also Table 1.)

For the actual analysis we sample 99 random instances from the equivalence class of each data
set, and compare the test statistic with the one obtained from real data. Figure 7 shows the histogram
of the reconstruction error in randomized data together with the minimum, maximum, and median
error over 25 trials with real data. If this interval is clearly to the left of the histogram, it is unlikely
to observe an error of the same magnitude in randomized data. If the interval overlaps with the
histogram, the results should be considered as not significant according to this test.

In general the results suggest that the clusterings we obtain from the actual data sets have a
smaller reconstruction error than a clustering computed with the same algorithm from a randomized
data. There are some interesting exceptions, however. For MSNBC, SUSHI, and DUBLIN the
clusterings obtained by our method from real data seem considerably better than those we obtain in
random data, independent of K. In case of MLENS the results are clearly not significant for any K.
For the TMSE algorithm the test suggests a significant outcome in case of SUSHI andMLENS, while
for MSNBC and DUBLIN the clustering from real data is not considerably better than a clustering
from randomized data.

1415

UKKONEN

0.87

R
N
D

k=2

0.98

T
M
S
E

0.65

k=6

0.79

0.56

k=10

0.65

0.90

R
N
D

k=2

0.84

T
M
S
E

0.75

k=6

0.62

0.68

k=10

0.55

MSNBC SUSHI

0.78

R
N
D

k=2

0.80

T
M
S
E

0.52

k=6

0.55

0.42

k=10

0.40

0.85
R
N
D

k=2

0.78

T
M
S
E

0.53

k=6

0.59

0.38

k=10

0.53

DUBLIN MLENS

Figure 7: Results of randomization testing with our algorithm using RND initialization and the
TMSE algorithm for different values of K. The numbers are normalized by the clus-
tering error for K = 1. The histograms show the distribution of the clustering error on the
randomized data. The light gray (green online), dashed, and dark gray (red online) lines
indicate the minimum, median, and maximum of the clustering error on the original data.
Both algorithms use their own cost functions.

6. Conclusion

We have discussed the problem of clustering chains. First, in Section 2 we gave simple definitions
of a centroid and a distance function that can be used together with Lloyd’s algorithm (k-means) for
computing a clustering directly using chains. In Section 3 we gave two methods for mapping chains
to a high-dimensional vector space. These representations have the advantage that any clustering
algorithm can be used. Moreover, a clustering obtained in this way can still be further refined using
the technique of Section 2. Mapping chains to vector spaces is an interesting subject in its own right
and can have many other uses in addition to clustering. For example, they can be used to visualize
of sets of chains, as was done by Ukkonen (2007), as well as by Kidwell et al. (2008). Also, we
believe that the connections to the planted partition model (Condon and Karp, 2001; Shamir and
Tsur, 2002) are very interesting at least from a theoretical point of view.

1416

CLUSTERING ALGORITHMS FOR CHAINS

We also proposed a method for testing if a clustering found in a set of chains is any different from
a clustering of random data. If the value of a suitable test statistic, such as the reconstruction error,
does not substantially differ between the original input and the randomized data sets the clustering
found in real data is probably not very meaningful. To this end we devised an MCMC algorithm for
sampling sets of chains that all belong to the same equivalence class as a given set of chains.

In the experiments we compared our methods with the TMSE and EBC algorithms by Kamishima
and Akaho (2009). We observe that for some data sets our algorithm yields better results, while for
some other data sets the TMSE algorithm is a preferred choice. Interestingly, these differences can
also be seen in the randomization tests. When an algorithm performs poorly, the results tend to be
not significant according to the randomization test. Moreover, it seems that in cases where the TMSE
algorithm is superior, our algorithm does not have enough data to perform well. Experiments on
artificial data indicate that as the size of the input is increased (and other variables left unchanged),
the performance of our algorithm increases considerably, and even outperforms the TMSE algo-
rithm. Therefore, we suspect that by increasing data size we could improve the performance of our
algorithm also with real data.

The main difference between the algorithms is the notion of distance. TMSE essentially uses
a modified version of Spearman’s rank correlation coefficient that is a “positional” distance for
permutations, as it only considers the positions in which different items appear. We propose a
“pairwise” distance that considers how pairs of items are related to each other. The experiments
suggest that the pairwise approach is more powerful as long as there is enough data, but for smaller
data sets positional distances seem more robust. Finding the tipping point in terms of input size and
other data parameters where the pairwise approach becomes favorable over positional distances is
an interesting open question.

Acknowledgments

I would like to thank the anonymous reviewers for their valuable feedback that helped to improve
this manuscript considerably. This work was partly funded by the Academy of Finland (grant
131276).

Appendix A. Proofs of Theorems

Proofs of Theorem 2 and Theorem 5 are given below.

A.1 Proof of Theorem 2

The proof is a simple matter of upper bounding Equation 6. First we note that using Vandermonde’s
convolution (Graham et al., 1994, Equation 5.22) the sum in Equation 6 can be rewritten as(

m
l

)
−
((l
1

)(
m− l
l−1

)
+

(
m− l
l

)
︸ ︷︷ ︸

A

)
.

Essentially Vandermonde’s convolution states that ∑l
i=0

(l
i

)(m−l
l−i
)
=
(m
l

)
, and we simply subtract the

first two terms indicated by A, because above the sum starts from i= 2. Using simple manipulations

1417

UKKONEN

we obtain

A=

(
m− l
l

)(l2

m−2l+1 +1
)
,

which gives the following:

p=

(
m
l

)−1((m
l

)
−
(
m− l
l

)(l2

m−2l+1 +1
))

.

With l < m/2 the part l2
m−2l+1 +1 is lower bounded by 1, and we have

p <

(
m
l

)−1((m
l

)
−
(
m− l
l

))
= 1−

(
m
l

)−1(m− l
l

)
= 1− (m− l)!

l!(m−2l)! ·
l!(m− l)!

m!

= 1− (m− l)(m− l−1) · · ·(m−2l+1)
m(m−1) · · ·(m− l+1)

< 1− (m− l)(m− l−1) · · ·(m−2l+1)
ml

< 1− (m−2l+1)l
ml <

ml− (m−2l)l
ml .

We can factor ml− (m−2l)l as follows:

ml− (m−2l)l = (m− (m−2l))
(
ml−1(m−2l)0+ml−2(m−2l)1+ . . .

· · ·+m1(m−2l)l−2+m0(m−2l)l−1
)

= 2l
l−1
∑
i=0

ml−1−i(m−2l)i.

Using this we write

ml− (m−2l)l
ml = 2l

l−1
∑
i=0

(
1
m
)lml−1−i(m−2l)i.

Letting a= l−1 and taking one 1
m out of the sum we get

1
m
2(a+1)

a

∑
i=0

(
1
m
)ama−i(m−2(a+1))i =

1
m
2(a+1)

a

∑
i=0

(
1
m
)i(m−2(a+1))i

=
1
m
2(a+1)

a

∑
i=0

(1− 2(a+1)
m

)i.

We assume l = a+1 is considerably smaller than m, and hence (1− 2(a+1)
m)i is at most 1. There are

a+1 terms in the sum, so the above is upper bounded by 1
m2(a+1)(a+1) = 2

l2
m , which concludes

the proof of the theorem.

1418

CLUSTERING ALGORITHMS FOR CHAINS

A.2 Proof of Theorem 5

Let u ∈ π: We start by showing that the claim of Equation 12 holds for all u that belong to π. That
is, we will show that

∑
τ∈E(π)

fτ(u) = Q
(
−|π|+1

2
+π(u)

)
(17)

for all u ∈ π. First, note that ∑τ∈E(π) fτ(u) can be rewritten as follows

∑
τ∈E(π)

−m+1
2

+ τ(u) =
m−|π|+π(u)
∑

i=π(u)

#{τ(u) = i}
(
−m+1

2
+ i
)
, (18)

where #{τ(u) = i} denotes the number of times u appears at position i in the linear extensions of π.
The sum is taken over the range π(u), . . . ,m−|π|+π(u), as τ(u) can not be less than π(u), because
the items that appear before u in π must appear before it in τ as well, likewise for the other end of
the range.

To see what #{τ(u) = i} is, consider how a linear extension τ of π is structured. When u appears
at position i in τ, there are exactly π(u)− 1 items belonging to π that appear in the i− 1 indices to
the left of u, and |π|−π(u) items also belonging to π that appear in the m− i indices to the right of
u. The ones on the left may choose their indices in

(i−1
π(u)−1

)
different ways, while the ones on the

right may choose their indices in
(m−i
|π|−π(u)

)
different ways. The remaining items that do not belong

to π are assigned in an arbitrary fashion to the remaining m−|π| indices. We have thus,

#{τ(u) = i}=
(

i−1
π(u)−1

)(
m− i

|π|−π(u)

)
(m−|π|)!.

When this is substituted into the right side of (18), and after rearranging the terms slightly, we get

∑
τ∈E(π)

fτ(u) = (m−|π|)!
m−|π|+π(u)
∑

i=π(u)

(
i−1

π(u)−1

)(
m− i

|π|−π(u)

)(
−m+1

2
+ i
)
.

This can be written as

∑
τ∈E(π)

fτ(u) = (m−|π|)!(S1+S2), (19)

where

S1 = −m+1
2

m−|π|+π(u)
∑

i=π(u)

(
i−1

π(u)−1

)(
m− i

|π|−π(u)

)
, and

S2 =
m−|π|+π(u)
∑

i=π(u)

i

(
i−1

π(u)−1

)(
m− i

|π|−π(u)

)
.

Let us first look at S2. The part i
(i−1
π(u)−1

)
can be rewritten as follows:

i

(
i−1

π(u)−1

)
=

i (i−1)!
(π(u)−1)!(i−π(u))!

· π(u)
π(u)

= π(u)
i!

π(u)!(i−π(u))!
= π(u)

(
i

π(u)

)
.

1419

UKKONEN

This gives

S2 = π(u)
m−|π|+π(u)
∑

i=π(u)

(
i

π(u)

)(
m− i

|π|−π(u)

)
= π(u)

(
m+1
|π|+1

)
,

where the second equality is based on Equation 5.26 in Graham et al. (1994). Next we must show
that
(m+1
|π|+1
)
will appear in S1 as well. We can rewrite the sum as follows:

m−|π|+π(u)
∑

i=π(u)

(
i−1

π(u)−1

)(
m− i

|π|−π(u)

)
=

m−|π|+π(u)−1
∑

i=π(u)−1

(
i
q

)(
r− i
p−q

)
,

where q = π(u)− 1, r = m− 1 and p = |π| − 1. Again we apply Equation 5.26 of Graham et al.
(1994) to get

S1 =−m+1
2

(
r+1
p+1

)
=−m+1

2

(
m
|π|

)
,

which we multiply by |π|+1
|π|+1 and have

S1 =−|π|+1
2

· m+1
|π|+1

(
m
|π|

)
=−|π|+1

2

(
m+1
|π|+1

)
.

When S1 and S2 are substituted into (19) we have

∑
τ∈E(π)

fτ(u) = (m−|π|)!
(
−|π|+1

2

(
m+1
|π|+1

)
+π(u)

(
m+1
|π|+1

))
,

which is precisely Equation 17 when we let Q= (m−|π|)!
(m+1
|π|+1
)
.

Let u �∈ π: To complete the proof we must still show that Equation 12 also holds for items u that
do not appear in the chain π. For such u we have fπ(u) = 0 by definition. Since we showed above
that Q> 0, we have to show that ∑τ∈E(π) fτ(u) = 0 when u �∈ π to prove the claim.

We’ll partition E(π) to disjoint groups defined by index sets I. Let S(I) denote the subset of
E(π) where the items that belong to π appear at indices I = {i1, . . . , i|π|}. Furthermore, let IR =
{m− i1+ 1, . . . ,m− i|π|+ 1}. See Figure 8 for an illustration of the structure of the permutations
that belong to S(I) and S(IR).

Now we can write for every u �∈ π:

∑
τ∈E(π)

fτ(u) =
1
2∑I ∑

τ∈{S(I)∪S(IR)}
fτ(u). (20)

That is, we first sum over all possible index sets I, and then sum over all τ that belong to the union of
S(I) and S(IR). Each I is counted twice (once as I and once as IR), so we multiply the right hand side
by 1

2 . To make sure that Equation 20 equals zero, it is enough to show that ∑τ∈{S(I)∪S(IR)} fτ(u) = 0
for each I.

Note that we have fτ(u)+ fτR(u) = 0 because τ
R(u) =m−τ(u)+1. That is, the values at indices

j and m− j+1 cancel each other out. This property will give us the desired result if we can show
that for each permutation τ∈ {S(I)∪S(IR)} where an item u �∈ π appears at position j, there exists a
corresponding permutation τ′, also in {S(I)∪S(IR)}, where u appears at position m− j+1. Denote
by #(S,u, j) the size of the set {τ ∈ S | τ(u) = j}.

1420

CLUSTERING ALGORITHMS FOR CHAINS

Figure 8: Permutations in S(I) have the positions I occupied by items that belong to the chain π,
while permutations in S(IR) have the positions IR occupied by items of π. See proof of
Theorem 5.

An index is free if it does not belong to the set {I ∪ IR}. Let j be a free index. By definition of
the sets I and IR, m− j+ 1 is also a free index. We have #(S(I),u, j) = #(S(I),u,m− j+ 1). This
holds for S(IR) as well. As a consequence, when we sum over all permutations in {S(I)∪ S(IR)},
the values corresponding to index j and m− j+1 cancel each other out because u appears equally
many times at positions j and m− j+1. The total contribution to the sum ∑τ∈{S(I)∪S(IR)} fτ(u) of u
appearing at the free indices is therefore zero.

Let j belong to I, meaning it is not free. By definition of the sets I and IR, the index m− j+1
now belongs to IR, and is also not free. However, because of symmetry we have #(S(IR),u, j) =
#(S(I),u,m− j+1). That is, the number of times the item u appears at position j in a permutation
belonging to S(IR) is the same as the number of times it appears at positionm− j+1 in a permutation
belonging to S(I). When we sum over the permutations in {S(I)∪S(IR)}, the values of u appearing
at position j in S(IR) are cancelled out by the values of u appearing at position m− j+ 1 in S(I).
The total contribution to the sum ∑τ∈{S(I)∪S(IR)} fτ(u) of u appearing at an index in I is therefore
zero as well. This concludes the proof of Theorem 5.

References

N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: ranking and clus-
tering. In Proceedings of the 37th ACM Symposium on Theory of Computing, pages 684–693,
2005.

E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2004.

D Arthur and S Vassilvitskii. k-means++: the advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027–1035, 2007.

G. H. Ball and D. J. Hall. A clustering technique for summarizing multivariate data. Behavioral
Science, 12:153–155, 1967.

A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local structure in gene expression
data: the order-preserving submatrix problem. In Proceedings of the Sixth Annual International
Conference on Computational Biology, pages 49–57, 2002.

P Berkhin. Grouping Multidimensional Data, chapter A Survey of Clustering Data Mining Tech-
niques, pages 25–71. Springer, 2006.

1421

UKKONEN

J. Besag and P. Clifford. Generalized Monte Carlo significance tests. Biometrika, 76(4):633–642,
1989.

J. Besag and P. Clifford. Sequential Monte Carlo p-values. Biometrika, 78(2):301–304, 1991.

L. M. Busse, P. Orbanz, and J. M. Buhmann. Cluster analysis of heterogeneous rank data. In
Proceedings of the 24th international conference on Machine learning, pages 113–120, 2007.

S Clémençon and J Jakubowicz. Kantorovich distances between rankings with applications to rank
aggregation. In Machine Learning and Knowledge Discovery in Databases, European Confer-
ence, ECML PKDD 2010, 2010.

A. Condon and R. M. Karp. Algorithms for graph partitioning on the planted partition model.
Random Structures and Algorithms, 18(2):116–140, 2001.

D. Coppersmith, L. Fleischer, and A. Rudra. Ordering by weighted number of wins gives a good
ranking for weighted tournaments. In Proceedings of the Seventeenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 776–782, 2006.

D. Critchlow. Metric Methods for Analyzing Partially Ranked Data, volume 34 of Lecture Notes in
Statistics. Springer-Verlag, 1985.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons, 1973.

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web. In
Proceedings of the 10th International World Wide Web Conference, 2001.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis. Texts in Statistical
Science. Chapman & Hall, CRC, 2004.

A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas. Assessing data mining results via swap
randomization. ACM Transactions on Knowledge Discovery from Data, 1(3), 2007.

P I Good. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses,
volume 2 of Springer series in statistics. Springer, 2000.

R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, 2nd edition,
1994.

D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. The MIT Press, 2001.

T. Kamishima and S. Akaho. Efficient clustering for orders. In Workshops Proceedings of the 6th
IEEE International Conference on Data Mining, pages 274–278, 2006.

T. Kamishima and S. Akaho. Mining Complex Data, volume 165 of Studies in Computational
Intelligence, chapter Efficient Clustering for Orders, pages 261–279. Springer, 2009.

T. Kamishima and J. Fujiki. Clustering orders. In Proceedings of the 6th International Conference
on Discovery Science, pages 194–207, 2003.

P Kidwell, G Lebanon, and W S Cleveland. Visualizing incomplete and partially ranked data. IEEE
Trans. Vis. Comput. Graph., 14(6):1356–1363, 2008.

1422

CLUSTERING ALGORITHMS FOR CHAINS

H Lawrence and A Phipps. Comparing partitions. Journal of Classification, 2:193–218, 1985.

S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):
129–137, 1982.

H. Moulin. Axioms of Cooperative Decision Making. Cambride Universiy Press, 1991.

T. B. Murphy and D. Martin. Mixtures of distance-based models for ranking data. Computational
Statistics & Data Analysis, 41:645–655, 2003.

W M Rand. Objective criteria for the evaluation of clustering methods. Journal of the American
Statistical Association, 66(336):846–850, 1971.

R. Shamir and D. Tsur. Improved algorithms for the random cluster graph model. In Proceedings
of Scandanavian Workshop on Algorithms Theory, pages 230–239, 2002.

N. Tideman. The single transferable vote. Journal of Economic Perspectives, 9(1):27–38, 1995.

A. Ukkonen. Visualizing sets of partial rankings. In Advances in Intelligent Data Analysis VII,
pages 240–251, 2007.

A. Ukkonen. Algorithms for Finding Orders and Analyzing Sets of Chains. PhD thesis, Helsinki
University of Technology, 2008.

A. Ukkonen and H. Mannila. Finding outlying items in sets of partial rankings. In Knowledge
Discovery in Databases: PKDD 2007, pages 265–276, 2007.

R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE Transactions on Neural Networks,
16(3):645–678, 2005.

1423

Journal of Machine Learning Research 12 (2011) 1425-1428 Submitted 3/11; Published 4/11

Introduction to the Special Topic on Grammar Induction,
Representation of Language and Language Learning

Dorota Głowacka D.GLOWACKA@CS.UCL.AC.UK
John Shawe-Taylor JST@CS.UCL.AC.UK
Department of Computer Science
University College London
London WC1E 6BT
United Kingdom

Alexander Clark ALEXC@CS.RHUL.AC.UK
Department of Computer Science,
Royal Holloway, University of London
Egham, Surrey, TW20 0EX
United Kingdom

Colin de la Higuera CDLH@UNIV-NANTES.FR
Laboratoire LINA
University of Nantes
44322 Nantes
France

Mark Johnson MARK.JOHNSON@MQ.EDU.AU
Department of Computing
Macquarie University
Sydney NSW 2109
Australia

Editor: Lawrence Saul

Abstract

Grammar induction refers to the process of learning grammars and languages from data; this finds
a variety of applications in syntactic pattern recognition, the modeling of natural language acqui-
sition, data mining and machine translation. This special topic contains several papers presenting
some of recent developments in the area of grammar induction and language learning, as applied to
various problems in Natural Language Processing, including supervised and unsupervised parsing
and statistical machine translation.

Keywords: machine translation, Bayesian inference, grammar induction, natural language parsing

1. Introduction

Grammar induction was the subject of an intense study in the early days of Computational Learning
Theory, with the theory of query learning (Angluin, 1988) largely developing out of this research.
More recently the study of new methods of representing language and grammars through complex
kernels and probabilistic modelling together with algorithms such as structured output learning has
enabled machine learning methods to be applied successfully to a range of language related tasks

c©2011 Dorota Głowacka, John Shawe-Taylor, Alex Clark, Colin de la Higuera and Mark Johnson.

GŁOWACKA, SHAWE-TAYLOR, CLARK, DE LA HIGUERA AND JOHNSON

from simple topic classification through parts of speech tagging to statistical machine translation.
These methods typically rely on more fluid structures than those derived from formal grammars and
yet are able to compete favourably with classical grammatical approaches that require significant
input from domain experts, often in the form of annotated data and hand-coded rules.

2. JMLR Special Topic

This special topic arose from a NIPS 2009 workshop on ”Grammar Induction, Representation of
Language and Language Learning” held at the Whistler Resort, Vancouver, Canada. Contributions
to the special topic were also open to researchers who had not presented their work at the workshop.
We received thirteen submissions and after considering the reviews for each submission, we selected
five papers to be included in this special topic.

Probabilistic grammars offer great flexibility in modeling discrete sequential data like natural
language text. Recently, there has been an increased interest in using probabilistic grammars in the
Bayesian setting, focusing mostly on the use of a Dirichlet prior. Cohen and Smith (2010) propose a
family of logistic normal distributions as an alternative to the Dirichlet prior. A variational inference
algorithm for estimating the parameters of the probabilistic grammar provides a fast, parallelizable,
and deterministic alternative to MCMC methods to approximate the posterior over derivations and
grammar parameters. Experiments with dependency grammar induction on six different languages
demonstrate performance improvements with the new priors. The experiments include a novel
promising setting, in which syntactic trees are inferred in a bilingual setting that uses multilingual,
non-parallel corpora. Notably, the proposed approach tends to generalize better to longer sentences,
despite learning on short sentences.

Despite decades of research, inducing a grammar from text has proven to be a notoriously chal-
lenging learning task. The majority of existing work on grammar induction has favoured model
simplicity (and thus learnability) over representational capacity by using context free grammars and
first order dependency grammars, which are not sufficiently expressive to model many common
linguistic constructions. Cohn, Blunsom, and Goldwater (2010) propose a novel compromise by
inferring a Probabilistic Tree Substitution Grammar (PTSG), a formalism which allows for arbi-
trarily large tree fragments and thereby better represents complex linguistic structures. A PTSG is
an extension to the Probabilistic Context Free Grammar (PCFG) in which nonterminals can rewrite
as entire tree fragments (elementary trees), not just immediate children. These large fragments
can be used to encode non-local context, such as argument frames, gender agreement and idioms.
The model’s complexity is reduced by employing a Bayesian non-parametric prior which biases
the model towards a sparse grammar with shallow productions. The experimental results demon-
strate the model’s efficacy on supervised phrase-structure parsing, where a latent segmentation of
the training treebank is induced, and on unsupervised dependency grammar induction. In both cases
the model uncovers interesting latent linguistic structures while producing competitive results.

Henderson and Titov (2010) propose a new class of graphical models for structured predic-
tion problems called incremental sigmoid belief networks (ISBNs) and apply it to natural language
grammar learning. ISBNs make decoding possible because inference with partial output structures
does not require summing over the unboundedly many compatible model structures, due to their
directed edges and incrementally specified model structure. ISBNs are particularly applicable to
natural language parsing, where learning the domain’s complex statistical dependencies benefits
from large numbers of latent variables. Exact inference in ISBNs is not tractable, but two efficient

1426

GRAMMAR INDUCTION, REPRESENTATION OF LANGUAGE AND LANGUAGE LEARNING

approximations are proposed: a coarse mean-field approximation and a feed-forward neural net-
work approximation. Experimental results show that these models achieve accuracy competitive
with the state-of-the-art.

Machine translation is a challenging problem in artificial intelligence. Natural languages are
characterised by large variabilities of expressions, exceptions to grammatical rules and context de-
pendent changes, making automatic translation a very difficult task. While early work in machine
translation was dominated by rule based approaches (Bennett and Slocum, 1985), the availability of
large corpora has paved the way for statistical methods to be applied. Ni, Saunders, Szedmak, and
Niranjan (2011) propose a distance phrase reordering model (DPR) for statistical machine transla-
tion, where the aim is to learn the grammatical rules and context dependent changes using a phrase
reordering classification framework. Techniques are compared and evaluated on a Chinese-English
corpus, a language pair known for the high reordering characteristics which cannot be adequately
captured with current models. In the reordering classification task, the method significantly outper-
forms the baseline against which it was tested, and further, when integrated as a component of the
state-of-the-art machine translation system, MOSES, it achieves improvement in translation results.

Gillenwater, Ganchev, Graça, Pereira, and Taskar (2011) present a new method for unsupervised
learning of dependency parsers. In contrast with previous approaches that impose a sparsity bias
on the model parameters using discounting Dirichlet distributions, the proposed technique imposes
a sparsity bias on the model posteriors. This is done by using the posterior regularization (PR)
framework (Graça et al., 2007) with constraints that favor posterior distributions that have a small
number of unique parent-child relations. In experiments with 12 different languages, the proposed
method achieves significant gains in directed accuracy over the standard expectation maximization
(EM) baseline for 9 of the languages, while for 8 out of 12 languages, the new technique outperforms
models based on standard Bayesian sparsity-inducing parameter priors.

3. Concluding Remarks

We feel these papers provide a useful snapshot of the current state-of-the-art techniques being em-
ployed by researchers in the fields of grammar induction, language parsing, machine translation and
related areas.

Acknowledgments

We are much indebted to our authors and reviewers, who put a tremendous amount of effort and
dedication to make this issue a reality. We are also thankful to the JMLR editorial team for their
valuable support.

References

D. Angluin. Queries and concept learning. Machine Learning, 2:319 – 342, 1988.

W. S. Bennett and J. Slocum. The lrc machine translation system. Computational Linguistics, 11:
111 – 121, 1985.

S. B. Cohen and N. A. Smith. Covariance in unsupervised learning of probabilistic grammars.
Journal of Machine Learning Research, 11:3017 – 3051, 2010.

1427

GŁOWACKA, SHAWE-TAYLOR, CLARK, DE LA HIGUERA AND JOHNSON

T. Cohn, P. Blunsom, and S. Goldwater. Inducing tree-substitution grammars. Journal of Machine
Learning Research, 11:3053 – 3096, 2010.

J. Gillenwater, K. Ganchev, J. Graça, F. Pereira, and B. Taskar. Posterior sparsity in unsupervised
dependency parsing. Journal of Machine Learning Research, 11, 2011.

J. Graça, K. Ganchev, and B. Taskar. Expectation maximization and posterior constraints. In J.C.
Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing
Systems 20, Cambridge, MA, 2007. MIT Press.

J. Henderson and I. Titov. Incremental sigmoid belief networks for grammar learning. Journal of
Machine Learning Research, 11:3541 – 3570, 2010.

Y. Ni, C. Saunders, S. Szedmak, and M. Niranjan. Exploitation of machine learning techniques in
modelling phrase movements for machine translation. Journal of Machine Learning Research,
12:1 – 30, 2011.

1428

Journal of Machine Learning Research 12 (2011) 1429-1458 Submitted 6/10; Revised 12/10; Published 5/11

Learning a Robust Relevance Model for Search Using Kernel Methods

Wei Wu∗ V-WEW@MICROSOFT.COM
MOE -Microsoft Key Laboratory of Statistics and Information Technology
Department of Probability and Statistics
Peking University
No.5 Yiheyuan Road, Haidian District, Beijing, 100871, P. R. China

Jun Xu JUNXU@MICROSOFT.COM
Hang Li HANGLI@MICROSOFT.COM
Microsoft Research Asia
13F Building 2
No. 5 Danling Street, Haidian District, Beijing, 100080, P.R. China

Satoshi Oyama ∗ OYAMA@IST.HOKUDAI.AC.JP
Graduate School of Information Science and Technology
Hokkaido University
Kita 14, Nishi 9, Kita-ku, 060-0814, Japan

Editor: Corinna Cortes

Abstract
This paper points out that many search relevance models in information retrieval, such as the Vector
Space Model, BM25 and Language Models for Information Retrieval, can be viewed as a similarity
function between pairs of objects of different types, referred to as an S-function. An S-function is
specifically defined as the dot product between the images of two objects in a Hilbert space mapped
from two different input spaces. One advantage of taking this view is that one can take a unified and
principled approach to address the issues with regard to search relevance. The paper then proposes
employing a kernel method to learn a robust relevance model as an S-function, which can effectively
deal with the term mismatch problem, one of the biggest challenges in search. The kernel method
exploits a positive semi-definite kernel referred to as an S-kernel. The paper shows that when
using an S-kernel the model learned by the kernel method is guaranteed to be an S-function. The
paper then gives more general principles for constructing S-kernels. A specific implementation of
the kernel method is proposed using the Ranking SVM techniques and click-through data. The
proposed approach is employed to learn a relevance model as an extension of BM25, referred to
as Robust BM25. Experimental results on web search and enterprise search data show that Robust
BM25 significantly outperforms baseline methods and can successfully tackle the term mismatch
problem.

Keywords: search, term mismatch, kernel machines, similarity learning, s-function, s-kernel

1. Introduction

There are many applications such as search, collaborative filtering, and image annotation, that can
be viewed as a task employing a similarity function defined on pairs of instances from two different
spaces. For example, search is a task as follows. Given a query, the system retrieves documents

∗. This work was conducted when the first and fourth authors visited Microsoft Research Asia.

c©2011 Wei Wu, Jun Xu, Hang Li and Satoshi Oyama.

WU, XU, LI AND OYAMA

relevant to the query and ranks the documents based on the degree of relevance. The relevance of
a document with respect to a query can be viewed as a kind of similarity, and the search task is
essentially one based on a similarity function between query and document pairs, where query and
document are instances from two spaces: query space and document space.

In this paper, we formally define the similarity function as the dot product of the images of two
objects in a Hilbert space mapped from two different spaces. For simplicity, we call the similarity
function S-function. In fact, the state-of-the-art relevance models in information retrieval (IR), such
as the Vector Space Model (VSM) (Salton and McGill, 1986), BM25 (Robertson et al., 1994) and
Language Models for Information Retrieval (LMIR) (Ponte and Croft, 1998; Zhai and Lafferty,
2004), are all S-functions. We prove some properties of the S-function and show that it becomes a
positive semi-definite kernel under certain conditions. One advantage of taking this view to search
is that it provides us with a unified and principled approach to using and learning relevance models.

In this paper, we focus on the learning of a robust relevance model as an S-function, to deal with
term mismatch, one of the critical challenges for search. We show that we can define a new type
of positive semi-definite kernel function called S-kernel and learn a robust relevance model using a
kernel method based on S-kernel. Recently, the learning of similarity function has emerged as a hot
research topic in machine learning (cf., Abernethy et al., 2009; Grangier and Bengio, 2008). Our
work is novel and unique in that it learns a similarity function for search using a kernel method .

The conventional relevance models are all based on term matching. That is, they look at the
matched words in a query and document, and calculate the similarity (relevance) based on the
degree of matching. A good match at term level does not necessarily mean high relevance, however,
and vice versa. For example, if the query is “NY” and the document only contains “New York”,
then the BM25 score of the query and document pair will be low (i.e., the two will be viewed less
relevant), although the query and document are relevant. Similar problems occur with LMIR and
other relevance models. This is the so-called term mismatch problem, which all existing relevance
models suffer from. In other words, the scores from the relevance models may not be reliable and
the question of how to learn a more robust similarity function for search arises; this is exactly the
problem we want to address in this paper.

In this paper, we tackle the term mismatch problem with a kernel method based on the notion of
S-function. Intuitively, we calculate a more reliable score between a query document pair by using
the scores between the pairs of similar query and similar document. Our kernel method exploits a
special positive semi-definite kernel, referred to as S-kernel, defined based upon the S-function.

An S-kernel is formally defined as a positive semi-definite kernel such that the reproducing
kernel Hilbert space (RKHS) generated by the kernel is also a space of S-functions. Therefore,
the model learned by a kernel method is guaranteed to be an S-function. We further give general
principles for constructing S-kernels, and thus offer a formulation for learning similarity functions
with S-kernels. An S-kernel can be viewed as an extension of the hyper kernel proposed by Ong
et al. (2005).

We provide a method for implementing the kernel method using the Ranking SVM techniques
and click-through data. The method is used to train a relevance model named ‘Robust BM25’ to
deal with term mismatch, as an extension of BM25. The learned Robust BM25 model determines
the relevance score of a query document pair on the basis of not only the BM25 score of the query
document pair, but also the BM25 scores of similar query and similar document pairs. All calcu-
lations are naturally incorporated in the kernel method. Experimental results on two large scale

1430

LEARNING A ROBUST RELEVANCE MODEL FOR SEARCH USING KERNEL METHODS

data sets show that Robust BM25 can indeed solve term mismatch and significantly outperform the
baselines.

This paper has the following contributions: 1) proposal of a kernel method for dealing with term
mismatch in search, 2) proposal of a unified view to search using S-function, 3) proposal of a family
of kernel functions, S-kernel.

The rest of the paper is organized as follows. A survey of related work is conducted in Section
2, and then the definition of S-function and interpretation of traditional relevance models as S-
functions are given in Section 3. Section 4 first introduces the term mismatch problem in search,
and then proposes a kernel method for learning a robust relevance model to deal with the problem,
such as Robust BM25. Section 5 defines S-kernel and proposes learning a similarity function with
S-kernel. Section 6 describes how to implement the learning Robust BM25 method. Section 7
reports experimental results and Section 8 concludes this paper.

2. Related Work

Kernel methods, including the famous Support Vector Machines (SVM) (Vapnik, 1995), refer to
a class of algorithms in machine learning which can be employed in a variety of tasks such as
classification, regression, ranking, correlation analysis, and principle component analysis (Hofmann
et al., 2008; Schölkopf and Smola, 2002). Kernel methods make use of kernel functions which map
a pair of data in the input space (Euclidean space or discrete set) into the feature space (Hilbert
space) and compute the dot product between the images in the feature space. Many kernels have
been proposed for different applications (Zhou, 2004; Vishwanathan and Smola, 2004; Haussler,
1999; Watkins, 1999; Gartner et al., 2003; Kashima et al., 2004). Conventional kernels are defined
over one single input space and are symmetric and positive semi-definite. The kernel function is
called Mercer kernel when it is continuous. The similarity function, S-function, which we define in
this paper, is related to the conventional kernel function. An S-function is defined as the dot product
in a Hilbert space between the images of inputs from two spaces, and a conventional kernel function
is defined as the dot product in a Hilbert space between the images of inputs from the same input
space. If the two spaces in an S-function are the same, the S-function becomes a kernel function.

Koide and Yamashita (2006) defined a similarity function called asymmetric kernel and applied
it to Fisher’s linear discriminant. The asymmetric kernel defined by Koide and Yamashita (2006)
is similar to S-function. We use the term S-function instead of asymmetric kernel in this paper,
because further investigation of the properties of S-function (or asymmetric kernel), particularly the
necessary and sufficient condition, is still necessary.

The learning of a similarity function between pairs of objects has been studied. When the pair
of objects are from the same space, the similarity function becomes a positive semi-definite kernel;
a typical approach is kernel learning (cf., Lanckriet et al., 2002; Bach et al., 2004; Ong et al.,
2005; Micchelli and Pontil, 2005; Bach, 2008; Cortes, 2009; Varma and Babu, 2009). Lanckriet
et al. (2002) as well as Bach et al. (2004) have proposed methods for multiple kernel learning,
in which the optimal kernel (similarity function) is selected from a class of linear combinations
of kernels. Besides this, Ong et al. (2005) have proposed learning a kernel function (similarity
function) by using kernel methods, in which the optimal kernel is chosen from RKHS generated by
the ‘hyperkernel’. Our method can be viewed as an extension of Ong et al.’s method. Recently, the
learning of a similarity function between pairs of objects from two different spaces has also emerged

1431

WU, XU, LI AND OYAMA

as a hot research topic (cf., Abernethy et al., 2009; Grangier and Bengio, 2008). In this paper, we
propose a kernel approach for performing the learning task.

Term mismatch is one of the major challenges for search, because most of the traditional rel-
evance models, including VSM (Salton and McGill, 1986), BM25 (Robertson et al., 1994), and
LMIR (Ponte and Croft, 1998; Zhai and Lafferty, 2004), are based on term matching and the rank-
ing result will be inaccurate when term mismatch occurs. To solve the problem, heuristic methods
of query expansion or (pseudo) relevance feedback (cf., Salton and Buckley, 1997; Xu and Croft,
1996; Salton and McGill, 1986; Baeza-Yates and Ribeiro-Neto, 1999; Mitra et al., 1998; Broder
et al., 2009; Zhuang and Cucerzan, 2006) and Latent Semantic Indexing (LSI) (Deerwester et al.,
1990) or Probabilistic Latent Semantic Indexing (PLSI) (Hofmann, 1999) have been proposed and
certain improvements have been made. The former approach tackles the problem at the term level
and the latter at the topic level. In this paper, we demonstrate that we can learn a relevance model
Robust BM25 to address the term mismatch challenge at the term level. The learned Robust BM25
is also an S-function.

Click-through data, which records the URLs clicked by users after their query submissions
at a search engine, has been widely used in web search (Agichtein et al., 2006; Joachims, 2002;
Craswell and Szummer, 2007). For example, click-through data has been used in the training of
a Ranking SVM model, in which preference pairs on documents given queries are derived from
click-through data (Joachims, 2002). Click-through data has also been used for calculating query
similarity, because queries which link to the same URLs in click-through data may represent the
same search intent (Beeferman and Berger, 2000; Cui et al., 2003; Wen et al., 2002). In this paper,
we use click-through data for training a Robust BM25 as well as calculating query similarity.

Learning to rank refers to supervised learning techniques for constructing ranking models using
training data (cf., Liu, 2009). Several approaches to learning to rank have been proposed and it
has become one of the important technologies in the development of modern search engines (e.g.,
Herbrich et al., 1999; Joachims, 2002; Crammer and Singer, 2001; Agarwal and Niyogi, 2005;
Freund et al., 2003; Rudin et al., 2005; Burges et al., 2006; Cao et al., 2006; Xu and Li, 2007;
Cao et al., 2007). The method for learning Robust BM25 in this paper can also be viewed as a
learning to rank method. Robust BM25 runs on the top of conventional learning to rank methods.
Specifically, it trains a ‘re-ranking’ model online to deal with term mismatch, while conventional
learning to rank methods train a ranking model offline for basic ranking. The method of learning
Robust BM25 is similar to Ranking SVM proposed by Herbrich et al. (1999) and Joachims (2002),
a popular learning to rank algorithm. However, there are some differences. For example, the Robust
BM25 method uses a different kernel function.

3. Similarity Function

This section describes the definition and properties of S-function, the similarity function between
pairs of objects of different types.

3.1 Definition

An S-function measures the similarity between two objects from two different spaces. It is in fact
the dot product between the images in the feature space mapped from two objects in the two input
spaces.

1432

LEARNING A ROBUST RELEVANCE MODEL FOR SEARCH USING KERNEL METHODS

Definition 1 (S-function) Let X and Y be two input spaces, and H be a feature space (Hilbert
space). S-function is a function k : X ×Y → R, satisfying k(x,y) = 〈ϕX(x),ϕY (y)〉H for all x ∈ X
and y ∈ Y , where ϕX and ϕY are mapping functions from X and Y to H , respectively.

A positive semi-definite kernel is defined as a function K(·, ·) : X ×X → R, which satisfies
that there is a mapping φ(·) from X to a Hilbert space H with inner product < ·, · >H , such that
∀x,x′ ∈ X , K(x,x′) =< φ(x),φ(x′) >H . A positive semi-definite kernel measures the similarity of
pairs of objects in a single space by using the dot product of their images in a Hilbert space. In
contrast, S-function measures the similarity between pairs of objects in two different spaces. If the
two input spaces (also the two mapping functions) are identical in Definition 1, then S-function
becomes a positive semi-definite kernel. Moreover, S-function also has some properties similar to
those of positive semi-definite kernels, as shown below.

3.2 Properties

S-function has properties as shown below; they are similar to those in conventional positive semi-
definite kernels, but there are also differences. Note that for a conventional kernel, α must be non-
negative in property (1) of Lemma 2. The properties will enable us to construct more complicated
S-functions from simple S-functions.

Lemma 2 (Properties of S-function) Let k1(x,y) and k2(x,y) be S-functions on X ×Y , then the
following functions k : X ×Y → R are also S-functions: (1) α · k1 (for all α ∈ R), (2) k1+ k2, (3)
k1 · k2.
Proof Since k1(x,y) and k2(x,y) are S-functions, suppose that k1(x,y) = 〈ϕ1X(x),ϕ1Y (y)〉1 and
k2(x,y) = 〈ϕ2X(x),ϕ2Y (y)〉2, where 〈·, ·〉1 is the dot product in N1-dimensional Hilbert space and
〈·, ·〉2 is the dot product in N2-dimensional Hilbert space. N1 and N2 can be finite or infinite.

Let ϕ1Xi(·) and ϕ1Yi(·) be the ith elements of vectors ϕ1X(·) and ϕ1Y (·), respectively (i= 1,2, . . . ,N1),
and ϕ2Xi(·) and ϕ2Yi(·) be the ith elements of vectors ϕ2X(·) and ϕ2Y (·), respectively (i= 1,2, . . . ,N2).
(1) Let ϕ1X

′
(x) = α ·ϕ1X(x), we obtain α ·k1(x,y) = 〈ϕ1X

′
(x),ϕ1Y (y)〉1, which proves that α ·k1 is an

S-function, ∀α ∈ R.

(2) Let ϕX(x) = (ϕ1X(x),ϕ
2
X(x)), and ϕY (y) = (ϕ1Y (y),ϕ

2
Y (y)), we obtain 〈ϕX(x),ϕY (y)〉 =

〈ϕ1X(x),ϕ1Y (y)〉1 + 〈ϕ2X(x),ϕ2Y (y)〉2 = k1(x,y) + k2(x,y), which proves that k1 + k2 is an S-
function.

(3) Let ϕX(x) = ϕ1X(x)⊗ϕ2X(x) and ϕY (y) = ϕ1Y (y)⊗ϕ2Y (y). ϕX(x) is a vector whose elements are
{ϕ1Xi(x)ϕ2X j(x)}, 1� i�N1, 1� j �N2 and ϕY (y) is a vector whose elements are {ϕ1Yi(y)ϕ2Y j(y)},
1 � i � N1, 1 � j � N2. We obtain

〈ϕX(x),ϕY (y)〉=
N1

∑
i=1

N2

∑
j=1

ϕ1Xi(x)ϕ
2
X j(x)ϕ

1
Yi(y)ϕ

2
Y j(y)

=
N1

∑
i=1

ϕ1Xi(x)ϕ
1
Yi(y)

N2

∑
j=1

ϕ2X j(x)ϕ
2
Y j(y)

=
N1

∑
i=1

ϕ1Xi(x)ϕ
1
Yi(y)k2(x,y)

= k1(x,y)k2(x,y),

1433

WU, XU, LI AND OYAMA

which proves that k1 · k2 is an S-function.

3.3 Relevance Models as Similarity Functions

Traditional relevance models, including VSM (Salton and McGill, 1986), BM25 (Robertson et al.,
1994) and LMIR (Ponte and Croft, 1998; Zhai and Lafferty, 2004), can be viewed as S-functions.1

In fact, all these models measure the similarity of a query and document from query space and
document space. In VSM, query space and document space are treated as the same space, while in
the other two models, query space and document space are two different spaces.

3.3.1 VSM

Let Q and D denote query and document spaces. Each dimension in the two spaces corresponds
to a term, and query and document are respectively represented as vectors in the two spaces. Let
H denote a Hilbert space endowed with dot product 〈·, ·〉 (it is in fact an n-dimensional Euclidean
space where n is the number of unique terms).

Given query q ∈ Q and document d ∈D , VSM is calculated as

VSM(q,d) = 〈ϕVSMQ (q),ϕVSMD (d)〉,
where ϕVSMQ (q) and ϕVSMD (d) are mappings to H from Q and D , respectively.

ϕVSMQ (q)t = id f (t) · t f (t,q)
and

ϕVSMD (d)t = id f (t) · t f (t,d),
where t is a term, t f (t,q) is the frequency of term t in query q, t f (t,d) is the frequency of term t
in document d, id f (t) is the inverse document frequency of term t. That is to say, VSM is a linear
positive semi-definite kernel, and is an S-function as well.

3.3.2 BM25

Given query q ∈ Q and document d ∈D , BM25 is calculated as

BM25(q,d) = 〈ϕBM25Q (q),ϕBM25D (d)〉, (1)

where ϕBM25Q (q) and ϕBM25D (d) are mappings to H from Q and D , respectively.

ϕBM25Q (q)t =
(k3+1)× t f (t,q)
k3+ t f (t,q)

and

ϕBM25D (d)t = id f (t)
(k1+1)× t f (t,d)

k1
(
1−b+b · len(d)

avgDocLen

)
+ t f (t,d)

,

where k1 ≥ 0, k3 ≥ 0, and b≥ 0 are parameters. Moreover, len(d) is the length of document d and
avgDocLen is the average length of documents in the collection.

1. “ The matching function between a query and document should be defined as an asymmetric function.” - Stephen
Robertson, personal communication.

1434

LEARNING A ROBUST RELEVANCE MODEL FOR SEARCH USING KERNEL METHODS

3.3.3 LMIR

We use Dirichlet smoothing as an example. Other smoothing methods such as Jelinek-Mercer (JM)
can also be used. Given query q ∈ Q and document d ∈D , the LMIR with Dirichlet smoothing is
calculated as

LMIR(q,d) = 〈ϕLMIRQ (q),ϕLMIRD (d)〉,

where φLMIRQ (q) and φLMIRD (d) are (n+1)-dimensional mappings to H from Q and D , respectively.
For t = 1,2, . . . ,n, φLMIRQ (q)t and φLMIRD (d)t are defined as

ϕLMIRQ (q)t = t f (t,q)

and

ϕLMIRD (d)t = log

(
1+

t f (t,d)
μP(t)

)
,

where μ> 0 is a smoothing parameter, P(t) is the probability of term t in the whole collection. P(t)
plays a similar role as inverse document frequency id f (t) in VSM and BM25. The (n+1)th entries
of ϕLMIRQ (q) and ϕLMIRD (d) are defined as

ϕLMIRQ (q)n+1 = len(q)

and
ϕLMIRD (d)n+1 = log

μ
len(d)+μ

,

where len(q) and len(d) are the lengths of query q and document d, respectively.
There are several advantages of applying the similarity function view to search. First, it gives a

general and unified framework to relevance models. Although BM25 and LMIR are derived from
different probability models, they work equally well in practice. It was difficult to understand the
phenomenon. The S-function interpretation of the relevance models can give a better explanation of
it. BM25 and LMIR are nothing but similarity functions representing query and document matching
with different formulations. Second, it is easy to make an extension of the conventional relevance
models based on the S-function definition. In (Xu et al., 2010), we show that the conventional
relevance models can be naturally extended from unigram based models to n-gram based models to
improve search relevance, with the S-function interpretation. In this paper, we demonstrate that we
can deal with the term mismatch problem in a principled way on the basis of S-function.

An S-function measures the similarity of pairs of objects from two different spaces. It is an es-
sential model not only for search, but also for many other applications such as collaborative filtering
(Abernethy et al., 2009) and image retrieval (Grangier and Bengio, 2008). In the tasks, there exist
two spaces and given an object in one space the goal is to find the most similar (relevant) objects
in the other space. The spaces are defined over query and document, user and item, and image and
text, respectively. In all these problems, the model can be represented as an S-function.

4. Learning a Robust Relevance Model

In this section, we first describe term mismatch, then propose using Robust BM25 to deal with term
mismatch, and finally propose employing a kernel method to learn Robust BM25.

1435

WU, XU, LI AND OYAMA

yutube yuotube yuo tube
ytube youtubr yu tube
youtubo youtuber youtubecom
youtube om youtube music videos youtube videos
youtube youtube com youtube co
youtub com you tube music videos yout tube
youtub you tube com yourtube your tube
you tube you tub you tube video clips
you tube videos www you tube com wwww youtube com
www youtube www youtube com www youtube co
yotube www you tube www utube com
ww youtube com www utube www u tube
utube videos our tube utube
u tube my tube toutube

Table 1: Example queries representing search intent “finding YouTube website”.

4.1 Term Mismatch in Search

Search is basically based on term match. For example, if the query is “soccer” and the term “soccer”
occurs several times in the document, then the document is regarded as ‘relevant’. The relevance
models of VSM, BM25 and LMIR will give high scores to the document and the document will
be ranked highly. This term matching paradigm works quite well. However, the so-called term
mismatch problem also inevitably occurs. That is, even if the document and the query are relevant,
but they do not match at term level, in other words, they do not share a term, then they will not be
viewed as relevant. For example, if the query is “New York” and the document contains “NY”, then
the document will not be regarded relevant. Similarly, “aircraft” and “airplane” refer to the same
concept; but if one of them is used in the query and the other in the document, then the document
will be considered irrelevant. Term mismatch due to the differences in expressions including typos,
acronyms, and synonyms can easily happen and deteriorate the performance of search.

In web search, users are more diverse and so are the web contents. The term mismatch problem
becomes more severe than traditional search. Although modern search engines exploit more so-
phisticated models for retrieval and ranking, they still heavily rely on the term matching paradigm.
Therefore, term mismatch is still one of the most critical challenges for web search. For example,
we have observed over 200 different forms for representing the same search intent “finding YouTube
website” from the query log of a commercial web search engine. Table 1 lists some examples.

The relevance models of VSM, BM25, LMIR are all based on term frequencies of t f (t,d) and
t f (t,q). If the query and document share a term t, then the term frequencies will be non-zero values
and the relevance score between the query and document will become high. That is, the value of
the S-function between the query and document will be large. When term mismatch occurs, either
t f (t,d) or t f (t,q) will be zero, and the relevance score will be low, although it should not be so. In
that case, the value of S-function will be unnecessarily small.

More generally, term mismatch corresponds to the fact that some S-function values are reliable
while the others are not. The question is whether it is possible to ‘smooth’ the S-function values

1436

LEARNING A ROBUST RELEVANCE MODEL FOR SEARCH USING KERNEL METHODS

based on some training data and to do it in a theoretically sound way. The kernel approach that we
propose in this paper can exactly solve the problem.

4.2 Robust BM25 Model

We try to learn a more reliable relevance model (S-function) from data. The model is an extension
of BM25 but more robust to term mismatch. We call the model ‘Robust BM25’. Without loss of
generality, we use BM25 as the basic relevance model; one can easily extend the techniques here to
other relevance models.

We give the definition of Robust BM25 and then explain why it has the capability to cope with
term mismatch.

Robust BM25 (RBM25) is defined as follows

kRBM25(q,d) =
N

∑
i=1

αi · kBM25(q,d)kQ(q,qi)kD(d,di)kBM25(qi,di), (2)

where kBM25(q,d) is the BM25 model, kQ : Q ×Q → R and kD : D ×D → R are positive semi-
definite kernels in query space and document space, which represent query similarity and document
similarity, respectively. N is the number of training instances. {αi}Ni=1 are weights and can be
learned from training data. In fact, Robust BM25 is also an S-function that measures the similarity
of query q and document d through a dot product in a Hilbert space, as will be explained in Section 5.

Here we assume that kBM25(q,d) > 0,∀q ∈ Q ,d ∈ D , otherwise, we can add a small positive
value ε to Equation (1). Furthermore, we assume that 0≤ kQ(·, ·)≤ 1 and 0≤ kD(·, ·)≤ 1.

Robust BM25 is actually a linear combination of BM25 scores of similar queries and similar
documents. Because it is based on smoothing, it can be more robust, particularly when the weights
are learned from data.

Figure 1 gives an intuitive explanation on why Robust BM25 can effectively deal with term
mismatch. Suppose that the query space contains queries as elements and has the kernel function
kQ as a similarity function. Given query q, one can find its similar queries qi based on kQ(q,qi)
(its neighbors). Similarly, the document space contains documents as elements and has the kernel
function kD as a similarity function. Given document d, one can find its similar documents di based
on kD(d,di) (its neighbors). The relevance model BM25 is defined as an S-function between query
and document over the two spaces. Term mismatch means that the BM25 score kBM25(q,d) is not
reliable.

One possible way to deal with the problem is to use the neighboring queries qi and documents
di to smooth the BM25 score of q and d, as in the k-nearest neighbor algorithm (Cover and Hart,
1967; Dudani, 1976). In other words, we employ the k-nearest neighbor method in both the query
and document spaces to calculate the final relevance score (cf., Figure 1). This is exactly what
Robust BM25 does. More specifically, Robust BM25 determines the ranking score of query q and
document d, not only based on the relevance score between q and d themselves (i.e., kBM25(q,d)),
but also based on the relevance scores between similar queries qi and similar documents di (i.e.,
kBM25(qi,di)), and it makes a weighted linear combination of the relevance scores (2).

To help further understand why Robust BM25 can tackle the term mismatch problem, we give
an example. If q is “NY”, and d is about “New York”, then kBM25(q,d) will fail to match them
because q and d do not share any term. On the other hand, if q′ is “New York”, and we know that
q and q′ are similar (kQ(q,q′) is high), and kBM25(q′,d) should have a high matching score, then

1437

WU, XU, LI AND OYAMA

Figure 1: Robust BM25 deals with term mismatch by using the neighbors in query space and doc-
ument space.

we can use kBM25(q′,d) to boost kBM25(q,d). Note here that we assume d = d′ and kD(d,d′) = 1.
Therefore, Robust BM25 can overcome the term mismatch problem and outperform conventional
IR models.

4.3 Learning Robust BM25

We learn the weights {αi}Ni=1 in Robust BM25 by using training data and a kernel method. In the
kernel method, we use the following kernel on Q ×D:

 kHBM25((q,d),(q
′,d′)) = kBM25(q,d)kQ(q,q

′)kD(d,d
′)kBM25(q

′,d′), (3)

where kBM25(q,d) is the BM25 model, kQ and kD are the query and document similarity kernels.
Suppose that the reproducing kernel Hilbert space (RKHS) generated by kHBM25 is H kHBM25

.
Given some training data {(qi,di,ri)}Ni=1 where ri represents the relevance degree between query qi
and document di, the learning problem is then as follows

argmin
k∈H kHBM25

1
N

N

∑
i=1

l(k(qi,di),ri)+
λ
2
‖k‖2

H kHBM25
, (4)

where l(·, ·) is a loss function and ‖ · ‖H kHBM25
is the norm defined in H kHBM25

.

According to the representer theorem of kernel methods (Hofmann et al., 2008; Schölkopf and
Smola, 2002), the optimal relevance model k∗(q,d) has exactly the same form as Robust BM25 in
Equation (2).

Robust BM25 (2) is also an S-function, because kHBM25 (3) belongs to a specific kernel class
referred to as S-kernel in this paper.

5. S-kernel

In this section, we give the definition of S-kernel and also explain the kernel method of learning an
S-function using an S-kernel.

1438

LEARNING A ROBUST RELEVANCE MODEL FOR SEARCH USING KERNEL METHODS

Suppose that we are given training data S = {(xi,yi), ti}Ni=1, where xi ∈ X and yi ∈ Y are a pair
of objects, and ti ∈ T is their response. The training data can be that for classification, regression,
or ranking. Suppose that the hypothesis space K is a space of S-functions. Our goal is to learn
the optimal S-function from the hypothesis space given the training data. We consider employing
a kernel method to perform the learning task. That is, we specifically assume that the hypothesis
space is also an RKHS generated by a positive semi-definite kernel.

The learning problem then becomes the following optimization problem:

argmin
k∈K

1
N

N

∑
i=1

l(k(xi,yi), ti)+
λ
2
‖k‖2

K , (5)

where λ > 0 is a coefficient, K is a subspace of S-functions endowed with norm || · ||K , and
||k||K denotes regularization on space K . Here K is also an RKHS generated by a positive semi-
definite kernel k : (X ×Y)× (X ×Y) → R, that is, for each S-function k(x,y) ∈ K , k(x,y) =
〈k(·, ·), k((·, ·),(x,y))〉K .

According to the representer theorem of kernel methods, the optimal solution of problem (5) is
in the form

k∗(x,y) =
N

∑
i=1

αi k((xi,yi),(x,y)),

where αi ∈ R,1 ≤ i≤ N, and N denotes the number of training instances.
The question then is whether there exists space K , or equivalently kernel k. We show below

that it is the case and refer to the kernel k as S-kernel.
We formally define S-kernel and give two families of S-kernels.

Definition 3 (S-kernel) Let X and Y be two input spaces. k((x,y),(x′,y′)) is called S-kernel, if it
has the following properties. (1) k : (X ×Y)× (X ×Y)→ R is a positive semi-definite kernel. (2)
All the elements in the RKHS generated by k are S-functions on X and Y .

If the two input spaces X and Y are identical in Definition 3, then S-kernel degenerates to the
hyperkernel proposed by Ong et al. (2005).

We give two families of S-kernels based on power series and multiple kernels.

Theorem 4 (Power Series Construction) Given two Mercer kernels kX : X ×X → R and kY : Y ×
Y → R, for any S-function g(x,y) and {ci}∞i=0 ⊂ R+, kP defined below is an S-kernel.

 kP((x,y),(x
′,y′)) =

∞

∑
i=0

ci ·g(x,y)
(
kX(x,x

′)kY (y,y
′)
)i
g(x′,y′), (6)

where the convergence radius of ∑∞
i=0 ciξ

i is R, |kX(x,x′)|<
√
R, |kY (y,y′)|<

√
R, for any x,x′,y,y′.

Theorem 5 (Multiple Kernel Construction) Given two finite sets of Mercer kernels KX ={
kXi (x,x

′)
}n
i=1 and KY =

{
kYi (y,y

′)
}n
i=1. For any S-function g(x,y) and {ci}ni=1 ⊂ R+, kM defined

below is an S-kernel.

 kM((x,y),(x
′,y′)) =

n

∑
i=1

ci ·g(x,y)kXi (x,x′)kYi (y,y′)g(x′,y′). (7)

1439

WU, XU, LI AND OYAMA

rank URL click

1 www.walmart.com Yes
2 en.wikipedia.org/wiki/Wal*Mart No
3 www.walmartstores.com Yes
4 instoresnow.walmart.com No
5 mp3.walmart.com No

Table 2: A record of click-through data for query “walmart”. Only the top 5 URLs are shown.

Proofs of Theorem 4 and Theorem 5 are given in Appendix A and Appendix B, respectively.
Note that if space X and space Y are identical, kX and kY are identical, kXi and kYi are identical

for any 1 � i � n, and g(x,y) = 1, then kP and kM are exactly the hyperkernels given in Section 4.1
and Section 4.3 respectively by Ong et al. (2005).

With the theorems one can easily verify that the following kernel is an S-kernel.

g(x,y)kX(x,x
′)kY (y,y

′)g(x′,y′), (8)

where g(x,y) is an S-function, and kX(x,x′) and kY (y,y′) are positive semi-definite kernels on spaces
X and Y , respectively. In fact, the S-kernel in Equation (8) is a member of the families of S-kernels
in both Equation (6) and Equation (7).

It is obvious that in the learning of Robust BM25 (4), we specify g(x,y) as BM25 (an S-
function), and kX and kY as query similarity kernel kQ and document similarity kernel kD, respec-
tively. Therefore, the learning problem (4) is a specific case of learning with S-kernel (5), and
Robust BM25 (2) is an S-function.

Basilico and Hofmann (2004) propose a pairwise kernel for collaborative filtering. The pairwise
kernel is defined as kC((u, i),(u′, i′)) = kU(u,u′) ·kI(i, i′), where kU and kI are kernels defined on the
spaces of users and items, respectively. Obviously, kC is an S-kernel and their learning problem is
another specific case of learning with S-kernel (5).

6. Implementation

In this section, we describe a specific implementation to learn Robust BM25 (4).
To learn Robust BM25, we need to decide the query similarity kQ(q,q′), document similarity

kD(d,d′), training data, and optimization technique. We explain one way of implementing them.
Click-through data has been proven to be useful for improving search relevance (cf., Cui et al.,

2003; Joachims, 2002). An instance of click-through data consists of a query, a ranked list of URLs,
and a user’s clicks. Table 2 shows a click-through instance. In this case, the user submitted the
query “walmart” and received the ranked list of URLs, and the user clicked on the URLs at ranks
1 and 3 but skipped the URLs at ranks 2, 4, and 5. Every time when a search is conducted using a
search engine, this kind of data is recorded. The amount of click-through data is usually extremely
large. Obviously users do not click on URLs at random, but based on their relevance judgments.
Though click-through data is noisy, it still conveys users’ implicit feedback to search results.

To calculate query similarity, we represent query and URL click-through relationships in a bi-
partite graph in which queries and URLs are nodes in two sets and clicks are edges between nodes
in the two sets. A weight is associated with each edge representing the total number of times that
the URL is clicked after the query is issued. Figure 2 illustrates a click-through bipartite graph.

1440

LEARNING A ROBUST RELEVANCE MODEL FOR SEARCH USING KERNEL METHODS

5 158
20

3

6

20 30 15

3

URLs

Queries

12

…...

Figure 2: Click-through bipartite graph.

We specifically define query similarity using co-clicked URLs in the click-through bipartite
graph. Intuitively, if two queries share many clicked URLs, then they will be regarded as similar.
Since queries with the same search intent tend to be linked to the same URLs, query similarity
defined in this way actually represents the degree of being the same search intent. We calculate
the query similarity function kQ(q,q′) as a Pearson Correlation Coefficient between the co-clicked
URLs of two queries:

kQ(q,q
′) =

∑n
i=1(ui− u)(vi− v)√

∑n
i=1(ui− u)2

√
∑n
i=1(vi− v)2

, (9)

where ui and vi denote the numbers of clicks on URL i by queries q and q′ respectively, u and v
denote the average numbers of clicks of q and q′ respectively, and n denotes the total number of
clicked URLs by q and q′. Note that query similarity kQ(q,q′) defined in Equation (9) is a positive
semi-definite kernel, because it is the dot product of two vectors (u1− u√

∑ni=1(ui− u)2
, . . . , un− u√

∑ni=1(ui− u)2
)

and (v1− v√
∑ni=1(vi− v)2

, . . . , vn− v√
∑ni=1(vi− v)2

) in Rn.

Our experimental results also show that by using the similarity function, one can really find sim-
ilar queries with high quality.2 Table 3 shows some examples of similar queries found by using our
method. In fact, with the use of click-through bipartite and query similarity measure, different types
of similar queries can be found, including spelling error (e.g., “wallmart” v.s. “walmart”), word
segmentation (“ironman” v.s. “iron man”), stemming (e.g., “knives” v.s. “knifes” and “knife”), syn-
onym (e.g., “aircraft for sale” v.s. “airplanes for sale”), and acronym (e.g., “ucsd” v.s. “university
of california san diego”).

Document similarity kD(d,d′) is simply defined as the cosine similarity between the titles and
URLs of two documents, which is certainly a kernel (cosine similarity is the dot product in an
Euclidean space).

Following the proposal given by Joachims (2002), we generate pairwise training data from click-
through data. More precisely, for each query qi we derive preference pairs (d+i ,d

−
i), where d+i and

d−i mean that document d+i is more preferred than d−i with respect to query qi (e.g., d−i is skipped
even though it is ranked higher than d+i).

Finally, we take the pairwise training data as input and learn the optimal S-function, Robust
BM25. We use hinge loss as the loss function, the learning problem (4) then becomes

argmin
k∈H kHBM25

M

∑
i=1

[
1− (k(qi,d

+
i)− k(qi,d

−
i))
]
+
+
λ
2
‖k‖2

H kHBM25
, (10)

2. We evaluated the precision of several similar measures. the Pearson Correlation Coefficient and the Jensen-Shannon
Divergence work the best, followed by the Jaccard Coefficient.

1441

WU, XU, LI AND OYAMA

original query similar queries

wallmart wall mart, walmart, wal mart, walmarts
ironman iron man, ironman movie, irnman,

www.iron man.com
knives knifes, knives.com, knife outlet, knife
aircraft for sale aircraft sales, airplanes for sale,

used airplanes for sale, used planes for sale
ucsd ucsd.edu, uc san diego, uscd,

university of california san diego

Table 3: Similar queries extracted from web search click-through data.

where M is the number of preference pairs in the training data. Note that this is similar to Ranking
SVM (Herbrich et al., 1999). The major difference is that in our case the kernel function used is an
S-kernel.

According to the representer theorem and Equation (2), when using pairwise training data, the
optimal solution is given as follows

kRBM25(q,d) = kBM25(q,d) ·
M

∑
i=1

θi · kQ(q,qi)
[
kBM25(qi,d

+
i)kD(d

+
i ,d)− kBM25(qi,d

−
i)kD(d

−
i ,d)
]
,

(11)
where θi is a parameter to learn.

Reformulating the non-constrained optimization in Equation (10) as a constrained optimization
by using Equation (11) and slack variables {ξi}, we obtain the following primal problem:

argmin
{θi}Mi=1

M

∑
i=1

ξi+
λ
2

M

∑
i, j=1

θiθ jW (i, j) (12)

kRBM25(qi,d
+
i)− kRBM25(qi,d

−
i) � 1−ξi, ξi � 0 ∀i,

where calculatingW (i, j) using the reproducing kernel property is given by

W (i, j) = kQ(qi,q j)·[kD(d+i ,d+j)kBM25(qi,d+i)kBM25(q j,d+j)− kD(d
+
i ,d

−
j)kBM25(qi,d

+
i)kBM25(q j,d

−
j)

− kD(d
−
i ,d

+
j)kBM25(qi,d

−
i)kBM25(q j,d

+
j)+ kD(d

−
i ,d

−
j)kBM25(qi,d

−
i)kBM25(q j,d

−
j)].

With Lagrange multipliers {βi}Mi=1 and {γi}Mi=1, the objective function becomes

L=
M

∑
i=1

ξi+
λ
2

M

∑
i, j=1

θiθ jW (i, j)+
M

∑
i=1

βi
[
1−ξi−

(
kRBM25(qi,d

+
i)− kRBM25(qi,d

−
i)
)]

−
M

∑
i=1

γiξi

=
M

∑
i=1

ξi+
λ
2

M

∑
i, j=1

θiθ jW (i, j)+
M

∑
i=1

βi

[
1−ξi−

M

∑
j=1

θ jW (i, j)

]
−

M

∑
i=1

γiξi,

Differentiating L by ξi and θi, we have

∂L
∂ξi

= 1−βi− γi = 0, (13)

1442

LEARNING A ROBUST RELEVANCE MODEL FOR SEARCH USING KERNEL METHODS

and
∂L
∂θi

=
M

∑
j=1

(λθ j−β j)W (i, j) = 0. (14)

Thus, according to Equation (13), we have

γi = 1−βi.

Since βi � 0 and γi � 0, we have 0 � βi � 1. According to Equation (14), we have

M

∑
j=1

λθ jW (i, j) =
M

∑
j=1

β jW (i, j).

Substituting the above two formulas into L, we obtain the dual problem:

argmax
{β}Mi=1

M

∑
i=1

βi−
1
2λ

M

∑
i=1

M

∑
j=1

βiβ jW (i, j) s.t. 0≤ βi ≤ 1. (15)

By solving the dual problem (15) we obtain the optimal values {β�i }Mi=1. We can further get the
optimal values {θ�i }Mi=1 by solving equation (14), and using θ�i = 1

λβ
�
i . Note that when (W (i, j))M×M

is not strictly positive, the solution of (14) is not unique. In such a case, we can still take θ�i =
1
λβ

�
i

as a solution for simplicity, because all solutions will make the objective function achieve the same
minimum (12).

In online search, given a query, we first retrieve the queries similar to it, then individually
retrieve documents with the original query and similar queries, combine the retrieved documents,
train a Robust BM25 model using click-through data, and rank the documents with their Robust
BM25 scores (note that a Robust BM25 model is trained for each query). When training Robust
BM25, we solve the dual problem (15) using a standard QP solver LOQO.3 The time complexity
is of order O(M2), where M is the number of preference pairs. Since the number of retrieved
documents is small, a search with Robust BM25 can be carried out efficiently. In our experiments,
we observe that on average it takes about 1.5 seconds per query to train a model on a workstation
with Quad-Core Intel Xeon E5410 2.33GHz CPU and 16GB RAM.

7. Experiments

We conducted experiments to test the performances of Robust BM25.

7.1 Experimental Data

In our experiments, we used two large scale data sets from a commercial web search engine and
an enterprise search engine running in an IT company. The two data sets consist of query-URL
pairs and their relevance judgments. The relevance judgments can be ‘Perfect’, ‘Excellent’, ‘Good’,
‘Fair’, or ‘Bad’. Besides this, we also collected large scale click-through data from both search
engines. Table 4 shows the statistics on the two data sets. The click-through data in both data sets
was split into two parts, one for learning query similarity and the other for learning Robust BM25.

3. LOQO can be found at http://www.princeton.edu/˜rvdb/loqo/LOQO.html.

1443

WU, XU, LI AND OYAMA

Web search Enterprise search

of judged queries 8,294 2,864
of judged query-URL pairs 1,715,844 282,130
of search impressions in click-through 490,085,192 17,383,935
of unique queries in click-through 14,977,647 2,368,640
of unique URLs in click-through 30,166,304 2,419,866
of clicks in click-through 2,605,404,156 4,996,027

Table 4: Statistics on web search and enterprise search data sets.

7.2 Baselines

BM25 was selected as a baseline, whose parameters were tuned by using the validation set. Query
expansion (Xu and Croft, 1996) was also chosen as a baseline. Query expansion is a state-of-the-art
technique to tackle term mismatch in search. The key idea in query expansion is to add into the
original query terms extracted from relevant queries or documents. Thus, even though the original
query and document do not share a term, after expansion, the query is enriched and it is likely to
be matched with relevant documents. On the other hand, query expansion may also suffer from
the so-called topic drift problem. That is, irrelevant terms can be added to the original query. As a
result, the accuracy of search may drop, rather than improve. In contrast, our method can effectively
address the problem. First, similar queries mined from click-through data are used in search, which
represent the same or similar intent. Thus, the documents retrieved are more likely to be relevant.
Second, the final ranking of results is based on Robust BM25 which is trained specifically for the
query using click-through data. Therefore, the accuracy of the final ranking will be high.

In our experiment, we tried several different ways to conduct query expansion and chose the one
performing the best as the baseline. In our method, we first use the title of the most clicked URL in
the retrieved result to do expansion. If there is no such a URL, we use the terms of the most similar
query to do expansion.

The pairwise kernel, which is initially proposed for collaborative filtering (Basilico and Hof-
mann, 2004), was also chosen as a baseline. The difference between our method and the pairwise
kernel is that the pairwise kernel does not use a traditional relevance model kBM25(q,d).

7.3 Evaluation Measures

As evaluation measures, we used Mean Average Precision (MAP) (Baeza-Yates and Ribeiro-Neto,
1999) and Normalized Discounted Cumulative Gain (NDCG) (Jarvelin and Kekalainen, 2000) at
positions 1, 3, and 5, which are standard measures in IR.

MAP assesses the accuracy of a ranking algorithm by looking at how well it ranks relevant docu-
ments against irrelevant documents. MAP denotes mean average precision (AP). Average precision
is defined as

AP(q) =
∑
Nq
r=1P(r)× rel(r)

∑
Nq
r=1 rel(r)

,

1444

LEARNING A ROBUST RELEVANCE MODEL FOR SEARCH USING KERNEL METHODS

where Nq is the number of documents retrieved, rel(r) ∈ {0,1}, and if the document ranked at
position r is relevant, rel(r) = 1, otherwise, rel(r) = 0. P(r) is precision at position r:

P(r) =
∑r
i=1 rel(i)
r

.

Finally, MAP is defined as

MAP=
∑q AP(q)

#q
,

where #q is the number of queries. If relevant documents are ranked higher than irrelevant docu-
ments, the value of MAP will be high.

NDCG is usually used to assess a ranking algorithm when documents have multiple relevance
grades (e.g., “Bad”, “Good”, “Fair”, “Excellent”, and “Perfect”). Given a query q, NDCG at posi-
tion n is defined as

NDCG@n(q) =
DCG@n(q)
IDCG@n(q)

,

where DCG@n(q) is defined as

DCG@n(q) =
nq

∑
i=1

2rel(i)−1
log2(i+1)

,

where rel(i) is the relevance grade of a document ranked at position i. The DCG@n(q) score is
normalized by IDCG@n(q), which is an ideal DCG@n(q) score when documents are ranked in
decreasing order of their relevance grades.

Finally, NDCG is averaged over queries.

NDCG@n=
∑qNDCG@n(q)

#q

A high NDCG score means that relevant documents are ranked higher in the ranking list than irrel-
evant documents.

In our experiment, when calculating MAP, we view the documents with judgments ‘Perfect’ and
‘Excellent’ as relevant and the documents with the other three judgments as irrelevant.

7.4 Experimental Results

We trained a model for each query, as described in Section 6. On average, about 207.6 and 174.7
training pairs were used for each query in web search data and enterprise data, respectively. The
only parameter λ in Equation (15) was heuristically set as 1. In fact, we found that λ does not affect
the results so much. Table 5 reports the results on the web search data and enterprise data. We can
see that Robust BM25 outperforms the baselines, in terms of all measures on both data sets. We
conducted significant tests (t-test) on the improvements. The results show that the improvements
are all statistically significant (p-value< 0.05). We conducted analysis on the cases in which Robust
BM25 performs better and found that the reason is that Robust BM25 can indeed effectively address
the term mismatch problem. The pairwise kernel outperforms BM25 and query expansion, which
indicates that it is better to learn a relevance model in search. However, its performance is still lower
than Robust BM25, suggesting that it is better to include BM25 in the final relevance model, as in
Robust BM25.

1445

WU, XU, LI AND OYAMA

MAP NDCG@1 NDCG@3 NDCG@5

Robust BM25 0.1192 0.2480 0.2587 0.2716
Web search Pairwise Kernel 0.1123 0.2241 0.2418 0.2560

Query Expansion 0.0963 0.1797 0.2061 0.2237
BM25 0.0908 0.1728 0.2019 0.2180
Robust BM25 0.3122 0.4780 0.5065 0.5295

Enterprise search Pairwise Kernel 0.2766 0.4465 0.4769 0.4971
Query Expansion 0.2755 0.4076 0.4712 0.4958
BM25 0.2745 0.4246 0.4531 0.4741

Table 5: Ranking accuracies on web search and enterprise search data.

Query wallmart
Similar queries wall mart, walmart, wal mart, walmarts
Page http://www.walmart.com
Title Walmart.com: Save money. Live better
Rate Perfect

Table 6: Example 1 from web search.

7.5 Discussions

We investigated the reasons that Robust BM25 can outperform the baselines, using the experiments
on web search data as examples. It seems that Robust BM25 can effectively deal with termmismatch
with its mechanisms: using query similarity and document similarity.

Our approach can effectively deal with term mismatch with similar queries. Table 6 gives an
example. The query, web page, and label are respectively “wallmart”, which is a typo, “http:
//www.walmart.com” with title “Walmart.com: Save money. Live better”, and “Perfect”, which
means that the page should be ranked in first position. There is a mismatch between query and
page, the basic relevance model BM25 cannot give a high score to the page (note that there is a
difference between the query term “wallmart” and the document term “walmart”.). Query expansion
cannot rank the page high, either. The web page “http://www.walmartstores.com” with title
“Walmartstores.com” is the most clicked web page with respect to the original query in the click-
through data. Query expansion uses the title to conduct term expansion, that is, uses the words in the
title. Because it does not have sufficient knowledge to break “Walmartstores” into “walmart” and
“stores”, query expansion cannot add good terms to the original query. When query expansion adds
more terms to the original query, “walmart” will appear, but at the same time noise terms will also
be included. In contrast, our approach can effectively leverage similar queries such as “walmart”,
“wal mart”, and “walmarts” and rank the web page to first position.

Table 7 gives another example. The query is “mensmagazines”, which is a tail query and
does not have a similar query found in the click-through data. The web page is “http://en.
wikipedia.org/wiki/List/_of/_men’s/_magazines” (referred to as Page1) and the relevance
label is “Excellent”. There is a mismatch, because there is not sufficient knowledge to break query
“mensmagazines” into “mens” and “magazines”. As a result, BM25 cannot rank Page1 high. In
contrast, Robust BM25 uses similar documents to calculate the relevance. Specifically, it uses a sim-
ilar web page “http://www.askmen.com/links/sections/mensmagazines.html” (referred to

1446

LEARNING A ROBUST RELEVANCE MODEL FOR SEARCH USING KERNEL METHODS

Query mensmagazines
Page1 http://en.wikipedia.org/wiki/List/_of/_men’s/_magazines
Title1 List of men’s magazines - Wikipedia, the free encyclopedia
Rate1 Excellent
Page2 http://www.askmen.com/links/sections/mensmagazines.html
Title2 AskMen.com - Men’s magazines

Table 7: Example 2 from web search.

Query southwest airlines
Page1 http://www.southwest-airlines.net
Title1 Southwest Airlines
Rate1 Perfect
Page2 http://www.southwestvacations.com/index.asp
Title2 Southwest Vacations - Vacation Packages - Cheap Airline

Tickets, Hotels, Rental Cars, Activities & Attractions
Rate2 Fair

Table 8: Example 3 from web search.

as Page2), which contains the term “mensmagazines” in its URL. The original query can match well
with Page2. Besides, Page1 and Page2 are also similar because they have common terms “men” and
“magazines” in titles. Therefore, Robust BM25 can assign a high score to Page1.

Compared with the pairwise kernel, Robust BM25 successfully leveraged the traditional match-
ing model BM25 when its score is reliable to reflect relevance between query and document. We
show an example in Table 8. The query is “southwest airlines”. The two web pages are “http:
//www.southwest-airlines.net” (referred to as Page1) with label “Perfect” and “http://www.
southwestvacations.com/index.asp” (referred to as Page2) with label “Fair”. In the pairwise
kernel, the ranking score of Page2 is larger than Page1. In Robust BM25, however, the ranking
score of Page1 is larger. This is because the pairwise kernel does not consider the match between
query and documents using BM25, while Robust BM25 does.

8. Conclusion and Future Work

We have formally defined a similarity function between pairs of objects from two different spaces
and named it S-function. We have shown that traditional relevance models in search proposed in
information retrieval can be viewed as S-functions. We have proposed a new kernel method for
learning a robust relevance model as an S-function for search. The learned model can deal with
the term mismatch problem which traditional relevance models suffer from. The kernel method
employs a new kernel called S-kernel. An S-kernel is a kernel that can generate an RKHS which
is also a space of S-functions. We have provided a theoretical basis for constructing S-kernels.
Finally, we have shown that we can apply our method to learn a Robust BM25 model to deal with
term mismatch in search.

There are several directions for future research from the current work:

1447

WU, XU, LI AND OYAMA

1. S-function as generalization of kernel: In this paper, we give a formal definition of S-function
and show that it is related to a positive semi-definite kernel. S-function is also similar to the
asymmetric kernel defined by Koide and Yamashita (2006). To make S-function a general-
ization of a positive semi-definite kernel, there are still some open questions that we need to
answer. For example, what is a necessary and sufficient condition for a two-argument func-
tion over two spaces to be an S-function? Is there a theorem like the Mercer theorem for
S-function?

2. S-kernel: We define two families of S-kernels in this paper, that is, to give two sufficient condi-
tions for a positive semi-definite kernel to be an S-kernel. It is still an open question: what is
a necessary and sufficient condition for a positive semi-definite kernel to be an S-kernel?

3. Similarity function learning: We employ a kernel method to learn a similarity function for
search. An interesting research direction is to study the general problem of similarity func-
tion learning, particularly, the learning of a similarity function for pairs of objects from two
different spaces. The learning task can be applied to a wide range of applications and is
becoming a popular research topic.

4. Learning of S-Kernel: Our kernel method employs S-kernel which contains free parameters.
How to automatically learn the parameters from data, and thus a better S-function is also an
interesting issue.

Acknowledgments

We would like to thank Stephen Robertson for his suggestions on this work. We also acknowledge
Corinna Cortes, the anonymous reviewers, and Matt Callcut for their many valuable comments on
this paper.

Appendix A. Proof of Theorem 4

Theorem 4 Given two Mercer kernels kX : X ×X → R and kY : Y ×Y → R, for any S-function
g(x,y) and {ci}∞i=0 ⊂ R+, kP defined below is an S-kernel.

 kP((x,y),(x
′,y′)) =

∞

∑
i=0

ci ·g(x,y)
(
kX(x,x

′)kY (y,y
′)
)i
g(x′,y′),

where the convergence radius of ∑∞
i=0 ciξ

i is R, |kX(x,x′)|<
√
R, |kY (y,y′)|<

√
R, for any x,x′,y,y′.

According to Definition 3, to prove Theorem 4, we first need to prove that kP((x,y),(x′,y′)) is
a positive semi-definite kernel. Note that g(x,y)g(x′,y′) is a positive semi-definite kernel, since it is
symmetric and ∀{α}ni=1,{(xi,yi)}ni=1, ∑n

i, j=1αiα jg(xi,yi)g(x j,y j) = (∑n
i=1αig(xi,yi))

2 ≥ 0. More-

over, for any i ∈ Z+, ci ∈ R+, ci (kX(x,x′)kY (y,y′))
i is also a positive semi-definite kernel. Hence,

cig(x,y)(kX(x,x′)kY (y,y′))
i g(x′,y′) is a positive semi-definite kernel. Since the summation of posi-

tive semi-definite kernels is also a positive semi-definite kernel, we conclude that kP((x,y),(x′,y′))
is a positive semi-definite kernel.

1448

LEARNING A ROBUST RELEVANCE MODEL FOR SEARCH USING KERNEL METHODS

Second, we need to prove that all elements in the reproducing kernel Hilbert space KP generated
by kP are S-functions. We need two lemmas:

Lemma 6 Suppose that g(x,y) is an S-function, and kX and kY are Mercer kernels. Given any
finite example set {(x j,y j)}Nj=1 ⊂ X ×Y , and any {α j}Nj=1 ⊂ R, ∑N

j=1α j kP((x,y),(x j,y j)) is an
S-function.

Proof

N

∑
j=1

α j kP((x,y),(x j,y j)) =
N

∑
j=1

α jg(x,y)
∞

∑
i=0

ci (kX(x,x j)kY (y,y j))
i g(x j,y j)

= g(x,y)
N

∑
j=1

α j ̃kP((x,y),(x j,y j)),

where

 ̃kP((x,y),(x j,y j)) =
∞

∑
i=0

ci (kX(x,x j)kY (y,y j))
i g(x j,y j).

Since g(x,y) is an S-function, according to Lemma 2, to prove ∑N
j=1α j kP((x,y),(x j,y j)) is an

S-function, we only need to show that ∑N
j=1α j ̃kP((x,y),(x j,y j)) is an S-function.

For any i � 0, i ∈ Z+, since
√
cikiX(x,x

′) and
√
cikiY (y,y

′) are both Mercer kernels, we obtain

√
cik

i
X(x,x

′) = 〈ψiX(x),ψiX(x′)〉H i
X

and √
cik

i
Y (y,y

′) = 〈ψiY (y),ψiY (y′)〉H i
Y
,

where ψiX(·) : X → H i
X and ψiY (·) : Y → H i

Y are feature mappings, and H i
X and H i

Y are Hilbert
spaces with respect to ψiX and ψiY , respectively.

Let Hi = H i
X , ϕiX(x) = ψiX(x), and ϕiYN(y) = ∑N

j=1α jg(x j,y j)ψiX(x j)ψ
i
Y
�
(y j)ψiY (y). Note that

ϕiYN = ΓiNψ
i
Y , where ΓiN =∑N

j=1α jg(x j,y j)ψiX(x j)ψ
i
Y
�
(y j) is a linear operator from H i

Y to H i
X =Hi.

Thus, we have
N

∑
j=1

α jci(kX(x,x j)kY (y,y j))
ig(x j,y j) = 〈ϕiX(x),ϕiYN(y)〉Hi

.

Let H =H0 ×H1 × . . .Hk× . . .,

ϕX :X →H

x → (ϕ0
X(x),ϕ

1
X(x), . . . ,ϕ

k
X(x), . . .),

and

ϕYN :Y →H

y → (ϕ0
YN(y),ϕ

1
YN(y), . . . ,ϕ

k
YN(y), . . .),

1449

WU, XU, LI AND OYAMA

we have

N

∑
j=1

α j ̃kP((x,y),(x j,y j)) =
N

∑
j=1

α j

∞

∑
i=0

ci(kX(x,x j)kY (y,y j))
ig(x j,y j)

=
∞

∑
i=0

N

∑
j=1

α jci(kX(x,x j)kY (y,y j))
ig(x j,y j)

=
∞

∑
i=0

〈ϕiX(x),ϕiYN(y)〉Hi

= 〈ϕX(x),ϕYN(y)〉H ,

where the inner product in H is naturally defined as ∑∞
i=0〈·, ·〉Hi

. Note that ∑∞
i=0〈·, ·〉Hi

can be de-
fined only when (z0, . . . ,zk, . . .) ∈H ,∑∞

i=0〈zi,zi〉Hi
<∞. Obviously, for any x ∈ X and y ∈ Y , ϕX(x)

and ϕYN(y) satisfy this condition.

Lemma 7 Given any two positive semi-definite kernels kX : X × X → R and kY : Y × Y → R.
Suppose ψY : Y →HY is the feature mapping of kY (·, ·). HY is a Hilbert space endowed with inner
product 〈·, ·〉HY

. Given any sets {xi}Ni=1 ⊂ X and {yi}Ni=1 ⊂ Y , for an arbitrary z∈HY , the following
matrix inequality holds:(

kX(xi,x j)〈ψY (yi),z〉HY
〈ψY (y j),z〉HY

)
N×N �

(
kX(xi,x j)kY (yi,y j)〈z,z〉HY

)
N×N .

Proof Since kX(·, ·) is a positive semi-definite kernel, following the conclusion given in Proposition
4 by Hofmann et al. (2008), we only need to prove(

kY (yi,y j)〈z,z〉HY
−〈ψY (yi),z〉HY

〈ψY (y j),z〉HY

)
N×N

is positive semi-definite, which means given any {αi}Ni=1 ⊂ R, we need to prove

N

∑
i, j=1

αiα j
(
kY (yi,y j)〈z,z〉HY

−〈ψY (yi),z〉HY
〈ψY (y j),z〉HY

)
� 0.

Since

N

∑
i, j=1

αiα jkY (yi,y j)〈z,z〉HY
=

N

∑
i, j=1

αiα j〈ψY (yi),ψY (y j)〉HY
〈z,z〉HY

=

〈
N

∑
i=1

αiψY (yi),
N

∑
i=1

αiψY (yi)

〉
HY

〈z,z〉HY
,

and

N

∑
i, j=1

αiα j〈ψY (yi),z〉HY
〈ψY (y j),z〉HY

=

(
〈
N

∑
i=1

αiψY (yi),z〉HY

)2

,

according to the Cauchy inequality, we reach the conclusion.

1450

LEARNING A ROBUST RELEVANCE MODEL FOR SEARCH USING KERNEL METHODS

With Lemma 6 and Lemma 7, we can complete the proof of Theorem 4:

Proof Given a function k(x,y) in KP, there is a sequence {kN(x,y)} in KP such that

kN(x,y) =
N

∑
j=1

α j kP((x,y),(x j,y j))

=
N

∑
j=1

α jg(x,y)
∞

∑
i=0

ci (kX(x,x j)kY (y,y j))
i g(x j,y j)

= g(x,y)
N

∑
j=1

α j ̃kP((x,y),(x j,y j));

k(x,y) = lim
N→∞

kN(x,y),

where ̃kP((x,y),(x j,y j)) = ∑∞
i=0 ci (kX(x,x j)kY (y,y j))

i g(x j,y j).

We try to prove that k(x,y) is an S-function. Let k̃N(x,y) = ∑N
j=1α j ̃kP((x,y),(x j,y j)), k(x,y) =

limN→∞ kN(x,y) = limN→∞ k̃N(x,y)g(x,y) = k̃(x,y)g(x,y), where k̃(x,y) = limN→∞ k̃N(x,y).

According to Lemma 2, we only need to prove that k̃(x,y) is an S-function. From the proof
of Lemma 6, we know k̃N(x,y) = 〈ϕX(x),ϕYN(y)〉H , where H is a Hilbert space determined by
{√cikiX}∞i=0.

ϕYN(y) = (ϕ0
YN(y),ϕ

1
YN(y), . . . ,ϕ

k
YN(y), . . .),

and we define HY =H 0
Y × . . .H k

Y × . . ., HX =H 0
X × . . .H k

X × . . ., and

ΓN :HY →HX

z= (z0, . . . ,zk, . . .) → ΓN(z) = (Γ0
Nz0, . . . ,Γ

k
Nzk, . . .),

where H i
X and H i

Y are the Hilbert spaces with respect to feature mappings ψiX(·) and ψiY (·) de-
fined by Mercer kernels

√
cikiX and

√
cikiY , respectively, 〈·, ·〉H i

Y
is the inner product defined in H i

Y ,

and ΓkNzk = ∑N
j=1α jg(x j,y j)ψkX(x j)〈ψkY (y j),zk〉H k

Y
. The inner products for HX = H 0

X × . . .H k
X × . . .

and HY = H 0
Y × . . .H k

Y × . . . are naturally defined as ∑∞
i=0〈·, ·〉H i

X
and ∑∞

i=0〈·, ·〉H i
Y
, respectively.

Note that to make the inner products well defined, we require that input (z0, . . . ,zk, . . .) satisfies
∑∞
i=0〈zi,zi〉H i

Y
< ∞. From the following proof, we will see that this condition will guarantee that

∑∞
i=0〈ΓiNzi,ΓiNzi〉H i

X
< ∞. Thus, ΓN is well defined.

Then the key point we need to prove is that {ΓN} is a Cauchy sequence. ∀z ∈HY , ||z||HY
< ∞,

‖ ΓN(z) ‖2
HX

=
∞

∑
i=0

N

∑
k, j=1

αkα jg(xk,yk)g(x j,y j)
√
cik

i
X(xk,x j)〈ψiY (yk),zi〉H i

Y
〈ψiY (y j),zi〉H i

Y
.

1451

WU, XU, LI AND OYAMA

Using the conclusion given by Lemma 7, we have

∞

∑
i=0

N

∑
k, j=1

αkα jg(xk,yk)g(x j,y j)
√
cik

i
X(xk,x j)〈ψiY (yk),zi〉H i

Y
〈ψiY (y j),zi〉H i

Y

�

∞

∑
i=0

N

∑
k, j=1

αkα jg(xk,yk)g(x j,y j)ci(kX(xk,x j)kY (yk,y j))
i〈zi,zi〉H i

Y

�

(
∞

∑
i=0

N

∑
k, j=1

αkα jg(xk,yk)g(x j,y j)ci(kX(xk,x j)kY (yk,y j))
i

)(
∞

∑
i=0

〈zi,zi〉H i
Y

)
.

Thus,

‖ ΓN(z) ‖2
HX
�

∞

∑
i=0

N

∑
k, j=1

αkα jg(xk,yk)g(x j,y j)ci(kX(xk,x j)kY (yk,y j))
i ‖ z ‖2

HY
.

Therefore,

‖ ΓN ‖2
�

∞

∑
i=0

N

∑
k, j=1

αkα jg(xk,yk)g(x j,y j)ci(kX(xk,x j)kY (yk,y j))
i

=
N

∑
k, j=1

αkα j kP((xk,yk),(x j,y j)).

Note that ∑N
k, j=1αkα j kP((xk,yk),(x j,y j)) is just the square of the norm of kN(x,y) in KP. From

the fact that {kN(x,y)} is a Cauchy sequence in KP, we know that {ΓN} is also a Cauchy sequence.
Then there is a linear operator Γ which satisfies Γ = limN→∞ΓN . The convergence is in the norm.
Thus, for every (x,y) ∈ X ×Y , limN→∞ k̃N(x,y) = 〈ϕX(x),ϕY (y)〉H = k̃(x,y), where ϕY is given by

(Γ0ψ0
Y , . . . ,Γ

kψkY , . . .).

Appendix B. Proof of Theorem 5

Theorem 5 Given two finite sets of Mercer kernels KX =
{
kXi (x,x

′)
}n
i=1 and KY =

{
kYi (y,y

′)
}n
i=1.

For any S-function g(x,y) and {ci}ni=1 ⊂ R+, kM defined below is an S-kernel.

 kM((x,y),(x
′,y′)) =

n

∑
i=1

ci ·g(x,y)kXi (x,x′)kYi (y,y′)g(x′,y′).

First, since ∀i, cig(x,y)kXi (x,x′)kYi (y,y′)g(x′,y′) is a positive semi-definite kernel, and the sum-
mation of positive semi-definite kernels is also a positive semi-definite kernel, we know that
 kM((x,y),(x′,y′)) is a positive semi-definite kernel on (X ×Y)× (X ×Y).

Second, we need one more lemma to prove that all elements in the reproducing kernel Hilbert
space KM generated by kM are S-functions:

1452

LEARNING A ROBUST RELEVANCE MODEL FOR SEARCH USING KERNEL METHODS

Lemma 8 Suppose that g(x,y) is an S-function, and kX and kY are Mercer kernels. Given any
{(x j,y j)}Nj=1 ⊂ X ×Y , and any {α j}Nj=1 ⊂ R, ∑N

j=1α j kM((x,y),(xi,yi)) is an S-function.

Proof

N

∑
j=1

α j kM((x,y),(x j,y j)) =
N

∑
j=1

α jg(x,y)
n

∑
i=1

cik
X
i (x,x j)k

Y
i (y,y j)g(x j,y j)

= g(x,y)
N

∑
j=1

α j ̃kM((x,y),(x j,y j)).

Since g(x,y) is an S-function, according to Lemma 2, to prove ∑N
j=1α j kM((x,y),(x j,y j)) is an S-

function, we only have to prove that ∑N
j=1α j ̃kM((x,y),(x j,y j)) is an S-function.

For any 0 � i � n, i ∈ Z, since
√
cikXi (x,x

′) and
√
cikYi (y,y

′) are both Mercer kernels, we obtain

√
cik

X
i (x,x

′) = 〈ψiX(x),ψiX(x′)〉H i
X
,

√
cik

Y
i (y,y

′) = 〈ψiY (y),ψiY (y′)〉H i
Y
,

where ψiX(·) : X → H i
X and ψiY (·) : Y → H i

Y are feature mappings, and H i
X and H i

Y are Hilbert
spaces with respect to ψiX and ψiY , respectively.

Let Hi = H i
X , ϕiX(x) = ψiX(x), and ϕiYN(y) = ∑N

j=1α jg(x j,y j)ψiX(x j)ψ
i
Y
�
(y j)ψiY (y). Note that

ϕiYN = ΓiNψ
i
Y , where ΓiN =∑N

j=1α jg(x j,y j)ψiX(x j)ψ
i
Y
�
(y j) is a linear operator from H i

Y to H i
X =Hi.

Thus, we have
N

∑
j=1

α jcik
X
i (x,x j)k

Y
i (y,y j)g(x j,y j) = 〈ϕiX(x),ϕiYN(y)〉Hi

.

Let H =H1 ×H2 × . . .Hn,

ϕX(x) :X →H

x → (ϕ1
X(x),ϕ

2
X(x), . . . ,ϕ

n
X(x)),

and

ϕYN(y) :Y →H

y → (ϕ1
YN(y),ϕ

2
YN(y), . . . ,ϕ

n
YN(y)),

we have

N

∑
j=1

α j ̃kM((x,y),(x j,y j)) =
N

∑
j=1

α j

n

∑
i=1

cik
X
i (x,x j)k

Y
i (y,y j)g(x j,y j)

=
n

∑
i=1

N

∑
j=1

α jcik
X
i (x,x j)k

Y
i (y,y j)g(x j,y j)

=
n

∑
i=1

〈ϕiX(x),ϕiYN(y)〉Hi

= 〈ϕX(x),ϕYN(y)〉H ,

where the inner product in H is naturally defined as ∑n
i=1〈·, ·〉Hi

.

1453

WU, XU, LI AND OYAMA

We prove that kM is an S-kernel on the basis of Lemma 8 and Lemma 7:
Proof Given a function k(x,y) in KM, there is a sequence {kN(x,y)} in KM such that

kN(x,y) =
N

∑
j=1

α j kM((x,y),(x j,y j))

=
N

∑
j=1

α jg(x,y)
n

∑
i=1

cik
X
i (x,x j)k

Y
i (y,y j)g(x j,y j)

= g(x,y)
N

∑
j=1

α j ̃kM((x,y),(x j,y j));

k(x,y) = lim
N→∞

kN(x,y).

We try to prove that k(x,y) is an S-function. Let k̃N(x,y) = ∑N
j=1α j ̃kM((x,y),(x j,y j)), k(x,y) =

limN→∞ kN(x,y) = limN→∞ k̃N(x,y)g(x,y) = k̃(x,y)g(x,y), where k̃(x,y) = limN→∞ k̃N(x,y).
According to Lemma 2, we only have to prove that k̃(x,y) is an S-function. From Lemma 8, we

know k̃N(x,y) = 〈ϕX(x),ϕYN(y)〉H , where H = H1 ×H2 × . . .Hn is a Hilbert space and Hi is the
Hilbert space of the feature mapping of

√
cikXi (·, ·).

ϕYN(y) = (ϕ1
NY (y),ϕ

2
NY (y), . . . ,ϕ

n
NY (y)),

and we define HY =H 1
Y × . . .H n

Y , HX =H 1
X × . . .H n

X , and

ΓN :HY →HX

z= (z1, . . . ,zn) → ΓN(z) = (Γ1
Nz1, . . . ,ΓnNzn),

where H i
X and H i

Y are the Hilbert spaces with respect to feature mappings ψiX(·) and ψiY (·) of
Mercer kernels

√
cikXi and

√
cikYi , respectively, 〈·, ·〉H i

Y
is the inner product defined in H i

Y , and

ΓiN(zi) = ∑N
j=1α jg(x j,y j)ψiX(x j)〈ψiY (y j),zi〉H i

Y
.

Then the key point we need to prove is that {ΓN} is a Cauchy sequence. ∀z ∈HY ,

‖ ΓN(z) ‖2
HX

=
n

∑
i=1

N

∑
k, j=1

αkα jg(xk,yk)g(x j,y j)
√
cik

X
i (xk,x j)〈ψiY (yk),zi〉H i

Y
〈ψiY (y j),zi〉H i

Y
.

Using the conclusion given by Lemma 7, we have

n

∑
i=1

N

∑
k, j=1

αkα jg(xk,yk)g(x j,y j)
√
cik

X
i (xk,x j)〈ψiY (yk),zi〉H i

Y
〈ψiY (y j),zi〉H i

Y

�

n

∑
i=1

N

∑
k, j=1

αkα jg(xk,yk)g(x j,y j)cik
X
i (xk,x j)k

Y
i (yk,y j)〈zi,zi〉H i

Y

�

(
n

∑
i=1

N

∑
k, j=1

αkα jg(xk,yk)g(x j,y j)cik
X
i (xk,x j)k

Y
i (yk,y j)

)(
n

∑
i=1

〈zi,zi〉H i
Y

)
.

1454

LEARNING A ROBUST RELEVANCE MODEL FOR SEARCH USING KERNEL METHODS

Thus,

‖ ΓN(z) ‖2
HX
�

n

∑
i=1

N

∑
k, j=1

αkα jg(xk,yk)g(x j,y j)cik
X
i (xk,x j)k

Y
i (yk,y j) ‖ z ‖2

HY
.

Therefore,

‖ ΓN ‖2
�

n

∑
i=1

N

∑
k, j=1

αkα jg(xk,yk)g(x j,y j)cik
X
i (xk,x j)k

Y
i (yk,y j) =

N

∑
k, j=1

αkα j kM((xk,yk),(x j,y j)).

Note that ∑N
k, j=1αkα j kM((xk,yk),(x j,y j)) is just the square of the norm of kN(x,y) in KM. From

the fact that {kN(x,y)} is a Cauchy sequence in KM, we know that {ΓN} is also a Cauchy sequence.
Then there is a linear operator Γ which satisfies Γ = limN→∞ΓN . The convergence is in the norm.
Thus, for every (x,y) ∈ X ×Y , k̃(x,y) = limN→∞ k̃N(x,y) = 〈ϕX(x),ϕY (y)〉H , where ϕY is given by

(Γ1ψ1
Y , . . . ,Γ

nψnY).

References

J. Abernethy, F. Bach, T. Evgeniou, and J.P. Vert. A new approach to collaborative filtering: Oper-
ator estimation with spectral regularization. JMLR ’09, 10:803–826, 2009.

S. Agarwal and P. Niyogi. Stability and generalization of bipartite ranking algorithms. In COLT’05,
pages 32–47, 2005.

E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by incorporating user behavior
information. In SIGIR ’06, pages 19–26, 2006.

F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In NIPS’08,
pages 105–112, 2008.

F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO algo-
rithm. In ICML’04, 2004.

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering. In ICML ’04, pages
65–72, 2004.

D. Beeferman and A. Berger. Agglomerative clustering of a search engine query log. In KDD’00,
pages 407–416, 2000.

A. Broder, P. Ciccolo, E. Gabrilovich, V. Josifovski, D. Metzler, L. Riedel, and J. Yuan. Online
expansion of rare queries for sponsored search. In WWW ’09, pages 511–520, 2009.

C. Burges, R. Ragno, and Q. Le. Learning to rank with nonsmooth cost functions. In NIPS’06,
pages 395–402. 2006.

1455

WU, XU, LI AND OYAMA

Y. Cao, J. Xu, T.Y. Liu, H. Li, Y. Huang, and H.W. Hon. Adapting ranking SVM to document
retrieval. In SIGIR ’06, pages 186–193, 2006.

Z. Cao, T. Qin, T.Y. Liu, M.F. Tsai, and H. Li. Learning to rank: From pairwise approach to listwise
approach. In ICML ’07, pages 129–136, 2007.

C. Cortes. Invited talk: Can learning kernels help performance? In ICML’09, page 161, 2009.

T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans. on Information Theory,
13(1):21–27, 1967.

K. Crammer and Y. Singer. Pranking with ranking. In NIPS’01, pages 641–647, 2001.

N. Craswell and M. Szummer. Random walks on the click graph. In SIGIR’ 07, page 246, 2007.

H. Cui, J. Wen, J. Nie, and W. Ma. Query expansion by mining user logs. IEEE Trans. on Knowl.
and Data Eng., 15(4):829–839, 2003.

S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by latent semantic
analysis. JASIS, 41:391–407, 1990.

S. Dudani. The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems, Man,
and Cybernetics, 6(4):325–327, April 1976.

Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining
preferences. JMLR’03, 4:933–969, 2003.

T. Gartner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient alternatives.
In COLT ’03, page 129, 2003.

D. Grangier and S. Bengio. A discriminative kernel-based model to rank images from text queries.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(8):1371–1384, 2008.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, Com-
puter Science Dept., UC Santa Cruz., 1999.

R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression.
NIPS’99, pages 115–132, 1999.

T. Hofmann. Probabilistic latent semantic indexing. In SIGIR’ 99, pages 50–57, 1999.

T. Hofmann, B. Scholkopf, and A.J. Smola. Kernel methods in machine learning. Annals of Statis-
tics, 36(3):1171, 2008.

K. Jarvelin and J. Kekalainen. Ir evaluation methods for retrieving highly relevant documents. In
SIGIR’ 00, pages 41–48, 2000.

T. Joachims. Optimizing search engines using clickthrough data. In KDD ’02, pages 133–142,
2002.

H. Kashima, K. Tsuda, and A. Inokuchi. Kernels for graphs. Kernel Methods in Computational
Biology, pages 155–170, 2004.

1456

LEARNING A ROBUST RELEVANCE MODEL FOR SEARCH USING KERNEL METHODS

N. Koide and Y. Yamashita. Asymmetric kernel method and its application to Fisher’s discriminant.
In ICPR ’06, pages 820–824, 2006.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning the kernel
matrix with semi-definite programming. In ICML’02, pages 323–330, 2002.

T.Y. Liu. Learning to rank for information retrieval. Found. Trends Inf. Retr., 3(3):225–331, 2009.
ISSN 1554-0669.

C. Micchelli and M. Pontil. Learning the kernel function via regularization. JMLR’05, 6:1099–
1125, 2005.

M. Mitra, A. Singhal, and C. Buckley. Improving automatic query expansion. In SIGIR ’98, pages
206–214, 1998.

C.S. Ong, A.J. Smola, and R.C. Williamson. Learning the kernel with hyperkernels. JMLR ’05, 6:
1043–1071, 2005.

J.M. Ponte and W.B. Croft. A language modeling approach to information retrieval. In SIGIR’ 98,
pages 275–281, 1998.

S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford. Okapi at trec-3. In
TREC, 1994.

C. Rudin, C. Cortes, M. Mohri, and R. E. Schapire. Margin-based ranking meets boosting in the
middle. In COLT’05, pages 63–78, 2005.

G. Salton and C. Buckley. Improving retrieval performance by relevance feedback. Readings in
Information Retrieval, pages 355–364, 1997.

G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New
York, NY, USA, 1986. ISBN 0070544840.

B. Schölkopf and A.J. Smola. Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. the MIT Press, 2002.

V.N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc., New
York, NY, USA, 1995. ISBN 0-387-94559-8.

M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. In ICML’09, page
134, 2009.

S.V.N. Vishwanathan and A.J. Smola. Binet-cauchy kernels. In NIPS ’04, 2004.

C. Watkins. Dynamic alignment kernels. In NIPS ’99, 1999.

J.R. Wen, J.Y. Nie, and H.J. Zhang. Query clustering using user logs. ACM Trans. Inf. Syst., 20(1):
59–81, 2002. ISSN 1046-8188.

J. Xu and W.B. Croft. Query expansion using local and global document analysis. In SIGIR ’96,
pages 4–11, 1996.

1457

WU, XU, LI AND OYAMA

J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval. In SIGIR’ 07, pages
391–398, 2007.

J. Xu, H. Li, and Z.L. Zhong. Relevance ranking using kernels. In AIRS ’10, 2010.

C.X. Zhai and J. Lafferty. A study of smoothing methods for language models applied to information
retrieval. ACM Trans. Inf. Syst., 22(2):179–214, 2004.

S.K. Zhou. Trace and determinant kernels between matrices. In NIPS ’04, 2004.

Z.M. Zhuang and S. Cucerzan. Re-ranking search results using query logs. In CIKM ’06, pages
860–861, 2006.

1458

Journal of Machine Learning Research 12 (2011) 1459-1500 Submitted 11/09; Revised 10/10; Published 5/11

Computationally Efficient Convolved Multiple Output Gaussian
Processes

Mauricio A. Álvarez∗ MALVAREZ@UTP.EDU.CO
School of Computer Science
University of Manchester
Manchester, UK, M13 9PL

Neil D. Lawrence† N.LAWRENCE@SHEFFIELD.AC.UK
School of Computer Science
University of Sheffield
Sheffield, S1 4DP

Editor: Carl Edward Rasmussen

Abstract
Recently there has been an increasing interest in regression methods that deal with multiple out-
puts. This has been motivated partly by frameworks like multitask learning, multisensor networks
or structured output data. From a Gaussian processes perspective, the problem reduces to spec-
ifying an appropriate covariance function that, whilst being positive semi-definite, captures the
dependencies between all the data points and across all the outputs. One approach to account for
non-trivial correlations between outputs employs convolution processes. Under a latent function
interpretation of the convolution transform we establish dependencies between output variables.
The main drawbacks of this approach are the associated computational and storage demands. In
this paper we address these issues. We present different efficient approximations for dependent out-
put Gaussian processes constructed through the convolution formalism. We exploit the conditional
independencies present naturally in the model. This leads to a form of the covariance similar in
spirit to the so called PITC and FITC approximations for a single output. We show experimental
results with synthetic and real data, in particular, we show results in school exams score prediction,
pollution prediction and gene expression data.

Keywords: Gaussian processes, convolution processes, efficient approximations, multitask learn-
ing, structured outputs, multivariate processes

1. Introduction

Accounting for dependencies between model outputs has important applications in several areas. In
sensor networks, for example, missing signals from failing sensors may be predicted due to correla-
tions with signals acquired from other sensors (Osborne et al., 2008). In geostatistics, prediction of
the concentration of heavy pollutant metals (for example, Copper), that are expensive to measure,
can be done using inexpensive and oversampled variables (for example, pH) as a proxy (Goovaerts,
1997). Within the machine learning community this approach is sometimes known as multitask
learning. The idea in multitask learning is that information shared between the tasks leads to im-

∗. Also in Faculty of Engineering, Universidad Tecnológica de Pereira, Pereira, Colombia, 660003.
†. Also at the Sheffield Institute for Translational Neuroscience, Sheffield, UK, S10 2HQ.

c©2011 Mauricio A. Álvarez and Neil D. Lawrence.

ÁLVAREZ AND LAWRENCE

proved performance in comparison to learning the same tasks individually (Caruana, 1997; Bonilla
et al., 2008).

In this paper, we consider the problem of modeling related outputs in a Gaussian process (GP).
A Gaussian process specifies a prior distribution over functions. When using a GP for multiple
related outputs, our purpose is to develop a prior that expresses correlation between the outputs.
This information is encoded in the covariance function. The class of valid covariance functions is
the same as the class of reproducing kernels.1 Such kernel functions for single outputs are widely
studied in machine learning (see, for example, Rasmussen and Williams, 2006). More recently the
community has begun to turn its attention to covariance functions for multiple outputs. One of the
paradigms that has been considered (Teh et al., 2005; Osborne et al., 2008; Bonilla et al., 2008)
is known in the geostatistics literature as the linear model of coregionalization (LMC) (Journel
and Huijbregts, 1978; Goovaerts, 1997). In the LMC, the covariance function is expressed as the
sum of Kronecker products between coregionalization matrices and a set of underlying covariance
functions. The correlations across the outputs are expressed in the coregionalization matrices, while
the underlying covariance functions express the correlation between different data points.

Multitask learning has also been approached from the perspective of regularization theory (Ev-
geniou and Pontil, 2004; Evgeniou et al., 2005). These multitask kernels are obtained as generaliza-
tions of the regularization theory to vector-valued functions. They can also be seen as examples of
LMCs applied to linear transformations of the input space.

In the linear model of coregionalization each output can be thought of as an instantaneous mix-
ing of the underlying signals/processes. An alternative approach to constructing covariance func-
tions for multiple outputs employs convolution processes (CP). To obtain a CP in the single output
case, the output of a given process is convolved with a smoothing kernel function. For example,
a white noise process may be convolved with a smoothing kernel to obtain a covariance function
(Barry and Ver Hoef, 1996; Ver Hoef and Barry, 1998). Ver Hoef and Barry (1998) and then Hig-
don (2002) noted that if a single input process was convolved with different smoothing kernels
to produce different outputs, then correlation between the outputs could be expressed. This idea
was introduced to the machine learning audience by Boyle and Frean (2005). We can think of this
approach to generating multiple output covariance functions as a non-instantaneous mixing of the
base processes.

The convolution process framework is an elegant way for constructing dependent output pro-
cesses. However, it comes at the price of having to consider the full covariance function of the
joint GP. For D output dimensions and N data points the covariance matrix scales as DN lead-
ing to O(N3D3) computational complexity and O(N2D2) storage. We are interested in exploiting
the richer class of covariance structures allowed by the CP framework, but reducing the additional
computational overhead they imply.

In this paper, we propose different efficient approximations for the full covariance matrix in-
volved in the multiple output convolution process. We exploit the fact that, in the convolution
framework, each of the outputs is conditional independent of all others if the input process is fully
observed. This leads to an approximation that turns out to be strongly related to the partially in-
dependent training conditional (PITC) (Quiñonero-Candela and Rasmussen, 2005) approximation
for a single output GP. This analogy inspires us to consider a further conditional independence

1. In this paper we will use kernel to refer to both reproducing kernels and smoothing kernels. Reproducing kernels are
those used in machine learning that conform to Mercer’s theorem. Smoothing kernels are kernel functions which are
convolved with a signal to create a smoothed version of that signal.

1460

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

assumption across data points. This leads to an approximation which shares the form of the fully in-
dependent training conditional (FITC) approximation (Snelson and Ghahramani, 2006; Quiñonero-
Candela and Rasmussen, 2005). This reduces computational complexity to O(NDK2) and storage
to O(NDK) with K representing a user specified value for the number of inducing points in the
approximation.

The rest of the paper is organized as follows. First we give a more detailed review of related
work, with a particular focus on relating multiple output work in machine learning to other fields.
Despite the fact that there are several other approaches to multitask learning (see for example Caru-
ana, 1997, Heskes, 2000, Bakker and Heskes, 2003, Xue et al., 2007 and references therein), in this
paper, we focus our attention to those that address the problem of constructing the covariance or
kernel function for multiple outputs, so that it can be employed, for example, together with Gaus-
sian process prediction. Then we review the convolution process approach in Section 3 and Section
4. We demonstrate how our conditional independence assumptions can be used to reduce the com-
putational load of inference in Section 5. Experimental results are shown in Section 6 and finally
some discussion and conclusions are presented in Section 7.

2. Related Work

In geostatistics, multiple output models are used to model the co-occurrence of minerals or pollu-
tants in a spatial field. Many of the ideas for constructing covariance functions for multiple outputs
have first appeared within the geostatistical literature, where they are known as linear models of
coregionalization (LMC). We present the LMC and then review how several models proposed in the
machine learning literature can be seen as special cases of the LMC.

2.1 The Linear Model of Coregionalization

The term linear model of coregionalization refers to models in which the outputs are expressed as
linear combinations of independent random functions. If the independent random functions are
Gaussian processes then the resulting model will also be a Gaussian process with a positive semi-
definite covariance function. Consider a set of D output functions {fd(x)}Dd=1 where x ∈ !p is the
input domain. In a LMC each output function, fd(x), is expressed as (Journel and Huijbregts, 1978)

fd(x) =
Q∑

q=1

ad,quq(x). (1)

Under the GP interpretation of the LMC, the functions {uq(x)}Qq=1 are taken (without loss of gener-
ality) to be drawn from a zero-mean GP with cov[uq(x),uq′(x′)] = kq(x,x′) if q = q′ and zero oth-
erwise. Some of these base processes might have the same covariance, this is kq(x,x′) = kq′(x,x′),
but they would still be independently sampled. We can group together the base processes that share
latent functions (Journel and Huijbregts, 1978; Goovaerts, 1997), allowing us to express a given
output as

fd(x) =
Q∑

q=1

Rq∑
i=1

aid,qu
i
q(x), (2)

1461

ÁLVAREZ AND LAWRENCE

where the functions
{
uiq(x)

}Rq

i=1
, i = 1, . . . ,Rq, represent the latent functions that share the same

covariance function kq(x,x′). There are nowQ groups of functions, each member of a group shares
the same covariance, but is sampled independently.

In geostatistics it is common to simplify the analysis of these models by assuming that the pro-
cesses fd(x) are stationary and ergodic (Cressie, 1993). The stationarity and ergodicity conditions
are introduced so that the prediction stage can be realized through an optimal linear predictor using
a single realization of the process (Cressie, 1993). Such linear predictors receive the general name
of cokriging. The cross covariance between any two functions fd(x) and fd′(x) is given in terms of
the covariance functions for uiq(x)

cov[fd(x),fd′(x
′)] =

Q∑
q=1

Q∑
q′=1

Rq∑
i=1

Rq∑
i′=1

aid,qa
i′

d′,q′ cov[u
i
q(x),u

i′

q′(x
′)].

Because of the independence of the latent functions uiq(x), the above expression can be reduced to

cov[fd(x),fd′(x
′)] =

Q∑
q=1

Rq∑
i=1

aid,qa
i
d′,qkq(x,x

′) =

Q∑
q=1

bqd,d′kq(x,x
′), (3)

with bqd,d′ =
∑Rq

i=1a
i
d,qa

i
d′,q.

For a number N of input vectors, let fd be the vector of values from the output d evaluated at
X= {xn}Nn=1. If each output has the same set of inputs the system is known as isotopic. In general,

we can allow each output to be associated with a different set of inputs, X(d) = {x(d)n }Nd

n=1, this is
known as heterotopic.2 For notational simplicity, we restrict ourselves to the isotopic case, but our
analysis can also be completed for heterotopic setups. The covariance matrix for fd is obtained
expressing Equation (3) as

cov[fd, fd′] =
Q∑

q=1

Rq∑
i=1

aid,qa
i
d′,qKq =

Q∑
q=1

bqd,d′Kq,

where Kq ∈ !N×N has entries given by computing kq(x,x′) for all combinations from X. We now
define f to be a stacked version of the outputs so that f = [f�1 , . . . , f

�
D]

�. We can now write the
covariance matrix for the joint process over f as

Kf,f =
Q∑

q=1

AqA�
q ⊗Kq =

Q∑
q=1

Bq⊗Kq, (4)

where the symbol⊗ denotes the Kronecker product,Aq ∈!D×Rq has entries aid,q and Bq =AqA�
q ∈

!D×D has entries bqd,d′ and is known as the coregionalization matrix. The covariance matrix Kf,f
is positive semi-definite as long as the coregionalization matrices Bq are positive semi-definite and
kq(x,x′) is a valid covariance function. By definition, coregionalization matrices Bq fulfill the
positive semi-definiteness requirement. The covariance functions for the latent processes, kq(x,x′),
can simply be chosen from the wide variety of covariance functions (reproducing kernels) that are

2. These names come from geostatistics.

1462

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

used for the single output case. Examples include the squared exponential (sometimes called the
Gaussian kernel or RBF kernel) and the Matérn class of covariance functions (see Rasmussen and
Williams, 2006, Chapter 4).

The linear model of coregionalization represents the covariance function as a product of the
contributions of two covariance functions. One of the covariance functions models the dependence
between the functions independently of the input vector x, this is given by the coregionalization
matrix Bq, whilst the other covariance function models the input dependence independently of the
particular set of functions fd(x), this is the covariance function kq(x,x′).

We can understand the LMC by thinking of the functions having been generated as a two step
process. Firstly we sample a set of independent processes from the covariance functions given by
kq(x,x′), taking Rq independent samples for each kq(x,x′). We now have R =

∑Q
q=1Rq indepen-

dently sampled functions. These functions are instantaneously mixed3 in a linear fashion. In other
words the output functions are derived by application of a scaling and a rotation to an output space
of dimension D.

2.1.1 INTRINSIC COREGIONALIZATION MODEL

A simplified version of the LMC, known as the intrinsic coregionalization model (ICM) (Goovaerts,
1997), assumes that the elements bqd,d′ of the coregionalization matrix Bq can be written as b

q
d,d′ =

υd,d′bq. In other words, as a scaled version of the elements bq which do not depend on the particular
output functions fd(x). Using this form for b

q
d,d′ , Equation (3) can be expressed as

cov[fd(x),fd′(x
′)] =

Q∑
q=1

υd,d′bqkq(x,x
′) = υd,d′

Q∑
q=1

bqkq(x,x′).

The covariance matrix for f takes the form

Kf,f =Υ⊗K, (5)

where Υ ∈ !D×D, with entries υd,d′ , and K =
∑Q

q=1 bqKq is an equivalent valid covariance func-
tion.

The intrinsic coregionalization model can also be seen as a linear model of coregionalization
where we have Q= 1. In such case, Equation (4) takes the form

Kf,f = A1A�
1 ⊗K1 = B1⊗K1, (6)

where the coregionalization matrix B1 has elements b1d,d′ =
∑R1

i=1a
i
d,1a

i
d′,1. The value of R1 deter-

mines the rank of the matrix B1.
As pointed out by Goovaerts (1997), the ICM is much more restrictive than the LMC since it

assumes that each basic covariance kq(x,x′) contributes equally to the construction of the autoco-
variances and cross covariances for the outputs.

3. The term instantaneous mixing is taken from blind source separation. Of course, if the underlying processes are not
temporal but spatial, instantaneous is not being used in its original sense. However, it allows us to distinguish this
mixing from convolutional mixing.

1463

ÁLVAREZ AND LAWRENCE

2.1.2 LINEAR MODEL OF COREGIONALIZATION IN MACHINE LEARNING

Several of the approaches to multiple output learning in machine learning based on kernels can be
seen as examples of the linear model of coregionalization.

Semiparametric latent factor model. The semiparametric latent factor model (SLFM) proposed
by Teh et al. (2005) turns out to be a simplified version of Equation (4). In particular, if Rq = 1 (see
Equation 1), we can rewrite Equation (4) as

Kf,f =
Q∑

q=1

aqa�q ⊗Kq,

where aq ∈!D×1 with elements ad,q. With some algebraic manipulations that exploit the properties
of the Kronecker product4 we can write

Kf,f =
Q∑

q=1

(aq⊗ IN)Kq(a�q ⊗ IN) = (Ã⊗ IN)K̃(Ã�⊗ IN),

where IN is the N -dimensional identity matrix, Ã ∈ !D×Q is a matrix with columns aq and K̃ ∈
!QN×QN is a block diagonal matrix with blocks given by Kq.

The functions uq(x) are considered to be latent factors and the semiparametric name comes from
the fact that it is combining a nonparametric model, this is a Gaussian process, with a parametric
linear mixing of the functions uq(x). The kernel for each basic process q, kq(x,x′), is assumed to
be of Gaussian type with a different length scale per input dimension. For computational speed up
the informative vector machine (IVM) is employed (Lawrence et al., 2003).

Multi-task Gaussian processes. The intrinsic coregionalization model has been employed in
Bonilla et al. (2008) for multitask learning. We refer to this approach as multi-task Gaussian pro-
cesses (MTGP). The covariance matrix is expressed as Kf(x),f(x′) = Kf ⊗ k(x,x′), with f(x) =

[f1(x), . . . ,fD(x)]�, Kf being constrained positive semi-definite and k(x,x′) a covariance func-
tion over inputs. It can be noticed that this expression has is equal to the one in (5), when it is
evaluated for x,x′ ∈ X. In Bonilla et al. (2008), Kf (equal to Υ in Equation 5 or B1 in Equation
6) expresses the correlation between tasks or inter-task dependencies and it is represented through a
probabilistic principal component analysis (PPCA) model. In turn, the spectral factorization in the
PPCA model is replaced by an incomplete Cholesky decomposition to keep numerical stability, so
that Kf ≈ L̃L̃�, where L̃ ∈ !D×R1 . An application of MTGP for obtaining the inverse dynamics
of a robotic manipulator was presented in Chai et al. (2009).

It can be shown that if the outputs are considered to be noise-free, prediction using the intrinsic
coregionalization model under an isotopic data case is equivalent to independent prediction over
each output (Helterbrand and Cressie, 1994). This circumstance is also known as autokrigeability
(Wackernagel, 2003) and it can also be seen as the cancellation of inter-task transfer (Bonilla et al.,
2008).

Multi-output Gaussian processes. The intrinsic coregionalization model has been also used in
Osborne et al. (2008). MatrixΥ in Expression (5) is assumed to be of the spherical parametrisation
kind, Υ = diag(e)S�Sdiag(e), where e gives a description for the length scale of each output
variable and S is an upper triangular matrix whose i-th column is associated with particular spherical

4. See Brookes (2005) for a nice overview.

1464

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

coordinates of points in !i (for details see Osborne and Roberts, 2007, Section 3.4). Function
k(x,x′) is represented through a Mátern kernel, where different parametrisations of the covariance
allow the expression of periodic and non-periodic terms. Sparsification for this model is obtained
using an IVM style approach.

Multi-task kernels in regularization theory. Kernels for multiple outputs have also been studied
in the context of regularization theory. The approach is based mainly on the definition of kernels for
multitask learning provided in Evgeniou and Pontil (2004) and Evgeniou et al. (2005), derived based
on the theory of kernels for vector-valued functions. Let D = {1, . . . ,D}. According to Evgeniou
et al. (2005), the following lemma can be used to construct multitask kernels,

Lemma 1 IfG is a kernel on T ×T and, for every d∈D there are prescribed mappingsΦd :X →T
such that

kd,d′(x,x
′) = k((x,d),(x′,d′)) =G(Φd(x),Φd′(x

′)), x,x′ ∈ !p, d,d′ ∈ D,

then k(·) is a multitask or multioutput kernel.
A linear multitask kernel can be obtained if we set T = !m, Φd(x) = Cdx with Φd ∈ !m and
G :!m×!m →! as the polynomial kernelG(z,z′) = (z�z′)n with n= 1, leading to kd,d′(x,x′) =
x�C�

d Cd′x′. The lemma above can be seen as the result of applying kernel properties to the mapping
Φd(x) (see Genton, 2001, p. 2). Notice that this corresponds to a generalization of the semipara-
metric latent factor model where each output is expressed through its own basic process acting over
the linear transformation Cdx, this is, ud(Φd(x)) = ud(Cdx). In general, it can be obtained from
fd(x) =

∑D
q=1ad,quq(Φq(x)), where ad,q = 1 if d= q or zero, otherwise.

A more detailed analysis of the LMC and more connections with other methods in statistics and
machine learning can be found in Álvarez et al. (2011b).

3. Convolution Processes for Multiple Outputs

The approaches introduced above all involve some form of instantaneous mixing of a series of
independent processes to construct correlated processes. Instantaneous mixing has some limitations.
If we wanted to model two output processes in such a way that one process was a blurred version
of the other, we cannot achieve this through instantaneous mixing. We can achieve blurring through
convolving a base process with a smoothing kernel. If the base process is a Gaussian process, it turns
out that the convolved process is also a Gaussian process. We can therefore exploit convolutions
to construct covariance functions (Barry and Ver Hoef, 1996; Ver Hoef and Barry, 1998; Higdon,
1998, 2002). A recent review of several extensions of this approach for the single output case is
presented in Calder and Cressie (2007). Applications include the construction of nonstationary
covariances (Higdon, 1998; Higdon et al., 1998; Fuentes, 2002a,b; Paciorek and Schervish, 2004)
and spatiotemporal covariances (Wikle et al., 1998; Wikle, 2002, 2003).

Ver Hoef and Barry (1998) first, and Higdon (2002) later, suggested using convolutions to con-
struct multiple output covariance functions. The approach was introduced to the machine learn-
ing community by Boyle and Frean (2005). Consider again a set of D functions {fd(x)}Dd=1.
Now each function could be expressed through a convolution integral between a smoothing ker-
nel, {Gd(x)}Dd=1, and a latent function u(x),

fd(x) =
∫
X

Gd(x− z)u(z)dz. (7)

1465

ÁLVAREZ AND LAWRENCE

More generally, and in a similar way to the linear model of coregionalization, we can consider the
influence of more than one latent function, uiq(z), with q = 1, . . . ,Q and i= 1, . . . ,Rq to obtain

fd(x) =
Q∑

q=1

Rq∑
i=1

∫
X

Gi
d,q(x− z)uiq(z)dz.

As in the LMC, there areQ groups of functions, each member of the group has the same covariance
kq(x,x′), but is sampled independently. Under the same independence assumptions used in the
LMC, the covariance between fd(x) and fd′(x′) follows

cov
[
fd(x),fd′(x

′)
]
=

Q∑
q=1

Rq∑
i=1

∫
X

Gi
d,q(x− z)

∫
X

Gi
d′,q(x

′− z′)kq(z,z′)dz′dz. (8)

Specifying Gi
d,q(x− z) and kq(z,z′) in (8), the covariance for the outputs fd(x) can be constructed

indirectly. Note that if the smoothing kernels are taken to be the Dirac delta function such that,

Gi
d,q(x− z) = aid,qδ(x− z),

where δ(·) is the Dirac delta function, the double integral is easily solved and the linear model of
coregionalization is recovered. This matches to the concept of instantaneous mixing we introduced
to describe the LMC. In a convolutional process the mixing is more general, for example the latent
process could be smoothed for one output, but not smoothed for another allowing correlated output
functions of different length scales.

The traditional approach to convolution processes in statistics and signal processing is to assume
that the latent functions uq(z) are independent white Gaussian noise processes, kq(z,z′) = σ2

qδ(z−
z′). This allows us to simplify (8) as

cov
[
fd(x),fd′(x

′)
]
=

Q∑
q=1

Rq∑
i=1

σ2
q

∫
X

Gi
d,q(x− z)Gi

d′,q(x
′− z)dz.

In general, though, we can consider any type of latent process, for example, we could assume GPs
for the latent functions with general covariances kq(z,z′).

As well as this covariance across outputs, the covariance between the latent function, uiq(z), and
any given output, fd(x), can be computed,

cov
[
fd(x),uiq(z)

]
=

∫
X

Gi
d,q(x− z′)kq(z′,z)dz′. (9)

Additionally, we can corrupt each of the outputs of the convolutions with an independent process
(which could also include a noise term), wd(x), to obtain

yd(x) = fd(x)+wd(x). (10)

The covariance between two different outputs yd(x) and yd′(x′) is then recovered as

cov
[
yd(x),yd′(x

′)
]
=cov

[
fd(x),fd′(x

′)
]
+cov

[
wd(x),wd′(x

′)
]
δd,d′ ,

1466

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

where δd,d′ is the Kronecker delta function.5

As mentioned before, Ver Hoef and Barry (1998) and Higdon (2002) proposed the direct use of
convolution processes for constructing multiple output Gaussian processes. Lawrence et al. (2007)
arrive at a similar construction from solving a physical model: a first order differential equation (see
also Gao et al., 2008). This idea of using physical models to inspire multiple output systems has
been further extended in Álvarez et al. (2009) who give examples using the heat equation and a sec-
ond order system. A different approach using Kalman Filtering ideas has been proposed in Calder
(2003, 2007). Calder proposed a model that incorporates dynamical systems ideas to the process
convolution formalism. Essentially, the latent processes are of two types: random walks and in-
dependent cyclic second-order autoregressions. With this formulation, it is possible to construct a
multivariate output process using convolutions over these latent processes. Particular relationships
between outputs and latent processes are specified using a special transformation matrix ensuring
that the outputs are invariant under invertible linear transformations of the underlying factor pro-
cesses (this matrix is similar in spirit to the sensitivity matrix of Lawrence et al. (2007) and it is
given a particular form so that not all latent processes affect the whole set of outputs).

Bayesian kernel methods. The convolution process is closely related to the Bayesian kernel
method (Pillai et al., 2007; Liang et al., 2009) for constructing reproducible kernel Hilbert spaces
(RKHS), assigning priors to signed measures and mapping these measures through integral opera-
tors. In particular, define the following space of functions,

F =
{
f
∣∣∣f(x) = ∫

X

G(x,z)γ(dz), γ ∈ Γ
}
,

for some space Γ ⊆ B(X) of signed Borel measures. In Pillai et al. (2007, Proposition 1), the au-
thors show that for Γ = B(X), the space of all signed Borel measures, F corresponds to a RKHS.
Examples of these measures that appear in the form of stochastic processes include Gaussian pro-
cesses, Dirichlet processes and Lévy processes. This framework can be extended for the multiple
output case, expressing the outputs as

fd(x) =

∫
X

Gd(x,z)γ(dz).

The analysis of the mathematical properties of such spaces of functions is beyond the scope of this
paper and is postponed for future work.

Other connections of the convolution process approach with methods in statistics and machine
learning are further explored in Álvarez et al. (2011b).

A general purpose convolution kernel for multiple outputs. A simple general purpose kernel
for multiple outputs based on the convolution integral can be constructed assuming that the kernel
smoothing function, Gd,q(x), and the covariance for the latent function, kq(x,x′), follow both a
Gaussian form. A similar construction using a Gaussian form for G(x) and a white noise process
for u(x) has been used in Paciorek and Schervish (2004) to propose a nonstationary covariance
function in single output regression. It has also been used in Boyle and Frean (2005) as an example
of constructing dependent Gaussian processes.

The kernel smoothing function is given as

Gd,q(x) = Sd,qN (x|0,P−1
d),

5. We have slightly abused of the delta notation to indicate the Kronecker delta for discrete arguments and the Dirac
function for continuous arguments. The particular meaning should be understood from the context.

1467

ÁLVAREZ AND LAWRENCE

where Sd,q is a variance coefficient that depends both on the output d and the latent function q and
Pd is the precision matrix associated to the particular output d. The covariance function for the
latent process is expressed as

kq(x,x′) =N (x−x′|0,Λ−1
q),

with Λq the precision matrix of the latent function q.
Expressions for the kernels are obtained applying systematically the identity for the product of

two Gaussian distributions. Let N (x|μ,P−1) denote a Gaussian for x, then

N (x|μ1,P−1
1)N (x|μ2,P−1

2) =N (μ1|μ2,P−1
1 +P−1

2)N (x|μc,P−1
c), (11)

where μc = (P1+P2)
−1 (P1μ1+P2μ2) and P−1

c = (P1+P2)
−1. For all integrals we assume that

X = !p. Using these forms for Gd,q(x) and kq(x,x′), expression (8) (with Rq = 1) can be written
as

kfd,fd′ (x,x
′) =

Q∑
q=1

Sd,qSd′,q

∫
X

N (x− z|0,P−1
d)

∫
X

N (x′− z′|0,P−1
d′)N (z− z′|0,Λ−1

q)dz′dz.

Since the Gaussian covariance is stationary, we can write it asN (x−x′|0,P−1)=N (x′−x|0,P−1)=
N (x|x′,P−1) =N (x′|x,P−1). Using the identity in Equation (11) twice, we get

kfd,fd′ (x,x
′) =

Q∑
q=1

Sd,qSd′,qN (x−x′|0,P−1
d +P−1

d′ +Λ
−1
q). (12)

For a high value of the input dimension, p, the term 1/[(2π)p/2|P−1
d +P−1

d′ +Λ
−1
q |1/2] in each of

the Gaussian’s normalization terms will dominate, making values go quickly to zero. We can fix this
problem, by scaling the outputs using the factors 1/[(2π)p/4|2P−1

d +Λ
−1
q |1/4] and 1/[(2π)p/4|2P−1

d′ +

Λ
−1
q |1/4]. Each of these scaling factors correspond to the standard deviation associated to kfd,fd(x,x)

and kfd′ ,fd′ (x,x).
Equally for the covariance cov [fd(x),uq(x′))] in Equation (9), we obtain

kfd,uq
(x,x′) = Sd,qN (x−x′|0,P−1

d +Λ
−1
q).

Again, this covariance must be standardized when working in higher dimensions.

4. Hyperparameter Learning

Given the convolution formalism, we can construct a full GP over the set of outputs. The likelihood
of the model is given by

p(y|X,θ) =N (y|0,Kf,f+Σ), (13)

where y =
[
y�1 , . . . ,y

�
D

]�
is the set of output functions with yd = [yd(x1), . . . ,yd(xN)]�; Kf,f ∈

!DN×DN is the covariance matrix arising from the convolution. It expresses the covariance of each
data point at every other output and data point and its elements are given by cov [fd(x),fd′(x′)] in
(8). The termΣ represents the covariance associated with the independent processes in (10), wd(x).
It could contain structure, or alternatively could simply represent noise that is independent across

1468

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

the data points. The vector θ refers to the hyperparameters of the model. For exposition we will
focus on the isotopic case (although our implementations allow heterotopic modeling), so we have a
matrix X= {x1, . . . ,xN} which is the common set of training input vectors at which the covariance
is evaluated.

The predictive distribution for a new set of input vectors X∗ is (Rasmussen and Williams, 2006)

p(y∗|y,X,X∗,θ) =N
(
y∗|Kf∗,f(Kf,f+Σ)−1y,Kf∗,f∗ −Kf∗,f(Kf,f+Σ)−1Kf,f∗ +Σ∗

)
,

where we have used Kf∗,f∗ as a compact notation to indicate when the covariance matrix is evalu-
ated at the inputs X∗, with a similar notation for Kf∗,f. Learning from the log-likelihood involves
the computation of the inverse of Kf,f+Σ giving the problematic complexity of O(N3D3). Once
the parameters have been learned, prediction is O(ND) for the predictive mean and O(N2D2) for
the predictive variance.

As we have mentioned before, the main focus of this paper is to present some efficient approxi-
mations for the multiple output convolved Gaussian Process. Given the methods presented before,
we now show an application that benefits from the non-instantaneous mixing element brought by
the convolution process framework.

Comparison between instantaneous mixing and non-instantaneous mixing for regression in
genes expression data. Microarray studies have made the simultaneous measurement of mRNA
from thousands of genes practical. Transcription is governed by the presence or absence of tran-
scription factor (TF) proteins that act as switches to turn on and off the expression of the genes. Most
of these methods are based on assuming that there is an instantaneous linear relationship between
the gene expression and the protein concentration. We compare the performance of the intrinsic
coregionalization model (Section 2.1.1) and the convolved GPs for two independent time series or
replicas of 12 time points collected hourly throughout Drosophila embryogenesis in wild-type em-
bryos (Tomancak et al., 2002). For preprocessing the data, we follow Honkela et al. (2010). We
concentrate on a particular transcription factor protein, namely twi, and the genes associated with it.
The information about the network connections is obtained from the ChIP-chip experiments. This
particular TF is key regulator of mesoderm and muscle development in Drosophila (Zinzen et al.,
2009).

After preprocessing the data, we end up with a data set of 1621 genes with expression data for
N = 12 time points. It is believed that this set of genes are regulated by at least the twi transcription
factor. For each one of these genes, we have access to 2 replicas. We randomly selectD= 50 genes
from replica 1 for training a full multiple output GP model based on either the LMC framework
or the convolved GP framework. The corresponding 50 genes of replica 2 are used for testing
and results are presented in terms of the standardized mean square error (SMSE) and the mean
standardized log loss (MSLL) as defined in Rasmussen and Williams (2006).6 The parameters of
both the LMC and the convolved GPs are found through the maximization of the marginal likelihood
in Equation (13). We repeated the experiment 10 times using a different set of 50 genes each
time. We also repeated the experiment selecting the 50 genes for training from replica 2 and the
corresponding 50 genes of replica 1 for testing.

6. The definitions for the SMSE and the MSLL we have used here are slightly different from the ones provided in
Rasmussen and Williams (2006). Instead of comparing against a Gaussian with a global mean and variance com-
puted from all the outputs in the training data, we compare against a Gaussian with local means and local variances
computed from the training data associated to each output.

1469

ÁLVAREZ AND LAWRENCE

We are interested in a reduced representation of the data so we assume that Q= 1 and Rq = 1,
for the LMC and the convolved multiple output GP in Equations (2) and (8), respectively. For the
LMC model, we follow Bonilla et al. (2008) and assume an incomplete Cholesky decomposition
for B1 = L̃L̃�, where L̃ ∈ !50×1 and as the basic covariance kq(x,x′) we assume the squared
exponential covariance function (p. 83, Rasmussen andWilliams, 2006). For the convolved multiple
output GP we employ the covariance described in Section 3, Equation (12), with the appropriate
scaling factors.

Train set Test set Method Average SMSE Average MSLL

Replica 1 Replica 2
LMC 0.6069±0.0294 −0.2687±0.0594
CMOC 0.4859±0.0387 −0.3617±0.0511

Replica 2 Replica 1
LMC 0.6194±0.0447 −0.2360±0.0696
CMOC 0.4615±0.0626 −0.3811±0.0748

Table 1: Standardized mean square error (SMSE) and mean standardized log loss (MSLL) for the
gene expression data for 50 outputs. CMOC stands for convolved multiple output covari-
ance. The experiment was repeated ten times with a different set of 50 genes each time.
Table includes the value of one standard deviation over the ten repetitions. More negative
values of MSLL indicate better models.

Table 1 shows the results of both methods over the test set for the two different replicas. It can be
seen that the convolved multiple output covariance (appearing as CMOC in the table), outperforms
the LMC covariance both in terms of SMSE and MSLL.

Figure 1 shows the prediction made over the test set (replica 2 in this case) by the two models
for two particular genes, namely FBgn0038617 (Figure 1, first row) and FBgn0032216 (Figure 1,
second row). The black dots in the figures represent the gene expression data of the particular genes.
Figures 1(a) and 1(c) show the response of the LMC and Figures 1(b) and 1(d) show the response of
the convolved multiple output covariance. It can be noticed from the data that the two genes differ
in their responses to the action of the transcription factor, that is, while gene FBgn0038617 has
a rapid decay around time 2 and becomes relatively constant for the rest of the time interval, gene
FBgn0032216 has a smoother response within the time frame. The linear model of coregionalization
is driven by a latent function with a length-scale that is shared across the outputs. Notice from
Figures 1(a) and 1(c) that the length-scale for both responses is the same. On the other hand, due-
to the non-instantaneous mixing of the latent function, the convolved multiple output framework,
allows the description of each output using its own length-scale, which gives an added flexibility for
describing the data.

Table 2 (first four rows) shows the performances of both models for the genes of Figure 1.
CMOC outperforms the linear model of coregionalization for both genes in terms of SMSE and
MSLL.

A similar analysis can be made for Figures 2(a), 2(b), 2(c) and 2(d). In this case, the test set is
replica 1 and we have chosen two different genes, FBgn0010531 and FBgn0004907 with a similar
behavior. Table 2 (last four rows) also highlights the performances of both models for the genes of
Figure 2. Again, CMOC outperforms the linear model of coregionalization for both genes and in
terms of SMSE and MSLL.

1470

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
FBgn0038617 MSLL −0.60185 SMSE 0.27299

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(a) LMC for a short length-scale output

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
FBgn0038617 MSLL −1.3965 SMSE 0.056511

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(b) CMOC for a short length-scale output

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

FBgn0032216 MSLL −0.099837 SMSE 0.76213

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(c) LMC for a long length-scale output

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

1

FBgn0032216 MSLL −0.84433 SMSE 0.16746

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(d) CMOC for a long length-scale output

Figure 1: Predictive mean and variance for genes FBgn0038617 (first row) and FBgn0032216 (sec-
ond row) using the linear model of coregionalization in Figures 1(a) and 1(c) and the
convolved multiple-output covariance in Figures 1(b) and 1(d), with Q = 1 and Rq = 1.
The training data comes from replica 1 and the testing data from replica 2. The solid line
corresponds to the predictive mean, the shaded region corresponds to 2 standard devia-
tions of the prediction. Performances in terms of SMSE and MSLL are given in the title
of each figure and appear also in Table 2. The adjectives “short” and “long” given to the
length-scales in the captions of each figure, must be understood like relative to each other.

Having said this, we can argue that the performance of the LMC model can be improved by
either increasing the value of Q or the value Rq, or both. For the intrinsic coregionalization model,
we would fix the value of Q= 1 and increase the value of R1. Effectively, we would be increasing
the rank of the coregionalization matrix B1, meaning that more latent functions sampled from the
same covariance function are being used to explain the data. In a extreme case in which each output
has its own length scale, this translates into equating the number of latent functions to the number

1471

ÁLVAREZ AND LAWRENCE

Test replica Test genes Method SMSE MSLL

Replica 2
FBgn0038617

LMC 0.2729 −0.6018
CMOC 0.0565 −1.3965

FBgn0032216
LMC 0.7621 −0.0998
CMOC 0.1674 −0.8443

Replica 1
FBgn0010531

LMC 0.2572 −0.5699
CMOC 0.0446 −1.3434

FBgn0004907
LMC 0.4984 −0.3069
CMOC 0.0971 −1.0841

Table 2: Standardized mean square error (SMSE) and mean standardized log loss (MSLL) for the
genes in Figures 1 and 2 for LMC and CMOC. Genes FBgn0038617 and FBgn0010531
have a shorter length-scale when compared to genes FBgn0032216 and FBgn0004907.

of outputs, or in other words assuming a full rank for the matrix B1. This leads to the need of
estimating the matrix B1 ∈ !D×D, that might be problematic if D is high. For the semiparametric
latent factor model, we would fix the value ofRq = 1 and increaseQ, the number of latent functions
sampled from Q different GPs. Again, in the extreme case of each output having its own length-
scale, we might need to estimate a matrix Ã ∈ !D×D, which could be problematic for a high value
of outputs. In a more general case, we could also combine values of Q> 1 and Rq > 1. We would
need then, to find values of Q and Rq that fit the different outputs with different length scales.

In practice though, we will see in the experimental section, that both the linear model of core-
gionalization and the convolved multiple output GPs can perform equally well in some data sets.
However, the convolved covariance could offer an explanation of the data through a simpler model
or converge to the LMC, if needed.

5. Efficient Approximations for Convolutional Processes

Assuming that the double integral in Equation (8) is tractable, the principle challenge for the con-
volutional framework is computing the inverse of the covariance matrix associated with the outputs.
ForD outputs, each havingN data points, the inverse has computational complexityO(D3N3) and
associated storage of O(D2N2). We show how through making specific conditional independence
assumptions, inspired by the model structure (Álvarez and Lawrence, 2009), we arrive at a efficient
approximation similar in form to the partially independent training conditional model (PITC, see
Quiñonero-Candela and Rasmussen, 2005). The relationship with PITC then inspires us to make
further conditional independence assumptions.

5.1 Latent Functions as Conditional Means

For notational simplicity, we restrict the analysis of the approximations to one latent function u(x).
The key to all approximations is based on the form we assume for the latent functions. From the
perspective of a generative model, Equation (7) can be interpreted as follows: first we draw a sample
from the Gaussian process prior p(u(z)) and then solve the integral for each of the outputs fd(x)
involved. Uncertainty about u(z) is also propagated through the convolution transform.

1472

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
FBgn0010531 MSLL −0.56996 SMSE 0.25721

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(a) LMC for a short length-scale output

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
FBgn0010531 MSLL −1.3434 SMSE 0.044655

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(b) CMOC for a short length-scale output

0 2 4 6 8 10

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

FBgn0004907 MSLL −0.30696 SMSE 0.49844

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(c) LMC for a long length-scale output

0 2 4 6 8 10

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

FBgn0004907 MSLL −1.0841 SMSE 0.097131

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(d) CMOC for a long length-scale output

Figure 2: Predictive mean and variance for genes FBgn0010531 (first row) and FBgn0004907 (sec-
ond row) using the linear model of coregionalization in Figures 2(a) and 2(c), and the
convolved multiple-output covariance in Figures 2(b) and 2(d), with Q = 1 and Rq = 1.
The difference with Figure 1 is that now the training data comes from replica 2 while the
testing data comes from replica 1. The solid line corresponds to the predictive mean, the
shaded region corresponds to 2 standard deviations of the prediction. Performances in
terms of SMSE and MSLL are given in the title of each figure.

For the set of approximations, instead of drawing a sample from u(z), we first draw a sample
from a finite representation of u(z), u(Z) = [u(z1), . . . ,u(zK)]�, where Z= {zk}Kk=1 is the set of in-
put vectors at which u(z) is evaluated. Due to the properties of a Gaussian process, p(u(Z)) follows
a multivariate Gaussian distribution. Conditioning on u(Z), we next sample from the conditional
prior p(u(z)|u(Z)) and use this function to solve the convolution integral for each fd(x).7 Under

7. For simplicity in the notation, we just write u to refer to u(Z).

1473

ÁLVAREZ AND LAWRENCE

this generative approach, we can approximate each function fd(x) using

fd(x)≈
∫
X

Gd(x− z)E[u(z)|u]dz. (14)

Replacing u(z) for E[u(z)|u] is a reasonable approximation as long as u(z) is a smooth function
so that the infinite dimensional object u(z) can be summarized by u. Figure 3 shows a cartoon
example of the quality of the approximations for two outputs as the size of the set Z increases. The
first column represents the conditional prior p(u(z)|u) for a particular choice of u(z). The second
and third columns represent the outputs f1(x) and f2(x) obtained when using Equation (14).

Using expression (14), the likelihood function for f follows

p(f|u,Z,X,θ) =N
(
f|Kf,uK−1

u,uu,Kf,f−Kf,uK−1
u,uK

�
f,u

)
, (15)

where Ku,u is the covariance matrix between the samples from the latent function u(Z), with ele-
ments given by ku,u(z,z′) andKf,u =K�

u,f is the cross-covariance matrix between the latent function
u(z) and the outputs fd(x), with elements cov [fd(x),u(z)] in (9).

Given the set of points u, we can have different assumptions about the uncertainty of the out-
puts in the likelihood term. For example, we could assume that the outputs are independent or
uncorrelated, keeping only the uncertainty involved for each output in the likelihood term. Another
approximation assumes that the outputs are deterministic, this is Kf,f = Kf,uK−1

u,uK
�
f,u. The only

uncertainty left would be due to the prior p(u). Next, we present different approximations of the
covariance of the likelihood that lead to a reduction in computational complexity.

5.1.1 PARTIAL INDEPENDENCE

We assume that the individual outputs in f are independent given the latent function u, leading to
the following expression for the likelihood

p(f|u,Z,X,θ) =
D∏

d=1

p(fd|u,Z,X,θ) =
D∏

d=1

N
(
f|Kfd,uK−1

u,uu,Kfd,fd −Kfd,uK−1
u,uKu,fd

)
.

We rewrite this product of multivariate Gaussians as a single Gaussian with a block diagonal co-
variance matrix, including the uncertainty about the independent processes

p(y|u,Z,X,θ) =N
(
y|Kf,uK−1

u,uu,D+Σ
)

(16)

where D = blockdiag
[
Kf,f−Kf,uK−1

u,uK
�
f,u

]
, and we have used the notation blockdiag [G] to indi-

cate that the block associated with each output of the matrix G should be retained, but all other
elements should be set to zero. We can also write this as D =

[
Kf,f−Kf,uK−1

u,uKu,f
]
#M where

is the Hadamard product and M = ID ⊗ 1N , 1N being the N ×N matrix of ones. We now
marginalize the values of the samples from the latent function by using its process prior, this means
p(u|Z) =N (u|0,Ku,u). This leads to the following marginal likelihood,

p(y|Z,X,θ) =
∫

p(y|u,Z,X,θ)p(u|Z)du=N
(
y|0,D+Kf,uK−1

u,uKu,f+Σ
)
. (17)

1474

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) Conditional prior forK = 5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

(b) Output one forK = 5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

(c) Output two forK = 5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(d) Conditional prior forK = 10

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

(e) Output one forK = 10

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

(f) Output two forK = 10

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(g) Conditional prior forK = 30

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

(h) Output one forK = 30

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

(i) Output two forK = 30

Figure 3: Conditional prior and two outputs for different values of K. The first column, Figures
3(a), 3(d) and 3(g), shows the mean and confidence intervals of the conditional prior
distribution using one input function and two output functions. The dashed line represents
one sample from the prior. Conditioning over a few points of this sample, shown as
black dots, the conditional mean and conditional covariance are computed. The solid
line represents the conditional mean and the shaded region corresponds to 2 standard
deviations away from the mean. The second column, 3(b), 3(e) and 3(h), shows the
solution to Equation (7) for output one using the sample from the prior (dashed line) and
the conditional mean (solid line), for different values of K. The third column, 3(c), 3(f)
and 3(i), shows the solution to Equation (7) for output two, again for different values of
K.

Notice that, compared to (13), the full covariance matrix Kf,f has been replaced by the low rank co-
variance Kf,uK−1

u,uKu,f in all entries except in the diagonal blocks corresponding to Kfd,fd . Depend-
ing on our choice of K, the inverse of the low rank approximation to the covariance is either dom-
inated by a O(DN3) term or a O(K2DN) term. Storage of the matrix is O(N2D)+O(NDK).

1475

ÁLVAREZ AND LAWRENCE

Note that if we set K =N these reduce to O(N3D) and O(N2D) respectively. Rather neatly this
matches the computational complexity of modeling the data withD independent Gaussian processes
across the outputs.

The functional form of (17) is almost identical to that of the partially independent training
conditional (PITC) approximation (Quiñonero-Candela and Rasmussen, 2005) or the partially inde-
pendent conditional (PIC) approximation (Quiñonero-Candela and Rasmussen, 2005; Snelson and
Ghahramani, 2007), with the samples we retain from the latent function providing the same role as
the inducing values in the PITC or PIC.8 This is perhaps not surprising given that the PI(T)C ap-
proximations are also derived by making conditional independence assumptions. A key difference
is that in PI(T)C it is not obvious which variables should be grouped together when making these
conditional independence assumptions; here it is clear from the structure of the model that each of
the outputs should be grouped separately.

5.1.2 FULL INDEPENDENCE

We can be inspired by the analogy of our approach to the PI(T)C approximation and consider a more
radical factorization of the likelihood term. In the fully independent training conditional (FITC) ap-
proximation or the fully independent conditional (FIC) approximation (Snelson and Ghahramani,
2006, 2007), a factorization across the data points is assumed. For us that would lead to the follow-
ing expression for the conditional distribution of the output functions given the inducing variables,

p(f|u,Z,X,θ) =
D∏

d=1

N∏
n=1

p(fn,d|u,Z,X,θ),

which can be expressed through (16) withD=diag
[
Kf,f−Kf,uK−1

u,uK
�
f,u

]
=
[
Kf,f−Kf,uK−1

u,uK
�
f,u

]
#

M, withM= ID⊗IN or simplyM= IDN . The marginal likelihood, including the uncertainty about
the independent processes, is given by Equation (17) with the diagonal form for D. Training with
this approximated likelihood reduces computational complexity to O(K2DN) and the associated
storage to O(KDN).

5.1.3 DETERMINISTIC LIKELIHOOD

In Quiñonero-Candela and Rasmussen (2005), the relationship between the projected process ap-
proximation (Csató and Opper, 2001; Seeger et al., 2003) and the FI(T)C and PI(T)C approxima-
tions is elucidated. They show that if, given the set of values u, the outputs are assumed to be
deterministic, the likelihood term of Equation (15) can be simplified as

p(f|u,Z,X,θ) =N
(
f|Kf,uK−1

u,uu,0
)
.

Marginalizing with respect to the latent function using p(u|Z) = N (u|0,Ku,u) and including the
uncertainty about the independent processes, we obtain the marginal likelihood as

p(y|Z,X,θ) =
∫

p(y|u,Z,X,θ)p(u|Z)du=N
(
y|0,Kf,uK−1

u,uK
�
f,u+Σ

)
.

8. We refer to both PITC and PIC by PI(T)C.

1476

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

In other words, we can approximate the full covariance Kf,f using the low rank approximation
Kf,uK−1

u,uK
�
f,u. Using this new marginal likelihood to estimate the parameters θ reduces computa-

tional complexity to O(K2DN). The approximation obtained has similarities with the projected
latent variables (PLV) method also known as the projected process approximation (PPA) or the de-
terministic training conditional (DTC) approximation (Csató and Opper, 2001; Seeger et al., 2003;
Quiñonero-Candela and Rasmussen, 2005; Rasmussen and Williams, 2006).

5.1.4 ADDITIONAL INDEPENDENCE ASSUMPTIONS

As mentioned before, we can consider different conditional independence assumptions for the like-
lihood term. One further assumption that is worth mentioning considers conditional independencies
across data points and dependence across outputs. This would lead to the following likelihood term

p(f|u,Z,X,θ) =
N∏

n=1

p(fn|u,Z,X,θ),

where fn= [f1(xn),f2(xn), . . . ,fD(xn)]�. We can use again Equation (16) to express the likelihood.
In this case, though, the matrix D is a partitioned matrix with blocks Dd,d′ ∈ !N×N and each block
Dd,d′ would be given as Dd,d′ = diag

[
Kfd,fd′ −Kfd,uK−1

u,uKu,fd′
]
. For cases in which D > N , that

is, the number of outputs is greater than the number of data points, this approximation may be more
accurate than the one obtained with the partial independence assumption. For cases where D <N
it may be less accurate, but faster to compute.9

5.2 Posterior and Predictive Distributions

Combining the likelihood term for each approximation with p(u|Z) using Bayes’ theorem, the pos-
terior distribution over u is obtained as

p(u|y,X,Z,θ) =N
(
u|Ku,uA−1Ku,f(D+Σ)−1y,Ku,uA−1Ku,u

)
, (18)

where A = Ku,u+K�
f,u(D+Σ)−1Kf,u and D follows a particular form according to the different

approximations: for partial independence it equals D = blockdiag
[
Kf,f−Kf,uK−1

u,uKu,f
]
; for full

independence it is D= diag
[
Kf,f−Kf,uK−1

u,uKu,f
]
and for the deterministic likelihood, D= 0.

For computing the predictive distribution we have two options, either use the posterior for u and
the approximated likelihoods or the posterior for u and the likelihood of Equation (15), that cor-
responds to the likelihood of the model without any approximations. The difference between both
options is reflected in the covariance for the predictive distribution. Quiñonero-Candela and Ras-
mussen (2005) proposed a taxonomy of different approximations according to the type of likelihood
used for the predictive distribution, in the context of single output Gaussian processes.

In this paper, we opt for the posterior for u and the likelihood of the model without any approx-
imations. If we choose the exact likelihood term in Equation (15) (including the noise term), the

9. Notice that if we work with the block diagonal matrices Dd,d′ , we would need to invert the full matrix D. However,
since the blocks Dd,d′ are diagonal matrices themselves, the inversion can be done efficiently using, for example, a
block Cholesky decomposition. Furthermore, we would be restricted to work with isotopic input spaces. Alterna-
tively, we could rearrange the elements of the matrix D so that the blocks of the main diagonal are the covariances
associated with the vectors fn.

1477

ÁLVAREZ AND LAWRENCE

predictive distribution is expressed through the integration of the likelihood term evaluated at X∗,
with (18), giving

p(y∗|y,X,X∗,Z,θ) =
∫

p(y∗|u,Z,X∗,θ)p(u|y,X,Z,θ)du=N (y∗|μy∗ ,Ky∗,y∗) ,

where

μy∗ =Kf∗,uA
−1K�

f,u(D+Σ)−1y,

Ky∗,y∗ =Kf∗,f∗ −Kf∗,uK−1
u,uK

�
f∗,u+Kf∗,uA

−1K�
f∗,u+Σ∗.

For the single output case, the assumption of the deterministic likelihood is equivalent to the de-
terministic training conditional (DTC) approximation, the full independence approximation leads
to the fully independent training conditional (FITC) approximation (Quiñonero-Candela and Ras-
mussen, 2005) and the partial independence leads to the partially independent training conditional
(PITC) approximation (Quiñonero-Candela and Rasmussen, 2005). The similarities of our approx-
imations for multioutput GPs with respect to approximations presented in Quiñonero-Candela and
Rasmussen (2005) for single output GPs are such, that we find it convenient to follow the same
terminology and also refer to our approximations as DTC, FITC and PITC approximations for mul-
tioutput Gaussian processes.

5.3 Discussion: Model Selection in Approximated Models

The marginal likelihood approximation for the PITC, FITC and DTC variants is a function of both
the hyperparameters of the covariance function and the location of the inducing variables. For es-
timation purposes, there seems to be a consensus in the GP community that hyperparameters for
the covariance function can be obtained by maximization of the marginal likelihood. For selecting
the inducing variables, though, there are different alternatives that can in principle be used. Simpler
methods include fixing the inducing variables to be the same set of input data points or grouping
the input data using a clustering method like K-means and then use the K resulting vectors as in-
ducing variables. More sophisticated alternatives consider that the set of inducing variables must
be restricted to be a subset of the input data (Csató and Opper, 2001; Williams and Seeger, 2001).
This set of methods require a criteria for choosing the optimal subset of the training points (Smola
and Bartlett, 2001; Seeger et al., 2003). Such approximations are truly sparse in the sense that only
few data points are needed at the end for making predictions. Recently, Snelson and Ghahramani
(2006) suggested using the marginal likelihood not only for the optimization of the hyperparameters
in the covariance function, but also for the optimization of the location of these inducing variables.
Although, using such procedure to find the optimal location of the inducing inputs might look in
principle like an overwhelming optimization problem (inducing points usually appear non-linearly
in the covariance function), in practice it has been shown that performances close to the full GP
model can be obtained in a fraction of the time that it takes to train the full model. In that re-
spect, the inducing points that are finally found are optimal in the same optimality sense that the
hyperparameters of the covariance function.

Essentially, it would be possible to use any of the methods just mentioned above together with
the multiple-output GP regression models presented in Sections 2.1, 2.1.2 and 3. In this paper,
though, we follow Snelson and Ghahramani (2006) and optimize the locations of the inducing vari-
ables using the approximated marginal likelihoods and leave the comparison between the different
model selection methods for inducing variables for future work.

1478

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

In appendix A we include the derivatives of the marginal likelihood wrt the matrices Kf,f,Ku,f
and Ku,u.

6. Experimental Evaluation

In this section we present results of applying the approximations in exam score prediction, pol-
lutant metal prediction and the prediction of gene expression behavior in a gene-network. When
possible, we first compare the convolved multiple output GP method against the intrinsic model
of coregionalization and the semiparametric latent factor model. Then, we compare the different
approximations in terms of accuracy and training times. First, though, we illustrate the performance
of the approximation methods in a toy example.10

6.1 A Toy Example

For the toy experiment, we employ the kernel constructed as an example in Section 3. The toy
problem consists ofD= 4 outputs, one latent function,Q= 1 andRq = 1 and one input dimension.
The training data was sampled from the full GP with the following parameters, S1,1 = S2,1 = 1,
S3,1 = S4,1 = 5, P1,1 = P2,1 = 50, P3,1 = 300,P4,1 = 200 for the outputs and Λ1 = 100 for the
latent function. For the independent processes, wd (x), we simply added white noise separately to
each output so we have variances σ2

1 = σ2
2 = 0.0125, σ2

3 = 1.2 and σ2
4 = 1. We generate N = 500

observation points for each output and use 200 observation points (per output) for training the full
and the approximated multiple output GP and the remaining 300 observation points for testing. We
repeated the same experiment setup ten times and compute the standardized mean square error and
the mean standardized log loss. For the approximations we useK = 30 inducing inputs. We sought
the kernel parameters and the positions of the inducing inputs through maximizing the marginal
likelihood using a scaled conjugate gradient algorithm. Initially the inducing inputs are equally
spaced between the interval [−1,1].

Figure 4 shows the training result of one of the ten repetitions. The predictions shown corre-
spond to the full GP in Figure 4(a), the DTC approximation in Figure 4(b), the FITC approximation
in Figure 4(c) and the PITC approximation in Figure 4(d).

Tables 3 and 4 show the average prediction results over the test set. Table 3 shows that the SMSE
of the approximations is similar to the one obtained with the full GP. However, there are important
differences in the values of the MSLL shown in Table 4. DTC offers the worst performance. It gets
better for FITC and PITC since they offer a more precise approximation to the full covariance.

The training times for iteration of each model are 1.97 secs for the full GP, 0.20 secs for DTC,
0.41 for FITC and 0.59 for the PITC, on average.

As we have mentioned before, one important feature of multiple output prediction is that we can
exploit correlations between outputs to predict missing observations. We used a simple example to
illustrate this point. We removed a portion of one output between [−0.8,0] from the training data in
the experiment before (as shown in Figure 5) and train the different models to predict the behavior of
y4(x) for the missing information. The predictions shown correspond to the full GP in Figure 5(a),
an independent GP in Figure 5(b), the DTC approximation in Figure 5(c), the FITC approximation in

10. Code to run all simulations in this section is available at http://staffwww.dcs.shef.ac.uk/people/N.
Lawrence/multigp/.

1479

ÁLVAREZ AND LAWRENCE

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10
y 4
(x
)

x
(a) y4(x) using the full GP

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

y 4
(x
)

x
(b) y4(x) using the DTC approximation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

y 4
(x
)

x
(c) y4(x) using the FITC approximation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

y 4
(x
)

x
(d) y4(x) using the PITC approximation

Figure 4: Predictive mean and variance using the full multi-output GP and the approximations for
output 4. The solid line corresponds to the predictive mean, the shaded region corre-
sponds to 2 standard deviations of the prediction. The dashed line corresponds to the
ground truth signal, that is, the sample from the full GP model without noise. In these
plots the predictive mean overlaps almost exactly with the ground truth. The dots are
the noisy training points. The crosses in Figures 4(b), 4(c) and 4(d) correspond to the
locations of the inducing inputs after convergence. Notice that the DTC approximation
in Figure 4(b) captures the predictive mean correctly, but fails in reproducing the correct
predictive variance.

Method SMSE y1(x) SMSE y2(x) SMSE y3(x) SMSE y4(x)

Full GP 1.06±0.08 0.99±0.06 1.10±0.09 1.05±0.09
DTC 1.06±0.08 0.99±0.06 1.12±0.09 1.05±0.09
FITC 1.06±0.08 0.99±0.06 1.10±0.08 1.05±0.08
PITC 1.06±0.08 0.99±0.06 1.10±0.09 1.05±0.09

Table 3: Standardized mean square error (SMSE) for the toy problem over the test set. All numbers
are to be multiplied by 10−2. The experiment was repeated ten times. Table includes the
value of one standard deviation over the ten repetitions.

Figure 5(d) and the PITC approximation in Figure 5(e). The training of the approximation methods
is done in the same way than in the experiment before.

1480

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

Method MSLL y1(x) MSLL y2(x) MSLL y3(x) MSLL y4(x)

Full GP −2.27±0.04 −2.30±0.03 −2.25±0.04 −2.27±0.05
DTC −0.98±0.18 −0.98±0.18 −1.25±0.16 −1.25±0.16
FITC −2.26±0.04 −2.29±0.03 −2.16±0.04 −2.23±0.05
PITC −2.27±0.04 −2.30±0.03 −2.23±0.04 −2.26±0.05

Table 4: Mean standardized log loss (MSLL) for the toy problem over the test set. More negative
values of MSLL indicate better models. The experiment was repeated ten times. Table
includes the value of one standard deviation over the ten repetitions.

Due to the strong dependencies between the signals, our model is able to capture the correlations
and predicts accurately the missing information.

6.2 Exam Score Prediction

In the first experiment with real data that we consider, the goal is to predict the exam score obtained
by a particular student belonging to a particular school. The data comes from the Inner London
Education Authority (ILEA).11 It consists of examination records from 139 secondary schools in
years 1985, 1986 and 1987. It is a random 50% sample with 15362 students. The input space
consists of four features related to each student (year in which each student took the exam, gender,
performance in a verbal reasoning (VR) test12 and ethnic group) and four features related to each
school (percentage of students eligible for free school meals, percentage of students in VR band
one, school gender and school denomination). From the multiple output point of view, each school
represents one output and the exam score of each student a particular instantiation of that output or
D = 139.

We follow the same preprocessing steps employed in Bonilla et al. (2008). The only features
used are the student-dependent ones, which are categorial variables. Each of them is transformed
to a binary representation. For example, the possible values that the variable year of the exam can
take are 1985, 1986 or 1987 and are represented as 100, 010 or 001. The transformation is also
applied to the variables gender (two binary variables), VR band (four binary variables) and ethnic
group (eleven binary variables), ending up with an input space with 20 dimensions. The categorial
nature of the data restricts the input space to N = 202 unique input feature vectors. However, two
students represented by the same input vector x, and belonging both to the same school, d, can obtain
different exam scores. To reduce this noise in the data, we take the mean of the observations that,
within a school, share the same input vector and use a simple heteroskedastic noise model in which
the variance for each of these means is divided by the number of observations used to compute it.13

The performance measure employed is the percentage of explained variance defined as the total
variance of the data minus the sum-squared error on the test set as a percentage of the total data
variance. It can be seen as the percentage version of the coefficient of determination between the

11. This data is available at http://www.cmm.bristol.ac.uk/learning-training/multilevel-m-support/
datasets.shtml.

12. Performance in the verbal reasoning test was divided in three bands. Band 1 corresponds to the highest 25%, band 2
corresponds to the next 50% and band 3 the bottom 25% (Nuttall et al., 1989; Goldstein, 1991).

13. Different noise models can be used. However, we employed this one so that we can compare directly to the results
presented in Bonilla et al. (2008).

1481

ÁLVAREZ AND LAWRENCE

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10
y 4
(x
)

x
(a) y4(x) using the full GP

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

y 4
(x
)

x
(b) y4(x) using an independent GP

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

y 4
(x
)

x
(c) y4(x) using the DTC approximation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

y 4
(x
)

x
(d) y4(x) using the FITC approximation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−10

−5

0

5

10

y 4
(x
)

x
(e) y4(x) using the PITC approximation

Figure 5: Predictive mean and variance using the full multi-output GP, the approximations and
an independent GP for output 4 with a range of missing observations in the interval
[−0.8,0.0]. The solid line corresponds to the mean predictive, the shaded region cor-
responds to 2 standard deviations away from the mean and the dash line is the actual
value of the signal without noise. The dots are the noisy training points. The crosses
in Figures 5(c), 5(d) and 5(e) correspond to the locations of the inducing inputs after
convergence.

test targets and the predictions. The performance measure is computed for ten repetitions with 75%
of the data in the training set and 25% of the data in the testing set.

We first compare different methods without including the efficient approximations. These meth-
ods are independent GPs, multi-task GPs (Bonilla et al., 2008), the intrinsic coregionalization
model, the semiparametric latent factor model and convolved multiple output GPs. Results are

1482

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

Method Explained variance (%)
Independent GPs (Bonilla et al., 2008) 31.12±1.33
Multi-task GP (Nyström, R1 = 2) (Bonilla et al., 2008) 36.16±0.99
Intrinsic coregionalization model (R1 = 1) 52.54±2.46
Intrinsic coregionalization model (R1 = 2) 51.94±1.84
Intrinsic coregionalization model (R1 = 5) 45.31±1.63
Semiparametric latent factor model (Q= 2) 51.82±1.93
Semiparametric latent factor model (Q= 5) 44.87±1.15
Convolved Multiple Outputs GPs (Q= 1, Rq = 1) 53.84±2.01

Table 5: Average percentage of explained variance and standard deviation for the exam score pre-
diction on the ILEA data set computed over 10 repetitions. The independent GP result
and the multi-task GP result were taken from Bonilla et al. (2008). The value of R1 in the
multi-task GP and in the intrinsic coregionalization model indicates the rank of the matrix
B1 in Equation (6). The value of Q in the semiparametric latent factor model indicates the
number of latent functions. The value of Rq in the convolved multiple output GP refers to
the number of latent functions that share the same number of parameters (see Equation 8).
Refer to the text for more details.

presented in Table 5. The results for the independent GPs and the multi-task GPs were taken from
Bonilla et al. (2008). The multi-task GP result uses a matrix B1 with rank R1 = 2. For the intrinsic
model of coregionalization, we use an incomplete Cholesky decomposition B1 = L̃L̃�, and include
results for different values of the rank R1. The basic covariance kq(x,x′) in the ICM is assumed
to follow a Gaussian form. For the semiparametric latent factor model, all the latent functions use
covariance functions with Gaussian forms. For SLFM, we include results for different values of
the number of latent functions (Q = 2 and Q = 5). Note that SLFM with Q = 1 is equivalent to
ICM with R1 = 1. For the convolved multiple output covariance result, the kernel employed was
introduced in Section 3. For all the models we estimate the parameters maximizing the likelihood
through scaled conjugate gradient and run the optimization algorithm for a maximum of 1000 iter-
ations. Table 5 shows that all methods outperform the independent GPs. Even though multi-task
GPs with R1 = 2 and ICM with R1 = 2 are equivalent methods, the difference of results might be
explained because the multi-task GP method uses a Nyström approximation for the matrix K1 in
Equation (6). Results for ICM with R1 = 1, SLFM with Q = 2 and the convolved covariance are
similar within the standard deviations. The convolved GP was able to recover the best performance
using only one latent function (Q=1). This data set was also employed to evaluate the performance
of the multitask kernels in Evgeniou and Pontil (2004). The best result presented in this work was
34.37±0.3. However, due to the averaging of the observations that we employed here, it is not fair
to compare directly against those results.

We present next the results of using the efficient approximations for the exam school prediction
example. In Figure 6, we have included the results of Table 5 alongside the results of using DTC,
FITC and PITC for 5, 20 and 50 inducing points. The initial positions of the inducing points are
selected using the k-means algorithm with the training data points as inputs to the algorithm. The
positions of these points are optimized in a scaled conjugate gradient procedure together with the
parameters of the model. We notice that using the approximations we obtain similar performances

1483

ÁLVAREZ AND LAWRENCE

IND MT IC1 IC2 IC5 S2 S5 CM1 D5 D20 D50 F5 F20 F50 P5 P20 P50
25

30

35

40

45

50

55

60
Pe
rc
en
ta
ge
of
ex
pl
ai
ne
d
va
ri
an
ce

Method

Figure 6: Mean and standard deviation of the percentage of explained variance for exam score pre-
diction results on the ILEA data set. The experiment was repeated ten times. In the
bottom of the figure, IND stands for independent GPs, MT stands for multi-task GPs,
ICR1 stands for intrinsic coregionalization model with rank R1, SQ stands for semipara-
metric latent factor model with Q latent functions, CM1 stands for convolved multiple
output covariance with Q = 1 and Rq = 1 and DK, FK, PK stands for DTC, FITC and
PITC with K inducing points, respectively. The independent GPs and multi-task GPs
results were obtained from Bonilla et al. (2008).

to the full models with as few as 5 inducing points. FITC and PITC slightly outperform the DTC
method, although results are within the standard deviation.

Table 6 shows the training times for the different methods.14 Clearly, the efficient approxima-
tions are faster than the full methods. This is particularly true when comparing the training times
per iteration (second column). The approximations were run over 1000 iterations, but the results for
100 iterations were pretty much the same. For the ICM and SLFM results, definitely more than 100
iterations were needed. With 1000 iterations DTC with 5 inducing points offers a speed up factor
of 24 times over the ICM with R1 = 1 and a speed up factor of 137 over the full convolved multiple
output method.15 On the other hand, with 1000 iterations, PITC with 50 inducing points offers a
speed up of 9.8 over ICM with R1 = 1 and a speed up of 55 over the full convolved GP method.

14. All experiments with real data were run in workstations with 2.59 GHz, AMD Opteron’s and up to 16 GHz of RAM.
Only one processor was used on each run.

15. The speed up factor is computed as the relation between the slower method and the faster method, using the training
times of the third column in Table 6.

1484

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

Method Time per iter. (secs) Training time (secs)
ICM (R1 = 1) 83.60 16889
ICM (R1 = 2) 85.61 47650
ICM (R1 = 5) 88.02 64535
SLFM (Q= 2) 97.00 58564
SLFM (Q= 5) 130.23 130234
CMOGP (Q= 1, Rq = 1) 95.55 95510
DTC 5 (Q= 1, Rq = 1) 0.69 694
DTC 20 (Q= 1, Rq = 1) 0.80 804
DTC 50 (Q= 1, Rq = 1) 1.04 1046
FITC 5 (Q= 1, Rq = 1) 0.94 947
FITC 20 (Q= 1, Rq = 1) 1.02 1026
FITC 50 (Q= 1, Rq = 1) 1.27 1270
PITC 5 (Q= 1, Rq = 1) 1.13 1132
PITC 20 (Q= 1, Rq = 1) 1.24 1248
PITC 50 (Q= 1, Rq = 1) 1.71 1718

Table 6: Training times for the exam score prediction example. In the table, CMOGP stands for
convolved multiple outputs GP. The first column indicates the training time per iteration
of each method while the second column indicates the total training time. All the numbers
presented are average results over the ten repetitions.

As mentioned before, the approximations reach similar performances using 100 iterations, in-
creasing the speed up factors by ten.

To summarize this example, we have shown that the convolved multiple output GP offers a sim-
ilar performance to the ICM and SLFM methods. We also showed that the efficient approximations
can offer similar performances to the full methods and by a fraction of their training times. More-
over, this example involved a relatively high-input high-output dimensional data set, for which the
convolved covariance has not been used before in the literature.

6.3 Heavy Metals in the Swiss Jura

The second example with real data that we consider is the prediction of the concentration of several
metal pollutants in a region of the Swiss Jura. This is a relatively low-input low-output dimensional
data set that we use to illustrate the ability of the PITC approximation to reach the performance of
the full GP if the enough amount of inducing points is used. The data consist of measurements of
concentrations of several heavy metals collected in the topsoil of a 14.5 km2 region of the Swiss
Jura. The data is divided into a prediction set (259 locations) and a validation set (100 locations).16

In a typical situation, referred to as undersampled or heterotopic case, a few expensive measure-
ments of the attribute of interest are supplemented by more abundant data on correlated attributes
that are cheaper to sample. We follow the experiment described in Goovaerts (1997, p. 248, 249)
in which a primary variable (cadmium) at prediction locations in conjunction with some secondary
variables (nickel and zinc) at prediction and validation locations, are employed to predict the con-

16. This data is available at http://www.ai-geostats.org/.

1485

ÁLVAREZ AND LAWRENCE

0
1

2
3

4
5

0
1

2
3

4
5

6
0

1

2

3

4

5

6

C
ad
m
iu
m
co
nc
en
tr
at
io
n
(p
pm
)

Spatial coordinate 1 (Km)Spatial coordinate 2 (Km)

Figure 7: Cadmium concentration for the Swiss Jura example. The blue circles refer to the pre-
diction set (training data for cadmium) and the red squares are the concentrations for the
validation set (testing data for cadmium).

centration of the primary variable at validation locations. Figure 7 shows the cadmium concentration
for the particular set of input locations of the prediction set (blue circles) and the particular set of
input locations of the validation set (red squares). As in the exam score prediction example, we
first compare the performances of the full GP methods and later we introduce the performances
of the approximations. We compare results of independent GPs, ordinary cokriging, the intrinsic
coregionalization model, the semiparametric latent factor model and the convolved multiple output
covariance. For independent GPs we use Gaussian covariances with different length-scales for each
input dimension. Before describing the particular setup for the other methods appearing in Table 7,
we first say a few lines about the cokriging method. The interested reader can find details in several
geostatistics books (see Cressie, 1993; Goovaerts, 1997; Wackernagel, 2003).

Cokriging is the generalization of kriging to multiple outputs. It is an unbiased linear predictor
that minimizes the error variance between the data and the predicted values. Different cokriging
methods assume that each output can be decomposed as a sum of a residual component with zero
mean and non-zero covariance function and a trend component. The difference between the cokrig-
ing estimators is based on the assumed model for the trend component. While in simple cokriging
the mean is assumed to be constant and known, in ordinary cokriging it is assumed to be constant,
but unknown, leading to a different set of equations for the predictor. Whichever cokriging method
is used implies using the values of the covariance for the residual component in the equations for
the prediction, making explicit the need for a positive semidefinite covariance function. In the geo-
statistics literature, the usual practice is to use the linear model of coregionalization to construct a
valid covariance function for the residual component and then use any of the cokriging estimators

1486

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

Method Average Mean absolute error
Independent GPs 0.5739±0.0003
Ordinary cokriging (p. 248, 249 Goovaerts, 1997) 0.51
Intrinsic coregionalization model (R1 = 2) 0.4608±0.0025
Semiparametric latent factor model (Q= 2) 0.4578±0.0025
Convolved Multiple Outputs GPs (Q= 2, Rq = 1) 0.4552±0.0013

Table 7: Average mean absolute error and standard deviation for predicting the concentration of
metal cadmium with the full dependent GP model and different forms for the covariance
function. The result for ordinary cokriging was obtained from Goovaerts (p. 248, 249
1997) and it is explained in the text. For the intrinsic coregionalization model and the
semiparametric latent factor model we use a Gaussian covariance with different length-
scales along each input dimension. For the convolved multiple output covariance, we use
the covariance described in Section 3. See the text for more details.

for making predictions. A common algorithm to fit the linear model of coregionalization minimizes
some error measure between a sample or experimental covariance matrix obtained from the data
and the particular matrix obtained from the form chosen for the linear model of coregionalization
(Goulard and Voltz, 1992).

Let us go back to the results shown in Table 7. The result that appears as ordinary cokriging
was obtained with the ordinary cokriging predictor and a LMC with Q = 3 and Rq = 3 (p. 119
Goovaerts, 1997). Two of the basic covariances kq(x,x′) have a particular polynomial form, while
the other corresponds to a bias term.17 For the prediction stage, only the closest 16 data locations
in the primary and secondary variables are employed. Also in Table 7, we present results using the
intrinsic coregionalization with a rank two (R1 = 2) for B1, the semiparametric latent factor model
with two latent functions (Q = 2) and the convolved multiple output covariance with two latent
functions (Q = 2 and Rq = 1). The choice of either R1 = 2 or Q = 2 for the methods was due to
the cokriging setup for which two polynomial-type covariances were used. The basic covariances
for ICM and SLFM have a Gaussian form with different length scales in each input dimension.
For the CMOC, we employ the covariance from Section 3. Parameters for independent GPs, ICM,
SLFM and CMOC are learned maximizing the marginal likelihood in Equation (13), using a scaled
conjugate gradient procedure. We run the optimization algorithm for up to 200 iterations. Since the
prediction and location sets are fixed, we repeat the experiment ten times changing the initial values
of the parameters.

Table 7 shows that all methods, including ordinary cokriging, outperform independent GPs.
ICM, SLFM and CMOC outperform cokriging. Results for SLFM and CMOC are similar, although
CMOC outperformed ICM in every trial of the ten repetitions. The better performance for the
SLFM and the CMOC over the ICM would indicate the need for a second latent function with
different parameters to the first one. Using a non-instantaneous approach may slightly increase the
performance. However, results overlap within one standard deviation.

17. In fact, the linear model of coregionalization employed is constructed using variograms as basic tools that account for
the dependencies in the input space. Variograms and covariance functions are related tools used in the geostatistics
literature to describe dependencies between variables. A precise definition of the concept of variogram is out of the
scope of this paper.

1487

ÁLVAREZ AND LAWRENCE

D50 D100 D200 D359 F50 F100 F200 F359 P50 P100 P200 P359 CM2 S2 IC2 CO IND
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6
M
ea
n
A
bs
ol
ut
e
E
rr
or
C
ad
m
iu
m

Method

Figure 8: Average mean absolute error and standard deviation for prediction of the pollutant metal
cadmium. The experiment was repeated ten times. In the bottom of the figure DK, FK,
PK stands for DTC, FITC and PITC withK inducing values, CM2 stands for convolved
multiple output covariance with Q = 2 and Rq = 1, S2 stands for semiparametric latent
factor model withQ=2 latent functions, IC2 stands for intrinsic coregionalization model
with rank R1 = 2, CO stands for the cokriging method explained in the text and IND
stands for independent GPs.

We next include the performances for the efficient approximations. For the results of the ap-
proximations, a k-means procedure is employed first to find the initial locations of the inducing
values and then these locations are optimized in the same optimization procedure used for the pa-
rameters. Each experiment is repeated ten times changing the initial value of the parameters. Figure
8 shows the results of prediction for cadmium for the different approximations with varying number
of inducing points (this is, different values of K). We also include in the figure the results for the
convolved multiple output GP (CM2), semiparametric latent factor model (S2), intrinsic coregion-
alization model (IC2), ordinary cokriging (CO) and independent GPs (IND).

Notice that DTC and PITC outperform cokriging and independent GPs for any value ofK. Also
for K = 200 and K = 359, DTC and PITC reach the performance of the full GP methods, either
in average (for K = 200) or within one standard deviation (for K = 359). K = 200 might be a
considerable amount of inducing points when compared to the total amount of input training data
(359 for nickel and zinc and 259 for cadmium). The need of that amount of inducing points could
be explained due to the high variability of the data: mean values for the concentration of pollutant
metals are 1.30, 20.01 and 75.88 for cadmium, nickel and zinc, while standard deviations are 0.91,

1488

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

Method Time per iter. (secs) Training time (secs)
ICM 3.84 507
SLFM 4.14 792
CMOGP 4.47 784
DTC 50 0.28 20
DTC 100 0.80 64
DTC 200 1.95 185
DTC 359 4.24 551
FITC 50 0.81 69
FITC 100 1.14 159
FITC 200 2.12 244
FITC 359 5.76 691
PITC 50 1.78 268
PITC 100 2.46 320
PITC 200 4.06 385
PITC 359 7.94 1191

Table 8: Training times for the prediction of the cadmium pollutant metal. In the table, CMOGP
stands for convolved multiple outputs GP. The first column indicates the training time per
iteration of each method and the second column indicates the total training time. All the
numbers presented are average results over the ten repetitions.

8.09 and 30.81 giving coefficients of variation of 70.00%, 40.42% and 40.60%.18 Variability in
cadmium can be observed intuitively from Figure 7. Notice also that FITC outperforms cokriging
and independent GPs for K = 200 and K = 359. The figure also shows that DTC outperforms
FITC for all values ofK. However, the measure of performance employed, the mean absolute error,
does not take into account the predictive variance of the approximated GPs. Using as measures the
standardized mean absolute error and the mean standardized log-likelihood, that take into account
the predictive variance, FITC outperforms DTC: DTC in average has a MSLL of 0.4544 and a
SMSE of 0.9594 while FITC in average has a MSLL of −0.0637 with a SMSE of 0.9102. PITC in
average has a MSLL of −0.1226 and SMSE 0.7740. Averages were taken over the different values
ofK.

Finally, Table 8 shows the timing comparisons for the pollutant example. The training times for
DTC with 200 inducing points and PITC with 200 inducing points, which are the first methods that
reach the performance of the full GP, are less than any of the times of the full GP methods. For
DTC with 200 inducing points, the speed up factor is about 2.74 when compared to ICM and 4.23
when compared to CMOGP. For PITC with 200 inducing points, the speed up factor is 1.31 when
compared to ICM and 2.03 when compared to CMOGP. Notice also that all methods are less or
equally expensive than the different full GP variants, except for PITC with 359 inducing variables.
For this case, however, 4 out of the 10 repetitions reached the average performance in 100 iterations,
given a total training time of approximately 794.12 secs., a time much closer to CMOGP and SLFM.

18. The coefficient of variation is defined as the standard deviation over the mean. It could be interpreted also as the
inverse of the signal-to-noise ratio.

1489

ÁLVAREZ AND LAWRENCE

6.4 Regression Over Gene Expression Data

We now present a third example with real data. This time we only include the performances for
the approximations. The goal is to do multiple output regression over gene expression data. The
setup was described in Section 4. The difference with that example, is that instead of usingD = 50
outputs, here we use D = 1000 outputs. We do multiple output regression using DTC, FITC and
PITC fixing the number of inducing points to K = 8 equally spaced in the interval [−0.5,11.5].
Since it is a 1-dimensional input data set, we do not optimize the location of the inducing points,
but fix them to the equally spaced initial positions. As for the full GP model in example of Section
4, we make Q= 1 and Rq = 1. Again we use scaled conjugate gradient to find the parameters that
maximize the marginal likelihood in each approximation. The optimization procedure runs for 100
iterations.

Train set Test set Method Average SMSE Average MSLL Average TTPI

Replica 1 Replica 2
DTC 0.5421±0.0085 −0.2493±0.0183 2.04
FITC 0.5469±0.0125 −0.3124±0.0200 2.31
PITC 0.5537±0.0136 −0.3162±0.0206 2.59

Replica 2 Replica 1
DTC 0.5454±0.0173 0.6499±0.7961 2.10
FITC 0.5565±0.0425 −0.3024±0.0294 2.32
PITC 0.5713±0.0794 −0.3128±0.0138 2.58

Table 9: Standardized mean square error (SMSE), mean standardized log loss (MSLL) and training
time per iteration (TTPI) for the gene expression data for 1000 outputs using the efficient
approximations for the convolved multiple output GP. The experiment was repeated ten
times with a different set of 1000 genes each time. Table includes the value of one standard
deviation over the ten repetitions.

Table 9 shows the results of applying the approximations in terms of SMSE andMSLL (columns
4 and 5). DTC and FITC slightly outperforms PITC in terms of SMSE, but PITC outperforms both
DTC and FITC in terms of MSLL. This pattern repeats itself when the training data comes from
replica 1 or from replica 2.

In Figure 9 we show the performance of the approximations over the same two genes of Figure
1, these are FBgn0038617 and FBgn0032216. The non-instantaneous mixing effect of the model
can still be observed. Performances for these particular genes are highlighted in Table 10. Notice
that the performances are between the actual performances for the LMC and the CMOC appearing
in Table 2. We include these figures only for illustrative purposes, since both experiments use a
different number of outputs. Figures 1 and 2 were obtained as part of multiple output regression
problem of D = 50 outputs, while Figures 9 and 10 were obtained in a multiple output regression
problem with D = 1000 outputs.

In Figure 10, we replicate the same exercise for the genes FBgn0010531 and FBgn0004907, that
also appeared in Figure 2. Performances for DTC, FITC and PITC are shown in Table 10 (last six
rows), which compare favourably with the performances for the linear model of coregionalization
in Table 2 and close to the performances for the CMOC. In average, PITC outperforms the other
methods for the specific set of genes in both figures above.

1490

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
FBgn0038617 MSLL −0.70153 SMSE 0.21628

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(a) DTC, short length scale

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
FBgn0038617 MSLL −0.68869 SMSE 0.22408

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(b) FITC, short length scale

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
FBgn0038617 MSLL −0.86002 SMSE 0.1625

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(c) PITC, short length scale

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2
FBgn0032216 MSLL −0.30786 SMSE 0.18454

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(d) DTC, long length scale

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2
FBgn0032216 MSLL −0.50863 SMSE 0.36391

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(e) FITC, long length scale

0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2
FBgn0032216 MSLL −0.83681 SMSE 0.16135

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(f) PITC, long length scale

Figure 9: Predictive mean and variance for genes FBgn0038617 (first row) and FBgn0032216 (sec-
ond row) using the different approximations. In the first column DTC in Figures 9(a)
and 9(d), second column FITC in Figures 9(b) and 9(e), and in the third column PITC in
Figures 9(c) and 9(f). The training data comes from replica 1 and the testing data from
replica 2. The solid line corresponds to the predictive mean, the shaded region corre-
sponds to 2 standard deviations of the prediction. Performances in terms of SMSE and
MSLL are given in the title of each figure. The adjectives “short” and “long” given to
the length-scales in the captions of each figure, must be understood like relative to each
other. The crosses in the bottom of each figure indicate the positions of the inducing
points, which remain fixed during the training procedure.

With respect to the training times, the Table 9 in the column 6 shows the average training time
per iteration (average TTPI) for each approximation. To have an idea of the saving times, one
iteration of the full GP model for the same 1000 genes would take around 4595.3 seconds. This
gives a speed up factor of 1780, approximately.

7. Conclusions

In this paper we first presented a review of different alternatives for multiple output regression
grouped under a similar framework known as the linear model of coregionalization. Then we
illustrated how the linear model of coregionalization can be interpreted as an instantaneous mix-
ing of latent functions, in contrast to a convolved multiple output framework, where the mixing

1491

ÁLVAREZ AND LAWRENCE

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
FBgn0010531 MSLL −1.0171 SMSE 0.077407

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(a) DTC, short length scale

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
FBgn0010531 MSLL −0.74235 SMSE 0.1707

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(b) FITC, short length scale

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
FBgn0010531 MSLL −0.98993 SMSE 0.087275

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(c) PITC, short length scale

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

0.3

FBgn0004907 MSLL −0.21923 SMSE 0.60572

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(d) DTC, long length scale

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

0.3

FBgn0004907 MSLL −0.84269 SMSE 0.15124
G
en
e
ex
pr
es
si
on
le
ve
l

Time

(e) FITC, long length scale

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

0.3

FBgn0004907 MSLL −0.71762 SMSE 0.24687

G
en
e
ex
pr
es
si
on
le
ve
l

Time

(f) PITC, long length scale

Figure 10: Predictive mean and variance for genes FBgn0010531 (first row) and FBgn0004907
(second row) using the different approximations. In the first column DTC in Figures
10(a) and 10(d), second column FITC in Figures 10(b) and 10(e), and in the third column
PITC in Figures 10(c) and 10(f). The training data comes now from replica 2 and the
testing data from replica 1. The solid line corresponds to the predictive mean, the shaded
region corresponds to 2 standard deviations of the prediction. Performances in terms of
SMSE and MSLL are given in the title of each figure. The crosses in the bottom of
each figure indicate the positions of the inducing points, which remain fixed during the
training procedure.

is not necessarily instantaneous. Experimental results showed that in systems with a presence of
some dynamics (for example, the gene expression data set), having this additional element of non-
instantaneous mixing can lead to simpler explanations of the data. While, in systems for which the
dynamics is not so obvious (for example, the exam score prediction data set), the benefit of using
the non-instantaneous mixing was less noticeable.

We have also presented different efficient approximations for multiple output GPs, in the con-
text of convolution processes. Using these approximations we can capture the correlated infor-
mation among outputs while reducing the amount of computational load for prediction and op-
timization purposes. The computational complexity for the DTC and the FITC approximations
is O(NDK2). The reduction in computational complexity for the PITC approximation is from
O(N3D3) toO(N3D). This matches the computational complexity for modeling with independent
GPs. However, as we have seen, the predictive power of independent GPs is lower. Also, since

1492

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

Test replica Test genes Method SMSE MSLL

Replica 2

FBgn0038617
DTC 0.2162 −0.7015
FITC 0.2240 −0.6886
PITC 0.1625 −0.8600

FBgn0032216
DTC 0.1845 −0.3078
FITC 0.3639 −0.5086
PITC 0.1613 −0.8368

Replica 1

FBgn0010531
DTC 0.0774 −1.0171
FITC 0.1707 −0.7423
PITC 0.0872 −0.9899

FBgn0004907
DTC 0.6057 −0.2192
FITC 0.1512 −0.8426
PITC 0.2468 −0.7176

Table 10: Standardized mean square error (SMSE) and mean standardized log loss (MSLL) for the
genes in Figures 9 and 10 for DTC, FITC and PITC with K = 8. Genes FBgn0038617
and FBgn0010531 have a shorter length-scale when compared to genes FBgn0032216
and FBgn0004907.

PITC makes a better approximation of the likelihood, the variance of the results is usually lower
and approaches closely to the performance of the full GP, when compared to DTC and FITC. As a
byproduct of seeing the linear model of coregionalization as a particular case of the convolved GPs,
we can extend all the approximations to work under the linear model of coregionalization regime.

With an appropriate selection of the kernel smoothing function we have an indirect way to
generate different forms for the covariance function in the multiple output setup. We showed an
example with Gaussian kernels, for which a suitable standardization of the kernels can be made,
leading to competitive results in high-dimensional input regression problems, as seen in the school
exam score prediction problem. The authors are not aware of other work in which this convolution
process framework has been applied in problems with high input dimensions.

As shown with the Swiss Jura experiment, we might need a considerable amount of inducing
points compared to the amount of training data, when doing regression over very noisy outputs.
This agrees to some extent with our intuition in Section 5, where we conditioned the validity of
the approximations to the smoothness of the latent functions. However, even for this case, we
can obtain the same performances in a fraction of the time that takes to train a full GP. Moreover,
the approximations allow multiple output regression over a large amount of outputs, in scenarios
where training a full GP become extremely expensive. We showed an example of this type with the
multiple output regression over the gene expression data.

Linear dynamical systems responses can be expressed as a convolution between the impulse
response of the system with some input function. This convolution approach is an equivalent way of
representing the behavior of the system through a linear differential equation. For systems involving
high amounts of coupled differential equations (Álvarez et al., 2009; Álvarez et al., 2011a; Honkela
et al., 2010), the approach presented here is a reasonable way of obtaining approximate solutions
and incorporating prior domain knowledge to the model.

1493

ÁLVAREZ AND LAWRENCE

Recently, Titsias (2009) highlighted how optimizing inducing variables can be problematic
as they introduce many hyperparameters in the likelihood term. Titsias (2009) proposed a varia-
tional method with an associated lower bound where inducing variables are variational parameters.
Following the ideas presented here, we can combine easily the method of Titsias (2009) and propose
a lower bound for the multiple output case. We have followed a first attempt in that direction and
some results have been presented in Álvarez et al. (2010).

Acknowledgments

The authors would like to thank Edwin Bonilla for his valuable feedback with respect to the exam
score prediction example. The work has benefited greatly from discussions with David Luengo,
Michalis Titsias, and Magnus Rattray. We also thank to three anonymous reviewers for their helpful
comments. The authors are very grateful for support from a Google Research Award “Mecha-
nistically Inspired Convolution Processes for Learning” and the EPSRC Grant No EP/F005687/1
“Gaussian Processes for Systems Identification with Applications in Systems Biology”. MA also
acknowledges the support from the Overseas Research Student Award Scheme (ORSAS), from the
School of Computer Science of the University of Manchester and from the Universidad Tecnológica
de Pereira, Colombia.

Appendix A. Derivatives for the Approximations

In this appendix, we present the derivatives needed to apply the gradient methods in the optimization
routines. We present the first order derivatives of the log-likelihood with respect to Kf,f, Ku,f and
Ku,u. These derivatives can be combined with the derivatives of Kf,f, Ku,f and Ku,u with respect to
θ and employ these expressions in a gradient-like optimization procedure.

We follow the notation of Brookes (2005) obtaining similar results to Lawrence (2007). This
notation allows us to apply the chain rule for matrix derivation in a straight-forward manner. Let’s
define G:= vecG, where vec is the vectorization operator over the matrix G. For a function L the
equivalence between ∂L

∂G and
∂L
∂G: is given through

∂L
∂G: =

((
∂L
∂G

)
:
)�
. The obtain the hyperparame-

ters, we maximize the following log-likelihood function,

L(Z,θ)∝−1

2
log|D+Kf,uK−1

u,uKu,f|−
1

2
trace

[(
D+Kf,uK−1

u,uKu,f
)−1

yy�
]

(19)

where we have redefined D as D =
[
Kf,f−Kf,uK−1

u,uKu,f
]
#M+Σ, to keep a simpler notation.

Using the matrix inversion lemma and its equivalent form for determinants, expression (19) can be
written as

L(Z,θ)∝1

2
log|Ku,u|−

1

2
log|A|− 1

2
log|D|− 1

2
trace

[
D−1yy�

]
+

1

2
trace

[
D−1Kf,uA−1Ku,fD−1yy�

]
.

We can find ∂L
∂θ and

∂L
∂Z applying the chain rule to L obtaining expressions for ∂L

∂Kf,f
, ∂L
∂Kf,u

and ∂L
∂Ku,u

and combining those with the derivatives of the covariances wrt θ and Z,

∂L
∂G:

=
∂LA
∂A:

∂A:
∂D:

∂D:
∂G:

+
∂LD
∂D:

∂D:
∂G:

+

[
∂LA
∂A:

∂A:
∂G:

+
∂LG
∂G:

]
δGK , (20)

1494

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

where the subindex in LE stands for those terms of L which depend on E, G is either Kf,f, Ku,f or
Ku,u and δGK is zero if G is equal to Kf,f and one in other case. Next we present expressions for
each partial derivative

∂LA
∂A:

=−1

2
(C:)� ,

∂A:
∂D:

=−
(
Ku,fD−1⊗Ku,fD−1

)
,

∂LD
∂D:

=−1

2

((
D−1HD−1

)
:
)�

∂D:
∂Kf,f:

= diag(M:),
∂D:
∂Ku,f:

=−diag(M:)
[(
I⊗Kf,uK−1

u,u

)
+
(
Kf,uK−1

u,u⊗ I
)
TD
]
,

∂D:
∂Ku,u:

= diag(M:)
(
Kf,uK−1

u,u⊗Kf,uK−1
u,u

)
,
∂A:
∂Ku,f:

=
(
Ku,fD−1⊗ I

)
+
(
I⊗Ku,fD−1

)
TA

∂A:
∂Ku,u:

= I,
∂LKu,f
∂Ku,f:

=
((
A−1Ku,fD−1yy�D−1

)
:
)�

,
∂LKu,u
∂Ku,u:

=
1

2

((
K−1
u,u

)
:
)�

,

whereC=A−1+A−1Ku,fD−1yy�D−1Kf,uA−1, TD and TA are vectorized transpose matrices (see,

e.g., Brookes, 2005) andH=D−yy�+Kf,uA−1Ku,fD−1yy� +
(
Kf,uA−1Ku,fD−1yy�

)�
. We can

replace the above expressions in (20) to find the corresponding derivatives, so

∂L
∂Kf,f:

=
1

2

[
((C) :)�

(
Ku,fD−1⊗Ku,fD−1

)
− 1

2

((
D−1HD−1

)
:
)�]

diag(M:) (21)

=− 1

2

((
D−1JD−1

)
:
)�

diag(M:) =−1

2

(
diag(M:)

(
D−1JD−1

)
:
)�

(22)

=− 1

2

((
D−1JD−1#M

)
:
)�

=−1

2
(Q:)� (23)

or simply

∂L
∂Kf,f

=− 1

2
Q,

where J = H−Kf,uCKu,f and Q =
(
D−1JD−1#M

)
. We have used the property (B:)� (F⊗P) =((

P�BF
)
:
)�
in (21) and the property diag(B:)F:= (B#F):, to go from (22) to (23). We also have

∂L
∂Ku,f:

=
1

2
(Q:)�

[(
I⊗Kf,uK−1

u,u

)
+
(
Kf,uK−1

u,u⊗ I
)
TD
]
− 1

2
(C:)�

[(
Ku,fD−1⊗ I

)
+
(
I⊗Ku,fD−1

)
TA
]
+
((
A−1Ku,fD−1yy�D−1

)
:
)� (24)

=
((
K−1
u,uKu,fQ−CKu,fD−1+A−1Ku,fD−1yy�D−1

)
:
)�

or simply

∂L
∂Ku,f

=K−1
u,uKu,fQ−CKu,fD−1+A−1Ku,fD−1yy�D−1,

where in (24), (Q:)� (F⊗ I)TD = (Q:)�TD (I⊗F) =
(
T�
DQ:
)�

(I⊗F) = (Q:)� (I⊗F). A similar
analysis is formulated for the term involving TA. Finally, results for ∂L

∂Ku,f
and ∂L

∂Σ are obtained as

∂L
∂Ku,u

=−1

2

(
K−1
u,u−C−K−1

u,uKu,fQKf,uK
−1
u,u

)
,

∂L
∂Σ

=−1

2
Q.

1495

ÁLVAREZ AND LAWRENCE

References

Mauricio A. Álvarez and Neil D. Lawrence. Sparse convolved Gaussian processes for multi-output
regression. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural
Information Processing Systems 21, pages 57–64. MIT Press, Cambridge, MA, 2009.

Mauricio A. Álvarez, David Luengo, and Neil D. Lawrence. Latent Force Models. In David van
Dyk and Max Welling, editors, Proceedings of the Twelfth International Conference on Artificial
Intelligence and Statistics, pages 9–16. JMLR W&CP 5, Clearwater Beach, Florida, 16-18 April
2009.

Mauricio A. Álvarez, David Luengo, Michalis K. Titsias, and Neil D. Lawrence. Efficient mul-
tioutput Gaussian processes through variational inducing kernels. In Yee Whye Teh and Mike
Titterington, editors, Proceedings of the Thirteenth International Conference on Artificial Intel-
ligence and Statistics, pages 25–32. JMLR W&CP 9, Chia Laguna, Sardinia, Italy, 13-15 May
2010.

Mauricio A. Álvarez, Jan Peters, Bernhard Schölkopf, and Neil D. Lawrence. Switched latent force
models for movement segmentation. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S.
Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages
55–63. MIT Press, Cambridge, MA, 2011a.

Mauricio A. Álvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for vector-valued functions:
a review, 2011b. Universidad Tecnológica de Pereira, Massachusetts Institute of Technology and
University of Sheffield. In preparation.

Bart Bakker and Tom Heskes. Task clustering and gating for Bayesian multitask learning. Journal
of Machine Learning Research, 4:83–99, 2003.

Ronald Paul Barry and Jay M. Ver Hoef. Blackbox kriging: spatial prediction without specifying
variogram models. Journal of Agricultural, Biological and Environmental Statistics, 1(3):297–
322, 1996.

Edwin V. Bonilla, Kian Ming Chai, and Christopher K. I. Williams. Multi-task Gaussian process
prediction. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Infor-
mation Processing Systems 20, pages 153–160. MIT Press, Cambridge, MA, 2008.

Phillip Boyle and Marcus Frean. Dependent Gaussian processes. In Lawrence K. Saul, Yair Weiss,
and Léon Bottou, editors, Advances in Neural Information Processing Systems 17, pages 217–
224. MIT Press, Cambridge, MA, 2005.

Michael Brookes. The matrix reference manual. Available on-line., 2005. http://www.ee.ic.
ac.uk/hp/staff/dmb/matrix/intro.html.

Catherine A. Calder. Exploring Latent Structure in Spatial Temporal Processes Using Process
Convolutions. PhD thesis, Institute of Statistics and Decision Sciences, Duke University, Durham,
NC, USA, 2003.

1496

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

Catherine A. Calder. Dynamic factor process convolution models for multivariate space-time data
with application to air quality assessment. Environmental and Ecological Statistics, 14(3):229–
247, 2007.

Catherine A. Calder and Noel Cressie. Some topics in convolution-based spatial modeling. In
Proceedings of the 56th Session of the International Statistics Institute, August 2007.

Rich Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.

Kian Ming A. Chai, Christopher K. I. Williams, Stefan Klanke, and Sethu Vijayakumar. Multi-task
Gaussian process learning of robot inverse dynamics. In D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 265–272.
MIT Press, Cambridge, MA, 2009.

Noel A. C. Cressie. Statistics for Spatial Data. John Wiley & Sons (Revised edition), USA, 1993.

Lehel Csató and Manfred Opper. Sparse representation for Gaussian process models. In Todd K.
Leen, Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Information Process-
ing Systems 13, pages 444–450. MIT Press, Cambridge, MA, 2001.

Theodoros Evgeniou and Massimiliano Pontil. Regularized Multi-task Learning. In Proceedings of
the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 109–117, 2004.

Theodoros Evgeniou, Charles A. Micchelli, and Massimiliano Pontil. Learning multiple tasks with
kernel methods. Journal of Machine Learning Research, 6:615–637, 2005.

Montserrat Fuentes. Interpolation of nonstationary air pollution processes: a spatial spectral
approach. Statistical Modelling, 2:281–298, 2002a.

Montserrat Fuentes. Spectral methods for nonstationary spatial processes. Biometrika, 89(1):197–
210, 2002b.

Pei Gao, Antti Honkela, Magnus Rattray, and Neil D. Lawrence. Gaussian process modelling of
latent chemical species: Applications to inferring transcription factor activities. Bioinformatics,
24:i70–i75, 2008. doi: 10.1093/bioinformatics/btn278.

Marc G. Genton. Classes of kernels for machine learning: A statistics perspective. Journal of
Machine Learning Research, 2:299–312, 2001.

Harvey Goldstein. Multilevel modelling of survey data. The Statistician, 40(2):235–244, 1991.

Pierre Goovaerts. Geostatistics For Natural Resources Evaluation. Oxford University Press, USA,
1997.

Michel Goulard and Marc Voltz. Linear coregionalization model: Tools for estimation and choice
of cross-variogram matrix. Mathematical Geology, 24(3):269–286, 1992.

Jeffrey D. Helterbrand and Noel Cressie. Universal cokriging under intrinsic coregionalization.
Mathematical Geology, 26(2):205–226, 1994.

1497

ÁLVAREZ AND LAWRENCE

Tom Heskes. Empirical Bayes for learning to learn. In P. Langley, editor, Proceedings of the Sev-
enteenth International Conference on Machine Learning 17, pages 367–374. Morgan Kaufmann,
San Francisco, CA, June 29-July 2 2000.

David M. Higdon. A process-convolution approach to modeling temperatures in the north atlantic
ocean. Journal of Ecological and Environmental Statistics, 5:173–190, 1998.

David M. Higdon. Space and space-time modelling using process convolutions. In C. Anderson,
V. Barnett, P. Chatwin, and A. El-Shaarawi, editors, Quantitative Methods for Current Environ-
mental Issues, pages 37–56. Springer-Verlag, 2002.

David M. Higdon, Jenise Swall, and John Kern. Non-stationary spatial modeling. In J. M. Bernardo,
J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics 6, pages 761–768.
Oxford University Press, 1998.

Antti Honkela, Charles Girardot, E. Hilary Gustafson, Ya-Hsin Liu, Eileen E. M. Furlong, Neil D.
Lawrence, and Magnus Rattray. Model-based method for transcription factor target identification
with limited data. Proc. Natl. Acad. Sci., 107(17):7793–7798, 2010.

Andre G. Journel and Charles J. Huijbregts. Mining Geostatistics. Academic Press, London, 1978.
ISBN 0-12391-050-1.

Neil D. Lawrence. Learning for larger datasets with the Gaussian process latent variable model. In
Marina Meila and Xiaotong Shen, editors, AISTATS 11, pages 243–250. Omnipress, San Juan,
Puerto Rico, 21-24 March 2007.

Neil D. Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse Gaussian process methods: The
informative vector machine. In Sue Becker, Sebastian Thrun, and Klaus Obermayer, editors,
Advances in Neural Information Processing Systems 15, pages 625–632. MIT Press, Cambridge,
MA, 2003.

Neil D. Lawrence, Guido Sanguinetti, and Magnus Rattray. Modelling transcriptional regulation
using Gaussian processes. In Bernhard Schölkopf, John C. Platt, and Thomas Hofmann, editors,
Advances in Neural Information Processing Systems 19, pages 785–792. MIT Press, Cambridge,
MA, 2007.

Feng Liang, Kai Mao, Ming Liao, Sayan Mukherjee, and Mike West. Non-parametric Bayesian
kernel models. Department of Statistical Science, Duke University, Discussion Paper 07-10.
(Submitted for publication), 2009.

Desmond L. Nuttall, Harvey Goldstein, Robert Prosser, and Jon Rasbash. Differential school effec-
tiveness. International Journal of Educational Research, 13(7):769–776, 1989.

Michael A. Osborne and Stephen J. Roberts. Gaussian processes for prediction. Technical report,
Department of Engineering Science, University of Oxford, 2007.

Michael A. Osborne, Alex Rogers, Sarvapali D. Ramchurn, Stephen J. Roberts, and Nicholas R.
Jennings. Towards real-time information processing of sensor network data using computatio-
nally efficient multi-output Gaussian processes. In Proceedings of the International Conference
on Information Processing in Sensor Networks (IPSN 2008), 2008.

1498

COMPUTATIONALLY EFFICIENT CONVOLVED MULTIPLE OUTPUT GAUSSIAN PROCESSES

Christopher J. Paciorek and Mark J. Schervish. Nonstationary covariance functions for Gaussian
process regression. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Ad-
vances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

Natesh S. Pillai, Qiang Wu, Feng Liang, Sayan Mukherjee, and Robert L. Wolpert. Characterizing
the function space for Bayesian kernel models. Journal of Machine Learning Research, 8:1769–
1797, 2007.

Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approximate
Gaussian process regression. Journal of Machine Learning Research, 6:1939–1959, 2005.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, Cambridge, MA, 2006. ISBN 0-262-18253-X.

Matthias Seeger, Christopher K. I. Williams, and Neil D. Lawrence. Fast forward selection to speed
up sparse Gaussian process regression. In Christopher M. Bishop and Brendan J. Frey, editors,
Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key
West, FL, 3–6 Jan 2003.

Alexander J. Smola and Peter L. Bartlett. Sparse greedy Gaussian process regression. In Todd K.
Leen, Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Information Process-
ing Systems 13, pages 619–625. MIT Press, Cambridge, MA, 2001.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. In
Yair Weiss, Bernhard Schölkopf, and John C. Platt, editors, Advances in Neural Information
Processing Systems 18, pages 1257–1264. MIT Press, Cambridge, MA, 2006.

Edward Snelson and Zoubin Ghahramani. Local and global sparse Gaussian process approxima-
tions. In Marina Meila and Xiaotong Shen, editors, AISTATS 11, pages 524–531, San Juan, Puerto
Rico, 21-24 March 2007. Omnipress.

Yee Whye Teh, Matthias Seeger, and Michael I. Jordan. Semiparametric latent factor models. In
Robert G. Cowell and Zoubin Ghahramani, editors, AISTATS 10, pages 333–340. Society for
Artificial Intelligence and Statistics, Barbados, 6-8 January 2005.

Michalis K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In
David van Dyk andMaxWelling, editors, Proceedings of the Twelfth International Conference on
Artificial Intelligence and Statistics, pages 567–574. JMLRW&CP 5, Clearwater Beach, Florida,
16-18 April 2009.

Pavel Tomancak, Amy Beaton, Richard Weiszmann, Elaine Kwan, ShengQiang Shu, Suzanna E
Lewis, Stephen Richards, Michael Ashburner, Volker Hartenstein, Susan E Celniker, and Ge-
rald M Rubin. Systematic determination of patterns of gene expression during drosophila em-
bryogenesis. Genome Biology, 3(12):research0088.1–0088.14, 2002.

Jay M. Ver Hoef and Ronald Paul Barry. Constructing and fitting models for cokriging and multi-
variable spatial prediction. Journal of Statistical Plannig and Inference, 69:275–294, 1998.

Hans Wackernagel. Multivariate Geostatistics. Springer-Verlag Heidelberg New York, 2003.

1499

ÁLVAREZ AND LAWRENCE

Christopher K. Wikle. A kernel-based spectral model for non-Gaussian spatio-temporal processes.
Statistical Modelling, 2:299–314, 2002.

Christopher K. Wikle. Hierarchical Bayesian models for predicting the spread of ecological pro-
cesses. Ecology, 84(6):1382–1394, 2003.

Christopher K. Wikle, L. Mark Berliner, and Noel Cressie. Hierarchical Bayesian space-time mo-
dels. Environmental and Ecological Statistics, 5:117–154, 1998.

Christopher K. I. Williams and Matthias Seeger. Using the Nyström method to speed up kernel
machines. In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural
Information Processing Systems 13, pages 682–688. MIT Press, Cambridge, MA, 2001.

Ya Xue, Xuejun Liao, and Lawrence Carin. Multi-task learning for classification with Dirichlet
process priors. Journal of Machine Learning Research, 8:35–63, 2007.

Robert P. Zinzen, Charles Girardot, Julien Gagneur, Martina Braun, and Eileen E. M. Furlong.
Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature, 462:65–70, 2009.

1500

Journal of Machine Learning Research 12 (2011) 1501-1536 Submitted 10/10; Revised 2/11; Published 5/11

Learning from Partial Labels

Timothee Cour TIMOTHEE.COUR@GMAIL.COM
NEC Laboratories America
10080 N Wolfe Rd # Sw3350
Cupertino, CA 95014, USA

Benjamin Sapp BENSAPP@CIS.UPENN.EDU
Ben Taskar TASKAR@SEAS.UPENN.EDU
Department of Computer and Information Science
University of Pennsylvania
3330 Walnut Street
Philadelphia, PA 19107, USA

Editor: Yoav Freund

Abstract

We address the problem of partially-labeled multiclass classification, where instead of a single la-
bel per instance, the algorithm is given a candidate set of labels, only one of which is correct. Our
setting is motivated by a common scenario in many image and video collections, where only partial
access to labels is available. The goal is to learn a classifier that can disambiguate the partially-
labeled training instances, and generalize to unseen data. We define an intuitive property of the
data distribution that sharply characterizes the ability to learn in this setting and show that effec-
tive learning is possible even when all the data is only partially labeled. Exploiting this property
of the data, we propose a convex learning formulation based on minimization of a loss function
appropriate for the partial label setting. We analyze the conditions under which our loss function
is asymptotically consistent, as well as its generalization and transductive performance. We apply
our framework to identifying faces culled from web news sources and to naming characters in TV
series and movies; in particular, we annotated and experimented on a very large video data set and
achieve 6% error for character naming on 16 episodes of the TV series Lost.

Keywords: weakly supervised learning, multiclass classification, convex learning, generalization
bounds, names and faces

1. Introduction

We consider a weakly-supervised multiclass classification setting where each instance is partially
labeled: instead of a single label per instance, the algorithm is given a candidate set of labels, only
one of which is correct. A typical example arises in photographs containing several faces per image
and a caption that only specifies who is in the picture but not which name matches which face. In
this setting each face is ambiguously labeled with the set of names extracted from the caption, see
Figure 1 (bottom). Photograph collections with captions have motivated much recent interest in
weakly annotated images and videos (Duygulu et al., 2002; Barnard et al., 2003; Berg et al., 2004;
Gallagher and Chen, 2007). Another motivating example is shown in Figure 1 (top), which shows
a setting where we can obtain plentiful but weakly labeled data: videos and screenplays. Using a
screenplay, we can tell who is in a given scene, but for every detected face in the scene, the person’s

c©2011 Timothee Cour, Ben Sapp and Ben Taskar.

COUR, SAPP AND TASKAR

Figure 1: Two examples of partial labeling scenarios for naming faces. Top: using a screenplay,
we can tell who is in a movie scene, but for every face in the corresponding images, the
person’s identity is ambiguous (green labels). Bottom: images in photograph collections
and webpages are often tagged ambiguously with several potential names in the caption
or nearby text. In both cases, our goal is to learn a model from ambiguously labeled ex-
amples so as to disambiguate the training labels and also generalize to unseen examples.

identity is ambiguous: each face is partially labeled with the set of characters appearing at some
point in the scene (Satoh et al., 1999; Everingham et al., 2006; Ramanan et al., 2007). The goal in
each case is to learn a person classifier that can not only disambiguate the labels of the training faces,
but also generalize to unseen data. Learning accurate models for face and object recognition from
such imprecisely annotated images and videos can improve the performance of many applications,
including image retrieval and video summarization.

This partially labeled setting is situated between fully supervised and fully unsupervised learn-
ing, but is qualitatively different from the semi-supervised setting where both labeled and unlabeled
data are available. There have been several papers that addressed this partially labeled (also called
ambiguously labeled) problem. Many formulations use the expectation-maximization-like algo-
rithms to estimate the model parameters and “fill-in” the labels (Côme et al., 2008; Ambroise et al.,
2001; Vannoorenberghe and Smets, 2005; Jin and Ghahramani, 2002). Most methods involve ei-
ther non-convex objectives or procedural, iterative reassignment schemes which come without any
guarantees of achieving global optima of the objective or classification accuracy. To the best of our
knowledge, there has not been theoretical analysis of conditions under which proposed approaches
are guaranteed to learn accurate classifiers. The contributions of this paper are:

• We show theoretically that effective learning is possible under reasonable distributional as-
sumptions even when all the data is partially labeled, leading to useful upper and lower bounds
on the true error.

• We propose a convex learning formulation based on this analysis by extending general multi-
class loss functions to handle partial labels.

1502

LEARNING FROM PARTIAL LABELS

• We apply our convex learning formulation to the task of identifying faces culled from web
news sources, and to naming characters in TV series. We experiment on a large data set
consisting of 100 hours of video, and in particular achieve 6% (resp. 13%) error for character
naming across 8 (resp. 32) labels on 16 episodes of Lost, consistently outperforming several
strong baselines.

• We contribute the Annotated Faces on TV data set, which contains about 3,000 cropped faces
extracted from 8 episodes of the TV show Lost (one face per track). Each face is registered
and annotated with a groundtruth label (there are 40 different characters). We also include a
subset of those faces with the partial label set automatically extracted from the screenplay.

• We provide the Convex Learning from Partial Labels Toolbox, an open-source matlab and
C++ implementation of our approach as well as the baseline approach discussed in the paper.
The code includes scripts to illustrate the process on Faces in the Wild Data Set (Huang et al.,
2007a) and our Annotated Faces on TV data set.

The paper is organized as follows.1 We review related work and relevant learning scenarios
in Section 2. We pose the partially labeled learning problem as minimization of an ambiguous
loss in Section 3, and establish upper and lower bounds between the (unobserved) true loss and the
(observed) ambiguous loss in terms of a critical distributional property we call ambiguity degree. We
propose the novel Convex Learning from Partial Labels (CLPL) formulation in Section 4, and show
it offers a tighter approximation to the ambiguous loss, compared to a straightforward formulation.
We derive generalization bounds for the inductive setting, and in Section 5 also provide bounds for
the transductive setting. In addition, we provide reasonable sufficient conditions that will guarantee
a consistent labeling in a simple case. We show how to solve proposed CLPL optimization problems
by reducing them to more standard supervised optimization problems in Section 6, and provide
several concrete algorithms that can be adapted to our setting, such as support vector machines and
boosting. We then proceed to a series of controlled experiments in Section 7, comparing CLPL to
several baselines on different data sets. We also apply our framework to a naming task in TV series,
where screenplay and closed captions provide ambiguous labels. The code and data used in the
paper can be found at: http://www.vision.grasp.upenn.edu/video.

2. Related Work

We review here the related work for learning under several forms of weak supervision, as well
concrete applications.

2.1 Weakly Supervised Learning

To put the partially-labeled learning problem into perspective, it is useful to lay out several related
learning scenarios (see Figure 2), ranging from fully supervised (supervised and multi-label learn-
ing), to weakly-supervised (semi-supervised, multi-instance, partially-labeled), to unsupervised.

• In semi-supervised learning (Zhu and Goldberg, 2009; Chapelle et al., 2006), the learner has
access to a set of labeled examples as well as a set of unlabeled examples.

1. A preliminary version of this work appeared in Cour et al. (2009). Sections 4.2 to 6 present new material, and
Sections 7 and 8 contain additional experiments, data sets and comparisons.

1503

COUR, SAPP AND TASKAR

supervised

instance label

unsupervised

instance ???

semi-supervised

instance label

instance ???

multi-label

instance label

label

label

multi-instance

instance

instance

instance

label

partial-label

instance label

label

label

Figure 2: Range of supervision in classification. Training may be: supervised (a label is given for
each instance), unsupervised (no label is given for any instance), semi-supervised (la-
bels are given for some instances), multi-label (each instance can have multiple labels),
multi-instance (a label is given for a group of instances where at least one instance in the
group has the label), or partially-labeled (for each instance, several possible labels are
given, only one of which is correct).

• In multi-label learning (Boutell et al., 2004; Tsoumakas et al., 2010), each example is as-
signed multiple labels, all of which can be true.

• Inmulti-instance learning (Dietterich et al., 1997; Andrews and Hofmann, 2004; Viola et al.,
2006), examples are not individually labeled but grouped into sets which either contain at least
one positive example, or only negative examples. A special case considers the easier scenario
where label proportions in each bag are known (Kuck and de Freitas, 2005), allowing one to
compute convergence bounds on the estimation error of the correct labels (Quadrianto et al.,
2009).

• Finally, in our setting of partially labeled learning, also called ambiguously labeled learning,
each example again is supplied with multiple labels, only one of which is correct. A formal
definition is given in Section 3.

Clearly, these settings can be combined, for example with multi-instance multi-label learning
(MIML) (Zhou and Zhang, 2007), where training instances are associated with not only multiple
instances but also multiple labels. Another combination of interest appears in a recent paper build-
ing on our previous work (Cour et al., 2009) that addresses the case where sets of instances are
ambiguously labeled with candidate labeling sets (Luo and Orabona, 2010).

2.2 Learning From Partially-labeled or Ambiguous Data

There have been several papers that addressed the ambiguous label problem. A number of these use
the expectation-maximization algorithm (EM) to estimate the model parameters and the true label
(Côme et al., 2008; Ambroise et al., 2001; Vannoorenberghe and Smets, 2005; Jin and Ghahramani,
2002). For example Jin and Ghahramani (2002) use an EM-like algorithm with a discriminative log-
linear model to disambiguate correct labels from incorrect ones. Grandvalet and Bengio (2004) add
a minimum entropy term to the set of possible label distributions, with a non-convex objective as
in the case of (Jin and Ghahramani, 2002). Hullermeier and Beringer (2006) propose several non-
parametric, instance-based algorithms for ambiguous learning based on greedy heuristics. These
papers only report results on synthetically-created ambiguous labels for data sets such as the UCI
repository. Also, the algorithms proposed rely on iterative non-convex learning.

1504

LEARNING FROM PARTIAL LABELS

2.3 Images and Captions

A related multi-class setting is common for images with captions: for example, a photograph of a
beach with a palm tree and a boat, where object locations are not specified. Duygulu et al. (2002)
and Barnard et al. (2003) show that such partial supervision can be sufficient to learn to identify the
object locations. The key observation is that while text and images are separately ambiguous, jointly
they complement each other. The text, for instance, does not mention obvious appearance properties,
but the frequent co-occurrence of a word with a visual element could be an indication of association
between the word and a region in the image. Of course, words in the text without correspondences
in the image and parts of the image not described in the text are virtually inevitable. The problem
of naming image regions can be posed as translation from one language to another. Barnard et al.
(2003) address it using a multi-modal extension to mixture of latent Dirichlet allocations.

2.4 Names and Faces

The specific problem of naming faces in images and videos using text sources has been addressed
in several works (Satoh et al., 1999; Berg et al., 2004; Gallagher and Chen, 2007; Everingham et al.,
2006). There is a vast literature on fully supervised face recognition, which is out of the scope of this
paper. Approaches relevant to ours include Berg et al. (2004), which aims at clustering face images
obtained by detecting faces from images with captions. Since the name of the depicted people
typically appears in the caption, the resulting set of images is ambiguously labeled if more than
one name appears in the caption. Moreover, in some cases the correct name may not be included
in the set of potential labels for a face. The problem can be solved by using unambiguous images
to estimate discriminant coordinates for the entire data set. The images are clustered in this space
and the process is iterated. Gallagher and Chen (2007) address the similar problem of retrieval from
consumer photo collections, in which several people appear in each image which is labeled with
their names. Instead of estimating a prior probability for each individual, the algorithm estimates a
prior for groups using the ambiguous labels. Unlike Berg et al. (2004), the method of Gallagher and
Chen (2007) does not handle erroneous names in the captions.

2.5 People in Video

In work on video, a wide range of cues has been used to automatically obtain supervised data,
including: captions or transcripts (Everingham et al., 2006; Cour et al., 2008; Laptev et al., 2008),
sound (Satoh et al., 1999) to obtain the transcript, or clustering based on clothing, face and hair
color within scenes to group instances (Ramanan et al., 2007). Most of the methods involve either
procedural, iterative reassignment schemes or non-convex optimization.

3. Formulation

In the standard supervised multiclass setting, we have labeled examples S = {(xi,yi)mi=1} from an
unknown distribution P(X ,Y) where X ∈ X is the input and Y ∈ {1, . . . ,L} is the class label. In the
partially supervised setting we investigate, instead of an unambiguous single label per instance we
have a set of labels, one of which is the correct label for the instance. We will denote yi = {yi}∪
zi as the ambiguity set actually observed by the learning algorithm, where zi ⊆ {1, . . . ,L} \ {yi}
is a set of additional labels, and yi the latent groundtruth label which we would like to recover.
Throughout the paper, we will use boldface to denote sets and uppercase to denote random variables

1505

COUR, SAPP AND TASKAR

Figure 3: Left: Co-occurrence graph of the top characters across 16 episodes of Lost. Edge thick-
ness corresponds to the co-occurrence frequency of characters. Right: The model of the
data generation process: (X ,Y) are observed, (Y,Z) are hidden, with Y= Y ∪Z.

with corresponding lowercase values of random variables. We suppose X ,Y,Z are distributed
according to an (unknown) distribution P(X ,Y,Z) = P(X)P(Y | X)P(Z | X ,Y) (see Figure 3, right),
of which we only observe samples of the form S = {(xi,yi)mi=1}= {(xi,{yi}∪ zi)mi=1}. (In case X is
continuous, P(X) is a density with respect to some underlying measure μ on X , but we will simply
refer to the joint P(X ,Y,Z) as a distribution.) With the above definitions, yi ∈ yi,zi ⊂ yi,yi /∈ zi and
Y ∈ Y,Z⊂ Y,Y /∈ Z.

Clearly, our setup generalizes the standard semi-supervised setting where some examples are
labeled and some are unlabeled: an example is labeled when the corresponding ambiguity set yi is a
singleton, and unlabeled when yi includes all the labels. However, we do not explicitly consider the
semi-supervised setting this paper, and our analysis below provides essentially vacuous bounds for
the semi-supervised case. Instead, we consider the middle-ground, where all examples are partially
labeled as described in our motivating examples and analyze assumptions under which learning can
be guaranteed to succeed.

In order to learn from ambiguous data, we must make some assumptions about the distribution
P(Z | X ,Y). Consider a very simple ambiguity pattern that makes accurate learning impossible:
L= 3, |zi|= 1 and label 1 is present in every set yi, for all i. Then we cannot distinguish between the
case where 1 is the true label of every example, and the case where it is not a label of any example.
More generally, if two labels always co-occur when present in y, we cannot tell them apart. In order
to disallow this case, below we will make an assumption on the distribution P(Z | X ,Y) that ensures
some diversity in the ambiguity set. This assumption is often satisfied in practice. For example,
consider our initial motivation of naming characters in TV shows, where the ambiguity set for any
given detected face in a scene is given by the set of characters occurring at some point in that scene.
In Figure 3 (left), we show the co-occurrence graph of characters in a season of the TV show Lost,

1506

LEARNING FROM PARTIAL LABELS

Symbol Meaning
x,X observed input value/variable: x,X ∈ X
y,Y hidden label value/variable: y,Y ∈ {1, . . . ,L}
z,Z hidden additional label set/variable: z,Z⊆ {1, . . . ,L}
y,Y observed label set/variable: y= {y}∪ z,Y= {Y}∪Z

h(x),h(X) multiclass classifier mapping h : X → {1, . . . ,L}
L(h(x),y),LA(h(x),y) standard and partial 0/1 loss

Table 1: Summary of notation used.

where the thickness of the edges corresponds to the number of times characters share a scene. This
suggests that for most characters, ambiguity sets are diverse and we can expect that the ambiguity
degree is small. A more quantitative diagram will be given in Figure 11 (left).

Many formulations of fully-supervised multiclass learning have been proposed based on mini-
mization of convex upper bounds on risk, usually, the expected 0/1 loss (Zhang, 2004):

0/1 loss: L(h(x),y) = 1(h(x) �= y),

where h(x) : X → {1, . . . ,L} is a multiclass classifier.
We cannot evaluate the 0/1 loss using our partially labeled training data. We define a surro-

gate loss which we can evaluate, and we call ambiguous or partial 0/1 loss (where A stands for
ambiguous):

Partial 0/1 loss: LA(h(x),y) = 1(h(x) /∈ y).

3.1 Connection Between Partial and Standard 0/1 Losses

An obvious observation is that the partial loss is an underestimate of the true loss. However, in
the ambiguous learning setting we would like to minimize the true 0/1 loss, with access only to
the partial loss. Therefore we need a way to upper-bound the 0/1 loss using the partial loss. We
first introduce a measure of hardness of learning under ambiguous supervision, which we define as
ambiguity degree ε of a distribution P(X ,Y,Z):

Ambiguity degree: ε= sup
x,y,z:P(x,y)>0,z∈{1,...,L}

P(z ∈ Z | X = x,Y = y). (1)

In words, ε corresponds to the maximum probability of an extra label z co-occurring with a
true label y, over all labels and inputs. Let us consider several extreme cases: When ε = 0, Z = /0
with probability one, and we are back to the standard supervised learning case, with no ambiguity.
When ε = 1, some extra label always co-occurs with a true label y on an example x and we cannot
tell them apart: no learning is possible for this example. For a fixed ambiguity set size C (i.e.,
P(|Z| = C) = 1), the smallest possible ambiguity degree is ε = C/(L− 1), achieved for the case
where P(Z | X ,Y) is uniform over subsets of sizeC, for which we have P(z ∈ Z | X ,Y) =C/(L−1)
for all z ∈ {1, . . . ,L}\{y}. Intuitively, the best case scenario for ambiguous learning corresponds to
a distribution with high conditional entropy for P(Z | X ,Y).

The following proposition shows we can bound the (unobserved) 0/1 loss by the (observed)
partial loss, allowing us to approximately minimize the standard loss with access only to the partial
one. The tightness of the approximation directly relates to the ambiguity degree.

1507

COUR, SAPP AND TASKAR

Proposition 1 (Partial loss bound via ambiguity degree ε) For any classifier h and distribution
P(X ,Y,Z), with Y= X ∪Z and ambiguity degree ε:

EP[LA(h(X),Y)]≤ EP[L(h(X),Y)]≤
1

1− ε
EP[LA(h(X),Y)],

with the convention 1/0 = +∞. These bounds are tight, and for the second one, for any (rational)
ε, we can find a number of labels L, a distribution P and classifier h such that equality holds.

Proof. All proofs appear in Appendix B.

3.2 Robustness to Outliers

One potential issue with Proposition 1 is that unlikely (outlier) pairs x,y (with vanishing P(x,y))
might force ε to be close to 1, making the bound very loose. We show we can refine the notion of
ambiguity degree ε by excluding such pairs.

Definition 2 (ε,δ)-ambiguous distribution. A distribution P(X ,Y,Z) is (ε,δ)-ambiguous if there
exists a subset G of the support of P(X ,Y), G⊆ X ×{1, . . . ,L} with probability mass at least 1−δ,
that is,

∫
(x,y)∈GP(X = x,Y = y)dμ(x,y)≥ 1−δ, integrated with respect to the appropriate underlying

measure μ on X ×{1, . . . ,L}, for which

sup
(x,y)∈G,z∈{1,...,L}

P(z ∈ Z | X = x,Y = y)≤ ε.

Note that in the extreme case ε = 0 corresponds to standard semi-supervised learning, where
1− δ-proportion of examples are unambiguously labeled, and δ are (potentially) fully unlabeled.
Even though we can accommodate it, semi-supervised learning is not our focus in this paper and
our bounds are not well suited for this case.

This definition allows us to bound the 0/1 loss even in the case when some unlikely set of
pairs x,y with probability ≤ δ would make the ambiguity degree large. Suppose we mix an initial
distribution with small ambiguity degree, with an outlier distribution with large overall ambiguity
degree. The following proposition shows that the bound degrades only by an additive amount, which
can be interpreted as a form of robustness to outliers.

Proposition 3 (Partial loss bound via (ε,δ)) For any classifier h and (ε,δ)-ambiguous P(Z |X ,Y),

EP[L(h(X),Y)]≤
1

1− ε
EP[LA(h(X),Y)]+δ.

A visualization of the bounds in Proposition 1 and Proposition 3 is shown in Figure 4.

3.3 Label-specific Recall Bounds

In the types of data from video experiments, we observe that certain subsets of labels are harder to
disambiguate than others. We can further tighten our bounds between ambiguous loss and standard

1508

LEARNING FROM PARTIAL LABELS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

E[ambiguous loss]
E

[t
ru

e
lo

ss
]

Feasible Region

δ = 0.05, ε = 0.2

Figure 4: Feasible region for expected ambiguous and true loss, for ε= 0.2,δ= 0.05.

0/1 loss if we consider label-specific information. We define the label-specific ambiguity degree εa
of a distribution (with a ∈ {1, . . . ,L}) as:

εa = sup
x,z:P(X=x,Y=a)>0;z∈{1,...,L}

P(z ∈ Z | X = x,Y = a).

We can show a label-specific analog of Proposition 1:

Proposition 4 (Label-specific partial loss bound) For any classifier h and distribution P(X ,Y,Z)
with label-specific ambiguity degree εa ,

EP[L(h(X),Y) | Y = a]≤ 1
1− εa

EP[LA(h(X),Y) | Y = a],

where we see that εa bounds per-class recall.
These bounds give a strong connection between ambiguous loss and real loss when ε is small.

This assumption allows us to approximately minimize the expected real loss by minimizing (an
upper bound on) the ambiguous loss, as we propose in the following section.

4. A Convex Learning Formulation

We have not assumed any specific form for our classifier h(x) above. We now focus on a particular
family of classifiers, which assigns a score ga(x) to each label a for a given input x and select the
highest scoring label:

h(x) = arg max
a∈1..L

ga(x).

We assume that ties are broken arbitrarily, for example, by selecting the label with smallest index a.
We define the vector g(x) = [g1(x) . . .gL(x)]�, with each component ga : X → R in a function class
G . Below, we use a multi-linear function class G by assuming a feature mapping f(x) : X → R

d

from inputs to d real-valued features and let ga(x) =wa · f(x), where wa ∈R
d is a weight vector for

each class, bounded by some norm: ||wa||p ≤ B for p= 1,2.
We build our learning formulation on a simple and general multiclass scheme, frequently used

for the fully supervised setting (Crammer and Singer, 2002; Rifkin and Klautau, 2004; Zhang,
2004; Tewari and Bartlett, 2005), that combines convex binary losses ψ(·) : R → R+ on individual

1509

COUR, SAPP AND TASKAR

components of g to create a multiclass loss. For example, we can use hinge, exponential or logistic
loss. In particular, we assume a type of one-against-all scheme for the supervised case:

Lψ(g(x),y) = ψ(gy(x))+∑
a �=y

ψ(−ga(x)).

A classifier hg(x) is selected by minimizing the empirical loss Lψ on the sample S = {xi,yi}mi=1
(called empirical ψ-risk) over the function class G :

inf
g∈G

ES[Lψ(g(X),Y)] = inf
g∈G

1
m

m

∑
i=1

Lψ(g(xi),yi).

For the fully supervised case, under appropriate assumptions, this form of the multiclass loss
is infinite-sample consistent. This means that a minimizer ĝ of ψ-risk achieves optimal 0/1 risk
infgES[Lψ(g(X),Y)] = infgEP[L(g(X),Y)] as the number of samples m grows to infinity, provided
that the function class G grows appropriately fast with m to be able to approximate any function
from X toR and ψ(u) satisfies the following conditions: (1) ψ(u) is convex, (2) bounded below, (3)
differentiable and (4) ψ(u) < ψ(−u) when u > 0 (Theorem 9 in Zhang (2004)). These conditions
are satisfied, for example, for the exponential, logistic and squared hinge loss max(0,1−u)2. Below,
we construct a loss function for the partially labeled case and consider when the proposed loss is
consistent.

4.1 Convex Loss for Partial Labels

In the partially labeled setting, instead of an unambiguous single label y per instance we have a set
of labels Y , one of which is the correct label for the instance. We propose the following loss, which
we call our Convex Loss for Partial Labels (CLPL):

Lψ(g(x),y) = ψ

(
1
|y| ∑a∈y

ga(x)

)
+∑

a/∈y
ψ(−ga(x)). (2)

Note that if y is a singleton, the CLPL function reduces to the regular multiclass loss. Otherwise,
CLPL will drive up the average of the scores of the labels in y. If the score of the correct label is
large enough, the other labels in the set do not need to be positive. This tendency alone does not
guarantee that the correct label has the highest score. However, we show in Proposition 6 that
Lψ(g(x),y) upperbounds LA(g(x),y) whenever ψ(·) is an upper bound on the 0/1 loss.

Of course, minimizing an upperbound on the loss does not always lead to sensible algorithms.
We show next that our loss function is consistent under certain assumptions and offers a tighter
upperbound to the ambiguous loss compared to a more straightforward multi-label approach.

4.2 Consistency for Partial Labels

We derive conditions under which the minimizer of the CLPL in Equation 2 with partial labels
achieves optimal 0/1 risk: infg∈G ES[Lψ(g(X),Y)] = infg∈G EP[L(g(X),Y)] in the limit of infinite
data and arbitrarily richG . Not surprisingly, our loss function is not consistent without making some
additional assumptions on P(Y | X) beyond the assumptions for the fully supervised case. Note that
the Bayes optimal classifier for 0/1 loss satisfies the condition h(x)∈ argmaxa P(Y = a |X = x), and

1510

LEARNING FROM PARTIAL LABELS

may not be unique. First, we require that argmaxa P(Y = a | X = x) = argmaxa P(a ∈ Y | X = x),
since otherwise argmaxa P(Y = a |X = x) cannot be determined by any algorithm from partial labels
Y without additional information even with an infinite amount of data. Second, we require a simple
dominance condition as detailed below and provide a counterexample when this condition does not
hold. The dominance relation defined formally below states that when a is the most (or one of the
most) likely label given x according to P(Y | X = x) and b is not, c∪ {a} has higher (or equal)
probability than c∪{b} for any set of other labels c.

Proposition 5 (Partial label consistency) Suppose the following conditions hold:

• ψ(·) is differentiable, convex, lower-bounded and non-increasing, with ψ′(0)< 0.

• When P(X = x)> 0, argmaxa′ P(Y = a′ | X = x) = argmaxa′ P(a′ ∈ Y | X = x).

• The following dominance relation holds: ∀a ∈ argmaxa′ P(a′ ∈ Y | X = x), ∀b �∈ argmaxa′
P(a′ ∈ Y | X = x), ∀c⊂ {1, . . . ,L}\{a,b}:

P(Y= c∪{a} | X = x)≥ P(Y= c∪{b} | X = x).

Then Lψ(g(x),y) is infinite-sample consistent:

inf
g∈G

ES[Lψ(g(X),Y)] = inf
g∈G

EP[L(g(X),Y)],

as |S|= m→ ∞ and G → R
L . As a corollary, consistency is implied when ambiguity degree ε< 1

and P(Y | X) is deterministic, that is, P(Y | X) = 1(Y = h(X)) for some h(·).

If the dominance relation does not hold, we can find counter-examples where consistency fails.
Consider a distribution with a single x with P(x) > 0, and let L = 4, P(|Y| = 2 | X = x) = 1, ψ be
the square-hinge loss, and P(Y | X = x) be such that:

a
250 ·Pab 1 2 3 4

b

1 0 29 44 0
2 29 0 17 26
3 44 17 0 9
4 0 26 9 0

250 ·Pa 73 72 70 35

Above, the abbreviations are Pab= P(Y= {a,b} |X = x) and Pa=∑b Pab, and the entries that do not
satisfy the dominance relation are in bold. We can explicitly compute the minimizer of Lψ, which
is g = (12Pab+ diag(2− 3

2Pa))
−1(3Pa− 2) ≈ −

[
0.6572 0.6571 0.6736 0.8568

]
. It satisifes

argmaxa ga = 2 but argmaxa∑b Pab = 1.

4.3 Comparison to Other Loss Functions

The “naive” partial loss, proposed by Jin and Ghahramani (2002), treats each example as having
multiple correct labels, which implies the following loss function

Lnaive
ψ (g(x),y) =

1
|y| ∑a∈y

ψ(ga(x))+∑
a/∈y

ψ(−ga(x)). (3)

1511

COUR, SAPP AND TASKAR

Figure 5: Our loss function in Equation 2 provides a tighter convex upperbound than the naive loss
Equation 3 on the non-convex max-loss Equation 4. (Left) We show the square hinge
ψ (blue) and a chord (red) touching two points g1,g2. The horizontal lines correspond
to our loss ψ(12(g1+ g2)) Equation 2, the max-loss ψ(max(g1,g2)), and the naive loss
1
2(ψ(g1)+ψ(g2)) (ignoring negative terms and assuming y = {1,2}). (Middle) Corre-
sponding losses as we vary g1 ∈ [−2,2] (with g2 = 0). (Right) Same, with g2 =−g1.

One reason we expect our loss function to outperform the naive approach is that we obtain a tighter
convex upper bound on LA. Let us also define

Lmax
ψ (g(x),y) = ψ

(
max
a∈y

ga(x)

)
+∑

a/∈y
ψ(−ga(x)), (4)

which is not convex, but is in some sense closer to the desired true loss. The following inequalities
are verified for common losses ψ such as square hinge loss, exponential loss, and log loss with
proper scaling:

Proposition 6 (Comparison between partial losses) Under the usual conditions that ψ is a con-
vex, decreasing upper bound of the step function, the following inequalities hold:

2LA ≤ Lmax
ψ ≤ Lψ ≤ Lnaive

ψ .

The 2nd and 3rd bounds are tight, and the first one is tight provided ψ(0) = 1 and lim+∞ψ= 0.

This shows that our CLPL Lψ is a tighter approximation to LA than Lnaive
ψ , as illustrated in

Figure 5. To gain additional intuition as to why CLPL is better than the naive loss Equation 3: for
an input x with ambiguous label set (a,b), CLPL only encourages the average of ga(x) and gb(x)
to be large, allowing the correct score to be positive and the extraneous score to be negative (e.g.,
ga(x) = 2,gb(x) =−1). In contrast, the naive model encourages both ga(x) and gb(x) to be large.

4.4 Generalization Bounds

To derive concrete generalization bounds on multiclass error for CLPL we define our function class
for g. We assume a feature mapping f(x) : X → R

d from inputs to d real-valued features and let
ga(x) =wa ·f(x), wherewa ∈R

d is a weight vector for each class, bounded by L2 norm : ||wa||2≤B.

1512

LEARNING FROM PARTIAL LABELS

We use ψ(u) =max(0,1−u)p (for example hinge loss with p= 1, squared hinge loss with p= 2).
The corresponding margin-based loss is defined via a truncated, rescaled version of ψ:

ψγ(u) =

⎧⎪⎨⎪⎩
1 if u≤ 0,
(1−u/γ)p if 0< u≤ γ,

0 if u> γ.

Proposition 7 (Generalization bound) For any integer m and any η ∈ (0,1), with probability at
least 1−η over samples S= {(xi,yi)}mi=1, for every g in G :

EP[LA(g(X),Y)]≤ ES[Lψγ(g(X),Y)]+
4pBL5/2

cγ

√
ES[||f(X)||2]

m
+L

√
8log(2/η)

m
.

where c is an absolute constant from Lemma 12 in the appendix, ES is the sample average and L is
the number of labels.

The proof in the appendix uses definition 11 for Rademacher and Gaussian complexity, Lemma
12, Theorem 13 and Theorem 14 from Bartlett and Mendelson (2002), reproduced in the appendix
and adapted to our notations for completeness. Using Proposition 7 and Proposition 1, we can derive
the following bounds on the true expected 0/1 loss EP[L(g(X),Y)] from purely ambiguous data:

Proposition 8 (Generalization bounds on true loss) For any distribution ε-ambiguous distribu-
tion P, integer m and η ∈ (0,1), with probability at least 1−η over samples S = {(xi,yi)}mi=1, for
every g ∈ G :

EP[L(g(X),Y)]≤
1

1− ε

⎛⎝ES[Lψγ(g(X),Y)]+
4pBL5/2

cγ

√
ES[||f(X)||2]

m
+L

√
8log 2η
m

⎞⎠ .

5. Transductive Analysis

We now turn to the analysis of ourConvex Loss for Partial Labels (CLPL) in the transductive setting.
We show guarantees on disambiguating the labels of instances under fairly reasonable assumptions.

Example 1 Consider a data set S of two points, x,x′, with label sets {1,2},{1,3}, respectively and
suppose that the total number of labels is 3. The objective function is given by:

ψ(
1
2
(g1(x)+g2(x)))+ψ(−g3(x))+ψ(

1
2
(g1(x

′)+g3(x
′)))+ψ(−g2(x′)).

Suppose the correct labels are (1,1). It is clear that without further assumptions about x and x′

we cannot assume that the minimizer of the loss above will predict the right label. However, if f(x)
and f(x′) are close, it should be intuitively clear that we should be able to deduce the label of the
two examples is 1.

A natural question is under what conditions on the data will CLPL produce a labeling that is
consistent with groundtruth. We provide an analysis under several assumptions.

1513

COUR, SAPP AND TASKAR

5.1 Definitions

In the remainder of this section, we denote y(x) (resp. y(x)) as the true label (resp. ambiguous
label set) of some x ∈ S, and z(x) = y(x)\{y(x)}. || · || denotes an arbitrary norm, with || · ||∗ its
dual norm. As above, ψ denotes a decreasing upper bound on the step function and g a classifier
satisfying: ∀a, ||wa||∗ ≤ 1 (we can easily generalize the remaining propositions to the case where
ga is 1-Lipschitz and f is the identity). For x ∈ S and η> 0, we define Bη(x) as the set of neighbors
of x that have the same label as x:

Bη(x) = {x′ ∈ S\{x} : || f (x′)− f (x)||< η,y(x′) = y(x)}.

Lemma 9 Let x ∈ S. If Lψ(g(x),y(x)) ≤ ψ(η/2) and ∀a ∈ z(x),∃x′ ∈ Bη(x) such that ga(x′) ≤
−η/2, then g predicts the correct label for x.

In other words, g predicts the correct label for x when its loss is sufficiently small, and for each of
its ambiguous labels a, we can find a neighbor with same label whose score ga(x′) is small enough.
Note that this does not make any assumption on the nearest neighbors of x.

Corollary 10 Let x ∈ S. Suppose ∃q ≥ 0, x1...xq ∈ Bη(x) such that ∩i=0..qz(xi) = /0,
maxi=0..qLψ(g(xi),y(xi))≤ ψ(η/2) (with x0 := x). Then g predicts the correct label for x.

In other words, g predicts the correct label for x if we can find a set of neighbors of the same label
with small enough loss, and without any common extra label. This simple condition often arises in
our experiments.

6. Algorithms

Our formulation is quite flexible and we can derive many alternative algorithms depending on the
choice of the binary loss ψ(u), the regularization, and the optimization method. We can minimize
Equation 2 using off-the-shelf binary classification solvers. To do this, we rewrite the two types of
terms in Equation 2 as linear combinations of m ·L feature vectors. We stack the parameters and
features into one vector as follows below, so that ga(x) = wa · f(x) = w · f(x,a):

w=

⎛⎝w1. . .
wL

⎞⎠ ; f(x,a) =
⎛⎝1(a= 1)f(x)

. . .
1(a= L)f(x)

⎞⎠ .

We also define f(x,y) to be the average feature vector of the labels in the set y:

f(x,y) =
1
|y| ∑a∈y

f(x,a).

With these definitions, we have:

Lψ(g(x),y) = ψ(w · f(x,y))+∑
a/∈y

ψ(−w · f(x,a)).

Then to use a binary classification method to solve CLPL optimization, we simply transform the
m partially labelled training examples S = {xi,yi}mi=1 into m positive examples S+ = {f(xi,yi)}mi=1

1514

LEARNING FROM PARTIAL LABELS

and ∑i L−|yi| negative examples S− = {f(xi,a)}mi=1,a/∈yi . Note that the increase in dimension of the
features by a factor of L does not significantly affect the running time of most methods since the
vectors are sparse. We use the off-the-shelf implementation of binary SVMwith squared hinge (Fan
et al., 2008) in most of our experiments, where the objective is:

min
w

1
2
||w||22+C∑

i

max(0,1−w · f(xi,yi))2+C ∑
i,a/∈yi

max(0,1+w · f(xi,a))2.

Using hinge loss and L1 regularization lead to a linear programming formulation, and using L1
with exponential loss leads naturally to a boosting algorithm. We present (and experiment with)
a boosting variant of the algorithm, allowing efficient feature selection, as described in Appendix
A. We can also consider the case where the regularization is L2 and f(x) : X → R

d is a nonlinear
mapping to a high, possibly infinite dimensional space using kernels. In that case, it is simple to
show that

w=∑
i

αif(xi,yi)− ∑
i,a/∈yi

αi,af(xi,a),

for some set of non-negative α’s, where αi corresponds to the positive example f(xi,yi), and αi,a
corresponds to the negative example f(xi,a), for a /∈ yi. Letting K(x,x′) = f(x) · f(x′) be the kernel
function, note that f(x,a) · f(x′,b) = 1(a= b)K(x,x′). Hence, we have:

w · f(x,b) = ∑
i,a∈yi

αi
|yi|

1(a= b)K(xi,x)− ∑
i,a/∈yi

αi,a1(a= b)K(xi,x).

This transformation allows us to use kernels with standard off-the-shelf binary SVM implementa-
tions.

7. Controlled Partial Labeling Experiments

We first perform a series of controlled experiments to analyze our Convex Learning from Partial La-
bels (CLPL) framework on several data sets, including standard benchmarks from the UCI repos-
itory (Asuncion and Newman, 2007), a speaker identification task from audio extracted from
movies, and a face naming task from Labeled Faces in the Wild (Huang et al., 2007b). In Section
8 we also consider the challenging task of naming characters in TV shows throughout an entire
season. In each case the goal is to correctly label faces/speech segments/instances from examples
that have multiple potential labels (transductive case), as well as learn a model that can generalize
to other unlabeled examples (inductive case).

We analyze the effect on learning of the following factors: distribution of ambiguous labels,
size of ambiguous bags, proportion of instances which contain an ambiguous bag, entropy of the
ambiguity, distribution of true labels and number of distinct labels. We compare our CLPL approach
against a number of baselines, including a generative model, a discriminative maximum-entropy
model, a naive model, two K-nearest neighbor models, as well as models that ignore the ambiguous
bags. We also propose and compare several variations on our cost function. We conclude with
a comparative summary, analyzing our approach and the baselines according to several criteria:
accuracy, applicability, space/time complexity and running time.

1515

COUR, SAPP AND TASKAR

7.1 Baselines

In the experiments, we compare CLPL with the following baselines.

7.1.1 CHANCE BASELINE

We define the chance baseline as randomly guessing between the possible ambiguous labels only.
Defining the (empirical) average ambiguous size to be ES[|y|] = 1

m ∑
m
i=1 |yi|, then the expected error

from the chance baseline is given by errorchance = 1− 1
ES[|y|] .

7.1.2 NAIVE MODEL

We report results on an un-normalized version of the naive model introduced in Equation 3:
∑a∈yψ(ga(x)) +∑a/∈yψ(−ga(x)), but both normalized and un-normalized versions produce very
similar results. After training, we predict the label with the highest score (in the transductive set-
ting): ŷ= argmaxa∈y ga(x).

7.1.3 IBM MODEL 1

This generative model was originally proposed in Brown et al. (1993) for machine translation, but
we can adapt it to the ambiguous label case. In our setting, the conditional probability of observ-
ing example x ∈ R

d given that its label is a is Gaussian: x ∼ N(μa,Σa). We use the expectation-
maximization (EM) algorithm to learn the parameters of the Gaussians (mean μa and diagonal co-
variance matrix Σa = diag(σa) for each label).

7.1.4 DISCRIMINATIVE EM

We compare with the model proposed in Jin and Ghahramani (2002), which is a discriminative
model with an EM procedure adapted for the ambiguous label setting. The authors minimize the
KL divergence between a maximum entropy model P (estimated in the M-step) and a distribution
over ambiguous labels P̂ (estimated in the E-step):

J(θ, P̂) =∑
i
∑
a∈y

P̂(a | xi) log
(

P̂(a | xi)
P(a | xi,θ)

)
.

7.1.5 K-NEAREST NEIGHBOR

Following Hullermeier and Beringer (2006), we adapt the k-Nearest Neighbor Classifier to the
ambiguous label setting as follows:

knn(x) = argmax
a∈y

k

∑
i=1

wi1(a ∈ yi), (5)

where xi is the ith nearest-neighbor of x using Euclidean distance, and wi are a set of weights. We
use two kNN baselines: kNN assumes uniform weights wi = 1 (model used in Hullermeier and
Beringer, 2006), and weighted kNN uses linearly decreasing weights wi = k− i+1. We use k = 5
and break ties randomly as in Hullermeier and Beringer (2006).

1516

LEARNING FROM PARTIAL LABELS

7.1.6 SUPERVISED MODELS

Finally we also consider two baselines that ignore the ambiguous label setting. The first one, de-
noted as supervised model, removes from Equation 3 the examples with |y|> 1. The second model,
denoted as supervised kNN, removes from Equation 5 the same examples.

7.2 Data Sets and Feature Description

We describe below the different data sets used to report our experiments. The experiments for
automatic naming of characters in TV shows can be found in Section 8. A concise summary is
given in Table 2.

Data Set # instances (m) # features (d) # labels (L) prediction task
UCI: dermatology 366 34 6 disease diagnostic

UCI: ecoli 336 8 8 site prediction
UCI: abalone 4177 8 29 age determination
FIW(10b) 500 50 10 (balanced) face recognition
FIW(10) 1456 50 10 face recognition
FIW(100) 3011 50 100 face recognition
Lost audio 522 50 19 speaker id
TV+movies 10,000 50 100 face recognition

Table 2: Summary of data sets used in our experiments. The TV+movies experiments are treated
in Section 8. Faces in the Wild (1) uses a balanced distribution of labels (first 50 images
for the top 10 most frequent people).

7.2.1 UCI DATA SETS

We selected three biology related data sets from the publicly available UCI repository (Asuncion
and Newman, 2007): dermatology, ecoli, abalone. As a preprocessing step, each feature was inde-
pendently scaled to have zero mean and unit variance.

7.2.2 FACES IN THE WILD (FIW)

We experiment with different subsets of the publicly available Labeled Faces in the Wild (Huang
et al., 2007a) data set. We use the images registered with funneling (Huang et al., 2007a), and crop
out the central part corresponding to the approximate face location, which we resize to 60x90. We
project the resulting grayscale patches (treated as 5400x1 vectors) onto a 50-dimensional subspace
using PCA.2 In Table 2, FIW(10b) extracts the first 50 images for each of the top 10 most frequent
people (balanced label distribution); FIW(10) extracts all images for each of the top 10 most fre-
quent people (heavily unbalanced label distribution, with 530 hits for George Bush and 53 hits for
John Ashcroft); FIW(100) extracts up to 100 faces for each of the top 100 most frequent people
(again, heavily unbalanced label distribution).

2. We kept the features simple by design; more sophisticated part-based registration and representation would further
improve results, as we will see in Section 8.

1517

COUR, SAPP AND TASKAR

7.2.3 SPEAKER IDENTIFICATION FROM AUDIO

We also investigate a speaker identification task based on audio in an uncontrolled environment.
The audio is extracted from an episode of Lost (season 1, episode 5) and is initially completely
unaligned. Compared to recorded conversation in a controlled environment, this task is more re-
alistic and very challenging due to a number of factors: background noise, strong variability in
tone of voice due to emotions, and people shouting or talking at the same time. We use the Hid-
den Markov Model Toolkit (HTK) (http://htk.eng.cam.ac.uk/) to compute forced alignment
(Moreno et al., 1998; Sjölander, 2003), between the closed captions and the audio (given the rough
initial estimates from closed caption time stamps, which are often overlapping and contain back-
ground noise). After alignment, our data set is composed of 522 utterances (each one corresponding
to a closed caption line, with aligned audio and speaker id obtained from aligned screenplay), with
19 different speakers. For each speech segment (typically between 1 and 4 seconds) we extract
standard voice processing audio features: pitch (Talkin, 1995), Mel-Frequency Cepstral Coefficients
(MFCC) (Mermelstein, 1976), Linear predictive coding (LPC) (Proakis and Manolakis, 1996). This
results in a total of 4,000 features, which we normalize to the range [−1,1] and then project onto 50
dimensions using PCA.

7.3 Experimental Setup

For the inductive experiments, we split randomly in half the instances into (1) ambiguously la-
beled training set, and (2) unlabeled testing set. The ambiguous labels in the training set are
generated randomly according to different noise models which we specify in each case. For each
method and parameter setting, we report the average test error rate over 20 trials after training
the model on the ambiguous train set. We also report the corresponding standard deviation as an
error bar in the plots. Note, in the inductive setting we consider the test set as unlabeled, thus the
classifier votes among all possible labels:

a∗ = h(x) = arg max
a∈{1..L}

ga(x).

For the transductive experiments, there is no test set; we report the error rate for disambiguating
the ambiguous labels (also averaged over 20 trials corresponding to random settings of ambiguous
labels). The main differences with the inductive setting are: (1) the model is trained on all instances
and tested on the same instances; and (2) the classifier votes only among the ambiguous labels,
which is easier:

a∗ = h(x) = argmax
a∈y

ga(x).

We compare our CLPL approach (denoted as mean in figures, due to the form of the loss)
against the baselines presented in Section 7.1: Chance, Model 1, Discriminative EM model, k-
Nearest Neighbor, weighted k-Nearest Neighbor, Naive model, supervised model, and supervised
kNN. Note, in our experiments the Discriminative EM model was much slower to converge than all
the other methods, and we only report the first series of experiments with this baseline.

Table 3 summarizes the different settings used in each experiment. We experiment with dif-
ferent noise models for ambiguous bags, parametrized by p,q,ε, see Figure 6. p represents the
proportion of examples that are ambiguously labeled. q represents the number of extra labels for
each ambiguous example. ε represents the degree of ambiguity (defined in 1) for each ambiguous

1518

LEARNING FROM PARTIAL LABELS

example.3 We also vary the dimensionality by increasing the number of PCA components from 1 to
200, with half of extra labels added uniformly at random. In Figure 7, we vary the ambiguity size q
for three different subsets of Faces in the Wild. We report results on additional data sets in Figure 8.

Experiment fig induct. data set parameter
of ambiguous bags 6 yes FIW(10b) p ∈ [0,0.95],q= 2
degree of ambiguity 6 yes FIW(10b) p= 1,q= 1,ε ∈ [1/(L−1),1]
degree of ambiguity 6 no FIW(10b) p= 1,q= 1,ε ∈ [1/(L−1),1]

dimension 6 yes FIW(10b) p= 1,q= L−1
2 ,d ∈ [1, ..,200]

ambiguity size 7 yes FIW(10b) p= 1,q ∈ [0,0.9(L−1)]
ambiguity size 7 yes FIW(10) p= 1,q ∈ [0,0.9(L−1)]
ambiguity size 7 yes FIW(100) p= 1,q ∈ [0,0.9(L−1)]
ambiguity size 8 yes Lost audio p= 1,q ∈ [0,0.9(L−1)]
ambiguity size 8 yes ecoli p= 1,q ∈ [0,0.9(L−1)]
ambiguity size 8 yes derma p= 1,q ∈ [0,0.9(L−1)]
ambiguity size 8 yes abalone p= 1,q ∈ [0,0.9(L−1)]

Table 3: Summary of controlled experiments. We experiment with 3 different noise models for
ambiguous bags, parametrized by p,q,ε. p represents the proportion of examples that are
ambiguously labeled. q represents the number of extra labels for each ambiguous example
(generated uniformly without replacement). ε represents the degree of ambiguity for each
ambiguous example (see definition 1). L is the total number of labels. We also study the
effects of data set choice, inductive vs transductive learning, and feature dimensionality.

7.3.1 EXPERIMENTS WITH A BOOSTING VERSION OF CLPL

We also experiment with a boosting version of our CLPL optimization, as presented in Appendix A.
Results are shown in Figure 9, comparing our method with kNN and the naive method (also using
boosting). Despite the change in learning algorithm and loss function, the trends remain the same.

7.4 Comparative Summary

We can draw several conclusions. Our proposed CLPL model uniformly outperformed all base-
lines in all but one experiment (UCI dermatology data set), where it ranked second closely behind
Model 1. In particular CLPL always uniformly outperformed the naive model. The naive model
ranks in second. As expected, increasing ambiguity size monotonically affects error rate. We also
see that increasing ε significantly affects error, even though the ambiguity size is constant, consis-
tent with our bounds in Section 3.3. We also note that the supervised models defined in Section
7.1.6 (which ignore the ambiguously labeled examples) consistently perform worse than their coun-
terparts adapted for the ambiguous setting. For example, in Figure 6 (Top Left), a model trained
with nearly all examples ambiguously labeled (“mean” curve”, p = 95%) performs as good as a
model which uses 60% of fully labeled examples (“supervised” curve, p = 40%). The same holds
between the “kNN” curve at p= 95% and the “supervised kNN” curve at p= 40%.

3. We first choose at random for each label a dominant co-occurring label which is sampled with probability ε; the rest
of the labels are sampled uniformly with probability (1− ε)/(L−2) (there is a single extra label per example).

1519

COUR, SAPP AND TASKAR

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.4

0.5

0.6

0.7

0.8

0.9

1

chance
is_supervised
knn
knn_supervised
knn_weight
mean
model_one
naive

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.4

0.5

0.6

0.7

0.8

0.9

1

chance
is_supervised
knn
knn_supervised
knn_weight
mean
model_one
naive

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

chance
is_supervised
knn
knn_supervised
knn_weight
mean
model_one
naive

−50 0 50 100 150 200 250

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

chance
is_supervised
knn
knn_supervised
knn_weight
mean
model_one
naive

Figure 6: Results on Faces in theWild in different settings, comparing our proposed CLPL (denoted
as mean) to several baselines. In each case, we report the average error rate (y-axis) and
standard deviation over 20 trials as in Figure 7. (top left) increasing proportion of am-
biguous bags q, inductive setting. (top right) increasing ambiguity degree ε (Equation 1),
inductive setting. (bottom left) increasing ambiguity degree ε (Equation 1), transductive
setting. (bottom right) increasing dimensionality, inductive setting.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.4

0.5

0.6

0.7

0.8

0.9

1

chance
is_supervised
knn
knn_supervised
knn_weight
mean
model_one
naive
discriminative_EM

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

chance
is_supervised
knn
knn_supervised
knn_weight
mean
model_one
naive

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

chance
is_supervised
knn
knn_supervised
knn_weight
mean
model_one
naive

Figure 7: Additional results on Faces in the Wild, obtained by varying the ambiguity size q on the
x-axis (inductive case). Left: balanced data set using 50 faces for each of the top 10
labels. Middle: unbalanced data set using all faces for each of the top 10 labels. Right:
unbalanced data set using up to 100 faces for each of the top 100 labels.

7.4.1 COMPARISON WITH VARIANTS OF OUR APPROACH

In order to get some intuition on CLPL (Equation 2), which we refer to as the mean model in our
experiments, we also compare with the following sum and contrastive alternatives:

L sumψ (g(x),y) = ψ

(
∑
a∈y

ga(x)

)
+∑

a/∈y
ψ(−ga(x)), (6)

Lcontrastiveψ (g(x),y) = ∑
a′ /∈y

ψ

(
1
|y| ∑a∈y

ga(x)−ga′(x)

)
. (7)

1520

LEARNING FROM PARTIAL LABELS

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

chance
is_supervised
knn
knn_supervised
knn_weight
mean
model_one
naive

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

chance
is_supervised
knn
knn_supervised
knn_weight
mean
model_one
naive

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

chance
is_supervised
knn
knn_supervised
knn_weight
mean
model_one
naive

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

chance
is_supervised
knn
knn_supervised
knn_weight
mean
model_one
naive

Figure 8: Inductive results on different data sets. In each case, we report the average error rate (y-
axis) and standard deviation over 20 trials as in Figure 7. Top Left: speaker identification
from Lost audio. Top Right: ecoli data set (UCI). Bottom Left: dermatology data set
(UCI). Bottom Right: abalone data set (UCI).

Figure 9: Left: We experiment with a boosting version of the ambiguous learning, and compare
to a boosting version of the naive baseline (here with ambiguous bags of size 3). We
plot accuracy vs number of boosting rounds. The green horizontal line corresponds to
the best performance (across k) of the k-NN baseline. Middle: accuracy of k-NN base-
line across k. Right: we compare CLPL (labeled mean) with two variants defined in
Equation 6,Equation 7, along with the naive model (same setting as Figure 6, Top Left).

When ψ(·) is the hinge loss, the mean and sum model are very similar, but this is not the case for
strictly convex binary losses. Figure 9 shows that variations on our cost function have little effect
in the transductive setting. In the inductive setting, other experiments we performed show that the
mean and sum version are still very similar, but the contrastive version is worse. In general it seems
that models based on minimization of a convex loss function (naive and different versions of our
model) usually outperform the other models.

1521

COUR, SAPP AND TASKAR

Figure 10: Predictions on Lost and C.S.I.. Incorrect examples are: row 1, column 3 (truth: Boone);
row 2, column 2 (truth: Jack).

8. Experiments with Partially Labeled Faces in Videos

We now return to our introductory motivating example, naming people in TV shows (Figure 1,
right). Our goal is to identify characters given ambiguous labels derived from the screenplay. Our
data consists of 100 hours of Lost and C.S.I., from which we extract ambiguously labeled faces to
learn models of common characters. We use the same features, learning algorithm and loss function
as in Section 7.2.2. We also explore using additional person- and movie-specific constraints to
improve performance. Sample results are shown in Figure 10.

8.1 Data Collection

We adopt the following filtering pipeline to extract face tracks, inspired by Everingham et al. (2006):
(1) Run the off-the-shelf OpenCV face detector over all frames, searching over rotations and scales.
(2) Run face part detectors4 over the face candidates. (3) Perform a 2D rigid transform of the parts
to a template. (4) Compute the score of a candidate face s(x) as the sum of part detector scores
plus rigid fit error, normalizing each to weight them equally, and filtering out faces with low score.
(5) Assign faces to tracks by associating face detections within a shot using normalized cross-
correlation in RGB space, and using dynamic programming to group them together into tracks.
(6) Subsample face tracks to avoid repetitive examples. In the experiments reported here we use the
best scoring face in each track, according to s(x).

Concretely, for a particular episode, step (1) finds approximately 100,000 faces, step (4) keeps
approximately 10,000 of those, and after subsampling tracks in step (6) we are left with 1000 face
examples.

8.2 Ambiguous Label Selection

Screenplays for popular TV series and movies are readily available for free on the web. Given an
alignment of the screenplay to frames, we have ambiguous labels for characters in each scene: the
set of speakers mentioned at some point in the scene, as shown in Figure 1. Alignment of screenplay
to video uses methods presented in Cour et al. (2008) and Everingham et al. (2006), linking closed
captions to screenplay.

4. The detectors use boosted cascade classifiers of Haar features for the eyes, nose and mouth.

1522

LEARNING FROM PARTIAL LABELS

Lost (#labels, #episodes) (8,16) (16,8)† (16,16) (32,16)

Naive 14% 18.6% 16.5% 18.5%
ours (CLPL / “mean”) 10% 12.6% 14% 17%
ours+constraints 6% n/a 11% 13%

Table 4: Misclassification rates of different methods on TV show Lost. In comparison, for (16,16)
the baseline performances are knn: 30%; Model 1: 44%; chance: 53%. †: This column
contains results exactly reproducible from our publicly available reference implementa-
tion, which can be found at http://vision.grasp.upenn.edu/video. For simplicity,
this public code does not include a version with extra constraints.

We use the ambiguous sets to select face tracks filtered through our pipeline. We prune scenes
which contain characters other than the set we choose to focus on for experiments (top {8,16,32}
characters), or contain 4 or more characters. This leaves ambiguous bags of size 1, 2 or 3, with an
average bag size of 2.13 for Lost, and 2.17 for C.S.I..

8.3 Errors in Ambiguous Label Sets

In the TV episodes we considered, we observed that approximately 1% of ambiguous label sets
were wrong, in that they didn’t contain the ground truth label of the face track. This came from
several reasons: presence of a non-english speaking character (Jin Kwon in Lost, who speaks Ko-
rean) whose dialogue is not transcribed in the closed captions; sudden occurence of an unknown,
uncredited character on screen, and finally alignment problems due to large discrepencies between
screenplay and closed captions. While this is not a major problem, it becomes so when we con-
sider additional cues (mouth motion, gender) that restrict the ambiguous label set. We will see how
we tackle this issue with a robust confidence measure for obtaining good precision recall curves in
Section 8.5.

8.4 Results with the Basic System

Now that we have a set of instances (face tracks), feature descriptors for the face track and am-
biguous label sets for each face track, we can apply the same method as described in the previous
section. We use a transductive setting: we test our method on our ambiguously labeled training set.

The confusion matrix displaying the distribution of ambiguous labels for the top 16 characters
in Lost is shown in Figure 11 (left). The confusion matrix of our predictions after applying our
ambiguous learning algorithm is shown in Figure 11 (right). Our method had the most trouble dis-
ambiguating Ethan Rom from Claire Littleton (Ethan Rom only appears in 0.7% of the ambiguous
bags, 3 times less then the second least common character) and Liam Pace from Charlie Pace (they
are brothers and co-occur frequently, as can be seen in the top figure). The case of Sun Kwon and Jin
Kwon is a bit special, as Jin does not speak English in the series and is almost never mentioned in
the closed-captions, which creates alignment errors between screenplay and closed captions. These
difficulties illustrate some of the interesting challenges in ambiguously labeled data sets. As we
can see, the most difficult classes are the ones with which another class is strongly correlated in the
ambiguous label confusion matrix. This is consistent with the theoretical bounds we obtained in
Section 3.3, which establish a relation between the class specific error rate and class specific degree
of ambiguity ε.

1523

COUR, SAPP AND TASKAR

Figure 11: Left: Label distribution of top 16 characters in Lost (using the standard matlab color
map). Element Di j represents the proportion of times class i was seen with class j in
the ambiguous bags, and D1= 1. Right: Confusion matrix of predictions from Section
8.4. Element Ai j represents the proportion of times class i was classified as class j, and
A1= 1. Class priors for the most frequent, the median frequency, and the least frequent
characters in Lost are Jack Shephard, 14%; Hugo Reyes, 6%; Liam Pace 1%.

Quantitative results are shown in Table 4. We measure error according to average 0-1 loss with
respect to hand-labeled groundtruth labeled in 8 entire episodes of Lost. Our model outperforms all
the baselines, and we will further improve results. We now compare several methods to obtain the
best possible precision at a given recall, and propose a confidence measure to this end.

8.5 Improved Confidence Measure for Precision-recall Evaluation

We obtain a precision-recall curve using a refusal to predict scheme, as used by Everingham et al.
(2006): we report the precision p for the r most confident predictions, varying r ∈ [0,1]. We com-
pare several confidence measures based on the classifier scores g(x) and propose a novel one that
significantly improves precision-recall, see Figure 12 for results.

1. the max and ratio confidence measures (as used in Everingham et al., 2006) are defined as:

Cmax(g(x)) =max
a
ga(x),

Cratio(g(x)) =max
a

exp(ga(x))

∑b exp(gb(x))
.

2. the relative score can be defined as the difference between the best and second best scores
over all classifiers (ga)a∈{1..L} (where a∗ = argmaxa∈{1..L} ga(x)):

Crel(g(x)) = ga∗(x)− max
a∈{1..L}−{a∗}

ga(x).

3. we can define the relative-constrained score as an adaptation to the ambiguous setting; we
only consider votes among ambiguous labels y (where a∗ = argmaxa∈y ga(x)):

Crel,y(g(x)) = ga∗(x)− max
a∈y−{a∗}

ga(x).

1524

LEARNING FROM PARTIAL LABELS

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

max
ratio
relative
relative constrain
hybrid

Figure 12: Improved hybrid confidence measure for precision-recall evaluation. x axis: recall;
y axis: naming error rate for CLPL on 16 episodes of Lost (top 16 characters). max
confidence score performs rather poorly as it ignores other labels. relative improves
the high precision/low recall region by considering the margin instead. The relative-
constrain improves the high-recall/low-precision region by only voting among the am-
biguous bags, but it suffers in high-precision/low recall region because some ambiguous
bags may be erroneous. Our hybrid confidence score gets the best of both worlds.

There are some problems with all of those choices, especially in the case where we have some
errors in ambiguous label set (a /∈ Y for the true label a). This can occur for example if we restrict
them with some heuristics to prune down the amount of ambiguity, such as the ones we consider in
Section 8.6 (mouth motion cue, gender, etc). At low recall, we want maximum precision, therefore
we cannot trust too much the heuristic used in relative-constrained confidence. At high recall, the
errors in the classifier dominate the errors in ambiguous labels, and relative-constrained confidence
gives better precision because of the restriction. We introduce a hybrid confidence measure that
performs well for all recall levels r, interpolating between the two confidence measures:

har (x) =

{
ga(x) if a ∈ y,
(1− r)ga(x)+ rminb gb(x) else.

Cr(g(x)) =Crel(hr(x)).

By design, in the limit r→ 0,Cr(g(x))≈Crel(g(x)). In the limit r→ 1, har (x) is small for a /∈ y and
soCr(g(x))≈Crel,y(g(x)).

8.6 Additional Cues

We investigate additional features to further improve the performance of our system: mouth motion,
grouping constraints, gender. Final misclassification results are reported in Table 4.

1525

COUR, SAPP AND TASKAR

8.6.1 MOUTH MOTION

We use a similar approach to Everingham et al. (2006) to detect mouth motion during dialog and
adapt it to our ambiguous label setting.5 For a face track x with ambiguous label set y and a tem-
porally overlapping utterance from a speaker a ∈ {1..L} (after aligning screenplay and closed cap-
tions), we restrict y as follows:

y :=

⎧⎪⎨⎪⎩
{a} if mouth motion,

y if refuse to predict or y= {a},
y−{a} if absence of mouth motion.

8.6.2 GENDER CONSTRAINTS

We introduce a gender classifier to constrain the ambiguous labels based on predicted gender. The
gender classifier is trained on a data set of registered male and female faces, by boosting a set of
decision stumps computed on Haar wavelets. We use the average score over a face track output by
the gender classifier. We assume known the gender of names mentioned in the screenplay (using
automatically extracted cast list from IMDB). We use gender by filtering out the labels that do not
match by gender the predicted gender of a face track, if the confidence exceeds a threshold (one for
females and one for males are set on a validation data to achieve 90% precision for each direction
of the gender prediction). Thus, we modify ambiguous label set y as:

y :=

⎧⎪⎨⎪⎩
y if gender uncertain,

y−{a : a is male} if gender predicts female,

y−{a : a is female} if gender predicts male.

8.6.3 GROUPING CONSTRAINTS

We propose a very simple must-not-link constraint, which states yi �= y j if face tracks xi,x j are in
two consecutive shots (modeling alternation of shots, common in dialogs). This constraint is active
only when a scene has 2 characters. Unlike the previous constraints, this constraint is incorporated
as additional terms in our loss function, as in Yan. et al. (2006). We also propose groundtruth
grouping constraints for comparison: yi = y j for each pair of face tracks xi,x j of the same label, and
that are separated by at most one shot.

8.7 Ablative Analysis

Figure 13 is an ablative analysis, showing error rate vs recall curves for different sets of cues. We see
that the constraints provided by mouth motion help most, followed by gender and link constraints.
The best setting (without using groundtruth) combines the former two cues. Also, we notice, once
again, a significant performance improvement of our method over the naive method.

8.8 Qualitative Results and Video Demonstration

We show examples with predicted labels and corresponding accuracy, for various characters in
C.S.I., see Figure 14. Those results were obtained with the basic system of Section 8.4. Full-frame

5. Motion or absence of motion are detected with a low and high threshold on normalized cross-correlation around
mouth regions in consecutive frames.

1526

LEARNING FROM PARTIAL LABELS

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Naive
Mean
Mean+Link
Mean+Gender
Mean+Mouth
Mean+Mouth+Gender
Mean+Link Groundtruth
Mean+Mouth Groundtruth

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 13: Ablative analysis. x-axis: recall; y-axis: error rate for character naming across 16
episodes of Lost, and the 8, 16, and 32 most common labels (respectively for the left,
middle, right plots). We compare our method, mean, to the Naive model and show the
effect of adding several cues to our system. Link: simple must-not-link constraints from
shot alternation, Gender: gender cue for simplification of ambiguous bags; Mouth:
mouth motion cue for detecting the speaker with synchronous mouth motion; we also
consider the combinationMouth+Gender, as well as swapping in perfect components
such as Groundtruth link constraints and Groundtruth Mouth motion.

Figure 14: Left: Examples classified as Catherine Willows in C.S.I. data set using our method
(zoom-in for details). Results are sorted by classifier score, in column major format;
this explains why most of the errors occur in the last columns. The precision is 85.3%.
Right: Examples classified as Sara Sidle in C.S.I.. The precision is 78.3%.

detections for Lost and C.S.I. data sets can be seen in Figure 10. We also propagate the predicted
labels of our model to all faces in the same face track throughout an episode. Video results of several
episodes can be found at the following website http://www.youtube.com/user/AmbiguousNaming.

9. Conclusion

We have presented an effective learning approach for partially labeled data, where each instance is
tagged with more than one label. Theoretically, under reasonable assumptions on the data distribu-

1527

COUR, SAPP AND TASKAR

tion, one can show that our algorithm will produce an accurate classifier. We applied our method to
two partially-supervised naming tasks: one on still images and one on video from TV series. We also
compared to several strong competing algorithms on the same data sets and demonstrated that our
algorithm achieves superior performance. We attribute the success of the approach to better model-
ing of the mutual exclusion between labels than the simple multi-label approach. Moreover, unlike
recently published techniques that address similar ambiguously labeled problems, our method does
not rely on heuristics and does not suffer from local optima of non-convex methods.

Acknowledgments

The authors would like to thank Jean Ponce and the anonymous reviewers for helpful suggestions.
This work was supported by NSF grant 0803538 and a grant from Google. B. Taskar was partially
supported by DARPA CSSG, the ONR Young Investigator Award N000141010746 and the Sloan
Fellowship.

Appendix A. CLPL with Feature Selection Using Boosting

We derive Algorithm 1 by taking the second order Taylor expansion of the loss Lψ(g(x),y), with
ψ(u) = exp(−u). The updates of the algorithm are similar to a multiclass version of Gentleboost
(Friedman et al., 2000), but keep a combined weight vi for the positive example f(xi,yi) and weights
vi,a for the negative examples f(xi,a),a /∈ yi.

Algorithm 1 Boosting for CLPL with exponential loss

1: Initialize weights: vi = 1 ∀i, vi,a = 1 ∀i,a /∈ yi
2: for t = 1 . . .T do
3: for a= 1 . . .L do
4: Fit the parameters of each weak classifier u(x) to minimize the second-order Taylor

approximation of the cost function with respect to the ath classifier:

1
2∑i
[
vi ·1(a ∈ yi)(u(xi)/|yi|−1)2+ vi,a ·1(a /∈ yi)(u(xi)+1)2

]
+ constant.

5: end for
6: Choose the combination of u,a with lowest residual error.
7: Update ga(x) = ga(x)+u(x)
8: for i= 1 . . .m do
9: if a ∈ yi then
10: vi = vi · exp(−u(xi))
11: else
12: vi,a = vi,a · exp(u(xi))
13: end if
14: end for
15: Normalize v to sum to 1.
16: end for

1528

LEARNING FROM PARTIAL LABELS

Appendix B. Proofs

Proof of Proposition 1 (Partial loss bound via ambiguity degree ε). The first inequality comes
from the fact that h(x) /∈ y =⇒ h(x) �= y. For the second inequality, fix an x ∈ X with P(X = x)> 0
and define EP[· | x] as the expectation with respect to P(Y | X = x).

EP[LA(h(x),Y)|x] = P(h(x) �∈ Y | X = x) = P(h(x) �= Y,h(x) �∈ Z | X = x)

= ∑
a �=h(x)

P(Y = a | X = x)(1−P(h(x) ∈ Z | X = x,Y = a)︸ ︷︷ ︸
≤ε by definition

)

≥ ∑
a �=h(x)

P(Y = a | X = x)(1− ε) = (1− ε)EP[L(h(x),Y)|x].

Hence, EP[L(h(x),Y)|x] ≤ 1
1−εEP[LA(h(x),Y)|x] for any x. We conclude by taking expectation

over x.The first inequality is tight: equality can be achieved, for example, when P(y|x) is deter-
ministic, and a perfect classifier h such that for all x, h(x) = y. The second inequality is also tight:
for example consider the uniform case with a fixed ambiguity size |z| = C and for all x,y,z �= y,
P(z ∈ z | X = x,Y = y) = C/(L− 1). In the proof above (second inequality), the only inequality
becomes an equality. In fact, this also shows that for any (rational) ε, we can find a number of labels
L, a distribution P and a classifer h such that there is equality.

Proof of Proposition 3 (Partial loss bound via (ε,δ)). We split up the expectation in two parts:

EP[L(h(X),Y)] = EP[L(h(X),Y)|(X ,Y) ∈ G](1−δ)+EP[L(h(X),Y)|(X ,Y) �∈ G]δ
≤ EP[L(h(X),Y)|(X ,Y) ∈ G](1−δ)+δ

≤ 1
1− ε

EP[LA(h(X),Y)|(X ,Y) ∈ G](1−δ)+δ.

We applied Proposition 1 in the last step. Using a symmetric argument,

EP[LA(h(X),Y)] = EP[LA(h(X),Y)|(X ,Y) ∈ G](1−δ)+EP[LA(h(X),Y)|(X ,Y) �∈ G]δ
≥ EP[LA(h(X),Y)|(X ,Y) ∈ G](1−δ).

Finally we obtain EP[L(h(X),Y)]≤ 1
1−εEP[LA(h(X),Y)]+δ.

Proof of Proposition 4 (Label-specific partial loss bound). Fix x ∈ X such that P(X = x) > 0
and P(Y = a|x)> 0 and define EP[· | x,a] as the expectation w.r.t. P(Z | X = x,Y = a). We consider
two cases:

a) if h(x) = a, EP[LA(h(X),Y) | x,a] = P(h(x) �= a,h(x) �∈ y | X = x,Y = a) = 0.

b) if h(x) �= a, EP[LA(h(X),Y) | x,a] = P(h(x) �∈ Z | X = x,Y = a)
= 1−P(h(x) ∈ Z | X = x,Y = a)≥ 1− εa.

We conclude by taking expectation over x:

EP[LA(h(X),Y) | Y = a] = P(h(X) = a|Y = a)EP[LA(h(X),Y) | h(X) = a,Y = a]

+P(h(X) �= a|Y = a)EP[LA(h(X),Y) | h(X) �= a,Y = a]

≥ 0+P(h(X) �= a | Y = a) · (1− εa)

= (1− εa) ·EP[L(h(X),Y) | Y = a].

1529

COUR, SAPP AND TASKAR

Proof of Proposition 5 (Partial label consistency). We assume g(x) is found by minimizing
over an appropriately rich sequence of function classes (Tewari and Bartlett, 2005), in our case,
as m→ ∞, G → R

L . Hence we can focus on analysis for a fixed x (with P(X = x) > 0), writing
ga = ga(x), and for any set c⊆ {1, . . . ,L}, gc =∑a∈c ga/|c| and Pc = P(Y= c|X = x). We also write
Pa = P(a ∈ Y|X = x) for any label a, and use shorthand Pc,a = Pc∪{a} and gc,a = gc∪{a}. We have:

Lψ(g) =∑
c
Pc ·
(
ψ(gc)+∑

a/∈c
ψ(−ga)

)
.

Note that the derivative ψ′(·) exists and is non-positive and non-decreasing by assumption and
ψ′(z)< 0 for z≤ 0. The assumptions imply that ψ(−∞)→ ∞, so assuming that Pa < 1, minimizers
are upper-bounded: ga < ∞. The case of Pa = 0 leads to ga → −∞ and it can be ignored without
loss of generality, so we can assume that optimal g is bounded for fixed p with 0< Pa < 1.

Taking the derivative of the loss with respect to ga and setting to 0, we have the first order
optimality conditions:

∂Lψ(g)
∂ga

= ∑
c:a �∈c

Pc,aψ′(gc,a)
|c|+1 − (1−Pa)ψ

′(−ga) = 0.

Now suppose (for contradiction) that at a minimizer g, b ∈ argmaxa′ ga′ but Pa > Pb for some
a ∈ argmaxa′ Pa′ . Subtracting the optimality conditions for a,b from each other, we get

∑
c:a,b/∈c

Pc,aψ′(gc,a)−Pc,bψ′(gc,b)
|c|+1 = (1−Pa)ψ

′(−ga)− (1−Pb)ψ
′(−gb).

Since ga ≤ gb, ψ′(gc,a)≤ ψ′(gc,b) and ψ′(−ga)≥ ψ′(−gb). Plugging in on both sides:

∑
c:a,b/∈c

(Pc,a−Pc,b)ψ′(gc,b)
|c|+1 ≥ (Pb−Pa)ψ′(−gb).

By dominance assumption, (Pc,a − Pc,b) ≥ 0 and since (Pb − Pa) < 0 and ψ′(·) is non-positive,
the only possibility of the inequality holding is that ψ′(−gb) = 0 (which implies gb > 0) and
(Pc,a−Pc,b)ψ′(gc,a) = 0 for all c. But (Pb−Pa) < 0 implies that there exists a subset c such that
(Pc,a−Pc,b)> 0. Since b ∈ argmaxg, gc,b ≤ gb, so gc,b ≤ 0, hence ψ′(gc,b)< 0, a contradiction.

When P(y | x) is deterministic, let P(y|x) = 1(y = a). Clearly, if ε < 1, then a = argmaxa′ Pa′
and Pa = 1> Pa′ ,∀a′ �= a. Then the minimizer g satisfies either (1) ga →∞ (this happens if ψ′(·)< 0
for finite arguments) while ga′ are finite because of (1−Pa′)ψ(−ga′) terms in the objective or (2) g
is finite and the proof above applies since dominance holds: Pc,b = 0 if a /∈ c, so we can apply the
theorem.

1530

LEARNING FROM PARTIAL LABELS

Proof of Proposition 6 (Comparison between partial losses). Let a∗ = argmaxa∈1..L ga(x). For
the first inequality, if a∗ ∈ y, Lmax

ψ (g(x),y)≥ 0 = 2LA(g(x),y). Otherwise a∗ /∈ y:

Lmax
ψ (g(x),y)≥ ψ(max

a∈y
ga(x))+ψ(−ga∗(x))≥ ψ(ga∗(x))+ψ(−ga∗(x))

≥ 2ψ

(
ga∗(x)−ga∗(x)

2

)
= 2ψ(0)≥ 2LA(g(x),y).

The second inequality comes from the fact that

max
a∈y

ga(x)≥
1
|y| ∑a∈y

ga(x).

For the third inequality, we use the convexity of ψ:

ψ

(
1
|y| ∑a∈y

ga(x)

)
≤ 1

|y| ∑a∈y
ψ(ga(x)).

For the tightness proof: When ga(x) = constant over a ∈ y, we have

ψ

(
max
a∈y

ga(x)

)
= ψ

(
1
|y| ∑a∈y

ga(x)

)
=

1
|y| ∑a∈y

ψ(ga(x)) ,

implying Lmax
ψ (g(x),y) = Lψ(g(x),y) = Lnaive

ψ (g(x),y).

As for the first inequality, we provide a sequence g(n) that verifies equality in the limit: let
g(n)a (x) = −1/n if a ∈ y, g(n)b (x) = 0 for some b /∈ y, and g(n)c (x) = −n for all c /∈ y,c �= b. Then
provided ψ(0) = 1 and limu→∞ψ(u) = 0, we have limn→+∞Lmax

ψ (g(n)(x),y) = 2 and for all n,

LA(g(n)(x),y) = 1.

Proof of Proposition 7 (Generalization bounds). The proof uses Definition 11 for Rademacher
and Gaussian complexity, Lemma 12, Theorem 13 and Theorem 14 from Bartlett and Mendelson
(2002), reproduced below and adapted to our notations for completeness. We apply Theorem 13
with L := 1

LLA, φ := 1
LLψγ :

1
L
EP[LA(g(X),Y)]≤

1
L
ES[Lψγ(g(X),Y)]+Rm(φ◦G)+

√
8log(2/η)

m
.

1531

COUR, SAPP AND TASKAR

From Lemma 12, Rm(φ◦G)≤ 1
cGm(φ◦G). From Theorem 14, Gm(φ◦G)≤ 2λ∑L

a=1 Ĝm(Ga). Let
(νi) be m independent standard normal random variables.

Ĝm(Ga) = Eν

[
sup
ga∈Ga

2
m∑i

νiga(xi) | S
]
=

2
m
Eν

[
sup

||wa||≤B
wa ·∑

i

νif(xi) | S
]

=
2B
m

Eν

[
||∑

i

νif(xi)|| | S
]
=

2B
m

Eν

[√
∑
i j

νiν jf(xi)T f(x j) | S
]

≤ 2B
m

√√√√Eν

[
∑
i j

νiν jf(xi)T f(x j) | S
]
=

2B
m

√
∑
i

Eν
[
ν2
i ||f(xi)||2 | S

]
=

2B
m

√
∑
i

||f(xi)||2.

Putting everything together, Rm(φ◦G)≤ 2λL
c Ĝm(Ga)≤ 4λLB

mc

√
∑i ||f(xi)||2 and:

EP[LA(g(X),Y)]≤ ES[Lψγ(g(X),Y)]+
4λBL2

mc

√
∑
i

||f(xi)||2 +L

√
8log(2/η)

m
.

The Lipschitz constant from 14 can be computed as λ := p
γ

√
L, using the Lipschitz constant of the

scalar function ψγ, which is p
γ , and the fact that ||g(x)||1 ≤

√
L||g(x)||2.

Definition 11 (Definition 2 from Bartlett and Mendelson (2002)) Let μ be a probability distri-
bution on a set X and suppose that S = {xi}mi=1 are independent samples sampled from μ. Let G be
a class of functions X → R. Define the random variables

R̂m(F) = Eσ

[
sup
f∈F

2
m∑i

σi f (xi) | S
]
,

Ĝm(F) = Eν

[
sup
f∈F

2
m∑i

νi f (xi) | S
]
,

where (σi) are m independent uniform {±1}-valued random variables and (νi) are m independent
standard normal random variables. Then the Rademacher (resp. Gaussian) complexity of G is
Rm(F) = ES[R̂m(F)] (resp. Gm(F) = ES[F̂m(F)]).

Rm(F) and Gm(F) quantify how much can a f ∈ F be correlated with a noise sequence of length
m.

Lemma 12 (Lemma 4 from Bartlett and Mendelson (2002)) There are absolute constants c and
C such that for every class G and every integer m,

cRm(G)≤ Gm(G)≤C logmRm(G).

1532

LEARNING FROM PARTIAL LABELS

Theorem 13 (Theorem 8 from Bartlett and Mendelson (2002)) Consider a loss functionL :A×
Y → [0,1] and a dominating cost function φ : A×Y → [0,1], where A is an arbitrary output space.
Let G be a class of functions mapping from X to A and let S = {(xi,yi)}mi=1 be independently se-
lected according to the probability measure P. Define φ◦G = {(x,y) → φ(g(x),y)−φ(0,y) : g∈G}.
Then, for any integer m and any η ∈ (0,1), with probability at least 1−η over samples of length m,
∀g ∈ G :

EP[L(g(X),Y)]≤ ESφ(g(X),y)+Rm(φ◦G)+

√
8log(2/η)

m
.

Theorem 14 (Theorem 14 from Bartlett and Mendelson (2002)) Let A = R
L, and let G be a

class of functions mapping X to A. Suppose that there are real-valued classes G1, ...,GL such that G
is a subset of their direct sum. Assume further that φ :A×Y →R is such that, for all y∈Y , φ(·,y) is
a Lipschitz function (with respect to Euclidean distance on A) with constant λ which passes through
the origin and is uniformly bounded. For g ∈ G , define φ ◦ g as the mapping (x,y) → φ(g(x),y).
Then, for every integer m and every sample S= {(xi,yi)}mi=1,

Ĝm(φ◦G)≤ 2λ
L

∑
a=1

Ĝm(Ga),

where Ĝm(φ ◦G) are the Gaussian averages of φ ◦G with respect to the sample {(xi,yi)}mi=1 and
Ĝm(Ga) are the Gaussian averages of Ga with respect to the sample {xi}mi=1.

Proof of Proposition 8 (Generalization bounds on true loss). This follows from Propositions 7
and 1.

Proof of Lemma 9. Let us write z= z(x), y= y(x),y= y(x).

• Let a ∈ z. By hypothesis, ∃x′ ∈ Bη(x) : ga(x′)≤−η
2 . By definition of Bη(x),

ga(x) = ga(x
′)+wa · (f(x)− f(x′))≤ ga(x

′)+ ||wa||∗η≤ ga(x
′)+η≤ η

2
.

In fact, we also have ga(x) <
η
2 , by considering two cases (wa = 0 or wa �= 0) and using the

fact that ||f(x)− f(x′)||< η.

• Let a /∈ y. Since Lψ(g(x),y)≤ ψ(η/2) and each term is nonnegative, we have:

ψ(−ga(x))≤ ψ(
η
2
) =⇒ ga(x)≤−η

2
.

• Let a= y. Lψ(g(x),y)≤ ψ(η/2) also implies the following:

ψ
(

1
|y| ∑b∈y gb(x)

)
≤ ψ(

η
2
)

=⇒ 1
|y| ∑b∈y gb(x) ≥ η

2

=⇒ gy(x) ≥ |y|η
2

−∑
b∈z

gb(x)

>
|y|η

2
− |z|η

2
=
η
2
.

1533

COUR, SAPP AND TASKAR

Finally, ∀a �= y,ga(x)< gy(x) and g classifies x correctly.

Proof of corollary 10. Let a ∈ z(x), by the empty intersection hypothesis, ∃i ≥ 1 : a �∈ z(xi) and
since y(xi) = y(x) and a �= y(x) we also have a �∈ y(xi). Since Lψ(g(xi),y(xi) ≤ ψ(η/2), we have
ga(xi)≤−η

2 , as in the previous proof. We can apply Lemma 9 (with x
′ = xi).

References

C. Ambroise, T. Denoeux, G. Govaert, and P. Smets. Learning from an imprecise teacher: Proba-
bilistic and evidential approaches. In Applied Stochastic Models and Data Analysis, volume 1,
pages 100–105, 2001.

S. Andrews and T. Hofmann. Multiple instance learning via disjunctive programming boosting. In
Advances in Neural Information Processing Systems, 2004.

A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.

K. Barnard, P. Duygulu, D.A. Forsyth, N. de Freitas, D.M. Blei, and M.I. Jordan. Matching words
and pictures. Journal of Machine Learning Research, 3:1107–1135, 2003.

P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 3:463–482, 2002.

T.L. Berg, A.C. Berg, J.Edwards, M.Maire, R.White, Y.W. Teh, E.G. Learned-Miller, and D.A.
Forsyth. Names and faces in the news. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, pages 848–854, 2004.

M.R. Boutell, J. Luo, X. Shen, and C.M. Brown. Learning multi-label scene classification. Pattern
Recognition, 37(9):1757–1771, 2004.

P. E. Brown, V. J. Della Pietra, S. A. Della Pietra, and R. L. Mercer. The mathematics of statistical
machine translation: Parameter estimation. Computational Linguistics, 19:263–311, 1993.

O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised Learning. The MIT Press, 2006.

E. Côme, L. Oukhellou, T. Denœux, and P. Aknin. Mixture model estimation with soft labels.
International Conference on Soft Methods in Probability and Statistics, 2008.

T. Cour, C. Jordan, E. Miltsakaki, and B. Taskar. Movie/script: Alignment and parsing of video and
text transcription. In Proc. European Conference on Computer Vision, 2008.

T. Cour, B. Sapp, C. Jordan, and B. Taskar. Learning from ambiguously labeled images. In Proc.
IEEE Conference on Computer Vision and Pattern Recognition, 2009.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines. Journal of Machine Learning Research, 2:265–292, 2002.

T.G. Dietterich, R.H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance problem with
axis-parallel rectangles. Artificial Intelligence, 89(1-2):31–71, 1997.

1534

LEARNING FROM PARTIAL LABELS

P. Duygulu, K. Barnard, J.F.G. de Freitas, and D.A. Forsyth. Object recognition as machine trans-
lation: Learning a lexicon for a fixed image vocabulary. In Proc. European Conference on Com-
puter Vision, pages 97–112, 2002.

M. Everingham, J. Sivic, and A. Zisserman. Hello! My name is... Buffy – automatic naming of
characters in tv video. In British Machine Vision Conference, 2006.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large
linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting.
Annals of Statistics, 28:337–407, 2000.

A.C. Gallagher and T. Chen. Using group prior to identify people in consumer images. In CVPR
Workshop on Semantic Learning Applications in Multimedia, 2007.

Y. Grandvalet and Y. Bengio. Learning from partial labels with minimum entropy. Centre interuni-
versitaire de recherche en analyse des organisations (CIRANO), 2004.

G.B. Huang, V. Jain, and E. Learned-Miller. Unsupervised joint alignment of complex images. In
Proc. International Conference on Computer Vision, 2007a.

G.B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for
studying face recognition in unconstrained environments. Technical Report 07-49, University of
Massachusetts, Amherst, 2007b.

E. Hullermeier and J. Beringer. Learning from ambiguously labeled examples. Intelligent Data
Analysis, 10(5):419–439, 2006.

R. Jin and Z. Ghahramani. Learning with multiple labels. In Advances in Neural Information
Processing Systems, pages 897–904, 2002.

H. Kuck and N. de Freitas. Learning about individuals from group statistics. In Uncertainty in
Artificial Intelligence, 2005.

I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld. Learning realistic human actions from
movies. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2008.

J. Luo and F. Orabona. Learning from candidate labeling sets. In Advances in Neural Information
Processing Systems, 2010.

P. Mermelstein. Distance measures for speech recognition, psychological and instrumental. Pattern
Recognition and Artificial Intelligence, pages 374–388, 1976.

P.J. Moreno, C. Joerg, J.M.V. Thong, and O. Glickman. A recursive algorithm for the forced align-
ment of very long audio segments. In International Conference on Spoken Language Processing,
1998.

J.G. Proakis and D.G. Manolakis. Digital signal processing: principles, algorithms, and applica-
tions. Prentice Hall, 1996.

1535

COUR, SAPP AND TASKAR

N. Quadrianto, A.J. Smola, T.S. Caetano, and Q.V. Le. Estimating labels from label proportions.
Journal of Machine Learning Research, 10:2349–2374, 2009. ISSN 1532-4435.

D. Ramanan, S. Baker, and S. Kakade. Leveraging archival video for building face datasets. In
Proc. International Conference on Computer Vision, 2007.

R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of Machine Learning
Research, 5:101–141, 2004.

S. Satoh, Y. Nakamura, and T. Kanade. Name-it: Naming and detecting faces in news videos. IEEE
MultiMedia, 6(1):22–35, 1999.

K. Sjölander. An HMM-based system for automatic segmentation and alignment of speech. In
Fonetik, pages 93–96, 2003.

D. Talkin. A robust algorithm for pitch tracking (RAPT). Speech Coding and Synthesis, pages
495–518, 1995.

A. Tewari and P. L. Bartlett. On the consistency of multiclass classification methods. In Interna-
tional Conference on Learning Theory, volume 3559, pages 143–157, 2005.

G. Tsoumakas, I. Katakis, and I. Vlahavas. Mining multi-label data. Data Mining and Knowledge
Discovery Handbook, pages 667–685, 2010.

P. Vannoorenberghe and P. Smets. Partially supervised learning by a credal EM approach. In
European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
pages 956–967, 2005.

P. Viola, J. Platt, and C. Zhang. Multiple instance boosting for object detection. Advances in Neural
Information Processing Systems, 18:1417, 2006.

R. Yan., J. Zhang, J. Yang, and A.G. Hauptmann. A discriminative learning framework with pair-
wise constraints for video object classification. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 28(4):578–593, 2006.

T. Zhang. Statistical analysis of some multi-category large margin classification methods. Journal
of Machine Learning Research, 5:1225–1251, 2004. ISSN 1533-7928.

Z.H. Zhou and M.L. Zhang. Multi-instance multi-label learning with application to scene classifi-
cation. Advances in Neural Information Processing Systems, 19:1609, 2007.

X. Zhu and A.B. Goldberg. Introduction to semi-supervised learning. Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning, 3(1):1–130, 2009.

1536

Journal of Machine Learning Research 12 (2011) 1537-1586 Submitted 5/10; Revised 12/10; Published 5/11

Super-Linear Convergence of Dual Augmented Lagrangian Algorithm
for Sparsity Regularized Estimation

Ryota Tomioka TOMIOKA@MIST.I.U-TOKYO.AC.JP
Taiji Suzuki S-TAIJI@STAT.T.U-TOKYO.AC.JP
Department of Mathematical Informatics
The University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan

Masashi Sugiyama SUGI@CS.TITECH.AC.JP
Department of Computer Science
Tokyo Institute of Technology
2-12-1-W8-74, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan

Editor: Tong Zhang

Abstract

We analyze the convergence behaviour of a recently proposed algorithm for regularized estima-
tion called Dual Augmented Lagrangian (DAL). Our analysis is based on a new interpretation of
DAL as a proximal minimization algorithm. We theoretically show under some conditions that
DAL converges super-linearly in a non-asymptotic and global sense. Due to a special modelling
of sparse estimation problems in the context of machine learning, the assumptions we make are
milder and more natural than those made in conventional analysis of augmented Lagrangian al-
gorithms. In addition, the new interpretation enables us to generalize DAL to wide varieties of
sparse estimation problems. We experimentally confirm our analysis in a large scale 	1-regularized
logistic regression problem and extensively compare the efficiency of DAL algorithm to previously
proposed algorithms on both synthetic and benchmark data sets.

Keywords: dual augmented Lagrangian, proximal minimization, global convergence, sparse esti-
mation, convex optimization

1. Introduction

Sparse estimation through convex regularization has become a common practice in many application
areas including bioinformatics and natural language processing. However facing the rapid increase
in the size of data-sets that we analyze everyday, clearly needed is the development of optimization
algorithms that are tailored for machine learning applications.

Regularization-based sparse estimation methods estimate unknown variables through the min-
imization of a loss term (or a data-fit term) plus a regularization term. In this paper, we focus on
convex methods; that is, both the loss term and the regularization term are convex functions of un-
known variables. Regularizers may be nondifferentiable on some points; the nondifferentiability
can promote various types of sparsity on the solution.

Although the problem is convex, there are three factors that challenge the straight-forward ap-
plication of general tools for convex optimization (Boyd and Vandenberghe, 2004) in the context of
machine learning.

c©2011 Ryota Tomioka, Taiji Suzuki and Masashi Sugiyama.

TOMIOKA, SUZUKI AND SUGIYAMA

The first factor is the diversity of loss functions. Arguably the squared loss is most commonly
used in the field of signal/image reconstruction, in which many algorithms for sparse estimation have
been developed (Figueiredo and Nowak, 2003; Daubechies et al., 2004; Cai et al., 2008). However
the variety of loss functions is much wider in machine learning, to name a few, logistic loss and
other log-linear loss functions. Note that these functions are not necessarily strongly convex like
the squared loss. See Table 1 for a list of loss functions that we consider.

The second factor is the nature of the data matrix, which we call the design matrix in this paper.
For a regression problem, the design matrix is defined by stacking input vectors along rows. If
the input vectors are numerical (e.g., gene expression data), the design matrix is dense and has no
structure. In addition, the characteristics of the matrix (e.g., the condition number) is unknown until
the data is provided. Therefore, we would like to minimize assumptions about the design matrix,
such as, sparse, structured, or well conditioned.

The third factor is the large number of unknown variables (or parameters) compared to obser-
vations. This is a situation regularized estimation methods are commonly applied. This factor may
have been overlooked in the context of signal denoising, in which the number of observations and
the number of parameters are equal.

Various methods have been proposed for efficient sparse estimation (see Figueiredo and Nowak,
2003; Daubechies et al., 2004; Combettes and Wajs, 2005; Andrew and Gao, 2007; Koh et al., 2007;
Wright et al., 2009; Beck and Teboulle, 2009; Yu et al., 2010, and the references therein). Many
previous studies focus on the nondifferentiability of the regularization term. In contrast, we fo-
cus on the couplings between variables (or non-separability) caused by the design matrix. In fact,
if the optimization problem can be decomposed into smaller (e.g., containing a single variable)
problems, optimization is easy. Recently Wright et al. (2009) showed that the so called iterative
shrinkage/thresholding (IST) method (see Figueiredo and Nowak, 2003; Daubechies et al., 2004;
Combettes and Wajs, 2005; Figueiredo et al., 2007a) can be seen as an iterative separable approxi-
mation process.

In this paper, we show that a recently proposed dual augmented Lagrangian (DAL) algorithm
(Tomioka and Sugiyama, 2009) can be considered as an exact (up to finite tolerance) version of the
iterative approximation process discussed in Wright et al. (2009). Our formulation is based on the
connection between the proximal minimization (Rockafellar, 1976a) and the augmented Lagrangian
(AL) algorithm (Hestenes, 1969; Powell, 1969; Rockafellar, 1976b; Bertsekas, 1982). The proximal
minimization framework also allows us to rigorously study the convergence behaviour of DAL. We
show that DAL converges super-linearly under some mild conditions, which means that the number
of iterations that we need to obtain an ε-accurate solution grows no greater than logarithmically with
1/ε. Due to the generality of the framework, our analysis applies to a wide variety of practically
important regularizers. Our analysis improves the classical result on the convergence of augmented
Lagrangian algorithms in Rockafellar (1976b) by taking special structures of sparse estimation into
account. In addition, we make no asymptotic arguments as in Rockafellar (1976b) and Kort and
Bertsekas (1976); instead our convergence analysis is build on top of the recent result in Beck and
Teboulle (2009).

Augmented Lagrangian formulations have also been considered in Yin et al. (2008) and Gold-
stein and Osher (2009) for sparse signal reconstruction. What differentiates DAL approach of
Tomioka and Sugiyama (2009) from those studied earlier is that the AL algorithm is applied to
the dual problem (see Section 2.2), which results in an inner minimization problem that can be
solved efficiently exploiting the sparsity of intermediate solutions (see Section 4.1). Applying AL

1538

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

prim
alloss

f	 (z)
conjugate

loss
f ∗	
(−
α
)

gradient−
∇
f ∗	
(−
α
)

H
essian

∇
2
f ∗	
(−
α
)

γ

Squared
loss

12
∑
ni=
1
(y
i −
zi) 2

σ
2i

12
∑
ni=
1 σ

2i (α
i −

y
i) 2

diag (σ
21 ,...,σ

2m)
(α

−
y)

diag (σ
21 ,...,σ

2m)
m
ini
σ
2i

L
ogistic
loss

∑
ni=
1 log(1

+
exp(−

y
i zi))

∑
ni=
1 ((α

i y
i)log(α

i y
i)

+
(1−

α
i y
i)log(1−

α
i y
i))

(
y
i log

α
i y
i

1−
α
i y
i)
mi=
1

diag(
1

α
i y
i (1−

α
i y
i)) mi=

1
4

H
yperbolic
secant
likelihood
(H
aufe

etal.,2010)

∑
ni=
1 log (e

y
i −
zi+

e −
y
i +
zi)

12
∑
ni=
1 ((1−

α
i)log(1−

α
i)

+
(1

+
α
i)log(1

+
α
i)−

2α
i y
i)

(
12
log

1+
α
i

1−
α
i −

y
i) mi=

1
diag(

1
2(1−

α
i)(1+

α
i)) mi=

1
2

M
ulti-

class
logit

(Tom
ioka

and
M
üller,

2010)

∑
mi=
1 (−

∑
c−
1

k=
1
zi(k) y

ik

+
log (∑

c−
1

k=
1
e
zi(k)+

1))
m∑i=
1 (
c−
1

∑k=
1 (y

ik −
α
i(k))log(y

ik −
α
i(k))

+
(y
ic
+
c−
1

∑k=
1 α

i(k))log(y
ic
+
c−
1

∑k=
1 α

i(k)))
(0≤

y
ik −

α
i(k) ≤

1
(k

=
1,...,c−

1),
0≤

y
ic
+
∑
c−
1

k=
1 α

i(k) ≤
1)

(−
log

y
ik −

α
i(k)

y
ic +

∑
c−
1

k=
1 α

i(k))
m
(c−

1)
i(k)=

1

(i=
1,...,m

;
k
=
1,...,c−

1)

(
δ
i,j δ

k,l

y
ik −

α
i(k)

+
δ
i,j

y
ic +

∑
c−
1

k ′=
1 α

i(k ′))
m
(c−

1)

i(k),j(l)=
1

(i,j
=
1,...,m

;
k,l

=
1,...,c−

1)

1

Table
1:
L
istof

loss
functions

and
their

convex
conjugates.

C
onstantterm

s
are

ignored.
For

the
m
ulti-class

logitloss,z,α
∈
R
m
(c−

1
),w

here
m
is
the

num
ber

of
sam

ples
and

c
is
the

num
ber

of
classes;

y
ik
=
1
if
the

ith
sam

ple
belongs

to
the

kth
class,

and
zero

otherw
ise;

i(k)
:=

(i−
1)c

+
k
denotes

the
linear

index
corresponding

to
the

kth
output

for
the

ith
sam

ple;
δ
i,k
denotes

the
K
ronecker

delta
function.

1539

TOMIOKA, SUZUKI AND SUGIYAMA

formulation to the dual problem also plays an important role in the convergence analysis because
some loss functions (e.g., logistic loss) are not strongly convex in the primal; see Section 5. Re-
cently Yang and Zhang (2009) compared primal and dual augmented Lagrangian algorithms for
	1-problems and reported that the dual formulation was more efficient. See also Tomioka et al.
(2011b) for related discussions.

This paper is organized as follows. In Section 2, we mathematically formulate the sparse es-
timation problem and we review DAL algorithm. We derive DAL algorithm from the proximal
minimization framework in Section 3; special instances of DAL algorithm are discussed in Sec-
tion 4. In Section 5, we theoretically analyze the convergence behaviour of DAL algorithm. We
discuss previously proposed algorithms in Section 6 and contrast them with DAL. In Section 7
we confirm our analysis in a simulated 	1-regularized logistic regression problem. Moreover, we
extensively compare recently proposed algorithms for 	1-regularized logistic regression including
DAL in synthetic and benchmark data sets under a variety of conditions. Finally we summarize our
contribution in Section 8. Most of the proofs are given in the appendix.

2. Sparse Estimation Problem and DAL Algorithm

In this section, we first formulate the sparse estimation problem as a convex optimization prob-
lem, and state our assumptions. Next we derive DAL algorithm for 	1-problem as an augmented
Lagrangian method in the dual.

2.1 Objective

We consider the problem of estimating an n dimensional parameter vector fromm training examples
as described in the following optimization problem:

minimize
w∈Rn

f	(Aw)+φλ(w)︸ ︷︷ ︸
=: f (w)

, (1)

wherew∈R
n is the parameter vector to be estimated,A∈R

m×n is a design matrix, and f	(·) is a loss
function. We call the first term in the minimand the loss term and the second term the regularization
term, or the regularizer.

We assume that the loss function f	 : Rm → R∪{+∞} is a closed proper strictly convex func-
tion.1 See Table 1 for examples of loss functions. We assume that f	 has Lipschitz continuous
gradient with modulus 1/γ (see Assumption (A2) in Section 5.2). If f	 is twice differentiable, this
condition is equivalent to saying that the maximum eigenvalue of the Hessian of f	 is uniformly
bounded by 1/γ. Such γ exists for example for quadratic loss, logistic loss, and other log-linear
losses. However, non-smooth loss functions (e.g., the hinge loss and the absolute loss) are ex-
cluded. Note that since we separate the data matrix A from the loss function, we can quantify the
above constant γ without examining the data. Moreover, we assume that the convex conjugate2 f ∗	 is
(essentially) twice differentiable. Note that the first order differentiability of the convex conjugate
f ∗	 is implied by the strict convexity of the loss function f	 (Rockafellar, 1970, Theorem 26.3).

1. “Closed” means that the epigraph {(z,y) ∈ R
m+1 : y≥ f	(z)} is a closed set, and “proper” means that the function is

not everywhere +∞; see, for example, Rockafellar (1970). In the sequel, we use the word “convex function” in the
meaning of “closed proper convex function”.

2. The convex conjugate of a function f : Rn →R∪{+∞} is a function f ∗ over Rn that takes values in Rn∪{+∞} and
is defined as f ∗(y) = supx∈Rn(y�x− f (x)).

1540

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

The regularization term φλ(w) is a convex possibly nondifferentiable function. In addition, we
assume that for all η> 0, ηφλ(w) = φηλ(w).

An important special case, which has been studied by many authors (Tibshirani, 1996; Efron
et al., 2004; Andrew and Gao, 2007; Koh et al., 2007) is the 	1-regularization:

minimize
w∈Rn

f	(Aw)+λ‖w‖1, (2)

where ‖w‖1 = ∑n
j=1 |wj| is the 	1-norm of w.

2.2 Dual Augmented Lagrangian (DAL) Algorithm

In this subsection, we review DAL algorithm following the line of Tomioka and Sugiyama (2009).
Although, the squared loss function and the 	1-regularizer were considered in the original paper,
we deal with a slightly more general setting in Equation (2) for notational convenience; that is, we
consider general closed convex loss functions instead of the squared loss. For general informa-
tion on augmented Lagrangian algorithms (Powell, 1969; Hestenes, 1969; Rockafellar, 1976b), see
Bertsekas (1982) and Nocedal and Wright (1999).

Let φλ(w) be the 	1-regularizer, that is, φλ(w) = λ‖w‖1= λ∑n
j=1 |wj|. Using the Fenchel duality

theorem (Rockafellar, 1970), the dual of the problem (2) can be written as follows:

maximize
α∈Rm,v∈Rn

− f ∗	 (−α)−δ∞λ (v), (3)

subject to v= A�α, (4)

where δ∞λ is the indicator function (Rockafellar, 1970, p28) of the 	∞-ball of radius λ, namely

δ∞λ (v) =
n

∑
j=1

δ∞λ (v j), (5)

where δ∞λ (v j) = 0, if |v j| ≤ λ, and +∞ otherwise.
Let us consider the augmented Lagrangian (AL) function Lη with respect to the above dual

problem (3)

Lη(α,v;w) =− f ∗	 (−α)−δ∞λ (v)+w
�(v−A�α)− η

2
‖v−A�α‖2, (6)

where the primal variable w ∈ R
n is interpreted as a Lagrangian multiplier vector in the AL frame-

work. Note that the AL function is the ordinary Lagrangian if η= 0.
Let η0,η1, . . . be a non-decreasing sequence of positive numbers. At every time step t, given the

current primal solution wt , we maximize the AL function Lηt (α,v;w
t) with respect to α and v. The

maximizer (αt ,vt) is used to update the primal solution (Lagrangian multiplier) wt as follows:

wt+1 = wt +ηt(A�αt −vt). (7)

Note that the maximization of the AL function (6) with respect to v can be carried out in a
closed form, because the terms involved in the maximization can be separated into n terms, each
containing single v j, as follows:

Lηt (α,v) =− f ∗	 (−α)−
n

∑
j=1

(ηt
2
(v j− (wt/ηt +A�α) j)

2+δ∞λ (v j)
)
,

1541

TOMIOKA, SUZUKI AND SUGIYAMA

where (·) j denotes the jth element of a vector. Since δ∞λ (v j) is infinity outside the domain −λ ≤
v j ≤ λ, the maximizer vt(α) is obtained as a projection onto the 	∞ ball of radius λ as follows (see
also Figure 9):

vt(α) = proj[−λ,λ]
(
wt/ηt +A�α

)
:=

(
min(|y j|,λ)

y j
|y j|

)n
j=1

, (8)

where (y j)nj=1 denotes an n-dimensional vector whose jth element is given by y j. Note that the ratio

y j/|y j| is defined to be zero3 if y j = 0. Substituting the above vt back into Equation (7), we obtain
the following update equation:

wt+1 = prox	1ληt (w
t +ηtA�αt),

where prox	1ληt is called the soft-threshold operation
4 and is defined as follows:

prox	1λ (y) :=
(
max(|y j|−λ,0)

y j
|y j|

)n
j=1

. (9)

The soft-threshold operation is well known in signal processing community and has been studied
extensively (Donoho, 1995; Figueiredo and Nowak, 2003; Daubechies et al., 2004; Combettes and
Wajs, 2005).

Furthermore, substituting the above vt(α) into Equation (6), we can express αt as the minimizer
of the function

ϕt(α) :=−Lηt (α,vt(α);wt) = f ∗	 (−α)+
1
2ηt

‖prox	1ληt (w
t +ηtA�α)‖2, (10)

which we also call an AL function with a slight abuse of terminology. Note that the maximization
in Equation (6) is turned into a minimization of the above function by negating the AL function.

3. Proximal Minimization View

The first contribution of this paper is to derive DAL algorithm we reviewed in Section 2.2 from the
proximal minimization framework (Rockafellar, 1976a), which allows for a new interpretation of
the algorithm (see Section 3.3) and rigorous analysis of its convergence (see Section 5).

3.1 Proximal Minimization Algorithm

Let us consider the following iterative algorithm called the proximal minimization algorithm (Rock-
afellar, 1976a) for the minimization of the objective (1).

1. Choose some initial solution w0 and a sequence of non-decreasing positive numbers η0 ≤
η1 ≤ ·· · .

3. This is equivalent to defining y j/|y j| = sign(y j). We use y j/|y j| instead of sign(y j) to define the soft-threshold
operations corresponding to 	1 and the group-lasso regularizations (see Section 4.2) in a similar way.

4. This notation is a simplified version of the general notation we introduce later in Equation (15).

1542

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

2. Repeat until some criterion (e.g., duality gap Wright et al., 2009; Tomioka and Sugiyama,
2009) is satisfied:

wt+1 = argmin
w∈Rn

(
f (w)+

1
2ηt

‖w−wt‖2
)
, (11)

where f (w) is the objective function in Equation (1) and ηt controls the influence of the
additional proximity term.

The proximity term tries to keep the next solution wt+1 close to the current solution wt . Impor-
tantly, the objective (11) is strongly convex even if the original objective (1) is not; see Rockafellar
(1976b). Although at this point it is not clear how we are going to carry out the above minimization,
by definition we have f (wt+1)+ 1

2ηt
‖wt+1−wt‖2 ≤ f (wt); that is, provided that the step-size is

positive, the function value decreases monotonically at every iteration.

3.2 Iterative Shrinkage/Thresholding Algorithm from the Proximal Minimization
Framework

The function to be minimized in Equation (11) is strongly convex. However, there seems to be no
obvious way to minimize Equation (11), because it is still (possibly) nondifferentiable and cannot
be decomposed into smaller problems because the elements of w are coupled.

One way to make the proximal minimization algorithm practical is to linearly approximate (see
Wright et al., 2009) the loss term at the current point wt as

f	(Aw)& f	(Awt)+
(
∇ f t	
)�A(w−wt

)
, (12)

where∇ f t	 is a short hand for∇ f	(Aw
t). Substituting the above approximation (12) into the iteration

(11), we obtain

wt+1 = argmin
w∈Rn

((
∇ f t	
)�Aw+φλ(w)+

1
2ηt

‖w−wt‖2
)
, (13)

where constant terms are omitted from the right-hand side. Note that because of the linear ap-
proximation, there is no coupling between the elements of w. For example, if φλ(w) = λ‖w‖, the
minimand in the right-hand side of the above equation can be separated into n terms each containing
single wj, which can be separately minimized.

Rewriting the above update equation, we obtain the well-known iterative shrinkage/ threshold-
ing (IST) method5 (Figueiredo and Nowak, 2003; Daubechies et al., 2004; Combettes and Wajs,
2005; Figueiredo et al., 2007a). The IST iteration can be written as follows:

wt+1 := proxφληt

(
wt −ηtA�∇ f t	

)
, (14)

where the proximity operator proxφληt is defined as follows:

proxφλ(y) = argmin
x∈Rn

(
1
2
‖y−x‖2+φλ(x)

)
. (15)

Note that the soft-threshold operation prox	1λ (9) is the proximity operator corresponding to the 	1-

regularizer φ	1λ (w) = λ‖w‖1.
5. It is also known as the forward-backward splitting method (Lions and Mercier, 1979; Combettes and Wajs, 2005;
Duchi and Singer, 2009); see Section 6.

1543

TOMIOKA, SUZUKI AND SUGIYAMA

3.3 DAL Algorithm from the Proximal Minimization Framework

The above IST approach can be considered to be constructing a linear lower bound of the loss term
in Equation (11) at the current point wt . In this subsection we show that we can precisely (to finite
precision) minimize Equation (11) using a parametrized linear lower bound that can be adjusted to
be the tightest at the next point wt+1. Our approach is based on the convexity of the loss function
f	. First note that we can rewrite the loss function f	 as a point-wise maximum as follows:

f	(Aw) = max
α∈Rm

(
(−α)�Aw− f ∗	 (−α)

)
, (16)

where f ∗	 is the convex conjugate functions of f	. Nowwe substitute this expression into the iteration
(11) as follows:

wt+1 = argmin
w∈Rn

max
α∈Rm

{
−α�Aw− f ∗	 (−α)+φλ(w)+

1
2ηt

‖w−wt‖2
}
. (17)

Note that now the loss term is expressed as a linear function as in the IST approach; see Equa-
tion (13). Now we exchange the order of minimization and maximization because the function to
be minimaxed in Equation (17) is a saddle function (i.e., convex with respect to w and concave with
respect to α Rockafellar, 1970), as follows:

min
w∈Rn

max
α∈Rm

{
−α�Aw− f ∗	 (−α)+φλ(w)+

1
2ηt

‖w−wt‖2
}

= max
α∈Rm

{
− f ∗	 (−α)+ min

w∈Rn

(
−α�Aw+φλ(w)+

1
2ηt

‖w−wt‖2
)}

. (18)

Notice the similarity between the two minimizations (13) and (18) (with fixed α).
The minimization with respect to w in Equation (18) gives the following update equation

wt+1 = proxφληt

(
wt +ηtA�αt

)
, (19)

where αt denotes the maximizer with respect to α in Equation (18). Note that αt is in general
different from −∇ f t	 used in the IST approach (14). Actually, we show below that αt =−∇ f t+1	 if
the max-min problem (18) is solved exactly. Therefore taking αt = −∇ f t	 can be considered as a
naive approximation to this.

The final step to derive DAL algorithm is to compute the maximizer αt in Equation (18). This
step is slightly involved and the derivation is presented in Appendix B. The result of the derivation
can be written as follows (notice that the maximization in Equation (18) is turned into a minimiza-
tion by reversing the sign):

αt = argmin
α∈Rm

(
f ∗	 (−α)+

1
ηt
Φ∗
ληt (w

t +ηtA�α)︸ ︷︷ ︸
=:ϕt(α)

)
, (20)

where the function Φ∗
ληt
is called the Moreau envelope of φ∗λ (see Moreau, 1965; Rockafellar, 1970)

and is defined as follows:

Φ∗
λ(w) = min

x∈Rn

(
φ∗λ(x)+

1
2
‖x−w‖2

)
. (21)

1544

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

wtwt+1

(a) Gradient-based lower-bound used in IST

wtwt+1

(b) Variational lower-bound used in DAL

Figure 1: Comparison of the lower bounds used in IST and DAL.

See Appendix A for more details. Since the function ϕt(α) in Equation (20) generalizes the AL-
function (10), we call it an augmented Lagrangian (AL) function.

What we need to do at every iteration is to minimize the AL function ϕt(α) and update the
Lagrangian multiplier wt as in Equation (19) using the minimizer αt in Equation (20). Of course in
practice we would like to stop the inner minimization at a finite tolerance. We discuss the stopping
condition in Section 5.

The algorithm we derived above is indeed a generalization of DAL algorithm we reviewed in
Section 2.2. This can be shown by computing the proximity operator (19) and the Moreau enve-
lope (21) for the specific case of 	1-regularization; see Section 4.1 and also Table 2.

The AL function ϕt(α) is continuously differentiable, because the AL function is a sum of f ∗	
(differentiable by assumption) and an envelope function (differentiable; see Appendix A). In fact,
using Lemma 10 in Appendix A, the derivative of the AL function can be evaluated as follows:

∇ϕt(α) =−∇ f ∗	 (−α)+Awt+1(α), (22)

where wt+1(α) := proxφληt
(
wt +ηtA�α

)
. The expression for the second derivative depends on the

particular regularizer chosen.
Notice again that the above update Equation (19) is very similar to the one in the IST approach

Equation (14). However, −α, which is the slope of the lower-bound (16) is optimized in the inner
minimization (20) so that the lower-bound is the tightest at the next pointwt+1. In fact, if∇ϕt(α)= 0
then ∇ f	(Awt+1) = −αt because of Equation (22) and ∇ f	(∇ f ∗	 (−αt)) = −αt . The difference
between the strategies used in IST and DAL to construct a lower-bound is highlighted in Figure 1.
IST uses a fixed gradient-based lower-bound which is tightest at the current solution wt , whereas
DAL uses a variational lower-bound, which can be adjusted to become tightest at the next solution
wt+1.

The general connection between the augmented Lagrangian algorithm and the proximal mini-
mization algorithm, and (asymptotic) convergence results can be found in Rockafellar (1976b) and
Bertsekas (1982). The derivation we show above is a special case when the objective function f (w)
can be split into a part that is easy to handle (regularization term φλ(w)) and the rest (loss term
f	(Aw)).

1545

TOMIOKA, SUZUKI AND SUGIYAMA

D
escription

R
egularizer

Proxim
ity
operator

prox
λ

E
nvelope

function
Φ

∗λ

	
1 -
regularizer
(T
ibshirani,

1996)

φ
	1λ
(w

)
=
λ
∑
nj=
1 |w

j |
prox

	1λ
(w

)
= (

(|w
j |−

λ
)
+

w
j

|w
j |)

nj=
1

Φ
∗λ (w

)
=

12
∑
nj=
1 (|w

j |−
λ
) 2+

G
roup

lasso
(Y
uan

and
L
in,2006)

φ
Gλ
(w

)
=
λ
∑
g∈

G ‖w
g ‖

prox
Gλ
(w

)
= (

(‖w
g ‖−

λ
)
+
w
g

‖w
g ‖)

g∈
G

Φ
∗λ (w

)
=

12
∑
g∈

G
(‖w

g ‖−
λ
) 2+

T
race

norm
(Fazel

et
al.,

2001;
Srebro

et
al.,

2005;
Tom

ioka
etal.,2010)

φ
trλ (w

)
=
λ
∑
nj=
1 σ

j (w
)

prox
trλ (w

)
=
vec (U

(S−
λ
)
+
V
�)

Φ
∗λ (w

)
=

12
∑
rj=
1 (σ

j (w
)−

λ
) 2+

E
lastic-net
(Z
ou

and
H
astie,

2005;
Tom

ioka
and

Suzuki,2010)

φ
enλ
(w

)
=
λ
∑
nj=
1 ((1−

θ
)|w

j |+
θ2 w

2j)
prox

enλ
(w

)
= (

(|w
j |−

λ
(1−

θ
))

+

1
+
λθ

w
j

|w
j |)

nj=
1

Φ
∗λ (w

)
=

1
+
λθ
2

∑
nj=
1 (

|w
j |−

λ
(1−

θ
)

1
+
λθ)

2+

Table
2:
L
istof

regularizers
and

their
corresponding

proxim
ity
operators

(15)
and

the
E
nvelope

function
(21).

T
he
operation

(·)
+
is
defined

as
(x)

+
:=
m
ax(0,x)

and
applies

elem
ent-w

ise
to
a
m
atrix.

1546

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

Algorithm 1 DAL algorithm for 	1-regularization
1: Input: design matrix A, loss function f	, regularization constant λ, sequence of proximity
parameters ηt (t = 0,1,2, . . .), initial solution w0, tolerance ε.

2: Set t = 0.
3: repeat
4: Minimize the augmented Lagrangian function ϕt(α) (see Equation 10) with the gradient and

Hessian given in Equations (24) and (25), respectively, using Newton’s method. Let αt be
the approximate minimizer

αt & argmin
α∈Rm

(
f ∗	 (−α)+

1
2ηt

∥∥∥prox	1ληt (wt +ηtA�α)
∥∥∥2),

with the stopping criterion (see Section 5.2)

‖∇ϕt(αt)‖ ≤
√

γ
ηt

∥∥∥prox	1ληt (wt +ηtA�αt)−wt
∥∥∥ ,

where ϕt(α) is the derivative of the inner objective (24) and 1/γ is the Lipschitz constant of
∇ f	.

5: Update wt+1 := prox	1ληt (w
t +ηtA�αt), t ← t+1.

6: until relative duality gap (see Section 7.1.2) is less than the tolerance ε.
7: Output: the final solution wt .

4. Exemplary Instances

In this section, we discuss special instances of DAL framework presented in Section 3 and qualita-
tively discuss the efficiency of minimizing the inner objective. We first discuss the simple case of
	1-regularization (Section 4.1), and then group-lasso (Section 4.2) and other more general regular-
ization using the so-called support functions (Section 4.3). In addition, the case of component-wise
regularization is discussed in Section 4.4. See also Table 2 for a list of regularizers.

4.1 Dual Augmented Lagrangian Algorithm for 	1-Regularization

For the 	1-regularization, φ
	1
λ (w) = λ‖w‖1, the update Equation (19) can be rewritten as follows:

wt+1 = prox	1ληt

(
wt +ηtA�αt

)
, (23)

where prox	1λ is the proximity operator corresponding to the 	1-regularizer defined in Equation (9).
Moreover, noticing that the convex conjugate of the 	1-regularizer is the indicator function δ∞λ in
Equation (5), we can derive the envelope functionΦ∗

λ in Equation (21) as follows (see also Figure 9):

Φ∗
λ(w) =

1
2

∥∥∥prox	1λ (w)∥∥∥2 .
Therefore, the AL function (10) in Tomioka and Sugiyama (2009) is derived from the proximal
minimization framework (see Equation 20) in Section 3.

We use Newton’s method for the minimization of the inner objective ϕt(α). The overall algo-
rithm is shown in Algorithm 1. The gradient and Hessian of the AL function (10) can be evaluated

1547

TOMIOKA, SUZUKI AND SUGIYAMA

as follows (Tomioka and Sugiyama, 2009):

∇ϕt(α) =−∇ f ∗	 (−α)+Awt+1(α), (24)

∇2ϕt(α) = ∇2 f ∗	 (−α)+ηtA+A+
�, (25)

where wt+1(α) := prox	1ληt (w
t +ηtA�α), and A+ is the matrix that consists of columns of A that

corresponds to “active” variables (i.e., the non-zero elements of wt+1(α)). Note that Equation (24)
equals the general expression (22) from the proximal minimization framework.

It is worth noting that in both the computation of matrix-vector product in Equation (24) and the
computation of matrix-matrix product in Equation (25), the cost is only proportional to the number
of non-zero elements of wt+1(α). Thus when we are aiming for a sparse solution, the minimization
of the AL function (10) can be performed efficiently.

4.2 Group Lasso

Let φλ be the group-lasso penalty (Yuan and Lin, 2006), that is,

φGλ (w) = λ ∑
g∈G

‖wg‖, (26)

where G is a disjoint partition of the index set {1, . . . ,n}, and wg ∈ R
|g| is a sub-vector of w that

consists of rows of w indicated by g ⊆ {1, . . . ,n}. The proximity operator corresponding to the
group-lasso regularizer φGλ is obtained as follows:

proxGλ (y) := proxφGλ (y) =
(
max(‖yg‖−λ,0)

yg
‖yg‖

)
g∈G

, (27)

where similarly to Equation (9), (yg)g∈G denotes an n-dimensional vector whose g component is
given by yg. Moreover, analogous to update Equation (23) (see also Equation 10) in the 	1-case, the
update equations can be written as follows:

wt+1 = proxGληt

(
wt +ηtA�αt

)
,

where αt is the minimizer of the AL function

ϕt(α) = f ∗	 (−α)+
1
2ηt

‖proxGληt (w
t +ηtA�α)‖2. (28)

The overall algorithm is obtained by replacing the soft-thresholding operations in Algorithm 1 by
the one defined above (27). In addition, the gradient and Hessian of the AL function ϕt(α) can be
written as follows:

∇ϕt(α) =−∇ f ∗	 (−α)+Awt+1(α), (29)

∇2ϕt(α) = ∇2 f ∗	 (−α)+ηt ∑
g∈G+

Ag

((
1− ληt

‖qg‖

)
I|g|+

ληt
‖qg‖

q̃gq̃g�
)
Ag

�, (30)

1548

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

where wt+1(α) = proxGληt (w
t +ηtA�α), and G+ is a subset of G that consists of active groups,

namely G+ := {g ∈ G : ‖wt+1g (α)‖ > 0}; Ag is a sub-matrix of A that consists of columns cor-
responding to the index-set g; I|g| is the |g| × |g| identity matrix; the vector q ∈ R

n is defined as
q :=wt+ηtA�α and q̃g := qg/‖qg‖, where qg is defined analogously to wg. Note that in the above
expression, ληt/‖qg‖ ≤ 1 for g ∈G+ by the soft-threshold operation (27).

Similarly to the 	1-case in the last subsection, the sparsity of wt+1(α) (i.e., |G+| � |G|) can be
exploited to efficiently compute the gradient (29) and the Hessian (30).

4.3 Support Functions

The 	1-norm regularization and the group lasso regularization in Equation (26) can be generalized
to the class of support functions. The support function of a convex setCλ is defined as follows:

φλ(x) = sup
y∈Cλ

x�y. (31)

For example, the 	1-norm is the support function of the 	∞ unit ball (see Rockafellar, 1970) and
the group lasso regularizer (26) is the support function of the group-generalized 	∞-ball defined as
{y ∈ R

n : ‖yg‖ ≤ λ, ∀g ∈ G}. It is well known that the convex conjugate of the support function
(31) is the indicator function ofC (see Rockafellar, 1970), namely,

φ∗λ(y) =

{
0 (if y ∈Cλ),
+∞ (otherwise).

(32)

The proximity operator corresponding to the support function (31) can be written as follows:

proxsupCλ (y) := y−projCλ(y),

where projCλ is the projection onto Cλ; see Lemma 8 in Appendix A. Finally, by computing the
Moreau envelope (21) corresponding to the above φ∗λ, we have

ϕt(α) = f ∗	 (−α)+
1
2ηt

‖proxsupCληt (w
t +ηtA�α)‖2, (33)

where we used the fact that for the indicator function in Equation (32), φ∗λ(projCλ(z)) = 0 (∀z) and
Lemma 8. Note that Cλ = {y ∈ R

n : ‖y‖∞ ≤ λ} gives proxsupCλ = prox	1λ (see Equation 10), and

Cλ = {y ∈ R
n : ‖yg‖ ≤ λ, ∀g ∈G} gives proxsupCλ = proxGλ (see Equation (28).

4.4 Handling Different Regularization Constant for Each Component

The 	1-regularizer in Section 4.1 and the group lasso regularizer in Section 4.2 assume that all the
components (variables or groups) are regularized by the same constant λ. However the general
formulation in Section 3.3 allows using different regularization constant for each component.

For example, let us consider the following regularizer:

φλ(w) =
n

∑
j=1

λ j|wj|, (34)

1549

TOMIOKA, SUZUKI AND SUGIYAMA

where λ j ≥ 0 (j = 1, . . . ,n). Note that we can also include unregularized terms (e.g., a bias term)
by setting the corresponding regularization constant λ j = 0. The soft-thresholding operation corre-
sponding to the regularizer (34) is written as follows:

prox	1λ (y) =
(
max(|y j|−λ j,0)

y j
|y j|

)n
j=1

,

where again the ratio y j/|y j| is defined to be zero if y j = 0. Note that if λ j = 0, the soft-thresholding
operation is an identity mapping for that component. Moreover, by noticing that the regularizer
(34) is a support function (see Section 4.3), the envelope function Φ∗

λ in Equation (21) is written as
follows:

Φ∗
λ(w) =

1
2

n

∑
j=1

max2(|wj|−λ j,0),

which can also be derived by noticing that Φ∗
λ(0) = 0 and ∇Φ∗

λ(y) = prox	1λ (y) (Lemma 10 in
Appendix A).

As a concrete example, let b be an unregularized bias term and let us assume that all the com-
ponents of w ∈ R

n are regularized by the same regularization constant λ. In other words, we aim to
solve the following optimization problem:

minimize
w∈Rn,b∈R

f	(Aw+1mb)+λ‖w‖1,

where ‖w‖1 is the 	1-norm of w, and 1m is an m-dimensional all one vector. The update Equations
(19) and (20) can be written as follows:

wt+1 = prox	1ληt (w
t +ηtA�αt), (35)

bt+1 = bt +ηt1m�αt , (36)

where αt is the minimizer of the AL function as follows:

αt = argmin
α∈Rm

(
f ∗	 (−α)+

1
2ηt

(
‖prox	1ληt (w

t +ηtA�α)‖2+(bt+ηt1m�α)2
))

. (37)

5. Analysis

In this section, we first show the convergence of DAL algorithm assuming that the inner minimiza-
tion problem (20) is solved exactly (Section 5.1), which is equivalent to the proximal minimization
algorithm (11). The convergence is presented both in terms of the function value and the norm of the
residual. Next, since it is impractical to perform the inner minimization to high precision, the finite
tolerance version of the two theorems are presented in Section 5.2. The convergence rate obtained
in Section 5.2 is slightly worse than the exact case. In Section 5.3, we show that the convergence
rate can be improved by performing the inner minimization more precisely. Most of the proofs are
given in Appendix C for the sake of readability.

Our result is inspired partly by Beck and Teboulle (2009) and is similar to the one given in
Rockafellar (1976a) and Kort and Bertsekas (1976). However, our analysis does not require asymp-
totic arguments as in Rockafellar (1976a) or rely on the strong convexity of the objective as in Kort

1550

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

and Bertsekas (1976). Importantly the stopping criterion we discuss in Section 5.2 can be checked
in practice. Key to our analysis is the Lipschitz continuity of the gradient of the loss function ∇ f	
and the assumption that the proximation with respect to φλ (see Equation 15) can be computed ex-
actly. Connections between our assumption and the ones made in earlier studies are discussed in
Section 5.4.

5.1 Exact Inner Minimization

Lemma 1 (Beck and Teboulle, 2009) Let w1,w2, . . . be the sequence generated by the proximal
minimization algorithm (Equation 11). For arbitrary w ∈ R

n we have

ηt(f (wt+1)− f (w))≤ 1
2
‖wt −w‖2− 1

2
‖wt+1−w‖2. (38)

Proof First notice that (wt −wt+1)/ηt ∈ ∂ f (wt+1) because wt+1 minimizes Equation (11). There-
fore using the convexity of f , we have6

ηt(f (w)− f (wt+1))≥
〈
w−wt+1,wt −wt+1

〉
(39)

=
〈
w−wt+1,wt −w+w−wt+1

〉
≥ ‖w−wt+1‖2−‖w−wt+1‖‖wt −w‖

≥ 1
2
‖w−wt+1‖2− 1

2
‖wt −w‖2,

where the third line follows from Cauchy-Schwartz inequality and the last line follows from the
inequality of arithmetic and geometric means.

Note that DAL algorithm (Equations 19 and 20) with exact inner minimization generates a se-
quence from the proximal minimization algorithm (Equation 11). Therefore we have the following
theorem.

Theorem 2 Let w1,w2, . . . be the sequence generated by DAL algorithm (Equations 19 and 20);
let W ∗ be the set of minimizers of the objective (1) and let f (W ∗) denote the minimum objective
value. If the inner minimization (Equation 20) is solved exactly and the proximity parameter ηt is
increased exponentially, then the residual function value obtained by the DAL algorithm converges
exponentially fast to zero as follows:

f (wk+1)− f (W ∗)≤ ‖w0−W ∗‖2
2Ck

, (40)

where ‖w0−W ∗‖ denotes the minimum distance between the initial solution w0 and W ∗, namely,
‖w0−W ∗‖=minw∗∈W ∗ ‖w0−w∗‖. Note that Ck = ∑k

t=0ηt also grows exponentially.

6. We use the notation 〈x,y〉 := ∑nj=1 x jy j for x,y ∈ R
n.

1551

TOMIOKA, SUZUKI AND SUGIYAMA

Proof Let w∗ be any point inW ∗. Substituting w = w∗ in Equation (38) and summing both sides
from t = 1 to t = k, we have

(
∑k
t=0ηt

)(k

∑
t=0

ηt f (wt+1)

∑k
t=0ηt

− f (w∗)

)
≤ 1
2
‖w0−w∗‖2− 1

2
‖wk+1−w∗‖2

≤ 1
2
‖w0−w∗‖2.

In addition, since f (wt+1)≤ f (wt) (t = 0,1,2, . . .) from Equation (11), we have

(
∑k
t=0ηt

)(
f (wk+1)− f (w∗)

)
≤ 1
2
‖w0−w∗‖2.

Finally, taking the minimum of the right-hand side with respect to w∗ ∈W ∗ and using the equiva-
lence of proximal minimization (11) and DAL algorithm (19)-(20) (see Section 3.3), we complete
the proof.

The above theorem claims the convergence of the residual function values f (wt)− f (w∗) ob-
tained along the sequence x1,x2, We can convert the above result into convergence in terms of
the residual norm ‖wt−w∗‖ by introducing an assumption that connects the residual function value
to the residual norm. In addition, we slightly generalize Lemma 1 to improve the convergence rate.
Consequently, we obtain the following theorem.

Theorem 3 Let w1,w2, . . . be the sequence generated by DAL algorithm (Equations 19 and 20) and
let W ∗ be the set of minimizers of the objective (1). Let us assume that there are a positive constant
σ and a scalar α (1≤ α≤ 2) such that

(A1) f (wt+1)− f (W ∗)≥ σ‖wt+1−W ∗‖α (t = 0,1,2, . . .), (41)

where f (W ∗) denotes the minimum objective value, and ‖w−W ∗‖ denotes the minimum distance
between w ∈ R

n and the set of minimizers W ∗ as ‖w−W ∗‖ :=minw∗∈W ∗ ‖w−w∗‖.
If the inner minimization is solved exactly, we have the following inequality:

‖wt+1−W ∗‖+σηt‖wt+1−W ∗‖α−1 ≤ ‖wt −W ∗‖.

Moreover, this implies that

‖wt+1−W ∗‖
1+(α−1)σηt
1+σηt ≤ 1

1+σηt
‖wt −W ∗‖. (42)

That is, wt converges to W ∗ super-linearly if α < 2 or α = 2 and ηt is increasing, in a global and
non-asymptotic sense.

Proof See Appendix C.1.

Note that the above super-linear convergence holds without the assumption in Theorem 2 that ηt is
increased exponentially.

1552

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

5.2 Approximate Inner Minimization

First we present a finite tolerance version of Lemma 1.

Lemma 4 Let w1,w2, . . . be the sequence generated by DAL algorithm (Equations 19 and 20). Let
us assume the following conditions.

(A2) The loss function f	 has a Lipschitz continuous gradient with modulus 1/γ, that is,∥∥∇ f	(z)−∇ f	(z′)
∥∥≤ 1

γ
‖z− z′‖ (∀z,z′ ∈ R

m), (43)

(A3) The proximation with respect to φλ (see Equation 15) can be computed exactly.

(A4) The inner minimization (Equation 20) is solved to the following tolerance:

‖∇ϕt(αt)‖ ≤
√

γ
ηt
‖wt+1−wt‖, (44)

where γ is the constant in Equation (43).

Under assumptions (A2)–(A4), for arbitrary w ∈ R
n we have

ηt(f (wt+1)− f (w))≤ 1
2
‖wt −w‖2− 1

2
‖wt+1−w‖2. (45)

Proof See Appendix C.2.

Note that Lemma 4 states that even with the weaker stopping criterion (A4), we can obtain inequality
(45) as in Lemma 1.

The assumptions we make here are rather weak. In Assumption (A2), the loss function f	 does
not include the design matrix A (see Table 1). Therefore, it is easy to compute the constant γ.
Accordingly, the stopping criterion (A4) can be checked without assuming anything about the data.

Furthermore, summing both sides of inequality (45) and assuming that ηt is increased exponen-
tially, we obtain Theorem 2 also under the approximate minimization (A4).

Finally, an analogue of Theorem 3, which does not assume the exponential increase in ηt , is
obtained as follows.

Theorem 5 Let w1,w2, . . . be the sequence generated by DAL algorithm and let W ∗ be the set of
minimizers of the objective (1). Under assumption (A1) in Theorem 3 and (A2)-(A4) in Lemma 4,
we have

‖wt+1−W ∗‖2+2σηt‖wt+1−W ∗‖α ≤ ‖wt −W ∗‖2,

where ‖wt −W ∗‖ is the minimum distance between wt and W ∗ as in Theorem 3. Moreover, this
implies that

‖wt+1−W ∗‖
1+ασηt
1+2σηt ≤ 1√

1+2σηt
‖wt −W ∗‖. (46)

That is, wt converges to W ∗ super-linearly if α< 2 or α= 2 and ηt is increasing.

1553

TOMIOKA, SUZUKI AND SUGIYAMA

Proof Let wt be the closest point in W ∗ from wt , that is, wt := argminw∗∈W ∗ ‖wt −w∗‖. Using
Lemma 4 with w= wt and Assumption (A1), we have the first part of the theorem as follows:

‖wt −W ∗‖2 = ‖wt − wt‖2 ≥ ‖wt+1 − wt‖2 +2σηt‖wt+1 −W ∗‖α

≥ ‖wt+1 −W ∗‖2 +2σηt‖wt+1 −W ∗‖α,

where we used the minimality of ‖wt+1 − wt+1‖ in the second line. The last part of the theo-
rem (46) can be obtained in a similar manner as that of Theorem 3 using Young’s inequality (see
Appendix C.1).

5.3 A Faster Rate

The factor 1/
√

1+2σηt obtained under the approximate minimization (A4) (see inequality (46) in
Theorem 5) is larger than that obtained under the exact inner minimization (see inequality (42) in
Theorem 3); that is, the statement in Theorem 5 is weaker than that in Theorem 3.

Here we show that a better rate can also be obtained for approximate minimization if we perform
the inner minimization to O(‖wt+1−wt‖/ηt) instead of O(‖wt+1−wt‖/√ηt) in Assumption (A4).

Theorem 6 Let w1,w2, . . . be the sequence generated by DAL algorithm and let W ∗ be the set of
minimizers of the objective (1). Under assumption (A1) in Theorem 3 with α= 2, and assumptions
(A2) and (A3) in Lemma 4, for any ε< 1 such that δ := (1− ε)/(σηt)≤ 3/4, if we solve the inner
minimization to the following precision

(A4′) ‖∇ϕt(αt)‖ ≤
√
γ(1− ε)/σ

ηt
‖wt+1 −wt‖,

then we have

‖wt+1 −W ∗‖ ≤ 1
1+ εσηt

‖wt −W ∗‖.

Proof See Appendix C.3

Note that the assumption δ < 3/4 is rather weak, because if the factor δ is greater than one, the
stopping criterion (A4′) would be weaker than the earlier criterion (A4). In order to be on the safe
side, we can choose ε= max(ε0,1−3σηt/4) (assuming that we know the constant σ) and the above
statement holds with ε = ε0. Unfortunately, in exchange for obtaining a faster rate, the stopping
criterion (A4′) now depends not only on γ, which can be computed, but also on σ, which is hard to
know in practice. Therefore stopping condition (A4′) is not practical.

5.4 Validity of Assumption (A1)

In this subsection, we discuss the validity of assumption (A1) and its relation to the assumptions
used in Rockafellar (1976a) and Kort and Bertsekas (1976). Roughly speaking, our assumption
(A1) is milder than the one used in Rockafellar (1976a) and stronger than the one used in Kort and
Bertsekas (1976).

First of all, assumption (A1) is unnecessary for convergence in terms of function value (The-
orem 2 and its approximate version implied by Lemma 4). Exponential increase of the proximity

1554

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

parameter ηt may sound restrictive, but this is the setting we typically use in experiments (see Sec-
tion 7.1). Assumption (A1) is only necessary in Theorem 3 and Theorem 5 to translate the residual
function value f (wt+1)− f (W ∗) into the residual distance ‖wt+1−W ∗‖.

We can roughly think of Assumption (A1) as a local strong convexity assumption. Here we
say a function f is locally strongly convex around the set of minimizers W ∗ if for all positive C,
all the points w within distance C from the setW ∗, the objective function f is bounded below by a
quadratic function, that is,

f (w)− f (W ∗)≥ σ‖w−W ∗‖2 (∀w : ‖w−W ∗‖ ≤C), (47)

where the positive constant σ may depend on C. If the set of minimizers W ∗ is bounded, all the
level sets of f are bounded (see Rockafellar, 1970, Theorem 8.7). Therefore, if we make sure that
the function value f (wt) does not increase during the minimization, we can assume that all points
generated by DAL algorithm are contained in some neighborhood aroundW ∗ that contains the level
set defined by the initial function value {w ∈R

n : f (w)≤ f (w0)}; that is, the local strong convexity
of f guarantees Assumption (A1) with α= 2.

Note that Kort and Bertsekas (1976, p278) used a slightly weaker assumption than the local
strong convexity (47); they assumed that there exists a positive constant C′ > 0 such that the local
strong convexity (47) is true for all w in the neighborhood ‖w−W ∗‖ ≤C′ for some σ> 0.

The local strong convexity (47) or Assumption (A1) fails when the objective function behaves
like a constant function around the set of minimizers W ∗. In this case, DAL converges rapidly in
terms of function value due to Theorem 2; however it does not necessarily converge in terms of the
distance ‖wt −W ∗‖.

Note that the objective function f is the sum of the loss term and the regularization term. Even
if the minimum eigenvalue of the Hessian of the loss term is very close to zero, we can hope
that the regularization term holds the function up from the minimum objective value f (W ∗). For
example, when the loss term is zero and we only have the 	1-regularization term φ	1λ (w). The
objective f (w) = λ∑n

j=1 |wj| can be lower-bounded as

f (w)≥ λ
C
‖w‖2 (∀w : ‖w‖ ≤C),

where the minimizer w∗ is w∗ = 0. Note that the 	1-regularizer is not (globally) strongly convex.
The same observation holds also for other regularizers we discussed in Section 4.

In the context of asymptotic analysis of AL algorithm, Rockafellar (1976b) assumed that there
exists τ > 0, such that in the ball ‖β‖ ≤ τ in R

n, the gradient of the convex conjugate f ∗ of the
objective function f is Lipschitz continuous with constant L, that is,

‖∇ f ∗(β)−∇ f ∗(0)‖ ≤ L‖β‖.

Note that because ∂ f (∇ f ∗(0)) ' 0 (Rockafellar, 1970, Corollary 23.5.1), ∇ f ∗(0) is the optimal
solution w∗ of Equation (1), and it is unique by the continuity assumed above.

Our assumption (A1) can be justified from Rockafellar’s assumption as follows.

Theorem 7 Rockafellar’s assumption implies that the objective f is locally strongly convex with
C = cτL and σ=min(1,(2c−1)/c2)/(2L) for any positive constant c (τ and L are constants from
Rockafellar’s assumption).

1555

TOMIOKA, SUZUKI AND SUGIYAMA

Proof The proof is a local version of the proof of TheoremX.4.2.2 in Hiriart-Urruty and Lemaréchal
(1993) (Lipschitz continuity of ∇ f ∗ implies strong convexity of f). See Appendix C.4.

Note that as the constant c that bounds the distance to the set of minimizersW ∗ increases, the con-
stant σ becomes smaller and the convergence guarantee in Theorem 3 and 5 become weaker (but
still valid).

Nevertheless Assumption (A1) we use in Theorem 3 and 5 are weaker than the local strong
convexity (47), because we need Assumption (A1) to hold only on the points generated by DAL
algorithm. For example, if we only consider a finite number of steps, such a constant σ always
exists.

Both assumptions in Rockafellar (1976b) and Kort and Bertsekas (1976) are made for asymp-
totic analysis. In fact, they require that as the optimization proceeds, the solution becomes closer
to the optimum w∗ in the sense of the distance ‖wt −W ∗‖ in Kort and Bertsekas (1976) and ‖β‖ in
Rockafellar (1976b). However in both cases, it is hard to predict how many iterations it takes for
the solution to be sufficiently close to the optimum so that the super-linear convergence happens.

Our analysis is complementary to the above classical results. We have shown that super-linear
convergence happens non-asymptotically under Assumption (A1), which is trivial for a finite num-
ber of steps. Assumption (A1) can also be guaranteed for infinite steps using the local strong
convexity aroundW ∗ (47).

6. Previous Studies

In this section, we discuss earlier studies in two categories. The first category comprises methods
that try to overcome the difficulty posed by the nondifferentiability of the regularization term φλ(w).
The second category, which includes DAL algorithm in this paper, consists of methods that try to
overcome the difficulty posed by the coupling (or non-separability) introduced by the design matrix
A. The advantages and disadvantages of all the methods are summarized in Table 3.

6.1 Constrained Optimization, Upper-Bound Minimization, and Subgradient Methods

Many authors have focused on the nondifferentiability of the regularization term in order to effi-
ciently minimize Equation (1). This view has lead to three types of approaches, namely, (i) con-
strained optimization, (ii) upper-bound minimization, and (iii) subgradient methods.

In the constrained optimization approach, auxiliary variables are introduced to rewrite the non-
differentiable regularization term as a linear function of conically-constrained auxiliary variables.
For example, the 	1-norm of a vector w can be rewritten as:

‖w‖1 =
n

∑
j=1

min
w(+)
j ,w(−)

j ≥0

(
w(+)
j +w(−)

j

)
s.t. wj = w(+)

j −w(−)
j ,

where w(+)
j and w(−)

j (j = 1, . . . ,n) are auxiliary variables and they are constrained in the positive-
orthant cone. Two major challenges of the auxiliary-variable formulation are the increased size of
the problem and the complexity of solving a constrained optimization problem.

The projected gradient (PG) method (see Bertsekas, 1999) iteratively computes a gradient step
and projects it back to the constraint-set. The PG method in Figueiredo et al. (2007b) converges

1556

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

R-linearly,7 if the loss function is quadratic. However, PG methods can be extremely slow when the
design matrix A is poorly conditioned. To overcome the scaling problem, the L-BFGS-B algorithm
(Byrd et al., 1995) can be applied for the simple positive orthant constraint that arises from the 	1
minimization. However, this approach does not easily extend to more general regularizers, such as
group lasso and trace norm regularization.

The interior-point (IP) method (see Boyd and Vandenberghe, 2004) is another algorithm that
is often used for constrained minimization; see Koh et al. 2007; Kim et al. 2007 for the applica-
tion of IP methods to sparse estimation problems. Basically an IP method generates a sequence
that approximately follows the so called central path, which parametrically connects the analytic
center of the constraint-set and the optimal solution. Although IP methods can tolerate poorly con-
ditioned design matrices well, it is challenging to scale them up to very large dense problems. The
convergence of the IP method in Koh et al. (2007) is empirically found to be linear.

The second approach (upper-bound minimization) constructs a differentiable upper-bound of
the nondifferentiable regularization term. For example, the 	1-norm of a vector w can be rewritten
as follows:

‖w‖1 =
n

∑
j=1

min
α j≥0

(
w2j
2α j

+
α j

2

)
. (48)

In fact, the right-hand side is an upper bound of the left-hand side for arbitrary non-negative α j

due to the inequality of arithmetic and geometric means, and the equality is obtained by setting
α j = |wj|. The advantage of the above parametric-upper-bound formulation is that for a fixed
set of α j, the problem (2) becomes a (weighted) quadratically regularized minimization problem,
for which various efficient algorithms already exist. The iteratively reweighted shrinkage (IRS)
method (Gorodnitsky and Rao, 1997; Bioucas-Dias, 2006; Figueiredo et al., 2007a) alternately
solves the quadratically regularized minimization problem and tightens (re-weights) the upper-
bound in Equation (48). A more general technique was studied in parallel by the name of vari-
ational EM (Jaakkola, 1997; Girolami, 2001; Palmer et al., 2006), which generalizes the above
upper-bound using Fenchel’s inequality (Rockafellar, 1970). A similar approach that is based on
Jensen’s inequality (Rockafellar, 1970) has been studied in the context of multiple-kernel learning
(Micchelli and Pontil, 2005; Rakotomamonjy et al., 2008) and in the context of multi-task learning
(Argyriou et al., 2007, 2008). The challenge in the IRS framework is the singularity (Figueiredo
et al., 2007a) around the coordinate axis. For example, in the 	1-problem in Equation (2), any zero
component wj = 0 in the initial vector w will remain zero after any number of iterations. More-
over, it is possible to create a situation that the convergence becomes arbitrarily slow for finite |wj|
because the convergence in the 	1 case is only linear (Gorodnitsky and Rao, 1997).

The third approach (subgradient methods) directly handles the nondifferentiability through sub-
gradients; see, for example, Bertsekas (1999).

A (stochastic) subgradient method typically converges as O(1/
√
k) for non-smooth problems

in general and as O(1/k) if the objective is strongly convex; see Shalev-Shwartz et al. (2007); Lan
(2010). However, since the method is based on gradients, it can easily fail when the problem is
poorly conditioned (see, e.g., Yu et al., 2010, Section 2.2). Therefore, one of the challenges in
subgradient-based approaches is to take the second-order curvature information into account. This

7. A sequence ξt converges to ξ R-linearly (R is for “root”) if the residual |ξt − ξ| is bounded by a sequence εt that
linearly converges to zero (Nocedal and Wright, 1999).

1557

TOMIOKA, SUZUKI AND SUGIYAMA

Constrained Upper-bound Subgradient Iterative
Optimization Minimization Method Proximation
PG IP IRS OWLQN AG DAL

Poorly conditioned A – � � � – �

No singularity � � – � � �

Extensibility � � � – � �

Exploits sparsity of w � – – � � �

Efficient when – – – m(n m(n m� n
Convergence (O(e−k)) (O(e−k)) O(e−k) ? O(1/k2) o(e−k)

Table 3: Comparison of the algorithms to solve Equation (1). In the columns, six methods, namely,
projected gradient (PG), interior point (IP), iterative reweighted shrinkage (IRS), orthant-
wise limited-memory quasi Newton (OWLQN), accelerated gradient (AG), and dual aug-
mented Lagrangian (DAL), are categorized into four groups discussed in the text. The first
row: “Poorly conditioned A” means that a method can tolerate poorly conditioned design
matrices well. The second row: “No singularity” means that a method does not suffer from
singularity in the parametrization (see main text). The third row: “Extensibility” means
that a method can be easily extended beyond 	1-regularization. The forth row: “Exploits
sparsity of w” means that a method can exploit the sparsity in the intermediate solution.
The fifth row: “Efficient when” indicates the situations each algorithm runs efficiently,
namely, more samples than unknowns (m(n), more unknowns than samples (m� n),
or does not matter (–). The last row shows the rate of convergence known from literature.
The super-linear convergence of DAL is established in this paper.

is especially important to tackle large-scale problems with a possibly poorly conditioned design
matrix. Orthant-wise limited memory quasi Newton (OWLQN, Andrew and Gao, 2007) and sub-
LBFGS (Yu et al., 2010) combine subgradients with the well known L-BFGS quasi Newton method
(Nocedal and Wright, 1999). Although being very efficient for 	1-regularization and piecewise
linear loss functions, these methods depend on the efficiency of oracles that compute a descent
direction and a step-size; therefore, it is challenging to extend these methods to combinations of
general loss functions and general nondifferentiable regularizers. In addition, the convergence rates
of the OWLQN and subLBFGS methods are not known.

6.2 Iterative Proximation

Yet another approach is to deal with the nondifferentiable regularization through the proximity
operation. In fact, the proximity operator (15) is easy to compute for many practically relevant
separable regularizers.

The remaining issue, therefore, is the coupling between variables introduced by the design ma-
trix A. We have shown in Sections 3.2 and 3.3 that IST and DAL can be considered as two different
strategies to remove this coupling.

Recently many studies have focused on methods that iteratively compute the proximal operation
(15) (Figueiredo and Nowak, 2003; Daubechies et al., 2004; Combettes and Wajs, 2005; Nesterov,
2007; Beck and Teboulle, 2009; Cai et al., 2008), which can be described in an abstract manner as

1558

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

follows:

wt+1 = proxφλt
(
yt
)
, (49)

where proxφλ is the proximal operator defined in Equation (15). The above mentioned studies can
be differentiated by the different yt and λt that they use.

For example, the IST approach (also known as the forward-backward splitting Lions andMercier,
1979; Combettes and Wajs, 2005; Duchi and Singer, 2009) can be described as follows:

yt := wt −ηtA�∇ f	(Awt),

λt := ληt .

What we need to do at every iteration is only to compute the gradient at the current point, take a gra-
dient step, and then perform the proximal operation (Equation 49). Note that ηt can be considered
as a step-size.

The IST method can be considered as a generalization of the projected gradient method. Since
the proximal gradient step (13) reduces to an ordinary gradient step when φλ = 0, the basic idea
behind IST is to keep the non-smooth term φλ as a part of the proximity step (see Lan, 2010).
Consequently, the convergence behaviour of IST is the same as that of (projected) gradient descent
on the differentiable loss term. Note that Duchi and Singer (2009) analyze the case where the loss
term is also nondifferentiable in both batch and online learning settings. Langford et al. (2009) also
analyze the online setting with a more general threshold operation.

IST approach maintains sparsity of wt throughout the optimization, which results in significant
reduction of computational cost; this is an advantage of iterative proximation methods compared
to interior-point methods (e.g., Koh et al., 2007), because the solution produced by interior-point
methods becomes sparse only in an asymptotic sense; see Boyd and Vandenberghe (2004).

The downside of the IST approach is the difficulty to choose the step-size parameter ηt ; this
issue is especially problematic when the design matrixA is poorly conditioned. In addition, the best
known convergence rate of a naive IST approach isO(1/k) (Beck and Teboulle, 2009), which means
that the number of iterations k that we need to obtain a solution wk such that f (wk)− f (w∗) ≤ ε
grows linearly with 1/ε, where f (w∗) is the minimal value of Equation (1).

SpaRSA (Wright et al., 2009) uses approximate second order curvature information for the
selection of the step-size parameter ηt . TwIST (Bioucas-Dias and Figueiredo, 2007) is a “two-
step” approach that tries to alleviate the poor efficiency of IST when the design matrix is poorly
conditioned. However the convergence rates of SpaRSA and TwIST are unknown.

Accelerating strategies that use different choices of yt have been proposed in Nesterov (2007)
and Beck and Teboulle (2009) (denoted AG in Tab. 3), which have O(1/k2) guarantee with almost
the same computational cost per iteration; see also Lan (2010).

DAL can be considered as a new member of the family of iterative proximation algorithms. We
have qualitatively shown in Section 3.3 that DAL constructs a better lower bound of the loss term
than IST. Moreover, we have rigorously studied the convergence rate of DAL and have shown that
it converges super-linearly. Of course the fast convergence of DAL comes with the increased cost
per iteration. Nevertheless, as we have qualitatively discussed in Section 4, this increase is mild,
because the sparsity of intermediate solutions can be effectively exploited in the inner minimization.
We empirically compare DAL with other methods in Section 7.

There is of course an issue on how much one should precisely optimize when the training error
(plus the regularization term) is a crude approximation of the generalization error (Shalev-Shwartz

1559

TOMIOKA, SUZUKI AND SUGIYAMA

and Srebro, 2008). However the reason we use sparse regularization is exactly that we are not only
interested in the predictive power. We argue that when we are using sparse methods to gain insights
into some problem, it is important that we are sure that we are doing what we write in our paper (e.g.,
“solve an 	1-regularized minimization problem”), and someone else can reliably recover the same
sparsity pattern using any optimization approach that employs some objective stopping criterion
such as the duality gap. Of course the stability of the optimal solution itself must be analyzed
(see Bickel et al., 2009; Zhao and Yu, 2006; Meinshausen and Bühlmann, 2006) and the trade-off
between accuracy and sparsity should be discussed. However, this is beyond the scope of this paper.

7. Empirical Results

In this section, we confirm the super-linear convergence of DAL algorithm and compare it with
other algorithms on 	1-regularized logistic regression problems. The algorithms that we compare
are FISTA (Beck and Teboulle, 2009), OWLQN (Andrew and Gao, 2007), SpaRSA (Wright et al.,
2009), IRS (Figueiredo et al., 2007a), and L1 LOGREG (Koh et al., 2007). Note that IST is not
included because SpaRSA and FISTA are shown to clearly outperform the naive IST approach.
We describe the logistic regression problem and the implementation of all of the methods in Sec-
tion 7.1. The synthetic experiments are presented in Section 7.2 and the benchmark experiments are
presented in Section 7.3.

7.1 Implementation

In this subsection, we first describe the problem to be solved and then explain the implementation
of the above mentioned algorithms in detail.

For all algorithms except for IRS, the initial solution w0 was set to an all zero vector. For IRS,
the initial solution was sampled from an independent standard Gaussian distribution.

The CPU time was measured on a Linux server with two 3.1 GHz Opteron Processors and 32GB
of RAM.

7.1.1 	1-REGULARIZED LOGISTIC REGRESSION

The logistic regression model is defined by the loss function

fLR(z) =
m

∑
i=1

	LR(zi,yi) :=
m

∑
i=1

log(1+ e−yizi), (50)

where yi ∈ {−1,+1} is a training label. The conjugate of the loss function can be obtained as
follows:

f ∗LR(−α) =
m

∑
i=1

	∗LR(−αi,yi),

where

	∗LR(−αi,yi) =
{
αiyi log(αiyi)+(1−αiyi) log(1−αiyi) (if 0≤ αiyi ≤ 1),
+∞ (otherwise).

1560

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

Rewriting the dual problem (3) we have the following expression:

maximize
α∈Rm

− f ∗LR(−α), (51)

subject to ‖A�α‖∞ ≤ λ, (52)

where ‖y‖∞ = max j=1,...,n |y j| is the 	∞-norm; note that the implicit constraint in Equation (3)
(through the indicator function δ∞λ) is made explicit in Equation (52).

For the experiments in this section, we reparametrize the regularization constant λ as λ =
 λ‖A�y‖∞. The reason for this reparametrization is that for all λ≥ 0.5 the solution w can be shown
to be zero; thus we can measure the strength of the regularization relative to the problem using λ
instead of λ. This is because the conjugate loss function f ∗LR takes the minimum at αi = yi/2 and
the minimum is attained for λ≥ ‖A�(y/2)‖∞ (see Equation 52).

7.1.2 DUALITY GAP

We used the relative duality gap (RDG) as a stopping criterion with tolerance 10−3. More specif-
ically, we terminated all the algorithms described below when RDG fell below 10−3. RDG was
computed as follows for all algorithms except L1 LOGREG. For L1 LOGREG, we modified the
stopping criterion implemented in the original code by the authors from absolute duality gap to
relative duality gap. See also Koh et al. (2007), Wright et al. (2009) and Tomioka and Sugiyama
(2009).

Let αt be any candidate dual vector at tth iteration. For example, αt = αt for DAL and αt =
−∇ f	(Awt+1) for OWLQN, SpaRSA, and IRS. Note that the above αt does not necessarily satisfy
the dual constraint (52). Thus we define α̃t = αt min(1,λ/‖A� αt‖∞). Notice that ‖A�α̃t‖∞ ≤ λ
by construction. We compute the dual objective value as d(wt+1) =− f ∗	 (−α̃t); see Equation (51).
Finally RDGt+1 is obtained as RDGt+1 = (f (wt+1)− d(wt+1))/ f (wt+1), where f is the primal
objective function defined in Equation (1).

The norm of the minimum norm subgradient is also frequently used as a stopping criterion.
However, there are two reasons for using RDG instead. First, the gradient at the current point is not
evaluated in FISTA (Beck and Teboulle, 2009) and it requires additional computation, whereas the
vector αt in the computation of RDG does not need to be the gradient at the current point; in fact
the gradient at any point (or any m-dimensional vector) gives a valid lower bound of the minimum
objective value. Second, since the gradient can change discontinuously at nondifferentiable points,
the norm of gradient does not reflect the distance from the solution well; this is a problem for, for
example, an interior-point method, because it produces a sparse solution only asymptotically.

7.1.3 DAL

DAL algorithm is implemented in MATLAB.8 The inner minimization problem (see Equation 10)
is solved with Newton’s method; we used the preconditioned conjugate gradient (PCG) method for
solving the associated Newton system (pcg function in MATLAB); we use the diagonal elements
of the Hessian matrix (see Equation 25) as the preconditioner. The inner minimization is terminated
by the criterion (44) with γ= 4, because the Hessian of the loss function (50) is uniformly bounded
by 1/4 (see Table 1).

8. The software is available from http://www.ibis.t.u-tokyo.ac.jp/ryotat/dal/.

1561

TOMIOKA, SUZUKI AND SUGIYAMA

We chose the initial proximity parameter to be either η0 = 0.01/λ (conservative setting) or
η0 = 1/λ (aggressive setting) and increased ηt by a factor of 2 at every iteration. Since ηt appears
in the soft-thresholding operation multiplied by λ, it seems to be intuitive to choose ηt inversely
proportional to λ but we do not have a formal argument yet. We empirically discuss the choice of
η0 in more detail in Section 7.2.4.

The algorithm was terminated when the RDG fell below 10−3.

7.1.4 DAL-B

DAL-B is a variant of DAL with an unregularized bias term (see update Equations 35-37). This
algorithm is included because L1 LOGREG implemented by Koh et al. (2007) estimates a bias
term and therefore cannot be directly compared to DAL.

As an augmented Lagrangian algorithm, DAL-B solves the following dual problem:

maximize
α∈Rm

− f ∗LR(−α)−δ∞λ (v),

subject to A�α= v, (53)

1�α= 0. (54)

See also Equations (3) and (4).
When implementing DAL-B, we noticed that sometimes the algorithm gets stuck in a plateau

where the additional equality constraint (54) improves very little. This was more likely to happen
when the condition of the design matrix was poor.

In order to avoid this undesirable slow-down, we heuristically adapt the proximity parameter ηt
for the equality constraint (54). Note that this kind of modification cannot improve the theoretical
convergence result without additional prior information. More specifically, we use proximity pa-
rameters η(1)t and η(2)t for equality constraints (53) and (54), respectively. The AL function (37) is
rewritten as follows

αt = argmin
α∈Rm

(
f ∗	 (−α)+

1

2η(1)t

‖prox	1ληt (w
t +η(1)t A

�α)‖2+ 1

2η(2)t

(bt +η(2)t 1m
�α)2

)
.

First we initialize η(1)0 = η(2)0 = 0.01/λ (conservative setting) or η(1)0 = η(2)0 = 1/λ (aggressive set-

ting) as above. The proximity parameter η(1)t with respect to Equation (53) is increased by the factor
2 at every iteration (the same as DAL). The proximity parameter η(2)t with respect to Equation (54)
is increased by a larger factor 40 if the following conditions are satisfied:

1. The iteration counter t > 1.

2. The violation of the equality constraint (54), namely violt := |1�αt |, does not sufficiently
decrease; that is, violt > violt−1/2.

3. The violation violt is larger than 10−3 (the tolerance of optimization).

Otherwise, η(2)t is increased by the same factor 2 as η(1)t .
Note that the theoretical results in Section 5 still holds if we replace ηt in Section 5 by η

(1)
t ,

because η(1)t ≤ η(2)t ; that is, the stopping criterion (44) and the convergence rates simply become
more conservative.

1562

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

Since DAL-B has an additional equality constraint (54). We modified the computation of relative
duality gap described above by defining the candidate dual vector αt as αt = αt − 1

m1m1m
�αt .

7.1.5 FAST ITERATIVE SHRINKAGE-THRESHOLDING ALGORITHM (FISTA)

FISTA algorithm (Beck and Teboulle, 2009) is implemented in MATLAB. The algorithm is termi-
nated by the same RDG criterion except that the dual objective is evaluated at yt in update equation
(49) instead of wt+1; this approach saves unnecessary computation of gradients.

7.1.6 ORTHANT-WISE LIMITED MEMORY QUASI NEWTON (OWLQN)

OWLQN algorithm (Andrew and Gao, 2007) is also implemented in MATLAB because we found
that our MATLAB implementation was faster than the C++ implementation provided by the authors;
this is because MATLAB uses optimized linear algebra routines while authors’ implementation does
not. The algorithm is terminated by the same RDG criterion as DAL.

7.1.7 SPARSE RECONSTRUCTION BY SEPARABLE APPROXIMATION (SPARSA)

SpaRSA algorithm (Wright et al., 2009) is implemented in MATLAB. We modified the code pro-
vided by the authors9 to handle the logistic loss function. The algorithm is terminated by the same
RDG criterion.

7.1.8 ITERATIVE REWEIGHTED SHRINKAGE (IRS)

IRS algorithm is implemented in MATLAB. At every iteration IRS solves a ridge-regularized logis-
tic regression problem with the regularizer defined in Equation (48). This problem can be converted
into a standard 	2-regularized logistic regression with the design matrix Ã= Adiag(

√
α1, . . . ,

√
αn)

by reparametrizing wj to w̃ j = wj/
√
α j. The weight α j is set to |wtj| before solving the problem.

Thus if any wtj = 0, the corresponding column of Ã becomes zero and it can be removed from the
optimization. We use the limited memory BFGS quasi-Newton method (Nocedal and Wright, 1999)
to solve each sub-problem.

7.1.9 INTERIOR POINT ALGORITHM (L1 LOGREG)

L1 LOGREG algorithm (Koh et al., 2007) is implemented in C. We modified the code provided by
the authors10 as a C-MEX function so that it can be called directly from MATLAB without saving
matrices into files. We used the BLAS and LAPACK libraries provided together with MATLAB
R2008b (-lmwblas and -lmwlapack options for the mex command). L1 LOGREG is also termi-
nated by the RDG criterion.

Note that L1 LOGREG also estimates an unregularized bias term. DAL algorithm with a bias
term (DAL-B) is included to make the comparison easy; see Section 7.1.4.

9. Code can be found at http://www.lx.it.pt/˜mtf/SpaRSA/.
10. Code can be found at http://www.stanford.edu/˜boyd/l1_logreg/.

1563

TOMIOKA, SUZUKI AND SUGIYAMA

7.2 Synthetic Experiment

In this subsection, we first confirm the convergence behaviour of DAL (Section 7.2.2); second we
compare the scaling of various algorithms against the size of the problem (Section 7.2.3); finally we
discuss how to choose the initial proximity parameter η0 (Section 7.2.4).

7.2.1 EXPERIMENTAL SETTING

The elements of the design matrix A∈R
m×n were randomly sampled from an independent standard

Gaussian distribution. The true classifier coefficient β was generated by filling randomly chosen
element (4%) of a n-dimensional vector with samples from an independent standard Gaussian dis-
tribution; the remaining elements of the vector were set to zero. The training label vector y was
obtained by taking the sign of Aβ+ 0.01ξ, where ξ ∈ R

m was a sample from an m-dimensional
independent standard Gaussian distribution. The whole procedure was repeated ten times.

7.2.2 EMPIRICAL VALIDATION OF SUPER-LINEAR CONVERGENCE

In this section, we empirically confirm the validity of the convergence results (Theorems 2, 3 and 5)
obtained in the previous section and compare the efficiency of DAL, FISTA, OWLQN, SpaRSA, and
IRS for the number of samples m= 1,024 and the number of parameters n= 16,384. L1 LOGREG
is not included because it solves a different minimization problem. We use the regularization con-
stant λ= 0.01. For DAL, we used the aggressive setting (ηt = 1/λ,2/λ,4/λ, . . .).

First in order to obtain the true minimizer11 w∗ of Equation (1), we ran DAL algorithm to ob-
tain a solution with high precision (RDG < 10−9). Assuming that the support of this solution is
correct, we performed one Newton step of Equation (1) in the subspace of active variables. The
solution w∗ we obtained in this way satisfied ‖∇ f (w∗)‖ < 10−13, where ∇ f (w∗) is the minimum
norm subgradient of f at w∗. The parameter σ in Equation (41) was estimated by taking the mini-
mum of (f (wt)− f (w∗))/‖wt −w∗‖2 along the trajectory obtained by the above minimization and
multiplying the minimum value by a safety factor of 0.7. In order to estimate the residual norm
‖wt −w∗‖, we use bounds (42) and (46) with α= 2 and the initial residual ‖w0 −w∗‖. The bound
(40) in Theorem 2 is used with the same initial residual to estimate the reduction in the function
value.

In Figure 2, we show a result of a typical (single) run of the algorithms described above. Note
that the result is not averaged to keep the meaning of theoretical bounds.

In the top left panel of Figure 2, we can see that the convergence in terms of the norm of the
residual vector wt −w∗ happens indeed rapidly as predicted by the theorems in Section 5. The
yellow curve shows the result of Theorem 3, which assumes exact minimization of Equation (20),
and the magenta curve shows the result of Theorem 5, which allows some error in the minimization
of Equation (20). We can see that the difference between the optimistic analysis of Theorem 3 and
the realistic analysis of Theorem 5 is negligible. In this problem, in order to reach the quality of
solution DAL achieves in 10 iterations OWLQN and SpaRSA take at least 100 iterations and FISTA
takes 1,000 iterations. The IRS approach required about the same number of iterations as OWLQN
and SpaRSA but each step was much heavier than those two algorithms (see also the top right panel
in Figure 2) and it was terminated after 100 iterations.

11. We assume that the minimizer is unique.

1564

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

10
0

10
1

10
2

10
3

10
4

10
−4

10
−2

10
0

||w
t −

 w
*|

|

DAL

FISTA

OWLQN

SpaRSA

IRS

DAL (thm5)

DAL (thm3)

10
0

10
1

10
2

10
−4

10
−2

10
0

10
0

10
1

10
2

10
3

10
4

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Number of iterations

f(
w

t)
−

 f(
w

*)

DAL

FISTA

OWLQN

SpaRSA

IRS

DAL (thm2)

10
0

10
1

10
2

10
−8

10
−6

10
−4

10
−2

10
0

10
2

CPU time (sec)

Figure 2: Empirical comparison of DAL, FISTA (Beck and Teboulle, 2009), OWLQN (Andrew and
Gao, 2007), and SpaRSA (Wright et al., 2009). Top left: residual norm vs. number of
iterations. Also the theoretical guarantees for DAL from Theorems 3 and 5 are shown.
Top right: residual norm vs. CPU time. Bottom left: residual in the function value vs.
number of iterations. Bottom right: residual in the function value vs. CPU time.

The bottom left panel of Figure 2 shows comparison of five algorithms DAL, FISTA, OWLQN,
SpaRSA, and IRS in terms of the decrease in the function value. Also plotted is the decrease in the
function value predicted by Theorem 2 (magenta curve). The convergence of DAL is the fastest also
in terms of function value. OWLQN and SpaRSA are the next after DAL and are faster than FISTA.

DAL needs to solve a minimization problem at every iteration. Accordingly the operation re-
quired in each iteration is heavier than those in FISTA, OWLQN, and SpaRSA. Thus we compare
the total CPU time spent by the algorithms in the right part of Figure 2. It can be seen that DAL
can obtain a solution that is much more accurate in less than 10 seconds than the solution FISTA
obtained after almost 60 seconds. In terms of computation time, DAL and OWLQN seem to be on
par at low precision. However as the precision becomes higher DAL becomes clearly faster than
OWLQN. SpaRSA seems to be slightly slower than DAL and OWLQN.

Two algorithms (DAL-B and L1 LOGREG) that also estimate an unregularized bias term are
compared in Figure 3. The number of observations m = 1,024 and the number of parameters n =
16,384, and all other settings are identical as above. A variant of DAL-B that does not use the
heuristics described in Section 7.1.4 is included for comparison. For DAL-B without the heuristics,

1565

TOMIOKA, SUZUKI AND SUGIYAMA

0 10 20 30 40
10

−15

10
−10

10
−5

10
0

10
5

Number of iterations

f(
w

t)
−

 f(
w

*)

DAL−B (w/o heuristics)
DAL−B (with heuristics)
L1_LOGREG
DAL (thm2)

0 50 100
10

−15

10
−10

10
−5

10
0

10
5

CPU times (s)

f(
w

t)
−

 f(
w

*)
Figure 3: Comparison of DAL-B and L1 LOGREG (Koh et al., 2007). Both algorithms estimate

an unregularized bias term. The left panel shows the residual function value against the
number of iterations. The right panel shows the same against the CPU time spent by the
algorithms.

the proximity parameters η(1)t and η(2)t are both initialized to 1/λ and increased by the factor 2.

For DAL-B with the heuristics, the proximity parameter η(2)t is increased more aggressively; see
Section 7.1.4.

In the left panel in Figure 3, the residual of primal objective values of both algorithms are
plotted against the number of iterations. As empirically observed in Koh et al. (2007), L1 LOGREG
converges linearly; after roughly 10 iterations, the residual function value reduces by a factor around
2 in each iteration (a factor 1.85 was reported in Koh et al., 2007). The convergence of DAL-B is
faster than L1 LOGREG and the curve is slightly concave downwards, which indicates the super-
linearity of the convergence. Note also that the linear convergence bound from Theorem 2 is shown.
The heuristics described in Section 7.1.4 shows almost no effect on this problem, probably because
the design matrix is well conditioned.

The right panel in Figure 3 shows the same information against the CPU time spent by the
algorithms. DAL-B is roughly 10 times faster than L1 LOGREG to achieve residual less than 10−5.

7.2.3 SCALING AGAINST THE SIZE OF THE PROBLEM

Here we compare how well different algorithms scale against the number of parameters n. We fixed
the number of samples m at m = 1,024 and varied the number of parameters from n = 4,096 to
n= 524,288. We used two regularization constants λ= 0.1 and λ= 0.01.

The results are summarized in Figure 4. Figures 4(a) and 4(b) show the results for λ= 0.01 and
 λ = 0.1, respectively. In each figure we plot the CPU time spent to reach RDG< 10−3 against the
number of parameters n.

1566

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

Number of parameters n

C
P

U
 ti

m
e

(s
)

DAL
FISTA
OWLQN
SpaRSA
IRS
DAL−B
L1_LOGREG

(a) λ= 0.01.

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

Number of parameters n

C
P

U
 ti

m
e

(s
)

DAL
FISTA
OWLQN
SpaRSA
IRS
DAL−B
L1_LOGREG

(b) λ= 0.1.

Figure 4: CPU time of various algorithms on synthetic logistic regression problems.

One can see that DAL has the mildest dependence on the number of parameters among the
methods compared. In particular, DAL is faster than other algorithms for roughly n > 104. Also
note that DAL and DAL-B show similar scaling against the number of parameters; that is, adding
an unregularized bias term has no significant influence on the computational efficiency.

For λ = 0.01, SpaRSA shows sharp increase in the CPU time from around n = 32,768, which
is similar to the result in Tomioka and Sugiyama (2009) (Figure 3). Also notice the increased error-
bar. In fact, for n ≥ 65,536, it had to be stopped after 5,000 iterations in some runs, whereas it
converged after few hundred iterations in other runs. On the other hand, SpaRSA scales similarly to
OWLQN and is more stable for λ= 0.1.

For all algorithms except L1 LOGREG, solving the problem for larger regularization constant
 λ = 0.1 requires less computation than for λ = 0.01. Nevertheless the advantage of the DAL al-
gorithm is larger for the more computationally demanding situation of λ = 0.01 against FISTA,
OWLQN, SpaRSA, and IRS. On the other hand, the advantage of DAL against L1 LOGREG is
larger for λ = 0.1, because the CPU time of L1 LOGREG is almost constant in both cases. The
CPU time of DAL with (DAL-B) and without (DAL) the bias term are almost the same.

7.2.4 CHOICE OF η0

In this subsection, we show how the choice of the sequence ηt changes the behaviour of DAL algo-
rithm. We ran DAL algorithm for λ = 0.1 with η0 = 1/λ (as above), which we call the aggressive
setting, and η0 = 0.01/λ, which we call the conservative setting. In both cases, ηt is increased by a
factor of 2 as in the previous experiments. No bias term is used.

In Figure 5, plotted are the number of PCG steps for inner minimization and the CPU time
spent by DAL algorithm with the conservative setting (η0 = 0.01/λ, left) and the aggressive setting
(η0 = 1/λ, right). The average number of PCG steps and CPU time are shown as stacked bar-
plots, in which each segment of a bar corresponds to one outer iteration. One can see that in the

1567

TOMIOKA, SUZUKI AND SUGIYAMA

0

5

10

15

20

Number of parameters (n)

N
um

be
r

of
 P

C
G

 s
te

ps

212 213 214 215 216 217 218 219

Conservative setting (η
1
=0.01/λ)

0

20

40

60

80

Number of parameters (n)

C
P

U
 ti

m
e

(s
)

212 213 214 215 216 217 218 219

0

5

10

15

20

Number of parameters (n)

N
um

be
r

of
 P

C
G

 s
te

ps

212 213 214 215 216 217 218 219

Aggressive setting (η
1
=1/λ)

0

20

40

Number of parameters (n)
C

P
U

 ti
m

e
(s

)

212 213 214 215 216 217 218 219

Figure 5: Comparison of behaviours of DAL algorithm for different choices of initial proximity
parameter η0. Left: η0 = 0.01/λ (conservative setting). Right: η0 = 1/λ (aggressive
setting). On the top row, the cumulative numbers of PCG steps (inner steps) are shown.
On the bottom row, the cumulative CPU time spent by the algorithm is shown.

conservative setting, DAL uses roughly 8 to 10 outer iterations, whereas in the aggressive setting, the
number of outer iterations is reduced to less than a half (3 or 4). On the other hand, the total number
of PCG steps is only slightly smaller in the aggressive setting. Therefore, in the aggressive setting
DAL spends more PCG steps for each outer iteration. It is worth noting that almost half of the PCG
iterations are spent for the first outer iteration in the aggressive setting, whereas in the conservative
setting the PCG steps are more distributed. In terms of the CPU time, the aggressive setting is about
10–30% faster than the conservative setting because it saves both computation required for each
outer-iteration and inner-iteration. However, generally speaking increasing the proximity parameter
ηt makes the condition of the problem worse; in fact we found that the algorithm did not always
converge for η0 = 100/λ. Thus it is not recommended to use too large value for ηt .

Figure 6 compares the total CPU time spent by the two variants of DAL for λ = 0.1. As dis-
cussed above, the aggressive setting (η0 = 1/λ) is faster than the conservative setting (η0 = 0.01/λ).
However the difference is minor compared to the change in the proximity parameter η0,

7.3 Benchmark Data Sets

In this subsection, we apply the algorithms discussed in the previous subsection except IRS to
benchmark data sets, and compare their efficiency on various problems; IRS is omitted because it
was clearly outperformed by other methods on the synthetic data.

1568

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

Number of unknowns

C
P

U
 ti

m
e

(s
)

η
1
=0.01/λ

η
1
=1/λ

Figure 6: Comparison of conservative (η0 = 0.01/λ) and aggressive (η0 = 1/λ) choice of proximity
parameter η0 for λ = 0.1 (see also Figure 4(b)). Note that the aggressive setting is used
in Sections 7.2.2 and 7.2.3 and the conservative setting is used in Section 7.3.

7.3.1 EXPERIMENTAL SETTING

The benchmark data sets we use are five data sets from NIPS 2003 Feature Selection Challenge,12

20 newsgroups data set,13 and a bioinformatics data14 provided by Baranzini et al. (2004)
The five data sets from the Feature Selection Challenge (arcene, dexter, dorothea, gisette,

and madelon) are all split into training-, validation-, and test-set. We combine the training- and
validation-sets and randomly split each data set into a training-set that contains two-thirds of the
examples, and a test-set that contains the remaining one-third. We apply the 	1-regularized logistic
regression solvers to the training-set and report the accuracy on the test-set as well as the CPU time
for training. This procedure was repeated 10 times (also for the two other data sets below). The
numbers of training instances and features, and the format of each data set (sparse or dense) are
summarized in Table 4.

From the 20 newsgroups data set (20news), we deal with the binary classification of category
“alt.atheism” vs. “comp.graphics”. We use the preprocessed MATLAB format data. The original
data set consists of 1,061 training examples and 707 test examples. We again combine all the
examples and randomly split them into a training-set containing two-thirds of the examples and a
test-set containing the rest. The training example has n = 61,188 features which are provided as a
sparse matrix.

The goal in Baranzini et al. (2004) is to predict the response (good or poor) to recombinant
human interferon beta (rIFNβ) treatment of multiple sclerosis patients from gene-expression mea-
surements. The data set is denoted as gene. The data set consists of gene-expression profile of 70
genes from 52 subjects. We again randomly select two-thirds of the subjects for training and the

12. The data sets are available from http://www.nipsfsc.ecs.soton.ac.uk/datasets/; see Guyon et al. (2006) for
more information.

13. The data set is available from http://people.csail.mit.edu/jrennie/20Newsgroups/.
14. The data is available from http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.

0030002.

1569

TOMIOKA, SUZUKI AND SUGIYAMA

remaining for testing. Following the setting in the original paper, we used only the expression data
from the beginning of the treatment (t = 0) and preprocessed the data by taking all the polynomials
up to third order, that is, we compute (i) x, x2, and x3 for each single feature x, (ii) xy, x2y, and
xy2 for every pair of features (x,y), and (iii) xyz for every triplet of features (x,y,z). As a result we
obtain 62,195 (= 3 ·70+3 ·2,415+54,740) features.

In every data set, we standardized each feature to zero mean and unit standard deviation before
applying the algorithms. Since the standardized design matrix Ã is usually dense even if the original
matrix A is sparse, we provide function handles that compute Ãx and Ã�y instead of Ã itself with
DAL, FISTA, OWLQN, and SpaRSA. This can be done by keeping the vector of means and standard
deviations of the original design matrix as follows:

Ãx= AS−1x−1mm�S−1x,

Ã�y= S−1A�(y− 1
m
1m1m�y),

wherem∈R
n is the vector of means and S is a n×n diagonal matrix that has the standard deviations

of the original features on the diagonal. If the standard deviation of any feature is zero, we placed
one in the corresponding element of S. L1 LOGREG is implemented with a similar technique; see
Koh et al. (2007).

We compare the CPU time that is necessary to compute the whole regularization path. In order
to define the regularization path, we choose 20 log-linearly separated values from λ = 0.5 to λ =
0.001, where λ is the normalized regularization constant defined in Section 7.1.1. We apply a
warm start strategy to all the algorithms; that is, we sequentially solve problems for smaller and
smaller regularization constants using the solution obtained from the last optimization (for a larger
regularization constant) as the initial solution.

All the methods were terminated when the relative duality gap fell below 10−3. For DAL algo-
rithms (DAL and DAL-B) we choose the conservative setting, that is, we initialize η(1)0 and η(2)0 as
0.01/λ.

7.3.2 RESULTS

Table 4 summarizes the problems and the performance of the algorithms. For each algorithm, we
show the maximum test accuracy obtained in the regularization path and the CPU time spent to
compute the whole path. The smallest and the second smallest CPU times are shown in bold-face
and italic, respectively. One can see that DAL is the fastest in most cases when the number of
parameters n is larger than the number of observations. In addition, the CPU time of two variants
of DAL (with and without the bias term) tend to be similar except dorothea data set. For most data
sets, the accuracy obtained by DAL algorithm is close to FISTA, OWLQN, and SpaRSA, and the
accuracy obtained by DAL-B is close to L1 LOGREG.

Figure 7 illustrates a typical situation where DAL algorithm is efficient. Since the size of the
inner minimization problem (20) is proportional to the number of observations m, when n(m,
DAL is more efficient than other methods that work in the primal.

In contrast, Figure 8 illustrates the situation where DAL is not very efficient compared to other
algorithms. In Figure 8, we can also see that for all algorithms except L1 LOGREG, the cost of
solving one minimization problem grows larger as the regularization constant is reduced, whereas
the cost seems almost constant for L1 LOGREG.

1570

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

arcene dexter dorothea gisette madelon 20news gene
m 133 400 767 4667 1733 1179 35
n 10000 20000 100000 5000 500 61188 62195

format dense sparse sparse dense dense sparse dense

DAL
accuracy 70.60 91.75 93.71 97.70 61.53 92.84 82.35
time (s) 3.47 4.20 36.61 77.02 16.73 28.10 5.56

DAL-B
accuracy 72.54 92.00 93.05 97.71 61.43 92.87 81.18
time (s) 3.56 4.77 10.60 82.96 17.96 26.31 5.49

FISTA
accuracy 70.60 91.75 93.79 97.71 61.51 92.80 82.35
time (s) 25.34 7.24 284.59 52.19 10.40 27.95 108.27

OWLQN
accuracy 70.60 91.75 93.76 97.70 61.56 92.82 82.35
time (s) 17.63 5.25 134.31 70.96 19.08 23.11 132.21

SpaRSA
accuracy 70.90 91.75 93.71 97.70 61.55 95.14 78.24
time (s) 294.80 29.98 1377.20 91.65 10.11 310.96 1622.26

L1 LOG- accuracy 72.84 92.05 93.05 97.71 61.48 92.85 81.18
REG time (s) 8.98 3.39 109.92 98.37 5.90 21.48 16.58

Table 4: Results on benchmark data sets. We tested six algorithms, namely, DAL, DAL-B, FISTA,
OWLQN, SpaRSA, L1 LOGREG on seven benchmark data sets. See main text for the
description of the data sets. m is the number of observations. n is the number of features.
For each algorithm, shown are the test accuracy and the CPU time spent to compute the
regularization path with a warm-start strategy. All the numbers are averaged over 10 runs.
Bold face numbers indicate the fastest CPU time. Italic numbers indicate CPU times that
are within two times of the fastest CPU time.

10
−3

10
−2

10
−1

10
0

0

100

200

300

400

500

C
um

ul
at

iv
e

C
P

U
 ti

m
e

(s
)

DAL
DAL−B
FISTA
OWLQN
SpaRSA
L1_LOGREG

10
−3

10
−2

10
−1

10
0

50

60

70

80

90

100

110

T
es

t a
cc

ur
ac

y
(%

)

Normalized regularization constant λ Normalized regularization constant λ

Figure 7: Dorothea data set (m= 767, n= 100,000). DAL is efficient in this case (m� n).

8. Conclusion

In this paper, we have extended DAL algorithm (Tomioka and Sugiyama, 2009) for general regular-
ized minimization problems, and provided it with a new view based on the proximal minimization

1571

TOMIOKA, SUZUKI AND SUGIYAMA

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

C
um

ul
at

iv
e

C
P

U
 ti

m
e

(s
)

DAL
DAL−B
FISTA
OWLQN
SpaRSA
L1_LOGREG

10
−3

10
−2

10
−1

10
0

48

50

52

54

56

58

60

62

64

T
es

t a
cc

ur
ac

y
(%

)

Normalized regularization constant λ Normalized regularization constant λ

Figure 8: Madelon data set (m= 1,733, n= 500). DAL is not very efficient in this case (m(n).

framework in Rockafellar (1976b). Generalizing the recent result from Beck and Teboulle (2009),
we improved the convergence results on super-linear convergence of augmented Lagrangian meth-
ods in literature for the case of sparse estimation.

Importantly, most assumptions that we made in our analysis can be checked independent of
data. Instead of assuming that the problem is strongly convex we assume that the loss function has
a Lipschitz continuous gradient, which can be checked before receiving data. Another assumption
we have made is that the proximation with respect to the regularizer can be computed analytically,
which can also be checked without looking at data. Moreover, we have shown that such assumption
is valid for the 	1-regularizer, group lasso regularizer, and any other support function of some convex
set for which the projection onto the set can be analytically obtained.

Compared to the general result in Rockafellar (1976b), our result is stronger when the inner
minimization is solved approximately. Compared to Kort and Bertsekas (1976), we do not need
to assume the strong convexity of the objective function, which is obviously violated for the dual
of many sparsity regularized estimation problems; instead we assume that the loss function has
Lipschitz continuous gradient. Note that we use no asymptotic arguments as in Rockafellar (1976b)
and Kort and Bertsekas (1976). Currently, our results does not apply to primal-based augmented
Lagrangian method discussed in Goldstein and Osher (2009) for loss functions that are not strongly
convex (e.g., logistic loss). The extension of our analysis to these methods is a future work.

The theoretically predicted rapid convergence of DAL algorithm is also empirically confirmed
in simulated 	1-regularized logistic regression problems. Moreover, we have compared six re-
cently proposed algorithms for 	1-regularized logistic regression, namely DAL, FISTA, OWLQN,
SpaRSA, L1 LOGREG, and IRS on synthetic and benchmark data sets. On the synthetic data sets,
we have shown that DAL has the mildest dependence on the number of parameters among the
methods compared. On the benchmark data sets, we have shown that DAL is the fastest among the
methods compared when the number of parameters is larger than the number of observations on
both sparse and dense data sets.

1572

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

Furthermore, we have empirically investigated the relationship between the choice of the initial
proximity parameter η0 and the number of (inner/outer) iterations as well as the computation time.
We found that the computation can be sped up by choosing a large value for η0; however the
improvement is often small compared to the change in η0 and choosing large value for η0 can make
the inner minimization unstable by making the problem poorly conditioned.

There are basically two strategies to make an efficient optimization algorithm. One is to use
many iterations that are very light. FISTA, SpaRSA, and OWLQN (and also stochastic approaches
Shalev-Shwartz and Srebro, 2008; Duchi and Singer, 2009) fall into this category. Theoretical
convergence guarantee is often weak for these methods, for example, O(1/k2) for FISTA. Another
strategy is to use a small number of heavier iterations. Interior point methods, such as L1 LOGREG,
are prominent examples of this class. DAL can be considered as a member of the second class. We
have theoretically and empirically shown that DAL requires a small number of outer iterations. At
the same time, DAL inherits good properties of iterative shrinkage/thresholding algorithms from
the first class. For example, it effectively uses the fact that the proximal operation can be computed
analytically, and it can maintain the sparsity of the parameter vector during optimization. Further-
more, we have shown that the dual formulation of DAL makes the inner minimization efficient,
because (i) typically the number of observations m is smaller than the number of parameters n, and
(ii) the gradient and Hessian of the inner objective can be computed efficiently for sparse estimation
problems.

Future work includes the extension of our analysis to the primal-based augmented Lagrangian
methods (Yin et al., 2008; Goldstein and Osher, 2009; Yang and Zhang, 2009; Lin et al., 2009), ap-
plication of approximate augmented Lagrangian methods and operator splitting methods to machine
learning problems (see Zhang et al., 2010; Boyd et al., 2011; Tomioka et al., 2011b), and application
of DAL to more advanced sparse estimation problems (e.g., Cai et al., 2008; Wipf and Nagarajan,
2008; Tomioka et al., 2011a).

Acknowledgments

We would like to thank Masakazu Kojima, Masao Fukushima, and Hisashi Kashima for helpful
discussions. This work was partially supported by the Global COE program ”The Research and
Training Center for New Development in Mathematics”, MEXT KAKENHI 22700138, 22700289,
and the FIRST program.

Appendix A. Preliminaries on Proximal Operation

This section contains some basic results on proximal operation, which we use in later sections and
is based on Moreau (1965), Rockafellar (1970), and Combettes and Wajs (2005).

A.1 Proximal Operation

Let f be a closed proper convex function over Rn that takes values in R∪{+∞}. The proximal
operator with respect to f is defined as follows:

prox f (z) = argmin
x∈Rn

(
f (x)+

1
2
‖x− z‖2

)
. (55)

1573

TOMIOKA, SUZUKI AND SUGIYAMA

Note that because of the strong convexity of the minimand in the right-hand side, the above min-
imizer is unique. Similarly we define the proximal operator with respect to the convex conjugate
function f ∗ of f as follows:

prox f ∗(z) = argmin
x∈Rn

(
f ∗(x)+

1
2
‖x− z‖2

)
.

The following elegant result is well known.

Lemma 8 (Moreau’s decomposition) The proximation of a vector z ∈R
n with respect to a convex

function f and that with respect to its convex conjugate f ∗ is complementary in the following sense:

prox f (z)+prox f ∗(z) = z.

Proof The proof can be found in Moreau (1965) and Rockafellar (1970, Theorem 31.5). Here, we
present a slightly more simple proof.

Let x= prox f (z) and y= prox f ∗(z). By definition we have ∂ f (x)+x− z ' 0 and ∂ f ∗(y)+y−
z ' 0, which imply

∂ f (x) ' z−x, (56)

∂ f ∗(z−x) ' x, (57)

and

∂ f ∗(y) ' z−y, (58)

∂ f (z−y) ' y, (59)

respectively, because (∂ f)−1 = ∂ f ∗ (Rockafellar, 1970, Corollary 23.5.1).
From Equations (56) and (58), we have

f (z−y)≥ f (x)+(z−y−x)�(z−x), (60)

f ∗(z−x)≥ f ∗(y)+(z−x−y)�(z−y). (61)

Similarly, Equations (57) and (59) give

f ∗(y)≥ f ∗(z−x)+(y− z+x)�x, (62)

f (x)≥ f (z−y)+(x− z+y)�y. (63)

Summing both sides of Equations (60)–(63), we have

0≥ 2‖z−x−y‖2,
from which we conclude that x+y= z.

Proximal operation can be considered as a generalization of the projection onto a convex set.
For example, if we take f as the indicator function of the 	∞ ball of radius λ, that is, f (z) = δ∞λ (z)
(see Equation 5), then the proximal operation with respect to f is the projection onto the 	∞-ball (8).
On the other hand, the proximal operation with respect to the 	1-regularizer is the soft-thresholding
operator (9). Therefore, we notice that

proj[−λ,λ](z)+prox
	1
λ (z) = z,

which is a special case of Lemma 8, because the 	1-regularizer is the convex conjugate of the
indicator function of the 	∞-ball of radius λ; see Figure 9.

1574

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

A.2 Moreau’s Envelope

The minimum attained in Equation (55) is called the Moreau envelope of f :

F(z) = min
x∈Rn

(
f (x)+

1
2
‖x− z‖2

)
. (64)

The decomposition in Lemma 8 can be expressed in terms of envelope functions as follows.

Lemma 9 (Decomposition and envelope functions) Let f and f ∗ be a pair of convex conjugate
functions, and let F and F∗ be the Moreau envelopes of f and f ∗, respectively. Then we have

F(z)+F∗(z) =
1
2
‖z‖2.

Proof Let x = prox f (z) and y = prox f ∗(z) as in the proof of Lemma 8. From the definition of
convex conjugate f ∗, we have

f (x)+ f ∗(y) = y�x,

because y= z−x ∈ ∂ f (x) (Rockafellar, 1970, Theorem 23.5). Therefore, we have

F(z)+F∗(z) = f (x)+
1
2
‖y‖2+ f ∗(y)+

1
2
‖x‖2

= y�x+
1
2
‖y‖2+ 1

2
‖x‖2

=
1
2
‖x+y‖2 = 1

2
‖z‖2,

where we used x+y= z from Lemma 8 in the last line.

Note that F∗ is the Moreau envelope of f ∗ and not the convex conjugate of F .
Moreau’s envelope can be considered as a inf-convolution (see Rockafellar, 1970) of f and

a quadratic function ‖ · ‖2/2. Accordingly it is differentiable and the derivative is given in the
following lemma.

Lemma 10 (Derivative of Moreau’s envelope) Moreau’s envelope function F in Equation (64) is
continuously differentiable (even if f is not differentiable) and the derivative can be written as
follows:

∇F(z) = prox f ∗(z).

Proof The proof can be found in Moreau (1965) and Rockafellar (1970, Theorem 31.5). We repeat
the proof below for completeness. The proof consists of two parts. We first show that for all
z,z′ ∈ R

n

F(z′)≥ F(z)+(z′ − z)�y, (65)

where y= prox f ∗(z), which implies that y= prox f ∗(z) ∈ ∂F(z). Second, we show that

F(z′)≤ F(z)+(z′ − z)�y+ ‖z′ − z‖2
2

, (66)

1575

TOMIOKA, SUZUKI AND SUGIYAMA

−λ 0 λ
(a) Φ

λ
(w)

−λ 0 λ
(b) Φ

λ
∗(w)

−λ 0 λ
(c) proj

[−λ,λ]
(w)

−λ 0 λ

(d) prox (w)
λ
�1

Figure 9: (a) The �1-regularizer (dashed) and its envelope function Φλ (solid). (b) The indicator
function δ∞λ (dashed) and its envelope function Φ

∗
λ (solid). (c) The derivative of Φλ,

which is the projection onto the interval [−λ,λ]; see Equation (8). (d) The derivative of
Φ∗
λ, which is called the soft-threshold function (9). Note that the �1-regularizer and the

indicator function δ∞λ are conjugate to each other.

which implies the uniqueness of the subgradient of F(z) for all z.

Inequality (65) follows easily from the definition of the envelope function F and Lemma 8 as
follows:

F(z′)−F(z) = f (x′)+
1
2
‖y′‖2− f (x)− 1

2
‖y‖2

=
(
f (x′)− f (x)

)
+
(1
2
‖y′‖2− 1

2
‖y‖2
)

≥ (x′ −x)�y+(y′ −y)�y
= (z′ − z)�y,

where x= prox f (z), y= prox f ∗(z), and x
′ and y′ are similarly defined. We used the convexity of f

with y ∈ ∂ f (x) and the convexity of ‖ · ‖2/2 in the third line.

1576

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

Second, we obtain inequality (66) by upper-bounding F(z′) as follows:

F(z′) = min
ξ∈Rn

(
f (ξ)+

1
2
‖ξ− z′‖2

)
≤ f (x)+

1
2
‖x− z′‖2

= F(z)− 1
2
‖x− z‖2+ 1

2
‖x− z′‖2

= F(z)− 1
2
‖x− z‖2+ 1

2
‖x− z+ z− z′‖2

= F(z)+(x− z)�(z− z′)+ 1
2
‖z′ − z‖2

= F(z)+y�(z′ − z)+ 1
2
‖z′ − z‖2.

The envelope functions of two convex functions φλ(w) = λ|w| and φ∗λ(w) = δ∞λ (w), and their
derivatives (the projection (8) and the soft-threshold function (9), respectively) are schematically
shown in Figure 9.

Appendix B. Derivation of Equation (20)

Equation (18)= max
α∈Rm

{
− f ∗� (−α)+ min

w∈Rn

(
φλ(w)+

1
2ηt

‖w−wt −ηtA�α‖2
)

− 1
2ηt

‖wt +ηtA�α‖2
}
+

‖wt‖2
2ηt

= max
α∈Rm

(
− f ∗� (−α)+

1
ηt
Φληt (w

t +ηtA�α)− 1
2ηt

‖wt +ηtA�α‖2
)
+

‖wt‖2
2ηt

= max
α∈Rm

(
− f ∗� (−α)−

1
ηt
Φ∗
ληt (w

t +ηtA�α)

)
+

‖wt‖2
2ηt

,

where we used the definition of the Moreau envelope in the second line and Lemma 9 in the third
line. Finally omitting the constant term ‖wt‖2/(2ηt) in the last line and reversing the sign we obtain
Equation (20).

Appendix C. Proofs

In this section, we present the proofs of Theorem 3, Lemma 4, Theorem 6, and Theorem 7.

C.1 Proof of Theorem 3

Proof The first step of the proof is to generalize Lemma 1 in two ways: first we allow a point w∗ in
the set of minimizersW ∗ to be chosen for each time step, and second, we introduce a parameter μ to

1577

TOMIOKA, SUZUKI AND SUGIYAMA

tighten the bound. Let wt be the closest point from wt inW ∗, namely wt := argminw∗∈W ∗ ‖wt−w∗‖.
From the proof of Lemma 1, we have

ηt(f (wt+1)− f (wt+1))≥
〈

 wt+1 −wt+1,wt−wt+1〉
=
〈

 wt+1 −wt+1,wt− wt + wt − wt+1 + wt+1 −wt+1〉
= ‖ wt+1 −wt+1‖2 +

〈
 wt+1 −wt+1,wt− wt

〉
+
〈

 wt+1 −wt+1, wt− wt+1〉
≥ ‖wt+1 −W ∗‖2 −‖wt+1 −W ∗‖‖wt −W ∗‖

≥ ‖wt+1 −W ∗‖2 −
(
μ
2
‖wt+1 −W ∗‖2 +

1
2μ

‖wt −W ∗‖2
)

(∀μ> 0)

=
(

1− μ
2

)
‖wt+1 −W ∗‖2 − 1

2μ
‖wt −W ∗‖2, (�)

where the last inner product
〈

 wt+1 −wt+1, wt − wt+1
〉

in the third line is non-negative because the
set of minimizers W ∗ is a convex set, and wt+1 is the projection of wt+1 onto W ∗; see Bertsekas
(1999, Proposition B.11). In addition, the fifth line follows from the inequality of arithmetic and
geometric means.

Note that by setting μ= 1 in (�) and wt = wt+1, we recover Lemma 1. Now using assumption
(A1), we obtain the following expression:(

2μ−μ2)‖wt+1 −W ∗‖2 +2μσηt‖wt+1 −W ∗‖α ≤ ‖wt −W ∗‖2.

Maximizing the left hand side with respect to μ, we have μ= 1+σηt‖wt+1 −W ∗‖α−2 and accord-
ingly,

(
1+σηt‖wt+1 −W ∗‖α−2)2 ‖wt+1 −W ∗‖2 ≤ ‖wt −W ∗‖2.

Taking the square-root of both sides we obtain

‖wt+1 −W ∗‖+σηt‖wt+1 −W ∗‖α−1 ≤ ‖wt −W ∗‖. (67)

The last part of the theorem is obtained by lower-bounding the left-hand side of the above inequality
using Young’s inequality as follows:

‖wt+1 −W ∗‖+σηt‖wt+1 −W ∗‖α−1

= (1+σηt)

(
1

1+σηt
‖wt+1 −W ∗‖+ σηt

1+σηt
‖wt+1 −W ∗‖α−1

)
≥ (1+σηt)‖wt+1 −W ∗‖ 1

1+σηt · ‖wt+1 −W ∗‖
(α−1)σηt

1+σηt

= (1+σηt)‖wt+1 −W ∗‖
1+(α−1)σηt

1+σηt .

Substituting this relation back into inequality (67) completes the proof of the theorem.

1578

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

C.2 Proof of Lemma 4

Proof First let us define δt ∈ R
m as the gradient of the AL function (22) at the approximate mini-

mizer αt follows:

δt := ∇ϕt(α
t) =−∇ f ∗� (−αt)+Awt+1,

where wt+1 := proxφληt (w
t +ηtA�αt). Note that ‖δt‖ ≤

√
γ
ηt
‖wt+1−wt‖ from Assumption (A4).

Using Corollary 23.5.1 from Rockafellar (1970), we have

∇ f�(Awt+1−δt) = ∇ f�
(
∇ f ∗� (−αt)

)
=−αt , (68)

which implies that if δt is small, −αt is approximately the gradient of the loss term at wt+1.
Moreover, let qt = wt +ηtA�αt . Since wt+1 = proxφληt (q

t) (Assumption A3), we have

∂φληt (w
t+1)+(wt+1−qt) ' 0,

which implies

(qt −wt+1)/ηt ∈ ∂φλ(w
t+1), (69)

because φληt = ηtφλ.
Now we are ready to derive an analogue of inequality (39) in the proof of Lemma 1. Let w ∈R

n

be an arbitrary vector. We can decompose the residual value in the left hand side of inequality (39)
as follows:

ηt(f (w)− f (wt+1)) = ηt(f�(Aw)− f�(Awt+1−δt)︸ ︷︷ ︸
(A)

)

+ηt(f�(Awt+1−δt)− f�(Awt+1)︸ ︷︷ ︸
(B)

)

+ηt(φλ(w)−φλ(w
t+1)︸ ︷︷ ︸

(C)

).

The above terms (A), (B), and (C) can be separately bounded using the convexity of f� and φλ as
follows:

(A) : f�(Aw)− f�(Awt+1−δt)≥
〈
A(w−wt+1)+δt ,−αt

〉
,

(B) : f�(Awt+1−δt)− f�(Awt+1)≥−
〈
δt ,−αt

〉
− 1
2γ

‖δt‖2,

(C) : φλ(w)−φλ(w
t+1)≥

〈
w−wt+1, w

t +ηtA�αt −wt+1
ηt

〉
,

where (A) is due to Equation (68), (B) is due to assumption (A2) and Hiriart-Urruty and Lemaréchal
(1993, Theorem X.4.2.2), and (C) is due to Equation (69). Combining (A), (B), and (C), we have
the following expression:

ηt(f (w)− f (wt+1))≥
〈
wt −wt+1,w−wt+1

〉
− ηt
2γ

‖δt‖2.

1579

TOMIOKA, SUZUKI AND SUGIYAMA

Note that the above inequality reduces to Equation (39) if ‖δt‖ = 0 (exact minimization). Using
assumption (A4), we obtain

ηt(f (w)− f (wt+1))≥
〈
wt −w+w−wt+1,w−wt+1〉− 1

2
‖wt −wt+1‖2

=
1
2
‖w−wt+1‖2 − 1

2
‖w−wt‖2,

which completes the proof.

C.3 Proof of Theorem 6

Proof Let δ= (1− ε)/(σηt). Note that δ≤ 3/4 < 1 from the assumption. Following the proof of
Lemma 4 with w= wt , we have

ηt(f (wt+1)− f (wt+1))

= ηt(f (wt)− f (wt+1))

≥
〈
wt −wt+1, wt −wt+1〉− δ

2
‖wt+1 −wt‖2

=
〈
wt − wt + wt −wt+1, wt−wt+1〉− 1

2
‖wt+1 −wt‖2 +

1−δ
2

‖wt+1 −wt‖2

=
1
2
‖ wt −wt+1‖2 − 1

2
‖ wt −wt‖2 +

1−δ
2

‖wt+1 −wt‖2

≥ 1
2
‖wt+1 −W ∗‖2 − 1

2
‖wt −W ∗‖2

+
1−δ

2

(
‖wt+1 −W ∗‖2 +‖wt −W ∗‖2 +2

〈
wt+1 − wt+1, wt −wt

〉)
≥−(1−δ)‖wt+1 −W ∗‖‖wt −W ∗‖+

(
1− δ

2

)
‖wt+1 −W ∗‖2 − δ

2
‖wt −W ∗‖2

≥−(1−δ)

(
1
2μ

‖wt −W ∗‖2 +
μ
2
‖wt+1 −W ∗‖2

)
+

(
1− δ

2

)
‖wt+1 −W ∗‖2 − δ

2
‖wt −W ∗‖2 (∀μ> 0),

where we used ‖ wt+1 − wt‖2 ≥ 0,
〈
wt+1 − wt+1, wt+1 − wt

〉
≥ 0 and

〈
 wt+1 − wt , wt −wt

〉
≥ 0 in

the sixth line; the seventh line follows from Cauchy-Schwartz inequality; the eighth line follows
from the inequality of arithmetic and geometric means.

Applying assumption (A1) with α= 2 to the above expression, we have

1−δ
2μ

‖wt −W ∗‖2 ≥−1−δ
2

μ‖wt+1 −W ∗‖2 +
((

1− δ
2

)
+σηt

)
‖wt+1 −W ∗‖2 − δ

2
‖wt −W ∗‖2.

Multiplying both sides with μ/‖wt+1 −W ∗‖2, we have

1−δ
2

‖wt −W ∗‖2

‖wt+1 −W ∗‖2 ≥−1−δ
2

μ2 +

{(
1− δ

2

)
+σηt −

δ
2

‖wt −W ∗‖2

‖wt+1 −W ∗‖2

}
μ. (70)

1580

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

Now we have to consider two cases depending on the sign inside the curly brackets. If the sign is
negative or zero, we have

1− δ
2
+σηt −

δ
2

‖wt −W ∗‖2
‖wt+1−W ∗‖2 ≤ 0,

which implies

‖wt+1−W ∗‖2 ≤ δ
2−δ+2σηt

‖wt −W ∗‖2. (71)

Since δ≤ 3/4, the factor in front of ‖wt−W ∗‖2 in the right-hand side is clearly smaller than one. We
further show that this factor is smaller than 1/(1+ εσηt)2. First we upper bound δ by 1/(1+ εσηt)
as follows:

δ=
1− ε
σηt

=
(1− ε)(1

σηt
+ ε)

1+ εσηt
≤ (1− ε)ε+3/4

1+ εσηt
≤ 1
1+ εσηt

.

Plugging the above upper bound into inequality (71), we have

‖wt+1−W ∗‖2 ≤ δ
1+2σηt

‖wt −W ∗‖2

≤ 1
(1+ εσηt)(1+2σηt)

‖wt −W ∗‖2 ≤ 1
(1+ εσηt)2

‖wt −W ∗‖2,

which completes the proof for the first case.
If on the other hand, the term inside the curly brackets is positive in Equation (70), maximizing

the right-hand side of Equation (70) with respect to μ gives the following expression:

(1−δ)rt ≥ 1−
δ
2
+σηt−

δ
2
r2t ,

where we defined rt := ‖wt −W ∗‖/‖wt+1−W ∗‖. Because rt > 0, the above inequality translates
into

rt ≥
√
1+2σηtδ−1+δ

δ

≥ 1+σηtδ−σ2η2t δ
2−1+δ

δ
≥ 1+σηt(1−σηtδ)

= 1+ εσηt .

The second line is true because for x ≥ 0,
√
1+ x ≥ 1+ x/2− x2/4; the last line follows from the

definition δ= (1− ε)/(σηt).

1581

TOMIOKA, SUZUKI AND SUGIYAMA

C.4 Proof of Theorem 7

Proof Since the minimizer is unique, we denote the minimizer by w∗ and show that the following
is true:

f (w)− f (w∗)≥ σ‖w−w∗‖2 (∀w : ‖w−w∗‖ ≤ cτL).

Using Theorem X.4.2.2 in Hiriart-Urruty and Lemaréchal (1993), for ‖β‖ ≤ τ, we have

f ∗(β)≤ f ∗(0)+β�∇ f ∗(0)+
L
2
‖β‖2

=− f (w∗)+β�w∗+
L
2
‖β‖2, (72)

where w∗ := argminw∈Rn f (w) = ∇ f ∗(0) and f ∗(0) =− f (w∗).
On the other hand, we have

f (w) = sup
β∈Rn

(
β�w− f ∗(β)

)
≥ sup

‖β‖≤τ

(
β�w− f ∗(β)

)
≥ sup

‖β‖≤τ

(
β�(w−w∗)− L

2
‖β‖2
)
+ f (w∗){

= f (w∗)+ 1
2L‖w−w∗‖2 (if c≤ 1),

≥ f (w∗)+ 2c−1
2c2L ‖w−w∗‖2 (otherwise),

where we used inequality (72) in the third line; the last line follows because if c≤ 1, the maximum
is attained at β= (w−w∗)/L, and otherwise we can lower bound the value at the maximum by the
value at β= (w−w∗)/(cL). Combining the above two cases, we have Theorem 7.

References

G. Andrew and J. Gao. Scalable training of L1-regularized log-linear models. In Proc. of the 24th
international conference on Machine learning, pages 33–40, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-793-3. doi: http://doi.acm.org/10.1145/1273496.1273501.

A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In B. Schölkopf, J. Platt, and
T. Hoffman, editors, Advances in NIPS 19, pages 41–48. MIT Press, Cambridge, MA, 2007.

A. Argyriou, C. A. Micchelli, M. Pontil, and Y. Ying. A spectral regularization framework for
multi-task structure learning. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances
in Neural Information Processing Systems 20, pages 25–32. MIT Press, Cambridge, MA, 2008.

S. E Baranzini, P. Mousavi, J. Rio, S. J. Caillier, A. Stillman, P. Villoslada, M. M. Wyatt, M. Coma-
bella, L. D. Greller, R. Somogyi, X. Montalban, and J. R. Oksenberg. Transcription-based pre-
diction of response to ifnβ using supervised computational methods. PLoS Biol., 3(1):e2, 2004.

1582

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems. SIAM J. Imaging Sciences, 2(1):183–202, 2009.

D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic Press,
1982.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999. 2nd edition.

P.J. Bickel, Y. Ritov, and A.B. Tsybakov. Simultaneous analysis of lasso and dantzig selector. The
Annals of Statistics, 37(4):1705–1732, 2009. ISSN 0090-5364.

J. M. Bioucas-Dias. Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a
class of heavy-tailed priors. IEEE Trans. Image Process., 15:937–951, 2006.

J. M. Bioucas-Dias and M. A. T. Figueiredo. A new twist: two-step iterative shrinkage/thresholding
algorithms for image restoration. IEEE Trans. Image Process., 16(12):2992–3004, 2007.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers, 2011. Unfinished working draft.

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995. ISSN 1064-8275.

J.-F. Cai, E. J. Candes, and Z. Shen. A singular value thresholding algorithm for matrix completion.
Technical report, arXiv:0810.3286, 2008. URL http://arxiv.org/abs/0810.3286.

P. L. Combettes and V. R.Wajs. Signal recovery by proximal forward-backward splitting.Multiscale
Modeling and Simulation, 4(4):1168–1200, 2005.

I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint. Commun. Pur. Appl. Math., LVII:1413–1457, 2004.

D. L. Donoho. De-noising by soft-thresholding. IEEE Trans. Inform. Theory, 41(3):613–627, 1995.

J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. J.
Mach. Learn. Res., 10:2899–2934, 2009. ISSN 1532-4435.

B. Efron, T. Hastie, R. Tibshirani, and I. Johnstone. Least angle regression. Annals of Statistics, 32
(2):407–499, 2004.

M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application to minimum
order system approximation. In Proc. of the American Control Conference, 2001.

M. A. T. Figueiredo and R. Nowak. An EM algorithm for wavelet-based image restoration. IEEE
Trans. Image Process., 12:906–916, 2003.

M. A. T. Figueiredo, J. M. Bioucas-Dias, and R. D. Nowak. Majorization-minimization algorithm
for wavelet-based image restoration. IEEE Trans. Image Process., 16(12), 2007a.

1583

TOMIOKA, SUZUKI AND SUGIYAMA

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projection for sparse reconstruction:
Application to compressed sensing and other inverse problems. IEEE Journal on selected topics
in Signal Processing, 1(4):586–597, 2007b.

M. Girolami. A variational method for learning sparse and overcomplete representations. Neural
Computation, 13(11):2517–2532, 2001.

T. Goldstein and S. Osher. The split Bregman method for L1 regularized problems. SIAM Journal
on Imaging Sciences, 2(2):323–343, 2009. ISSN 1936-4954.

I. F. Gorodnitsky and B. D. Rao. Sparse signal reconstruction from limited data using FOCUSS: A
re-weighted minimum norm algorithm. IEEE Trans. Signal Process., 45(3), 1997.

I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors. Feature Extraction: Foundations and
Applications. Springer Verlag, 2006.

S. Haufe, R. Tomioka, G. Nolte, K.-R. Müller, and M. Kawanabe. Modeling sparse connectivity
between underlying brain sources for EEG/MEG. IEEE Trans. Biomed. Eng., 57(8):1954–1963,
2010. ISSN 0018-9294.

M. R. Hestenes. Multiplier and gradient methods. J. Optim. Theory Appl., 4:303–320, 1969.

J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis andMinimization Algorithms II: Advanced
Theory and Bundle Methods. Springer, 1993.

T. S. Jaakkola. Variational methods for inference and estimation in graphical models. PhD thesis,
Massachusetts Institute of Technology, 1997.

S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinvesky. An interior-point method for large-scale
�1-regularized least squares. IEEE journal of selected topics in signal processing, 1:606–617,
2007.

K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale �1-regularized logistic
regression. Journal of Machine Learning Research, 8:1519–1555, 2007.

B. W. Kort and D. P. Bertsekas. Combined primal–dual and penalty methods for convex program-
ming. SIAM Journal on Control and Optimization, 14(2):268–294, 1976.

G. Lan. An optimal method for stochastic composite optimization. Mathematical Programming,
2010. Under revision.

J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. J. Mach. Learn.
Res., 10:777–801, 2009. ISSN 1532-4435.

Z. Lin, M. Chen, L. Wu, and Y. Ma. The augmented lagrange multiplier method for exact recovery
of a corrupted low-rank matrices. Mathematical Programming, 2009. submitted.

P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM
Journal on Numerical Analysis, 16(6):964–979, 1979.

1584

DUAL AUGMENTED-LAGRANGIAN CONVERGES SUPER-LINEARLY

N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the lasso.
The Annals of Statistics, 34(3):1436–1462, 2006. ISSN 0090-5364.

C. A. Micchelli and M. Pontil. Learning the kernel function via regularization. Journal of Machine
Learning Research, 6:1099–1125, 2005.

J. J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la S. M. F., 93:273–299,
1965.

Y. Nesterov. Gradient methods for minimizing composite objective function. Technical Report
2007/76, Center for Operations Research and Econometrics (CORE), Catholic University of Lou-
vain, 2007.

J. Nocedal and S. Wright. Numerical Optimization. Springer, 1999.

J. Palmer, D. Wipf, K. Kreutz-Delgado, and B. Rao. Variational EM algorithms for non-gaussian
latent variable models. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural
Information Processing Systems 18, pages 1059–1066. MIT Press, Cambridge, MA, 2006.

M. J. D. Powell. A method for nonlinear constraints in minimization problems. In R. Fletcher,
editor, Optimization, pages 283–298. Academic Press, London, New York, 1969.

A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. JMLR, 9:2491–2521,
2008.

R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on Control
and Optimization, 14:877–898, 1976a.

R. T. Rockafellar. Augmented Lagrangians and applications of the proximal point algorithm in
convex programming. Math. of Oper. Res., 1:97–116, 1976b.

S. Shalev-Shwartz and N. Srebro. SVM optimization: inverse dependence on training set size. In
Proc. of the 25th International Conference on Machine Learning, pages 928–935. ACM, 2008.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for
SVM. In Proc. of the 24th International Conference on Machine Learning, pages 807–814.
ACM, 2007.

N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization. In Advances
in NIPS 17, pages 1329–1336. MIT Press, Cambridge, MA, 2005.

R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B, 58(1):267–288,
1996.

R. Tomioka and K.-R. Müller. A regularized discriminative framework for EEG analysis with
application to brain-computer interface. Neuroimage, 49(1):415–432, 2010.

R. Tomioka and M. Sugiyama. Dual augmented Lagrangian method for efficient sparse reconstruc-
tion. IEEE Signal Processing Letters, 16(12):1067–1070, 2009.

1585

TOMIOKA, SUZUKI AND SUGIYAMA

R. Tomioka and T. Suzuki. Regularization strategies and empirical Bayesian learning for MKL.
Technical report, arXiv:1011.3090v1, 2010.

R. Tomioka, T. Suzuki, M. Sugiyama, and H. Kashima. A fast augmented Lagrangian algorithm for
learning low-rank matrices. In Proc. of the 27th International Conference on Machine Learning.
Omnipress, 2010.

R. Tomioka, K. Hayashi, and H. Kashima. Estimation of low-rank tensors via convex optimization.
SIAM J. Matrix Anal. A., 2011a. Submitted.

R. Tomioka, T. Suzuki, and M. Sugiyama. Augmented Lagrangian methods for learning, select-
ing, and combining features. In Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright, editors,
Optimization for Machine Learning. MIT Press, 2011b.

D. Wipf and S. Nagarajan. A new view of automatic relevance determination. In Advances in NIPS
20, pages 1625–1632. MIT Press, 2008.

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by separable approxi-
mation. IEEE Trans. Signal Process., 2009.

J. Yang and Y. Zhang. Alternating direction algorithms for L1-problems in compressive sensing.
Technical Report TR09-37, Dept. of Computational & Applied Mathematics, Rice University,
2009.

W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for l1-minimization
with applications to compressed sensing. SIAM J. Imaging Sciences, 1(1):143–168, 2008.

J. Yu, S. V. N. Vishwanathan, S. Günter, and N. N. Schraudolph. A quasi-newton approach to
nonsmooth convex optimization problems in machine learning. The Journal of Machine Learning
Research, 11:1145–1200, 2010.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. J. Roy.
Stat. Soc. B, 68(1):49–67, 2006.

X. Zhang, M. Burger, and S. Osher. A unified primal-dual algorithm framework based on bregman
iteration. Journal of Scientific Computing, 46(1):20–46, 2010.

P. Zhao and B. Yu. On model selection consistency of lasso. J. Mach. Learn. Res., 7:2541–2563,
2006. ISSN 1532-4435.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society Series B(Statistical Methodology), 67(2):301–320, 2005.

1586

Journal of Machine Learning Research 12 (2011) 1587-1615 Submitted 9/09; Revised 9/10; Published 5/11

Double Updating Online Learning

Peilin Zhao ZHAO0106@NTU.EDU.SG
Steven C.H. Hoi CHHOI@NTU.EDU.SG
School of Computer Engineering
Nanyang Technological University
Singapore 639798

Rong Jin RONGJIN@CSE.MSU.EDU
Department of Computer Science & Engineering
Michigan State University
East Lansing, MI, 48824

Editor: Nicolò Cesa-Bianchi

Abstract

In most kernel based online learning algorithms, when an incoming instance is misclassified, it
will be added into the pool of support vectors and assigned with a weight, which often remains
unchanged during the rest of the learning process. This is clearly insufficient since when a new
support vector is added, we generally expect the weights of the other existing support vectors to
be updated in order to reflect the influence of the added support vector. In this paper, we propose
a new online learning method, termed Double Updating Online Learning, or DUOL for short,
that explicitly addresses this problem. Instead of only assigning a fixed weight to the misclassified
example received at the current trial, the proposed online learning algorithm also tries to update the
weight for one of the existing support vectors. We show that the mistake bound can be improved
by the proposed online learning method. We conduct an extensive set of empirical evaluations for
both binary and multi-class online learning tasks. The experimental results show that the proposed
technique is considerably more effective than the state-of-the-art online learning algorithms. The
source code is available to public at http://www.cais.ntu.edu.sg/˜chhoi/DUOL/.

Keywords: online learning, kernel method, support vector machines, maximum margin learning,
classification

1. Introduction

Online learning has been studied extensively in the machine learning community (Rosenblatt, 1958;
Freund and Schapire, 1999; Kivinen et al., 2001; Crammer et al., 2006; Cesa-Bianchi and Lugosi,
2006). In general, for a misclassified example, most of the kernel based online learning algorithms
will simply assign to it a fixed weight that remains unchanged during the whole learning process.
Although such an approach is advantageous in computational efficiency, it has significant limita-
tions. This is because when a new example is added to the pool of support vectors, the weights
assigned to the existing support vectors may no longer be optimal, and should be updated to reflect
the influence of the new support vector. We emphasize that although several online algorithms are
proposed to update the example weights as the learning process proceeds, most of them are not de-
signed to improve the classification accuracy. For instance, in Orabona et al. (2008) and Crammer
et al. (2003); Dekel et al. (2008), online learning algorithms are proposed to adjust the example

c©2011 Peilin Zhao, Steven C.H. Hoi and Rong Jin.

ZHAO, HOI AND JIN

weights in order to fit in the constraint on the number of support vectors; in Kivinen et al. (2001),
example weights are adjusted to deal with the drifting concepts.

Motivated by the above observations, we propose a new strategy for online learning that explic-
itly addresses this problem. It is designed to dynamically tune the weights of support vectors in
order to improve the classification performance. In some trials of online learning, besides assign-
ing a weight to the misclassified example, the proposed online learning algorithm also updates the
weight for one of the existing support vectors, referred to as auxiliary example. We refer to the
proposed approach as Double Updating Online Learning (Zhao et al., 2009), or DUOL for short.

The key challenge in the proposed online learning approach is to decide which existing support
vector should be selected for updating weight. An intuitive choice is to select the existing support
vector that “conflicts” with the new misclassified example, that is the existing support vector which
on the one hand shares similar input pattern as the new example and on the other hand belongs
to a class different from that of the new example. In order to quantitatively analyze the impact of
updating the weight for such an existing support vector, we employ an analysis that is based on the
work of online convex programming by incremental dual ascent (Shalev-Shwartz and Singer, 2006,
2007). Our analysis shows that under certain conditions, the proposed online learning algorithm
can significantly reduce the mistake bound of the existing online algorithms. Besides binary classi-
fication, we extend the double updating online learning algorithm to multi-class learning. Extensive
experiments show promising performance of the proposed online learning algorithm compared to
the state-of-the-art algorithms for online learning.

The rest of this paper is organized as follows. Section 2 reviews the related work for online
learning. Section 3 presents the proposed “double updating” approach for online learning of binary
classification problems. Section 4 extends the double updating method to online multi-class learn-
ing. Section 5 gives our experimental results. Section 6 discusses the possible directions to explore
in the future. Section 7 concludes this work.

2. Related Work

Online learning has been extensively studied in machine learning (Rosenblatt, 1958; Crammer and
Singer, 2003; Cesa-Bianchi et al., 2004; Crammer et al., 2006; Fink et al., 2006). One of the most
well-known online approaches is the Perceptron algorithm (Rosenblatt, 1958; Freund and Schapire,
1999), which updates the learning function by adding the misclassified example with a constant
weight to the current set of support vectors. Recently a number of online learning algorithms have
been developed based on the criterion of maximum margin (Crammer and Singer, 2003; Gentile,
2001; Kivinen et al., 2001; Crammer et al., 2006; Li and Long, 1999). One example is the Relaxed
Online MaximumMargin algorithm (ROMMA) (Li and Long, 1999), which repeatedly chooses the
hyper-planes that correctly classify the existing training examples with a large margin. Another
representative example is the Passive-Aggressive (PA) algorithm (Crammer et al., 2006). It updates
the classification function when a new example is misclassified or its classification score does not
exceed the predefined margin. Empirical studies showed that the maximum margin based online
learning algorithms are generally more effective than the Perceptron algorithm. Despite the differ-
ence, most online learningalgorithms only update the weight of the newly added support vector, and
keep the weights of the existing support vectors unchanged. This constraint could significantly limit
the performance of online learning.

1588

DOUBLE UPDATING ONLINE LEARNING

The proposed online learning algorithm is closely related to the recent work of online convex
programming by incremental dual ascent (Shalev-Shwartz and Singer, 2006, 2007). Although the
idea of simultaneously updating the weights of multiple support vectors was mentioned in Shalev-
Shwartz and Singer (2006, 2007), neither efficient algorithm nor theoretical result was given explic-
itly in their work. Besides, our work is also related to budget online learning (Weston and Bordes,
2005; Crammer et al., 2003; Cavallanti et al., 2007; Dekel et al., 2008) and online learning for drift-
ing concepts. Although these online learning algorithms are capable of dynamically adjusting the
weights of support vectors, they are designed to either fit in the budget for the number of support
vectors or to handle drifting concepts, but not to reduce the number of classification mistakes in
online learning.

Finally, several algorithms were proposed for online training of SVM that update the weights
of more than one support vectors simultaneously (Cauwenberghs and Poggio, 2000; Bordes et al.,
2005, 2007; Dredze et al., 2008; Crammer et al., 2008, 2009). In particular, in Bordes et al. (2005,
2007), the authors proposed to update the weights of two support vectors simultaneously at each
iteration, similar to the proposed algorithm. These algorithms differ from the proposed one in that
they are designed for efficiently learning an SVM classification model, not for online learning, and
therefore do not provide guarantee for mistake bound.

3. Double Updating Online Learning for Binary Classification

In this section, we present the proposed double updating online learning method for solving online
binary classification tasks. Below we start by introducing some preliminaries and notations.

3.1 Preliminaries and Notations

We consider the problem of online classification. Our goal is to learn a function f :Rd →R based on
a sequence of training examples {(x1,y1), . . . ,(xT ,yT)}, where xt ∈ R

d is a d-dimensional instance
and yt ∈ Y = {−1,+1} is the class label assigned to xt . We use sign(f (x)) to predict the class
assignment for any x, and | f (x)| to measure the classification confidence. Let �(f (x),y) :R×Y →R

be the loss function that penalizes the deviation of estimates f (x) from observed labels y. We refer
to the output f of the learning algorithm as a hypothesis and denote the set of all possible hypotheses
by H = { f | f : Rd → R}.

In this paper, we consider H a Reproducing Kernel Hilbert Space (RKHS) endowed with a
kernel function κ(·, ·) :Rd×R

d →R (Vapnik, 1998) implementing the inner product〈·, ·〉 such that:
1) κ has the reproducing property 〈 f ,κ(x, ·)〉= f (x) for x ∈ R

d ; 2) H is the closure of the span of
all κ(x, ·) with x ∈ R

d , that is, κ(x, ·) ∈ H for every x ∈ X . The inner product 〈·, ·〉 induces a norm
on f ∈ H in the usual way: ‖ f‖H := 〈 f , f 〉 12 . To make it clear, we use Hκ to denote an RKHS with
explicit dependence on kernel function κ. Throughout the analysis, we assume κ(x,x) ≤ 1 for any
x ∈ R

d .

3.2 Motivation

We consider trial t in an online learning task where the training example (xa,ya) is misclassified (i.e.,
ya f (xa)≤ 0)). LetD = {(xi,yi), i= 1, . . . ,n} be the collection of n misclassified examples received
before the trial t. We also refer to these misclassified training examples as “support vectors”. We
denote by α= (α1, . . . ,αn) ∈ (0,C]n the weights assigned to the support vectors in D , where C is a

1589

ZHAO, HOI AND JIN

predefined constant. The resulting classifier, denoted by f (x), is given by

f (x) =
n

∑
i=1

αiyiκ(x,xi).

In the conventional approach for online learning, we simply assign a constant weight, denoted by
β ∈ (0,C], to (xa,ya), and the resulting classifier becomes

f ′(x) = βyaκ(x,xa)+
n

∑
i=1

αiyiκ(x,xi) = βyaκ(x,xa)+ f (x).

The shortcoming of the conventional online learning approach is that the introduction of the new
support vector (xa,ya) may harm the classification of existing support vectors in D , which is re-
vealed by the following proposition.

Proposition 1 Let (xa,ya) be an example misclassified by the current classifier f (x) =

∑n
i=1αiyiκ(x,xi) with αi ≥ 0, i = 1, . . . ,n, that is, ya f (xa) < 0. Let f ′(x) = βyaκ(x,xa) + f (x)

be the updated classifier with β > 0. There exists at least one support vector xi ∈ D such that
yi f (xi)> yi f ′(xi).

Proof It follows from the fact that: ∃ xi ∈D,yiyaκ(xi,xa)< 0 when ya f (xa)< 0.

As indicated by Proposition 1, when a misclassified example (xa,ya) is added to the classifier, the
classification confidence of at least one existing support vector will be reduced. When ya f (xa)≤−γ,
there exists one support vector (xb,yb) ∈ D that satisfies βyaybk(xa,xb) ≤ −βγ/n. This support
vector will be misclassified by the updated classifier f ′(x) if yb f (xb) ≤ βγ/n. In order to alleviate
this problem, we propose to update the weight for the existing support vector whose classification
confidence is significantly affected by the new misclassified example. In particular, we consider a
support vector (xb,yb) ∈D for weight updating if it satisfies the following two conditions:

• yb f (xb)≤ 0, that is, support vector (xb,yb) is misclassified by the current classifier f (x);

• k(xb,xa)yayb ≤ −ρ where ρ ∈ (0,1) is a predetermined threshold, that is, support vector
(xb,yb) “conflicts” with the new misclassified example (xa,ya).

We refer to the support vector satisfying the above conditions as an auxiliary example. It is clear
that by adding the misclassified example (xa,ya) to classifier f (x) with weight β, the classification
score of (xb,yb) will be reduced by at least βρ, which could lead to a significant misclassification of
the auxiliary example (xb,yb). To avoid such a mistake, we propose to update the weights for both
(xa,ya) and (xb,yb) simultaneously. In the next section, we show the details of the double updating
algorithm for online learning, and the analysis for mistake bound.

Our analysis follows closely the previous work on the relationship between online learning and
the dual formulation of SVM (Shalev-Shwartz and Singer, 2006, 2007), in which the online learning
is interpreted as an efficient updating rule for maximizing the objective function in the dual form
of SVM. We denote by Δt the improvement of the objective function in dual SVM when adding
a misclassified example to the classification function at the t-th trial. According to Theorem 1 in
Shalev-Shwartz and Singer (2006), if an online learning algorithm A is designed to ensure that for

1590

DOUBLE UPDATING ONLINE LEARNING

all t, Δt is bounded from below by a bounding constant Δ, then the number of mistakes made by
A when trained over a sequence of trials (x1,y1), . . . ,(xT ,yT), denoted byM, is upper bounded by

M ≤ 1
Δ

(
min
f∈Hκ

1
2
‖ f‖2Hκ

+C
T

∑
i=1

�(yi f (xi))

)
,

where �(yi f (xi)) =max(0,1−yi f (xi)) is the hinge loss function. According to Shalev-Shwartz and
Singer (2006, 2007), the bounding constant Δ = 1/2 when we only update the classifier with the
newly misclassified example. In our analysis, we will show that Δ can be significantly improved
when updating the weights for both the misclassified example and the auxiliary example.

For the remaining part of this section, we denote by (xb,yb) an auxiliary example that satisfies
the two conditions specified before. We define

ka = κ(xa,xa), kb = κ(xb,xb), kab = κ(xa,xb), wab = yaybkab.

According to the assumption of auxiliary example, we have wab = kabyayb ≤−ρ. Finally, we denote
by γ̂b the weight for the auxiliary example (xb,yb) that is used in the current classifier f (x), by γa
and γb the updated weights for (xa,ya) and (xb,yb), respectively, and by dγb the difference γb− γ̂b.

3.3 Double Updating Online Learning for Binary Classification

Recall an auxiliary example (xb,yb) should satisfy two conditions (I) yb f (xb)≤ 0, and (II)wab≤−ρ.
In addition, the example (xa,ya) received in the current iteration t is misclassified, that is, ya f (xa)≤
0. Following the framework of dual formulation for online learning, the following lemma shows
how to compute Δt , that is, the improvement in the objective function of dual SVM by adjusting
weights for (xa,ya) and (xb,yb).

Lemma 1 The maximal improvement in the objective function of dual SVM by adjusting weights
for (xa,ya) and (xb,yb), denoted by Δt , is computed by solving the following optimization prob-
lem(which is a special case of the optimization problem (28) in Shalev-Shwartz and Singer, 2006):

Δt = max
γa,dγb

{
h(γa,dγb) : 0≤ γa ≤C, −γ̂b ≤ dγb ≤C− γ̂b

}
(1)

where

h(γa,dγb) = γa(1− ya f (xa))+dγb(1− yb f (xb))−
ka
2
γ2a−

kb
2
d2γb −wabγadγb .

The lemma follows directly the dual formulation of SVM. The theorem below bounds the bounding
constant Δ whenC is sufficiently large.

Theorem 1 Assume C ≥ γ̂b+ 1/(1−ρ) with ρ ∈ [0,1) for the selected auxiliary example (xb,yb),
we have the following bound for the bounding constant Δ:

Δ≥ 1
1−ρ

.

Proof First, we show dγb ≥ 0. This is because for given γa ≥ 0, the optimal solution for dγb , given
by

dγb =
1− yb f (xb)−wabγa

kb
,

1591

ZHAO, HOI AND JIN

is positive because yb f (xb) ≤ 0 and wab ≤ −ρ. Using the fact ka,kb ≤ 1, γa,dγb ≥ 0, ya f (xa) ≤ 0,
yb f (xb)≤ 0, and wa,b ≤−ρ, we have

h(γa,dγb)≥ γa+dγb −
1
2
γ2a−

1
2
d2γb +ργadγb .

Thus, Δ is bounded as

Δ≥ max
γb∈[0,C],dγb∈[0,C−γ̂b]

γa+dγb −
1
2
(γ2a+d2γb)+ργadγb .

Under the condition that C ≥ γ̂b+ 1/(1− ρ), it is easy to verify that the optimal solution for the
above problem is γa = dγb = 1/(1−ρ), which leads to the result in the theorem.

We refer to the case as a strong double update when the condition of Theorem 1 is satisfied. We
have the following theorem for the general case when we only haveC ≥ 1.

Theorem 2 Assume C ≥ 1. We have the following bound for Δ when updating the weight for the
misclassified example (xa,ya) and the auxiliary example (xb,yb):

Δ≥ 1
2
+
1
2
min
(
(1+ρ)2,(C− γ̂)2

)
.

Proof By setting γa = 1, we have h(γa,dγb) computed as

h(γa = 1,dγb)≥
1
2
+(1+ρ)dγb −

1
2
d2γb .

Hence, Δ is lower bounded by

Δ≥ 1
2
+ max

dγb∈[0,C−γ̂]

(
(1+ρ)dγb −

1
2
d2γb

)
≥ 1
2
+
1
2
min((1+ρ)2,(C− γ̂)2).

Although Theorem 1 and 2 show that the double update strategy could significantly improve
the bounding constant Δ over 1/2 and consequentially reduce the mistake bound, it is applicable
only when there exists an auxiliary example. Below, we extend the double update strategy to the
cases when there is no auxiliary example. Specifically, we relax the condition for performing double
update as follows: there exists (xb,yb)∈D that (i)wab≤−ρ, (ii) yb ft−1(xb)≤ 1, and (iii)C≥ γ̂b+ρ.
We refer to these cases as weak double update.

Theorem 3 Assume wab ≤−ρ, yb ft−1(xb)≤ 1 and C≥ γ̂b+ρ, we have the following bound for the
bounding constant

Δ≥ 1+ρ2

2
.

Proof Following the definitions and assumptions, we have

Δ= max
γa,dγb

h(γa,dγb)≥ h(1,ρ)≥ 1− 1
2
+0− ρ2

2
+ρ2 =

1+ρ2

2
.

1592

DOUBLE UPDATING ONLINE LEARNING

Algorithm 1 The Double Updating Online Learning Algorithm (DUOL)

PROCEDURE
1: Initialize S0 = /0, f0 = 0;
2: for t=1,2,. . . ,T do
3: Receive a new instance xt
4: Predict ŷt = sign(ft−1(xt));
5: Receive its label yt ;
6: lt = max{0,1− yt ft−1(xt)}
7: if lt > 0 then
8: wmin = ∞;
9: for ∀i ∈ St−1 do
10: if (f it−1 ≤ 1) then
11: if (yiytκ(xi,xt)≤ wmin) then
12: wmin = yiytκ(xi,xt);
13: (xb,yb) = (xi,yi);
14: end if
15: end if
16: end for
17: f tt−1 = yt ft−1(xt);
18: St = St−1∪{t};
19: if (wmin ≤−ρ) then
20: Compute γt and γb by solving

the optimization (1)

21: for ∀i ∈ St do
22: f it ← f it−1+ yiγt ytκ(xi,xt)

+ yi(γb− γ̂b)ybκ(xi,xb);
23: end for
24: ft = ft−1+ γt ytκ(xt , ·)

+(γb− γ̂b)ybκ(xb, ·);
25: else /* no auxiliary example found */
26: γt = min(C, �t/κ(xt ,xt));
27: for ∀i ∈ St do
28: f it ← f it−1+ yiγt ytκ(xi,xt);
29: end for
30: ft = ft−1+ γt ytκ(xt , ·);
31: end if
32: else
33: ft = ft−1; St = St−1;
34: for ∀i ∈ St do
35: f it ← f it−1;
36: end for
37: end if
38: end for
return fT , ST
END

Figure 1: The Algorithms of Double Updating Online Learning (DUOL).

Solving the optimization problem (1) is the key to the double update. The following proposition
provides the optimal solution to the problem (1).

Proposition 2 Denote �a := 1− ya f (xa) and �b := 1− yb f (xb). Assume �a, �b ≥ 0, ka,kb > 0 and
wab ≤ 0, then the solution of optimization problem (1) is as follows:

(γa,dγb) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(C,C− γ̂b) if (kaC+wab(C− γ̂b)− �a)< 0 and (kb(C− γ̂b)+wabC− �b)< 0

(C, �b−wabCkb
) if

w2abC−wab�b−kakbC+kb�a
kb

> 0 and �b−wabC
kb

∈ [−γ̂b,C− γ̂b]

(�a−wab(C−γ̂b)ka
,C− γ̂b) if �a−wab(C−γ̂b)

ka
∈ [0,C] and �b− kb(C− γ̂b)−wab

�a−wab(C−γ̂b)
ka

> 0

(kb�a−wab�b
kakb−w2ab

, ka�b−wab�a
kakb−w2ab

) if (kb�a−wab�b
kakb−w2ab

, ka�b−wab�a
kakb−w2ab

) ∈ [0,C]× [−γ̂b,C− γ̂b]

.

The detailed proof for Proposition 2 can be found in Appendix A. Figure 1 summarizes the proposed
Double Updating Online Learning (DUOL) algorithm. In this algorithm, to efficiently find the
auxiliary example (xb,yb), we introduce a variable f it for each support vector to keep track of its
classification score. Parameter ρ is used to trade off between efficiency and efficacy for DUOL: the
smaller ρ the more double updates will be performed.

Finally, we give the mistake bound for the DUOL algorithm. We denote byM the set of indexes
that correspond to the trials of misclassification, that is,

M =
{
t |yt �= sign(ft−1(xt)),∀t ∈ [T]

}
.

1593

ZHAO, HOI AND JIN

In addition, we denote by M s
d (ρ) and M

w
d (ρ) the sets of indexes for the cases of strong and weak

double updating, respectively, that is,

M s
d (ρ) = {t |∃ auxiliary example (xb,yb) s.t. C ≥ γ̂b+

1
1−ρ

for (xt ,yt), t ∈M },

M w
d (ρ) = {t |∃ (xb,yb) s.t. wab ≤−ρ, yb ft−1(xb)≤ 1 andC ≥ γ̂b+ρ, t ∈M /M s

d (ρ)}.

Note that in set M s
d (ρ), for the convenience of analysis, we only consider the subset of strong

updates when the condition C ≥ γ̂b+ 1/(1−ρ) is satisfied. Finally, we denote the cardinalities of
setsM ,M s

d , andM
w
d byM = |M |,Ms

d(ρ) = |M s
d (ρ)|,Mw

d (ρ) = |M w
d (ρ)|, andMs =M−Ms

d(ρ)−
Mw
d (ρ), respectively.

Theorem 4 Let (x1,y1), . . . ,(xT ,yT) be a sequence of examples, where xt ∈R
d , yt ∈ {−1,+1} and

κ(xt ,xt) ≤ 1 for all t, and assume C ≥ 1. Then for any function f in Hκ, the number of prediction
mistakes M made by DUOL on this sequence of examples is bounded by:

2

(
min
f∈Hκ

1
2
‖ f‖2Hκ

+C
T

∑
i=1

�(yi f (xi))

)
− ρ2

2
Mw
d (ρ)−

1+ρ
1−ρ

Ms
d(ρ),

where ρ ∈ [0,1).

Proof According to Theorem 1 and 3, we have

min
t∈M s

d (ρ)
Δt ≥

1
1−ρ

, min
t∈M w

d (ρ)
Δt ≥

1+ρ2

2
.

Moreover, according to Theorem 2, we have Δt ≥ 1/2,∀t ∈M . Putting them together, we have

1
2
Ms+

1+ρ2

2
Mw
d (ρ)+

1
1−ρ

Ms
d(ρ)≤

(
min
f∈Hκ

1
2
‖ f‖2Hκ

+C
T

∑
i=1

�(yi f (xi))

)
.

We complete the proof usingM =Ms+Mw
d (ρ)+Ms

d(ρ).

As revealed by the above theorem, the number of mistakes made by the proposed double updat-
ing online learning algorithm will be smaller than the online learning algorithm that only performs
a single update in each trial. The difference in the mistake bound is essentially due to the double
updating, that is, the more the number of double updates, the more advantageous the proposed algo-
rithm will be. Besides, the above bound also indicates that a strong double update is more powerful
than a weak double update given that the associated weight of a strong double update (1+ρ)/(1−ρ)
is always much larger than that of a weak double update ρ2/2. It is worthwhile pointing out that al-
though according to Theorem 4, it seems that the larger the value of ρ the smaller the mistake bound
will be. This however may not be true because Ms

d(ρ) in general decreases as ρ increases. Finally,
we note that Theorem 4 bounds the number of mistakes made by the proposed DUOL algorithm
for C ≥ 1. When C < 1, the mistake bound for the proposed algorithm follows Theorem 2, 3 and
Corollary 2 in Shalev-Shwartz and Singer (2007).

1594

DOUBLE UPDATING ONLINE LEARNING

4. Multiclass Double Updating Online Learning

In this section, we extend the proposed double updating online learning algorithm to multiclass
learning where each instance can be assigned to multiple classes.

4.1 Online Multiclass Learning

Similar to online binary classification, online multiclass learning is performed over a sequence
of training examples (x1,Y1), . . . ,(xT ,YT). Unlike binary classification where yt ∈ {−1,+1}, in
multi-class learning, each class assignment Yt ⊆ Y = {1, . . . ,k} could contain multiple class labels,
making it a more challenging problem. We use Ŷt to represent the class set predicted by the online
learning algorithm. Before presenting our algorithm, we first review online multiclass learning
(Crammer and Singer, 2003; Fink et al., 2006) based on the framework of label ranking (Crammer
and Singer, 2005).

4.1.1 LABEL RANKING FOR MULTICLASS LEARNING

Given an instance x, the label ranking approach first computes a score for every class label in Y ,
and ranks the classes in the descending order of their scores. The predicted class set Ŷt is formed by
the classes with the highest scores. The objective of label ranking is to ensure that the score of class
r is significantly larger than that of class s if r ∈Yt is a true class assignment while s ∈ Y \Yt is not.
An instance x is classified incorrectly if that above condition is NOT satisfied.

We follow the protocol of multi-prototype (Vapnik, 1998; Crammer and Singer, 2001; Crammer
et al., 2006) for the design of multiclass multilabel learning algorithm. It learns multiple hypothe-
ses/classifiers, one classifier for each class in Y , leading to a total of k classifiers that are trained for
the classification task. Specifically, for trial t, upon receiving an instance xt , the scores of k classes
output by the set of k hypotheses are given by

 ft−1(xt) = (ft−1,1(xt), · · · , ft−1,k(xt))
T ,

where ft−1,i ∈HK , i= 1, . . . ,k. We introduce two variables rt and st that are defined as follows:

rt = argmin
r∈Yt

ft−1,r(xt) and st = argmax
s�∈Yt

ft−1,s(xt), (2)

here, rt and st represent the class of the smallest score among all relevant classes and the class of the
largest score among the irrelevant classes, respectively. Using the notation of rt and st , the margin
with respect to the hypothesis set ft−1 at trial t is defined as follows:

Γ
(

 ft−1;(xt ,Yt)
)
= ft−1,rt (xt)− ft−1,st (xt).

Based on the notation of classification margin, we define the loss function of hypotheses ft−1(x) for
training example (xt ,Yt) as follows:

�
(

 ft−1;(xt ,Yt)
)

= max
r∈Yt ,s�∈Yt

[
1− (ft−1,r(xt)− ft−1,s(xt))

]
+
,

where [x]+ = max(0,x).

1595

ZHAO, HOI AND JIN

4.1.2 A PERCEPTRON ALGORITHM FOR ONLINE MULTICLASS LEARNING

According to Crammer and Singer (2003), when an example is misclassified at trial t, we update
each component of the classifier ft−1 as follows:

ft,i(x) = ft−1,i(x)+σYt (i, t)γtκ(xt ,x), ∀i ∈ Y , (3)

where γt ∈ (0,C], and function σYt (i, t), which is simplified as σ(i, t), is defined below:

σ(i, t) =

⎧⎨⎩
1 if i= rt
−1 if i= st
0 otherwise

.

Using notation H(Yt) =
(
σ(1, t), · · · ,σ(k, t)

)T
, we rewrite Equation (3) as ft(x) = ft−1(x)+

γtH(Yt)κ(xt ,x), or equivalently

 f (x) =
n

∑
i=1

γiH(Yi)κ(xi,x),

where n is the number of support vectors received so far.

4.2 Multiclass DUOL Algorithm

We extend the DUOL algorithm to multiclass learning. We denote by (xa,Ya) the misclassified
example received at the current trial, that is, (f (xa))ra − (f (xa))sa ≤ 0. Similar to DUOL for binary
classification, we introduce an auxiliary example (xb,Yb) from the existing support vectors that obey
the following conditions:

1. (f (xb))rb − (f (xb))sb ≤ 0, that is, (xb,Yb) is misclassified by current classifier f ;

2. (H(Ya) ·H(Yb))κ(xa,xb) ≤ −2ρ where ρ ∈ (0,1) is a threshold. This property indicates that
example (xa,Ya) conflicts with example (xb,Yb).

Compared to auxiliary example defined for binary classification, we introduce H(Ya) ·H(Yb) in
above when defining two conflicting instances. Given κ(xa,xb) ≥ 0, the second condition of aux-
iliary example implies H(Ya) ·H(Yb) ≤ 0, which further indicates that two examples (xa,Ya) and
(xb,Yb) have the opposite prediction, that is, (ra = sb) or (sa = rb). This result is revealed by the
following proposition.

Proposition 3 The inequality H(Ya) ·H(Yb)< 0 holds if and only if (ra = sb) or (sa = rb).

The proof of Proposition 3 is given in the appendix.
Similar to the DUOL algorithm for binary classification, our analysis aims to show that by

updating weights for both misclassified example and the auxiliary example, we may be able to
significantly improve the bounding constant Δ, which is defined as follows:

M×Δ≤
(

min
 f∈ Hκ

F(f)+C
T

∑
i=1

�
(

 f ;(xi,Yi)
))

, (4)

where Hκ = ∏k
i=1Hκ and F(f) = ∑k

i=1
1
2‖ fi‖2

Hκ
. To ease our further discussions, we define ka =

κ(xa,xa),kb = κ(xb,xb),wab = (H(Ya) ·H(Yb))κ(xa,xb) .
The following proposition shows the optimization problem related to the multiclass double up-

dating online learning algorithm, which forms the basis for deriving the bounding constant Δ.

1596

DOUBLE UPDATING ONLINE LEARNING

Proposition 4 With the double updating, that is, adjusting the weight of some auxiliary support
vector (xb,Yb) from γ̂b to γb (denoted by dγb = γb− γ̂b) and assigning weight γa to the current mis-
classified example (xa,Ya), the improvement in the objective function of dual SVM, denoted by Δt , is
computed by the following optimization problem:

max
γa,dγb

γa
(

1−
(
ft−1,ra(xa)− ft−1,sa(xa)

))
+dγb

(
1−
(
ft−1,rb(xb)− ft−1,sb(xb)

))
−kaγ2

a− kbd
2
γb −wabγadγb , (5)

s.t. 0 ≤ γa ≤C,−γ̂b ≤ dγb ≤C− γ̂b.

Theorem 5 Assume κ(x,x) ≤ 1 for any x and C ≥ γ̂b+ 1
2(1−ρ) for the selected auxiliary example

(xb,Yb), we have the following bound for Δ:

Δ≥ 1
2(1−ρ)

.

We refer to the case as a strong double update when there exists a auxiliary example (xb,Yb) s.t.
C ≥ γ̂b+ 1

2(1−ρ) . Similar to double updating for binary classification, we introduce weak double

update when there exists (xb,Yb) s.t. wab ≤−2ρ, ft−1,rb(xb)− ft−1,sb(xb)≤ 1, andC ≥ γ̂b+
ρ
2 .

Theorem 6 Assume there exists (xb,Yb) s.t. wab ≤ −2ρ, ft−1,rb(xb)− ft−1,sb(xb) ≤ 1, C ≥ γ̂b+
ρ
2

and the current instance is misclassified, then we have the following bounding constant

Δ≥ 1+ρ2

4
.

The exact solution to the Quadratic Programming (QP) problem in (5) is given by the following
proposition.

Proposition 5 Denote �a := 1− (ft−1,ra(xa)− ft−1,sa(xa)) and �b := 1− (ft−1,rb(xb)− ft−1,sb(xb)).
Assume �a, �b ≥ 0, ka,kb > 0 and wab ≤ 0, then the solution of optimization (5) is as follows:

(γa,dγb)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(C,C− γ̂b) if (2kaC+wab(C− γ̂b)− �a)< 0 and (2kb(C− γ̂b)+wabC− �b)< 0

(C, �b−wabC2kb
) if

w2
abC−wab�b−4kakbC+2kb�a

2kb
> 0 and �b−wabC

2kb
∈ [−γ̂b,C− γ̂b]

(�a−wab(C−γ̂b)2ka
,C− γ̂b) if �a−wab(C−γ̂b)

2ka
∈ [0,C] and �b−2kb(C− γ̂b)−wab

�a−wab(C−γ̂b)
2ka

> 0

(2kb�a−wab�b
4kakb−w2

ab
, 2ka�b−wab�a

4kakb−w2
ab

) if (2kb�a−wab�b
4kakb−w2

ab
, 2ka�b−wab�a

4kakb−w2
ab

) ∈ [0,C]× [−γ̂b,C− γ̂b]

.

We skip the proof due to its high similarity to that of Proposition 2. Figure 2 summarizes the steps
of the multiclass DUOL (M-DUOL) algorithm. Note that we replace the conditions for auxiliary
example with the margin error in order to make more double updates.

A mistake bound for the M-DUOL algorithm, similar to Theorem 4, is given by the following
theorem.

Theorem 7 Let (x1,Y1), . . . ,(xT ,YT) be a sequence of examples, where xt ∈ R
n, Yt ⊆ Y and

κ(xi,x j) ∈ [0,1] for all i, j. And assume C ≥ 1. Then for any function f ∈ ∏k
i=1Hκ, the number

of prediction mistakes M made by M-DUOL on this sequence of examples is bounded by:

4
(

min
 f∈ Hκ

F(f)+C
T

∑
i=1

�
(

 f ;(xi,Yi)
))

− ρ2

2
Mw
d (ρ)−

1+ρ
1−ρ

Ms
d(ρ).

1597

ZHAO, HOI AND JIN

Algorithm 2: The Multiclass DUOL Algorithm (M-DUOL)

PROCEDURE

1: Initialize H0 = /0, S0 = /0, f0 = 0;
2: for t=1,2,. . . ,T do
3: Receive a new instance xt
4: PredictWt−1 = ft−1(xt);
5: Receive its label set Yt
6: �t =

[
1−Wt−1 ·H(Yt)]+

7: if lt > 0 then
8: wmin = ∞;
9: for ∀i ∈ St−1 do
10: if f it−1 ≤ 1 then
11: if (Hkti < wmin then
12: wmin = Hkti;
13: (xb,Yb) = (xi,Yi);
14: end if
15: end if
16: end for
17: f tt−1 =Wt−1 ·H(Yt);
18: St = St−1 ∪

{
t
}

; Ht = Ht−1 ∪
{
H(Yt)

}
;

19: if (wmin ≤−2ρ) then
20: Compute γt and γb by solving

the optimization (5)

21: for ∀i ∈ St do
22: f it ← f it−1 +[γt ∗H(Yt)∗κ(xt ,xi)] ·H(Yi)

+[(γb− γ̂b)∗H(Yb)∗κ(xb,xi)] ·H(Yi);
23: end for
24: ft = ft−1 + γt ∗H(Yt)∗κ(xt , ·)

+(γb− γ̂b)∗H(Yb)∗κ(xb, ·);
25: else /* no auxiliary example found */
26: γt = min(C, �t

2κ(xt ,xt)
);

27: for ∀i ∈ St do
28: f it ← f it−1 +[γt ∗H(Yt)∗κ(xt ,xi)] ·H(Yi);
29: end for
30: ft = ft−1 + γt ∗H(Yt)∗κ(xt , ·);
31: end if
32: else
33: ft = ft−1; St = St−1; Ht = Ht−1;
34: for ∀i ∈ St do
35: f it ← f it−1;
36: end for
37: end if
38: end for
return fT , ST , HT
END

Figure 2: Algorithms of multiclass double-updating online learning (M-DUOL).

5. Experimental Results

In this section, we evaluate the empirical performance of the proposed double updating online learn-
ing algorithms for online learning tasks. We first evaluate the performance of DUOL for binary
classification, followed by the evaluation of multiclass double updating online learning.

5.1 Testbeds and Experimental Setup for Binary-class Online Learning

We compare our technique with a number of state-of-the-art techniques, including the kernel Per-
ceptron algorithm (Kivinen et al., 2001), the “ROMMA” algorithm and its aggressive version “agg-
ROMMA” (Li and Long, 1999), the ALMAp(α) algorithm (Gentile, 2001), and the
Passive-Aggressive algorithms (“PA”) (Crammer et al., 2006). For PA, two versions of algorithms
(PA-I and PA-II) are implemented as described in Crammer et al. (2006). Note that one may also
compare with the online SVM algorithm (Shalev-Shwartz and Singer, 2006), which updates the
weights for all support vectors in each trial. However, we do not include this baseline for compari-
son because it is too computationally intensive to run on some large data sets.

For the proposed DUOL algorithms, we implement three variants based on different solvers to
the problem in (1): (i) “DUOLappr” that employs an approximate solution to (1), that is, γt = 1

1−ρ
and γb = γ̂b+ 1

1−ρ , (ii)“DUOL” that uses the exact solution to (1) given in Proposition 2, and (iii)
“DUOLiter” that first updates the weight for the misclassified example and then the weight for
auxiliary example, as suggested in Shalev-Shwartz and Singer (2007)

1598

DOUBLE UPDATING ONLINE LEARNING

We test all the algorithms on eight benchmark data sets from web machine learning repositories,
which are listed in table 1. All of the data sets can be downloaded from LIBSVM website,1 UCI
machine learning repository,2 and MIT CBCL face data sets.3

Data Set # examples # features

sonar 208 60
splice 1,000 60
german 1,000 24
mushrooms 8,124 112
dorothea 1,150 100,000
spambase 4,601 57
MITFace 6,977 361
w7a 24,692 300

Table 1: Binary-class data sets used in the experiments.

To make a fair comparison, for all algorithms in comparison, we set C = 5 and use the same
Gaussian kernel with σ= 8. For the ALMAp(α) algorithm, parameter p and α are set to 2 and 0.9,
respectively, based on our experience. For the proposed DUOL algorithm, we fix ρ to be 0 for all
cases. All the experiments are repeated 20 times, each with an independent random permutation of
the data points. All the results are reported by averaging over the 20 runs. We evaluate the online
learning performance by measuring the mistake rate, that is, the percentage of examples that are
misclassified by the online learning algorithm. We measure the sparsity of the learned classifiers
by the number of support vectors. We evaluate computational efficiencies of all the algorithms in
terms of their CPU running time (in seconds). All the experiments are run in Matlab over a windows
machine of 2.3GHz CPU.

5.2 Performance Evaluation for Binary-Class Online Learning

Table 2 summarizes the performance of all the compared online learning algorithms over the binary
data sets. We can draw several observations from the results.

First, among the six baseline algorithms in comparison, we observe that the agg-ROMMA and
two PA algorithms (PA-I and PA-II) perform considerably better than the other three algorithms
(i.e., Perceptron, ROMMA, and ALMA) in most cases. We also notice that the agg-ROMMA
and the two PA algorithms consume considerably larger numbers of support vectors than the other
three algorithms. We believe this is because the agg-ROMMA and the two PA algorithms adopt
more aggressive strategies than the other three algorithms, resulting in more updates and better
classification performance. For the convenience of discussion, we refer to agg-ROMMA and two
PA algorithms as aggressive algorithms, and the other three online learning algorithms as non-
aggressive ones.

Second, we observe that among the three variants of double updating online learning, the DUOL
approach, which solves the optimization problem exactly, yields the least mistake rate with the
smallest number of support vectors for most of the cases. Comparing with the baseline algorithms,

1. LIBSVM website is http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.
2. UCI ML repository is at http://www.ics.uci.edu/˜mlearn/MLRepository.html.
3. MIT CBCL face data sets can be found at http://cbcl.mit.edu/software-datasets.

1599

ZHAO, HOI AND JIN

Algorithm sonar splice
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Perceptron 38.125 ± 3.815 79.30 ± 7.93 0.004 27.120 ± 0.975 271.20 ± 9.75 0.017

ROMMA 36.587 ± 2.976 76.10 ± 6.19 0.006 25.560 ± 0.814 255.60 ± 8.14 0.032

agg-ROMMA 34.928 ± 2.860 130.05 ± 7.51 0.009 22.980 ± 0.780 602.90 ± 7.42 0.044

ALMA2(0.9) 36.370 ± 3.572 86.25 ± 6.43 0.006 26.040 ± 0.965 314.95 ± 9.41 0.032

PA-I 40.986 ± 2.837 154.15 ± 6.95 0.004 23.815 ± 1.042 665.60 ± 5.60 0.029

PA-II 40.481 ± 3.023 162.40 ± 6.26 0.004 23.515 ± 1.005 689.00 ± 7.85 0.029

DUOLiter 39.495 ± 3.299 149.85 ± 3.42 0.014 23.205 ± 0.932 566.85 ±13.08 0.097

DUOLappr 41.010 ± 2.335 162.25 ± 5.01 0.013 21.945 ± 1.134 721.85 ± 9.10 0.095

DUOL 34.255 ± 2.811 137.60 ± 6.99 0.017 20.875 ± 0.868 577.15 ±10.81 0.087

Algorithm german mushrooms
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Perceptron 34.760 ± 0.947 347.60 ± 9.47 0.019 2.083 ± 0.278 169.25 ± 22.58 0.148

ROMMA 34.725 ± 1.009 347.25 ± 10.09 0.037 2.429 ± 0.101 197.35 ± 8.24 0.264

agg-ROMMA 32.925 ± 1.184 633.40 ± 14.02 0.049 1.568 ± 0.096 1307.90 ± 39.59 0.576

ALMA2(0.9) 33.480 ± 0.681 394.75 ± 9.24 0.036 2.538 ± 0.297 304.80 ± 38.02 0.267

PA-I 33.010 ± 1.025 721.10 ± 12.99 0.031 1.661 ± 0.089 1221.55 ± 22.80 0.454

PA-II 32.630 ± 1.016 749.50 ± 11.84 0.032 1.657 ± 0.088 1326.20 ± 22.85 0.483

DUOLiter 35.985 ± 1.077 714.35 ± 12.75 0.125 1.537 ± 0.101 860.05 ± 23.00 0.521

DUOLappr 30.275 ± 0.937 716.10 ± 10.44 0.096 1.459 ± 0.101 1291.35 ± 32.03 0.658

DUOL 31.810 ± 1.090 656.30 ± 14.36 0.108 0.596 ± 0.053 453.70 ± 19.40 0.341

Algorithm dorothea spambase
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Perceptron 13.257 ± 0.973 152.45 ± 11.18 0.016 24.987 ± 0.525 1149.65 ± 24.16 0.215

ROMMA 17.461 ± 0.537 200.80 ± 6.18 0.035 23.953 ± 0.510 1102.10 ± 23.44 0.275

agg-ROMMA 17.435 ± 0.500 438.30 ± 13.83 0.044 21.242 ± 0.384 2550.70 ± 27.28 0.515

ALMA2(0.9) 14.478 ± 0.378 210.25 ± 5.68 0.035 23.579 ± 0.411 1550.15 ± 15.65 0.348

PA-I 17.500 ± 0.491 461.30 ± 15.80 0.026 22.112 ± 0.374 2861.50 ± 24.36 0.479

PA-II 17.500 ± 0.491 461.30 ± 15.80 0.027 21.907 ± 0.340 3029.10 ± 24.69 0.504

DUOLiter 21.109 ± 0.796 559.20 ± 19.44 0.080 21.907 ± 0.432 2511.20 ± 34.14 1.215

DUOLappr 17.500 ± 0.491 461.30 ± 15.80 0.054 20.185 ± 0.351 2981.00 ± 26.95 1.091

DUOL 11.757 ± 0.237 407.50 ± 12.80 0.080 19.438 ± 0.282 2494.95 ± 26.19 1.069

Algorithm MITFace w7a
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Perceptron 4.665 ± 0.192 325.50 ± 13.37 0.207 4.027 ± 0.095 994.40 ± 23.57 3.392

ROMMA 4.114 ± 0.155 287.05 ± 10.84 0.285 4.158 ± 0.087 1026.75 ± 21.51 1.875

agg-ROMMA 3.137 ± 0.093 1121.15 ± 24.18 0.555 3.500 ± 0.061 2318.65 ± 60.49 3.257

ALMA2(0.9) 4.467 ± 0.169 400.10 ± 10.53 0.297 3.518 ± 0.071 1031.05 ± 15.33 1.314

PA-I 3.190 ± 0.128 1155.45 ± 14.53 0.439 3.701 ± 0.057 2839.60 ± 41.57 2.691

PA-II 3.108 ± 0.112 1222.05 ± 13.73 0.463 3.571 ± 0.053 3391.50 ± 51.94 3.311

DUOLiter 2.551 ± 0.128 963.45 ± 23.80 0.572 4.456 ± 0.073 3048.85 ± 54.53 4.566

DUOLappr 2.687 ± 0.140 1262.50 ± 20.68 0.656 3.116 ± 0.104 2908.95 ± 28.65 3.679

DUOL 2.151 ± 0.106 697.95 ± 13.17 0.445 2.914 ± 0.045 2402.55 ± 39.88 6.470

Table 2: Evaluation of online learning algorithms on the binary-class data sets.

1600

DOUBLE UPDATING ONLINE LEARNING

we observe that DUOL achieves significantly smaller mistake rates than the other single-updating
algorithms in all cases. This shows that the proposed double updating approach is effective in im-
proving the performance of online prediction. By examining the number of support vectors, we
observed that DUOL results in sparser classifiers than the three aggressive online learning algo-
rithms, and denser classifiers than the three non-aggressive algorithms.

Third, according to the results of running time, we observe that DUOL is overall efficient as
compared with the state-of-the-art online learning algorithms. Among all the algorithms in compar-
ison, Perceptron, due to its simplicity nature, is clearly the most efficient algorithm. Since DUOL
requires double updates, it is less efficient than PA, ROMMA and ALMA algorithms, but is compa-
rable to the agg-ROMMA algorithm. Note that the comparisons of running time costs are slightly
different compared with the results in our previous conference paper (Zhao et al., 2009) because we
did some improvements of efficiency for the implementations of some existing algorithms in this
journal article.

5.3 Evaluation of Different Auxiliary Example Selection Strategies and the Sensitivity to
ParameterC for DUOL

As the performance of DUOL quite relies on the choice of auxiliary examples, in this section, we
evaluate different auxiliary example selection strategies. Specifically, we compare the proposed
strategy to a random selection approach, referred to as “DUOLrand”, which randomly chooses an
auxiliary example from the existing support vectors. The exact solution to the problem in (1), given
by Proposition 2, is used for updating the weights of both examples. We set ρ= 0 and σ= 8 for all
the data sets, same as the previous experiments.

Figure 3 compares the online prediction performance between DUOL and DUOLrand as well
as the other competing algorithms with varied C values across eight different data sets. Several
observations can be drawn from the results.

First, it is clear to see that the proposed strategy for selecting auxiliary examples is more effec-
tive than the random selection strategy for most cases. Second, among all the compared algorithms,
we observe that DUOL always achieves the best performance when C is sufficiently large (e.g.,
C> 10), except for data sets “german” and “w7a” where a smallerC value tends to produce a better
result. This observation is consistent to our previous theoretical result, which indicates setting a
large C value usually implies more strong updates and consequently a better mistake bound. Third,
we observe that the proposed DUOL algorithm is significantly more accurate than the other two
variants of double updating online learning algorithms (DUOLiter and DUOLappr) for variedC val-
ues, as we expected. We observe that DUOLiter, the iterative updating approach, performs unstably,
which might be due to local optimum suffered from its heuristic update. This observation validates
the importance of performing the optimal double updates by the proposed DUOL algorithm.

5.4 Empirical Evaluation of Mistake Bounds

To examine how the double updating strategy affects the mistake bound, we empirically compareM,
the total number of mistakes made by the DUOL algorithm, Mw

d (ρ), the number of mistake cases
where the weak double updates are applied, and Ms

d(ρ), the number of mistake cases where the
strong double updates are applied. Figure 4 shows the comparison between M, Mw

d (ρ), and M
s
d(ρ)

by varying ρ from 0 to 1.

1601

ZHAO, HOI AND JIN

−10 −5 0 5 10
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

log
2
(C)

A
ve

ra
ge

 r
at

e
of

 m
is

ta
ke

s

Perceptron
ROMMA
agg−ROMMA
ALMA

2
(0.9)

PA−I
PA−II
DUOL

iter
DUOL

appr

DUOL
DUO

rand

−10 −5 0 5 10
0.2

0.25

0.3

0.35

0.4

0.45

0.5

log
2
(C)

A
ve

ra
ge

 r
at

e
of

 m
is

ta
ke

s

Perceptron
ROMMA
agg−ROMMA
ALMA

2
(0.9)

PA−I
PA−II
DUOL

iter
DUOL

appr

DUOL
DUO

rand

(a) sonar (b) splice

−10 −5 0 5 10

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

log
2
(C)

A
ve

ra
ge

 r
at

e
of

 m
is

ta
ke

s

Perceptron
ROMMA
agg−ROMMA
ALMA

2
(0.9)

PA−I
PA−II
DUOL

iter
DUOL

appr

DUOL
DUO

rand

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

log
2
(C)

A
ve

ra
ge

 r
at

e
of

 m
is

ta
ke

s

Perceptron
ROMMA
agg−ROMMA
ALMA

2
(0.9)

PA−I
PA−II
DUOL

iter
DUOL

appr

DUOL
DUO

rand

(c) german (d) mushrooms

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

log
2
(C)

A
ve

ra
ge

 r
at

e
of

 m
is

ta
ke

s

Perceptron
ROMMA
agg−ROMMA
ALMA

2
(0.9)

PA−I
PA−II
DUOL

iter
DUOL

appr

DUOL
DUO

rand

−10 −5 0 5 10

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

log
2
(C)

A
ve

ra
ge

 r
at

e
of

 m
is

ta
ke

s

Perceptron
ROMMA
agg−ROMMA
ALMA

2
(0.9)

PA−I
PA−II
DUOL

iter
DUOL

appr

DUOL
DUO

rand

(e) dorothea (f) spambase

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

log
2
(C)

A
ve

ra
ge

 r
at

e
of

 m
is

ta
ke

s

Perceptron
ROMMA
agg−ROMMA
ALMA

2
(0.9)

PA−I
PA−II
DUOL

iter
DUOL

appr

DUOL
DUO

rand

−10 −5 0 5 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

log
2
(C)

A
ve

ra
ge

 r
at

e
of

 m
is

ta
ke

s

Perceptron
ROMMA
agg−ROMMA
ALMA

2
(0.9)

PA−I
PA−II
DUOL

iter
DUOL

appr

DUOL
DUO

rand

(g) MITFace (h) w7a

Figure 3: Comparison between DUOL and DUOLrand with variedC values.

1602

DOUBLE UPDATING ONLINE LEARNING

First, we observe that double updates are frequently applied when ρ is small. This is because
it is easier to find an auxiliary example for double updating when ρ is small. Further, we find that
setting ρ close to 0 by default often leads to the best or close to the best results. Second, we observe
that the number of weak updates is significantly larger than that of strong updates. This is because
the condition of conducting a strong double update is significantly more difficult to be satisfied
that that for a weak double update. Third, we observe that both Mw

d (ρ) and M
s
d(ρ) monotonically

decrease when increasing the value of ρ. In the extreme case, when ρ is close to 1, their value often
drops to zero, indicating that no double update was applied. In the meantime, we find that the total
number of mistakes often reaches the maximum, as ρ approaches 1. These results again validate the
importance and effectiveness of the proposed double updating algorithm.

5.5 Testbeds and Experimental Setup for Multiclass Online Learning

Table 3 shows the multiclass data sets from Web machine learning repository used in our experi-
ments. We compare the proposed M-DUOL algorithm with six state-of-the-art online learning algo-
rithms. The first three algorithms are variants of Perceptron-based on methods studied in Crammer
and Singer (2003). They are: (i) “Max”, the perceptron method based on the max-score multiclass
update, (ii) “Uniform”, the perceptron method based on the Uniform multiclass update, and (iii)
“Prop”, the perceptron method based on the proportion multiclass update. We also compare the
proposed algorithm with the other three state-of-the-art online multi-class learning algorithms, in-
cluding the MIRA algorithm proposed by Crammer and Singer (2003), and the Passive-Aggressive
(PA) algorithms, “PA-I” and “PA-II” proposed by Crammer et al. (2006). Similar to the experiments
of binary classification, we implement three variants of the proposed M-DUOL algorithm based on
different solvers to the problem in (5), that is, “M-DUOLappr”, “M-DUOL”, and “M-DUOLiter”.
For all experiments, we use the Gaussian kernel with σ= 8 and set C = 10. The threshold ρ in the
proposed algorithms is set to 0 for all experiments. All the experiments were repeated 20 time and
the final results are averaged over 20 runs.

data set # training examples # classes # features

vehicle 846 4 18
dna 2,000 3 180
segment 2,310 7 19
satimage 4,435 6 36
usps 7,291 10 256
mnist 10,000 10 780
letter 15,000 26 16
protein 17,766 3 357

Table 3: Multiclass data sets used in the experiments.

5.6 Performance Evaluation for Multi-class Online Learning

Table 4 summarizes the empirical performance for multi-class online learning. Several observations
can be drawn from the experimental results.

First, by comparing all the baseline algorithms, we find that the two PA algorithms yield con-
siderably lower mistake rates than the other single-updating online learning algorithms. On the
other hand, the classifiers learned by the three Perceptron-based algorithms (Max, Uniform, and

1603

ZHAO, HOI AND JIN

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

ρ

A
ve

ra
ge

 n
um

er
 o

f M
s d(ρ

),
 M

w d
(ρ

)
an

d
M

Ms
d
(ρ)

Mw
d

(ρ)

M

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

ρ

A
ve

ra
ge

 n
um

er
 o

f M
s d(ρ

),
 M

w d
(ρ

)
an

d
M

Ms
d
(ρ)

Mw
d

(ρ)

M

(a) sonar (b) splice

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

350

400

450

500

ρ

A
ve

ra
ge

 n
um

er
 o

f M
s d(ρ

),
 M

w d
(ρ

)
an

d
M

Ms
d
(ρ)

Mw
d

(ρ)

M

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

ρ

A
ve

ra
ge

 n
um

er
 o

f M
s d(ρ

),
 M

w d
(ρ

)
an

d
M

Ms
d
(ρ)

Mw
d

(ρ)

M

(c) german (d) mushrooms

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

ρ

A
ve

ra
ge

 n
um

er
 o

f M
s d(ρ

),
 M

w d
(ρ

)
an

d
M

Ms
d
(ρ)

Mw
d

(ρ)

M

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

ρ

A
ve

ra
ge

 n
um

er
 o

f M
s d(ρ

),
 M

w d
(ρ

)
an

d
M

Ms
d
(ρ)

Mw
d

(ρ)

M

(e) dorothea (f) spambase

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

ρ

A
ve

ra
ge

 n
um

er
 o

f M
s d(ρ

),
 M

w d
(ρ

)
an

d
M

Ms
d
(ρ)

Mw
d

(ρ)

M

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

900

1000

ρ

A
ve

ra
ge

 n
um

er
 o

f M
s d(ρ

),
 M

w d
(ρ

)
an

d
M

Ms
d
(ρ)

Mw
d

(ρ)

M

(g) MITFace (h) w7a

Figure 4: Empirical comparison ofM, Mw
d (ρ) andM

s
d(ρ) w.r.t. varied ρ ∈ [0,1] values.

1604

DOUBLE UPDATING ONLINE LEARNING

Algorithm vehicle dna
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Max 64.882 ± 1.643 548.90 ± 13.90 0.079 20.460 ± 0.770 409.20 ± 15.41 0.192

Uniform 65.934 ± 1.554 557.80 ± 13.15 0.109 19.875 ± 0.427 397.50 ± 8.54 0.264

Prop 66.678 ± 1.757 564.10 ± 14.86 0.116 20.268 ± 0.555 405.35 ± 11.10 0.267

MIRA 62.252 ± 2.114 526.65 ± 17.89 1.821 26.920 ± 0.880 538.40 ± 17.61 5.304

PA-I 67.086 ± 1.479 781.70 ± 12.42 0.091 15.503 ± 0.474 1224.35 ± 13.48 0.326

PA-II 66.909 ± 1.475 789.30 ± 10.73 0.089 15.398 ± 0.467 1237.50 ± 13.12 0.325

M-DUOLiter 70.674 ± 1.194 758.05 ± 8.65 0.162 11.668 ± 0.599 1086.00 ± 16.39 0.502

M-DUOLappr 69.634 ± 1.463 828.05 ± 4.48 0.158 14.105 ± 0.611 1281.75 ± 14.44 0.495

M-DUOL 51.950 ± 1.948 719.25 ± 10.95 0.172 10.340 ± 0.513 869.80 ± 12.61 0.438

Algorithm segment satimage
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Max 41.342 ± 1.013 955.00 ± 23.40 0.414 29.628 ± 0.561 1314.00 ± 24.89 0.826

Uniform 41.468 ± 0.550 957.90 ± 12.71 0.566 28.440 ± 0.398 1261.30 ± 17.64 1.071

Prop 41.589 ± 0.714 960.70 ± 16.48 0.565 28.878 ± 0.467 1280.75 ± 20.72 1.087

MIRA 35.784 ± 3.770 826.55 ± 87.08 9.193 27.536 ± 2.228 1221.20 ± 98.80 15.229

PA-I 39.775 ± 0.665 1852.75 ± 19.90 0.573 27.377 ± 0.361 2676.40 ± 24.88 1.296

PA-II 39.842 ± 0.655 1870.70 ± 18.97 0.577 27.258 ± 0.429 2709.50 ± 23.77 1.307

M-DUOLiter 41.416 ± 1.084 1787.90 ± 31.00 0.903 33.894 ± 0.567 2787.45 ± 43.18 2.024

M-DUOLappr 39.314 ± 0.791 1923.60 ± 14.31 0.871 26.222 ± 0.464 3052.50 ± 31.39 2.024

M-DUOL 20.580 ± 0.705 1265.15 ± 28.39 0.693 22.524 ± 0.482 2066.85 ± 32.99 1.505

Algorithm usps mnist
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Max 10.025 ± 0.195 730.90 ± 14.21 1.459 15.318 ± 0.168 1531.80 ± 16.80 2.744

Uniform 9.445 ± 0.150 688.60 ± 10.91 1.858 14.603 ± 0.201 1460.25 ± 20.15 3.631

Prop 9.614 ± 0.176 700.95 ± 12.86 1.868 14.763 ± 0.228 1476.30 ± 22.78 3.635

MIRA 11.572 ± 0.403 843.75 ± 29.39 44.663 18.037 ± 0.539 1803.70 ± 53.93 67.168

PA-I 6.641 ± 0.158 2528.45 ± 23.48 2.669 11.026 ± 0.208 4773.70 ± 32.84 5.771

PA-II 6.568 ± 0.116 2561.95 ± 27.94 2.606 10.959 ± 0.238 4830.40 ± 27.06 5.824

M-DUOLiter 5.743 ± 0.158 2284.15 ± 40.06 3.160 8.947 ± 0.182 4398.95 ± 46.46 9.031

M-DUOLappr 6.002 ± 0.132 2725.40 ± 23.55 3.541 9.640 ± 0.164 5163.05 ± 37.34 10.386

M-DUOL 5.162 ± 0.149 1759.30 ± 23.44 2.408 8.282 ± 0.183 3557.15 ± 25.17 7.050

Algorithm letter protein
Mistake (%) Support Vectors (#) Time (s) Mistakes (%) Support Vectors (#) Time (s)

Max 71.562 ± 0.538 10734.35 ± 80.63 18.749 47.657 ± 0.221 8466.75 ± 39.21 12.842

Uniform 71.973 ± 0.280 10795.90 ± 41.99 47.031 46.828 ± 0.272 8319.45 ± 48.36 14.342

Prop 72.033 ± 0.273 10804.95 ± 40.89 43.683 47.260 ± 0.260 8396.15 ± 46.13 14.620

MIRA 67.709 ± 1.196 10156.35 ±179.54 467.019 47.905 ± 0.922 8510.80 ±163.74 42.174

PA-I 72.283 ± 0.338 14708.55 ± 15.27 24.848 47.657 ± 0.230 14153.25 ± 49.06 23.409

PA-II 72.339 ± 0.380 14735.55 ± 15.86 24.131 47.550 ± 0.285 14285.85 ± 44.94 23.602

M-DUOLiter 73.066 ± 0.326 14614.65 ± 22.26 210.684 50.070 ± 0.392 14191.85 ± 64.80 55.622

M-DUOLappr 69.992 ± 0.331 14892.70 ± 11.77 215.587 51.459 ± 0.582 16000.55 ± 72.07 63.065

M-DUOL 54.068 ± 0.351 13140.40 ± 37.33 186.452 46.281 ± 0.418 12550.10 ± 87.27 43.774

Table 4: Evaluation of multiclass online learning algorithms on the multiclass data sets.

1605

ZHAO, HOI AND JIN

Prop) and MIRA are considerably sparser than those learned by the two PA algorithms. We believe
that this can be attributed to the aggressive updating strategies used by the PA algorithms. Second,
among the three variants of double updating for multi-label learning, it is not surprising to observe
that M-DUOL yields the lowest mistake rates for all data sets. Further, among all the algorithms,
we observe that the M-DUOL algorithm makes the least number of mistakes for all data sets, and
significantly outperforms all the baseline algorithms.

Second, by examining the sparsity of classifiers learned by the proposed algorithms, we observe
that the number of support vectors identified by M-DUOL is usually smaller than that of the PA
algorithms (except for data set “vehicle”), but is significantly larger than those of the four non-
aggressive algorithms (i.e., Max, Uniform, Prop, and MIRA).

Finally, comparing the running time cost, we observe that the Max algorithm is the most effi-
cient one, while MIRA is the least efficient approach for all the data sets. Despite the additional
time needed for double updates, overall we found that the running time of the proposed M-DUOL
algorithm is comparable to those of the two PA algorithms (except for the “letter” data set where the
time costs of the M-DUOL algorithms are considerably greater than those of the PA algorithms).

6. Discussions and Future Directions

Although encouraging results have been achieved by the proposed novel DUOL algorithms, we
should address the limitations of our current work and discuss some research directions for future
improvements. First of all, the proposed DUOL algorithm is based on the Passive Aggressive on-
line learning algorithms (Crammer et al., 2006). For the future work, it is possible to extend other
single update online learning methods, such as EG (Kivinen and Warmuth, 1995), for double up-
dating. Second, the approach for choosing an auxiliary example from existing support vectors may
be further improved by exploring the heuristics for measuring the informativeness of an example.
Finally, we plan to extend the proposed double updating framework for budget online learning to
make sparse classifiers.

7. Conclusions

This paper presented a novel “double updating” approach to online learning named as “DUOL”,
which not only updates the weight of the misclassified example, but also adjusts the weight of one
existing support vector that the most seriously conflicts with the new support vector. We show
that the mistake bound for an online classification task can be significantly reduced by the proposed
DUOL algorithms. We have conducted an extensive set of experiments by comparing with a number
of algorithms for both binary and multiclass online classifications. Promising empirical results
showed that the proposed double updating online learning algorithms consistently outperform the
single-update online learning algorithms.

Acknowledgments

The work described in this paper was supported in part by Singapore MOE ARC Tier-2 Grant
(T208B2203), Singapore MOE ARC Tier-1 Grant (RG67/07), National Science Foundation (IIS-
0643494), and US Office of Naval Research (ONR N00014-09-1-0663).

1606

DOUBLE UPDATING ONLINE LEARNING

Appendix A. The Proof for Proposition 2

Proof The optimization (1) can be rewritten to the following equivalent optimization:

min
γa,dγb

ka
2
γ2a+

kb
2
d2γb +wabγadγb − �aγa− �bdγb ,

s.t. γa−C ≤ 0, (6)

−γa ≤ 0, (7)

dγb −C+ γ̂b ≤ 0, (8)

−dγb − γ̂b ≤ 0, (9)

where ka,kb > 0, wab ≤ 0, �a = 1− ya f (xa) ≥ 0, �b = 1− yb f (xb) ≥ 0 and γ̂b > 0. With λ1, λ2,
λ3 and λ4 as Lagrange multipliers, the KKT conditions for this problem consist of the constraints
(6)-(9), the nonnegativity constraints λi ≥ 0, ∀i, the complementary slackness conditions

λ1(γa−C) = 0, λ2(−γa) = 0, λ3(dγb −C+ γ̂b) = 0, λ4(−dγb − γ̂b) = 0

and zero gradient conditions:

kaγa+wabdγb − �a+λ1−λ2 = 0 and kbdγb +wabγa− �b+λ3−λ4 = 0.

We will discuss every possible condition to compute the closed-form solution. Firstly, we will dis-
cuss the case λ1 �= 0:

A.1 Case 1. If λ1 �= 0
Since λ1(γa−C) = 0, we have γa = C; further, because λ2(−γa) = 0, we have λ2 = 0. Under the
condition λ1 �= 0, we will discuss λ3 �= 0 and λ3 = 0 separately as follows:

A.1.1 SUB-CASE 1.1. IF λ3 �= 0
Since λ3[dγb − (C− γ̂b)] = 0, we have dγb =C− γ̂b, as a result λ4(−C) = 0, so λ4 = 0. Plugging the
results γa =C, λ2 = 0, dγb =C− γ̂b and λ4 = 0 into the zero gradient condition, we have

kaC+wab(C− γ̂b)− �a+λ1 = 0 and kb(C− γ̂b)+wabC− �b+λ3 = 0.

Thus, we have

λ1 =−[kaC+wab(C− γ̂b)− �a] and λ3 =−[kb(C− γ̂b)+wabC− �b].

As a result, if

−(kaC+wab(C− γ̂b)− �a)> 0 and − (kb(C− γ̂b)+wabC− �b)> 0,

then KKT conditions are satisfied, (γa,dγb) = (C,C− γ̂b) is the unique solution.

1607

ZHAO, HOI AND JIN

A.1.2 SUB-CASE 1.2. IF λ3 = 0

When λ3 = 0, we only conclude dγb ∈ [−γ̂b,C− γ̂b].
Under the conditions λ1 �= 0 and λ3 = 0, we will discuss the two cases λ4 �= 0 and λ4 = 0, respec-
tively as follows.
Sub-case 1.2.1. If λ4 �= 0. Since λ4(−dγb − γ̂b) = 0, we have dγb =−γ̂b. Plugging the results λ2 = 0,
γa =C, λ3 = 0 and dγb =−γ̂b in to the zero gradient conditions:

kaC+wab(−γ̂b)− �a+λ1 = 0 and kb(−γ̂b)+wabC− �b−λ4 = 0.

But since kb(−γ̂b) < 0 wabC ≤ 0 and �b,λ4 ≥ 0, kb(−γ̂b)+wabC− �b−λ4 < 0, which contradicts
the equation above.
Sub-case 1.2.2. If λ4 = 0. Plugging the conditions γa =C, λ2 = 0, λ3 = 0 and λ4 = 0 into the zero
gradient equations:

kaC+wabdγb − �a+λ1 = 0 and kbdγb +wabC− �b = 0.

Solving the above equations leads to the following:

λ1 =
w2abC−wab�b− kakbC+ kb�a

kb
and dγb =

�b−wabC
kb

.

If w
2
abC−wab�b−kakbC+kb�a

kb
> 0 and �b−wabC

kb
∈ [−γ̂b,C− γ̂b], then the KKT conditions are all satisfied; as

a result, (γa,dγb) = (C, �b−wabCkb
) is the unique optimal solution.

Next we will discuss the situation with the condition λ1 = 0.

A.2 Case 2. If λ1 = 0

Under the condition λ1 = 0, we only conclude γa ∈ [0,C]. We will discuss the cases λ2 �= 0 and
λ2 = 0 under the condition λ1 = 0, respectively.

A.2.1 SUB-CASE 2.1. IF λ2 �= 0
Since λ2(−γa) = 0, we conclude γa = 0. Under the conditions λ1 = 0 and λ2 �= 0, we will discuss
the cases λ3 �= 0 and λ3 = 0:
Sub-case 2.1.1. If λ3 �= 0. Since λ3[dγb − (C− γ̂b)] = 0, plugging the conditions λ1 = 0, γa = 0,
dγb =C− γ̂b and λ4 = 0 into the zero gradient conditions:

wab(C− γ̂b)− �a−λ2 = 0 and kb(C− γ̂b)− �b+λ3 = 0.

Since wab ≤ 0,C− γ̂b ≥ 0 and �a ≥ 0, we conclude

λ2 = wab(C− γ̂b)− �a ≤ 0.

But λ2 ≥ 0 and λ2 �= 0, conclude λ2 > 0, which contradicts the inequality above.
Sub-case 2.1.2. If λ3 = 0. Under these known conditions, we only know dγb ∈ [−γ̂b,C− γ̂b]. Below,
we will discuss the cases λ4 �= 0 and λ4 = 0, under the conditions λ1 = 0, λ2 �= 0 and λ3 = 0.

1608

DOUBLE UPDATING ONLINE LEARNING

• If λ4 �= 0, since λ4(−dγb − γ̂b) = 0, dγb = −γ̂b. From the conditions λ1 = 0, γa = 0, λ3 = 0
and dγb =−γ̂b and the zero gradient conditions, we have

wab(−γ̂b)− �a−λ2 = 0 and kb(−γ̂b)− �b−λ4 = 0.

Since kb, γ̂b > 0 and �b ≥ 0, we conclude
λ4 = kb(−γ̂b)− �b < 0.

But the equation above contradicts λ4 > 0.

• Else if λ4 = 0, from the conditions λ1 = 0, γa = 0, λ3 = 0 and λ4 = 0 and the zero gradient
conditions, we have

wabdγb − �a−λ2 = 0 and kbdγb − �b = 0.

Since wab ≤ 0, �b, �a ≥ 0 and kb > 0,

λ2 = wab
�b
kb

− �a ≤ 0,

which contradicts λ2 > 0 (Since λ2 �= 0).

A.2.2 SUB-CASE 2.2. IF λ2 = 0

Under the conditions λ1 = λ2 = 0, we only know γa ∈ [0,C]. Below, we will discuss the two cases
λ3 �= 0 and λ3 = 0, under the conditions λ1 = λ2 = 0.
Sub-case 2.2.1. If λ3 �= 0. Since λ3[dγb − (C− γ̂b)] = 0, dγb = C− γ̂b, as a result λ4(−C) = 0, so
λ4 = 0. From the conditions λ1 = λ2 = λ4 = 0, dγb =C− γ̂b and zero gradient conditions:

kaγa+wab(C− γ̂b)− �a = 0 and kb(C− γ̂b)+wabγa− �b+λ3 = 0.

As a result, if

�a−wab(C− γ̂b)
ka

∈ [0,C] and �b− kb(C− γ̂b)−wab
�a−wab(C− γ̂b)

ka
> 0,

the unique optimal solution is (γa,dγb) = (�a−wab(C−γ̂b)ka
,C− γ̂b).

Sub-case 2.2.2. If λ3 = 0. According to λ1 = λ2 = λ3 = 0, we only conclude dγb ∈ [−γ̂b,C− γ̂b].

• If λ4 �= 0, since λ4(−dγb − γ̂b) = 0, dγb = −γ̂b. From λ1 = λ2 = λ3 = 0, dγb = −γ̂b and zero
gradient conditions:

kaγa+wab(−γ̂b)− �a = 0 and kb(−γ̂b)+wabγa− �b−λ4 = 0,

since λ4 = kb(−γ̂b)+wabγa− �b < 0 which contradicts with the condition λ4 > 0.

• If λ4 = 0, from λ1 = λ2 = λ3 = λ4 = 0 and zero gradient conditions:

kaγa+wabdγb − �a = 0 and kbdγb +wabγa− �b = 0.

As a result, if γa and dγb satisfy the following:

γa =
kb�a−wab�b
kakb−w2ab

∈ [0,C] and dγb =
ka�b−wab�a
kakb−w2ab

∈ [−γ̂b,C− γ̂b],

then (γa,dγb) = (kb�a−wab�b
kakb−w2ab

, ka�b−wab�a
kakb−w2ab

) is the unique optimal solution.

1609

ZHAO, HOI AND JIN

Summary: The final closed-form solution to the optimization is summarized as:

(γa,dγb) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(C,C− γ̂b) if (kaC+wab(C− γ̂b)− �a)< 0 and (kb(C− γ̂b)+wabC− �b)< 0

(C, �b−wabCkb
) if

w2
abC−wab�b−kakbC+kb�a

kb
> 0 and �b−wabC

kb
∈ [−γ̂b,C− γ̂b]

(�a−wab(C−γ̂b)ka
,C− γ̂b) if �a−wab(C−γ̂b)

ka
∈ [0,C] and �b− kb(C− γ̂b)−wab

�a−wab(C−γ̂b)
ka

> 0

(kb�a−wab�b
kakb−w2

ab
, ka�b−wab�a
kakb−w2

ab
) if (kb�a−wab�b

kakb−w2
ab

, ka�b−wab�a
kakb−w2

ab
) ∈ [0,C]× [−γ̂b,C− γ̂b]

.

Appendix B. The Proof for Proposition 3

Proof First of all, the product H(Ya) ·H(Yb) can be simplified as:

H(Ya) ·H(Yb) =
k

∑
i=1

σ(i,a)σ(i,b) = σ(ra,a)σ(ra,b)+σ(sa,a)σ(sa,b) = σ(ra,b)−σ(sa,b).

We can check the value of σ(ra,b)−σ(sa,b) by examining all possible cases as follows:

1 If ra = rb that implies that xa and xb have the same relevant labels, then we should have
H(Ya) ·H(Yb) = 1−σ(sa,b)≥ 1 (either 1 or 2);

2 If ra �= rb, then:

2.1 If ra = sb, then HYa ·HYb = σ(sb,b)−σ(sa,b) =−1−σ(sa,b)≤−1;

2.2 If ra �= sb, then HYa ·HYb = σ(ra,b)−σ(sa,b) = 0−σ(sa,b):

2.2.1 If sa = sb, then HYa ·HYb =−σ(sb,b) = 1;
2.2.2 If sa = rb, then HYa ·HYb =−σ(rb,b) =−1;
2.2.3 If sa �= sb and sa �= rb, then HYa ·HYb =−σ(sa,b) = 0.

We thus have the fact that H(Ya) ·H(Yb)< 0 holds if and only if (ra = sb) or (sa = rb).

Appendix C. The Proof of Proposition 4

In this appendix, we will derive the dual ascent by the multiclass double updating approach. Our
approach to the proofs is mainly inspired by the study in Shalev-Shwartz (2007), but our problem is
different from their study.

For the convenience of our presentation, we introduce the following notation for our derivation.
We denote the loss function for a training example (x,Y) as follows:

g(f) = �
(

 f ;(x,Y)
)
= max

r∈Y,s�∈Y

[
1−
(
fr(x)− fs(x)

)]
+
.

We order all the classes r in the assigned set Y as r1, · · · ,r‖Y‖, and the class s in the unassigned set
Y \Y as s1, · · · ,s‖[k]/Y‖. We slightly abuse our notations by simplifying 〈 f ,g〉HK

as 〈 f ,g〉 and ‖ f‖HK

as ‖ f‖ when there is no ambiguity about the space for computing dot product and norm.
We first give a lemma that shows the Fenchel conjugate of the above loss function g.

1610

DOUBLE UPDATING ONLINE LEARNING

Lemma 2 Let Y = [k] be the possible labels set. Y ⊆ Y is relevant labels set for x ∈ Rn. f =
(f1, · · · , fk)T , where ∀i ∈ [k], fi ∈Hκ. And the loss function is defined as follows:

g(f) = max
r∈Y,s�∈Y

[
1−
(
fr(x)− fs(x)

)]
+
.

Then for any λ= (λ1, · · · ,λk)T , where ∀i λi ∈Hκ, we have g’s Fenchel conjugate as:

g∗(λ) =

{
−∑i, jαi j if λri +∑ jαi jκ(x, ·) = 0 and λs j −∑iαi jκ(x, ·) = 0
∞ otherwise

,

where α= (αi j) ∈ A = [A|A ∈ R‖Y‖
+ ×R(k−‖Y‖)

+ ,‖A‖1 ≤ 1] and (ri× s j) ∈ B = Y × ([k]/Y).

Proof The approach of our proof is similar to the method for proving the “Max-of-hinge” in Shalev-
Shwartz (2007). First of all, it is not difficult to show that the loss function can be re-formulated as
follows:

g(f) = max
 α∈A ,(ri×s j)∈B

∑
i, j

αi j
[
1−
(
fri(x)− fs j(x)

)]
= max

 α∈A ,(ri×s j)∈B
∑
i, j

αi j
[
1−
(
〈 fri(·),κ(x, ·)〉−〈 fs j(·),κ(x, ·)〉

)]
.

As a result, we have:

g∗(λ) = max
 f

{
〈 λ, f 〉−g(f)

}
= max

 f

{ k

∑
n=1

〈λn, fn〉− max
 α∈A ,(ri×s j)∈B

∑
i, j

αi j
[
1−
(
〈 fri(·),κ(x, ·)〉−〈 fs j(·),κ(x, ·)〉

)]}
.

For any fn,λn ∈Hκ, they can be written as: fn = βnκ(x, ·)+ f⊥n ,λn = γnκ(x, ·)+λ⊥n , where f⊥n ,λ
⊥
n ∈

V ⊥, V = span{κ(x, ·)}. As a result, we have

g∗(λ) = max
 f

{ k

∑
n=1

(
〈λ⊥n , f⊥n 〉+βnγnκ(x,x)

)
− max

 α∈A ,(ri×s j)∈B
∑
i, j

αi j
[
1−
(
βriκ(x,x)−βs jκ(x,x)

)]}
.

When λ⊥n �= 0, the max f⊥〈λ⊥n , f⊥n 〉 will be ∞, resulting g∗(λ) =∞. Otherwise, if λ⊥n = 0, ∀n, the
term f⊥n does not take effect for the objective; as a result, the optimal fn can be written in the form
of βnκ(x, ·) and the conjugate is computed as follows:

g∗(λ) =max
βn

{ k

∑
n=1

βnγnκ(x,x)− max
 α∈A ,(ri×s j)∈B

∑
i, j
αi j
[
1−
(
βriκ(x,x)−βs jκ(x,x)

)]}
=max

βn
min

 α∈A ,(ri×s j)∈B

{ k

∑
n=1

〈λn,βnκ(x, ·)〉−∑
i, j
αi j
[
1−
(
〈βriκ(x, ·),κ(x, ·)〉−〈βs jκ(x, ·),κ(x, ·)〉

)]}
= min

 α∈A ,(ri×s j)∈B
max
βn

{ k

∑
n=1

〈λn,βnκ(x, ·)〉−∑
i, j
αi j
[
1−
(
〈βriκ(x, ·),κ(x, ·)〉−〈βs jκ(x, ·),κ(x, ·)〉

)]}
= min

 α∈A ,(ri×s j)∈B

{
−∑
i, j
αi j+max

βn

[
∑
ri

〈βriκ(x, ·),λri +∑
j
αi jκ(x, ·)〉+∑

s j

〈βs jκ(x, ·),λs j−∑
i
αi jκ(x, ·)〉

]}
.

1611

ZHAO, HOI AND JIN

The fourth equality is guaranteed by the strong max-min property (Boyd and Vandenberghe, 2004),
and more importantly, we can see that only when α satisfies λri +∑ jαi jκ(x, ·) = 0 and λs j −
∑iαi jκ(x, ·) = 0, the second term in the equation above will be zero; otherwise, it will be ∞. There-
fore, we have the resulting Fenchel conjugate of g(f) as follows:

g∗(λ) =

{
−∑i, jαi j λri +∑ jαi jκ(x, ·) = 0 and λs j −∑iαi jκ(x, ·) = 0
∞ otherwise

.

Given the above Fenchel dual of loss function, we can derive the dual for the optimization problem
given on the right-hand side of Equation (4), as given in the following lemma.

Lemma 3 Suppose the complexity measure function is given as F(f) = ∑k
i=1

1
2‖ fi‖2

Hκ
, and we set

αi j to zeros for ∀(i, j) ∈ {[Yt × ([k]/Yt)]/(rt ,st)}, where (rt ,st) is defined in Equation (2). Then
the dual objective function for optimization given on the right-hand side of Equation (4) can be
expressed as follows:

D(γ1, · · · ,γT) =−
k

∑
i=1

1
2
‖

T

∑
t=1

σ(i, t)γtκ(xt , ·)‖2 +
T

∑
t=1

γt ,

where γt ∈ [0,C] and σ(i, t) =

⎧⎨⎩
1 if i= rt
−1 if i= st
0 otherwise

.

Proof The proof here resembles the one in the section 3.2 of Shalev-Shwartz (2007). Firstly, we
note that the problem (4) is equivalent to the following:

inf
 f0, f1,··· , fT

(
F(f0)+

T

∑
t=1

Cgt(ft)
)

s.t. f0, ft ∈ Hκ and ∀t ∈ [T], ft = f0.

By introducing T function vectors λ1, · · · , λT , in which each λt = (λt,1, · · · ,λt,k) ∈ Hκ is a Lagrange
multipliers for the constraint ft = f0, we can obtain the following Lagrangian:

L(f0, · · · , fT , λ1, · · · , λT) = F(f0)+
T

∑
t=1

Cgt(ft)+
T

∑
t=1

〈 λt , f0 − ft〉.

The dual objective function can be derived as follows:

D(λ1, · · · , λT) = inf
 f0, f1,··· , fT

L(f0, · · · , fT , λ1, · · · , λT)

=−sup
 f0

[
〈 f0,−

T

∑
t=1

 λt〉−F(f0)
]
−

T

∑
t=1

sup
 ft

[
〈 ft , λt〉−Cgt(ft)

]
=−F∗(−

T

∑
t=1

 λt)−
T

∑
t=1

(Cgt)
∗(λt) =−F∗(−

T

∑
t=1

 λt)−
T

∑
t=1

Cg∗t (
 λt
C
).

Because F(f) = ∑k
i=1

1
2‖ fi‖2

Hκ
, we have F∗ = F . The dual problem thus becomes:

D(λ1, · · · , λT) =−
k

∑
i=1

1
2
‖−

T

∑
t=1

λt,i‖2
Hκ

−
T

∑
t=1

Cg∗t (
 λt
C
).

1612

DOUBLE UPDATING ONLINE LEARNING

Because we want to maximize the dual objective, according to Lemma 2, we should set

λt,rti
C

+∑
j

αti jk(xt , ·) = 0,
λt,stj
C

−∑
i

αti jk(xt , ·) = 0,

where (αti j) ∈ At ,(rti × stj) ∈ Bt , At = [A|A ∈ R‖Yt‖
+ ×R(k−‖Yt‖)

+ ,‖A‖1 ≤ 1] and Bt = Yt × ([k]/Yt).
Furthermore, we set αi j to zeros for ∀(i, j) ∈ {[Yt × ([k]/Yt)]/(rt ,st)}. For simplicity, we denote
αtrt ,st as γt

C . As a result, the dual objective function becomes

D(γ1, · · · ,γT) =−
k

∑
i=1

1
2
‖

T

∑
t=1

σ(i, t)γtκ(xt , ·)‖2 +
T

∑
t=1

γt ,

where γt ∈ [0,C] and σ(i, t) =

⎧⎨⎩
1 if i= rt
−1 if i= st
0 otherwise

.

By applying Lemma 3, we thus have the dual objective function for the t-th step as:

Dt(γ1, · · · ,γt) =−
k

∑
i=1

1
2
‖

t

∑
j=1

σ(i, j)γ jk(x j, ·)‖2 +
t

∑
j=1

γ j. (10)

Now our goal is to derive the dual ascent guaranteed by the proposed double updating scheme.
When pair (xa,Ya) is misclassified by the prediction function ft = (ft,1, · · · , ft,k), we will perform
the update on the prediction function. Assume we conduct a double updating for (xa,Ya) and some
auxiliary example (xb,Yb), we can prove Proposition 4 as follows.

Proof According to Equation (10) obtained by Lemma 3, before performing the double updating,
the value of the dual function is expressed as:

Dt−1 =−
k

∑
i=1

1
2
‖
t−1

∑
j=1

σ(i, j)γ̂ jk(x j, ·)‖2 +
t−1

∑
j=1

γ̂ j =−
k

∑
i=1

1
2
‖ ft−1,i‖2 +

t−1

∑
j=1

γ̂ j,

where γ̂ j’s denote the weights of the prediction function ft−1 before the updating. After performing
the dual update, the value of the new dual function can be written as:

Dt =−
k

∑
i=1

1
2
‖ ft−1,i+σ(i,a)γak(xa, ·)+σ(i,b)dγbk(xb, ·)‖2 +

t−1

∑
j=1

γ̂ j+ γa+dγb .

Hence, the dual ascent is computed as follows:

ΔD= Dt −Dt−1 = γa
(

1−
(
ft−1,ra(xa)− ft−1,sa(xa)

))
+dγb

(
1−
(
ft−1,rb(xb)− ft−1,sb(xb)

))
−γ2

asa−d2
γbsb−

k

∑
i=1

σ(i,a)σ(i,b)γadγbk(xa,xb) .

1613

ZHAO, HOI AND JIN

References

Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bottou. Fast kernel classifiers with online
and active learning. Journal of Machine Learning Research, 6:1579–1619, 2005.

Antoine Bordes, Léon Bottou, Patrick Gallinari, and Jason Weston. Solving multiclass support
vector machines with larank. In Proceedings of the 24th International Conference on Machine
learning (ICML’07), pages 89–96, 2007.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support vector machine
learning. In Advances in Neural Information Processing Systems 13 (NIPS), pages 409–415,
2000.

Giovanni Cavallanti, Nicolò Cesa-Bianchi, and Claudio Gentile. Tracking the best hyperplane with
a simple budget perceptron. Machine Learning, 69(2-3):143–167, 2007.

Nicolò Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge University
Press, 2006.

Nicolò Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line
learning algorithms. IEEE Trans. on Inf. Theory, 50(9):2050–2057, 2004.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-based
vector machines. Journal of Machine Learning Research, 2:265–292, 2001.

Koby Crammer and Yoram Singer. Ultraconservative online algorithms for multiclass problems.
Journal of Machine Learning Research, 3:951–991, 2003.

Koby Crammer and Yoram Singer. Loss bounds for online category ranking. In Proceedings of the
18th Annual Conference on Learning Theory (COLT’05), pages 48–62, 2005.

Koby Crammer, Jaz S. Kandola, and Yoram Singer. Online classification on a budget. In Advances
in Neural Information Processing Systems (NIPS), 2003.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online
passive-aggressive algorithms. Journal of Machine Learning Research, 7:551–585, 2006.

Koby Crammer, Mark Dredze, and Fernando Pereira. Exact convex confidence-weighted learning.
In Advances in Neural Information Processing Systems (NIPS), pages 345–352, 2008.

Koby Crammer, Alex Kulesza, and Mark Dredze. Adaptive regularization of weight vectors. In
Advances in Neural Information Processing Systems (NIPS), 2009.

Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer. The forgetron: A kernel-based perceptron on
a budget. SIAM J. Comput., 37(5):1342–1372, 2008. ISSN 0097-5397.

Mark Dredze, Koby Crammer, and Fernando Pereira. Confidence-weighted linear classification.
In Proceedings of the 25th International Conference on Machine Learning (ICML’08), pages
264–271, 2008.

1614

DOUBLE UPDATING ONLINE LEARNING

Michael Fink, Shai Shalev-Shwartz, Yoram Singer, and Shimon Ullman. Online multiclass learning
by interclass hypothesis sharing. In Proceedings of the 25th International Conference on Machine
learning (ICML’06), pages 313–320, 2006.

Yoav Freund and Robert E. Schapire. Large margin classification using the perceptron algorithm.
Mach. Learn., 37(3):277–296, 1999.

Claudio Gentile. A new approximate maximal margin classification algorithm. Journal of Machine
Learning Research, 2:213–242, 2001.

Jyrki Kivinen and Manfred K. Warmuth. Additive versus exponentiated gradient updates for lin-
ear prediction. In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of
Computing (STOC’95), pages 209–218, 1995.

Jyrki Kivinen, Alex J. Smola, and Robert C. Williamson. Online learning with kernels. In Advances
in Neural Information Processing Systems (NIPS), pages 785–792, 2001.

Yi Li and Philip M. Long. The relaxed online maximum margin algorithm. In Advances in Neural
Information Processing Systems (NIPS), pages 498–504, 1999.

Francesco Orabona, Joseph Keshet, and Barbara Caputo. The projectron: a bounded kernel-based
perceptron. In Proceedings of the Twenty-Fifth International Conference on Machine Learning
(ICML’08), pages 720–727, 2008.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organization
in the brain. Psychological Review, 65:386–407, 1958.

Shai Shalev-Shwartz. Online learning:theory, algorithms, and applications. In Ph.D thesis, 2007.

Shai Shalev-Shwartz and Yoram Singer. Online learning meets optimization in the dual. In Pro-
ceedings of the 19th Annual Conference on Learning Theory (COLT’06), pages 423–437, 2006.

Shai Shalev-Shwartz and Yoram Singer. A primal-dual perspective of online learning algorithms.
Machine Learning, 69(2-3):115–142, 2007.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley, 1998.

Jason Weston and Antoine Bordes. Online (and offline) on an even tighter budget. In Proceedings
of the Tenth International Workshop on Artificial Intelligence and Statistics (AISTATS’05), pages
413–420, 2005.

Peilin Zhao, Steven C. H. Hoi, and Rong Jin. Duol: A double updating approach for online learning.
In Advances in Neural Information Processing Systems 22 (NIPS), pages 2259–2267, 2009.

1615

Journal of Machine Learning Research 12 (2011) 1617-1653 Submitted 5/10; Revised 2/11; Published 5/11

Learning High-Dimensional Markov Forest Distributions:
Analysis of Error Rates

Vincent Y. F. Tan VTAN@WISC.EDU
Department of Electrical and Computer Engineering
University of Wisconsin-Madison
Madison, WI 53706

Animashree Anandkumar A.ANANDKUMAR@UCI.EDU
Center for Pervasive Communications and Computing
Electrical Engineering and Computer Science
University of California, Irvine
Irvine, CA 92697

Alan S. Willsky WILLSKY@MIT.EDU
Stochastic Systems Group
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA 02139

Editor:Marina Meilă

Abstract

The problem of learning forest-structured discrete graphical models from i.i.d. samples is con-
sidered. An algorithm based on pruning of the Chow-Liu tree through adaptive thresholding is
proposed. It is shown that this algorithm is both structurally consistent and risk consistent and the
error probability of structure learning decays faster than any polynomial in the number of samples
under fixed model size. For the high-dimensional scenario where the size of the model d and the
number of edges k scale with the number of samples n, sufficient conditions on (n,d,k) are given
for the algorithm to satisfy structural and risk consistencies. In addition, the extremal structures
for learning are identified; we prove that the independent (resp., tree) model is the hardest (resp.,
easiest) to learn using the proposed algorithm in terms of error rates for structure learning.

Keywords: graphical models, forest distributions, structural consistency, risk consistency, method
of types

1. Introduction

Graphical models (also known as Markov random fields) have a wide range of applications in di-
verse fields such as signal processing, coding theory and bioinformatics. See Lauritzen (1996),
Wainwright and Jordan (2003) and references therein for examples. Inferring the structure and pa-
rameters of graphical models from samples is a starting point in all these applications. The structure
of the model provides a quantitative interpretation of relationships amongst the given collection of
random variables by specifying a set of conditional independence relationships. The parameters of
the model quantify the strength of these interactions among the variables.

c©2011 Vincent Tan, Animashree Anandkumar and Alan Willsky.

TAN, ANANDKUMAR AND WILLSKY

The challenge in learning graphical models is often compounded by the fact that typically only
a small number of samples are available relative to the size of the model (dimension of data). This
is referred to as the high-dimensional learning regime, which differs from classical statistics where
a large number of samples of fixed dimensionality are available. As a concrete example, in order
to analyze the effect of environmental and genetic factors on childhood asthma, clinician scientists
in Manchester, UK have been conducting a longitudinal birth-cohort study since 1997 (Custovic
et al., 2002; Simpson et al., 2010). The number of variables collected is of the order of d ≈ 106

(dominated by the genetic data) but the number of children in the study is small (n ≈ 103). The
paucity of subjects in the study is due in part to the prohibitive cost of collecting high-quality
clinical data from willing participants.

In order to learn high-dimensional graphical models, it is imperative to strike the right balance
between data fidelity and overfitting. To ameliorate the effect of overfitting, the samples are often
fitted to a sparse graphical model (Wainwright and Jordan, 2003), with a small number of edges.
One popular and tractable class of sparse graphical models is the set of tree1 models. When re-
stricted to trees, the Chow-Liu algorithm (Chow and Liu, 1968; Chow and Wagner, 1973) provides
an efficient implementation of the maximum-likelihood (ML) procedure to learn the structure from
independent samples. However, in the high-dimensional regime, even a tree may overfit the data
(Liu et al., 2011). In this paper, we consider learning high-dimensional, forest-structured (discrete)
graphical models from a given set of samples.

For learning the forest structure, the ML (Chow-Liu) algorithm does not produce a consistent
estimate since ML favors richer model classes and hence, outputs a tree in general. We propose a
consistent algorithm called CLThres, which has a thresholding mechanism to prune “weak” edges
from the Chow-Liu tree. We provide tight bounds on the overestimation and underestimation errors,
that is, the error probability that the output of the algorithm has more or fewer edges than the true
model.

1.1 Main Contributions

This paper contains three main contributions. Firstly, we propose an algorithm named CLThres and
prove that it is structurally consistent when the true distribution is forest-structured. Secondly, we
prove that CLThres is risk consistent, meaning that the risk under the estimated model converges
to the risk of the forest projection2 of the underlying distribution, which may not be a forest. We
also provide precise convergence rates for structural and risk consistencies. Thirdly, we provide
conditions for the consistency of CLThres in the high-dimensional setting.

We first prove that CLThres is structurally consistent, i.e., as the number of samples grows for
a fixed model size, the probability of learning the incorrect structure (set of edges), decays to zero
for a fixed model size. We show that the error rate is in fact, dominated by the rate of decay of the
overestimation error probability.3 We use an information-theoretic technique known as the method
of types (Cover and Thomas, 2006, Ch. 11) as well as a recently-developed technique known as
Euclidean information theory (Borade and Zheng, 2008). We provide an upper bound on the error
probability by using convex duality to find a surprising connection between the overestimation error

1. A tree is a connected, acyclic graph. We use the term proper forest to denote the set of disconnected, acyclic graphs.
2. The forest projection is the forest-structured graphical model that is closest in the KL-divergence sense to the true
distribution. We define this distribution formally in (12).

3. The overestimation error probability is the probability that the number of edges learned exceeds the true number of
edges. The underestimation error is defined analogously.

1618

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

rate and a semidefinite program (Vandenberghe and Boyd, 1996) and show that the overestimation
error in structure learning decays faster than any polynomial in n for a fixed data dimension d.

We then consider the high-dimensional scenario and provide sufficient conditions on the growth
of (n,d) (and also the true number of edges k) to ensure that CLThres is structurally consistent.
We prove that even if d grows faster than any polynomial in n (and in fact close to exponential in
n), structure estimation remains consistent. As a corollary from our analyses, we also show that
for CLThres, independent models (resp., tree models) are the “hardest” (resp., “easiest”) to learn in
the sense that the asymptotic error rate is the highest (resp., lowest), over all models with the same
scaling of (n,d). Thus, the empty graph and connected trees are the extremal forest structures for
learning. We also prove that CLThres is risk consistent, i.e., the risk of the estimated forest distribu-
tion converges to the risk of the forest projection of the true model at a rate of Op(d logd/n1−γ) for
any γ> 0. We compare and contrast this rate to existing results such as Liu et al. (2011). Note that
for this result, the true probability model does not need to be a forest-structured distribution. Finally,
we use CLThres to learn forest-structured distributions given synthetic and real-world data sets and
show that in the finite-sample case, there exists an inevitable trade-off between the underestimation
and overestimation errors.

1.2 Related Work

There are many papers that discuss the learning of graphical models from data. See Dudik et al.
(2004), Lee et al. (2006), Abbeel et al. (2006), Wainwright et al. (2006), Meinshausen and Buehlmann
(2006), Johnson et al. (2007), and references therein. Most of these methods pose the learning prob-
lem as a parameterized convex optimization problem, typically with a regularization term to enforce
sparsity in the learned graph. Consistency guarantees in terms of n and d (and possibly the max-
imum degree) are provided. Information-theoretic limits for learning graphical models have also
been derived in Santhanam and Wainwright (2008). In Zuk et al. (2006), bounds on the error rate
for learning the structure of Bayesian networks using the Bayesian Information Criterion (BIC)
were provided. Bach and Jordan (2003) learned tree-structured models for solving the indepen-
dent component analysis (ICA) problem. A PAC analysis for learning thin junction trees was given
in Chechetka and Guestrin (2007). Meilă and Jordan (2000) discussed the learning of graphical
models from a different perspective; namely that of learning mixtures of trees via an expectation-
maximization procedure.

By using the theory of large-deviations (Dembo and Zeitouni, 1998; Den Hollander, 2000),
we derived and analyzed the error exponent for learning trees for discrete (Tan et al., 2011) and
Gaussian (Tan et al., 2010a) graphical models. The error exponent is a quantitative measure of
performance of the learning algorithm since a larger exponent implies a faster decay of the error
probability. However, the analysis does not readily extend to learning forest models and furthermore
it was for the scenario when number of variables d does not grow with the number of samples n. In
addition, we also posed the structure learning problem for trees as a composite hypothesis testing
problem (Tan et al., 2010b) and derived a closed-form expression for the Chernoff-Stein exponent
in terms of the mutual information on the bottleneck edge.

In a paper that is closely related to ours, Liu et al. (2011) derived consistency (and sparsistency)
guarantees for learning tree and forest models. The pairwise joint distributions are modeled using
kernel density estimates, where the kernels are Hölder continuous. This differs from our approach
since we assume that each variable can only take finitely many values, leading to stronger results on

1619

TAN, ANANDKUMAR AND WILLSKY

error rates for structure learning via the method of types, a powerful proof technique in information
theory and statistics. We compare our convergence rates to these related works in Section 6. Further-
more, the algorithm suggested in both papers uses a subset (usually half) of the data set to learn the
full tree model and then uses the remaining subset to prune the model based on the log-likelihood on
the held-out set. We suggest a more direct and consistent method based on thresholding, which uses
the entire data set to learn and prune the model without recourse to validation on a held-out data
set. It is well known that validation is both computationally expensive (Bishop, 2008, pp. 33) and a
potential waste of valuable data which may otherwise be employed to learn a better model. In Liu
et al. (2011), the problem of estimating forests with restricted component sizes was considered and
was proven to be NP-hard. We do not restrict the component size in this paper but instead attempt
to learn the model with the minimum number of edges which best fits the data.

Our work is also related to and inspired by the vast body of literature in information theory and
statistics on Markov order estimation. In these works, the authors use various regularization and
model selection schemes to find the optimal order of a Markov chain (Merhav et al., 1989; Finesso
et al., 1996; Csiszár and Shields, 2000), hidden Markov model (Gassiat and Boucheron, 2003)
or exponential family (Merhav, 1989). We build on some of these ideas and proof techniques to
identify the correct set of edges (and in particular the number of edges) in the forest model and also
to provide strong theoretical guarantees of the rate of convergence of the estimated forest-structured
distribution to the true one.

1.3 Organization of Paper

This paper is organized as follows: We define the mathematical notation and formally state the prob-
lem in Section 2. In Section 3, we describe the algorithm in full detail, highlighting its most salient
aspect—the thresholding step. We state our main results on error rates for structure learning in Sec-
tion 4 for a fixed forest-structured distribution. We extend these results to the high-dimensional case
when (n,d,k) scale in Section 5. Extensions to rates of convergence of the estimated distribution,
that is, the order of risk consistency, are discussed briefly in Section 6. Numerical simulations on
synthetic and real data are presented in Section 7. Finally, we conclude the discussion in Section 8.
The proofs of the majority of the results are provided in the appendices.

2. Preliminaries and Problem Formulation

LetG= (V,E) be an undirected graph with vertex (or node) setV := {1, . . . ,d} and edge set E ⊂
(V
2

)
and let nbd(i) := { j ∈V : (i, j) ∈ E} be the set of neighbors of vertex i. Let the set of labeled trees
(connected, acyclic graphs) with d nodes be Td and let the set of forests (acyclic graphs) with k
edges and d nodes be Tdk for 0 ≤ k ≤ d− 1. The set of forests includes all the trees. We reserve
the term proper forests for the set of disconnected acylic graphs ∪d−2k=0T

d
k . We also use the notation

Fd := ∪d−1k=0T
d
k to denote the set of labeled forests with d nodes.

A graphical model (Lauritzen, 1996) is a family of multivariate probability distributions (prob-
ability mass functions) in which each distribution factorizes according to a given undirected graph
and where each variable is associated to a node in the graph. Let X= {1, . . . ,r} (where 2≤ r < ∞)
be a finite set and Xd the d-fold Cartesian product of the set X. As usual, let P(Xd) denote the
probability simplex over the alphabet Xd . We say that the random vector X = (X1, . . . ,Xd) with

1620

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

distribution Q ∈ P(Xd) is Markov on the graph G= (V,E) if

Q(xi|xnbd(i)) = Q(xi|xV\i), ∀ i ∈V, (1)

where xV\i is the collection of variables excluding variable i. Equation (1) is known as the local
Markov property (Lauritzen, 1996). In this paper, we always assume that graphs are minimal rep-
resentations for the corresponding graphical model, that is, if Q is Markov on G, then G has the
smallest number of edges for the conditional independence relations in (1) to hold. We say the
distribution Q is a forest-structured distribution if it is Markov on a forest. We also use the nota-
tion D(Tdk) ⊂ P(Xd) to denote the set of d-variate distributions Markov on a forest with k edges.
Similarly,D(Fd) is the set of forest-structured distributions.

Let P ∈ D(Tdk) be a discrete forest-structured distribution Markov on TP = (V,EP) ∈ Tdk (for
some k = 0, . . . ,d− 1). It is known that the joint distribution P factorizes as follows (Lauritzen,
1996; Wainwright and Jordan, 2003):

P(x) =∏
i∈V

Pi(xi) ∏
(i, j)∈EP

Pi, j(xi,x j)

Pi(xi)Pj(x j)
,

where {Pi}i∈V and {Pi, j}(i, j)∈EP are the node and pairwise marginals which are assumed to be posi-
tive everywhere.

The mutual information (MI) of two random variables Xi and Xj with joint distribution Pi, j is
the function I(·) : P(X2)→ [0, logr] defined as

I(Pi, j) := ∑
(xi,x j)∈X2

Pi, j(xi,x j) log
Pi, j(xi,x j)

Pi(xi)Pj(x j)
. (2)

This notation for mutual information differs from the usual I(Xi;Xj) used in Cover and Thomas
(2006); we emphasize the dependence of I on the joint distribution Pi, j. The minimum mutual
information in the forest, denoted as Imin := min(i, j)∈EP I(Pi, j) will turn out to be a fundamental
quantity in the subsequent analysis. Note from our minimality assumption that Imin > 0 since all
edges in the forest have positive mutual information (none of the edges are degenerate). When we
consider the scenario where d grows with n in Section 5, we assume that Imin is uniformly bounded
away from zero.

2.1 Problem Statement

We now state the basic problem formally. We are given a set of i.i.d. samples, denoted as xn :=
{x1, . . . ,xn}. Each sample xl = (xl,1, . . . ,xl,d)∈Xd is drawn independently from P∈D(Tdk) a forest-
structured distribution. From these samples, and the prior knowledge that the undirected graph
is acyclic (but not necessarily connected), estimate the true set of edges EP as well as the true
distribution P consistently.

3. The Forest Learning Algorithm: CLThres

We now describe our algorithm for estimating the edge set EP and the distribution P. This algorithm
is a modification of the celebrated Chow-Liu algorithm for maximum-likelihood (ML) learning of

1621

TAN, ANANDKUMAR AND WILLSKY

tree-structured distributions (Chow and Liu, 1968). We call our algorithm CLThres which stands
for Chow-Liu with Thresholding.

The inputs to the algorithm are the set of samples xn and a regularization sequence {εn}n∈N (to
be specified precisely later) that typically decays to zero, that is, limn→∞ εn = 0. The outputs are the
estimated edge set, denoted Êk̂n , and the estimated distribution, denoted P

∗.

1. Given xn, calculate the set of pairwise empirical distributions4 (or pairwise types) {P̂i, j}i, j∈V .
This is just a normalized version of the counts of each observed symbol in X2 and serves as a
set of sufficient statistics for the estimation problem. The dependence of P̂i, j on the samples
xn is suppressed.

2. Form the set of empirical mutual information quantities:

I(P̂i, j) := ∑
(xi,x j)∈X2

P̂i, j(xi,x j) log
P̂i, j(xi,x j)

P̂i(xi)P̂j(x j)
,

for 1≤ i, j ≤ d. This is a consistent estimator of the true mutual information in (2).

3. Run a max-weight spanning tree (MWST) algorithm (Prim, 1957; Kruskal, 1956) to obtain
an estimate of the edge set:

Êd−1 := argmax
E:T=(V,E)∈Td

∑
(i, j)∈E

I(P̂i, j).

Let the estimated edge set be Êd−1 := {ê1, . . . , êd−1} where the edges êi are sorted accord-
ing to decreasing empirical mutual information values. We index the edge set by d− 1 to
emphasize that it has d− 1 edges and hence is connected. We denote the sorted empirical
mutual information quantities as I(P̂ê1)≥ . . .≥ I(P̂êd−1). These first three steps constitute the
Chow-Liu algorithm (Chow and Liu, 1968).

4. Estimate the true number of edges using the thresholding estimator:

k̂n := argmin
1≤ j≤d−1

{
I(P̂ê j) : I(P̂ê j)≥ εn, I(P̂ê j+1)≤ εn

}
. (3)

If there exists an empirical mutual information I(P̂ê j) such that I(P̂ê j) = εn, break the tie
arbitrarily.5

5. Prune the tree by retaining only the top k̂n edges, that is, define the estimated edge set of the
forest to be

Êk̂n := {ê1, . . . , êk̂n},
where {êi : 1 ≤ i ≤ d− 1} is the ordered edge set defined in Step 3. Define the estimated
forest to be T̂̂kn := (V, Êk̂n).

4. In this paper, the terms empirical distribution and type are used interchangeably.
5. Here were allow a bit of imprecision by noting that the non-strict inequalities in (3) simplify the subsequent analyses
because the constraint sets that appear in optimization problems will be closed, hence compact, insuring the existence
of optimizers.

1622

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

6. Finally, define the estimated distribution P∗ to be the reverse I-projection (Csiszár and Matúš,
2003) of the joint type P̂ onto T̂̂kn , that is,

P∗(x) := argmin
Q∈D(T̂̂kn)

D(P̂ ||Q).

It can easily be shown that the projection can be expressed in terms of the marginal and
pairwise joint types:

P∗(x) =∏
i∈V

P̂i(xi) ∏
(i, j)∈Êk̂n

P̂i, j(xi,x j)

P̂i(xi)P̂j(x j)
.

Intuitively, CLThres first constructs a connected tree (V, Êd−1) via Chow-Liu (in Steps 1–3) before
pruning the weak edges (with small mutual information) to obtain the final structure Êk̂n . The
estimated distribution P∗ is simply the ML estimate of the parameters subject to the constraint that
P∗ is Markov on the learned tree T̂̂kn .

Note that if Step 4 is omitted and k̂n is defined to be d−1, then CLThres simply reduces to the
Chow-Liu ML algorithm. Of course Chow-Liu, which outputs a tree, is guaranteed to fail (not be
structurally consistent) if the number of edges in the true model k < d−1, which is the problem of
interest in this paper. Thus, Step 4, a model selection step, is essential in estimating the true number
of edges k. This step is a generalization of the test for independence of discrete memoryless sources
discussed in Merhav (1989). In our work, we exploit the fact that the empirical mutual information
I(P̂ê j) corresponding to a pair of independent variables ê j will be very small when n is large, thus a
thresholding procedure using the (appropriately chosen) regularization sequence {εn} will remove
these edges. In fact, the subsequent analysis allows us to conclude that Step 4, in a formal sense,
dominates the error probability in structure learning. CLThres is also efficient as shown by the
following result.

Proposition 1 (Complexity of CLThres) CLThres runs in time O((n+ logd)d2).

Proof The computation of the sufficient statistics in Steps 1 and 2 requires O(nd2) operations. The
MWST algorithm in Step 3 requires at most O(d2 logd) operations (Prim, 1957). Steps 4 and 5
simply require the sorting of the empirical mutual information quantities on the learned tree which
only requires O(logd) computations.

4. Structural Consistency For Fixed Model Size

In this section, we keep d and k fixed and consider a probability model P, which is assumed to be
Markov on a forest in Tdk . This is to gain better insight into the problem before we analyze the high-
dimensional scenario in Section 5 where d and k scale6 with the sample size n. More precisely, we
are interested in quantifying the rate at which the probability of the error event of structure learning

An :=
{
xn ∈ (Xd)n : Êk̂n(x

n) �= EP
}

(4)

6. In that case P must also scale, that is, we learn a family of models as d and k scale.

1623

TAN, ANANDKUMAR AND WILLSKY

decays to zero as n tends to infinity. Recall that Êk̂n , with cardinality k̂n, is the learned edge set
by using CLThres. As usual, Pn is the n-fold product probability measure corresponding to the
forest-structured distribution P.

Before stating the main result of this section in Theorem 3, we first state an auxiliary result
that essentially says that if one is provided with oracle knowledge of Imin, the minimum mutual
information in the forest, then the problem is greatly simplified.

Proposition 2 (Error Rate with knowledge of Imin) Assume that Imin is known in CLThres. Then
by letting the regularization sequence be εn = Imin/2 for all n, we have

lim
n→∞

1
n
logPn(An)< 0, (5)

that is, the error probability decays exponentially fast.

The proof of this theorem and all other results in the sequel can be found in the appendices.
Thus, the primary difficulty lies in estimating Imin or equivalently, the number of edges k. Note

that if k is known, a simple modification to the Chow-Liu procedure by imposing the constraint
that the final structure contains k edges will also yield exponential decay as in (5). However, in the
realistic case where both Imin and k are unknown, we show in the rest of this section that we can
design the regularization sequence εn in such a way that the rate of decay of Pn(An) decays almost
exponentially fast.

4.1 Error Rate for Forest Structure Learning

We now state one of the main results in this paper. We emphasize that the following result is stated
for a fixed forest-structured distribution P ∈D(Tdk) so d and k are also fixed natural numbers.

Theorem 3 (Error Rate for Structure Learning) Assume that the regularization sequence {εn}n∈N
satisfies the following two conditions:

lim
n→∞

εn = 0, lim
n→∞

nεn
logn

= ∞. (6)

Then, if the true model TP = (V,EP) is a proper forest (k< d−1), there exists a constant CP ∈ (1,∞)
such that

−CP ≤ liminf
n→∞

1
nεn

logPn(An) (7)

≤ limsup
n→∞

1
nεn

logPn(An)≤−1. (8)

Finally, if the true model TP = (V,EP) is a tree (k = d−1), then

lim
n→∞

1
n
logPn(An)< 0, (9)

that is, the error probability decays exponentially fast.

1624

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

�

�

n

Imin

εn = ω(lognn)

I(Q̂n
i, j)≈ 1

n
N

Figure 1: Graphical interpretation of the condition on εn. As n→∞, the regularization sequence εn
will be smaller than Imin and larger than I(Q̂n

i, j) with high probability.

4.2 Interpretation of Result

From (8), the rate of decay of the error probability for proper forests is subexponential but nonethe-
less can be made faster than any polynomial for an appropriate choice of εn. The reason for the
subexponential rate is because of our lack of knowledge of Imin, the minimum mutual information
in the true forest TP. For trees, the rate7 is exponential (

.
= exp(−nF) for some positive constant F).

Learning proper forests is thus, strictly “harder” than learning trees. The condition on εn in (6) is
needed for the following intuitive reasons:

1. Firstly, (6) ensures that for all sufficiently large n, we have εn < Imin. Thus, the true edges
will be correctly identified by CLThres implying that with high probability, there will not be
underestimation as n→ ∞.

2. Secondly, for two independent random variables Xi and Xj with distribution Qi, j = QiQj,
the sequence8 σ(I(Q̂n

i, j)) = Θ(1/n), where Q̂n
i, j is the joint empirical distribution of n i.i.d.

samples drawn from Qi, j. Since the regularization sequence εn = ω(logn/n) has a slower
rate of decay than σ(I(Q̂n

i, j)), εn > I(Q̂n
i, j) with high probability as n→ ∞. Thus, with high

probability there will not be overestimation as n→ ∞.

See Figure 1 for an illustration of this intuition. The formal proof follows from a method of types
argument and we provide an outline in Section 4.3. A convenient choice of εn that satisfies (6) is

εn := n−β, ∀β ∈ (0,1). (10)

Note further that the upper bound in (8) is also independent of P since it is equal to −1 for
all P. Thus, (8) is a universal result for all forest distributions P ∈ D(Fd). The intuition for this

7. We use the asymptotic notation from information theory
.
= to denote equality to first order in the exponent. More

precisely, for two positive sequences {an}n∈N and {bn}n∈N we say that an .
= bn iff limn→∞ n−1 log(an/bn) = 0.

8. The notation σ(Z) denotes the standard deviation of the random variable Z. The fact that the standard deviation of
the empirical MI σ(I(Q̂ni, j)) decays as 1/n can be verified by Taylor expanding I(Q̂

n
i, j) around Qi, j =QiQj and using

the fact that the ML estimate converges at a rate of n−1/2 (Serfling, 1980).

1625

TAN, ANANDKUMAR AND WILLSKY

universality is because in the large-n regime, the typical way an error occurs is due to overestimation.
The overestimation error results from testing whether pairs of random variables are independent and
our asymptotic bound for the error probability of this test does not depend on the true distribution
P.

The lower bound CP in (7), defined in the proof in Appendix B, means that we cannot hope to
do much better using CLThres if the original structure (edge set) is a proper forest. Together, (7)
and (8) imply that the rate of decay of the error probability for structure learning is tight to within
a constant factor in the exponent. We believe that the error rates given in Theorem 3 cannot, in
general, be improved without knowledge of Imin. We state a converse (a necessary lower bound
on sample complexity) in Theorem 7 by treating the unknown forest graph as a uniform random
variable over all possible forests of fixed size.

4.3 Proof Idea

The method of proof for Theorem 3 involves using the Gallager-Fano bounding technique (Fano,
1961, pp. 24) and the union bound to decompose the overall error probability Pn(An) into three
distinct terms: (i) the rate of decay of the error probability for learning the top k edges (in terms of
the mutual information quantities) correctly—known as the Chow-Liu error, (ii) the rate of decay of
the overestimation error {k̂n > k} and (iii) the rate of decay of the underestimation error {k̂n < k}.
Each of these terms is upper bounded using a method of types (Cover and Thomas, 2006, Ch.
11) argument. It turns out, as is the case with the literature on Markov order estimation (e.g.,
Finesso et al., 1996), that bounding the overestimation error poses the greatest challenge. Indeed,
we show that the underestimation and Chow-Liu errors have exponential decay in n. However, the
overestimation error has subexponential decay (≈ exp(−nεn)).

The main technique used to analyze the overestimation error relies on Euclidean information
theory (Borade and Zheng, 2008) which states that if two distributions ν0 and ν1 (both supported on
a common finite alphabet Y) are close entry-wise, then various information-theoretic measures can
be approximated locally by quantities related to Euclidean norms. For example, the KL-divergence
D(ν0 ||ν1) can be approximated by the square of a weighted Euclidean norm:

D(ν0 ||ν1) =
1
2 ∑a∈Y

(ν0(a)−ν1(a))2

ν0(a)
+o(‖ν0−ν1‖2∞). (11)

Note that if ν0 ≈ ν1, then D(ν0 ||ν1) is close to the sum in (11) and the o(‖ν0−ν1‖2∞) term can be
neglected. Using this approximation and Lagrangian duality (Bertsekas, 1999), we reduce a non-
convex I-projection (Csiszár and Matúš, 2003) problem involving information-theoretic quantities
(such as divergence) to a relatively simple semidefinite program (Vandenberghe and Boyd, 1996)
which admits a closed-form solution. Furthermore, the approximation in (11) becomes exact as
n→ ∞ (i.e., εn → 0), which is the asymptotic regime of interest. The full details of the proof can be
found Appendix B.

4.4 Error Rate for Learning the Forest Projection

In our discussion thus far, P has been assumed to be Markov on a forest. In this subsection, we
consider the situation when the underlying unknown distribution P is not forest-structured but we
wish to learn its best forest approximation. To this end, we define the projection of P onto the set of

1626

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

forests (or forest projection) to be

P̃ := argmin
Q∈D(Fd)

D(P ||Q). (12)

If there are multiple optimizing distribution, choose a projection P̃ that is minimal, that is, its graph
TP̃ = (V,EP̃) has the fewest number of edges such that (12) holds. If we redefine the event An in (4)

to be Ãn := {Êk̂n �= EP̃}, we have the following analogue of Theorem 3.

Corollary 4 (Error Rate for Learning Forest Projection) Let P be an arbitrary distribution and
the event Ãn be defined as above. Then the conclusions in (7)–(9) in Theorem 3 hold if the regular-
ization sequence {εn}n∈N satisfies (6).

5. High-Dimensional Structural Consistency

In the previous section, we considered learning a fixed forest-structured distribution P (and hence
fixed d and k) and derived bounds on the error rate for structure learning. However, for most
problems of practical interest, the number of data samples is small compared to the data dimension
d (see the asthma example in the introduction). In this section, we prove sufficient conditions on
the scaling of (n,d,k) for structure learning to remain consistent. We will see that even if d and
k are much larger than n, under some reasonable regularity conditions, structure learning remains
consistent.

5.1 Structure Scaling Law

To pose the learning problem formally, we consider a sequence of structure learning problems in-
dexed by the number of data points n. For the particular problem indexed by n, we have a data set
xn = (x1, . . . ,xn) of size n where each sample xl ∈ Xd is drawn independently from an unknown
d-variate forest-structured distribution P(d) ∈D(Tdk), which has d nodes and k edges and where d
and k depend on n. This high-dimensional setup allows us to model and subsequently analyze how
d and k can scale with n while maintaining consistency. We will sometimes make the dependence
of d and k on n explicit, that is, d = dn and k = kn.

In order to be able to learn the structure of the models we assume that

(A1) Iinf := inf
d∈N

min
(i, j)∈E

P(d)

I(P(d)
i, j)> 0, (13)

(A2) κ := inf
d∈N

min
xi,x j∈X

P(d)
i, j (xi,x j)> 0. (14)

That is, assumptions (A1) and (A2) insure that there exists uniform lower bounds on the minimum
mutual information and the minimum entry in the pairwise probabilities in the forest models as
the size of the graph grows. These are typical regularity assumptions for the high-dimensional
setting. See Wainwright et al. (2006) and Meinshausen and Buehlmann (2006) for example. We
again emphasize that the proposed learning algorithm CLThres has knowledge of neither Iinf nor
κ. Equipped with (A1) and (A2) and assuming the asymptotic behavior of εn in (6), we claim the
following theorem for CLThres.

1627

TAN, ANANDKUMAR AND WILLSKY

Theorem 5 (Structure Scaling Law) There exists two finite, positive constants C1,C2 such that if

n>max
{
(2log(d− k))1+ζ,C1 logd,C2 logk

}
, (15)

for any ζ> 0, then the error probability of incorrectly learning the sequence of edge sets {EP(d)}d∈N
tends to zero as (n,d,k) → ∞. When the sequence of forests are trees, n > C logd (where C :=
max{C1,C2}) suffices for high-dimensional structure recovery.

Thus, if the model parameters (n,d,k) all grow with n but d = o(exp(n/C1)), k= o(exp(n/C2))
and d−k= o(exp(n1−β/2)) (for all β> 0), consistent structure recovery is possible in high dimen-
sions. In other words, the number of nodes d can grow faster than any polynomial in the sample
size n. In Liu et al. (2011), the bivariate densities are modeled by functions from a Hölder class
with exponent α and it was mentioned (in Theorem 4.3) that the number of variables can grow
like o(exp(nα/(1+α))) for structural consistency. Our result is somewhat stronger but we model the
pairwise joint distributions as (simpler) probability mass functions (the alphabet X is a finite set).

5.2 Extremal Forest Structures

In this subsection, we study the extremal structures for learning, that is, the structures that, roughly
speaking, lead to the largest and smallest error probabilities for structure learning. Define the se-
quence

hn(P) :=
1
nεn

logPn(An), ∀n ∈ N. (16)

Note that hn is a function of both the number of variables d = dn and the number of edges k = kn in
the models P(d) since it is a sequence indexed by n. In the next result, we assume (n,d,k) satisfies the
scaling law in (15) and answer the following question: How does hn in (16) depend on the number
of edges kn for a given dn? Let P

(d)
1 and P(d)

2 be two sequences of forest-structured distributions with

a common number of nodes dn and number of edges kn(P
(d)
1) and kn(P

(d)
2) respectively.

Corollary 6 (Extremal Forests) Assume that CLThres is employed as the forest learning algo-
rithm. As n→ ∞, hn(P

(d)
1) ≤ hn(P

(d)
2) whenever kn(P

(d)
1) ≥ kn(P

(d)
2) implying that hn is maximized

when P(d) are product distributions (i.e., kn = 0) and minimized when P(d) are tree-structured dis-

tributions (i.e., kn = dn−1). Furthermore, if kn(P(d)
1) = kn(P

(d)
2), then hn(P

(d)
1) = hn(P

(d)
2).

Note that the corollary is intimately tied to the proposed algorithmCLThres.We are not claiming
that such a result holds for all other forest learning algorithms. The intuition for this result is the
following: We recall from the discussion after Theorem 3 that the overestimation error dominates
the probability of error for structure learning. Thus, the performance of CLThres degrades with
the number of missing edges. If there are very few edges (i.e., kn is very small relative to dn), the
CLThres estimator is more likely to overestimate the number of edges as compared to if there are
many edges (i.e., kn/dn is close to 1). We conclude that a distribution which is Markov on an empty
graph (all variables are independent) is the hardest to learn (in the sense of Corollary 6 above).
Conversely, trees are the easiest structures to learn.

5.3 Lower Bounds on Sample Complexity

Thus far, our results are for a specific algorithm CLThres for learning the structure of Markov forest
distributions. At this juncture, it is natural to ask whether the scaling laws in Theorem 5 are the best

1628

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

possible over all algorithms (estimators). To answer this question, we limit ourselves to the scenario
where the true graph TP is a uniformly distributed chance variable9 with probability measure P.
Assume two different scenarios:

(a) TP is drawn from the uniform distribution on Tdk , that is, P(TP = t) = 1/|Tdk | for all forests
t ∈ Tdk . Recall that T

d
k is the set of labeled forests with d nodes and k edges.

(b) TP is drawn from the uniform distribution on Fd , that is, P(TP = t) = 1/|Fd| for all forests
t ∈ Fd . Recall that Fd is the set of labeled forests with d nodes.

This following result is inspired by Theorem 1 in Bresler et al. (2008). Note that an estimator or
algorithm T̂ d is simply a map from the set of samples (Xd)n to a set of graphs (either Tdk or F

d).
We emphasize that the following result is stated with the assumption that we are averaging over the
random choice of the true graph TP.

Theorem 7 (Lower Bounds on Sample Complexity) Let ρ< 1 and r := |X|. In case (a) above, if

n< ρ
(k−1) logd
d logr

, (17)

then P(T̂ d �= TP)→ 1 for any estimator T̂ d : (Xd)n → Tdk . Alternatively, in case (b), if

n< ρ
logd
logr

, (18)

then P(T̂ d �= TP)→ 1 for any estimator T̂ d : (Xd)n → Fd.

This result, a strong converse, states that n = Ω(kd logd) is necessary for any estimator with
oracle knowledge of k to succeed. Thus, we need at least logarithmically many samples in d if
the fraction k/d is kept constant as the graph size grows even if k is known precisely and does not
have to be estimated. Interestingly, (17) says that if k is large, then we need more samples. This is
because there are fewer forests with a small number of edges as compared to forests with a large
number of edges. In contrast, the performance of CLThres degrades when k is small because it is
more sensitive to the overestimation error. Moreover, if the estimator does not know k, then (18)
says that n = Ω(logd) is necessary for successful recovery. We conclude that the set of scaling
requirements prescribed in Theorem 5 is almost optimal. In fact, if the true structure TP is a tree,
then Theorem 7 for CLThres says that the (achievability) scaling laws in Theorem 5 are indeed
optimal (up to constant factors in the O and Ω-notation) since n > (2log(d − k))1+ζ in (15) is
trivially satisfied. Note that if TP is a tree, then the Chow-Liu ML procedure or CLThres results in
the sample complexity n= O(logd) (see Theorem 5).

6. Risk Consistency

In this section, we develop results for risk consistency to study how fast the parameters of the
estimated distribution converge to their true values. For this purpose, we define the risk of the
estimated distribution P∗ (with respect to the true probability model P) as

Rn(P
∗) := D(P ||P∗)−D(P || P̃), (19)

9. The term chance variable, attributed to Gallager (2001), describes random quantities Y :Ω→W that take on values
in arbitrary alphabetsW . In contrast, a random variable X maps the sample space Ω to the reals R.

1629

TAN, ANANDKUMAR AND WILLSKY

where P̃ is the forest projection of P defined in (12). Note that the original probability model P does
not need to be a forest-structured distribution in the definition of the risk. Indeed, if P is Markov on
a forest, (19) reduces to Rn(P∗) = D(P ||P∗) since the second term is zero. We quantify the rate of
decay of the risk when the number of samples n tends to infinity. For δ> 0, we define the event

Cn,δ :=

{
xn ∈ (Xd)n :

Rn(P∗)
d

> δ

}
. (20)

That is, Cn,δ is the event that the average risk Rn(P∗)/d exceeds some constant δ. We say that the
estimator P∗ (or an algorithm) is δ-risk consistent if the probability of Cn,δ tends to zero as n→ ∞.
Intuitively, achieving δ-risk consistency is easier than achieving structural consistency since the
learned model P∗ can be close to the true forest-projection P̃ in the KL-divergence sense even if
their structures differ.

In order to quantify the rate of decay of the risk in (19), we need to define some stochastic order
notation. We say that a sequence of random variables Yn = Op(gn) (for some deterministic positive
sequence {gn}) if for every ε> 0, there exists a B= Bε > 0 such that limsupn→∞Pr(|Yn|> Bgn)< ε.
Thus, Pr(|Yn|> Bgn)≥ ε holds for only finitely many n.

We say that a reconstruction algorithm has risk consistency of order (or rate) gn if Rn(P∗) =
Op(gn). The definition of the order of risk consistency involves the true model P. Intuitively, we
expect that as n→ ∞, the estimated distribution P∗ converges to the projection P̃ so Rn(P∗)→ 0 in
probability.

6.1 Error Exponent for Risk Consistency

In this subsection, we consider a fixed distribution P and state consistency results in terms of the
event Cn,δ. Consequently, the model size d and the number of edges k are fixed. This lends in-
sight into deriving results for the order of the risk consistency and provides intuition for the high-
dimensional scenario in Section 6.2.

Theorem 8 (Error Exponent for δ-Risk Consistency) For CLThres, there exists a constant δ0 >
0 such that for all 0< δ< δ0,

limsup
n→∞

1
n
logPn(Cn,δ)≤−δ. (21)

The corresponding lower bound is

liminf
n→∞

1
n
logPn(Cn,δ)≥−δd. (22)

The theorem states that if δ is sufficiently small, the decay rate of the probability of Cn,δ is expo-
nential, hence clearly CLThres is δ-risk consistent. Furthermore, the bounds on the error exponent
associated to the event Cn,δ are independent of the parameters of P and only depend on δ and the
dimensionality d. Intuitively, (21) is true because if we want the risk of P∗ to be at most δd, then
each of the empirical pairwise marginals P̂i, j should be δ-close to the true pairwise marginal P̃i, j.
Note also that for Cn,δ to occur with high probability, the edge set does not need to be estimated
correctly so there is no dependence on k.

1630

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

6.2 The High-Dimensional Setting

We again consider the high-dimensional setting where the tuple of parameters (n,dn,kn) tend to
infinity and we have a sequence of learning problems indexed by the number of data points n. We
again assume that (13) and (14) hold and derive sufficient conditions under which the probability of
the event Cn,δ tends to zero for a sequence of d-variate distributions {P(d) ∈ P(Xd)}d∈N. The proof
of Theorem 8 leads immediately to the following corollary.

Corollary 9 (δ-Risk Consistency Scaling Law) Let δ> 0 be a sufficiently small constant and a ∈
(0,δ). If the number of variables in the sequence of models {P(d)}d∈N satisfies dn = o(exp(an)) ,
then CLThres is δ-risk consistent for {P(d)}d∈N.

Interestingly, this sufficient condition on how number of variables d should scale with n for
consistency is very similar to Theorem 5. In particular, if d is polynomial in n, then CLThres is both
structurally consistent as well as δ-risk consistent. We now study the order of the risk consistency
of CLThres as the model size d grows.

Theorem 10 (Order of Risk Consistency) The risk of the sequence of estimated distributions {(P(d))∗}d∈N
with respect to {P(d)}d∈N satisfies

Rn((P
(d))∗) = Op

(
d logd
n1−γ

)
, (23)

for every γ> 0, that is, the risk consistency for CLThres is of order (d logd)/n1−γ.

Note that since this result is stated for the high-dimensional case, d = dn is a sequence in n
but the dependence on n is suppressed for notational simplicity in (23). This result implies that
if d = o(n1−2γ) then CLThres is risk consistent, that is, Rn((P(d))∗) → 0 in probability. Note that
this result is not the same as the conclusion of Corollary 9 which refers to the probability that the
average risk is greater than a fixed constant δ. Also, the order of convergence given in (23) does not
depend on the true number of edges k. This is a consequence of the result in (21) where the upper
bound on the exponent associated to the event Cn,δ is independent of the parameters of P.

The order of the risk, or equivalently the rate of convergence of the estimated distribution to the
forest projection, is almost linear in the number of variables d and inversely proportional to n. We
provide three intuitive reasons to explain why this is plausible: (i) the dimension of the sufficient
statistics in a tree-structured graphical model is of order O(d), (ii) the ML estimator of the natural
parameters of an exponential family converge to their true values at the rate of Op(n−1/2) (Ser-
fling, 1980, Sec. 4.2.2), and (iii) locally, the KL-divergence behaves like the square of a weighted
Euclidean norm of the natural parameters (Cover and Thomas, 2006, Equation (11.320)).

We now compare Theorem 10 to the corresponding results in Liu et al. (2011). In these recent
papers, it was shown that by modeling the bivariate densities P̂i, j as functions from a Hölder class
with exponent α> 0 and using a reconstruction algorithm based on validation on a held-out data set,
the risk decays at a rate10 of Õp(dn−α/(1+2α)), which is slower than the order of risk consistency
in (23). This is due to the need to compute the bivariate densities via kernel density estimation.
Furthermore, we model the pairwise joint distributions as discrete probability mass functions and
not continuous probability density functions, hence there is no dependence on Hölder exponents.

10. The Õp(·) notation suppresses the dependence on factors involving logarithms.

1631

TAN, ANANDKUMAR AND WILLSKY

�
�
�

�
�

�
�

�
�

�

�

�

�

�

�

� �

�

�

X1 X2

X3X4X5

Xk+1

...

Xk+2 Xk+3 . . . Xd

Figure 2: The forest-structured distribution Markov on d nodes and k edges. Variables Xk+1, . . . ,Xd
are not connected to the main star graph.

7. Numerical Results

In this section, we perform numerical simulations on synthetic and real data sets to study the effect
of a finite number of samples on the probability of the eventAn defined in (4). Recall that this is the
error event associated to an incorrect learned structure.

7.1 Synthetic Data Sets

In order to compare our estimate to the ground truth graph, we learn the structure of distributions that
are Markov on the forest shown in Figure 2. Thus, a subgraph (nodes 1, . . . ,k+1) is a (connected)
star while nodes k+ 2, . . . ,d− 1 are not connected to the star. Each random variable Xj takes on
values from a binary alphabet X= {0,1}. Furthermore, Pj(x j) = 0.5 for x j = 0,1 and all j ∈V . The
conditional distributions are governed by the “binary symmetric channel”:

Pj|1(x j|x1) =
{
0.7 x j = x1
0.3 x j �= x1

for j = 2, . . . ,k+ 1. We further assume that the regularization sequence is given by εn := n−β for
some β ∈ (0,1). Recall that this sequence satisfies the conditions in (6). We will vary β in our
experiments to observe its effect on the overestimation and underestimation errors.

In Figure 3, we show the simulated error probability as a function of the sample size n for a
d = 101 node graph (as in Figure 2) with k = 50 edges. The error probability is estimated based on
30,000 independent runs of CLThres (over different data sets xn). We observe that the error probabil-
ity is minimized when β≈ 0.625. Figure 4 show the simulated overestimation and underestimation
errors for this experiment. We see that as β→ 0, the overestimation (resp., underestimation) error is
likely to be small (resp., large) because the regularization sequence εn is large. When the number of
samples is relatively small as in this experiment, both types of errors contribute significantly to the
overall error probability. When β ≈ 0.625, we have the best tradeoff between overestimation and
underestimation for this particular experimental setting.

Even though we mentioned that β in (10) should be chosen to be close to zero so that the
error probability of structure learning decays as rapidly as possible, this example demonstrates
that when given a finite number of samples, β should be chosen to balance the overestimation and
underestimation errors. This does not violate Theorem 3 since Theorem 3 is an asymptotic result
and refers to the typical way an error occurs in the limit as n→ ∞. Indeed, when the number of

1632

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Number of samples n

E
rr

or
 P

ro
ba

bi
lit

y

β = .25

β = .375

β = .5

β = .625

β = .75

Figure 3: The error probability of structure learning for β ∈ (0,1).

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Number of samples n

O
ve

re
st

im
at

io
n

E
rr

or
 P

ro
ba

bi
lit

y

β = .25

β = .375

β = .5

β = .625

β = .75

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Number of samples n

U
nd

er
es

tim
at

io
n

E
rr

or
 P

ro
ba

bi
lit

y

β = .25

β = .375

β = .5

β = .625

β = .75

Figure 4: The overestimation and underestimation errors for β ∈ (0,1).

samples is very large, it is shown that the overestimation error dominates the overall probability of
error and so one should choose β to be close to zero. The question of how best to select optimal β
when given only a finite number of samples appears to be a challenging one. We use cross-validation
as a proxy to select this parameter for the real-world data sets in the next section.

In Figure 5, we fix the value of β at 0.625 and plot the KL-divergence D(P ||P∗) as a func-
tion of the number of samples. This is done for a forest-structured distribution P whose graph is
shown in Figure 2 and with d = 21 nodes and k = 10 edges. The mean, minimum and maximum
KL-divergences are computed based on 50 independent runs of CLThres. We see that logD(P ||P∗)
decays linearly. Furthermore, the slope of the mean curve is approximately −1, which is in agree-
ment with (23). This experiment shows that if we want to reduce the KL-divergence between the
estimated and true models by a constant factor A > 0, we need to increase the number of samples
by roughly the same factor A.

1633

TAN, ANANDKUMAR AND WILLSKY

10
2

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of samples n

K
L−

di
ve

rg
en

ce
 D

(P
* ||P

)

Mean KL
Min KL
Max KL

Figure 5: Mean, minimum and maximum (across 50 different runs) of the KL-divergence between
the estimated model P∗ and the true model P for a d = 21 node graph with k = 10 edges.

7.2 Real Data Sets

We now demonstrate how well forests-structured distributions can model two real data sets11 which
are obtained from the UCI Machine Learning Repository (Newman et al., 1998). The first data
set we used is known as the SPECT Heart data set, which describes diagnosing of cardiac Single
Proton Emission Computed Tomography (SPECT) images on normal and abnormal patients. The
data set contains d = 22 binary variables and n = 80 training samples. There are also 183 test
samples. We learned a forest-structured distributions using the 80 training samples for different
β ∈ (0,1) and subsequently computed the log-likelihood of both the training and test samples. The
results are displayed in Figure 6. We observe that, as expected, the log-likelihood of the training
samples increases monotonically with β. This is because there are more edges in the model when
β is large improving the modeling ability. However, we observe that there is overfitting when β is
large as evidenced by the decrease in the log-likelihood of the 183 test samples. The optimal value
of β in terms of the log-likelihood for this data set is ≈ 0.25, but surprisingly an approximation
with an empty graph12 also yields a high log-likelihood score on the test samples. This implies that
according to the available data, the variables are nearly independent. The forest graph for β= 0.25
is shown in Figure 7(a) and is very sparse.

The second data set we used is the Statlog Heart data set containing physiological measurements
of subjects with and without heart disease. There are 270 subjects and d = 13 discrete and contin-
uous attributes, such as gender and resting blood pressure. We quantized the continuous attributes
into two bins. Those measurements that are above the mean are encoded as 1 and those below the
mean as 0. Since the raw data set is not partitioned into training and test sets, we learned forest-
structured models based on a randomly chosen set of n= 230 training samples and then computed

11. These data sets are typically employed for binary classification but we use them for modeling purposes.
12. When β = 0 we have an empty graph because all empirical mutual information quantities in this experiment are

smaller than 1.

1634

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

0 0.2 0.4 0.6 0.8 1
−950

−900

−850

−800

−750

−700

−650
Spect Dataset

β

Lo
g−

lik
el

ih
oo

d
of

 tr
ai

ni
ng

 s
am

pl
es

0 0.2 0.4 0.6 0.8 1
−3500

−3400

−3300

−3200

−3100

−3000

−2900

−2800
Spect Dataset

β

Lo
g−

lik
el

ih
oo

d
of

 te
st

 s
am

pl
es

Figure 6: Log-likelihood scores on the SPECT data set

the log-likelihood of these training and 40 remaining test samples. We then chose an additional
49 randomly partitioned training and test sets and performed the same learning task and computa-
tion of log-likelihood scores. The mean of the log-likelihood scores over these 50 runs is shown
in Figure 8. We observe that the log-likelihood on the test set is maximized at β ≈ 0.53 and the
tree approximation (β ≈ 1) also yields a high likelihood score. The forest learned when β = 0.53
is shown in Figure 7(b). Observe that two nodes (ECG and Cholesterol) are disconnected from the
main graph because their mutual information values with other variables are below the threshold.
In contrast, HeartDisease, the label for this data set, has the highest degree, that is, it influences and
is influenced by many other covariates. The strengths of the interactions between HeartDisease and
its neighbors are also strong as evidenced by the bold edges.

From these experiments, we observe that some data sets can be modeled well as proper forests
with very few edges while others are better modeled as distributions that are almost tree-structured
(see Figure 7). Also, we need to choose β carefully to balance between data fidelity and overfitting.
In contrast, our asymptotic result in Theorem 3 says that εn should be chosen according to (6) so
that we have structural consistency. When the number of data points n is large, β in (10) should
be chosen to be small to ensure that the learned edge set is equal to the true one (assuming the
underlying model is a forest) with high probability as the overestimation error dominates.

8. Conclusion

In this paper, we proposed an efficient algorithm CLThres for learning the parameters and the struc-
ture of forest-structured graphical models. We showed that the asymptotic error rates associated
to structure learning are nearly optimal. We also provided the rate at which the error probability
of structure learning tends to zero and the order of the risk consistency. One natural question that
arises from our analyses is whether β in (10) can be selected automatically in the finite-sample
regime. There are many other open problems that could possibly leverage on the proof techniques
employed here. For example, we are currently interested to analyze the learning of general graphi-
cal models using similar thresholding-like techniques on the empirical correlation coefficients. The
analyses could potentially leverage on the use of the method of types. We are currently exploring
this promising line of research.

1635

TAN, ANANDKUMAR AND WILLSKY

F14
F4

F9

F8

F13

F15

F10

F2

F6

F11 F1
F3

F5

F7

F12

F16

F17 F18

F19

F20

F21

F22

Age

RestingBP ColorOfVessels

HeartDisease

Thalassemia ChestPain PeakExercise

Gender Angina Depression MaxHeartRate

Cholesterol ECG

(a) (b)

Figure 7: Learned forest graph of the (a) SPECT data set for β= 0.25 and (b) HEART data set for
β = 0.53. Bold edges denote higher mutual information values. The features names are
not provided for the SPECT data set.

0 0.2 0.4 0.6 0.8 1
−2150

−2100

−2050

−2000

−1950

−1900

−1850
Heart Dataset

β

Lo
g−

lik
el

ih
oo

d
of

 tr
ai

ni
ng

 s
am

pl
es

0 0.2 0.4 0.6 0.8 1
−375

−370

−365

−360

−355

−350

−345

−340

−335
Heart Dataset

β

Lo
g−

lik
el

ih
oo

d
of

 te
st

 s
am

pl
es

Figure 8: Log-likelihood scores on the HEART data set

1636

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

Acknowledgments

This work was supported by a AFOSR funded through Grant FA9559-08-1-1080, a MURI funded
through ARO Grant W911NF-06-1-0076 and a MURI funded through AFOSR Grant FA9550-06-
1-0324. V. Tan is also funded by A*STAR, Singapore. The authors would like to thank Sanjoy
Mitter, Lav Varshney, Matt Johnson and James Saunderson for discussions. The authors would also
like to thank Rui Wu (UIUC) for pointing out an error in the proof of Theorem 3.

Appendix A. Proof of Proposition 2

Proof (Sketch) The proof of this result hinges on the fact that both the overestimation and under-
estimation errors decay to zero exponentially fast when the threshold is chosen to be Imin/2. This
threshold is able to differentiate between true edges (with MI larger than Imin) from non-edges (with
MI smaller than Imin) with high probability for n sufficiently large. The error for learning the top k
edges of the forest also decays exponentially fast (Tan et al., 2011). Thus, (5) holds. The full details
of the proof follow in a straightforward manner from Appendix B which we present next.

Appendix B. Proof of Theorem 3

Define the event Bn := {Êk �= EP}, where Êk = {ê1, . . . , êk} is the set of top k edges (see Step 3
of CLThres for notation). This is the Chow-Liu error as mentioned in Section 4.3. Let Bc

n denote
the complement of Bn. Note that in Bc

n, the estimated edge set depends on k, the true model order,
which is a-priori unknown to the learner. Further define the constant

KP := lim
n→∞

−1
n
logPn(Bn). (24)

In other words, KP is the error exponent for learning the forest structure incorrectly assuming the
true model order k is known and Chow-Liu terminates after the addition of exactly k edges in the
MWST procedure (Kruskal, 1956). The existence of the limit in (24) and the positivity of KP follow
from the main results in Tan et al. (2011).

We first state a result which relies on the Gallager-Fano bound (Fano, 1961, pp. 24). The proof
will be provided at the end of this appendix.

Lemma 11 (Reduction to Model Order Estimation) For every η ∈ (0,KP), there exists a N ∈ N

sufficiently large such that for every n> N, the error probability Pn(An) satisfies

(1−η)Pn(k̂n �= k|Bc
n)≤ Pn(An) (25)

≤ Pn(k̂n �= k|Bc
n)+2exp(−n(KP−η)). (26)

Proof (of Theorem 3) We will prove (i) the upper bound in (8) (ii) the lower bound in (7) and (iii)
the exponential rate of decay in the case of trees (9).

B.1 Proof of Upper Bound in Theorem 3

We now bound the error probability Pn(k̂n �= k|Bc
n) in (26). Using the union bound,

Pn(k̂n �= k|Bc
n)≤ Pn(k̂n > k|Bc

n)+Pn(k̂n < k|Bc
n). (27)

1637

TAN, ANANDKUMAR AND WILLSKY

The first and second terms are known as the overestimation and underestimation errors respectively.
We will show that the underestimation error decays exponentially fast. The overestimation error
decays only subexponentially fast and so its rate of decay dominates the overall rate of decay of the
error probability for structure learning.

B.1.1 UNDERESTIMATION ERROR

We now bound these terms staring with the underestimation error. By the union bound,

Pn(k̂n < k|Bc
n)≤ (k−1) max

1≤ j≤k−1
Pn(k̂n = j|Bc

n)

= (k−1)Pn(k̂n = k−1|Bc
n), (28)

where (28) follows because Pn(k̂n = j|Bc
n) is maximized when j = k−1. This is because if, to the

contrary, Pn(k̂n = j|Bc
n) were to be maximized at some other j≤ k−2, then there exists at least two

edges, call them e1,e2 ∈ EP such that events E1 := {I(P̂e1) ≤ εn} and E2 := {I(P̂e2) ≤ εn} occur.
The probability of this joint event is smaller than the individual probabilities, that is, Pn(E1∩E2)≤
min{Pn(E1),Pn(E2)}. This is a contradiction.

By the rule for choosing k̂n in (3), we have the upper bound

Pn(k̂n = k−1|Bc
n) = Pn(∃e ∈ EP s.t. I(P̂e)≤ εn)≤ kmax

e∈EP
Pn(I(P̂e)≤ εn), (29)

where the inequality follows from the union bound. Now, note that if e ∈ EP, then I(Pe) > εn for
n sufficiently large (since εn → 0). Thus, by Sanov’s theorem (Cover and Thomas, 2006, Ch. 11),
Pn(I(P̂e)≤ εn) can be upper bounded as

Pn(I(P̂e)≤ εn)≤ (n+1)r
2
exp

(
−n min

Q∈P(X2)
{D(Q ||Pe) : I(Q)≤ εn}

)
. (30)

Define the good rate function (Dembo and Zeitouni, 1998) in (30) to be L : P(X2)× [0,∞)→ [0,∞),
which is given by

L(Pe;a) := min
Q∈P(X2)

{D(Q ||Pe) : I(Q)≤ a} . (31)

Clearly, L(Pe;a) is continuous in a. Furthermore it is monotonically decreasing in a for fixed Pe.
Thus by using the continuity of L(Pe; ·) we can assert: To every η > 0, there exists a N ∈ N such
that for all n > N we have L(Pe;εn) > L(Pe;0)−η. As such, we can further upper bound the error
probability in (30) as

Pn(I(P̂e)≤ εn)≤ (n+1)r
2
exp(−n(L(Pe;0)−η)) . (32)

By using the fact that Imin > 0, the exponent L(Pe;0) > 0 and thus, we can put the pieces in (28),
(29) and (32) together to show that the underestimation error is upper bounded as

Pn(k̂n < k|Bc
n)≤ k(k−1)(n+1)r2 exp

(
−nmin

e∈EP
(L(Pe;0)−η)

)
. (33)

Hence, if k is constant, the underestimation error Pn(k̂n < k|Bc
n) decays to zero exponentially fast

as n→ ∞, that is, the normalized logarithm of the underestimation error can be bounded as

limsup
n→∞

1
n
logPn(k̂n < k|Bc

n)≤−min
e∈EP

(L(Pe;0)−η).

1638

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

The above statement is now independent of n. Hence, we can take the limit as η→ 0 to conclude
that:

limsup
n→∞

1
n
logPn(k̂n < k|Bc

n)≤−LP. (34)

The exponent LP :=mine∈EP L(Pe;0) is positive because we assumed that the model is minimal and
so Imin > 0, which ensures the positivity of the rate function L(Pe;0) for each true edge e ∈ EP.

B.1.2 OVERESTIMATION ERROR

Bounding the overestimation error is harder. It follows by first applying the union bound:

Pn(k̂n > k|Bc
n)≤ (d− k−1) max

k+1≤ j≤d−1
Pn(k̂n = j|Bc

n)

= (d− k−1)Pn(k̂n = k+1|Bc
n), (35)

where (35) follows because Pn(k̂n = j|Bc
n) is maximized when j = k+1 (by the same argument as

for the underestimation error). Apply the union bound again, we have

Pn(k̂n = k+1|Bc
n)≤ (d− k−1) max

e∈V×V :I(Pe)=0
Pn(I(P̂e)≥ εn). (36)

From (36), it suffices to bound Pn(I(P̂e)≥ εn) for any pair of independent random variables (Xi,Xj)
and e = (i, j). We proceed by applying the upper bound in Sanov’s theorem (Cover and Thomas,
2006, Ch. 11) to Pn(I(P̂e)≥ εn) which yields

Pn(I(P̂e)≥ εn)≤ (n+1)r
2
exp

(
−n min

Q∈P(X2)
{D(Q ||Pe) : I(Q)≥ εn}

)
, (37)

for all n ∈ N. Our task now is to lower bound the good rate function in (37), which we denote as
M : P(X2)× [0,∞)→ [0,∞):

M(Pe;b) := min
Q∈P(X2)

{D(Q ||Pe) : I(Q)≥ b} . (38)

Note that M(Pe;b) is monotonically increasing and continuous in b for fixed Pe. Because the se-
quence {εn}n∈N tends to zero, when n is sufficiently large, εn is arbitrarily small and we are in
the so-called very-noisy learning regime (Borade and Zheng, 2008; Tan et al., 2011), where the
optimizer to (38), denoted as Q∗

n, is very close to Pe. See Figure 9.
Thus, when n is large, the KL-divergence and mutual information can be approximated as

D(Q∗
n ||Pe) =

1
2
vTΠev+o(‖v‖2), (39)

I(Q∗
n) =

1
2
vTHev+o(‖v‖2), (40)

where13 v := vec(Q∗
n)−vec(Pe) ∈ R

r2 . The r2× r2 matricesΠe and He are defined as

Πe := diag(1/vec(Pe)), (41)

He := ∇2vec(Q)I(vec(Q))
∣∣
Q=Pe

. (42)

13. The operator vec(C) vectorizes a matrix in a column oriented way. Thus, if C ∈ R
l×l , vec(C) is a length-l2 vector

with the columns of C stacked one on top of another (C(:) in Matlab).

1639

TAN, ANANDKUMAR AND WILLSKY

�
�
���

Pe : I(Pe) = 0

{Q : I(Q)=εn1}

{Q : I(Q)=εn2}

decreasing εn
Q∗
n1

Q∗
n2�

�
�
��

�

�

�

Figure 9: As εn → 0, the projection of Pe onto the constraint set {Q : I(Q) ≥ εn}, denoted Q∗
n

(the optimizer in (38)), approaches Pe. The approximations in (39) and (40) become
increasingly accurate as εn tends to zero. In the figure, n2 > n1 and εn1 > εn2 and the
curves are the (sub-)manifold of distributions such that the mutual information is constant,
that is, the mutual information level sets.

In other words, Πe is the diagonal matrix that contains the reciprocal of the elements of vec(Pe)
on its diagonal. He is the Hessian14 of I(vec(Q∗

n)), viewed as a function of vec(Q
∗
n) and evaluated

at Pe. As such, the exponent for overestimation in (38) can be approximated by a quadratically
constrained quadratic program (QCQP), where z := vec(Q)−vec(Pe):

M̃(Pe;εn) = min
z∈Rr2

1
2
zTΠez,

subject to
1
2
zTHez≥ εn, zT1= 0. (43)

Note that the constraint zT1 = 0 does not necessarily ensure that Q is a probability distribution so
M̃(Pe;εn) is an approximate lower bound to the true rate function M(Pe;εn), defined in (38). We
now argue that the approximate rate function M̃ in (43), can be lower bounded by a quantity that is
proportional to εn. To show this, we resort to Lagrangian duality (Bertsekas, 1999, Ch. 5). It can
easily be shown that the Lagrangian dual corresponding to the primal in (43) is

g(Pe;εn) := εnmax
μ≥0

{μ :Πe) μHe}. (44)

We see from (44) that g(Pe;εn) is proportional to εn. By weak duality (Bertsekas, 1999, Proposition
5.1.3), any dual feasible solution provides a lower bound to the primal, that is,

g(Pe;εn)≤ M̃(Pe;εn). (45)

Note that strong duality (equality in (45)) does not hold in general due in part to the non-convex
constraint set in (43). Interestingly, our manipulations lead lower bounding M̃ by (44), which is a
(convex) semidefinite program (Vandenberghe and Boyd, 1996).

Now observe that the approximations in (39) and (40) are accurate in the limit of large n because
the optimizing distribution Q∗

n becomes increasingly close to Pe. By continuity of the optimization

14. The first two terms in the Taylor expansion of the mutual information I(vec(Q∗
n)) in (40) vanish because (i) I(Pe) = 0

and (ii) (vec(Q∗
n)−vec(Pe))T∇vec(Q)I(vec(Pe)) = 0. Indeed, if we expand I(vec(Q)) around a product distribution,

the constant and linear terms vanish (Borade and Zheng, 2008). Note that He in (42) is an indefinite matrix because
I(vec(Q)) is not convex.

1640

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

problems in (perturbations of) the objective and the constraints, M̃(Pe;εn) and M(Pe;εn) are close
when n is large, that is,

lim
n→∞

M̃(Pe;εn)
M(Pe;εn)

= 1. (46)

This can be seen from (39) in which the ratio of the KL-divergence to its approximation vTΠev/2
is unity in the limit as ‖v‖ → 0. The same holds true for the ratio of the mutual information to its
approximation vTHev/2 in (40). By applying the continuity statement in (46) to the upper bound
in (37), we can conclude that for every η> 0, there exists a N ∈ N such that

Pn(I(P̂e)≥ εn)≤ (n+1)r
2
exp
(
−nM̃(Pe;εn)(1−η)

)
,

for all n> N. Define the constant

cP := min
e∈V×V : I(Pe)=0

max
μ≥0

{μ :Πe) μHe}. (47)

By (44), (45) and the definition of cP in (47),

Pn(I(P̂e)≥ εn)≤ (n+1)r
2
exp(−nεncP(1−η)) . (48)

Putting (35), (36) and (48) together, we see that the overestimation error

Pn(k̂n > k|Bc
n)≤ (d− k−1)2(n+1)r2 exp(−nεncP(1−η)) . (49)

Note that the above probability tends to zero by the assumption that nεn/ logn→∞ in (6). Thus, we
have consistency overall (since the underestimation, Chow-Liu and now the overestimation errors
all tend to zero). Thus, by taking the normalized logarithm (normalized by nεn), the limsup in n
(keeping in mind that d and k are constant), we conclude that

limsup
n→∞

1
nεn

logPn(k̂n > k|Bc
n)≤−cP(1−η). (50)

Now by take η→ 0, it remains to prove that cP = 1 for all P. For this purpose, it suffices to show
that the optimal solution to the optimization problem in (44), denoted μ∗, is equal to one for allΠe

and He. Note that μ∗ can be expressed in terms of eigenvalues:

μ∗ =
(
max
{
eig(Π−1/2

e HeΠ
−1/2
e)

})−1
, (51)

where eig(A) denotes the set of real eigenvalues of the symmetric matrix A. By using the defini-
tions of Πe and He in (41) and (42) respectively, we can verify that the matrix I−Π

−1/2
e HeΠ

−1/2
e

is positive semidefinite with an eigenvalue at zero. This proves that the largest eigenvalue of
Π

−1/2
e HeΠ

−1/2
e is one and hence from (51), μ∗ = 1. The proof of the upper bound in (8) is com-

pleted by combining the estimates in (26), (34) and (50).

1641

TAN, ANANDKUMAR AND WILLSKY

B.2 Proof of Lower Bound in Theorem 3

The key idea is to bound the overestimation error using a modification of the lower bound in Sanov’s
theorem. Denote the set of types supported on a finite set Y with denominator n as Pn(Y) and the
type class of a distribution Q ∈ Pn(Y) as

Tn(Q) := {yn ∈ Yn : P̂(· ;yn) = Q(·)},

where P̂(· ;yn) is the empirical distribution of the sequence yn = (y1, . . . ,yn). The following bounds
on the type class are well known (Cover and Thomas, 2006, Ch. 11).

Lemma 12 (Probability of Type Class) For any Q∈Pn(Y) and any distribution P, the probability
of the type class Tn(Q) under Pn satisfies:

(n+1)−|Y| exp(−nD(Q ||P))≤ Pn(Tn(Q))≤ exp(−nD(Q ||P)). (52)

To prove the lower bound in (7), assume that k < d−1 and note that the error probability Pn(k̂n �=
k|Bc

n) can be lower bounded by P
n(I(P̂e) ≥ εn) for any node pair e such that I(Pe) = 0. We seek

to lower bound the latter probability by appealing to (52). Now choose a sequence of distributions
Q(n) ∈ {Q ∈ Pn(X

2) : I(Q)≥ εn} such that

lim
n→∞

∣∣∣M(Pe;εn)−D(Q(n) ||Pe)
∣∣∣= 0.

This is possible because the set of types is dense in the probability simplex (Dembo and Zeitouni,
1998, Lemma 2.1.2(b)). Thus,

Pn(I(P̂e)≥ εn) = ∑
Q∈Pn(X2):I(Q)≥εn

Pn(Tn(Q))

≥ Pn(Tn(Q
(n)))

≥ (n+1)−r
2
exp(−nD(Q(n) ||Pe)), (53)

where (53) follows from the lower bound in (52). Note from (46) that the following convergence
holds: |M̃(Pe;εn)−M(Pe;εn)| → 0. Using this and the fact that if |an− bn| → 0 and |bn− cn| → 0
then, |an− cn| → 0 (triangle inequality), we also have

lim
n→∞

∣∣∣M̃(Pe;εn)−D(Q(n) ||Pe)
∣∣∣= 0.

Hence, continuing the chain in (53), for any η> 0, there exists a N ∈ N such that for all n> N,

Pn(I(P̂e)≥ εn)≥ (n+1)−r
2
exp(−n(M̃(Pe;εn)+η)). (54)

Note that an upper bound for M̃(Pe;εn) in (43) is simply given by the objective evaluated at any
feasible point. In fact, by manipulating (43), we see that the upper bound is also proportional to εn,
that is,

M̃(Pe;εn)≤CPeεn,

1642

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

where CPe ∈ (0,∞) is some constant15 that depends on the matrices Πe and He. Define CP :=
maxe∈V×V :I(Pe)=0CPe . Continuing the lower bound in (54), we obtain

Pn(I(P̂e)≥ εn)≥ (n+1)−r
2
exp(−nεn(CP+η)),

for n sufficiently large. Now take the normalized logarithm and the liminf to conclude that

liminf
n→∞

1
nεn

logPn(k̂n �= k|Bc
n)≥−(CP+η). (55)

Substitute (55) into the lower bound in (25). Now the resulting inequality is independent of n and
we can take η→ 0 to complete the proof of the lower bound in Theorem 3.

B.3 Proof of the Exponential Rate of Decay for Trees in Theorem 3

For the claim in (9), note that for n sufficiently large,

Pn(An)≥max{(1−η)Pn(k̂n �= kn|Bc
n),P

n(Bn)}, (56)

from Lemma 11 and the fact that Bn ⊆An. Equation (56) gives us a lower bound on the error prob-
ability in terms of the Chow-Liu error Pn(Bn) and the underestimation and overestimation errors
Pn(k̂n �= kn|Bc

n). If k = d− 1, the overestimation error probability is identically zero, so we only
have to be concerned with the underestimation error. Furthermore, from (34) and a corresponding
lower bound which we omit, the underestimation error event satisfies Pn(k̂n < k|Bc

n)
.
= exp(−nLP).

Combining this fact with the definition of the error exponent KP in (24) and the result in (56) estab-
lishes (9). Note that the relation in (56) and our preceding upper bounds ensure that the limit in (9)
exists.

Proof (of Lemma 11) We note that Pn(An |̂kn �= k) = 1 and thus,

Pn(An)≤ Pn(k̂n �= k)+Pn(An |̂kn = k). (57)

By using the definition of KP in (24), the second term in (57) is precisely Pn(Bn) therefore,

Pn(An)≤ Pn(k̂n �= k)+ exp(−n(KP−η)), (58)

for all n> N1. We further bound Pn(k̂n �= k) by conditioning on the event Bc
n. Thus, for η> 0,

Pn(k̂n �= k)≤ Pn(k̂n �= k|Bc
n)+Pn(Bn)

≤ Pn(k̂n �= k|Bc
n)+ exp(−n(KP−η)), (59)

for all n > N2. The upper bound result follows by combining (58) and (59). The lower bound
follows by the chain

Pn(An)≥ Pn(k̂n �= k)≥ Pn({k̂n �= k}∩Bc
n)

= Pn(k̂n �= k|Bc
n)P

n(Bc
n)≥ (1−η)Pn(k̂n �= k|Bc

n),

which holds for all n > N3 since Pn(Bc
n) → 1. Now the claims in (25) and (26) follow by taking

N :=max{N1,N2,N3}.

15. We can easily remove the constraint zT 1 in (43) by a simple change of variables to only consider those vectors in the
subspace orthogonal to the all ones vector so we ignore it here for simplicity. To obtain CPe , suppose the matrixWe

diagonalizes He, that is, He =WT
e DeWe, then one can, for example, chooseCPe =mini:[De]i,i>0[W

T
eΠeWe]i,i.

1643

TAN, ANANDKUMAR AND WILLSKY

Appendix C. Proof of Corollary 4

Proof This claim follows from the fact that three errors (i) Chow-Liu error (ii) underestimation
error and (iii) overestimation error behave in exactly the same way as in Theorem 3. In particular,
the Chow-Liu error, that is, the error for the learning the top k edges in the forest projection model P̃
decays with error exponent KP. The underestimation error behaves as in (34) and the overestimation
error as in (50).

Appendix D. Proof of Theorem 5

Proof Given assumptions (A1) and (A2), we claim that the underestimation exponent LP(d) , defined
in (34), is uniformly bounded away from zero, that is,

L := inf
d∈N

LP(d) = inf
d∈N

min
e∈E

P(d)

L(P(d)
e ;0) (60)

is positive. Before providing a formal proof, we provide a plausible argument to show that this
claim is true. Recall the definition of L(Pe;0) in (31). Assuming that the joint Pe = Pi, j is close to a
product distribution or equivalently if its mutual information I(Pe) is small (which is the worst-case
scenario),

L(Pe;0)≈ min
Q∈P(X2)

{D(Pe ||Q) : I(Q) = 0} (61)

= D(Pe ||Pi Pj) = I(Pe)≥ Iinf > 0, (62)

where in (61), the arguments in the KL-divergence have been swapped. This is because when
Q≈Pe entry-wise,D(Q ||Pe)≈D(Pe ||Q) in the sense that their difference is small compared to their
absolute values (Borade and Zheng, 2008). In (62), we used the fact that the reverse I-projection of
Pe onto the set of product distributions is PiPj. Since Iinf is constant, this proves the claim, that is,
L> 0.

More formally, let

Bκ′ := {Qi, j ∈ P(X2) : Qi, j(xi,x j)≥ κ′,∀xi,x j ∈ X}

be the set of joint distributions whose entries are bounded away from zero by κ′ > 0. Now, consider
a pair of joint distributions P(d)

e , P̃(d)
e ∈ Bκ′ whose minimum values are uniformly bounded away

from zero as assumed in (A2). Then there exists a Lipschitz constant (independent of d)U ∈ (0,∞)
such that for all d,

|I(P(d)
e)− I(P̃(d)

e)| ≤U‖vec(P(d)
e)−vec(P̃(d)

e)‖1, (63)

where ‖ · ‖1 is the vector �1 norm. In fact, U := maxQ∈Bκ′ ‖∇I(vec(Q))‖∞ is the Lipschitz constant
of I(·) which is uniformly bounded because the joint distributions P(d)

e and P̃(d)
e are assumed to be

uniformly bounded away from zero. Suppose, to the contrary, L = 0. Then by the definition of the
infimum in (60), for every ε> 0, there exists a d ∈ N and a corresponding e ∈ EP(d) such that if Q

∗

is the optimizer in (31),

ε> D(Q∗ ||P(d)
e)

(a)
≥ ‖vec(P(d)

e)−vec(Q∗)‖21
2 log2

(b)
≥ |I(P(d)

e)− I(Q∗)|2
(2log2)U2

(c)
≥ I2inf

(2log2)U2 ,

1644

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

where (a) follows from Pinsker’s inequality (Cover and Thomas, 2006, Lemma 11.6.1), (b) is an
application of (63) and the fact that if P(d)

e ∈ Bκ is uniformly bounded from zero (as assumed in
(14)) so is the associated optimizer Q∗ (i.e., in Bκ′′ for some possibly different uniform κ′′ > 0).
Statement (c) follows from the definition of Iinf and the fact that Q∗ is a product distribution, that is,
I(Q∗) = 0. Since ε can be chosen to be arbitrarily small, we arrive at a contradiction. Thus L in (60)
is positive. Finally, we observe from (33) that if n > (3/L) logk the underestimation error tends to
zero because (33) can be further upper bounded as

Pn(k̂n < k|Bc
n)≤ (n+1)r

2
exp(2logk−nL)< (n+1)r

2
exp

(
2
3
nL−nL

)
→ 0

as n→ ∞. TakeC2 = 3/L in (15).
Similarly, given the same assumptions, the error exponent for structure learning KP(d) , defined

in (24), is also uniformly bounded away from zero, that is,

K := inf
d∈N

KP(d) > 0.

Thus, if n > (4/K) logd, the error probability associated to estimating the top k edges (event Bn)
decays to zero along similar lines as in the case of the underestimation error. TakeC1 = 4/K in (15).

Finally, from (49), if nεn > 2log(d−k), then the overestimation error tends to zero. Since from
(6), εn can take the form n−β for β> 0, this is equivalent to n1−β> 2log(d−k), which is the same as
the first condition in (15), namely n> (2log(d− k))1+ζ. By (26) and (27), these three probabilities
constitute the overall error probability when learning the sequence of forest structures {EP(d)}d∈N.
Thus the conditions in (15) suffice for high-dimensional consistency.

Appendix E. Proof of Corollary 6

Proof First note that kn ∈ {0, . . . ,dn − 1}. From (49), we see that for n sufficiently large, the
sequence hn(P) := (nεn)−1 logPn(An) is upper bounded by

−1+ 2
nεn

log(dn− kn−1)+
r2 log(n+1)

nεn
. (64)

The last term in (64) tends to zero by (6). Thus hn(P) = O((nεn)−1 log(dn− kn− 1)), where the
implied constant is 2 by (64). Clearly, this sequence is maximized (resp., minimized) when kn = 0
(resp., kn = dn− 1). Equation (64) also shows that the sequence hn is monotonically decreasing in
kn.

Appendix F. Proof of Theorem 7

Proof We first focus on part (a). Part (b) follows in a relatively straightforward manner. Define

T̂MAP(xn) := argmax
t∈Tdk

P(TP = t|xn)

1645

TAN, ANANDKUMAR AND WILLSKY

to be the maximum a-posteriori (MAP) decoding rule.16 By the optimality of the MAP rule, this
lower bounds the error probability of any other estimator. LetW := T̂MAP((Xd)n) be the range of
the function T̂MAP, that is, a forest t ∈W if and only if there exists a sequence xn such that T̂MAP = t.
Note thatW∪Wc = Tdk . Then, consider the lower bounds:

P(T̂ �= TP) = ∑
t∈Tdk

P(T̂ �= TP|TP = t)P(TP = t)

≥ ∑
t∈Wc

P(T̂ �= TP|TP = t)P(TP = t)

= ∑
t∈Wc

P(TP = t) = 1− ∑
t∈W

P(TP = t) (65)

= 1− ∑
t∈W

|Tdk |−1 (66)

≥ 1− rnd|Tdk |−1, (67)

where in (65), we used the fact that P(T̂ �= TP|TP= t) = 1 if t ∈Wc, in (66), the fact that P(TP= t) =
1/|Tdk |. In (67), we used the observation |W| ≤ (|Xd|)n = rnd since the function T̂MAP : (Xd)n →W

is surjective. Now, the number of labeled forests with k edges and d nodes is (Aigner and Ziegler,
2009, pp. 204) |Tdk | ≥ (d− k)dk−1 ≥ dk−1. Applying this lower bound to (67), we obtain

P(T̂ �= TP)≥ 1− exp(nd logr− (k−1) logd)> 1− exp((ρ−1)(k−1) logd) , (68)

where the second inequality follows by choice of n in (17). The estimate in (68) converges to 1 as
(k,d) → ∞ since ρ < 1. The same reasoning applies to part (b) but we instead use the following
estimates of the cardinality of the set of forests (Aigner and Ziegler, 2009, Ch. 30):

(d−2) logd ≤ log |Fd| ≤ (d−1) log(d+1). (69)

Note that we have lower bounded |Fd| by the number trees with d nodes which is dd−2 by Cayley’s
formula (Aigner and Ziegler, 2009, Ch. 30). The upper bound17 follows by a simple combinatorial
argument which is omitted. Using the lower bound in (69), we have

P(T̂ �= TP)≥ 1− exp(nd logr)exp(−(d−2) logd)> 1−d2 exp((ρ−1)d logd), (70)

with the choice of n in (18). The estimate in (70) converges to 1, completing the proof.

Appendix G. Proof of Theorem 8

Proof We assume that P is Markov on a forest since the extension to non-forest-structured P is
a straightforward generalization. We start with some useful definitions. Recall from Appendix B
that Bn := {Êk �= EP} is the event that the top k edges (in terms of mutual information) in the edge
set Êd−1 are not equal to the edges in EP. Also define C̃n,δ := {D(P∗ ||P) > δd} to be the event
that the divergence between the learned model and the true (forest) one is greater than δd. We will

16. In fact, this proof works for any decoding rule, and not just the MAP rule. We focus on the MAP rule for concreteness.
17. The purpose of the upper bound is to show that our estimates of |Fd | in (69) are reasonably tight.

1646

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

� � �

� �1

2

4

3

5

6� �

�

�

Êk̂n

�

� � �

� �1

2

4

3

5

6� �

�

EP

�

Figure 10: In Êk̂n (left), nodes 1 and 5 are the roots. The parents are defined as π(i; Êk̂n) = i− 1
for i = 2,3,4,6 and π(i; Êk̂n) = /0 for i = 1,5. In EP (right), the parents are defined as
π(i;EP) = i−1 for i= 2,3,4 but π(i;EP) = /0 for i= 1,5,6 since (5,6),(/0,1),(/0,5) /∈EP.

see that C̃n,δ is closely related to the event of interest Cn,δ defined in (20). Let Un := {k̂n < k} be
the underestimation event. Our proof relies on the following result, which is similar to Lemma 11,
hence its proof is omitted.

Lemma 13 For every η> 0, there exists a N ∈ N such that for all n> N, the following bounds on
Pn(C̃n,δ) hold:

(1−η)Pn(C̃n,δ|Bc
n,U

c
n)≤ Pn(C̃n,δ) (71)

≤ Pn(C̃n,δ|Bc
n,U

c
n)+ exp(−n(min{KP,LP}−η)). (72)

Note that the exponential term in (72) comes from an application of the union bound and the
“largest-exponent-wins” principle in large-deviations theory (Den Hollander, 2000). From (71)
and (72) we see that it is possible to bound the probability of C̃n,δ by providing upper and lower

bounds for Pn(C̃n,δ|Bc
n,U

c
n). In particular, we show that the upper bound equals exp(−nδ) to first

order in the exponent. This will lead directly to (21). To proceed, we rely on the following lemma,
which is a generalization of a well-known result (Cover and Thomas, 2006, Ch. 11). We defer the
proof to the end of the section.

Lemma 14 (Empirical Divergence Bounds) Let X ,Y be two random variables whose joint dis-
tribution is PX ,Y ∈ P(X2) and |X| = r. Let (xn,yn) = {(x1,y1), . . . ,(xn,yn)} be n independent and
identically distributed observations drawn from PX ,Y . Then, for every n,

PnX ,Y (D(P̂X |Y ||PX |Y)> δ)≤ (n+1)r
2
exp(−nδ), (73)

where P̂X |Y = P̂X ,Y/P̂Y is the conditional type of (xn,yn). Furthermore,

liminf
n→∞

1
n
logPnX ,Y (D(P̂X |Y ||PX |Y)> δ)≥−δ. (74)

It is worth noting that the bounds in (73) and (74) are independent of the distribution PX ,Y (cf.
discussion after Theorem 8). We now proceed with the proof of Theorem 8. To do so, we consider
the directed representation of a tree distribution Q (Lauritzen, 1996):

Q(x) =∏
i∈V

Qi|π(i)(xi|xπ(i)), (75)

where π(i) is the parent of i in the edge set of Q (assuming a fixed root). Using (75) and conditioned
on the fact that the top k edges of the graph of P∗ are the same as those in EP (event Bc

n) and

1647

TAN, ANANDKUMAR AND WILLSKY

underestimation does not occur (event Uc
n), the KL-divergence between P

∗ (which is a function of
the samples xn and hence of n) and P can be expressed as a sum over d terms:

D(P∗ ||P) =∑
i∈V

D(P̂i|π(i;Êk̂n)
||Pi|π(i;EP)), (76)

where the parent of node i in Êk̂n , denoted π(i; Êk̂n), is defined by arbitrarily choosing a root in

each component tree of the forest T̂̂kn = (V, Êk̂n). The parents of the chosen roots are empty sets.

The parent of node i in EP are “matched” to those in Êk̂n , that is, defined as π(i;EP) := π(i; Êk̂n) if

(i,π(i; Êk̂n)) ∈ EP and π(i;EP) := /0 otherwise. See Figure 10 for an example. Note that this can

be done because Êk̂n ⊇ EP by conditioning on the events Bc
n and Uc

n = {k̂n ≥ k}. Then, the error
probability Pn(C̃n,δ|Bc

n,U
c
n) in (72) can be upper bounded as

Pn(C̃n,δ|Bc
n,U

c
n) = Pn

(
∑
i∈V

D(P̂i|π(i;Êk̂n)
||Pi|π(i;EP))> δd

∣∣∣Bc
n,U

c
n

)
(77)

= Pn
(
1
d ∑i∈V

D(P̂i|π(i;Êk̂n)
||Pi|π(i;EP))> δ

∣∣∣Bc
n,U

c
n

)

≤ Pn
(
max
i∈V

{
D(P̂i|π(i;Êk̂n)

||Pi|π(i;EP))
}
> δ
∣∣∣Bc

n,U
c
n

)
(78)

≤∑
i∈V

Pn
(
D(P̂i|π(i;Êk̂n)

||Pi|π(i;EP))> δ
∣∣∣Bc

n,U
c
n

)
(79)

≤∑
i∈V

(n+1)r
2
exp(−nδ) = d(n+1)r

2
exp(−nδ) , (80)

where Equation (77) follows from the decomposition in (76). Equation (78) follows from the fact
that if the arithmetic mean of d positive numbers exceeds δ, then the maximum exceeds δ. Equa-
tion (79) follows from the union bound. Equation (80), which holds for all n ∈ N, follows from the
upper bound in (73). Combining (72) and (80) shows that if δ<min{KP,LP},

limsup
n→∞

1
n
logPn(C̃n,δ)≤−δ.

Now recall that C̃n,δ = {D(P∗ ||P) > δd}. In order to complete the proof of (21), we need to swap
the arguments in the KL-divergence to bound the probability of the event Cn,δ = {D(P ||P∗)> δd}.
To this end, note that for ε > 0 and n sufficiently large, |D(P∗ ||P)−D(P ||P∗)| < ε with high
probability since the two KL-divergences become close (P∗ ≈ P w.h.p. as n→ ∞). More precisely,
the probability of {|D(P∗ ||P)−D(P ||P∗)| ≥ ε} = {o(‖P−P∗‖2∞) ≥ ε} decays exponentially with
some rateMP > 0. Hence,

limsup
n→∞

1
n
logPn(D(P ||P∗)> δd)≤−δ, (81)

if δ < min{KP,LP,MP}. If P is not Markov on a forest, (81) holds with the forest projection P̃ in
place of P, that is,

limsup
n→∞

1
n
logPn(D(P̃ ||P∗)> δd)≤−δ. (82)

1648

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

The Pythagorean relationship (Simon, 1973; Bach and Jordan, 2003) states that

D(P ||P∗) = D(P || P̃)+D(P̃ ||P∗) (83)

which means that the risk isRn(P∗) =D(P̃ ||P∗). Combining this fact with (82) implies the assertion
of (21) by choosing δ0 :=min{KP,LP,MP}.

Now we exploit the lower bound in Lemma 14 to prove the lower bound in Theorem 8. The
error probability Pn(C̃n,δ|Bc

n,U
c
n) in (72) can now be lower bounded by

Pn(C̃n,δ|Bc
n,U

c
n)≥max

i∈V
Pn
(
D(P̂i|π(i;Êk̂n)

||Pi|π(i;EP))> δd
∣∣∣Bc

n,U
c
n

)
(84)

≥ exp(−n(δd+η)), (85)

where (84) follows from the decomposition in (77) and (85) holds for every η for sufficiently large
n by (74). Using the same argument that allows us to swap the arguments of the KL-divergence as
in the proof of the upper bound completes the proof of (22).

Proof (of Lemma 14) Define the δ-conditional-typical set with respect to PX ,Y ∈ P(X2) as

SδPX ,Y := {(xn,yn) ∈ (X2)n : D(P̂X |Y ||PX |Y)≤ δ},

where P̂X |Y is the conditional type of (xn,yn). We now estimate the PnX ,Y -probability of the δ-

conditional-atypical set, that is, PnX ,Y ((S
δ
PX ,Y)

c)

PnX ,Y ((S
δ
PX ,Y)

c) = ∑
(xn,yn)∈X2:D(P̂X |Y ||PX |Y)>δ

PnX ,Y ((x
n,yn)) (86)

= ∑
QX ,Y∈Pn(X2):D(QX |Y ||PX |Y)>δ

PnX ,Y (Tn(QX ,Y)) (87)

≤ ∑
QX ,Y∈Pn(X2):D(QX |Y ||PX |Y)>δ

exp(−nD(QX ,Y ||PX ,Y)) (88)

≤ ∑
QX ,Y∈Pn(X2):D(QX |Y ||PX |Y)>δ

exp(−nD(QX |Y ||PX |Y)) (89)

≤ ∑
QX ,Y∈Pn(X2):D(QX |Y ||PX |Y)>δ

exp(−nδ) (90)

≤ (n+1)r
2
exp(−nδ), (91)

where (86) and (87) are the same because summing over sequences is equivalent to summing over
the corresponding type classes since every sequence in each type class has the same probability
(Cover and Thomas, 2006, Ch. 11). Equation (88) follows from the method of types result in
Lemma 12. Equation (89) follows from the KL-divergence version of the chain rule, namely,

D(QX ,Y ||PX ,Y) = D(QX |Y ||PX |Y)+D(QY ||PY)

and non-negativity of the KL-divergence D(QY ||PY). Equation (90) follows from the fact that
D(QX |Y ||PX |Y)> δ for QX ,Y ∈ (SδPX ,Y)

c. Finally, (91) follows the fact that the number of types with

denominator n and alphabet X2 is upper bounded by (n+1)r
2
. This concludes the proof of (73).

1649

TAN, ANANDKUMAR AND WILLSKY

We now prove the lower bound in (74). To this end, construct a sequence of distributions
{Q(n)

X ,Y ∈ Pn(X
2)}n∈N such that Q(n)

Y = PY and D(Q
(n)
X |Y ||PX |Y) → δ. Such a sequence exists by the

denseness of types in the probability simplex (Dembo and Zeitouni, 1998, Lemma 2.1.2(b)). Now
we lower bound (87):

PnX ,Y ((S
δ
PX ,Y)

c)≥ PnX ,Y (Tn(Q
(n)
X ,Y))≥ (n+1)−r

2
exp(−nD(Q(n)

X ,Y ||PX ,Y)). (92)

Taking the normalized logarithm and liminf in n on both sides of (92) yields

liminf
n→∞

1
n
logPnX ,Y ((S

δ
PX ,Y)

c)≥ liminf
n→∞

{
−D(Q(n)

X |Y ||PX |Y)−D(Q(n)
Y ||PY)

}
=−δ.

This concludes the proof of Lemma 14.

Appendix H. Proof of Corollary 9

Proof If the dimension d = o(exp(nδ)), then the upper bound in (80) is asymptotically majorized
by poly(n)o(exp(na))exp(−nδ) = o(exp(nδ))exp(−nδ), which can be made arbitrarily small for n
sufficiently large. Thus the probability tends to zero as n→ ∞.

Appendix I. Proof of Theorem 10

Proof In this proof, we drop the superscript (d) for all distributions P for notational simplicity but
note that d = dn. We first claim that D(P∗ || P̃) =Op(d logd/n1−γ). Note from (72) and (80) that by
taking δ= (τ logd)/n1−γ (for any τ> 0),

Pn
(

n1−γ

d logd
D(P∗ || P̃)> τ

)
≤ d(n+1)r

2
exp(−τnγ logd)+ exp(−Θ(n)) = on(1). (93)

Therefore, the scaled sequence of random variables n1−γ
d logdD(P

∗ || P̃) is stochastically bounded (Ser-
fling, 1980) which proves the claim.18

Now, we claim that D(P̃ ||P∗) = Op(d logd/n1−γ). A simple calculation using Pinsker’s In-
equality and Lemma 6.3 in Csiszár and Talata (2006) yields

D(P̂X ,Y ||PX ,Y)≤
c
κ
D(PX ,Y || P̂X ,Y),

where κ := minx,y PX ,Y (x,y) and c = 2log2. Using this fact, we can use (73) to show that for all n
sufficiently large,

PnX ,Y (D(PX |Y || P̂X |Y)> δ)≤ (n+1)r
2
exp(−nδκ/c),

that is, if the arguments in the KL-divergence in (73) are swapped, then the exponent is reduced by
a factor proportional to κ. Using this fact and the assumption in (14) (uniformity of the minimum

18. In fact, we have in fact proven the stronger assertion that D(P∗ || P̃) = op(d logd/n1−γ) since the right-hand-side of
(93) converges to zero.

1650

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

entry in the pairwise joint κ> 0), we can replicate the proof of the result in (80) with δκ/c in place
of δ giving

Pn(D(P ||P∗)> δ)≤ d(n+1)r
2
exp(−nδκ/c) .

We then arrive at a similar result to (93) by taking δ= (τ logd)/n1−γ. We conclude that D(P̃ ||P∗) =
Op(d logd/n1−γ). This completes the proof of the claim.

Equation (23) then follows from the definition of the risk in (19) and from the Pythagorean the-
orem in (83). This implies the assertion of Theorem 10.

References

P. Abbeel, D. Koller, and A. Y. Ng. Learning factor graphs in polynomial time and sample com-
plexity. Journal of Machine Learning Research, Dec 2006.

M. Aigner and G. M. Ziegler. Proofs From THE BOOK. Springer, 2009.

F. Bach and M. I. Jordan. Beyond independent components: trees and clusters. Journal of Machine
Learning Research, 4:1205–1233, 2003.

D. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2008.

S. Borade and L. Zheng. Euclidean information theory. In IEEE International Zurich Seminar on
Communications, pages 14–17, 2008.

G. Bresler, E. Mossel, and A. Sly. Reconstruction of Markov random fields from samples: Some ob-
servations and algorithms. In 11th International workshop APPROX 2008 and 12th International
workshop RANDOM, pages 343–356., 2008.

A. Chechetka and C. Guestrin. Efficient principled learning of thin junction trees. In Advances of
Neural Information Processing Systems (NIPS), 2007.

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees.
IEEE Transactions on Infomation Theory, 14(3):462–467, May 1968.

C. K. Chow and T. Wagner. Consistency of an estimate of tree-dependent probability distributions .
IEEE Transactions in Information Theory, 19(3):369 – 371, May 1973.

T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 2nd edition,
2006.

I. Csiszár and F. Matúš. Information projections revisited. IEEE Transactions on Infomation Theory,
49(6):1474–1490, 2003.

I. Csiszár and P. Shields. The consistency of the BIC Markov order estimator. Ann. Statist., 28(6):
1601–1619, 2000.

1651

TAN, ANANDKUMAR AND WILLSKY

I. Csiszár and Z. Talata. Context tree estimation for not necessarily finite memory processes, via bic
and mdl. IEEE Transactions on Information Theory, 52(3):1007–16, 2006.

A. Custovic, B. M. Simpson, C. S. Murray, L. Lowe, and A. Woodcock. The national asthma
campaign Manchester asthma and allergy study. Pediatr Allergy Immunol, 13:32–37, 2002.

A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Springer, 2nd edition,
1998.

F. Den Hollander. Large Deviations (Fields Institute Monographs, 14). American Mathematical
Society, Feb 2000.

M. Dudik, S. J. Phillips, and R. E. Schapire. Performance guarantees for regularized maximum
entropy density estimation. In Conference on Learning Theory (COLT), 2004.

R. M. Fano. Transmission of Information. New York: Wiley, 1961.

L. Finesso, C. C. Liu, and P. Narayan. The optimal error exponent for Markov order estimation.
IEEE Trans. on Info Th., 42(5):1488–1497, 1996.

R. G. Gallager. Claude E. Shannon: A retrospective on his life, work and impact. IEEE Trans. on
Info. Th., 47:2687–95, Nov 2001.

E. Gassiat and S. Boucheron. Optimal error exponents in hidden Markov models order estimation.
IEEE Transactions on Infomation Theory, 49(4):964–980, Apr 2003.

J. Johnson, V. Chandrasekaran, and A. S. Willsky. Learning Markov structure by maximum entropy
relaxation. In Artificial Intelligence and Statistics (AISTATS), 2007.

J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical Society, 7(1), Feb 1956.

S. Lauritzen. Graphical Models. Oxford University Press, USA, 1996.

S. Lee, V. Ganapathi, and D. Koller. Efficient structure learning of Markov networks using L1-
regularization. In Advances in Neural Information Processing Systems (NIPS), 2006.

H. Liu, M. Xu, H. Gu, A. Gupta, J. Lafferty, and L. Wasserman. Forest density estimation. Journal
of Machine Learning Research, 12:907–951, March 2011.

M. Meilă and M. I. Jordan. Learning with mixtures of trees. Journal of Machine Learning Research,
1:1–48, Oct 2000.

N. Meinshausen and P. Buehlmann. High dimensional graphs and variable selection with the Lasso.
Annals of Statistics, 34(3):1436–1462, 2006.

N. Merhav. The estimation of the model order in exponential families. IEEE Transactions on
Infomation Theory, 35(5):1109–1115, 1989.

N. Merhav, M. Gutman., and J. Ziv. On the estimation of the order of a Markov chain and universal
data compression. IEEE Transactions on Infomation Theory, 35:1014–1019, 1989.

1652

LEARNING HIGH-DIMENSIONAL MARKOV FOREST DISTRIBUTIONS

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI Repository of Machine Learning
Databases, University of California, Irvine, 1998.

R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal,
36, 1957.

N. Santhanam and M. J. Wainwright. Information-theoretic limits of selecting binary graphical
models in high dimensions. In Proc. of IEEE Intl. Symp. on Info. Theory, Toronto, Canada, July
2008.

R. J. Serfling. Approximation Theorems of Mathematical Statistics. Wiley-Interscience, Nov 1980.

G. Simon. Additivity of information in exponential family probability laws. Amer. Statist. Assoc.,
68(478–482), 1973.

A. Simpson, V. Y. F. Tan, J. M. Winn, M. Svensén, C. M. Bishop, D. E. Heckerman, I. Buchan,
and A. Custovic. Beyond atopy: Multiple patterns of sensitization in relation to asthma in a birth
cohort study. Am J Respir Crit Care Med, 2010.

V. Y. F. Tan, A. Anandkumar, and A. S. Willsky. Learning Gaussian tree models: Analysis of error
exponents and extremal structures. IEEE Transactions on Signal Processing, 58(5):2701 – 2714,
May 2010a.

V. Y. F. Tan, A. Anandkumar, and A. S. Willsky. Error exponents for composite hypothesis testing
of Markov forest distributions. In Proc. of Intl. Symp. on Info. Th., June 2010b.

V. Y. F. Tan, A. Anandkumar, L. Tong, and A. S. Willsky. A large-deviation analysis for the
maximum-likelihood learning of Markov tree structures. IEEE Transactions on Infomation The-
ory, Mar 2011.

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38:49–95, Mar 1996.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational infer-
ence. Technical report, University of California, Berkeley, 2003.

M. J. Wainwright, P. Ravikumar, and J. D. Lafferty. High-dimensional graphical model selection
using �1-regularized logistic regression. In Advances of Neural Information Processing Systems
(NIPS), pages 1465–1472, 2006.

O. Zuk, S. Margel, and E. Domany. On the number of samples needed to learn the correct structure
of a Bayesian network. In Proc of Uncertainty in Artificial Intelligence (UAI), 2006.

1653

Journal of Machine Learning Research 12 (2011) 1655-1695 Submitted 1/10; Revised 11/10; Published 5/11

X -Armed Bandits

Sébastien Bubeck SBUBECK@CRM.CAT
Centre de Recerca Matemàtica
Campus de Bellaterra, Edifici C
08193 Bellaterra (Barcelona), Spain

Rémi Munos REMI.MUNOS@INRIA.FR
INRIA Lille, SequeL Project
40 avenue Halley
59650 Villeneuve d’Ascq, France

Gilles Stoltz∗ GILLES.STOLTZ@ENS.FR
Ecole Normale Supérieure, CNRS, INRIA
45 rue d’Ulm
75005 Paris, France

Csaba Szepesvári SZEPESVA@CS.UALBERTA.CA
University of Alberta
Department of Computing Science
Edmonton T6G 2E8, Canada

Editor: Nicolò Cesa-Bianchi

Abstract
We consider a generalization of stochastic bandits where the set of arms, X , is allowed to be a
generic measurable space and the mean-payoff function is “locally Lipschitz” with respect to a
dissimilarity function that is known to the decision maker. Under this condition we construct an arm
selection policy, called HOO (hierarchical optimistic optimization), with improved regret bounds
compared to previous results for a large class of problems. In particular, our results imply that if
X is the unit hypercube in a Euclidean space and the mean-payoff function has a finite number
of global maxima around which the behavior of the function is locally continuous with a known
smoothness degree, then the expected regret of HOO is bounded up to a logarithmic factor by

√
n,

that is, the rate of growth of the regret is independent of the dimension of the space. We also prove
the minimax optimality of our algorithm when the dissimilarity is a metric. Our basic strategy has
quadratic computational complexity as a function of the number of time steps and does not rely on
the doubling trick. We also introduce a modified strategy, which relies on the doubling trick but
runs in linearithmic time. Both results are improvements with respect to previous approaches.
Keywords: bandits with infinitely many arms, optimistic online optimization, regret bounds,
minimax rates

1. Introduction

In the classical stochastic bandit problem a gambler tries to maximize his revenue by sequentially
playing one of a finite number of slot machines that are associated with initially unknown (and
potentially different) payoff distributions (Robbins, 1952). Assuming old-fashioned slot machines,

∗. Also at HEC Paris, CNRS, 1 rue de la Libération, 78351 Jouy-en-Josas, France.

c©2011 Sébastien Bubeck, Rémi Munos, Gilles Stoltz and Csaba Szepesvári.

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

the gambler pulls the arms of the machines one by one in a sequential manner, simultaneously
learning about the machines’ payoff-distributions and gaining actual monetary reward. Thus, in
order to maximize his gain, the gambler must choose the next arm by taking into consideration both
the urgency of gaining reward (“exploitation”) and acquiring new information (“exploration”).

Maximizing the total cumulative payoff is equivalent to minimizing the (total) regret, that is,
minimizing the difference between the total cumulative payoff of the gambler and the one of another
clairvoyant gambler who chooses the arm with the best mean-payoff in every round. The quality of
the gambler’s strategy can be characterized as the rate of growth of his expected regret with time.
In particular, if this rate of growth is sublinear, the gambler in the long run plays as well as the
clairvoyant gambler. In this case the gambler’s strategy is called Hannan consistent.

Bandit problems have been studied in the Bayesian framework (Gittins, 1989), as well as in the
frequentist parametric (Lai and Robbins, 1985; Agrawal, 1995a) and non-parametric settings (Auer
et al., 2002a), and even in non-stochastic scenarios (Auer et al., 2002b; Cesa-Bianchi and Lugosi,
2006). While in the Bayesian case the question is whether the optimal actions can be computed
efficiently, in the frequentist case the question is how to achieve low rate of growth of the regret
in the lack of prior information, that is, it is a statistical question. In this paper we consider the
stochastic, frequentist, non-parametric setting.

Although the first papers studied bandits with a finite number of arms, researchers have soon
realized that bandits with infinitely many arms are also interesting, as well as practically significant.
One particularly important case is when the arms are identified by a finite number of continuous-
valued parameters, resulting in online optimization problems over continuous finite-dimensional
spaces. Such problems are ubiquitous to operations research and control. Examples are “pricing
a new product with uncertain demand in order to maximize revenue, controlling the transmission
power of a wireless communication system in a noisy channel to maximize the number of bits
transmitted per unit of power, and calibrating the temperature or levels of other inputs to a reaction
so as to maximize the yield of a chemical process” (Cope, 2009). Other examples are optimizing
parameters of schedules, rotational systems, traffic networks or online parameter tuning of numeri-
cal methods. During the last decades numerous authors have investigated such “continuum-armed”
bandit problems (Agrawal, 1995b; Kleinberg, 2004; Auer et al., 2007; Kleinberg et al., 2008a; Cope,
2009). A special case of interest, which forms a bridge between the case of a finite number of arms
and the continuum-armed setting, is formed by bandit linear optimization, see Abernethy et al.
(2008) and the references therein.

In many of the above-mentioned problems, however, the natural domain of some of the opti-
mization parameters is a discrete set, while other parameters are still continuous-valued. For ex-
ample, in the pricing problem different product lines could also be tested while tuning the price, or
in the case of transmission power control different protocols could be tested while optimizing the
power. In other problems, such as in online sequential search, the parameter-vector to be optimized
is an infinite sequence over a finite alphabet (Coquelin andMunos, 2007; Bubeck andMunos, 2010).

The motivation for this paper is to handle all these various cases in a unified framework. More
precisely, we consider a general setting that allows us to study bandits with almost no restriction on
the set of arms. In particular, we allow the set of arms to be an arbitrary measurable space. Since
we allow non-denumerable sets, we shall assume that the gambler has some knowledge about the
behavior of the mean-payoff function (in terms of its local regularity around its maxima, roughly
speaking). This is because when the set of arms is uncountably infinite and absolutely no assump-
tions are made on the payoff function, it is impossible to construct a strategy that simultaneously

1656

X -ARMED BANDITS

achieves sublinear regret for all bandits problems (see, e.g., Bubeck et al., 2011, Corollary 4). When
the set of arms is a metric space (possibly with the power of the continuum) previous works have
assumed either the global smoothness of the payoff function (Agrawal, 1995b; Kleinberg, 2004;
Kleinberg et al., 2008a; Cope, 2009) or local smoothness in the vicinity of the maxima (Auer et al.,
2007). Here, smoothness means that the payoff function is either Lipschitz or Hölder continuous
(locally or globally). These smoothness assumptions are indeed reasonable in many practical prob-
lems of interest.

In this paper, we assume that there exists a dissimilarity function that constrains the behavior of
the mean-payoff function, where a dissimilarity function is a measure of the discrepancy between
two arms that is neither symmetric, nor reflexive, nor satisfies the triangle inequality. (The same no-
tion was introduced simultaneously and independently of us by Kleinberg et al., 2008b, Section 4.4,
under the name “quasi-distance.”) In particular, the dissimilarity function is assumed to locally set
a bound on the decrease of the mean-payoff function at each of its global maxima. We also assume
that the decision maker can construct a recursive covering of the space of arms in such a way that
the diameters of the sets in the covering shrink at a known geometric rate when measured with this
dissimilarity.

1.1 Relation to the Literature

Our work generalizes and improves previous works on continuum-armed bandits.
In particular, Kleinberg (2004) and Auer et al. (2007) focused on one-dimensional problems,

while we allow general spaces. In this sense, the closest work to the present contribution is that
of Kleinberg et al. (2008a), who considered generic metric spaces assuming that the mean-payoff
function is Lipschitz with respect to the (known) metric of the space; its full version (Kleinberg et al.,
2008b) relaxed this condition and only requires that the mean-payoff function is Lipschitz at some
maximum with respect to some (known) dissimilarity.1 Kleinberg et al. (2008b) proposed a novel
algorithm that achieves essentially the best possible regret bound in a minimax sense with respect
to the environments studied, as well as a much better regret bound if the mean-payoff function has
a small “zooming dimension”.

Our contribution furthers these works in two ways:

(i) our algorithms, motivated by the recent successful tree-based optimization algorithms (Kocsis
and Szepesvari, 2006; Gelly et al., 2006; Coquelin and Munos, 2007), are easy to implement;

(ii) we show that a version of our main algorithm is able to exploit the local properties of the mean-
payoff function at its maxima only, which, as far as we know, was not investigated in the
approach of Kleinberg et al. (2008a,b).

The precise discussion of the improvements (and drawbacks) with respect to the papers by
Kleinberg et al. (2008a,b) requires the introduction of somewhat extensive notations and is therefore
deferred to Section 5. However, in a nutshell, the following can be said.

1. The present paper paper is a concurrent and independent work with respect to the paper of Kleinberg et al. (2008b).
An extended abstract (Kleinberg et al., 2008a) of the latter was published in May 2008 at STOC’08, while the
NIPS’08 version (Bubeck et al., 2009) of the present paper was submitted at the beginning of June 2008. At that time,
we were not aware of the existence of the full version (Kleinberg et al., 2008b), which was released in September
2008.

1657

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

First, by resorting to a hierarchical approach, we are able to avoid the use of the doubling
trick, as well as the need for the (covering) oracle, both of which the so-called zooming algorithm
of Kleinberg et al. (2008a) relies on. This comes at the cost of slightly more restrictive assumptions
on the mean-payoff function, as well as a more involved analysis. Moreover, the oracle is replaced
by an a priori choice of a covering tree. In standard metric spaces, such as the Euclidean spaces,
such trees are trivial to construct, though, in full generality they may be difficult to obtain when
their construction must start from (say) a distance function only. We also propose a variant of
our algorithm that has smaller computational complexity of order n lnn compared to the quadratic
complexity n2 of our basic algorithm. However, the cheaper algorithm requires the doubling trick
to achieve an anytime guarantee (just like the zooming algorithm).

Second, we are also able to weaken our assumptions and to consider only properties of the
mean-payoff function in the neighborhoods of its maxima; this leads to regret bounds scaling as
Õ
(√

n
)
2 when, for example, the space is the unit hypercube and the mean-payoff function has a

finite number of global maxima x∗ around which it is locally equivalent to a function ‖x−x∗‖α with
some known degree α> 0. Thus, in this case, we get the desirable property that the rate of growth of
the regret is independent of the dimensionality of the input space. (Comparable dimensionality-free
rates are obtained under different assumptions in Kleinberg et al., 2008b.)

Finally, in addition to the strong theoretical guarantees, we expect our algorithm to work well
in practice since the algorithm is very close to the recent, empirically very successful tree-search
methods from the games and planning literature (Gelly and Silver, 2007, 2008; Schadd et al., 2008;
Chaslot et al., 2008; Finnsson and Bjornsson, 2008).

1.2 Outline

The outline of the paper is as follows:

1. In Section 2 we formalize the X -armed bandit problem.

2. In Section 3 we describe the basic strategy proposed, called HOO (hierarchical optimistic
optimization).

3. We present the main results in Section 4. We start by specifying and explaining our as-
sumptions (Section 4.1) under which various regret bounds are proved. Then we prove a
distribution-dependent bound for the basic version of HOO (Section 4.2). A problem with
the basic algorithm is that its computational cost increases quadratically with the number of
time steps. Assuming the knowledge of the horizon, we thus propose a computationally more
efficient variant of the basic algorithm, called truncated HOO and prove that it enjoys a regret
bound identical to the one of the basic version (Section 4.3) while its computational complex-
ity is only log-linear in the number of time steps. The first set of assumptions constrains the
mean-payoff function everywhere. A second set of assumptions is therefore presented that
puts constraints on the mean-payoff function only in a small vicinity of its global maxima;
we then propose another algorithm, called local-HOO, which is proven to enjoy a regret again
essentially similar to the one of the basic version (Section 4.4). Finally, we prove the minimax
optimality of HOO in metric spaces (Section 4.5).

4. In Section 5 we compare the results of this paper with previous works.

2. We write un = Õ(vn) when un = O(vn) up to a logarithmic factor.

1658

X -ARMED BANDITS

2. Problem Setup

A stochastic bandit problem B is a pair B = (X ,M), where X is a measurable space of arms and
M determines the distribution of rewards associated with each arm. We say that M is a bandit
environment on X . Formally,M is an mapping X →M1(R), whereM1(R) is the space of probability
distributions over the reals. The distribution assigned to arm x ∈ X is denoted by Mx. We require
that for each arm x ∈ X , the distributionMx admits a first-order moment; we then denote by f (x) its
expectation (“mean payoff”),

f (x) =
∫
y dMx(y) .

The mean-payoff function f thus defined is assumed to be measurable. For simplicity, we shall also
assume that all Mx have bounded supports, included in some fixed bounded interval,3 say, the unit
interval [0,1]. Then, f also takes bounded values, in [0,1].

A decision maker (the gambler of the introduction) that interacts with a stochastic bandit prob-
lem B plays a game at discrete time steps according to the following rules. In the first round the
decision maker can select an arm X1 ∈ X and receives a reward Y1 drawn at random from MX1 . In
round n > 1 the decision maker can select an arm Xn ∈ X based on the information available up
to time n, that is, (X1,Y1, . . . ,Xn−1,Yn−1), and receives a reward Yn drawn from MXn , independently
of (X1,Y1, . . . ,Xn−1,Yn−1) given Xn. Note that a decision maker may randomize his choice, but can
only use information available up to the point in time when the choice is made.

Formally, a strategy of the decision maker in this game (“bandit strategy”) can be described by
an infinite sequence of measurable mappings, ϕ = (ϕ1,ϕ2, . . .), where ϕn maps the space of past
observations,

Hn =
(
X × [0,1]

)n−1
,

to the space of probability measures over X . By convention, ϕ1 does not take any argument. A
strategy is called deterministic if for every n, ϕn is a Dirac distribution.

The goal of the decision maker is to maximize his expected cumulative reward. Equivalently,
the goal can be expressed as minimizing the expected cumulative regret, which is defined as follows.
Let

f ∗ = sup
x∈X

f (x)

be the best expected payoff in a single round. At round n, the cumulative regret of a decision maker
playing B is

R̂n = n f ∗ −
n

∑
t=1

Yt ,

that is, the difference between the maximum expected payoff in n rounds and the actual total payoff.
In the sequel, we shall restrict our attention to the expected cumulative regret, which is defined as
the expectation E[R̂n] of the cumulative regret R̂n.

Finally, we define the cumulative pseudo-regret as

Rn = n f ∗ −
n

∑
t=1

f (Xt) ,

3. More generally, our results would also hold when the tails of the reward distributions are uniformly sub-Gaussian.

1659

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

that is, the actual rewards used in the definition of the regret are replaced by the mean-payoffs of
the arms pulled. Since (by the tower rule)

E
[
Yt
]
= E
[
E [Yt |Xt]

]
= E
[
f (Xt)

]
,

the expected values E[R̂n] of the cumulative regret and E[Rn] of the cumulative pseudo-regret are
the same. Thus, we focus below on the study of the behavior of E

[
Rn
]
.

Remark 1 As it is argued in Bubeck et al. (2011), in many real-world problems, the decision maker
is not interested in his cumulative regret but rather in its simple regret. The latter can be defined
as follows. After n rounds of play in a stochastic bandit problem B , the decision maker is asked to
make a recommendation Zn ∈ X based on the n obtained rewards Y1, . . . ,Yn. The simple regret of
this recommendation equals

rn = f ∗ − f (Zn) .

In this paper we focus on the cumulative regret Rn, but all the results can be readily extended to the
simple regret by considering the recommendation Zn = XTn, where Tn is drawn uniformly at random
in {1, . . . ,n}. Indeed, in this case,

E
[
rn
]
�

E
[
Rn
]

n
,

as is shown in Bubeck et al. (2011, Section 3).

3. The Hierarchical Optimistic Optimization (HOO) Strategy

The HOO strategy (cf., Algorithm 1) incrementally builds an estimate of the mean-payoff function
f over X . The core idea (as in previous works) is to estimate f precisely around its maxima, while
estimating it loosely in other parts of the space X . To implement this idea, HOO maintains a binary
tree whose nodes are associated with measurable regions of the arm-space X such that the regions
associated with nodes deeper in the tree (further away from the root) represent increasingly smaller
subsets of X . The tree is built in an incremental manner. At each node of the tree, HOO stores
some statistics based on the information received in previous rounds. In particular, HOO keeps
track of the number of times a node was traversed up to round n and the corresponding empirical
average of the rewards received so far. Based on these, HOO assigns an optimistic estimate (denoted
by B) to the maximum mean-payoff associated with each node. These estimates are then used to
select the next node to “play”. This is done by traversing the tree, beginning from the root, and
always following the node with the highest B-value (cf., lines 4–14 of Algorithm 1). Once a node is
selected, a point in the region associated with it is chosen (line 16) and is sent to the environment.
Based on the point selected and the received reward, the tree is updated (lines 18–33).

The tree of coverings which HOO needs to receive as an input is an infinite binary tree whose
nodes are associated with subsets of X . The nodes in this tree are indexed by pairs of integers (h, i);
node (h, i) is located at depth h� 0 from the root. The range of the second index, i, associated with
nodes at depth h is restricted by 1� i� 2h. Thus, the root node is denoted by (0,1). By convention,
(h+ 1,2i− 1) and (h+ 1,2i) are used to refer to the two children of the node (h, i). Let Ph,i ⊂ X
be the region associated with node (h, i). By assumption, these regions are measurable and must

1660

X -ARMED BANDITS

satisfy the constraints

P0,1 = X , (1)

Ph,i = Ph+1,2i−1∪Ph,2i , for all h� 0 and 1� i� 2h. (2)

As a corollary, the regions Ph,i at any level h� 0 cover the space X ,

X =
2h⋃
i=1

Ph,i ,

explaining the term “tree of coverings”.
In the algorithm listing the recursive computation of the B-values (lines 28–33) makes a local

copy of the tree; of course, this part of the algorithm could be implemented in various other ways.
Other arbitrary choices in the algorithm as shown here are how tie breaking in the node selection
part is done (lines 9–12), or how a point in the region associated with the selected node is chosen
(line 16). We note in passing that implementing these differently would not change our theoretical
results.

To facilitate the formal study of the algorithm, we shall need some more notation. In particular,
we shall introduce time-indexed versions (Tn, (Hn, In), Xn, Yn, μ̂h,i(n), etc.) of the quantities used by
the algorithm. The convention used is that the indexation by n is used to indicate the value taken at
the end of the nth round.

In particular, Tn is used to denote the finite subtree stored by the algorithm at the end of round
n. Thus, the initial tree is T0 = {(0,1)} and it is expanded round after round as

Tn = Tn−1∪{(Hn, In)} ,

where (Hn, In) is the node selected in line 15. We call (Hn, In) the node played in round n. We use
Xn to denote the point selected by HOO in the region associated with the node played in round n,
while Yn denotes the received reward.

Node selection works by comparing B-values and always choosing the node with the highest
B-value. The B-value, Bh,i(n), at node (h, i) by the end of round n is an estimated upper bound on
the mean-payoff function at node (h, i). To define it we first need to introduce the average of the
rewards received in rounds when some descendant of node (h, i) was chosen (by convention, each
node is a descendant of itself):

μ̂h,i(n) =
1

Th,i(n)

n

∑
t=1

Yt I{(Ht ,It)∈C (h,i)} .

Here, C (h, i) denotes the set of all descendants of a node (h, i) in the infinite tree,

C (h, i) =
{
(h, i)
}
∪C (h+1,2i−1)∪C (h+1,2i) ,

and Th,i(n) is the number of times a descendant of (h, i) is played up to and including round n, that
is,

Th,i(n) =
n

∑
t=1

I{(Ht ,It)∈C (h,i)} .

1661

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

Algorithm 1 The HOO strategy

Parameters: Two real numbers ν1 > 0 and ρ ∈ (0,1), a sequence (Ph,i)h�0,1�i�2h of subsets of X
satisfying the conditions (1) and (2).

Auxiliary function LEAF(T): outputs a leaf of T .

Initialization: T =
{
(0,1)

}
and B1,2 = B2,2 =+∞.

1: for n= 1,2, . . . do � Strategy HOO in round n� 1
2: (h, i)← (0,1) � Start at the root
3: P←{(h, i)} � P stores the path traversed in the tree
4: while (h, i) ∈ T do � Search the tree T
5: if Bh+1,2i−1 > Bh+1,2i then � Select the “more promising” child
6: (h, i)← (h+1,2i−1)
7: else if Bh+1,2i−1 < Bh+1,2i then
8: (h, i)← (h+1,2i)
9: else � Tie-breaking rule
10: Z ∼ Ber(0.5) � e.g., choose a child at random
11: (h, i)← (h+1,2i−Z)
12: end if
13: P← P∪{(h, i)}
14: end while
15: (H, I)← (h, i) � The selected node
16: Choose arm X in PH,I and play it � Arbitrary selection of an arm
17: Receive corresponding reward Y
18: T ← T ∪{(H, I)} � Extend the tree
19: for all (h, i) ∈ P do � Update the statistics T and μ̂ stored in the path
20: Th,i ← Th,i+1 � Increment the counter of node (h, i)
21: μ̂h,i ←

(
1−1/Th,i

)
μ̂h,i+Y/Th,i � Update the mean μ̂h,i of node (h, i)

22: end for
23: for all (h, i) ∈ T do � Update the statisticsU stored in the tree
24: Uh,i ← μ̂h,i+

√
(2lnn)/Th,i+ν1ρh � Update theU-value of node (h, i)

25: end for
26: BH+1,2I−1 ←+∞ � B-values of the children of the new leaf
27: BH+1,2I ←+∞
28: T ′ ← T � Local copy of the current tree T
29: while T ′ �=

{
(0,1)

}
do � Backward computation of the B-values

30: (h, i)← LEAF(T ′) � Take any remaining leaf

31: Bh,i ←min
{
Uh,i,max

{
Bh+1,2i−1,Bh+1,2i

}}
� Backward computation

32: T ′ ← T ′ \
{
(h, i)
}

� Drop updated leaf (h, i)
33: end while
34: end for

1662

X -ARMED BANDITS

A key quantity determining Bh,i(n) isUh,i(n), an initial estimate of the maximum of the mean-payoff
function in the region Ph,i associated with node (h, i):

Uh,i(n) =

⎧⎪⎪⎨⎪⎪⎩
μ̂h,i(n)+

√
2lnn
Th,i(n)

+ν1ρh, if Th,i(n)> 0;

+∞, otherwise.

(3)

In the expression corresponding to the case Th,i(n)> 0, the first term added to the average of rewards
accounts for the uncertainty arising from the randomness of the rewards that the average is based
on, while the second term, ν1ρh, accounts for the maximum possible variation of the mean-payoff
function over the region Ph,i. The actual bound on the maxima used in HOO is defined recursively
by

Bh,i(n) =

{
min
{
Uh,i(n),max

{
Bh+1,2i−1(n),Bh+1,2i(n)

}}
, if (h, i) ∈ Tn;

+∞, otherwise.

The role of Bh,i(n) is to put a tight, optimistic, high-probability upper bound on the best mean-payoff
that can be achieved in the region Ph,i. By assumption, Ph,i = Ph+1,2i−1∪Ph+1,2i. Thus, assuming
that Bh+1,2i−1(n) (resp., Bh+1,2i(n)) is a valid upper bound for region Ph+1,2i−1 (resp., Ph+1,2i), we
see that max

{
Bh+1,2i−1(n),Bh+1,2i(n)

}
must be a valid upper bound for region Ph,i. Since Uh,i(n)

is another valid upper bound for region Ph,i, we get a tighter (less overoptimistic) upper bound by
taking the minimum of these bounds.

Obviously, for leafs (h, i) of the tree Tn, one has Bh,i(n) =Uh,i(n), while close to the root one
may expect that Bh,i(n)<Uh,i(n); that is, the upper bounds close to the root are expected to be less
biased than the ones associated with nodes farther away from the root.

Note that at the beginning of round n, the algorithm uses Bh,i(n−1) to select the node (Hn, In)
to be played (since Bh,i(n) will only be available at the end of round n). It does so by following a
path from the root node to an inner node with only one child or a leaf and finally considering a child
(Hn, In) of the latter; at each node of the path, the child with highest B-value is chosen, till the node
(Hn, In) with infinite B-value is reached.

3.1 Illustrations

Figure 1 illustrates the computation done by HOO in round n, as well as the correspondence between
the nodes of the tree constructed by the algorithm and their associated regions. Figure 2 shows trees
built by running HOO for a specific environment.

3.2 Computational Complexity

At the end of round n, the size of the active tree Tn is at most n, making the storage requirements
of HOO linear in n. In addition, the statistics and B-values of all nodes in the active tree need
to be updated, which thus takes time O(n). HOO runs in time O(n) at each round n, making the
algorithm’s total running time up to round n quadratic in n. In Section 4.3 we modify HOO so that
if the time horizon n0 is known in advance, the total running time is O(n0 lnn0), while the modified
algorithm will be shown to enjoy essentially the same regret bound as the original version.

1663

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

h,i
B

B
h+1,2i−1

B
h+1,2i

(H ,I)n n

Followed path

Pulled point Xn

Selected node

Figure 1: Illustration of the node selection procedure in round n. The tree represents Tn. In the
illustration, Bh+1,2i−1(n− 1) > Bh+1,2i(n− 1), therefore, the selected path included the
node (h+1,2i−1) rather than the node (h+1,2i).

4. Main Results

We start by describing and commenting on the assumptions that we need to analyze the regret of
HOO. This is followed by stating the first upper bound, followed by some improvements on the
basic algorithm. The section is finished by the statement of our results on the minimax optimality
of HOO.

4.1 Assumptions

The main assumption will concern the “smoothness” of the mean-payoff function. However, some-
what unconventionally, we shall use a notion of smoothness that is built around dissimilarity func-
tions rather than distances, allowing us to deal with function classes of highly different smoothness
degrees in a unified manner. Before stating our smoothness assumptions, we define the notion of a
dissimilarity function and some associated concepts.

Definition 2 (Dissimilarity) A dissimilarity � over X is a non-negative mapping � : X 2 → R satis-
fying �(x,x) = 0 for all x ∈ X .

Given a dissimilarity �, the diameter of a subset A of X as measured by � is defined by

diam(A) = sup
x,y∈A

�(x,y) ,

while the �—open ball of X with radius ε> 0 and center x ∈ X is defined by

B(x,ε) = {y ∈ X : �(x,y)< ε} .

1664

X -ARMED BANDITS

Figure 2: The trees (bottom figures) built by HOO after 1,000 (left) and 10,000 (right) rounds.
The mean-payoff function (shown in the top part of the figure) is x ∈ [0,1] −→
1/2
(
sin(13x)sin(27x) + 1

)
; the corresponding payoffs are Bernoulli-distributed. The

inputs of HOO are as follows: the tree of coverings is formed by all dyadic intervals,
ν1 = 1 and ρ = 1/2. The tie-breaking rule is to choose a child at random (as shown in
the Algorithm 1), while the points in X to be played are chosen as the centers of the
dyadic intervals. Note that the tree is extensively refined where the mean-payoff function
is near-optimal, while it is much less developed in other regions.

Note that the dissimilarity � is only used in the theoretical analysis of HOO; the algorithm does not
require � as an explicit input. However, when choosing its parameters (the tree of coverings and the
real numbers ν1 > 0 and ρ < 1) for the (set of) two assumptions below to be satisfied, the user of
the algorithm probably has in mind a given dissimilarity.

However, it is also natural to wonder what is the class of functions for which the algorithm (given
a fixed tree) can achieve non-trivial regret bounds; a similar question for regression was investigated,
for example, by Yang (2007). We shall indicate below how to construct a subset of such a class,
right after stating our assumptions connecting the tree, the dissimilarity, and the environment (the
mean-payoff function). Of these, Assumption A2 will be interpreted, discussed, and equivalently
reformulated below into (5), a form that might be more intuitive. The form (4) stated below will
turn out to be the most useful one in the proofs.

Assumptions Given the parameters of HOO, that is, the real numbers ν1 > 0 and ρ ∈ (0,1) and the
tree of coverings (Ph,i), there exists a dissimilarity function � such that the following two assump-
tions are satisfied.

A1. There exists ν2 > 0 such that for all integers h� 0,

(a) diam(Ph,i)� ν1ρh for all i= 1, . . . ,2h;

1665

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

(b) for all i= 1, . . . ,2h, there exists x◦h,i ∈ Ph,i such that

Bh,i
def
= B
(
x◦h,i, ν2ρ

h)⊂ Ph,i ;

(c) Bh,i∩Bh, j = /0 for all 1� i< j � 2h.

A2. The mean-payoff function f satisfies that for all x,y ∈ X ,

f ∗ − f (y)� f ∗ − f (x)+max
{
f ∗ − f (x), �(x,y)

}
. (4)

We show next how a tree induces in a natural way first a dissimilarity and then a class of
environments. For this, we need to assume that the tree of coverings (Ph,i)—in addition to (1)
and (2)—is such that the subsets Ph,i and Ph, j are disjoint whenever 1� i< j � 2h and that none of
them is empty. Then, each x ∈ X corresponds to a unique path in the tree, which can be represented
as an infinite binary sequence x0x1x2 . . ., where

x0 = I{
x∈P1,1+1

} ,
x1 = I{

x∈P2,1+(2x0+1)

} ,
x2 = I{

x∈P3,1+(4x0+2x1+1)

} ,
. . .

For points x,y ∈ X with respective representations x0x1 . . . and y0y1 . . ., we let

�(x,y) = (1−ρ)ν1
∞

∑
h=0

I{xh �=yh}ρ
h .

It is not hard to see that this dissimilarity satisfies A1. Thus, the associated class of environments C
is formed by those with mean-payoff functions satisfying A2 with the so-defined dissimilarity. This
is a “natural class” underlying the tree for which our tree-based algorithm can achieve non-trivial
regret. (However, we do not know if this is the largest such class.)

In general, Assumption A1 ensures that the regions in the tree of coverings (Ph,i) shrink exactly
at a geometric rate. The following example shows how to satisfy A1 when the domain X is a
D-dimensional hyper-rectangle and the dissimilarity is some positive power of the Euclidean (or
supremum) norm.

Example 1 Assume that X is a D-dimension hyper-rectangle and consider the dissimilarity �(x,y)=
b‖x−y‖a2, where a> 0 and b> 0 are real numbers and ‖ ·‖2 is the Euclidean norm. Define the tree
of coverings (Ph,i) in the following inductive way: let P0,1 = X . Given a node Ph,i, let Ph+1,2i−1 and
Ph+1,2i be obtained from the hyper-rectangle Ph,i by splitting it in the middle along its longest side
(ties can be broken arbitrarily).

We now argue that Assumption A1 is satisfied. With no loss of generality we take X = [0,1]D.
Then, for all integers u� 0 and 0� k � D−1,

diam(PuD+k,1) = b

(
1
2u

√
D− 3

4
k

)a
� b

(√
D
2u

)a
.

1666

X -ARMED BANDITS

It is now easy to see that Assumption A1 is satisfied for the indicated dissimilarity, for example, with
the choice of the parameters ρ= 2−a/D and ν1 = b

(
2
√
D
)a
for HOO, and the value ν2 = b/2a.

Example 2 In the same setting, with the same tree of coverings (Ph,i) over X = [0,1]D, but now
with the dissimilarity �(x,y) = b‖x− y‖a∞, we get that for all integers u� 0 and 0� k � D−1,

diam(PuD+k,1) = b

(
1
2u

)a
.

This time, Assumption A1 is satisfied, for example, with the choice of the parameters ρ= 2−a/D and
ν1 = b2a for HOO, and the value ν2 = b/2a.

The second assumption, A2, concerns the environment; when Assumption A2 is satisfied, we
say that f is weakly Lipschitz with respect to (w.r.t.) �. The choice of this terminology follows from
the fact that if f is 1-Lipschitz w.r.t. �, that is, for all x,y ∈ X , one has | f (x)− f (y)|� �(x,y), then
it is also weakly Lipschitz w.r.t. �.

On the other hand, weak Lipschitzness is a milder requirement. It implies local (one-sided)
1-Lipschitzness at any global maximum, since at any arm x∗ such that f (x∗) = f ∗, the criterion (4)
rewrites to f (x∗)− f (y) � �(x∗,y). In the vicinity of other arms x, the constraint is milder as the
arm x gets worse (as f ∗ − f (x) increases) since the condition (4) rewrites to

∀y ∈ X , f (x)− f (y)�max
{
f ∗ − f (x), �(x,y)

}
. (5)

Here is another interpretation of these two facts; it will be useful when considering local as-
sumptions in Section 4.4 (a weaker set of assumptions). First, concerning the behavior around
global maxima, Assumption A2 implies that for any set A ⊂ X with supx∈A f (x) = f ∗,

f ∗ − inf
x∈A

f (x)� diam(A). (6)

Second, it can be seen that Assumption A2 is equivalent4 to the following property: for all x ∈ X
and ε� 0,

B
(
x, f ∗ − f (x)+ ε

)
⊂ X

2
(
f ∗− f (x)

)
+ε

(7)

where
Xε =

{
x ∈ X : f (x)� f ∗ − ε

}
denotes the set of ε-optimal arms. This second property essentially states that there is no sudden
and large drop in the mean-payoff function around the global maxima (note that this property can
be satisfied even for discontinuous functions).

Figure 3 presents an illustration of the two properties discussed above.
Before stating our main results, we provide a straightforward, though useful consequence of

Assumptions A1 and A2, which should be seen as an intuitive justification for the third term in (3).

4. That Assumption A2 implies (7) is immediate; for the converse, it suffices to consider, for each y ∈ X , the sequence

εn =
(
�(x,y)−

(
f ∗ − f (x)

))
+
+1/n ,

where (·)+ denotes the nonnegative part.

1667

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

f(x)

f*

x* x

ε

f
ε

Figure 3: Illustration of the property of weak Lipschitzness (on the real line and for the distance
�(x,y) = |x− y|). Around the optimum x∗ the values f (y) should be above f ∗ − �(x∗,y).
Around any ε-optimal point x the values f (y) should be larger than f ∗−2ε for �(x,y)� ε
and larger than f (x)− �(x,y) elsewhere.

For all nodes (h, i), let

f ∗h,i = sup
x∈Ph,i

f (x) and Δh,i = f ∗ − f ∗h,i .

Δh,i is called the suboptimality factor of node (h, i). Depending whether it is positive or not, a node
(h, i) is called suboptimal (Δh,i > 0) or optimal (Δh,i = 0).

Lemma 3 Under Assumptions A1 and A2, if the suboptimality factor Δh,i of a region Ph,i is bounded
by cν1ρh for some c� 0, then all arms in Ph,i are max{2c,c+1}ν1ρh-optimal, that is,

Ph,i ⊂ Xmax{2c,c+1}ν1ρh .

Proof For all δ> 0, we denote by x∗h,i(δ) an element of Ph,i such that

f
(
x∗h,i(δ)

)
� f ∗h,i−δ= f ∗ −Δh,i−δ .

By the weak Lipschitz property (Assumption A2), it then follows that for all y ∈ Ph,i,

f ∗ − f (y)� f ∗ − f
(
x∗h,i(δ)

)
+max

{
f ∗ − f

(
x∗h,i(δ)

)
, �
(
x∗h,i(δ), y

)}
� Δh,i+δ+max

{
Δh,i+δ, diamPh,i

}
.

Letting δ→ 0 and substituting the bounds on the suboptimality and on the diameter of Ph,i (As-
sumption A1) concludes the proof.

1668

X -ARMED BANDITS

4.2 Upper Bound for the Regret of HOO

Auer et al. (2007, Assumption 2) observed that the regret of a continuum-armed bandit algorithm
should depend on how fast the volumes of the sets of ε-optimal arms shrink as ε→ 0. Here, we cap-
ture this by defining a new notion, the near-optimality dimension of the mean-payoff function. The
connection between these concepts, as well as with the zooming dimension defined by Kleinberg
et al. (2008a), will be further discussed in Section 5. We start by recalling the definition of packing
numbers.

Definition 4 (Packing number) The ε-packing number N (X , �,ε) of X w.r.t. the dissimilarity � is
the size of the largest packing of X with disjoint �-open balls of radius ε. That is, N (X , �,ε) is the
largest integer k such that there exists k disjoint �-open balls with radius ε contained in X .

We now define the c–near-optimality dimension, which characterizes the size of the sets Xcε as
a function of ε. It can be seen as some growth rate in ε of the metric entropy (measured in terms of
� and with packing numbers rather than covering numbers) of the set of cε-optimal arms.

Definition 5 (Near-optimality dimension) For c> 0 the c–near-optimality dimension of f w.r.t. �
equals

max

{
0, limsup

ε→0

lnN
(
Xcε, �, ε

)
ln
(
ε−1
) }

.

The following example shows that using a dissimilarity (rather than a metric, for instance) may
sometimes allow for a significant reduction of the near-optimality dimension.

Example 3 Let X = [0,1]D and let f : [0,1]D → [0,1] be defined by f (x) = 1−‖x‖a for some a� 1
and some norm ‖ · ‖ on RD. Consider the dissimilarity � defined by �(x,y) = ‖x− y‖a. We shall see
in Example 4 that f is weakly Lipschitz w.r.t. � (in a sense however slightly weaker than the one
given by (6) and (7) but sufficiently strong to ensure a result similar to the one of the main result,
Theorem 6 below). Here we claim that the c–near-optimality dimension (for any c> 0) of f w.r.t. �
is 0. On the other hand, the c–near-optimality dimension (for any c> 0) of f w.r.t. the dissimilarity
�′ defined, for 0< b< a, by �′(x,y) = ‖x− y‖b is (1/b−1/a)D> 0. In particular, when a> 1 and
b= 1, the c–near-optimality dimension is (1−1/a)D.

Proof (sketch) Fix c> 0. The set Xcε is the ‖ · ‖-ball with center 0 and radius (cε)1/a,
that is, the �-ball with center 0 and radius cε. Its ε-packing number w.r.t. � is bounded
by a constant depending only on D, c and a; hence, the value 0 for the near-optimality
dimension w.r.t. the dissimilarity �.

In case of �′, we are interested in the packing number of the ‖ · ‖-ball with center 0 and
radius (cε)1/a w.r.t. �′-balls. The latter is of the order of(

(cε)1/a

ε1/b

)D
= cD/a

(
ε−1
)(1/b−1/a)D

;

hence, the value (1/b− 1/a)D for the near-optimality dimension in the case of the
dissimilarity �′.

1669

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

Note that in all these cases the c-near-optimality dimension of f is independent of the
value of c.

We can now state our first main result. The proof is presented in Section A.1.

Theorem 6 (Regret bound for HOO) Consider HOO tuned with parameters such that Assump-
tions A1 and A2 hold for some dissimilarity �. Let d be the 4ν1/ν2–near-optimality dimension of
the mean-payoff function f w.r.t. �. Then, for all d′ > d, there exists a constant γ such that for all
n� 1,

E
[
Rn
]
� γn(d

′+1)/(d′+2) (lnn)1/(d′+2).
Note that if d is infinite, then the bound is vacuous. The constant γ in the theorem depends on d′

and on all other parameters of HOO and of the assumptions, as well as on the bandit environment
M. (The value of γ is determined in the analysis; it is in particular proportional to ν−d

′
2 .) The

next section will exhibit a refined upper bound with a more explicit value of γ in terms of all these
parameters.

Remark 7 The tuning of the parameters of HOO is critical for the assumptions to be satisfied, thus
to achieve a good regret; given some environment, one should select the parameters of HOO such
that the near-optimality dimension of the mean-payoff function is minimized. Since the mean-payoff
function is unknown to the user, this might be difficult to achieve. Thus, ideally, these parameters
should be selected adaptively based on the observation of some preliminary sample. For now, the
investigation of this possibility is left for future work.

4.3 Improving the Running Time when the Time Horizon is Known

A deficiency of the basic HOO algorithm is that its computational complexity scales quadratically
with the number of time steps. In this section we propose a simple modification to HOO that
achieves essentially the same regret as HOO and whose computational complexity scales only log-
linearly with the number of time steps. The needed amount of memory is still linear. We work out
the case when the time horizon, n0, is known in advance. The case of unknown horizon can be
dealt with by resorting to the so-called doubling trick, see, for example, Cesa-Bianchi and Lugosi
(2006, Section 2.3), which consists of periodically restarting the algorithm for regimes of lengths
that double at each such fresh start, so that the rth instance of the algorithm runs for 2r rounds.

We consider two modifications to the algorithm described in Section 3. First, the quantities
Uh,i(n) of (3) are redefined by replacing the factor lnn by lnn0, that is, now

Uh,i(n) = μ̂h,i(n)+

√
2lnn0
Th,i(n)

+ν1ρ
h .

(This results in a policy which explores the arms with a slightly increased frequency.) The definition
of the B-values in terms of the Uh,i(n) is unchanged. A pleasant consequence of the above modi-
fication is that the B-value of a given node changes only when this node is part of a path selected
by the algorithm. Thus at each round n, only the nodes along the chosen path need to be updated
according to the obtained reward.

1670

X -ARMED BANDITS

However, and this is the reason for the second modification, in the basic algorithm, a path at
round n may be of length linear in n (because the tree could have a depth linear in n). This is why
we also truncate the trees Tn at a depth Dn0 of the order of lnn0. More precisely, the algorithm now
selects the node (Hn, In) to pull at round n by following a path in the tree Tn−1, starting from the root
and choosing at each node the child with the highest B-value (with the new definition above using
lnn0), and stopping either when it encounters a node which has not been expanded before or a node
at depth equal to

Dn0 =

⌈
(lnn0)/2− ln(1/ν1)

ln(1/ρ)

⌉
.

(It is assumed that n0 > 1/ν21 so that Dn0 � 1.) Note that since no child of a node (Dn0 , i) located at
depth Dn0 will ever be explored, its B-value at round n� n0 simply equalsUDn0 ,i(n).

We call this modified version of HOO the truncated HOO algorithm. The computational com-
plexity of updating all B-values at each round n is of the order of Dn0 and thus of the order of lnn0.
The total computational complexity up to round n0 is therefore of the order of n0 lnn0, as claimed
in the introduction of this section.

As the next theorem indicates this new procedure enjoys almost the same cumulative regret
bound as the basic HOO algorithm.

Theorem 8 (Upper bound on the regret of truncated HOO) Fix a horizon n0 such that Dn0 � 1.
Then, the regret bound of Theorem 6 still holds true at round n0 for truncated HOO up to an
additional additive 4

√
n0 factor.

4.4 Local Assumptions

In this section we further relax the weak Lipschitz assumption and require it only to hold locally
around the maxima. Doing so, we will be able to deal with an even larger class of functions and
in fact we will show that the algorithm studied in this section achieves a O(

√
n) bound on the

regret regret when it is used for functions that are smooth around their maxima (e.g., equivalent to
‖x− x∗‖α for some known smoothness degree α> 0).

For the sake of simplicity and to derive exact constants we also state in a more explicit way the
assumption on the near-optimality dimension. We then propose a simple and efficient adaptation of
the HOO algorithm suited for this context.

4.4.1 MODIFIED SET OF ASSUMPTIONS

Assumptions Given the parameters of (the adaption of) HOO, that is, the real numbers ν1 > 0 and
ρ ∈ (0,1) and the tree of coverings (Ph,i), there exists a dissimilarity function � such that Assump-
tion A1 (for some ν2 > 0) as well as the following two assumptions hold.

A2’. There exists ε0 > 0 such that for all optimal subsets A ⊂ X (i.e., supx∈A f (x) = f ∗) with
diameter diam(A)� ε0,

f ∗ − inf
x∈A

f (x)� diam(A) .

Further, there exists L> 0 such that for all x ∈ Xε0 and ε ∈ [0,ε0],

B
(
x, f ∗ − f (x)+ ε

)
⊂ X

L
(
2(f ∗− f (x))+ε

) .
1671

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

A3. There existC > 0 and d > 0 such that for all ε� ε0,

N
(
Xcε, �, ε

)
�Cε−d ,

where c= 4Lν1/ν2.

When f satisfies Assumption A2’, we say that f is ε0—locally L—weakly Lipschitz w.r.t. �.
Note that this assumption was obtained by weakening the characterizations (6) and (7) of weak
Lipschitzness.

Assumption A3 is not a real assumption but merely a reformulation of the definition of near
optimality (with the small added ingredient that the limit can be achieved, see the second step of the
proof of Theorem 6 in Section A.1).

Example 4 We consider again the domain X and function f studied in Example 3 and prove (as
announced beforehand) that f is ε0—locally 2a−1—weakly Lipschitz w.r.t. the dissimilarity � defined
by �(x,y) = ‖x− y‖a; which, in fact, holds for all ε0.

Proof Note that x∗ = (0, . . . ,0) is such that f ∗ = 1= f (x∗). Therefore, for all x ∈ X ,

f ∗ − f (x) = ‖x‖a = �(x∗,x) ,

which yields the first part of Assumption A2’. To prove that the second part is true for
L = 2a−1 and with no constraint on the considered ε, we first note that since a � 1, it
holds by convexity that (u+v)a � 2a−1(ua+va) for all u,v� 0. Now, for all ε� 0 and
y ∈ B

(
x, ‖x‖a+ ε

)
, that is, y such that �(x,y) = ‖x− y‖a � ‖x‖a+ ε,

f ∗− f (y) = ‖y‖a �
(
‖x‖+‖x−y‖

)a
� 2a−1

(
‖x‖a+‖x−y‖a

)
� 2a−1

(
2‖x‖a+ε

)
,

which concludes the proof of the second part of A2’.

4.4.2 MODIFIED HOO ALGORITHM

We now describe the proposed modifications to the basic HOO algorithm.
We first consider, as a building block, the algorithm called z-HOO, which takes an integer z as

an additional parameter to those of HOO. Algorithm z-HOO works as follows: it never plays any
node with depth smaller or equal to z−1 and starts directly the selection of a new node at depth z.
To do so, it first picks the node at depth z with the best B-value, chooses a path and then proceeds as
the basic HOO algorithm. Note in particular that the initialization of this algorithm consists (in the
first 2z rounds) in playing once each of the 2z nodes located at depth z in the tree (since by definition
a node that has not been played yet has a B-value equal to+∞). We note in passing that when z= 0,
algorithm z-HOO coincides with the basic HOO algorithm.

Algorithm local-HOO employs the doubling trick in conjunction with consecutive instances of
z-HOO. It works as follows. The integers r � 1 will index different regimes. The rth regime starts
at round 2r−1 and ends when the next regime starts; it thus lasts for 2r rounds. At the beginning of
regime r, a fresh copy of zr-HOO, where zr = +log2 r,, is initialized and is then used throughout the
regime.

1672

X -ARMED BANDITS

Note that each fresh start needs to pull each of the 2zr nodes located at depth zr at least once (the
number of these nodes is≈ r). However, since round r lasts for 2r time steps (which is exponentially
larger than the number of nodes to explore), the time spent on the initialization of zr-HOO in any
regime r is greatly outnumbered by the time spent in the rest of the regime.

In the rest of this section, we propose first an upper bound on the regret of z-HOO (with exact
and explicit constants). This result will play a key role in proving a bound on the performance of
local-HOO.

4.4.3 ADAPTATION OF THE REGRET BOUND

In the following we write h0 for the smallest integer such that

2ν1ρ
h0 < ε0

and consider the algorithm z-HOO, where z� h0. In particular, when z= 0 is chosen, the obtained
bound is the same as the one of Theorem 6, except that the constants are given in analytic forms.

Theorem 9 (Regret bound for z-HOO) Consider z-HOO tuned with parameters ν1 and ρ such
that Assumptions A1, A2’ and A3 hold for some dissimilarity � and the values ν2, L, ε0,C, d. If, in
addition, z� h0 and n� 2 is large enough so that

z�
1

d+2
ln(4Lν1n)− ln(γ lnn)

ln(1/ρ)
,

where

γ=
4CLν1ν

−d
2

(1/ρ)d+1 −1

(
16

ν21ρ
2
+9

)
,

then the following bound holds for the expected regret of z-HOO:

E
[
Rn
]
�

(
1+

1
ρd+2

)(
4Lν1n

)(d+1)/(d+2)
(γ lnn)1/(d+2) +

(
2z−1

)(8 lnn
ν21ρ

2z
+4

)
.

The proof, which is a modification of the proof to Theorem 6, can be found in Section A.3 of
the Appendix. The main complication arises because the weakened assumptions do not allow one to
reason about the smoothness at an arbitrary scale; this is essentially due to the threshold ε0 used in
the formulation of the assumptions. This is why in the proposed variant of HOO we discard nodes
located too close to the root (at depth smaller than h0−1). Note that in the bound the second term
arises from playing in regions corresponding to the descendants of “poor” nodes located at level z.
In particular, this term disappears when z= 0, in which case we get a bound on the regret of HOO
provided that 2ν1 < ε0 holds.

Example 5 We consider again the setting of Examples 2, 3, and 4. The domain is X = [0,1]D

and the mean-payoff function f is defined by f (x) = 1−‖x‖2∞. We assume that HOO is run with
parameters ρ = (1/4)1/D and ν1 = 4. We already proved that Assumptions A1, A2’ and A3 are
satisfied with the dissimilarity �(x,y) = ‖x− y‖2∞, the constants ν2 = 1/4, L = 2, d = 0, and5 C =

5. To compute C, one can first note that 4Lν1/ν2 = 128; the question at hand for Assumption A3 to be satisfied is
therefore to upper bound the number of balls of radius

√
ε (w.r.t. the supremum norm ‖ · ‖∞) that can be packed in a

ball of radius
√
128ε, giving rise to the boundC �

√
128

D
.

1673

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

128D/2, as well as any ε0 > 0 (that is, with h0 = 0). Thus, resorting to Theorem 9 (applied with
z= 0), we obtain

γ=
32×128D/2
41/D−1

(
42/D+9

)
and get

E
[
Rn
]
�
(
1+42/D

)√
32γn lnn=

√
exp
(
O(D)

)
n lnn .

Under the prescribed assumptions, the rate of convergence is of order
√
n no matter the ambient

dimension D. Although the rate is independent of D, the latter impacts the performance through the
multiplicative factor in front of the rate, which is exponential in D.

The following theorem is an almost straightforward consequence of Theorem 9 (the detailed
proof can be found in Section A.4 of the Appendix). Note that local-HOO does not require the
knowledge of the parameter ε0 in A2’.

Theorem 10 (Regret bound for local-HOO) Consider local-HOO and assume that its parameters
are tuned such that Assumptions A1, A2’ and A3 hold for some dissimilarity �. Then the expected
regret of local-HOO is bounded (in a distribution-dependent sense) as follows,

E
[
Rn
]
= Õ
(
n(d+1)/(d+2)

)
.

4.5 Minimax Optimality in Metric Spaces

In this section we provide two theorems showing the minimax optimality of HOO in metric spaces.
The notion of packing dimension is key.

Definition 11 (Packing dimension) The �-packing dimension of a set X (w.r.t. a dissimilarity �) is
defined as

limsup
ε→0

lnN (X , �,ε)
ln(ε−1)

.

For instance, it is easy to see that whenever � is a norm, compact subsets of RD with non-empty
interiors have a packing dimension of D. We note in passing that the packing dimension provides
a bound on the near-optimality dimension that only depends on X and � but not on the underlying
mean-payoff function.

Let FX ,� be the class of all bandit environments on X with a weak Lipschitz mean-payoff func-
tion (i.e., satisfying Assumption A2). For the sake of clarity, we now denote, for a bandit strategy
ϕ and a bandit environmentM on X , the expectation of the cumulative regret of ϕ over M at time n
by EM

[
Rn(ϕ)

]
.

The following theorem provides a uniform upper bound on the regret of HOO over this class of
environments. It is a corollary of Theorem 9; most of the efforts in the proof consist of showing
that the distribution-dependent constant γ in the statement of Theorem 9 can be upper bounded by
a quantity (the γ in the statement below) that only depends on X , ν1, ρ, �, ν2, D′, but not on the
underlying mean-payoff functions. The proof is provided in Section A.5 of the Appendix.

1674

X -ARMED BANDITS

Theorem 12 (Uniform upper bound on the regret of HOO) Assume that X has a finite �-packing
dimension D and that the parameters of HOO are such that A1 is satisfied. Then, for all D′ > D
there exists a constant γ such that for all n� 1,

sup
M∈FX ,�

EM
[
Rn(HOO)

]
� γn(D

′+1)/(D′+2) (lnn)1/(D′+2)
.

The next result shows that in the case of metric spaces this upper bound is optimal up to a
multiplicative logarithmic factor. Similar lower bounds appeared in Kleinberg (2004) (for D = 1)
and in Kleinberg et al. (2008a). We propose here a weaker statement that suits our needs. Note that
if X is a large enough compact subset of RD with non-empty interior and the dissimilarity � is some
norm of RD, then the assumption of the following theorem is satisfied.

Theorem 13 (Uniform lower bound) Consider a set X equipped with a dissimilarity � that is a
metric. Assume that there exists some constant c∈ (0,1] such that for all ε� 1, the packing numbers
satisfy N (X , �,ε)� cε−D � 2. Then, there exist two constants N(c,D) and γ(c,D) depending only
on c and D such that for all bandit strategies ϕ and all n� N(c,D),

sup
M∈FX ,�

EM
[
Rn(ϕ)

]
� γ(c,D) n(D+1)/(D+2) .

The reader interested in the explicit expressions of N(c,D) and γ(c,D) is referred to the last
lines of the proof of the theorem in the Appendix.

5. Discussion

In this section we would like to shed some light on the results of the previous sections. In particular
we generalize the situation of Example 5, discuss the regret that we can obtain, and compare it with
what could be obtained by previous works.

5.1 Examples of Regret Bounds for Functions Locally Smooth at their Maxima

We equip X = [0,1]D with a norm ‖ · ‖. We assume that the mean-payoff function f has a finite
number of global maxima and that it is locally equivalent to the function ‖x− x∗‖α—with degree
α ∈ [0,∞)—around each such global maximum x∗ of f ; that is,

f (x∗)− f (x) =Θ
(
‖x− x∗‖α

)
as x→ x∗.

This means that there exist c1,c2,δ> 0 such that for all x satisfying ‖x− x∗‖� δ,

c2‖x− x∗‖α � f (x∗)− f (x)� c1‖x− x∗‖α .

In particular, one can check that Assumption A2’ is satisfied for the dissimilarity defined by
�c,β(x,y) = c‖x− y‖β, where β � α (and c � c1 when β = α). We further assume that HOO is
run with parameters ν1 and ρ and a tree of dyadic partitions such that Assumption A1 is satisfied as
well (see Examples 1 and 2 for explicit values of these parameters in the case of the Euclidean or
the supremum norms over the unit cube). The following statements can then be formulated on the
expected regret of HOO.

1675

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

• Known smoothness: If we know the true smoothness of f around its maxima, then we set
β= α and c� c1. This choice �c1,α of a dissimilarity is such that f is locally weak-Lipschitz
with respect to it and the near-optimality dimension is d = 0 (cf., Example 3). Theorem 10
thus implies that the expected regret of local-HOO is Õ(

√
n), that is, the rate of the bound is

independent of the dimension D.

• Smoothness underestimated: Here, we assume that the true smoothness of f around its
maxima is unknown and that it is underestimated by choosing β < α (and some c). Then f
is still locally weak-Lipschitz with respect to the dissimilarity �c,β and the near-optimality di-

mension is d =D(1/β−1/α), as shown in Example 3; the regret of HOO is Õ
(
n(d+1)/(d+2)

)
.

• Smoothness overestimated: Now, if the true smoothness is overestimated by choosing β >
α or α = β and c < c1, then the assumption of weak Lipschitzness is violated and we are
unable to provide any guarantee on the behavior of HOO. The latter, when used with an
overestimated smoothness parameter, may lack exploration and exploit too heavily from the
beginning. As a consequence, it may get stuck in some local optimum of f , missing the
global one(s) for a very long time (possibly indefinitely). Such a behavior is illustrated in
the example provided in Coquelin and Munos (2007) and showing the possible problematic
behavior of the closely related algorithm UCT of Kocsis and Szepesvari (2006). UCT is an
example of an algorithm overestimating the smoothness of the function; this is because the
B-values of UCT are defined similarly to the ones of the HOO algorithm but without the third
term in the definition (3) of the U-values. This corresponds to an assumed infinite degree of
smoothness (that is, to a locally constant mean-payoff function).

5.2 Relation to Previous Works

Several works (Agrawal, 1995b; Kleinberg, 2004; Cope, 2009; Auer et al., 2007; Kleinberg et al.,
2008a) have considered continuum-armed bandits in Euclidean or, more generally, normed or metric
spaces and provided upper and lower bounds on the regret for given classes of environments.

• Cope (2009) derived a Õ(√n) bound on the regret for compact and convex subsets of Rd and
mean-payoff functions with a unique minimum and second-order smoothness.

• Kleinberg (2004) considered mean-payoff functions f on the real line that are Hölder contin-
uous with degree 0< α� 1. The derived regret bound is Θ

(
n(α+1)/(α+2)

)
.

• Auer et al. (2007) extended the analysis to classes of functions that are equivalent to ‖x−x∗‖α
around their maxima x∗, where the allowed smoothness degree is also larger: α∈ [0,∞). They
derived the regret bound

Θ
(
n
1+α−αβ
1+2α−αβ

)
,

where the parameter β is such that the Lebesgue measure of ε-optimal arm is O(εβ).

• Another setting is the one of Kleinberg et al. (2008a) and Kleinberg et al. (2008b), who
considered a space (X , �) equipped with some dissimilarity � and assumed that f is Lipschitz
w.r.t. � at some maximum x∗ (when the latter exists and a relaxed condition otherwise), that
is,

∀x ∈ X , f (x∗)− f (x)� �(x,x∗) . (8)

1676

X -ARMED BANDITS

The obtained regret bound is Õ
(
n(d+1)/(d+2)

)
, where d is the zooming dimension. The latter

is defined similarly to our near-optimality dimension with the exceptions that in the definition
of zooming dimension (i) covering numbers instead of packing numbers are used and (ii) sets
of the form Xε \Xε/2 are considered instead of the set Xcε. When (X , �) is a metric space,
covering and packing numbers are within a constant factor to each other, and therefore, one
may prove that the zooming and near-optimality dimensions are also equal.

For an illustration, consider again the example of Section 5.1. The result of Auer et al. (2007)
shows that for D= 1, the regret is Θ(

√
n) (since here β= 1/α, with the notation above). Our result

extends the
√
n rate of the regret bound to any dimension D.

On the other hand the analysis of Kleinberg et al. (2008b) does not apply because in this example
f (x∗)− f (x) is controlled only when x is close in some sense to x∗ (i.e., when ‖x− x∗‖� δ), while
(8) requires such a control over the whole set X . However, note that the local weak-Lipschitz
assumption A2’ requires an extra condition in the vicinity of x∗ compared to (8) as it is based on
the notion of weak Lipschitzness. Thus, A2’ and (8) are in general incomparable (both capture a
different phenomenon at the maxima).

We now compare our results to those of Kleinberg et al. (2008a) and Kleinberg et al. (2008b)
under Assumption A2 (which does not cover the example of Section 5.1 unless δ is large). Under
this assumption, our algorithms enjoy essentially the same theoretical guarantees as the zooming
algorithm of Kleinberg et al. (2008a,b). Further, the following hold.

• Our algorithms do not require the oracle needed by the zooming algorithm.

• Our truncated HOO algorithm achieves a computational complexity of orderO(n logn), whereas
the complexity of a naive implementation of the zooming algorithm is likely to be much
larger.6

• Both truncated HOO and the zooming algorithms use the doubling trick. The basic HOO
algorithm, however, avoids the doubling trick, while meeting the computational complexity
of the zooming algorithm.

The fact that the doubling trick can be avoided is good news since an algorithm that uses the dou-
bling trick must start from tabula rasa time to time, which results in predictable, yet inevitable,
sharp performance drops—a quite unpleasant property. In particular, for this reason algorithms that
rely on the doubling trick are often neglected by practitioners. In addition, the fact that we avoid the
oracle needed by the zooming algorithm is attractive as this oracle might be difficult to implement
for general (non-metric) dissimilarities.

Acknowledgments

We thank one of the anonymous referee for his valuable comments, which helped us to provide a
fair and detailed comparison of our work to prior contributions.

This work was supported in part by French National Research Agency (ANR, project EXPLO-
RA, ANR-08-COSI-004), the Alberta Ingenuity Centre of Machine Learning, Alberta Innovates

6. The zooming algorithm requires a covering oracle that is able to return a point which is not covered by the set of active
strategies, if there exists one. Thus a straightforward implementation of this covering oracle might be computationally
expensive in (general) continuous spaces and would require a ‘global’ search over the whole space.

1677

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

Technology Futures (formerly iCore and AIF), NSERC and the PASCAL2 Network of Excellence
under EC grant no. 216886.

Appendix A. Proofs

We provide here the proofs of the results stated above.

A.1 Proof of Theorem 6 (Main Upper Bound on the Regret of HOO)

We begin with three lemmas. The proofs of Lemmas 15 and 16 rely on concentration-of-measure
techniques, while the one of Lemma 14 follows from a simple case study. Let us fix some path
(0,1), (1, i∗1), (2, i

∗
2), . . . of optimal nodes, starting from the root. That is, denoting i

∗
0 = 1, we mean

that for all j � 1, the suboptimality of (j, i∗j) equals Δ j,i∗j = 0 and (j, i
∗
j) is a child of (j−1, i∗j−1).

Lemma 14 Let (h, i) be a suboptimal node. Let 0� k � h−1 be the largest depth such that (k, i∗k)
is on the path from the root (0,1) to (h, i). Then for all integers u� 0, we have

E
[
Th,i(n)

]
� u+

n

∑
t=u+1

P

{[
Us,i∗s (t)� f ∗ for some s ∈ {k+1, . . . , t−1}

]
or
[
Th,i(t)> u and Uh,i(t)> f ∗

]}
.

Proof Consider a given round t ∈ {1, . . . ,n}. If (Ht , It) ∈ C (h, i), then this is because the child
(k+ 1, i′) of (k, i∗k) on the path to (h, i) had a better B-value than its brother (k+ 1, i∗k+1). Since
by definition, B-values can only increase on a chosen path, this entails that Bk+1,i∗k+1 � Bk+1,i′(t) �
Bh,i(t). This is turns implies, again by definition of the B-values, that Bk+1,i∗k+1(t)�Uh,i(t). Thus,{

(Ht , It) ∈ C (h, i)
}
⊂
{
Uh,i(t)� Bk+1,i∗k+1(t)

}
⊂
{
Uh,i(t)> f ∗

}
∪
{
Bk+1,i∗k+1(t)� f ∗

}
.

But, once again by definition of B-values,{
Bk+1,i∗k+1(t)� f ∗

}
⊂
{
Uk+1,i∗k+1(t)� f ∗

}
∪
{
Bk+2,i∗k+2(t)� f ∗

}
,

and the argument can be iterated. Since up to round t no more than t nodes have been played
(including the suboptimal node (h, i)), we know that (t, i∗t) has not been played so far and thus has a
B-value equal to +∞. (Some of the previous optimal nodes could also have had an infiniteU-value,
if not played so far.) We thus have proved the inclusion{

(Ht , It) ∈ C (h, i)
}
⊂
{
Uh,i(t)> f ∗

}
∪
({
Uk+1,i∗k+1(t)� f ∗

}
∪ . . .∪

{
Ut−1,i∗t−1(t)� f ∗

})
. (9)

Now, for any integer u� 0 it holds that

Th,i(n) =
n

∑
t=1

I{(Ht ,It)∈C (h,i), Th,i(t)�u}+
n

∑
t=1

I{(Ht ,It)∈C (h,i), Th,i(t)>u}

� u+
n

∑
t=u+1

I{(Ht ,It)∈C (h,i), Th,i(t)>u} ,

1678

X -ARMED BANDITS

where we used for the inequality the fact that the quantities Th,i(t) are constant from t to t+1, except
when (Ht , It)∈ C (h, i), in which case, they increase by 1; therefore, on the one hand, at most u of the
Th,i(t) can be smaller than u and on the other hand, Th,i(t) > u can only happen if t > u. Using (9)
and then taking expectations yields the result.

Lemma 15 Let Assumptions A1 and A2 hold. Then, for all optimal nodes (h, i) and for all integers
n� 1,

P
{
Uh,i(n)� f ∗

}
� n−3 .

Proof On the event that (h, i) was not played during the first n rounds, one has, by convention,
Uh,i(n) = +∞. In the sequel, we therefore restrict our attention to the event

{
Th,i(n)� 1

}
.

Lemma 3 with c= 0 ensures that f ∗ − f (x)� ν1ρh for all arms x ∈ Ph,i. Hence,

n

∑
t=1

(
f (Xt)+ν1ρ

h− f ∗
)
I{(Ht ,It)∈C (h,i)} � 0

and therefore,

P
{
Uh,i(n)� f ∗ and Th,i(n)� 1

}
= P

{
μ̂h,i(n)+

√
2lnn
Th,i(n)

+ν1ρ
h � f ∗ and Th,i(n)� 1

}

= P

{
Th,i(n) μ̂h,i(n)+Th,i(n)

(
ν1ρ

h− f ∗
)
�−
√
2Th,i(n) lnn and Th,i(n)� 1

}
= P

{
n

∑
t=1

(
Yt − f (Xt)

)
I{(Ht ,It)∈C (h,i)}+

n

∑
t=1

(
f (Xt)+ν1ρ

h− f ∗
)
I{(Ht ,It)∈C (h,i)}

�−
√
2Th,i(n) lnn and Th,i(n)� 1

}

� P

{
n

∑
t=1

(
f (Xt)−Yt

)
I{(Ht ,It)∈C (h,i)} �

√
2Th,i(n) lnn and Th,i(n)� 1

}
.

We take care of the last term with a union bound and the Hoeffding-Azuma inequality for martingale
differences.

To do this in a rigorous manner, we need to define a sequence of (random) stopping times when
arms in C (h, i) were pulled:

Tj =min
{
t : Th,i(t) = j

}
, j = 1,2,

1679

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

Note that 1� T1 < T2 < .. ., hence it holds that Tj � j. We denote by X̃ j = XTj the j
th arm pulled in

the region corresponding to C (h, i). Its associated corresponding reward equals Ỹj = YTj and

P

{
n

∑
t=1

(
f (Xt)−Yt

)
I{(Ht ,It)∈C (h,i)} �

√
2Th,i(n) lnn and Th,i(n)� 1

}

= P

{
Th,i(n)

∑
j=1

(
f
(
X̃ j
)
− Ỹj
)
�

√
2Th,i(n) lnn and Th,i(n)� 1

}

�
n

∑
t=1

P

{
t

∑
j=1

(
f
(
X̃ j
)
− Ỹj
)
�
√
2 t lnn

}
,

where we used a union bound to get the last inequality.
We claim that

Zt =
t

∑
j=1

(
f
(
X̃ j
)
− Ỹj
)

is a martingale w.r.t. the filtrationGt =σ
(
X̃1,Z1, . . . , X̃t ,Zt , X̃t+1

)
. This follows, via optional skipping

(see Doob, 1953, Chapter VII, adaptation of Theorem 2.3), from the facts that

n

∑
t=1

(
f (Xt)−Yt

)
I{(Ht ,It)∈C (h,i)}

is a martingale w.r.t. the filtration Ft = σ(X1,Y1, . . . ,Xt ,Yt ,Xt+1) and that the events {Tj = k} are
Fk−1-measurable for all k � j.

Applying the Hoeffding-Azuma inequality for martingale differences (see Hoeffding, 1963),
using the boundedness of the ranges of the induced martingale difference sequence, we then get, for
each t � 1,

P

{
t

∑
j=1

(
f
(
X̃ j
)
− Ỹj
)
�
√
2 t lnn

}
� exp

⎛⎜⎝−2
(√
2 t lnn

)2
t

⎞⎟⎠= n−4 ,

which concludes the proof.

Lemma 16 For all integers t � n, for all suboptimal nodes (h, i) such that Δh,i > ν1ρh, and for all
integers u� 1 such that

u�
8lnn

(Δh,i−ν1ρh)2
,

one has
P
{
Uh,i(t)> f ∗ and Th,i(t)> u

}
� t n−4 .

Proof The u mentioned in the statement of the lemma are such that

Δh,i−ν1ρh

2
�

√
2lnn
u

, thus

√
2ln t
u

+ν1ρ
h �

Δh,i+ν1ρh

2
.

1680

X -ARMED BANDITS

Therefore,

P
{
Uh,i(t)> f ∗ and Th,i(t)> u

}
= P

{
μ̂h,i(t)+

√
2ln t
Th,i(t)

+ν1ρ
h > f ∗h,i+Δh,i and Th,i(t)> u

}

� P

{
μ̂h,i(t)> f ∗h,i+

Δh,i−ν1ρh

2
and Th,i(t)> u

}
� P

{
Th,i(t)

(
μ̂h,i(t)− f ∗h,i

)
>
Δh,i−ν1ρh

2
Th,i(t) and Th,i(t)> u

}
= P

{
t

∑
s=1

(
Ys− f ∗h,i

)
I{(Hs,Is)∈C (h,i)} >

Δh,i−ν1ρh

2
Th,i(t) and Th,i(t)> u

}

� P

{
t

∑
s=1

(
Ys− f (Xs)

)
I{(Hs,Is)∈C (h,i)} >

Δh,i−ν1ρh

2
Th,i(t) and Th,i(t)> u

}
.

Now it follows from the same arguments as in the proof of Lemma 15 (optional skipping, the
Hoeffding-Azuma inequality, and a union bound) that

P

{
t

∑
s=1

(
Ys− f (Xs)

)
I{(Hs,Is)∈C (h,i)} >

Δh,i−ν1ρh

2
Th,i(t) and Th,i(t)> u

}

�
t

∑
s′=u+1

exp

(
− 2
s′

(
(Δh,i−ν1ρh)

2
s′
)2)

�
t

∑
s′=u+1

exp

(
−1
2
s′ (Δh,i−ν1ρ

h)2
)

� t exp

(
−1
2
u
(
Δh,i−ν1ρh

)2)
� t n−4 ,

where we used the stated bound on u to obtain the last inequality.

Combining the results of Lemmas 14, 15, and 16 leads to the following key result bounding the
expected number of visits to descendants of a “poor” node.

Lemma 17 Under Assumptions A1 and A2, for all suboptimal nodes (h, i) with Δh,i > ν1ρh, we
have, for all n� 1,

E[Th,i(n)]�
8 lnn

(Δh,i−ν1ρh)2
+4 .

Proof We take u as the upper integer part of (8 lnn)/(Δh,i− ν1ρh)2 and use union bounds to get
from Lemma 14 the bound

E
[
Th,i(n)

]
�

8 lnn
(Δh,i−ν1ρh)2

+1

+
n

∑
t=u+1

(
P
{
Th,i(t)> u and Uh,i(t)> f ∗

}
+

t−1
∑
s=1

P
{
Us,i∗s (t)� f ∗

})
.

1681

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

Lemmas 15 and 16 further bound the quantity of interest as

E
[
Th,i(n)

]
�

8 lnn
(Δh,i−ν1ρh)2

+1+
n

∑
t=u+1

(
t n−4+

t−1
∑
s=1

t−3
)

and we now use the crude upper bounds

1+
n

∑
t=u+1

(
t n−4+

t−1
∑
s=1

t−3
)

� 1+
n

∑
t=1

(
n−3+ t−2

)
� 2+π2/6� 4

to get the proposed statement.

Proof (of Theorem 6) First, let us fix d′ > d. The statement will be proven in four steps.
First step. For all h= 0,1,2, . . ., denote by Ih the set of those nodes at depth h that are 2ν1ρh-

optimal, that is, the nodes (h, i) such that f ∗h,i � f ∗ −2ν1ρh. (Of course, I0 = {(0,1)}.) Then, let I
be the union of these sets when h varies. Further, let J be the set of nodes that are not in I but whose
parent is in I . Finally, for h= 1,2, . . . we denote by Jh the nodes in J that are located at depth h in
the tree (i.e., whose parent is in Ih−1).

Lemma 17 bounds in particular the expected number of times each node (h, i) ∈ Jh is visited.
Since for these nodes Δh,i > 2ν1ρh, we get

E
[
Th,i(n)

]
�
8 lnn

ν21ρ
2h

+4 .

Second step. We bound the cardinality |Ih| of Ih. We start with the case h � 1. By definition,
when (h, i) ∈ Ih, one has Δh,i � 2ν1ρh, so that by Lemma 3 the inclusion Ph,i ⊂ X4ν1ρh holds. Since
by Assumption A1, the sets Ph,i contain disjoint balls of radius ν2ρh, we have that

|Ih|�N
(
∪(h,i)∈IhPh,i, �, ν2ρ

h)�N
(
X4ν1ρh , �, ν2ρ

h)=N
(
X(4ν1/ν2)ν2ρh , �, ν2ρ

h) .
We prove below that there exists a constantC such that for all ε� ν2,

N
(
X(4ν1/ν2)ε, �, ε

)
�C ε−d

′
. (10)

Thus we obtain the bound |Ih|�C
(
ν2ρh
)−d′

for all h� 1. We note that the obtained bound |Ih|�
C
(
ν2ρh
)−d′

is still valid for h= 0, since |I0|= 1.
It only remains to prove (10). Since d′ > d, where d is the near-optimality of f , we have, by

definition, that

limsup
ε→0

lnN
(
X(4ν1/ν2)ε, �, ε

)
ln
(
ε−1
) � d ,

and thus, there exists εd′ > 0 such that for all ε� εd′ ,

lnN
(
X(4ν1/ν2)ε, �, ε

)
ln
(
ε−1
) � d′ ,

which in turn implies that for all ε� εd′ ,

N
(
X(4ν1/ν2)ε, �, ε

)
� ε−d

′
.

1682

X -ARMED BANDITS

The result is proved withC = 1 if εd′ � ν2. Now, consider the case εd′ < ν2. Given the definition of
packing numbers, it is straightforward that for all ε ∈

[
εd′ , ν2

]
,

N
(
X(4ν1/ν2)ε, �, ε

)
� ud′

def
= N

(
X , �, εd′

)
;

therefore, for all ε ∈
[
εd′ , ν2

]
,

N
(
X(4ν1/ν2)ε, �, ε

)
� ud′

νd
′
2

εd′
=Cε−d

′

for the choice C = max
{
1, ud′ νd

′
2

}
. Because we take the maximum with 1, the stated inequality

also holds for ε� ε−d
′
, which concludes the proof of (10).

Third step. Let H � 1 be an integer to be chosen later. We partition the nodes of the infinite
tree T into three subsets, T = T 1∪T 2∪T 3, as follows. Let the set T 1 contain the descendants of
the nodes in IH (by convention, a node is considered its own descendant, hence the nodes of IH are
included in T 1); let T 2 = ∪0�h<H Ih; and let T 3 contain the descendants of the nodes in ∪1�h�H Jh.
Thus, T 1 and T 3 are potentially infinite, while T 2 is finite.

We recall that we denote by (Ht , It) the node that was chosen by HOO in round t. From the
definition of the algorithm, each node is played at most once, thus no two such random variables are
equal when t varies. We decompose the regret according to which of the sets T j the nodes (Ht , It)
belong to:

E
[
Rn
]
= E

[
n

∑
t=1

(f ∗ − f (Xt))

]
= E
[
Rn,1
]
+E
[
Rn,2
]
+E
[
Rn,3
]
,

where Rn,i =
n

∑
t=1

(
f ∗ − f (Xt)

)
I{(Ht ,It)∈T i} , for i= 1,2,3.

The contribution from T 1 is easy to bound. By definition any node in IH is 2ν1ρH-optimal. Hence,
by Lemma 3, the corresponding domain is included in X4ν1ρH . By definition of a tree of coverings,
the domains of the descendants of these nodes are still included in X4ν1ρH . Therefore,

E
[
Rn,1
]
� 4ν1ρ

H n .

For h � 0, consider a node (h, i) ∈ T 2. It belongs to Ih and is therefore 2ν1ρh-optimal. By
Lemma 3, the corresponding domain is included in X4ν1ρh . By the result of the second step of this
proof and using that each node is played at most once, one gets

E
[
Rn,2
]
�

H−1
∑
h=0

4ν1ρ
h |Ih|� 4Cν1ν−d

′
2

H−1
∑
h=0

ρh(1−d
′) .

We finish by bounding the contribution from T 3. We first remark that since the parent of any
element (h, i) ∈ Jh is in Ih−1, by Lemma 3 again, we have that Ph,i ⊂ X4ν1ρh−1 . We now use the first
step of this proof to get

E
[
Rn,3
]
�

H

∑
h=1

4ν1ρ
h−1 ∑

i :(h,i)∈Jh
E
[
Th,i(n)

]
�

H

∑
h=1

4ν1ρ
h−1 |Jh|

(
8 lnn

ν21ρ
2h

+4

)
.

1683

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

Now, it follows from the fact that the parent of Jh is in Ih−1 that |Jh|� 2|Ih−1| when h� 1. Substi-
tuting this and the bound on |Ih−1| obtained in the second step of this proof, we get

E
[
Rn,3
]

�
H

∑
h=1

4ν1ρ
h−1
(
2C
(
ν2ρ

h−1)−d′) (8 lnn
ν21ρ

2h
+4

)
� 8Cν1ν

−d′
2

H

∑
h=1

ρh(1−d
′)+d′−1

(
8 lnn

ν21ρ
2h

+4

)
.

Fourth step. Putting the obtained bounds together, we get

E
[
Rn
]

� 4ν1ρH n+4Cν1ν
−d′
2

H−1
∑
h=0

ρh(1−d
′) +8Cν1ν

−d′
2

H

∑
h=1

ρh(1−d
′)+d′−1

(
8 lnn

ν21ρ
2h

+4

)

= O

(
nρH +(lnn)

H

∑
h=1

ρ−h(1+d
′)

)
= O
(
nρH +ρ−H(1+d′) lnn

)
(recall that ρ< 1). Note that all constants hidden in the O symbol only depend on ν1, ν2, ρ and d′.

Now, by choosing H such that ρ−H(d′+2) is of the order of n/ lnn, that is, ρH is of the order of
(n/ lnn)−1/(d

′+2), we get the desired result, namely,

E
[
Rn
]
= O
(
n(d

′+1)/(d′+2) (lnn)1/(d
′+2)
)
.

A.2 Proof of Theorem 8 (Regret Bound for Truncated HOO)

The proof follows from an adaptation of the proof of Theorem 6 and of its associated lemmas; for
the sake of clarity and precision, we explicitly state the adaptations of the latter.

Adaptations of the lemmas. Remember that Dn0 denotes the maximum depth of the tree, given
horizon n0. The adaptation of Lemma 14 is done as follows. Let (h, i) be a suboptimal node with
h�Dn0 and let 0� k� h−1 be the largest depth such that (k, i∗k) is on the path from the root (0,1)
to (h, i). Then, for all integers u� 0, one has

E
[
Th,i(n0)

]
� u+

n0

∑
t=u+1

P

{[
Us,i∗s (t)� f ∗ for some s with k+1� s�min{Dn0 ,n0}

]
or
[
Th,i(t)> u and Uh,i(t)> f ∗

]}
.

As for Lemma 15, its straightforward adaptation states that under Assumptions A1 and A2, for
all optimal nodes (h, i) with h� Dn0 and for all integers 1� t � n0,

P
{
Uh,i(t)� f ∗

}
� t (n0)

−4 � (n0)
3 .

Similarly, the same changes yield from Lemma 16 the following result for truncated HOO. For
all integers t � n0, for all suboptimal nodes (h, i) such that h � Dn0 and Δh,i > ν1ρh, and for all
integers u� 1 such that

u�
8lnn0

(Δh,i−ν1ρh)2
,

1684

X -ARMED BANDITS

one has

P
{
Uh,i(t)> f ∗ and Th,i(t)> u

}
� t (n0)

−4 .

Combining these three results (using the same methodology as in the proof of Lemma 17) shows
that under Assumptions A1 and A2, for all suboptimal nodes (h, i) such that h�Dn0 and Δh,i> ν1ρh,
one has

E[Th,i(n0)] �
8 lnn0

(Δh,i−ν1ρh)2
+1+

n0

∑
t=u+1

⎛⎝t (n0)4+min{Dn0 ,n0}

∑
s=1

(n0)
−3

⎞⎠
�

8 lnn0
(Δh,i−ν1ρh)2

+3 .

(We thus even improve slightly the bound of Lemma 17.)

Adaptation of the proof of Theorem 6. The main change here comes from the fact that trees
are cut at the depth Dn0 . As a consequence, the sets Ih, I , J , and Jh are defined only by referring
to nodes of depth smaller than Dn0 . All steps of the proof can then be repeated, except the third
step; there, while the bounds on the regret resulting from nodes of T 1 and T 3 go through without
any changes (as these sets were constructed by considering all descendants of some base nodes), the
bound on the regret Rn,2 associated with the nodes T 2 calls for a modified proof since at this stage
we used the property that each node is played at most once. But this is not true anymore for nodes
(h, i) located at depth Dn0 , which can be played several times. Therefore the proof is modified as
follows.

Consider a node at depth h= Dn0 . Then, by definition of Dn0 ,

h� Dn0 =
(lnn0)/2− ln(1/ν1)

ln(1/ρ)
, that is, ν1ρh �

1√
n0

.

Since the considered nodes are 2ν1ρDn0 -optimal, the corresponding domains are 4ν1ρDn0 -optimal by
Lemma 3, thus also 4/

√
n0-optimal. The instantaneous regret incurred when playing any of these

nodes is therefore bounded by 4/
√
n0; and the associated cumulative regret (over n0 rounds) can be

bounded by 4
√
n0. In conclusion, with the notations of Theorem 6, we get the new bound

E
[
Rn,2
]
�

H−1
∑
h=0

4ν1ρh |Ih|+4
√
n0 � 4

√
n0+4Cν1ν

−d′
2

H−1
∑
h=0

ρh(1−d
′) .

The rest of the proof goes through and only this additional additive factor of 4
√
n0 is suffered in the

final regret bound. (The additional factor can be included in the O notation.)

A.3 Proof of Theorem 9 (Regret Bound for z-HOO)

We start with the following equivalent of Lemma 3 in this new local context. Remember that h0 is
the smallest integer such that

2ν1ρ
h0 < ε0 .

1685

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

Lemma 18 Under Assumptions A1 and A2’, for all h � h0, if the suboptimality factor Δh,i of a
region Ph,i is bounded by cν1ρh for some c ∈ [0,2], then all arms in Ph,i are Lmax{2c, c+1}ν1ρh-
optimal, that is,

Ph,i ⊂ XLmax{2c,c+1}ν1ρh .

When c= 0, that is, the node (h, i) is optimal, the bound improves to

Ph,i ⊂ Xν1ρh .

Proof We first deal with the general case of c ∈ [0,2]. By the hypothesis on the suboptimality of
Ph,i, for all δ > 0, there exists an element x ∈ Xcν1ρh+δ ∩ Ph,i. If δ is small enough, for example,
δ ∈
(
0, ε0−2ν1ρh0

]
, then this element satisfies x ∈ Xε0 . Let y ∈ Ph,i. By Assumption A1, �(x,y)�

diam(Ph,i)� ν1ρh, which entails, by denoting ε=max
{
0,ν1ρh− (f ∗ − f (x))

}
,

�(x,y)� ν1ρ
h � f ∗ − f (x)+ ε , that is, y ∈ B

(
x, f ∗ − f (x)+ ε

)
.

Since x ∈ Xε0 and ε� ν1ρh � ν1ρh0 < ε0, the second part of Assumption A2’ then yields

y ∈ B
(
x, f ∗ − f (x)+ ε

)
⊂ X

L
(
2(f ∗− f (x))+ε

) .
It follows from the definition of ε that f ∗ − f (x)+ ε=max

{
f ∗ − f (x), ν1ρh

}
, and this implies

y ∈ B
(
x, f ∗ − f (x)+ ε

)
⊂ X

L
(
f ∗− f (x)+max{ f ∗− f (x),ν1ρh}

) .
But x ∈ Xcν1ρh+δ, that is, f

∗ − f (x)� cν1ρh+δ, we thus have proved

y ∈ X
L
(
max{2c,c+1}ν1ρh+2δ

) .
In conclusion, Ph,i ⊂ XLmax{2c,c+1}ν1ρh+2Lδ for all sufficiently small δ> 0. Letting δ→ 0 concludes
the proof.

In the case of c = 0, we resort to the first part of Assumption A2’, which can be applied since
diam(Ph,i)� ν1ρh � ε0 as already noted above, and can exactly be restated as indicating that for all
y ∈ Ph,i,

f ∗ − f (y)� diam(Ph,i)� ν1ρh ;

that is, Ph,i ⊂ Xν1ρh .

We now provide an adaptation of Lemma 17 (actually based on adaptations of Lemmas 14
and 15), providing the same bound under local conditions that relax the assumptions of Lemma 17
to some extent.

Lemma 19 Consider a depth z� h0. Under Assumptions A1 and A2’, the algorithm z-HOO satis-
fies that for all n� 1 and all suboptimal nodes (h, i) with Δh,i > ν1ρh and h� z,

E
[
Th,i(n)

]
�

8 lnn
(Δh,i−ν1ρh)2

+4 .

1686

X -ARMED BANDITS

Proof We consider some path (z, i∗z), (z+ 1, i
∗
z+1), . . . of optimal nodes, starting at depth z. We

distinguish two cases, depending on whether there exists z � k′ � h− 1 such that (h, i) ∈ C (k′, i∗k′)
or not.

In the first case, we denote k′ the largest such k. The argument of Lemma 14 can be used without
any change and shows that for all integers u� 0,

E
[
Th,i(n)

]
� u+

n

∑
t=u+1

P

{[
Us,i∗s (t)� f ∗ for some s ∈ {k+1, . . . , t−1}

]
or
[
Th,i(t)> u and Uh,i(t)> f ∗

]}
.

In the second case, we denote by (z, ih) the ancestor of (h, i) located at depth z. By definition of
z-HOO, (Ht , It) ∈ C (h, i) at some round t � 1 only if Bz,i∗z (t)� Bz,ih(t) and since B-values can only
increase on a chosen path, (Ht , It) ∈ C (h, i) can only happen if Bz,i∗z (t) � Bh,i(t). Repeating again
the argument of Lemma 14, we get that for all integers u� 0,

E
[
Th,i(n)

]
� u+

n

∑
t=u+1

P

{[
Us,i∗s (t)� f ∗ for some s ∈ {z, . . . , t−1}

]
or
[
Th,i(t)> u and Uh,i(t)> f ∗

]}
.

Now, notice that Lemma 16 is valid without any assumption. On the other hand, with the
modified assumptions, Lemma 15 is still true but only for optimal nodes (h, i) with h� h0. Indeed,
the only point in its proof where the assumptions were used was in the fourth line, when applying
Lemma 3; here, Lemma 18 with c= 0 provides the needed guarantee.

The proof is concluded with the same computations as in the proof of Lemma 17.

Proof (of Theorem 9)We follow the four steps in the proof of Theorem 6 with some slight adjust-
ments. In particular, for h� z, we use the sets of nodes Ih and Jh defined therein.
First step. Lemma 19 bounds the expected number of times each node (h, i) ∈ Jh is visited.

Since for these nodes Δh,i > 2ν1ρh, we get

E
[
Th,i(n)

]
�
8 lnn

ν21ρ
2h

+4 .

Second step. We bound here the cardinality |Ih|. By Lemma 18 with c= 2, when (h, i)∈ Ih and
h� z, one has Ph,i ⊂ X4Lν1ρh .

Now, by Assumption A1 and by using the same argument as in the second step of the proof of
Theorem 6,

|Ih|�N
(
X(4Lν1/ν2)ν2ρh , �, ν2ρ

h) .
Assumption A3 can be applied since ν2ρh � 2ν1ρh � 2ν1ρh0 � ε0 and yields the inequality |Ih| �
C
(
ν2ρh
)−d

.
Third step. We consider some integer H � z to be defined by the analysis in the fourth step.

We define a partition of the nodes located at a depth equal to or larger than z; more precisely,

• T 1 contains the nodes of IH and their descendants,

1687

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

• T 2 =
⋃

z�h�H−1
Ih,

• T 3 contains the nodes
⋃

z+1�h�H

Jh and their descendants,

• T 4 is formed by the nodes (z, i) located at depth z not belonging to Iz, that is, such that
Δz,i > 2ν1ρz, and their descendants.

As in the proof of Theorem 6 we denote by Rn,i the regret resulting from the selection of nodes in
T i, for i ∈ {1,2,3,4}.

Lemma 18 with c = 2 yields the bound E
[
Rn,1
]
� 4Lν1ρHn, where we crudely bounded by n

the number of times that nodes in T 1 were played. Using that by definition each node of T 2 can be
played only once, we get

E
[
Rn,2
]
�

H−1
∑
h=z

(
4Lν1ρh

)
|Ih|� 4CLν1ν−d2

H−1
∑
h=z

ρh(1−d) .

As for Rn,3, we also use here that nodes in T 3 belong to some Jh, with z+1� h� H; in particular,
they are the child of some element of Ih−1 and as such, firstly, they are 4Lν1ρh−1-optimal (by
Lemma 18) and secondly, their number is bounded by |Jh|� 2|Ih−1|� 2C

(
ν2ρh−1

)−d
. Thus,

E
[
Rn,3
]
�

H

∑
h=z+1

(
4Lν1ρ

h−1) ∑
i:(h,i)∈Jh

E
[
Th,i(n)

]
� 8CLν1ν

−d
2

H

∑
h=z+1

ρ(h−1)(1−d)
(
8 lnn

ν21ρ
2h

+4

)
,

where we used the bound of Lemma 19. Finally, for T 4, we use that it contains at most 2z−1 nodes,
each of them being associated with a regret controlled by Lemma 19; therefore,

E
[
Rn,4
]
�
(
2z−1

)(8 lnn
ν21ρ

2z
+4

)
.

Fourth step. Putting things together, we have proved that

E
[
Rn
]
� 4Lν1ρHn+E

[
Rn,2
]
+E
[
Rn,3
]
+
(
2z−1

)(8 lnn
ν21ρ

2z
+4

)
,

where (using that ρ< 1 in the second inequality)

E
[
Rn,2
]
+E
[
Rn,3
]

� 4CLν1ν
−d
2

H−1
∑
h=z

ρh(1−d) +8CLν1ν
−d
2

H

∑
h=z+1

ρ(h−1)(1−d)
(
8 lnn

ν21ρ
2h

+4

)
= 4CLν1ν

−d
2

H−1
∑
h=z

ρh(1−d) +8CLν1ν
−d
2

H−1
∑
h=z

ρh(1−d)
(
8 lnn

ν21ρ
2ρ2h

+4

)
� 4CLν1ν

−d
2

H−1
∑
h=z

ρh(1−d)
1
ρ2h

+8CLν1ν
−d
2

H−1
∑
h=z

ρh(1−d)
(
8 lnn

ν21ρ
2ρ2h

+
4
ρ2h

)

= CLν1ν
−d
2

(
H−1
∑
h=z

ρ−h(1+d)
)(

36+
64

ν21ρ
2
lnn

)
.

1688

X -ARMED BANDITS

Denoting

γ=
4CLν1ν

−d
2

(1/ρ)d+1 −1

(
16

ν21ρ
2
+9

)
,

it follows that for n� 2
E
[
Rn,2
]
+E
[
Rn,3
]
� γρ−H(d+1) lnn .

It remains to define the parameter H � z. In particular, we propose to choose it such that the
terms

4Lν1ρ
Hn and ρ−H(d+1) lnn

are balanced. To this end, let H be the smallest integer k such that 4Lν1ρkn � γρ−k(d+1) lnn; in
particular,

ρH �

(
γ lnn
4Lν1n

)1/(d+2)
and

4Lν1ρ
H−1n> γρ−(H−1)(d+1) lnn , implying γρ−H(d+1) lnn� 4Lν1ρ

Hn ρ−(d+2) .

Note from the inequality that this H is such that

H �
1

d+2
ln(4Lν1n)− ln(γ lnn)

ln(1/ρ)

and thus this H satisfies H � z in view of the assumption of the theorem indicating that n is large
enough. The final bound on the regret is then

E
[
Rn
]

� 4Lν1ρ
Hn+ γρ−H(d+1) lnn+

(
2z−1

)(8 lnn
ν21ρ

2z
+4

)
�

(
1+

1
ρd+2

)
4Lν1ρ

Hn+
(
2z−1

)(8 lnn
ν21ρ

2z
+4

)
�

(
1+

1
ρd+2

)
4Lν1n

(
γ lnn
4Lν1n

)1/(d+2)
+
(
2z−1

)(8 lnn
ν21ρ

2z
+4

)
=

(
1+

1
ρd+2

)(
4Lν1n

)(d+1)/(d+2)
(γ lnn)1/(d+2) +

(
2z−1

)(8 lnn
ν21ρ

2z
+4

)
.

This concludes the proof.

A.4 Proof of Theorem 10 (Regret Bound for Local-HOO)

Proof We use the notation of the proof of Theorem 9. Let r0 be a positive integer such that for
r � r0, one has

zr
def
= +log2 r,� h0 and zr �

1
d+2

ln(4Lν12r)− ln(γ ln2r)
ln(1/ρ)

;

we can therefore apply the result of Theorem 9 in regimes indexed by r � r0. For previous regimes,
we simply upper bound the regret by the number of rounds, that is, 2r0 − 2 � 2r0 . For round n, we

1689

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

denote by rn the index of the regime where n lies in (regime rn = 	log2(n+ 1)
). Since regime rn
terminates at round 2rn+1−2, we have

E
[
Rn
]
� E
[
R2rn+1−2

]
� 2r0 +

rn

∑
r=r0

((
1+

1
ρd+2

)(
4Lν12

r)(d+1)/(d+2)(γ ln2r)1/(d+2) + (2zr −1)(8 ln2r
ν21ρ

2zr
+4

))

� 2r0 +C1 (lnn)
rn

∑
r=r0

((
2(d+1)/(d+2)

)r
+
(
2/ρ2
)zr)

� 2r0 +C2 (lnn)

((
2(d+1)/(d+2)

)rn
+ rn
(
2/ρ2
)zrn) = (lnn) O

(
n(d+1)/(d+2)

)
,

where C1,C2 > 0 denote some constants depending only on the parameters but not on n. Note that
for the last equality we used that the first term in the sum of the two terms that depend on n domi-
nates the second term.

A.5 Proof of Theorem 12 (Uniform Upper Bound on the Regret of HOO against the Class of
all Weak Lipschitz Environments)

Equations (6) and (7), which follow from Assumption A2, show that Assumption A2’ is satisfied
for L = 2 and all ε0 > 0. We take, for instance, ε0 = 3ν1. Moreover, since X has a packing
dimension of D, all environments have a near-optimality dimension less than D. In particular, for
all D′ > D (as shown in the second step of the proof of Theorem 6 in Section A.1), there exists a
constant C (depending only on �, X , ε0 = 3ν1, ν2, and D′) such that Assumption A3 is satisfied.
We can therefore take h0 = 0 and apply Theorem 9 with z = 0 and M ∈ FX ,�; the fact that all the
quantities involved in the bound depend only on X , �, ν2, D′, and the parameters of HOO, but not
on a particular environment in F , concludes the proof.

A.6 Proof of Theorem 13 (Minimax Lower Bound in Metric Spaces)

Let K � 2 an integer to be defined later. We provide first an overview of the proof. Here, we exhibit
a set A of environments for the {1, . . . ,K+1}-armed bandit problem and a subset F ′ ⊂ FX ,� which
satisfy the following properties.

(i) The set A contains “difficult” environments for the {1, . . . ,K+1}-armed bandit problem.

(ii) For any strategy ϕ(X) suited to the X -armed bandit problem, one can construct a strategy ψ(K+1)

for the {1, . . . ,K+1}-armed bandit problem such that

∀M ∈ F ′, ∃ ν ∈ A , EM
[
Rn(ϕ(X))

]
= Eν

[
Rn(ψ(K+1))

]
.

We now provide the details.

Proof We only deal with the case of deterministic strategies. The extension to randomized strategies
can be done using Fubini’s theorem (by integrating also w.r.t. the auxiliary randomizations used).

1690

X -ARMED BANDITS

First step. Let η ∈ (0,1/2) be a real number and K � 2 be an integer, both to be defined during
the course of the analysis. The set A only contains K elements, denoted by ν1, . . . ,νK and given by
product distributions. For 1 � j � K, the distribution ν j is obtained as the product of the ν ji when
i ∈ {1, . . . ,K+1} and where

ν ji =

{
Ber(1/2), if i �= j;

Ber(1/2+η), if i= j.

One can extract the following result from the proof of the lower bound of Cesa-Bianchi and Lugosi
(2006, Section 6.9).

Lemma 20 For all strategies ψ(K+1) for the {1, . . . ,K+1}-armed bandit (where K � 2), one has

max
j=1,...,K

Eν j
[
Rn(ψ(K+1))

]
� nη

(
1− 1

K
−η
√
4ln(4/3)

√
n
K

)
.

Second step. We now need to construct F ′ such that item (ii) is satisfied. We assume that
K is such that X contains K disjoint balls with radius η. (We shall quantify later in this proof a
suitable value of K.) Denoting by x1, . . . ,xK the corresponding centers, these disjoint balls are then
B(x1,η), . . . , B(xK ,η).

With each of these balls we now associate a bandit environment over X , in the following way.
For all x∗ ∈ X , we introduce a mapping gx∗,η on X defined by

gx∗,η(x) =max
{
0, η− �(x,x∗)

}
for all x∈ X . This mapping is used to define an environmentMx∗,η over X , as follows. For all x∈ X ,

Mx∗,η(x) = Ber

(
1
2
+gx∗,η(x)

)
.

Let fx∗,η be the corresponding mean-payoff function; its values equal

fx∗,η(x) =
1
2
+max

{
0, η− �(x,x∗)

}
for all x ∈ X . Note that the mean payoff is maximized at x= x∗ (with value 1/2+η) and is minimal
for all points lying outside B(x∗,η), with value 1/2. In addition, that � is a metric entails that these
mean-payoff functions are 1-Lipschitz and thus are also weakly Lipschitz. (This is the only point in
the proof where we use that � is a metric.) In conclusion, we consider

F ′ =
{
Mx1,η, . . . ,MxK ,η

}
⊂ FX ,� .

Third step. We describe how to associate with each (deterministic) strategy ϕ(X) on X a (ran-
dom) strategy ψ(K+1) on the finite set of arms {1, . . . ,K+ 1}. Each of these strategies is indeed
given by a sequence of mappings,

ϕ(X)
1 ,ϕ(X)

2 , . . . and ψ(K+1)
1 ,ψ(K+1)

2 , . . .

where for t � 1, the mappings ϕ(X)
t and ψ(K+1)

t should only depend on the past up to the beginning

of round t. Since the strategy ϕ(X) is deterministic, the mapping ϕ(X)
t takes only into account the

1691

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

past rewards Y1, . . . ,Yt−1 and is therefore a mapping [0,1]t−1 → X . (In particular, ϕ(X)
1 equals a

constant.)
We use the notations I′t and Y

′
t for, respectively, the arms pulled and the rewards obtained by the

strategy ψ(K+1) at each round t. The arms I′t are drawn at random according to the distributions

ψ(K+1)
t

(
I′1, . . . , I

′
t−1, Y

′
1, . . . ,Y

′
t−1
)
,

which we now define. (Actually, they will depend on the obtained payoffs Y ′
1, . . . ,Y

′
t−1 only.) To

do that, we need yet another mapping T that links elements in X to probability distributions over
{1, . . . ,K+1}. Denoting by δk the Dirac probability on k ∈ {1, . . . ,K+1}, the mapping T is defined
as

T (x) =

⎧⎪⎪⎨⎪⎪⎩
δK+1 , if x �∈

⋃
j=1,...,K

B(x j,η);(
1− �(x,x j)

η

)
δ j+

�(x,x j)

η
δK+1 , if x ∈ B(x j,η) for some j ∈ {1, . . . ,K},

for all x ∈ X . Note that this definition is legitimate because the balls B(x j,η) are disjoint when j
varies between 1 and K.

Finally, ψ(K+1) is defined as follows. For all t � 1,

ψ(K+1)
t

(
I′1, . . . , I

′
t−1, Y

′
1, . . . ,Y

′
t−1
)
= ψ(K+1)

t

(
Y ′
1, . . . ,Y

′
t−1
)
= T
(
ϕ(X)
t

(
Y ′
1, . . . ,Y

′
t−1
))

.

Before we proceed, we study the distribution of the rewardY ′ obtained under νi (for i∈{1, . . . ,K})
by the choice of a random arm I′ drawn according to T (x), for some x ∈ X . Since Y ′ can only take
the values 0 or 1, its distribution is a Bernoulli distribution whose parameter μi(x) we compute now.
The computation is based on the fact that under νi, the Bernoulli distribution corresponding to arm
j has 1/2 as an expectation, except if j = i, in which case it is 1/2+η. Thus, for all x ∈ X ,

μi(x) =

⎧⎪⎨⎪⎩
1/2 , if x �∈ B(xi,η);(
1− �(x,xi)

η

) (
1
2
+η

)
+

�(x,xi)
η

1
2
=
1
2
+η− �(x,xi) , if x ∈ B(xi,η).

That is, μi = fxi,η on X .
Fourth step. We now prove that the distributions of the regrets of ϕ(X) under Mxj,η and of

ψ(K+1) under ν j are equal for all j = 1, . . . ,K. On the one hand, the expectations of rewards asso-
ciated with the best arms equal 1/2+η under the two environments. On the other hand, one can
prove by induction that the sequences Y1,Y2, . . . and Y ′

1,Y
′
2, . . . have the same distribution. (In the

argument below, conditioning by empty sequences means no conditioning. This will be the case
only for t = 1.)

For all t � 1, we denote
X ′
t = ϕ(X)

t

(
Y ′
1, . . . ,Y

′
t−1
)
.

Under ν j and given Y ′
1, . . . ,Y

′
t−1, the distribution of Y

′
t is obtained by definition as the two-step

random draw of I′t ∼ T (X ′
t) and then, conditionally on this first draw, Y

′
t ∼ ν jI′t . By the above results,

the distribution of Y ′
t is thus a Bernoulli distribution with parameter μj(X

′
t).

1692

X -ARMED BANDITS

At the same time, underMxj,η and given Y1, . . . ,Yt−1, the choice of

Xt = ϕ(X)
t

(
Y1, . . . ,Yt−1

)
yields a reward Yt distributed according to Mxj,η(Xt), that is, by definition and with the notations
above, a Bernoulli distribution with parameter fx j,η(Xt) = μj(Xt).

The argument is concluded by induction and by using the fact that rewards are drawn indepen-
dently in each round.
Fifth step. We summarize what we proved so far. For η ∈ (0,1/2), provided that there exist

K � 2 disjoint balls B(x j,η) in X , we could construct, for all strategies ϕ(X) for the X -armed
bandit problem, a strategy ψ(K+1) for the {1, . . . ,K+ 1}-armed bandit problem such that, for all
j = 1, . . . ,K and all n� 1,

EMxj ,η

[
Rn(ϕ

(X))
]
= Eν j

[
Rn(ψ

(K+1))
]
.

But by the assumption on the packing dimension, there exists c > 0 such that for all η < 1/2,
the choice of Kη = +cη−D,� 2 guarantees the existence of such Kη disjoint balls. Substituting this
value, and using the results of the first and fourth steps of the proof, we get

max
j=1,...,Kη

EMxj ,η

[
Rn(ϕ

(X))
]
= max

j=1,...,Kη
Eν j
[
Rn(ψ

(K+1))
]
� nη

(
1− 1

Kη
−η
√
4ln(4/3)

√
n
Kη

)
.

The proof is concluded by noting that

• the left-hand side is smaller than the maximal regret w.r.t. all weak Lipschitz environments;

• the right-hand side can be lower bounded and then optimized over η < 1/2 in the following
way.

By definition of Kη and the fact that it is larger than 2, one has

nη

(
1− 1

Kη
−η
√
4ln(4/3)

√
n
Kη

)
� nη

(
1− 1

2
−η
√
4ln(4/3)

√
n

cη−D

)
= nη

(
1
2
−Cη1+D/2

√
n

)

whereC =
√(

4ln(4/3)
)/

c. We can optimize the final lower bound over η ∈ [0, 1/2].

To that end, we choose, for instance, η such thatCη1+D/2
√
n= 1/4, that is,

η=

(
1

4C
√
n

)1/(1+D/2)
=

(
1
4C

)1/(1+D/2)
n−1/(D+2) .

This gives the lower bound

1
4

(
1
4C

)1/(1+D/2)
n1−1/(D+2) =

1
4

(
1
4C

)1/(1+D/2)
︸ ︷︷ ︸

= γ(c,D)

n(D+1)/(D+2) .

1693

BUBECK, MUNOS, STOLTZ AND SZEPESVÁRI

To ensure that this choice of η is valid we need to show that η � 1/2. Since the latter requirement
is equivalent to

n�

(
2

(
1
4C

)1/(1+D/2))D+2
,

it suffices to choose the right-hand side to be N(c,D); we then get that η� 1/2 indeed holds for all
n� N(c,D), thus concluding the proof of the theorem.

References

J. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark: an efficient algorithm for bandit
linear optimization. In Proceedings of the 21st International Conference on Learning Theory.
Omnipress, 2008.

R. Agrawal. Sample mean based index policies with o(logn) regret for the multi-armed bandit
problem. Advances in Applied Mathematics, 27:1054–1078, 1995a.

R. Agrawal. The continuum-armed bandit problem. SIAM Journal on Control and Optimization,
33:1926–1951, 1995b.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning Journal, 47(2-3):235–256, 2002a.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. The non-stochastic multi-armed bandit
problem. SIAM Journal on Computing, 32(1):48–77, 2002b.

P. Auer, R. Ortner, and C. Szepesvári. Improved rates for the stochastic continuum-armed bandit
problem. In Proceedings of the 20th Conference on Learning Theory, pages 454–468, 2007.

S. Bubeck and R. Munos. Open loop optimistic planning. In Proceedings of the 23rd International
Conference on Learning Theory. Omnipress, 2010.

S. Bubeck, R. Munos, G. Stoltz, and Cs. Szepesvari. Online optimization in X –armed bandits. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information
Processing Systems 21, pages 201–208, 2009.

S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed bandits problems. Theoretical
Computer Science, 412:1832–1852, 2011.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,
2006.

G.M.J. Chaslot, M.H.M. Winands, H. Herik, J. Uiterwijk, and B. Bouzy. Progressive strategies for
Monte-Carlo tree search. New Mathematics and Natural Computation, 4(3):343–357, 2008.

E. Cope. Regret and convergence bounds for immediate-reward reinforcement learning with con-
tinuous action spaces. IEEE Transactions on Automatic Control, 54(6):1243–1253, 2009.

1694

X -ARMED BANDITS

P.-A. Coquelin and R. Munos. Bandit algorithms for tree search. In Proceedings of the 23rd Con-
ference on Uncertainty in Artificial Intelligence, pages 67–74, 2007.

J. L. Doob. Stochastic Processes. John Wiley & Sons, 1953.

H. Finnsson and Y. Bjornsson. Simulation-based approach to general game playing. In Proceedings
of the Twenty-Third AAAI Conference on Artificial Intelligence, pages 259–264, 2008.

S. Gelly and D. Silver. Combining online and offline knowledge in UCT. In Proceedings of the
24th international conference on Machine learning, pages 273–280. ACM New York, NY, USA,
2007.

S. Gelly and D. Silver. Achieving master level play in 9× 9 computer go. In Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, pages 1537–1540, 2008.

S. Gelly, Y. Wang, R. Munos, and O. Teytaud. Modification of UCT with patterns in Monte-Carlo
go. Technical Report RR-6062, INRIA, 2006.

J. C. Gittins. Multi-armed Bandit Allocation Indices. Wiley-Interscience Series in Systems and
Optimization. Wiley, Chichester, NY, 1989.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

R. Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In Advances in Neural
Information Processing Systems 18, 2004.

R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces. In Proceedings of
the 40th ACM Symposium on Theory of Computing, 2008a.

R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces, September 2008b.
URL http://arxiv.org/abs/0809.4882.

L. Kocsis and Cs. Szepesvari. Bandit based Monte-carlo planning. In Proceedings of the 15th
European Conference on Machine Learning, pages 282–293, 2006.

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied
Mathematics, 6:4–22, 1985.

H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Math-
ematics Society, 58:527–535, 1952.

M.P.D. Schadd, M.H.M.Winands, H.J. van den Herik, and H. Aldewereld. Addressing NP-complete
puzzles with Monte-Carlo methods. In Proceedings of the AISB 2008 Symposium on Logic and
the Simulation of Interaction and Reasoning, volume 9, pages 55—61. The Society for the study
of Artificial Intelligence and Simulation of Behaviour, 2008.

Y. Yang. How powerful can any regression learning procedure be? In Proceedings of the 11th In-
ternational Conference on Artificial Intelligence and Statistics, volume 2, pages 636–643, 2007.

1695

Journal of Machine Learning Research 12 (2011) 1697-1728 Submitted 4/10; Revised 10/10; Published 5/11

Domain Decomposition Approach for Fast Gaussian Process
Regression of Large Spatial Data Sets

Chiwoo Park CHIWOO.PARK@TAMU.EDU
Department of Industrial and Systems Engineering
Texas A&M University
3131 TAMU, College Station, TX 77843-3131, USA

Jianhua Z. Huang JIANHUA@STAT.TAMU.EDU
Department of Statistics
Texas A&M University
3143 TAMU, College Station, TX 77843-3143, USA

Yu Ding YUDING@IEMAIL.TAMU.EDU
Department of Industrial and Systems Engineering
Texas A&M University
3131 TAMU, College Station, TX 77843-3131, USA

Editor: Neil Lawrence

Abstract

Gaussian process regression is a flexible and powerful tool for machine learning, but the high
computational complexity hinders its broader applications. In this paper, we propose a new ap-
proach for fast computation of Gaussian process regression with a focus on large spatial data sets.
The approach decomposes the domain of a regression function into small subdomains and infers
a local piece of the regression function for each subdomain. We explicitly address the mismatch
problem of the local pieces on the boundaries of neighboring subdomains by imposing continuity
constraints. The new approach has comparable or better computation complexity as other compet-
ing methods, but it is easier to be parallelized for faster computation. Moreover, the method can be
adaptive to non-stationary features because of its local nature and, in particular, its use of different
hyperparameters of the covariance function for different local regions. We illustrate application of
the method and demonstrate its advantages over existing methods using two synthetic data sets and
two real spatial data sets.

Keywords: domain decomposition, boundary value problem, Gaussian process regression, paral-
lel computation, spatial prediction

1. Introduction

This paper is concerned about fast computation of Gaussian process regression, hereafter called GP
regression. With its origin in geostatistics, well known as kriging, the GP regression has recently
developed to be a useful tool in machine learning (Rasmussen andWilliams, 2006). A GP regression
provides the best unbiased linear estimator computable by a simple closed form expression and is
a popular method for interpolation or extrapolation. A major limitation of GP regression is its
computational complexity, scaled by O(N3), where N is the number of training observations. Many
approximate computation methods have been introduced in the literature to relieve the computation

c©2011 Chiwoo Park, Jianhua Z. Huang and Yu Ding.

PARK, HUANG AND DING

burden. A new computation scheme is developed in this paper with a focus on large spatial data
sets.

Existing approximation methods may be categorized into three schools: matrix approximation,
likelihood approximation and localized regression. The first school is motivated by the observation
that the inversion of a big covariance matrix is the major part of the expensive computation, and
thus, approximating the matrix by a lower rank version will help reduce the computational demand.
Williams and Seeger (2000) approximated the covariance matrix by the Nyström extension of a
smaller covariance matrix evaluated on M training observations (M � N). This helps reduce the
computation cost from O(N3) to O(NM2), but this method does not guarantee the positivity of the
prediction variance (Quiñonero-Candela and Rasmussen, 2005, page 1954).

The second school approximates the likelihood of training and testing points by assuming condi-
tional independence of training and testing points, givenM artificial points, known as “inducing in-
puts.” Under this assumption, one only needs to invert matrices of rankM for GP predictions rather
than the original big matrix of rank N. Depending on the specific independence assumed, there are
a number of variants to the approach: deterministic training conditional (DTC, Seeger et al., 2003),
full independent conditional (FIC, Snelson and Ghahramani, 2006), partial independent conditional
(PIC, Snelson and Ghahramani, 2007). DTC assumes a deterministic relation between the inducing
inputs and the regression function values at training sample locations. An issue in DTC is how to
choose the inducing inputs; a greedy strategy has been used to choose the inducing inputs among the
training data. FIC assumes that each individual training or test point is conditionally independent
of one another once given all the inducing inputs. Under this assumption, FIC enjoys a reduced
computation cost of O(NM2) for training and O(M2) for testing. However, FIC will have difficulty
in fitting data having abrupt local changes or non-stationary features; see Snelson and Ghahramani
(2007). PIC makes a relaxed conditional independence assumption in order to better reflect local-
ized features. PIC first groups all data points into several blocks and assumes that all the data points
within a block could still be dependent but the data points between blocks are conditional indepen-
dent once given the inducing inputs. Suppose that B is the number of data points in a block, PIC
entertains a reduced computation cost of O(N(M+B)2) for training and O((M+B)2) for testing.

The last school is localized regression. It starts from the belief that a pair of observations
far away from each other are almost uncorrelated. As such, prediction at a test location can be
performed by using only a small number, say B, of neighboring points. One way to implement this
idea, called local kriging, is to decompose the entire domain into smaller subdomains and to predict
at a test site using the training points only in the subdomain which the test site belongs to. It is
well known that local kriging suffers from having discontinuities in prediction on the boundaries
of subdomains. On the other hand, the local kriging enjoys many advantages, such as adaptivity to
non-stationary changes, efficient computation with O(NB2) operations for training and O(B2) for
testing, and easiness of being parallelized for faster computation.

Another way for localized regression is to build multiple local predictors and to combine them
by taking a weighted average of the local predictions. Differing in the weighting schemes used, sev-
eral methods have been proposed in the literature, including Bayesian committee machine (BCM,
Tresp, 2000; Schwaighofer et al., 2003), local probabilistic regression (LPR, Urtasun and Darrell,
2008), mixture of Gaussian process experts (MGP, Rasmussen and Ghahramani, 2002), and treed
Gaussian process model (TGP, Gramacy and Lee, 2008). Because of the averaging mechanism, all
these methods avoid the discontinuity problem of local kriging. However, the testing time complex-
ities of all these methods are significantly higher than local kriging, making them less competitive

1698

DOMAIN DECOMPOSITION FOR FAST GAUSSIAN PROCESS REGRESSION

when the number of test locations is large. In particular, BCM is transductive and it requires in-
version of a matrix whose size is the same as the number of test locations, and as such, it is very
slow when the number of test locations is large. Mixture models such as MGP and TGP involve
complicated integrations which in turn are approximated by sampling or Monte Carlo simulation.
The use of Monte Carlo simulation makes these methods less effective for large data sets.

Being aware of the advantages and disadvantages of the local kriging along with computational
limitations of the averaging-based localized regression, we propose a new local kriging approach
that explicitly addresses the problem of discontinuity in prediction on the boundaries of subdomains.
The basic idea is to formulate the GP regression as an optimization problem and to decompose the
optimization problem into smaller local optimization problems that provide local predictions. By
imposing continuity constraints on the local predictions at the boundaries, we are able to produce
a continuous global prediction for 1-d data and significantly control the degrees of discontinuities
for 2-d data. Our new local kriging approach is motivated by the domain decomposition method
widely used for solving partial differential equations (PDE, Quarteroni and Valli, 1999). To obtain a
numerical solution of a PDE, the finite element method discretizes the problem and approximates the
PDE by a big linear system whose computation cost grows with the number of discretizing points
over the big domain. In order to attain an efficient solution, the domain decomposition method
decomposes the domain of the PDE solution into small pieces, solves small linear systems for
local approximations of the PDE solution, and smoothly connects the local approximations through
imposing continuity and smoothness conditions on boundaries.

Our method has, in a regular (sequential) computing environment, at least similar computational
complexity as the most efficient existing methods such as FIC, PIC, BCM, and LPR, but it can be
parallelized easily for faster computation, resulting a much reduced computational cost of O(B3).
Furthermore, each local predictor in our approach is allowed to use a different hyperparameter for
the covariance function and thus the method is adaptive to non-stationary changes in the data, a
feature not enjoyed by FIC and PIC. The averaging-based localized regressions also allow local
hyperparameters, but our method is computationally more attractive for large test data sets. Overall,
our approach achieves a good balance of computational speed and accuracy, as demonstrated empir-
ically using synthetic and real spatial data sets (Section 6). Methods applying a compactly supported
covariance function (Gneiting, 2002; Furrer et al., 2006) can be considered as a variant of localized
regression, which essentially uses moving boundaries to define neighborhoods. These methods can
produce continuous predictions but cannot be easily modified to adapt to non-stationarity.

The rest of the paper is organized as follows. In Sections 2 and 3, we formulate the new local
kriging as a constrained optimization problem and provide solution approaches for the optimization
problem. Section 4 presents the numerical algorithm of our method. Section 5 discusses the hy-
perparameter learning issue. Section 6 provides numerical comparisons of our method with several
existing methods, including local kriging, FIC, PIC, BCM, and LPR, using two synthetic data sets
(1-d and 2-d) and two real data sets (both 2-d). Finally Section 7 concludes the paper, followed by
additional discussions on possible improvement of the proposed method.

2. GP Regression as an Optimization Problem

Before formulating the problem, we define notational convention. Boldface capital letters represent
matrices and boldface lowercase letters represent vectors. One exception is a notation for spatial

1699

PARK, HUANG AND DING

locations. A spatial location is a two-dimensional vector, but for notational simplicity, we do not
use boldface for it. Instead, we use boldface lowercase to represent a set of spatial locations.

A spatial GP regression is usually formulated as follows: given a training data setD = {(xi,yi), i=
1, . . . ,N} of n pairs of locations xi and noisy observations yi, obtain the predictive distribution for
the realization of a latent function at a test location x∗, denoted by f∗ = f (x∗). We assume that the
latent function comes from a zero-mean Gaussian random field with a covariance function k(·, ·) on
a domain Ω⊂ R d and the noisy observations yi are given by

yi = f (xi)+ εi, i= 1, . . . ,N,

where εi ∼ N (0,σ2) are white noises independent of f (xi). Denote x = [x1,x2, ..,xN]t and y =
[y1,y2, ..,yN]t . The joint distribution of (f∗,y) is

P(f∗,y) =N
(
0,

[
k∗∗ ktx∗
kx∗ σ2I+Kxx

])
,

where k∗∗ = k(x∗,x∗), kx∗ = (k(x1,x∗), . . . ,k(xN ,x∗))t andKxx is an N×N matrix with (i, j)th entity
k(xi,x j). The subscripts of k∗∗,kx∗ andKxx represent two sets of the locations between which the
covariance is computed, and x∗ is abbreviated as ∗. By the conditional distribution for Gaussian
variables, the predictive distribution of f∗ given y is

P(f∗|y) =N (ktx∗(σ
2I+Kxx)

−1y,k∗∗ −ktx∗(σ
2I+Kxx)

−1kx∗). (1)

The predictive mean ktx∗(σ
2I +Kxx)

−1y gives the point prediction of f (x) at location x∗, whose
uncertainty is measured by the predictive variance k∗∗ −ktx∗(σ

2I+Kxx)
−1kx∗.

The point prediction given above is the best linear unbiased predictor (BLUP) in the following
sense. Consider all linear predictors

μ(x∗) = u(x∗)
ty,

satisfying the unbiasedness requirement E[μ(x∗)] = 0. We want to find the vector u(x∗) that min-
imizes the mean squared prediction error E[μ(x∗)− f (x∗)]2. Since E[μ(x∗)] = 0 and E[f (x∗)] = 0,
the mean squared prediction error equals the error variance var[μ(x∗)− f (x∗)] and can be expressed
as

σ(x∗) = u(x∗)
tE(yyt)u(x∗)−2u(x∗)tE(y f∗)+E(f 2∗)

= u(x∗)
t(σ2I+Kxx)u(x∗)−2u(x∗)tkx∗+ k∗∗,

(2)

which is a quadratic form in u(x∗). It is easy to see σ(x∗) is minimized if and only if u(x∗) is chosen
to be (σ2I+Kxx)

−1kx∗.
Based on the above discussion, the mean of the predictive distribution in (1) or the best linear

unbiased predictor can be obtained by solving the following minimization problem: for x∗ ∈Ω,

Minimize
u(x∗)∈RN

z[u(x∗)] := u(x∗)
t(σ2I+Kxx)u(x∗)−2u(x∗)tkx∗, (3)

where the constant term k∗∗ in σ(x∗) is dropped from the objective function. Given the solution
u(x∗) = (σ2I+Kxx)

−1kx∗, the predictive mean is given by u(x∗)ty and the predictive variance is
z[u(x∗)]+ k∗∗, the optimal objective value plus the variance of f∗ at the location x∗.

1700

DOMAIN DECOMPOSITION FOR FAST GAUSSIAN PROCESS REGRESSION

The optimization problem (3) and its solution depends on the special location x∗ that we seek
prediction. However, we are usually interested in predicting at multiple test locations. This mo-
tivates us to define another class of optimization problem whose solutions are independent of the
location. Note that the optimal solution of (3) has the form ofAkx∗ for an N×N matrixA and thus,
we can restrict the feasible region for u(x∗) to V= {Akx∗;A ∈R

N×N}. This leads to the following
optimization problem: for x∗ ∈Ω,

Minimize
A∈RN×N

z[A] := ktx∗A
t(σ2I+Kxx)Akx∗ −2ktx∗Atkx∗. (4)

The first order necessary condition (FONC) for solving (4) is

dz[A]

dA
= 2(σ2I+Kxx)Akx∗k

t
x∗ −2kx∗ktx∗ = 0. (5)

To obtain A, we need N×N equations with respect to A. However, the FONC only provides N
equations since kx∗ktx∗ is a rank one matrix, and thus it cannot uniquely determine the optimal A.
In fact, A = (σ2I+Kxx)

−1(I+B), where B is any matrix satisfying Bkx∗ = 0, all satisfies the
FONC in (5).

Recall that our intention of the reformulation is to produce location-independent solutions. Yet
thoseA’s satisfying the FONC as mentioned above are still dependent on x∗, except for Â= (σ2I+
Kxx)

−1, which becomes the one we propose to choose as the solution to the FONC. It is also easy
to verify that Â= (σ2I+Kxx)

−1 is indeed the optimal solution to (4). The formulation (4) and the
above-mentioned rationale for choosing its solution will serve as the basis for the development of
local kriging in the next section.

3. Domain Decomposition: Globally Connected Local Kriging

The reformulation of the GP regression as the optimization problem in (4) does not reduce the
computational complexity. We still need to compute the matrix inversion in Âwhich requiresO(N3)
computations. To ease the computational burden, our strategy is to approximate the optimization
problem (4) by a collection of local optimization problems, each of which is computationally cheap
to solve. The local optimization problems are connected in a way ensuring that the spatial prediction
function is globally continuous. We present the basic idea in this section and derive the numerical
algorithm in the next section.

We decompose the domain Ω into m disjoint subdomains {Ω j} j=1,...,m. Let x j be the subset
of locations of observed data that belong to Ω j and let y j denote the corresponding values of the
response variable. Denote by n j the number of data points in Ω j. Consider an initial local problem
as follows: for x∗ ∈Ω j,

Minimize
A j∈Rn j×n j

ktx j∗A
t
j(σ

2
jI+Kx jx j)A jkx j∗ −2ktx j∗A

t
jkx j∗, (6)

where we introduced the subdomain-dependent noise variance σ2j . The minimizer A j = (σ2jI +

Kx jx j)
−1 provides a local predictor, μj(x∗) = ktx j∗A

t
jy j, for x∗ ∈Ω j. Computing the local predictor

requires only O(n3j) operations for each j. By making n j � N, the saving in computation could be
substantial.

As we mentioned in the introduction, the above local kriging will suffer from discontinuities in
prediction on boundaries of subdomains. While the prediction on the interior of each subdomain is

1701

PARK, HUANG AND DING

independently governed by the corresponding local predictor, the prediction on a boundary comes
from the local predictors of at least two subdomains that intersect on the boundary, which provide
different predictions. For simplicity, in this paper, we suppose that a boundary is shared by at most
two subdomains. In the language of finite element analysis, our subdomains {Ω j} j=1,...,m form a
‘conforming’ mesh of the domain Ω (Ern and Guermond, 2004). Suppose that two neighboring
subdomains Ω j and Ωk have a common boundary Γ jk := Ω j ∩Ωk, where Ω j means the closure of
Ω j. Using kx j◦ as the abbreviation of kx jx◦ , we have discontinuities on Γ jk, that is,

ktx j◦A
t
jy j �= ktxk◦A

t
kyk for x◦ ∈ Γ jk.

The discontinuity problem of local kriging has been well documented in the literature; see Snelson
and Ghahramani (2007, Figure 1).

To fix the problem, we impose continuity constraints on subdomain boundaries when combining
the local predictors. Specifically, we impose

(Continuity) ktx j◦A
t
jy j = ktxk◦A

t
kyk for x◦ ∈ Γ jk.

This continuity requirement implies that two mean predictions obtained from local predictors of
two neighboring subdomains are the same on the common subdomain boundary. According to (2),
the predictive variance is in a quadratic form of the predictive mean. Thus, the continuity of the
predictive mean across boundary imply the continuity of the predictive variance.

To incorporate the continuity condition to the local kriging problems, define r jk(x◦) as a con-
sistent prediction at x◦ on Γ jk. The continuity condition is converted to the following two separate
conditions:

ktx j◦A
t
jy j = r jk(x◦) and k

t
xk◦A

t
kyk = r jk(x◦) for x◦ ∈ Γ jk.

Adding these conditions as constraints, we revise the initial local problem (6) to the following
constrained local problem: for x∗ ∈Ω j

LP(j) : Minimize
A j∈Rn j×n j

ktx j∗A
t
j(σ

2
jI+Kx jx j)A jkx j∗ −2ktx j∗A

t
jkx j∗

s. t. ktx j◦A
t
jy j = r jk(x◦) for x◦ ∈ Γ jk and k ∈ N(j),

(7)

where N(j) := {k : Ωk is next to Ω j}. Note that r jk(x◦) is a function of x◦ and is referred to as a
boundary value function on Γ jk. We ensure the continuity of the prediction across the boundary
Γ jk by using a common boundary value function r jk for two neighboring subdomains Ω j and Ωk.
Solving of the constrained local problem LP(j) will be discussed in the subsequent section. Since
the solution depends on a set of r jk’s, denoted collectively as r j = {r jk;k ∈ N(j)}, we denote the
solution of (7) asA j(r j). Note that, if r j is given, we can solve the constrained local problem LP(j)
for each subdomain independently. In reality, r j is unknown unless additional conditions are used.

To obtain the boundary value functions, we propose to minimize the predictive variances on the
subdomain boundaries. The predictive variance at a boundary point x◦ is given by the objective
function of (7), which depends on r j and can be written as

ktx j◦A j(r j)
t(σ2jI+Kx jx j)A j(r j)kx j◦ −2ktx j◦A j(r j)

tkx j◦.

To obtain the collection of all boundary value functions, {r j}mj=1, we solve the following optimiza-
tion problem

Minimize
{r j}mj=1

m

∑
j=1

∑
k∈N(j)

∑
x◦∈Γ jk

ktx j◦A j(r j)
t(σ2jI+Kx jx j)A j(r j)kx j◦ −2ktx j◦A j(r j)

tkx j◦. (8)

1702

DOMAIN DECOMPOSITION FOR FAST GAUSSIAN PROCESS REGRESSION

Note that we cannot solve optimization over each r j separately since r jk in r j is equivalent to rk j
in rk so the optimization over r j is essentially linked to the optimization over rk. In other words,
the equations for obtaining the optimized r j’s are entangled. We call (8) an interface equation,
since it solves the boundary values on the interfaces between subdomains. Details of solving these
equations will be given in the next section.

To summarize, we reformulate the spatial prediction problem as a collection of local prediction
optimization problems, and impose continuity restrictions to these local problems. Our solution
strategy is to first solve the interface equations to obtain the boundary value functions, and then to
solve the constrained local problems to build the globally connected local predictors. The imple-
mentation of this basic idea is given in the next section.

4. Numerical Algorithm Based on Domain Decomposition

To solve (7) and (8) numerically, we make one simplification that restricts the boundary value
functions r jk’s to be polynomials of a certain degree. Since we want our predictions to be continuous
and smooth, and polynomials are dense in the space of continuous functions, such restriction to
polynomials does not sacrifice much accuracy. To facilitate computation, we use Lagrange basis
polynomials as the basis functions to represent the boundary value functions.

Suppose that we use p Lagrange basis polynomials defined at p interpolation points that are
uniformly spaced on Γ jk. We refer to p as the degrees of freedom. Let r jk be a p× 1 vector that
denotes the boundary function r jk evaluated at the p interpolation points. Then r jk(x◦) can be written
as a linear combination

r jk(x◦) = T jk(x◦)
tr jk, (9)

where T jk(x◦) is a p×1 vector with the values of p Lagrange basis polynomials at x◦ as its elements.
Plugging (9) into (7), the local prediction problem becomes for x∗ ∈Ω j,

LP(j) : Minimize
A j∈Rn j×n j

ktx j∗A
t
j(σ

2
jI+Kx jx j)A jkx j∗ −2ktx j∗A

t
jkx j∗

s. t. ktx j◦A
t
jy j = T jk(x◦)

tr jk for x◦ ∈ Γ jk and k ∈ N(j).
(10)

Since the constraint in (10) must hold for all points on Γ jk, there are infinite number of con-
straints to check. One way to handle these constraints is to merge the infinitely many constraints
into one constraint by considering the following integral equation:

∫
Γ jk

[ktx j◦A
t
jy j−T jk(x◦)

tr jk]
2dx◦ = 0.

The integral depends on the covariance function used and is usually intractable for general covari-
ance functions. Even when the integral has a closed form expression, the expression can be too
complicated to ensure a simple solution to the constrained optimization. Consider, for example,
the covariance function is a squared exponential covariance function. In this case, the integration
can be written as a combination of Gaussian error functions, but still we could not easily have the
first order optimal solution forA with the integral constraint. We thus adopt another simplification,
which is to check the constraint only at q uniformly spaced points on Γ jk; these constraint-checking
points on a boundary are referred to as control points. Although this approach does not guarantee
that the continuity constraint is met at all points on Γ jk, we find that the difference of ktx j◦A

t
jy j and

1703

PARK, HUANG AND DING

r jk(x◦) is small for all x◦ on Γ jk when q is chosen to be reasonably large; see Section 6.2 for some
empirical evidence.

Specifically, let xbjk denote the q uniformly spaced points on Γ jk. Evaluate kx j◦ and T jk(x◦)

when x◦ is taken to be an element of xbjk and denote the results collectively as the n j × q matrix
Kx jxbjk

and the q× p matrix T jk, respectively. Then, the continuity constraints at the q points are

expressed as follows: for x∗ ∈Ω j,

Kt
x jxbjk

At
jy j = T t

jkr jk.

Consequently, the optimization problem (10) can be rewritten as: for x∗ ∈Ω j,

LP(j)′ : Minimize
A j∈Rn j×n j

ktx j∗A
t
j(σ

2
jI+Kx jx j)A jkx j∗ −2ktx j∗A

t
jkx j∗

s. t. Kt
x jxbjk

At
jy j = T t

jkr jk for k ∈ N(j).
(11)

Introducing Lagrange multipliers λ jk(x∗) (a q× 1 vector), the problem becomes an uncon-
strained problem to minimize the Lagrangian: for x∗ ∈Ω j,

L(A j,λ jk(x∗)) := ktx j∗A
t
j(σ

2
jI+Kx jx j)A jkx j∗ −2ktx j∗A

t
jkx j∗

− ∑
k∈N(j)

λ jk(x∗)
t [Kt

x jxbjk
At

jy j−T t
jkr jk].

(12)

Let λ j(x∗) denote a q j × 1 vector formed by stacking those λ jk(x∗)’s for k ∈ N(j) where q j :=
q|N(j)|. Let xbj denote the collection of xbjk for all k ∈ N(j). We formKx jxbj

by columnwise binding

Kx jxbjk
and form T t

jr j by row-wise binding T
t
jkr jk. The Lagrangian becomes: for x∗ ∈Ω j,

L(A j,λ jk(x∗)) := ktx j∗A
t
j(σ

2
jI+Kx jx j)A jkx j∗ −2ktx j∗A

t
jkx j∗

−λ j(x∗)
t [Kt

x jxbj
At

jy j−T t
jr j].

The first order necessary conditions (FONC) for local optima are: for x∗ ∈Ω j,

d
dA j

L(A j,λ jk) = 2(σ
2
jI+Kx jx j)A jkx j∗k

t
x j∗ −2kx j∗k

t
x j∗ −y jλ

t
j(x∗)K

t
x jxbj

= 0, (13)

d
dλ j

L(A j,λ j) =Kt
x jxbj

At
jy j−T t

jr j = 0. (14)

As in the unconstrained optimization case, that is, (4) and (5), the FONC (13) provides insuf-
ficient number of equations to uniquely determine the optimal A j and λ j(x∗). To see this, note
that we have n j × n j unknowns from A j and q j unknowns from λ j(x∗). Equation (13) provides
only n j distinguishable equations due to the matrix of rank one, kx j∗k

t
x j∗, and Equation (14) adds q j

(= q|N(j)|) linear equations. Thus, in order to find a sensible solution, we will follow our solution-
choosing rationale stated in Section 2, which is to look for the location-independent solution.

To proceed, first, we change our target of obtaining the optimal A j to an easier task of obtain-
ing u(x∗) = A jkx j∗, which is the quantity directly needed for the local predictor u(x∗)

ty j. From
Equation (13), we have that

A jkx j∗ = (σ2jI+Kx jx j)
−1
(
kx j∗+

1
2
y jλ j(x∗)

tKt
x jxbj

(ktx j∗kx j∗)
−1kx j∗

)
. (15)

1704

DOMAIN DECOMPOSITION FOR FAST GAUSSIAN PROCESS REGRESSION

From here, the only thing that needs to be determined is the q j×1 vector λ j(x∗), which comes
out from the Lagrangian (12). We have q j equations from (14) to determine λ j(x∗), so we restrict
the solution space for λ j(x∗) to a space fully specified by q j unknowns. Specifically, we let λ j(x∗)
be proportional to kxbj∗, which is inversely related to the distance of x∗ from the boundary points in

xbj . More precisely, we set λ j(x∗) =Λ j(k
t
xbj∗

kxbj∗)
−1/2kxbj∗, where (k

t
xbj∗

kxbj∗)
−1/2 is a scaling factor

to normalize the vector kxbj∗ to unit length, and Λj is a q j × q j unknown diagonal matrix whose

diagonal elements are collectively denoted as a column vector λ j. Note that the newly defined λ j

no longer depends on locations.
The optimal λ j is obtained by using (15) to evaluate A jkx j∗ at the q j points x

b
jk (k ∈ N(j)) on

the boundaries and then solving (14). The optimal solution is (derivation in Appendix A)

A jkx j∗ = (σ2jI+Kx jx j)
−1 (16)(

kx j∗+
1
2
y jλ

t
j[(k

t
xbj∗

kxbj∗)
−1/2kxbj∗]◦ [K

t
x jxbj

kx j∗(k
t
x j∗kx j∗)

−1]

)
,

λ j = 2G j

T t
jr j−Kt

x jxbj
(σ2jI+Kx jx j)

−1y j

ytj(σ
2
jI+Kx jx j)

−1y j
,

G−1
j = {diag1/2[(Kt

xbjx
b
j
Kxbjx

b
j
)−1]Kxbjx

b
j
}◦{Kt

x jxbj
Kx jxbj

diag[(Kt
x jxbj

Kx jxbj
)−1]},

where A ◦B is a Hadamard product of matrix A and B, diag1/2[A] is a diagonal matrix with its
diagonal elements the same as the square root of the diagonal elements of A, and note that G−1

j is
symmetric. To simplify the expression, we define

h j := (σ2jI+Kx jx j)
−1y j and k̄xbj∗ := [(ktxbj∗

kxbj∗)
−1/2kxbj∗]◦ [K

t
x jxbj

kx j∗(k
t
x j∗kx j∗)

−1].

The optimal solution becomes

A jkx j∗ = (σ2jI+Kx jx j)
−1

⎛⎝kx j∗+
y j(T

t
jr j−Kt

x jxbj
h j)

tG j

ytjh j
k̄xbj∗

⎞⎠ . (17)

It follows from (17) that the local mean predictor is

p̂ j(x∗;r j) := ktx j∗A
t
jy j = ktx j∗h j+ k̄txbj∗

G j(T
t
jr j−Kt

x jxbj
h j), (18)

for x∗ ∈Ω j. The local mean predictor is the sum of two terms: the first term, ktx j∗h j, is the standard
local kriging predictor without any boundary constraints; the second term is a scaled version of
T t
jr j−Kt

x jxbj
h j, that is, the mismatches between the boundary value function and the unconstrained

local kriging prediction. If x∗ is one of the control points, then the local mean predictor given in
(18) matches exactly the value given by the boundary value function.

The use of the local mean predictor in (18) relies on the knowledge of vector r j which identifies
|N(j)| boundary value functions defined on |N(j)| boundaries surrounding Ω j. The r j is equivalent
to mean prediction (18) at xbj . We choose the solution of r j such that it minimizes the predictive

1705

PARK, HUANG AND DING

variance at xbj . The local predictive variance is computed by

σ̂ j(x∗;r j) = k∗∗+ktx j∗A
t
j(σ

2
jI+Kx jx j)A jkx j∗ −2ktx j∗A

t
jkx j∗

= k∗∗ −ktx j∗(σ
2
jI+Kx jx j)

−1kx j∗

+
k̄t
xbj∗

G j(T
t
jr j−Kt

x jxbj
h j)(T

t
jr j−Kt

x jxbj
h j)

tG jk̄xbj∗

htjy j
.

(19)

The second equality of (19) is obtained by plugging (17) into the first equality of (19). Since
evaluating k̄xbj∗ at each point in x

b
j and combining them in columnwise results inG

−1
j , the predictive

variances at xbj can be simplified as

σ̂ j(xbj ;r j) = diagc[(T
t
jr j−Kt

x jxbj
h j)(T

t
jr j−Kt

x jxbj
h j)

t]/(htjy j)+ constant,

where diagc[A] is a column vector of the diagonal elements of matrix A. Omitting a constant, the
summation of the predictive variances at xbj is

S j(r j) = 1
tdiagc[(T

t
jr j−Kt

x jxbj
h j)(T

t
jr j−Kt

x jxbj
h j)

t]/(htjy j)

= trace[(T t
jr j−Kt

x jxbj
h j)(T

t
jr j−Kt

x jxbj
h j)

t]/(htjy j)

= (T t
jr j−Kt

x jxbj
h j)

t(T t
jr j−Kt

x jxbj
h j)/(h

t
jy j).

We propose to minimize with respect to {r j}mj=1 the summation of predictive variances at all bound-
ary points over all subdomains, that is,

Minimize
{r j}mj=1

m

∑
j=1

S j(r j). (20)

This is the realized version of (8) in our numerical solution procedure. Because this is a quadratic
programming with respect to r j, we can easily see that the optimal boundary values r jk at xbjk are
given by (derivation in Appendix B)

r jk = (T t
jkT jk)

−1T t
jk

[
htkyk

htjy j+htkyk
Kt
x jxbjk

h j+
htjy j

htjy j+htkyk
Kt
xkxbjk

hk

]
. (21)

Apparently, the minimizer of (20) is a weighted average of the mean predictions from two standard
local GP predictors of neighboring subdomains.

In summary, we first solve the interface Equation (20) for all Γk j to obtain r j’s so that its
choice makes local predictors continuous across internal boundaries. Given r j’s, we solve each
local problem LP(j)′, whose solution is given by (16) and yields the local mean predictors in (18)
and the local predictive variance in (19). To simplify the expression of local predictive variance, we
define a u j as

u j :=G j(T
t
jr j−Kt

x jxbj
h j),

so that the predictive variance in (19) can be written as

σ̂ j(x∗;r j) = k∗∗ −ktx j∗(σ
2
jI+Kx jx j)

−1kx j∗+ k̄txbj∗
u ju

t
jk̄xbj∗/(h

t
jy j),

A summary of the algorithm (labeled as DDM), including the steps of making the mean prediction
and computing the predictive variance, is given in Algorithm 1.

1706

DOMAIN DECOMPOSITION FOR FAST GAUSSIAN PROCESS REGRESSION

Algorithm 1. Domain Decomposition Method (DDM).
1. Partition domain Ω into subdomains Ω1, . . . ,Ωm.
2. PrecomputeH j, h j,G j and c j for each subdomain Ω j using

H j ← (σ2jI+Kx jx j)
−1, h j ←H jy j, c j ← ytjh j,

andG j ← ({diag1/2[(Kt
xbjx

b
j
Kxbjx

b
j
)−1]Kxbjx

b
j
}

◦{Kt
x jxbj

Kx jxbj
diag[(Kt

x jxbj
Kx jxbj

)−1]})−1.
3. Solve the interface equation for j = 1, . . . ,m and k ∈ N(j):

r jk = (T t
jkT jk)

−1T t
jk

[
ck

c j+ck
Kt
x jxbjk

h j+
c j

c j+ck
Kt
xkxbjk

hk

]
.

4. Compute the quantities in the local predictor. For each Ω j,
i) u j ←G j(T

t
jr j−Kt

x jxbj
h j).

5. Predict at location x∗. If x∗ is in Ω j,
i) k̄xbj∗ = [(kt

xbj∗
kxbj∗)

−1/2kxbj∗]◦ [K
t
x jxbj

kx j∗(k
t
x j∗kx j∗)

−1].

ii) p̂ j(x∗;r j)← ktx j∗h j+ k̄t
xbj∗

u j.

iii) σ̂ j(x∗;r j)← k∗∗ −ktx j∗H jkx j∗+ k̄t
xbj∗

u ju
t
jk̄xbj∗/c j.

Remark 1 Analysis of computational complexity. Suppose that n j = B for j = 1, ...,m. The
computational complexity for the precomputation step in Algorithm 1 is O(mB3), or equivalently,
O(NB2). If we denote the number of sharing boundaries by w, the complexity for solving the inter-
face equation is O(wqB+ q3), where the inversion in (T t

jkT jk)
−1T t

jk is counted once because the
T jk matrix is essentially the same for all subdomains if we use the same polynomial evaluated at
the same number of equally spaced locations. Since w is no more than dm for rectangle-shaped
subdomains, the computation required to solve the interface equation is dominated by O(dmqB), or
equivalently, O(dqN). Since computing u j’s requires only O(mq2) operations, the total complexity
for performing Step 1 through 4 is O(NB2+dqN). We call this the ‘training time complexity’. For
small q and d, the complexity can be simplified to O(NB2+N), which is clearly dominated by NB2.
The existence of the dqN term also indicates that it does not help with computational saving to use
too many control points on boundaries. On the other hand, we also observe empirically that using
q greater than eight does not render significant gain in terms of reduction in boundary prediction
mismatches (see Figure 2 and related discussion). Hence, we believe that q should, and could, be
kept at a small value.

The prediction step requires O(B) computation for predictive mean and O(B2) for predictive
variance after pre-computingh j andu j. The complexities for training and prediction is summarized
in Table 1 with a comparison to several other methods including FIC, PIC, BCM, and LPR. Note
that the second row in Table 1 is the computational complexity for a fully parallelized domain
decomposition approach (denoted by P-DDM), which will be explained later in Section 6.7, and
BGP in the sixth row refers to the Bagged Gaussian Process, to be explained in Section 6.

Remark 2 One dimensional case. The derivation in this section simplifies significantly in the one
dimensional case. In fact, all results hold with the simplification p = q = 1. When d = 1, Γ jk has
only one point and there is no need to define a polynomial boundary value function. Denote by r jk

1707

PARK, HUANG AND DING

the prediction at the boundary Γ jk, the local prediction problem LP(j)′ is simply

Minimize
A∈Rn j×n j

ktx j∗A
t
j(σ

2
jI+Kx jx j)A jkx j∗ −2ktx j∗A

t
jkx j∗

s. t. Kt
x jkA

t
jy j = r jk for k ∈ N(j).

The local mean predictor is straightforwardly obtained from expression (18) by replacing T jk with
1.

5. Hyperparameter Learning

By far, our discussions were made when using fixed hyperparameters. We discuss in this section
how to estimate hyperparameters from data. Inheriting the advantage of local kriging, DDM can
choose different hyperparameters for each subdomain. We refer to such subdomain-specific hyper-
parameters as “local hyperparameters.” Since varying hyperparameters means varying covariance
functions across subdomains, nonstationary variation in the data can be captured by using local
hyperparameters. On the other hand, if one set of hyperparameters is used for the whole domain,
we refer to these hyperparameters as “global hyperparameters.” Using global hyperparameters is
desirable when the data are spatially stationary.

Maximizing a marginal likelihood is a popular approach for hyperparameter learning in like-
lihood approximation based methods (Seeger et al., 2003; Snelson and Ghahramani, 2006, 2007).
Obtaining the optimal hyperparameter values is generally difficult since the likelihood maximization
is usually a non-linear and non-convex optimization problem. The method has nonetheless success-
fully provided reasonable choices for hyperparameters. We propose to learn local hyperparameters
by maximizing the local marginal likelihood functions. Specifically, the local hyperparameters, de-
noted by θ j associated with each Ω j, are selected such that they minimize the negative log marginal
likelihood:

MLj(θ j) :=− log p(y j;θ j) =
n j
2
log(2π)+

1
2
log |σ2jI+Kx jx j |+

1
2
ytj(σ

2
jI+Kx jx j)

−1y j, (22)

whereKx jx j depends on θ j. Note that (22) is the marginal likelihood of the standard local kriging
model. One might want to replace σ2jI+K−1

x jx j in (22) by the optimalA j that solves (11). However,
doing so needs to solve for A j, r jk and θ j iteratively, which is computationally more costly. Our
simple strategy above disentangles the hyperparameter learning and the prediction problem, and
works well empirically (see Section 6).

When we want to have the global hyperparameters for the whole domain, we choose θ such that
it minimizes

ML(θ) =
m

∑
j=1

MLj(θ), (23)

where the summation of the negative log local marginal likelihoods is over all subdomains. The
above treatment assumes that the data from each subdomain are mutually independent. This is cer-
tainly an approximation to solving the otherwise computationally expensive global marginal likeli-
hood.

In the likelihood approximation based methods like FIC, the time complexity to evaluate a
marginal likelihood is the same as their training computation, that is, O(NM2). However, numeri-
cally optimizing the marginal likelihood runs such evaluation a number of iterations, usually, 50–
200 times. For this reason, the total training time (counting the hyperparameter learning as well) is

1708

DOMAIN DECOMPOSITION FOR FAST GAUSSIAN PROCESS REGRESSION

Methods
Hyperparameters

Training
Prediction

Learning Mean Variance
DDM O(LNB2) O(NB2) O(B) O(B2)
P-DDM O(LB3) O(B3) O(B) O(B2)
FIC O(LNM2) O(NM2) O(M) O(M2)
PIC O(LN(M+B)2) O(N(M+B)2) O(M+B) O((M+B)2)
BCM O(LNM2) O(NM2+N3q) O(NM) O(NM)

BGP O(LKM3) O(KM3) O(KM2) O(KM2)
LPR O(R(LM3+N)) O(KM3+KN) O(KM3+KN)

Table 1: Comparison of computational complexities: we suppose that L iterations are required for
learning hyperparameters; for DDM, the number of control points q on a boundary is kept
to be a small constant as discussed in Remark 1; for BCM, Nq is the number of testing
points; for BGP, K is the number of bootstrap samples, M is the size of each bootstrap
sample; for LPR, R is the number of the subsets of training points used for estimating
local hyperparameters and K is the number of local experts of sizeM.

much slower than expected. The computational complexity of DDM is similar to FIC, as shown in
Table 1. One way that can significantly improve the computation is through parallelization, which
is easier to conduct for DDM because the m local predictions can be performed simultaneously. If a
full parallelization can be done, the computational complexity for one iteration using DDM reduces
to O(B3), where n j = B is assumed for all j’s. For more comparison results, see Table 1.

6. Experimental Results

In this section, we present some experimental results for evaluating the performance of DDM. First,
we show how DDM works as the tuning parameters of DDM (p, q and m) change, and provide
some guidance on setting the tuning parameters when applying DDM. Then, we compare DDM
with several competing methods in terms of computation time and prediction accuracy. We also
evaluate how well DDM can solve the problem of prediction mismatch on boundaries.

The competing methods are local GP (i.e., local kriging), FIC (Snelson and Ghahramani, 2006),
PIC (Snelson and Ghahramani, 2006), BCM (Tresp, 2000), and LPR (Urtasun and Darrell, 2008).
We also include in our comparative study the Bagged Gaussian Processes (BGP, Chen and Ren,
2009) as suggested by a referee, because it is another way to provide continuous prediction sur-
faces by smoothly combining independent GPs. BGP was originally developed for improving the
robustness of GP regression, not for the purpose of faster computation. The prediction by BGP is
an average of the predictions obtained from multiple bootstrap resamples, each of which has the
same size as the training data. Hence, its computational complexity is no better than the full GP
regression. But faster computation can be achieved by reducing the bootstrap sample size to a small
numberM� N, a strategy used in our comparison.

FIC and PIC does not allow the use of local hyperparameters for reflecting local variations of
data, so we used global hyperparameters for both FIC and PIC, and for DDM as well, for the sake of

1709

PARK, HUANG AND DING

fairness. The remaining methods are designed to allow local hyperparameters, so DDM uses local
hyperparameters for comparison with those.

We did not compare DDM with the the mixture of GP experts such as MGP (Rasmussen and
Ghahramani, 2002) and TGP (Gramacy and Lee, 2008), because their computation times are far
worse than the other compared methods especially for large data sets, due to the use of computa-
tionally slow sampling methods. For example, according to our simple experiment, it took more
than two hours for TGP to train its predictor for a data set with 1,000 training points and took more
than three days (79 hours) for a larger data set with 2,000 training points, while other competing
methods took only a few seconds. We did not directly implement and test MGP, but according to
Gramacy and Lee (2008, page 1126), MGP’s computation efficiency is no better than TGP. In gen-
eral, the sampling based approaches are not competitive for handling large-scale data sets and thus
are inappropriate for comparison with DDM, even though they may be useful on small to medium-
sized data sets in high dimension.

6.1 Data Sets and Evaluation Criteria

We considered four data sets: two synthetic data sets (one in 1-d and the other in 2-d) and two
real spatial data sets both in 2-d. The synthetic data set in 1-d is packed together with the FIC
implementation by Snelson and Ghahramani (2006). It consists of 200 training points and 301 test
points. We use this synthetic data set to illustrate that PIC still encounters the prediction mismatch
problem at boundaries, while the proposed DDM does solve the problem for 1-d data. The second
synthetic data set in 2-d, synthetic-2d, was generated from a stationary GP with an isotropic
squared exponential function using the R package RandomFields, where nugget = 4, scale=4, and
variance=8 are set as parameters for the covariance function. It consists of 63,001 sample points.

The first real data set, TCO, contains data collected by NIMBUS-7/TOMS satellite to measure
the total column of ozone over the globe on Oct 1 1988. This set consists of 48,331 measurements.
The second real data set, MOD08-CL, was collected by the Moderate Resolution Imaging Spectro-
radiometer (MODIS) on NASA’s Terra satellite that measures the average of cloud fractions over
the globe from January to September in 2009. It has 64,800 measurements. Spatial non-stationarity
presents in both real data sets.

Using the second synthetic data set and the two real spatial data sets, we compare the computa-
tion time and prediction accuracy among the competing methods. We randomly split each data set
into a training set containing 90% of the total observations and a test set containing the remaining
10% of the observations. To compare the computational efficiency of methods, we measure two
computation times, the training time (including the time for hyperparameter learning) and the pre-
diction (or test) time. For comparison of accuracy, we use three measures on the set of the test data,
denoted as {(xt ,yt); t = 1, . . . ,T}, where T is the total data amount in the test set. The first measure
is the mean squared error (MSE)

MSE=
1
T

T

∑
t=1

(yt −μt)
2,

which measures the accuracy of the mean prediction μt at location xt . The second one is the negative
log predictive density (NLPD)

NLPD=
1
T

T

∑
t=1

[
(yt −μt)2

2σ2t
+
1
2
log(2πσ2t)

]
,

1710

DOMAIN DECOMPOSITION FOR FAST GAUSSIAN PROCESS REGRESSION

which considers the accuracy of the predictive variance σt as well as the mean prediction μt . These
two criteria were used broadly in the GP regression literature. The last measure, the mean squared
mismatch (MSM), measures the mismatches of mean prediction on boundaries. Given a set of test
points, {xe;e = 1, . . . ,E}, located on the boundary between subdomains Ωi and Ω j, the MSM is
defined as

MSM=
1
E

E

∑
e=1

(μ(i)e −μ(j)e)2,

where μ(i)e and μ(j)e are mean predictions from Ωi and Ω j, respectively. A smaller value of MSE,
NLPD or MSM indicates a better performance.

Our implementation of DDM was mostly done in MATLAB. When applying DDM to the 2-d
spatial data, one issue is how to partition the whole domain into subdomains, also known asmeshing
in the finite element analysis literature (Ern and Guermond, 2004). A simple idea is just to use a
uniform mesh, where each subdomain has roughly the same size. However simple, this idea works
surprisingly well in many applications, including our three data sets in 2-d. Thus, we used a uniform
mesh with each subdomain shaped rectangularly in our implementation.

For FIC, we used the MATLAB implementation by Snelson and Ghahramani (2006), while for
BCM, the implementation by Schwaighofer et al. (2003) was used. Since the implementations of
the other methods are not available, we wrote our own codes for PIC, LPR and BGP. Throughout the
numerical analysis, we used the anisotropic version of a squared exponential covariance function.
All numerical studies were performed on a computer with two 3.16 GHz quadcore CPUs.

6.2 Mismatch of Predictions on Boundaries

DDM puts continuity constraints on local GP regressors so that predictions from neighboring local
GP regressors are the same on boundaries for 1-d data and are well controlled for 2-d data. In this
section, we show empirically, by using the synthetic 1-d data set and the 2-d (real) TCO data set, the
effectiveness of having the continuity constraints.

For the synthetic data set, we split the whole domain, [−1,7], into four subdomains of equal size.
The same subdomains are used for local GP, PIC and DDM. PIC is also affected by the number and
locations of inducing inputs. To see how the mismatch of prediction is affected by the number
of inducing inputs, we considered two choices, five and ten, as the number of inducing inputs for
PIC. The locations of inducing inputs along with the hyperparameters are chosen by optimizing the
marginal likelihood. For DDM, the local hyperparameters are obtained for each subdomain using
the method described in Section 5.

Figure 1 shows for the synthetic data the predictive distributions of the full GP regression, local
GP, PIC withM= 5, PIC withM= 10, and DDM. In the figure, red lines are the predictive means of
the predictive distributions. The mean of local GP and the mean of PIC withM = 5 have substantial
discontinuities at x = 1.5 and x = 4.5, which correspond to the boundary points of subdomains.
As M increases to 10, the discontinuities decrease remarkably but are still visible. In general,
the mismatch in prediction on boundaries is partially resolved in PIC by increasing the number of
inducing inputs at the expense of longer computing time. By contrast, the mean prediction of DDM
is continuous, and close to that of the full GP regression.

Unlike in the 1-d case, DDM cannot perfectly solve the mismatch problem for 2-d data. Our
algorithm chooses to enforce continuity at a finite number of control points. A natural question is
whether continuity uniformly improves as the number of control points (q) increases. This question

1711

PARK, HUANG AND DING

0 2 4 6
−3

−2

−1

0

1

2
(a) full GPR

0 2 4 6
−3

−2

−1

0

1

2
(b) local GPR

0 2 4 6
−3

−2

−1

0

1

2
(c) PIC (M=5)

0 2 4 6
−3

−2

−1

0

1

2
(d) PIC (M=10)

0 2 4 6
−3

−2

−1

0

1

2
(e) DDM

Figure 1: Comparison of predictive distribution in the synthetic data set: circles represent training
points; the red lines are predictive means and the gray bands represent deviation from the
predictive means by ±1.5 times of predictive standard deviations; black crosses on the
bottom of plots for PIC show the locations of inducing inputs.

1712

DOMAIN DECOMPOSITION FOR FAST GAUSSIAN PROCESS REGRESSION

0 2 4 6 8 10 12
0

1

2

3

4

5
(a) MSM (p=3)

of control points (q)

0 2 4 6 8 10 12
0

1

2

3

4

5
(c) MSM (p=5)

of control points (q)

0 2 4 6 8 10 12
0

1

2

3

4

5
(e) MSM (p=8)

of control points (q)

0 2 4 6 8 10 12
10

12

14

16

18

20
(b) MSE (p=3)

of control points (q)

0 2 4 6 8 10 12
10

12

14

16

18

20
(d) MSE (p=5)

of control points (q)

0 2 4 6 8 10 12
10

12

14

16

18

20
(f) MSE (p=8)

of control points (q)

Figure 2: Left column: MSM versus the degrees of freedom p and the number of control points q;
Right column: MSE versus p and q.

is related to the stability of the algorithm. Another interesting question is whether the degrees of
freedom (p) affects the continuity or other behaviors of DDM. To answer these questions, we traced
MSE and MSM with the change of p and q for a fixed regular grid.

1713

PARK, HUANG AND DING

We observe from Figure 2 that for the TCO data set, the magnitude of prediction mismatch,
measured by MSM, decreases as we increase the number of control points. We also observe that
there is no need to use too many control points. For the 2-d data sets at hand, using more than
eight control points does not help much in decreasing the MSM further; and the MSM is close to
zero with eight (or more) control points. On the other hand, if the degrees of freedom (p) is small
but the number of control points is larger, the MSE could increase remarkably (see Figure 2-(b)).
This is not surprising, because the degrees of freedom determines the complexity of a boundary
function, and if we pursue better match with too simple boundary function, we would distort local
predictors a lot, which will in the end hurt the accuracy of the local predictors. If p is large enough
to represent the complexity of boundary functions, the MSE stays roughly constant regardless of q
(see Figure 2-(d) and 2-(f)). To save space, we do not present here the results for another real data
set, MOD08-CL, because they are consistent with those for TCO. Our general recommendation is to
use a reasonably large p and let q= p.

6.3 Choice of Mesh Size for DDM

An important tuning parameter in DDM is the mesh size. In this section, we provide a guideline for
an appropriate choice of the mesh size through some designed experiments. The mesh size is defined
by the number of training data points in a subdomain, previously denoted by B. We empirically
measure, using the synthetic-2d, TCO and MOD08-CL data sets, how MSE and training/testing times
change for different B’s. In order to characterize the goodness of B, we introduce in the following
a “marginal MSE loss” with respect to the total computation time Time, that is, training time + test
time, measured in seconds. Given a set of mesh sizes B = {B1,B2,,Br},

marginal(B;B∗) :=max

{
0,

MSE(B)−MSE(B∗)
1+Time(B∗)−Time(B)

}
for B ∈ B,

where B∗ =max{B∈B}. The denominator implies how much time saving is obtained for a reduced
B, while the numerator implies how much MSE we lost with the time saving. But marginal(B;B∗)
alone is not a good enough measure because marginal(B;B∗) is always zero at B = B∗. So, we
balanced the loss by adding the change in MSE and computation relative to the smallest mesh size
in B , namely

marginal MSE loss :=marginal(B;B∗)+marginal(B;B◦),

where B◦ =min{B ∈ B}. We can interpret the marginal MSE loss as how much MSE is sacrificed
for a unit time saving, so smaller values are better.

Figure 3 shows the marginal MSE loss for the three data sets. For all data sets, a B between
200 and 600 gives smaller marginal MSE loss. Based on this empirical evidence, we recommend
to choose the mesh size so that the number of training data points in a subdomain ranges from 200
to 600. If the number is too large, DDM will spend too much time for small reduction of MSE.
Conversely, if the number is too small, MSE will deteriorate significantly. The latter might be
because DDM has too fewer training data points to learn local hyperparameters.

6.4 DDM Versus Local GP

We compared DDM with local GP for different mesh sizes and in terms of overall prediction accu-
racy and mismatch on boundaries. We considered two versions of DDM, one using global hyperpa-

1714

DOMAIN DECOMPOSITION FOR FAST GAUSSIAN PROCESS REGRESSION

0 200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

mesh size(B)

(a) TCO. marginal MSE loss.

0 500 1000 1500
−1

0

1

2

3

4

5
x 10

−6

mesh size(B)

(b) MOD08−CL. marginal MSE loss.

0 200 400 600 800 1000
−1

0

1

2

3

4

5

6
x 10

−3

mesh size(B)

(c) synthetic−2d. marginal MSE loss.

Figure 3: Marginal MSE loss versus mesh size(B). For the three data sets, the marginal loss is small
when B is in between 200 and 600.

rameters (G-DDM) and the other using local hyperparameters (L-DDM). For local GP, we always
used local hyperparameters.

Figure 4 shows the three performance measures as a function of the number of subdomains for
G-DDM, L-DDM and local GP, using the TCO data and the synthetic-2d data, respectively. DDM
adds more computation to local GP for imposing the continuity on boundaries, but the increased
computation is very small relative to the original computation of local GP. Hence, the comparison
of DDM with local GP as a function of the number of subdomains is almost equivalent to the
comparison in terms of the total time (i.e., training plus test time).

In Figure 4, local GP has bigger MSE and NLPD than the two versions of DDM for both data
sets. The better performance of DDM can be contributed to the better prediction accuracy around
boundaries of subdomains. The comparison results for two versions of DDM are as expected:
In terms of MSE and NLPD, L-DDM is better than G-DDM for the TCO data set, which can be
explained by nonstationarity of the data. On the other hand, for the synthetic-2d data set, G-DDM
is better, which is not surprising since the synthetic-2d data set is generated from a stationary GP so
one would expect that global hyperparameters work well.

The left panels of Figure 5 show the comparison results for the actual MOD08-CL data set. In
terms of MSE and NLPD, L-DDM is appreciably better than local GP when the number of subdo-
mains is small, but the two methods perform comparably when the number of subdomains is large.
This message is somewhat different from what we observed for TCO data set. One explanation is that
TCO data set has several big empty spots with no observation over the subregion, but MOD08-CL data
set does not have such “holes”. Because of the continuity constrains, we believe DDM is able to
borrow information from neighboring subdomains, and consequently, to provide better spatial pre-
dictions. To verify this, we randomly chose twenty locations within the spatial domain of MOD08-CL
data set and artificially removed small neighborhoods of each randomly chosen location from the
MOD08-CL data set; doing so resulted in a new data set called “MOD08-CL with holes”. The results
of applying three methods on this new data set are shown on the right panels of Figure 5. L-DDM
is clearly superior over local GP across different choices of the number of subdomains.

This comparison reveals that when there is nonstationary in data, using local parameters (local
GP and L-DDM versus G-DDM) will help adapt to the non-stationary features, and thus, improve

1715

PARK, HUANG AND DING

the prediction accuracy. More importantly, the improvement in prediction can be further enhanced
by a proper effort to smooth out the boundary mismatches in localized methods (L-DDM versus
local GP). In all cases, the MSM associated with DDM method is very small.

6.5 G-DDM Versus FIC and PIC

We compared prediction accuracy of G-DDM with FIC and PIC. We only considered global hyper-
parameters for DDM because FIC and PIC cannot incorporate local hyperparameters. Since each of
the compared methods has different tuning parameters, it is hard to compare these methods using
prediction accuracy measures (MSE and NLPD) for a fixed set of tunning parameters. Instead, we
considered MSE and NLPD as a function of the total computation time required. To obtain the
prediction accuracy measures for different computation times, we tried several different settings of
experiments and presented the best accuracies of each method for given computation times: for
DDM, we varied the number of equally sized subdomains (m) and the number of control points
q while keeping the degrees of freedom p the same as q; we tested two versions of PIC having
different domain decomposition schemes: k-means clustering (denoted by kPIC) and regular grids
meshing (denoted by rPIC), and for each version, we varied the total number of subdomains (m) and
the number of inducing inputs (M); for FIC, we varied the number of inducing inputs (M). We see
that each of the compared methods has one major tuning parameter mainly affecting their training
and test times; it is m for DDM, or M for FIC and PIC. In order to obtain one point in Figure 6, we
first fixed the major tuning parameter for each method, and then changed the remaining parameters
to get the best accuracy for a given computation time.

In this empirical study, for G-DDM, a set of the global hyperparameters was learned by min-
imizing (23). In FIC, the global hyperparameters, together with the locations of the inducing in-
puts, were determined by maximizing its marginal likelihood function. For PIC, we tested several
options: learning the hyperparameters and inducing inputs by maximizing the PIC approximated
marginal likelihood; learning the hyperparameters by maximizing the PIC approximated marginal
likelihood, whereas learning the inducing inputs by the FIC approximated likelihood; or learning
the hyperparameters by the FIC approximated marginal likelihood, whereas learning the inducing
inputs by the PIC approximated marginal likelihood. Theoretically, the first option should be the
best choice. However, as discussed in Section 5, due to the non-linear and non-convex nature of the
likelihood function, an optimization algorithm may converge to a local optimum and thus yields a
suboptimal solution. Consequently, it is not clear which option’s local optimum produces the best
performance. According to our empirical studies, for the TCO data set, the first option gave the best
result, while for the MOD08-CL data set, the third option was the best. We present the results based
on the empirically best result.

Figure 6 shows MSE and NLPD versus the total computation time. G-DDM exhibits superior
performance for the two real data sets. We observe that FIC and PIC need a large number of inducing
inputs, at the cost of much longer computation time, in order to lower its MSE or NLPD to a level
comparable to G-DDM. Depending on specific context, the difference in computation time could
be substantial. For the instance of TCO data set, G-DDM using 156 subdomains produced MSE =
17.7 and NLPD = 2.94 with training time = 47 seconds. FIC could not obtain a similar result even
with M = 500 and computation time = 484 seconds, and rPIC could obtain MSE = 25.8 and NLPD
= 3.06 after spending 444 seconds and using 483 subdomains and M = 500. For the synthetic-2d

1716

DOMAIN DECOMPOSITION FOR FAST GAUSSIAN PROCESS REGRESSION

0100200300400500

12

14

16

18

20

22

24

of subdomains

(a) TCO. MSE.

0100200300400500600
4

4.05

4.1

4.15

4.2

4.25

of subdomains

(b) synthetic−2d. MSE.

0100200300400500
2.7

2.75

2.8

2.85

2.9

2.95

3

of subdomains

(c) TCO. NLPD.

0100200300400500600
2.21

2.215

2.22

2.225

of subdomains

(d) synthetic−2d. NLPD.

0100200300400500

0

5

10

15

20

of subdomains

(e) TCO. MSM.

0100200300400500600
−0.1

0

0.1

0.2

0.3

0.4

0.5

of subdomains

(f) synthetic−2d. MSM.

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

Figure 4: Prediction accuracy of DDM and local GP for different mesh sizes. For TCO, p ranged
from five to eight for G-DDM and L-DDM. For synthetic-2d data set, p ranged from four
to eight.

1717

PARK, HUANG AND DING

0100200300400500600

6

8

10

12

x 10
−4

of subdomains

(a) MOD08−CL. MSE.

0100200300400500600

6

8

10

12

x 10
−4

of subdomains

(b) MOD08−CL with holes. MSE.

0100200300400500600
−2.5

−2.4

−2.3

−2.2

−2.1

−2

−1.9

−1.8

−1.7

of subdomains

(c) MOD08−CL. NLPD.

0100200300400500600
−2.5

−2.4

−2.3

−2.2

−2.1

−2

−1.9

−1.8

−1.7

of subdomains

(d) MOD08−CL with holes. NLPD.

0100200300400500600
0

0.5

1

1.5

2

2.5

x 10
−3

of subdomains

(e) MOD08−CL. MSM.

0100200300400500600
0

0.5

1

1.5

2

2.5

x 10
−3

of subdomains

(f) MOD08−CL with holes. MSM.

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

Figure 5: Prediction accuracy of DDM and local GP for the MOD08-CL data set. The left panel uses
the original MOD08-CL data, while the right panel uses the MOD08-CL data with observa-
tions removed at a number of locations. For the two data sets, p and q ranged from four
to eight for G-DDM and L-DDM.

1718

DOMAIN DECOMPOSITION FOR FAST GAUSSIAN PROCESS REGRESSION

data set from a stationary GP, G-DDM does not have advantage over FIC and PIC but still performs
reasonably well.

We here used two versions of PIC: kPIC and rPIC, and the difference between them is how
the subdomains are created. Since rPIC uses a regular grid meshing to decompose the domain, the
general perception is that rPIC might not perform as well as kPIC, due to this domain-decomposition
rigidity. It is interesting, however, to see that this perception is not supported by our empirical
studies of using large-size spatial data sets. In Figure 6, kPIC exhibits no appreciable difference with
rPIC in terms of MSE and NLPD. Please note that we actually did not count the time for conducting
the domain decomposition when we recorded the training time. If we consider the computation
complexities of the k-means clustering versus the regular grid meshing, then kPIC would be less
attractive. This is because the time complexity for performing the k-means clustering is O(IkdN),
much more expensive than that for regular grid meshing, which only requires O(dN) computation,
where I is the number of iterations required for the convergence of the clustering algorithm, k is the
size of neighborhoods, d is the dimension of data, and N is the number of data points.

Regarding the mismatch of prediction on boundaries as measured byMSM, G-DDM is multifold
better than that of rPIC; see Figure 7. This is not surprising, since DDM explicitly controls the
mismatch of prediction on boundaries. For kPIC, we could not measure MSM because it is difficult
to define boundaries when we use the k-means clustering for the purpose of domain decomposition.
FIC does not have the mismatch problem since it does not use subdomains for prediction.

6.6 L-DDM Versus Local Methods

We compared prediction accuracy of L-DDM with three localized regression methods, BCM, BGP,
and LPR, all of which partition the original data space for fast computation. BGP uses different
hyperparameters for each bootstrap sample, but strictly speaking, these hyperparameters cannot
be called “local hyperparameters” since each bootstrap sample is from the whole domain, not a
local region. However, BGP can be converted to have local hyperparameters by making bootstrap
samples to come from local regions in the same way as BCM, that is, via k-means clustering. We
call the “local version” of BGP as L-BGP, and we present the experimental results of both BGP and
L-BGP (this L-BGP is in fact suggested by one referee). We present the results in the same way as
in the previous section by plotting computation times versus prediction accuracy measures. Since
the computational complexity comparison here is significantly different for training and testing (or
prediction), the results for training time and test time are presented separately.

To obtain the prediction accuracy measures for different computation times, we tried several
different settings of experiments and presented the best accuracies of each method for given com-
putation times: for DDM, we varied the number of equally sized subdomains and the number of
control points q while keeping the degrees of freedom p the same as q; for BGP, the number of
bootstrap samples (K) ranged from 5 to 30 and the number of data points in each model (M) ranged
from 300 to 900; for L-BGP, the number of local regions (K) ranged from for 9 to 64 and the number
of data points in each model (M) ranged from 150 to 1500; for LPR, the number of local experts
(K) ranged from 5 to 20 and the number of data points used for each expert (M) ranged from 50 to
200 while the number of locations chosen for local hyperparameter learning (R) ranged from 500
to 1500; for BCM, the number of local estimators (M) was varied from 100 to 600. Similar to what
we did in Section 6.5, we still use one or two major parameters to determine the computation time
first, and then use the remaining parameters to get the best accuracy for each method. The major

1719

PARK, HUANG AND DING

100 200 300 400

50

100

150

200

250

300

train + test time (sec)

(a) TCO. MSE.

100 200 300 400

3

3.5

4

4.5

5

train + test time (sec)

(b) TCO. NLPD.

100 200 300 400 500
0

0.002

0.004

0.006

0.008

0.01

train + test time (sec)

(c) MOD08−CL. MSE.

100 200 300 400 500

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

train + test time (sec)

(d) MOD08−CL. NLPD.

50 100 150 200 250 300 350
4.02

4.03

4.04

4.05

4.06

4.07

4.08

4.09

train + test time (sec)

(e) synthetic−2d. MSE.

50 100 150 200 250 300 350
2.1

2.15

2.2

2.25

train + test time (sec)

(f) synthetic−2d. NLPD.

G−DDM
kPIC
rPIC
FIC

G−DDM
kPIC
rPIC
FIC

G−DDM
kPIC
rPIC
FIC

G−DDM
kPIC
rPIC
FIC

G−DDM
kPIC
rPIC
FIC

G−DDM
kPIC
rPIC
FIC

Figure 6: Prediction accuracy versus total computation time. For all three data sets, G-DDM uses
m ∈ {36,56,110,156,266,638}; FIC uses M ∈ {50,100,150,200,300,400}; kPIC and
rPIC useM ∈ {50,100,150,200,300,400}.

1720

DOMAIN DECOMPOSITION FOR FAST GAUSSIAN PROCESS REGRESSION

100 200 300 400
0

10

20

30

40

50

60

train + test time (sec)

(a) TCO. MSM.

100 200 300 400 500
0

1

2

3

4

5

6
x 10

−3

train + test time (sec)

(b) MOD08−CL. MSM.

50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

train + test time (sec)

(c) synthetic−2d. MSM.

G−DDM
rPIC

G−DDM
rPIC

G−DDM
rPIC

Figure 7: MSM versus total computation time. For three data sets, G-DDM uses m ∈
{36,56,110,156,266,638}; rPIC usesM ∈ {50,100,150,200,300,400}.

time-determining parameters are: m for DDM; K and M for BGP; K for L-BGP; T and R for LPR;
M for BCM.

The local hyperparameters for the methods in comparison are all learned by minimizing (22).
However, for BCM, when we tried to use local hyperparameters for the TCO data set, the implemen-
tation by Schwaighofer et al. (2003) always returned “NA” (not available) so we could not obtain
valid results with local hyperparameters. Therefore, we applied global hyperparameters to BCM
only for the TCO data set. The global hyperparameters were learned by minimizing (23), which is
equivalent to the implementation of BCM by Schwaighofer et al. (2003). When we ran our imple-
mentation of LPR, we found that the results are sensitive to the setting of its tuning parameters. The
reported results for LPR are based on the set of tuning parameters that gives the best MSE, chosen
from more than thirty different settings.

Figure 8 traces MSEs and NLPDs as a function of training time for the three data sets. For TCO,
BCM and L-DDM have comparably good accuracy (measured using MSE) with similar training
costs, but the NLPD of L-DDM is much smaller than that of BCM, implying that the goodness
of fit of L-DDM is better. The other methods do not perform as accurately as L-DDM with even
much greater training cost. For all of the three data sets, BCM, BGP, L-BGP and LPR have higher,
and sometimes much higher, NLPD than L-DDM. By the definition of NLPD, both a big MSE and
a small predictive variance will lead to a high NLPD. Thus, we can infer that, for the TCO data
set, the differences of NLPD between L-DDM and BCM are mainly caused by too small predictive
variances of BCM (i.e., BCM underestimates the predictive variances considerably), since the MSEs
produced by the two methods are very close. For other data sets, the differences in NLPD come from
both the differences in MSE and differences in predictive variance. For the stationary synthetic
data set, BCM has high MSE and NLPD, suggesting that BCM might not be very competitive for
stationary data sets. Overall, L-DDM outperforms all other methods for both non-stationary and
stationary data sets.

Figure 9 shows MSEs and NLPDs as testing times change. One observes that the testing times
are significantly different across methods. In particular, the computation time needed to predict at a
new location for BCM and LPR is far longer than that for L-DDM or BGP. This is also supported
by the computational complexity analysis presented in Table 1. One also observes that the curves of

1721

PARK, HUANG AND DING

L-DDM always locate at the lower-left parts of the plots, implying that L-DDM spent much shorter
prediction time but obtained much better prediction accuracy. Note that the x-axis and y-axis of the
plots are log-scaled so the difference in computation times is much bigger than what it looks like
in the plots. For examples, L-DDM spent less than three seconds for all the data sets for making a
prediction, while BCM’s prediction time ranged from 100 to 1,000 seconds, and LPR spent from
189 to 650 seconds. BCM and LPR do not look competitive when the number of locations to predict
is large, a situation frequently encountered in real spatial prediction problems.

6.7 Benefit of Parallel Processing

As mentioned earlier, one advantage of DDM is that its computation can be parallelized easily.
This advantage comes from its domain decomposition formulation. As soon as a solution of inter-
face Equation (8) is available, (11) can be solved simultaneously for individual subdomains. Once
fully parallelized, the computational complexity of DDM reduces to O(B3) for training, and that for
hyperparameter learning is reduced to O(LB3). Since the computation of hyperparameter learning
usually accounts for the biggest portion of the entire training time, parallelization could provide a re-
markable computational saving. See the second row of Table 1 for a summary of the computational
complexity for the parallel version of DDM (P-DDM).

While a full parallelization of DDM needs the support from sophisticated software and hard-
ware and is thus not yet available, we implemented a rudimentary version of P-DDM by using the
MATLAB Parallel Processing Toolbox on a computer with two quadcore CPUs. In doing so, we
replaced the regular for-loop with its parallel version parfor-loop and examined how much the
training time can be reduced by this simple action.

Denote the training time from the sequential DDM as ST , the training time from P-DDM as PT ,
and define the “speed-up ratio” as ST/PT . We use the speed-up ratio to summarize the increase of
computing power by parallel processing. We varied the mesh size and the number of control points
on the boundaries to examine the effect of parallel computing under different settings.

Speed-up ratios for different setups of mesh size are presented in Figure 10. The speed-up ratio
is roughly proportional to the number of concurrent processes. With a maximum of eight concurrent
processes allowed by the computer, we are able to accelerate training process by a factor of at least
three and half. This result does not appear to depend much on data sets, but it depends on mesh
sizes. Since a smaller mesh size implies that each subdomain (or computing unit) consumes less
time, parallelization works more effectively and the speed-up ratio curve bends less downward as
the number of processes increases.

7. Concluding Remarks and Discussions

We develop a fast computation method for GP regression, which revises the local kriging predictor
to provide consistent predictions on the boundaries of subdomains. Our DDM method inherits
many advantages of the local kriging: fast computation, the use of local hyperparameters to fit
spatially nonstationary data sets, and the easiness of parallel computation. Such advantages of the
proposed method over other competing methods are supported by our empirical studies. Mismatch
of predictions on subdomain boundaries is entirely eliminated in the 1-d case and is significantly
controlled in the 2-d cases. Most importantly, DDM shows more accurate prediction using less
training and testing time than other methods. Parallelization of computation for DDM also reveals

1722

DOMAIN DECOMPOSITION FOR FAST GAUSSIAN PROCESS REGRESSION

10
1

10
2

10
3

10
4

10
1

10
2

10
3

train time (sec)

(a) TCO. MSE.

L−DDM
BGP
L−BGP
LPR
BCM

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

train time (sec)

(b) TCO. NLPD.

L−DDM
BGP
L−BGP
LPR
BCM

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

train time (sec)

(c) MOD08−CL. MSE.

L−DDM
BGP
L−BGP
LPR
BCM

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

train time (sec)

(d) MOD08−CL. NLPD.

L−DDM
BGP
L−BGP
LPR
BCM

10
1

10
2

10
3

10
0.61

10
0.62

10
0.63

train time (sec)

(e) synthetic−2d. MSE.

L−DDM
BGP
L−BGP
LPR
BCM

10
1

10
2

10
3

10
0

10
1

10
2

10
3

train time (sec)

(f) synthetic−2d. NLPD.

L−DDM
BGP
L−BGP
LPR
BCM

Figure 8: Prediction accuracy versus training time. Both of x-axis and y-axis are log-
scaled due to big variations on values from the compared methods. For
the three data sets, m ∈ {36,56,110,156,266,638} in L-DDM; (K,M) ∈
{(5,700),(10,700),(10,900),(20,900),(30,900)} in BGP; K ∈ {9,16,25,36,49,64} in
L-BGP; (K,R) ∈ {5,10,20}⊗ {500,1500} in LPR; M ∈ {100,150,200,250,300,600}
in BCM.

1723

PARK, HUANG AND DING

10
−1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

test time (sec)

(a) TCO. MSE.

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

test time (sec)

(b) TCO. NLPD.

10
−1

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

test time (sec)

(c) MOD08−CL. MSE.

10
−1

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

test time (sec)

(d) MOD08−CL. NLPD.

10
−2

10
0

10
2

10
4

10
0.61

10
0.62

10
0.63

10
0.64

10
0.65

test time (sec)

(e) synthetic−2d. MSE.

10
−2

10
0

10
2

10
4

10
0

10
1

10
2

10
3

test time (sec)

(f) synthetic−2d. NLPD.

L−DDM
BGP
L−BGP
LPR
BCM

L−DDM
BGP
L−BGP
LPR
BCM

L−DDM
BGP
L−BGP
LPR
BCM

L−DDM
BGP
L−BGP
LPR
BCM

L−DDM
BGP
L−BGP
LPR
BCM

L−DDM
BGP
L−BGP
LPR
BCM

Figure 9: Prediction accuracy versus test time. Both of x-axis and y-axis are log-
scaled due to big variations on values from the compared methods. For
the three data sets, m ∈ {36,56,110,156,266,638} in L-DDM; (K,M) ∈
{(5,700),(10,700),(10,900),(20,900),(30,900)} in BGP; K ∈ {9,16,25,36,49,64} in
L-BGP; (K,R) ∈ {5,10,20}⊗ {500,1500} in LPR; M ∈ {100,150,200,250,300,600}
in BCM.

1724

DOMAIN DECOMPOSITION FOR FAST GAUSSIAN PROCESS REGRESSION

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

number of processes

sp
ee

d−
up

 r
at

io

TCO. small mesh
TCO. medium mesh
MOD08−CL. small mesh
MOD08−CL. medium mesh

Figure 10: Speed-up ratios for different settings of parallel processing. Each line traces the training
time of P-DDM when applied to a data set with a given size of meshes and number of
control points.

clear benefit in time efficiency. The proposed method is specially designed to handle spatial data
sets. Given the ubiquitous of large spatial data sets, our method should have wide applications.

In the meanwhile, we also acknowledge that more work is needed to fine tune the performance
of the new method, including addressing the issues on meshing, hyperparameter learning, and par-
allelization. While extending the new method by addressing these issues is left for future research,
we do want to present our thoughts regarding a possible improvement on mesh generation, for the
purpose of facilitating further discussions and development.

7.1 Mesh Generation

Since meshing is a classical problem in the finite element analysis, methods in the finite element
analysis literature could be helpful, or even readily applicable. A uniform mesh, as we used in this
paper, works surprisingly well in many applications. However, the uniform mesh applies the equal-
sized subdomains to both the slowly changing regions and the fast changing regions. Doing so may
not be able to effectively adapt to local abrupt changes in the data and may lead to a large prediction
error in fast changing regions. As a remedy, one can consider using the adaptive mesh generation
(Becker and Rannacher, 2001) which adjusts the size of subdomains so that they are adaptive to
local changes.

The basic idea is to start with a relatively coarse uniform mesh and to split subdomains until
the approximation error is smaller than a prescribed tolerance. In each iteration followed, a certain
percentage of the subdomains having higher local error estimates, for example, the top 20% of

1725

PARK, HUANG AND DING

those, are split. After several iterations, local error estimates will become balanced over all the
subdomains. This strategy of splitting a subdomain is called error-balancing strategy.

In DDM, we have a natural choice for local error estimator, which is the predictive error variance
given in (19). Thus, it is possible to apply the error-balancing strategy. We can define our local error
estimate using the integrated error variance as follows: for Ω j,

ηΩ j =
∫
Ω j

σ̂ j(x∗;r j)dx∗.

Since the integral is intractable, we may use the Nyström method to approximate the integral. If S j
is a set of points uniformly distributed over Ω j, the error estimate is

η̂Ω j = ∑
x∗∈S j

σ̂ j(x∗;r j).

Given the local error estimate for each subdomain, we define the overall error estimate as the sum-
mation of the local error estimates over all the subdomains, namely that η̂ = ∑Ω j

η̂Ω j , where η̂
denotes the overall estimate. Thus the adaptive mesh generation in DDM could be performed as
follows: Start with a coarse mesh and continue splitting the subdomains corresponding to the top
100 ·α% of the η̂Ω j ’s until η̂ is less than a pre-specified tolerance.

Acknowledgments

Yu Ding and Chiwoo Park were supported by the grants from NSF (CMMI-0348150, CMMI-
0926803, CMMI-1000088), Texas Norman Hackerman Advanced Research Program (010366-0024-
2007), and an IAMCS Innovation Award at Texas A&M University; Jianhua Z. Huang was sup-
ported by NCI (CA57030), NSF (DMS-0606580, DMS-0907170, DMS-1007618), and King Ab-
dullah University of Science and Technology (KUS-CI-016-04).

Appendix A. Derivation of (16) for Local Predictor

With λ j(x∗) =Λ j(k
t
xbj∗

kxbj∗)
−1/2kxbj∗, (15) and (14) can be written as

A jkx j∗ = (σ2jI+Kx jx j)
−1
(
kx j∗+

1
2
y j(k

t
xbj∗

kxbj∗)
−1/2ktxbj∗

Λ jK
t
x jxbj

(ktx j∗kx j∗)
−1kx j∗

)
, (24)

Kt
x jxbj

At
jy j−T t

jr j = 0, (25)

where Λ j is a q j × q j diagonal matrix and λ j is a column vector of its diagonal elements. The
expression (24) can be rewritten as

A jkx j∗ = (σ2jI+Kx jx j)
−1
(
kx j∗+

1
2
y jλ

t
j[(k

t
xbj∗

kxbj∗)
−1/2kxbj∗]◦ [K

t
x jxbj

kx j∗(k
t
x j∗kx j∗)

−1]

)
. (26)

Evaluating (26) at q points uniformly distributed on Γ jk for k ∈ N(j) and binding the evaluated
values columnwise, we have

A jKx jxbj
= (σ2jI+Kx jx j)

−1
(
Kx jxbj

+
1
2
y jλ

t
jG

−1
j

)
, (27)

1726

DOMAIN DECOMPOSITION FOR FAST GAUSSIAN PROCESS REGRESSION

whereG−1
j is symmetric and given by

G−1
j = {diag1/2[(Kt

xbjx
b
j
Kxbjx

b
j
)−1]Kxbjx

b
j
}◦{Kt

x jxbj
Kx jxbj

diag[(Kt
x jxbj

Kx jxbj
)−1]}.

Substitute the transpose of (27) into (25) to get(
Kt
x jxbj

+
1
2
G−1

j λ jy
t
j

)
(σ2jI+Kx jx j)

−1y j = T t
jr j.

After some simple algebra, we obtain the optimal λ j value

λ j = 2G j

T t
jr j−Kt

x jxbj
(σ2jI+Kx jx j)

−1y j

ytj(σ
2
jI+Kx jx j)

−1y j
.

Appendix B. Derivation of (21) for Interface Equation

Note that T t
jr j is a rowwise binding of T

t
jkr jk. Ignoring a constant, the objective function to be

minimized can be written as

m

∑
j=1

1
htjy j

∑
k∈N(j)

(T t
jkr jk−Kt

x jxbjk
h j)

t(T t
jkr jk−Kt

x jxbjk
h j). (28)

To find the optimal r jk, we only need pay attention to the relevant terms in (28). Since r jk = rk j
and T jk = Tk j, the objective function for finding optimal r jk reduces to

1
htjy j

(T t
jkr jk−Kt

x jxbjk
h j)

t(T t
jkr jk−Kt

x jxbjk
h j)

+
1

htkyk
(T t

k jrk j−Kt
xkxbk j

hk)
t(T t

k jrk j−Kt
xkxbk j

hk),

the minimization of which gives (21).

References

Roland Becker and Rolf Rannacher. An optimal control approach to a posteriori error estimation in
finite element methods. Acta Numerica, 10:1–102, 2001.

Tao Chen and Jianghong Ren. Bagging for Gaussian process regression. Neurocomputing, 72(7-9):
1605–1610, 2009.

Alexandre Ern and Jean-Luc Guermond. Theory and Practice of Finite Elements. Springer, 2004.

Reinhard Furrer, Marc G. Genton, and Douglas Nychka. Covariance tapering for interpolation of
large spatial datasets. Journal of Computational and Graphical Statistics, 15(3):502–523, 2006.

Tilmann Gneiting. Compactly supported correlation functions. Journal of Multivariate Analysis,
83(2):493–508, 2002.

1727

PARK, HUANG AND DING

Robert B. Gramacy and Herbert K. H. Lee. Bayesian treed Gaussian process models with an appli-
cation to computer modeling. Journal of the American Statistical Association, 103(483):1119–
1130, 2008.

Alfio Quarteroni and Alberto Valli. Domain Decomposition Methods for Partial Differential Equa-
tions. Oxford University Press, 1999.

Joaquin Quiñonero-Candela and Carl E. Rasmussen. A unifying view of sparse approximate
Gaussian process regression. Journal of Machine Learning Research, 6:1939–1959, 2005.

Carl E. Rasmussen and Zoubin Ghahramani. Infinite mixtures of Gaussian process experts. In
Advances in Neural Information Processing Systems 14, pages 881–888. MIT Press, 2002.

Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

Anton Schwaighofer, Marian Grigoras, Volker Tresp, and Clemens Hoffmann. Transductive and
inductive methods for approximate Gaussian process regression. In Advances in Neural Informa-
tion Processing Systems 16, pages 977–984. MIT Press, 2003.

Matthias Seeger, Christopher K. I. Williams, and Neil D. Lawrence. Fast forward selection to speed
up sparse Gaussian process regression. In International Workshop on Artificial Intelligence and
Statistics 9. Society for Artificial Intelligence and Statistics, 2003.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. In
Advances in Neural Information Processing Systems 18, pages 1257–1264. MIT Press, 2006.

Edward Snelson and Zoubin Ghahramani. Local and global sparse Gaussian process approxima-
tions. In International Conference on Artifical Intelligence and Statistics 11, pages 524–531.
Society for Artificial Intelligence and Statistics, 2007.

Volker Tresp. A Bayesian committee machine. Neural Computation, 12(11):2719–2741, 2000.

Raquel Urtasun and Trevor Darrell. Sparse probabilistic regression for activity-independent human
pose inference. In IEEE Conference on Computer Vision and Pattern Recognition 2008, pages
1–8. IEEE, 2008.

Christopher K. I. Williams and Matthias Seeger. Using the Nyström method to speed up kernel
machines. In Advances in Neural Information Processing Systems 12, pages 682–688. MIT Press,
2000.

1728

Journal of Machine Learning Research 12 (2011) 1729-1770 Submitted 10/08; Revised 11/10; Published 5/11

A Bayesian Approach for Learning and Planning in Partially
Observable Markov Decision Processes

Stéphane Ross STEPHANEROSS@CMU.EDU
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA, USA 15213

Joelle Pineau JPINEAU@CS.MCGILL.CA
School of Computer Science
McGill University
Montréal, PQ, Canada H3A 2A7

Brahim Chaib-draa CHAIB@IFT.ULAVAL.CA
Computer Science & Software Engineering Dept
Laval University
Québec, PQ, Canada G1K 7P4

Pierre Kreitmann PIERRE.KREITMANN@GMAIL.COM
Department of Computer Science
Stanford University
Stanford, CA, USA 94305

Editor: Satinder Baveja

Abstract

Bayesian learning methods have recently been shown to provide an elegant solution to the exploration-
exploitation trade-off in reinforcement learning. However most investigations of Bayesian rein-
forcement learning to date focus on the standard Markov Decision Processes (MDPs). The primary
focus of this paper is to extend these ideas to the case of partially observable domains, by introduc-
ing the Bayes-Adaptive Partially Observable Markov Decision Processes. This new framework can
be used to simultaneously (1) learn a model of the POMDP domain through interaction with the en-
vironment, (2) track the state of the system under partial observability, and (3) plan (near-)optimal
sequences of actions. An important contribution of this paper is to provide theoretical results show-
ing how the model can be finitely approximated while preserving good learning performance. We
present approximate algorithms for belief tracking and planning in this model, as well as empirical
results that illustrate how the model estimate and agent’s return improve as a function of experience.

Keywords: reinforcement learning, Bayesian inference, partially observable Markov decision
processes

1. Introduction

Robust decision-making is a core component of many autonomous agents. This generally requires
that an agent evaluate a set of possible actions, and choose the best one for its current situation. In
many problems, actions have long-term consequences that must be considered by the agent; it is not
useful to simply choose the action that looks the best in the immediate situation. Instead, the agent

c©2011 Stéphane Ross, Joelle Pineau, Brahim Chaib-draa and Pierre Kreitmann.

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

must choose its actions by carefully trading off their short-term and long-term costs and benefits.
To do so, the agent must be able to predict the consequences of its actions, in so far as it is useful to
determine future actions. In applications where it is not possible to predict exactly the outcomes of
an action, the agent must also consider the uncertainty over possible future events.

Probabilistic models of sequential decision-making take into account such uncertainty by spec-
ifying the chance (probability) that any future outcome will occur, given any current configuration
(state) of the system, and action taken by the agent. However, if the model used does not perfectly
fit the real problem, the agent risks making poor decisions. This is currently an important limitation
in practical deployment of autonomous decision-making agents, since available models are often
crude and incomplete approximations of reality. Clearly, learning methods can play an important
role in improving the model as experience is acquired, such that the agent’s future decisions are also
improved.

In the past few decades, Reinforcement Learning (RL) has emerged as an elegant and popular
technique to handle sequential decision problems when the model is unknown (Sutton and Barto,
1998). Reinforcement learning is a general technique that allows an agent to learn the best way to
behave, that is, such as to maximize expected return, from repeated interactions in the environment.
A fundamental problem in RL is that of exploration-exploitation: namely, how should the agent
chooses actions during the learning phase, in order to both maximize its knowledge of the model as
needed to better achieve the objective later (i.e., explore), and maximize current achievement of the
objective based on what is already known about the domain (i.e., exploit). Under some (reasonably
general) conditions on the exploratory behavior, it has been shown that RL eventually learns the
optimal action-select behavior. However, these conditions do not specify how to choose actions
such as to maximize utilities throughout the life of the agent, including during the learning phase,
as well as beyond.

Model-based Bayesian RL is an extension of RL that has gained significant interest from the
AI community recently as it provides a principled approach to tackle the problem of exploration-
exploitation during learning and beyond, within the standard Bayesian inference paradigm. In this
framework, prior information about the problem (including uncertainty) is represented in parametric
form, and Bayesian inference is used to incorporate any new information about the model. Thus
the exploration-exploitation problem can be handled as an explicit sequential decision problem,
where the agent seeks to maximize future expected return with respect to its current uncertainty
on the model. An important limitation of this approach is that the decision-making process is
significantly more complex since it involves reasoning about all possible models and courses of
action. In addition, most work to date on this framework has been limited to cases where full
knowledge of the agent’s state is available at every time step (Dearden et al., 1999; Strens, 2000;
Duff, 2002; Wang et al., 2005; Poupart et al., 2006; Castro and Precup, 2007; Delage and Mannor,
2007).

The primary contribution of this paper is an extension of the model-based Bayesian reinforce-
ment learning to partially observable domains with discrete representations.1 In support of this, we
introduce a new mathematical model, called the Bayes-Adaptive POMDP (BAPOMDP). This is a
model-based Bayesian RL approach, meaning that the framework maintains a posterior over the pa-

1. A preliminary version of this model was described by Ross et al. (2008a). The current paper provides an in-depth
development of this model, as well as novel theoretical analysis and new empirical results.

1730

BAYES-ADAPTIVE POMDPS

rameters of the underlying POMDP domain.2 We derive optimal algorithms for belief tracking and
finite-horizon planning in this model. However, because the size of the state space in a BAPOMD
can be countably infinite, these are, for all practical purposes, intractable. We therefore dedicate
substantial attention to the problem of approximating the BAPOMDP model. We provide theo-
retical results for bounding the state space while preserving the value function. These results are
leveraged to derive a novel belief monitoring algorithm, which is used to maintain a posterior over
both model parameters, and state of the system. Finally, we describe an online planning algorithm
which provides the core sequential decision-making component of the model. Both the belief track-
ing and planning algorithms are parameterized so as to allow a trade-off between computational
time and accuracy, such that the algorithms can be applied in real-time settings.

An in-depth empirical validation of the algorithms on challenging real-world scenarios is out-
side the scope of this paper, since our focus here is on the theoretical properties of the exact and
approximative approaches. Nonetheless we elaborate a tractable approach and characterize its per-
formance in three contrasting problem domains. Empirical results show that the BAPOMDP agent
is able to learn good POMDP models and improve its return as it learns better model estimates. Ex-
periments on the two smaller domains illustrate performance of the novel belief tracking algorithm,
in comparison to the well-known Monte-Carlo approximation methods. Experiments on the third
domain confirm good planning and learning performance on a larger domain; we also analyze the
impact of the choice of prior on the results.

The paper is organized as follows. Section 2 presents the models and methods necessary for
Bayesian reinforcement learning in the fully observable case. Section 3 extends these ideas to the
case of partially observable domains, focusing on the definition of the BAPOMDP model and exact
algorithms. Section 4 defines a finite approximation of the BAPOMDP model that could be used
to be solved by finite offline POMDP solvers. Section 5 presents a more tractable approach to
solving the BAPOMDP model based on online POMDP solvers. Section 6 illustrates the empirical
performance of the latter approach on sample domains. Finally, Section 7 discusses related Bayesian
approaches for simultaneous planning and learning in partially observable domains.

2. Background and Notation

In this section we discuss the problem of model-based Bayesian reinforcement learning in the fully
observable case, in preparation for the extension of these ideas to the partially observable case
which is presented in Section 3. We begin with a quick review of Markov Decision Processes.
We then present the models and methods necessary for Bayesian RL in MDPs. This literature has
been developing over the last decade, and we aim to provide a brief but comprehensive survey of
the models and algorithms in this area. Readers interested in a more detailed presentation of the
material should seek additional references (Sutton and Barto, 1998; Duff, 2002).

2.1 Markov Decision Processes

We consider finite MDPs as defined by the following n-tuple (S,A,T,R,γ):

States: S is a finite set of states, which represents all possible configurations of the system. A state
is essentially a sufficient statistic of what occurred in the past, such that what will occur in

2. This is in contrast to model-free Bayesian RL approaches, which maintain a posterior over the value function, for
example, Engel et al. (2003, 2005); Ghavamzadeh and Engel (2007b).

1731

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

the future only depends on the current state. For example, in a navigation task, the state is
usually the current position of the agent, since its next position usually only depends on the
current position, and not on previous positions.

Actions: A is a finite set of actions the agent can make in the system. These actions may influence
the next state of the system and have different costs/payoffs.

Transition Probabilities: T : S×A× S→ [0,1] is called the transition function. It models the
uncertainty on the future state of the system. Given the current state s, and an action a exe-
cuted by the agent, T sas

′
specifies the probability Pr(s′|s,a) of moving to state s′. For a fixed

current state s and action a, T sa· defines a probability distribution over the next state s′, such
that ∑s′∈S T

sas′ = 1, for all (s,a). The definition of T is based on the Markov assumption,
which states that the transition probabilities only depend on the current state and action, that
is, Pr(st+1 = s′|at ,st , . . . ,a0,s0) = Pr(st+1 = s′|at ,st), where at and st denote respectively the
action and state at time t. It is also assumed that T is time-homogenous, that is, the transition
probabilities do not depend on the current time: Pr(st+1= s′|at = a,st = s) = Pr(st = s′|at−1=
a,st−1 = s) for all t.

Rewards: R : S×A→ R is the function which specifies the reward R(s,a) obtained by the agent
for doing a particular action a in current state s. This models the immediate costs (nega-
tive rewards) and payoffs (positive rewards) incurred by performing different actions in the
system.

Discount Factor: γ ∈ [0,1) is a discount rate which allows a trade-off between short-term and
long-term rewards. A reward obtained t-steps in the future is discounted by the factor γt .
Intuitively, this indicates that it is better to obtain a given reward now, rather than later in the
future.

Initially, the agent starts in some initial state, s0 ∈ S. Then at any time t, the agent chooses an
action at ∈ A, performs it in the current state st , receives the reward R(st ,at) and moves to the next
state st+1 with probability T stat st+1 . This process is iterated until termination; the task horizon can
be specified a priori, or determined by the discount factor.

We define a policy, π : S → A, to be a mapping from states to actions. The optimal policy,
denoted π∗, corresponds to the mapping which maximizes the expected sum of discounted rewards
over a trajectory. The value of the optimal policy is defined by Bellman’s equation:

V ∗(s) =max
a∈A

[
R(s,a)+ γ ∑

s′∈S
T sas

′
V ∗(s′)

]
.

The optimal policy at a given state, π∗(s), is defined to be the action that maximizes the value at that
state, V ∗(s). Thus the main objective of the MDP framework is to accurately estimate this value
function, so as to then obtain the optimal policy. There is a large literature on the computational
techniques that can be leveraged to solve this problem. A good starting point is the recent text by
Szepesvari (2010).

A key aspect of reinforcement learning is the issue of exploration. This corresponds to the
question of determining how the agent should choose actions while learning about the task. This is
in contrast to the phase called exploitation, through which actions are selected so as to maximize

1732

BAYES-ADAPTIVE POMDPS

expected reward with respect to the current value function estimate. The issues of value function
estimation and exploration are assumed to be orthogonal in much of the MDP literature. However
in many applications, where data is expensive or difficult to acquire, it is important to consider the
rewards accumulated during the learning phase, and to try to take this cost-of-learning into account
in the optimization of the policy.

In RL, most practical work uses a variety of heuristics to balance the exploration and exploita-
tion, including for example the well-known ε-greedy and Boltzmann strategies. The main problem
with such heuristic methods is that the exploration occurs randomly and is not focused on what
needs to be learned.

More recently, it has been shown that it is possible for an agent to reach near-optimal perfor-
mance with high probability using only a polynomial number of steps (Kearns and Singh, 1998;
Brafman and Tennenholtz, 2003; Strehl and Littman, 2005), or alternately to have small regret with
respect to the optimal policy (Auer and Ortner, 2006; Tewari and Bartlett, 2008; Auer et al., 2009).
Such theoretical results are highly encouraging, and in some cases lead to algorithms which exhibit
reasonably good empirical performance.

2.2 Bayesian Learning

Bayesian Learning (or Bayesian Inference) is a general technique for learning the unknown param-
eters of a probability model from observations generated by this model. In Bayesian learning, a
probability distribution is maintained over all possible values of the unknown parameters. As ob-
servations are made, this probability distribution is updated via Bayes’ rule, and probability density
increases around the most likely parameter values.

Formally, consider a random variable X with probability density fX |Θ over its domain X param-
eterized by the unknown vector of parameters Θ in some parameter space P . Let X1,X2, · · · ,Xn
be a random i.i.d. sample from fX |Θ. Then by Bayes’ rule, the posterior probability density
gΘ|X1,X2,...,Xn(θ|x1,x2, . . . ,xn) of the parametersΘ= θ, after the observations of X1 = x1,X2 = x2, · · · ,
Xn = xn, is:

gΘ|X1,X2,...,Xn(θ|x1,x2, . . . ,xn) =
gΘ(θ)∏n

i=1 fX |Θ(xi|θ)∫
P gΘ(θ

′)∏n
i=1 fX |Θ(xi|θ′)dθ′

,

where gΘ(θ) is the prior probability density of Θ = θ, that is, gΘ over the parameter space P is
a distribution that represents the initial belief (or uncertainty) on the values of Θ. Note that the
posterior can be defined recursively as follows:

gΘ|X1,X2,...,Xn(θ|x1,x2, . . . ,xn) =
gΘ|X1,X2,...,Xn−1(θ|x1,x2, . . . ,xn−1) fX |Θ(xn|θ)∫

P gΘ|X1,X2,...,Xn−1(θ
′|x1,x2, . . . ,xn−1) fX |Θ(xn|θ′)dθ′

,

so that whenever we get the nth observation of X , denoted xn, we can compute the new posterior
distribution gΘ|X1,X2,...,Xn from the previous posterior gΘ|X1,X2,...,Xn−1 .

In general, updating the posterior distribution gΘ|X1,X2,...,Xn is difficult due to the need to compute
the normalization constant

∫
P gΘ(θ)∏

n
i=1 fX |Θ(xi|θ)dθ. However, for conjugate family distributions,

updating the posterior can be achieved very efficiently with a simple update of the parameters defin-
ing the posterior distribution (Casella and Berger, 2001).

1733

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

Formally, consider a particular class G of prior distributions over the parameter space P , and a
class F of likelihood functions fX |Θ over X parameterized by parameters Θ ∈ P , then F and G are
said to be conjugate if for any choice of prior gΘ ∈ G , likelihood fX |Θ ∈ F and observation X = x,
the posterior distribution gΘ|X after observation of X = x is also in G .

For example, the Beta distribution3 is conjugate to the Binomial distribution.4 Consider X ∼
Binomial(n, p) with unknown probability parameter p, and consider a prior Beta(α,β) over the un-
known value of p. Then following an observation X = x, the posterior over p is also Beta distributed
and is defined by Beta(α+ x,β+n− x).

Another important issue with Bayesian methods is the need to specify a prior. While the in-
fluence of the prior tends to be negligible when provided with a large amount of data, its choice is
particularly important for any inference and decision-making performed when only a small amount
of data has been observed. In many practical problems, informative priors can be obtained from
domain knowledge. For example many sensors and actuators used in engineering applications have
specified confidence intervals on their accuracy provided by the manufacturer. In other applications,
such as medical treatment design or portfolio management, data about the problem may have been
collected for other tasks, which can guide the construction of the prior.

In the absence of any knowledge, uninformative priors can be specified. Under such priors, any
inference done a posteriori is dominated by the data, that is, the influence of the prior is minimal. A
common uninformative prior consists of using a distribution that is constant over the whole param-
eter space, such that every possible parameter has equal probability density. From an information
theoretic point of view, such priors have maximum entropy and thus contain the least amount of in-
formation about the true parameter (Jaynes, 1968). However, one problem with such uniform priors
is that typically, under different re-parameterization, one has different amounts of information about
the unknown parameters. A preferred uninformative prior, which is invariant under reparameteriza-
tion, is Jeffreys’ prior (Jeffreys, 1961).

The third issue of concern with Bayesian methods concerns the convergence of the posterior
towards the true parameter of the system. In general, the posterior density concentrates around
the parameters that have highest likelihood of generating the observed data in the limit. For finite
parameter spaces, and for smooth families with continuous finite dimensional parameter spaces, the
posterior converges towards the true parameter as long as the prior assigns non-zero probability to
every neighborhood of the true parameter. Hence in practice, it is often desirable to assign non-zero
prior density over the full parameter space.

It should also be noted that if multiple parameters within the parameter space can generate the
observed data with equal likelihood, then the posterior distribution will usually be multimodal, with
one mode surrounding each equally likely parameter. In such cases, it may be impossible to identify
the true underlying parameter. However for practical purposes, such as making predictions about
future observations, it is sufficient to identify any of the equally likely parameters.

Lastly, another concern is how fast the posterior converges towards the true parameters. This
is mostly influenced by how far the prior is from the true parameter. If the prior is poor, that is, it
assigns most probability density to parameters far from the true parameters, then it will take much
more data to learn the correct parameter than if the prior assigns most probability density around the

3. Beta(α,β) is defined by the density function f (p|α,β) ∝ pα−1(1− p)β−1 for p ∈ [0,1] and parameters α,β≥ 0.
4. Binomial(n, p) is defined by the density function f (k|n, p) ∝ pk(1− p)n−k for k ∈ {0,1, . . . ,n} and parameters p ∈

[0,1],n ∈ N.

1734

BAYES-ADAPTIVE POMDPS

true parameter. For such reasons, a safe choice is to use an uninformative prior, unless some data is
already available for the problem at hand.

2.3 Bayesian Reinforcement Learning in Markov Decision Processes

Work on model-based Bayesian reinforcement learning dates back to the days of Bellman, who
studied this problem under the name of Adaptive control processes (Bellman, 1961). An excellent
review of the literature on model-based Bayesian RL is provided in Duff (2002). This paper outlines,
where appropriate, more recent contributions in this area.

As a side note, model-free BRL methods also exist (Engel et al., 2003, 2005; Ghavamzadeh
and Engel, 2007a,b). Instead of representing the uncertainty on the model, these methods explicitly
model the uncertainty on the value function or optimal policy. These methods must often rely on
heuristics to handle the exploration-exploitation trade-off, but may be useful in cases where it is
easier to express prior knowledge about initial uncertainty on the value function or policy, rather
than on the model.

The main idea behind model-based BRL is to use Bayesian learning methods to learn the un-
known model parameters of the system, based on what is observed by the agent in the environment.
Starting from a prior distribution over the unknown model parameters, the agent updates a posterior
distribution over these parameters as it performs actions and gets observations from the environ-
ment. Under such a Bayesian approach, the agent can compute the best action-selection strategy by
finding the one that maximizes its future expected return under the current posterior distribution, but
also considering how this distribution will evolve in the future under different possible sequences of
actions and observations.

To formalize these ideas, consider an MDP (S,A,T,R,γ), where S, A and R are known, and T is
unknown. Furthermore, assume that S and A are finite. The unknown parameters in this case are the
transition probabilities, T sas

′
, for all s,s′ ∈ S, a∈ A. The model-based BRL approach to this problem

is to start off with a prior, g, over the space of transition functions, T . Now let st = (s0,s1, . . . ,st)
and at−1 = (a0,a1, . . . ,at−1) denote the agent’s history of visited states and actions up to time t.
Then the posterior over transition functions after this sequence is defined by:

g(T | st , at−1) ∝ g(T)∏t−1
i=0 T

siaisi+1

∝ g(T)∏s∈S,a∈A∏s′∈S(T
sas′)

Na
s,s′ (st , at−1),

where Na
s,s′(st , at−1) = ∑t−1

i=0 I{(s,a,s′)}(si,ai,si+1) is the number of times5 the transition (s,a,s′) oc-
curred in the history (st , at−1). As we can see from this equation, the likelihood

∏s∈S,a∈A∏s′∈S(T
sas′)

Na
s,s′ (st , at−1) is a product of |S||A| independent Multinomial6 distributions over

S. Hence, if we define the prior g as a product of |S||A| independent priors over each distribution
over next states T sa·, that is, g(T) =∏s∈S,a∈A gs,a(T

sa·), then the posterior is also defined as a prod-
uct of |S||A| independent posterior distributions: g(T | st , at−1) = ∏s∈S,a∈A gs,a(T

sa·| st , at−1), where
gs,a(T sa·| st , at−1) is defined as:

gs,a(T
sa·| st , at−1) ∝ gs,a(T

sa·)∏
s′∈S

(T sas
′
)
Na
s,s′ (st , at−1).

5. We use I() to denote the indicator function.
6. Multinomialk(p,N) is defined by the density function f (n|p,N)∝∏k

i=1 p
ni
i for ni ∈ {0,1, . . . ,N} such that ∑ki=1 ni =

N, parameters N ∈ N, and p is a discrete distribution over k outcomes.

1735

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

Furthermore, since the Dirichlet distribution is the conjugate of the Multinomial, it follows that
if the priors gs,a(T sa·) are Dirichlet distributions for all s,a, then the posteriors gs,a(T sa·| st , at−1) will
also be Dirichlet distributions for all s,a. The Dirichlet distribution is the multivariate extension of
the Beta distribution and defines a probability distribution over discrete distributions. It is parameter-
ized by a count vector, φ=(φ1, . . . ,φk), where φi≥ 0, such that the density of probability distribution
p= (p1, . . . , pk) is defined as f (p|φ)∝∏k

i=1 p
φi−1
i . If X ∼Multinomialk(p,N) is a random variable

with unknown probability distribution p = (p1, . . . , pk), and Dirichlet(φ1, . . . ,φk) is a prior over p,
then after the observation of X = n, the posterior over p is Dirichlet(φ1 + n1, . . . ,φk+ nk). Hence,
if the prior gs,a(T sa·) is Dirichlet(φas,s1

, . . . ,φas,s|S|), then after the observation of history (st , at−1),
the posterior gs,a(T sa·| st , at−1) is Dirichlet(φas,s1

+Na
s,s1

(st , at−1), . . . ,φas,s|S| +Na
s,s|S|(st , at−1)). It fol-

lows that if φ = {φas,s′ |a ∈ A,s,s′ ∈ S} represents the set of all Dirichlet parameters defining the
current prior/posterior over T , then if the agent performs a transition (s,a,s′), the posterior Dirichlet
parameters φ′ after this transition are simply defined as:

φ′as,s′ = φas,s′ +1,
φ′a

′
s′′,s′′′ = φa

′
s′′,s′′′ ,∀(s′′,a′,s′′′) �= (s,a,s′).

We denote this update by the function U, where U(φ,s,a,s′) returns the set φ′ as updated in the
previous equation.

Because of this convenience, most authors assume that the prior over the transition function
T follows the previous independence and Dirichlet assumptions (Duff, 2002; Dearden et al., 1999;
Wang et al., 2005; Castro and Precup, 2007). We also make such assumptions throughout this paper.

2.3.1 BAYES-ADAPTIVE MDP MODEL

The core sequential decision-making problem of model-based Bayesian RL can be cast as the prob-
lem of finding a policy that maps extended states of the form (s,φ) to actions a ∈ A, such as to
maximize the long-term rewards of the agent. If this decision problem can be modeled as an MDP
over extended states (s,φ), then by solving this new MDP, we would find such an optimal policy.
We now explain how to construct this MDP.

Consider a new MDP defined by the tuple (S′,A,T ′,R′,γ). We define the new set of states
S′ = S× T , where T = {φ ∈ N

|S|2|A||∀(s,a) ∈ S×A,∑s′∈S φ
a
ss′ > 0}, and A is the original action

space. Here, the constraints on the set T of possible count parameters φ are only needed to ensure
that the transition probabilities are well defined. To avoid confusion, we refer to the extended
states (s,φ) ∈ S′ as hyperstates. Also note that the next information state φ′ only depends on the
previous information state φ and the transition (s,a,s′) that occurred in the physical system, so
that transitions between hyperstates also exhibit the Markov property. Since we want the agent to
maximize the rewards it obtains in the physical system, the reward function R′ should return the
same reward as in the physical system, as defined in R. Thus we define R′(s,φ,a) = R(s,a). The
only remaining issue is to define the transition probabilities between hyperstates. The new transition
function T ′ must specify the transition probabilities T ′(s,φ,a,s′,φ′) = Pr(s′,φ′|s,a,φ). By the chain
rule, Pr(s′,φ′|s,a,φ) = Pr(s′|s,a,φ)Pr(φ′|s,a,s′,φ). Since the update of the information state φ to
φ′ is deterministic, then Pr(φ′|s,a,s′,φ) is either 0 or 1, depending on whether φ′ = U(φ,s,a,s′)
or not. Hence Pr(φ′|s,a,s′,φ) = I{φ′}(U(φ,s,a,s′)). By the law of total probability, Pr(s′|s,a,φ) =∫

Pr(s′|s,a,T,φ) f (T |φ)dT =
∫
T sas

′
f (T |φ)dT , where the integral is carried over transition function

T , and f (T |φ) is the probability density of transition function T under the posterior defined by

1736

BAYES-ADAPTIVE POMDPS

φ. The term
∫
T sas

′
f (T |φ)dT is the expectation of T sas′ for the Dirichlet posterior defined by the

parameters φas,s1 , . . . ,φ
a
s,s|S| , which corresponds to

φa
s,s′

∑s′′∈S φ
a
s,s′′
. Thus it follows that:

T ′(s,φ,a,s′,φ′) =
φas,s′

∑s′′∈S φ
a
s,s′′

I{φ′}(U(φ,s,a,s′)).

We now have a new MDP with a known model. By solving this MDP, we can find the optimal
action-selection strategy, given a posteriori knowledge of the environment. This newMDP has been
called the Bayes-Adaptive MDP (Duff, 2002) or the HyperMDP (Castro and Precup, 2007).

Notice that while we have assumed that the reward function R is known, this BRL framework
can easily be extended to the case where R is unknown. In such a case, one can proceed similarly by
using a Bayesian learning method to learn the reward function R and add the posterior parameters for
R in the hyperstate. The new reward function R′ then becomes the expected reward under the current
posterior over R, and the transition function T ′ would also model how to update the posterior over R,
upon observation of any reward r. For brevity of presentation, it is assumed that the reward function
is known throughout this paper. However, the frameworks we present in the following sections can
also be extended to handle cases where the rewards are unknown, by following a similar reasoning.

2.3.2 OPTIMALITY AND VALUE FUNCTION

The Bayes-Adaptive MDP (BAMDP) is just a conventional MDP with a countably infinite number
of states. Fortunately, many theoretical results derived for standard MDPs carry over to the Bayes-
Adaptive MDP model (Duff, 2002). Hence, we know there exists an optimal deterministic policy
π∗ : S′ → A, and that its value function is defined by:

V ∗(s,φ) = maxa∈A
[
R′(s,φ,a)+ γ∑(s′,φ′)∈S′ T

′(s,φ,a,s′,φ′)V ∗(s′,φ′)
]

= maxa∈A

[
R(s,a)+ γ∑s′∈S

φa
s,s′

∑s′′∈S φ
a
s,s′′
V ∗(s′,U(φ,s,a,s′))

]
.

(1)

This value function is defined over an infinite number of hyperstates, therefore, in practice,
computing V ∗ exactly for all hyperstates is unfeasible. However, since the summation over S is
finite, we observe that from one given hyperstate, the agent can transit only to a finite number of
hyperstates in one step. It follows that for any finite planning horizon t, one can compute exactly
the optimal value function for a particular starting hyperstate. However the number of reachable
hyperstates grows exponentially with the planning horizon.

2.3.3 PLANNING ALGORITHMS

We now review existing approximate algorithms for estimating the value function in the BAMDP.
Dearden et al. (1999) proposed one of the first Bayesian model-based exploration methods for RL.
Instead of solving the BAMDP directly via Equation 1, the Dirichlet distributions are used to com-
pute a distribution over the state-action values Q∗(s,a), in order to select the action that has the
highest expected return and value of information (Dearden et al., 1998). The distribution over Q-
values is estimated by sampling MDPs from the posterior Dirichlet distribution, and then solving
each sampled MDP to obtain different sampled Q-values. Re-sampling and importance sampling
techniques are proposed to update the estimated Q-value distribution as the Dirichlet posteriors are
updated.

1737

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

Rather than using a maximum likelihood estimate for the underlying process, Strens (2000)
proposes to fully represent the posterior distribution over process parameters. He then uses a greedy
behavior with respect to a sample from this posterior. By doing so, he retains each hypothesis over
a period of time, ensuring goal-directed exploratory behavior without the need to use approximate
measures or heuristic exploration as other approaches did. The number of steps for which each
hypothesis is retained limits the length of exploration sequences. The results of this method is then
an automatic way of obtaining behavior which moves gradually from exploration to exploitation,
without using heuristics.

Duff (2001) suggests using Finite-State Controllers (FSC) to represent compactly the optimal
policy π∗ of the BAMDP and then finding the best FSC in the space of FSCs of some bounded
size. A gradient descent algorithm is presented to optimize the FSC and a Monte-Carlo gradient
estimation is proposed to make it more tractable. This approach presupposes the existence of a
good FSC representation for the policy.

For their part, Wang et al. (2005) present an online planning algorithm that estimates the optimal
value function of the BAMDP (Equation 1) using Monte-Carlo sampling. This algorithm is essen-
tially an adaptation of the Sparse Sampling algorithm (Kearns et al., 1999) to BAMDPs. However
instead of growing the tree evenly by looking at all actions at each level of the tree, the tree is grown
stochastically. Actions are sampled according to their likelihood of being optimal, according to
their Q-value distributions (as defined by the Dirichlet posteriors); next states are sampled accord-
ing to the Dirichlet posterior on the model. This approach requires multiple sampling and solving
of MDPs from the Dirichlet distributions to find which action has highest Q-value at each state node
in the tree. This can be very time consuming, and so far the approach has only been applied to small
MDPs.

Castro and Precup (2007) present a similar approach to Wang et al. However their approach
differs on two main points. First, instead of maintaining only the posterior over models, they also
maintain Q-value estimates using a standard Q-Learning method. Planning is done by growing a
stochastic tree as in Wang et al. (but sampling actions uniformly instead) and solving for the value
estimates in that tree using Linear Programming (LP), instead of dynamic programming. In this
case, the stochastic tree represents sampled constraints, which the value estimates in the tree must
satisfy. The Q-value estimates maintained by Q-Learning are used as value estimates for the fringe
nodes (thus as value constraints on the fringe nodes in the LP).

Finally, Poupart et al. (2006) proposed an approximate offline algorithm to solve the BAMDP.
Their algorithm, called Beetle, is an extension of the Perseus algorithm (Spaan and Vlassis, 2005)
to the BAMDP model. Essentially, at the beginning, hyperstates (s,φ) are sampled from random
interactions with the BAMDP model. An equivalent continuous POMDP (over the space of states
and transition functions) is solved instead of the BAMDP (assuming (s,φ) is a belief state in that
POMDP). The value function is represented by a set of α-functions over the continuous space of
transition functions. Each α-function is constructed as a linear combination of basis functions;
the sampled hyperstates can serve as the set of basis functions. Dynamic programming is used to
incrementally construct the set of α-functions. At each iteration, updates are only performed at the
sampled hyperstates, similarly to Perseus (Spaan and Vlassis, 2005) and other Point-Based POMDP
algorithms (Pineau et al., 2003).

1738

BAYES-ADAPTIVE POMDPS

3. Bayes-Adaptive POMDPs

Despite the sustained interest in model-based BRL, the deployment to real-world applications is
limited both by scalability and representation issues. In terms of representation, an important chal-
lenge for many practical problems is in handling cases where the state of the system is only partially
observable. Our goal here is to show that the model-based BRL framework can be extended to han-
dle partially observable domains. Section 3.1 provides a brief overview of the Partially Observable
Markov Decision Process framework. In order to apply Bayesian RL methods in this context, we
draw inspiration from the Bayes-Adaptive MDP framework presented in Section 2.3, and propose
an extension of this model, called the Bayes-Adaptive POMDP (BAPOMDP). One of the main
challenges that arises when considering such an extension is how to update the Dirichlet count
parameters when the state is a hidden variable. As will be explained in Section 3.2, this can be
achieved by including the Dirichlet parameters in the state space, and maintaining a belief state
over these parameters. The BAPOMDP model thus allows an agent to improve its knowledge of an
unknown POMDP domain through interaction with the environment, but also allows the decision-
making aspect to be contingent on uncertainty over the model parameters. As a result, it is possible
to define an action-selection strategy which can directly trade-off between (1) learning the model
of the POMDP, (2) identifying the unknown state, and (3) gathering rewards, such as to maximize
its future expected return. This model offers an alternative framework for reinforcement learning in
POMDPs, compared to previous history-based approaches (McCallum, 1996; Littman et al., 2002).

3.1 Background on POMDPs

While an MDP is able to capture uncertainty on future outcomes, and the BAMDP is able to capture
uncertainty over the model parameters, both fail to capture uncertainty that can exist on the current
state of the system at a given time step. For example, consider a medical diagnosis problem where
the doctor must prescribe the best treatment to an ill patient. In this problem the state (illness) of
the patient is unknown, and only its symptoms can be observed. Given the observed symptoms the
doctor may believe that some illnesses are more likely, however he may still have some uncertainty
about the exact illness of the patient. The doctor must take this uncertainty into account when
deciding which treatment is best for the patient. When the uncertainty is high, the best action may
be to order additional medical tests in order to get a better diagnosis of the patient’s illness.

To address such problems, the Partially Observable Markov Decision Process (POMDP) was
proposed as a generalization of the standard MDP model. POMDPs are able to model and reason
about the uncertainty on the current state of the system in sequential decision problems (Sondik,
1971).

A POMDP is defined by a finite set of states S, a finite set of actions A, as well as a finite set
of observations Z. These observations capture the aspects of the state which can be perceived by
the agent. The POMDP is also defined by transition probabilities {T sas′}s,s′∈S,a∈A, where T sas

′
=

Pr(st+1 = s′|st = s,at = a), as well as observation probabilities {Osaz}s∈S,a∈A,z∈Z where Osaz =
Pr(zt = z|st = s,at−1 = a). The reward function, R : S×A→ R, and discount factor, γ, are as in the
MDP model.

Since the state is not directly observed, the agent must rely on the observation and action at each
time step to maintain a belief state b ∈ ΔS, where ΔS is the space of probability distributions over
S. The belief state specifies the probability of being in each state given the history of action and
observation experienced so far, starting from an initial belief b0. It can be updated at each time step

1739

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

using the following Bayes rule:

bt+1(s
′) =

Os′at zt+1∑s∈S T
sat s′bt(s)

∑s′′∈s Os′′at zt+1∑s∈S T sat s
′′bt(s)

.

A policy π : ΔS→ A indicates how the agent should select actions as a function of the current
belief. Solving a POMDP involves finding the optimal policy π∗ that maximizes the expected dis-
counted return over the infinite horizon. The return obtained by following π∗ from a belief b is
defined by Bellman’s equation:

V ∗(b) =max
a∈A

[
∑
s∈S

b(s)R(s,a)+ γ∑
z∈Z
Pr(z|b,a)V ∗(τ(b,a,z))

]
,

where τ(b,a,z) is the new belief after performing action a and observation z,and γ ∈ [0,1) is the
discount factor.

A key result by Smallwood and Sondik (1973) shows that the optimal value function for a finite-
horizon POMDP is piecewise-linear and convex. It means that the value function Vt at any finite
horizon t can be represented by a finite set of |S|-dimensional hyperplanes: Γt = {α0,α1, . . . ,αm}.
These hyperplanes are often called α-vectors. Each defines a linear value function over the belief
state space, associated with some action, a ∈ A. The value of a belief state is the maximum value
returned by one of the α-vectors for this belief state:

Vt(b) =max
α∈Γt

∑
s∈S

α(s)b(s).

The best action is the one associated with the α-vector that returns the best value.
The Enumeration algorithm by Sondik (1971) shows how the finite set of α-vectors, Γt , can

be built incrementally via dynamic programming. The idea is that any t-step contingency plan can
be expressed by an immediate action and a mapping associating a (t-1)-step contingency plan to
every observation the agent could get after this immediate action. The value of the 1-step plans
corresponds directly to the immediate rewards:

Γa1 = {αa|αa(s) = R(s,a)},
Γ1 =

⋃
a∈AΓ

a
1.

Then to build the α-vectors at time t, we consider all possible immediate actions the agent could
take, every observation that could follow, and every combination of (t-1)-step plans to pursue sub-
sequently:

Γa,zt = {αa,z|αa,z(s) = γ∑s′∈S T
sas′Os′azα′(s′),α′ ∈ Γt−1},

Γat = Γa1⊕Γa,z1t ⊕Γa,z2t ⊕ . . .⊕Γ
a,z|Z|
t ,

Γt =
⋃
a∈AΓ

a
t ,

where ⊕ is the cross-sum operator.7
Exactly solving the POMDP is usually intractable, except on small domains with only a few

states, actions and observations (Kaelbling et al., 1998). Various approximate algorithms, both
offline (Pineau et al., 2003; Spaan and Vlassis, 2005; Smith and Simmons, 2004) and online (Paquet

7. Let A and B be sets of vectors, then A⊕B= {a+b|a ∈ A,b ∈ B}.

1740

BAYES-ADAPTIVE POMDPS

et al., 2005; Ross et al., 2008c), have been proposed to tackle increasingly large domains. However,
all these methods require full knowledge of the POMDP model, which is a strong assumption in
practice. Some approaches do not require knowledge of the model, as in Baxter and Bartlett (2001),
but these approaches generally require some knowledge of a good (and preferably compact) policy
class, as well as needing substantial amounts of data.

3.2 Bayesian Learning of a POMDP model

Before we introduce the full BAPOMDP model for sequential decision-making under model uncer-
tainty in a POMDP, we first show how a POMDP model can be learned via a Bayesian approach.

Consider an agent in a POMDP (S,A,Z,T,O,R,γ), where the transition function T and observa-
tion function O are the only unknown components of the POMDP model. Let zt = (z1,z2, . . . ,zt) be
the history of observations of the agent up to time t. Recall also that we denote st = (s0,s1, . . . ,st)
and at−1 = (a0,a1, . . . ,at−1) the history of visited states and actions respectively. The Bayesian ap-
proach to learning T and O involves starting with a prior distribution over T and O, and maintaining
the posterior distribution over T and O after observing the history (at−1, zt). Since the current state
st of the agent at time t is unknown in the POMDP, we consider a joint posterior g(st ,T,O| at−1, zt)
over st , T , and O. By the laws of probability and Markovian assumption of the POMDP, we have:

g(st ,T,O| at−1, zt) ∝ Pr(zt ,st |T,O, at−1)g(T,O, at−1)
∝ ∑ st−1∈St Pr(zt , st |T,O, at−1)g(T,O)
∝ ∑ st−1∈St g(s0,T,O)∏t

i=1T
si−1ai−1siOsiai−1zi

∝ ∑ st−1∈St g(s0,T,O)
[
∏s,a,s′(T

sas′)N
a
ss′ (st , at−1)

]
×[

∏s,a,z(O
saz)N

a
sz(st , at−1, zt)

]
,

where g(s0,T,O) is the joint prior over the initial state s0, transition function T , and observation
function O; Na

ss′(st , at−1) = ∑t−1
i=0 I{(s,a,s′)}(si,ai,si+1) is the number of times the transition (s,a,s′)

appears in the history of state-action (st , at−1); and Na
sz(st , at−1, zt) = ∑ti=1 I{(s,a,z)}(si,ai−1,zi) is

the number of times the observation (s,a,z) appears in the history of state-action-observations
(st , at−1, zt). We use proportionality rather than equality in the expressions above because we have
not included the normalization constant.

Under the assumption that the prior g(s0,T,O) is defined by a product of independent priors of
the form:

g(s0,T,O) = g(s0)∏
s,a
gsa(T

sa·)gsa(O
sa·),

and that gsa(T sa·) and gsa(Osa·) are Dirichlet priors defined ∀s,a, then we observe that the posterior
is a mixture of joint Dirichlets, where each joint Dirichlet component is parameterized by the counts
corresponding to one specific possible state sequence:

g(st ,T,O| at−1, zt) ∝ ∑ st−1∈St g(s0)c(st , at−1, zt)×[
∏s,a,s′(T

sas′)N
a
ss′ (st , at−1)+φass′−1

]
×[

∏s,a,z(O
saz)N

a
sz(st , at−1, zt)+ψasz−1

]
.

(2)

Here, φas· are the prior Dirichlet count parameters for gsa(T sa·), ψas· are the prior Dirichlet count
parameters for gsa(Osa·), and c(st , at−1, zt) is a constant which corresponds to the normalization

1741

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

constant of the joint Dirichlet component for the state-action-observation history (st , at−1, zt). Intu-
itively, Bayes’ rule tells us that given a particular state sequence, it is possible to compute the proper
posterior counts of the Dirichlets, but since the state sequence that actually occurred is unknown,
all state sequences (and their corresponding Dirichlet posteriors) must be considered, with some
weight proportional to the likelihood of each state sequence.

In order to update the posterior online, each time the agent performs an action and gets an
observation, it is more useful to express the posterior in recursive form:

g(st ,T,O| at−1, zt) ∝ ∑
st−1∈S

T st−1at−1stOstat−1zt g(st−1,T,O| at−2, zt−1).

Hence if g(st−1,T,O| at−2, zt−1) = ∑(φ,ψ)∈C (st−1)w(st−1,φ,ψ) f (T,O|φ,ψ) is a mixture of
|C (st−1)| joint Dirichlet components, where each component (φ,ψ) is parameterized by the set
of transition counts φ= {φass′ ∈ N|s,s′ ∈ S,a ∈ A} and the set observation counts ψ= {ψasz ∈ N|s ∈
S,a∈ A,z∈ Z}, then g(st ,T,O| at−1, zt) is a mixture of∏s∈S |C (s)| joint Dirichlet components, given
by:

g(st ,T,O| at−1, zt) ∝ ∑st−1∈S∑(φ,ψ)∈C (st−1)w(st−1,φ,ψ)c(st−1,at−1,st ,zt−1,φ,ψ)
f (T,O|U(φ,st−1,at−1,st),U(ψ,st ,at−1,zt)),

where U(φ,s,a,s′) increments the count φass′ by one in the set of counts φ, U(ψ,s,a,z) increments
the count ψasz by one in the set of counts ψ, and c(st−1,at−1,st ,zt−1,φ,ψ) is a constant corresponding
to the ratio of the normalization constants of the joint Dirichlet component (φ,ψ) before and after
the update with (st−1,at−1,st ,zt−1). This last equation gives us an online algorithm to maintain the
posterior over (s,T,O), and thus allows the agent to learn about the unknown T and O via Bayesian
inference.

Now that we have a simple method of maintaining the uncertainty over both the state and model
parameters, we would like to address the more interesting question of how to optimally behave
in the environment under such uncertainty, in order to maximize future expected return. Here we
proceed similarly to the Bayes-Adaptive MDP framework defined in Section 2.3.

First, notice that the posterior g(st ,T,O| at−1, zt) can be seen as a probability distribution (belief)
b over tuples (s,φ,ψ), where each tuple represents a particular joint Dirichlet component parame-
terized by the counts (φ,ψ) for a state sequence ending in state s (i.e., the current state is s), and
the probabilities in the belief b correspond to the mixture weights. Now we would like to find a
policy π for the agent which maps such beliefs over (s,φ,ψ) to actions a ∈ A. This suggests that
the sequential decision problem of optimally behaving under state and model uncertainty can be
modeled as a POMDP over hyperstates of the form (s,φ,ψ).

Consider a new POMDP (S′,A,Z,P′,R′,γ), where the set of states (hyperstates) is formally de-
fined as S′ = S× T ×O, with T = {φ ∈ N

|S|2|A||∀(s,a) ∈ S×A, ∑s′∈S φ
a
ss′ > 0} and O = {ψ ∈

N
|S||A||Z||∀(s,a) ∈ S×A, ∑z∈Zψ

a
sz > 0}. As in the definition of the BAMDP, the constraints on

the count parameters φ and ψ are only to ensure that the transition-observation probabilities, as
defined below, are well defined. The action and observation sets are the same as in the origi-
nal POMDP. The rewards depend only on the state s ∈ S and action a ∈ A (but not the counts φ
and ψ), thus we have R′(s,φ,ψ,a) = R(s,a). The transition and observations probabilities in the
BAPOMDP are defined by a joint transition-observation function P′ : S′ ×A×S′ ×Z→ [0,1], such

1742

BAYES-ADAPTIVE POMDPS

that P′(s,φ,ψ,a,s′,φ′,ψ′,z) = Pr(s′,φ′,ψ′,z|s,φ,ψ,a). This joint probability can be factorized by
using the laws of probability and standard independence assumptions:

Pr(s′,φ′,ψ′,z|s,φ,ψ,a)
= Pr(s′|s,φ,ψ,a)Pr(z|s,φ,ψ,a,s′)Pr(φ′|s,φ,ψ,a,s′,z)Pr(ψ′|s,φ,ψ,a,s′,φ′,z)
= Pr(s′|s,a,φ)Pr(z|a,s′,ψ)Pr(φ′|φ,s,a,s′)Pr(ψ′|ψ,a,s′,z).

As in the Bayes-Adaptive MDP case, Pr(s′|s,a,φ) corresponds to the expectation of Pr(s′|s,a)
under the joint Dirichlet posterior defined by φ, and Pr(φ′|φ,s,a,s′) is either 0 or 1, depending
on whether φ′ corresponds to the posterior after observing transition (s,a,s′) from prior φ. Hence

Pr(s′|s,a,φ) =
φa
ss′

∑s′′∈S φ
a
ss′′
, and Pr(φ′|φ,s,a,s′) = I{φ′}(U(φ,s,a,s′)). Similarly, Pr(z|a,s′,ψ) =∫

Os′az f (O|ψ)dO, which is the expectation of the Dirichlet posterior for Pr(z|s′,a), and
Pr(ψ′|ψ,a,s′,z), is either 0 or 1, depending on whether ψ′ corresponds to the posterior after ob-

serving observation (s′,a,z) from prior ψ. Thus Pr(z|a,s′,ψ) = ψa
s′z

∑z′∈Z ψ
a
s′z′
, and Pr(ψ′|ψ,a,s′,z) =

I{ψ′}(U(ψ,s′,a,z)). To simplify notation, we denote T sas
′

φ =
φa
ss′

∑s′′∈S φ
a
ss′′
and Os′az

ψ =
ψa
s′z

∑z′∈Z ψ
a
s′z′
. It fol-

lows that the joint transition-observation probabilities in the BAPOMDP are defined by:

Pr(s′,φ′,ψ′,z|s,φ,ψ,a) = T sas
′

φ Os′az
ψ I{φ′}(U(φ,s,a,s′))I{ψ′}(U(ψ,s′,a,z)).

Hence, the BAPOMDP defined by the POMDP (S′,A,Z,P′,R′,γ) has a known model and char-
acterizes the problem of optimal sequential decision-making in the original POMDP
(S,A,Z,T,O,R,γ) with uncertainty on the transition T and observation functions O described by
Dirichlet distributions.

An alternative interpretation of the BAPOMDP is as follows: given the unknown state sequence
that occurred since the beginning, one can compute exactly the posterior counts φ and ψ. Thus there
exists a unique (φ,ψ) reflecting the correct posterior counts according to the state sequence that
occurred, but these correct posterior counts are only partially observable through the observations
z ∈ Z obtained by the agent. Thus (φ,ψ) can simply be thought of as other hidden state variables
that the agent tracks via the belief state, based on its observations. The BAPOMDP formulates the
decision problem of optimal sequential decision-making under partial observability of both the state
s ∈ S, and posterior counts (φ,ψ).

The belief state in the BAPOMDP corresponds exactly to the posterior defined in the previous
section (Equation 2). By maintaining this belief, the agent maintains its uncertainty on the POMDP
model and learns about the unknown transition and observations functions. Initially, if φ0 and ψ0
represent the prior Dirichlet count parameters (i.e., the agent’s prior knowledge of T and O), and
b0 the initial state distribution of the unknown POMDP, then the initial belief b′0 of the BAPOMDP
is defined as b′0(s,φ,ψ) = b0(s)I{φ0}(φ)I{ψ0}(ψ). Since the BAPOMDP is just a POMDP with an
infinite number of states, the belief update and value function equations presented in Section 3.1
can be applied directly to the BAPOMDP model. However, since there is an infinite number of
hyperstates, these calculations can be performed exactly in practice only if the number of possible
hyperstates in the belief is finite. The following theorem shows that this is the case at any finite time
t:

Theorem 1 Let (S′,A,Z,P′,R′,γ) be a BAPOMDP constructed from the POMDP
(S,A,Z,T,O,R,γ). If S is finite, then at any time t, the set S′b′t = {σ ∈ S′|b′t(σ)> 0} has size |S′b′t | ≤
|S|t+1.

1743

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

function τ(b,a,z)
Initialize b′ as a 0 vector.
for all (s,φ,ψ) ∈ S′b do
for all s′ ∈ S do
φ′ ←U(φ,s,a,s′)
ψ′ ←U(ψ,s′,a,z)
b′(s′,φ′,ψ′)← b′(s′,φ′,ψ′)+b(s,φ,ψ)Tsas

′
φ Os′az

ψ
end for

end for
return normalized b′

Algorithm 1: Exact Belief Update in BAPOMDP.

Proof Proof available in Appendix A.

The proof of Theorem 1 suggests that it is sufficient to iterate over S and S′b′t−1
in order to

compute the belief state b′t when an action and observation are taken in the environment. Hence, we
can update the belief state in closed-form, as outlined in Algorithm 1. Of course this algorithm is not
tractable for large domains with long action-observation sequences. Section 5 provides a number of
approximate tracking algorithms which tackle this problem.

3.3 Exact Solution for the BAPOMDP in Finite Horizons

The value function of a BAPOMDP for finite horizons can be represented by a finite set Γ of func-
tions α : S′ → R, as in standard POMDPs. This is shown formally in the following theorem:

Theorem 2 For any horizon t, there exists a finite set Γt of functions S′ → R, such that V ∗
t (b) =

maxα∈Γt ∑σ∈S′ α(σ)b(σ).

Proof Proof available in the appendix.

The proof of this theorem shows that as in any POMDP, an exact solution of the BAPOMDP
can be computed using dynamic programming, by incrementally constructing the set of α-functions
that defines the value function as follows:

Γa1 = {αa|αa(s,φ,ψ) = R(s,a)},
Γa,zt = {αa,z|αa,z(s,φ,ψ) = γ∑s′∈S T

sas′
φ Os′az

ψ α′(s′,U(φ,s,a,s′),U(ψ,s′,a,z)),
α′ ∈ Γt−1},

Γat = Γa1⊕Γa,z1t ⊕Γa,z2t ⊕·· ·⊕Γ
a,z|Z|
t , (where ⊕ is the cross sum operator),

Γt =
⋃
a∈AΓ

a
t .

However in practice, it will be impossible to compute αa,zi (s,φ,ψ) for all (s,φ,ψ) ∈ S′, unless
a particular finite parametric form for the α-functions is used. Poupart and Vlassis (2008) showed
that these α-functions can be represented as a linear combination of product of Dirichlets and can
thus be represented by a finite number of parameters. Further discussion of their work is included
in Section 7. We present an alternate approach in Section 5.

1744

BAYES-ADAPTIVE POMDPS

4. Approximating the BAPOMDP by a Finite POMDP

Solving the BAPOMDP exactly for all belief states is often impossible due to the dimensionality
of the state space, in particular because the count vectors can grow unbounded. The first proposed
method to address this problem is to reduce this infinite state space to a finite state space, while
preserving the value function of the BAPOMDP to arbitrary precision. This allows us to compute
an ε-optimal value function over the resulting finite-dimensional belief space using standard finite
POMDP solvers. This can then be used to obtain an ε-optimal policy to the BAPOMDP.

The main intuition behind the compression of the state space presented here is that, as the
Dirichlet counts grow larger and larger, the transition and observation probabilities defined by these
counts do not change much when the counts are incremented by one. Hence, there should exist
a point where if we simply stop incrementing the counts, the value function of that approximate
BAPOMDP (where the counts are bounded) approximates the value function of the BAPOMDP
within some ε> 0. If we can bound above the counts in such a way, this ensures that the state space
will be finite.

In order to find such a bound on the counts, we begin by deriving an upper bound on the value
difference between two hyperstates that differ only by their model estimates φ and ψ. This bound

uses the following definitions: given φ,φ′ ∈T , andψ,ψ′ ∈O, defineDsa
S (φ,φ

′)=∑s′∈S
∣∣∣T sas′φ −T sas

′
φ′

∣∣∣,
Dsa
Z (ψ,ψ

′) = ∑z∈Z
∣∣∣Osaz

ψ −Osaz
ψ′

∣∣∣, N sa
φ = ∑s′∈S φ

a
ss′ , and N

sa
ψ = ∑z∈Zψ

a
sz.

Theorem 3 Given any φ,φ′ ∈ T , ψ,ψ′ ∈ O, and γ ∈ (0,1), then for all t:

sup
αt∈Γt ,s∈S

|αt(s,φ,ψ)−αt(s,φ′,ψ′)| ≤ 2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[
Dsa
S (φ,φ

′)+Ds′a
Z (ψ,ψ′)

+ 4
ln(γ−e)

(
∑s′′∈S|φass′′−φ′ass′′ |
(N sa

φ +1)(N sa
φ′ +1)

+
∑z∈Z|ψas′z−ψ′a

s′z|
(N s′a

ψ +1)(N s′a
ψ′ +1)

)]
Proof Proof available in the appendix.

We now use this bound on the α-vector values to approximate the space of Dirichlet parameters

within a finite subspace. We use the following definitions: given any ε > 0, define ε′ = ε(1−γ)2
8γ||R||∞ ,

ε′′ = ε(1−γ)2 ln(γ−e)
32γ||R||∞ , Nε

S =max
(
|S|(1+ε′)

ε′ , 1ε′′ −1
)
and Nε

Z =max
(
|Z|(1+ε′)

ε′ , 1ε′′ −1
)
.

Theorem 4 Given any ε> 0 and (s,φ,ψ) ∈ S′ such that ∃a ∈ A,∃s′ ∈ S, N s′a
φ > Nε

S or N
s′a
ψ > Nε

Z,

then ∃(s,φ′,ψ′)∈ S′ such that ∀a∈A,∀s′ ∈ S,N s′a
φ′ ≤Nε

S,N
s′a
ψ′ ≤Nε

Z and |αt(s,φ,ψ)−αt(s,φ′,ψ′)|<
ε holds for all t and αt ∈ Γt .

Proof Proof available in the appendix.

Theorem 4 suggests that if we want a precision of ε on the value function, we just need to restrict
the space of Dirichlet parameters to count vectors φ ∈ T̃ε = {φ ∈ N

|S|2|A||∀a ∈ A,s ∈ S,0 < N sa
φ ≤

Nε
S}, and ψ ∈ Õε = {ψ ∈ N

|S||A||Z||∀a ∈ A,s ∈ S,0<N sa
ψ ≤ Nε

Z}. Since T̃ε and Õε are finite, we can
define a finite approximate BAPOMDP as the tuple (S̃ε,A,Z, P̃ε, R̃ε,γ), where S̃ε = S× T̃ε× Õε is
the finite state space, and P̃ε is the joint transition-observation function over this finite state space.

1745

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

To define this function, we need to ensure that whenever the count vectors are incremented, they
stay within the finite space. To achieve this, we define a projection operator Pε : S′ → S̃ε that simply
projects every state in S′ to their closest state in S̃ε.

Definition 1 Let d : S′ ×S′ → R be defined such that:

d(s,φ,ψ,s′,φ′,ψ′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[
Dsa
S (φ,φ

′)+Ds′a
Z (ψ,ψ′)

+ 4
ln(γ−e)

(
∑s′′∈S |φass′′−φ

′a
ss′′ |

(N as
φ +1)(N as

φ′ +1)
+

∑z∈Z |ψas′z−ψ
′a
s′z|

(N as′
ψ +1)(N as′

ψ′ +1)

)]
,

if s= s′

8γ||R||∞
(1−γ)2

(
1+ 4

ln(γ−e)

)
+ 2||R||∞

(1−γ) , otherwise.

Definition 2 Let Pε : S′ → S̃ε be defined as Pε(s) = argmin
s′∈S̃ε

d(s,s′).

The function d uses the bound defined in Theorem 3 as a distance between states that only differ
in their φ and ψ vectors, and uses an upper bound on that value when the states differ. Thus Pε
always maps states (s,φ,ψ) ∈ S′ to some state (s,φ′,ψ′) ∈ S̃ε. Note that if σ ∈ S̃ε, then Pε(σ) = σ.
Using Pε, the joint transition-observation function can then be defined as follows:

P̃ε(s,φ,ψ,a,s
′,φ′,ψ′,z) = T sas

′
φ Os′az

ψ I{(s′,φ′,ψ′)}(Pε(s′,U(φ,s,a,s′),U(ψ,s′,a,z))).

This definition is the same as the one in the BAPOMDP, except that now an extra projection
is added to make sure that the incremented count vectors stay in S̃ε. Finally, the reward func-
tion R̃ε : S̃ε×A→ R is defined as R̃ε((s,φ,ψ),a) = R(s,a). This defines a proper finite POMDP
(S̃ε,A,Z, P̃ε, R̃ε,γ), which can be used to approximate the original BAPOMDP model.

Next, we are interested in characterizing the quality of solutions that can be obtained with this
finite model. Theorem 5 bounds the value difference between α-vectors computed with this finite
model and the α-vector computed with the original model.

Theorem 5 Given any ε> 0, (s,φ,ψ)∈ S′ and αt ∈Γt computed from the infinite BAPOMDP. Let α̃t
be the α-vector representing the same conditional plan as αt but computed with the finite POMDP
(S̃ε,A,Z, T̃ε, Õε, R̃ε,γ), then |α̃t(Pε(s,φ,ψ))−αt(s,φ,ψ)|< ε

1−γ .

Proof Proof available in the appendix. To summarize, it solves a recurrence over the 1-step approx-
imation in Theorem 4.

Such bounded approximation over the α-functions of the BAPOMDP implies that the optimal
policy obtained from the finite POMDP approximation has an expected value close to the value of
the optimal policy of the full (non-projected) BAPOMDP:

Theorem 6 Given any ε > 0, and any horizon t, let π̃t be the optimal t-step policy computed from
the finite POMDP (S̃ε,A,Z, T̃ε, Õε, R̃ε,γ), then for any initial belief b the value of executing policy
π̃t in the BAPOMDP Vπ̃t (b)≥V ∗(b)−2 ε

1−γ .

Proof Proof available in the appendix, and follows from Theorem 5.

We note that the last two theorems hold even if we construct the finite POMDP with the follow-
ing approximate state projection P̃ε, which is more easy to use in practice:

1746

BAYES-ADAPTIVE POMDPS

Definition 3 Let P̃ε : S′ → S̃ε be defined as P̃ε(s,φ,ψ) = (s, φ̂, ψ̂) where:

φ̂as′,s′′ =

{
φas′,s′′ if N s′a

φ ≤ Nε
S

	Nε
ST

s′as′′
φ
 if N s′a

φ > Nε
S

ψ̂as′,z =

{
ψas′,z if N s′a

ψ ≤ Nε
Z

	Nε
ZO

s′az
ψ
 if N s′a

ψ > Nε
Z

This follows from the proof of Theorem 5, which only relies on such a projection, and not on the
projection that minimizes d (as done by Pε).

Given that the state space is now finite, offline solution methods from the literature on finite
POMDPs could potentially be applied to obtain an ε-optimal policy to the BAPOMDP. Note how-
ever that even though the state space is finite, it will generally be very large for small ε, such that
the resulting finite POMDP may still be intractable to solve offline, even for small domains.

An alternative approach is to solve the BAPOMDP online, by focusing on finding the best
immediate action to perform in the current belief of the agent, as in online POMDP solution meth-
ods (Ross et al., 2008c). In fact, provided we have an efficient way of updating the belief, online
POMDP solvers can be applied directly in the infinite BAPOMDP without requiring a finite ap-
proximation of the state space. In practice, maintaining the exact belief in the BAPOMDP quickly
becomes intractable (exponential in the history length, as shown in Theorem 1). The next section
proposes several practical efficient approximations for both belief updating and online planning in
the BAPOMDP.

5. Towards a Tractable Approach to BAPOMDPs

Having fully specified the BAPOMDP framework and its finite approximation, we now turn our
attention to the problem of scalable belief tracking and planning in this framework. This section is
intentionally briefer, as many of the results in the probabilistic reasoning literature can be applied to
the BAPOMDP framework. We outline those methods which have proven effective in our empirical
evaluations.

5.1 Approximate Belief Monitoring

As shown in Theorem 1, the number of states with non-zero probability grows exponentially in the
planning horizon, thus exact belief monitoring can quickly become intractable. This problem is
not unique to the Bayes-optimal POMDP framework, and was observed in the context of Bayes nets
with missing data (Heckerman et al., 1995). We now discuss different particle-based approximations
that allow polynomial-time belief tracking.
Monte-Carlo Filtering: Monte-Carlo filtering algorithms have been widely used for sequential

state estimation (Doucet et al., 2001). Given a prior belief b, followed by action a and observation z,
the new belief b′ is obtained by first sampling K states from the distribution b, then for each sampled
s a new state s′ is sampled from T sa·. Finally, the probability Os′az is added to b′(s′) and the belief
b′ is re-normalized. This will capture at most K states with non-zero probabilities. In the context of
BAPOMDPs, we use a slight variation of this method, where (s,φ,ψ) are first sampled from b, and
then a next state s′ ∈ S is sampled from the normalized distribution T sa·φ O·az

ψ . The probability 1/K is
added directly to b′(s′,U(φ,s,a,s′),U(ψ,s,a,s′)).

1747

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

functionWD(b,a,z,K)
b′ ← τ(b,a,z)
Initialize b′′ as a 0 vector.
(s,φ,ψ)← argmax(s′,φ′,ψ′)∈S′

b′
b′(s′,φ′,ψ′)

b′′(s,φ,ψ)← b′(s,φ,ψ)
for i= 2 to K do

(s,φ,ψ)← argmax(s′,φ′,ψ′)∈S′
b′
b′(s′,φ′,ψ′)min(s′′,φ′′,ψ′′)∈S′

b′′
d(s′,φ′,ψ′,s′′,φ′′,ψ′′)

b′′(s,φ,ψ)← b′(s,φ,ψ)
end for
return normalized b′′

Algorithm 2: Weighted Distance Belief Update in BAPOMDP.

Most Probable: Another possibility is to perform the exact belief update at a given time step,
but then only keep the K most probable states in the new belief b′, and re-normalize b′. This
minimizes the L1 distance between the exact belief b′ and the approximate belief maintained with K
particles.8 While keeping only the K most probable particles biases the belief of the agent, this can
still be a good approach in practice, as minimizing the L1 distance bounds the difference between
the values of the exact and approximate belief: that is, |V ∗(b)−V ∗(b′)| ≤ ||R||∞

1−γ ||b−b′||1.
Weighted Distance Minimization: Finally, we consider an belief approximation technique

which aims to directly minimize the difference in value function between the approximate and exact
belief state by exploiting the upper bound on the value difference defined in Section 4. Hence, in
order to keep the K particles which best approximate the exact belief’s value, an exact belief update
is performed and then theK particles which minimize the weighted sum of distance measures, where
distance is defined as in Definition 1, are kept to approximate the exact belief. This procedure is
described in Algorithm 2.

5.2 Online Planning

As discussed above, standard offline or online POMDP solvers can be used to optimize the choice
of action in the BAPOMDP model. Online POMDP solvers (Paquet et al., 2005; Ross et al., 2008c)
have a clear advantage over offline finite POMDP solvers (Pineau et al., 2003; Spaan and Vlassis,
2005; Smith and Simmons, 2004) in the context of the BAPOMDP as they can be applied directly
in infinite POMDPs, provided we have an efficient way to compute beliefs. Hence online POMDP
solvers can be applied directly to solve the BAPOMDP without using the finite POMDP representa-
tion presented in Section 4. Another advantage of the online approach is that by planning from the
current belief, for any finite planning horizon t, one can compute exactly the optimal value func-
tion, as only a finite number of beliefs can be reached over that finite planning horizon. While the
number of reachable beliefs is exponential in the horizon, often only a small subset is most relevant
for obtaining a good estimate of the value function. Recent online algorithms (Ross et al., 2008c)
have leveraged this by developing several heuristics for focusing computations on only the most
important reachable beliefs to obtain a good estimate quickly.

Since our focus is not on developing new online planning algorithms, we hereby simply present
a simple online lookahead search algorithm that performs dynamic programming over all the beliefs

8. The L1 distance between two beliefs b and b′, denoted ||b−b′||1, is defined as ∑σ∈S′ |b(σ)−b′(σ)|.

1748

BAYES-ADAPTIVE POMDPS

reachable within some fixed finite planning horizon from the current belief. The action with highest
return over that finite horizon is executed and then planning is conducted again on the next belief.

To further limit the complexity of the online planning algorithm, we used the approximate be-
lief monitoring methods detailed above. The detailed procedure is provided in Algorithm 3. This
algorithm takes as input: b is the current belief of the agent, D the desired depth of the search, and
K the number of particles to use to compute the next belief states. At the end of this procedure, the
agent executes action bestA in the environment and restarts this procedure with its next belief. Note
here that an approximate value function V̂ can be used to approximate the long term return obtained
by the optimal policy from the fringe beliefs. For efficiency reasons, we simply defined V̂ (b) to be
the maximum immediate reward in belief b throughout our experiments. The overall complexity of
this planning approach is O((|A||Z|)DCb), whereCb is the complexity of updating the belief.

1: function V(b,d,K)
2: if d = 0 then
3: return V̂ (b)
4: end if
5: maxQ←−∞
6: for all a ∈ A do
7: q← ∑(s,φ,ψ)∈S′b b(s,φ,ψ)R(s,a)
8: for all z ∈ Z do
9: b′ ← τ̂(b,a,z,K)
10: q← q+ γPr(z|b,a)V(b′,d−1,K)
11: end for
12: if q> maxQ then
13: maxQ← q
14: maxA← a
15: end if
16: end for
17: if d = D then
18: bestA← maxA
19: end if
20: return maxQ

Algorithm 3: Online Planning in the BAPOMDP.

In general, planning via forward search can be improved by using an accurate simulator, a
good exploration policy, and a good heuristic function. For example, any offline POMDP solution
can be used at the leaves of the lookahead search to improve search quality (Ross et al., 2008c).
Additionally, more efficient online planning algorithms presented in Ross et al. (2008c) could be
used provided one can compute an informative upper bound and lower bound on the value function
of the BAPOMDP.

6. Empirical Evaluation

The main focus of this paper is on the definition of the Bayes-Adaptive POMDP model, and ex-
amination of its theoretical properties. Nonetheless it is useful to consider experiments on a few
sample domains to verify that the algorithms outlined in Section 5 produce reasonable results. We
begin by comparing the three different belief approximations introduced above. To do so, we use
a simple online d-step lookahead search, and compare the overall expected return and model ac-

1749

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

curacy in three different problems: the well-known Tiger domain (Kaelbling et al., 1998), a new
domain called Follow which simulates simple human-robot interactions and finally a standard robot
planning domain known as RockSample (Smith and Simmons, 2004).

Given T sas
′
and Os′az the exact probabilities of the (unknown) POMDP, the model accuracy is

measured in terms of the weighted sum of L1-distance, denotedWL1, between the exact model and
the probable models in a belief state b:

WL1(b) = ∑(s,φ,ψ)∈S′b b(s,φ,ψ)L1(φ,ψ)

L1(φ,ψ) = ∑a∈A∑s′∈S
[
∑s∈S |T sas

′
φ −T sas

′ |+∑z∈Z |Os′az
ψ −Os′az|

]
6.1 Tiger

The Tiger problem (Kaelbling et al., 1998) is a 2-state POMDP, S = {tiger_le f t, tiger_right}, de-
scribing the position of the tiger. The tiger is assumed to be behind a door; its location is inferred
through a noisy observation, Z= {hear_right,hear_le f t}. The agent has to select whether to open a
door (preferably such as to avoid the tiger), or listen for further information,
A= {open_le f t,open_right, listen}. We consider the case where the transition and reward parame-
ters are known, but the observation probabilities are not. Hence, there are four unknown parameters:
OLl , OLr, ORl , ORr (OLr stands for Pr(z= hear_right|s= tiger_le f t,a= listen)). We define the ob-
servation count vector, ψ = (ψLl,ψLr,ψRl,ψRr), and consider a prior of ψ0 = (5,3,3,5), which
specifies an expected sensor accuracy of 62.5% (instead of the correct 85%) in both states. Each
simulation consists of 100 episodes. Episodes terminate when the agent opens a door, at which point
the POMDP state (i.e., tiger’s position) is reset, but the distribution over count vectors is carried over
to the next episode.

Figure 1 shows how the average return and model accuracy evolve over the 100 episodes (results
are averaged over 1000 simulations), using an online 3-step lookahead search with varying belief
approximations and parameters. Returns obtained by planning directly with the prior and exact
model (without learning) are shown for comparison. Model accuracy is measured on the initial
belief of each episode. Figure 1 also compares the average planning time per action taken by
each approach. We observe from these figures that the results for the Most Probable and Weighted
Distance approximations are similar and perform well even with few particles. On the other hand,
the performance of the Monte-Carlo belief tracking is much weaker, even using many more particles
(64). The Most Probable approach yields slightly more efficient planning times than the Weighted
Distance approximation.

6.2 Follow

We also consider a new POMDP domain, called Follow, inspired by an interactive human-robot task.
It is often the case that such domains are particularly subject to parameter uncertainty (due to the dif-
ficulty in modeling human behavior), thus this environment motivates the utility of Bayes-Adaptive
POMDP in a very practical way. The goal of the Follow task is for a robot to continuously follow
one of two individuals in a 2D open area. The two subjects have different motion behavior, requiring
the robot to use a different policy for each. At every episode, the target person is selected randomly
with Pr= 0.5 (and the other is not present). The person’s identity is not observable (except through
their motion). The state space has two features: a binary variable indicating which person is being
followed, and a position variable indicating the person’s position relative to the robot (5×5 square

1750

BAYES-ADAPTIVE POMDPS

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

Episode

R
et

ur
n

Most Probable (2)
Monte Carlo (64)
Weighted Distance (2)

Prior model

Exact model

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Episode

W
L1

Most Probable (2)
Monte Carlo (64)
Weighted Distance (2)

MP (2) MC (64) WD (2)
0

5

10

15

20

P
la

nn
in

g
T

im
e/

A
ct

io
n

(m
s)

Figure 1: Tiger: Empirical return (top left), belief estimation error (top right), and planning time
(bottom), for different belief tracking approximation.

grid with the robot always at the center). Initially, the robot and person are at the same position. Both
the robot and the person can perform five motion actions {NoAction,North,East,South,West}. The
person follows a fixed stochastic policy (stationary over space and time), but the parameters of this
behavior are unknown. The robot perceives observations indicating the person’s position relative to
the robot: {Same,North,East,South,West,Unseen}. The robot perceives the correct observation
Pr = 0.8 and Unseen with Pr = 0.2. The reward R = +1 if the robot and person are at the same
position (central grid cell), R = 0 if the person is one cell away from the robot, and R = −1 if the
person is two cells away. The task terminates if the person reaches a distance of 3 cells away from
the robot, also causing a reward of -20. We use a discount factor of 0.9.

When formulating the BAPOMDP, the robot’s motion model (deterministic), the observation
probabilities, and the rewards are all assumed to be known. However we consider the case where
each person’s motion model is unknown. We maintain a separate count vector for each person,
representing the number of times they move in each direction, that is, φ1 = (φ1NA,φ

1
N ,φ

1
E ,φ

1
S,φ

1
W),

φ2 = (φ2NA,φ
2
N ,φ

2
E ,φ

2
S,φ

2
W). We assume a prior φ10 = (2,3,1,2,2) for person 1 and φ20 = (2,1,3,2,2)

for person 2, while in reality person 1 moves with probabilities Pr = (0.3,0.4,0.2,0.05,0.05) and
person 2 with Pr = (0.1,0.05,0.8,0.03,0.02). We run 200 simulations, each consisting of 100

1751

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

episodes (of at most 10 time steps). The count vectors’ distributions are reset after every simulation,
and the target person is reset after every episode. We use a 2-step lookahead search for planning in
the BAPOMDP.

Figure 2 shows how the average return and model accuracy evolve over the 100 episodes (av-
eraged over the 200 simulations) with different belief approximations. Figure 2 also compares
the planning time taken by each approach. We observe from these figures that the results for the
Weighted Distance approximations are much better both in terms of return and model accuracy, even
with fewer particles (16). Monte-Carlo fails at providing any improvement over the prior model,
which indicates it would require much more particles. Running Weighted Distance with 16 particles
require less time than both Monte-Carlo and Most Probable with 64 particles, showing that it can
be more time efficient for the performance it provides in complex environment.

0 20 40 60 80 100
−8

−6

−4

−2

0

2

Episode

R
et

ur
n

Most Probable (64)
Monte Carlo (64)
Weighted Distance (16)

Prior model

Exact model

0 20 40 60 80 100
0

0.5

1

1.5

2

Episode

W
L1

Most Probable (64)
Monte Carlo (64)
Weighted Distance (16)

MP (64) MC (64) WD (16)
0

50

100

150

200

P
la

nn
in

g
T

im
e/

A
ct

io
n

(m
s)

Figure 2: Follow: Empirical return (top left), belief estimation error (top right), and planning time
(bottom), for different belief tracking approximation.

6.3 RockSample

To test our algorithm against problems with a larger number of states, we consider the RockSample
problem (Smith and Simmons, 2004). In this domain, a robot is on an n×n square board, with rocks

1752

BAYES-ADAPTIVE POMDPS

on some of the cells. Each rock has an unknown binary quality (good or bad). The goal of the robot
is to gather samples of the good rocks. Sampling a good rock yields high reward (+10), in contrast
to sampling a bad rock (-10). However a sample can only be acquired when the robot is in the same
cell as the rock. The number of rocks and their respective positions are fixed and known, while their
qualities are fixed but unknown. A state is defined by the position of the robot on the board and the
quality of all the rocks. With an n× n board and k rocks, the number of states is then n22k. Most
results below assume n = 3 and k = 2, which makes 36 states. The robot can choose between 4
(deterministic) motion actions to move to neighboring cells, the Sample action, and a Sensor action
for each rock, so there are k+5 actions in general. The robot is able to acquire information on the
quality of each rock by using the corresponding sensor action. The sensor returns either GOOD or
BAD, according to the quality of the rock. The sensor can be used when the robot is away from the
rock, but the accuracy depends on the distance d between the robot and the rock. As in the original
problem, the accuracy η of the sensor is given by η= 2−d/d0 .

6.3.1 INFLUENCE OF LARGE NUMBER OF STATES

We consider the case where transition probabilities are known, and the agent must learn its obser-
vation function. The prior knowledge over the structure of the observation function is as follows:

• the probability distribution over observations after performing action CHECKi in state s de-
pends only on the distance between the robot and the rock i;

• at a given distance d, the probability of observing GOOD when the rock is a good one is equal
to the probability of observing BAD when the rock is a bad one. This means that for each
distance d, the robot’s sensor has a probability to give incorrect observations, which doesn’t
depend of the quality of the rock.

These two assumptions seem reasonable in practice, and allow the robot to learn a model efficiently
without having to try all CHECK actions in all states.

We begin by comparing performance of the BAPOMDP framework with different belief ap-
proximations. For the belief tracking, we focus on the Most Probable and Weighted Distance Min-
imization approximations, knowing that the Monte Carlo has given poor results in the two smaller
domains. Each simulation consists of 100 episodes, and the results are averaged over 100 simula-
tions.

As we can see in Figure 3(left), the Most Probable approximation outperforms Weighted Dis-
tance Minimization; in fact, after only 50 iterations, it reaches the same level of performance as a
robot that knows the true model. Figure 3(right) sheds further light on this issue, by showing, for
each episode, the maximum L1 distance between the estimated belief b̂(s) =∑ψ,φ b(s,φ,ψ), and the
correct belief b(s) (assuming the model is known a priori). We see that this distance decreases for
both approximations, and that it reaches values close to 0 after 50 episodes for the Most Probable ap-
proximation. This suggests that the robot has reached a point where it knows its model well enough
to have the same belief over the physical states as a robot who would know the true model. Note
that the error in belief estimate is calculated over the trajectories; it is possible that the estimated
model is wrong in parts of the beliefs which are not visited under the current (learned) policy.

To further verify the scalability of our approach, we consider larger versions of the RockSample
domain in Figure 4. Recall that for k rocks and an n× n board, the domain has state space |S| =
n22k and action space |A| = 5+ k. For this experiment, and all subsequent ones, belief tracking

1753

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

−4

−2

 0

 2

 4

 6

 8

 0 10 20 30 40 50 60 70 80 90 100

R
et

ur
n

Episodes

Most Probable (16)
Weighted Distance (16)

True model
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

B
el

ie
f e

rr
or

 (
L1

)

Episodes

Most Probable (16)
Weighted Distance (16)

Figure 3: RockSample: Empirical return (left) and belief estimation error (right) for different belief
tracking approximation.

in the BAPOMDP is done with the Most Probable approximation (with K = 16). As expected,
the computational time for planning grows quickly with n and k. Better solutions could likely be
obtained with appropriate use of heuristics in the forward search planner (Ross et al., 2008c).

 0.1

 1

 10

 100

 1000

 10000

 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e,
 in

 s
ec

on
ds

n

k = 1
k = 2
k = 3
k = 4

Figure 4: RockSample: Computational time for different values of k and n. All results are computed
with K = 16 and a depth=3 planning horizon.

6.3.2 INFLUENCE OF THE PRIORS

The choice of prior plays an important role in Bayesian Learning. As explained above, in the Rock-
Sample domain we have constrained the structure of the observation probability model structural
assumptions in the prior. For all results presented above, we used a prior made of 4 φ-vectors with
probability 14 each. Each of those vectors φi is made of coefficients (φi j), where φi j is the probability
that the sensor will give a correct observation at distance j. For each of the 4 vectors φi, we sample
the coefficients φi j from an uniform distribution between 0.45 and 0.95. We adopt this approach
for a number of reasons. First, this prior is very general, in assuming that the sensor’s probability

1754

BAYES-ADAPTIVE POMDPS

to make a mistake is uniformly distributed between 0.05 and 0.55, at every distance d. Second,
by sampling a new prior for every simulation, we ensure that the results do not depend closely on
inadvertent similarities between our prior and the correct model.

We now consider two other forms of prior. First, we consider the case where the coefficients
φi j are not sampled uniformly from U[0.45,0.95], but rather from U[φ∗j±ε], where φ

∗
j is the value of

the true model (that is, the probability that the true sensor gives a true observation at distance j).
We consider performance for various levels of noise, 0 ≤ ε ≤ 0.25. This experiment allows us to
measure the influence of prior uncertainty on the performances of our algorithm. The results in
Figure 5 show that the BAPOMDP agent performs well for various levels of initial uncertainty over
the model. As expected, the fact that all the priors have φi j coefficients centered around the true
value φ∗j carries in itself substantial information, in many cases enough for the robot to perform very
well from the first episode (note that the y-axis in Fig. 5 is different than that in Fig. 3). Furthermore,
we observe that the noise has very little influence on the performances of the robot: for all values of
ε, the empirical return is above 6.3 after only 30 episodes.

 5.5

 5.6

 5.7

 5.8

 5.9

 6

 6.1

 6.2

 6.3

 6.4

 6.5

 6.6

 0 10 20 30 40 50 60 70 80 90 100

R
et

ur
n

Episodes

ε = 0
ε = 0.05
ε = 0.10
ε = 0.15
ε = 0.20
ε = 0.25

True model
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10 20 30 40 50 60 70 80 90 100

B
el

ie
f e

rr
or

 (
L1

)

Episodes

ε = 0
ε = 0.05
ε = 0.10
ε = 0.15
ε = 0.20
ε = 0.25

Figure 5: Performance of BAPOMDP with centered uniform priors in RockSample domain, using
the Most Probably (K=16) belief tracking approximation. Empirical return (left). Belief
state tracking error (right).

Second, we consider the case where there is only one φ-vector, which has probability one. This
vector has coefficients φ j, such that for all j, φ j = k−1

k , for different values of k. This represents a
beta distribution of parameters (1,k), where 1 is the count of wrong observations, and k the count
of correct observations. The results presented in Figure 6 show that for all values of k, the rewards
converge towards the optimal value within 100 episodes. We see that for high values of k, the
robot needs more time to converge towards optimal rewards. Indeed, those priors have a large total
count (k+1), which means their variance is small. Thus, they need more time to correct themselves
towards the true model. In particular, the (1,16) is very optimistic (it considers that the sensor
only makes an error with probability 1

17), which causes the robot to make mistakes during the first
experiments, thus earning poor rewards at the beginning, and needing about 80 episodes to learn a
sufficiently good model to achieve near-optimal performance. The right-side graph clearly shows
how the magnitude of the initial k impacts the error in the belief over physical states (indicating that
the robot doesn’t know the quality of the rocks as well as if it knew the correct model). The error in

1755

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

−4

−2

 0

 2

 4

 6

 8

 0 10 20 30 40 50 60 70 80 90 100

R
et

ur
n

Episodes

(1,2)
(1,4)
(1,8)

(1,16)
True model

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 10 20 30 40 50 60 70 80 90 100

B
el

ie
f e

rr
or

 (
L1

)

Episodes

(1,2)
(1,4)
(1,8)

(1,16)

Figure 6: Performance of BAPOMDP with Beta priors in RockSample domain, using the Most
Probable (K=16) belief tracking approximation. Empirical return (left). Belief state track-
ing error (right).

belief state tracking is significantly reduced after about 80 iterations, confirming that our algorithm
is able to overcome poor priors, even those with high initial confidence.

Finally, we consider the case where the true underlying POMDP model is changed such that the
sensor has a constant probability ε of making mistakes for all distances; the prior is sampled as for
the results of Figure 3. This makes the situation harder for the robot, because it increases its sensor’s
overall probability of making mistakes, including at distance zero (i.e., when the robot is on the same
cell as the rock). The empirical results presented in Figure 7 show a decrease in the empirical return
as ε increases. Similarly, as shown in the right graph, the learning performance suffers with higher
values of ε. This is not surprising since a higher ε indicates that the robot’s CHECKs are more prone
to error, which makes it more difficult for the robot to improve its knowledge about its physical
states, and thus about its model. In fact, it is easy to verify that the optimal return (assuming a fully
known model) is lower for the noisier model. In general, in domains where the observations are
noisy or aliased, it is difficult for the agent to learn a good model, as well as perform well (unless
the observations are not necessary for good performance).

7. Related Work

A few recent approaches have tackled the problem of joint planning and learning under partial (state
and model) observability using a Bayesian framework. The work of Poupart and Vlassis (2008) is
probably closest to the BAPOMDP outlined here. Using a similar Bayesian representation of model
uncertainty, they proposed an extension of the Beetle algorithm (Poupart et al., 2006) (original
designed for fully observable domains) to compute an approximate solution for BAPOMDP-type
problems. Their work is presented in the context of factored representations, but the model learning
is done using similar Bayesian mechanisms, namely by updating a posterior represented by a mix-
ture of Dirichlet distributions. They outline approximation methods to maintain a compact belief
set that are similar to the Most Probably and Monte-Carlo methods outlined in Section 5.1 above.
Presumably our Weighted Distance minimization technique could be extended to their factored rep-
resentation, assuming one can compute the distance metric. Finally, they propose an offline planning

1756

BAYES-ADAPTIVE POMDPS

−4

−2

 0

 2

 4

 6

 8

 0 10 20 30 40 50 60 70 80 90 100

R
et

ur
n

Episodes

ε = 0.00
ε = 0.025
ε = 0.050
ε = 0.075

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90 100

B
el

ie
f e

rr
or

 (
L1

)

Episodes

ε = 0.00
ε = 0.025
ε = 0.050
ε = 0.075

Figure 7: Performance of BAPOMDP with varying observation models in RockSample domain.
Empirical return (left). Belief error (right).

algorithm, similar to the literature on point-based POMDP solvers, to find a policy. However we
are not aware of any empirical validation with this approach, thus scalability and expressivity in
experimental domains remains to be determined.

Jaulmes et al. (2005) have for their part considered active learning in partially observable do-
mains where information gathering actions are provided by oracles that reveal the underlying state.
The key assumption of this approach, which is not used in other model-free approaches, concerns
the existence of this oracle (or human) which is able to correctly identify the state following each
transition. This makes it much easier to know how to update the prior. In the same vein than
Jaulmes and colleagues, Doshi et al. (2008) developed an approach for active learning in POMDPs
that can robustly determine a near-optimal policy. To achieve that, they introduced meta-queries
(questions about action) and a risk-averse action selection criterion that allows agents to behave ro-
bustly even with uncertain knowledge of the POMDP model. Finally, Doshi-Velez (2010) proposed
a Bayesian learning framework for the case of POMDPs where the number of states is not known a
priori, thus allowing the number of states to grow gradually as the agent explores the world, while
simultaneously updating a posterior over the parameters.

The work on Universal Artificial Intelligence (Hutter, 2005) presents an interesting alternative
to the framework of BAPOMDPs. It tackles a similar problem, namely sequential decision-making
under (general) uncertainty. But Hutter’s AIXI framework is more general, in that it allows the
model to be sampled from any computable distribution. The learning problem is constrained by
placing an Occam’s razor prior (measured by Kolmogorov complexity) over the space of models.
The main drawback is that inference in this framework is incomputable, though an algorithm is
presented for computing time/space-bounded solutions. Further development of a general purpose
AIXI learning/planning algorithm would be necessary to allow a direct comparison between AIXI
and BAPOMDPs on practical problems. Recent results in Monte-Carlo Planning provide a good
basis for this (Silver and Veness, 2010; Veness et al., 2011).

A number of useful theoretical results have also been published recently. For the specific case
of exploration in reinforcement learning, Asmuth et al. (2009) presented a fully Bayesian analysis
of the performance of a sampling approach. Subsequently, Kolter and Ng (2009) clarified the rela-

1757

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

tion between Bayesian and PAC-MDP approaches and presented a simple algorithm for efficiently
achieving near-Bayesian exploration.

Finally, it is worth emphasizing that Bayesian approaches have also been investigated in the
control literature. The problem of optimal control under uncertain model parameters was originally
introduced by Feldbaum (1961), as the theory of dual control, also sometimes referred to as adap-
tive dual control. Extensions of this theory have been developed for time-varying systems (Filatov
and Unbehauen, 2000). Several authors have studied this problem for different kinds of dynamical
systems : linear time invariant systems under partial observability (Rusnak, 1995), linear time vary-
ing Gaussian models under partial observability (Ravikanth et al., 1992), nonlinear systems with
full observability (Zane, 1992), and more recently a non linear systems under partial observability
(Greenfield and Brockwell, 2003). All this work is targeted towards specific classes of continu-
ous systems, and we are not aware of similar work in the control literature for discrete (or hybrid)
systems.

8. Conclusion

The problem of sequential decision-making under model uncertainty arises in many practical ap-
plications of AI and decision systems. Developing effective models and algorithms to handle these
problems under realistic conditions—including stochasticity, partial state observability, and model
inaccuracy—is imperative if we hope to deploy robots and other autonomous agents in real-world
situations.

This paper focuses in particular on the problem of simultaneous learning and decision-making in
dynamic environments under partial model and state uncertainty. We adopt a model-based Bayesian
reinforcement learning framework, which allows us to explicitly target the exploration-exploitation
problem in a coherent mathematical framework. Our work is a direct extension of previous results
on model-based Bayesian reinforcement learning in fully observable domains.

The main contributions of the paper pertains to the development of the Bayes-Adaptive POMDP
model, and analysis of its theoretical properties. This work addresses a number of interesting ques-
tions, including:

1. defining an appropriate model for POMDP parameter uncertainty,

2. approximating this model while maintaining performance guarantees,

3. performing tractable belief updating, and

4. optimizing action sequences given a posterior over state and model uncertainty.

From the theoretical analysis, we are able to derive simple algorithms for belief tracking and
(near-)optimal decision-making in this model. We illustrate performance of these algorithms in a
collection of synthetic POMDP domains. Results in the Follow problem showed that our approach
is able to learn the motion patterns of two (simulated) individuals. This suggests interesting ap-
plications in human-robot interaction, where we often lack good models of human behavior and
where it is imperative that an agent be able to learn quickly, lest the human user lose interest (this
is in contrast to robot navigation tasks, for which we often have access to more precise dynamical
models and/or high-fidelity simulators). For their part, results of RockSample problem shows how
one should take into account prior knowledge on agent’s sensors when this knowledge is available.

1758

BAYES-ADAPTIVE POMDPS

While the BAPOMDPmodel provides a rich model for sequential decision-making under uncer-
tainty, it has a number of important limitations. First, the model and theoretical analysis are limited
to discrete domains. It is worth noting however that the approximate algorithms extend quite eas-
ily to the continuous case (Ross et al., 2008b), at least for some families of dynamical systems.
Other related references for the continuous case are available in the control literature, as described
in Section 7.

Another limitation is the fact that the model requires specification of a prior. This is standard in
the Bayesian RL framework. The main concern is to ensure that the prior assigns some weight to
the correct model. Our empirical evaluation shows good performance for a range of priors; though
the issue of choosing good priors in large domains remains a challenge in general. Our empirical
results also confirm standard Bayesian intuition, whereby the influence of the prior is particularly
important for any inference and decision-making performed when only a small amount of data has
been observed, but the influence becomes negligible as large amounts of data are acquired.

As a word of caution, problems may arise in cases where Bayesian RL is used to infer both tran-
sition and observation probabilities simultaneously, while the rewards are not explicitly perceived
through the observations (even if the rewards are known a priori). In this challenging setting, the
Bayes-Adaptive POMDP framework as outlined above might converge to an incorrect model if the
initial priors on the transition and observation model are non-informative. This is mainly due to
the fact that many possible parameters may correctly explain the observed action-observation se-
quences. While the agent is able to predict observations correctly, this leads to poor prediction
of rewards and thus possibly sub-optimal long-term rewards. However if the rewards are observ-
able, and their probabilities taken into account in the belief update, such problems do not arise,
in the sense that the agent learns an equivalent model that correctly explains the observed action-
observation-reward sequence and recovers a good policy for the unknown POMDP model. In the
latter case, where rewards are observable, the framework presented in this paper can be used with
only minor modifications to also learn the reward function.

Finally, it is worth pointing out that Bayesian RL methods in general have not been deployed in
real-world domains yet. We hope that the work presented here will motivate further investigation of
practical issues pertaining to the application and deployment of this class of learning approaches.

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC), the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), and the
National Institutes of Health (grant R21DA019800). We would also like to thank Michael Bowling,
Patrick Dallaire, Mohammad Ghavamzadeh, Doina Precup, Prakash Panangaden, as well as the
anonymous reviewers, for offering thoughtful comments on earlier versions of this work.

Appendix A. Theorems and Proofs

This appendix presents the proofs of the theorems presented throughout this paper. Theorems 1 and
2 are presented first, then some useful lemmas, followed by the proofs of the remaining Theorems.

1759

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

Theorem 1 Let (S′,A,Z,T ′,O′,R′,γ) be a BAPOMDP constructed from the POMDP
(S,A,Z,T,O,R,γ). If S is finite, then at any time t, the set S′b′t = {σ ∈ S′|b′t(σ) > 0} has size

|S′b′t | ≤ |S|t+1.

Proof Proof by induction. When t = 0, b′0(s,φ,ψ)> 0 only if φ= φ0 and ψ=ψ0. Hence |S′b′0 | ≤ |S|.
For the general case, assume that |S′b′t−1 | ≤ |S|t . From the definitions of the belief update function,
b′t(s

′,φ′,ψ′) > 0 iff ∃(s,φ,ψ) such that b′t−1(s,φ,ψ) > 0, φ′ = φ+ δass′ and ψ
′ = ψ+ δas′z. Hence, a

particular (s,φ,ψ) such that b′t−1(s,φ,ψ) > 0 yields non-zero probabilities to at most |S| different
states in b′t . Since |S′b′t−1 | ≤ |S|t by assumption, then if we generate |S| different probable states in b′t ,
for each probable state in S′bt−1 it follows that |S

′
b′t
| ≤ |S|t+1.

Theorem 2 For any horizon t, there exists a finite set Γt of functions S′ → R, such that V ∗
t (b) =

maxα∈Γt ∑σ∈S′ α(σ)b(σ).

Proof Proof by induction. This holds true for horizon t = 1, since V ∗
1 (b) =

maxa∈A∑(s,φ,ψ) b(s,φ,ψ)R(s,a). Hence by defining Γ1 = {αa|αa(s,φ,ψ) = R(s,a),a ∈ A}, V ∗
1 (b) =

maxα∈Γ1∑σ∈S′ b(σ)α(σ). By induction, we assume that there exists a set Γt such that V
∗
t (b) =

maxα∈Γt ∑σ∈S′ b(σ)α(σ).
Now V ∗

t+1(b) =maxa∈A
[
∑(s,φ,ψ) b(s,φ,ψ)R(s,a)+∑z∈Z Pr(z|b,a)V ∗

t (b
az)
]
. Hence:

V ∗
t+1(b) = maxa∈A

[
∑(s,φ,ψ) b(s,φ,ψ)R(s,a)+∑z∈Z Pr(z|b,a)maxα∈Γt ∑σ∈S′ b

az(σ)α(σ)
]

= maxa∈A
[
∑(s,φ,ψ) b(s,φ,ψ)R(s,a)+∑z∈Zmaxα∈Γt ∑σ∈S′ Pr(z|b,a)baz(σ)α(σ)

]
= maxa∈A

[
∑(s,φ,ψ) b(s,φ,ψ)R(s,a)+

∑z∈Zmaxα∈Γt ∑(s,φ,ψ)∈S′∑s′∈S b(s,φ,ψ)T
sas′
φ Os′az

ψ α(s′,U(φ,s,a,s′),U(ψ,s′,a,z))
]
.

Thus if we define:

Γt+1 = {αa, f |αa, f (s,φ,ψ) = R(s,a)+
∑z∈Z∑s′∈S T

sas′
φ Os′az

ψ f (z)(s′,U(φ,s,a,s′),U(ψ,s′,a,z)),a ∈ A, f ∈ [Z→ Γt]},

then V ∗
t+1(b) =maxα∈Γt+1∑σ∈S′ b(σ)α(σ) and Γt+1 is finite since |Γt+1|= |A||Γt ||Z|, which is finite

by assumptions that A, Z and Γt are all finite.

For some of the following theorems, lemmas and proofs, we will sometime denote the Dirich-
let count update operator U, as defined for the BAPOMDP, as a vector addition: φ′ = φ+ δass′ =
U(φ,s,a,s′), that is, δass′ is a vector full of zeros, with a 1 for the element φ

a
ss′ .

Lemma 1 For any t ≥ 2, any α-vector αt ∈ Γt can be expressed as αa,α
′

t (s,φ,ψ) = R(s,a) +
γ∑z∈Z∑s∈S′ T

sas′
φ Os′az

ψ α′(z)(s′,φ+δass′ ,ψ+δas′z) for some a∈A, and α′ defining a mapping Z→Γt−1.

Proof Follows from proof of theorem 2.

Lemma 2 Given any a,b,c,d ∈ R, ab− cd = (a−c)(b+d)+(a+c)(b−d)
2 .

1760

BAYES-ADAPTIVE POMDPS

Proof Follows from direct computation.

Lemma 3 Given any φ,φ′ ∈ T , ψ,ψ′ ∈ O, then for all s ∈ S, a ∈ A, we have that
∑s′∈S∑z∈Z

∣∣∣∣ φ′ass′ψ′a
s′z

N sa
φ′ N

s′a
ψ′

− φa
ss′ψ

a
s′z

N sa
φ N s′a

ψ

∣∣∣∣≤ Dsa
S (φ

′,φ)+ sups′∈SD
s′a
Z (ψ′,ψ).

Proof Using lemma 2, we have that:

∑s′∈S∑z∈Z

∣∣∣∣ φ′ass′ψ′a
s′z

N sa
φ′ N

s′a
ψ′

− φa
ss′ψ

a
s′z

N sa
φ N s′a

ψ

∣∣∣∣
= 1

2 ∑s′∈S∑z∈Z

∣∣∣∣(φ′a
ss′

N sa
φ′
− φa

ss′
N sa
φ

)(
ψ′a
s′z

N s′a
ψ′

+
ψa
s′z

N s′a
ψ

)
+

(
φ′a
ss′

N sa
φ′
+

φa
ss′

N sa
φ

)(
ψ′a
s′z

N s′a
ψ′

− ψa
s′z

N s′a
ψ

)∣∣∣∣
≤ 1

2 ∑s′∈S

∣∣∣∣ φ′ass′N sa
φ′
− φa

ss′
N sa
φ

∣∣∣∣∑z∈Z

∣∣∣∣ ψ′a
s′z

N s′a
ψ′

+
ψa
s′z

N s′a
ψ

∣∣∣∣+ 1
2 ∑s′∈S

∣∣∣∣ φ′ass′N sa
φ′
+

φa
ss′

N sa
φ

∣∣∣∣∑z∈Z

∣∣∣∣ ψ′a
s′z

N s′a
ψ′

− ψa
s′z

N s′a
ψ

∣∣∣∣
≤ ∑s′∈S

∣∣∣∣ φ′ass′N sa
φ′
− φa

ss′
N sa
φ

∣∣∣∣+ 1
2

[
sups′∈S∑z∈Z

∣∣∣∣ ψ′a
s′z

N s′a
ψ′

− ψa
s′z

N s′a
ψ

∣∣∣∣][∑s′∈S

∣∣∣∣ φ′ass′N sa
φ′
+

φa
ss′

N sa
φ

∣∣∣∣]
= ∑s′∈S

∣∣∣∣ φ′ass′N sa
φ′
− φa

ss′
N sa
φ

∣∣∣∣+ sups′∈S∑z∈Z

∣∣∣∣ ψ′a
s′z

N s′a
ψ′

− ψa
s′z

N s′a
ψ

∣∣∣∣
= Dsa

S (φ
′,φ)+ sups′∈SD

s′a
Z (ψ′,ψ).

Lemma 4 Given any φ,φ′,Δ ∈ T , then for all s ∈ S, a ∈ A,
Dsa
S (φ+Δ,φ′+Δ)≤ Dsa

S (φ,φ
′)+

2N sa
Δ ∑s′∈S |φass′−φ

′a
ss′ |

(N sa
φ +N sa

Δ)(N sa
φ′ +N

sa
Δ)
.

Proof We have that:

Dsa
S (φ+Δ,φ′+Δ)

= ∑s′∈S

∣∣∣∣ φass′+Δass′N sa
φ +N sa

Δ
− φ′a

ss′+Δ
a
ss′

N sa
φ′ +N

sa
Δ

∣∣∣∣
= ∑s′∈S

∣∣∣∣ (φass′+Δass′)(N sa
φ′ +N

sa
Δ)−(φ′a

ss′+Δ
a
ss′)(N

sa
φ +N sa

Δ)

(N sa
φ +N sa

Δ)(N sa
φ′ +N

sa
Δ)

∣∣∣∣
= ∑s′∈S

∣∣∣∣φass′N sa
φ′ +φ

a
ss′N

sa
Δ +Δa

ss′N
sa
φ′ −φ

′a
ss′N

sa
φ −φ′a

ss′N
sa
Δ −Δa

ss′N
sa
φ

(N sa
φ +N sa

Δ)(N sa
φ′ +N

sa
Δ)

∣∣∣∣
≤ ∑s′∈S

∣∣∣∣ φa
ss′N

sa
φ′ −φ

′a
ss′N

sa
φ

(N sa
φ +N sa

Δ)(N sa
φ′ +N

sa
Δ)

∣∣∣∣+∑s′∈S

∣∣∣∣N sa
Δ (φa

ss′−φ
′a
ss′)+Δ

a
ss′ (N

sa
φ′ −N

sa
φ)

(N sa
φ +N sa

Δ)(N sa
φ′ +N

sa
Δ)

∣∣∣∣
≤ ∑s′∈S

∣∣∣∣φass′N sa
φ′ −φ

′a
ss′N

sa
φ

N sa
φ N sa

φ′

∣∣∣∣+ N sa
Δ [∑s′∈S|φass′−φ′ass′ |]+

∣∣∣N sa
φ′ −N

sa
φ

∣∣∣∑s′∈SΔass′
(N sa

φ +N sa
Δ)(N sa

φ′ +N
sa
Δ)

= Dsa
S (φ,φ

′)+
N sa
Δ [∑s′∈S|φass′−φ′ass′ |]+N sa

Δ

∣∣∣N sa
φ′ −N

sa
φ

∣∣∣
(N sa

φ +N sa
Δ)(N sa

φ′ +N
sa
Δ)

≤ Dsa
S (φ,φ

′)+
2N sa

Δ ∑s′∈S|φass′−φ′ass′ |
(N sa

φ +N sa
Δ)(N sa

φ′ +N
sa
Δ)

.

1761

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

Lemma 5 Given any ψ,ψ′,Δ ∈ O, then for all s ∈ S, a ∈ A,
Dsa
Z (ψ+Δ,ψ′+Δ)≤ Dsa

Z (ψ,ψ
′)+ 2N sa

Δ ∑z∈Z |ψasz−ψ′a
sz|

(N sa
ψ +N sa

Δ)(N sa
ψ′ +N

sa
Δ)
.

Proof Same proof as for lemma 4, except that we sum over z ∈ Z in this case.

Lemma 6 Given any γ ∈ (0,1), then supx γ
x/2x= 2

ln(γ−e) .

Proof We observe that when x = 0, γx/2x = 0 and limx→∞ γx/2x = 0. Furthermore, γx/2 is mono-
tonically decreasing exponentially as x increases, while x is monotonically increasing linearly as x
increases. Thus it is clear that γx/2x will have a unique global maximum in (0,∞). We can find this
maximum by taking the derivative:

∂
∂x(γ

x/2x)

= (lnγ)γx/2x
2 + γx/2

= γx/2((lnγ)x2 +1).

Hence by solving when this is equal 0, we have:

γx/2((lnγ)x2 +1) = 0

⇔ (lnγ)x
2 +1= 0

⇔ x= −2
lnγ =−2logγ(e).

Hence we have that:
γx/2x
≤ −2γ− logγ(e) logγ(e)
= −2e−1 logγ(e)
= 2

ln(γ−e) .

Lemma 7 supα1∈Γ1,s∈S |α1(s,φ,ψ)−α1(s,φ′,ψ′)|= 0 for any φ, φ′, ψ, ψ′.

Proof For any a ∈ A, s ∈ S, |αa1(s,φ,ψ)−αa1(s,φ
′,ψ′)|= |R(s,a)−R(s,a)|= 0.

Theorem 3 Given any φ,φ′ ∈ T , ψ,ψ′ ∈ O and γ ∈ (0,1), then ∀t:

sup
αt∈Γt ,s∈S

|αt(s,φ,ψ)−αt(s,φ′,ψ′)| ≤ 2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[
Dsa
S (φ,φ

′)+Ds′a
Z (ψ,ψ′)+

4
ln(γ−e)

(
∑s′′∈S|φass′′−φ′ass′′ |
(N sa

φ +1)(N sa
φ′ +1)

+
∑z∈Z|ψas′z−ψ′a

s′z|
(N s′a

ψ +1)(N s′a
ψ′ +1)

)]
.

1762

BAYES-ADAPTIVE POMDPS

Proof Using lemma 1, we have that:

|αa,α′
t (s,φ,ψ)−αa,α

′
t (s,φ′,ψ′)|

=

∣∣∣∣R(s,a)+ γ∑s′∈S∑z∈Z
φa
ss′ψ

a
s′z

N sa
φ N s′a

ψ
α′(z)(s′,φ+δass′ ,ψ+δas′z)

−R(s,a)− γ∑s′∈S∑z∈Z
φ′a
ss′ψ

′a
s′z

N sa
φ′ N

s′a
ψ′
α′(z)(s′,φ′+δass′ ,ψ

′+δas′z)

∣∣∣∣
= γ

∣∣∣∣∑s′∈S∑z∈Z

[
φa
ss′ψ

a
s′z

N sa
φ N s′a

ψ
α′(z)(s′,φ+δass′ ,ψ+δas′z)−

φ′a
ss′ψ

′a
s′z

N sa
φ′ N

s′a
ψ′
α′(z)(s′,φ′+δass′ ,ψ

′+δas′z)

]∣∣∣∣
= γ

∣∣∣∣∑s′∈S∑z∈Z

[
φa
ss′ψ

a
s′z

N sa
φ N s′a

ψ
(α′(z)(s′,φ+δass′ ,ψ+δas′z)−α′(z)(s′,φ′+δass′ ,ψ

′+δas′z))

−
(

φ′a
ss′ψ

′a
s′z

N sa
φ′ N

s′a
ψ′

− φa
ss′ψ

a
s′z

N sa
φ N s′a

ψ

)
α′(z)(s′,φ′+δass′ ,ψ

′+δas′z)

]∣∣∣∣
≤ γ∑s′∈S∑z∈Z

φa
ss′ψ

a
s′z

N sa
φ N s′a

ψ

∣∣α′(z)(s′,φ+δass′ ,ψ+δas′z)−α′(z)(s′,φ′+δass′ ,ψ
′+δas′z)

∣∣
+γ∑s′∈S∑z∈Z

∣∣∣∣ φ′ass′ψ′a
s′z

N sa
φ′ N

s′a
ψ′

− φa
ss′ψ

a
s′z

N sa
φ N s′a

ψ

∣∣∣∣ ∣∣α′(z)(s′,φ′+δass′ ,ψ
′+δas′z)

∣∣
≤ γ sup

s′∈S,z∈Z

∣∣α′(z)(s′,φ+δass′ ,ψ+δas′z)−α′(z)(s′,φ′+δass′ ,ψ
′+δas′z)

∣∣
+ γ||R||∞

1−γ ∑s′∈S∑z∈Z

∣∣∣∣ φ′ass′ψ′a
s′z

N sa
φ′ N

s′a
ψ′

− φa
ss′ψ

a
s′z

N sa
φ N s′a

ψ

∣∣∣∣
≤ γ sup

s′∈S,z∈Z

∣∣α′(z)(s′,φ+δass′ ,ψ+δas′z)−α′(z)(s′,φ′+δass′ ,ψ
′+δas′z)

∣∣
+ γ||R||∞

1−γ

(
Dsa
S (φ

′,φ)+ sups′∈SD
s′a
Z (ψ′,ψ)

)
.

The last inequality follows from lemma 3. Hence by taking the sup we get:

supαt∈Γt ,s∈S |αt(s,φ,ψ)−αt(s,φ′,ψ′)|
≤ γ sup

s,s′∈S,a∈A,z∈Z,αt−1∈Γt−1

∣∣αt−1(s′,φ+δass′ ,ψ+δas′z)−αt−1(s′,φ′+δass′ ,ψ
′+δas′z)

∣∣
+ γ||R||∞

1−γ sup
s,s′∈S,a∈A

(
Dsa
S (φ

′,φ)+Ds′a
Z (ψ′,ψ)

)
.

We notice that this inequality defines a recurrence. By unfolding it up to t = 1 we get that:

supαt∈Γt ,s∈S |αt(s,φ,ψ)−αt(s,φ′,ψ′)|
≤ γt−1 sup

α1∈Γ1,s′∈S,Δ∈T ,Δ′∈O| ||Δ||1=||Δ′||1=(t−1)
|α1(s′,φ+Δ,ψ+Δ′)−α1(s′,φ′+Δ,ψ′+Δ′)|

+ γ||R||∞
1−γ ∑t−2i=1 γ

i sup
s,s′∈S,a∈A,Δ∈T ,Δ′∈O| ||Δ||1=||Δ′||1=i

(
Dsa
S (φ

′+Δ,φ+Δ)+Ds′a
Z (ψ′+Δ′,ψ+Δ′)

)
+ γ||R||∞

1−γ sup
s,s′∈S,a∈A

(
Dsa
S (φ

′,φ)+Ds′a
Z (ψ′,ψ)

)
.

1763

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

Applying lemmas 7, 4 and 5 to the last term, we get that:

supαt∈Γt ,s∈S |αt(s,φ,ψ)−αt(s,φ′,ψ′)|
≤ γ||R||∞

1−γ ∑t−2i=1 γ
i sup
s,s′∈S,a∈A,Δ∈T ,Δ′∈O| ||Δ||1=||Δ′||1=i

(
Dsa
S (φ

′,φ)+Ds′a
Z (ψ′,ψ)

+
2N sa

Δ ∑s′′∈S |φass′′−φ
′a
ss′′ |

(N sa
φ +N sa

Δ)(N sa
φ′ +N

sa
Δ)

+
2N s′a

Δ′ ∑z∈Z |ψas′z−ψ
′a
s′z|

(N s′a
ψ +N s′a

Δ′)(N s′a
ψ′ +N s′a

Δ′)

)
+ γ||R||∞

1−γ sup
s,s′∈S,a∈A

(
Dsa
S (φ

′,φ)+Ds′a
Z (ψ′,ψ)

)
= γ||R||∞

1−γ ∑t−2i=1 γ
i/2 sup

s,s′∈S,a∈A,Δ∈T ,Δ′∈O| ||Δ||1=||Δ′||1=i

(
γi/2Dsa

S (φ
′,φ)+ γi/2Ds′a

Z (ψ′,ψ)

+
2γi/2N sa

Δ ∑s′′∈S |φass′′−φ
′a
ss′′ |

(N sa
φ +N sa

Δ)(N sa
φ′ +N

sa
Δ)

+
2γi/2N s′a

Δ′ ∑z∈Z |ψas′z−ψ
′a
s′z|

(N s′a
ψ +N s′a

Δ′)(N s′a
ψ′ +N s′a

Δ′)

)
+ γ||R||∞

1−γ sup
s,s′∈S,a∈A

(
Dsa
S (φ

′,φ)+Ds′a
Z (ψ′,ψ)

)
.

Now we notice that γi/2 ≤ γN
sa
Δ /2 since ||Δ||1 = i, and similarly γi/2 ≤ γN

sa
Δ′ /2. Hence by applying

lemma 6, we get that:

supαt∈Γt ,s∈S |αt(s,φ,ψ)−αt(s,φ′,ψ′)|
≤ γ||R||∞

1−γ ∑t−2i=1 γ
i/2 sup

s,s′∈S,a∈A,Δ∈T ,Δ′∈O| ||Δ||1=||Δ′||1=i

(
Dsa
S (φ

′,φ)+Ds′a
Z (ψ′,ψ)

+
4∑s′′∈S |φass′′−φ

′a
ss′′ |

ln(γ−e)(N sa
φ +N sa

Δ)(N sa
φ′ +N

sa
Δ)

+
4∑z∈Z |ψas′z−ψ

′a
s′z|

ln(γ−e)(N s′a
ψ +N s′a

Δ′)(N s′a
ψ′ +N s′a

Δ′)

)
+ γ||R||∞

1−γ sup
s,s′∈S,a∈A

(
Dsa
S (φ

′,φ)+Ds′a
Z (ψ′,ψ)

)
≤ γ||R||∞

1−γ ∑t−2i=1 γ
i/2 sup

s,s′∈S,a∈A

(
Dsa
S (φ

′,φ)+Ds′a
Z (ψ′,ψ)+

4∑s′′∈S |φass′′−φ
′a
ss′′ |

ln(γ−e)(N sa
φ +1)(N sa

φ′ +1)

+
4∑z∈Z |ψas′z−ψ

′a
s′z|

ln(γ−e)(N s′a
ψ +1)(N s′a

ψ′ +1)

)
+ γ||R||∞

1−γ sup
s,s′∈S,a∈A

(
Dsa
S (φ

′,φ)+Ds′a
Z (ψ′,ψ)

)
≤
(
∑t−2i=0 γ

i/2
) γ||R||∞

1−γ sup
s,s′∈S,a∈A

[
Dsa
S (φ

′,φ)+Ds′a
Z (ψ′,ψ)

+ 4
ln(γ−e)

(
∑s′′∈S |φass′′−φ

′a
ss′′ |

(N sa
φ +1)(N sa

φ′ +1)
+

∑z∈Z |ψas′z−ψ
′a
s′z|

(N s′a
ψ +1)(N s′a

ψ′ +1)

)]
≤
(
∑∞
i=0 γ

i/2
) γ||R||∞

1−γ sup
s,s′∈S,a∈A

[
Dsa
S (φ

′,φ)+Ds′a
Z (ψ′,ψ)

+ 4
ln(γ−e)

(
∑s′′∈S |φass′′−φ

′a
ss′′ |

(N sa
φ +1)(N sa

φ′ +1)
+

∑z∈Z |ψas′z−ψ
′a
s′z|

(N s′a
ψ +1)(N s′a

ψ′ +1)

)]
=

1+
√
γ

1−γ
γ||R||∞
1−γ sup

s,s′∈S,a∈A

[
Dsa
S (φ

′,φ)+Ds′a
Z (ψ′,ψ)+ 4

ln(γ−e)

(
∑s′′∈S |φass′′−φ

′a
ss′′ |

(N sa
φ +1)(N sa

φ′ +1)
+

∑z∈Z |ψas′z−ψ
′a
s′z|

(N s′a
ψ +1)(N s′a

ψ′ +1)

)]
≤ 2γ||R||∞

(1−γ)2 sup
s,s′∈S,a∈A

[
Dsa
S (φ

′,φ)+Ds′a
Z (ψ′,ψ)+ 4

ln(γ−e)

(
∑s′′∈S |φass′′−φ

′a
ss′′ |

(N sa
φ +1)(N sa

φ′ +1)
+

∑z∈Z |ψas′z−ψ
′a
s′z|

(N s′a
ψ +1)(N s′a

ψ′ +1)

)]
.

Lemma 8 Given φ ∈ T , s ∈ S, a ∈ A, then for all Δ ∈ T , ∑s′∈S |φass′−(φa
ss′+Δ

a
ss′)|

(N sa
φ +1)(N sa

φ +N sa
Δ +1) ≤

1
N sa
φ +1 .

1764

BAYES-ADAPTIVE POMDPS

Proof
∑s′∈S |φass′−(φa

ss′+Δ
a
ss′)|

(N sa
φ +1)(N sa

φ +N sa
Δ +1)

=
∑s′∈SΔ

a
ss′

(N sa
φ +1)(N sa

φ +N sa
Δ +1)

= 1
N sa
φ +1

(
N sa
Δ

N sa
Δ +N sa

φ +1

)
.

The term N sa
Δ

N sa
Δ +N sa

φ +1 is monotonically increasing and converge to 1 as N
sa
Δ → ∞. Thus the lemma

follows.

Corollary 1 Given ε > 0, φ ∈ T , s ∈ S, a ∈ A, if N sa
φ > 1

ε − 1 then for all Δ ∈ T we have that
∑s′∈S |φass′−(φa

ss′+Δ
a
ss′)|

(N sa
φ +1)(N sa

φ +N sa
Δ +1) < ε.

Proof According to lemma 8, we know that for all Δ∈ T , we have that ∑s′∈S |φass′−(φa
ss′+Δ

a
ss′)|

(N sa
φ +1)(N sa

φ +N sa
Δ +1) ≤

1
N sa
φ +1 .

Hence if N sa
φ > 1

ε −1, then 1
N sa
φ +1 < ε.

Lemma 9 Given ψ ∈ O, s ∈ S, a ∈ A, then for all Δ ∈ O, ∑z∈Z |ψasz−(ψasz+Δ
a
sz)|

(N sa
ψ +1)(N sa

ψ +N sa
Δ +1) ≤

1
N sa
ψ +1 .

Proof Same proof as lemma 8.

Corollary 2 Given ε > 0, ψ ∈ O, s ∈ S, a ∈ A, if N sa
ψ > 1

ε − 1 then for all Δ ∈ O we have that
∑z∈Z |ψasz−(ψasz+Δ

a
sz)|

(N sa
ψ +1)(N sa

ψ +N sa
Δ +1) < ε

Proof Same proof as corollary 1, but using lemma 9 instead.

Theorem 4 Given any ε> 0 and (s,φ,ψ) ∈ S′ such that ∃a ∈ A,∃s′ ∈ S, N s′a
φ > Nε

S or N
s′a
ψ > Nε

Z,

then ∃(s,φ′,ψ′)∈ S′ such that ∀a∈A,∀s′ ∈ S,N s′a
φ′ ≤Nε

S,N
s′a
ψ′ ≤Nε

Z and |αt(s,φ,ψ)−αt(s,φ′,ψ′)|<
ε holds for all t and αt ∈ Γt .

Proof Consider an arbitrary ε> 0. We first find a bound on N sa
φ and N sa

ψ such that any vector with

higher counts is within ε distance of another vector with lower counts. Let’s define ε′ = ε(1−γ)2
8γ||R||∞ and

ε′′ = ε(1−γ)2 ln(γ−e)
32γ||R||∞ . According to corollary 1, we have that for any φ ∈ T such that N sa

φ > 1
ε′′ − 1,

then for all φ′ ∈ T such that there exists a Δ ∈ T where φ′ = φ+Δ, then
∑s′′∈S |φass′′−φ

′a
ss′′ |

(N sa
φ +1)(N sa

φ′ +1)
< ε′′. Hence

we want to find an N such that given φ ∈ T withN sa
φ > N, there exists a φ′ ∈ T such thatN sa

φ′ ≤ N,
Dsa
S (φ,φ

′) < ε′ and exists a Δ ∈ T such that φ = φ′ +Δ. Let’s consider an arbitrary φ such that

N sa
φ > N. We can construct a new vector φ′ as follows, for all s′ define φ′ass′ =

⌊
Nφa

ss′
N sa
φ

⌋
and for all

other a′ �= a,s′′ �= s, define φ′a
′

s′′s′ = φa
′
s′′s′ for all s

′. Clearly, φ′ ∈ T , such that N−|S| ≤N sa
φ′ ≤N. More-

over, we have that φ′a
′

s′s′′ ≤ φa
′
s′s′′ for all s

′,a′,s′′, and thus there exists a Δ ∈ T such that φ = φ′+Δ.

1765

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

Furthermore, from its construction, we know that ∀s′,
∣∣∣∣ φ′ass′N sa

φ′
− φa

ss′
N sa
φ

∣∣∣∣≤ 1
N sa
φ′
. Hence it is clear from this

that Dsa
S (φ,φ

′)≤ |S|
N−|S| . Thus, if we want D

sa
S (φ,φ

′)< ε′, we just need to take N > |S|(1+ε′)
ε′ . Since we

also want N > 1
ε′′ −1, let’s just define NS = max

(
|S|(1+ε′)

ε′ , 1ε′′ −1
)
. NS = Nε

S , as defined in Section

4, will be our bound on N sa
φ such that, as we have just showed, for any φ ∈ T such that N sa

φ > NS,

we can find a φ′ ∈ T such that N sa
φ′ ≤ NS, Dsa

S (φ,φ
′)< ε′ and

∑s′′∈S |φass′′−φ
′a
ss′′ |

(N sa
φ +1)(N sa

φ′ +1)
< ε′′. Similarly, since

we have a similar corollary (corollary 1) for the observation counts ψ, we can proceed in the same

way and define NZ = max
(
|Z|(1+ε′)

ε′ , 1ε′′ −1
)
, such that for any ψ ∈ O such that N sa

ψ > NZ , we can

find a ψ′ ∈ O such that N sa
ψ′ ≤ NZ , Dsa

Z (ψ,ψ
′) < ε′ and ∑z∈Z |ψasz−ψ′a

sz|
(N sa

ψ +1)(N sa
ψ′ +1)

< ε′′. NZ = Nε
Z as we have

defined in Section 4.
Now let S̃= {(s,φ,ψ)∈ S′|∀s′ ∈ S,a∈A,Ns′a

φ ≤NS & Ns′a
ψ ≤NZ} and consider an arbitrary (s,φ,ψ)∈

S′. For any s′ ∈ S, a∈A, such thatN s′a
φ >NS, there exists a φ′ ∈ T such thatN s′a

φ′ ≤NS,Ds′a
S (φ,φ′)<

ε′ and
∑s′′∈S |φas′s′′−φ

′a
s′s′′ |

(N s′a
φ +1)(N s′a

φ′ +1)
< ε′′ (as we have just showed above). Thus let’s define φ̃as′s′′ = φ′as′s′′ for all

s′′ ∈ S. For any s′ ∈ S, a ∈ A, such that N s′a
φ ≤ NS, just set φ̃as′s′′ = φas′s′′ , ∀s′′ ∈ S. Similarly, for any

s′ ∈ S, a ∈ A, such that N s′a
ψ > NZ , there exists a ψ′ ∈ O such that N s′a

ψ′ ≤ NZ , Ds′a
Z (ψ,ψ′) < ε′ and

∑z∈Z |ψas′z−ψ
′a
s′z|

(N s′a
ψ +1)(N s′a

ψ′ +1)
< ε′′ (as we have just showed above). Thus let’s define ψ̃as′s′′ = ψ′a

s′s′′ for all s
′′ ∈ S.

For any s′ ∈ S, a ∈ A, such that N s′a
ψ ≤ NZ , just set ψ̃as′s′′ = ψas′s′′ ∀s′′ ∈ S. Now it is clear from

this construction that (s, φ̃, ψ̃) ∈ S̃. By Theorem 3, for any t, supαt∈Γt ,s∈S |αt(s,φ,ψ)−αt(s, φ̃, ψ̃)| ≤
2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[
Ds,a
S (φ, φ̃)+Ds′,a

Z (ψ, ψ̃)+ 4
ln(γ−e)

(
∑s′′∈S |φass′′−φ̃

a
ss′′ |

(N sa
φ +1)(N sa

φ̃
+1) +

∑z∈Z |ψas′z−ψ̃
a
s′z|

(N s′a
ψ +1)(N s′a

ψ̃ +1)

)]
<

2γ||R||∞
(1−γ)2

[
ε′+ ε′+ 4

ln(γ−e) (ε
′′+ ε′′)

]
= ε.

Theorem 5 Given any ε > 0, (s,φ,ψ) ∈ S′ and αt ∈ Γt computed from the infinite BAPOMDP.
Let α̃t be the α-vector representing the same conditional plan as αt but computed with the finite
BAPOMDP (S̃ε,A,Z, T̃ε, Õε, R̃ε,γ), then |α̃t(Pε(s,φ,ψ))−αt(s,φ,ψ)|< ε

1−γ .

Proof Let (s,φ′,ψ′) = Pε(s,φ,ψ).

|α̃t(Pε(s,φ,ψ))−αt(s,φ,ψ)|
≤ |α̃t(s,φ′,ψ′)−αt(s,φ′,ψ′)|+ |αt(s,φ′,ψ′)−αt(s,φ,ψ)|
< |α̃t(s,φ′,ψ′)−αt(s,φ′,ψ′)|+ ε (by Theorem 4)
= |γ∑z∈Z∑s′∈S T

sas′
φ′ Os′az

ψ′
[
α̃′(z)(Pε(s′,φ′+δass′ ,ψ

′+δas′z))−α′(z)(s′,φ′+δass′ ,ψ
′+δas′z)

]
|+ ε

≤ γ∑z∈Z∑s′∈S T
sas′
φ′ Os′az

ψ′
∣∣α̃′(z)(Pε(s′,φ′+δass′ ,ψ

′+δas′z))−α′(z)(s′,φ′+δass′ ,ψ
′+δas′z)

∣∣+ ε
≤ γsupz∈Z,s′∈S

∣∣α̃′(z)(Pε(s′,φ′+δass′ ,ψ
′+δas′z))−α′(z)(s′,φ′+δass′ ,ψ

′+δas′z)
∣∣+ ε

≤ γsupαt−1∈Γt−1,(s′,φ′′,ψ′′)∈S′ |α̃t−1(Pε(s′,φ′′,ψ′′))−αt−1(s′,φ′′,ψ′′)|+ ε.

Thus, we have that:

supαt∈Γt ,σ∈S′ |α̃t(Pε(σ))−αt(σ)|
< γsupαt−1∈Γt−1,σ′∈S′ |α̃t−1(Pε(σ′))−αt−1(σ′)|+ ε.

1766

BAYES-ADAPTIVE POMDPS

This defines a recurrence. By unfolding it up to t = 1, where ∀σ ∈ S′, α̃1(Pε(σ)) = α1(σ), we get
that supαt∈Γt ,σ∈S′ |α̃t(Pε(σ))−αt(σ)|< ε∑t−2i=0 γ

i. Hence for all t, this is lower than ε
1−γ .

Theorem 6 Given any ε> 0, and any horizon t, let π̃t be the optimal t-step policy computed from
the finite POMDP (S̃ε,A,Z, T̃ε, Õε, R̃ε,γ), then for any initial belief b the value of executing policy
π̃t in the BAPOMDP Vπ̃t (b)≥V ∗(b)−2 ε

1−γ .

Proof Pick any starting belief b in the BAPOMDP. Let α∗ denote the optimal t-step condition
plan in the BAPOMDP for b: α∗ = argmaxα∈Γt ∑(s,φ,ψ) b(s,φ,ψ)α(s,φ,ψ), such that the value of
this optimal conditional plan is ∑(s,φ,ψ) b(s,φ,ψ)α

∗(s,φ,ψ) = V ∗(b). Denote α̃∗ the corresponding
α-vector representing the same t-step conditional plan in the finite POMDP approximation.

Now let α̃′ = argmaxα̃∈Γ̃t ∑(s,φ,ψ) b(s,φ,ψ)α̃(Pε(s,φ,ψ)) be the optimal t-step conditional plan
in the finite POMDP approximation if we start in belief b. This conditional plan represents exactly
what the policy π̃t would do over t-steps starting in b. Denote α′ the corresponding α-function in the
BAPOMDP representing the same t-step conditional plan. Then the value of executing π̃t starting
in b in the BAPOMDP isVπ̃t (b) =∑(s,φ,ψ) b(s,φ,ψ)α

′(s,φ,ψ). Using Theorem 5, this value is lower
bounded as follows:

Vπ̃t (b)
= ∑(s,φ,ψ) b(s,φ,ψ)α

′(s,φ,ψ)
≥ ∑(s,φ,ψ) b(s,φ,ψ)α̃

′(Pε(s,φ,ψ))− ε
1−γ

≥ ∑(s,φ,ψ) b(s,φ,ψ)α̃
∗(Pε(s,φ,ψ))− ε

1−γ
≥ ∑(s,φ,ψ) b(s,φ,ψ)α

∗(Pε(s,φ,ψ))−2 ε
1−γ

= V ∗(b)−2 ε
1−γ .

References

J. Asmuth, L. Li, M. Littman, A. Nouri, and D. Wingate. A bayesian sampling approach to explo-
ration in reinforcement learning. In Conference on Uncertainty in Artificial Intelligence (UAI),
2009.

P. Auer and R. Ortner. Logarithmic online regret bounds for undiscounted reinforcement learning.
In Neural Information Processing Systems (NIPS), volume 19, pages 49–56, 2006.

P. Auer, T. Jaksch, and R. Ortner. Near-optimal regret bounds for reinforcement learning. In Neural
Information Processing Systems (NIPS), volume 21, 2009.

J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial Intelli-
gence Research (JAIR), 15:319–350, 2001.

R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press, 1961.

R. I. Brafman and M. Tennenholtz. R-max - a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research (JMLR), 3:213–231, 2003.

1767

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

G. Casella and R. Berger. Statistical Inference. Duxbury Resource Center, 2001.

P. S. Castro and D. Precup. Using linear programming for bayesian exploration in markov decision
processes. In International Joint Conference on Artificial Intelligence (IJCAI), pages 2437–2442,
2007.

R. Dearden, N. Friedman, and S. J. Russell. Bayesian Q-learning. In AAAI Conference on Artificial
Intelligence, pages 761–768, 1998.

R. Dearden, N. Friedman, and D. Andre. Model based bayesian exploration. In Conference on
Uncertainty in Artificial Intelligence (UAI), pages 150–159, 1999.

E. Delage and S. Mannor. Percentile optimization in uncertain mdps with application to efficient
exploration. In International Conference on Machine Learning (ICML), 2007.

F. Doshi, J. Pineau, and N. Roy. Reinforcement learning with limited reinforcement: Using Bayes
risk for active learning in POMDPs. In International Conference on Machine Learning, pages
256–263. ACM, 2008.

F. Doshi-Velez. The infinite partially observable markov decision process. In Neural Information
Processing Systems (NIPS), volume 22, 2010.

A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods In Practice. Springer,
2001.

M. Duff. Monte-Carlo algorithms for the improvement of finite-state stochastic controllers: Ap-
plication to bayes-adaptive Markov decision processes. In International Workshop on Artificial
Intelligence and Statistics (AISTATS), 2001.

M. Duff. Optimal Learning: Computational Procedures for Bayes-Adaptive Markov Decision Pro-
cesses. PhD thesis, University of Massachusetts Amherst, Amherst, MA, 2002.

Y. Engel, S. Mannor, and R.Meir. Bayes meets Bellman: The gaussian process approach to temporal
difference learning. In International Conference on Machine Learning (ICML), pages 154–161,
2003.

Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with gaussian processes. In International
Conference on Machine learning (ICML), pages 201–208, 2005.

A. A. Feldbaum. Dual control theory, parts i and ii. Automation and Remote Control, 21:874–880
and 1033–1039, 1961.

N. M. Filatov and H. Unbehauen. Survey of adaptive dual control methods. In IEEE Control Theory
and Applications, volume 147, pages 118–128, 2000.

M. Ghavamzadeh and Y. Engel. Bayesian policy gradient algorithms. In Neural Information Pro-
cessing Systems (NIPS), volume 19, pages 457–464, 2007a.

M. Ghavamzadeh and Y. Engel. Bayesian actor-critic algorithms. In International Conference on
Machine Learning (ICML), pages 297–304, 2007b.

1768

BAYES-ADAPTIVE POMDPS

A. Greenfield and A. Brockwell. Adaptive control of nonlinear stochastic systems by particle filter-
ing. In International Conference on Control and Automation (ICCA), pages 887–890, 2003.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning bayesian networks: The combination of
knowledge and statistical data. Machine Learning, 20(3):197–243, 1995.

M. Hutter. Universal Artificial Intelligence. Springer, 2005.

R. Jaulmes, J. Pineau, and D. Precup. Active learning in partially observable markov decision
processes. European Conference on Machine Learning, pages 601–608, 2005.

E. T. Jaynes. Prior probabilities. IEEE Transactions on Systems Science and Cybernetics, 4:227–
241, 1968.

H. Jeffreys. Theory of Probability. Oxford University Press, 1961.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101:99–134, 1998.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. In International
Conference on Machine Learning (ICML), pages 260–268, 1998.

M. J. Kearns, Y. Mansour, and A. Y. Ng. A sparse sampling algorithm for near-optimal planning
in large markov decision processes. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 1324–1331, 1999.

J. Zico Kolter and Andrew Y. Ng. Near-bayesian exploration in polynomial time. In International
Conference on Machine Learning (ICML), 2009.

M. L. Littman, R. S. Sutton, and S. Singh. Predictive representations of state. In Neural Information
Processing Systems (NIPS), volume 14, pages 1555–1561, 2002.

A. K. McCallum. Reinforcement Learning with Selective Perception and Hidden State. PhD thesis,
University of Rochester, 1996.

S. Paquet, L. Tobin, and B. Chaib-draa. An online POMDP algorithm for complex multiagent
environments. In International Joint Conference on Autonomous Agents and Multi Agent Systems
(AAMAS), pages 970–977, 2005.

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: an anytime algorithm for POMDPs.
In International Joint Conference on Artificial Intelligence (IJCAI), pages 1025–1032, 2003.

P. Poupart and N. Vlassis. Model-based bayesian reinforcement learning in partially observable
domains. In International Symposium on Artificial Intelligence and Mathematics (ISAIM), 2008.

P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analytic solution to discrete bayesian reinforce-
ment learning. In International Conference on Machine learning (ICML), pages 697–704, 2006.

R. Ravikanth, S.P. Meyn, and L.J. Brown. Bayesian adaptive control of time varying systems. In
IEEE Conference on Decision and Control, pages 705–709, 1992.

1769

ROSS, PINEAU, CHAIB-DRAA AND KREITMANN

S. Ross, B. Chaib-draa, and J. Pineau. Bayes-adaptive POMDPs. In Neural Information Processing
Systems (NIPS), volume 20, pages 1225–1232, 2008a.

S. Ross, B. Chaib-draa, and J. Pineau. Bayesian reinforcement learning in continuous POMDPs. In
International Conference on Robotics and Automation (ICRA), 2008b.

S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online POMDPs. Journal of Artificial Intelligence
Research (JAIR), 32:663–704, 2008c.

I. Rusnak. Optimal adaptive control of uncertain stochastic discrete linear systems. In IEEE Inter-
national Conference on Systems, Man and Cybernetics, pages 4521–4526, 1995.

D. Silver and J. Veness. Monte-Carlo planning in large POMDPs. In Neural Information Processing
Systems (NIPS), 2010.

R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov processes
over a finite horizon. Operations Research, 21(5):1071–1088, Sep/Oct 1973.

T. Smith and R. Simmons. Heuristic search value iteration for POMDPs. In Conference on Uncer-
tainty in Artificial Intelligence (UAI), pages 520–527, 2004.

E. J. Sondik. The Optimal Control of Partially Observable Markov Processes. PhD thesis, Stanford
University, 1971.

M. T. J. Spaan and N. Vlassis. Perseus: randomized point-based value iteration for POMDPs.
Journal of Artificial Intelligence Research (JAIR), 24:195–220, 2005.

A. L. Strehl and M. L. Littman. A theoretical analysis of model-based interval estimation. In
International Conference on Machine learning (ICML), pages 856–863, 2005.

M. Strens. A bayesian framework for reinforcement learning. In International Conference on
Machine Learning (ICML), 2000.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, 1998.

C. Szepesvari. Algorithms for Reinforcement Learning. Morgan & Claypool, 2010.

A. Tewari and P. Bartlett. Optimistic linear programming gives logarithmic regret for irreducible
MDPs. In Neural Information Processing Systems (NIPS), volume 20, pages 1505–1512, 2008.

J. Veness, K. S. Ng, M. Hutter, W. Uther, and D. Silver. A monte-carlo aixi approximation. Journal
of Artificial Intelligence Research (JAIR), 2011.

T. Wang, D. Lizotte, M. Bowling, and D. Schuurmans. Bayesian sparse sampling for on-line reward
optimization. In International Conference on Machine learning (ICML), pages 956–963, 2005.

O. Zane. Discrete-time bayesian adaptive control problems with complete information. In IEEE
Conference on Decision and Control, pages 2748–2749, 1992.

1770

Journal of Machine Learning Research 12 (2011) 1771-1812 Submitted 9/10; Revised 2/11; Published 5/11

Learning Latent Tree Graphical Models

Myung Jin Choi MYUNGJIN@MIT.EDU
Stochastic Systems Group
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA 02139

Vincent Y. F. Tan VTAN@WISC.EDU
Department of Electrical and Computer Engineering
University of Wisconsin-Madison
Madison, WI 53706

Animashree Anandkumar A.ANANDKUMAR@UCI.EDU
Center for Pervasive Communications and Computing
Electrical Engineering and Computer Science
University of California, Irvine
Irvine, CA 92697

Alan S. Willsky WILLSKY@MIT.EDU
Stochastic Systems Group
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA 02139

Editor:Marina Meilă

Abstract
We study the problem of learning a latent tree graphical model where samples are available only
from a subset of variables. We propose two consistent and computationally efficient algorithms
for learning minimal latent trees, that is, trees without any redundant hidden nodes. Unlike many
existing methods, the observed nodes (or variables) are not constrained to be leaf nodes. Our al-
gorithms can be applied to both discrete and Gaussian random variables and our learned models
are such that all the observed and latent variables have the same domain (state space). Our first
algorithm, recursive grouping, builds the latent tree recursively by identifying sibling groups using
so-called information distances. One of the main contributions of this work is our second algo-
rithm, which we refer to as CLGrouping. CLGrouping starts with a pre-processing procedure in
which a tree over the observed variables is constructed. This global step groups the observed nodes
that are likely to be close to each other in the true latent tree, thereby guiding subsequent recursive
grouping (or equivalent procedures such as neighbor-joining) on much smaller subsets of variables.
This results in more accurate and efficient learning of latent trees. We also present regularized ver-
sions of our algorithms that learn latent tree approximations of arbitrary distributions. We compare
the proposed algorithms to other methods by performing extensive numerical experiments on var-
ious latent tree graphical models such as hidden Markov models and star graphs. In addition, we
demonstrate the applicability of our methods on real-world data sets by modeling the dependency
structure of monthly stock returns in the S&P index and of the words in the 20 newsgroups data set.

Keywords: graphical models, Markov random fields, hidden variables, latent tree models, struc-
ture learning

c©2011 Myung Jin Choi, Vincent Y. F. Tan, Animashree Anandkumar and Alan S. Willsky.

CHOI, TAN, ANANDKUMAR AND WILLSKY

1. Introduction

The inclusion of latent variables in modeling complex phenomena and data is a well-recognized and
a valuable construct in a variety of applications, including bio-informatics and computer vision, and
the investigation of machine-learning methods for models with latent variables is a substantial and
continuing direction of research.

There are three challenging problems in learning a model with latent variables: learning the
number of latent variables; inferring the structure of how these latent variables relate to each other
and to the observed variables; and estimating the parameters characterizing those relationships. Is-
sues that one must consider in developing a new learning algorithm include developing tractable
methods; incorporating the tradeoff between the fidelity to the given data and generalizability; de-
riving theoretical results on the performance of such algorithms; and studying applications that
provide clear motivation and contexts for the models so learned.

One class of models that has received considerable attention in the literature is the class of latent
tree models, that is, graphical models Markov on trees, in which variables at some nodes represent
the original (observed) variables of interest while others represent the latent variables. The appeal
of such models for computational tractability is clear: with a tree-structured model describing the
statistical relationships, inference—processing noisy observations of some or all of the original
variables to compute the estimates of all variables—is straightforward and scalable. Although the
class of tree-structured models, with or without latent variables, is a constrained one, there are
interesting applications that provide strong motivation for the work presented here. In particular, a
very active avenue of research in computer vision is the use of context—for example, the nature of
a scene to aid the reliable recognition of objects (and at the same time to allow the recognition of
particular objects to assist in recognizing the scene). For example, if one knows that an image is that
of an office, then one might expect to find a desk, a monitor on that desk, and perhaps a computer
mouse. Hence if one builds a model with a latent variable representing that context (“office”) and
uses simple, noisy detectors for different object types, one would expect that the detection of a desk
would support the likelihood that one is looking at an office and through that enhance the reliability
of detecting smaller objects (monitors, keyboards, mice, etc.). Work along these lines, including by
some of the authors of this paper (Parikh and Chen, 2007; Choi et al., 2010), show the promise of
using tree-based models of context.

This paper considers the problem of learning tree-structured latent models. If all variables are
observed in the tree under consideration, then the well-known algorithm of Chow and Liu (1968)
provides a tractable algorithm for performing maximum likelihood (ML) estimation of the tree
structure. However, if not all variables are observed, that is, for latent tree models, then ML esti-
mation is NP-hard (Roch, 2006). This has motivated a number of investigations of other tractable
methods for learning such trees as well as theoretical guarantees on performance. Our work repre-
sents a contribution to this area of investigation.

There are three main contributions in our paper. Firstly, by adopting a statistical distance-based
framework, we develop two new algorithms for the learning of latent trees—recursive grouping and
CLGrouping, which apply equally well to discrete and Gaussian models. Secondly, we provide
consistency guarantees (both structural and parametric) as well as very favorable computational
and sample complexity characterizations for both of our algorithms. Thirdly, through extensive
numerical experiments on both synthetic and real-world data, we demonstrate the superiority of our

1772

LEARNING LATENT TREE GRAPHICAL MODELS

approach for a wide variety of models ranging from ones with very large tree diameters (e.g., hidden
Markov models (HMMs)) to star models and complete trees.1

Our first algorithm, which we refer to as recursive grouping, constructs a latent tree in a bottom-
up fashion, grouping nodes into sibling groups that share the same parent node, recursively at each
level of the resulting hierarchy (and allowing for some of the observed variables to play roles at
arbitrary levels in the resulting hierarchy). Our second algorithm, CLGrouping first implements a
global construction step, namely producing the Chow-Liu tree for the observed variables without
any hidden nodes. This global step then provides guidance for groups of observed nodes that are
likely to be topologically close to each other in the latent tree, thereby guiding subsequent recursive
grouping or neighbor-joining (Saitou and Nei, 1987) computations. Each of these algorithms is
consistent and has excellent sample and computational complexity.2

As Pearl (1988) points out, the identification of latent tree models has some built-in ambigu-
ity, as there is an entire equivalence class of models in the sense that when all latent variables are
marginalized out, each model in this class yields the same joint distribution over the observed vari-
ables. For example, we can take any such latent model and add another hidden variable as a leaf
node connected to only one other (hidden or observed) node. Hence, much as one finds in fields such
as state space dynamic systems (e.g., Luenberger, 1979, Section 8), there is a notion of minimality
that is required here, and our results are stated in terms of consistent learning of such minimal latent
models.

1.1 Related Work

The relevant literature on learning latent models is vast and in this section, we summarize the main
lines of research in this area.

The classical latent cluster models (LCM) consider multivariate distributions in which there
exists only one latent variable and each state of that variable corresponds to a cluster in the data
(Lazarsfeld and Henry, 1968). Hierarchical latent class (HLC) models (Zhang and Kočka, 2004;
Zhang, 2004; Chen et al., 2008) generalize these models by allowing multiple latent variables. HLC
allows latent variables to have different number of states, but assume that all observed nodes are at
the leaves of the tree. Their learning algorithm is based on a greedy approach of making one local
move at a time (e.g., introducing one hidden node, or replacing an edge), which is computationally
expensive and does not have consistency guarantees. A greedy learning algorithm for HLC called
BIN is proposed in Harmeling and Williams (2010), which is computationally more efficient. In
addition, Silva et al. (2006) considered the learning of directed latent models using so-called tetrad
constraints, and there have also been attempts to tailor the learning of latent tree models in order
to perform approximate inference accurately and efficiently downstream (Wang et al., 2008). In
all these works, the latent variables can have different state spaces, but the observed nodes are
required to be leaves of the tree. In contrast, we fix the state space of each hidden node, but allow
the possibility that some observed nodes are internal nodes (non-leaves). This assumption leads to
an identifiable model, and we provide algorithms with consistency guarantees which can recover
the correct structure under mild conditions. In contrast, the works in Zhang and Kočka (2004);

1. A tree is called a complete k-ary tree (or k-complete tree), if all its internal nodes have degree k and there exists one
node (commonly referred as the root node) that has the exactly same distance to all leaf nodes.

2. As we will see, depending on the true latent tree model, one or the other of these may be more efficient. Roughly
speaking, for smaller diameter graphs (such as the star), recursive grouping is faster, and for larger diameter graphs
(such as an HMM), CLgrouping is more efficient.

1773

CHOI, TAN, ANANDKUMAR AND WILLSKY

Zhang (2004); Chen et al. (2008); Harmeling and Williams (2010) do not provide such consistency
guarantees.

Many authors also propose reconstructing latent trees using the expectation maximization (EM)
algorithm (Elidan and Friedman, 2005; Kemp and Tenenbaum, 2008). However, as with all other
EM-based methods, these approaches depend on the initialization and suffer from the possibility
of being trapped in local optima and thus no consistency guarantees can be provided. At each
iteration, a large number of candidate structures need to be evaluated, so these methods assume
that all observed nodes are the leaves of the tree to reduce the number of candidate structures.
Algorithms have been proposed (Hsu et al., 2009) with sample complexity guarantees for learning
HMMs under the condition that the joint distribution of the observed variables generated by distinct
hidden states are distinct.

Another related line of research is that of (hierarchical) clustering. See Jain et al. (1999), Bal-
can and Gupta (2010) and the references therein for extensive discussions. The primary objective of
hierarchical clustering is to build a tree consisting of nested partitions of the observed data, where
the leaves (typically) consist of single data points while the internal nodes represent coarser parti-
tions. The difference from our work is that hierarchical clustering does not assume a probabilistic
graphical model (Markov random field) on the data, but imposes constraints on the data points
via a similarity matrix. We are interested in learning tree-structured graphical models with hidden
variables.

The reconstruction of latent trees has been studied extensively by the phylogenetic community
where sequences of extant species are available and the unknown phylogenetic tree is to be inferred
from these sequences. See Durbin et al. (1999) for a thorough overview. Efficient algorithms
with provable performance guarantees are available (Erdős et al., 1999; Daskalakis et al., 2006).
However, the works in this area mostly assume that only the leaves are observed and each internal
node (which is hidden) has the same degree except for the root. The most popular algorithm for
constructing phylogenetic trees is the neighbor-joining (NJ) method by Saitou and Nei (1987). Like
our recursive grouping algorithm, the input to the algorithm is a set of statistical distances between
observed variables. The algorithm proceeds by recursively pairing two nodes that are the closest
neighbors in the true latent tree and introducing a hidden node as the parent of the two nodes. For
more details on NJ, the reader is referred to Durbin et al. (1999, Section 7.3).

Another popular class of reconstruction methods used in the phylogenetic community is the
family of quartet-based distance methods (Bandelth and Dress, 1986; Erdős et al., 1999; Jiang
et al., 2001).3 Quartet-based methods first construct a set of quartets for all subsets of four observed
nodes. Subsequently, these quartets are then combined to form a latent tree. However, when we
only have access to the samples at the observed nodes, then it is not straightforward to construct a
latent tree from a set of quartets since the quartets may be not be consistent.4 In fact, it is known
that the problem of determining a latent tree that agrees with the maximum number of quartets is
NP-hard (Steel, 1992), but many heuristics have been proposed (Farris, 1972; Sattath and Tversky,
1977). Also, in practice, quartet-based methods are usually much less accurate than NJ (St. John
et al., 2003), and hence, we only compare our proposed algorithms to NJ in our experiments. For
further comparisons (the sample complexity and other aspects of) between the quartet methods and
NJ, the reader is referred to Csűrös (2000) and St. John et al. (2003).

3. A quartet is simply an unrooted binary tree on a set of four observed nodes.
4. The term consistent here is not the same as the estimation-theoretic one. Here, we say that a set of quartets is
consistent if there exists a latent tree such that all quartets agree with the tree.

1774

LEARNING LATENT TREE GRAPHICAL MODELS

Another distance-based algorithm was proposed in Pearl (1988, Section 8.3.3). This algorithm
is very similar in spirit to quartet-based methods but instead of finding quartets for all subsets of
four observed nodes, it finds just enough quartets to determine the location of each observed node in
the tree. Although the algorithm is consistent, it performs poorly when only the samples of observed
nodes are available (Pearl, 1988, Section 8.3.5).

The learning of phylogenetic trees is related to the emerging field of network tomography (Cas-
tro et al., 2004) in which one seeks to learn characteristics (such as structure) from data which are
only available at the end points (e.g., sources and sinks) of the network. However, again observations
are only available at the leaf nodes and usually the objective is to estimate the delay distributions
corresponding to nodes linked by an edge (Tsang et al., 2003; Bhamidi et al., 2009). The modeling
of the delay distributions is different from the learning of latent tree graphical models discussed in
this paper.

1.2 Paper Organization

The rest of the paper is organized as follows. In Section 2, we introduce the notations and termi-
nologies used in the paper. In Section 3, we introduce the notion of information distances which
are used to reconstruct tree models. In the subsequent two sections, we make two assumptions:
Firstly, the true distribution is a latent tree and secondly, perfect knowledge of information distance
of observed variables is available. We introduce recursive grouping in Section 4. This is followed
by our second algorithm CLGrouping in Section 5. In Section 6, we relax the assumption that the
information distances are known and develop sample based algorithms and at the same time provide
sample complexity guarantees for recursive grouping and CLGrouping. We also discuss extensions
of our algorithms for the case when the underlying model is not a tree and our goal is to learn an
approximation to it using a latent tree model. We demonstrate the empirical performance of our
algorithms in Section 7 and conclude the paper in Section 8. The appendix includes proofs for the
theorems presented in the paper.

2. Latent Tree Graphical Models

In this section, we provide some background and introduce the notion of minimal-tree extensions
and consistency.

2.1 Undirected Graphs

Let G = (W,E) be an undirected graph with vertex (or node) set W = {1, . . . ,M} and edge set
E ⊂
(W
2

)
. Let nbd(i;G) and nbd[i;G] be the set of neighbors of node i and the closed neighborhood

of i respectively, that is, nbd[i;G] := nbd(i;G)∪{i}. If an undirected graph does not include any
loops, it is called a tree. A collection of disconnected trees is called a forest.5 For a tree T = (W,E),
the set of leaf nodes (nodes with degree 1), the maximum degree, and the diameter are denoted by
Leaf(T), Δ(T), and diam(T) respectively. The path between two nodes i and j in a tree T = (W,E),
which is unique, is the set of edges connecting i and j and is denoted as Path((i, j);E). The distance
between any two nodes i and j is the number of edges in Path((i, j);E). In an undirected tree, we
can choose a root node arbitrarily, and define the parent-child relationships with respect to the root:

5. Strictly speaking, a graph with no loops is called a forest, and it is called a tree only if every node is connected to
each other.

1775

CHOI, TAN, ANANDKUMAR AND WILLSKY

for a pair neighboring nodes i and j, if i is closer to the root than j is, then i is called the parent of
j, and j is called the child of i. Note that the root node does not have any parent, and for all other
nodes in the tree, there exists exactly one parent. We use C (i) to denote the set of child nodes. A set
of nodes that share the same parent is called a sibling group. A family is the union of the siblings
and the associated parent.

A latent tree is a tree with node setW := V ∪H, the union of a set of observed nodes V (with
m= |V |), and a set of latent (or hidden) nodes H. The effective depth δ(T ;V) (with respect to V) is
the maximum distance of a hidden node to its closest observed node, that is,

δ(T ;V) :=max
i∈H

min
j∈V

|Path((i, j);T)|. (1)

2.2 Graphical Models

An undirected graphical model (Lauritzen, 1996) is a family of multivariate probability distributions
that factorize according to a graph G = (W,E). More precisely, let X = (X1, . . . ,XM) be a random
vector, where each random variable Xi, which takes on values in an alphabet X , corresponds to vari-
able at node i ∈V . The set of edges E encodes the set of conditional independencies in the model.
The random vectorX is said to beMarkov onG if for every i, the random variable Xi is conditionally
independent of all other variables given its neighbors, that is, if p is the joint distribution6 of X, then

p(xi|xnbd(i;G)) = p(xi|x\i), (2)

where x\i denotes the set of all variables7 excluding xi. Equation (2) is known as the local Markov
property.

In this paper, we consider both discrete and Gaussian graphical models. For discrete models,
the alphabet X = {1, . . . ,K} is a finite set. For Gaussian graphical models, X =R and furthermore,
without loss of generality, we assume that the mean is known to be the zero vector and hence, the
joint distribution

p(x) =
1

det(2πΣ)1/2
exp

(
−1
2
xTΣ−1x

)
depends only on the covariance matrixΣ.

An important and tractable class of graphical models is the set of tree-structured graphical mod-
els, that is, multivariate probability distributions that are Markov on an undirected tree T = (W,E).
It is known from junction tree theory (Cowell et al., 1999) that the joint distribution p for such a
model factorizes as

p(x1, . . . ,xM) =∏
i∈W

p(xi) ∏
(i, j)∈E

p(xi,x j)

p(xi)p(x j)
. (3)

That is, the sets of marginal {p(xi) : i ∈W} and pairwise joints on the edges {p(xi,x j) : (i, j) ∈ E}
fully characterize the joint distribution of a tree-structured graphical model.

A special class of a discrete tree-structured graphical models is the set of symmetric discrete
distributions. This class of models is characterized by the fact that the pairs of variables (Xi,Xj) on

6. We abuse the term distribution to mean a probability mass function in the discrete case (density with respect to the
counting measure) and a probability density function (density with respect to the Lebesgue measure) in the continuous
case.

7. We will use the terms node, vertex and variable interchangeably in the sequel.

1776

LEARNING LATENT TREE GRAPHICAL MODELS

all the edges (i, j) ∈ E follow the conditional probability law:

p(xi|x j) =
{
1− (K−1)θi j, if xi = x j,
θi j, otherwise,

(4)

and the marginal distribution of every variable in the tree is uniform, that is, p(xi) = 1/K for all
xi ∈ X and for all i ∈ V ∪H. The parameter θi j ∈ (0,1/K) in (4), which does not depend on the
state values xi,x j ∈ X (but can be different for different pairs (i, j) ∈ E), is known as the crossover
probability.

Let xn := {x(1), . . . ,x(n)} be a set of n i.i.d. samples drawn from a graphical model (distribution)
p, Markov on a latent tree Tp = (W,Ep), whereW = V ∪H. Each sample x(l) ∈ XM is a length-M
vector. In our setup, the learner only has access to samples drawn from the observed node setV , and
we denote this set of sub-vectors containing only the elements inV , as xnV := {x(1)V , . . . ,x(n)V }, where
each observed sample x(l)V ∈ Xm is a length-m vector. Our algorithms learn latent tree structures
using the information distances (defined in Section 3) between pairs of observed variables, which
can be estimated from samples.

We now comment on the above model assumptions. Note that we assume that the the hidden
variables have the same domain as the observed ones (all of which also have a common domain).
We do not view this as a serious modeling restriction since we develop efficient algorithms with
strong theoretical guarantees, and these algorithms have very good performance on real-world data
(see Section 7). Nonetheless, it may be possible to develop a unified framework to incorporate
variables with different state spaces (i.e., both continuous and discrete) under a reproducing kernel
Hilbert space (RKHS) framework along the lines of Song et al. (2010). We defer this to future work.

2.3 Minimal Tree Extensions

Our ultimate goal is to recover the graphical model p, that is, the latent tree structure and its param-
eters, given n i.i.d. samples of the observed variables xnV . However, in general, there can be multiple
latent tree models which result in the same observed statistics, that is, the same joint distribution pV
of the observed variables. We consider the class of tree models where it is possible to recover the
latent tree model uniquely and provide necessary conditions for structure identifiability, that is, the
identifiability of the edge set E.

Firstly, we limit ourselves to the scenario where all the random variables (both observed and
latent) take values on a common alphabet X . Thus, in the Gaussian case, each hidden and observed
variable is a univariate Gaussian. In the discrete case, each variable takes on values in the same
finite alphabet X . Note that the model may not be identifiable if some of the hidden variables are
allowed to have arbitrary alphabets. As an example, consider a discrete latent tree model with binary
observed variables (K = 2). A latent tree with the simplest structure (fewest number of nodes) is a
tree in which all m observed binary variables are connected to one hidden variable. If we allow the
hidden variable to take on 2m states, then the tree can describe all possible statistics among the m
observed variables, that is, the joint distribution pV can be arbitrary.8

A probability distribution pV (xV) is said to be tree-decomposable if it is the marginal (of vari-
ables in V) of a tree-structured graphical model p(xV ,xH). In this case, p (over variables inW) is
said to be a tree extension of pV (Pearl, 1988). A distribution p is said to have a redundant hid-
den node h ∈ H if we can remove h and the marginal on the set of visible nodes V remains as pV .

8. This follows from a elementary parameter counting argument.

1777

CHOI, TAN, ANANDKUMAR AND WILLSKY

(a)

h1

1

2 3 4 5

6

h3h2

(b)

h1

1

2 3 4 5

6

h3h2

h5

h4

Figure 1: Examples of minimal latent trees. Shaded nodes are observed and unshaded nodes are
hidden. (a) An identifiable tree. (b) A non-identifiable tree because h4 and h5 have
degrees less than 3.

The following conditions ensure that a latent tree does not include a redundant hidden node (Pearl,
1988):

(C1) Each hidden variable has at least three neighbors (which can be either hidden or observed).
Note that this ensures that all leaf nodes are observed (although not all observed nodes need
to be leaves).

(C2) Any two variables connected by an edge in the tree model are neither perfectly dependent nor
independent.

Figure 1(a) shows an example of a tree satisfying (C1). If (C2), which is a condition on param-
eters, is also satisfied, then the tree in Figure 1(a) is identifiable. The tree shown in Figure 1(b) does
not satisfy (C1) because h4 and h5 have degrees less than 3. In fact, if we marginalize out the hidden
variables h4 and h5, then the resulting model has the same tree structure as in Figure 1(a).

We assume throughout the paper that (C2) is satisfied for all probability distributions. Let T≥3
be the set of (latent) trees satisfying (C1). We refer to T≥3 as the set of minimal (or identifiable)
latent trees. Minimal latent trees do not contain redundant hidden nodes. The distribution p (over
W and Markov on some tree in T≥3) is said to be a minimal tree extension of pV . As illustrated in
Figure 1, using marginalization operations, any non-minimal latent tree distribution can be reduced
to a minimal latent tree model.

Proposition 1 (Minimal Tree Extensions) (Pearl, 1988, Section 8.3)

(i) For every tree-decomposable distribution pV , there exists a minimal tree extension p Markov
on a tree T ∈ T≥3, which is unique up to the renaming of the variables or their values.

(ii) For Gaussian and binary distributions, if pV is known exactly, then the minimal tree extension
p can be recovered.

(iii) The structure of T is uniquely determined by the pairwise distributions of observed variables
p(xi,x j) for all i, j ∈V.

1778

LEARNING LATENT TREE GRAPHICAL MODELS

2.4 Consistency

We now define the notion of consistency. In Section 6, we show that our latent tree learning algo-
rithms are consistent.

Definition 2 (Consistency) A latent tree reconstruction algorithm A is a map from the observed
samples xnV to an estimated tree T̂ n and an estimated tree-structured graphical model p̂n. We say
that a latent tree reconstruction algorithm A is structurally consistent if there exists a graph homo-
morphism9 h such that

lim
n→∞

Pr(h(T̂ n) �= Tp) = 0. (5)

Furthermore, we say that A is risk consistent if to every ε> 0,

lim
n→∞

Pr(D(p || p̂n)> ε) = 0, (6)

where D(p || p̂n) is the KL-divergence (Cover and Thomas, 2006) between the true distribution p
and the estimated distribution p̂n.

In the following sections, we design structurally and risk consistent algorithms for (minimal)
Gaussian and symmetric discrete latent tree models, defined in (4). Our algorithms use pairwise
distributions between the observed nodes. However, for general discrete models, pairwise distribu-
tions between observed nodes are, in general, not sufficient to recover the parameters (Chang and
Hartigan, 1991). Therefore, we only prove structural consistency, as defined in (5), for general dis-
crete latent tree models. For such distributions, we consider a two-step procedure for structure and
parameter estimation: Firstly, we estimate the structure of the latent tree using the algorithms sug-
gested in this paper. Subsequently, we use the ExpectationMaximization (EM) algorithm (Dempster
et al., 1977) to infer the parameters. Note that, as mentioned previously, risk consistency will not
be guaranteed in this case.

3. Information Distances

The proposed algorithms in this paper receive as inputs the set of so-called (exact or estimated)
information distances, which are functions of the pairwise distributions. These quantities are defined
in Section 3.1 for the two classes of tree-structured graphical models discussed in this paper, namely
the Gaussian and discrete graphical models. We also show that the information distances have a
particularly simple form for symmetric discrete distributions. In Section 3.2, we use the information
distances to infer the relationships between the observed variables such as j is a child of i or i and j
are siblings.

3.1 Definitions of Information Distances

We define information distances for Gaussian and discrete distributions and show that these dis-
tances are additive for tree-structured graphical models. Recall that for two random variables Xi and
Xj, the correlation coefficient is defined as

ρi j :=
Cov(Xi,Xj)√
Var(Xi)Var(Xj)

. (7)

9. A graph homomorphism is a mapping between graphs that respects their structure. More precisely, a graph homo-
morphism h from a graph G= (W,E) to a graph G′ = (V ′,E ′), written h : G→ G′ is a mapping h :V →V ′ such that
(i, j) ∈ E implies that (h(i),h(j)) ∈ E ′.

1779

CHOI, TAN, ANANDKUMAR AND WILLSKY

For Gaussian graphical models, the information distance associated with the pair of variables Xi and
Xj is defined as:

di j :=− log |ρi j|. (8)

Intuitively, if the information distance di j is large, then Xi and Xj are weakly correlated and vice-
versa.

For discrete random variables, let Ji j denote the joint probability matrix between Xi and Xj (i.e.,
Ji jab = p(xi = a,x j = b),a,b∈ X). Also letMi be the diagonal marginal probability matrix of Xi (i.e.,
Mi
aa = p(xi = a)). For discrete graphical models, the information distance associated with the pair

of variables Xi and Xj is defined as Lake (1994):

di j :=− log |detJi j|√
detMi detM j

. (9)

Note that for binary variables, that is, K = 2, the value of di j in (9) reduces to the expression in (8),
that is, the information distance is a function of the correlation coefficient, defined in (7), just as in
the Gaussian case.

For symmetric discrete distributions defined in (4), the information distance defined for discrete
graphical models in (9) reduces to

di j :=−(K−1) log(1−Kθi j). (10)

Note that there is one-to-one correspondence between the information distances di j and the model
parameters for Gaussian distributions (parametrized by the correlation coefficient ρi j) in (8) and the
symmetric discrete distributions (parametrized by the crossover probability θi j) in (10). Thus, these
two distributions are completely characterized by the information distances di j. On the other hand,
this does not hold for general discrete distributions.

Moreover, if the underlying distribution is a symmetric discrete model or a Gaussian model,
the information distance di j and the mutual information I(Xi;Xj) (Cover and Thomas, 2006) are
monotonic, and we will exploit this result in Section 5. For general distributions, this is not valid.
See Section 5.5 for further discussions.

Equipped with these definitions of information distances, assumption (C2) in Section 2.3 can be
rewritten as the following: There exists constants 0< l,u< ∞, such that

(C2) l ≤ di j ≤ u, ∀(i, j) ∈ Ep. (11)

Proposition 3 (Additivity of Information Distances) The information distances di j defined in (8),
(9), and (10) are additive tree metrics (Erdős et al., 1999). In other words, if the joint probability
distribution p(x) is a tree-structured graphical model Markov on the tree Tp = (W,Ep), then the
information distances are additive on Tp:

dkl = ∑
(i, j)∈Path((k,l);Ep)

di j, ∀k, l ∈W. (12)

The property in (12) implies that if each pair of vertices i, j ∈W is assigned the weight di j, then
Tp is a minimum spanning tree onW , denoted as MST(W ;D), where D is the information distance
matrix with elements di j for all i, j ∈V .

1780

LEARNING LATENT TREE GRAPHICAL MODELS

(a) (b) (c) (d) (e)

i

j

e1 e2 e3

e4 e5
e6 e7

e8

j

e1 e2 e3

e4 e5
e6 e7

e8

i j

e1 e2 e3

e4 e5
e6 e7

e8

i k

k `

j

e1 e2 e3

e4 e5
e6 e7

e8

i

k

k `

j

e1 e2 e3

e4 e5
e6 e7

e8

i

k

k `

Figure 2: Examples for each case in TestNodeRelationships. For each edge, ei represents the
information distance associated with the edge. (a) Case 1: Φi jk = −e8 = −di j for all
k ∈V \{i, j}. (b) Case 2: Φi jk = e6− e7 �= di j = e6+ e7 for all k ∈V \{i, j} (c) Case 3a:
Φi jk = e4+e2+e3−e7 �=Φi jk′ = e4−e2−e3−e7. (d) Case 3b: Φi jk = e4+e5 �=Φi jk′ =
e4− e5. (e) Case 3c: Φi jk = e5 �=Φi jk′ =−e5.

It is straightforward to show that the information distances are additive for the Gaussian and
symmetric discrete cases using the local Markov property of graphical models. For general discrete
distributions with information distance as in (9), see Lake (1994) for the proof. In the rest of the
paper, we map the parameters of Gaussian and discrete distributions to an information distance
matrix D= [di j] to unify the analyses for both cases.

3.2 Testing Inter-Node Relationships

In this section, we use Proposition 3 to ascertain child-parent and sibling (cf., Section 2.1) relation-
ships between the variables in a latent tree-structured graphical model. To do so, for any three vari-
ables i, j,k ∈ V , we define Φi jk := dik− d jk to be the difference between the information distances
dik and d jk. The following lemma suggests a simple procedure to identify the set of relationships
between the nodes.

Lemma 4 (Sibling Grouping) For distances di j for all i, j ∈ V on a tree T ∈ T≥3, the following
two properties on Φi jk = dik−d jk hold:

(i) Φi jk = di j for all k ∈V \{i, j} if and only if i is a leaf node and j is its parent.

(i) Φi jk =−di j for all k ∈V \{i, j} if and only if j is a leaf node and i is its parent.

(ii) −di j <Φi jk =Φi jk′ < di j for all k,k′ ∈V \{i, j} if and only if both i and j are leaf nodes and
they have the same parent, that is, they belong to the same sibling group.

The proof of the lemma uses Proposition 3 and is provided in Appendix A.1. Given Lemma 4,
we can first determine all the values of Φi jk for triples i, j,k ∈ V . Now we can determine the
relationship between nodes i and j as follows: Fix the pair of nodes i, j ∈ V and consider all the
other nodes k ∈V \{i, j}. Then, there are three cases for the set {Φi jk : k ∈V \{i, j}}:
1. Φi jk = di j for all k ∈ V \ {i, j}. Then, i is a leaf node and j is a parent of i. Similarly, if

Φi jk =−di j for all k ∈V \{i, j}, j is a leaf node and i is a parent of j.

2. Φi jk is constant for all k ∈ V \{i, j} but not equal to either di j or −di j. Then i and j are leaf
nodes and they are siblings.

1781

CHOI, TAN, ANANDKUMAR AND WILLSKY

3. Φi jk is not equal for all k ∈V \{i, j}. Then, there are three cases: Either

(a) Nodes i and j are not siblings nor have a parent-child relationship or,

(b) Nodes i and j are siblings but at least one of them is not a leaf or,

(c) Nodes i and j have a parent-child relationship but the child is not a leaf.

Thus, we have a simple test to determine the relationship between i and j and to ascertain whether i
and j are leaf nodes. We call the above test TestNodeRelationships. See Figure 2 for examples. By
running this test for all i and j, we can determine all the relationships among all pairs of observed
variables.

In the following section, we describe a recursive algorithm that is based on the above
TestNodeRelationships procedure to reconstruct the entire latent tree model assuming that the true
model is a latent tree and that the true distance matrix D= [di j] are known. In Section 5, we provide
improved algorithms for the learning of latent trees again assuming that D is known. Subsequently,
in Section 6, we develop algorithms for the consistent reconstruction of latent trees when infor-
mation distances are unknown and we have to estimate them from the samples xnV . In addition,
in Section 6.6 we discuss how to extend these algorithms for the case when pV is not necessarily
tree-decomposable, that is, the original graphical model is not assumed to be a latent tree.

4. Recursive Grouping Algorithm Given Information Distances

This section is devoted to the development of the first algorithm for reconstructing latent tree mod-
els, recursive grouping (RG). At a high level, RG is a recursive procedure in which at each step,
TestNodeRelationships is used to identify nodes that belong to the same family. Subsequently, RG
introduces a parent node if a family of nodes (i.e., a sibling group) does not contain an observed
parent. This newly introduced parent node corresponds to a hidden node in the original unknown
latent tree. Once such a parent (i.e., hidden) node h is introduced, the information distances from h
to all other observed nodes can be computed.

The inputs to RG are the vertex setV and the matrix of information distancesD corresponding to
a latent tree. The algorithm proceeds by recursively grouping nodes and adding hidden variables. In
each iteration, the algorithm acts on a so-called active set of nodes Y , and in the process constructs
a new active set Ynew for the next iteration.10 The steps are as follows:

1. Initialize by setting Y :=V to be the set of observed variables.

2. Compute Φi jk = dik−d jk for all i, j,k ∈ Y .

3. Using the TestNodeRelationships procedure, define {Πl}Ll=1 to be the coarsest partition11 of
Y such that for every subset Πl (with |Πl| ≥ 2), any two nodes in Πl are either siblings which

10. Note that the current active set is also used (in Step 6) after the new active set has been defined. For clarity, we also
introduce the quantity Yold in Steps 5 and 6.

11. Recall that a partition P of a set Y is a collection of nonempty subsets {Πl ⊂ Y}Ll=1 such that ∪Ll=1Πl = Y and
Πl ∩Πl′ = /0 for all l �= l′. A partition P is said to be coarser than another partition P′ if every element of P′ is a
subset of some element of P.

1782

LEARNING LATENT TREE GRAPHICAL MODELS

are leaf nodes or they have a parent-child relationship12 in which the child is a leaf.13 Note
that for some l, Πl may consist of a single node. Begin to construct the new active set by
adding nodes in these single-node partitions: Ynew ←⋃

l:|Πl |=1Πl .

4. For each l = 1, . . . ,L with |Πl| ≥ 2, if Πl contains a parent node u, update Ynew ← Ynew∪{u}.
Otherwise, introduce a new hidden node h, connect h (as a parent) to every node in Πl , and
set Ynew ← Ynew∪{h}.

5. Update the active set: Yold ← Y and Y ← Ynew.

6. For each new hidden node h∈Y , compute the information distances dhl for all l ∈Y using (13)
and (14) described below.

7. If |Y | ≥ 3, return to step 2. Otherwise, if |Y |= 2, connect the two remaining nodes in Y with
an edge then stop. If instead |Y |= 1, do nothing and stop.

We now describe how to compute the information distances in Step 6 for each new hidden node
h ∈ Y and all other active nodes l ∈ Y . Let i, j ∈ C (h) be two children of h, and let k ∈ Yold \{i, j}
be any other node in the previous active set. From Lemma 4 and Proposition 3, we have that
dih−d jh = dik−d jk =Φi jk and dih+d jh = di j, from which we can recover the information distances
between a previously active node i ∈ Yold and its new hidden parent h ∈ Y as follows:

dih =
1
2

(
di j+Φi jk

)
. (13)

For any other active node l ∈ Y , we can compute dhl using a child node i ∈ C (h) as follows:

dhl =

{
dil−dih, if l ∈ Yold,
dik−dih−dlk, otherwise, where k ∈ C (l). (14)

Using Equations (13) and (14), we can infer all the information distances dhl between a newly
introduced hidden node h to all other active nodes l ∈ Y . Consequently, we have all the distances
di j between all pairs of nodes in the active set Y . It can be shown that this algorithm recovers all
minimal latent trees. The proof of the following theorem is provided in Appendix A.2.

Theorem 5 (Correctness and Computational Complexity of RG) If Tp ∈ T≥3 and the matrix of
information distances D (between nodes in V) is available, then RG outputs the true latent tree Tp
correctly in time O(diam(Tp)m3).

We now use a concrete example to illustrate the steps involved in RG. In Figure 3(a), the original
unknown latent tree is shown. In this tree, nodes 1, . . . ,6 are the observed nodes and h1,h2,h3 are the
hidden nodes. We start by considering the set of observed nodes as active nodesY :=V = {1, . . . ,6}.
Once Φi jk are computed from the given distances di j, TestNodeRelationships is used to determine
thatY is partitioned into four subsets: Π1= {1},Π2= {2,4},Π3= {5,6},Π4= {3}. The subsetsΠ1
12. In an undirected tree, the parent-child relationships can be defined with respect to a root node. In this case, the node

in the final active set in Step 7 before the algorithm terminates (or one of the two final nodes if |Y |= 2) is selected as
the root node.

13. Note that since we use the active set Y in the TestNodeRelationships procedure, the leaf nodes are defined with
respect to Y , that is, a node is considered as a leaf node if it has only one neighbor in Y or in the set of nodes that
have not yet been in an active set.

1783

CHOI, TAN, ANANDKUMAR AND WILLSKY

hh2 h3

1 2

4

3

5 6

h1

(a)

1 2

4

3

5 6

h1

(b) (c)

hh2 h3

1 2 3h1

4 5 6

(d)

1 2 3h1

4 5 6

h2 h3

Figure 3: An illustrative example of RG. Solid nodes indicate the active set Y for each iteration. (a)
Original latent tree. (b) Output after the first iteration of RG. Red dotted lines indicate
the subsets Πl in the partition of Y . (c) Output after the second iteration of RG. Note that
h3, which was introduced in the first iteration, is an active node for the second iteration.
Nodes 4,5, and 6 do not belong to the current active set and are represented in grey. (d)
Output after the third iteration of RG, which is same as the original latent tree.

and Π4 contain only one node. The subset Π3 contains two siblings that are leaf nodes. The subset
Π2 contains a parent node 2 and a child node 4, which is a leaf node. Since Π3 does not contain a
parent, we introduce a new hidden node h1 and connect h1 to 5 and 6 as shown in Figure 3(b). The
information distances d5h1 and d6h1 can be computed using (13), for example, d5h1 =

1
2(d56+Φ561).

The new active set is the union of all nodes in the single-node subsets, a parent node, and a new
hidden node Ynew = {1,2,3,h1}. Distances among the pairs of nodes in Ynew can be computed
using (14) (e.g., d1h1 = d15− d5h1). In the second iteration, we again use TestNodeRelationships
to ascertain that Y can be partitioned into Π1 = {1,2} and Π2 = {h1,3}. These two subsets do not
have parents so h2 and h3 are added toΠ1 andΠ2 respectively. Parent nodes h2 and h3 are connected
to their children in Π1 and Π2 as shown in Figure 3(c). Finally, we are left with the active set as
Y = {h2,h3} and the algorithm terminates after h2 and h3 are connected by an edge. The hitherto
unknown latent tree is fully reconstructed as shown in Figure 3(d).

A potential drawback of RG is that it involves multiple local operations, which may result in
a high computational complexity. Indeed, from Theorem 5, the worst-case complexity is O(m4)
which occurs when Tp, the true latent tree, is a hidden Markov model (HMM). This may be com-
putationally prohibitive if m is large. In Section 5 we design an algorithm which uses a global
pre-processing step to reduce the overall complexity substantially, especially for trees with large
diameters (of which HMMs are extreme examples).

5. CLGrouping Algorithm Given Information Distances

In this section, we present CLGrouping, an algorithm for reconstructing latent trees more efficiently
than RG. As in Section 4, in this section, we assume that D is known exactly; the extension to
inexact knowledge of D is discussed in Section 6.5. CLGrouping is a two-step procedure, the first
of which is a global pre-processing step that involves the construction of a so-called Chow-Liu tree
(Chow and Liu, 1968) over the set of observed nodes V . This step identifies nodes that do not
belong to the same sibling group. In the second step, we complete the recovery of the latent tree
by applying a distance-based latent tree reconstruction algorithm (such as RG or NJ) repeatedly on
smaller subsets of nodes. We review the Chow-Liu algorithm in Section 5.1, relate the Chow-Liu
tree to the true latent tree in Section 5.2, derive a simple transformation of the Chow-Liu tree to

1784

LEARNING LATENT TREE GRAPHICAL MODELS

obtain the latent tree in Section 5.3 and propose CLGrouping in Section 5.4. For simplicity, we
focus on the Gaussian distributions and the symmetric discrete distributions first, and discuss the
extension to general discrete models in Section 5.5.

5.1 A Review of the Chow-Liu Algorithm

In this section, we review the Chow-Liu tree reconstruction procedure. To do so, define T (V) to
be the set of trees with vertex set V and P (T (V)) to be the set of tree-structured graphical models
whose graph has vertex set V , that is, every q ∈ P (T (V)) factorizes as in (3).

Given an arbitrary multivariate distribution pV (xV), Chow and Liu (1968) considered the fol-
lowing KL-divergence minimization problem:

pCL := argmin
q∈P (T (V))

D(pV ||q). (15)

That is, among all the tree-structured graphical models with vertex set V , the distribution pCL is
the closest one to pV in terms of the KL-divergence. By using the factorization property in (3), we
can easily verify that pCL is Markov on the Chow-Liu tree TCL = (V,ECL) which is given by the
optimization problem:14

TCL = argmax
T∈T (V)

∑
(i, j)∈T

I(Xi ; Xj). (16)

In (16), I(Xi ; Xj) = D(p(xi,x j) || p(xi) p(x j)) is the mutual information (Cover and Thomas, 2006)
between random variables Xi and Xj. The optimization in (16) is a max-weight spanning tree prob-
lem (Cormen et al., 2003) which can be solved efficiently in timeO(m2 logm) using either Kruskal’s
algorithm (Kruskal, 1956) or Prim’s algorithm (Prim, 1957). The edge weights for the max-weight
spanning tree are precisely the mutual information quantities between random variables. Note that
once the optimal tree TCL is formed, the parameters of pCL in (15) are found by setting the pairwise
distributions pCL(xi,x j) on the edges to pV (xi,x j), that is, pCL(xi,x j) = pV (xi,x j) for all (i, j)∈ ECL.
We now relate the Chow-Liu tree on the observed nodes and the information distance matrix D.

Lemma 6 (Correspondence between TCL andMST) If pV is a Gaussian distribution or a sym-
metric discrete distribution, then the Chow-Liu tree in (16) reduces to the minimum spanning tree
(MST) where the edge weights are the information distances di j, that is,

TCL =MST(V ;D) := argmin
T∈T (V)

∑
(i, j)∈T

di j. (17)

Lemma 6, whose proof is omitted, follows because for Gaussian and symmetric discrete mod-
els, the mutual information15 I(Xi ; Xj) is a monotonically decreasing function of the information
distance di j.16 For other graphical models (e.g., non-symmetric discrete distributions), this relation-
ship is not necessarily true. See Section 5.5 for a discussion. Note that when all nodes are observed
(i.e.,W =V), Lemma 6 reduces to Proposition 3.

14. In (16) and the rest of the paper, we adopt the following simplifying notation; If T = (V,E) and if (i, j) ∈ E, we will
also say that (i, j) ∈ T .

15. Note that, unlike information distances di j , the mutual information quantities I(Xi ; Xj) do not form an additive metric
on Tp.

16. For example, in the case of Gaussians, I(Xi ; Xj) =− 1
2 log(1−ρ2i j) (Cover and Thomas, 2006).

1785

CHOI, TAN, ANANDKUMAR AND WILLSKY

5.2 Relationship between the Latent Tree and the Chow-Liu Tree (MST)

In this section, we relate MST(V ;D) in (17) to the original latent tree Tp. To relate the two trees,
MST(V ;D) and Tp, we first introduce the notion of a surrogate node.

Definition 7 (Surrogate Node) Given the latent tree Tp = (W,Ep) and any node i ∈W, the surro-
gate node of i with respect to V is defined as

Sg(i;Tp,V) := argmin
j∈V

di j.

Intuitively, the surrogate node of a hidden node h ∈ H is an observed node j ∈ V that is most
strongly correlated to h. In other words, the information distance between h and j is the smallest.
Note that if i∈V , then Sg(i;Tp,V) = i since dii = 0. The map Sg(i;Tp,V) is a many-to-one function,
that is, several nodes may have the same surrogate node, and its inverse is the inverse surrogate set
of i denoted as

Sg−1(i;Tp,V) := {h ∈W : Sg(h;Tp,V) = i}.
When the tree Tp and the observed vertex set V are understood from context, the surrogate node
of h and the inverse surrogate set of i are abbreviated as Sg(h) and Sg−1(i) respectively. We now
relate the original latent tree Tp = (W,Ep) to the Chow-Liu tree (also termed the MST) MST(V ;D)
formed using the distance matrix D.

Lemma 8 (Properties of the MST) The MST in (17) and surrogate nodes satisfy the following
properties:

(i) The surrogate nodes of any two neighboring nodes in Ep are neighbors in the MST, that is,
for all i, j ∈W with Sg(i) �= Sg(j),

(i, j) ∈ Ep ⇒ (Sg(i),Sg(j)) ∈MST(V ;D). (18)

(ii) If j ∈ V and h ∈ Sg−1(j), then every node along the path connecting j and h belongs to the
inverse surrogate set Sg−1(j).

(iii) The maximum degree of the MST satisfies

Δ(MST(V ;D))≤ Δ(Tp)
1+ u

l δ(Tp;V), (19)

where δ(Tp;V) is the effective depth defined in (1) and l,u are the bounds on the information
distances on edges in Tp defined in (11).

The proof of this result can be found in Appendix A.3. As a result of Lemma 8, the properties
of MST(V ;D) can be expressed in terms of the original latent tree Tp. For example, in Figure 5(a),
a latent tree is shown with its corresponding surrogacy relationships, and Figure 5(b) shows the
corresponding MST over the observed nodes.

The properties in Lemma 8(i-ii) can also be regarded as edge-contraction operations (Robinson
and Foulds, 1981) in the original latent tree to obtain the MST. More precisely, an edge-contraction
operation on an edge (j,h) ∈ V ×H in the latent tree Tp is defined as the “shrinking” of (j,h) to
a single node whose label is the observed node j. Thus, the edge (j,h) is “contracted” to a single

1786

LEARNING LATENT TREE GRAPHICAL MODELS

4 54 5

(a)

1

2 3

(b) (c) (d) (e) (f)

h1 h2

1 2 3 4 5

h2

1

2

3 4 5

2 3

1

h2

1

2

3 4 5

h1 h2

1 2 3 4 5

Figure 4: An illustration of CLBlind. The shaded nodes are the observed nodes and the rest are
hidden nodes. The dotted lines denote surrogate mappings for the hidden nodes. (a)
Original latent tree, which belongs to the class of blind latent graphical models, (b) Chow-
Liu tree over the observed nodes, (c) Node 3 is the input to the blind transformation, (d)
Output after the blind transformation, (e) Node 2 is the input to the blind transformation,
(f) Output after the blind transformation, which is same as the original latent tree.

node j. By using Lemma 8(i-ii), we observe that the Chow-Liu tree MST(V ;D) is formed by
applying edge-contraction operations to each (j,h) pair for all h ∈ Sg−1(j)∩H sequentially until
all pairs have been contracted to a single node j. For example, the MST in Figure 5(b) is obtained
by contracting edges (3,h3), (5,h2), and then (5,h1) in the latent tree in Figure 5(a).

The properties in Lemma 8 can be used to design efficient algorithms based on transforming
the MST to obtain the latent tree Tp. Note that the maximum degree of the MST, Δ(MST(V ;D)), is
bounded by the maximum degree in the original latent tree. The quantity Δ(MST(V ;D)) determines
the computational complexity of one of our proposed algorithms (CLGrouping) and it is small if the
depth of the latent tree δ(Tp;V) is small (e.g., HMMs) and the information distances di j satisfy tight
bounds (i.e., u/l is close to unity). The latter condition holds for (almost) homogeneous models in
which all the information distances di j on the edges are almost equal.

5.3 Chow-Liu Blind Algorithm for a Subclass of Latent Trees

In this section, we present a simple and intuitive transformation of the Chow-Liu tree that produces
the original latent tree. However, this algorithm, called Chow-Liu Blind (or CLBlind), is applica-
ble only to a subset of latent trees called blind latent tree-structured graphical models P (Tblind).
Equipped with the intuition from CLBlind, we generalize it in Section 5.4 to design the CLGroup-
ing algorithm that produces the correct latent tree structure from the MST for allminimal latent tree
models.

If p ∈ P (Tblind), then its structure Tp = (W,Ep) and the distance matrix D satisfy the following
properties:

(i) The true latent tree Tp ∈ T≥3 and all the internal nodes17 are hidden, that is, V = Leaf(Tp).

(ii) The surrogate node of (i.e., the observed node with the strongest correlation with) each hidden
node is one of its children, that is, Sg(h) ∈ C (h) for all h ∈ H.

We now describe the CLBlind algorithm, which involves two main steps. Firstly, MST(V ;D)
is constructed using the distance matrix D. Secondly, we apply the blind transformation of the
Chow-Liu tree BlindTransform(MST(V ;D)), which proceeds as follows:

17. Recall that an internal node is one whose degree is greater than or equal to 2, that is, a non-leaf.

1787

CHOI, TAN, ANANDKUMAR AND WILLSKY

1. Identify the set of internal nodes in MST(V ;D). We perform an operation for each internal
node as follows:

2. For internal node i, add a hidden node h to the tree.

3. Connect an edge between h and i (which now becomes a leaf node) and also connect edges
between h and the neighbors of i in the current tree model.

4. Repeat steps 2 and 3 until all internal nodes have been operated on.

See Figure 4 for an illustration of CLBlind. We use the adjective blind to describe the transformation
BlindTransform(MST(V ;D)) since it does not depend on the distance matrix D but uses only the
structure of the MST. The following theorem whose proof can be found in Appendix A.4 states the
correctness result for CLBlind.

Theorem 9 (Correctness and Computational Complexity of CLBlind) If the distribution
p ∈ P (Tblind) is a blind tree-structured graphical model Markov on Tp and the matrix of distances
D is known, then CLBlind outputs the true latent tree Tp correctly in time O(m2 logm).

The first condition on P (Tblind) that all internal nodes are hidden is not uncommon in applica-
tions. For example, in phylogenetics, (DNA or amino acid) sequences of extant species at the leaves
are observed, while the sequences of the extinct species are hidden (corresponding to the internal
nodes), and the evolutionary (phylogenetic) tree is to be reconstructed. However, the second condi-
tion is more restrictive18 since it implies that each hidden node is directly connected to at least one
observed node and that it is closer (i.e., more correlated) to one of its observed children compared
to any other observed node. If the first constraint is satisfied but not the second, then the blind
transformation BlindTransform(MST(V ;D)) does not overestimate the number of hidden variables
in the latent tree (the proof follows from Lemma 8 and is omitted).

Since the computational complexity of constructing the MST isO(m2 logm)wherem= |V |, and
the blind transformation is at most linear in m, the overall computational complexity is O(m2 logm).
Thus, CLBlind is a computationally efficient procedure compared to RG, described in Section 4.

5.4 Chow-Liu Grouping Algorithm

Even though CLBlind is computationally efficient, it only succeeds in recovering latent trees for a
restricted subclass of minimal latent trees. In this section, we propose an efficient algorithm, called
CLGrouping that reconstructs all minimal latent trees. We also illustrate CLGrouping using an
example. CLGrouping uses the properties of the MST as described in Lemma 8.

At a high-level, CLGrouping involves two distinct steps: Firstly, we construct the Chow-Liu
tree MST(V ;D) over the set of observed nodes V . Secondly, we apply RG or NJ to reconstruct a
latent subtree over the closed neighborhoods of every internal node in MST(V ;D). If RG (respec-
tively NJ) is used, we term the algorithm CLRG (respectively CLNJ). In the rest of the section, we
only describe CLRG for concreteness since CLNJ proceeds along similar lines. Formally, CLRG
proceeds as follows:

1. Construct the Chow-Liu tree MST(V ;D) as in (17). Set T =MST(V ;D).

18. The second condition on P (Tblind) holds when the tree is (almost) homogeneous.

1788

LEARNING LATENT TREE GRAPHICAL MODELS

(a)

h1

1

2 3 4 5

6

h2h3
2 1

3

4

5

6
2

1 3

4 56

h1

h22 1

3

46

5

3

h1

2

1

4 56

h2

h1

h3 h2

2

1

3 4 5

6

(b) (c) (d) (e) (f)

Figure 5: Illustration of CLRG. The shaded nodes are the observed nodes and the rest are hidden
nodes. The dotted lines denote surrogate mappings for the hidden nodes so for example,
node 3 is the surrogate of h3. (a) The original latent tree, (b) The Chow-Liu tree (MST)
over the observed nodes V , (c) The closed neighborhood of node 5 is the input to RG, (d)
Output after the first RG procedure, (e) The closed neighborhood of node 3 is the input
to the second iteration of RG, (f) Output after the second RG procedure, which is same
as the original latent tree.

2. Identify the set of internal nodes in MST(V ;D).

3. For each internal node i, let nbd[i;T] be its closed neighborhood in T and let S =
RG(nbd[i;T],D) be the output of RG with nbd[i;T] as the set of input nodes.

4. Replace the subtree over node set nbd[i;T] in T with S. Denote the new tree as T .

5. Repeat steps 3 and 4 until all internal nodes have been operated on.

Note that the only difference between the algorithm we just described and CLNJ is Step 3 in which
the subroutine NJ replaces RG. Also, observe in Step 3 that RG is only applied to a small subset of
nodes which have been identified in Step 1 as possible neighbors in the true latent tree. This reduces
the computational complexity of CLRG compared to RG, as seen in the following theorem whose
proof is provided in Appendix A.5. Let |J| := |V \Leaf(MST(V ;D))|<m be the number of internal
nodes in the MST.

Theorem 10 (Correctness and Computational Complexity of CLRG) If the distribution Tp ∈T≥3
is a minimal latent tree and the matrix of information distances D is available, then CLRG outputs
the true latent tree Tp correctly in time O(m2 logm+ |J|Δ3(MST(V ;D))).

Thus, the computational complexity of CLRG is low when the latent tree Tp has a small maxi-
mum degree and a small effective depth (such as the HMM) because (19) implies that Δ(MST(V ;D))
is also small. Indeed, we demonstrate in Section 7 that there is a significant speedup compared to
applying RG over the entire observed node set V .

We now illustrate CLRG using the example shown in Figure 5. The original minimal latent tree
Tp = (W,E) is shown in Figure 5(a) withW = {1,2, . . . ,6,h1,h2,h3}. The set of observed nodes is
V = {1, . . . ,6} and the set of hidden nodes isH = {h1,h2,h3}. The Chow-Liu tree TCL=MST(V ;D)
formed using the information distance matrixD is shown in Figure 5(b). Since nodes 3 and 5 are the
only internal nodes in MST(V ;D), two RG operations will be executed on the closed neighborhoods
of each of these two nodes. In the first iteration, the closed neighborhood of node 5 is the input to

1789

CHOI, TAN, ANANDKUMAR AND WILLSKY

Latent variables Distribution MST(V ;D) = TCL? Structure Parameter

Non-latent Gaussian � � �

Non-latent Symmetric Discrete � � �

Non-latent General Discrete × � ×
Latent Gaussian � � �

Latent Symmetric Discrete � � �

Latent General Discrete × � ×

Table 1: Comparison between various classes of distributions. In the last two columns, we state
whether CLGrouping is consistent for learning either the structure or parameters of the
model, namely whether CLGrouping is structurally consistent or risk consistent respec-
tively (cf., Definition 2). Note that the first two cases reduce exactly to the algorithm
proposed by Chow and Liu (1968) in which the edge weights are the mutual information
quantities.

RG. This is shown in Figure 5(c) where nbd[5;MST(V ;D)] = {1,3,4,5}, which is then replaced by
the output of RG to obtain the tree shown in Figure 5(d). In the next iteration, RG is applied to the
closed neighborhood of node 3 in the current tree nbd[3;T] = {2,3,6,h1} as shown in Figure 5(e).
Note that nbd[3;T] includes h1 ∈ H, which was introduced by RG in the previous iteration. The
distance from h1 to other nodes in nbd[3;T] can be computed using the distance between h1 and
its surrogate node 5, which is part of the output of RG, for example, d2h1 = d25−d5h1 . The closed
neighborhood nbd[3;T] is then replaced by the output of the second RG operation and the original
latent tree Tp is obtained as shown in Figure 5(f).

Observe that the trees obtained at each iteration of CLRG can be related to the original latent
tree in terms of edge-contraction operations (Robinson and Foulds, 1981), which were defined in
Section 5.2. For example, the Chow-Liu tree in Figure 5(b) is obtained from the latent tree Tp
in Figure 5(a) by sequentially contracting all edges connecting an observed node to its inverse
surrogate set (cf., Lemma 8(ii)). Upon performing an iteration of RG, these contraction operations
are inverted and new hidden nodes are introduced. For example, in Figure 5(d), the hidden nodes
h1,h2 are introduced after performing RG on the closed neighborhood of node 5 on MST(V ;D).
These newly introduced hidden nodes in fact, turn out to be the inverse surrogate set of node 5, that
is, Sg−1(5) = {5,h1,h2}. This is not merely a coincidence and we formally prove in Appendix A.5
that at each iteration, the set of hidden nodes introduced corresponds exactly to the inverse surrogate
set of the internal node.

We conclude this section by emphasizing that CLGrouping (i.e., CLRG or CLNJ) has two
primary advantages. Firstly, as demonstrated in Theorem 10, the structure of all minimal tree-
structured graphical models can be recovered by CLGrouping in contrast to CLBlind. Secondly, it
typically has much lower computational complexity compared to RG.

5.5 Extension to General Discrete Models

For general (i.e., not symmetric) discrete models, the mutual information I(Xi ; Xj) is in general not
monotonic in the information distance di j, defined in (9).19 As a result, Lemma 6 does not hold,

19. The mutual information, however, is monotonic in di j for asymmetric binary discrete models.

1790

LEARNING LATENT TREE GRAPHICAL MODELS

that is, the Chow-Liu tree TCL is not necessarily the same as MST(V ;D). However, Lemma 8 does
hold for all minimal latent tree models. Therefore, for general (non-symmetric) discrete models, we
compute MST(V ;D) (instead of the Chow-Liu tree TCL with edge weights I(Xi ; Xj)), and apply RG
or NJ to each internal node and its neighbors. This algorithm guarantees that the structure learned
using CLGrouping is the same as Tp if the distance matrix D is available. These observations are
summarized clearly in Table 1. Note that in all cases, the latent structure is recovered consistently.

6. Sample-Based Algorithms for Learning Latent Tree Structures

In Sections 4 and 5, we designed algorithms for the exact reconstruction of latent trees assuming
that pV is a tree-decomposable distribution and the matrix of information distances D is available.
In most (if not all) machine learning problems, the pairwise distributions p(xi,x j) are unavailable.
Consequently, D is also unavailable so RG, NJ and CLGrouping as stated in Sections 4 and 5 are
not directly applicable. In this section, we consider extending RG, NJ and CLGrouping to the case
when only samples xnV are available. We show how to modify the previously proposed algorithms
to accommodate ML estimated distances and we also provide sample complexity results for relaxed
versions of RG and CLGrouping.

6.1 ML Estimation of Information Distances

The canonical method for deterministic parameter estimation is via maximum-likelihood (ML) (Ser-
fling, 1980). We focus on Gaussian and symmetric discrete distributions in this section. The gener-
alization to general discrete models is straightforward. For Gaussians graphical models, we use ML
to estimate the entries of the covariance matrix,20 that is,

Σ̂i j =
1
n

n

∑
k=1

x(k)i x(k)j , ∀ i, j ∈V. (20)

The ML estimate of the correlation coefficient is defined as ρ̂i j := Σ̂i j/(Σ̂iiΣ̂ j j)1/2. The estimated
information distance is then given by the analog of (8), that is, d̂i j = − log |ρ̂i j|. For symmetric
discrete distributions, we estimate the crossover probability θi j via ML as21

θ̂i j =
1
n

n

∑
k=1

I
{
x(k)i �= x(k)j

}
, ∀ i, j ∈V.

The estimated information distance is given by the analogue of (10), that is, d̂i j =−(K−1) log(1−
Kθ̂i j). For both classes of models, it can easily be verified from the Central Limit Theorem and
continuity arguments (Serfling, 1980) that d̂i j−di j =Op(n−1/2), where n is the number of samples.
This means that the estimates of the information distances are consistent with rate of convergence
being n−1/2. The m×m matrix of estimated information distances is denoted as D̂= [d̂i j].

6.2 Post-processing Using Edge Contractions

For all sample-based algorithms discussed in this section, we apply a common post-processing step
using edge-contraction operations. Recall from (11) that l is the minimum bound on the information

20. Recall that we assume that the mean of the true random vector X is known and equals to the zero vector so we do not
need to subtract the empirical mean in (20).

21. We use I{·} to denote the indicator function.

1791

CHOI, TAN, ANANDKUMAR AND WILLSKY

distances on edges. After learning the latent tree, if we find that there exists an edge (i,h) ∈W ×H
with the estimated distance d̂ih < l, then (i,h) is contracted to a single node whose label is i, that
is, the hidden node h is removed and merged with node i. This edge contraction operation removes
a hidden node if it is too close in information distances to another node. For Gaussian and binary
variables, d̂ih = − log |ρ̂ih|, so in our experiments, we use l = − log0.9 to contract an edge (i,h) if
the correlation between the two nodes is higher than 0.9.

6.3 Relaxed Recursive Grouping (RG) Given Samples

We now show how to relax the canonical RG algorithm described in Section 4 to handle the case
when only D̂ is available. Recall that RG calls the TestNodeRelationships procedure recursively to
ascertain child-parent and sibling relationships via equality tests Φi jk = dik−d jk (cf., Section 3.2).
These equality constraints are, in general, not satisfied with the estimated differences Φ̂i jk := d̂ik−
d̂ jk, which are computed based on the estimated distance in D̂. Besides, not all estimated distances
are equally accurate. Longer distance estimates (i.e., lower correlation estimates) are less accurate
for a given number of samples.22 As such, not all estimated distances can be used for testing inter-
node relationships reliably. These observations motivate the following three modifications to the
RG algorithm:

1. Consider using a smaller subset of nodes to test whether Φ̂i jk is constant (across k).

2. Apply a threshold (inequality) test to the Φ̂i jk values.

3. Improve on the robustness of the estimated distances d̂ih in (13) and (14) by averaging.

We now describe each of these modifications in greater detail. Firstly, in the relaxed RG algorithm,
we only compute Φ̂i jk for those estimated distances d̂i j, d̂ik and d̂ jk that are below a prescribed
threshold τ> 0 since longer distance estimates are unreliable. As such, for each pair of nodes (i, j)
such that d̂i j < τ, associate the set

Ki j :=
{
k ∈V\{i, j} : max{d̂ik, d̂ jk}< τ

}
. (21)

This is the subset of nodes in V whose estimated distances to i and j are less than τ. Compute Φ̂i jk

for all k ∈Ki j only.
Secondly, instead of using equality tests in TestNodeRelationships to determine the relationship

between nodes i and j, we relax this test and consider the statistic

Λ̂i j := max
k∈Ki j

Φ̂i jk− min
k∈Ki j

Φ̂i jk (22)

Intuitively, if Λ̂i j in (22) is close to zero, then nodes i and j are likely to be in the same family. Thus,
declare that nodes i, j ∈V are in the same family if

Λ̂i j < ε, (23)

22. In fact, by using a large deviation result in Shen (2007, Theorem 1), we can formally show that a larger number of
samples is required to get a good approximation of ρik if it is small compared to when ρik is large.

1792

LEARNING LATENT TREE GRAPHICAL MODELS

for another threshold ε > 0. Similarly, an observed node k is identified as a parent node if |d̂ik+
d̂k j− d̂i j|< ε for all i and j in the same family. If such an observed node does not exists for a group
of family, then a new hidden node is introduced as the parent node for the group.

Thirdly, in order to further improve on the quality of the distance estimate d̂ih of a newly intro-
duced hidden node to observed nodes, we compute d̂ih using (13) with different pairs of j ∈ C (h)
and k ∈Ki j, and take the average as follows:

d̂ih =
1

2(|C (h)|−1)

(
∑

j∈C (h)
d̂i j+

1
|Ki j| ∑k∈Ki j

Φ̂i jk

)
. (24)

Similarly, for any other node k /∈ C (h), we compute d̂kh using all child nodes in C (h) and C (k) (if
C (k) �= /0) as follows:

d̂kh =

{
1

|C (h)| ∑i∈C (h)(d̂ik− d̂ih), if k ∈V,
1

|C (h)||C (k)| ∑(i, j)∈C (h)×C (k)(d̂i j− d̂ih− d̂ jk), otherwise.
(25)

It is easy to verify that if d̂ih and d̂kh are equal to dih and dkh respectively, then (24) and (25) reduce
to (13) and (14) respectively.

The following theorem shows that relaxed RG is consistent, and with appropriately chosen
thresholds ε and τ, it has the sample complexity logarithmic in the number of observed variables.
The proof follows from standard Chernoff bounds and is provided in Appendix A.6.

Theorem 11 (Consistency and Sample Complexity of Relaxed RG) (i) Relaxed RG is struc-
turally consistent for all Tp ∈ T≥3. In addition, it is risk consistent for Gaussian and symmetric
discrete distributions. (ii) Assume that the effective depth is δ(Tp;V) = O(1) (i.e., constant in m)
and relaxed RG is used to reconstruct the tree given D̂. For every η > 0, there exists thresholds
ε,τ> 0 such that if

n>C log(m/ 3
√
η) (26)

for some constant C > 0, the error probability for structure reconstruction in (5) is bounded above
by η. If, in addition, p is a Gaussian or symmetric discrete distribution and n > C′ log(m/ 3

√
η),

the error probability for distribution reconstruction in (6) is also bounded above by η. Thus, the
sample complexity of relaxed RG, which is the number of samples required to achieve a desired level
of accuracy, is logarithmic in m, the number of observed variables.

As we observe from (26), the sample complexity for RG is logarithmic in m for shallow trees
(i.e., trees where the effective depth is constant). This is in contrast to NJ where the sample com-
plexity is super-polynomial in the number of observed nodes for the HMM (St. John et al., 2003;
Lacey and Chang, 2006).

6.3.1 RG WITH k-MEANS CLUSTERING

In practice, if the number of samples is limited, the distance estimates d̂i j are noisy and it is difficult
to select the threshold ε in Theorem 11 to identify sibling nodes reliably. In our experiments, we
employ a modified version of the k-means clustering algorithm to cluster a set of nodes with small
Λ̂i j, defined in (22), as a group of siblings. Recall that we test each Λ̂i j locally with a fixed threshold
ε in (23). In contrast, the k-means algorithm provides a global scheme and circumvents the need
to select the threshold ε. We adopt the silhouette method (Rousseeuw, 1987) with dissimilarity
measure Λ̂i j to select optimal the number of clusters k.

1793

CHOI, TAN, ANANDKUMAR AND WILLSKY

6.4 Relaxed Neighbor-Joining Given Samples

In this section, we describe how NJ can be relaxed when the true distances are unavailable. We relax
the NJ algorithm by using ML estimates of the distances d̂i j in place of unavailable distances di j.
NJ typically assume that all observed nodes are at the leaves of the latent tree, so after learning the
latent tree, we perform the post-processing step described in Section 6.2 to identify internal nodes
that are observed.23 The sample complexity of NJ is known to be O(exp(diam(Tp)) logm) (St. John
et al., 2003) and thus does not scale well when the latent tree Tp has a large diameter. Compar-
isons between the sample complexities of other closely related latent tree learning algorithms are
discussed in Atteson (1999), Erdős et al. (1999), Csűrös (2000) and St. John et al. (2003).

6.5 Relaxed CLGrouping Given Samples

In this section, we discuss how to modify CLGrouping (CLRG and CLNG) when we only have
access to the estimated information distance D̂. The relaxed version of CLGrouping differs from
CLGrouping in two main aspects. Firstly, we replace the edge weights in the construction of the
MST in (17) with the estimated information distances d̂i j, that is,

T̂CL =MST(V ; D̂) := argmin
T∈T (V)

∑
(i, j)∈T

d̂i j. (27)

The procedure in (27) can be shown to be equivalent to the learning of the ML tree structure given
samples xnV if pV is a Gaussian or symmetric discrete distribution.

24 It has also been shown that
the error probability of structure learning Pr(T̂CL �= TCL) converges to zero exponentially fast in
the number of samples n for both discrete and Gaussian data (Tan et al., 2010, 2011). Secondly,
for CLRG (respectively CLNJ), we replace RG (respectively NJ) with the relaxed version of RG
(respectively NJ). The sample complexity result of CLRG (and its proof) is similar to Theorem 11
and the proof is provided in Appendix A.7.

Theorem 12 (Consistency and Sample Complexity of Relaxed CLRG) (i) Relaxed CLRG is
structurally consistent for all Tp ∈ T≥3. In addition, it is risk consistent for Gaussian and symmetric
discrete distributions. (ii) Assume that the effective depth is δ(Tp;V) = O(1) (i.e., constant in m).
Then the sample complexity of relaxed CLRG is logarithmic in m.

6.6 Regularized CLGrouping for Learning Latent Tree Approximations

For many practical applications, it is of interest to learn a latent tree that approximates the given
empirical distribution. In general, introducing more hidden variables enables better fitting to the em-
pirical distribution, but it increases the model complexity and may lead to overfitting. The Bayesian
Information Criterion (Schwarz, 1978) provides a trade-off between model fitting and model com-
plexity, and is defined as follows:

BIC(T̂) = log p(xnV ; T̂)−
κ(T̂)
2

logn (28)

23. The processing (contraction) of the internal nodes can be done in any order.
24. This follows from the observation that the ML search for the optimal structure is equivalent to the KL-divergence

minimization problem in (15) with pV replaced by p̂V , the empirical distribution of xnV .

1794

LEARNING LATENT TREE GRAPHICAL MODELS

where T̂ is a latent tree structure and κ(T̂) is the number of free parameters, which grows linearly
with the number of hidden variables because T̂ is a tree. Here, we describe regularized CLGrouping,
in which we use the BIC in (28) to specify a stopping criterion on the number of hidden variables
added.

For each internal node and its neighbors in the Chow-Liu tree, we use relaxed NJ or RG to
learn a latent subtree. Unlike in regular CLGrouping, before we integrate this subtree into our
model, we compute its BIC score. Computing the BIC score requires estimating the maximum
likelihood parameters for the models, so for general discrete distributions, we run the EM algorithm
on the subtree to estimate the parameters.25 After we compute the BIC scores for all subtrees
corresponding to all internal nodes in the Chow-Liu tree, we choose the subtree that results in the
highest BIC score and incorporate that subtree into the current tree model.

The BIC score can be computed efficiently on a tree model with a few hidden variables. Thus,
for computational efficiency, each time a set of hidden nodes is added to the model, we generate
samples of hidden nodes conditioned on the samples of observed nodes, and use these augmented
samples to compute the BIC score approximately when we evaluate the next subtree to be integrated
in the model.

If none of the subtrees increases the BIC score (i.e., the current tree has the highest BIC score),
the procedure stops and outputs the estimated latent tree. Alternatively, if we wish to learn a latent
tree with a given number of hidden nodes, we can used the BIC-based procedure mentioned in
the previous paragraph to learn subtrees until the desired number of hidden nodes is introduced.
Depending on whether we use NJ or RG as the subroutine, we denote the specific regularized
CLGrouping algorithm as regCLNJ or regCLRG.

This approach of using an approximation of the BIC score has been commonly used to learn
a graphical model with hidden variables (Elidan and Friedman, 2005; Zhang and Kočka, 2004).
However, for these algorithms, the BIC score needs to be evaluated for a large subset of nodes,
whereas in CLGrouping, the Chow-Liu tree among observed variables prunes out many subsets, so
we need to evaluate BIC scores only for a small number of candidate subsets (the number of internal
nodes in the Chow-Liu tree).

7. Experimental Results

In this section, we compare the performances of various latent tree learning algorithms. We first
show simulation results on synthetic data sets with known latent tree structures to demonstrate
the consistency of our algorithms. We also analyze the performance of these algorithms when we
change the underlying latent tree structures. Then, we show that our algorithms can approximate
arbitrary multivariate probability distributions with latent trees by applying them to two real-world
data sets, a monthly stock returns example and the 20 newsgroups data set.

7.1 Simulations using Synthetic Data Sets

In order to analyze the performances of different tree reconstruction algorithms, we generate sam-
ples from known latent tree structures with varying sample sizes and apply reconstruction algo-
rithms. We compare the neighbor-joining method (NJ) (Saitou and Nei, 1987) with recursive

25. Note that for Gaussian and symmetric discrete distributions, the model parameters can be recovered from information
distances directly using (8) or (10).

1795

CHOI, TAN, ANANDKUMAR AND WILLSKY

(b) HMM(a) Double star

(c) 5-complete

Figure 6: Latent tree structures used in our simulations.

grouping (RG), Chow-Liu Neighbor Joining (CLNJ), and Chow-Liu Recursive Grouping (CLRG).
Since the algorithms are given only samples of observed variables, we use the sample-based algo-
rithms described in Section 6. For all our experiments, we use the same edge-contraction threshold
ε′ = − log0.9 (see Sections 6.4 and 6.5), and set τ in Section 6.3 to grow logarithmically with the
number of samples.

Figure 6 shows the three latent tree structures used in our simulations. The double-star has
2 hidden and 80 observed nodes, the HMM has 78 hidden and 80 observed nodes, and the 5-
complete tree has 25 hidden and 81 observed nodes including the root node. For simplicity, we
present simulation results only on Gaussian models but note that the behavior on discrete models
is similar. All correlation coefficients on the edges ρi j were independently drawn from a uniform
distribution supported on [0.2,0.8]. The performance of each method is measured by averaging
over 200 independent runs with different parameters. We use the following performance metrics to
quantify the performance of each algorithm in Figure 7:

(i) Structure recovery error rate: This is the proportion of times that the proposed algorithm
fails to recover the true latent tree structure. Note that this is a very strict measure since even
a single wrong hidden node or misplaced edge results in an error for the entire structure.

(ii) Robinson Foulds metric (Robinson and Foulds, 1981): This popular phylogenetic tree-
distortion metric computes the number of graph transformations (edge contraction or expan-
sion) needed to be applied to the estimated graph in order to get the correct structure. This
metric quantifies the difference in the structures of the estimated and true models.

(iii) Error in the number of hidden variables: We compute the average number of hidden vari-
ables introduced by each method and plot the absolute difference between the average esti-
mated hidden variables and the number of hidden variables in the true structure.

1796

LEARNING LATENT TREE GRAPHICAL MODELS

0

5

10

15

20

25

30

35

40

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

60

−2.5

−2

−1.5

−1

−0.5

0

0.5

0

20

40

60

80

100

120

140

160

180

200

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

0

10

20

30

40

50

60

70

RG

NJ

CLRG

CLNJ

0

10

20

30

40

50

60

100 1k 10k 100k 200k2k 20k

Number of Samples
100 1k 10k 100k 200k2k 20k

Number of Samples
100 1k 10k 100k 200k2k 20k

Number of Samples
100 1k 10k 100k 200k2k 20k

Number of Samples

D
o

u
b

le
 S

ta
r

Number of Samples
1k 10k 100k 200k2k 20k

Number of Samples
1k 10k 100k 200k2k 20k

Number of Samples
1k 10k 100k 200k2k 20k

Number of Samples
1k 10k 100k 200k2k 20k

Struture Recovery Error Rate log10 (KL-divergence)Robinson-Foulds Metric Error in Hidden Variables

Number of Samples
1k 10k 100k 200k2k 20k

Number of Samples
1k 10k 100k 200k2k 20k

Number of Samples
1k 10k 100k 200k2k 20k

Number of Samples
1k 10k 100k 200k2k 20k

H
M

M
5

-c
o

m
p

le
te

0

10

20

30

40

50

60

Figure 7: Performance of RG, NJ, CLRG, and CLNJ for the latent trees shown in Figure 6.

(iv) KL-divergence D(pV || p̂nV): This is a measure of the distance between the estimated and the
true models over the set of observed nodes V .26

We first note that from the structural error rate plots that the double star is the easiest structure
to recover and the 5-complete tree is the hardest. In general, given the same number of observed
variables, a latent tree with more hidden variables or larger effective depth (see Section 2) is more
difficult to recover.

For the double star, RG clearly outperforms all other methods. With only 1,000 samples, it
recovers the true structure exactly in all 200 runs. On the other hand, CLGrouping performs sig-
nificantly better than RG for the HMM. There are two reasons for such performance differences.
Firstly, for Gaussian distributions, it was shown (Tan et al., 2010) that given the same number of
variables and their samples, the Chow-Liu algorithm is most accurate for a chain and least accurate
for a star. Since the Chow-Liu tree of a latent double star graph is close to a star, and the Chow-Liu

26. Note that this is not the same quantity as in (6) because if the number of hidden variables is estimated incorrectly,
D(p || p̂n) is infinite so we plot D(pV || p̂nV) instead. However, for Gaussian and symmetric discrete distributions,
D(p || p̂n) converges to zero in probability since the number of hidden variables is estimated correctly asymptotically.

1797

CHOI, TAN, ANANDKUMAR AND WILLSKY

RG NJ CLRG CLNJ
HMM 10.16 0.02 0.10 0.05

5-complete 7.91 0.02 0.26 0.06
Double star 1.43 0.01 0.76 0.20

Table 2: Average running time of each algorithm in seconds.

tree of a latent HMM is close to a chain, the Chow-Liu tree tend to be more accurate for the HMM
than for the double star. Secondly, the internal nodes in the Chow-Liu tree of the HMM tend to
have small degrees, so we can apply RG or NJ to a very small neighborhood, which results in a
significant improvement in both accuracy and computational complexity.

Note that NJ is particularly poor at recovering the HMM structure. In fact, it has been shown
that even if the number of samples grows polynomially with the number of observed variables (i.e.,
n = O(mB) for any B > 0), it is insufficient for NJ to recover HMM structures (Lacey and Chang,
2006). The 5-complete tree has two layers of hidden nodes, making it very difficult to recover
the exact structure using any method. CLNJ has the best structure recovery error rate and KL
divergence, while CLRG has the smallest Robinson-Foulds metric.

Table 2 shows the running time of each algorithm averaged over 200 runs and all sample sizes.
All algorithms are implemented in MATLAB. As expected, we observe that CLRG is significantly
faster than RG for HMM and 5-complete graphs. NJ is fastest, but CLNJ is also very efficient and
leads to much more accurate reconstruction of latent trees.

Based on the simulation results, we conclude that for a latent tree with a few hidden variables,
RG is most accurate, and for a latent tree with a large diameter, CLNJ performs the best. A latent
tree with multiple layers of hidden variables is more difficult to recover correctly using any method,
and CLNJ and CLRG outperform NJ and RG.

7.2 Monthly Stock Returns

In this and the next section, we test our algorithms on real-world data sets. The probability distri-
butions that govern these data sets of course do not satisfy the assumptions required for consistent
learning of the latent tree models. Nonetheless the experiments here demonstrate that our algo-
rithms are also useful in approximating complex probability distributions by latent models in which
the hidden variables have the same domain as the observed ones.

We apply our latent tree learning algorithms to model the dependency structure of monthly stock
returns of 84 companies in the S&P 100 stock index.27 We use the samples of the monthly returns
from 1990 to 2007. As shown in Table 3 and Figure 8, CLNJ achieves the highest log-likelihood and
BIC scores. NJ introduces more hidden variables than CLNJ and has lower log-likelihoods, which
implies that starting from a Chow-Liu tree helps to get a better latent tree approximation. Figure 11
shows the latent tree structure learned using the CLNJ method. Each observed node is labeled with
the ticker of the company. Note that related companies are closely located on the tree. Many hidden
nodes can be interpreted as industries or divisions. For example, h1 has Verizon, Sprint, and T-
mobile as descendants, and can be interpreted as the telecom industry, and h3 correspond to the
technology division with companies such as Microsoft, Apple, and IBM as descendants. Nodes h26
and h27 group commercial banks together, and h25 has all retail stores as child nodes.

27. We disregard 16 companies that have been listed on S&P 100 only after 1990.

1798

LEARNING LATENT TREE GRAPHICAL MODELS

Log-Likelihood BIC # Hidden # Parameters Time (secs)
CL -13,321 -13,547 0 84 0.15
NJ -12,400 -12,747 45 129 0.02

RG -14,042 -14,300 12 96 21.15
CLNJ -11,990 -12,294 29 113 0.24
CLRG -12,879 -13,174 26 110 0.40

Table 3: Comparison of the log-likelihood, BIC, number of hidden variables introduced, number of
parameters, and running time for the monthly stock returns example.

-14,500

-14,000

-13,500

-13,000

-12,500

-12,000

CL NJ RG CLNJ CLRG

BIC score

Figure 8: Plot of BIC scores for the monthly stock returns example.

7.3 20 Newsgroups with 100 Words

For our last experiment, we apply our latent tree learning algorithms to the 20 Newsgroups data set
with 100 words.28 The data set consists of 16,242 binary samples of 100 words, indicating whether
each word appears in each posting or not. In addition to the Chow-Liu tree (CL), NJ, RG, CLNJ, and
CLRG, we also compare the performances with the regCLNJ and regCLRG (described in Section
6.6), the latent cluster model (LCM) (Lazarsfeld and Henry, 1968), and BIN, which is a greedy
algorithm for learning latent trees (Harmeling and Williams, 2010).

Table 4 shows the performance of different algorithms, and Figure 9 plots the BIC score. We
use the MATLAB code (a small part of it is implemented in C) provided by Harmeling andWilliams
(2010)29 to run LCM and BIN. Note that although LCM has only one hidden node, the hidden node
has 16 states, resulting in many parameters. We also tried to run the algorithm by Chen et al. (2008),
but their JAVA implementation on this data set did not complete even after several days. For NJ, RG,
CLNJ, and CLRG, we learned the structures using only information distances (defined in (9)) and
then used the EM algorithm to fit the parameters. For regCLNJ and regCLRG, the model parameters
are learned during the structure learning procedure by running the EM algorithm locally, and once
the structure learning is over, we refine the parameters by running the EM algorithm for the entire
latent tree. All methods are implemented in MATLAB except the E-step of the EM algorithm, which
is implemented in C++.

28. The data set can be found at http://cs.nyu.edu/˜roweis/data/20news_w100.mat.
29. Code can be found at http://people.kyb.tuebingen.mpg.de/harmeling/code/ltt-1.3.tar.

1799

CHOI, TAN, ANANDKUMAR AND WILLSKY

Log-Likelihood BIC Hidden Params
Time (s)

Total Structure EM
CL -238,713 -239,677 0 199 8.9 - -
LCM -223,096 -230,925 1 1,615 8,835.9 - -
BIN -232,042 -233,952 98 394 3,022.6 - -
NJ -230,575 -232,257 74 347 1,611.2 3.3 1,608.2

RG -239,619 -240,875 30 259 927.1 30.8 896.4
CLNJ -230,858 -232,540 74 347 1,479.6 2.7 1,476.8
CLRG -231,279 -232,738 51 301 1,224.6 3.1 1,224.6
regCLNJ -235,326 -236,553 27 253 630.8 449.7 181.1
regCLRG -234,012 -235,229 26 251 606.9 493.0 113.9

Table 4: Comparison between various algorithms on the newsgroup set.

-242,000

-240,000

-238,000

-236,000

-234,000

-232,000

-230,000

CL LCM BIN NJ RG CLNJ CLRG regCLNJ regCLRG

BIC score

Figure 9: The BIC scores of various algorithms on the newsgroup set.

Despite having many parameters, the models learned via LCM have the best BIC score. How-
ever, it does not reveal any interesting structure and is computationally more expensive to learn. In
addition, it may result in overfitting. In order to show this, we split the data set randomly and use
half as the training set and the other half as the test set. Table 5 shows the performance of applying
the latent trees learned from the training set to the test set, and Figure 10 shows the log-likelihood on
the training and the test sets. For LCM, the test log-likelihood drops significantly compared to the
training log-likelihood, indicating that LCM is overfitting the training data. NJ, CLNJ, and CLRG
achieve high log-likelihood scores on the test set. Although regCLNJ and regCLRG do not result
in a better BIC score, they introduce fewer hidden variables, which is desirable if we wish to learn
a latent tree with small computational complexity, or if we wish to discover a few hidden variables
that are meaningful in explaining the dependencies of observed variables.

Figure 12 shows the latent tree structure learned using regCLRG from the entire data set. Many
hidden variables in the tree can be roughly interpreted as topics—h5 as sports, h9 as computer tech-
nology, h13 as medical, etc. Note that some words have multiple meanings and appear in different
topics—for example, program can be used in the phrase “space program” as well as “computer
program”, and win may indicate the windows operating system or winning in sports games.

1800

LEARNING LATENT TREE GRAPHICAL MODELS

Train Test
Hidden Params

Time (s)
Log-Like BIC Log-Like BIC Total Struct EM

CL -119,013 -119,909 -120,107 -121,003 0 199 3.0 - -
LCM -112,746 -117,288 -116,884 -120,949 1 1,009 3,197.7 - -
BIN -117,172 -118,675 -117,957 -119,460 78 334 1,331.3 - -
NJ -115,319 -116,908 -116,011 -117,600 77 353 802.8 1.3 801.5

RG -118,280 -119,248 -119,181 -120,149 8 215 137.6 7.6 130.0
CLNJ -115,372 -116,987 -116,036 -117,652 80 359 648.0 1.5 646.5
CLRG -115,565 -116,920 -116,199 -117,554 51 301 506.0 1.7 504.3
regCLNJ -117,723 -118,924 -118,606 -119,808 34 267 425.5 251.3 174.2
regCLRG -116,980 -118,119 -117,652 -118,791 27 253 285.7 236.5 49.2

Table 5: Comparison between various algorithms on the newsgroup data set with a train/test split.

-121,000

-120,000

-119,000

-118,000

-117,000

-116,000

-115,000

-114,000

-113,000

-112,000

CL LCM BIN NJ RG CLNJ CLRG regCLNJ regCLRG

Train

Test

Log-likelihood

Figure 10: Train and test log-likelihood scores of various algorithms on the newsgroup data set with
a train/test split.

8. Discussion and Conclusion

In this paper, we proposed algorithms to learn a latent tree model from the information distances
of observed variables. Our first algorithm, recursive grouping (RG), identifies sibling and parent-
child relationships and introduces hidden nodes recursively. Our second algorithm, CLGrouping,
maintains a tree in each iteration and adds hidden variables by locally applying latent-tree learn-
ing procedures such as recursive grouping. These algorithms are structurally consistent (and risk
consistent as well in the case of Gaussian and discrete symmetric distributions), and have sample
complexity logarithmic in the number of observed variables for constant depth trees.

Using simulations on synthetic data sets, we showed that RG performs well when the num-
ber of hidden variables is small, while CLGrouping performs significantly better than other algo-
rithms when there are many hidden variables in the latent tree. We compared our algorithms to
other EM-based approaches and the neighbor-joining method on real-world data sets, under both
Gaussian and discrete data modeling. Our proposed algorithms show superior results in both ac-
curacy (measured by KL-divergence and graph distance) and computational efficiency. In addi-
tion, we introduced regularized CLGrouping, which can learn a latent tree approximation by trad-
ing off model complexity (number of hidden nodes) with data fidelity. This is very relevant for

1801

CHOI, TAN, ANANDKUMAR AND WILLSKY

W
M

B

O
X

Y
C

O
P

C
V

X

X
O

M

T
Y

C

G
E

F

B
A

U
T

X

F
D

X

C
B

S C
M

C
S

A

A
E

P

E
T

R
E

X
C

S
O

H
D

T
G

T

W
M

T

M
C

D

C
V

S

M
S

D
IS

O
R

C
L

S
P

1
0

0

S

T

V
Z

h
1

h
4

h
5

H
A

L

S
L

B

B
H

I

h
1

0

h
1

2

h
1

8

h
2

2

W
Y

IP

D
O

W

D
DA

A
C

A
T

H
O

N

G
D

R
T

N

M
M

M

h
2

h
1

5

h
1

9

h
2

3

h
2

4
h

2
5

D
E

L
L

A
A

P
L

H
P

Q IB
M

E
M

C
X

R
X

T
X

N

IN
T

C
M

S
F

T

h
3

h
1

1

h
2

0

h
2

1
h

2
8

C
A

X
P

M
E

R
A

IG

B
N

I
R

F

N
S

C

S
N

S

B
A

C

J
P

M
W

B

W
F

CB
K

U
S

B

h
2

6

h
2

7

S
L

E
C

P
B

H
N

Z
K

O

P
E

P

M
O

A
M

G
N

A
B

T

B
M

YJ
N

J

M
R

K
P

F
E

W
Y

E

P
G

A
V

P
C

L

B
A

X

M
D

T

C
I

U
N

H

h
6

h
7

h
8

h
9

h
1

3

h
1

4

h
1

6

h
1

7

h
2

9

Figure 11: Tree structure learned from monthly stock returns using CLNJ.

1802

LEARNING LATENT TREE GRAPHICAL MODELS

p
ro

g
ra

m

e
a
rt

h

la
u

n
ch

lu
n

a
r

m
a
rs

m
is

s
io

n
m

o
o

n

n
a

s
a

o
rb

it
s
a

te
lli

te s
h
u
tt
le

s
o

la
r

s
p

a
c
e

te
c
h

n
o

lo
g

y

h
1

h
1

7

c
a

rd

c
o

m
p

u
te

r
d

a
ta

d
is

k
d

is
p

la
y

d
o

s

d
ri
v
e

d
ri
v
e

r

e
m

a
il

fi
le

s
fo

rm
a
t

ft
p

g
ra

p
h

ic
s

h
e

lp

im
a

g
e

m
a

c

m
e

m
o

ry

n
u

m
b

e
r

p
c

p
h

o
n

e

p
ro

b
le

m
re

s
e

a
rc

h
s
c
ie

n
c
e

s
c
s
i

s
e

rv
e

r
s
o
ft
w

a
re

s
y
s
te

m

u
n

iv
e

rs
it
y

v
e

rs
io

n

v
id

e
o

w
in

d
o

w
s

h
9

h
1

0

h
1

1

h
1

2

h
1

6

h
1

8

h
1

9

h
2

2

h
2

3
h

2
4

h
2

5

h
2

6

je
w

s

c
a

s
e

c
h

ild
re

n

c
o

u
rs

e
e

v
id

e
n

c
e

fa
c
t

g
o

v
e

rn
m

e
n

t

g
u

n

h
u

m
a

n
is

ra
e

l
la

w

p
o

w
e

r
p

re
s
id

e
n

t

q
u

e
s
ti
o

n

ri
g

h
ts

s
ta

te

w
a

r

w
o

rl
d

h
2

h
3

h
4

h
2

0

b
ib

le

c
h

ri
s
ti
a

n
je

s
u

s

re
lig

io
n

h
8

h
1

4

g
o

d

b
a

s
e

b
a

ll
fa

n
s

g
a

m
e

s

h
it

h
o

c
k
e

y
le

a
g

u
e

n
h

l
p

la
y
e

rs

p
u

c
k

s
e

a
s
o

n
te

a
m

w
in

w
o

n

h
5

h
6

h
7

a
id

s

c
a

n
c
e

r
d

is
e

a
s
e

d
o

c
to

r

fo
o
d

h
e

a
lt
h

m
e

d
ic

in
e

m
s
g

p
a

ti
e

n
ts

s
tu

d
ie

s

v
it
a
m

in

w
a

te
r

h
1

3

h
2

1

b
m

wc
a

r

d
e

a
le

r

e
n

g
in

e
h

o
n

d
a

in
s
u

ra
n

c
e

o
il

h
1

5

Figure 12: Tree structure learned from 20 newsgroup data set using regCLRG.

1803

CHOI, TAN, ANANDKUMAR AND WILLSKY

practical implementation on real-world data sets. In future, we plan to develop a unified frame-
work for learning latent trees where each random variable (node) may be continuous or discrete.
The MATLAB implementation of our algorithms can be downloaded from the project webpage
http://people.csail.mit.edu/myungjin/latentTree.html.

Acknowledgments

This research was supported in part by Shell International Exploration and Production, Inc. and in
part by the Air Force Office of Scientific Research under Award No. FA9550-06-1-0324. This work
was also supported in part by AFOSR under Grant FA9550-08-1-1080 and in part by MURI under
AFOSR Grant FA9550-06-1-0324. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and do not necessarily reflect the views of the
Air Force. Vincent Tan and Animashree Anandkumar are supported by A*STAR, Singapore and by
the setup funds at U.C. Irvine respectively.

Appendix A. Proofs

In this appendix, we provide proofs for the theorems presented in the paper.

A.1 Proof of Lemma 4: Sibling Grouping

We prove statement (i) in Lemma 4 using (12) in Proposition 3. Statement (ii) follows along similar
lines and its proof is omitted for brevity.

If : From the additive property of information distances in (12), if i is a leaf node and j is its
parent, dik = di j+d jk and thus Φi jk = di j for all k �= i, j.

Only If: Now assume that Φi jk = di j for all k ∈V \{i, j}. In order to prove that i is a leaf node
and j is its parent, assume to the contrary, that i and j are not connected with an edge, then there
exists a node u �= i, j on the path connecting i and j. If u ∈ V , then let k = u. Otherwise, let k be
an observed node in the subtree away from i and j (see Figure 13(a)), which exists since Tp ∈ T≥3.
By the additive property of information distances in (12) and the assumption that all distances are
positive,

di j = diu+du j > diu−du j = dik−dk j =Φi jk

which is a contradiction. If i is not a leaf node in Tp, then there exist a node u �= i, j such that
(i,u) ∈ Ep. Let k = u if u ∈V , otherwise, let k be an observed node in the subtree away from i and
j (see Figure 13(b)). Then,

Φi jk = dik−d jk =−di j < di j,

which is again a contradiction. Therefore, (i, j) ∈ Ep and i is a leaf node.

A.2 Proof of Theorem 5: Correctness and Computational Complexity of RG

The correctness of RG follows from the following observations: Firstly, from Proposition 3, for all
i, j in the active set Y , the information distances di j can be computed exactly with Equations (13)
and (14). Secondly, at each iteration of RG, the sibling groups withinY are identified correctly using
the information distances by Lemma 4. Since the new parent node added to a partition that does not

1804

LEARNING LATENT TREE GRAPHICAL MODELS

i

(a) (b) (c) (d)

u j

k

j

i

u

k j

u

k

h

l

k i j

Sg(i)
Sg(j)

Vi\j Vj\i

Figure 13: Shaded nodes indicate observed nodes and the rest indicate hidden nodes. (a),(b) Figures
for Proof of Lemma 4. Dashed red line represent the subtrees away from i and j. (c)
Figure for Proof of Lemma 8(i). (d) Figure for Proof of Lemma 8(iI)

contain an observed parent corresponds to a hidden node (in the original latent tree), a subforest of
Tp is recovered at each iteration, and when |Y | ≤ 2, and the entire latent tree is recovered.

The computational complexity follows from the fact there are a maximum of O(m3) differences
Φi jk = dik− d jk that we have to compute at each iteration of RG. Furthermore, there are at most
diam(Tp) subsets in the coarsest partition (cf., step 3) of Y at the first iteration, and the number of
subsets reduce at least by 2 from one iteration to the next due to the assumption that Tp ∈ T≥3. This
proves the claim that the computational complexity is upper bounded by O(diam(Tp)m3).

A.3 Proof of Lemma 8: Properties of the MST

(i) For an edge (i, j) ∈ Ep such that Sg(i) �= Sg(j), let Vi\ j ⊂V and Vj\i ⊂V denote observed nodes
in the subtrees obtained by the removal of edge (i, j), where the former includes node i and excludes
node j and vice versa (see Figure 13(c)). Using part (ii) of the lemma and the fact that Sg(i) �= Sg(j),
it can be shown that Sg(i) ∈Vi\ j and Sg(j) ∈Vj\i. Since (i, j) lies on the unique path from k to l on
Tp, for all observed nodes k ∈Vi\ j, l ∈Vj\i, we have

dkl = dki+di j+d jl ≥ dSg(i),i+di j+dSg(j), j = dSg(i),Sg(j),

where the inequality is from the definition of surrogacy and the final equality uses the fact that
Sg(i) �= Sg(j). By using the property of the MST that (Sg(i),Sg(j)) is the shortest edge from Vi\ j
to Vj\i, we have (18).

(ii) First assume that we have a tie-breaking rule consistent across all hidden nodes so that if
duh = dvh = mini∈V dih and duh′ = dvh′ = mini∈V dih′ then both h and h′ choose the same surrogate
node. Let j ∈V , h ∈ Sg−1(j), and let u be a node on the path connecting h and j (see Figure 13(d)).
Assume that Sg(u) = k �= j. If du j > duk, then

dh j = dhu+du j > dhu+duk = dhk,

which is a contradiction since j= Sg(h). If du j = duk, then dh j = dhk, which is again a contradiction
to the consistent tie-breaking rule. Thus, the surrogate node of u is j.

(iii) First we claim that
|Sg−1(i)| ≤ Δ(Tp)

u
l δ(Tp;V). (29)

1805

CHOI, TAN, ANANDKUMAR AND WILLSKY

To prove this claim, let γ be the longest (worst-case) graph distance of any hidden node h ∈ H from
its surrogate, that is,

γ :=max
h∈H

|Path(h,Sg(h);Tp)|. (30)

From the degree bound, for each i ∈ V , there are at most Δ(Tp)γ hidden nodes that are within the
graph distance of γ,30 so

|Sg−1(i)| ≤ Δ(Tp)
γ (31)

for all i ∈ V . Let d∗ := maxh∈H dh,Sg(h) be the longest (worst-case) information distance between a
hidden node and its surrogate. From the bounds on the information distances, lγ≤ d∗. In addition,
for each h ∈ H, let z(h) := argmin j∈V |Path((h, j);Tp)| be the observed node that is closest to h in
graph distance. Then, by definition of the effective depth, dh,Sg(h) ≤ dh,z(h) ≤ uδ for all h ∈ H, and
we have d∗ ≤ uδ. Since lγ≤ d∗ ≤ uδ, we also have

γ≤ uδ/l. (32)

Combining this result with (31) establishes the claim in (29). Now consider

Δ(MST(V ;D))
(a)
≤ Δ(Tp)max

i∈V
|Sg−1(i)|

(b)
≤ Δ(Tp)

1+ u
l δ(Tp;V)

where (a) is a result of the application of (18) and (b) results from (29). This completes the proof
of the claim in (19) in Lemma 8.

A.4 Proof of Theorem 9: Correctness and Computational Complexity of CLBlind

It suffices to show that the Chow-Liu tree MST(V ;d) is a transformation of the true latent tree Tp
(with parameters such that p ∈ P (Tblind)) as follows: contract the edge connecting each hidden
variable h with its surrogate node Sg(h) (one of its children and a leaf by assumption). Note that
the blind transformation on the MST is merely the inverse mapping of the above. From (18), all
the children of a hidden node h, except its surrogate Sg(h), are neighbors of its surrogate node
Sg(h) in MST(V ;d). Moreover, these children of h which are not surrogates of any hidden nodes
are leaf nodes in the MST. Similarly for two hidden nodes h1,h2 ∈ H such that (h1,h2) ∈ Ep,
(Sg(h1),Sg(h2)) ∈ MST(V ;d) from Lemma 8(i). Hence, CLBlind outputs the correct tree struc-
ture Tp. The computational complexity follows from the fact that the blind transformation is linear
in the number of internal nodes, which is less than the number of observed nodes, and that learning
the Chow-Liu tree takes O(m2 logm) operations.

A.5 Proof of Theorem 10: Correctness and Computational Complexity of CLRG

We first define some new notations.
Notation: Let I :=V \Leaf(MST(V ;d)) be the set of internal nodes. Let vr ∈ I be the internal

node visited at iteration r, and let Hr be all hidden nodes in the inverse surrogate set Sg−1(vr),
that is, Hr = Sg−1(vr) \ {vr}. Let Ar := nbd[vr;T r−1], and hence Ar is the node set input to the
recursive grouping routine at iteration r, and let RG(Ar,d) be the output latent tree learned by
recursive grouping. Define T r as the tree output at the end of r iterations of CLGrouping. Let
Vr := {vr+1,vr+2, . . . ,v|I |} be the set of internal nodes that have not yet been visited by CLGrouping
30. The maximum size of the inverse surrogate set in (30) is attained by a Δ(Tp)-ary complete tree.

1806

LEARNING LATENT TREE GRAPHICAL MODELS

(a)

h1

1

2 3 4 5

6

h2h3

(b)

(c)

2 1

3

46

5

3

h1

2

1

4 56

h2

5

T1 T2

A1
A2

v1

v2

RG(A1,d) RG(A2,d)

T0 T1

2

1 3

4 56

h1

h22 1

3

46

5

3

h1

2

1

4 56

h2

h1

h3 h2

2

1

3 4 5

6
EC(Tp, V

2)

v1

v2

S2

v2

H2

S1

EC(Tp, V
1)

v1

H1

EC(Tp, V
0) EC(Tp, V

1)

� �

��

2

1 3

4 56

h1

h2

v1

H1

h1

h3 h2

2

1

3 4 5

6

v2

H2

Figure 14: Figure for Proof of Theorem 10. (a) Original latent tree. (b) Illustration of CLGrouping.
(c) Illustration of the trees constructed using edge contractions.

at the end of r iterations. Let EC(Tp,Vr) be the tree constructed using edge contractions as follows:
in the latent tree Tp, we contract edges corresponding to each node u ∈ Vr and all hidden nodes
in its inverse surrogate set Sg−1(u). Let Sr be a subtree of EC(Tp,Vr) spanning vr, Hr and their
neighbors.

For example, in Figure 14, the original latent tree Tp is shown in Figure 14(a), and T 0, T 1,
T 2 are shown in Figure 14(b). The set of internal nodes is I = {3,5}. In the first iteration,
v1 = 5, A1 = {1,3,4,5} and H1 = {h1,h2}. In the second iteration, v2 = 3, A2 = {2,3,6,h1}
and H1 = {h3}. V 0 = {3,5}, V 1 = {3}, and V 2 = /0, and in Figure 14(c), we show EC(Tp,V 0),
EC(Tp,V 1), and EC(Tp,V 2). In EC(Tp,V 1), S1 is the subtree spanning 5,h1,h2 and their neighbors,
that is, {1,3,4,5,h1,h2}. In EC(Tp,V 2), S2 is the subtree spanning 3,h3 and their neighbors, that
is, {2,3,6,h1,h3}. Note that T 0 = EC(Tp,V 0), T 1 = EC(Tp,V 1), and T 2 = EC(Tp,V 2); we show
below that this holds for all CLGrouping iterations in general.

We prove the theorem by induction on the iterations r= 1, . . . , |I | of the CLGrouping algorithm.
Induction Hypothesis: At the end of k iterations of CLGrouping, the tree obtained is

Tk = EC(Tp,V
k), ∀k = 0,1, . . . , |I |. (33)

In words, the latent tree after k iterations of CLGrouping can be constructed by contracting each
surrogate node in Tp that has not been visited by CLGrouping with its inverse surrogate set. Note
thatV |I | = /0 and EC(Tp,V |I |) is equivalent to the original latent tree Tp. Thus, if the above induction
in (33) holds, then the output of CLGrouping T |I | is the original latent tree.

Base Step r = 0: The claim in (33) holds since V 0 = I and the input to the CLGrouping pro-
cedure is the Chow-Liu tree MST(V ;D), which is obtained by contracting all surrogate nodes and
their inverse surrogate sets (see Section 5.2).

Induction Step: Assume (33) is true for k = 1, . . . ,r−1. Now consider k = r.

1807

CHOI, TAN, ANANDKUMAR AND WILLSKY

We first compare the two latent trees EC(Tp,Vr) and EC(Tp,Vr−1). By the definition of EC, if
we contract edges with vr and the hidden nodes in its inverse surrogate setHr on the tree EC(Tp,Vr),
then we obtain EC(Tp,Vr−1), which is equivalent to T r−1 by the induction assumption. Note that
as shown in Figure 14, this transformation is local to the subtree Sr: contracting vr with Hr on
EC(Tp,Vr) transforms Sr into a star graph with vr at its center and the hidden nodes Hr removed
(contracted with vr).

Recall that the CLGrouping procedure replaces the induced subtree of Ar in T r−1 (which is
precisely the star graph mentioned above by the induction hypothesis) with RG(Ar,d) to obtain T r.
Thus, to prove that T r = EC(Tp,Vr), we only need to show that RG reverses the edge-contraction
operations on vr and Hr, that is, the subtree Sr = RG(Ar,d). We first show that Sr ∈ T≥3, that is,
it is identifiable (minimal) when Ar is the set of visible nodes. This is because an edge contraction
operation does not decrease the degree of any existing nodes. Since Tp ∈ T≥3, all hidden nodes in
EC(Tp,Vr) have degrees equal to or greater than 3, and since we are including all neighbors ofHr in
the subtree Sr, we have Sr ∈ T≥3. By Theorem 5, RG reconstructs all latent trees in T≥3 and hence,
Sr = RG(Ar,d).

The computational complexity follows from the corresponding result in recursive grouping. The
Chow-Liu tree can be constructed with O(m2 logm) complexity. The recursive grouping procedure
has complexity maxr |Ar|3 and maxr |Ar| ≤ Δ(MST(V ; d̂)).

A.6 Proof of Theorem 11: Consistency and Sample Complexity of Relaxed RG

(i) Structural consistency follows from Theorem 5 and the fact that the ML estimates of information
distances d̂i j approach di j (in probability) for all i, j ∈V as the number of samples tends to infinity.

Risk consistency for Gaussian and symmetric discrete distributions follows from structural con-
sistency. If the structure is correctly recovered, we can use the equations in (13) and (14) to infer the
information distances. Since the distances are in one-to-one correspondence to the correlation coef-
ficients and the crossover probability for Gaussian and symmetric discrete distribution respectively,
the parameters are also consistent. This implies that the KL-divergence between p and p̂n tends to
zero (in probability) as the number of samples n tends to infinity. This completes the proof.

(ii) The theorem follows by using the assumption that the effective depth δ = δ(Tp;V) is con-
stant. Recall that τ> 0 is the threshold used in relaxed RG (see (21) in Section 6.3). Let the set of
triples (i, j,k) whose pairwise information distances are less than τ apart be J , that is, (i, j,k) ∈ J
if and only if max{di j,d jk,dki} < τ. Since we assume that the true information distances are uni-
formly bounded, there exist τ> 0 and some sufficiently small λ> 0 so that if |Φ̂i jk−Φi jk| ≤ λ for
all (i, j,k) ∈ J , then RG recovers the correct latent structure.

Define the error event Ei jk := {|Φ̂i jk−Φi jk|> λ}. We note that the probability of the event Ei jk
decays exponentially fast, that is, there exists Ji jk > 0 such that for all n ∈ N,

Pr(Ei jk)≤ exp(−nJi jk). (34)

1808

LEARNING LATENT TREE GRAPHICAL MODELS

The proof of (34) follows readily for Chernoff bounds (Hoeffding, 1958) and is omitted. The error
probability associated to structure learning can be bounded as follows:

Pr
(
h(T̂ n) �= Tp

) (a)
≤ Pr

⎛⎝ ⋃
(i, j,k)∈J

Ei jk

⎞⎠ (b)
≤ ∑

(i, j,k)∈J
Pr(Ei jk)

≤ m3 max
(i, j,k)∈J

Pr(Ei jk)
(c)
≤ exp(3logm)exp

[
−n min

(i, j,k)∈J
Ji jk

]
,

where (a) follows from the fact that if the event {h(T̂ n) �= Tp} occurs, then there is at least one
sibling or parent-child relationship that is incorrect, which corresponds to the union of the events
Ei jk, that is, there exists a triple (i, j,k) ∈ J is such that Φ̂i jk differs from Φi jk by more than λ.
Inequality (b) follows from the union bound and (c) follows from (34).

Because the information distances are uniformly bounded, there also exists a constant Jmin > 0
(independent of m) such that min(i, j,k)∈J Ji jk ≥ Jmin for all m ∈ N. Hence for every η > 0, if the
number of samples satisfies n > 3(log(m/ 3

√
η))/Jmin, the error probability is bounded above by η.

Let C := 3/Jmin to complete the proof of the sample complexity result in (26). The proof for the
logarithmic sample complexity of distribution reconstruction for Gaussian and symmetric discrete
models follows from the logarithmic sample complexity result for structure learning and the fact
that the information distances are in a one-to-one correspondence with the correlation coefficients
(for Gaussian models) or crossover probabilities (for symmetric discrete models).

A.7 Proof of Theorem 12: Consistency and Sample Complexity of Relaxed CLRG

(i) Structural consistency of CLGrouping follows from structural consistency of RG (or NJ) and
the consistency of the Chow-Liu algorithm. Risk consistency of CLGrouping for Gaussian or sym-
metric distributions follows from the structural consistency, and the proof is similar to the proof of
Theorem 11(i).

(ii) The input to the CLGrouping procedure T̂CL is the Chow-Liu tree and has O(logm) sample
complexity (Tan et al., 2010, 2011), where m is the size of the tree. This is true for both discrete
and Gaussian data. From Theorem 11, the recursive grouping procedure has O(logm) sample com-
plexity (for appropriately chosen thresholds) when the input information distances are uniformly
bounded. In any iteration of the CLGrouping, the information distances satisfy di j ≤ γu, where γ,
defined in (30), is the worst-case graph distance of any hidden node from its surrogate. Since γ
satisfies (32), di j ≤ u2δ/l. If the effective depth δ = O(1) (as assumed), the distances di j = O(1)
and the sample complexity is O(logm).

References

K. Atteson. The performance of neighbor-joining methods of phylogenetic reconstruction. Algo-
rithmica, 25(2):251–278, 1999.

M. F. Balcan and P. Gupta. Robust hierarchical clustering. In Intl. Conf. on Learning Theory
(COLT), 2010.

H.-J. Bandelth and A. Dress. Reconstructing the shape of a tree from observed dissimilarity data.
Adv. Appl. Math, 7:309–43, 1986.

1809

CHOI, TAN, ANANDKUMAR AND WILLSKY

S. Bhamidi, R. Rajagopal, and S. Roch. Network delay inference from additive metrics. To appear
in Random Structures and Algorithms, Arxiv preprint math/0604367, 2009.

R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu. Network tomography: Recent developments.
Stat. Science, 19:499–517, 2004.

J. T. Chang and J. A. Hartigan. Reconstruction of evolutionary trees from pairwise distributions on
current species. In Computing Science and Statistics: Proceedings of the 23rd Symposium on the
Interface, pages 254–257, 1991.

T. Chen, N. L. Zhang, and Y. Wang. Efficient model evaluation in the search based approach to
latent structure discovery. In 4th European Workshop on Probabilistic Graphical Models, 2008.

M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky. Exploiting hierarchical context on a large
database of object categories. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), San Francisco, CA, June 2010.

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees.
IEEE Trans. on Information Theory, 3:462–467, 1968.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. McGraw-Hill Sci-
ence/Engineering/Math, 2nd edition, 2003.

T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 2nd edition,
2006.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic Networks and
Expert Systems. Statistics for Engineering and Information Science. Springer-Verlag, New York,
1999.

M. Csűrös. Reconstructing Phylogenies in Markov Models of Sequence Evolution. PhD thesis, Yale
University, 2000.

C. Daskalakis, E. Mossel, and S. Roch. Optimal phylogenetic reconstruction. In STOC ’06: Pro-
ceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing, pages 159–168,
2006.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum-likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society, 39:1–38, 1977.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge Univ. Press, 1999.

G. Elidan and N. Friedman. Learning hidden variable networks: The information bottleneck ap-
proach. Journal of Machine Learning Research, 6:81–127, 2005.

P. L. Erdős, L. A. Székely, M. A. Steel, and T. J. Warnow. A few logs suffice to build (almost) all
trees: Part ii. Theoretical Computer Science, 221:153–184, 1999.

J. Farris. Estimating phylogenetic trees from distance matrices. Amer. Natur., 106(951):645–67,
1972.

1810

LEARNING LATENT TREE GRAPHICAL MODELS

S. Harmeling and C. K. I. Williams. Greedy learning of binary latent trees. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2010.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1958.

D. Hsu, S.M. Kakade, and T. Zhang. A spectral algorithm for learning hidden Markov models. In
Intl. Conf. on Learning Theory (COLT), 2009.

A. K. Jain, M. N. Murthy, and P. J. Flynn. Data clustering: A review. ACM Computing Reviews,
1999.

T. Jiang, P. E. Kearney, and M. Li. A polynomial-time approximation scheme for inferring evolu-
tionary trees from quartet topologies and its application. SIAM J. Comput., 30(6):194261, 2001.

C. Kemp and J. B. Tenenbaum. The discovery of structural form. Proceedings of the National
Academy of Science, 105(31):10687–10692, 2008.

J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical Society, 7(1), Feb 1956.

M. R. Lacey and J. T. Chang. A signal-to-noise analysis of phylogeny estimation by neighbor-
joining: Insufficiency of polynomial length sequences. Mathematical Biosciences, 199:188–215,
2006.

J. A. Lake. Reconstructing evolutionary trees from dna and protein sequences: Parallnear distances.
Proceedings of the National Academy of Science, 91:1455–1459, 1994.

S. L. Lauritzen. Graphical Models. Clarendon Press, 1996.

P. F. Lazarsfeld and N.W. Henry. Latent Structure Analysis. Boston: Houghton Mifflin, 1968.

D. G. Luenberger. Introduction to Dynamic Systems: Theory, Models, and Applications. Wiley,
1979.

D. Parikh and T. H. Chen. Hierarchical Semantics of Objects (hSOs). In ICCV, pages 1–8, 2007.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Network of Plausible inference. Morgan
Kaufmann, 1988.

R. C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal,
36, 1957.

D. F. Robinson and L. R. Foulds. Comparison of phylogenetic trees. Mathematical Biosciences, 53:
131–147, 1981.

S. Roch. A short proof that phylogenetic tree reconstruction by maximum likelihood is hard.
IEEE/ACM Trans. Comput. Biol. Bioinformatics, 3(1), 2006.

P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.
Computational and Applied Mathematics, 20:53–65, 1987.

1811

CHOI, TAN, ANANDKUMAR AND WILLSKY

N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing phylogenetic
trees. Mol Biol Evol, 4(4):406–425, Jul 1987.

S. Sattath and A. Tversky. Additive similarity trees. Psychometrika, 42:319–45, 1977.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

R. J. Serfling. Approximation Theorems of Mathematical Statistics. Wiley-Interscience, Nov 1980.

S. Shen. Large deviation for the empirical correlation coefficient of two Gaussian random variables.
Acta Mathematica Scientia, 27(4):821–828, Oct 2007.

R. Silva, R. Scheine, C. Glymour, and P. Spirtes. Learning the structure of linear latent variable
models. Journal of Machine Learning Research, 7:191–246, Feb 2006.

L. Song, B. Boots, S. M. Siddiqi, G. Gordon, and A. Smola. Hilbert space embeddings of hidden
Markov models. In Proc. of Intl. Conf. on Machine Learning, 2010.

K. St. John, T.Warnow, B. M. E. Moret, and L. Vawter. Performance study of phylogenetic methods:
(unweighted) quartet methods and neighbor-joining. J. Algorithms, 48(1):173–193, 2003.

M. Steel. The complexity of reconstructing trees from qualitative characters and subtrees. Journal
of Classification, 9:91–116, 1992.

V. Y. F. Tan, A. Anandkumar, and A. S. Willsky. Learning Gaussian tree models: Analysis of error
exponents and extremal structures. IEEE Transactions on Signal Processing, 58(5):2701–2714,
May 2010.

V. Y. F. Tan, A. Anandkumar, and A. S. Willsky. Learning high-dimensional Markov forest distri-
butions: Analysis of error rates. Journal of Machine Learning Research (In Press), 2011.

Y. Tsang, M. Coates, and R. D. Nowak. Network delay tomography. IEEE Trans. Signal Processing,
51:21252136, 2003.

Y. Wang, N. L. Zhang, and T. Chen. Latent tree models and approximate inference in Bayesian
networks. Journal of Artificial Intelligence Research, 32:879–900, Aug 2008.

N. L. Zhang. Hierarchical latent class models for cluster analysis. Journal of Machine Learning
Research, 5:697–723, 2004.

N. L. Zhang and T Kočka. Efficient learning of hierarchical latent class models. In ICTAI, 2004.

1812

Journal of Machine Learning Research 12 (2011) 1813-1833 Submitted 12/09; Revised 9/10; Published 6/11

Hyper-Sparse Optimal Aggregation

Stéphane Gaı̈ffas STEPHANE.GAIFFAS@UPMC.FR
Laboratoire de Statistique Théorique et Appliquée
Université Pierre et Marie Curie - Paris 6
75005, Paris, FRANCE

Guillaume Lecué GUILLAUME.LECUE@UNIV-MLV.FR
CNRS, Laboratoire d’Analyse et Mathématiques appliquées
Université Paris-Est - Marne-la-vallée
77454, Marne-la-Valle Cedex 2, FRANCE

Editor: John Shawe-Taylor

Abstract
Given a finite set F of functions and a learning sample, the aim of an aggregation procedure is
to have a risk as close as possible to risk of the best function in F . Up to now, optimal aggre-
gation procedures are convex combinations of every elements of F . In this paper, we prove that
optimal aggregation procedures combining only two functions in F exist. Such algorithms are of
particular interest when F contains many irrelevant functions that should not appear in the aggre-
gation procedure. Since selectors are suboptimal aggregation procedures, this proves that two is
the minimal number of elements of F required for the construction of an optimal aggregation pro-
cedure in every situations. Then, we perform a numerical study for the problem of selection of the
regularization parameters of the Lasso and the Elastic-net estimators. We compare on simulated
examples our aggregation algorithms to aggregation with exponential weights, to Mallow’sCp and
to cross-validation selection procedures.
Keywords: aggregation, exact oracle inequality, empirical risk minimization, empirical process
theory, sparsity, Lasso, Lars

1. Introduction

Let (Ω,μ) be a probability space and ν be a probability measure onΩ×R such that μ is its marginal
on Ω. Assume (X ,Y) and Dn := (Xi,Yi)ni=1 to be n+ 1 independent random variables distributed
according to ν, and that we are given a finite set F = { f1, . . . , fM} of real-valued functions on Ω,
usually called a dictionary, or a set of weak learners. This set of functions is often a set of estimators
computed on a training sample, which is independent of the sample Dn (learning sample).

We consider the problem of prediction of Y from X using the functions given in F and the
sample Dn. If f : Ω → R, we measure its error of prediction, or risk, by the expectation of the
squared loss

R(f) = E(f (X)−Y)2.
If f̂ depends on Dn, its risk is the conditional expectation

R(f̂) = E[(f̂ (X)−Y)2|Dn].

The aim of the problem of aggregation is to construct a procedure f̃ (called an aggregate) using Dn

and F with a risk which is very close to the smallest risk over F . Namely, one wants to prove that f̃

c©2011 Stéphane Gaı̈ffas and Guillaume Lecué.

GAÏFFAS AND LECUÉ

satisfies an inequality of the form

R(f̃)≤min
f∈F

R(f)+ r(F,n) (1)

with a large probability or in expectation. Inequalities of the form (1) are called exact oracle inequal-
ities and r(F,n) is called the residue. A classical result (Juditsky et al., 2008) says that aggregates
with values in F cannot satisfy an inequality like (1) with a residue smaller than ((logM)/n)1/2 for
every F . Nevertheless, it is possible to mimic the oracle (an oracle is a element in F achieving the
minimal risk over F) up to the residue (logM)/n (see Juditsky et al., 2008 and Lecué and Mendel-
son, 2009, among others) using an aggregate f̃ that combines all the elements of F . In this case,
we say that f̃ is an optimal aggregation procedure. This notion of optimality is given in Tsybakov
(2003) and Lecué and Mendelson (2009), and it is the one we will refer to in this paper.

Given the set of functions F , a natural way to predict Y is to compute the empirical risk mini-
mization procedure (ERM), the one that minimizes the empirical risk

Rn(f) :=
1
n

n

∑
i=1

(Yi− f (Xi))
2

over F . This very basic principle is at the core of aggregation procedures (for regression with
squared loss). An aggregate is typically represented as a convex combination of the elements of F .
Namely,

f̂ :=
M

∑
j=1

θ j(Dn,F) f j,

where (θ j(Dn,F))Mj=1 is a vector of non-negative coordinates suming to 1. Up to now, most of
the optimal aggregation procedures are based on exponential weights: aggregation with cumulated
exponential weights (ACEW), see Catoni (2001), Yang (2004), Yang (2000), Juditsky et al. (2008),
Juditsky et al. (2005), Audibert (2009) and aggregation with exponential weights (AEW), see Leung
and Barron (2006) and Dalalyan and Tsybakov (2007), among others. The weights of the ACEW
are given by

θ(ACEW)
j :=

1
n

n

∑
k=1

exp(−Rk(f j)/T)
∑M
l=1 exp(−Rk(fl)/T)

,

where T is the so-called temperature parameter. The weights of the AEW are given by

θ(AEW)
j :=

exp(−Rn(f j)/T)
∑M
l=1 exp(−Rn(f j)/T)

.

The ACEW satisfies (1) for r(F,n)∼ (logM)/n, see references above, so it is optimal in the sense of
Tsybakov (2003). The AEW has been proved to be optimal in the regression model with determinis-
tic design for large temperatures in Dalalyan and Tsybakov (2007). Altough, for small temperatures,
AEW can be suboptimal both in expectation and with large probability (cf. Lecué and Mendelson,
2010).

In these aggregates, no coefficient θ j is equal to zero, although they can be very small, depend-
ing on the value of Rn(f j) and T (this makes in particular the choice of T of importance). So, even
the worse elements of F have an influence on the aggregate. This can be a problem when one wants
to use aggregation to construct adaptive procedures. Indeed, one could imagine large dictionaries

1814

HYPER-SPARSE OPTIMAL AGGREGATION

containing many different types of estimators (kernel estimators, projection estimators, etc.) with
many different parameters (smoothing parameters, groups of variables, etc.). Some of the estima-
tors are likely to be more adapted than the others, depending on the kind of models that fits well
the data, and, there may be only few of them among a large dictionary. An aggregate that combines
only the most adapted estimators from the dictionary and that removes the irrelevant ones is suitable
in this case. The challenge is then to find such a procedure which is still an optimal aggregate. An
improvement going in this direction has been made using a preselection step in Lecué and Mendel-
son (2009). This preselection step allows to remove all the estimators in F which performs badly
on a learning subsample. In this paper, we want to go a step further: we look for an aggregation
algorithm that shares the same property of optimality, but with as few non-zero coefficients θ j as
possible, hence the name hyper-sparse aggregate. This leads to the following question:

Question 1 What is the minimal number of non-zero coefficients θ j such that an aggregation pro-
cedure f̃ = ∑M

j=1θ j f j is optimal?

It turns out that the answer to Question 1 is two. Indeed, if every coefficient is zero, excepted for one,
the aggregate coincides with an element of F , and as we mentioned before, such a procedure can
only achieve the rate ((logM)/n)1/2 (unless extra properties are satisfied by F and ν). In Definition 1
below (see Section 2) we construct three procedures, where two of them (see (6) and (7)) only have
two non-zero coefficients θ j. We prove in Theorem 2 below that these procedures are optimal, since
they achieve the rate (logM)/n.

2. Definition of the Aggregates and Results

First, we need to introduce some notations and assumptions. Let us recall that the ψ1-norm of a
random variable Z is given by ‖Z‖ψ1 := inf{c > 0 : E[exp(|Z|/c))] ≤ 2}. We say that Z is sub-
exponential when ‖Z‖ψ1 <+∞. We work under the following assumptions.

Assumption 1 We can write
Y = f0(X)+ ε,

where ε is such that E(ε|X) = 0 and E(ε2|X) ≤ σ2ε a.s. for some constant σε > 0. Moreover, we
assume that one of the following points holds.

• (Bounded setup) There is a constant b> 0 such that:

max
(
‖Y‖∞, sup

f∈F
‖ f (X)‖L∞

)
≤ b. (2)

• (Sub-exponential setup) There is a constant b> 0 such that:

max
(
‖ε‖ψ1 , sup

f∈F
‖ f (X)− f0(X)‖L∞

)
≤ b. (3)

Note that Assumption (3) allows for an unbounded outputY . The results given below differ a bit
depending on the considered assumption (there is an extra logn term in the sub-exponential case).
To simplify the notations, we assume from now on that we have 2n observations from a sample
D2n = (Xi,Yi)2ni=1. Let us define our aggregation procedures.

1815

GAÏFFAS AND LECUÉ

Definition 1 (Aggregation procedures) Follow the following steps:

(0. Initialization) Choose a confidence level x> 0. If (2) holds, define

φ= φn,M(x) = b

√
logM+ x

n
.

If (3) holds, define

φ= φn,M(x) = (σε+b)

√
(logM+ x) logn

n
.

(1. Splitting) Split the sample D2n into Dn,1 = (Xi,Yi)ni=1 and Dn,2 = (Xi,Yi)2ni=n+1.

(2. Preselection) Use Dn,1 to define a random subset of F :

F̂1 =
{
f ∈ F : Rn,1(f)≤ Rn,1(f̂n,1)+ cmax

(
φ‖ f̂n,1− f‖n,1,φ2

)}
, (4)

where ‖ f‖2n,1 = n−1∑n
i=1 f (Xi)

2, Rn,1(f) = n−1∑n
i=1(f (Xi)−Yi)2, f̂n,1 ∈ argmin f∈F Rn,1(f).

(3. Aggregation) Choose F̂ as one of the following sets:

F̂ = conv(F̂1) = the convex hull of F̂1 (5)

F̂ = seg(F̂1) = the segments between the functions in F̂1 (6)

F̂ = star(f̂n,1, F̂1) = the segments between f̂n,1 with the elements of F̂1, (7)

and return the ERM relative to Dn,2 :

f̃ ∈ argmin
g∈F̂

Rn,2(g),

where Rn,2(f) = n−1∑2ni=n+1(f (Xi)−Yi)2.

These algorithms are illustrated in Figures 1 and 2. In Figure 1 we summarize the aggregation
steps in the three cases. In Figure 2 we give a simulated illustration of the preselection step, and we
show the value of the weights of the AEW for a comparison. As mentioned above, the Step 3 of
the algorithm returns, when F̂ is given by (6) or (7), an aggregate which is a convex combination
of only two functions in F , among the ones remaining after the preselection step. The preselection
step was introduced in Lecué and Mendelson (2009), with the use of (5) only for the aggregation
step.

From the computational point of view, the procedure (7) is the most appealing: an ERM in
star(f̂n,1, F̂) can be computed in a fast and explicit way, see Algorithm 1 below. The next Theorem
proves that each procedure given in Definition 1 are optimal.

Theorem 2 Let x > 0 be a confidence level, F be a dictionary with cardinality M and f̃ be one of
the aggregation procedure given in Definition 1. If (2) holds, we have, with ν2n-probability at least
1−2e−x:

R(f̃)≤min
f∈F

R(f)+ cb
(1+ x) logM

n
,

1816

HYPER-SPARSE OPTIMAL AGGREGATION

̂

(̂)
̂
,

̂

(̂)
̂
,

̂

(̂ , , ̂)
̂
,

Figure 1: Aggregation algorithms: ERM over conv(F̂1), seg(F̂1), or star(f̂n,1, F̂1).

where cb is a constant depending on b.
If (3) holds, we have, with ν2n-probability at least 1−4e−x:

R(f̃)≤min
f∈F

R(f)+ cσε,b
(1+ x) logM logn

n
.

Remark 3 Note that the definition of the set F̂1, and thus f̃ , depends on the confidence x through
the factor φn,M(x).

Remark 4 To simplify the proofs, we don’t give the explicit values of the constants. However,
when (2) holds, one can choose c= 4(1+9b) in (4) and c= c1(1+b) when (3) holds (where c1 is
the absolute constant appearing in Theorem 6). Of course, this is not likely to be the optimal choice.

Now, we give details for the computation of the star-shaped aggregate, namely the aggregate f̃
given by Definition 1 when F̂ is (7). Indeed, if λ ∈ [0,1], we have

Rn,2(λ f +(1−λ)g) = λRn,2(f)+(1−λ)Rn,2(g)−λ(1−λ)‖ f −g‖2n,2,

so the minimum of λ → Rn,2(λ f +(1−λ)g) is achieved at

λn,2(f ,g) = 0∨
1
2

(Rn,2(g)−Rn,2(f)

‖ f −g‖2n,2
+1
)
∧1,

where a∨b=max(a,b), a∧b=min(a,b). So,

min
λ∈[0,1]

Rn,2(λ f +(1−λ)g) = Rn,2(λn,2(f ,g) f +(1−λn,2(f ,g))g),

which is equal to

Rn,2(g) if Rn,2(f)−Rn,2(g)> ‖ f −g‖2n,2,
Rn,2(f) if Rn,2(f)−Rn,2(g)<−‖ f −g‖2n,2,

1817

GAÏFFAS AND LECUÉ

Figure 2: Empirical risk Rn,1(f), value of the threshold Rn,1(f̂n,1)+ 2max(φ‖ f̂n,1− f‖n,1,φ2) and
weights of the AEW (rescaled) for f ∈ F , where F is a dictionary obtained using LARS,
see Section 3 below. Only the elements of F with an empirical risk smaller than the
threshold are kept from the dictionary for the construction of the aggregates of Defi-
nition (1). The first and third examples correspond to a case where an aggregate with
preselection step improves upon AEW, while in the second example, both procedures
behaves similarly.

and to
Rn,2(f)+Rn,2(g)

2
− (Rn,2(f)−Rn,2(g))2

4‖ f −g‖2n,2
−

‖ f −g‖2n,2
4

if |Rn,2(f)−Rn,2(g)| ≤ ‖ f −g‖2n,2. This leads to the next Algorithm 1 for the computation of f̃ .

3. Simulation Study

In machine learning, the choice of the tuning parameters in a procedure based on penalization is a
main issue. If the procedure is able to perform variable selection (such as the Lasso, see Tibshirani,
1996), then the tuning parameters determines which variables are selected. In many cases, including
the Lasso, this choice is commonly done using a Mallow’s Cp heuristic (see Efron et al., 2004) or
using the V -fold or the leave-one-out cross validations. Since aggregation procedures are known
(see references above) to outperform selectors in terms of prediction error, it is tempting to use
aggregation for the choice of the tuning parameters. Unfortunately, as we mentioned before, most
aggregation procedures provide non-zero weights to many non relevant element in a dictionary:
this is a problem for variable selection. Indeed, if we use, for instance, the AEW on a dictionary
consisting of the full path of Lasso estimators (provided by the Lars algorithm, see Efron et al.,
2004), then the resulting aggregate is likely to select all the variables since the Lasso with a small
regularization parameter is very close (and equal if it is zero) to ordinary least-squares (which does
not perform any variables selection). So, in this context, the hyper-sparse aggregate of Section 2 is
of particular interest. In this section, we compare the prediction error and the accuracy of variable
selection of our star-shaped aggregation algorithm to Mallow’s Cp heuristic, leave-one-out cross-
validation and 10-fold cross-validation. In Section 3.2 we consider a dictionary consisting of the

1818

HYPER-SPARSE OPTIMAL AGGREGATION

Algorithm 1: Computation of the star-shaped aggregate.
Input: dictionary F , data (Xi,Yi)2ni=1, and a confidence level x> 0
Output: star-shaped aggregate f̃
Split D2n into two samples Dn,1 and Dn,2

foreach j ∈ {1, . . . ,M} do
Compute Rn,1(f j) and Rn,2(f j), and use this loop to find f̂n,1 ∈ argmin f∈F Rn,1(f)

end
foreach j ∈ {1, . . . ,M} do

Compute ‖ f j− f̂n,1‖n,1 and ‖ f j− f̂n,1‖n,2
end
Construct the set of preselected elements

F̂1 =
{
f ∈ F : Rn,1(f)≤ Rn,1(f̂n,1)+ cmax

(
φ‖ f̂n,1− f‖n,1,φ2

)}
,

where φ is given in Definition 1.
foreach f ∈ F̂1 do

compute
Rn,2(λn,2(f̂n,1, f) f̂n,1+(1−λn,2(f̂n,1, f)) f)

and keep the element f ĵ ∈ F̂1 that minimizes this quantity
end
return

f̃ = λn,2(f̂n,1, f ĵ) f̂n,1+(1−λn,2(f̂n,1, f ĵ)) f ĵ,

entire sequence of Lasso estimators and a dictionary consisting of entire sequences of the elastic-
net estimators (see Zou and Hastie, 2005) corresponding to several ridge penalization parameters, so
this dictionary contains the Lasso, the elastic-net, the ridge and the ordinary least-squares estimators.

Remark 5 Note that since an aggregation algorithm is “generic”, in the sense that it can be applied
to any dictionary, one could consider larger dictionaries, containing many instances of different type
of estimators, for several choices of the tuning parameters, like the Adaptive Lasso (see Zou, 2006)
among many other instances of the Lasso. We believe that the conclusion of the numerical study
proposed here would be the same as for a much larger dictionary. Indeed, let us recall that here,
the focus is on the comparison of selection and aggregation procedures for the choice of tuning
parameters, and not on the comparison of the procedures inside the dictionary themselves.

3.1 Examples of Models

We simulate n independent copies of the linear regression model

Y = β�X+ ε,

where β ∈ R
p. Several settings are considered, see Models 1-6 below, including sparse and non-

sparse vectors β and several signal-to-noise ratios. Models 1-4 are from Tibshirani (1996).

1819

GAÏFFAS AND LECUÉ

Model 1 (A few effects). We set β= (3,1.5,0,0,2,0,0,0), so p= 8, and we let n to be 20 and 60.
The vector X =(X1, . . . ,Xd) is a centered normal vector with covariance matrix Cov(Xi,X j)=
ρ|i− j|, with ρ= 1/2. The noise εi is N(0,σ2) with σ equal to 1 or 3.

Model 2 (Every effects). This example is the same as Model 1, but with β= (2,2,2,2,2,2,2,2).

Model 3 (A single effect). This example is the same as Model 1, but with β= (5,0,0,0,0,0,0,0).

Model 4 (A larger model). We set β= (010,210,010,210), where xy stands for the vector of dimen-
sion y with each coordinate equal to x, so p = 40. We let n to be 100 and 200. We consider
covariates X j

i = Zi, j+Zi where Zi, j and Zi are independent N(0,1) variables. This induces
pairwise correlation equal to 0.5 among the covariates. The noise εi is N(0,σ2) with σ equal
to 15 or 7.

Model 5 (Sparse vector in high dimension). We set β = (2.55,1.55,0.55,0185), so p = 200. We
let n to be 50 and 100. The first 15 covariates (X1, . . . ,X15) and the remaining 185 covariates
(X16, . . . ,X200) are independent. Each of these are Gaussian vectors with the same covariance
matrix as in Model 1 with ρ= 0.5. The noise is N(0,σ2) with σ equal to 3 and 1.5.

Model 6 (Sparse vector in high dimension, stronger correlation). This example is the same as
Model 5, but with ρ= 0.95.

3.2 Procedures

We consider a dictionary consisting of the entire sequence of Lasso estimators and a dictionary with
several sequences of elastic-net estimators, corresponding to ridge parameters in the set of values
{0,0.01,0.1,1,5,10,20,50,100} (these dictionaries are computed with the lars and enet routines
from R).1 For each dictionary, we compute the prediction errors |X(β̂−β)|2 (where X is the matrix
with rows X�

1 , . . . ,X
�
n and | · |2 is the �n2-norm of 200 replications (this makes the results stable

enough), where β̂ is one of the following:

• β̂(Oracle) = the element of the dictionary with smallest prediction error

• β̂(Cp) = the Lasso estimator selected by Mallows-Cp heuristic

• β̂(10−Fold) = the element of the dictionary selected by 10-fold cross-validation

• β̂(Loo) = the element of the dictionary selected by leave-one-out cross-validation

• β̂(AEW) = The aggregate with exponential weights applied to the dictionary, with temperature
parameter equal to 4σ2, see for instance Dalalyan and Tsybakov (2007)

• β̂(Star) = the star-shaped aggregate applied to the dictionary.

For the AEW and the star-shaped aggregate, the splits are chosen at random with size [n/2] for
training and n− [n/2] for learning. For both aggregates we use jackknife: we compute the mean
of 100 aggregates obtained with several splits chosen at random. This makes the final aggregates less

1. R can be found at www.r-project.org.

1820

HYPER-SPARSE OPTIMAL AGGREGATION

dependent on the split. As a matter of fact, we observed in our numerical studies that Star-shaped
aggregation with the preselection step and without it (see Definition 1) provides close estimators.
So, in order to improve the computational burden, the numerical results of the Star-shaped aggregate
reproduced here are the ones obtained without the preselection step.

We need to explain how variable selection is performed based on J star-shaped aggregates com-
ing from J random splits (here we take J = 100). A Star-shaped aggregate f̂ (j), corresponding to a
split j, can be written as

f̂ (j) = λ̂(j) f̂ (j)ERM+(1− λ̂(j)) f̂ (j)other,

where f̂ (j)ERM is the ERM in F corresponding to the split j and f̂ (j)other is the other vertex of the segment
where the empirical risk is minimized (recall that the aggregate minimizes the empirical risk over
the set of segments star(f̂ (j)ERM,F)). For each split j, we estimate the significance of each covariate
using

π̂(j) = λ̂(j)1
β̂(j)ERM �=0

+(1− λ̂(j))1
β̂(j)other �=0

,

where 1v�=0 = (1v1 �=0, . . . ,1vd �=0). The vector π̂
(j) does a simple average of the contributions of the

supports of β̂(j)ERM and β̂(j)other, weighted by λ̂
(j). To take into consideration each split, we simply

compute the mean of the significances of each split:

π̂=
1
J

J

∑
j=1

π̂(j).

The vector π̂ contains the final significances of each covariate. This procedure is close in spirit to the
stability selection procedure described in Meinshausen and Bühlmann (2010), since each aggregate
is related to a subsample. Finally, the selected covariates are the one in

Ŝ=
{
k ∈ {1, . . . , p} : π̂k ≥ t̂

}
,

where t̂ is a random threshold given by

t̂ =
1
2

(
1+

q̂2

p2β

)
,

where q̂=min(ŝ,
√
0.7p), β= p/10 and ŝ= 1

J ∑
J
j=1∑

p
k=1 π̂

(j)
k is the average sparsity (number of non-

zero coefficients) for each splits. This choice of threshold follows the arguments from Meinshausen
and Bühlmann (2010), together with some empirical tuning.

For each of the Models 1-6, the boxplots of the 200 prediction errors are given in Figures 3
and 4. Note that in a high dimensional setting (p > n), we don’t reproduce the Cp’s prediction
errors, since in this case the lars package does not give it correctly. For the elastic-net dictionary,
the boxplot of the predictions errors are given for Models 1-4 in Figure 5. The results concerning
variables selection for the Lars and the Elastic-Net dictionaries are given in Tables 1 and 2. In these
tables we reproduce the number of selected variables by each procedure, and the number of noise
variables (the selected variables which are not active in the true model).

1821

GAÏFFAS AND LECUÉ

3.3 Conclusion

In most cases, the Star-Shaped aggregate improves upon the AEW and the considered selection
procedures both in terms of prediction error and variable selection. The proposed variable selection
algorithm based on star-shaped aggregation and stability selection tends to select smaller models
than the Cp and cross-validation methods (see Table 1, Models 1-4) leading to less noise variables.
In particular, in high-dimensional cases (p > n), it is much more stable regarding the sample size
and noise level, and provides better results most of the time (see Table 1, Models 5-6). In terms
of prediction error, the Star-Shaped always improve the AEW, and is better than the Cp and cross-
validations in most cases. We can say that, roughly, the Cp and the cross-validations are better
than the Star-Shaped aggregate only for non-sparse vectors (since these selection procedures tend
to select larger models), in particular when n is small and σ is large. We can conclude by saying
that, in the worst cases, the Star-shaped algorithm has prediction and selection performances which
are comparable to cross-validations and Cp heuristic, but, on the other hand, it can improve them a
lot (in particular for sparse vectors). One can think of the Star-Shaped aggregation algorithm as an
alternative to cross-validation andCp.

Acknowledgments

This work is supported by French Agence Nationale de la Recherce (ANR) ANR Grant “PROG-
NOSTIC” ANR-09-JCJC-0101-01.

Appendix A. Proofs

We will use the following notations. If f F ∈ argmin f∈F R(f), we will consider the excess loss

L f = LF(f)(X ,Y) := (Y − f (X))2− (Y − f F(X))2,

and use the notations

PL f := EL f (X ,Y), PnL f :=
1
n

n

∑
i=1

L f (Xi,Yi).

A.1 Proof of Theorem 2

Let us prove the result in the ψ1 case, the other case is similar. Fix x> 0 and let F̂ be either (5), (6)
or (7). Set d := diam(F̂1,L2(μ)). Consider the second half of the sample Dn,2 = (Xi,Yi)2ni=n+1. By
Corollary 8 (see Appendix A.2 below), with probability at least 1−4exp(−x) (relative to Dn,2), we
have for every f ∈ F̂

∣∣∣1
n

2n

∑
i=1+n

LF̂ (f)(Xi,Yi)−E
(
LF̂ (f)(X ,Y)|Dn,1

)∣∣∣≤ c(σε+b)max(dφ,bφ2),

where LF̂ (f)(X ,Y) := (f (X)−Y)2− (f F̂ (X)−Y)2 is the excess loss function relative to F̂ , f F̂ ∈
argmin f∈F̂ R(f) and where φ =

√
((logM+ x) logn)/n. By definition of f̃ , we have

1822

HYPER-SPARSE OPTIMAL AGGREGATION

Oracle Star Fold10 Loo AEW Cp

0
5

10
15

Oracle Star Fold10 Loo AEW Cp

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Oracle Star Fold10 Loo AEW Cp

0
10

20
30

40

Oracle Star Fold10 Loo AEW Cp

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Oracle Star Fold10 Loo AEW Cp

0
5

10
15

Oracle Star Fold10 Loo AEW Cp

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 3: First line: prediction errors for Model 1, with n = 20, σ = 3 (left) and n = 60, σ = 1
(right) ; Second line : prediction errors for Model 2, with n= 20, σ= 3 (left) and n= 60,
σ = 1 (right) ; thrid line: prediction errors for Model 3, with n = 20, σ = 3 (left) and
n= 60, σ= 1 (right)

1823

GAÏFFAS AND LECUÉ

Oracle Star Fold10 Loo AEW Cp

50
10
0

15
0

20
0

25
0

30
0

Oracle Star Fold10 Loo AEW Cp

0
20

40
60

80

Oracle Star Fold10 Loo AEW

5
10

15

Oracle Star Fold10 Loo AEW

0.
5

1.
0

1.
5

2.
0

2.
5

Oracle Star Fold10 Loo AEW

1
2

3
4

Oracle Star Fold10 Loo AEW

0
1

2
3

4

Figure 4: First line: prediction errors for Model 4, with n= 100, σ= 15 (left) and n= 200, σ= 7
(right) ; Second line: Prediction errors for Model 5, with n= 50, σ= 3 (left) and n= 100,
σ= 1.5 (right) ; Third line: Prediction errors for Model 6, with n= 50, σ= 1.5 (left) and
n= 100, σ= 1.5 (right)

1824

HYPER-SPARSE OPTIMAL AGGREGATION

Model 1 Model 2
n= 20, σ= 3 n= 60, σ= 1 n= 20, σ= 3 n= 60, σ= 1

Selected Noise Selected Noise Selected Noise Selected Noise
Truth 3 0 3 0 8 0 8 0
10-fold 3.870 1.410 5.260 2.260 7.190 0 8 0
Loo 3.965 1.465 5.055 2.055 7.235 0 8 0
Cp 4.165 1.645 4.710 1.710 7.085 0 8 0
Star 2.860 0.675 4.355 1.355 6.250 0 8 0

Model 3 Model 4
n= 20, σ= 3 n= 60, σ= 1 n= 100, σ= 15 n= 200, σ= 7

Selected Noise Selected Noise Selected Noise Selected Noise
Truth 1 0 1 0 20 0 20 0
10-fold 2.365 1.365 2.980 1.980 21.610 6.955 28.405 8.415
Loo 2.440 1.440 2.645 1.645 22.295 7.305 28.480 8.495
Cp 2.965 1.965 2.650 1.650 23.860 8.175 29.715 9.720
Star 1.655 0.655 1.855 0.855 18.065 4.910 27.850 7.855

Model 5 Model 6
n= 100, σ= 1.5 n= 200, σ= 0.5 n= 100, σ= 1.5 n= 200, σ= 0.5

Selected Noise Selected Noise Selected Noise Selected Noise
Truth 15 0 15 0 15 0 15 0
10-fold 47.375 32.550 14.035 0 39.150 25.830 7.560 0
Loo 44.030 29.215 10.455 0 24.370 10.990 2.425 0
Star 15.690 1.245 17.780 2.780 13.175 0.055 15.145 0.150

Table 1: Accuracy of variable prediction in Models 1 to 6 (Lars dictionary)

1
n ∑

2n
i=n+1LF̂ (f̃)(Xi,Yi)≤ 0, so, on this event (relative to Dn,2)

R(f̃)≤ R(f F̂)+E
(
LF̂ (f̃)|Dn,1

)
− 1
n

2n

∑
i=n+1

LF̂ (f̃)(Xi,Yi)

≤ R(f F̂)+ c(σε+b)max(dφ,bφ2)

= R(f F)+
(
c(σε+b)max(dφ,bφ2)−

(
R(f F)−R(f F̂)

))
=: R(f F)+β,

and it remains to show that

β≤ cb,σε
(1+ x) logM logn

n
.

When F̂ is given by (5) or (6), the geometrical configuration is the same as in Lecué and Mendelson
(2009), so we skip the proof.

1825

GAÏFFAS AND LECUÉ

Oracle Star Fold10 Loo AEW Cp

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Figure 5: Prediction errors for Models 1 to 4 using the elastic-net dictionary (upper left: Model 1
with σ = 3,n = 20, upper right: Model 2 with σ = 3,n = 20, bottom left: Model 3 with
σ= 3,n= 20 and bottom right: Model 4 with n= 100, σ= 15).

Model 1 Model 2 Model 3 Model 4
n= 20, σ= 3 n= 20, σ= 3 n= 20, σ= 3 n= 100, σ= 15

Selected Noise Selected Noise Selected Noise Selected Noise
Truth 3 0 8 0 1 0 20 0
10-fold 5.040 2.155 7.450 0 3.045 2.045 25.575 9.475
Loo 4.940 2.065 7.460 0 2.980 1.980 25.535 9.660
Cp 4.490 1.660 7.335 0 2.760 1.760 24.345 8.470
Star 4.355 1.475 7.485 0 2.080 1.080 24.090 8.755

Table 2: Accuracy of variable prediction in Models 1 to 4 (Elastic-Net dictionary)

1826

HYPER-SPARSE OPTIMAL AGGREGATION

Let us turn out to the situation where F̂ is given by (7). Recall that f̂n,1 is the ERM on F̂1 using
Dn,1. Consider f1 such that ‖ f̂n,1− f1‖L2(μ) =max f∈F̂1 ‖ f̂n,1− f‖L2(μ), and note that

‖ f̂n,1− f1‖L2(μ) ≤ d ≤ 2‖ f̂n,1− f1‖L2(μ).

The mid-point f2 := (f̂n,1+ f1)/2 belongs to star(f̂n,1, F̂1). Using the parallelogram identity, we
have for any u,v ∈ L2(ν):

Eν

(u+ v
2

)2
≤ Eν(u2)+Eν(v2)

2
−

‖u− v‖2L2(ν)
4

,

where for every h ∈ L2(ν), Eν(h) = Eh(X ,Y). In particular, for u(X ,Y) = f̂n,1−Y and v(X ,Y) =
f1(X)−Y , the mid-point is (u(X ,Y)+ v(X ,Y))/2= f2(X)−Y . Hence,

R(f2) = E(f2(X)−Y)2 = E

(f̂n,1(X)+ f1(X)
2

−Y
)2

≤ 1
2
E(f̂n,1(X)−Y)2+

1
2
E(f1(X)−Y)2−

1
4
‖ fn,1− f1‖2L2(μ)

≤ 1
2
R(f̂n,1)+

1
2
R(f1)−

d2

16
,

where the expectations are taken conditioned on Dn,1. By Lemma 10 (see Appendix A.2 below),
since f̂n,1, f1 ∈ F̂1, we have

1
2
R(f̂n,1)+

1
2
R(f1)≤ R(f F)+ c(σε+b)max(φd,bφ2),

and thus, since f2 ∈ F̂

R(f F̂)≤ R(f2)≤ R(f F)+ c(σε+b)max(φd,bφ2)− cd2.

Therefore,

β= c(σε+b)max(dφ,bφ2)−
(
R(f F)−R(f F̂)

)
≤ c(σε+b)max(φd,bφ2)− cd2.

Finally, if d ≥ cσε,bφ then β≤ 0, otherwise β≤ cσε,bφ
2. It concludes the proof of Theorem 2. �

A.2 Tools from Empirical Process Theory and Technical Results

The following Theorem is a Talagrand’s type concentration inequality (see Talagrand, 1996) for a
class of unbounded functions.

Theorem 6 (Theorem 4, Adamczak, 2008) Assume that X ,X1, . . . ,Xn are independent random vari-
ables and F is a countable set of functions such that E f (X) = 0,∀ f ∈ F and ‖sup f∈F f (X)‖ψ1 <
+∞. Define

Z := sup
f∈F

∣∣∣1
n

n

∑
i=1

f (Xi)
∣∣∣

1827

GAÏFFAS AND LECUÉ

and
σ2 = sup

f∈F
E f (X)2 and b := ‖ max

i=1,...,n
sup
f∈F

| f (Xi)|‖ψ1 .

Then, for any η ∈ (0,1) and δ> 0, there is c= cη,δ such that for any x> 0:

P

[
Z ≥ (1+η)EZ+σ

√
2(1+δ)

x
n
+ cb
(x
n

)]
≤ 4e−x

P

[
Z ≤ (1−η)EZ−σ

√
2(1+δ)

x
n
− cb
(x
n

)]
≤ 4e−x.

Now we state some technical Lemmas, used in the proof of Theorem 2. Given a sample (Zi)ni=1,
we set the random empirical measure Pn := n−1∑n

i=1 δZi . For any function f define (P−Pn)(f) :=
n−1∑n

i=1 f (Zi)−E f (Z) and for a class of functions F , define ‖P−Pn‖F := sup f∈F |(P−Pn)(f)|. In
all what follows, we denote by c an absolute positive constant, that can vary from place to place. Its
dependence on the parameters of the setting is specified in place.

Lemma 7 Define

d(F) := diam(F,L2(μ)), σ2(F) = sup
f∈F

E[f (X)2], C = conv(F),

and LC (C) = {(Y − f (X))2− (Y − f C (X))2 : f ∈ C}, where f C ∈ argming∈C R(g). If (2) holds, we
have

E

[
sup
f∈F

1
n

n

∑
i=1

f 2(Xi)
]
≤ cmax

(
σ2(F),

b2 logM
n

)
, and

E‖Pn−P‖LC (C) ≤ cb

√
logM
n

max
(
b

√
logM
n

,d(F)
)
.

If (3) holds, we have

E

[
sup
f∈F

1
n

n

∑
i=1

f 2(Xi)
]
≤ cmax

(
σ2(F),

b2 logM
n

)
, and

E‖Pn−P‖LC (C) ≤ cb

√
logM logn

n
max
(
b

√
logM logn

n
,d(F)

)
.

Proof First, consider the case (3). Define

r2 = sup
f∈F

1
n

n

∑
i=1

f (Xi)
2,

and note that EX(r2) ≤ EX‖P−Pn‖F2 +σ(F)2, where F := { f 2 : f ∈ F}. Using the Giné-Zinn
symmetrization argument, see Giné and Zinn (1984), we have

EX‖P−Pn‖F2 ≤
c
n
EXEg

[
sup
f∈F

∣∣∣ n

∑
i=1

gi f
2(Xi)

∣∣∣],
1828

HYPER-SPARSE OPTIMAL AGGREGATION

where (gi) are i.i.d. standard normal. The process f → Z2, f = ∑n
i=1 gi f

2(Xi) is Gaussian, with
intrinsic distance

Eg|Z2, f −Z2, f ′ |2 =
n

∑
i=1

(f (Xi)
2− f ′(Xi)

2)2 ≤ dn,∞(f , f
′)2×4nr2,

where dn,∞(f , f ′)=maxi=1,...,n | f (Xi)− f ′(Xi)|. Using (3) we have dn,∞(f , f ′)≤ 2b for any f , f ′ ∈F ,
so using Dudley’s entropy integral, we have

Eg‖P−Pn‖F2 ≤
c√
n

∫ 2b

0

√
logN(F,dn,∞, t)dt ≤ cr

√
logM
n

.

So, we get

EX‖P−Pn‖F2 ≤ cb

√
logM
n

EX [r]≤ cb

√
logM
n

√
EX [r2],

which entails that

EX(r
2)≤ cmax

(b2 logM
n

+σ(F)2
)
.

Let us turn to the part of the Lemma concerning E‖P−Pn‖LC (C). Recall that C = conv(F) and write
for short L f (X ,Y) = LC (f)(X ,Y) = (Y − f (X))2− (Y − f C (X))2 for each f ∈ C , where we recall
that f C ∈ argming∈C R(g). Using the same argument as before we have

E‖P−Pn‖LC (C) ≤
c
n
E(X ,Y)Eg

[
sup
f∈C

∣∣∣ n

∑
i=1

giL f (Xi,Yi)
∣∣∣].

Consider the Gaussian process f ∈ C → Zf := ∑n
i=1 giL f (Xi,Yi) indexed by C . For every f , f ′ ∈ C ,

the intrinsic distance of (Zf) f∈C satisfies

Eg|Zf −Zf ′ |2 =
n

∑
i=1

(L f (Xi,Yi)−L f ′(Xi,Yi))
2

≤ max
i=1,...,n

|2Yi− f (Xi)− f ′(Xi)|2×
n

∑
i=1

(f (Xi)− f ′(Xi))
2

= max
i=1,...,n

|2Yi− f (Xi)− f ′(Xi)|2×Eg|Z′f −Z′f ′ |2,

where Z′f :=∑n
i=1 gi(f (Xi)− f C (Xi)). Therefore, by Slepian’s Lemma, we have for every (Xi,Yi)ni=1:

Eg

[
sup
f∈C

Zf
]
≤ max

i=1,...,n
sup
f , f ′∈C

|2Yi− f (Xi)− f ′(Xi)|×Eg

[
sup
f∈C

Z′f
]
,

and since for every f =∑M
j=1α j f j ∈ C , where α j ≥ 0,∀ j= 1, . . . ,M and ∑α j = 1, Z′f =∑M

j=1α jZ f j ,
we have

Eg

[
sup
f∈C

Z′f
]
≤ Eg

[
sup
f∈F

Z′f
]
.

Moreover, we have, using Dudley’s entropy integral argument,

1
n
Eg

[
sup
f∈F

Z′f
]
≤ c√

n

∫ Δn(F ′)

0

√
N(F,‖ · ‖n, t)dt ≤ c

√
logM
n

r′,

1829

GAÏFFAS AND LECUÉ

where F ′ := { f − f C : f ∈ F} and Δn(F ′) := diam(F ′,‖ · ‖n) and

r′2 := sup
f∈F ′

1
n

n

∑
i=1

f (Xi)
2.

Hence, we proved that

E‖P−Pn‖LC (C) ≤ c

√
logM
n

√
E

[
max
i=1,...,n

|2Yi− f (Xi)− f ′(Xi)|2
]√

E(r′2).

Using Pisier’s inequality for ψ1 random variables and the fact that E(U2) ≤ 4‖U‖ψ1 for any ψ1-
random variableU , together with (3), we obtain that

E

[
max
i=1,...,n

sup
f , f ′∈C

|2Yi− f (Xi)− f ′(Xi)|2
]
≤ cb2 log(n). (8)

So, we finally obtain

E‖P−Pn‖LC (C) ≤ c

√
logn logM

n

√
E(r′2),

and the conclusion follows from the first part of the Lemma, since σ(F ′) ≤ d(F). The case (2) is
easier and follows from the fact that the left hand side of (8) is smaller than 4b.

Lemma 7 combined with Theorem 6 leads to the following corollary.

Corollary 8 Let d(F)= diam(F,L2(μ)), C := conv(F) andL f (X ,Y)= (Y− f (X))2−(Y− f C (X))2

for any f ∈ C .
If (3) holds, we have, with probability larger than 1−4e−x, that for every f ∈ C :∣∣∣1

n

n

∑
i=1

L f (Xi,Yi)−EL f (X ,Y)
∣∣∣

≤ c(σε+b)

√
(logM+ x) logn

n
max
(
b

√
(logM+ x) logn

n
,d(F)

)
.

If (2) holds, we have, with probability larger than 1−2e−x, that for every f ∈ C :∣∣∣1
n

n

∑
i=1

L f (Xi,Yi)−EL f (X ,Y)
∣∣∣≤ cb

√
logM+ x

n
max
(
b

√
logM+ x

n
,d(F)

)
.

Proof Applying Theorem 6 to

Z := sup
f∈C

∣∣∣1
n

n

∑
i=1

L f (Xi,Yi)−EL f (X ,Y)
∣∣∣,

we obtain that, with a probability larger than 1−4e−x:

Z ≤ c
(
EZ+σ(C)

√
x
n
+bn(C)

x
n

)
,

1830

HYPER-SPARSE OPTIMAL AGGREGATION

where

σ(C)2 = sup
f∈C

E[L f (X ,Y)
2], and

bn(C) =
∥∥ max
i=1,...,n

sup
f∈C

|L f (Xi,Yi)−E[L f (X ,Y)]|
∥∥
ψ1
.

Since
L f (X ,Y) = 2ε(f

C (X)− f (X))+(f C (X)− f (X))(2 f0(X)− f (X)− f C (X)), (9)

we have using Assumptions 1 and (3):

E[L f (X ,Y)
2]≤ (4σ2ε+2b

2)‖ f − f C‖2L2(μ),

meaning that
σ(C)2 ≤ (4σ2ε+2b

2)d(F).

Since E(|Z|)≤ ‖Z‖ψ1 , we have bn(C)≤ 2log(n+1)‖sup f∈C |L f (X ,Y)|‖ψ1 . Moreover, using again
(9), we obtain that

bn(C)≤ 16log(n+1)b2.
Putting all this together, and using Lemma 7, we arrive at

Z ≤ c(σε+b)

√
(logM+ x) logn

n
max
(
b

√
(logM+ x) logn

n
,d(F)

)
,

with probability larger than 1−4e−x for any x> 0. In the bounded case (2) the proof is easier, and
one can use the original Talagrand’s concentration inequality.

Lemma 9 Let L f (X ,Y) = (Y − f (X))2− (Y − f F(X))2 for any f ∈ F.
If (3) holds, we have with probability larger than 1−4e−x, that for every f ∈ F:∣∣∣1

n

n

∑
i=1

L f (Xi,Yi)−EL f (X ,Y)
∣∣∣

≤ c(σε+b)

√
(logM+ x) logn

n
max
(
b

√
(logM+ x) logn

n
,‖ f − f F‖

)
.

Also, with probability at least 1−4e−x, we have for every f ,g ∈ F:∣∣‖ f −g‖2n−‖ f −g‖2
∣∣

≤ cb

√
(logM+ x) logn

n
max
(
b

√
(logM+ x) logn

n
,‖ f −g‖

)
.

If (2) holds, we have, with probability larger than 1−2e−x, that for every f ∈ F:∣∣∣1
n

n

∑
i=1

L f (Xi,Yi)−EL f (X ,Y)
∣∣∣≤ cb

√
logM+ x

n
max
(
b

√
logM+ x

n
,‖ f − f F‖

)
,

and with probability at least 1−2e−x, that for every f ,g ∈ F:∣∣‖ f −g‖2n−‖ f −g‖2
∣∣≤ cb

√
logM+ x

n
max
(
b

√
logM+ x

n
,‖ f −g‖

)
.

1831

GAÏFFAS AND LECUÉ

Proof [Proof of Lemma 9] The proof uses exactly the same arguments as that of Lemma 7 and
Corollary 8, and thus is omitted.

Lemma 10 Let F̂1 be given by (4) and recall that f F ∈ argmin f∈F R(f) and let d(F̂1) =

diam(F̂1,L2(μ)).
If (3) holds, we have with probability at least 1− 4exp(−x) that f F ∈ F̂1, and any function

f ∈ F̂1 satisfies

R(f)≤ R(f F)+ c(σε+b)

√
(logM+ x) logn

n
max
(
b

√
(logM+ x) logn

n
,d(F̂1)

)
.

If (2) holds, we have with probability at least 1− 2exp(−x) that f F ∈ F̂1, and any function
f ∈ F̂1 satisfies

R(f)≤ R(f F)+ cb

√
logM+ x

n
max
(
b

√
logM+ x

n
,d(F̂1)

)
.

Proof The proof follows the lines of the proof of Lemma 4.4 in Lecué and Mendelson (2009),
together with Lemma 9, so we don’t reproduce it here.

References

Radosław Adamczak. A tail inequality for suprema of unbounded empirical processes with appli-
cations to Markov chains. Electron. J. Probab., 13:no. 34, 1000–1034, 2008. ISSN 1083-6489.

Jean-Yves Audibert. Fast learning rates in statistical inference through aggregation. Ann. Statist.,
37:1591, 2009. URL doi:10.1214/08-AOS623.

Olivier Catoni. Statistical Learning Theory and Stochastic Optimization. Ecole d’été de Probabilités
de Saint-Flour 2001, Lecture Notes in Mathematics. Springer, N.Y., 2001.

Arnak S. Dalalyan and Alexandre B. Tsybakov. Aggregation by exponential weighting and sharp
oracle inequalities. In COLT, pages 97–111, 2007.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. Ann.
Statist., 32(2):407–499, 2004. ISSN 0090-5364. With discussion, and a rejoinder by the authors.

Evarist Giné and Joel Zinn. Some limit theorems for empirical processes. Ann. Probab., 12(4):
929–998, 1984. ISSN 0091-1798.

Anatoli Juditsky, Alexander V. Nazin, Alexandre B. Tsybakov, and Nicolas Vayatis. Recursive
aggregation of estimators by the mirror descent method with averaging. Problemy Peredachi
Informatsii, 41(4):78–96, 2005. ISSN 0555-2923.

Anatoli Juditsky, Philippe Rigollet, and Alexandre B. Tsybakov. Learning by mirror averaging.
Ann. Statist., 36(5):2183–2206, 2008. ISSN 0090-5364. doi: 10.1214/07-AOS546. URL http:
//dx.doi.org/10.1214/07-AOS546.

1832

HYPER-SPARSE OPTIMAL AGGREGATION

Guillaume Lecué and Shahar Mendelson. Aggregation via empirical risk minimization.
Probab. Theory Related Fields, 145(3-4):591–613, 2009. ISSN 0178-8051. doi: 10.1007/
s00440-008-0180-8. URL https://dx.doi.org/10.1007/s00440-008-0180-8.

Guillaume Lecué and Shahar Mendelson. On the optimality of the aggregate with exponential
weights for small temperatures. Submitted, 2010.

Gilbert Leung and Andrew R. Barron. Information theory and mixing least-squares regressions.
IEEE Trans. Inform. Theory, 52(8):3396–3410, 2006. ISSN 0018-9448.

Nicolai Meinshausen and Peter Bühlmann. Stability selection. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 72(4):417–473, 2010.

Michel Talagrand. New concentration inequalities in product spaces. Invent. Math., 126(3):505–
563, 1996. ISSN 0020-9910.

Robert Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B, 58
(1):267–288, 1996. ISSN 0035-9246.

Alexandre. B. Tsybakov. Optimal rates of aggregation. Computational Learning Theory and Kernel
Machines. B.Schölkopf and M.Warmuth, eds. Lecture Notes in Artificial Intelligence, 2777:303–
313, 2003. Springer, Heidelberg.

Yuhong Yang. Mixing strategies for density estimation. Ann. Statist., 28(1):75–87, 2000.
ISSN 0090-5364. doi: 10.1214/aos/1016120365. URL http://dx.doi.org/10.1214/aos/
1016120365.

Yuhong Yang. Aggregating regression procedures to improve performance. Bernoulli, 10(1):25–47,
2004. ISSN 1350-7265.

Hui Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Associa-
tion, 101(476):1418–1429, 2006.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. J. R. Stat. Soc.
Ser. B Stat. Methodol., 67(2):301–320, 2005. ISSN 1369-7412. doi: 10.1111/j.1467-9868.2005.
00503.x. URL http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x.

1833

Journal of Machine Learning Research 12 (2011) 1835-1863 Submitted 8/08; Revised 4/10; Published 6/11

A Refined Margin Analysis for Boosting Algorithms
via Equilibrium Margin

Liwei Wang WANGLW@CIS.PKU.EDU.CN
Key Laboratory of Machine Perception, MOE
School of Electronics Engineering and Computer Science
Peking University
Beijing, 100871, P.R.China

Masashi Sugiyama SUGI@CS.TITECH.AC.JP
Department of Computer Science
Tokyo Institute of Technology
2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan

Zhaoxiang Jing JINGZX@CIS.PKU.EDU.CN
Key Laboratory of Machine Perception, MOE
School of Electronics Engineering and Computer Science
Peking University
Beijing, 100871, P.R.China

Cheng Yang YANGCHENUG@GMAIL.COM
Beijing Aerospace Control Center
Beijing, 100094, P.R.China

Zhi-Hua Zhou ZHOUZH@NJU.EDU.CN
National Key Laboratory for Novel Software Technology
Nanjing University
Nanjing 210093, P.R. China

Jufu Feng FJF@CIS.PKU.EDU.CN
Key Laboratory of Machine Perception, MOE
School of Electronics Engineering and Computer Science
Peking University
Beijing, 100871, P.R.China

Editor:Manfred Warmuth

Abstract
Much attention has been paid to the theoretical explanation of the empirical success of AdaBoost.
The most influential work is the margin theory, which is essentially an upper bound for the gen-
eralization error of any voting classifier in terms of the margin distribution over the training data.
However, important questions were raised about the margin explanation. Breiman (1999) proved
a bound in terms of the minimum margin, which is sharper than the margin distribution bound.
He argued that the minimum margin would be better in predicting the generalization error. Grove
and Schuurmans (1998) developed an algorithm called LP-AdaBoost which maximizes the min-
imum margin while keeping all other factors the same as AdaBoost. In experiments however,
LP-AdaBoost usually performs worse than AdaBoost, putting the margin explanation into serious
doubt. In this paper, we make a refined analysis of the margin theory. We prove a bound in terms of
a new margin measure called the Equilibrium margin (Emargin). The Emargin bound is uniformly

©2011 Liwei Wang, Masashi Sugiyama, Zhaoxiang Jing, Cheng Yang, Zhi-Hua Zhou and Jufu Feng.

WANG, SUGIYAMA, JING, YANG, ZHOU AND FENG

sharper than Breiman’s minimum margin bound. Thus our result suggests that the minimum mar-
gin may be not crucial for the generalization error. We also show that a large Emargin and a small
empirical error at Emargin imply a smaller bound of the generalization error. Experimental results
on benchmark data sets demonstrate that AdaBoost usually has a larger Emargin and a smaller test
error than LP-AdaBoost, which agrees well with our theory.
Keywords: boosting, margin bounds, voting classifier

1. Introduction

The AdaBoost algorithm (Freund and Schapire, 1996, 1997) has achieved great success in the past
ten years. It has demonstrated excellent experimental performance both on benchmark data sets
and real applications (Bauer and Kohavi, 1999; Dietterich, 2000; Viola and Jones, 2001; Wang
et al., 2007). According to a recent evaluation (Caruana and Niculescu-Mizil, 2006), boosting with
decision trees as base learners is the leading classification algorithm. An important property of
boosting is its relative (although not complete) resistance to overfitting. On many data sets it is
observed that the test error keeps decreasing even after thousands of base classifiers have been
combined (Breiman, 1998; Quinlan, 1996). This fact, at first sight, obviously violates Occam’s
razor.

Considerable efforts have been made to explain the “mystery” of boosting. Friedman et al.
(2000) related boosting to fitting an additive logistic regression model. From this statistical view
they developed the LogitBoost algorithm. Jiang (2004), Lugosi and Vayatis (2004), Zhang (2004),
Bartlett et al. (2006) and others proved that boosting is Bayes consistent if it is properly regularized.
These works provide deep understanding of boosting. However, these explanations each focused on
some aspects of boosting. The consistency assures that boosting is asymptotically optimal, but it
does not explain boosting’s effectiveness on small sample problems. The statistical view led to many
new algorithms, but left boosting’s relative resistance to overfitting not well explained. Boosting
algorithms involve several factors such as the type of base classifiers, regularization methods and
loss functions to minimize. Recently, Mease and Wyner (2008) studied the effects of these factors.
They provided a number of examples that are contrary to previous theoretical explanations.

Schapire et al. (1998) tried to give a comprehensive explanation in terms of the margins of the
training examples. Roughly speaking, the margin of an example with respect to a classifier is a mea-
sure of the confidence of the classification result. They proved an upper bound for the generalization
error of a voting classifier that does not depend on how many classifiers were combined, but only on
the margin distribution over the training set, the number of the training examples and the size (the
VC dimension for example) of the set of base classifiers. They also demonstrated that AdaBoost
has the ability to produce a “good” margin distribution. This theory suggests that producing a good
margin distribution is the key to the success of AdaBoost and explains well its relative resistance to
overfitting.

Soon after that however, there were serious doubt cast on this margin explanation. First Breiman
(1999) and Grove and Schuurmans (1998) developed algorithms that maximize the minimum mar-
gin. (Minimummargin is the smallest margin over all training examples, see Section 2 for the formal
definition). Breiman (1999) then gave an upper bound for the generalization error of a voting classi-
fier in terms of the minimum margin, as well as the number of training examples and the size of the
set of base classifiers. This bound is sharper than the bound based on the margin distribution given
in Schapire et al. (1998). Breiman (1999) argued that if the bound of Schapire et al. implied that the
margin distribution is important to the generalization error, his bound implied more strongly that

1836

A REFINED MARGIN ANALYSIS FOR BOOSTING ALGORITHMS VIA EQUILIBRIUM MARGIN

the minimum margin is the key to the generalization error, and the minimum margin maximizing
algorithms would achieve better performance than AdaBoost.

Grove and Schuurmans (1998) conducted a rigorous experimental comparison on the minimum
margin. They developed an algorithm called LP-AdaBoost which first uses AdaBoost to train a
series of base classifiers. Then by linear programming they obtained coefficients of the base clas-
sifiers, whose linear combination has the largest possible minimum margin. Thus LP-AdaBoost
and AdaBoost have all relevant factors the same except the coefficients of the base classifiers. Ac-
cording to the minimum margin bound, LP-AdaBoost would have smaller generalization error than
AdaBoost. In experiments, although LP-AdaBoost always achieves larger minimum margins, its
test error is higher than AdaBoost on most data sets. This result puts the margin theory into serious
doubt.

In this paper we provide a refined analysis of the margin theory. We propose a new upper bound
for the generalization error of voting classifiers. This bound is uniformly sharper than Breiman’s
minimum margin bound. The key factor in this bound is a new margin notion which we refer to as
the Equilibrium margin (Emargin). The Emargin can be viewed as a measure of how good a margin
distribution is. In fact, the Emargin depends, in a complicated way, on the margin distribution,
and has little relation to the minimum margin. Experimental results show that AdaBoost usually
produces a larger Emargin than LP-AdaBoost, which agrees with the Emargin explanation.

The margin theory has been studied and greatly improved by several authors. Especially Koltchin-
skii and Panchenko (2002, 2005) developed new tools for empirical processes and prove much
sharper margin distribution bounds. However it is difficult to compare these bounds to the min-
imum margin bound of Breiman (1999), since they contain unspecified constants. Nevertheless,
these results suggest that the margin distribution may be more important than the minimum margin
for the generalization error of voting classifiers.

We also show that if a boosting algorithm returns a classifier that minimizes the Emargin bound
or the margin distribution bound of Schapire et al. (1998) then the classifier learned converges to
the best classifier in the hypothesis space as the number of training examples goes to infinity.

The rest of this paper is organized as follows: In Section 2 we briefly describe the background
of the margin theory. Our main results—the Emargin bounds are given in Section 3. We provide
further explanation of the main bound in Section 4 and the consistency results in Section 5. All the
proofs can be found in Section 6. We provide experimental justification in Section 7 and conclude
in Section 8.

2. Background

Consider binary classification problems. Examples are drawn independently according to an under-
lying distributionD over X ×{−1,+1}, where X is an instance space. LetH denote the space from
which the base hypotheses are chosen. A base hypothesis h ∈H is a mapping from X to {−1,+1}.
A voting classifier f (x) is of the form

f (x) =∑
i

αihi(x), hi ∈H ,

where

∑αi = 1, αi ≥ 0.

1837

WANG, SUGIYAMA, JING, YANG, ZHOU AND FENG

An error occurs on an example (x,y) if and only if

y f (x)≤ 0.
We use PD(A(x,y)) to denote the probability of the event A when an example (x,y) is chosen ran-
domly according to the distribution D . Therefore, PD(y f (x) ≤ 0) is the generalization error of f
which we want to bound. Let S be a training set containing n examples. We use PS (A(x,y)) to
denote the probability with respect to choosing an example (x,y) uniformly at random from S .

For an example (x,y), the value of y f (x) reflects the confidence of the prediction. Since each
base classifier outputs −1 or +1, one has

y f (x) = ∑
i:y=hi(x)

αi− ∑
i:y�=hi(x)

αi.

Hence y f (x) is the difference between the weights assigned to those base classifiers that correctly
classify (x,y) and the weights assigned to those that misclassify the example. y f (x) is called the
margin for (x,y) with respect to f . If we consider the margins over the whole set of training ex-
amples, we can regard PS (y f (x)≤ θ) as a distribution over θ (−1≤ θ≤ 1), since PS (y f (x)≤ θ) is
the fraction of training examples whose margin is at most θ. This distribution is referred to as the
margin distribution.

A description of AdaBoost is shown in Algorithm 1. In AdaBoost the linear coefficients αt is
set as

αt =
1
2
log

1+ γt
1− γt

,

where γt is defined as:

γt =
n

∑
i=1

Dt(i)yiht(xi).

γt is an affine transformation of the error rate of ht with respect to the weight distribution Dt .
AdaBoost often does not overfit. Although it is known that boosting forever does overfit when

there is high classification noise, on many data sets the performance of AdaBoost keeps improving
even after a large number of rounds.

The first margin explanation (Schapire et al., 1998) of the AdaBoost algorithm is to upper bound
the generalization error of voting classifiers in terms of the margin distribution, the number of
training examples and the complexity of the set from which the base classifiers are chosen. The
theory contains two bounds: one applies to the case that the base classifier set H is finite, and the
other applies to the general case that H has a finite VC dimension.

Theorem 1 (Schapire et al., 1998) For any δ > 0, with probability at least 1− δ over the random
choice of the training set S of n examples, every voting classifier f satisfies the following bounds:

PD
(
y f (x)≤ 0

)
≤ inf

θ∈(0,1]

[
PS
(
y f (x)≤ θ

)
+O

(
1√
n

(
logn log |H |

θ2
+ log

1
δ

)1/2)]
,

if |H |< ∞. And

PD
(
y f (x)≤ 0

)
≤ inf

θ∈(0,1]

[
PS
(
y f (x)≤ θ

)
+O

(
1√
n

(
d log2(n/d)

θ2
+ log

1
δ

)1/2)]
,

where d is the VC dimension of H .

1838

A REFINED MARGIN ANALYSIS FOR BOOSTING ALGORITHMS VIA EQUILIBRIUM MARGIN

Input: T, S= {(x1,y1),(x2,y2), . . . ,(xn,yn)}
where xi ∈ X , yi ∈ {−1,1}.

Initialization: D1(i) = 1/n.
for t = 1 to T do

1. Train a base classifier ht ∈H using distribution Dt , where ht : X →{−1,1}.
2. Choose αt .
3. Update:

Dt+1(i) =
Dt(i)exp(−αtyiht(xi))

Zt
,

where Zt is the normalization factor chosen so that Dt+1 will be a distribution.
end
Output: The final classifier

F(x) = sgn(f (x)) ,

where

f (x) =
T

∑
t=1

αtht(x).

Algorithm 1: A description of AdaBoost.

The theorem states that if the voting classifier generates a good margin distribution, that is, most
training examples have large margins so that PS (y f (x) ≤ θ) is small for not too small θ, then the
upper bound of the generalization error is also small. In Schapire et al. (1998) it has also been shown
that for the AdaBoost algorithm, PS (y f (x) ≤ θ) decreases to zero exponentially fast with respect
to the number of boosting iterations if θ is not too large. These results suggest that the excellent
performance of AdaBoost is due to its good margin distribution.

Another important notion is the minimum margin which is the smallest margin achieved on the
training set. Formally, the minimum margin, denoted by θ0, of a voting classifier f on a training set
S is defined as

θ0 =min{y f (x) : (x,y) ∈ S} .

Breiman (1999) proved an upper bound for the generalization error of voting classifiers which de-
pends only on the minimum margin, not on the entire margin distribution.

Theorem 2 (Breiman, 1999) Assume that |H | < ∞. Let θ0 be a real number that satisfies θ0 >

4
√

2
|H | and

R=
32log(2|H |)

nθ20
≤ 2n.

Then for any δ> 0, with probability at least 1−δ over the random choice of the training set S of n
examples, every voting classifier f whose minimum margin on S is at least θ0 satisfies the following
bound:

PD
(
y f (x)≤ 0

)
≤ R

(
log(2n)+ log

1
R
+1

)
+
1
n
log

(|H |
δ

)
.

1839

WANG, SUGIYAMA, JING, YANG, ZHOU AND FENG

Breiman (1999) pointed out that his bound is sharper than the margin distribution bound of
Schapire et al. If θ in Theorem 1 is taken to be the minimum margin θ0, the bound in Theorem 2
is about the square of the bound in terms of the margin distribution, since the bound in Theorem 2

is O
(
logn
nθ20

)
and the bound in Theorem 1 is O

(√
logn
nθ20

)
. Breiman then argued that compared to the

margin distribution explanation, his bound implied more strongly that the minimum margin governs
the generalization error.

Several authors developed algorithms to maximize the minimummargin. Among these, the most
representative one is the LP-AdaBoost proposed by Grove and Schuurmans (1998). Let h1, . . . ,hT
be the base classifiers returned by AdaBoost on the training examples {(xi,yi), i= 1, . . . ,n}. Finding
a voting classifier g= ∑T

t=1βtht such that g maximizes the minimum margin can be formulated as a
linear programming problem.

max
β,m

m

s.t. yi
T

∑
t=1

βtht(xi)≥ m, i= 1,2, . . . ,n

βt ≥ 0,
T

∑
t=1

βt = 1,

where β= (β1, · · · ,βT). Grove and Schuurmans called this algorithm LP-AdaBoost.
Comparing the performance of AdaBoost and LP-AdaBoost is a good test of significance of

the minimum margin bound. Except the linear coefficients, the voting classifiers obtained by the
two algorithms have all relevant factors the same. In experiments, although LP-AdaBoost always
produces larger minimum margins, its test error is higher than AdaBoost more often than not. This
result is different from what the minimum margin bound suggests and therefore puts the margin
explanation into serious doubt.

Breiman (1999) and Meir and Rätsch (2003) developed arc-gv to maximize the minimum mar-
gin. Arc-gv can also be described by Algorithm 1. The only difference from AdaBoost is how to set
αt at each round. It can be shown that arc-gv converges to the maximum margin solution (Rätsch
and Warmuth, 2005; Rudin et al., 2007) whereas AdaBoost does not always do this (Rudin et al.,
2004). However on some data sets AdaBoost has larger minimum margin than arc-gv after a finite
number of rounds. Also note that arc-gv and AdaBoost generate different base classifiers. Recently
Reyzin and Schapire (2006) gained an important discovery that when Breiman (1999) tried to max-
imize the minimum margin by arc-gv, he had not make a good control of the complexity of the base
classifiers, while comparing the margin is only meaningful when the complexity of base learners
are the same.

3. Emargin Bounds

In this section we propose upper bounds in terms of the Emargin. The bounds are sharper than the
minimum margin bound.

First let us introduce some notions. Consider the Bernoulli relative entropy function D(q||p)
defined as

D(q||p) = q log
q
p
+(1−q) log

1−q
1− p

, 0≤ p,q≤ 1.

1840

A REFINED MARGIN ANALYSIS FOR BOOSTING ALGORITHMS VIA EQUILIBRIUM MARGIN

By convention, let D(0||0) = 0.
For a fixed q, D(q||p) is a monotone increasing function of p for q≤ p≤ 1. It is easy to check

that
D(q||p) = 0 when p= q,

and
D(q||p)→ ∞ as p→ 1.

Thus one can define the inverse function of D(q||p) for fixed q as D−1(q,u), such that

D
(
q||D−1(q,u)

)
= u for all u≥ 0 and D−1(q,u)≥ q.

See also Langford (2005).
The next theorem is our main result: the Emargin bound. Here we consider the case that the

base classifier set H is finite. For the case that H is infinite but has a finite VC dimension, the
bound is more complicated and will be given in Theorem 7. All the proofs can be found in Section
6.

Theorem 3 If 8 < |H | < ∞, then for any δ > 0, with probability at least 1− δ over the random
choice of the training set S of n examples (n> 1), every voting classifier f such that

q0 = PS

(
y f (x)≤

√
8

|H |

)
< 1.

satisfies the following bound:

PD
(
y f (x)≤ 0

)
≤ log |H |

n
+ inf

q∈{q0,q0+ 1
n ,...,

n−1
n }
D−1 (q,u[θ̂(q)]) , (1)

where

θ̂(q) = sup

{
θ ∈ (0,1] : PS

(
y f (x)≤ θ

)
≤ q

}
, (2)

u(θ) =
1
n

(
8
θ2
log

(
2n2

log |H |

)
log(2|H |)+2log |H |+ log n

δ

)
.

Note that the assumption q0 < 1 in the theorem is very mild since it implies that at least one training
example has a large margin (larger than 8/|H |), or equivalently the largest margin is not too small.1
This contrasts with the fact that the minimum margin bound applies when the minimum margin is
not too small.

Clearly the key factors in this bound are the optimal q and the corresponding θ̂(q).

Definition 4 Let q∗ be the optimal q in Equation (1), and denote

θ∗ = θ̂(q∗).

We call θ∗ the Equilibrium margin (Emargin). It can be seen that q∗ is the empirical error at margin
θ∗, that is,

q∗ = PS (y f (x)< θ∗).

q∗ will be referred to as the Emargin error.

1. This observation is due to a reviewer.

1841

WANG, SUGIYAMA, JING, YANG, ZHOU AND FENG

With Definition 4, the Emargin bound (1) can be simply written as

PD
(
y f (x)≤ 0

)
≤ log |H |

n
+D−1

(
q∗,u(θ∗)

)
.

Theorem 3 provides an upper bound of the generalization error of a voting classifier that depends
on its Emargin and the Emargin error.

Our Emargin bound has a similar flavor to Theorem 1. Note that the Emargin depends, in a
complicated way, on the whole margin distribution. Roughly, if most training examples have large
margins, then θ∗ is large and q∗ is small. The minimummargin is only a special case of the Emargin.
From (2) one can see that θ̂(0) is the minimum margin. Hence the Emargin is equal to the minimum
margin if and only if the optimal q∗ is zero.

We next compare our Emargin bound to the minimum margin bound. We show that the Emargin
bound is sharper than the minimum margin bound. Since the minimum margin bound applies only
to the separable case, that is, θ0 > 0, we assume that the conditions in Theorem 2 are satisfied.

Theorem 5 Assume that the minimum margin θ0 is larger than 0. Then the bound given in Theo-
rem 3 is uniformly sharper than the minimum margin bound in Theorem 2. That is, if

R=
32log(2|H |)

nθ20
≤ 2n,

then

log |H |
n

+D−1
(
q∗,u(θ∗)

)
≤ R

(
log(2n)+ log

1
R
+1

)
+
1
n
log

|H |
δ

.

This theorem suggests that the Emargin and Emargin error may be more relevant to the gen-
eralization error than the minimum margin. The following theorem describes how the Emargin θ∗

and the Emargin error q∗ affect the upper bound of the generalization ability. It states that a larger
Emargin and a smaller Emargin error result in a lower generalization error bound.

Theorem 6 Let f1, f2 be two voting classifiers. Denote by θ1, θ2 the Emargins and by q1, q2 the
Emargin errors of f1, f2 respectively. Thus

qi = PS
(
y fi(x)< θi

)
, i= 1,2.

Also denote by B1, B2 the Emargin upper bounds of the generalization error of f1, f2 (i.e., the
right-hand side of (1)). Then

B1 ≤ B2,

if
θ1 ≥ θ2 and q1 ≤ q2.

Theorem 6 suggests that the Emargin and the Emargin error can be used as measures of the
quality of a margin distribution. A large Emargin and a small Emargin error indicate a good margin
distribution. Experimental results in Section 7 show that AdaBoost often has larger Emargins and
smaller Emargin errors than LP-AdaBoost.

The last theorem of this section is the Emargin bound for the case that the set of base classifiers
has a finite VC dimension.

1842

A REFINED MARGIN ANALYSIS FOR BOOSTING ALGORITHMS VIA EQUILIBRIUM MARGIN

Theorem 7 Suppose the set of base classifiers H has VC dimension d. Then for any δ > 0, with
probability at least 1− δ over the random choice of the training set S of n examples, every voting
classifier f satisfies the following bound:

PD
(
y f (x)≤ 0

)
≤ d2+1

n
+ inf

q∈{q0,q0+ 1
n ,...,

n−1
n }

n−1
n

·D−1 (q,u[θ̂(q)]) , (3)

where

θ̂(q) = sup

{
θ ∈
(
0,1
]
: PS
(
y f (x)≤ θ

)
≤ q

}
,

and

u(θ) =
1
n

(
16d
θ2

log
n
d
log

en2

d
+3log

(
16
θ2
log

n
d
+1

)
+ log

2n
δ

)
,

provided q0 = PS (y f (x)≤ 0)< 1.

4. Explanation of the Emargin Bound

In Theorem 3, we adopted the partial inverse of the relative entropy to upper bound the general-
ization error. The key term in the Emargin bound is infqD−1(q,u[θ̂(q)]). To better understand the
bound, we make use of three different upper bounds of infqD−1(q,u[θ̂(q)]) to obtain simpler forms
and give explanations of the Emargin bound. We list in the following lemma the upper bounds of
infqD−1(q,u[θ̂(q)]).

Lemma 8 Let u[θ̂(q)] be the one defined in Theorem 3. Let Γ= {q0,q0+ 1
n , . . . ,

n−1
n }, where q0 was

defined in Theorem 3. Then the following bounds hold. (In the first bound we assume that q0 = 0.)

inf
q∈Γ

D−1 (q,u[θ̂(q)])≤ D−1 (0,u[θ̂(0)])≤ u
[
θ̂(0)
]
.

inf
q∈Γ

D−1 (q,u[θ̂(q)])≤ inf
q∈Γ

⎛⎝q+(u[θ̂(q)]
2

)1/2⎞⎠ .

inf
q∈Γ

D−1 (q,u[θ̂(q)])≤ inf
q∈Γ, q≤Cu[θ̂(q)]

D−1 (q,u[θ̂(q)])≤ inf
q∈Γ, q≤Cu[θ̂(q)]

C′u[θ̂(q)],

where C is any constant such that there exists q such that q≤Cu[θ̂(q)]. Here C′ =max(2C,8).

Note from Theorem 3 that

u
[
θ̂(q)
]
= O

(
1
n

(
logn log |H |

θ̂(q)2
+ log

1
δ

))
,

and
q= PS

(
y f (x)< θ̂(q)

)
.

Thus we can derive the following three bounds of the generalization error from the Emargin bound
by using the three inequalities in Lemma 8 respectively.

1843

WANG, SUGIYAMA, JING, YANG, ZHOU AND FENG

Corollary 9 If 8 < |H | < ∞, then for any δ > 0, with probability at least 1− δ over the random
choice of the training set S of n examples (n> 1), every voting classifier f ∈C(H) such that q0 < 1
satisfies the following bounds:

1.

PD(y f (x)≤ 0)≤ O

(
1
n

(
logn log |H |

θ20
+ log

1
δ

))
.

Here we assume θ0 >
√
8/|H | is the minimum margin.

2.

PD
(
y f (x)≤ 0

)
≤ inf

θ∈[8
|H | ,1]

[
PS
(
y f (x)≤ θ

)
+O

(
1√
n

(
logn log |H |

θ2
+ log

1
δ

)1/2)]
.

3. For any constant C and θ ∈ [
√
8/|H |,1) such that

PS (y f (x)≤ θ)≤ C
n

(
8
θ2
log

(
2n2

log |H |

)
log(2|H |+ log |H |+ log n

δ
)

)
, (4)

we have

PD(y f (x)≤ θ)≤ log |H |
n

+
C′

n

(
8
θ2
log

(
2n2

log |H |

)
log(2|H |+ log |H |+ log n

δ
)

)
,

where C′ =max(2C,8).

The first bound in the corollary has the same order as the minimum margin bound. The second
bound is essentially the same as Theorem 1 except that θ cannot be too small. So previous bounds
can be derived from the Emargin bound. The third bound states that the generalization error is

O
(
logn log |H |

nθ2

)
even in the non-zero error case, provided the margin error PS (y f (x) ≤ θ) is small

enough.
The third bound has a much simpler form than Theorem 1. If we use this bound to define

Emargin, that is, the optimal θ in the bound, it can be greatly simplified. It is easy to see that the
optimal θ is just the largest θ satisfying (4). The price however is that this approximate bound is not
uniformly sharper than the minimum margin bound.

5. Consistency

So far the results are finite sample generalization error bounds. In this section we point out that
the Emargin bound and the margin distribution bound in Theorem 1 imply statistical consistency.
In particular we show that if a boosting algorithm minimizes the bound, then the classifier learned
converges to the optimal classifier in the hypothesis space, that is, the convex hull of the base
classifiers. Here we assume that the set of base classifiers H is symmetric. That is, if h ∈ H then
−h ∈H . Therefore the best classifier in the convex hull of H is also the best classifier in the linear
span of H . An immediate consequence of this consistency is that margin bound optimization is
Bayes consistent if the linear span of the base classifiers is dense in the space of all measurable

1844

A REFINED MARGIN ANALYSIS FOR BOOSTING ALGORITHMS VIA EQUILIBRIUM MARGIN

functions. A typical example of such base classifiers is decision tree with the number of leaves
larger than the dimension of the input space (Breiman, 2004).

Before stating the consistency theorem, we need some notions. LetC(H) be the convex hull of
the set of base classifiers. Also let

L∗ = inf
f∈C(H)

PD
(
y f (x)≤ 0

)
.

That is, L∗ is the minimal generalization error of the classifiers inC(H).
We consider an algorithm that optimizes the Emargin: Given a training set S containing n

examples, the learning algorithm returns a function f̂n ∈ C(H) which minimizes the finite VC
dimension Emargin bound (i.e., the right-hand side of (3)), or simply D−1(q∗,u(θ∗)).

The next theorem states that margin bound optimization is consistent. With almost the same
arguments one can show that minimizing the margin distribution bound in Theorem 1 is also con-
sistent. But there is no such result for the minimum margin bound for the non-separable problems.

Theorem 10 Let C(H), L∗ and f̂n be defined as above. Then

lim
n→∞

EPD
(
y f̂n(x)≤ 0

)
= L∗,

where E is the expectation over the random draw of the training set Sn.

6. Proofs

In this section, we give proofs of the theorems, lemmas and corollaries.

6.1 Proof of Theorem 3

The proof uses the tool developed in Schapire et al. (1998). The difference is that we do not bound
the deviation of the generalization error from the empirical margin error directly, instead we consider
the difference of the generalization error to a zero-one function of a certain empirical measure. This
allows us to unify the zero-error and nonzero-error cases and it results in a sharper bound. For the
sake of convenience, we follow the convention in Schapire et al. (1998).

Let C(H) denote the convex hull of H . Also let CN(H) denote the set of unweighted averages
over N elements from the base classifier set H . Formally,

CN(H) =

{
g : g=

1
N

N

∑
j=1

h j, h j ∈H

}
.

Any voting classifier
f =∑βihi ∈C(H),

where

∑βi = 1, βi ≥ 0,

can be associated with a distribution over H by the coefficients {βi}. We denote this distribution
as Q(f). By choosing N elements independently and randomly from H according to Q(f), we

1845

WANG, SUGIYAMA, JING, YANG, ZHOU AND FENG

can generate a classifier g ∈ CN(H). The distribution of g is denoted by QN(f). For any fixed α
(0< α< 1)

PD
(
y f (x)≤ 0

)
≤ PD,g∼QN(f)

(
yg(x)≤ α

)
+PD,g∼QN(f)

(
yg(x)> α, y f (x)≤ 0

)
≤ PD,g∼QN(f)

(
yg(x)≤ α

)
+ exp

(
−Nα

2

2

)
. (5)

We next bound the first term on the right-hand side of the inequality. So far the argument is the
same as Schapire et al. (1998). From now on we use some different techniques. For any fixed
g ∈CN(H), and for any positive number ε and nonnegative integer k such that k ≤ nε, we consider
the probability (over the random draw of n training examples) that the training error at margin α is
less than k/n, while the true error of g at margin α is larger than ε:

Pr
S∼Dn

(
PS (yg(x)≤ α)≤ k

n
, PD (yg(x)≤ α)> ε

)
. (6)

Here PrS∼Dn denotes the probability over n training examples chosen independently at random
according to D . Note that the proof in Schapire et al. (1998) considers only the difference of
PD (yg(x)≤ α) and PS (yg(x)≤ α), that is, PD (yg(x)≤ α)−PS (yg(x)≤ α); While here we con-
sider the values of PD (yg(x)≤ α) and PS (yg(x)≤ α) themselves. The benefit is that this allows
us to use the tightest version of Chernoff bound—the relative entropy Chernoff bound—rather than
the relatively looser additive Chernoff bound. To derive the bound, we write (6) in the following
equivalent form.

Pr
S∼Dn

(
PD(yg(x)≤ α)> I

[
PS (yg(x)≤ α)>

k
n

]
+ ε

)
, (7)

where I is the indicator function. (7) is important in our proof. It bounds the difference of the
true and empirical margin distributions as α and k vary over their ranges. But k and α can take
essentially finite number of values, so we can use union bounds. It’s easy to see that no matter
PD(yg(x) ≤ α) > ε or PD(yg(x) ≤ α) ≤ ε, we have the following inequality (In the former case, it
is the tail bound for Bernoulli trials; and in the latter case the probability is actually zero).

Pr
S∼Dn

(
PD
(
yg(x)≤ α

)
> I

[
PS
(
yg(x)≤ α

)
>
k
n

]
+ ε

)
≤

k

∑
r=0

(
n
r

)
εr(1− ε)n−r.

Then applying the relative entropy Chernoff bound (Hoeffding, 1963) to the Bernoulli trials, we
further have

k

∑
r=0

(
n
r

)
εr(1− ε)n−r ≤ exp

(
−nD

(
k
n

∥∥∥ε)) .
We thus obtain

Pr
S∼Dn

(
PD
(
yg(x)≤ α

)
> I

[
PS
(
yg(x)≤ α

)
>
k
n

]
+ ε

)
≤ exp

(
−nD

(
k
n

∥∥∥ε)) . (8)

We only consider α at the values in the set

U =

{
1

|H | ,
2

|H | , . . . ,1
}
.

1846

A REFINED MARGIN ANALYSIS FOR BOOSTING ALGORITHMS VIA EQUILIBRIUM MARGIN

There are no more than |H |N elements inCN(H). Using the union bound we get

Pr
S∼Dn

(
∃g ∈CN(H), ∃α ∈U, PD

(
yg(x)≤ α

)
> I

[
PS
(
yg(x)≤ α

)
>
k
n

]
+ ε

)

≤ |H |(N+1) exp
(
−nD

(
k
n

∥∥∥ε)) .
The above formula upper bounds the probability that “∃g ∈CN(H)” certain inequality of g holds.
The bound also applies to “∃ a distribution of g over CN(H)” such that the inequality of the expec-
tation over g holds, since the latter implies the former. Note that

Eg∼QN(f)PD
(
yg(x)≤ α

)
= PD,g∼QN(f)

(
yg(x)≤ α

)
,

Eg∼QN(f)I

[
PS
(
yg(x)≤ α

)
>
k
n

]
= Pg∼QN(f)

(
PS
(
yg(x)≤ α

)
>
k
n

)
.

We thus have

Pr
S∼Dn

(
∃ f ∈C(H),∃α ∈U,PD,g∼QN(f)

(
yg(x)≤ α

)
> Pg∼QN(f)

(
PS (yg(x)≤ α)>

k
n

)
+ ε

)

≤ |H |(N+1) exp
(
−nD

(
k
n

∥∥∥ε)) .
Let

δ= |H |(N+1) exp
(
−nD

(
k
n

∥∥∥ε)) ,
then

ε= D−1
(
k
n
,
1
n

[
(N+1) log |H |+ log 1

δ

])
.

We obtain that with probability at least 1− δ over the draw of the training examples, for all f ∈
C(H), all α ∈U , but fixed k,

PD,g∼QN(f)
(
yg(x)≤ α

)
≤Pg∼QN(f)

(
PS
(
yg(x)≤ α

)
>
k
n

)
(9)

+D−1
(
k
n
,
1
n

[
(N+1) log |H |+ log 1

δ

])
.

We next bound the first term in the right-hand side of (9). Using the same argument for deriving
(5), we have for any fixed f ,S ,α, k, any θ> α

Pg∼QN(f)

(
PS
(
yg(x)≤ α

)
>
k
n

)
≤I
[
PS
(
y f (x)< θ

)
>
k
n

]
+Pg∼QN(f)

(
PS
(
yg(x)≤ α

)
>
k
n
,PS
(
y f (x)< θ

)
≤ k
n

)
.

(10)

1847

WANG, SUGIYAMA, JING, YANG, ZHOU AND FENG

Note that the last term in (10) can be written in the following equivalent form and further bounded
by

Pg∼QN(f)

(
∃(xi,yi) ∈ S : yig(xi)≤ α, yi f (xi)≥ θ

)
≤ nexp

(
−N(θ−α)2

2

)
. (11)

Combining (5), (9), (10) and (11), we have that with probability at least 1− δ over the draw of
training examples, for all f ∈C(H), all α ∈U , all θ> α, but fixed k and N

PD
(
y f (x)≤ 0

)
≤exp

(
−Nα

2

2

)
+nexp

(
−N(θ−α)2

2

)
+ I

[
PS
(
y f (x)< θ

)
>
k
n

]
+D−1

(
k
n
,
1
n

[
(N+1) log |H |+ log 1

δ

])
.

Since θ is arbitrary, we set θ= θ̂(kn). Now we construct α by rounding θ/2 to the nearest neighbor
of 1/|H |. Let

α=
θ
2
− η

|H | ∈U,

where 0 ≤ η < 1. The goal is to let α takes only a finite number of values. (Recall that U =
{ 1
|H | , · · · ,1}.) It is easy to check that the sum of the first two terms on the right-hand side of the
above inequality can be bounded by the following.

exp

(
−Nα

2

2

)
+nexp

(
−N(θ−α)2

2

)
≤ exp

(
−Nθ

2

8

)
exp

(
− Nη2

2|H |2
)[
exp

(
Nθη
2|H |

)
+nexp

(
− Nθη
2|H |

)]
≤ max

(
2n,exp

(
N
2|H |

)
+1

)
exp

(
−Nθ

2

8

)
.

The last inequality holds since 0≤ θ,η≤ 1. Replacing δ by δ ·2−N . we can get a union bound over
all N by replacing log(nδ) in all previous equations by log(

n
δ·2−N) = N log2+ log(nδ). Put

N =

⌈
8
θ2
log

(
2n2

log |H |

)⌉
.

Now for any sample S we only consider f ∈C(H) and k that satisfy q0 < 1 and

k
n
≥ q0. (12)

Note that by (12) and the assumption that |H |> 8, we have

θ>

√
8

|H | .

So by some numerical calculations one can show

2n> exp

(
N
2|H |

)
+1, (n> 1).

1848

A REFINED MARGIN ANALYSIS FOR BOOSTING ALGORITHMS VIA EQUILIBRIUM MARGIN

Recall that θ= θ̂(k/n), so PS
(
y f (x)< θ

)
≤ k

n . We thus obtain that for fixed k, with probability at

least 1−δ over the random choice of the training set S of n examples, every f ∈C(H) with q0 < 1
satisfies

PD
(
y f (x)≤ 0

)
≤ log |H |

n
+D−1

(
k
n
,u

)
,

where

u=
1
n

(
8
θ2
log

(
2n2

log |H |

)
log(2|H |)+2log |H |+ log 1

δ

)
.

Finally using the union bound over k ∈ {nq0, . . . ,n− 1} and replacing δ by δ/n, we have with
probability at least 1−δ over the random choice of the training set S of n examples, every f ∈C(H)
with q0 < 1 satisfies

PD
(
y f (x)≤ 0

)
≤ log |H |

n
+ inf

k∈{nq0,...,n−1}
D−1
(
k
n
,u′
)
,

where

u′ =
1
n

(
8
θ2
log

(
2n2

log |H |

)
log(2|H |)+2log |H |+ log n

δ

)
.

The theorem follows.

6.2 Proof of Theorem 5

The following lemma will be used to prove Theorem 5.

Lemma 11 D−1(0, p)≤ p for p≥ 0.

Proof of Lemma 11. We only need to show

D(0||p)≥ p,

since D(q||p) is a monotonic increasing function of p for p≥ q. By Taylor expansion

D(0||p) =− log(1− p) = p+
p2

2
+
p3

3
+ · · · ≥ p.

Proof of Theorem 5. By the assumption of Theorem 2 we have θ0 > 4
√

2
|H | . Then it is easy to see

that the right-hand side of the Emargin bound (1) is the minimum over all q ∈
{
0, . . . , n−1n

}
. Take

q= 0, it is clear that θ̂(0) is the minimum margin. By Lemma 11, the Emargin bound can be relaxed
to

PD
(
y f (x)≤ 0

)
≤ 1
n

(
8

θ20
log

(
2n2

log |H |

)
log(2|H |)+3log |H |+ log n

δ

)

≤ 16log(2n) log(2|H |)
nθ20

+
logn+2log |H |

n
+
1
n
log

(|H |
δ

)
. (13)

We only need to show that this relaxed bound is sharper than Theorem 2. For the minimum margin
bound, we only consider the case that R ≤ 1, since otherwise the bound is larger than one. Simple
calculations show that the right-hand side of (13) is smaller than the minimum margin bound.

1849

WANG, SUGIYAMA, JING, YANG, ZHOU AND FENG

6.3 Proof of Theorem 6

Remember that qi = PS (y fi(x)< θi) is the optimal q∗ in the Emargin bound. Thus we only need to
show

D−1
(
q1,u(θ1)

)
≤ D−1

(
q2,u(θ2)

)
.

Note that if θ1 ≥ θ2, then u(θ1)≤ u(θ2). So

D−1
(
q2,u(θ2)

)
≥ D−1

(
q2,u(θ1)

)
,

since D−1(q,u) is an increasing function of u for fixed q. Also D−1(q,u) is an increasing function
of q for fixed u, we have

D−1
(
q2,u(θ1)

)
≥ D−1

(
q1,u(θ1)

)
since q1 ≤ q2. This completes the proof.

6.4 Proof of Theorem 7

The next lemma is a modified version of the uniform convergence result (Vapnik and Chervonenkis,
1971; Vapnik, 1998) and its refinement (Devroye, 1982). It will be used for proving Theorem 7.

Lemma 12 Let A be a class of subsets of a space Z. Let zi ∈ Z, i = 1, . . . ,n. Let NA(z1,z2, . . . ,zn)
be the number of different sets in {

{z1,z2, . . . ,zn}
⋂
A : A ∈ A

}
.

Define
s(A ,n) = max

(z1,z2,...,zn)∈Zn
NA(z1,z2, . . . ,zn).

Assume ε≥ 1
n . Let ε

′ = n
n−1ε− 1

n . Then for any distribution D over Z and any nonnegative integer

k such that kn ≤ ε′

Pr
S∼Dn

(
∃A ∈ A : PD(A)> I

[
PS (A)>

k
n

]
+ ε

)
≤ 2 · s(A ,n2)exp

(
−nD

(
k
n

∥∥∥ε′)) .
Proof of Lemma 12. The proof is the standard argument. We first show that for any 0 < α < 1,
ε> 0, and any integer n′

Pr
S∼Dn

(
∃A ∈ A : PD(A)> I

[
PS (A)>

k
n

]
+ ε

)
≤
(

1

1− e−2n′α2ε2

)
Pr

S∼Dn, S′∼Dn′

(
∃A ∈ A : PS′(A)> I

[
PS (A)>

k
n

]
+(1−α)ε

)
.

Or equivalently,

Pr
S∼Dn

(
sup
A∈A

(
PD(A)− I

[
PS (A)>

k
n

])
> ε

)
≤
(

1

1− e−2n′α2ε2

)
Pr

S∼Dn, S ′∼Dn′

(
sup
A∈A

(
PS ′(A)− I

[
PS (A)>

k
n

])
> (1−α)ε

)
. (14)

1850

A REFINED MARGIN ANALYSIS FOR BOOSTING ALGORITHMS VIA EQUILIBRIUM MARGIN

Let V denote the event

sup
A∈A

(
PD(A)− I

[
PS (A)>

k
n

])
> ε.

If the above event occurs, let A∗ be any A ∈ A so that PD(A)− I
[
PS (A)> k

n

]
> ε. Otherwise let A∗

be any A ∈ A . Note that the following two events

PS′(A
∗)≥ PD(A

∗)−αε

and

PD(A
∗)− I

[
PS (A

∗)>
k
n

]
> ε

imply that

PS′(A
∗)− I

[
PS (A

∗)>
k
n

]
> (1−α)ε.

Then

Pr
S∼Dn, S ′∼Dn′

(
sup
A∈A

(
PS′(A)− I

[
PS (A)>

k
n

])
> (1−α)ε

)

=
∫
dDn

∫
I

[
sup
A∈A

(
PS ′(A)− I

[
PS (A)>

k
n

])
> (1−α)ε

]
dDn′

≥
∫
V
dDn

∫
I

[
sup
A∈A

(
PS ′(A)− I

[
PS (A)>

k
n

])
> (1−α)ε

]
dDn′

≥
∫
V
dDn

∫
I

[
PS ′(A∗)− I

[
PS (A

∗)>
k
n

]
> (1−α)ε

]
dDn′

≥
∫
V
dDn

∫
I

[
PS ′(A∗)≥ PD(A

∗)−αε

]
dDn′

≥
(
1− e−2n

′α2ε2
)∫

V
dDn

=
(
1− e−2n

′α2ε2
)
Pr

S∼Dn

(
sup
A∈A

(
PD(A)− I

[
PS (A)>

k
n

])
> ε

)
.

This completes the proof of (14).
Take

n′ = n2−n,

α=
1

(n−1)ε ,

we have

Pr
S∼Dn

(
∃A ∈ A : PD(A)> I

[
PS (A)>

k
n

]
+ ε

)
≤ 2 Pr

S∼Dn, S ′∼Dn′

(
∃A ∈ A : PS ′(A)> I

[
PS (A)>

k
n

]
+(ε− 1

n−1)
)
.

1851

WANG, SUGIYAMA, JING, YANG, ZHOU AND FENG

Proceeding as Devroye (1982) and using the relative entropy Hoeffding inequality, the lemma
follows.

Proof of Theorem 7. The proof is the same as Theorem 3 until we have (8). Let α= θ
2 , we need to

bound

Pr
S∼Dn

(
∃g ∈CN(H), ∃θ> 0, PD

(
yg(x)≤ θ

2

)
> I

[
PS
(
yg(x)≤ θ

2

)
>
k
n

]
+ ε

)
.

Note that for fixed N, in order to derive a bound uniformly over all 0< θ≤ 1 it suffices to show the
bound holds for θ= 1

N ,
2
N , . . . ,1. Let

A(g) =

{
(x,y) ∈ X ×{−1,1} : yg(x)≤ θ

2

}
,

and
A =

{
A(g) : g ∈CN(H)

}
.

By Sauer’s lemma (Sauer, 1972) it is easy to see that

s(A ,n)≤
(en
d

)Nd
,

where d is the VC dimension of H . By Lemma 12, we have

Pr
S∼Dn

(
∃g ∈CN(H), ∃θ> 0, PD

(
yg(x)≤ θ

2

)
> I

[
PS
(
yg(x)≤ θ

2

)
>
k
n

]
+ ε

)

≤ 2(N+1)

(
en2

d

)Nd
exp

(
−nD

(
k
n

∥∥∥ε′)) ,
where

ε′ =
n

n−1ε−
1
n
.

Proceeding as the proof of Theorem 3, we have that with probability at least 1− δ the following
holds for every f ∈C(H), every θ> 0 but fixed k, where 0≤ k ≤ nε.

PD,g∼QN(f)

(
yg(x)≤ θ

2

)
≤ Pg∼QN(f)

(
PS

(
yg(x)≤ θ

2

)
>
k
n

)
+
1
n
+
n−1
n

D−1
(
k
n
,τ

)
, (15)

where

τ=
1
n

[
Nd

(
log

n2

d
+1

)
+ log(2(N+1))+ log

1
δ

]
.

Similar to the proof of Theorem 3, we can bound the first term of (15) as

Pg∼QN(f)

(
PS

(
yg(x)≤ θ

2

)
>
k
n

)
≤ I

[
PS (y f (x)< θ)>

k
n

]
+Pg∼QN(f)

(
PS

(
yg(x)≤ θ

2

)
>
k
n
, PS (y f (x)< θ)≤ k

n

)
≤ I

[
PS (y f (x)< θ)>

k
n

]
+nexp

(
−Nθ

2

8

)
. (16)

1852

A REFINED MARGIN ANALYSIS FOR BOOSTING ALGORITHMS VIA EQUILIBRIUM MARGIN

Setting θ = θ̂(kn) and combining (15), (16) and (5); recalling α = θ/2 we have with probability at
least 1−δ for all f ∈C(H), all 0< θ≤ 1, but fixed k and N

PD(y f (x)≤ 0)≤
1
n
+(n+1)exp

(
−Nθ

2

8

)
+
n−1
n

D−1
(
k
n
,τ

)
.

Use the union bound over N; put N = 16
θ2 log

n
d and use the union bound over k as in the proof of

Theorem 3 we obtain the theorem.

6.5 Proof of Lemma 8

The first inequality has already been proved in Lemma 11.
For the second inequality, we only need to show

D−1(q,u)≤ q+
√
u/2,

or equivalently
D(q,q+

√
u/2)≥ u,

since D is an increasing function in the second parameter. But this is immediate by a well known
result (Hoeffding, 1963):

D(q,q+δ)≥ 2δ2.
For the third inequality we first show that for all 0< q< 1

D−1
(q
2
,
q
8

)
≤ q, (17)

which is equivalent to

D
(q
2

∥∥∥q)≥ q
8
.

For fixed q, let φ(x) = D(qx||q), 0< x≤ 1. Note that

φ(1) = φ′(1) = 0,

and
φ′′(x) =

q
x(1−qx)

≥ q,

we have

D
(q
2

∥∥∥q)= φ

(
1
2

)
≥ q
8
.

This completes the proof of (17).
Now if q≤Cu[θ̂(q)], recall thatC′ =max(2C,8), and note D−1 is increasing function on its first

and second parameter respectively. IfC′u[θ̂(q)]< 1 we have

D−1 (q,u[θ̂(q)]) ≤ D−1
(
C′

2
u
[
θ̂(q)
]
,u
[
θ̂(q)
])

≤ D−1
(
C′

2
u
[
θ̂(q)
]
,
C′

8
u
[
θ̂(q)
])

≤ C′u
[
θ̂(q)
]
.

The lemma follows.

1853

WANG, SUGIYAMA, JING, YANG, ZHOU AND FENG

6.6 Proof of Corollary 9

The first and third bounds are straightforward from lemma 8. We only prove the second bound.
Let Φ(θ) be the right hand side of the bound (without taking the infimum) we want to prove,

that is,

Φ(θ) = PS
(
y f (x)≤ θ

)
+O

(
1√
n

(
logn log |H |

θ2
+ log

1
δ

)1/2)
.

It is not difficult to see that there is no θ that can achieve infθ∈[8/|H |,1]Φ(θ). To see this, first note
that for any θ, either PS (y f (x) < θ) = PS (y f (x) ≤ θ) (a continuous point), or PS (y f (x) < θ) <
PS (y f (x)≤ θ) (a jump point). In the former case, increasing θ decreases Φ(θ) since PS(y f (x)≤ θ)
does not change but u(θ) is decreasing. In the latter case, decreasing θ also decreases Φ(θ), since
PS(y f (x)≤ θ) decreases discontinuously while u(θ) increases continuously.

Let θ1,θ2, . . ., be a sequence so that Φ(θi) converges to infθΦ(θ). Let θ be the limiting point
of θ1,θ2, It is not difficult to see from the above argument that for sufficiently large i, θi < θ,
since there is a jump ofΦ(θ) at those θ such that PS (y f (x)≤ θ) is discontinuous. Take any θi that is
sufficiently close to θ. Let qi = PS (y f (x)≤ θi), we must have θ̂(qi) = θ (recall that θ̂(qi) = sup{θ∈
(0,1] : PS (y f (x)≤ θ)≤ qi}). Therefore u[θ̂(qi)]< u(θi) and hence qi+(u[θ̂(qi)])1/2 <Φ(θi). Thus
infq(q+(u[θ̂(q)])1/2)≤ infθΦ(θ). The corollary follows.

6.7 Proof of Theorem 10

We first give a simple lemma.

Lemma 13 Let ξ be a random variable and κ a positive constant. If for any t > 0 we have P(ξ >

κt)< exp(−t2), then Eξ≤
√
π
2 κ.

Proof of Lemma 13.

Eξ=
∫ ∞

−∞
u d(−P(ξ> u))≤

∫ ∞

0
u d(−P(ξ> u)).

By the assumption, we have

Eξ≤
∫ ∞

0
κt d(−e−t2) =

√
π
2
κ.

Proof of Theorem 10.
Let B(f) be the right-hand-side of the Emargin bound in Theorem 7. Then for any training set S ,

f̂n is the function f inC(H) so that B(f) is minimized, that is, f̂n = argmin f∈C(H)B(f). According
to the Emargin bound, with probability 1−δ

PD(y f̂n(x)≤ 0)≤ B(f̂n).

Since f̂n = argmin f∈C(H)B(f), then for any f ∈C(H), we have B(f̂n) ≤ B(f). Therefore for
all f ∈C(H), with probability 1−δ

PD(y f̂n(x)≤ 0)≤ B(f) =
d2+1
n

+ inf
q∈{q0,..., n−1n }

n−1
n

D−1(q,u[θ̂(q)]).

1854

A REFINED MARGIN ANALYSIS FOR BOOSTING ALGORITHMS VIA EQUILIBRIUM MARGIN

For any fixed f ∈ C(H), let q = PS (y f (x) ≤ n−1/4). It is easy to see that θ̂(q) ≥ n−1/4 and
u[θ̂(q)] ≤ u[n−1/4], where u[θ̂(q)] is defined in Theorem 7. By the second inequality of D−1 in
lemma 8, we have

PD(y f̂n(x)≤ 0) ≤ d2+1
n

+
n−1
n

(
q+(u

[
θ̂(q)
]
)1/2
)
,

≤ d2+1
n

+
n−1
n

(
PS (y f (x)≤ n−1/4)+(u

[
n−1/4

]
)1/2
)
.

It is easy to see that there is a constant c (independent of f) such that the right-hand-side of the
above inequality can be further bounded by

n−1
n

PS (y f (x)≤ n−1/4)+ c
d log nd
n1/4

+ c

√
logn
n
log(

1
δ
).

Let t =
√
log(1δ), we have that for any t > 0 with probability at most exp(−t2)

PD(y f̂n(x)≤ 0)−
n−1
n

PS (y f (x)≤ n−1/4)− c
d log n

d

n1/4
> c

√
logn
n

t.

According to lemma 13, we obtain

EPD(y f̂n(x)≤ 0)−
n−1
n

EPS (y f (x)≤ n−1/4)− c
d log nd
n1/4

≤ c
√
π
2

√
logn
n

,

where the expectation is over the random choice of the training set. Note that

EPS (y f (x)≤ n−1/4) = PD(y f (x)≤ n−1/4),

we have

EPD(y f̂n(x)≤ 0)≤
n−1
n

PD(y f (x)≤ n−1/4)+ c
d log nd
n1/4

+
c
√
π
2

√
logn
n

.

Let n→ ∞, we obtain

lim
n→∞

EPD(y f̂n(x)≤ 0)≤ lim
n→∞

PD(y f (x)≤ n−1/4) = PD(y f (x)≤ 0).

The last equality holds because PD(y f (x)≤ θ) is a right continuous function of θ. Since the above
inequality is true for every f ∈C(H), we have

lim
n→∞

EPD(y f̂n(x)≤ 0)≤ inf
f∈C(H)

PD(y f (x)≤ 0) = L∗.

7. Experiments

In this section we provide experimental results to verify our theory. We compare AdaBoost and
LP-AdaBoost in terms of their Emargin, Emargin error and the generalization error. Theorem 6
suggests that if a voting classifier f1 has a larger Emargin and a smaller Emargin error than another
classifier f2, then f1 has a smaller bound of the generalization error than f2. Thus we expect f1 will

1855

WANG, SUGIYAMA, JING, YANG, ZHOU AND FENG

Data Set # Examples # Features Data Set # Examples # Features
Image 2310 16 Page-block 5473 10
Isolet 7797 617 Pendigits 10992 16
Letter 20000 16 Satimage 6435 36
Magic04 19022 10 Shuttle 58000 9
Mfeat-fac 2000 216 Spambase 4601 57
Optdigits 5620 64 Waveform 5000 30

Table 1: Description of the large data sets

Data Set # Examples # Features
Breast 683 9
Diabetes 768 8
German 1000 24
Vehicle 845 18
Wdbc 569 30

Table 2: Description of the small data sets

have better performance on the test data. The goal of the experiment is to see whether the empirical
results agree with the theoretical prediction.

The experiments are conducted on 17 benchmark data sets all from the UCI repository (Asun-
cion and Newman, 2007). The data sets are grouped into two categories. Table 1 lists 12 “large”
data sets, each containing at least 1000 data points. Table 7 lists 5 “small” data sets, each has at
most 1000 examples. (We distinguish large and small data sets because we found they demonstrate
somewhat different results, see below for discussions.) If the data is multiclass, we group them into
two classes since we study binary classification problems. For instance, the “letter” data set has 26
classes, we use the first 13 as the positive and the others as the negative. In the preprocessing stage,
each feature is normalized to [0,1]. For all data sets we use 5-fold cross validation, and average the
results over 10 runs (for a total of 50 runs on each data set).

In order to study the effect of the margins, we need to control and calculate the complexity of
the base classifiers. We conduct two sets of experiments using different base classifiers. For one
set of experiments, we use decision stumps. For the other, we use three-layer eight-leaf (complete)
binary decision trees (Therefore the shape of the trees are fixed). We consider a finite set of base
classifiers. Specifically, for each feature we consider 100 thresholds uniformly distributed on [0,1].
Therefore the size of the set of decision stumps is 2×100×k, and for the three-layer eight-leaf trees
is (2×100× k)7, where k denotes the number of features.

We run AdaBoost 100 rounds, and use the obtained base classifiers to train the LP-AdaBoost
voting classifier. We then calculate the Emargin, Emargin error, test error as well as the minimum
margin of them respectively. The calculation of the Emargin involves solving the inverse relative
entropy D−1(q,u). Since D is a monotone function on the second parameter, one can adopt the
Newton method to find the root of D(q||·)−u= 0 on [q,1]. Another simple way to solve D−1(q,u)
is just applying binary search on [q,1]: Let p1= q, p2= 1. We haveD(q, p1) = 0≤ u andD(q, p2) =
∞> u. Then let p3 =

p1+p2
2 , compute D(q, p3) and see if D(q, p3)> u or not, etc.

1856

A REFINED MARGIN ANALYSIS FOR BOOSTING ALGORITHMS VIA EQUILIBRIUM MARGIN

Emargin Emargin Error Test Error Min margin
Image Ada 0.461 ± 0.024 0.799 ± 0.016 0.032 ± 0.009 -0.076 ± 0.010

LP 0.751 ± 0.238 0.664 ± 0.075 0.029 ± 0.009 0.000 ± 0.001
Isolet Ada 0.172 ± 0.057 0.714 ± 0.040 0.163 ± 0.045 -0.195 ± 0.063

LP 0.145 ± 0.031 0.763 ± 0.021 0.180 ± 0.053 -0.069 ± 0.015
Letter Ada 0.199 ± 0.010 0.804 ± 0.017 0.190 ± 0.005 -0.309 ± 0.009

LP 0.000 ± 0.000 0.905 ± 0.021 0.202 ± 0.012 0.000 ± 0.000
Magic04 Ada 0.190 ± 0.007 0.716 ± 0.017 0.230 ± 0.006 -0.412 ± 0.034

LP 0.000 ± 0.000 0.859 ± 0.063 0.265 ± 0.017 0.000 ± 0.000
Mfeat-fac Ada 0.184 ± 0.008 0.538 ± 0.033 0.040 ± 0.009 -0.018 ± 0.007

LP 0.171 ± 0.009 0.558 ± 0.038 0.045 ± 0.010 0.033 ± 0.003
Optdigits Ada 0.173 ± 0.009 0.654 ± 0.022 0.111 ± 0.013 -0.231 ± 0.016

LP 0.017 ± 0.046 0.708 ± 0.027 0.127 ± 0.019 -0.010 ± 0.027
Page-block Ada 0.278 ±0.014 0.458 ± 0.037 0.048 ± 0.005 -0.213 ± 0.023

LP 0.232 ± 0.374 0.686 ± 0.218 0.055 ± 0.008 0.000 ± 0.000
Pendigits Ada 0.176 ± 0.006 0.634 ± 0.020 0.091 ± 0.006 -0.243 ± 0.015

LP 0.135 ± 0.046 0.711 ± 0.028 0.131 ± 0.010 -0.085 ± 0.029
Satimage Ada 0.262 ± 0.008 0594 ± 0.018 0.057 ± 0.005 -0.161 ± 0.014

LP 0.092 ± 0.280 0.771 ± 0.036 0.066 ± 0.007 0.000 ± 0.000
Shuttle Ada 0.173 ± 0.017 0.062 ± 0.038 0.001 ± 0.000 -0.087 ± 0.026

LP 0.204 ± 0.032 0.251 ± 0.065 0.001 ± 0.000 0.000 ± 0.000
Spambase Ada 0.315 ± 0.217 0.591 ± 0.201 0.055 ± 0.020 -0.126 ± 0.365

LP 0.116 ± 0.316 0.737 ± 0.257 0.080 ± 0.028 0.096 ± 0.291
Waveform Ada 0.371 ± 0.014 0.721 ± 0.013 0.096 ± 0.008 -0.185 ± 0.014

LP 0.000 ± 0.000 0.780 ±0.014 0.104 ± 0.011 0.000 ± 0.000

Table 3: Margin measures and performances of AdaBoost and LP-AdaBoost on the large data sets
and using the stump base classifiers.

Emargin Emargin Error Test Error Min margin
Breast Ada 0.312 ± 0.045 0.425 ± 0.082 0.044 ± 0.016 -0.048 ± 0.017

LP 0.299 ± 0.068 0.556 ± 0.135 0.053 ± 0.017 0.022 ± 0.012
Diabetes Ada 0.216 ± 0.017 0.753 ± 0.033 0.228 ± 0.026 -0.199 ± 0.018

LP 0.149 ± 0.294 0.821 ± 0.071 0.271 ± 0.040 -0.008 ± 0.015
German Ada 0.221 ± 0.015 0.769 ± 0.029 0.240 ± 0.026 -0.246 ± 0.018

LP 0.059 ± 0.173 0.818 ± 0.073 0.272 ± 0.030 0.000 ± 0.000
Vehicle Ada 0.196 ± 0.012 0.688 ± 0.035 0.223 ± 0.026 -0.102 ± 0.011

LP 0.273 ± 0.285 0.790 ± 0.075 0.231 ± 0.029 -0.018 ± 0.008
Wdbc Ada 0.400 ± 0.032 0.537 ± 0.048 0.028 ± 0.014 0.096 ± 0.012

LP 0.376 ± 0.032 0.546 ± 0.050 0.033 ± 0.015 0.139 ± 0.008

Table 4: Margin measures and performances of AdaBoost and LP-AdaBoost on the small data sets
and using the stump base classifiers.

1857

WANG, SUGIYAMA, JING, YANG, ZHOU AND FENG

Emargin Emargin Error Test Error Min margin
Image Ada 0.370 ± 0.016 0.375 ± 0.034 0.010 ± 0.004 0.184 ± 0.008

LP 0.374 ± 0.023 0.374 ± 0.054 0.010 ± 0.004 0.232 ± 0.007
Isolet Ada 0.252 ± 0.076 0.589 ± 0.028 0.074 ± 0.067 0.020 ± 0.144

LP 0.240 ± 0.010 0.591 ± 0.040 0.074 ± 0.056 0.063 ± 0.071
Letter Ada 0.246 ± 0.017 0.714 ± 0.034 0.077 ± 0.006 -0.144 ± 0.012

LP 0.236 ± 0.019 0.775 ± 0.031 0.086 ± 0.006 0.061 ± 0.004
Magic04 Ada 0.312 ± 0.018 0.805 ± 0.018 0.156 ± 0.006 -0.212 ± 0.012

LP 0.282 ± 0.038 0.879 ± 0.028 0.225 ± 0.013 -0.085 ± 0.003
Mfeat-fac Ada 0.377 ± 0.029 0.293 ± 0.104 0.017 ± 0.005 0.285 ± 0.006

LP 0.350 ± 0.044 0.146 ± 0.174 0.018 ± 0.006 0.314 ± 0.005
Optdigits Ada 0.288 ± 0.009 0.460 ± 0.025 0.018 ± 0.003 0.090 ± 0.006

LP 0.288 ± 0.010 0.466 ± 0.022 0.018 ± 0.003 0.124 ± 0.004
Page-block Ada 0.392 ± 0.024 0.465 ± 0.038 0.030 ± 0.005 -0.068 ± 0.009

LP 0.508 ± 0.041 0.518 ± 0.057 0.033 ± 0.005 0.000 ± 0.000
Pendigits Ada 0.305 ± 0.008 0.337 ± 0.017 0.005 ± 0.001 0.101 ± 0.008

LP 0.301 ± 0.010 0.345 ± 0.022 0.005 ± 0.001 0.137 ± 0.005
Satimage Ada 0.319 ± 0.013 0.484 ± 0.026 0.044 ± 0.006 0.012 ± 0.008

LP 0.284 ± 0.014 0.496 ± 0.039 0.046 ± 0.006 0.055 ± 0.004
Shuttle Ada 0.503 ± 0.037 0.034 ± 0.020 0.001 ± 0.000 -0.049 ± 0.013

LP 0.541 ± 0.066 0.071 ± 0.042 0.001 ± 0.000 0.000 ± 0.000
Spambase Ada 0.294 ± 0.014 0.601 ± 0.034 0.052 ± 0.006 -0.092 ± 0.008

LP 0.309 ± 0.181 0.681 ± 0.077 0.067 ± 0.008 -0.002 ± 0.002
Waveform Ada 0.494 ± 0.023 0.709 ± 0.011 0.100 ± 0.009 0.001 ± 0.006

LP 0.473 ± 0.033 0.714 ± 0.018 0.103 ± 0.008 0.041 ± 0.003

Table 5: Margin measures and performances of AdaBoost and LP-AdaBoost on the large data sets
and using the Tree base classifiers.

Emargin Emargin Error Test Error Min margin
Breast Ada 0.591 ± 0.057 0.392 ± 0.051 0.030 ± 0.014 0.317 ± 0.030

LP 0.667 ± 0.059 0.404 ± 0.053 0.033 ± 0.014 0.385 ± 0.033
Diabetes Ada 0.230 ± 0.032 0.706 ± 0.062 0.272 ± 0.027 0.035 ± 0.007

LP 0.222 ± 0.026 0.709 ± 0.058 0.284 ± 0.030 0.082 ± 0.004
German Ada 0.202 ± 0.015 0.704 ± 0.041 0.242 ± 0.027 -0.010 ± 0.010

LP 0.192 ± 0.017 0.703 ± 0.050 0.259 ± 0.028 0.046 ± 0.004
Vehicle Ada 0.271 ± 0.018 0.644 ± 0.038 0.216 ± 0.029 0.087 ± 0.007

LP 0.256 ± 0.020 0.633 ± 0.046 0.216 ± 0.027 0.127 ± 0.004
Wdbc Ada 0.539 ± 0.018 0.015 ± 0.010 0.028 ± 0.013 0.527 ± 0.019

LP 0.582 ± 0.020 0.002 ± 0.000 0.030 ± 0.014 0.582 ± 0.020

Table 6: Margin measures and performances of AdaBoost and LP-AdaBoost on the small data sets
and using the tree base classifiers.

1858

A REFINED MARGIN ANALYSIS FOR BOOSTING ALGORITHMS VIA EQUILIBRIUM MARGIN

The results are described in Tables 3, 4, 5 and 6 respectively according to the type of base
classifiers used and the size of the data sets. To highlight the results we use boldface in the following
manner: By a t-test with significant level 0.01, larger Emargin, smaller Emargin error, and
smaller test error are denoted in boldface. If on a data set, the empirical result agrees with the
theory, the name of the data set is marked in boldface. For example, if one algorithm has larger
Emargin, smaller or equal Emargin error, and smaller test error, then the data set is marked in
boldface. Similarly, if one algorithm has smaller Emargin error, larger or equal Emargin, and smaller
test error, then the data set is marked in boldface. Also if the two algorithms have (statistically) the
same Emargin, Emargin error and test error, it agrees with the theory.

In Table 3 we use decision stump base classifiers on large data sets. We see that only one data
set is not marked in boldface. On this “Shuttle” data set, LP-AdaBoost has a larger Emargin and
also a larger Emargin error. In this case, the comparison theorem (Theorem 6) does not apply. We
mark such data sets by italic font. Note that AdaBoost does not always have larger Emargin than
LP-AdaBoost. On the “Image” data set, LP-AdaBoost achieves larger Emargin, smaller Emargin
error and, as the bound predicts, a smaller test error.

In Table 4 we use decision stump base classifiers on small data sets. Four data sets agree with the
theory. On the “Vehicle” data set, although the bound predicts that AdaBoost would have a smaller
generalization error, the test error of AdaBoost is not significantly smaller than LP-AdaBoost.

In Table 5 we use eight-leave decision tree base classifiers on large data sets. Eight data sets
agree with the theory. For the “Mfeat-fac”, “Page-block” and “Shuttle” data sets, our comparison
theorem does not apply. Only the “Pendigits” data set differs from the theoretical prediction: The
test errors are the same while the theory predicts AdaBoost would perform better.

The last set of experiments, listed in Table 6, in which we use eight-leave decision tree base
classifiers on small data sets, behaves different from all the previous results. Only one data set
agrees with the theory. On the “Breast” data set, the test error is contrary to what the bound predicts.

To summarize, on large data sets, the Emargin theory usually agrees with empirical observations.
AdaBoost has better performances because it has a larger Emargin and a smaller Emargin error. Note
there are also cases that LP-AdaBoost achieves a larger Emargin and a smaller Emargin error and a
smaller test error. However, on small data sets and with more complex base classifiers, the theory
does not often give the correct predictions. We think the reason is that the bound is still loose,
especially when the data set contains only a few hundred of points. Also the number of classifiers
is a loose bound for the complexity of complex decision trees.

Finally we plot in Figure 1 some margin distribution graphs and the corresponding Emargin and
Emargin errors to give an illustration. AdaBoost often has intuitively “better” margin distributions.

8. Conclusions

In this paper we provided a refined analysis on the margin theory for boosting algorithms, which
extended our preliminary study (Wang et al., 2008). We proposed a bound in terms of a new margin
measure called the Emargin, which depends on the whole margin distribution. This bound is uni-
formly sharper than the minimum margin bound whose prediction is different from the empirical
observations. Our theory suggests that a boosting classifier may not be necessarily achieve better
performance even though it generates a larger minimum margin.

Our bound suggests that the Emargin and the Emargin error play important roles to guarantee
a smaller bound of the generalization error of a voting classifier—a larger Emargin and a smaller

1859

WANG, SUGIYAMA, JING, YANG, ZHOU AND FENG

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Margin

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Breast

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Margin

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Breast

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Margin

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Satimage

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Margin

C
ul

m
ul

at
iv

e
D

is
tr

ib
ut

io
n

Satimage

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Margin

C
um

ul
at

iv
e

D
is

tr
bu

tin

Shuttle

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Margin

C
um

ul
at

ve
 D

is
tr

ib
ut

in

Shuttle

Figure 1: Margin distribution graphs with Emargin and Emargin errors. The lines marked with
stars are the margin distributions of LP-AdaBoost. The lines marked with circles are of
AdaBoost. Emargin and Emargin errors are plotted by lines parallel to the axes. The left
column uses decision stump base classifiers, the right column uses decision tree classi-
fiers. The three rows are from the data sets of Breast, Satimage and Shuttle respectively.

1860

A REFINED MARGIN ANALYSIS FOR BOOSTING ALGORITHMS VIA EQUILIBRIUM MARGIN

Emargin error result in better generalization ability. Experimental results on (not-too-small) bench-
mark data sets agree well with our theory.

From a practical point of view, the Emargin bound is still too loose to give useful quantitative
predictions. For most data sets, the bound is larger than 1/2. On the other hand we can employ the
bound to “compare” voting classifiers with the help of Emargin and Emargin error. This provides
some guidance to choose classifiers. To calculate the Emargin, one needs to know the complexity
(e.g., VC dimension) of the base classifiers. This can be difficult for some base learners like C4.5
decision trees.

A future work is to develop algorithms that generate voting classifiers with good margin distri-
butions, that is, large Emargin and small Emargin error. Directly optimizing Emargin and Emargin
error would be computationally difficult. On the other hand, given a voting classifier∑αtht , it might
be possible to improve its margin distribution. One way is to solve the following linear optimization
problem to obtain ∑βtht .

max
β,ξ

∑ξi (18)

s.t. yi∑βtht(xi)≥ yi∑αtht(xi)+ξi, i= 1,2, . . .

βt ≥ 0, ∑βt = 1,

ξi ≥ 0,

where α = (α1, . . . ,αT), β = (β1, . . . ,βT), ξ = (ξ1, . . . ,ξn). If there is a nontrivial solution (i.e.,
β �= α), ∑βtht would have a uniformly better margin distribution than ∑αtht and therefore we
expect it has a smaller generalization error. However, there is usually no nontrivial solutions when
∑αtht is an AdaBoost classifier—it already has a good margin distribution. An open problem is to
modify and relax (18) and obtain a solution with larger Emargin and smaller Emargin error. Then it
would be a good test to see if such a classifier achieves better performance as our theory predicts.

Acknowledgments

We thank the referees for their useful and insightful comments. It greatly improves the quality of the
paper. The first author would like to thank Phil Long, Gilles Blanchard and Lev Reyzin for helpful
discussions. This work was supported by NSFC(61075003, 61073097), Global COE Program of
Tokyo Institute of Technology and JiangsuSF(BK2008018) and the National Fundamental Research
Program of China(2010CB327903, 2011CB302400). Part of the work was done when the first
author was visiting Tokyo Institute of Technology.

References

A. Asuncion and D. J. Newman. UCI machine learning repository, 2007. URL
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

P. Bartlett, M. Jordan, and J.D. McAuliffe. Convexity, classification, and risk bounds. Journal of
the American Statistical Association, 101:138–156, 2006.

E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging,
boosting and variants. Machine Learning, 36:105–139, 1999.

1861

WANG, SUGIYAMA, JING, YANG, ZHOU AND FENG

L. Breiman. Arcing classifiers. The Annals of Statistics, 26:801–849, 1998.

L. Breiman. Prediction games and arcing algorithms. Neural Computation, 11:1493–1517, 1999.

L. Breiman. Population theory for boosting ensembles. Annals of Statistics, 32:1–11, 2004.

R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learning algorithms.
In 23th International Conference on Machine Learning, 2006.

L. Devroye. Bounds for the uniform deviation of empirical measures. Journal of Multivariate
Analysis, 12:72–79, 1982.

T. Dietterich. An experimental comparison of three methods for constructing ensembles of decision
trees: Bagging, boosting and randomization. Machine Learning, 40:139–157, 2000.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In International Con-
ference on Machine Learning, 1996.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an appli-
cation to boosting. Journal of Computer and System Sciences, 55:119–139, 1997.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting.
Annals of Statistics, 28:337–407, 2000.

A. J. Grove and D. Schuurmans. Boosting in the limit: Maximizing the margin of learned ensembles.
In National Conference on Artificial Intelligence, 1998.

W. Hoeffding. Probability inequalities for sum of bounded random variables. Journal of American
Statistical Society, 58:13–30, 1963.

W. Jiang. Process consistency for adaboost. The Annals of Statistics, 32:13–29, 2004.

V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization
error of combined classifiers. Annals of Statistics, 30:1–50, 2002.

V. Koltchinskii and D. Panchenko. Complexities of convex combinations and bounding the gener-
alization error in classification. Annals of Statistics, 33:1455–1496, 2005.

J. Langford. Tutorial on practical prediction theory for classification. Journal of Machine Learning
Research, 6:273–306, 2005.

G. Lugosi and Nicolas Vayatis. On the bayes-risk consistency of regularized boosting methods. The
Annals of Statistics, 32:30–55, 2004.

D. Mease and A. Wyner. Evidence contrary to the statistical view of boosting. Journal of Machine
Learning Research, 9:131–156, 2008.

R. Meir and G. Rätsch. An introduction to boosting and leveraging. In Advanced Lectures on
Machine Learning, pages 118–183, 2003.

J. R. Quinlan. Bagging, boosting, and c4.5. In 13th International Conference on Artificial Intelli-
gence, 1996.

1862

A REFINED MARGIN ANALYSIS FOR BOOSTING ALGORITHMS VIA EQUILIBRIUM MARGIN

G. Rätsch and M. Warmuth. Efficient margin maximization with boosting. Journal of Machine
Learning Research, 6:2131–2152, 2005.

L. Reyzin and R. E. Schapire. How boosting the margin can also boost classifier complexity. In
International Conference on Machine Learning, 2006.

C. Rudin, I. Daubechies, and R. Schapire. The dynamics of AdaBoost: Cyclic behavior and conver-
gence of margins. Journal of Machine Learning Research, 5:1557–1595, Dec 2004.

C. Rudin, I. Daubechies, and R. Schapire. Analysis of boosting algorithms using the smooth margin
function. Annals of Statistics, 35:2723–2768, 2007.

N. Sauer. On the density of family of sets. Journal of Combinatorial Theory, Series A, 13:145–147,
1972.

R. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: A new explanation for the
effectiveness of voting methods. Annals of Statistics, 26:1651–1686, 1998.

V. Vapnik. Statistical Learning Theory. John Wiley and Sons Inc., 1998.

V. N. Vapnik and A. YA. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability and Its Applications, 16:264–280, 1971.

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2001.

L. Wang, C. Yang, and J. Feng. On learning with dissimilarity functions. In 24th International
Conference on Machine Learning, 2007.

L. Wang, M. Sugiyama, C. Yang, Z. Zhou, and J. Feng. On the margin explanation of boosting
algorithms. In 21th Annual Conference on Learning Theory, 2008.

T. Zhang. Statistical behavior and consistency of classification methods based on convex risk mini-
mization. The Annals of Statistics, 32:56–85, 2004.

1863

Journal of Machine Learning Research 12 (2011) 1865-1892 Submitted 12/10; Revised 5/11; Published 6/11

Stochastic Methods for �1-regularized Loss Minimization

Shai Shalev-Shwartz SHAIS@CS.HUJI.AC.IL
School of Computer Science and Engineering
The Hebrew University of Jerusalem
Givat Ram, Jerusalem 91904, Israel

Ambuj Tewari AMBUJ@CS.UTEXAS.EDU
Computer Science Department
The University of Texas at Austin
Austin, TX 78701, USA

Editor: Leon Bottou

Abstract
We describe and analyze two stochastic methods for �1 regularized loss minimization problems,
such as the Lasso. The first method updates the weight of a single feature at each iteration while
the second method updates the entire weight vector but only uses a single training example at
each iteration. In both methods, the choice of feature or example is uniformly at random. Our
theoretical runtime analysis suggests that the stochastic methods should outperform state-of-the-art
deterministic approaches, including their deterministic counterparts, when the size of the problem
is large. We demonstrate the advantage of stochastic methods by experimenting with synthetic and
natural data sets.1

Keywords: L1 regularization, optimization, coordinate descent, mirror descent, sparsity

1. Introduction

We present optimization procedures for solving problems of the form:

min
w∈Rd

1
m

m

∑
i=1

L(〈w,xi〉,yi)+λ‖w‖1 , (1)

where (x1,y1), . . . ,(xm,ym) ∈ ([−1,+1]d×Y)m is a sequence of training examples, L : Rd ×Y →
[0,∞) is a non-negative loss function, and λ> 0 is a regularization parameter. This generic problem
includes as special cases the Lasso (Tibshirani, 1996), in which L(a,y) = 1

2(a− y)2, and logistic
regression, in which L(a,y) = log(1+ exp(−ya)).

Our methods can also be adapted to deal with additional boxed constraints of the form wi ∈
[ai,bi], which enables us to use them for solving the dual problem of Support Vector Machine
(Cristianini and Shawe-Taylor, 2000). For concreteness, we focus on the formulation given in (1).

Throughout the paper, we assume that L is convex in its first argument. This implies that (1) is a
convex optimization problem, and therefore can be solved using standard optimization techniques,
such as interior point methods. However, standard methods scale poorly with the size of the problem
(i.e., m and d). In recent years, machine learning methods are proliferating in data-laden domains
such as text and web processing in which data sets of millions of training examples or features are

1. An initial version of this work (Shalev-Shwartz and Tewari, 2009) appeared in ICML 2009.

c©2011 Shai Shalev-Shwartz and Ambuj Tewari.

SHALEV-SHWARTZ AND TEWARI

not uncommon. Since traditional methods for solving (1) generally scale very poorly with the size
of the problem, their usage is inappropriate for data-laden domains. In this paper, we discuss how to
overcome this difficulty using stochastic methods. We describe and analyze two practical methods
for solving (1) even when the size of the problem is very large.

The first method we propose is a stochastic version of the familiar coordinate descent approach.
The coordinate descent approach for solving �1 regularized problems is not new (as we survey below
in Section 1.1). At each iteration of coordinate descent, a single element of w is updated. The only
twist we propose here regarding the way one should choose the next feature to update. We suggest
to choose features uniformly at random from the set [d] = {1, . . . ,d}. This simple modification
enables us to show that the runtime required to achieve ε (expected) accuracy is upper bounded by

mdβ‖w�‖22
ε

, (2)

where β is a constant which only depends on the loss function (e.g., β = 1 for the quadratic loss
function) and w� is the optimal solution. This bound tells us that the runtime grows only linearly
with the size of the problem. Furthermore, the stochastic method we propose is parameter free and
very simple to implement.

Another well known stochastic method that has been successfully applied for loss minimization
problems, is stochastic gradient descent (e.g., Bottou and LeCunn, 2005; Shalev-Shwartz et al.,
2007). In stochastic gradient descent, at each iteration, we pick one example from the training set,
uniformly at random, and update the weight vector based on the chosen example. The attractiveness
of stochastic gradient descent methods is that their runtime do not depend at all on the number of
examples, and can even sometime decrease with the number of examples (see Bottou and Bousquet,
2008; Shalev-Shwartz and Srebro, 2008). Unfortunately, the stochastic gradient descent method
fails to produce sparse solutions, which makes the algorithm both slower and less attractive as
sparsity is one of the major reasons to use �1 regularization. To overcome this problem, two variants
were recently proposed. First, Duchi et al. (2008) suggested to replace the �1 regularization term
with a constraint of the form ‖w‖1 ≤ B, and then to use stochastic gradient projection procedure.
Another solution, which uses the regularization form given in (1), has been proposed by Langford
et al. (2009) and is called truncated gradient descent. In this approach, the elements of w that cross
0 after the stochastic gradient step are truncated to 0, hence sparsity is achieved. The disadvantage
of both Duchi et al. (2008) and Langford et al. (2009) methods is that, in some situations, their
runtime might grow quadratically with the dimension d, even if the optimal predictor w� is very
sparse (see Section 1.1 below for details). This quadratic dependence on d can be avoided if one
uses mirror descent updates (Beck and Teboulle, 2003) such as the exponentiated gradient approach
(Littlestone, 1988; Kivinen and Warmuth, 1997; Beck and Teboulle, 2003). However, this approach
again fails to produce sparse solutions. In this paper, we combine the idea of truncating the gradient
(Langford et al., 2009) with another variant of stochastic mirror descent, which is based on p-norm
updates (Grove et al., 2001; Gentile, 2003). The resulting algorithm both produces sparse solutions
and has Õ(d) dependence on the dimension. We call the algorithm SMIDAS for “Stochastic MIrror
Descent Algorithm made Sparse”.

We provide runtime guarantees for SMIDAS as well. In particular, for the logistic-loss and the
squared-loss we obtain the following upper bound on the runtime to achieving ε expected accuracy:

O

(
d log(d)‖w�‖21

ε2

)
. (3)

1866

STOCHASTIC METHODS FOR �1-REGULARIZED LOSS MINIMIZATION

Comparing the above with the runtime bound of the stochastic coordinate descent method given
in (2) we note three major differences. First, while the bound in (2) depends on the number of
examples, m, the runtime of SMIDAS does not depend on m at all. On the flip side, the dependence
of stochastic coordinate descent on the dimension is better both because the lack of the term log(d)
and because ‖w�‖22 is always smaller than ‖w�‖21 (the ratio is at most d). Last, the dependence on 1

ε
is linear in (2) and quadratic in (3). If ε is the same order as the objective value at w�, it is possible
to improve the dependence on 1/ε (Proposition 4). Finally, we would like to point out that while the
stochastic coordinate descent method is parameter free, the success of SMIDAS and of the method
of Langford et al. (2009), depends on a careful tuning of a learning rate parameter.

1.1 Related Work

We now survey several existing methods and in particular show how our stochastic twist enables us
to give superior runtime guarantees.

1.1.1 COORDINATE DESCENT METHODS FOR �1 REGULARIZATION

Following the Gauss-Siedel approach of Zhang and Oles (2001), Genkin et al. (2007) described a
coordinate descent method (called BBR) for minimizing �1 regularized objectives. This approach is
similar to our method, with three main differences. First, and most important, at each iteration we
choose a coordinate uniformly at random. This allows us to provide theoretical runtime guarantees.
We note that no theoretical guarantees are provided by Zhang and Oles (2001) and Genkin et al.
(2007). Second, we solely use gradient information which makes our algorithm parameters-free
and extremely simple to implement. In contrast, the Gauss-Siedel approach is more complicated
and involves second order information, or a line search procedure, or a trusted region Newton step.
Last, the generality of our derivation allows us to tackle a more general problem. For example, it
is easy to deal with additional boxed constraints. Friedman et al. (2010) generalized the approach
of Genkin et al. (2007) to include the case of elastic-net regularization. In a series of experiments,
they observed that cyclic coordinate descent outperforms many alternative popular methods such
as LARS (Efron et al., 2004), an interior point method called l1lognet (Koh et al., 2007), and the
Lasso Penalized Logistic (LPL) program (Wu and Lange, 2008). However, no theoretical guarantees
are provided in Friedman et al. (2010) as well. Our analysis can partially explain the experimental
result of Friedman et al. (2010) since updating the coordinates in a cyclic order can in practice be
very similar to stochastic updates.

Luo and Tseng (1992) established a linear convergence result for coordinate descent algorithms.
This convergence result tells us that after an unspecified number of iterations, the algorithm con-
verges very fast to the optimal solution. However, this analysis is useless in data laden domains as
it can be shown that the initial unspecified number of iterations depends at least quadratically on the
number of training examples. In an attempt to improve the dependence on the size of the problem,
Tseng and Yun (2009) recently studied other variants of block coordinate descent for optimizing
‘smooth plus separable’ objectives. In particular, �1 regularized loss minimization (1) is of this
form, provided that the loss function is smooth. The algorithm proposed by Tseng and Yun (2009)
is not stochastic. Translated to our notation, the runtime bound given in Tseng and Yun (2009) is

1867

SHALEV-SHWARTZ AND TEWARI

of order2 md2 β‖w�‖22
ε . This bound is inferior to our runtime bound for stochastic coordinate descent

given in (2) by a factor of the dimension d.

1.1.2 COORDINATE DESCENT METHODS FOR �1 DOMAIN CONSTRAINTS

A different, but related, optimization problem is to minimize the loss, 1m ∑i L(〈w,xi〉,yi), subject
to a domain constraint of the form ‖w‖1 ≤ B. Many authors presented a forward greedy selection
algorithm (a.k.a. Boosting) for this problem. We refer the reader to Frank and Wolfe (1956), Zhang
(2003), Clarkson (2008) and Shalev-Shwartz et al. (2010). These authors derived the upper bound
O
(
β‖w�‖21/ε

)
on the number of iterations required by this algorithm to find an ε-accurate solution.

Since at each iteration of the algorithm, one needs to calculate the gradient of the loss at w, the
runtime of each iteration is md. Therefore, the total runtime becomes O

(
mdβ‖w�‖21/ε

)
. Note

that this bound is better than the bound given by Tseng and Yun (2009), since for any vector in Rd

we have ‖w‖1 ≤
√
d ‖w‖2. However, the boosting bound given above is still inferior to our bound

given in (2) since ‖w�‖1 ≥ ‖w�‖2. Furthermore, in the extreme case we have ‖w�‖21 = d‖w�‖22, thus
our bound can be better than the boosting bound by a factor of d. Lemma 5 in Appendix A shows
that the iteration bound (not runtime) of any algorithm cannot be smaller than Ω(‖w�‖21/ε) (see
also the lower bounds in Shalev-Shwartz et al., 2010). This seems to imply that any deterministic
method, which goes over the entire data at each iteration, will induce a runtime which is inferior to
the runtime we derive for stochastic coordinate descent.

1.1.3 STOCHASTIC GRADIENT DESCENT AND MIRROR DESCENT

Stochastic gradient descent (SGD) is considered to be one of the best methods for large scale loss
minimization, when we measure how fast a method achieves a certain generalization error. This
has been observed in experiments (Bottou, Web Page) and also has been analyzed theoretically by
Bottou and Bousquet (2008) and Shalev-Shwartz and Srebro (2008).

As mentioned before, one can apply SGD for solving (1). However, SGD fails to produce sparse
solutions. Langford et al. (2009) proposed an elegant simple modification of the SGD update rule
that yields a variant of SGD with sparse intermediate solutions. They also provide bounds on the
runtime of the resulting algorithm. In the general case (i.e., without assuming low objective relative
to ε), their analysis implies the following runtime bound

O

(
d ‖w�‖22X22

ε2

)
, (4)

where X22 =
1
m ∑i ‖xi‖22 is the average squared norm of an instance. Comparing this bound with our

bound in (3), we observe that none of the bounds dominates the other, and their relative performance
depends on properties of the training set and the optimal solution w�. Specifically, if w� has only
k � d non-zero elements and each xi is dense (say xi ∈ {−1,+1}d), then the ratio between the
above bound of SGD and the bound in (3) becomes d

k log(d) (1. On the other hand, if xi has only

k non-zeros while w� is dense, then the ratio between the bounds can be k
d log(d) � 1. Although the

relative performance is data dependent, in most applications if one prefers �1 regularization over �2

2. To see this, note that the iterations bound in Equation (21) of Tseng and Yun (2009) is: β‖w�‖22
εν , and using Equation

(25) in Section 6, we can set the value of ν to be ν = 1/d (since in our case there are no linear constraints). The
complexity bound now follows from the fact that the cost of each iteration is O(dm).

1868

STOCHASTIC METHODS FOR �1-REGULARIZED LOSS MINIMIZATION

regularization, he should also believe that w� is sparse, and thus our runtime bound in (3) is likely
to be superior.3

The reader familiar with the online learning and mirror descent literature will not be surprised
by the above discussion. Bounds that involved ‖w�‖1 and ‖xi‖∞, as in (3), are well known and the
relative performance discussed above was pointed out in the context of additive vs. multiplicative
updates (see, e.g., Kivinen and Warmuth, 1997). However, the most popular algorithm for obtaining
bounds of the form given in (3) is the EG approach (Kivinen and Warmuth, 1997), which involves
the exponential potential, and this algorithm cannot yield intermediate sparse solutions. One of the
contributions of this paper is to show that with a different potential, which is called the p-norm
potential, one can obtain the bound given in (3) while still enjoying sparse intermediate solutions.

1.1.4 RECENT WORKS DEALING WITH STOCHASTIC METHODS FOR LARGE SCALE
REGULARIZED LOSS MINIMIZATION

Since the publication of the conference version (Shalev-Shwartz and Tewari, 2009) of this paper,
several papers proposing stochastic algorithms for regularized loss minimization have appeared. Of
these, we would like to mention a few that are especially connected to the themes pursued in the
present paper. Regularized Dual Averaging (RDA) of Xiao (2010) uses a running average of all
the past subgradients of the loss function and the regularization term to generate its iterates. He
develops a p-norm RDA method that is closely related to SMIDAS. The theoretical bounds for
SMIDAS and p-norm RDA are similar but the latter employs a more aggressive truncation schedule
that can potentially lead to sparser iterates.

SMIDAS deals with �1 regularization. The Composite Objective MIrror Descent (COMID) al-
gorithm of Duchi et al. (2010) generalizes the idea behind SMIDAS to deal with general regularizers
provided a certain minimization problem involving a Bregman divergence and the regularizer is ef-
ficiently solvable. Viewing the average loss in (1) leads to interesting connections with the area
of Stochastic Convex Optimization that deals with minimizing a convex function given access to
an oracle that can return unbiased estimates of the gradient of the convex function at any query
point. For various classes of convex functions, one can ask: What is the optimal number of queries
needed to achieve a certain accuracy (in expectation)? For developments along these lines, please
see Lan (2010) and Ghadimi and Lan (2011), especially the latter since it deals with functions that
are the sum of a smooth and a non-smooth but “simple” (like �1-norm) part. Finally, Nesterov
(2010) has analyzed randomized versions of coordinate descent for unconstrained and constrained
minimization of smooth convex functions.

2. Stochastic Coordinate Descent

To simplify the notation throughout this section, we rewrite the problem in (1) using the notation

min
w∈Rd

≡P(w)︷ ︸︸ ︷
1
m

m

∑
i=1

L(〈w,xi〉,yi)︸ ︷︷ ︸
≡C(w)

+λ‖w‖1 . (5)

3. One important exception is the large scale text processing application described in Langford et al. (2009) where the
dimension is so large and �1 is used simply because we cannot store a dense weight vector in memory.

1869

SHALEV-SHWARTZ AND TEWARI

We are now ready to present the stochastic coordinate descent algorithm. The algorithm ini-
tializes w to be 0. At each iteration, we pick a coordinate j uniformly at random from [d]. Then,
the derivative of C(w) w.r.t. the jth element of w, g j = (∇C(w)) j, is calculated. That is, g j =
1
m ∑

m
i=1L

′(〈w,xi〉,yi)xi, j, where L′ is the derivative of the loss function with respect to its first argu-
ment. Simple calculus yields

L′(a,y) =

{
(a− y) for squared-loss

−y
1+exp(ay) for logistic-loss

. (6)

Next, a step size is determined based on the value of g j and a parameter of the loss function denoted
by β. This parameter is an upper bound on the second derivative of the loss. Again, for our running
examples we have

β=

{
1 for squared-loss

1/4 for logistic-loss
. (7)

If there was no regularization, we would just subtract the step size g j/β from the current value of
wj. However, to take into account the regularization term, we further add/subtract λ/β from wj

provided we do not cross 0 in the process. If we do, we let the new value of wj be exactly 0. This
is crucial for maintaining sparsity of w. To describe the entire update succinctly, it is convenient to
define the following simple “thresholding” operation:

sτ(w) = sign(w)(|w|− τ)+ =

⎧⎪⎨⎪⎩
0 w ∈ [−τ,τ]
w− τ w> τ

w+ τ w<−τ
.

Algorithm 1 Stochastic Coordinate Descent (SCD)
let w= 0
for t = 1,2, . . . do
sample j uniformly at random from {1, . . . ,d}
let g j = (∇C(w)) j
w j ← sλ/β(wj−g j/β)

end for

2.1 Efficient Implementation

We now present an efficient implementation of Algorithm 1. The simple idea is to maintain a vector
z ∈ R

m such that zi = 〈w,xi〉. Once we have this vector, calculating g j on average requires O(sm)
iterations, where

s= |{(i, j) : xi, j �=0}|
md (8)

is the average number of non-zeros in our training set. Concretely, we obtain Algorithm 2 for
logistic-loss and squared-loss.

1870

STOCHASTIC METHODS FOR �1-REGULARIZED LOSS MINIMIZATION

Algorithm 2 SCD for logistic-loss and squared-loss

let w= 0 ∈ R
d , z= 0 ∈ R

m

for t = 1,2, . . . do
sample j uniformly at random from {1, . . . ,d}
let L′ and β be as defined in (6) and (7)
let g j = 1

m ∑i:xi, j �=0L
′(zi,yi)xi, j

if wj−g j/β> λ/β then
wj ← wj−g j/β−λ/β

else if wj−g j/β<−λ/β then
wj ← wj−g j/β+λ/β

else
wj ← 0

end if
∀i s.t. xi, j �= 0 let zi = zi+ηxi, j

end for

2.2 Runtime Guarantee

The following theorem establishes runtime guarantee for SCD.

Theorem 1 Let w� be a minimizer of (5) where the function C(w) is differentiable and satisfies,

∀w,η, j, C(w+ηe j)≤C(w)+η[∇C(w)] j+
β
2η

2 . (9)

Let wT denote the weight vector w at the end of iteration T of Algorithm 1. Then,

E[P(wT)]−P(w�) ≤ dΨ(0)
T +1

,

where

Ψ(w) =
β
2
‖w�−w‖22+P(w)

and the expectation is over the algorithm’s own randomization.

Proof To simplify the proof, let us rewrite the update as wj ← wj + η j where η j = sλ/β(wj −
g j/β)−wj. We first show that

η j = argmin
η

(
ηg j+

β
2η

2+λ|wt−1, j+η|
)
. (10)

Indeed, if η is a solution of the above then by optimality conditions, we must have,

0= g j+βη+λρ j ,

where ρ j ∈ ∂|wt−1, j +η|, the sub-differential of the absolute value function at wt−1, j +η. Since
ρ j = sign(wt−1, j+η) if wt−1, j+η �= 0 and otherwise ρ j ∈ [−1,1], we obtain that:

If η>−wt−1, j ⇒ ρ j = 1 ⇒ η=
−g j−λ

β >−wt−1, j
If η<−wt−1, j ⇒ ρ j =−1 ⇒ η=

−g j+λ
β <−wt−1, j

Else η=−wt−1, j .

1871

SHALEV-SHWARTZ AND TEWARI

But, this is equivalent to the definition of η j and therefore (10) holds.
Define the potential,

Φ(wt) = 1
2‖w�−wt‖22 ,

and let Δt, j = Φ(wt−1)−Φ(wt−1+η je j) be the change in the potential assuming we update wt−1
using coordinate j. Since 0= g j+βη j+λρ j, we have that,

Δt, j = 1
2‖w�−wt−1‖22− 1

2‖w�−wt−1−η je j‖22
= 1

2(w
�
j −wt−1, j)

2− 1
2(w

�
j −wt−1, j−η j)

2

= 1
2η

2
j −η j(wt−1, j+η j−w�

j)

= 1
2η

2
j +

g j
β
(wt−1, j+η j−w�

j)+
λρ j
β

(wt−1, j+η j−w�
j).

Next, we note that

ρ j(wt−1, j+η j−w�
j)≥ |wt−1, j+η j|− |w�

j | ,

which yields

Δt, j ≥ 1
2η

2
j +

g j
β
(wt−1, j+η j−w�

j)+
λ
β
(|wt−1, j+η j|− |w�

j |) .

By (9), we have,

C(wt−1+η je j)−C(wt−1)≤ g jη j+
β
2
η2j ,

and thus

Δt, j ≥
1
β
(C(wt−1+η je j)−C(wt−1))+

g j
β
(wt−1, j−w�

j)+
λ
β
(|wt−1, j+η j|− |w�

j |) .

Taking expectations (with respect to the choice of j and conditional on wt−1) on both sides, we get,

E[Φ(wt−1)−Φ(wt) |wt−1] =
1
d

d

∑
k=1

Δt,k

≥ 1
βd

[
d

∑
k=1

(C(wt−1+ηkek)−C(wt−1))+
d

∑
k=1

gk(wt−1,k−w�
k)+λ

d

∑
k=1

(|wt−1,k+ηk|− |w�
k |)
]

=
1
βd

[
d

∑
k=1

(C(wt−1+ηkek)−C(wt−1))+ 〈∇C(wt−1),wt−1−w�)〉+λ
d

∑
k=1

(|wt−1,k+ηk|− |w�
k |)
]

≥ 1
βd

[
d

∑
k=1

(C(wt−1+ηkek)−C(wt−1))+C(wt−1)−C(w�)+λ
d

∑
k=1

(|wt−1,k+ηk|− |w�
k |)
]

=
1
β

[
E[C(wt) |wt−1]−C(wt−1)+

C(wt−1)−C(w�)

d
+
λ
d

d

∑
k=1

|wt−1,k+ηk|−
λ‖w�‖1

d

]
,

1872

STOCHASTIC METHODS FOR �1-REGULARIZED LOSS MINIMIZATION

where the second inequality follows from the convexity ofC. Note that, we have,

E[‖wt‖1 |wt−1] =
1
d

d

∑
k=1

‖wt−1+ηkek‖1

=
1
d

d

∑
k=1

(‖wt−1‖1−|wt−1,k|+ |wt−1,k+ηk|)

= ‖wt−1‖1−
1
d
‖wt−1‖1+

1
d

d

∑
k=1

|wt−1,k+ηk| .

Plugging this above gives us,

βE[Φ(wt−1)−Φ(wt) |wt−1]

≥ E[C(wt)+λ‖wt‖1 |wt−1]−C(wt−1)−λ‖wt−1‖1+
C(wt−1)+λ‖wt−1‖1−C(w�)−λ‖w�‖1

d

= E[P(wt) |wt−1]−P(wt−1)+
P(wt−1)−P(w�)

d
.

This is equivalent to,

E[βΦ(wt−1)+P(wt−1)−βΦ(wt)−P(wt) |wt−1]≥
P(wt−1)−P(w�)

d
.

Thus, defining the composite potential,

Ψ(w) = βΦ(w)+P(w) ,

and taking full expectations, we get,

E[Ψ(wt−1)−Ψ(wt)]≥
1
d
E[P(wt−1)−P(w�)] .

Summing over t = 1, . . . ,T +1 and realizing that P(wt) monotonically decreases gives,

E
[
T+1
d (P(wT)−P(w�))

]
≤ E

[
1
d

T+1

∑
t=1

(P(wt−1)−P(w�))

]

≤ E

[
T+1

∑
t=1

(Ψ(wt−1)−Ψ(wt))

]
= E [Ψ(w0)−Ψ(wT+1)] ≤ E [Ψ(w0)] = Ψ(0) .

The above theorem bounds the expected performance of SCD. We next give bounds that hold
with high probability.

Theorem 2 Assume that the conditions of Theorem 1 holds. Then, with probability of at least 1/2
we have that

P(wT)−P(w�) ≤ 2dΨ(0)
T +1

.

1873

SHALEV-SHWARTZ AND TEWARI

Furthermore, for any δ∈ (0,1), suppose we run SCD r= +log2(1/δ), times, each time T iterations,
and let w be the best solution out of the r obtained solutions, then with probability of at least 1−δ,

P(w)−P(w�) ≤ 2dΨ(0)
T +1

.

Proof The random variable P(wT)−P(w�) is non-negative and therefore the first inequality follows
from Markov’s inequality using Theorem 1. To prove the second result, note that the probability
that on all r rounds it holds that P(wT)−P(w�) > 2dΨ(0)

T+1 is at most 2−r ≤ δ, which concludes our
proof.

Next, we specify the runtime bound for the case of �1 regularized logistic-regression and squared-
loss. First, Lemma 6 in Appendix B shows that for C as defined in (5), if the second derivative of L
is bounded by β then the condition onC given in Theorem 1 holds. Additionally, for the logistic-loss
we haveC(0)≤ 1. Therefore, for logistic-loss, after performing

d (14 ‖w�‖22+2)
ε

iterations of Algorithm 2 we achieve (expected) ε-accuracy in the objective P. Since the average
cost of each iteration is sm, where s is as defined in (8), we end up with the total runtime

smd (14 ‖w�‖22+2)
ε

.

The above is the runtime required to achieve expected ε-accuracy. Using Theorem 2 the required
runtime to achieve ε-accuracy with a probability of at least 1−δ is

smd

(
(12 ‖w�‖22+4)

ε
+ +log(1/δ),

)
.

For the squared-loss we have C(0) = 1
m ∑i y

2
i . Assuming that the targets are normalized so that

C(0)≤ 1, and using similar derivation we obtain the total runtime bound

smd

(
(2‖w�‖22+4)

ε
+ +log(1/δ),

)
.

3. Stochastic Mirror Descent Made Sparse

In this section, we describe our mirror descent approach for �1 regularized loss minimization that
maintains intermediate sparse solutions. Recall that we rewrite the problem in (1) using the notation

min
w∈Rd

≡P(w)︷ ︸︸ ︷
1
m

m

∑
i=1

L(〈w,xi〉,yi)︸ ︷︷ ︸
≡C(w)

+λ‖w‖1 . (11)

1874

STOCHASTIC METHODS FOR �1-REGULARIZED LOSS MINIMIZATION

Mirror descent algorithms (Nemirovski and Yudin, 1978, Chapter 3) maintain two weight vec-
tors: primal w and dual θ. The connection between the two vectors is via a link function θ= f (w),
where f : Rd → R

d . The link function is always taken to be the gradient map ∇F of some strictly
convex function F and is therefore invertible. We can thus also write w = f−1(θ). In our mirror
descent variant, we use the p-norm link function. That is, the jth element of f is

f j(w) =
sign(w j) |w j|q−1

‖w‖q−2q

,

where ‖w‖q = (∑ j |wj|q)1/q. Note that f is simply the gradient of the function 1
2‖w‖2q. The inverse

function is (see, e.g., Gentile, 2003)

f−1j (θ) =
sign(θ j) |θ j|p−1

‖θ‖p−2p

, (12)

where p= q/(q−1).
We first describe howmirror descent algorithms can be applied to the objectiveC(w)without the

�1 regularization term. At each iteration of the algorithm, we first sample a training example i uni-
formly at random from {1, . . . ,m}. We then estimate the gradient ofC(w) by calculating the vector
v = L′(〈w,xi〉,yi)xi . Note that the expectation of v over the random choice of i is E[v] = ∇C(w).
That is, v is an unbiased estimator of the gradient ofC(w). Next, we update the dual vector accord-
ing to θ= θ−ηv. If the link function is the identity mapping, this step is identical to the update of
stochastic gradient descent. However, in our case f is not the identity function and it is important to
distinguish between θ andw. The above update of θ translates to an update ofw by applying the link
function w = f−1(θ). So far, we ignored the additional �1 regularization term. The simplest way
to take this term into account is by also subtracting from θ the gradient of the term λ‖w‖1. (More
precisely, since the �1 norm is not differentiable, we will use any subgradient of ‖w‖1 instead, for
example, the vector whose jth element is sign(wj), where we interpret sign(0) = 0.) Therefore, we
could have redefined the update of θ to be θ j = θ j−η(v j+λsign(wj)). Unfortunately, as noted in
Langford et al. (2009), this update leads to a dense vector θ, which in turn leads to a dense vector
w. The solution proposed in Langford et al. (2009) breaks the update into three phases. First, we
let θ̃ = θ−ηv. Second, we let θ̂ = θ̃−ηλsign(θ̃). Last, if in the second step we crossed the zero
value, that is, sign(θ̂ j) �= sign(θ̃ j), then we truncate the jth element to be zero. Intuitively, the goal
of the first step is to decrease the value of C(w) and this is done by a (mirror) gradient step, while
the goal of the second and third steps is to decrease the value of λ‖w‖1. So, by truncating θ at zero
we make the value of λ‖w‖1 even smaller.

3.1 Runtime Guarantee

We now provide runtime guarantees for Algorithm 3. We introduce two types of assumptions on
the loss function:

|L′(a,y)| ≤ ρ , (13)

|L′(a,y)|2 ≤ ρL(a,y) . (14)

In the above, L′ is the derivative w.r.t. the first argument and can also be a sub-gradient of L if L is
not differentiable. It is easy to verify that (14) holds for the squared-loss with ρ = 4 and that (13)

1875

SHALEV-SHWARTZ AND TEWARI

Algorithm 3 Stochastic Mirror Descent Algorithm mAde Sparse (SMIDAS)
parameter: η> 0
let p= 2 ln(d) and let f−1 be as in (12)
let θ= 0,w= 0
for t = 1,2, . . . do
sample i uniformly at random from {1, . . . ,m}
let v= L′(〈w,xi〉,yi)xi
(L′ is the derivative of L. See, for example, (6))
let θ̃= θ−ηv
let ∀ j,θ j = sign(θ̃ j)max{0, |θ̃ j|−ηλ}
let w= f−1(θ)

end for

holds for the hinge-loss, L(a,y) = max{0,1− ya}, with ρ = 1. Interestingly, for the logistic-loss,
both (13) holds with ρ= 1 and (14) holds with ρ= 1/2.

Theorem 3 Let w� be a minimizer of (11). Suppose Algorithm 3 is run for T −1 iterations. Denote
the value of w at the end of iteration t by wt (with w0 = 0) and set wo = wr for r chosen uniformly
at random from 0, ...,T −1.

1. If L satisfies (13) then,

E[P(wo)]−P(w�)≤ η(p−1)ρ2 e
2 + 1

ηT ‖w�‖21 .

In particular, if we set

η=
‖w�‖1
ρ

√
2

(p−1)eT ,

then we have,

E[P(wo)]−P(w�)≤ ρ‖w�‖1
√

12log(d)
T .

2. If L satisfies (14) then,

E[P(wo)]−P(w�)≤
(

1

1− η(p−1)ρe
2

−1
)
P(0)+

‖w�‖21
ηT (1− η(p−1)ρe

2)
.

In particular, if we set

η=
‖w�‖21
P(0)T

(√
1+

2P(0)T

(p−1)ρe‖w�‖21
−1
)

,

then we have,

E[P(wo)]−P(w�)≤ 4‖w�‖1
√
6ρ log(d)P(0)

2T
+
12ρ log(d)‖w�‖21

T
.

In both cases, the expectation is with respect to the algorithm’s own randomization.

1876

STOCHASTIC METHODS FOR �1-REGULARIZED LOSS MINIMIZATION

Proof We first give the proof for the case when (13) holds. Let θt be the value of θ at the beginning
of iteration t of the algorithm, let vt be the value of v, and let θ̃t = θt −ηvt . Let wt = f−1(θt) and
w̃t = f−1(θ̃t) where f−1 is as defined in (12). Recall that f (w) = ∇F(w) where F(w) = 1

2‖w‖2q.
Consider the Bregman divergence,

ΔF(w,w′) = F(w)−F(w′)−〈∇F(w′),w−w′〉
= F(w)−F(w′)−〈 f (w′),w−w′〉 ,

and define the potential,
Ψ(w) = ΔF(w�,w) .

We first rewrite the change in potential as

Ψ(wt)−Ψ(wt+1) = (Ψ(wt)−Ψ(w̃t))+(Ψ(w̃t)−Ψ(wt+1)) , (15)

and bound each of the two summands separately.
Definitions of ΔF , Ψ and simple algebra yield,

Ψ(wt)−Ψ(w̃t) = ΔF(w�,wt)−ΔF(w�, w̃t)

= F(w̃t)−F(wt)−〈 f (wt)− f (w̃t),w�〉+ 〈 f (wt),wt〉−〈 f (w̃t), w̃t〉
= ΔF(w̃t ,wt)+ 〈 f (wt)− f (w̃t), w̃t−w�〉 (16)

= ΔF(w̃t ,wt)+ 〈θt − θ̃t , w̃t −w�〉
= ΔF(w̃t ,wt)+ 〈ηvt , w̃t−w�〉
= ΔF(w̃t ,wt)+ 〈ηvt ,wt−w�〉+ 〈ηvt , w̃t−wt〉 . (17)

By strong convexity of F with respect to the q-norm (see, e.g., Section A.4 of Shalev-Shwartz,
2007), we have

ΔF(w̃t ,wt)≥ q−1
2 ‖w̃t −wt‖2q .

Moreover, using Fenchel-Young inequality with the conjugate functions g(x)= q−1
2 ‖x‖2q and g�(x)=

1
2(q−1)‖x‖2p we have

|〈ηvt , w̃t −w�〉| ≤ η2

2(q−1)‖vt‖
2
p+

q−1
2 ‖w̃t −w�‖2q .

Plugging these into (17), we get

Ψ(wt)−Ψ(w̃t)≥ η〈vt ,wt −w�〉− η2

2(q−1)‖vt‖
2
p

= η〈vt ,wt −w�〉− η2(p−1)
2 ‖vt‖2p .

By convexity of L, we have,

〈vt ,wt−w�〉 ≥ L(〈wt ,xi〉,yi)−L(〈w�,xi〉,yi) ,

and therefore

Ψ(wt)−Ψ(w̃t)≥ η(L(〈wt ,xi〉,yi)−L(〈w�,xi〉,yi))− η2(p−1)
2 ‖vt‖2p .

1877

SHALEV-SHWARTZ AND TEWARI

From (13), we obtain that

‖vt‖2p ≤
(
‖vt‖∞ d1/p

)2
≤ ρ2 d2/p = ρ2 e . (18)

Thus,
Ψ(wt)−Ψ(w̃t)≥ η(L(〈wt ,xi〉,yi)−L(〈w�,xi〉,yi))− η2 (p−1)ρ2 e

2 . (19)

So far, our analysis has followed the standard analysis of mirror descent (see, e.g., Beck and
Teboulle, 2003). It is a bit more tricky to show that

Ψ(w̃t)−Ψ(wt+1)≥ ηλ(‖wt+1‖1−‖w�‖1) . (20)

To show this, we begin the same way as we did to obtain (16),

Ψ(w̃t)−Ψ(wt+1) = ΔF(wt+1, w̃t)+ 〈 f (w̃t)− f (wt+1),wt+1−w�〉
= ΔF(wt+1, w̃t)+ 〈θ̃t −θt+1,wt+1−w�〉
≥ 〈θ̃t −θt+1,wt+1−w�〉
= 〈θ̃t −θt+1,wt+1〉−〈θ̃t −θt+1,w�〉 . (21)

Note that sign(wt+1, j) = sign(θt+1, j). Moreover, when θt+1, j �= 0 then,

θ̃t, j−θt+1, j = ηλsign(θt+1, j) .

Thus, we have,

〈θ̃t −θt+1,wt+1〉= ∑
j:wt+1, j �=0

(θ̃t, j−θt+1, j)wt+1, j

= ∑
j:wt+1, j �=0

ηλsign(θt+1, j)wt+1, j

= ηλ ∑
j:wt+1, j �=0

sign(wt+1, j)wt+1, j

= ηλ‖wt+1‖1 .

Note that this equality is crucial and does not hold for the Bregman potential corresponding to the
exponentiated gradient algorithm. Plugging the above equality, along with the inequality,

|〈θ̃t −θt+1,w�〉| ≤ ‖θ̃t −θt+1‖∞‖w�‖1 = ηλ‖w�‖1
into (21), we get (20).

Combining the lower bounds (19) and (20) and plugging them into (15), we get,

Ψ(wt)−Ψ(wt+1)≥ η(L(〈wt ,xi〉,yi)−L(〈w�,xi〉,yi))
− η2 (p−1)ρ2 e

2 +ηλ(‖wt+1‖1−‖w�‖1) .

Taking expectation with respect to i drawn uniformly at random from {1, . . . ,m}, we get,

E[Ψ(wt)−Ψ(wt+1)]≥ ηE[C(wt)−C(w�)]− η2 (p−1)ρ2 e
2 +ηλE[‖wt+1‖1−‖w�‖1]

= ηE[P(wt)−P(w�)]− η2 (p−1)ρ2 e
2 +ηλE[‖wt+1‖1−‖wt‖1] .

1878

STOCHASTIC METHODS FOR �1-REGULARIZED LOSS MINIMIZATION

Summing over t = 0, . . . ,T −1, dividing by ηT , and rearranging gives,

1
T

T−1
∑
t=0

E[P(wt)]−P(w�)≤ η(p−1)ρ2 e
2 + λ

T E [‖w0‖1−‖wT‖1]+ 1
ηT E [Ψ(w0)−Ψ(wT)]

≤ η(p−1)ρ2 e
2 +0+ 1

ηT ΔF(w
�,0)

= η(p−1)ρ2 e
2 + 1

ηT ‖w�‖2q
≤ η(p−1)ρ2 e

2 + 1
ηT ‖w�‖21 . (22)

Now, optimizing over η gives

1
T

T−1
∑
t=0

E[P(wt)]−P(w�)≤ ρ‖w�‖1
√
2(p−1)e

T

and this concludes our proof for the case when (13) holds, since for a random r we have E[P(wr)] =
1
T ∑

T−1
t=0 E[P(wt)].
When (14) holds, instead of the bound (18), we have,

‖vt‖2p ≤
(
‖vt‖∞ d1/p

)2
≤ ρL(〈wt ,xi〉,yi)d2/p = ρL(〈wt ,xi〉,yi)e .

As a result, the final bound (22) now becomes,

1
T

T−1
∑
t=0

E[P(wt)]−P(w�)≤ η(p−1)ρe
2T

T−1
∑
t=0

E[C(wt)]+ 1
ηT ‖w�‖21

≤ η(p−1)ρe
2T

T−1
∑
t=0

E[P(wt)]+ 1
ηT ‖w�‖21 .

For the sake of brevity, let a= (p−1)ρe/2 and b= ‖w�‖21, so that the above bound can be written
as,

1
T

T−1
∑
t=0

E[P(wt)]−P(w�)≤
(

1
1−aη

−1
)
P(w�)+

b/(ηT)
1−aη

(23)

≤
(

1
1−aη

−1
)
P(0)+

b/(ηT)
1−aη

.

At this stage, we need to minimize the expression on the right hand side as a function of η. This
somewhat tedious but straightforward minimization is done in Lemma 7 in Appendix B. Using
Lemma 7 (with P= P(0)), we see that the right hand side is minimized by setting

η=
‖w�‖21
P(0)T

(√
1+

2P(0)T

(p−1)ρe‖w�‖21
−1
)

,

and the minimum value is upper bounded by

4‖w�‖1
√

(p−1)ρeP(0)
2T

+
2(p−1)ρe‖w�‖21

T
.

1879

SHALEV-SHWARTZ AND TEWARI

This concludes the proof for the case when (14) holds.

The bound in the above theorem can be improved if (14) holds and the desired accuracy is the
same order as P(w�). This is the content of the next proposition.

Proposition 4 Let w� be a minimizer of (11). Suppose Algorithm 3 is run for T − 1 iterations.
Denote the value of w at the beginning of iteration t by wt and set wo = wr for r chosen uniformly
at random from 0, ...,T −1. If L satisfies (14) and we set

η=
2

(p−1)ρe ·
K

1+K
,

for some arbitrary K > 0, then we have,

E[P(wo)]≤ (1+K)P(w�)+
(1+K)2

K
· 3ρ log(d)‖w

�‖21
T

.

Proof Plugging η= K/a(1+K) in (23) gives,

1
T

T−1
∑
t=0

E[P(wt)]−P(w�)≤ KP(w�)+
(1+K)2

K
· ab
T

.

Recalling that p= 2log(d), a= (p−1)ρe/2 and b= ‖w�‖21 concludes our proof.

4. Experiments

In this section, we provide experimental results for our algorithms on 4 data sets. We begin with a
description of the data sets following by a description of the algorithms we ran on them.

4.1 Data Sets

We consider 4 binary classification data sets for our experiments: DUKE, ARCENE, MAGIC04S, and
MAGIC04D.

DUKE is a breast cancer data set from West et al. (2001). It has 44 examples with 7,129 fea-
tures with a density level of 100%. ARCENE is a data set from the UCI Machine Learning repos-
itory where the task is to distinguish cancer patterns from normal ones based on 10,000 mass-
spectrometric features. Out of these, 3,000 features are synthetic features as this data set was
designed for the NIPS 2003 variable selection workshop. There are 100 examples in this data set
and the example matrix contains 5.4× 105 non-zero entries corresponding to a density level of
54%. The data sets MAGIC04S and MAGIC04D were obtained by adding 1,000 random features to
the MAGIC Gamma Telescope data set from the UCI Machine Learning repository. The original
data set has 19,020 examples with 10 features. This is also a binary classification data set and
the task is to distinguish high-energy gamma particles from background using a gamma telescope.
Following the experimental setup of Langford et al. (2009), we added 1,000 random features, each
of which takes value 0 with probability 0.95 or 1 with probability 0.05, to create a sparse data set,
MAGIC04S. We also created a dense data set, MAGIC04D, in which the random features took value
−1 or +1, each with probability 0.5. MAGIC04S and MAGIC04D have density levels of 5.81% and
100% respectively.

1880

STOCHASTIC METHODS FOR �1-REGULARIZED LOSS MINIMIZATION

4.2 Algorithms

We ran 4 algorithms on these data sets: SCD, GCD, SMIDAS, and TRUNCGRAD. SCD is the
stochastic coordinate descent algorithm given in Section 2 above. GCD is the corresponding deter-
ministic and “greedy” version of the same algorithm. The coordinate to be updated at each iteration
is greedily chosen in a deterministic manner to maximize a lower bound on the guaranteed decrease
in the objective function. This type of deterministic criterion for choosing features is common in
Boosting approaches. Since choosing a coordinate (or feature in our case) in a deterministic manner
involves significant computation in case of large data sets, we expect that the deterministic algo-
rithm will converge much slower than the stochastic algorithm. We also tried the cyclic version of
coordinate descent that just cycles through the coordinates. We found its performance to be indis-
tinguishable from that of SCD and hence we do not report it here. SMIDAS is the mirror descent
algorithm given in Section 3 above. TRUNCGRAD is the truncated gradient algorithm of Langford
et al. (2009) (In fact, Langford et al., 2009 suggests another way to truncate the gradient. Here,
we refer to the variant corresponding to SMIDAS.) Of these 4, the first two are parameter-free
algorithms while the latter two require a parameter η. In our experiments, we ran SMIDAS and
TRUNCGRAD for a range of different values of η and chose the one that yielded the minimum value
of the objective function (i.e., the regularized loss). We chose to minimize the (regularized) logistic
loss in all our experiments.

4.3 Results

For each data set, we show two plots. One plot shows the regularized objective function plotted
against the number of data accesses, that is, the number of times the algorithm accesses the data
matrix (xi, j). We choose to use this as opposed to, say CPU time, as this is an implementation inde-
pendent quantity. Moreover, the actual time taken by these algorithms will be roughly proportional
to this quantity provided computing features is time consuming. The second plot shows the den-
sity (or �0-norm, the number of non-zero entries) of the iterate plotted against the number of data
accesses. In the next subsection, we use mild regularization (λ = 10−6). Later on, we will show
results for stronger regularization (λ= 10−2).

4.3.1 LESS REGULARIZATION

Figure 1 is for the DUKE data set. It is clear that GCD does much worse than the other three
algorithms. GCD is much slower because, as we mentioned above, it spends a lot of time in finding
the best coordinate to update. The two algorithms having a tunable parameter η have roughly the
same performance as SCD. However, SCD has a definite edge if we add up the time to perform
several runs of these algorithms for tuning η. Note, however, that SMIDAS has better sparsity
properties as compared to TRUNCGRAD and SCD even though their performance measured in the
objective is similar.

Figure 2 is for the ARCENE data set. The results are quite similar to those for the DUKE data set.
SMIDAS is slow for a short while early on but quickly catches up. Again, it displays good sparsity
properties.

For the MAGIC data sets, SMIDAS does much better than TRUNCGRAD for the MAGIC04D
data set (where the example vectors are dense). TRUNCGRAD is slightly better for the MAGIC04S
data set (where the example vectors are sparse). This is illustrated in Figure 3. Note that this
behavior is consistent with the bounds (3) and (4) given above. These bounds suggest that if the

1881

SHALEV-SHWARTZ AND TEWARI

Figure 1: DUKE data set; less regularization

Figure 2: ARCENE data set; less regularization

Figure 3: MAGIC04S data set; less regularization

1882

STOCHASTIC METHODS FOR �1-REGULARIZED LOSS MINIMIZATION

Figure 4: MAGIC04D data set; less regularization

Figure 5: DUKE data set; more regularization

true solution has low �1 norm, SMIDAS will require fewer iterations than TRUNCGRAD when the
examples are dense. The parameter-free SCD algorithm is slightly worse than the parameter-based
algorithms TRUNCGRAD and SMIDAS on MAGIC04S. For MAGIC04D, its performance is better
than TRUNCGRAD, but slightly worse than SMIDAS. On both data sets, SMIDAS seems to be
doing quite well in terms of sparsity.

4.3.2 MORE REGULARIZATION

As mentioned before, we now present results with a large value of the regularization parameter
(λ= 10−2).

From Figures 5 and 6, we see that SCD outperforms all other algorithms on the DUKE and
ARCENE data sets. Not only does it get to the minimum objective faster, but it also gets best sparsity.
On both data sets, SMIDAS does better than TRUNCGRAD.

For the MAGIC data sets (Figures 7 and 8), we see a previous phenomenon repeated: SMI-
DAS does better when the features are dense. The coordinate descent algorithms SCD and GCD
are quicker to reach the minimum on MAGIC04S. The edge, however, seems to be lost on the

1883

SHALEV-SHWARTZ AND TEWARI

Figure 6: ARCENE data set; more regularization

Figure 7: MAGIC04S data set; more regularization

MAGIC04D data set. In all cases, TRUNCGRAD seems to be unable to keep sparsity of the iterates
as it progresses. This effect is particularly stark in Figure 8, where all the other algorithms have
density levels of a few tens while TRUNCGRAD has almost no sparsity whatsoever.

4.3.3 PARAMETER VALUES AND SOURCE CODE

Two of the algorithms we used above, namely TRUNCGRAD and SMIDAS, have a step-size param-
eter η. In the interest of reproducible research, we report the values of η used in our experiments
in Table 1. The parameter p of SMIDAS was always +2ln(d),, where d is the total number of
features (including non-relevant features). The source code for a C++ implementation of SCD and
SMIDAS can be found at http://mloss.org (by searching for either “SCD” or “SMIDAS”).

1884

STOCHASTIC METHODS FOR �1-REGULARIZED LOSS MINIMIZATION

Figure 8: MAGIC04D data set; more regularization

Data Set, λ SMIDAS TRUNCGRAD

DUKE, 10−6 50 10−1

DUKE, 10−2 10−1 10−2

ARCENE, 10−6 50 10−1

ARCENE, 10−2 10−2 5×10−5
MAGIC04S, 10−6 10−2 5×10−4
MAGIC04S, 10−2 10−4 5×10−5
MAGIC04D, 10−6 5×10−3 10−4

MAGIC04D, 10−2 10−3 10−5

Table 1: Values of the step-size parameter η used in the experiments for SMIDAS and TRUNC-
GRAD

1885

SHALEV-SHWARTZ AND TEWARI

Acknowledgments

We thank Jonathan Chang for pointing out some errors in the preliminary conference version of this
work. Most of the research reported in this paper was done while the authors were at the Toyota
Technological Institute at Chicago (TTIC). We are grateful to TTIC for providing a friendly and
stimulating environment to work in.

Appendix A.

Lemma 5 Let ε≤ 0.12. There exists an optimization problem of the form:

min
w∈Rd : ‖w‖1≤B

1
m

m

∑
i=1

L(〈w,xi〉,yi) ,

where L is the smooth loss function L(a,b) = (a− b)2, such that any algorithm which initializes
w= 0 and updates a single element of the vector w at each iteration, must perform at least B2/16ε
iterations to achieve an ε accurate solution.

Proof We denote the number of non-zeros elements of a vector w by ‖w‖0. Recall that we denote
the average loss by C(w) = 1

m ∑
m
i=1L(〈w,xi〉,yi). We show an optimization problem of the form

given above, for which the optimal solution, denoted w�, is dense (i.e., ‖w�‖0 = d), while any w for
which

C(w)≤C(w�)+ ε

must satisfy ‖w‖0 ≥ Ω(B2/ε). This implies the statement given in the lemma since an iteration
bound for the type of algorithms we consider is immediately translated into an upper bound on
‖w‖0.

Let L(a,b) = (a−b)2 and consider the following joint distribution over random variables (X ,Y).
First, each Y is chosen at random according to P[Y = 1] = P[Y =−1] = 1

2 . Next, each element j of
X is chosen i.i.d. from {+1,−1} according to P[Xj = y|y] = 1

2 +
1
2B . This definition implies that:

EXj|Y=y[Xj] =
1
B y

and
VarXj|Y=y[Xj] = 1− 1

B2 .

Consider the vector w0 = (Bd , . . . ,
B
d). We have

E
[
(〈w0,X〉−Y)2

]
= EYEX |Y=y

[
(〈w0,X〉− y)2

]
= EYVarX |Y=y [〈w0,X〉]

= EY
B2

d
VarX1|Y=y [X1]

= EY
B2

d

(
1− 1

B2
)

=
B2−1
d

.

1886

STOCHASTIC METHODS FOR �1-REGULARIZED LOSS MINIMIZATION

Now fix some w with ‖w‖0 ≤ s. We have

μy := EX |Y=y[〈w,X〉] = y
B∑

j

w j ,

and

E
[
(〈w,X〉−Y)2

]
= EYEX |Y=y

[
(〈w,X〉− y)2

]
= EYVarX |Y=y[〈w,X〉]+ (μy− y)2

If |∑ j w j| ≤ B/2 then (μy− y)2 ≥ 1/4 and thus we obtain from the above that E
[
(〈w,X〉−Y)2

]
≥

1/4. Otherwise, √
s∑

j

w2j ≥∑
j

|wj| ≥ |∑
j

w j| ≥ B/2 ,

and thus we have that

E[(〈w,X〉−Y)2]≥ EYVarX |Y=y [〈w,X〉]

= EY

d

∑
j=1

w2jVarX1|Y=y [X1]

= EY

d

∑
j=1

w2j
(
1− 1

B2
)

=
(
1− 1

B2
) d

∑
j=1

w2j

≥
(
1− 1

B2
)
B2
4s =

B2−1
4s

.

Choose B≥ 2 and d = 100(B2−1), we have shown that if ‖w‖0 ≤ s then

E[(〈w,X〉−Y)2− (〈w0,X〉−Y)2]≥min
{
0.24, B

2

8s

}
=: ε′ .

Now, consider the random variable Z = (〈w,X〉 −Y)2− (〈w0,X〉 −Y)2. This is a bounded ran-
dom variable (because |〈w,x〉| ≤ B) and therefore using Hoeffding inequality we have that with
probability of at least 1−δ over a draw of a training set of m examples we have

C(w)−C(w0)≥ ε′ − cB2
√
log(1/δ)

m
,

for some universal constant c> 0.
This is true if we first fix w and then draw the m samples. We want to establish an inequality

true for any w in
W := {w ∈ R

d : ‖w‖0 ≤ s, ‖w‖1 ≤ B} .
This set has infinitely many elements so we cannot trivially appeal to a union bound. Instead, we
create an ε′/16B-cover of W in the �1 metric. This has size N1(W ,ε′/16B) where we have the
crude estimate,

∀ε> 0, N1(W ,ε)≤ ds
(
2Bd
ε

)s
.

1887

SHALEV-SHWARTZ AND TEWARI

Moreover, if ‖w−w′‖1 ≤ ε′/16B then it is easy to see that |C(w)−C(w′)| ≤ ε′/4. Therefore,
applying a union bound over all vectors in the cover, we obtain that with probability at least 1− δ,
for all such w ∈W we have

C(w)−C(w0)≥ ε′ − ε′/4− cB2
√
logN1(W ,ε′/16B)+ log(1/δ)

m
.

Taking m large enough, we can guarantee that, with high probability, for all w ∈W ,

C(w)−C(w0)≥ ε′/2 .

Finally, we clearly have thatC(w�)≤C(w0).
Thus, we have proved the following. Given B≥ 2 and s, there exist {(xi,yi)}mi=1 in some dimen-

sion d, such that
min

‖w‖1≤B,‖w‖0≤s
C(w)− min

‖w‖1≤B
C(w)≥min

{
0.12, B

2

16s

}
.

This concludes the proof of the lemma.

Appendix B.

Lemma 6 Let C be as defined in (5) and assume that the second derivative of L with respect to its
first argument is bounded by β. Then, for any j ∈ [d],

C(w+ηe j)≤C(w)+η(∇C(w)) j+
βη2

2 .

Proof Note that, by assumption on L, for any i, j we have,

L(〈w+ηe j,xi〉,yi) = L(〈w,xi〉+ηxi, j,yi)

≤ L(〈w,xi〉,yi)+ηL′(〈w,xi〉,yi)xi, j+
βη2 x2i, j
2

≤ L(〈w,xi〉,yi)+ηL′(〈w,xi〉,yi)xi, j+ βη2

2 ,

where the last inequality follows because xi, j ∈ [−1,+1]. Adding the above inequalities for i =
1, . . . ,m and dividing by m, we get

C(w+ηe j)≤C(w)+
η
m

m

∑
i=1

L′(〈w,xi〉,yi)xi, j+ βη2

2

=C(w)+η(∇C(w)) j+
βη2

2 .

Lemma 7 Let a,b,P,T > 0. The function f : (0,1/a)→ R defined as,

f (η) =

(
1

1−aη
−1
)
P+

b/(ηT)
1−aη

1888

STOCHASTIC METHODS FOR �1-REGULARIZED LOSS MINIMIZATION

is minimized at

η� =
b
PT

(√
1+

PT
ab

−1
)

,

and the minimum value satisfies

f (η�)≤ 4
√
abP
T

+
4ab
T

.

Proof A little rearranging gives,

f (η) =
1

1
η −a

(
aP+

b
η2T

)
.

This suggests the change of variableC = 1/η and we wish to minimize g : (a,∞)→ R defined as,

g(C) =
1

C−a

(
aP+

bC2

T

)
.

The expression for the derivative g′ is,

g′(C) =
b

T (C−a)2

(
C2−2aC− aTP

b

)
.

Setting g′(C) = 0 gives a quadratic equation whose roots are,

a±
√
a2+

aTP
b

.

Choosing the larger root (the smaller one is smaller than a) gives us the minimizer,

C� = a+

√
a2+

aTP
b

.

It is easy to see that g′(C) is increasing at C� and thus we have a local minima at C� (which is also
global in this case). The minimizer η� of f (η) is therefore,

η� =
1
C�

=
b
PT

(√
1+

PT
ab

−1
)

.

Plugging in the value ofC� into g(C), we get,

g(C�) =
2√
1+ PT

ab

(
P+

ab
T

+

√
a2b2

T 2
+
abP
T

)

≤ 2√
1+ PT

ab

(
2P+

2ab
T

)

= 4

√
abP
T

+
a2b2

T 2

≤ 4
√
abP
T

+
4ab
T

.

Since g(C�) = f (η�), this concludes the proof of the lemma.

1889

SHALEV-SHWARTZ AND TEWARI

References

A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31:167–175, 2003.

L. Bottou. Stochastic gradient descent examples, Web Page. http://leon.bottou.org/
projects/sgd.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in Neural Information
Processing Systems 20, pages 161–168, 2008.

L. Bottou and Y. LeCunn. On-line learning for very large datasets. Applied Stochastic Models in
Business and Industry, 21(2):137–151, 2005.

K.L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. In Proceed-
ings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 922–931,
2008.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge Uni-
versity Press, 2000.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the �1-ball for
learning in high dimensions. In International Conference on Machine Learning, pages 272–279,
2008.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewari. Composite objective mirror descent. In
Proceedings of the 23rd Annual Conference on Learning Theory, pages 14–26, 2010.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32
(2):407–499, 2004.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quar-
terly, 3:95–110, 1956.

J. Friedman, T. Hastie, and R. Tibshirani. Regularized paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010.

A. Genkin, D. Lewis, and D. Madigan. Large-scale Bayesian logistic regression for text categoriza-
tion. Technometrics, 49(3):291–304, 2007.

C. Gentile. The robustness of the p-norm algorithms. Machine Learning, 53(3):265–299, 2003.

S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochas-
tic composite optimization, 2011. available at http://www.ise.ufl.edu/glan/papers/
strongSCOSubmit.pdf.

A. J. Grove, N. Littlestone, and D. Schuurmans. General convergence results for linear discriminant
updates. Machine Learning, 43(3):173–210, 2001.

J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.
Information and Computation, 132(1):1–64, January 1997.

1890

STOCHASTIC METHODS FOR �1-REGULARIZED LOSS MINIMIZATION

K. Koh, S.J. Kim, and S. Boyd. An interior-point method for large-scale �1-regularized logistic
regression. Journal of Machine Learning Research, 8:1519–1555, 2007.

G. Lan. An optimal method for stochastic composite optimization. Mathematical Programming,
pages 1–33, 2010.

J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. In Advances in
Neural Information Processing Systems 21, pages 905–912, 2009.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algo-
rithm. Machine Learning, 2:285–318, 1988.

Z. Q. Luo and P. Tseng. On the convergence of coordinate descent method for convex differentiable
minimization. Journal of Optimization Theory and Applications, 72:7–35, 1992.

A. Nemirovski and D. Yudin. Problem complexity and method efficiency in optimization. Nauka
Publishers, Moscow, 1978.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. Tech-
nical Report CORE Discussion Paper 2010/02, Center for Operations Research and Economet-
rics, UCL, Belgium, 2010.

S. Shalev-Shwartz. Online Learning: Theory, Algorithms, and Applications. PhD thesis, The
Hebrew University, 2007.

S. Shalev-Shwartz and N. Srebro. SVM optimization: Inverse dependence on training set size. In
International Conference on Machine Learning, pages 928–935, 2008.

S. Shalev-Shwartz and A. Tewari. Stochastic methods for �1 regularized loss minimization. In
International Conference on Machine Learning, pages 929–936, 2009.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal Estimated sub-GrAdient SOlver for
SVM. In International Conference on Machine Learning, pages 807–814, 2007.

S. Shalev-Shwartz, T. Zhang, and N. Srebro. Trading accuracy for sparsity in optimization problems
with sparsity constraints. SIAM Journal on Optimization, 20:2807–2832, 2010.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B, 58(1):267–288, 1996.

P. Tseng and S. Yun. A block-coordinate gradient descent method for linearly constrained nons-
mooth separable optimization. Journal of Optimization Theory and Applications, 140:513–535,
2009.

M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan, J. A. Olson, J. R.
Marks, and J. R. Nevins. Predicting the clinical status of human breast cancer by using gene
expression profiles. Proceedings of the National Academy of Sciences USA, 98(20):11462–11467,
2001.

T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression. Annals of
Applied Statistics, 2(1):224–244, 2008.

1891

SHALEV-SHWARTZ AND TEWARI

L. Xiao. Dual averaging method for regularized stochastic learning and online optimization. Journal
of Machine Learning Research, 11:2543–2596, 2010.

T. Zhang. Sequential greedy approximation for certain convex optimization problems. IEEE Trans-
action on Information Theory, 49:682–691, 2003.

T. Zhang and F. J. Oles. Text categorization based on regularized linear classification methods.
Information Retrieval, 4:5–31, 2001.

1892

Journal of Machine Learning Research 12 (2011) 1893-1921 Submitted 7/10; Revised 2/11; Published 6/11

Internal Regret with Partial Monitoring:
Calibration-Based Optimal Algorithms

Vianney Perchet VIANNEY.PERCHET@NORMALESUP.ORG
Centre de Mathématiques et de Leurs Applications
École Normale Supérieure
61, avenue du président Wilson
94235 Cachan, France

Editor: Nicolo Cesa-Bianchi

Abstract

We provide consistent random algorithms for sequential decision under partial monitoring, when
the decision maker does not observe the outcomes but receives instead random feedback signals.
Those algorithms have no internal regret in the sense that, on the set of stages where the decision
maker chose his action according to a given law, the average payoff could not have been improved
in average by using any other fixed law.

They are based on a generalization of calibration, no longer defined in terms of a Voronoı̈
diagram but instead of a Laguerre diagram (a more general concept). This allows us to bound, for
the first time in this general framework, the expected average internal, as well as the usual external,
regret at stage n by O(n−1/3), which is known to be optimal.

Keywords: repeated games, on-line learning, regret, partial monitoring, calibration, Voronoı̈ and
Laguerre diagrams

1. Introduction

Hannan (1957) introduced the notion of regret in repeated games: a player (that will be referred as
a decision maker or also a forecaster) has no external regret if, asymptotically, his average payoff
could not have been greater if he had known, before the beginning of the game, the empirical distri-
bution of moves of the other player. Blackwell (1956b) showed that the existence of such externally
consistent strategies, first proved by Hannan (1957), is a consequence of his approachability theo-
rem. A generalization of this result and a more precise notion of regret are due to Foster and Vohra
(1997) and Fudenberg and Levine (1999): there exist internally consistent strategies, that is, such
that for any of his action, the decision maker has no external regret on the set of stages where he ac-
tually chose this specific action. Hart and Mas-Colell (2000) also used Blackwell’s approachability
theorem to construct explicit algorithms that bound the internal (and therefore the external) regret
at stage n by O

(
n−1/2

)
.

Some of those results have been extended to the partial monitoring framework, that is, where the
decision maker receives at each stage a random signal, whose law might depend on his unobserved
payoff. Rustichini (1999) defined and proved the existence of externally consistent strategies, that
is, such that the average payoff of the decision maker could not have been asymptotically greater
if he had known, before the beginning of the game, the empirical distribution of signals. Actually,

c©2011 Vianney Perchet.

PERCHET

the relevant information is a vector of probability distributions, one for each action of the decision
maker, that is called a flag.

Some algorithms bounding optimally the expected regret by O
(
n−1/3

)
have been exhibited un-

der some strong assumptions on the signalling structure, see Cesa-Bianchi and Lugosi (2006), The-
orem 6.7 for the optimality of this bound. For example, Jaksch et al. (2010) considered the Markov
decision process framework, Cesa-Bianchi et al. (2005) assumed that payoffs can be deduced from
flags and Lugosi et al. (2008) that feedbacks are deterministic (along with the fact that the worst
compatible payoff is linear with respect to the flag). When no such assumption is made, Lugosi
et al. (2008) provided an algorithm (based on the exponential weight algorithm) that bounds regret
by O

(
n−1/5

)
.

In this framework, internal regret was defined by Lehrer and Solan (2007); stages are no longer
distinguished as a function of the action chosen by the decision maker (as in the full monitoring
case) but as a function of its law. Indeed, the evaluation of the payoff (usually called worst case) is
not linear with respect to the flag. So a best response (in a sense to be defined) to a given flag might
consist only in a mixed action (i.e., a probability distribution over the set of actions). Lehrer and
Solan (2007) also proved the existence and constructed internally consistent strategies, using the
characterization of approachable convex sets due to Blackwell (1956a). Perchet (2009) provided an
alternative algorithm, recalled in Section 3.1; this latter is based on calibration, a notion introduced
by Dawid (1982). Roughly speaking, these algorithms ε-discretize arbitrarily the space of flags and
each point of the discretization is called a possible prediction. Then, stage after stage, they predict
what will be the next flag and output a best response to it. If the sequence of predictions is calibrated
then the average flag, on the set of stages where a specific prediction is made, will be close to this
prediction.

Thanks to the continuity of payoff and signaling functions, both algorithms bound the internal
regret by ε+O

(
n−1/2

)
. However the first drawback lies in their computational complexities: at

each stage, the algorithm of Perchet (2009) solves a system of linear equations while the one Lehrer
and Solan (2007), after a projection on a convex set, solves a linear program. In both case, the size
of the linear system or program considered is polynomial in ε and exponential in the numbers of
actions and signals. The second drawback is that the constants in the rate of convergence depend
drastically on ε.

As a consequence, a classic doubling trick argument will generate an algorithm with a strongly
sub-optimal rate of convergence, that might even depend on the size of the actions sets, and a
complexity that increases with time.

Our main result is Theorem 24, stated in Section 3.2: it provides the first algorithm that bounds
optimally both internal and external regret by O

(
n−1/3

)
in the general case. It is a modification of

the algorithm of Perchet (2009) that does not use an arbitrary discretization but constructs carefully
a specific one and then computes, stage by stage, the solution of a system of linear equations of
constant size. In Section 4.1, an other algorithm, based on Blackwell’s approachability as the one of
Lehrer and Solan (2007), with optimal rate and smaller constants is exhibited; it requires however
to solve, at each stage, a linear program of constant size.

Section 1 is devoted to the simpler framework of full monitoring. We recall definitions of
calibration and regret and we provide a naı̈ve algorithm to construct strategies with internal regret
asymptotically smaller than ε. We show how to modify this algorithm, however in a not efficient
way, in order to bound optimally the regret by O

(
n−1/2

)
. This has to be seen only as a tool that

can be easily adapted with partial monitoring in order to reach the optimal bound of O
(
n−1/3

)
;

1894

INTERNAL REGRET WITH PARTIAL MONITORING: CALIBRATION-BASED OPTIMAL ALGORITHMS

this is done in Section 2. Some extensions (the second algorithm, the so-called compact case and
variants to strengthen the constants) are presented in Section 3. Some technical proofs can be found
in Appendix.

2. Full Monitoring

Consider a two-person game Γ repeated in discrete time, where at stage n ∈N, a decision maker, or
forecaster, (resp. the environment or Nature) chooses an action in ∈ I (resp. jn ∈ J). This generates
a payoff ρn = ρ(in, jn), where ρ is a mapping from I × J to R, and a regret rn ∈ R

I defined by:

rn =
[
ρ(i, jn)−ρ(in, jn)

]
i∈I

∈ R
I ,

where I is the finite cardinality of I (and J the one of J). This vector represents the differences
between what the decision maker could have got and what he actually got.

The choices of in and jn depend on the past observations (also called finite history) hn−1 =
(i1, j1, .., in−1, jn−1) and may be random. Explicitly, the set of finite histories is denoted by H =⋃
n∈N (I × J)n, with (I × J)0 = /0 and a strategy σ of the decision maker is a mapping from H to

Δ(I), the set of probability distributions over I . Given the history hn ∈ (I × J)n, σ(hn) ∈ Δ(I) is
the law of in+1. A strategy τ of Nature is defined similarly as a function from H to Δ(J). A pair of
strategies (σ,τ) generates a probability, denoted by Pσ,τ, over (H ,A) where H = (I × J)N is the
set of infinite histories embedded with the cylinder σ-field.

We extend the payoff mapping ρ to Δ(I)×Δ(J) by ρ(x,y) = Ex,y[ρ(i, j)] and for any sequence
a= (am)m∈N and any n ∈ N∗, we denote by an = 1

n ∑
n
m=1 am the average of a up to stage n.

Definition 1 (Hannan, 1957) A strategy σ of the forecaster is externally consistent if for every
strategy τ of Nature:

limsup
n→∞

 rin ≤ 0, ∀i ∈ I , Pσ,τ−as.

In words, a strategy σ is externally consistent if the forecaster could not have had a greater payoff
if he had known, before the beginning of the game, the empirical distribution of actions of Nature.
Indeed, the external consistency of σ is equivalent to the fact that :

limsup
n→∞

max
x∈Δ(I)

ρ(x, jn)− ρn ≤ 0, Pσ,τ−as. (1)

Foster and Vohra (1997) (see also Fudenberg and Levine, 1999) defined a more precise notion
of regret. The internal regret of the stage n, denoted by Rn ∈ R

I×I , is also generated by the choices
of in and jn and its (i,k)-th coordinate is defined by:

Rikn =

{
ρ(k, jn)−ρ(i, jn) if i= in

0 otherwise.
.

Stated differently, every row of the matrix Rn is null except the in-th which is rn.

Definition 2 (Foster and Vohra, 1997) A strategy σ of the forecaster is internally consistent if for
every strategy τ of Nature:

limsup
n→∞

 Rikn ≤ 0 ∀i,k ∈ I , Pσ,τ−as.

1895

PERCHET

We introduce the following notations to define ε-internally consistency. Denote by Nn(i) the
set of stages before the n-th where the forecaster chose action i and jn(i) ∈ Δ(J) the empirical
distribution of Nature’s actions on this set. Formally,

Nn(i) = {m ∈ {1, ..,n}; im = i} and jn(i) =
∑m∈Nn(i) jm
|Nn(i)|

∈ Δ(J). (2)

A strategy is ε-internally consistent if for every i,k ∈ I

limsup
n→∞

|Nn(i)|
n

(
ρ(k, jn(i))−ρ(i, jn(i))− ε

)
≤ 0, Pσ,τ−as.

If we define, for every ε≥ 0, the ε-best response correspondence by :

BRε(y) =

{
x ∈ Δ(I); ρ(x,y)≥ max

z∈Δ(I)
ρ(z,y)− ε

}
,

then a strategy of the decision maker is ε-internally consistent if any action i is either an ε-best
response to the empirical distribution of Nature’s actions on Nn(i) or the frequency of i is very
small. We will simply denote BR0 by BR and call it the best response correspondence.

From now on, given two sequences
{
lm ∈ L ,am ∈ R

d ; m ∈ N
}

where L is a finite set, we will
define the subset of integers Nn(l) and the average an(l) as in Equation (2), that is:

Nn(l) = {m ∈ {1, ..,n}; lm = l} and an(l) =
∑m∈Nn(l) am
|Nn(l)|

∈ R
d .

Proposition 3 (Foster and Vohra, 1997) For every ε≥ 0, there exist ε-internally consistent strate-
gies.

Although the notion of internal regret is a refinement of the notion of external regret (in the
sense that any internally consistent strategy is also externally consistent), Blum and Mansour (2007)
proved that any externally consistent algorithm can be efficiently transformed into an internally
consistent one (actually they obtained an even stronger property called swap consistency).

Foster and Vohra (1997) and Hart and Mas-Colell (2000) proved directly the existence of 0-
internally consistent strategies using different algorithms (with optimal rates and based respectively
on the Expected Brier Score and Blackwell’s approachability theorem). In some sense, we merge
these two last proofs in order to provide a new one, given in the following section, that can be
extended quite easily to the partial monitoring framework.

2.1 A Naı̈ve Algorithm, Based on Calibration

The algorithm (a similar idea was used by Foster and Vohra, 1997) that constructs an ε-internally
consistent strategy is based on this simple fact: if the forecaster can, stage by stage, foresee the
law of Nature’s next action, say y ∈ Δ(J), then he just has to choose any best response to y at the
following stage. The continuity of ρ implies that the forecasts need not be extremely precise but
only up to some δ> 0.

Let {y(l); l ∈ L} be a δ-grid of Δ(J) (i.e., a finite set such that for every y ∈ Δ(J) there exists
l ∈ L such that ‖y−y(l)‖ ≤ δ) and i(l) be a best response to y(l), for every l ∈ L . Then if δ is small
enough:

‖y− y(l)‖ ≤ 2δ⇒ i(l) ∈ BR2ε(y) .

1896

INTERNAL REGRET WITH PARTIAL MONITORING: CALIBRATION-BASED OPTIMAL ALGORITHMS

It is possible to construct a good sequence of forecasts by computing a calibrated strategy (in-
troduced by Dawid, 1982 and recalled in the following Subsection 2.1.1).

2.1.1 CALIBRATION

Consider a two-person repeated game Γc where, at stage n, Nature chooses the state of the world jn
in a finite set J and a decision maker (that will be referred in this setting as a predictor) predicts it
by choosing y(ln) in Y = {y(l); l ∈ L}, a finite δ-grid of Δ(J) (its cardinality is denoted by L). As
usual, a behavioral strategy σ of the predictor (resp. τ of Nature) is a mapping from the set of finite
histories H =

⋃
n∈N (L× J)n to Δ(L) (resp. Δ(J)). We also denote by Pσ,τ the probability generated

by the pair (σ,τ) over (H ,A) the set of infinite histories embedded with the cylinder topology.

Definition 4 (Dawid, 1982) A strategy σ of the predictor is calibrated (with respect toY = {y(l); l ∈
L}) if for every strategy τ of Nature, Pσ,τ-as:

limsup
n→∞

|Nn(l)|
n

(
‖ jn(l)− y(l)‖2 −‖ jn(l)− y(k)‖2

)
≤ 0, ∀k, l ∈ L ,

where ‖ · ‖ is the Euclidian norm of RJ.

In words, a strategy is calibrated if for every l ∈ L , the empirical distribution of states, on the set
of stages where y(l) was predicted, is closer to y(l) than to any other y(k) (or the frequency of l,
|Nn(l)|/n, is small).

Given a finite grid of Δ(J), the existence of calibrated strategies has been proved by Foster
and Vohra (1998) using either the Expected Brier Score or a minmax theorem (actually this second
argument is acknowledged to Hart). We give here a construction, related but simpler than the one
of Foster and Vohra, due to Sorin (2008).

Proposition 5 (Foster and Vohra, 1998) For any finite gridY of Δ(J), there exist calibrated strate-
gies with respect to Y such that for every strategy τ of Nature:

Eσ,τ

[
max
l,k∈L

|Nn(l)|
n

(
‖ jn(l)− y(l)‖2 −‖ jn(l)− y(k)‖2

)]
≤ O

(
1√
n

)
.

Proof. Consider the auxiliary game where, at stage n ∈ N, the predictor (resp. Nature) chooses
ln ∈ L (resp. jn ∈ J) and the vector payoff is the matrixUn ∈ R

L×L where

Ulk
n =

{
‖ jn− y(l)‖2 −‖ jn− y(k)‖2 if l = ln

0 otherwise.
.

A strategy σ is calibrated with respect to L if Un converges to the negative orthant. Indeed for every
l,k ∈ L , the (l,k)-th coordinate of Un is

 Ulk
n =

|Nn(l)|
n

∑m∈Nn(l) ‖ jm− y(l)‖2 −‖ jm− y(k)‖2

|Nn(l)|

=
|Nn(l)|
n

(
‖ jn(l)− y(l)‖2 −‖ jn(l)− y(k)‖2

)
.

1897

PERCHET

Denote by U+
n :=

{
max
(
0, Ulk

n

)}
l,k∈L =: Un− U−

n the positive part of Un and by λn ∈ Δ(L) any

invariant measure of U+
n . We recall that λ is an invariant measure of a nonnegative matrixU if, for

every l ∈ L ,

∑
k∈L

λ(k)Ukl = λ(l)∑
k∈L

Ulk .

Its existence is a consequence of Perron-Frobenius Theorem, see, for example, Seneta (1981).
Define the strategy σ of the predictor inductively as follows. Choose arbitrarily σ(/0), the law

of the first action and at stage n+ 1, play accordingly to any invariant measure of U+
n . We claim

that this strategy is an approachability strategy of the negative orthant of RL×L because it satisfies
Blackwell’s (1956a) sufficient condition:

∀n ∈ N,〈 Un− U−
n ,Eλn [Un+1| jn+1]− U−

n 〉 ≤ 0 .

Indeed, for every possible jn+1 ∈ J :

〈 U+
n ,Eλn [Un+1| jn+1]〉= 0 = 〈 U+

n , U−
n 〉,

where the second equality follows from the definition of positive and negative parts.
Consider the first equality. The (l,k)-th coordinate of the matrix Eλn [Un+1| jn+1] is

λn(l)
(
‖ jn+1 − y(l)‖2 −‖ jn+1 − y(k)‖2

)
, therefore the coefficient of ‖ jn+1 − y(l)‖2 in the first term

is λn(l)∑k∈L (U+
n)

lk−∑k∈L λn(k)(U+
n)

kl . This equals 0 since λn is an invariant measure of U+
n .

Blackwell’s (1956a) result also implies that Eσ,τ [‖ U+
n ‖]≤ 2Mnn−1/2 for any strategy τ of Nature

where M2
n = supm≤nEσ,τ

[
‖Um‖2

]
= 4L. �

Interestingly, the strategy σ we constructed in this proof is actually internally consistent in the
game with action spaces L and J and payoffs defined by ρ(l, j) =−‖ j− y(l)‖2.

Corollary 6 For any finite grid Y of Δ(J), there exists σ, a calibrated strategy with respect to Y ,
such that for every strategy τ of Nature, with Pσ,τ probability at least 1−δ:

max
l,k∈L

|Nn(l)|
n

(
‖ jn(l)− y(l)‖2 −‖ jn(l)− y(k)‖2

)
≤ 2Mn√

n
+Θn ,

where Θn = min

{
vn√
n

√
2ln

(
L2

δ

)
+

2
3
Kn
n

ln

(
L2

δ

)
,
Kn√
n

√
2ln

(
L2

δ

)}
;

Mn = sup
m≤n

√
Eσ,τ

[
‖Um‖2

]
≤ 3

√
L;

v2
n = sup

m≤n
sup
l,k∈L

Eσ,τ

[∣∣∣Ulk
n −Eσ,τ

[
Ulk
n

]∣∣∣2]≤ 3;

Kn = sup
m≤n

sup
l,k∈L

∣∣∣Ulk
n −Eσ,τ

[
Ulk
n

]∣∣∣≤ 3.

Proof. Proposition 5 implies that Eσ,τ [Un]≤ 2Mnn−1/2. Hoeffding-Azuma’s inequality (see Lemma
28 below in Section 4.3.1) implies that with probability at least 1−δ :

 Ulk
n −Eσ,τ

[
 Ulk
n

]
≤ Kn√

n

√
2ln

(
1
δ

)
.

1898

INTERNAL REGRET WITH PARTIAL MONITORING: CALIBRATION-BASED OPTIMAL ALGORITHMS

Freedman’s inequality (an analogue of Bernstein’s inequality for martingale), see Freedman (1975,
Proposition 2.1) or Cesa-Bianchi and Lugosi (2006, Lemma A.8), implies that with probability at
least 1−δ :

 Ulk
n −Eσ,τ

[
 Ulk
n

]
≤ vn√

n

√
2ln

(
1
δ

)
+

2
3
Kn
n

ln

(
1
δ

)
.

The result is a consequence of these two inequalities and of Proposition 5. �

The definition of Θn as a minimum (and the use of Freedman’s inequality) will be useful when
we will refer to this corollary in the subsequent sections. Obviously, in the current framework,

Θn ≤ 3√
n

√
2ln
(
L2

δ

)
.

2.1.2 BACK TO THE NAÏVE ALGORITHM

Let us now go back to the construction of ε-consistent strategies in Γ. Compute σ, a calibrated
strategy with respect to a δ-grid Y = {y(l); l ∈ L} of Δ(J) in an abstract calibration game Γc.
Whenever the decision maker (seen as a predictor) should choose the action l in Γc, then he (seen
as a forecaster) chooses i(l) ∈ BR(y(l)) in the original game Γ. We claim that this defines a strategy
σε which is 2ε-internally consistent.

Proposition 7 (Foster and Vohra, 1997) For every ε > 0, the strategy σε described above is 2ε-
internally consistent.

Proof. By definition of a calibrated strategy, for every η > 0, there exists with probability 1, an
integer N ∈ N such that for every l,k ∈ L and for every n≥ N :

|Nn(l)|
n

(
‖ jn(l)− y(l)‖2 −‖ jn(l)− y(k)‖2

)
≤ η .

Since {y(k); k ∈ L} is a δ-grid of Δ(J), for every l ∈ L and every n ∈ N, there exists k ∈ L such
that ‖ jn(l)− y(k)‖2 ≤ δ2, hence ‖ jn(l)− y(l)‖2 ≤ δ2 +η n

|Nn(l)| . Therefore, since i(l) ∈ BR(y(l)):

|Nn(l)|
n

≥ η
δ2 ⇒‖ jn(l)− y(l)‖2 ≤ 2δ2 ⇒ ρ(k, jn(l))−ρ(i(l), jn(l))≤ 2ε, ∀k ∈ I ,

for every l ∈ L and n≥ N. The (i,k)-th coordinate of Rn satisfies:

|Nn(i)|
n

(
 Rikn −2ε

)
≤ 1

n ∑
m∈Nn(i)

(
ρ(k, jm)−ρ(i, jm)−2ε

)
=

1
n ∑
l:i(l)=i

∑
m∈Nn(l)

(
ρ(k, jm)−ρ(i, jm)−2ε

)
= ∑

l:i(l)=i

|Nn(l)|
n

(
ρ(k, jn(l))−ρ(i(l), jn(l))−2ε

)
.

Recall that either |Nn(l)|
n ≥ η

δ2 and ρ(k, jn(i))− ρ(i(l), jn(l))− 2ε ≤ 0, or |Nn(l)|
n < η

δ2 . Since ρ is
bounded (by Mρ > 0), then :

|Nn(i)|
n

(
 Rikn −2ε

)
≤ η

2MρL

δ2 , ∀i ∈ I , ∀k ∈ I , ∀n≥ N ,

1899

PERCHET

which implies that σ is 2ε-internally consistent. �

Remark 8 This naı̈ve algorithm only achieves ε-consistency and Proposition 5 implies that

Eσ,τ

[
max
i,k∈I

(
 Rikn − ε

)]
≤ O

(
1√
n

)
.

The constants depend drastically on L, which is in the current framework in the order of εJ, therefore
it is not possible to obtain 0-internally consistency at the same rate with a classic doubling trick
argument, that is, use a 2−k-internally consistent strategy on Nk stages, then switch to a 2−(k+1)-
internally consistent strategy, and so on (see Sorin, 1990, Proposition 3.2, page 56).

Moreover, since this algorithm is based on calibration, it computes at each stage an invari-
ant measure of a non-negative matrix; this can be done, using Gaussian elimination, with O

(
L3
)

operations, thus this algorithm is far from being efficient (since its computational complexity is
polynomial in ε and exponential in J). There exist 0-internally consistent algorithms, see, for exam-
ple, the reduction of Blum and Mansour (2007), that do not have this exponential dependency in the
complexity or in the constants.

On the bright side, this algorithm can be modified to obtain 0-consistency at optimal rate;
obviously, it will still not be efficient with full monitoring (see Section 2.3). However, it has to be
understood as a tool that can be easily adapted in order to exhibit, in the partial monitoring case,
an optimal internal consistent algorithm (see Section 3.2). And in that last framework, it is not clear
that we can remove the dependency on L (especially for the internal regret).

2.2 Calibration and Laguerre Diagram

Given a finite subset of Voronoı̈ sites {z(l) ∈ R
d ; l ∈ L}, the l-th Voronoı̈ cell V (l), or the cell

associated to z(l), is the set of points closer to z(l) than to any other z(k):

V (l) =
{
Z ∈ R

d ; ‖Z− z(l)‖2 ≤ ‖Z− z(k)‖2 , ∀k ∈ L
}
,

where ‖ · ‖ is the Euclidian norm of Rd . Each V (l) is a polyhedron (as the intersection of a finite
number of half-spaces) and {V (l); l ∈ L} is a covering of Rd . A calibrated strategy with respect to
{z(l); l ∈ L} has the property that for every l ∈ L , the frequency of l goes to zero, or the empirical
distribution of states on Nn(l), converges to V (l).

The naı̈ve algorithm uses the Voronoı̈ diagram associated to an arbitrary grid of Δ(J) and assigns
to every small cell an ε-best reply to every point of it; this is possible by continuity of ρ. A calibrated
strategy ensures that jn(l) converges to V (l) (or the frequency of l is small), thus choosing i(l) on
Nn(l) was indeed a ε-best response to jn(l). With this approach, we cannot construct immediately
0-internally consistent strategy. Indeed, this would require that for every l ∈ L there exists a 0-best
response i(l) to every element y in V (l). However, there is no reason for them to share a common
best response because {z(l); l ∈ L} is chosen arbitrarily.

On the other hand, consider the simple game called matching pennies. Both players have two
action Heads and Tails, so Δ(J) = Δ(I) = [0,1], seen as the probability of choosing T . The payoff
is 1 if both players choose the same action and -1 otherwise. Action H (resp. T) is a best response
for Player 1 to any y in [0,1/2] (resp. in [1/2,1]). These two segments are exactly the cells of the
Voronoı̈ diagram associated to {y(1) = 1/4,y(2) = 3/4}, therefore, performing a calibrated strategy

1900

INTERNAL REGRET WITH PARTIAL MONITORING: CALIBRATION-BASED OPTIMAL ALGORITHMS

with respect to {y(1),y(2)} and playing H (resp. T) on the stages of type 1 (resp. 2) induces a 0-
internally consistent strategy of Player 1.

This idea can be generalized to any game. Indeed, by Lemma 10 stated below, Δ(J) can be
decomposed into polytopial best-response areas (a polytope is the convex hull of a finite number of
points, its vertices). Given such a polytopial decomposition, one can find a finer Voronoı̈ diagram
(i.e., any best-response area is an union of Voronoı̈ cells) and finally use a calibrated strategy to
ensure convergence with respect to this diagram.

Although the construction of such a diagram is quite simple in R, difficulties arise in higher
dimension, even in R

2. More importantly, the number of Voronoı̈ sites can depend not only on
the number of defining hyperplanes but also on the angles between them (thus being arbitrarily
large even with a few hyperplanes). On the other hand, the description of a Laguerre diagram (this
concept generalizes Voronoı̈ diagrams) that refines a polytopial decomposition is quite simple and
is described in Proposition 11 below. For this reason, we will consider from now on this kind of
diagram (sometimes also called Power diagram) .

Given a subset of Laguerre sites {z(l) ∈ R
d ; l ∈ L} and weights {ω(l) ∈ R; l ∈ L}, the l-th

Laguerre cell P(l) is defined by:

P(l) =
{
Z ∈ R

d ; ‖Z− z(l)‖2−ω(l)≤ ‖Z− z(k)‖2−ω(k), ∀k ∈ L
}
,

where ‖ · ‖ is the Euclidian norm of Rd . Each P(l) is a polyhedron and P = {P(l); l ∈ L} is a
covering of Rd .

Definition 9 A covering K = {Ki; i ∈ I} of a polytope K with non-empty interior is a polytopial
complex of K if for every i, j in the finite set I , Ki is a polytope with non-empty interior and the
polytope Ki∩K j has empty interior.

This definition extends naturally to a polytope K with empty interior, if we consider the affine
subspace generated by K.

Lemma 10 There exists a subset I ′ ⊂ I such that {Bi; i ∈ I ′} is a polytopial complex of Δ(J),
where Bi is the i-th best response area defined by

Bi = {y ∈ Δ(J); i ∈ BR(y)}= BR−1(i) .

Proof. For any y ∈ Δ(J), ρ(·,y) is linear on Δ(I) thus it attains its maximum on I and ⋃
i∈I B

i =
Δ(J). Without loss of generality, we can assume that each Bi is non-empty, otherwise we drop the
index i. For every i,k ∈ I , ρ(i, ·)−ρ(k, ·) is linear on Δ(J) therefore Bi is a polytope; it is indeed
defined by

Bi = {y ∈ Δ(J); ρ(i,y)≥ ρ(k,y), ∀k ∈ I}
=

⋂
k∈I

{y ∈ R
J; ρ(i,y)−ρ(k,y)≥ 0}∩Δ(J),

so it is the intersection of a finite number of half-spaces and the polytope Δ(J).
Moreover if Bik0 , the interior of B

i∩Bk, is non-empty then ρ(i, ·) equals ρ(k, ·) on the subspace
generated by Bik0 and therefore on Δ(J); consequently B

i = Bk. Denote by I ′ any subset of I such
that for every i ∈ I , there exists exactly one i′ ∈ I ′ such that Bi = Bi

′ �= /0, then {Bi; i ∈ I ′} is a
polytopial complex of Δ(J). �

1901

PERCHET

Proposition 11 Let K = {Ki; i ∈ I} be a polytopial complex of a polytope K ⊂ R
d. Then there

exists {z(l)∈R
d , ω(l)∈R; l ∈L}, a finite set of Laguerre sites and weights, such that the Laguerre

diagram P = {P(l); l ∈ L} refines K , that is, every Ki is a finite union of cells.

Proof. Let K = {Ki; i ∈ I} be a polytopial complex of K ⊂R
d . Each Ki is a polytope, thus defined

by a finite number of hyperplanes. Denote by H = {Ht ; t ∈ T } the set of all defining hyperplanes
(the finite cardinality of T is denoted by T) and K̂ = {K̂l; l ∈ L} the finest decomposition of Rd

induced by H (usually called arrangement of hyperplanes) which by definition refines K . Theorem
3 and Corollary 1 of Aurenhammer (1987) imply that K̂ is the Laguerre diagram associated to some
{z(l), ω(l); l ∈ L} whose exact computation requires the following notation:

i) for every t ∈ T , let ct ∈ R
d and bt ∈ R (which can, without loss of generality, be assumed to

be non zero) such that

Ht =
{
X ∈ R

d ; 〈X ,ct〉= bt
}
.

ii) For every l ∈ L and t ∈ T , σt(l) = 1 if the origin of Rd and K̂l are in the same halfspace
defined by Ht and σt(l) =−1 otherwise.

iii) For every l ∈ L , we define:

z(l) =
∑t∈T σt(l)ct

T
and ω(l) = ‖z(l)‖2+2∑t∈T σt(l)bt

T
.

Note that one can add the same constant to every weight ω(l). �

Buck (1943) proved that the number of cells defined by T hyperplanes in R
d is bounded by

∑d
k=0

(T
k

)
=: φ(T,d), where

(T
k

)
is the binomial coefficient, T choose k. Moreover, T is smaller than

I(I− 1)/2 (in the case where each Ki has a non-empty intersection with every other polytope), so

L≤ φ
(
I2
2 ,d
)
.

If d ≥ n, then φ(n,d) = 2n. Pascal’s rule and a simple induction imply that, for every n,d ∈ N,
φ(n,d)≤ (n+1)d . Finally, for any n≥ 2d, by noticing that(n

d

)
+
(n
d−1
)
+ ..+

(n
0

)(n
d

) ≤
d

∑
m=0

(
d

n−d+1

)m
≤

∞

∑
m=0

(
d

n−d+1

)m
=

n−d+1
n−2d+1 ≤ 1+d ,

we can conclude that φ(n,d)≤ (1+d)
(n
d

)
≤ (1+d) n

d

d! .

Lemma 12 Let P = {P(l); l ∈ L} be a Laguerre diagram associated to the set of sites and weights
{z(l) ∈ R

d , ω(l) ∈ R; l ∈ L}. Then, there exists a positive constant MP > 0 such that for every
Z ∈ R

d if
‖Z− z(l)‖2−ω(l)≤ ‖Z− z(k)‖2−ω(k)+ ε, ∀l,k ∈ L (3)

then d (Z,P(l)) is smaller than MPε.

The proof can be found in Appendix A.1; the constant MP depends on the Laguerre diagram, and
more precisely on the inner products 〈ct ,ct ′ 〉, for every t, t ′ ∈ T .

1902

INTERNAL REGRET WITH PARTIAL MONITORING: CALIBRATION-BASED OPTIMAL ALGORITHMS

2.3 Optimal Algorithm with Full Monitoring

We reformulate Proposition 5 and Corollary 6 in terms of Laguerre diagram.

Theorem 13 For any set of sites and weights {y(l) ∈ R
J, ω(l) ∈ R; l ∈ L} there exists a strategy

σ of the predictor such that for every strategy τ of Nature:

Eσ,τ

[∥∥∥(Uω,n)
+
∥∥∥]≤ O

(
1√
n

)
whereUω,n is defined by :

Ulk
ω,n =

{
[‖ jn− y(l)‖2 −ω(l)]− [‖ jn− y(k)‖2 −ω(k)] if l = ln
0 otherwise

.

Corollary 14 For any set of sites and weights {y(l) ∈ R
J, ω(l) ∈ R; l ∈ L}, there exists a strategy

σ of the predictor such that, for every strategy τ of Nature, with Pσ,τ probability at least 1−δ:

max
l,k∈L

|Nn(l)|
n

([
‖ jn(l)− y(l)‖2 −ω(l)

]
−
[
‖ jn(l)− y(k)‖2 −ω(k)

])
≤ 2Mn√

n
+Θn

where Mn = sup
m≤n

√
Eσ,τ

[
‖Uω,m‖2

]
≤ 4

√
L‖(b,c)‖∞ ;

Θn = min

{
vn√
n

√
2ln

(
L2

δ

)
+

2
3
Kn
n

ln

(
L2

δ

)
,
Kn√
n

√
2ln

(
L2

δ

)}
;

v2
n = sup

m≤n
sup
l,k∈L

Eσ,τ

[∣∣∣Ulk
ω,m−Eσ,τ

[
Ulk
ω,m

]∣∣∣2]≤ 4‖(b,c)‖2
∞ ;

Kn = sup
m≤n

sup
l,k∈L

∣∣∣Ulk
ω,m−Eσ,τ

[
Ulk
ω,m

]∣∣∣≤ 4‖(b,c)‖∞ ,

‖(b,c)‖∞ = sup
t∈T

‖ct‖+ sup
t∈T

|bt | .

Such a strategy is said to be calibrated with respect to {y(l), ω(l); l ∈ L}.

The proof is identical to the one of Proposition 5 and Corollary 6. We have now the material to
construct our new tool algorithm:

Theorem 15 There exists an internally consistent strategy σ of the forecaster such that for every
strategy τ of Nature and every n ∈ N, with Pσ,τ probability greater than 1−δ:

max
i,k∈I

 Rikn ≤ O

⎛⎝√ ln
(

1
δ

)
n

⎞⎠ .

Proof. The existence of a Laguerre Diagram {Y (l); l ∈ L} associated to a finite set {y(l) ∈
R
J, ω(l) ∈ R; l ∈ L} that refines {Bi; i ∈ I} is implied by Lemma 10 and Proposition 11. So,

for every l ∈ L , there exists i(l) such that Y (l) ⊂ Bi(l). As in the naı̈ve algorithm, the strategy σ of
the decision maker is constructed through a strategy σ̂ calibrated with respect to {y(l), ω(l); l ∈L}.

1903

PERCHET

Whenever, accordingly to σ̂, the decision maker (seen as a predictor) should play l in Γc, then he
(seen as a forecaster) plays i(l) in Γ.

If we denote by j̃n(l) the projection of jn(l) onto Y (l) then:

 Rikn = ∑
l:i(l)=i

|Nn(l)|
n

(
ρ(k, jn(l))−ρ(i(l), jn(l))

)
≤ ∑

l:i(l)=i

|Nn(l)|
n

([
ρ(k, jn(l))−ρ(k, j̃n(l))

]
+

[
ρ(i(l), j̃n(l))−ρ(i(l), jn(l))

])
≤ ∑

l:i(l)=i

|Nn(l)|
n

(
2Mρ

∥∥∥ j̃n(l)− jn(l)
∥∥∥)

≤ (2MρMPL)max
l,k∈L

|Nn(l)|
n

([
‖ jn(l)− y(l)‖2 −ω(l)

]
−
[
‖ jn(l)− y(k)‖2 −ω(k)

])
where the second inequality is due to the fact that i(l) ∈ BR(j̃n(l)) and the third to the fact that ρ is
Mρ-Lipschitz. The fourth inequality is a consequence of Lemma 12.

Corollary 14 yields that for every strategy τ of Nature, with Pσ,τ probability at least 1−δ:

max
l,k

Nn(l)
n

([
‖ jn(l)− y(l)‖2 −ω(l)

]
−
[
‖ jn(l)− y(k)‖2 −ω(k)

])
≤

8
√
L‖(b,c)‖∞√

n
+

4‖(b,c)‖∞√
n

√
2ln

(
L2

δ

)
,

therefore with Ω0 = 16MρMPL3/2‖(b,c)‖∞ and Ω1 = 8MρMPL1/2‖(b,c)‖∞ one has that for every
strategy of Nature and with probability at least 1−δ:

max
i,k∈I

 Rikn = max
i,k∈I

|Nn(i)|
n

(
ρ(k, jn(i))−ρ(i, jn(i))

)
≤ Ω0√

n
+
Ω1√
n

√
2ln

(
L2

δ

)
.

�

Remark 16 Theorem 15 is already well-known. The construction of this internally consistent strat-
egy relies on Theorem 13, which is implied by the existence of internally consistent strategies...
Moreover, as mentioned before, it is far from being efficient since L, that enters both in the compu-
tational complexity and in the constant, is polynomial in IJ. There exist efficient algorithms, see, for
example, Foster and Vohra (1997) or Blum and Mansour (2007).

However, the calibration is defined in the space of Nature’s action, where real payoffs are ir-
relevant; they are only used to decide which action is associated to each prediction. Therefore the
algorithm does not require that the forecaster observes his real payoffs, as long as he knows what
is the best response to his information (Nature’s action in this case). This is precisely why our
algorithm can be generalized to the partial monitoring framework.

The polytopial decomposition of Δ(J) induced by {bt , ct ; t ∈ T } is exactly the same as the one
induced by {γb(t), γc(t); t ∈ T } for any γ > 0. Thus, by choosing γ small enough, ‖(b,c)‖∞ and
therefore the constants in Corollary 14 can be arbitrarily small (i.e., multiplied by any γ> 0).

1904

INTERNAL REGRET WITH PARTIAL MONITORING: CALIBRATION-BASED OPTIMAL ALGORITHMS

However, these two Laguerre diagrams are associated to the sets of sites and weights L(1) and
L(γ), where L(γ) = {γz(l), γω(l)+ γ2‖z(l)‖2− γ‖z(l)‖; l ∈ L}. If L(γ) is used instead of L(1),
then the constantMP defined in Lemma 12 should be divided by γ. So, as expected, the constants in
the proof of Theorem 15 do not depend on γ. From now on, we will assume that ‖(b,c)‖∞ is smaller
than 1.

3. Partial Monitoring

In the partial monitoring framework, the decision maker does not observe Nature’s actions. There is
a finite set of signals S (of cardinality S) such that, at stage n the forecaster receives only a random
signal sn ∈ S . Its law is s(in, jn) where s is a mapping from I × J to Δ(S), known by the decision
maker.

We define the mapping s from Δ(J) to Δ(S)I by s(y) =
(
Ey [s(i, j)]

)
i∈I

∈ Δ(S)I . Any element

of Δ(S)I is called a flag (it is a vector of probability distributions over S) and we will denote by F
the range of s. Given a flag f in F , the decision maker cannot distinguish between any different
mixed actions y and y′ in Δ(J) that generate f , that is, such that s(y) = s(y′) = f . Thus s is the
maximal informative mapping about Nature’s action. We denote by fn = s(jn) the (unobserved)
flag of stage n ∈N.

Example 1 Label efficient prediction (Cesa-Bianchi and Lugosi, 2006, Example 6.8):
Consider the following game. Nature chooses an outcome G or B and the forecaster can either

observe the actual outcome (action o) or choose to not observe it and pick a label g or b. His payoff
is equal to 1 if he chooses the right label and otherwise is equal to 0. Payoffs and laws of signals
are defined by the following matrices (where a, b and c are three different probabilities over a finite
given set S).

G B G B
o 0 0 o a b

Payoffs: g 0 1 and signals: g c c
b 1 0 b c c

Action G, whose best response is g, generates the flag (a,c,c) and action B, whose best response is
b, generates the flag (b,c,c). In order to distinguish between those two actions, the forecaster needs
to know s(o,y) although action o is never a best response (but is purely informative).

The worst payoff compatible with x and f ∈ F is defined by:

W (x, f) = inf
y∈s−1(f)

ρ(x,y),

andW is extended to Δ(S)I byW (x, f) =W (x,ΠF (f)).
As in the full monitoring case, we define, for every ε ≥ 0, the ε-best response multivalued

mapping BRε : Δ(S)I ⇒ Δ(I) by :

BRε(f) =

{
x ∈ Δ(I); W (x, f)≥ sup

z∈Δ(I)
W (z, f)− ε

}
.

Given a flag f ∈ Δ(S)I , the functionW (·, f) may not be linear so the best response of the forecaster
might not contain any element of I .

1905

PERCHET

Example 2 Matching pennies in the dark:
Consider the matching pennies game where the forecaster does not observe the coin but al-

ways receives the same signal c: every choice of Nature generates the same flag (c,c). For every
x ∈ [0,1] = Δ({H,T}) (the probability of playing T), the worst compatible payoff W (x,(c,c)) =
miny∈Δ(J)ρ(x,y) is equal to −|1−2x| thus is non-negative only for x= 1/2. Therefore the only best
response of the forecaster is to play 1

2H+ 1
2T , while actions H and T give the worst payoff of -1.

The definition of external consistency and especially Equation (1) extend naturally to this frame-
work: a strategy of the decision maker is externally consistent if he could not have improved his
payoff by knowing, before the beginning of the game, the average flag:

Definition 17 (Rustichini, 1999) A strategy σ of the forecaster is externally consistent if for every
strategy τ of Nature:

limsup
n→+∞

max
z∈Δ(I)

W (z, fn)− ρn ≤ 0, Pσ,τ-as.

The main issue is the definition of internally consistency. In the full monitoring case, the fore-
caster has no internal regret if, for every i ∈ I , the action i is a best-response to the empirical
distribution of Nature’s actions, on the set of stages where i was actually chosen. In the partial mon-
itoring framework, the decision maker’s action should be a best response to the average flag. Since
it might not belong to I but rather to Δ(I), we will (following Lehrer and Solan, 2007) distinguish
the stages not as a function of the action actually chosen, but as a function of its law.

We make an extra assumption on the characterization of the forecaster’s strategy: it can be
generated by a finite family of mixed actions {x(l) ∈ Δ(I); l ∈ L} such that, at stage n ∈ N, the
forecaster chooses a type ln and, given that type, the law of his action in is x(ln) ∈ Δ(I).

Denote by Nn(l) = {m ∈ {1, ..,n}; lm = l} the set of stages before the n-th whose type is l.
Roughly speaking, a strategy will be ε-internally consistent (with respect to the set L) if, for every
l ∈ L , x(l) is an ε-best response to fn(l), the average flag on Nn(l) (or the frequency of the type l,
|Nn(l)|/n, converges to zero).

The finiteness of L is required to get rid of strategies that trivially insure that every frequency
converges to zero (for instance by choosing only once every mixed action). The choice of {x(l); l ∈
L} and the description of the strategies are justified more precisely below by Remark 21 in Section
3.2.

Definition 18 (Lehrer and Solan, 2007) For every n ∈ N and every l ∈ L , the average internal
regret of type l at stage n is

Rn(l) = sup
x∈Δ(I)

[
W (x, fn(l))− ρn(l)

]
.

A strategy σ of the forecaster is (L ,ε)-internally consistent if for every strategy τ of Nature:

limsup
n→+∞

|Nn(l)|
n

(
Rn(l)− ε

)
≤ 0, ∀l ∈ L , Pσ,τ-as.

In words, a strategy is (L ,ε)-internally consistent if, for every l ∈ L , the forecaster could not have
had, for sure, a better payoff (of at least ε) if he had known, before the beginning of the game, the
average flag on Nn(l) (or the frequency of l is small).

1906

INTERNAL REGRET WITH PARTIAL MONITORING: CALIBRATION-BASED OPTIMAL ALGORITHMS

3.1 A Naı̈ve Algorithm

Theorem 19 (Lehrer and Solan, 2007) For every ε > 0, there exist (L ,ε)-internally consistent
strategies.

Lehrer and Solan (2007) proved the existence and constructed such strategies and an alternative, yet
close, algorithm has been provided by Perchet (2009). The main ideas behind them are similar to the
full monitoring case so we will quickly describe them. For simplicity, we assume in the following
sketch of the proof, that the decision maker fully observes the sequence of flags fn = s(jn) ∈ Δ(S)I .

Recall thatW is continuous (Lugosi et al., 2008, Proposition A.1), so for every ε> 0 there exist
two finite families G = { f (l)∈ Δ(S)I; l ∈ L}, a δ-grid of Δ(S)I , and X = {x(l)∈ Δ(I); l ∈ L} such
that if f is δ-close to f (l) and x is δ-close to x(l) then x belongs to BRε (f). A calibrated algorithm
ensures that:

i) fn(l) is asymptotically δ-close to f (l), because it is closer to f (l) than to every other f (k);

ii) in(l) converges to x(l) as soon as |Nn(l)| is big enough, because on Nn(l) the choices of action
of the decision maker are independent and identically distributed accordingly to x(l);

iii) ρn(l) converges to ρ(x(l), jn(l)) which is greater thanW
(
x(l), fn(l)

)
because jn(l) generates

the flag fn(l).

Therefore, W
(
x(l), fn(l)

)
is close to W

(
x(l), f (l)

)
which is greater than W

(
z, f (l)

)
for any z ∈

Δ(I). As a consequence ρn(l) is asymptotically greater (up to some ε > 0) than supzW
(
z, fn(l)

)
,

as long as |Nn(l)| is big enough.
The difference between the two algorithm lies in the construction of a calibrated strategy. On

one hand, the algorithm of Lehrer and Solan (2007) reduces to Blackwell’s approachability of some
convex set C ⊂R

LSI; it therefore requires to solve at each stage a linear program of size polynomial
in εSI , after a projection on C . On the other hand, the algorithm of Perchet (2009) is based on the
construction given in Section 2.1.1; it solves at each stage a system of linear equation of size also
polynomial in εSI .

The conclusions of the full monitoring case also apply here: these highly non-efficient algo-
rithms cannot be used directly to construct (L ,0)-internally consistent strategy with optimal rates
since the constants depend drastically on ε . We will rather prove that one can define wisely once for
all { f (l), ω(l); l ∈L} and {x(l); l ∈L} (see Proposition 20 and Proposition 11) so that x(l)∈ Δ(I)
is a 0-best response to any flag f in P(l), the Laguerre cell associated to f (l) and ω(l).

The strategy associated with these choices will be (L ,0)-internally consistent, with an optimal
rate of convergence and a computational complexity polynomial in L.

3.2 Optimal Algorithms

As in the full monitoring framework (cf Lemma 10), we define for every x∈Δ(I) the x-best response
area Bx as the set of flags to which x is a best response :

Bx =
{
f ∈ Δ(S)I; x ∈ BR(f)

}
= BR−1(x) .

SinceW is continuous, the family {Bx; x ∈ Δ(I)} is a covering of Δ(S)I . However, one of its finite
subsets can be decomposed into a finite polytopial complex:

1907

PERCHET

Proposition 20 There exists a finite family X = {x(l) ∈ Δ(I); l ∈ L} such that the family{
Bx(l); l ∈ L

}
of associated best response area can be further subdivided into a polytopial com-

plex of Δ(S)I .

The rather technical proof can be found in Appendix A.2. In this framework and because of the
lack of linearity of W , any Bx(l) might not be convex nor connected. However, each one of them is
a finite union of polytopes and the family of all those polytopes is a complex of Δ(S)I .

Remark 21 As a consequence of Proposition 20, there exists a finite set X ⊂ Δ(I) that contains
a best response to any flag f . In particular, if the decision maker could observe the flag fn before
choosing his action xn then, at every stage, xn would be in X. So in the description of the strategies
of the forecaster, the finite set {x(l); l ∈ L} = X is in fact intrinsic that is, determined by the
description of the payoff and signal functions.

As a consequence of this remark, mentioning L is irrelevant; so we will, from now on, simply
speak of internally consistent strategies.

3.2.1 OUTCOME DEPENDENT SIGNALS

In this section, we assume that the laws of the signal received by the decision maker are independent
of his action. Formally, for every i, i′ ∈ I , the two mappings s(i, ·) and s(i′, ·) are equal. Therefore,
F (the set of realizable flags) can be seen as a polytopial subset of Δ(S). Proposition 20 holds in
this framework, hence there exists a finite family {x(l); l ∈ L} such that for any flag f ∈ F , there
is some l ∈ L such that x(l) is a best-reply to f . Moreover, for a fixed l ∈ L , the set of such flags is
a polytope.

Theorem 22 There exists an internally consistent strategy σ such that for every strategy τ of Nature,
with Pσ,τ-probability at least 1−δ:

sup
l∈L

|Nn(l)|
n

Rn(l)≤ O

⎛⎝√ ln
(

1
δ

)
n

⎞⎠ .

Proof. Propositions 11 and 20 imply the existence of two finite families {x(l); l ∈ L} and
{ f (l), ω(l); l ∈ L} such that x(l) is a best response to any f in P(l), the Laguerre cell associated
to f (l) and ω(l). Assume, for the moment, that for any two different l and k in L , the probability
measures x(l) and x(k) are different.

The strategy σ is defined as follows. Compute a strategy σ̂ calibrated with respect to
{ f (l), ω(l); l ∈L}. When the decision maker (seen as a predictor) should choose l ∈L accordingly
to σ̂, then he (seen as a forecaster) plays accordingly to x(l) in the original game. Corollary 14 (with
the assumption that ‖(b,c)‖∞ is smaller than 1) implies that with Pσ,τ probability at least 1−δ1:

max
l∈L

|Nn(l)|
n

([
‖ sn(l)− f (l)‖2 −ω(l)

]
−
[
‖ sn(l)− f (k)‖2 −ω(k)

])
≤

8
√
L√
n

+
4√
n

√
2ln

(
L2

δ1

)
,

1908

INTERNAL REGRET WITH PARTIAL MONITORING: CALIBRATION-BASED OPTIMAL ALGORITHMS

therefore combined with Lemma 12, this yields that :

max
l∈L

|Nn(l)|
n

∥∥∥ sn(l)− f̃n(l)
∥∥∥≤ 8MP

√
L√

n
+

4MP√
n

√
2ln

(
L2

δ1

)
, (4)

where f̃n(l) is the projection of sn(l) onto P(l).
Hoeffding-Azuma’s inequality implies that with Pσ,τ probability at least 1−δ2:

max
l∈L

|Nn(l)|
n

∥∥∥∥ sn(l)− fn(l)

∥∥∥∥≤
√√√√2ln

(
2SL
δ2

)
n

(5)

and with probability at least 1−δ3 :

max
l∈L

|Nn(l)|
n

∣∣∣∣ ρn(l)−ρ(x(l), jn(l))

∣∣∣∣≤Mρ

√√√√2ln
(

2L
δ3

)
n

. (6)

W is MW -Lipschitz in f (see Lugosi et al., 2008) and s(jn(l)) = fn(l) therefore:

 ρn(l)≥W
(
x(l), f̃n(l)

)
−
∣∣∣ ρn(l)−ρ(x(l), jn(l))

∣∣∣−MW

∥∥∥ fn(l)− f̃n(l)
∥∥∥ (7)

and

max
x∈Δ(I)

W
(
x, fn(l)

)
≤ max

x∈Δ(I)
W
(
x, f̃n(l)

)
+MW

(∥∥∥ sn(l)− fn(l)
∥∥∥+∥∥∥ sn(l)− f̃n(l)

∥∥∥)
≤ W

(
x(l), f̃n(l)

)
+MW

(∥∥∥ sn(l)− fn(l)
∥∥∥+∥∥∥ sn(l)− f̃n(l)

∥∥∥) (8)

since x(l) is a best response to f̃n(l). Equations (7) and (8) yield

Rn(l)≤ 2MW

∥∥∥ sn(l)− fn(l)
∥∥∥+2MW

∥∥∥ sn(l)− f̃n(l)
∥∥∥+ ∣∣∣ ρn(l)−ρ(x(l), jn(l))

∣∣∣. (9)

Combining Equations (4), (5), (6) and (9) gives that with probability at least 1− δ, if we define
Ω0 = 16MPMW

√
L, Ω1 =

(
2MW +8MWMP+Mρ

)
and Ω2 = L(L+2S+2):

sup
l∈L

|Nn(l)|
n

Rn(l)≤
Ω0√
n
+
Ω1√
n

√
2ln

(
2Ω2

δ

)
If there exist l and k such that x(l) = x(k), then although the decision maker made two different

predictions f (l) or f (k), he played accordingly to the same probability x(l) = x(k). Define Nn(l,k)
as the set of stages where the decision maker predicts either f (l) or f (k) up to stage n, fn(l,k) as
the average flag on this set, ρn(l,k) as the average payoff and Rn(l,k) as the regret. SinceW (x, ·) is
convex for every x ∈ Δ(I), then maxx∈Δ(I)W (x, ·) is also convex so

|Nn(l,k)|
n

max
x∈Δ(I)

W (x, fn(l,k))≤
|Nn(l)|
n

max
x∈Δ(I)

W (x, fn(l))+
|Nn(k)|
n

max
x∈Δ(I)

W (x, fn(k))

1909

PERCHET

and − |Nn(l,k)|
n

 ρn(l,k) =−|Nn(l)|
n

 ρn(l)−
|Nn(k)|
n

 ρn(k)

so we still have

|Nn(l,k)|
n

Rn(l,k)≤ O

⎛⎝√ ln
(

1
δ

)
n

⎞⎠ .

Hence the previous bound holds up to a factor L. �

Remark 23 Lugosi et al. (2008) have constructed an externally consistent strategy, that is, such
that, asymptotically, for any strategy τ of Nature:

 ρn ≥ max
z∈Δ(I)

W
(
z, fn
)
, Pσ,τ−as.

The final argument in the proof of Theorem 22 also implies that an internally consistent strategy is
also externally consistent, hence we can compare bounds between our algorithm.

If the signals are deterministic, Lugosi et al. (2008)’s efficient algorithm has an expected regret
smaller than O

(
n−1/2

)
. However this bound became, with random signals, O

(
n−1/4

)
. Thus our al-

gorithm, along with computing no internal regret, has a better rate of convergence, the optimal one.
Concerning the computational complexity, the true purpose of this algorithm being the minimization
of internal regret, it is not efficient to bound external regret.

3.2.2 ACTION-OUTCOME DEPENDANT SIGNALS

In this section, we consider the most general framework and we assume that the laws of the signals
might depend on the decision maker’s actions. Our main result is the following:

Theorem 24 There exists an internally consistent strategy σ such that, for every strategy τ of Na-
ture, with Pσ,τ probability at least 1−δ:

max
l∈L

|Nn(l)|
n

Rn(l)≤ O

(
1

n1/3

√
ln

(
1
δ

)
+

1

n2/3
ln

(
1
δ

))
.

Proof. The proof is essentially the same as the one of Theorem 22, so we can assume that x(l) �= x(k)
for any two different l and k in L . The only difference is due to the fact that at stage n ∈ N, the
unobserved flag fn has to be estimated, see, for example, Lugosi et al. (2008).

Following Auer et al. (2002/03), we define for every l ∈ L and n ∈ N, the γ̂n-perturbation of
x(l) by x̂(l,n) = (1− γ̂n)x(l)+ γ̂nu where u is the uniform probability over I and (̂γn)n∈N is a non-
negative non-increasing sequence. For every n ∈ N, let

en =

(
1i=in

x̂(ln,n)[in]
(1s=sn)s∈S

)
i∈I

∈
(
R
S)I ,

where x̂(ln,n)[in] ≥ γn = γ̂n/I > 0 is the weight put by x̂(ln,n) on in. With this notation, en is an
unbiased estimator of fn since Eσ,τ

[
en|hn−1

]
= fn, seen as an element of

(
R
S
)I

.
We define now the strategy of the forecaster. Assume that in an auxiliary game Γc, a predictor

computes σ̃, a calibrated strategy with respect to { f (l), ω(l); l ∈L}, but where the state at stage n is

1910

INTERNAL REGRET WITH PARTIAL MONITORING: CALIBRATION-BASED OPTIMAL ALGORITHMS

the estimator en ∈R
IS. When the decision maker (seen as a predictor) should choose ln accordingly

to σ̃ in Γc, then he (seen as a forecaster) chooses in accordingly to x̂(ln) in the original game.
In order to use Corollary 14, we need to bound vn, Mn and Kn. In the current framework and

thanks to Proposition 11, one has for every l,k ∈ L and n ∈N:

Ul,k
ω,n = 21l=ln ∑

t∈T

σt(k)−σt(l)
T

(
〈en,ct〉+bt

)
,

so using the fact that ‖(b,c)‖2
∞ = 1 and the definition of en:

sup
l,k∈L

sup
m≤n

Eσ,τ

[∣∣∣Ul,k
ω,m

∣∣∣2]≤ 16Eσ,τ

[
‖en‖2

]
‖(b,c)‖2

∞ ≤ 16∑
i∈I

x̂(ln,n)[i]
(x̂(ln,n)[i])2 ≤ 16

I
γn

.

As a consequence, Kn ≤ 4 1
γn

, vn ≤ 4
√

I
γn

and Mn ≤ 4
√

LI
γn

. Lemma 12 implies that, with Pσ,τ

probability at least (1−δ1), for every l ∈ L :

|Nn(l)|
n

∥∥∥ en(l)− f̃n(l)
∥∥∥≤ 8

√
LIMP√
γnn

+
8
√
IMP√
γnn

√
2ln

(
L2

δ1

)
+

8
3
MP

γnn
ln

(
L2

δ1

)
,

where f̃n(l) is the projection of en(l) onto P(l).

Following Lugosi et al. (2008), since for every i∈ I and s∈ S , Eσ,τ

[
|ei,sn |2

]
≤ 1/γn, Freedman’s

inequality implies that with probability at least 1−δ2, for every l ∈ L

|Nn(l)|
n

∥∥∥ en(l)− fn(l)
∥∥∥≤√

IS

(√
2

1
nγn

ln

(
2LIS
δ2

)
+

2
3nγn

ln

(
2LIS
δ2

))
.

Hoeffding-Azuma’s inequality implies that with probability at least 1−δ3:

max
l∈L

Nn(l)
n

∣∣∣ ρn(l)−ρ(x(l), jn(l))
∣∣∣≤Mρ

√
2
n

ln

(
2L
δ3

)
+2Mρ

∑m∈Nn(l) γ̂m
n

,

and by taking γn = n−1/3, one has ∑m∈Nn(l) γ̂m ≤ 3I
2 n

2/3. As a consequence, for every l ∈ L , with
probability at least 1−δ:

Nn(l)
n

Rn(l)≤
Ω1

n1/3
+

Ω2

n1/3

√
2ln

(
2Ω5

δ

)
+

Ω3

n1/2

√
2ln

(
2Ω5

δ

)
+

2
3
Ω4

n2/3
ln

(
2Ω5

δ

)
with the constants defined by Ω1 = 16MPMW

√
LI+ 3MWMρI, Ω2 = 2MW

√
I
(
8MP+

√
S
)
, Ω3 =

Mρ, Ω4 = 2MW (4MP+
√
IS) and Ω5 = L(L+2+2IS). They can be decreased if concentration

inequalities in Hilbert spaces are used (see Section 4.3). �

In the label efficient prediction game defined in Example 1, for every strategy σ of the decision
maker there exists a sequence of outcomes such that the forecaster expected regret is greater than
n−1/3/7, see Cesa-Bianchi et al. (2005, Theorem 5.1). Therefore the rate of n−1/3 of our algorithm
is optimal for both internal and external regret.

1911

PERCHET

The computational complexity of this internally consistent algorithm is polynomial in L. Thus
it can be seen, in some sense, as an efficient one. A question left open is the existence of an
algorithm whose computational complexity is polynomial in the minimal number of best-response
areas required to cover Δ(S)I , see Proposition 20.

The following Section 4.1 deals with a simpler question and exhibits an internally consistent
algorithm which requires to solve at each stage a linear program of size polynomial in L0, the
minimal number of polytopes on which BR is constant, instead of a system of linear equations of
size L.

4. Concluding Remarks

This section sheds light on some improvements of the computational complexity and constants of
our algorithm and also on the possibility to remove the assumption that J is finite.

4.1 Second Algorithm: Calibration and Polytopial Complex

The algorithms we described are quite easy to run stage by stage since the forecaster only needs
to compute some invariant measures of non-negative matrices. However, they require to construct
the Laguerre diagram P = {P(l); l ∈ L} given the set {bt , ct ; t ∈ T }. And we have shown that L,
which is a factor both in the complexity of the algorithms and in their rate of convergence, can be
in the order of TSI hence polynomial in LSI0 .

This section is devoted to a modification of the algorithm that does not require to compute a
Laguerre diagram but which is more difficult, stage by stage, to implement. The only difference
between the two algorithms is in the definition of calibration.

Let {K(l); l ∈ L0} be a finite polytopial complex of Δ(J). It is defined by two finite families{
ct ∈R

J, bt ∈R; t ∈ T
}

and {T (l)⊂ T ; l ∈ L} such that:

K(l) = {y ∈ Δ(J); 〈y,ct〉 ≤ bt , ∀t ∈ T (l)⊂ T } , ∀l ∈ L0 .

Let us define (ct,l,bt,l) = (ct ,bt) if t ∈ T (l) and (ct,l,bt,l) = (0,0) otherwise. Then we can rewrite
K(l) = {y ∈ Δ(J); 〈y,ct,l〉 ≤ bt,l, ∀t ∈ T }.

Definition 25 A strategy σ is calibrated with respect to the complex {K(l); l ∈ L0} if for every
strategy τ of Nature, Pσ,τ-as:

limsup
n→∞

|Nn(l)|
n

(
〈 jn(l),ct,l〉−bt,l

)
≤ 0, ∀t ∈ T ,∀l ∈ L0 .

Theorem 26 There exist calibrated strategies with respect to any finite polytopial complex {K(l); l ∈
L0}.

Proof. Consider the following auxiliary two-person game Γ′c, where at stage n ∈ N the predictor
(resp. Nature) chooses ln ∈ L0 (resp. jn ∈ J) which generates the vector payoff Un ∈ R

TL0 defined
by:

Ulk
n =

{
〈1 jn= j,ct,l〉−bt,l if l = ln

0 otherwise.
.

1912

INTERNAL REGRET WITH PARTIAL MONITORING: CALIBRATION-BASED OPTIMAL ALGORITHMS

Any strategy that approaches the negative orthantΩ− in Γ′c is calibrated with respect to the complex
{K(l); l ∈ L0}.

Blackwell’s characterization of approachable convex sets (Blackwell, 1956a, Theorem 3) im-
plies that the predictor can approach the convex set Ω− if (and only if) for every mixed action
of Nature in Δ(J), he has an action x ∈ Δ(L0) such that the expected payoff is in Ω−. Given
yn ∈ Δ(J), choosing l(yn) ∈ L0, where l(yn) is the index of the polytope that contains yn, ensures
that Eyn,l(yn)[Un] is in Ω−. Therefore there exist calibrated strategies with respect to any polytopial
complex. �

This modification of the definition of calibration does not change the other part of our algorithms
nor the remaining of the proofs (in particular, to calibrate the sequence of unobserved flags, the fore-
caster must use γ̂n-perturbations). The constants in the rates of convergence are now smaller since

L0 can be much smaller than L and in Γ′c, E[‖Un‖2] is bounded by O
(
T0
γn

)
where T0 = supl∈L0 T (l)

is the maximum number of hyperplanes defining a polytope of the complex.
The main argument behind this algorithm (i.e., the characterization of approachable convex

sets of Blackwell, 1956a) is quite close, in spirit, to the one of Lehrer and Solan (2007). Note
that however, with our representation, the projection on Ω− can be computed linearly in TL0, so
polynomially in L0. Therefore, it reduces to the construction of an approachability strategy and so,
as shown by Blackwell (1956a), to the resolution, at each stage, of a linear programming of size
polynomial in L0.

4.2 Extension to the Compact Case

We prove in this section that the finiteness of J is not required.
Assume that instead of choosing jn at stage n ∈N, which generates the flag fn = s(jn) and an

outcome vector
(
ρ(i, jn)

)
i∈I
, Nature chooses directly an outcome vector On ∈ [−1,1]I and a flag fn

which belongs to s(On) where s is a multivalued mapping from [−1,1]I into Δ(S)I . As before, the
decision maker’s payoff is Oin

n (the in-th coordinate of On) and he receives a signal sn whose law is
f inn . Strategies of the forecaster and consistency are defined as before.

Theorem 27 If the graph of s is a polytope, then there exists an internally consistent strategy σ
such that, for every strategy τ of Nature, with Pσ,τ probability at least 1−δ:

max
l∈L

|Nn(l)|
n

Rn(l)≤ O

(
1

n1/3

√
ln

(
1
δ

)
+

1

n2/3
ln

(
1
δ

))
.

The proof of this result is identical to the one of Theorem 24.
Note that the assumption that the graph of s is a polytope is fulfilled in the finite dimension case.

The mapping s is multivalued since in finite dimension there might exist two different mixed actions
y1,y1 in Δ(J) that generate the same outcome vector (i.e., ρ(·,y1) = ρ(·,y2) =O) but different flags
(i.e., f1 = s(y1) �= s(y2) = f2). Hence we should have f1, f2 ∈ s(O).

4.3 Strengthening of the Constants

We propose two different ideas to strengthen the constants of our algorithm. First, we can use (as
did Lugosi et al., 2008) only one concentration inequality for every coordinate of the vector Uω,n

1913

PERCHET

instead of one concentration inequality per coordinate. Second, we can implement sparser vector
payoffs (so that its norm decreases) by looking at a slight different definition of calibration.

4.3.1 CONCENTRATION INEQUALITIES IN HILBERT SPACES

The rates of convergence of our algorithms rely mainly on three properties: Blackwell’s approacha-
bility theorem, Hoeffding-Azuma’s and Freedman’s inequalities. These tools allowed us to study the
convergence of a sequence of vectors U+

n towards 0. Approachability is well defined for sequences
of vectors, however the two concentration inequalities hold only for real valued martingales. To
circumvent this issue, we used in the proofs the fact that if a process

{
Un ∈R

d
}
n∈N is a martin-

gale then, for each coordinate, the process
{
Uk
n ∈R

}
n∈N is a real valued martingale. This does not

use the fact that Un might be sparse and the use of concentration inequalities in Hilbert space can
sharpen the constant.

Indeed, recall Hoeffding-Azuma’s inequality:

Lemma 28 (Hoeffding, 1963; Azuma, 1967) LetUn be a sequence of martingale differences bounded
by K, that is, for every n ∈N, Eσ,τ [Un+1|hn] = 0 and |Un|< K.

Then for every n ∈N and every ε> 0:

Pσ,τ (| Un| ≥ ε)≤ 2exp

(−nε2

2K2

)
,

which can be expressed as

Pσ,τ

(
| Un| ≤ K

√
2
n

ln

(
2
δ

))
≥ 1−δ.

Chen and White (1996) proved an equivalent property for vector martingale in R
d .

Lemma 29 (Chen and White, 1996) LetUn be a sequence of martingale differences inRd bounded
almost-surely by K > 0. Then for every n ∈N and for every ε> 0:

Pσ,τ (‖ Un‖ ≥ ε)≤ 2max

{
1,

√
nε2

2K2

}
exp

(−nε2

2K2

)
≤ 2exp

(
−α nε

2

2K2

)
,

for every α≤ 1− 1
2e (which equals approximatively 0.81).

Assume that for every n ∈N, ‖Un‖∞ ≤ ‖U‖∞ and ‖Un‖2 ≤ ‖U‖2; we can deduce from the use
of only Hoeffding-Azuma’s inequality that:

Pσ,τ

(
max
l,k

|Nn(l)|
n

∣∣ Ul,k
n

∣∣≥ ε

)
≤ 2L2 exp

(−nε2

2‖U‖2
∞

)
.

However, Chen and White’s result, along with the fact that ‖Un‖ ≤ L, implies that:

Pσ,τ

(
max
l,k

|Nn(l)|
n

∣∣ Ul,k
n

∣∣≥ ε

)
≤ 2exp

(−nε2

4‖U‖2
2

)
which can reduce the dependency in L. The effects is even more dramatic when estimating the
sequences of flags, since en has only positive component (so ‖en‖∞ = ‖en‖2).

There also exist variants of Bernstein’s inequality, see, for example, Yurinskii (1976) in Hilbert
spaces that can be used in order to get more precise constants.

1914

INTERNAL REGRET WITH PARTIAL MONITORING: CALIBRATION-BASED OPTIMAL ALGORITHMS

4.3.2 CALIBRATION WITH RESPECT OF NEIGHBORHOODS

Definition 30 Given a finite set Y = {y(l) ∈ R
d , ω(l) ∈ R; l ∈ L}, y(k) is a neighbor of y(l) if

k �= l and the dimension of P(l)∩P(k) is equal to d−1.

We defined a calibrated strategy with respect to Y , as a strategy σ such that jn(l) is asymptoti-
cally closer to y(l) than to any other y(k) as soon as the frequency of l does not go to zero. In fact,
 jn(l) needs only to be closer to y(l) than to any of its neighbors. So one can construct neighbors-
calibrated strategies by modifying the algorithm given in Proposition 5; the payoff at stage n is now
denoted byU ′

n and is defined by:(
U ′
n

)lk
=

{
‖ jn− y(l)‖2 −‖ jn− y(k)‖2 if l = ln and k is a neighbor of l

0 otherwise
.

The strategy consisting in choosing an invariant measure of (U ′
n)

+ is calibrated and the squared
maximal second order moment M2

n = supm≤nEσ,τ
[
‖Um‖2

]
equals 4N , where N is the maximal

number of neighbors. This latter can be much smaller than 4, and the gain from this modification is
limpid if we consider ε-calibration.

Indeed, in order to construct such strategies, we usually take any ε-discretization of Δ(J) so that
L=O

(
ε−(J−1)

)
. However, there exists a discretization such thatN = 2−(J−1), which is independent

of ε.

Acknowledgments

I deeply thank my PhD advisor Sylvain Sorin for its great help and support. I also acknowledge
very useful comments of Gilles Stoltz. This paper was supported by ANR under grant ANR-10-
BLAN-0112.

Appendix A. Proofs of Technical Results

This section is devoted to the proofs of previously mentioned results, that is, Lemma 12 and Propo-
sition 20.

A.1 Proof of Lemma 12

Let l ∈ L be fixed. we denote by C =
{
ct ∈R

d ; t ∈ T (l)
}

the finite family of normal vectors to
(d−1)-faces of P(l) and by B = {bt ∈R; t ∈ T (l)} the family of scalars such that :

P(l) =
{
Z ∈R

d ; 〈Z,ct〉 ≤ bt , ∀t ∈ T (l)
}
.

Any points satisfying Equation (3) belongs to

Pε(l) =
{
Z ∈R

d ; 〈Z,ct〉 ≤ bt + ε, ∀t ∈ T (l)
}
.

For any vertex v of P(l), there exists t1, .., td ∈ T (l) such that

v=
d⋂
k=1

{
Z ∈R

d ; 〈Z,ctk〉= btk

}
1915

PERCHET

and {ct1 , ..,ctd} is a basis of Rd . If we denote by vε the point defined by

vε =
d⋂
k=1

{
Z ∈R

d ; 〈Z,ctk〉= btk + ε
}

then Pε(l) is included in the convex hull of every vε.
Equation (3) can be rephrased as: if x belongs to Pε(l) then d(x,P(l)) is smaller than MPε.

Therefore it is enough to prove this property for every vε since d(·,P(l)) is a convex mapping thus
maximized over a polytope on one of its vertices.

With these notations, for every k ∈ {1, ..,d}, 〈vε− v,ctk〉 = ε and there exists a unique decom-
position vε− v = ∑d

k=1αkctk . Define the symmetric d× d Gram matrix Ql by Qkk′
l = 〈ctk ,ctk′ 〉 and

α= (α1, ..,αd). Then following classical properties hold:

1) ‖vε−v‖2=αTQlα and there exist a diagonal matrixD= diag(λ1, ..,λd)with 0< λ1≤ ..≤ λd
and a d×d matrix P and such that P−1 = PT and Ql = PTDP;

2) Qα= ε= (ε, ..,ε) therefore α= Q−1
l ε;

3) ‖vε− v‖2 = (Q−1
l ε)TQl(Q

−1
l ε) = εTPTD−1Pε≤ ε2dλ−11 .

Therefore, for any Z ∈ Pε, and in particular for any point that satisfies Equation (3), ‖Z−Πl(Z)‖ ≤
maxv ‖vε− v‖ ≤ ε.

√
d
√
λ1

−1
. The result follows from the fact that L is finite. The constant MP in

Lemma 12 is smaller than the square root of the inverse of the smallest eigenvalue of all Ql times√
d; it depends on the inner products 〈ct ,ct ′ 〉 and on the dimension of F .

A.2 Proof of Proposition 20

Definition 31 Let K be a polytope. A correspondence B : K ⇒ R
d is polytopial constant, if there

exists {K(l); l ∈ L} a finite polytopial complex of K and {x(l); l ∈ L} such that x(l) ∈ B(f) for
every f ∈ K(l).

Let us now restate Proposition 20:

Proposition 32 BR is polytopial constant.

This theorem is well-known and quite useful in the full monitoring case (see for example the Lemke
and Howson, 1964 algorithm). In the compact case, Proposition 20 becomes:

Proposition 33 If s has a polytopial graph, then BR is polytopial constant.

The proofs of both propositions rely on polytopial parameterized max-min programs defined in the
next subsection.

A.2.1 CONSTANT SOLUTION OF A POLYTOPIAL PARAMETERIZED MAX-MIN PROGRAM

A Polytopial Parameterized Max-Min Program (PPMP) is defined as follows. Let X and Y be two
Euclidian spaces of respective dimension d1 and d2. Consider the program (Pf) (depending on a
parameter f that belongs to some polytope F in Rd3) that is defined by

(Pf) : max
x ∈ X

s.t. Dx≤ d

min
y ∈ Y

s.t. Ef y≤ e f

xAy ,

1916

INTERNAL REGRET WITH PARTIAL MONITORING: CALIBRATION-BASED OPTIMAL ALGORITHMS

where A is a d1×d2 matrix, {Ef , e f ; f ∈ F } is a family of matrices and vectors (we do not specify
the sizes the matrices, as long as each inequality makes sense) and D,d are also a fixed matrix and
vector such that the admissible set D = {x ∈ X ; Dx ≤ d} is a polytope. The solution set of (Pf) is
denoted by B(f)⊂ X and this defines a multivalued mapping B(·) from F into X .

Theorem 34 Assume that the correspondence S defined by:

S :
F ⇒ Y
f → S f = {y ∈ Y ; Ef y≤ e f }

has a polytopial graph S. Then B : F ⇒ X is polytopial constant.

Figure 1 illustrates ideas of the proof for a simple example.
Proof. Before going into full details, we first recall the following properties:

i) A linear program is minimized on a vertex of the polytopial feasible set (this is actually
implied by the following point);

ii) Rockafellar (1970, Theorem 27.4, page 270): Given x ∈D and f ∈ F , if y minimizes xAy on
S f then

−xA ∈ NCSf (y) ,
where NCE(y) is the normal cone to the convex set E ⊂R

d at y ∈ E defined by :

NCE(y) =
{
p ∈R

d; 〈p,z− y〉, ∀z ∈ E
}
;

iii) Ziegler (1995, Example 7.3, page 193): If P is a polytope then the finite family
{NCP(v); v is a vertex of P} is a polyhedral complex of Rd called a normal fan (i.e., it is
a finite family of polyhedra that cover Rd and such that each pair has an intersection with
empty interior);

iv) Billera and Sturmfels (1992, page 530): Since for every f ∈ F , S f =Π−1(f) where Π : S⊂
F ×Y →F is the projection with respect to first coordinates, then there exists {K(l); l ∈L},
a polytopial complex of F such that the normal fan to S f is constant on every K(l) (this can
alternatively be deduced from the following point);

v) Rambau and Ziegler (1996, Proposition 2.4, page 221): On each of these polytopes K(l), the
mapping f → S f is linear. In particular, there exists a finite family of affine functions Y (l)
from K(l) to Y such that the vertices of S f are exactly {y(f); y(·) ∈ Y (l)}.

Points i) and ii) imply that if x f maximizes (Pf), then the latter is minimized at some vertex of
S f denoted by y f , again because of point i). Therefore it can be assumed that −x f A is a vertex of
the polytope NCSf (y f)∩DA− where DA− := {−xA; x ∈ D}. Thus B(f), the solution set to (Pf)
contains at least an element of

X f =
{
x ∈D; −xA is a vertex of DA−∩NCSf (y f), for some vertex y f of S f

}
.

By point iii), the normal fan and therefore X f are constant on K(l). The latter can also be
assumed to be finite by taking a unique representant x ∈ X f for every vertices of the intersection of

1917

PERCHET

the normal fan and DA−. Since the number of different fans is finite, for any f ∈ F , the solution set
to (Pf) contains at least an element of the finite set X=

⋃
f∈F X f .

Moreover, for every x ∈ X:

B−1(x) =

{
f ∈ F ; min

y∈S f
xAy≥max

x′∈D
min
y∈S f

x′Ay

}
=

⋃
l∈L

{
f ∈ K(l); min

y∈S f
xAy≥max

x′∈D
min
y∈S f

x′Ay

}
=

⋃
l∈L

⋂
x′∈X

{
f ∈ K(l); min

y∈S f
xAy≥min

y∈S f
x′Ay
}

=
⋃
l∈L

⋂
x′∈X

⋃
y′(·)∈Y (l)

{
f ∈ K(l); min

y∈S f
xAy≥ x′Ay′(f)

}
=

⋃
l∈L

⋂
x′∈X

⋃
y′(·)∈Y (l)

⋂
y(·)∈Y (l)

{
f ∈ K(l); xAy(f)≥ x′Ay′(f)

}
,

where, respectively, the second line is a consequence of point iv), the third line of the definition of
X and the fourth and fifth lines of points i) and v).

By point v), the two mapping y(·) and y′(·) are affine on K(l), so each possible set{
f ∈ K(l); xAy(f)≥ x′Ay′(f)

}
is a polytope as the intersection of an half-space and the polytope K(l). Since, the intersection of
a union of polytopes remains a union of polytopes, for every x ∈ X, B−1(x) is a finite union of
polytopes and B is polytopial constant. �

We can now prove simultaneously Propositions 32 and 33:

A.2.2 PROOF OF PROPOSITIONS 32 AND 33

Since s is linear, its graph, denoted by S, is a polytope. Theorem 34 (with D = Δ(I)) implies that
the solution, denoted by B(f) for every f ∈ F , of the parameterized program

max
x∈Δ(I)

min
y∈s−1(f)

ρ(x,y)

is polytopial constant. We denote by {K(l); l ∈L} a corresponding polytopial complex. If B is con-
stant on K(l), then it is also constant on K̂(l) =Π−1

S (K(l)), which is a finite union of polytopes. �

References

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit
problem. SIAM J. Comput., 32:48–77 (electronic), 2002/03.

F. Aurenhammer. A criterion for the affine equivalence of cell complexes in Rd and convex polyhe-
dra in Rd+1. Discrete Comput. Geom., 2:49–64, 1987.

K. Azuma. Weighted sums of certain dependent random variables. Tôhoku Math. J. (2), 19:357–
367, 1967.

1918

INTERNAL REGRET WITH PARTIAL MONITORING: CALIBRATION-BASED OPTIMAL ALGORITHMS

y2(·)

y4(·)
y6(·)

K(1) K(2) K(3)

N3
N4

N2 N2N2

N1 N1
N6

N5N5

x1

x3
x4

x5

x6
x7

x0

x2

x8

x8

y1(·)

y3(·) S f1 S f3S f2

y5(·)

b)

c)

d)

e)

f)

{Bx;x ∈ X}

x2 x3 x4

x5 x0

x8

x7

x1

x2 x7 x0 x4
h)

g)

K(1)

max
k∈{0,2,3,4}

xkAy1(·)
max

k∈{0,4,5,6,7}
xkAy2(·)

max
k∈{0,1,2,7,8}

xkAy3(·)

x1

x3
x4

x5

x6
x7

x0

x2

x8

x1

x3
x4

x5

x6
x7

x0

x8

x9 x9

x1 x5 x3

Figure 1: Construction of X and the complex. From top to bottom:
a) The graph S, with F ⊂R and some S f in shaded.
b) The polytopial complex with constant normal fan (c) and X f (d).
f) On each line, yi(·) is a minimizer of miny∈S f xkAy.
g) On the first cell, max

x∈D
min
y∈S f

xAy=max{x2Ay1(f);x5Ay2(f);x1Ay3(f)}.
h) The final polytopial complex of K(1).

1919

PERCHET

L. J. Billera and B. Sturmfels. Fiber polytopes. The Annals of Mathematics, 135(3):pp. 527–549,
1992.

D. Blackwell. An analog of the minimax theorem for vector payoffs. Pacific J. Math., 6:1–8, 1956a.

D. Blackwell. Controlled random walks. In Proceedings of the International Congress of Mathe-
maticians, 1954, Amsterdam, vol. III, pages 336–338, 1956b.

A. Blum and Y. Mansour. From external to internal regret. J. Mach. Learn. Res., 8:1307–1324
(electronic), 2007.

R. C. Buck. Partition of space. Amer. Math. Monthly, 50:541–544, 1943.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,
Cambridge, 2006.

N. Cesa-Bianchi, G. Lugosi, and G. Stoltz. Minimizing regret with label efficient prediction. IEEE
Trans. Inform. Theory, 51:2152–2162, 2005.

X. Chen and H. White. Laws of large numbers for Hilbert space-valued mixingales with applica-
tions. Econometric Theory, 12:284–304, 1996.

A. P. Dawid. The well-calibrated Bayesian. J. Amer. Statist. Assoc., 77:605–613, 1982.

D. P. Foster and R. V. Vohra. Calibrated learning and correlated equilibrium. Games Econom.
Behav., 21:40–55, 1997.

D. P. Foster and R. V. Vohra. Asymptotic calibration. Biometrika, 85:379–390, 1998.

D. A. Freedman. On tail probabilities for martingales. Ann. Probability, 3:100–118, 1975.

D. Fudenberg and D. K. Levine. Conditional universal consistency. Games Econom. Behav., 29:
104–130, 1999.

J. Hannan. Approximation to Bayes risk in repeated play. In Contributions to the Theory of Games,
volume 3 of Annals of Mathematics Studies, pages 97–139. Princeton University Press, Princeton,
N. J., 1957.

S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Econo-
metrica, 68:1127–1150, 2000.

W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist.
Assoc., 58:13–30, 1963.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning. J. Mach.
Learn. Res., 11:1563–1600, 2010.

E. Lehrer and E. Solan. Learning to play partially-specified equilibrium. manuscript, 2007.

C. E. Lemke and J. T. Howson, Jr. Equilibrium points of bimatrix games. J. Soc. Indust. Appl.
Math., 12:413–423, 1964.

1920

INTERNAL REGRET WITH PARTIAL MONITORING: CALIBRATION-BASED OPTIMAL ALGORITHMS

G. Lugosi, S. Mannor, and G. Stoltz. Strategies for prediction under imperfect monitoring. Math.
Oper. Res., 33:513–528, 2008.

V. Perchet. Calibration and internal no-regret with random signals. Proceedings of the 20th Inter-
national Conference on Algorithmic Learning Theory, pages 68–82, 2009.

J. Rambau and G. M. Ziegler. Projections of polytopes and the generalized Baues conjecture. Dis-
crete Comput. Geom., 16:215–237, 1996.

R. T. Rockafellar. Convex Analysis. Princeton Mathematical Series, No. 28. Princeton University
Press, Princeton, N.J., 1970.

A. Rustichini. Minimizing regret: the general case. Games Econom. Behav., 29:224–243, 1999.

E. Seneta. Nonnegative Matrices and Markov Chains. Springer Series in Statistics. Springer-Verlag,
New York, second edition, 1981.

S. Sorin. Supergames. In Game theory and applications (Columbus, OH, 1987), Econom. Theory
Econometrics Math. Econom., pages 46–63. Academic Press, San Diego, CA, 1990.

S. Sorin. Lectures on Dynamics in Games. Unpublished Lecture Notes, 2008.

V. Yurinskii. Exponential inequalities for sums of random vectors. Journal of Multivariate Analysis,
6:473 – 499, 1976.

G. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics. Springer-Verlag,
New York, 1995.

1921

Journal of Machine Learning Research 12 (2011) 1923-1953 Submitted 9/09; Revised 1/11; Published 6/11

Dirichlet Process Mixtures of Generalized Linear Models

Lauren A. Hannah LH140@DUKE.EDU
Department of Statistical Science
Duke University
Durham, NC 27708, USA

David M. Blei BLEI@CS.PRINCETON.EDU
Department of Computer Science
Princeton University
Princeton, NJ 08544, USA

Warren B. Powell POWELL@PRINCETON.EDU
Department of Operations Research and Financial Engineering
Princeton University
Princeton, NJ 08544, USA

Editor: Carl Edward Rasmussen

Abstract
We propose Dirichlet Process mixtures of Generalized Linear Models (DP-GLM), a new class of
methods for nonparametric regression. Given a data set of input-response pairs, the DP-GLM
produces a global model of the joint distribution through a mixture of local generalized linear
models. DP-GLMs allow both continuous and categorical inputs, and can model the same class
of responses that can be modeled with a generalized linear model. We study the properties of
the DP-GLM, and show why it provides better predictions and density estimates than existing
Dirichlet process mixture regression models. We give conditions for weak consistency of the joint
distribution and pointwise consistency of the regression estimate.
Keywords: Bayesian nonparametrics, generalized linear models, posterior consistency

1. Introduction

In this paper, we examine the general regression problem. The general regression problem models
a response variable Y as dependent on a set of covariates x,

Y |x∼ f (m(x)).

The function m(x) is the mean function, which maps the covariates to the conditional mean of the
response; the distribution f characterizes the deviation of the response from its conditional mean.
The simplest example is linear regression, where m(x) is a linear function of x, and f is a Gaussian
distribution with mean m(x) and fixed variance.

Generalized linear models (GLMs) extend linear regression to many types of response variables
(McCullagh and Nelder, 1989). In their canonical form, a GLM assumes that the conditional mean
of the response is a linear function of the covariates, and that the response distribution is in an expo-
nential family. Many classical regression and classification methods are GLMs, including logistic
regression, multinomial regression, and Poisson regression.

c©2011 Lauren A. Hannah, David M. Blei and Warren B. Powell.

HANNAH, BLEI AND POWELL

The GLM framework makes two assumptions about the relationship between the covariates and
the response. First, the covariates enter the distribution of the response through a linear function;
a non-linear function may be applied to the output of the linear function, but only one that does
not depend on the covariates. Second, the variance of the response cannot depend on the covari-
ates. Both these assumptions can be limiting—there are many applications where we would like
the response to be a non-linear function of the covariates or where our uncertainty around the re-
sponse might depend on the covariates. In this paper, we develop a general regression algorithm
that relaxes both of these assumptions. Our method captures arbitrarily shaped response functions
and heteroscedasticity, that is, the property of the response distribution where both its mean and
variance change with the covariates, while still retaining the flexibility of GLMs.

Our idea is to model the mean function m(x) by a mixture of simpler “local” response distri-
butions fi(mi(x)), each one applicable in a region of the covariates that exhibits similar response
patterns. To handle multiple types of responses, each local regression is a GLM. This means that
each mi(x) is a linear function, but a non-linear mean function arises when we marginalize out the
uncertainty about which local response distribution is in play. (See Figure 1 for an example with
one covariate and a continuous response function.) Furthermore, our method captures heteroscedas-
ticity: the variance of the response function can vary across mixture components and, consequently,
varies as a function of the covariates.

Finally, we use a Bayesian nonparametric mixture model to let the data determine both the
number and form of the local mean functions. This is critical for modeling arbitrary response dis-
tributions: complex response functions can be constructed with many local functions, while simple
response functions need only a small number. Unlike frequentist nonparametric regression methods,
for example, those that create a mean function for each data point, the Bayesian nonparametric ap-
proach uses only as complex a model as the data require. Moreover, it produces a generative model.
It can be used to infer properties other than the mean function, such as the conditional variance or
response quantiles.

Thus, we develop Dirichlet process mixtures of generalized linear models (DP-GLMs), a re-
gression tool that can model many response types and many response shapes. DP-GLMs generalize
several existing Bayesian nonparametric regression models (Müller et al., 1996; Shahbaba and Neal,
2009) to a variety of response distributions. We derive Gibbs sampling algorithms for fitting and
predicting with DP-GLMs. We investigate some asymptotic properties, including weak consistency
of the joint density estimate and consistency of the regression estimate. We study DP-GLMs with
several types of data.

The paper is organized as follows. In Section 2, we review the current research on Bayesian
nonparametric regression and discuss how the DP-GLM extends this field. In Section 3, we review
Dirichlet process mixture models and generalized linear models. In Section 4, we construct the
DP-GLM and derive algorithms for posterior computation. In Section 5 we give general conditions
for weak consistency of the joint density model and consistency of the regression estimate; we give
several models where the conditions hold. In Section 6 we study the DP-GLM and other methods on
three data sets; our study illustrates that the DP-GLM provides a powerful nonparametric regression
model that can be used in many types of data analysis.

1924

DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

2. Related Work

Existing methods for Bayesian nonparametric regression include Gaussian processes (GP), Bayesian
regression trees, and Dirichlet process mixtures.

GP priors assume that the observations arise from a Gaussian process model with known co-
variance function form (Rasmussen and Williams, 2006). GPs are can model many response types,
including continuous, categorical, and count data (Rasmussen and Williams, 2006; Adams et al.,
2009). With the proper choice of covariance function, GPs can handle continuous and discrete co-
variates (Rasmussen andWilliams, 2006; Qian et al., 2008). GPs assume that the response exhibits a
constant covariance; this assumption is relaxed with Dirichlet process mixtures of GPs (Rasmussen
and Ghahramani) or treed GPs (Gramacy and Lee, 2008).

Regression tree models, such as classification and regression trees (CART) (Brieman et al.,
1984), are a natural way to handle regression with continuous, categorical or mixed data. They split
the data into a fixed, tree-based partitioning and fit a regression model within each leaf of the tree.
Bayesian regression trees place a prior over the size of the tree and can be viewed as an automatic
bandwidth selection method for CART (Chipman et al., 1998). Bayesian trees have been expanded
to include linear models (Chipman et al., 2002) and GPs (Gramacy and Lee, 2008) in the leaf nodes.

The Dirichlet process has been applied to regression problems. West et al. (1994), Escobar and
West (1995) and Müller et al. (1996) used joint Gaussian mixtures for continuous covariates and
response. Rodriguez et al. (2009) generalized this method using dependent DPs, that is, Dirichlet
processes with a Dirichlet process prior on their base measures, in a setting with a response defined
as a set of functionals. However, regression by a joint density estimate poses certain challenges.
The balance between fitting the response and the covariates, which often outnumber the response,
can be slanted toward fitting the covariates at the cost of fitting the response.

To avoid these issues—which amount to over-fitting the covariate distribution and under-fitting
the response—some researchers have developed methods that use local weights on the covariates
to produce local response DPs. This has been achieved with kernels and basis functions (Griffin
and Steel, 2010; Dunson et al., 2007), GPs (Gelfand et al., 2005) and general spatial-based weights
(Griffin and Steel, 2006, 2010; Duan et al., 2007). Still other methods, again based on dependent
DPs, capture similarities between clusters, covariates or groups of outcomes, including in non-
continuous settings (De Iorio et al., 2004; Rodriguez et al., 2009). The method presented here is
equally applicable to the continuous response setting and tries to balance its fit of the covariate and
response distributions by introducing local GLMs—the clustering structure is based on both the
covariates and how the response varies with them.

There is less research about Bayesian nonparametric models for other response types. Mukhopad-
hyay and Gelfand (1997) and Ibrahim and Kleinman (1998) used a DP prior for the random effects
portion of a GLM. Likewise, Amewou-Atisso et al. (2003) used a DP prior to model arbitrary
symmetric error distributions in a semi-parametric linear regression model. These methods still
maintain the assumption that the covariates enter the model linearly and in the same way. Our work
is closest to Shahbaba and Neal (2009). They proposed a model that mixes over both the covariates
and response, where the response is drawn from a multinomial logistic model. The DP-GLM is a
generalization of their idea.

Asymptotic properties of Dirichlet process mixture models have been studied mostly in the con-
text of density estimation, specifically consistency of the posterior density for DP Gaussian mixture
models (Barron et al., 1999; Ghosal et al., 1999; Ghosh and Ramamoorthi, 2003; Walker, 2004;

1925

HANNAH, BLEI AND POWELL

Tokdar, 2006) and semi-parametric linear regression models (Amewou-Atisso et al., 2003; Tokdar,
2006). Recently, the posterior properties of DP regression estimators have been studied. Rodriguez
et al. (2009) showed point-wise consistency (asymptotic unbiasedness) for the regression estimate
produced by their model assuming continuous covariates under different treatments with a con-
tinuous responses and a conjugate base measure (normal-inverse Wishart). In Section 5 we show
weak consistency of the joint density estimate produced by the DP-GLM. This is used to show
pointwise consistency of the regression estimate in both the continuous and categorical response
settings. In the continuous response setting, our results generalize those of Rodriguez et al. (2009)
and Rodrıguez (2009). In the categorical response setting, our theory provides results for the clas-
sification model of Shahbaba and Neal (2009).

3. Mathematical Background

In this section we provide mathematical background. We review Dirichlet process mixture models
and generalized linear models.

3.1 Dirichlet Process Mixture Models

The Dirichlet process (DP) is a distribution over distributions (Ferguson, 1973). It is denoted,

G∼ DP(αG0),

where G is a random distribution. There are two parameters. The base distribution G0 is a dis-
tribution over the same space as G. For example, if G is a distribution on reals then G0 must be
a distribution on reals too. The concentration parameter α is a positive scalar. One property of
the DP is that random distributions G are discrete, and each places its mass on a countably infinite
collection of atoms drawn from G0.

Consider the model

G ∼ DP(αG0),

θi ∼ G.

Marginalizing out the random distribution, the joint distribution of n replicates of θi is

p(θ1:n |αG0) =
∫ (n

∏
i=1

G(θi)

)
P(G)dG.

This joint distribution has a simpler form. The conditional distribution of θn given θ1:(n−1) follows
a Polya urn distribution (Blackwell and MacQueen, 1973),

θn|θ1:(n−1) ∼
1

α+n−1
n−1
∑
i=1

δθi +
α

α+n−1G0. (1)

With this conditional distribution, we use the chain rule to specify the joint distribution.
Equation (1) reveals the clustering property of the joint distribution of θ1:n: there is a positive

probability that each θi will take on the value of another θ j, leading some of the variables to share
values. This equation also reveals the roles of scaling parameter α and base distribution G0. The

1926

DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

unique values contained in θ1:n are drawn independently from G0, and the parameter α determines
how likely θn+1 is to be a newly drawn value from G0 rather than take on one of the values from
θ1:n.

In a DP mixture, θi is a latent variable that parameterizes the distribution of an observed data
point, point (Antoniak, 1974),

P∼ DP(αG0),
Θi ∼ P,

xi|θi ∼ f (· |θi).

Consider the posterior distribution of θ1:n given x1:n. Because of the clustering property, obser-
vations group according to their shared parameters. Unlike finite clustering models, however, the
number of groups is not assumed known in advance of seeing the data. For this reason, DP mixtures
are sometimes called “infinite clustering” models.

3.2 Generalized Linear Models

Generalized linear models (GLMs) build on linear regression to provide a flexible suite of predictive
models. GLMs relate a linear model to a response via a link function; examples include familiar
models like logistic regression, Poisson regression, and multinomial regression. See McCullagh and
Nelder (1989).

GLMs have three components: the conditional probability model of responseY given covariates
x, the linear predictor, and the link function. GLMs assume that the response distribution is in the
exponential family,

f (y|η) = exp
(
yη−b(η)
a(φ)

+ c(y,φ)

)
.

Here we give the canonical form of the exponential family, where a, b, and c are known functions
specific to the exponential family, φ is a scale parameter (sometimes called a dispersion parameter),
and η is the canonical parameter. A linear predictor, Xβ, is used to determine the canonical param-
eter through a set of transformations. The mean response is b′(η) = μ= E[Y |X] (Brown, 1986).
However, we can choose a link function g such that μ= g−1(Xβ), which defines η equal to Xβ.

4. Dirichlet Process Mixtures of Generalized Linear Models

We now turn to Dirichlet process mixtures of generalized linear models (DP-GLMs), a Bayesian
predictive model that places prior mass on a large class of response densities. Given a data set of
covariate-response pairs, we describe Gibbs sampling algorithms for approximate posterior infer-
ence and prediction. We derive theoretical properties of the DP-GLM in Section 5.

4.1 Model Formulation

In a DP-GLM, we assume that the covariates X are modeled by a mixture of exponential-family
distributions, the response Y is modeled by a GLM conditioned on the covariates, and that these
models are connected by associating a set of GLM coefficients with each exponential family mixture
component. Let θ = (θx,θy) be the bundle of parameters over X and Y |X , and let G0 be a base
measure on the space of both. For example, θx might be a set of d-dimensional multivariate Gaussian

1927

HANNAH, BLEI AND POWELL

Figure 1: The top figure shows the training data (gray) fitted into clusters, with the prediction given
a single sample from the posterior, θ(i) (red). The bottom figure shows the smoothed
regression estimate (black) for the Gaussian model of Equation (2) with the testing data
(blue). Data plot multipole moments (X) against power spectrum C� (Y) for cosmic
microwave background radiation (Bennett et al., 2003).

location and scale parameters for a vector of continuous covariates; θy might be a d+ 2-vector of
reals for their corresponding GLM linear prediction coefficients, along with a GLM dispersion
parameter. The full model is

P∼ DP(αG0),

θ= (θi,x,θi,y)|P∼ P,

Xi|θi,x ∼ fx(·|θi,x),
Yi|xi,θi,y ∼ GLM(·|Xi,θi,y).

The density fx describes the covariate distribution; the GLM for y depends on the form of the
response (continuous, count, category, or others) and how the response relates to the covariates (i.e.,
the link function).

The Dirichlet process clusters the covariate-response pairs (x,y). When both are observed, that
is, in “training,” the posterior distribution of this model will cluster data points according to near-
by covariates that exhibit the same kind of relationship to their response. When the response is
not observed, its predictive expectation can be understood by clustering the covariates based on the
training data, and then predicting the response according to the GLM associated with the covariates’
cluster. The DP prior acts as a kernel for the covariates; instead of being a Euclidean metric, the DP
measures the distance between two points by the probability that the hidden parameter is shared.
See Figure 1 for a demonstration of the DP-GLM.

We now give a few examples of the DP-GLM that will be used throughout this paper.

1928

DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

4.1.1 EXAMPLE: GAUSSIAN MODEL

We now give an example of the DP-GLM for continuous covariates/response that will be used
throughout the rest of the paper. For continuous covariates/response in R, we model locally with
a Gaussian distribution for the covariates and a linear regression model for the response. The co-
variates have mean μi, j and variance σ2i, j for the j

th dimension of the ith observation; the covariance
matrix is diagonal in this example. The GLM parameters are the linear predictor βi,0, . . . ,βi,d and
the response variance σ2i,y. Here, θx,i = (μi,1:d,σi,1:d) and θy,i = (βi,0:d,σi,y). This produces a mixture
of multivariate Gaussians. The full model is,

P∼ DP(αG0), (2)

θi|P∼ P,

Xi, j|θi,x ∼ N
(
μi j,σ

2
i j

)
, j = 1, . . . ,d,

Yi|Xi,θi,y ∼ N

(
βi0+

d

∑
j=1

βi jXi j,σ
2
iy

)
.

This model has been proposed by West et al. (1994), Escobar and West (1995) and Müller et al.
(1996). However, they use a fully populated covariance matrix that gives de facto β parameters.
This is computationally expensive for larger problems and adds posterior likelihood associated with
the covariates, rather than the response. A discussion of the problems associated with the latter issue
is given in Section 4.4.

4.1.2 EXAMPLE: MULTINOMIAL MODEL (SHAHBABA AND NEAL, 2009)

This model was proposed by Shahbaba and Neal (2009) for nonlinear classification, using a Gaus-
sian mixture to model continuous covariates and a multinomial logistic model for a categorical
response with K categories. The covariates have mean μi, j and variance σ2i, j for the j

th dimension of
the ith observation; the covariance matrix is diagonal for simplicity. The GLM parameters are the K
linear predictor βi,0,k, . . . ,βi,d,k, k = 1, . . . ,K. The full model is,

P∼ DP(αG0), (3)

θi|P∼ P,

Xi, j|θi,x ∼ N
(
μi j,σ2i j

)
, j = 1, . . . ,d,

P(Yi = k|Xi,θi,y) =
exp
(
βi,0,k+∑d

j=1βi, j,kXi, j
)

∑K
�=1 exp

(
βi,0,�+∑d

j=1βi, j,�Xi, j
) , k = 1, . . . ,K.

4.1.3 EXAMPLE: POISSON MODEL WITH CATEGORICAL COVARIATES

We model the categorical covariates by a mixture of multinomial distributions and the count re-
sponse by a Poisson distribution. If covariate j has K categories, let (pi, j,1, . . . , pi, j,K) be the proba-
bilities for categories 1, . . . ,K. The covariates are then coded by indicator variables, 1{Xi, j=k}, which

1929

HANNAH, BLEI AND POWELL

are used with the linear predictor, βi,0,βi,1,1:K, . . . ,βi,d,1:K . The full model is,

P∼ DP(αG0), (4)

θi|P∼ P,

P(Xi, j = k|θi,x) = pi, j,k, j = 1, . . . ,d, k = 1, . . . ,K,

λi|Xi,θi,y = exp
(
βi,0+

d

∑
j=1

K

∑
k=1

βi, j,k1{Xi, j=k}

)
,

P(Yi = k|Xi,θi,y) =
e−λiλki
�!

, k = 0,1,2,

We apply Model (4) to data in Section 6.

4.2 Heteroscedasticity and Overdispersion

One advantage of the DP-GLM is that it provides a strategy for handling common problems in
predictive modeling. Many models, such as GLMs and Gaussian processes, make assumptions
about data dispersion and homoscedasticity. Overdispersion occurs in single parameter GLMs when
the data variance is larger than the variance predicted by the model mean. Mukhopadhyay and
Gelfand (1997) have successfully used DPmixtures over GLM intercept parameters to create classes
of models that include overdispersion. The DP-GLM retains this property, but is not limited to
linearity in the covariates.

A model is homoscedastic when the response variance is across constant all covariates; a model
is heteroscedastic when the response variance changes with the covariates. Models like GLMs are
homoscedastic and give poor fits when that assumption is violated in the data. In contrast, the
DP-GLM captures heteroscedasticity when mixtures of GLMs are used. The mixture model setting
allows variance to be modeled by a separate parameter in each cluster or by a collection of clusters in
a single covariate location. This leads to smoothly transitioning heteroscedastic posterior response
distributions.

This property is shown in Figure 2, where we compare a DP-GLM to a homoscedastic model
(Gaussian processes) and heteroscedastic modifications of homoscedastic models (treed Gaussian
processes and treed linear models). The DP-GLM is robust to heteroscedastic data—it provides a
smooth mean function estimate, while the other models are not as robust or provide non-smooth
estimates.

4.3 Posterior Prediction With a DP-GLM

The DP-GLM is used in prediction problems. Given a collection of covariate-response pairs D =
(Xi,Yi)ni=1, we estimate the joint distribution of (X ,Y) |D . For a new set of covariates x, we use the
joint to compute the conditional distribution, Y |x,D and the conditional expectation, E[Y |x,D]. We
give the step-by-step process for formulating specific DP-GLM models and computing the condi-
tional distribution of the response.

4.3.1 CHOOSING THE MIXTURE COMPONENT AND GLM

We begin by choosing fx and the GLM. The Dirichlet process mixture model and GLM provide
flexibility in both the covariates and the response. Dirichlet process mixture models allow many

1930

DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

Figure 2: Modeling heteroscedasticity with the DP-GLM and other Bayesian nonparametric meth-
ods. The estimated mean function is given along with a 90% predicted confidence interval
for the estimated underlying distribution. DP-GLM produces a smooth mean function and
confidence interval.

types of variables to be modeled by the covariate mixture and subsequently transformed for use as a
covariate in the GLM. Note that certain mixture distributions support certain types of covariates but
may not necessarily be a good fit. The same care that goes into choosing distributions and GLMs in
a parametric setting is required here.

4.3.2 CHOOSING THE BASE MEASURE AND OTHER HYPERPARAMETERS

The choice of the base measure G0 affects how expressive the DP-GLM is, the computational effi-
ciency of the prediction and whether some theoretical properties, such as asymptotic unbiasedness,
hold. For example, G0 for the Gaussian model is a distribution over (μi,σi,βi,0:d,σi,y). A conju-
gate base measure is normal-inverse-gamma for each covariate dimension and multivariate normal
inverse-gamma for the response parameters. This G0 allows all continuous, integrable distributions
to be supported, retains theoretical properties, such as asymptotic unbiasedness, and yields efficient
posterior approximation by collapsed Gibbs sampling (Neal, 2000). In summary, the base measure
is chosen in line with data size, distribution type, distribution features (such as heterogeneity, and
others) and computational constraints.

Hyperparameters for the DP-GLM include the DP scaling parameter α and hyperparameters
parameters for the base measure G0. We can place a gamma prior on α (Escobar and West, 1995);
the parameters of G0 may also have a prior. Each level of prior reduces the influence of the hyper-
parameters, but adds computational complexity to posterior inference (Escobar and West, 1995).

1931

HANNAH, BLEI AND POWELL

4.3.3 APPROXIMATING THE POSTERIOR AND FORMING PREDICTIONS

We derive all quantities of interest—that is, conditional distributions and expectations—from the
posterior of the joint distribution of (x,y). Define f (x,y |D) as the joint posterior distribution given
data D and f (x,y |θ1:n) as the joint distribution given parameters θ1:n that are associated with data
D= (Xi,Yi)ni=1. The posterior can be expressed through a conditional expectation,

f (x,y |D) = E [f (x,y |θ1:n) |D] . (5)

While the true posterior distribution, f (x,y |D), may be impossible to compute, the joint distribution
conditioned on θ1:n has the form

f (x,y |θ1:n) =
α

α+n

∫
T
fy(y|x,θ) fx(x|θ)G0(dθ)+

1
α+n

n

∑
i=1

fy(y|x,θi) fx(x|θi).

We approximate the expectation in Equation (5) by Monte Carlo integration using M posterior
samples of θ1:n,

f (x,y |D)≈ 1
M

M

∑
m=1

f (x,y |θ(m)1:n).

We use Markov chain Monte Carlo (MCMC), specifically Gibbs sampling, to obtain M i.i.d.
samples from this distribution. (See Escobar, 1994, MacEachern, 1994, Escobar and West, 1995
and MacEachern and Müller, 1998 for foundational work; Neal, 2000 provides a review and state of
the art algorithms.) We construct a Markov chain on the hidden variables θ1:n such that its limiting
distribution is the posterior. We give implementation details in Appendix A.

We use a similar strategy to construct the conditional distribution ofY |X = x,D. The conditional
distribution is

f (Y |X = x,D) =
f (Y,x |D)∫
f (y,x |D)dy .

Again using M i.i.d. samples from the posterior of θ1:n |D,

f (Y |X = x,D)≈ 1
M

M

∑
m=1

f (Y |X = x,θ(m)1:n),

=
1
M

M

∑
m=1

α
∫
T fy(Y |X = x,θ) fx(x|θ)G0(dθ)+∑n

i=1 fy(Y |X = x,θ(m)i) fx(x|θ(m)i)

α
∫
T fx(x|θ)G0(dθ)+∑n

i=1 fx(x|θ
(m)
i)

.

We use the same methodology to compute the conditional expectation of the response given a
new set of covariates x and the observed data D, E[Y |X = x,D]. Again using iterated expectation,
we condition on the latent variables,

E [Y |X = x,D] = E [E [Y |X = x,θ1:n] |D] . (6)

Conditional on the latent parameters θ1:n that generated the observed data, the inner expectation is

E[Y |X = x,θ1:n] =
α
∫
T E [Y |X = x,θ] fx(x|θ)G0(dθ)+∑n

i=1E [Y |X = x,θi] fx(x|θi)
α
∫
T fx(x|θ)G0(dθ)+∑n

i=1 fx(x|θi)
.

Since we assume Y is a GLM, E [Y |X = x,θ] is available in closed form as a function of x and θ.

1932

DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

The outer expectation of Equation (6) is usually intractable. We approximate it by Monte Carlo
integration withM posterior samples of θ1:n,

E [Y |X = x,D]≈ 1
M

M

∑
m=1

E

[
Y |X = x,θ(m)1:n

]
.

4.4 Comparison to the Dirichlet Process Mixture Model Regression

The DP-GLM models the response Y conditioned on the covariates X . An alternative is one where
we model (X ,Y) from a common mixture component in a classical DP mixture (see Section 3), and
then form the conditional distribution of the response from this joint. We investigate the mathe-
matical differences between these approaches and the consequences of those differences. (They are
compared empirically in Section 6.)

A Dirichlet process mixture model (DPMM) has the form,

P∼ DP(αG0), (7)

θi|P∼ P,

Xi|θi,x ∼ fx(x|θi,x),
Yi|θi,y ∼ fy(y|θi,y).

This model has been studied in Escobar and West (1995) where (Xi,Yi) are assumed to have a
joint Gaussian distribution. When the covariance matrix is assumed to be diagonal, the regression
estimate is generally poor. However, when the covariance matrix is assumed to be fully populated,
computation becomes difficult with more than a few covariate dimensions. We focus on the case
with diagonal covariance. We study why it performs poorly and how the DP-GLM improves on
it with minimal increase in computational difficulty. The difference between Model (7) and the
DP-GLM is that the distribution of Y given θ is conditionally independent of the covariates X . This
difference has consequences on the posterior distribution and, thus, the posterior predictions.

One consequence is that the GLM response component acts to remove boundary bias for sam-
ples near the boundary of the covariates in the training data set. The GLM fits a linear predictor
through the training data; all predictions for boundary and out-of-sample covariates follow the local
predictors. The traditional DP model, however, only fits a local mean; all boundary and out-of-
sample predictions center around that mean. The boundary effects are compared in Figure 3. The
DP-GLM can be viewed as a Bayesian analogy of a locally linear kernel estimator while the regular
DP is similar to the Nadaraya-Watson kernel estimator (Nadaraya, 1964; Watson, 1964).

Another consequence is that the proportion of the posterior likelihood devoted to the response
differs between the two methods. Consider the log of the posterior of the DPMM given in Model
(7). Assume that fy is a single parameter exponential, where θy = β,

�(θdp |D) ∝
K

∑
i=1

[
�(βCi)+ ∑

c∈Ci
�(yc |βCi)+

d

∑
j=1

�(θCi,x j |D)
]
. (8)

Here, � denotes log likelihood and “∝” means “proportional in the log space.” The log of the DP-
GLM posterior for a single parameter exponential family GLM, where θy = (β0, . . . ,βd), has the
form,

�(θdpglm |D) ∝
K

∑
i=1

[
d

∑
j=0

�(βCi, j)+ ∑
c∈Ci

�(yc |βTCixc)+
d

∑
j=1

�(θCi,x j |D)
]
. (9)

1933

HANNAH, BLEI AND POWELL

As the number of covariates grows, the likelihood associated with the covariates grows in both
equations. However, the likelihood associated with the response also grows with the extra response
parameters in Equation (9), whereas it is fixed in Equation (8).

These posterior differences lead to two predictive differences. First, the DP-GLM is much
more resistant to dimensionality than the DPMM. Since the number of response related parameters
grows with the number of covariate dimensions in the DP-GLM, the relative posterior weight of
the response does not shrink as quickly in the DP-GLM as it does in the DPMM. This keeps the
response variable important in the selection of the mixture components and makes the DP-GLM a
better predictor than the DPMM as the number of dimensions grows.

As the dimensionality grows, however, the DP-GLM produces less stable predictions than the
DPMM. While the additional GLM parameters help maintain the relevance of the response, they
also add noise to the prediction. This is seen in Figure 3. The GLM parameters in this figure have
a Gaussian base measure, effectively creating a local ridge regression.1 In lower dimensions, the
DP-GLM produced more stable results than the DPMM because a smaller number of larger clusters
were required to fit the data well. The DPMM, however, consistently produced stable results in
higher dimensions as the response became more of a sample average than a local average. The
DPMM has the potential to predict well if changes in the mean function coincide with underlying
local modes of the covariate density. However, the DP-GLM forces the covariates into clusters that
coincide more with the response variable due to the inclusion of the slope parameters.

We now discuss the theoretical properties of the DP-GLM.

5. Asymptotic Properties of the DP-GLMModel

In this section, we study the asymptotic properties of the DP-GLMmodel, namely weak consistency
of the joint density estimate and pointwise consistency (asymptotic unbiasedness) of the regression
estimate. Consistency is the notion that posterior distribution accumulates in regions close to the
true distribution. Weak consistency assures that the posterior distribution accumulates in regions of
densities where “properly behaved” functions (i.e., bounded and continuous) integrated with respect
to the densities in the region are arbitrarily close to the integral with respect to the true density.
We then use the weak consistency results to give conditions for asymptotic unbiasedness of the
regression estimate. Both consistency and asymptotic unbiasedness act as frequentist justification of
Bayesian methods; more observations lead to models that tend toward the “correct” value. Neither
weak consistency nor asymptotic unbiasedness are guaranteed for Dirichlet process mixture models.

Notation for this section is more complicated than the notation for the model. Let f0(x,y) be
the true joint distribution of (x,y); in this case, we will assume that f0 is a density. Let F be the
set of all density functions over (x,y). Let Π f be the prior over F induced by the DP-GLM model.
Let E f0 [·] denote the expectation under the true distribution and EΠ f [·] be the expectation under the
prior Π f .

In general, an estimator is a function of observations. Assuming a true distribution of those
observations, an estimator is called unbiased if its expectation under that distribution is equal to
the value that it estimates. If an estimator has this property, it is called consistent. In the case of

1. In unpublished results, we tried other base measures, such as a Laplacian distribution. They produced less stable
results than the Gaussian base measure.

1934

DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

Figure 3: A plain Dirichlet process mixture model regression (left) versus DP-GLM, plotted against
the number of spurious dimensions (vertical plots). We give the estimated mean function
along with a 90% predicted confidence interval for the estimated underlying distribution.
Data have one predictive covariate and a varying number of spurious covariates. The
covariate data were generated by a mixture model. DP-GLM produces a smoother mean
function and is much more resistant to spurious dimensionality.

DP-GLM, that would mean for every x in a fixed domain A and every n> 0,

E f0 [EΠ f [Y |x,(Xi,Yi)ni=1]] = E f0 [Y |x].

1935

HANNAH, BLEI AND POWELL

Since we use Bayesian priors in DP-GLM, we will have bias in almost all cases. The best we
can hope for is a consistent estimator, where as the number of observations grows to infinity, the
mean function estimate converges to the true mean function. That is, for every x ∈ A ,

EΠ f [Y |x,(Xi,Yi)ni=1]→ E f0 [Y |x] as n→ ∞.

5.1 Weak Consistency of the Joint Posterior Distribution

Weak consistency is the idea that the posterior distribution,Π f (f |(Xi,Yi)ni=1) collects in weak neigh-
borhoods of the true distribution, f0(x,y). A weak neighborhood of f0 of radius ε,Wε(f0), is defined
as follows,

Wε(f0) =

{
f :

∣∣∣∣∫ f0(x,y)g(x,y)dxdy−
∫
f (x,y)g(x,y)dxdy

∣∣∣∣< ε

}
for every bounded, continuous function g. Aside from guaranteeing that the posterior collects in
regions close to the true distribution, weak consistency can be used to show consistency of the
regression estimate under certain conditions. We give conditions for weak consistency for joint pos-
terior distribution of the Gaussian and multinomial models and use these results to show consistency
of the regression estimate for these same models.

We now give a theorem for the asymptotic unbiasedness of the Gaussian model.

Theorem 1 Let Π f be the prior induced by the Gaussian model of Equation (2). If f0(x,y) has
compact support, is absolutely continuous over that domain andG0 has support Rd×R

d
+×R

d+1×
R+, then

Π f (Wε(f0) |(Xi,Yi)ni=1)→ 1

as n→ ∞ for every ε> 0.

Posterior consistency of similar models, namely Dirichlet process mixtures of Gaussians, has been
extensively studied by Ghosal et al. (1999), Ghosh and Ramamoorthi (2003), and Tokdar (2006) and
convergence rates in Walker et al. (2007). The compact support condition for f0 allows for broad
array of base measures to produce weakly consistent posteriors. See Tokdar (2006) for results on
non-compactly supported f0.

We now give an analogous theorem for the multinomial model.

Theorem 2 Let Π f be the prior induced by the multinomial model of Equation (3). If f0(x) has
compact support, is absolutely continuous, G0 has support Rd×R

d
+×R

d+1, and P f0 [Y = k |X = x]
is absolutely continuous in x for k = 1, . . . ,K, then

Π f (Wε(f0) |(Xi,Yi)ni=1)→ 1

as n→ ∞ for every ε> 0.

The proofs of Theorems 1 and 2 are given in the Appendix.

1936

DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

5.2 Consistency of the Regression Estimate

We approach consistency of the regression estimate by using weak consistency for the posterior of
the joint distribution and then placing additional integrability constraints on the base measure G0.
We now give results for the Gaussian and multinomial models.

Theorem 3 Let Π f be the prior induced by the Gaussian model of Equation (2). If

(i) G0 and f0 satisfy the conditions of Theorem 1, and

(ii)
∫
(β0+∑d

i=1βixi)G0(dβ)< ∞ for every x ∈ C ,

then
lim
n→∞

E f0 [EΠ f [Y |x,(Xi,Yi)ni=1]] = E f0 [Y |x]

almost surely P∞f0 .

Similarly, we give a theorem for the multinomial model.

Theorem 4 Let Π f be the prior induced by the multinomial model of Equation (3). If

(i) G0 and f0 satisfy the conditions of Theorem 2, and

(ii) P f0 [Y = k |X = x] is continuous in x for k = 1, . . . ,K,

then
lim
n→∞

E f0 [PΠ f [Y = k|x,(Xi,Yi)ni=1]] = P f0 [Y = k|x]

almost surely P∞f0 for k = 1, . . . ,K.

See Appendix B for proofs of Theorems 3 and 4.

5.3 Consistency Example: Gaussian Model

Examples of prior distributions that satisfy Theorems 1 and 3 are as follows.

5.3.1 NORMAL-INVERSE-WISHART

Note that in the Gaussian case, slope parameters can be generated by a full covariance matrix: using
a conjugate prior, a Normal-Inverse-Wishart, will produce an instance of the DP-GLM. Define the
following model, which was used by Müller et al. (1996),

P∼ DP(αG0), (10)

θi |P∼ P,

(Xi,Yi) |θi ∼ N(μ,Σ).

The last line of Model (10) can be broken down in the following manner,

Xi |θi ∼ N (μx,Σx) ,

Yi |θi ∼ N
(
μy+bTΣ−1x b(Xi−μx),σ

2
y−bTΣ−1x b

)
,

1937

HANNAH, BLEI AND POWELL

where

μ=

[
μy
μx

]
, Σ=

[
σ2y bT

b Σx

]
.

We can then define β as,

β0 = μy−bTΣ−1x μx, β1:d = bTΣ−1x .

The base measure G0 is defined as,

(μ,Σ)∼ Normal Inverse Wishart(λ,ν,a,B).

Here λ is a mean vector, ν is a scaling parameter for the mean, a is a scaling parameter for the
covariance, and B is a covariance matrix.

5.3.2 DIAGONAL NORMAL-INVERSE-GAMMA

It is often more computationally efficient to specify that Σx is a diagonal matrix. In this case, we
can specify a conjugate base measure component by component:

σi, j ∼ Inverse Gamma(a j,b j), j = 1, . . . ,d,

μi, j |σi, j ∼ N(λ j,σi, j/ν j), j = 1, . . . ,d,

σi,y ∼ Inverse Gamma(ay,by),

βi, j |σi,y ∼ Nd+1(λy,σy/νy).

The Gibbs sampler can still be collapsed, but the computational cost is much lower than the full
Normal-Inverse-Wishart.

5.3.3 NORMAL MEAN, LOG NORMAL VARIANCE

Conjugate base measures tie the mean to the variance and can be a poor fit for small, heteroscedastic
data sets. The following base measure was proposed by Shahbaba and Neal (2009),

log(σi, j)∼ N(mj,σ,s
2
j,σ), j = y,1, . . . ,d,

μi, j ∼ N(mj,μ,s
2
j,μ), j = 1, . . . ,d,

βi, j ∼ N(mj,β,s
2
j,β) j = 0, . . . ,d.

5.4 Consistency Example: Multinomial Model

Now consider the multinomial model of Shahbaba and Neal (2009), given in Model (3),

P∼ DP(αG0),

θi|P∼ P,

Xi, j|θi,x ∼ N
(
μi j,σ2i j

)
, j = 1, . . . ,d,

P(Yi = k|Xi,θi,y) =
exp
(
βi,0,k+∑d

j=1βi, j,kXi, j
)

∑K
�=1 exp

(
βi,0,�+∑d

j=1βi, j,�Xi, j
) , k = 1, . . . ,K.

Examples of prior distributions that satisfy Theorems 2 and 4 are as follows.

1938

DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

5.4.1 NORMAL-INVERSE-WISHART

The covariates have a Normal-Inverse-Wishart base measure while the GLM parameters have a
Gaussian base measure,

(μi,x,Σi,x)∼ Normal Inverse Wishart(λ,ν,a,B),

βi, j,k ∼ N(mj,k,s
2
j,k), j = 0, . . . ,d, k = 1, . . . ,K.

5.4.2 DIAGONAL NORMAL-INVERSE-GAMMA

It is often more computationally efficient to specify that Σx is a diagonal matrix. Again, we can spec-
ify a conjugate base measure component by component while keeping the Gaussian base measure
on the GLM components,

σi, j ∼ Inverse Gamma(a j,b j), j = 1, . . . ,d,

μi, j |σi, j ∼ N(λ j,σi, j/ν j), j = 1, . . . ,d,

βi, j,k |σi,y ∼ N(mj,k,s
2
j,k), j = 0, . . . ,d, k = 1, . . . ,K.

5.4.3 NORMAL MEAN, LOG NORMAL VARIANCE

Likewise, for heteroscedastic covariates we can use the log normal base measure of Shahbaba and
Neal (2009),

log(σi, j)∼ N(mj,σ,s
2
j,σ), j = 1, . . . ,d,

μi, j ∼ N(mj,μ,s
2
j,μ), j = 1, . . . ,d,

βi, j,k ∼ N(mj,k,β,s
2
j,k,β) j = 0, . . . ,d, k = 1, . . . ,K.

6. Empirical Study

We compare the performance of DP-GLM regression to other regression methods. We studied data
sets that illustrate the strengths of the DP-GLM, including robustness with respect to data type, het-
eroscedasticity and higher dimensionality than can be approached with traditional methods. Shah-
baba and Neal (2009) used a similar model on data with categorical covariates and count responses;
their numerical results were encouraging. We tested the DP-GLM on the following data sets.

6.1 Data Sets

We selected three data sets with continuous response variables. They highlight various data difficul-
ties within regression, such as error heteroscedasticity, moderate dimensionality (10–12 covariates),
various input types and response types.

• Cosmic Microwave Background (CMB) (Bennett et al., 2003). The data set consists of 899
observations which map positive integers �= 1,2, . . . ,899, called ‘multipole moments,’ to the
power spectrum C�. Both the covariate and response are considered continuous. The data
pose challenges because they are highly nonlinear and heteroscedastic. Since this data set is
only two dimensions, it allows us to easily demonstrate how the various methods approach
estimating a mean function while dealing with non-linearity and heteroscedasticity.

1939

HANNAH, BLEI AND POWELL

• Concrete Compressive Strength (CCS) (Yeh, 1998). The data set has eight covariates: the
components cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate and
fine aggregate, all measured in kg per m3, and the age of the mixture in days; all are con-
tinuous. The response is the compressive strength of the resulting concrete, also continuous.
There are 1,030 observations. The data have relatively little noise. Difficulties arise from the
moderate dimensionality of the data.

• Solar Flare (Solar) (Bradshaw, 1989). The response is the number of solar flares in a 24
hour period in a given area; there are 11 categorical covariates. 7 covariates are binary and 4
have 3 to 6 classes for a total of 22 categories. The response is the sum of all types of solar
flares for the area. There are 1,389 observations. Difficulties are created by the moderately
high dimensionality, categorical covariates and count response. Few regression methods can
appropriately model this data.

Data set testing sizes ranged from very small (20 observations) to moderate sized (800 observations).
Small data set sizes were included due to interests in (future) online applications.

6.2 Competitors

The competitors represent a variety of regression methods; some methods are only suitable for
certain types of regression problems.

• Ordinary Least Squares (OLS). A parametric method that often provides a reasonable fit
when there are few observations. Although OLS can be extended for use with any set of
basis functions, finding basis functions that span the true function is a difficult task. We
naively choose [1X1 . . . Xd]T as basis functions. OLS can be modified to accommodate both
continuous and categorical inputs, but it requires a continuous response function.

• CART. A nonparametric tree regression method (Brieman et al., 1984) generated by the Mat-
lab function classregtree. It accommodates both continuous and categorical inputs and any
type of response.

• Bayesian CART. A tree regression model with a prior over tree size (Chipman et al., 1998);
it was implemented in R with the tgp package.

• Bayesian Treed Linear Model. A tree regression model with a prior over tree size and a
linear model in each of the leaves (Chipman et al., 2002); it was implemented in R with the
tgp package.

• Gaussian Processes (GP). A nonparametric method that can accommodate only continuous
inputs and continuous responses. GPs were generated in Matlab by the program gpml of
Rasmussen and Williams (2006).

• Treed Gaussian Processes. A tree regression model with a prior over tree size and a GP on
each leaf node (Gramacy and Lee, 2008); it was implemented in R with the tgp package.

1940

DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

Method Mean Absolute Error Mean Square Error
Training set size 30 50 100 250 500 30 50 100 250 500
DP-GLM 0.58 0.51 0.49 0.48 0.45 1.00 0.94 0.91 0.94 0.83
Linear Regression 0.66 0.65 0.63 0.65 0.63 1.08 1.04 1.01 1.04 0.96
CART 0.62 0.60 0.60 0.56 0.56 1.45 1.34 1.43 1.29 1.41
Bayesian CART 0.66 0.64 0.54 0.50 0.47 1.04 1.01 0.93 0.94 0.84
Treed Linear Model 0.64 0.52 0.49 0.48 0.46 1.10 0.95 0.93 0.95 0.85
Gaussian Process 0.55 0.53 0.50 0.51 0.47 1.06 0.97 0.93 0.96 0.85
Treed GP 0.52 0.49 0.48 0.48 0.46 1.03 0.95 0.95 0.96 0.89

Table 1: Mean absolute and square errors for methods on the CMB data set by training data size.
The best results for each size of training data are in bold.

• Basic DP Regression. Similar to DP-GLM, except the response is a function only of μy,
rather than β0+∑βixi. For the Gaussian model,

P∼ DP(αG0),

θi|P∼ P,

Xi|θi ∼ N(μi,x,σ
2
i,x),

Yi|θi ∼ N(μi,y,σ
2
i,y).

This model was explored in Section 4.4.

• Poisson GLM (GLM). A Poisson generalized linear model, used on the Solar Flare data set.
It is suitable for count responses.

6.3 Cosmic Microwave Background (CMB) Results

For this data set, we used a Gaussian model with base measure

μx ∼ N(mx,s
2
x), σ2x ∼ exp

{
N(mx,s,s

2
x,s)
}
,

β0:d ∼ N(my,0:d ,s
2
y,0:d), σ2y ∼ exp

{
N(mx,s,s

2
x,s)
}
.

This prior was chosen because the variance tails are heavier than an inverse gamma and the mean
is not tied to the variance. It is a good choice for heterogeneous data because of those features.
Computational details are given in Appendix C.

All non-linear methods except for CART (DP-GLM, Bayesian CART, treed linear models, GPs
and treed GPs) did comparably on this data set; CART had difficulty finding an appropriate band-
width. Linear regression did poorly due to the non-linearity of the data set. Fits for heteroscedas-
ticity for the DP-GLM, GPs, treed GPs and treed linear models on 250 training data points can be
seen in Figure 2. See Figure 4 and Table 1 for results.

6.4 Concrete Compressive Strength (CCS) Results

The CCS data set was chosen because of its moderately high dimensionality and continuous covari-
ates and response. For this data set, we used a Gaussian model and a conjugate base measure with

1941

HANNAH, BLEI AND POWELL

Figure 4: The average mean absolute error (top) and mean squared error (bottom) for ordinary least
squares (OLS), tree regression, Gaussian processes and DP-GLM on the CMB data set.
The data were normalized. Mean+/− one standard deviation are given for each method.

conditionally independent covariate and response parameters,

(μx,σ2x)∼ Normal− Inverse−Gamma(mx,sx,ax,bx),

(β0:d ,σ
2
y)∼Multivariate Normal− Inverse−Gamma(My,Sy,ay,by).

This base measure allows the sampler to be fully collapsed but has fewer covariate-associated pa-
rameters than a full Normal-Inverse-Wishart base measure, giving it a better fit in a moderate di-
mensional setting. In testing, it also provided better results for this data set than the exponentiated
Normal base measure used for the CMB data set; this is likely due to the low noise and variance of
the CCS data set. Computational details are given in Appendix C.

Results on this data set were more varied than those for the CMB data set. GPs had the best
performance overall; on smaller sets of training data, the DP-GLM outperformed frequentist CART.
Linear regression, basic DP regression and Bayesian CART all performed comparatively poorly.
Treed linear models and treed GPs performed very well most of the time, but had convergence
problems leading to overall higher levels of predictive error. Convergence issues were likely caused
by the moderate dimensionality (8 covariates) of the data set. See Figure 5 and Table 2 for results.

6.5 Solar Flare Results

The Solar data set was chosen to demonstrate the flexibility of DP-GLM. Many regression tech-
niques cannot accommodate categorical covariates and most cannot accommodate a count-type re-

1942

DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

Figure 5: The average mean absolute error (top) and mean squared error (bottom) for ordinary least
squares (OLS), tree regression, Gaussian processes, location/scale DP and the DP-GLM
Poisson model on the CCS data set. The data were normalized. Mean +/− one standard
deviation are given for each method.

Method Mean Absolute Error Mean Squared Error
30 50 100 250 500 30 50 100 250 500

DP-GLM 0.54 0.50 0.45 0.42 0.40 0.47 0.41 0.33 0.28 0.27
Location/Scale DP 0.66 0.62 0.58 0.56 0.54 0.68 0.59 0.52 0.48 0.45
Linear Regression 0.61 0.56 0.51 0.50 0.50 0.66 0.50 0.43 0.41 0.40
CART 0.72 0.62 0.52 0.43 0.34 0.87 0.65 0.46 0.33 0.23
Bayesian CART 0.78 0.72 0.63 0.55 0.54 0.95 0.80 0.61 0.49 0.46
Treed Linear Model 1.08 0.95 0.60 0.35 1.10 7.85 9.56 4.28 0.26 1232
Gaussian Process 0.53 0.52 0.38 0.31 0.26 0.49 0.45 0.26 0.18 0.14
Treed GP 0.73 0.40 0.47 0.28 0.22 1.40 0.30 3.40 0.20 0.11

Table 2: Mean absolute and square errors for methods on the CCS data set by training data size.
The best results for each size of training data are in bold.

sponse. For this data set, we used the following DP-GLM,

P∼ DP(αG0),

θi |P∼ P,

Xi, j |θi ∼ (pi, j,1, . . . , pi, j,K(j)),

Yi |θi ∼ Poisson

(
βi,0+

d

∑
j=1

K(j)

∑
k=1

βi, j,k1{Xi, j=k}

)
.

We used a conjugate covariate base measure and a Gaussian base measure for β,

(p j,1, . . . , p j,K(j))∼ Dirichlet(a j,1, . . . ,a j,K(j)), β j,k ∼ N(mj,k,s
2
j,k).

1943

HANNAH, BLEI AND POWELL

Figure 6: The average mean absolute error (top) and mean squared error (bottom) for tree regres-
sion, a Poisson GLM (GLM) and DP-GLM on the Solar data set. Mean+/− one standard
deviation are given for each method.

Method Mean Absolute Error Mean Squared Error
50 100 200 500 800 50 100 200 500 800

DP-GLM 0.52 0.49 0.48 0.45 0.44 0.84 0.76 0.71 0.69 0.63
Poisson Regression 0.65 0.59 0.54 0.52 0.48 0.87 0.84 0.80 0.73 0.64
CART 0.53 0.48 0.50 0.47 0.47 1.13 0.88 1.03 0.88 0.83
Bayesian CART 0.59 0.52 0.51 0.47 0.45 0.86 0.80 0.78 0.71 0.60
Gaussian Process 0.55 0.47 0.47 0.45 0.44 1.14 0.83 0.83 0.81 0.67

Table 3: Mean absolute and square errors for methods on the Solar data set by training data size.
The best results for each size of training data are in bold.

Computational details are given in Appendix C.
The only other methods that can handle this data set are CART, Bayesian CART and Poisson

regression. GP regression was run with a squared exponential covariance function and Gaussian
errors to make use of the ordering in the covariates. The DP-GLM had good performance under
both error measures. The high mean squared error values suggests that frequentist CART overfit
while the high mean absolute error for Poisson regression suggests that it did not adequately fit
nonlinearities. See Figure 6 and Table 3 for results.

6.6 Discussion

The DP-GLM is a relatively strong competitor on all of the data sets. It was more stable than most
of its Bayesian competitors (aside from GPs) on the CCS data set. Our results suggest that the DP-
GLM would be a good choice for small sample sizes when there is significant prior knowledge; in
those cases, it acts as an automatic outlier detector and produces a result that is similar to a Bayesian

1944

DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

GLM. Results from Section 4 suggest that the DP-GLM is not appropriate for problems with high
dimensional covariates; in those cases, the covariate posterior swamps the response posterior with
poor numerical results.

7. Conclusions and Future Work

We developed the Dirichlet process mixture of generalized linear models (DP-GLM), a flexible
Bayesian regression technique. We discussed its statistical and empirical properties; we gave con-
ditions for asymptotic unbiasedness and gave situations in which they hold; finally, we tested the
DP-GLM on a variety of data sets against state of the art Bayesian competitors. The DP-GLM was
competitive in most setting and provided stable, conservative estimates, even with extremely small
sample sizes.

One concern with the DP-GLM is computational efficiency as implemented. All results were
generated using MCMC, which does not scale well to large data sets. An alternative implementation
using variational inference (Blei and Jordan, 2006), possibly online variational inference (Sato,
2001), would greatly increase computational feasibility for large data sets.

Our empirical analysis of the DP-GLM has implications for regression methods that rely on
modeling a joint posterior distribution of the covariates and the response. Our experiments suggest
that the covariate posterior can swamp the response posterior, but careful modeling can mitigate the
effects for problems with low to moderate dimensionality. A better understanding would allow us
to know when and how such modeling problems can be avoided.

Acknowledgments

David M. Blei was supported by ONR 175-6343, NSF CAREER 0745520, AFOSR 09NL202,
the Alfred P. Sloan foundation, and a grant from Google. Warren Powell and Lauren Hannah were
supported in part by grant AFOSR contract FA9550-08-1-0195 and the National Science Foundation
grant CMMI-0856153.

Appendix A.

In the Gibbs sampler, the state is the collection of labels (z1, . . . ,zn) and parameters (θ∗1, . . . ,θ
∗
K),

where θ∗c is the parameter associated with cluster c and K is the number of unique labels given
z1:n. In a collapsed Gibbs sampler, all or part of (θ∗1, . . . ,θ

∗
K) is eliminated through integration. Let

z−i = (z1, . . . ,zi−1,zi+1, . . . ,zn). A basic inference algorithm is given in Algorithm 1. Convergence
criteria for the Gibbs samplers in our numerical examples are given in Appendix C. See Gelman
et al. (2004) for a more complete discussion on convergence criteria.

We can sample from the distribution p(zi |D,z−i,θ∗1:K) as follows,

p(zi |D,z−i,θ∗1:K) ∝ p(zi |z−i)p(Xi |z1:n,D,θ∗1:K)p(Yi |Xi,z1:n,D,θ∗1:K). (11)

The first part of Equation (11) is the Chinese Restaurant Process posterior value,

p(zi |z−i) =
{

nz j
n−1+α if zi = z j for some j �= i,

α
n−1+α if zi �= z j for all j �= i.

1945

HANNAH, BLEI AND POWELL

Algorithm 1: Gibbs Sampling Algorithm for the DP-GLM
Require: Starting state (z1, . . . ,zn), (θ∗1, . . . ,θ

∗
K), convergence criteria.

1: repeat
2: for i= 1 to n do
3: Sample zi from p(zi |D,z−i,θ∗1:K).
4: end for
5: for c= 1 to K do
6: Sample θ∗c given {(Xi,Yi) : zi = c}.
7: end for
8: if Convergence criteria are met then
9: Record (z1, . . . ,zn) and (θ∗1, . . . ,θ

∗
K).

10: end if
11: until M posterior samples obtained.

Here nz j is the number of elements with the label z j. The second term of Equation (11) is the same
as in other Gibbs sampling algorithms. If possible, the component parameters θ∗1:K can be integrated
out (in the case of conjugate base measures and parameters that pertain strictly to the covariates)
and p(Xi |z1:n,D,θ∗1:K) can be replaced with∫

p(Xi |z1:n,D,θ∗1:K)p(θ∗1:K |z1:n)dθ∗1:K .

The third term of Equation (11) is not found in traditional Dirichlet process mixture model samplers.
In some cases, this term can also be collapsed, such as Gaussian model with a Normal-Inverse-
Gamma base measure. In that case,

p(Yi |Xi,zc,Dc) =
Γ((nn+1)/2)
Γ(nn/2)

(nnsn)
−1/2 exp

(
−1/2(nn+1) log

(
1+

1
nnsn

(Yi−mn)
2
))

,

Ṽ =
(
V−1+ X̃Tc X̃c

)−1
,

m̂n = Ṽ
(
m0V

−1+ X̃Tc Yc
)
,

mn = X̃im̂n,

nn = ny0+nc,

s2n = 4
(
s2y0+1/2

(
m0V

−1mT
0 +Y

T
c Yc− m̂T

n Ṽ
−1m̂n

))
/
(
(ny0+nc)X̃cṼ X̃

T
c

)
.

Here, we define X̃c = {[1Xj] : z j = zc}, Yc = {Yj : z j = zc}, X̃i = [1Xi], nc is the number of data
associated with label zc and the base measure is define as,

σ2y ∼ Inverse−Gamma(ny0,s
2
y0),

β |σ2y ∼ N(m0,σ
2
yV).

Appendix B.

Proofs for the main theorems.

B.1 Proof of Theorem 1

Both Theorems 1 and 2 rely on a theorem by Schwartz (1965).

1946

DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

Theorem 5 (Schwartz, 1965) Let Π f be a prior on F . Then, if Π f places positive probability on
all neighborhoods {

f :
∫
f0(x,y) log

f0(x,y)
f (x,y)

dxdy< δ

}
for every δ> 0, then Π f is weakly consistent at f0.

The proof for Theorem 1 follows closely both Ghosal et al. (1999) and Tokdar (2006).
Proof Without loss of generality, assume d = 1. Since f0 has compact support, there exists an x0

and a y0 such that f0(x,y) = 0 for |x| > x0 or |y| > y0. Fix ε > 0. Following Remark 3 of Ghosal
et al. (1999), there exist σx > 0 and σy > 0 such that

∫ x0

−x0

∫ y0

−y0

f0(x,y) log
f0(x,y)∫ x0

−x0

∫ y0
−y0

φ(x−θx σx
)φ(y−θy σy

) f0(x,y)dθxdθy
< ε/2.

Let P0 be a measure on R
3 ×R

2
+, that is, a measure for (μx,β0,β1,σx,σy). Define it such that

dP0 = f0×δ0×δ σx×δ σy . Fix a λ> 0 and κ> 0. Choose a large compact set K such that [−x0,x0]×
[−y0,y0]× [−y0,y0]×{ σx}×{ σy} ⊂ K.Let B = {P : |P(K)/P0(K)−1|< κ}. Since the support of
G0 is R3 ×R

2
+, Π(B)> 0.

Following Ghosal et al. (1999) and Tokdar (2006), it can be shown that there exists a set C such
that Π(B ∩C)> 0 and for every P ∈ B ∩C ,

∫ x0

−x0

∫ y0

−y0

f0(x,y) log

∫
K φ(

x−μx
σx

)φ(y−β0−β1x
σy

)dP0∫
K φ(

x−μx
σx

)φ(y−β0−β1x
σy

)dP
<

κ
1−κ

+2κ< ε/2

for a suitable choice of κ. Therefore, for f = φ∗P for every P ∈ B ∩C ,

∫
f0(x,y) log

f0(x,y)
f (x,y)

dxdy≤
∫ x0

−x0

∫ y0

−y0

f0(x,y) log
f0(x,y)∫ x0

−x0

∫ y0
−y0

φ(x−θx σx
)φ(y−θy σy

) f0(x,y)dθxdθy

+
∫ x0

−x0

∫ y0

−y0

f0(x,y) log

∫
K φ(

x−μx
σx

)φ(y−β0−β1x
σy

)dP0∫
K φ(

x−μx
σx

)φ(y−β0−β1x
σy

)dP

< ε.

Therefore, Π f places positive measure on all weak neighborhoods of f0, and hence satisfies Theo-
rem 5.

Proof [Theorem 2] The proof of Theorem 2 follows along the same lines as the proof for Theorem
1. Instead of the continuous response, however, there is a categorical response. The continuity
condition on the response probabilities ensures that there exists a y0 > 0 such that there are m
continuous functions b1(x), . . . ,bm(x) with |bi(x)|< y0 and

P f0 [Y = i |X = x] =
exp(bi(x))

∑m
j=1 exp(b j(x))

.

1947

HANNAH, BLEI AND POWELL

Using arguments similar to those in the previous proof, there exists σx > 0 such that,
∫ x0

−x0

f0(x, i) log
f0(x, i)∫ x0

−x0
φ(x−θx σx

) f0(x)
exp(bi(x))

∑mj=1 exp(b j(x))
dθx

< ε/2.

Define P0 such that dP0 = f0(x)×{ σx}×b1(x)×·· ·×bm(x). The rest of the proof follows as pre-
viously, with small modifications.

B.2 Proof of Theorem 3

We now show pointwise convergence of the conditional densities. The following propositions will
be used to prove Theorems 3 and 4.Let fn(x,y) be the Bayes estimate of the density under Π f after
n observations,

fn(x,y) =
∫
F
f (x,y)Π f (d f |(Xi,Yi)ni=1) .

Proposition 6 Weak consistency of Π f at f0 for the Gaussian model and the multinomial model
implies that fn(x,y) converges pointwise to f0(x,y) and fn(x) converges pointwise to f0(x) for (x,y)
in the compact support of f0.

Proof Both fn(x,y) and fn(x) can be written as expectations of bounded functions with respect to
the posterior measure. In the Gaussian case, both fn(x,y) and fn(x) are absolutely continuous; in
the multinomial case, fn(x) is absolutely continuous while the probability P fn [Y = k |x] is absolutely
continuous in x for k = 1, . . . ,K. Due to absolute continuity, the result holds.

This can be used to show that the conditional density estimate converges pointwise to the true
conditional density.

Proposition 7 Let fn(x,y) an fn(x) be as in Proposition 6. Then fn(y|x) converges pointwise to
f0(y|x) for any (x,y) in the compact support of f0.
Proof From Proposition 6, fn(x,y) converges pointwise to f0(x,y) and fn(x) converges pointwise
to f0(x). Then,

lim
n→∞

fn(y|x) = lim
n→∞

fn(x,y)
fn(x)

=
f0(x,y)
f0(x)

= f0(y|x).

The denominator value, fn(x), is greater than 0 almost surely because it is a mixture of Gaussian
densities.

Now we proceed to the proof of Theorem 3.
Proof [Theorem 3] The conditions for Theorem 3 assure that Propositions 6 and 7 hold. Because
of this and the fact that G0 places positive measure only on densities with a finite expectation, the
results hold.

B.3 Proof of Theorem 4

The proof follows in the same manner as that for Theorem 3.

1948

DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

Appendix C.

Implementation details.

C.1 CMB Computational Details

The DP-GLM was run on the largest data size tested several times; log posterior probabilities were
evaluated graphically, and in each case the posterior probabilities seem to have stabilized well before
1,000 iterations. Therefore, all runs for each sample size were given a 1,000 iteration burn-in with
samples taken every 5 iterations until 2,000 iterations had been observed. The scaling parameter α
was given a Gamma prior with shape and scale set to 1. The means and variances of each component
and all GLM parameters were also given a log-normal hyper distribution. The model was most
sensitive to the hyper-distribution on σy, the GLM variance. Small values were used (log(my) ∼
N(−3,2)) to place greater emphasis on response fit. The non-conjugate parameters were updated
using the Hamiltonian dynamics method of Neal (2010). Hyperparameters were chosen based on
performance on a subset of 100 data points; values were then held fixed all other data sets. This
may produce an overly confident error assessment, but the limited size of the data set did not allow
a pure training-validation-testing three way partition. A non-conjugate base measure was used on
this data set due to small sample sizes and heteroscedasticity. The conjugate measure, a normal-
inverse-gamma, assumes a relationship between the variance and the mean,

μ|σ2,λ,ν∼ N(λ,σ2/ν).

Therefore, smaller variances greatly encourage the mean μ to remain in a small neighborhood
around around the prior value, λ. Naturally, this property can be overcome with many observa-
tions, but it makes strong statements about the mean in situations with few total samples or few
samples per cluster due to heteroscedasticity. This model was implemented in Matlab; a run on the
largest data set took about 500 seconds.

C.2 CCS Computational Details

Again, the DP-GLM was run on the largest data size tested several times; log posterior probabilities
were evaluated graphically, and in each case the posterior probabilities seem to have stabilized
well before 1,000 iterations. Therefore, all runs for each sample size were given a 1,000 iteration
burn-in with samples taken every 5 iterations until 2,000 iterations had been observed. The scaling
parameter α was given a Gamma prior with shape and scale set to 1. The hyperparameters of the
conjugate base measure were set manually by trying different settings over four orders of magnitude
for each parameter on a single subset of training data. Again, this may produce an overly confident
error assessment, but the limited size of the data set did not allow a pure training-validation-testing
three way partition. All base measures were conjugate, so the sampler was fully collapsed. α was
updated using Hamiltonian dynamics (Neal, 2010). Original results were generated by Matlab; the
longest run times were about 1000 seconds. This method has been re-implemented in Java in a
highly efficient manner; the longest run times are now under about 10 seconds. Run times would
likely be even faster if variational methods were used for posterior sampling (Blei and Jordan, 2006).

1949

HANNAH, BLEI AND POWELL

C.3 Solar Computational Details

Again, the DP-GLM was run on the largest data set size tested several times; log posterior probabil-
ities were evaluated graphically, and in each case the posterior probabilities seem to have stabilized
well before 1,000 iterations. Therefore, all runs for each sample size were given a 1,000 itera-
tion burn-in with samples taken every 5 iterations until 2,000 iterations had been observed. The
scaling parameter α was set to 1 and the Dirichlet priors to Dir(1,1, . . . ,1). The response param-
eters were given a Gaussian base distribution with a mean set to 0 and a variance chosen after
trying parameters with four orders of magnitude on a fixed training data set. This may produce an
overly confident error assessment, but the limited size of the data set did not allow a pure training-
validation-testing three way partition. All covariate base measures were conjugate and the β base
measure was Gaussian, so the sampler was collapsed along the covariate dimensions and used in the
auxiliary component setting of Algorithm 8 of Neal (2000). The β parameters were updated using
Metropolis-Hastings. Results were in generated by Matlab; run times were substantially faster than
the other methods implemented in Matlab (under 200 seconds).

References

R. P. Adams, I. Murray, and D. J. C. MacKay. Tractable nonparametric Bayesian inference in Pois-
son processes with Gaussian process intensities. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 9–16. ACM, 2009.

M. Amewou-Atisso, S. Ghosal, J. K. Ghosh, and R. V. Ramamoorthi. Posterior consistency for
semi-parametric regression problems. Bernoulli, 9(2):291–312, 2003.

C. E. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric prob-
lems. The Annals of Statistics, 2(6):1152–1174, 1974.

A. Barron, M. J. Schervish, and L. Wasserman. The consistency of posterior distributions in non-
parametric problems. The Annals of Statistics, 27(2):536–561, 1999.

C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page,
D. N. Spergel, G. S. Tucker, et al. First-year Wilkinson microwave anisotropy probe (WMAP) 1
observations: preliminary maps and basic results. The Astrophysical Journal Supplement Series,
148(1):1–27, 2003.

D. Blackwell and J. B. MacQueen. Ferguson distributions via Polya urn schemes. The Annals
Statistics, 1(2):353–355, 1973.

D. M. Blei andM. I. Jordan. Variational inference for Dirichlet process mixtures. Bayesian Analysis,
1(1):121–144, 2006.

G. Bradshaw. UCI machine learning repository, 1989.

L. Brieman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Chapman & Hall/CRC, New York, NY, 1984.

L. D. Brown. Fundamentals of Statistical Exponential Families: with Applications in Statistical
Decision Theory. Institute of Mathematical Statistics, Hayward, CA, 1986.

1950

DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

H. A. Chipman, E. I. George, and R. E. McCulloch. Bayesian CART model search. Journal of the
American Statistical Association, 93(443):935–948, 1998.

H. A. Chipman, E. I. George, and R. E. McCulloch. Bayesian treed models. Machine Learning, 48
(1):299–320, 2002.

M. De Iorio, P. Muller, G. L. Rosner, and S. N. MacEachern. An ANOVA model for dependent
random measures. Journal of the American Statistical Association, 99(465):205–215, 2004.

J. A. Duan, M. Guindani, and A. E. Gelfand. Generalized spatial Dirichlet process models.
Biometrika, 94(4):809–825, 2007.

D. B. Dunson, N. Pillai, and J. H. Park. Bayesian density regression. Journal of the Royal Statistical
Society Series B, Statistical Methodology, 69(2):163–183, 2007.

M. D. Escobar. Estimating normal means with a Dirichlet process prior. Journal of the American
Statistical Association, 89(425):268–277, 1994.

M. D. Escobar and M. West. Bayesian density estimation and inference using mixtures. Journal of
the American Statistical Association, 90(430):577–588, 1995.

T. S. Ferguson. A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1
(2):209–230, 1973.

A. E. Gelfand, A. Kottas, and S. N. MacEachern. Bayesian nonparametric spatial modeling with
Dirichlet process mixing. Journal of the American Statistical Association, 100(471):1021–1035,
2005.

A. Gelman, J. B. Carlin, H. S. Stern, and D. S. Rubin. Bayesian Data Analysis. Chapman &
Hall/CRC, Boca Raton, FL, 2004.

S. Ghosal, J. K. Ghosh, and R. V. Ramamoorthi. Posterior consistency of Dirichlet mixtures in
density estimation. The Annals of Statistics, 27(1):143–158, 1999.

J. K. Ghosh and R. V. Ramamoorthi. Bayesian Nonparametrics. Springer-Verlag New York, Inc.,
New York, NY, 2003.

R. B. Gramacy and H. K. H. Lee. Bayesian treed Gaussian process models with an application to
computer modeling. Journal of the American Statistical Association, 103(483):1119–1130, 2008.

J. E. Griffin and M. F. J. Steel. Order-based dependent Dirichlet processes. Journal of the American
Statistical Association, 101(473):179–194, 2006.

J. E. Griffin and M. F. J. Steel. Bayesian nonparametric modelling with the Dirichlet process re-
gression smoother. Statistica Sinica, 20(4):1507–1527, 2010.

J. G. Ibrahim and K. P. Kleinman. Semiparametric Bayesian methods for random effects models.
In Practical Nonparametric and Semiparametric Bayesian Statistics, pages 89–114. 1998.

S. N. MacEachern. Estimating normal means with a conjugate style Dirichlet process prior. Com-
munications in Statistics-Simulation and Computation, 23(3):727–741, 1994.

1951

HANNAH, BLEI AND POWELL

S. N. MacEachern and P. Müller. Estimating mixture of Dirichlet process models. Journal of
Computational and Graphical Statistics, 7(2):223–238, 1998.

P. McCullagh and J. A. Nelder. Generalized Linear Models. Boca Raton, FL, 1989.

S. Mukhopadhyay and A. E. Gelfand. Dirichlet process mixed generalized linear models. Journal
of the American Statistical Association, 92(438):633–639, 1997.

P. Müller, A. Erkanli, and M. West. Bayesian curve fitting using multivariate normal mixtures.
Biometrika, 83(1):67–79, 1996.

E. A. Nadaraya. On estimating regression. Theory of Probability and its Applications, 9(1):141–
142, 1964.

R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Journal of
Computational and Graphical Statistics, 9(2):249–265, 2000.

R. M. Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 2010.

P. Z. G. Qian, H. Wu, and C. F. J. Wu. Gaussian process models for computer experiments with
qualitative and quantitative factors. Technometrics, 50(3):383–396, 2008.

C. E. Rasmussen and Z. Ghahramani. Infinite mixtures of Gaussian process experts. In Advances
in Neural Information Processing Systems, 14.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press,
Cambridge, MA, 2006.

A. Rodrıguez. Some Advances in Bayesian Nonparametric Modeling. PhD thesis, Duke University,
2009.

A. Rodriguez, D. B. Dunson, and A. E. Gelfand. Bayesian nonparametric functional data analysis
through density estimation. Biometrika, 96(1):149–162, 2009.

M. A. Sato. Online model selection based on the variational Bayes. Neural Computation, 13(7):
1649–1681, 2001.

L. Schwartz. On Bayes procedures. Probability Theory and Related Fields, 4(1):10–26, 1965.

B. Shahbaba and R. M. Neal. Nonlinear models using Dirichlet process mixtures. Journal of
Machine Learning Research, 10:1829–1850, 2009.

S. Tokdar. Posterior consistency of Dirichlet location-scale mixture of normals in density estimation
and regression. Sankhy a: The Indian Journal of Statistics, 67:90–110, 2006.

S. Walker. New approaches to Bayesian consistency. The Annals of Statistics, 32(5):2028–2043,
2004.

S. G. Walker, A. Lijoi, and I. Prunster. On rates of convergence for posterior distributions in infinite-
dimensional models. Annals of Statistics, 35(2):738, 2007.

1952

DIRICHLET PROCESS MIXTURES OF GENERALIZED LINEAR MODELS

G. S. Watson. Smooth regression analysis. Sankhy a: The Indian Journal of Statistics, 26(4):359–
372, 1964.

M. West, P. Muller, and M. D. Escobar. Hierarchical priors and mixture models, with application
in regression and density estimation. In Aspects of Uncertainty: A Tribute to DV Lindley, pages
363–386. 1994.

I. C. Yeh. Modeling of strength of high-performance concrete using artificial neural networks.
Cement and Concrete Research, 28(12):1797–1808, 1998.

1953

Journal of Machine Learning Research 12 (2011) 1955-1976 Submitted 2/11; Revised 4/11; Published 6/11

Kernel Regression in the Presence of Correlated Errors

Kris De Brabanter KRIS.DEBRABANTER@ESAT.KULEUVEN.BE
Department of Electrical Engineering SCD-SISTA
K.U. Leuven
Kasteelpark Arenberg 10
B-3001 Leuven, Belgium

Jos De Brabanter JOS.DEBRABANTER@ESAT.KULEUVEN.BE
Departement Industrieel Ingenieur - E&A
KaHo Sint Lieven (Associatie K.U. Leuven)
G. Desmetstraat 1
B-9000 Gent, Belgium

Johan A.K. Suykens JOHAN.SUYKENS@ESAT.KULEUVEN.BE
Bart De Moor BART.DEMOOR@ESAT.KULEUVEN.BE
Department of Electrical Engineering SCD-SISTA
K.U. Leuven
Kasteelpark Arenberg 10
B-3001 Leuven, Belgium

Editor: Xiaotong Shen

Abstract

It is a well-known problem that obtaining a correct bandwidth and/or smoothing parameter in non-
parametric regression is difficult in the presence of correlated errors. There exist a wide variety
of methods coping with this problem, but they all critically depend on a tuning procedure which
requires accurate information about the correlation structure. We propose a bandwidth selection
procedure based on bimodal kernels which successfully removes the correlation without requiring
any prior knowledge about its structure and its parameters. Further, we show that the form of the
kernel is very important when errors are correlated which is in contrast to the independent and iden-
tically distributed (i.i.d.) case. Finally, some extensions are proposed to use the proposed criterion
in support vector machines and least squares support vector machines for regression.

Keywords: nonparametric regression, correlated errors, bandwidth choice, cross-validation, short-
range dependence, bimodal kernel

1. Introduction

Nonparametric regression is a very popular tool for data analysis because these techniques impose
few assumptions about the shape of the mean function. Hence, they are extremely flexible tools for
uncovering nonlinear relationships between variables. Given the data {(x1,Y1), . . . ,(xn,Yn)} where
xi ≡ i/n and x ∈ [0,1] (fixed design). Then, the data can be written as

Yi = m(xi)+ ei, i= 1, . . . ,n, (1)

c©2011 Kris De Brabanter, Jos De Brabanter, Johan A.K. Suykens and Bart De Moor.

DE BRABANTER, DE BRABANTER, SUYKENS AND DE MOOR

where ei = Yi−m(xi) satisfies E[e] = 0 and Var[e] = σ2 < ∞. Thus Yi can be considered as the sum
of the value of the regression function at xi and some error ei with the expected value zero and the
sequence {ei} is a covariance stationary process.

Definition 1 (Covariance Stationarity) The sequence {ei} is covariance stationary if

• E[ei] = μ for all i

• Cov[ei,ei− j] = E[(ei−μ)(ei− j−μ)] = γ j for all i and any j.

Many techniques include a smoothing parameter and/or kernel bandwidth which controls the
smoothness, bias and variance of the estimate. A vast number of techniques have been developed to
determine suitable choices for these tuning parameters from data when the errors are independent
and identically distributed (i.i.d.) with finite variance. More detailed information can be found in
the books of Fan & Gijbels (1996), Davison & Hinkley (2003) and Konishi & Kitagawa (2008)
and the article by Feng & Heiler (2009). However, all the previous techniques have been derived
under the i.i.d. assumption. It has been shown that violating this assumption results in the break
down of the above methods (Altman, 1990; Hermann, Gasser & Kneip, 1992; Opsomer, Wand &
Yang, 2001; Lahiri, 2003). If the errors are positively (negatively) correlated, these methods will
produce a small (large) bandwidth which results in a rough (oversmooth) estimate of the regression
function. The focus of this paper is to look at the problem of estimating the mean function m in the
presence of correlation, not that of estimating the correlation function itself. Approaches describing
the estimation of the correlation function are extensively studied in Hart & Wehrly (1986), Hart
(1991) and Park et al. (2006).

Another issue in this context is whether the errors are assumed to be short-range dependent,
where the correlation decreases rapidly as the distance between two observations increases or long-
range dependent. The error process is said to be short-range dependent if for some τ > 0, δ > 1
and correlation function ρ(·), the spectral density H(ω) = σ2

2π ∑
∞
k=−∞ρ(k)e

−iω of the errors satisfies
(Cox, 1984)

H(ω)∼ τω−(1−δ) as ω→ 0,

where A ∼ B denotes A is asymptotic equivalent to B. In that case, ρ(j) is of order | j|−δ (Adenst-
edt, 1974). In case of long-range dependence, the correlation decreases more slowly and regression
estimation becomes even harder (Hall, Lahiri & Polzehl, 1995; Opsomer, Wand & Yang, 2001).
Here, the decrease is of order | j|−δ for 0 < δ ≤ 1. Estimation under long-range dependence has
attracted more and more attention in recent years. In many scientific research fields such as astron-
omy, chemistry, physics and signal processing, the observational errors sometimes reveal long-range
dependence. Künsch, Beran & Hampel (1993) made the following interesting remark:

“Perhaps most unbelievable to many is the observation that high-quality measurements
series from astronomy, physics, chemistry, generally regarded as prototype of i.i.d. ob-
servations, are not independent but long-range correlated.”

Further, since Kulkarni et al. (2002) have proven consistency for the data-dependent kernel
estimators, that is, correlated errors and/or correlation among the independent variables, there is no
need to alter the kernel smoother by adding constraints. Confirming their results, we show that the
problem is due to the model selection criterion. In fact, we will show in Section 3 that there exists

1956

KERNEL REGRESSION IN THE PRESENCE OF CORRELATED ERRORS

a simple multiplicative relation between the bandwidth under correlation and the bandwidth under
the i.i.d. assumption.

In the parametric case, ordinary least squares estimators in the presence of autocorrelation are
still linear-unbiased as well as consistent, but they are no longer efficient (i.e., minimum variance).
As a result, the usual confidence intervals and the test hypotheses cannot be legitimately applied
(Sen & Srivastava, 1990).

2. Problems With Correlation

Some quite fundamental problems occur when nonparametric regression is attempted in the pres-
ence of correlated errors. For all nonparametric regression techniques, the shape and the smoothness
of the estimated function depends on a large extent on the specific value(s) chosen for the kernel
bandwidth (and/or regularization parameter). In order to avoid selecting values for these parameters
by trial and error, several data-driven methods are developed. However, the presence of correlation
between the errors, if ignored, causes breakdown of commonly used automatic tuning parameter
selection methods such as cross-validation (CV) or plug-in.

Data-driven bandwidth selectors tend to be “fooled” by the correlation, interpreting it as reflect-
ing the regression relationship and variance function. So, the cyclical pattern in positively correlated
errors is viewed as a high frequency regression relationship with small variance, and the bandwidth
is set small enough to track the cycles resulting in an undersmoothed fitted regression curve. The
alternating pattern above and below the true underlying function for negatively correlated errors is
interpreted as a high variance, and the bandwidth is set high enough to smooth over the variability,
producing an oversmoothed fitted regression curve.

The breakdown of automated methods, as well as a suitable solution, is illustrated by means of
a simple example shown in Figure 1. For 200 equally spaced observations and a polynomial mean
function m(x) = 300x3(1− x)3, four progressively more correlated sets of errors were generated
from the same vector of independent noise and added to the mean function. The errors are normally
distributed with variance σ2 = 0.3 and correlation following an Auto Regressive process of order
1, denoted by AR(1), corr(ei,e j) = exp(−α|xi− x j|) (Fan & Yao, 2003). Figure 1 shows four local
linear regression estimates for these data sets. For each data set, two bandwidth selection methods
were used: standard CV and a correlation-corrected CV (CC-CV) which is further discussed in
Section 3. Table 1 summarizes the bandwidths selected for the four data sets under both methods.

Table 1 and Figure 1 clearly show that when correlation increases, the bandwidth selected by
CV becomes smaller and smaller, and the estimates become more undersmoothed. The bandwidths
selected by CC-CV (explained in Section 3), a method that accounts for the presence of correlation,
are much more stable and result in virtually the same estimate for all four cases. This type of
undersmoothing behavior in the presence of positively correlated errors has been observed with
most commonly used automated bandwidth selection methods (Altman, 1990; Hart, 1991; Opsomer,
Wand & Yang, 2001; Kim et al., 2009).

3. New Developments in Kernel Regression with Correlated Errors

In this Section, we address how to deal with, in a simple but effective way, correlated errors using
CV. We make a clear distinction between kernel methods requiring no positive definite kernel and
kernel methods requiring a positive definite kernel. We will also show that the form of the kernel,

1957

DE BRABANTER, DE BRABANTER, SUYKENS AND DE MOOR

Correlation level Autocorrelation CV CC-CV
Independent 0 0.09 0.09
α= 400 0.14 0.034 0.12
α= 200 0.37 0.0084 0.13
α= 100 0.61 0.0072 0.13

Table 1: Summary of bandwidth selection for simulated data in Figure 1

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

x

Y
,m̂

n
(x
)

(a) Uncorrelated

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

x

Y
,m̂

n
(x
)

(b) α= 400

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

x

Y
,m̂

n
(x
)

(c) α= 200

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

x

Y
,m̂

n
(x
)

(d) α= 100

Figure 1: Simulated data with four levels of AR(1) correlation, estimated with local linear regres-
sion; full line represents the estimates obtained with bandwidth selected by CV; dashed
line represents the estimates obtained with bandwidth selected by our method.

based on the mean squared error, is very important when errors are correlated. This is in contrast
with the i.i.d. case where the choice between the various kernels, based on the mean squared error,
is not very crucial (Härdle, 1999). In what follows, the kernel K is assumed to be an isotropic kernel.

1958

KERNEL REGRESSION IN THE PRESENCE OF CORRELATED ERRORS

3.1 No Positive Definite Kernel Constraint

To estimate the unknown regression function m, consider the Nadaraya-Watson (NW) kernel esti-
mator (Nadaraya, 1964; Watson, 1964) defined as

m̂n(x) =
n

∑
i=1

K(x−xih)Yi

∑n
j=1K(

x−x j
h)

,

where h is the bandwidth of the kernel K. This kernel can be one of the following kernels: Epanech-
nikov, Gaussian, triangular, spline, etc. An optimal h can for example be found by minimizing the
leave-one-out cross-validation (LCV) score function

LCV(h) =
1
n

n

∑
i=1

(
Yi− m̂(−i)

n (xi;h)
)2

, (2)

where m̂(−i)
n (xi;h) denotes the leave-one-out estimator where point i is left out from the training.

For notational ease, the dependence on the bandwidth h will be suppressed. We can now state the
following.

Lemma 2 Assume that the errors are zero-mean, then the expected value of the LCV score func-
tion (2) is given by

E[LCV(h)] =
1
n
E

[
n

∑
i=1

(
m(xi)− m̂(−i)

n (xi)
)2]

+σ2− 2
n

n

∑
i=1

Cov
[
m̂(−i)
n (xi),ei

]
.

Proof: see Appendix A. �

Note that the last term on the right-hand side in Lemma 2 is in addition to the correlation
already included in the first term. Hart (1991) shows, if n→∞, nh→∞, nh5 → 0 and for positively
correlated errors, that E[LCV(h)]≈ σ2+c/nhwhere c< 0 and c does not depend on the bandwidth.
If the correlation is sufficiently strong and n sufficiently large, E[LCV(h)] will be minimized at a
value of h that is very near to zero. The latter corresponds to almost interpolating the data (see
Figure 1). This result does not only hold for leave-one-out cross-validation but also for Mallow’s
criterion (Chiu, 1989) and plug-in based techniques (Opsomer, Wand & Yang, 2001). The following
theorem provides a simple but effective way to deal with correlated errors. In what follows we will
use the following notation

k(u) =
∫ ∞

−∞
K(y)e−iuy dy

for the Fourier Transform of the kernel function K.

Theorem 3 Assume uniform equally spaced design, x ∈ [0,1], E[e] = 0, Cov[ei,ei+k] = E[eiei+k] =
γk and γk ∼ k−a for some a> 2. Assume that

(C1) K is Lipschitz continuous at x= 0;

(C2)
∫
K(u)du= 1, lim|u|→∞ |uK(u)|= 0,

∫ |K(u)|du< ∞,supu |K(u)|< ∞;

(C3)
∫ |k(u)|du< ∞ and K is symmetric.

1959

DE BRABANTER, DE BRABANTER, SUYKENS AND DE MOOR

Assume further that boundary effects are ignored and that h→ 0 as n→∞ such that nh2 →∞, then
for the NW smoother it follows that

E[LCV(h)] =
1
n
E

[
n

∑
i=1

(
m(xi)− m̂(−i)

n (xi)
)2]

+σ2− 4K(0)
nh−K(0)

∞

∑
k=1

γk+o(n−1h−1). (3)

Proof: see Appendix B. �

Remark 4 There are no major changes in the proof if we consider other smoothers such as Priestley-
Chao and local linear regression. In fact, it is well-known that the local linear estimate is the local
constant estimate (Nadaraya-Watson) plus a correction for local slope of the data and skewness of
the data point under consideration. Following the steps of the proof of Theorem 3 for the correction
factor will yield a similar result.

From this result it is clear that, by taking a kernel satisfying the condition K(0) = 0, the correla-
tion structure is removed without requiring any prior information about its structure and (3) reduces
to

E[LCV(h)] =
1
n
E

[
n

∑
i=1

(
m(xi)− m̂(−i)

n (xi)
)2]

+σ2+o(n−1h−1). (4)

Therefore, it is natural to use a bandwidth selection criterion based on a kernel satisfying K(0) = 0,
defined by

ĥb = argmin
h∈Qn

LCV(h),

where Qn is a finite set of parameters. Notice that if K is a symmetric probability density function,
then K(0) = 0 implies that K is not unimodal. Hence, it is obvious to use bimodal kernels. Such a
kernel gives more weight to observations near to the point x of interest than those that are far from x.
But at the same time it also reduces the weight of points which are too close to x. A major advantage
of using a bandwidth selection criterion based on bimodal kernels is the fact that is more efficient in
removing the correlation than leave-(2l+1)-out CV (Chu & Marron, 1991).

Definition 5 (Leave-(2l+1)-out CV) Leave-(2l+1)-out CV or modified CV (MCV) is defined as

MCV(h) =
1
n

n

∑
i=1

(
Yi− m̂(−i)

n (xi)

)2
, (5)

where m̂(−i)
n (xi) is the leave-(2l+ 1)-out version of m(xi), that is, the observations (xi+ j,Yi+ j) for

−l ≤ j ≤ l are left out to estimate m̂n(xi).

Taking a bimodal kernel satisfying K(0) = 0 results in Equation (4) while leave-(2l+1)-out CV
with unimodal kernel K, under the conditions of Theorem 3, yields

E[MCV(h)] =
1
n
E

[
n

∑
i=1

(
m(xi)− m̂(−i)

n (xi)
)2]

+σ2− 4K(0)
nh−K(0)

∞

∑
k=l+1

γk+o(n−1h−1).

The formula above clearly shows that leave-(2l+ 1)-out CV with unimodal kernel K cannot com-
pletely remove the correlation structure. Only the first l elements of the correlation are removed.

1960

KERNEL REGRESSION IN THE PRESENCE OF CORRELATED ERRORS

Another possibility of bandwidth selection under correlation, not based on bimodal kernels, is
to estimate the covariance structure γ0,γ1, . . . in Equation (3). Although the usual residual-based
estimators of the autocovariances γ̂k are consistent, ∑∞

k=1 γ̂k is not a consistent estimator of ∑
∞
k=1 γk

(Simonoff, 1996). A first approach correcting for this, is to estimate ∑∞
k=1 γk by fitting a parametric

model to the residuals (and thereby obtaining estimates of γk) and use these estimates in Equation (3)
together with a univariate kernel. If the assumed parametric model is incorrect, these estimates can
be far from the correct ones resulting in a poor choice of the bandwidth. However, Altman (1990)
showed that, if the signal to noise ratio is small, this approach results in sufficiently good estimates
of correlation for correcting the selection criteria. A second approach, proposed by Hart (1989,
1991), suggests estimating the covariance structure in the spectral domain via differencing the data
at least twice. A third approach is to derive an asymptotic bias-variance decomposition under the
correlated error assumption of the kernel smoother. In this way and under certain conditions on
the correlation function, plug-ins can be derived taking the correlation into account, see Hermann,
Gasser & Kneip (1992), Opsomer, Wand & Yang (2001), Hall & Van Keilegom (2003), Francisco-
Fernández & Opsomer (2004) and Francisco-Fernández et al. (2005). More recently, Park et al.
(2006) proposed to estimate the error correlation nonparametrically without prior knowledge of the
correlation structure.

3.2 Positive Definite Kernel Constraint

Methods like support vector machines (SVM) (Vapnik, 1999) and least squares support vector ma-
chines (LS-SVM) (Suykens et al., 2002) require a positive (semi) definite kernel (see Appendix C
for more details on LS-SVM for regression). However, the following theorem reveals why a bimodal
kernel K̃ cannot be directly applied in these methods.

Theorem 6 A bimodal kernel K̃, satisfying K̃(0) = 0, is never positive (semi) definite.

Proof: see Appendix D. �

Consequently, the previous strategy of using bimodal kernels cannot directly be applied to SVM
and LS-SVM. A possible way to circumvent this obstacle, is to use the bandwidth ĥb, obtained from
the bimodal kernel, as a pilot bandwidth selector for other data-driven selection procedures such as
leave-(2l+1)-out CV or block bootstrap bandwidth selector (Hall, Lahiri & Polzehl, 1995). Since
the block bootstrap in Hall, Lahiri & Polzehl (1995) is based on two smoothers, that is, one is used to
compute centered residuals and the other generates bootstrap data, the procedure is computationally
costly. Therefore, we will use leave-(2l+ 1)-out CV or MCV which has a lower computational
cost. A crucial parameter to be estimated in MCV, see also Chu & Marron (1991), is l. Indeed, the
amount of dependence between m̂n(xk) and Yk is reduced as l increases.

A similar problem arises in block bootstrap where the accuracy of the method critically depends
on the block size that is supplied by the user. The orders of magnitude of the optimal block sizes
are known in some inference problems (see Künsch, 1989; Hall, Horowitz & Jing, 1995; Lahiri,
1999; Bühlmann & Künsch, 1999). However, the leading terms of these optimal block sizes depend
on various population characteristics in an intricate manner, making it difficult to estimate these
parameters in practice. Recently, Lahiri et al. (2007) proposed a nonparametric plug-in principle to
determine the block size.

For l = 0, MCV is ordinary CV or leave-one-out CV. One possible method to select a value for l
is to use ĥb as pilot bandwidth selector. Define a bimodal kernel K̃ and assume ĥb is available, then

1961

DE BRABANTER, DE BRABANTER, SUYKENS AND DE MOOR

one can calculate

m̂n(x) =
n

∑
i=1

K̃
(
x−xi
ĥb

)
Yi

∑n
j=1 K̃

(
x−x j
ĥb

) . (6)

From this result, the residuals are obtained by

êi = Yi− m̂n(xi), for i= 1, . . . ,n

and choose l to be the smallest q≥ 1 such that

|rq|=
∣∣∣∣∣∑n−q

i=1 êiêi+q
∑n
i=1 ê

2
i

∣∣∣∣∣≤ Φ−1(1− α
2)√

n
, (7)

whereΦ−1 denotes the quantile function of the standard normal distribution and α is the significance
level, say 5%. Observe that Equation (7) is based on the fact that rq is asymptotically normal
distributed under the centered i.i.d. error assumption (Kendall, Stuart & Ord, 1983) and hence
provides an approximate 100(1−α)% confidence interval for the autocorrelation. The reason why
Equation (7) can be legitimately applied is motivated by combining the theoretical results of Kim et
al. (2004) and Park et al. (2006) stating that

1
n−q

n−q
∑
i=1

êiêi+q =
1

n−q

n−q
∑
i=1

eiei+q+O(n−4/5).

Once l is selected, the tuning parameters of SVM or LS-SVM can be determined by using leave-
(2l+1)-out CV combined with a positive definite kernel, for example, Gaussian kernel. We then call
Correlation-Corrected CV (CC-CV) the combination of finding l via bimodal kernels and using the
obtained l in leave-(2l+ 1)-out CV. Algorithm 1 summarizes the CC-CV procedure for LS-SVM.
This procedure can also be applied to SVM for regression.

Algorithm 1 Correlation-Corrected CV for LS-SVM Regression

1: Determine ĥb in Equation (6) with a bimodal kernel by means of LCV
2: Calculate l satisfying Equation (7)
3: Determine both tuning parameters for LS-SVM by means of leave-(2l+1)-out CV Equation (5)
and a positive definite unimodal kernel.

3.3 Drawback of Using Bimodal Kernels

Although bimodal kernels are very effective in removing the correlation structure, they have an
inherent drawback. When using bimodal kernels to estimate the regression function m, the esti-
mate m̂n will suffer from increased mean squared error (MSE). The following theorem indicates the
asymptotic behavior of the MSE of m̂n(x) when the errors are covariance stationary.

Theorem 7 (Simonoff, 1996) Let Equation (1) hold and assume that m has two continuous deriva-
tives. Assume also that Cov[ei,ei+k] = γk for all k, where γ0 = σ2 < ∞ and ∑∞

k=1 k|γk|< ∞. Now, as

1962

KERNEL REGRESSION IN THE PRESENCE OF CORRELATED ERRORS

n→∞ and h→ 0, the following statement holds uniformly in x ∈ (h,1−h) for the Mean Integrated
Squared Error (MISE)

MISE(m̂n) =
μ22(K)h

4 ∫ (m′′(x))2 dx
4

+
R(K)[σ2+2∑∞

k=1 γk]
nh

+o(h4+n−1h−1),

where μ2(K) =
∫
u2K(u)du and R(K) =

∫
K2(u)du.

An asymptotic optimal constant or global bandwidth ĥAMISE, for m′′(x) �= 0, is the minimizer of the
Asymptotic MISE (AMISE)

AMISE(m̂n) =
μ22(K)h

4 ∫ (m′′(x))2 dx
4

+
R(K)[σ2+2∑∞

k=1 γk]
nh

,

w.r.t. to the bandwidth, yielding

ĥAMISE =

[
R(K)[σ2+2∑∞

k=1 γk]
μ22(K)

∫
(m′′(x))2 dx

]1/5
n−1/5. (8)

We see that ĥAMISE is at least as big as the bandwidth for i.i.d data ĥ0 if γk ≥ 0 for all k ≥ 1. The
following corollary shows that there is a simple multiplicative relationship between the asymptotic
optimal bandwidth for dependent data ĥAMISE and bandwidth for independent data ĥ0.

Corollary 8 Assume the conditions of Theorem 7 hold, then

ĥAMISE =

[
1+2

∞

∑
k=1

ρ(k)

]1/5
ĥ0, (9)

where ĥAMISE is the asymptotic MISE optimal bandwidth for dependent data, ĥ0 is the asymptotic
optimal bandwidth for independent data and ρ(k) denotes the autocorrelation function at lag k, that
is, ρ(k) = γk/σ2 = E[eiei+k]/σ2.

Proof: see Appendix E. �

Thus, if the data are positively autocorrelated (ρ(k) ≥ 0 ∀k), the optimal bandwidth under cor-
relation is larger than that for independent data. Unfortunately, Equation (9) is quite hard to use
in practice since it requires knowledge about the correlation structure and an estimate of the band-
width ĥ0 under the i.i.d. assumption, given correlated data. By taking ĥAMISE as in Equation (8), the
corresponding asymptotic MISE is equal to

AMISE(m̂n) = cD2/5K n−4/5,

where c depends neither on the bandwidth nor on the kernel K and

DK = μ2(K)R(K)
2 =

(∫
u2K(u)du

)(∫
K2(u)du

)2
. (10)

1963

DE BRABANTER, DE BRABANTER, SUYKENS AND DE MOOR

It is obvious that one wants to minimize Equation (10) with respect to the kernel function K. This
leads to the well-known Epanechnikov kernel Kepa. However, adding the constraint K(0) = 0 (see
Theorem 3) to the minimization of Equation (10) would lead to the following optimal kernel

K�(u) =

{
Kepa(u), if u �= 0;
0, if u= 0.

Certainly, this kernel violates assumption (C1) in Theorem 3. In fact, an optimal kernel does not
exist in the class of kernels satisfying assumption (C1) and K(0) = 0. To illustrate this, note that
there exist a sequence of kernels {Kepa(u,ε)}ε∈]0,1[, indexed by ε, such that Kepa(u) converges to
K�(u) and the value of

∫
Kepa(u,ε)2du decreases to

∫
K�(u)2du as ε tends to zero. Since an optimal

kernel in this class cannot be found, we have to be satisfied with a so-called ε-optimal class of
bimodal kernels K̃ε(u), with 0< ε< 1, defined as

K̃ε(u) =
4

4−3ε− ε3

{ 3
4(1−u2)I{|u|≤1}, |u| ≥ ε;
3
4
1−ε2
ε |u|, |u|< ε.

For ε = 0, we define K̃ε(u) = Kepa(u). Table 2 displays several possible bimodal kernel functions
with their respective DK value compared to the Epanechnikov kernel. Although it is possible to
express the DK value for K̃ε(u) as a function of ε, we do not include it in Table 2 but instead, we
graphically illustrate the dependence of DK on ε in Figure 2a. An illustration of the ε-optimal class
of bimodal kernels is shown in Figure 2b.

kernel function Illustration DK

Kepa 3
4(1−u2)I{|u|≤1}

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

0.072

K̃1 630(4u2−1)2u4I{|u|≤1/2}
−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

0.374

K̃2 2√
πu
2 exp(−u2)

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.134

K̃3 1
2 |u| exp(−|u|)

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.093

Table 2: Kernel functions with illustrations and their respectiveDK value compared to the Epanech-
nikov kernel. IA denotes the indicator function of an event A.

Remark 9 We do not consider ε as a tuning parameter but the user can set its value. By doing
this one should be aware of two aspects. First, one should choose the value of ε so that its DK

1964

KERNEL REGRESSION IN THE PRESENCE OF CORRELATED ERRORS

0 0.2 0.4 0.6 0.8 1
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Epanechnikov

ε

D
K

(a)

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−ε ε

u

K̃
ε(
u)

(b)

Figure 2: (a) DK as a function of ε for the ε-optimal class of kernels. The dot on the left side marks
the Epanechnikov kernel; (b) Illustration of the ε-optimal class of kernels for ε= 0.3.

value is lower than the DK value of kernel K̃3. This is fulfilled when ε < 0.2. Second, by choosing
ε extremely small (but not zero) some numerical difficulties may arise. We have experimented with
several values of ε and we concluded that the value taken in the remaining of the paper, that is,
ε = 0.1 is small enough and it does not show any numerical problems. In theory, there is indeed a
difference between kernel K̃3 and the ε-optimal class of bimodal kernels. However, in practice the
difference is rather small. One can compare it with the i.i.d. case where the Epanechnikov kernel is
the optimal kernel, but in practice the difference with say a Gaussian kernel is negligible.

4. Simulations

In this Section, we illustrate the capability of the proposed method on several toy examples corrupted
with different noise models as well as a real data set.

4.1 CC-CV vs. LCV with Different Noise Models

In a first example, we compare the finite sample performance of CC-CV (with K̃ε and ε = 0.1 in
the first step and the Gaussian kernel in the second step) to the classical leave-one-out CV (LCV)
based on the Epanechnikov (unimodal) kernel in the presence of correlation. Consider the following
function m(x) = 300x3(1− x)3 for 0 ≤ x ≤ 1. The sample size is set to n = 200. We consider

two types of noise models: (i) an AR(5) process e j = ∑5l=1φle j−l +
√
1−φ21Zj where Zj are i.i.d.

normal random variables with variance σ2 = 0.5 and zero mean. The data is generated according
to Equation (1). The errors e j for j = 1, . . . ,5 are standard normal random variables. The AR(5)
parameters are set to [φ1,φ2,φ3,φ4,φ5] = [0.7,−0.5,0.4,−0.3,0.2]. (ii) m-dependent models ei =

r0δi+ r1δi−1 with m= 1 where δi is i.i.d. standard normal random variable, r0 =
√

1+2ν+
√

1−2ν
2 and

r1 =
√

1+2ν−
√

1−2ν
2 for ν= 1/2.

Figure 3 shows typical results of LS-SVM regression estimates for both noise models. Table 3
summarizes the average of the regularization parameters γ̂, bandwidths ĥ and asymptotic squared
error, defined as ASE = 1

n ∑
n
i=1(m(xi)− m̂n(xi))2, for 200 runs for both noise models. By looking

at the average ASE, it is clear that the tuning parameters obtained by CC-CV result into better

1965

DE BRABANTER, DE BRABANTER, SUYKENS AND DE MOOR

estimates which are not influenced by the correlation. Also notice the small bandwidths and larger
regularization constants found by LCV for both noise models. This provides clear evidence that the
kernel smoother is trying to model the noise instead of the true underlying function. These findings
are also valid if one uses generalized CV or v-fold CV. Figure 4 and Figure 5 show the CV surfaces

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8

Y
,m̂

n
(x
)

x
(a) AR(5)

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

6

7

8

x

Y
,m̂

n
(x
)

(b) m-dependence models

Figure 3: Typical results of the LS-SVM regression estimates for both noise models. The thin line
represents the estimate with tuning parameters determined by LCV and the bold line is
the estimate based on the CC-CV tuning parameters.

AR(5) m-dependence models
LCV CC-CV LCV CC-CV

av. γ̂ 226.24 2.27 1.05×105 6.87
av. ĥ 0.014 1.01 0.023 1.88
av. ASE 0.39 (2.9×10−2) 0.019 (9.9×10−4) 0.90 (8.2×10−2) 0.038 (1.4×10−3)

Table 3: Average of the regularization parameters γ̂, bandwidths ĥ and average ASE for 200 runs
for both noise models. The standard deviation is given between parenthesis.

for both model selection methods on the AR(5) noise model corresponding to the model selection
of the estimate in Figure 3(a). These plots clearly demonstrate the shift of the tuning parameters.
A cross section for both tuning parameters is provided below each surface plot. Also note that the
surface of the CC-CV tends to be flatter than LCV and so it is harder to minimize numerically (see
Hall, Lahiri & Polzehl, 1995).

4.2 Evolution of the Bandwidth Under Correlation

Consider the same function as in the previous simulation and let n = 400. The noise error model
is taken to be an AR(1) process with varying parameter φ=−0.95,−0.9, . . . ,0.9,0.95. For each φ,
100 replications of size n were made to report the average regularization parameter, bandwidth and
average ASE for both methods. The results are summarized in Table 4. We used the K̃ε kernel with
ε = 0.1 in the first step and the Gaussian kernel in the second step for CC-CV and the Gaussian
kernel for classical leave-one-out CV (LCV). The results indicate that the CC-CV method is indeed
capable of finding good tuning parameters in the presence of correlated errors. The CC-CV method

1966

KERNEL REGRESSION IN THE PRESENCE OF CORRELATED ERRORS

−3.6 −3.4 −3.2 −3 −2.8

2
4

6
8

0

0.1

0.2

0.3

0.4

log(h)log(γ)

L
C
V

(a)

−4 −3 −2 −1 0 1 2
0.1

0.2

0.3

0.4

0.5

0.6

log(h)

L
C
V

(b)

−1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

log(γ)

L
C
V

(c)

Figure 4: (a) CV surface for LCV; (b) cross sectional view of log(h) for fixed log(γ) = 5.5; (c)
cross sectional view of log(γ) for fixed log(h) = −3.6. The dot indicates the minimum
of the cost function. This corresponds to the model selection of the wiggly estimate in
Figure 3(a).

−0.5
0

0.5
1

0
1

2
3

0

0.2

0.4

0.6

log(h)log(γ)

C
C
-C
V
(l
=
3)

(a)

−4 −3 −2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

log(h)

C
C
-C
V

(b)

−1 0 1 2 3 4 5
0.354

0.356

0.358

0.36

0.362

0.364

0.366

0.368

0.37

log(γ)

C
C
-C
V
(c)

Figure 5: (a) CV surface for CC-CV; (b) cross sectional view of log(h) for fixed log(γ) = 0.82; (c)
cross sectional view of log(γ) for fixed log(h) = 0.06. The dot indicates the minimum
of the cost function. This corresponds to the model selection of the smooth estimate in
Figure 3(a).

outperforms the classical LCV for positively correlated errors, that is, φ> 0. The method is capable
of producing good bandwidths which do not tend to very small values as in the LCV case.

In general, the regularization parameter obtained by LCV is larger than the one from CC - CV.
However, the latter is not theoretically verified and serves only as a heuristic. On the other hand,
for negatively correlated errors (φ < 0), both methods perform equally well. The reason why the
effects from correlated errors is more outspoken for positive φ than for negative φ might be related
to the fact that negatively correlated errors are seemingly hard to differentiate form i.i.d. errors in
practice.

4.3 Comparison of Different Bimodal Kernels

Consider a polynomial mean function m(xk) = 300x3k(1− xk)3, k = 1, . . . ,400, where the errors are
normally distributed with variance σ2= 0.1 and correlation following an AR(1) process, corr(ei,e j)=
exp(−150|xi−x j|). The simulation shows the difference in regression estimates (Nadaraya-Watson)
based on kernels K̃1, K̃3 and K̃ε with ε = 0.1, see Figure 6a and 6b respectively. Due to the larger
DK value of K̃1, the estimate tends to be more wiggly compared to kernel K̃3. The difference be-

1967

DE BRABANTER, DE BRABANTER, SUYKENS AND DE MOOR

LCV CC-CVφ
γ̂ ĥ av. ASE γ̂ ĥ av. ASE

-0.95 14.75 1.48 0.0017 7.65 1.43 0.0019
-0.9 11.48 1.47 0.0017 14.58 1.18 0.0021
-0.8 7.52 1.39 0.0021 18.12 1.15 0.0031
-0.7 2.89 1.51 0.0024 6.23 1.21 0.0030
-0.6 28.78 1.52 0.0030 5.48 1.62 0.0033
-0.5 42.58 1.71 0.0031 87.85 1.75 0.0048
-0.4 39.15 1.55 0.0052 39.02 1.43 0.0060
-0.3 72.91 1.68 0.0055 19.76 1.54 0.0061
-0.2 98.12 1.75 0.0061 99.56 1.96 0.0069
-0.1 60.56 1.81 0.0069 101.1 1.89 0.0070
0 102.5 1.45 0.0091 158.4 1.89 0.0092
0.1 1251 1.22 0.0138 209.2 1.88 0.0105
0.2 1893 0.98 0.0482 224.6 1.65 0.0160
0.3 1535 0.66 0.11 5.18 1.86 0.0161
0.4 482.3 0.12 0.25 667.5 1.68 0.023
0.5 2598 0.04 0.33 541.8 1.82 0.033
0.6 230.1 0.03 0.36 986.9 1.85 0.036
0.7 9785 0.03 0.41 12.58 1.68 0.052
0.8 612.1 0.03 0.45 1531 1.53 0.069
0.9 448.8 0.02 0.51 145.12 1.35 0.095
0.95 878.4 0.01 0.66 96.5 1.19 0.13

Table 4: Average of the regularization parameters, bandwidths and average ASE for 100 runs for
the AR(1) process with varying parameter φ

tween the regression estimate based on K̃3 and K̃ε with ε = 0.1 is very small and almost cannot be
seen on Figure 6b. For illustration purposes we did not visualize the result based on kernel K̃2. For
the sake of comparison between regression estimates based on K̃1, K̃2,K̃3 and K̃ε with ε = 0.1, we
show the corresponding asymptotic squared error (ASE) in Figure 7 based on 100 simulations with
the data generation process described as above. The boxplot shows that the kernel K̃ε with ε = 0.1
outperforms the other three.

4.4 Real Life Data Set

We apply the proposed method to a time series of the Beveridge (1921) index of wheat prices from
the year 1500 to 1869 (Anderson, 1971). These data are an annual index of prices at which wheat
was sold in European markets. The data used for analysis are the natural logarithms of the Beveridge
indices. This transformation is done to correct for heteroscedasticity in the original series (no other
preprocessing was performed). The result is shown in Figure 8 for LS-SVMwith Gaussian kernel. It
is clear that the estimate based on classical leave-one-out CV (assumption of no correlation) is very
rough. The proposed CC-CV method produces a smooth regression fit. The selected parameters
(γ̂, ĥ) for LS-SVM are (15.61,29.27) and (96.91,1.55) obtained by CC-CV and LCV respectively.

1968

KERNEL REGRESSION IN THE PRESENCE OF CORRELATED ERRORS

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

x

Y
,m̂

n
(x
)

(a)

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

x

Y
,m̂

n
(x
)

(b)
Figure 6: Difference in the regression estimate (Nadaraya-Watson) (a) based on kernel K̃1 (full

line) and K̃3 (dashed line). Due to the larger DK value of K̃1, the estimate tends to be
more wiggly compared to K̃3; (b) based on kernel K̃3 (full line) and ε-optimal kernel with
ε= 0.1 (dashed line).

0.01

0.015

0.02

0.025

0.03

0.035

K̃1 K̃εK̃3 K̃2

A
SE

Figure 7: Boxplot of the asymptotic squared errors for the regression estimates based on bimodal
kernels K̃1, K̃2, K̃3 and K̃ε with ε= 0.1.

5. Conclusion

We have introduced a new type of cross-validation procedure, based on bimodal kernels, in order to
automatically remove the error correlation without requiring any prior knowledge about its structure.
We have shown that the form of the kernel is very important when errors are correlated. This in
contrast with the i.i.d. case where the choice between the various kernels on the basis of the mean
squared error is not very important. As a consequence of the bimodal kernel choice the estimate
suffers from increased mean squared error. Since an optimal bimodal kernel (in mean squared
error sense) cannot be found we have proposed a ε-optimal class of bimodal kernels. Further, we
have used the bandwidth of the bimodal kernel as pilot bandwidth selector for leave-(2l+ 1)-out
cross-validation. By taking this extra step, methods that require a positive definite kernel (SVM
and LS-SVM) can be equipped with this technique of handling data in the presence of correlated
errors since they require a positive definite kernel. Also other kernel methods which do not require
positive definite kernels can benefit from the proposed method.

1969

DE BRABANTER, DE BRABANTER, SUYKENS AND DE MOOR

1500 1550 1600 1650 1700 1750 1800 1850 1900
2

2.5

3

3.5

4

4.5

5

5.5

6

x

lo
g(
Y
)

Figure 8: Difference in regression estimates (LS-SVM) for standard leave-one-out CV (thin line)
and the proposed method (bold line).

Acknowledgments

The authors would like to thank Prof. László Györfi and Prof. Irène Gijbels for their constructive
comments which improved the results of the paper.
Research supported by Research Council KUL: GOA/11/05 Ambiorics, GOA/10/09 MaNet, CoE
EF/05/006 Optimization in Engineering (OPTEC) en PFV/10/002 (OPTEC), IOF-SCORES4CHEM,
several PhD/post-doc & fellow grants; Flemish Government: FWO: FWO: PhD/postdoc grants,
projects: G0226.06 (cooperative systems and optimization), G0321.06 (Tensors), G.0302.07 (SVM/
Kernel), G.0320.08 (convex MPC), G.0558.08 (Robust MHE), G.0557.08 (Glycemia2), G.0588.09
(Brain-machine) research communities (WOG: ICCoS, ANMMM, MLDM); G.0377.09 (Mecha-
tronics MPC), IWT: PhD Grants, Eureka-Flite+, SBO LeCoPro, SBO Climaqs, SBO POM, O&O-
Dsquare, Belgian Federal Science Policy Office: IUAP P6/04 (DYSCO, Dynamical systems, control
and optimization, 2007-2011), IBBT, EU: ERNSI; FP7-HD-MPC (INFSO-ICT-223854), COST in-
telliCIS, FP7-EMBOCON (ICT-248940), Contract Research: AMINAL, Other: Helmholtz, viCERP,
ACCM. BDM is a full professor at the Katholieke Universiteit Leuven, Belgium. JS is a professor
at the Katholieke Universiteit Leuven, Belgium.

Appendix A. Proof of Lemma 2

We first rewrite the LCV score function in a more workable form. Since Yi = m(xi)+ ei

LCV(h) =
1
n

n

∑
i=1

[
Yi− m̂(−i)(xi)

]2
=

1
n

n

∑
i=1

[
m2(xi)+2m(xi)ei+ e2i −2Yim̂(−i)

n (xi)+
(
m̂(−i)
n (xi)

)2]
=

1
n

n

∑
i=1

[
m(xi)− m̂(−i)

n (xi)
]2

+
1
n

n

∑
i=1

e2i

+
2
n

n

∑
i=1

[
m(xi)− m̂(−i)

n (xi)
]
ei.

1970

KERNEL REGRESSION IN THE PRESENCE OF CORRELATED ERRORS

Taking expectations, yields

E[LCV(h)]=
1
n
E

[
n

∑
i=1

(
m(xi)− m̂(−i)

n (xi)
)2]

+σ2− 2
n

n

∑
i=1

Cov
[
m̂(−i)
n (xi),ei

]
.

Appendix B. Proof of Theorem 3

Consider only the last term of the expected LCV (Lemma 2), that is,

A(h) =−2
n

n

∑
i=1

Cov
[
m̂(−i)
n (xi),ei

]
.

Plugging in the Nadaraya-Watson kernel smoother for m̂(−i)
n (xi) in the term above yields

A(h) =−2
n

n

∑
i=1

Cov

⎡⎣ n

∑
j �=i

K
(
xi−x j
h

)
Yj

∑n
l �=i K

(xi−xl
h

) ,ei
⎤⎦ .

By using the linearity of the expectation operator, Yj = m(x j)+ e j and E[e] = 0 it follows that

A(h) = −2
n

n

∑
i=1

n

∑
j �=i
E

⎡⎣ K
(
xi−x j
h

)
Yj

∑n
j �=i K
(xi−xl

h

)ei
⎤⎦

= −2
n

n

∑
i=1

n

∑
j �=i

K
(
xi−x j
h

)
∑n
j �=i K
(xi−xl

h

) E [eie j] .
By slightly rewriting the denominator and using the covariance stationary property of the errors
(Definition 1), the above equation can be written as

A(h) =−2
n

n

∑
i=1

n

∑
j �=i

K
(
xi−x j
h

)
∑n
j=1K

(xi−xl
h

)−K(0)γ|i− j|. (11)

Let f denote the design density. The first term of the denominator can be written as

n

∑
j=1

K

(
xi− xl
h

)
= nh f̂ (xi)

= nh f (xi)+nh(f̂ (xi)− f (xi)).

If conditions (C2) and (C3) are fulfilled, f is uniform continuous and h→ ∞ as n→ ∞ such that
nh2→ ∞, then

| f̂ (xi)− f (xi)| ≤ sup
xi
| f̂ (xi)− f (xi)| P−→0 as n→ ∞,

due to the uniform weak consistency of the kernel density estimator (Parzen, 1962).
P−→ denotes

convergence in probability. Hence, for n→ ∞, the following approximation is valid

nh f̂ (xi)≈ nh f (xi).

1971

DE BRABANTER, DE BRABANTER, SUYKENS AND DE MOOR

Further, by grouping terms together and using the fact that xi ≡ i/n (uniform equispaced design)
and assume without loss of generality that x ∈ [0,1], Equation (11) can be written as

A(h) = −2
n

n

∑
i=1

1
nh f (xi)−K(0)

n

∑
j �=i
K

(
xi− x j
h

)
γ|i− j|

= − 4
nh−K(0)

n−1
∑
k=1

(
n− k
n

)
K

(
k
nh

)
γk.

Next, we show that ∑n−1
k=1

(
n−k
n

)
K
(
k
nh

)
γk = K(0)∑∞

k=1 γk+ o(n−1h−1) for n→ ∞. Since the kernel
K ≥ 0 is Lipschitz continuous at x= 0

[K(0)+C2x]+ ≤ K(x)≤ K(0)+C1x,

where [z]+ =max(z,0). Then, for K(0)≥ 0 andC1 >C2, we establish the following upperbound

n−1
∑
k=1

(
n− k
n

)
K

(
k
nh

)
γk ≤

n−1
∑
k=1

(
1− k

n

)(
K(0)+C1

k
nh

)
γk

≤
n−1
∑
k=1

K(0)γk+
n−1
∑
k=1

C1
k
nh
γk.

Then, for n→ ∞ and using γk ∼ k−a for a> 2,

C1
n−1
∑
k=1

k
nh
γk =C1

n−1
∑
k=1

k1−a

nh
= o(n−1h−1).

Hence,
n−1
∑
k=1

(
n− k
n

)
K

(
k
nh

)
γk ≤ K(0)

∞

∑
k=1

γk+o(n−1h−1).

For the construction of the lower bound, assume first thatC2 < 0 and K(0)≥ 0 then
n−1
∑
k=1

(
n− k
n

)
K

(
k
nh

)
γk ≥

n−1
∑
k=1

(
1− k

n

)[
K(0)+C2

k
nh

]
+

γk.

SinceC2 < 0, it follows that k ≤ K(0)
−C2 nh and therefore

n−1
∑
k=1

(
1− k

n

)[
K(0)+C2

k
nh

]
+

γk =

min
(
n−1, K(0)−C2 nh

)
∑
k=1

(
1− k

n

)(
K(0)+C2

k
nh

)
γk.

Analogous to deriving the upper bound, we obtain for n→ ∞

n−1
∑
k=1

(
n− k
n

)
K

(
k
nh

)
γk ≥ K(0)

∞

∑
k=1

γk+o(n−1h−1).

In the second case, that is, C2 > 0, the same lower bound can be obtained. Finally, from the upper
and lower bound, for n→ ∞, yields

n−1
∑
k=1

(
n− k
n

)
K

(
k
nh

)
γk = K(0)

∞

∑
k=1

γk+o(n−1h−1).

1972

KERNEL REGRESSION IN THE PRESENCE OF CORRELATED ERRORS

Appendix C. Least Squares Support Vector Machines for Regression

Given a training set defined as Dn = {(xk,Yk) : xk ∈ R
d ,Yk ∈ R;k = 1, . . . ,n}. Then least squares

support vector machines for regression are formulated as follows (Suykens et al., 2002)

min
w,b,e

J (w,e) = 1
2w

Tw+ γ
2

n

∑
k=1

e2k

s.t. Yk = wTϕ(xk)+b+ ek, k = 1, . . . ,n,
(12)

where ek ∈ R are assumed to be i.i.d. random errors with zero mean and finite variance, ϕ : Rd →
R
nh is the feature map to the high dimensional feature space (possibly infinite dimensional) and

w ∈ R
nh , b ∈ R. The cost function J consists of a residual sum of squares (RSS) fitting error and a

regularization term (with regularization parameter γ) corresponding to ridge regression in the feature
space with additional bias term.

However, one does not need to evaluate w and ϕ explicitly. By using Lagrange multipliers, the
solution of Equation (12) can be obtained by taking the Karush-Kuhn-Tucker (KKT) conditions for
optimality. The result is given by the following linear system in the dual variables α(

0 1Tn
1n Ω+ 1

γ In

)(
b
α

)
=

(
0
Y

)
,

with Y = (Y1, . . . ,Yn)T , 1n = (1, . . . ,1)T , α= (α1, . . . ,αn)T and Ωkl = ϕ(xk)Tϕ(xl) = K(xk,xl), with
K(xk,xl) positive definite, for k, l = 1, . . . ,n. According to Mercer’s theorem, the resulting LS-SVM
model for function estimation becomes

m̂n(x) =
n

∑
k=1

α̂kK(x,xk)+ b̂,

where K(·, ·) is an appropriately chosen positive definite kernel. In this paper we choose K to be the
Gaussian kernel, that is, K(xk,xl) = (2π)−d/2 exp

(−‖xk−xl‖2
2h2

)
.

Appendix D. Proof of Theorem 6

We split up the proof in two parts, that is, for positive definite and positive semi-definite kernels.
The statement will be proven by contradiction.

• Suppose there exists a positive definite bimodal kernel K̃. This leads to a positive definite
kernel matrix Ω. Then, all eigenvalues of Ω are strictly positive and hence the trace of Ω is
always larger than zero. However, this is in contradiction with the fact that Ω has all zeros on
its main diagonal. Consequently, a positive definite bimodal kernel K̃ cannot exist.

• Suppose there exists a positive semi-definite bimodal kernel K̃. Then, at least one eigenvalue
of the matrix Ω is equal to zero (the rest of the eigenvalues is strictly positive). We have now
two possibilities, that is, some eigenvalues are equal to zero and all eigenvalues are equal
to zero. In the first case, the trace of the matrix Ω is larger than zero and we have again
a contradiction. In the second case, the trace of the matrix Ω is equal to zero and also the
determinant of Ω equals zero (since all eigenvalues are equal to zero). But the determinant
can never be zero since there is no linear dependence between the rows or columns (there is a
zero in each row or column).

1973

DE BRABANTER, DE BRABANTER, SUYKENS AND DE MOOR

Appendix E. Proof of Corollary 8

From Equation (8) it follows that

ĥAMISE =

[
R(K)σ2

nμ22(K)
∫
(m′′(x))2 dx

+
2R(K)∑∞

k=1 γk
nμ22(K)

∫
(m′′(x))2 dx

]1/5
=

[
ĥ50+

σ2R(K)
nμ22(K)

∫
(m′′(x))2 dx

2∑∞
k=1 γk
σ2

]1/5
=

[
1+2

∞

∑
k=1

ρ(k)

]1/5
ĥ0.

References

R.K. Adenstedt. On large sample estimation for the mean of a stationary sequence. Ann. Statist.,
2(6):1095–1107, 1974.

N.S. Altman. Kernel smoothing of data with correlated errors. J. Amer. Statist. Assoc., 85(411):749–
759, 1990.

T.W. Anderson. The Statistical Analysis of Time Series. Wiley, New York, 1971.

P. Bühlmann and H.R. Künsch. Block length selection in the bootstrap for time series. Computa-
tional Statistics & Data Analysis, 31(3):295310, 1999

S.-T. Chiu. Bandwidth selection for kernel estimate with correlated noise. Statist. Probab. Lett.,
8(4):347–354, 1989.

C.K. Chu and J.S. Marron. Comparison of two bandwidth selectors with dependent errors. Ann.
Statist., 19(4):1906–1918, 1991.

D.R. Cox. Long-range dependence: a review. In Proceedings 50th Anniversary Conference. Statis-
tics: An Appraisal. pages 55–74, Iowa State Univ. Press.

A.C Davison and D.V. Hinkley. Bootstrap Methods and their Application (reprinted with correc-
tions). Cambridge University Press, 2003.

J. Fan and I. Gijbels. Local Polynomial Modelling and Its Applications. Chapmann & Hall, 1996.

J. Fan and Q. Yao. Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, 2003.

Y. Feng and S. Heiler. A simple bootstrap bandwidth selector for local polynomial fitting. J. Stat.
Comput. Simul., 79(12):1425–1439, 2009.

M. Francisco-Fernández and J.D. Opsomer. Smoothing parameter selection methods for nonpara-
metric regression with spacially correlated errors. Canad. J. Statist., 33(2):279–295, 2004.

M. Francisco-Fernández, M., J.D. Opsomer and J.M. Vilar-Fernández. A plug-in bandwidth selector
for local polynomial regression estimator with correlated errors. J. Nonparametr. Stat., 18(1–
2):127–151, 2005.

1974

KERNEL REGRESSION IN THE PRESENCE OF CORRELATED ERRORS

P. Hall, S.N. Lahiri and J. Polzehl. On bandwidth choice in nonparametric regression with both
short- and long-range dependent errors. Ann. Statist., 23(6):1921–1936, 1995.

P. Hall, J.L. Horowitz, and B.-Y. Jing. On blocking rules for the bootstrap with dependent data.
Biometrika, 82(3):561574, 1995

P. Hall and I. Van Keilegom. Using difference-based methods for inference in nonparametric re-
gression with time-series errors. J. Roy. Statist. Assoc. Ser. B Stat. Methodol., 65(2):443–456,
2003.

W. Härdle. Applied Nonparametric Regression (Reprinted). Cambridge University Press, 1999.

J.D. Hart and T.E. Wehrly. Kernel regression estimation using repeated measurements data. J. Amer.
Statist. Assoc., 81(396):1080–1088, 1986.

J.D. Hart. Differencing as an approximate de-trending device. Stoch. Processes Appl., 31(2):251–
259, 1989.

J.D. Hart. Kernel regression estimation with time series errors. J. Royal Statist. Soc. B, 53(1):173–
187, 1991.

E. Hermann, T. Gasser and A. Kneip. Choice of bandwidth for kernel regression when residuals are
correlated. Biometrika, 79(4):783–795, 1992.

M.G. Kendall, A. Stuart and J. K. Ord. The Advanced Theory of Statistics, vol. 3, Design and
Analysis, and Time-Series (4th ed.). Griffin, London, 1983.

T.Y. Kim, D. Kim, B.U. Park and D.G. Simpson. Nonparametric detection of correlated errors.
Biometrika, 91(2):491–496, 2004.

T.Y. Kim, B.U. Park, M.S. Moon and C. Kim. Using bimodal kernel inference in nonparametric
regression with correlated errors. J. Multivariate Anal., 100(7):1487–1497, 2009.

S. Konishi and G. Kitagawa. Information Criteria and Statistical Modeling. Springer, 2008.

S.R. Kulkarni, S.E. Posner and S. Sandilya. Data-dependent kn-NN and kernel estimators consistent
for arbitrary processes. IEEE Trans. Inform. Theory, 48(10):2785–2788, 2002.

H. Künsch. The jackknife and the bootstrap for general stationary observations. Ann. Statist.,
17(3):12171261, 1989.

H. Künsch, J. Beran and F. Hampel. Contrasts under long-range correlations. Ann. Statist.,
21(2):943–964, 1993.

S.N. Lahiri. Theoretical comparisons of block bootstrap methods. Ann. Statist., 27(1):386404, 1999.

S.N. Lahiri. Resampling Methods for Dependent Data. Springer, 2003.

S.N. Lahiri, K. Furukawa, and Y.-D. Lee. A nonparametric plug-in rule for selecting optimal block
lengths for block bootstrap methods. Statistical Methodology, 4(3):292321, 2007.

E.A. Nadaraya. On estimating regression. Theory Probab. Appl., 9(1):141–142, 1964.

1975

DE BRABANTER, DE BRABANTER, SUYKENS AND DE MOOR

J. Opsomer, Y. Wang and Y. Yang. Nonparametric regression with correlated errors. Statist. Sci.,
16(2):134–153, 2001.

B.U. Park, Y.K. Lee, T.Y. Kim and C. Park. A simple estimator of error correlation in non-parametric
regression models. Scand. J. Statist., 33(3):451–462, 2006.

E. Parzen. On estimation of a probability density function and mode. The Annals of Mathematical
Statistics, 33(3):10651076, 1962

A. Sen and M. Srivastava. Regression Analysis: Theory, Methods and Applications. Springer, 1990.

J.S. Simonoff. Smoothing Methods in Statistics. Springer, 1996.

J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor and J. Vandewalle. Least Squares
Support Vector Machines. World Scientific, 2002.

V.N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1999.

G.S. Watson. Smooth regression analysis. Sankhy a Ser. A, 26(4):359–372, 1964.

1976

Journal of Machine Learning Research 12 (2011) 1977-2020 Submitted 10/09; Revised 5/09; Published 6/11

Generalized TD Learning

Tsuyoshi Ueno TSUYOS-U@SYS.I.KYOTO-U.AC.JP
Shin-ichi Maeda ICHI@SYS.I.KYOTO-U.AC.JP
Graduate School of Informatics
Kyoto University
Gokasho, Uji, Kyoto, 611-0011 Japan

Motoaki Kawanabe∗ MOTOAKI.KAWANABE@FIRST.FRAUNHOFER.DE
Fraunhofer FIRST.IDA
Kekulestrasee 7
12489, Berlin, Germany

Shin Ishii ISHII@I.KYOTO-U.AC.JP
Graduate School of Informatics
Kyoto University
Gokasho, Uji, Kyoto, 611-0011 Japan

Editor: Shie Mannor

Abstract
Since the invention of temporal difference (TD) learning (Sutton, 1988), many new algorithms
for model-free policy evaluation have been proposed. Although they have brought much progress
in practical applications of reinforcement learning (RL), there still remain fundamental problems
concerning statistical properties of the value function estimation. To solve these problems, we
introduce a new framework, semiparametric statistical inference, to model-free policy evaluation.
This framework generalizes TD learning and its extensions, and allows us to investigate statistical
properties of both of batch and online learning procedures for the value function estimation in a
unified way in terms of estimating functions. Furthermore, based on this framework, we derive an
optimal estimating function with the minimum asymptotic variance and propose batch and online
learning algorithms which achieve the optimality.
Keywords: reinforcement learning, model-free policy evaluation, TD learning, semiparametirc
model, estimating function

1. Introduction

Studies in reinforcement learning (RL) have provided a methodology for optimal control and deci-
sion making in various practical applications, for example, job scheduling (Zhang and Dietterich,
1995), backgammon (Tesauro, 1995), elevator dispatching (Crites and Barto, 1996), and dynamic
channel allocation (Singh and Bertsekas, 1997). Although the tasks in these studies are large-scale
and complicated, RL has achieved good performance which exceeds that of human experts. These
successes were attributed to model-free policy evaluation, that is, the value function which evaluates
the expected cumulative reward is estimated from a given sample trajectory without specifying the
task environment. Since the policy is updated based on the estimated value function, the quality

∗. Also at Berlin Institute of Technology, Computer Science, Machine Learning Group, Franklinstr. 28/29, 10587,
Berlin, Germany.

c©2011 Tsuyoshi Ueno, Shin-ichi Maeda, Motoaki Kawanabe and Shin Ishii.

UENO, MAEDA, KAWANABE AND ISHII

of its estimation directly affects policy improvement. Hence, it is important for research in RL to
develop efficient model-free policy evaluation techniques.

This article introduces a novel framework, semiparametric statistical inference, to model-free
policy evaluation. This framework generalizes previously developed model-free algorithms, which
include temporal difference learning and its extensions, and moreover, enables us to investigate the
statistical properties of these algorithms, which have not been yet elucidated.

The overall framework can be summarized as follows. We focus on the policy evaluation like in
previous studies (Singh and Dayan, 1998; Mannor et al., 2004; Grunëwälder and Obermayer, 2006;
Mannor et al., 2007); then we deal with the Markov Reward Process (MRP), in which the initial,
transition, and the reward probabilities are assumed to be unknown. From a sample trajectory given
by MRP, the value function is estimated without directly identifying those probabilities. Central
to our proposed framework is the notion of semiparametric statistical models which include not
only parameters of interest but also additional nuisance parameters with possibly infinite degrees of
freedom. We specify the MRP as a semiparametric model, where only the value function is modeled
parametrically with a smaller number of parameters than necessary, while the other unspecified part
of MRP corresponds to the nuisance parameters. For estimating the parameters of interest in such
models, estimating functions provide a well-established toolbox: they give consistent estimators
(M-estimators) regardless of the nuisance parameters (Godambe, 1960, 1991; Huber and Ronchetti,
2009; van der Vaart, 2000). In this sense, the semiparametric inference is a promising approach to
model-free policy evaluation.

Our contributions are summarized as follows:

(a) A set of all estimating functions is shown explicitly: the set constitutes a general class of
consistent estimators (Theorem 4). Furthermore, by applying the asymptotic analysis, we
derive the asymptotic estimation variance of general estimating functions (Lemma 3) and
the optimal estimating function that yields the minimum asymptotic variance of estimation
(Theorem 6).

(b) We discuss two types of learning algorithms based on estimating functions. One is the class
of batch algorithms which obtain estimators in one shot by using all samples in the given
trajectory such as least squares temporal difference (LSTD) learning (Bradtke and Barto,
1996). The other is the class of online algorithms which update the estimators step-by-step
such as temporal difference (TD) learning (Sutton, 1988). In the batch algorithm, we assume
that the value function is represented as a parametrically linear function and derive a new least
squares-type algorithm, gLSTD learning, which achieves the minimum asymptotic variance
(Algorithm 1).

(c) Following previous work (Amari, 1998; Murata and Amari, 1999; Bottou and LeCun, 2004,
2005), we examine the convergence of statistical deviations of the online algorithms. We
then show that the online algorithms can achieve the same asymptotic performance as their
batch counterparts if the parameters controlling learning processes are appropriately tuned
(Lemma 9 and Theorem 10). We derive the optimal choice of the estimating function and
construct the online learning algorithm that achieves the minimum estimation error asymp-
totically (Algorithm 2). We also propose an acceleration of TD learning, which is called
accelerated TD learning (Algorithm 3).

(d) We then show that our proposed framework generalizes almost all of the conventional model-
free policy evaluation algorithms, such as TD learning, TD(λ) learning (Sutton, 1988; Sutton

1978

GENERALIZED TD LEARNING

s0 s1 s2

r1 r2 rt

st
· · ·· · ·

Figure 1: Graphical model for infinite horizon MRP. s and r denote state variable and reward, re-
spectively.

and Barto, 1998), Bellman residual (RG) learning (Baird, 1995), LSTD learning (Bradtke
and Barto, 1996), LSTD(λ) learning (Boyan, 2002), least squares policy evaluation (LSPE)
learning (Nedić and Bertsekas, 2003), and incremental LSTD (iLSTD) learning (Geramifard
et al., 2006, 2007) (Table 1).

We compare the performance of the proposed online algorithms with a couple of well-established
algorithms in simple numerical experiments and show that the results support our theoretical find-
ings.

The rest of this article is organized as follows. First, we give background of MRP and define
the semiparametric statistical model for estimating the value function (Section 2). After providing
a short overview of estimating functions (Section 3), we present the main contribution, fundamen-
tal statistical analysis based on the estimating function theory (Section 4). Then, we explain the
construction of practical learning algorithms, derived from estimating functions, as both batch and
online algorithms (Section 5). Furthermore, relations of our proposed methods to current algorithms
in RL are discussed (Section 6). Finally, we report our experimental results (Section 7), and discuss
open questions and future direction of this study (Section 8).

2. Markov Reward Processes

Figure 1 shows a graphical model for an infinite horizon MRP1 which is defined by the initial state
probability p(s0), the state transition probability p(st |st−1) and the reward probability p(rt |st ,st−1).
State variable s is an element of a finite set S and reward variable r ∈ R can be either discrete or
continuous. The joint distribution of a sample trajectory ZT ≡ {s0,s1,r1 · · · ,sT ,rT} of the MRP is
described as

p(ZT) = p(s0)
T

∏
t=1

p(rt |st ,st−1)p(st |st−1). (1)

We further impose the following assumptions on MRPs.

Assumption 1 Under p(st |st−1), the MRP has a unique invariant stationary distribution μ(s).

Assumption 2 For any time t, reward rt is uniformly bounded.

1. In this study, we only consider MRPs; however, extension to Markov Decision Processes (MDPs) is straightforward
as long as considering the policy evaluation problem (hence the policy is fixed).

1979

UENO, MAEDA, KAWANABE AND ISHII

Before introducing the statistical framework, we begin by confirming that the value function esti-
mation can be interpreted as estimation of certain statistics of MRP (1).

Proposition 1 (Bertsekas and Tsitsiklis, 1996) Consider a conditional probability of {rt ,st} given
st−1,

p(rt ,st |st−1) = p(rt |st ,st−1)p(st |st−1).

Then, there is such a function V that

E [rt |st−1] =V (st−1)− γE[V (st)|st−1] (2)

holds for any state st−1 ∈ S, where γ∈ [0,1) is a constant called discount factor. Here, E [·|s] denotes
the conditional expectation for the given state s. The function V that satisfies Equation (2) is unique
and found to be the value function:

V (s)≡ lim
T→∞

E

[
T

∑
t=1

γt−1rt

∣∣∣∣∣s0 = s

]
. (3)

We assume throughout this article that the value function can be represented by a certain parametric
function, even a nonlinear function with respect to its parameter.

Assumption 3 The value function given by Equation (3) is represented by a parametric function
g(s,θ):

V (s) = g(s,θ).

Here, g : S×Θ �→ R and θ ∈ Θ is a certain parameter in a parameter space Θ ⊆ R
m. Also, the

dimension of the parameter θ is smaller than that of the state space: m < |S|. Moreover, g(s,θ) is
assumed to be twice continuously differentiable with respect to θ.

Under Assumption 3, p(rt |st−1) is partially parametrized by θ, through its conditional mean

E[rt |st−1] = g(st−1,θ)− γE[g(st ,θ)|st−1]. (4)

Our objective is to find out such a value of the parameter θ that function g(s,θ) satisfies Equa-
tion (4), that is, it coincides with the true value function.

To specify the probabilistic model (1) altogether, we usually need extra parameters other than
θ. Let ξ0 and ξs be such additional parameters that p(s0,ξ0) and p(r,s|s;θ,ξs) can completely
represent the initial and transition distributions, respectively. In such a case, the joint distribution of
the trajectory ZT is expressed as

p(ZT ;θ,ξ) = p(s0;ξ0)
T

∏
t=1

p(rt ,st |st−1;θ,ξs), (5)

where ξ ≡ (ξ0,ξs).
Since it is in general quite difficult to know the complexity of the target system, we attempt to

estimate the parameter θ representing the value function beside the presence of the extra ξ which

1980

GENERALIZED TD LEARNING

may have innumerable degrees of freedom. Statistical models which contain such (possibly infinite-
dimensional) nuisance parameters (ξ) in addition to the parameter of interest (θ), are called semi-
parametric (Bickel et al., 1998; Amari and Kawanabe, 1997; van der Vaart, 2000). We emphasize
that the nuisance parameters are necessary only for developing theoretical frameworks. In actual
estimation procedures of the parameter θ, same as in other model-free policy evaluation algorithms,
we neither define them concretely, nor estimate them. This can be achieved by using estimating
functions which is a well-established technique to obtain a consistent estimator of the parameter
without estimating the nuisance parameters (Godambe, 1960, 1991; Amari and Kawanabe, 1997;
Huber and Ronchetti, 2009). The advantages of considering such semiparametric models behind
the model-free policy evaluation are:

(a) we can characterize all possible model-free algorithms,

(b) we can discuss asymptotic properties of the estimators in a unified way and obtain the optimal
one with the minimum estimation error.

We review the estimating function method in the next section.

3. Estimating Functions in Semiparametric Models

We begin with a short overview of the estimating function theory in the independent and identically
distributed (i.i.d.) case and then discuss the MRP case in the next section. We consider a general
semiparametric model p(x;θ,ξ), where θ is an m-dimensional parameter of interest and ξ is a
nuisance parameter which can have infinite degrees of freedom. An m-dimensional vector function
f of x and θ is called an estimating function (Godambe, 1960, 1991) when it satisfies the following
conditions for any θ and ξ for sufficiently large values of T ;

Eθ,ξ[f(x,θ)] = 0, (6)

det |A| �= 0, where A= Eθ,ξ [∂θf(x,θ)] , (7)

Eθ,ξ

[‖f(x,θ)‖2]< ∞, (8)

where ∂θ = ∂/∂θ is the partial derivative with respect to θ, and det | · | and || · || denote the determi-
nant and the Euclidean norm, respectively. Here Eθ,ξ[·] means the expectation over x with respect
to the distribution p(x;θ,ξ) and we further remark that the parameter θ in f(x,θ) and Eθ,ξ[·]must
be the same.

Suppose i.i.d. samples {x1, · · · ,xT} are generated from the model p(x;θ∗,ξ∗). If there is an
estimating function f(x,θ), we can obtain an estimator θ̂T which has good asymptotic properties,
by solving the following estimating equation:

T

∑
t=1

f(xt , θ̂T) = 0. (9)

A solution of the estimating Equation (9) is called anM-estimator in statistics (Huber and Ronchetti,
2009; van der Vaart, 2000). The M-estimator is consistent, that is, it converges to the true value
regardless of the nuisance parameter ξ∗.2 Moreover, it is normally distributed, that is,

2. In this study, ‘consistency’ means ‘local consistency’ as well as in the previous works (Amari and Kawanabe, 1997;
Amari and Cardoso, 2002; Kawanabe and Müller, 2005).

1981

UENO, MAEDA, KAWANABE AND ISHII

0
θ∗

θ̂ θ
1/
T
∑
t
f(
x t
,θ
)

Figure 2: An illustrative plot of 1/T ∑t f (xt ,θ) as function of θ (solid line). Due to the effect of
finite samples, the function is slightly apart from its expectation Eθ∗,ξ∗ [f (x,θ)] (dashed
line) which takes 0 at θ= θ∗ because of condition (6). Condition (7) means that the expec-
tation (dashed line) has a non-zero slope around θ∗, which ensures the local uniqueness
of the zero crossing point. On the other hand, condition (8) guarantees that its standard
deviation, shown by the two dotted lines, shrinks in the order of 1/

√
T , thus we can ex-

pect to find asymptotically at least one solution θ̂T of estimating Equation (9) near the
true value θ∗. This situation holds regardless of the value of the true nuisance parameter
ξ∗.

θ̂T ∼ N (θ∗,Av), when the sample size T approaches infinity. The matrix Av, which is called the
asymptotic variance, can be calculated by

Av≡ Av(θ̂T) = 1
T
A−1Eθ∗,ξ∗

[
f(x,θ∗)f(x,θ∗)�

]
(A�)−1,

whereA=Eθ∗,ξ∗ [∂θf(x,θ∗)], and the symbol� denotes the matrix transpose. Note that the matrix
Av depends on (θ∗,ξ∗), but not on the samples {x1, · · · ,xT}. We illustrate in Figure 2 the left side
of the estimating Equation (9) normalized by the sample size T to explain why an M-estimator has
good properties and to show the meaning of conditions (6)-(8).

4. Estimating Functions in MRP Model

The notion of estimating functions has been extended to be applicable to Markov time-series (Go-
dambe, 1985, 1991; Wefelmeyer, 1996; Sørensen, 1999). We need a similar extension to enable it
to be applied to MRPs. For convenience, we write the triplet at time t as zt ≡ {st−1,st ,rt} ∈ S2×R
and the trajectory up to time t as Zt ≡ {s0,s1,r1, . . . ,st ,rt} ∈ St+1×Rt .

Let us consider an m-dimensional vector-valued function of the form fT : ST+1×RT ×Θ �→R
m:

fT (ZT ,θ) =
T

∑
t=1

ψt(Zt ,θ).

1982

GENERALIZED TD LEARNING

This is similar to the left side of (9) in the i.i.d. case, but now each term ψt : St+1×Rt ×Θ �→ R
m

depends also on previous observations, that is, a function of the sequence up to time t. If the
sequence of the functions {ψt} satisfies the following properties for any θ and ξ, the function fT
becomes an estimating function for T sufficiently large (Godambe, 1985, 1991).

Eθ,ξs [ψt(Zt ,θ)|Zt−1] = 0, ∀t, (10)

det |A| �= 0, where A≡ lim
t→∞

Eθ,ξ [∂θψt(Zt ,θ)] , (11)

lim
t→∞

Eθ,ξ

[
‖ψt(Zt ,θ)‖2

]
< ∞. (12)

Note that the estimating function fT (ZT ,θ) satisfies the martingale properties because of condition
(10). Therefore, it is called amartingale estimating function in the literature (Godambe, 1985, 1991;
Wefelmeyer, 1996; Sørensen, 1999).3 Although time-series estimating functions can be defined in
a more general form, the above definition is sufficient for our theoretical consideration.

4.1 Characterizing Class of Estimating Functions

In this section, we characterize possible estimating functions in MRPs. Let
ε : S2×R×Θ �→ R

1 be the so-called temporal difference (TD) error, that is,

εt ≡ ε(zt ,θ)≡ g(st−1,θ)− γg(st ,θ)− rt .

From Equation (4), its conditional expectation Eθ,ξs [εt |Zt−1] = Eθ,ξs [εt |st−1] is equal to 0 for any t.
Furthermore, this zero-mean property holds even when multiplied by any weight function
wt−1(Zt−1,θ), which depends on past observations and the parameter, that is,

Eθ,ξs [wt−1(Zt−1,θ)ε(zt ,θ)|Zt−1] =wt−1(Zt−1,θ)Eθ,ξs [ε(zt ,θ)|Zt−1] = 0, (13)

for any t. We can obtain a class of possible estimating functions fT (ZT ,θ) in MRPs from this
observation if we impose some regularity conditions summarized in Assumption 4.

Assumption 4

(a) Function wt : St+1×Rt ×Θ �→ R
m can be twice continuously differentiable with respect to

parameter θ for any t, and lim
t→∞

Eθ,ξ [|∂θwt(Zt ,θ)|]< ∞ for any θ.

(b) There exists a limit of matrix Eθ,ξ[wt−1(Zt−1,θ){∂θε(zt ,θ)}�], and the matrix
lim
t→∞

Eθ,ξ[wt−1(Zt−1,θ){∂θε(zt ,θ)}�] is nonsingular for any θ and ξ.

(c) Eθ,ξ[‖wt−1(Zt−1,θ)ε(zt ,θ)‖2] is finite for any t, θ and ξ.

3. Strictly speaking, strict consistency of M-estimator given by function f(ZT ,θ) requires some additional conditions.
To show consistency rigorously, we have to impose further conditions for exchange between limit and expectation
operators in the neighborhood of the true parameter (more detailed discussion is shown in Theorem 3.6 in Sørensen
1999). In this article, for the sake of readability, we do not show such strict discussion.

1983

UENO, MAEDA, KAWANABE AND ISHII

Lemma 2 Suppose that random sequence ZT is generated from a distribution of semiparametric
model {p(ZT ;θ,ξ) |θ, ξ} defined by Equation (5). If the conditions in Assumptions 1-4 are satisfied,
then

fT (ZT ,θ) =
T

∑
t=1

ψt(Zt ,θ)≡
T

∑
t=1

wt−1(Zt−1,θ)ε(zt ,θ) (14)

becomes an estimating function.

The proof is given in Appendix C. From Lemma 2, we can obtain an M-estimator
θ̂T : ST+1×RT �→ R

m by solving the estimating equation

T

∑
t=1

ψt(Zt , θ̂T) = 0. (15)

Practical procedures for finding the solution of the estimating Equation (15) will be discussed in
Section 5. The estimator derived from the estimating Equation (15) has an asymptotic variance
summarized in the following lemma.

Lemma 3 Suppose that random sequence ZT is generated from distribution p(ZT ;θ∗,ξ∗). If the
conditions in Assumptions 1-4 are satisfied, then the M-estimator derived from Equation (15) has
asymptotic estimation variance

Av= Av(θ̂T) =
1
T
A−1Σ

(
A�
)−1

, (16)

where A= A(θ∗,ξ∗) = lim
t→∞

Eθ∗,ξ∗
[
wt−1(Zt−1,θ∗){∂θε(zt ,θ∗)}�

]
,

Σ=Σ(θ∗,ξ∗) = lim
t→∞

Eθ∗,ξ∗
[
ε(zt ,θ∗)2wt−1(Zt−1,θ∗)wt−1(Zt−1,θ∗)�

]
.

The proof is given in Appendix D. Interestingly, for the MRP model, we can specify all possi-
ble estimating functions. More specifically, the converse of Lemma 2 also holds; any martingale
estimating functions for MRP must take the form (14).

Theorem 4 Suppose that the conditions in Assumptions 1-4 are satisfied. Then, any martingale
estimating function fT (ZT ,θ) = ∑T

t=1ψt(Zt ,θ) in the semiparametric model {p(ZT ;θ,ξ) |θ, ξ} of
MRP can be expressed as

fT (ZT ,θ) =
T

∑
t=1

ψt(Zt ,θ) =
T

∑
t=1

wt−1(Zt−1,θ)ε(zt ,θ). (17)

The proof is given in Appendix E.

4.2 Optimal Estimating Function

Since Theorem 4 has specified the set of all martingale estimating functions, we can now discuss the
optimal estimating function among them which gives an M-estimator with the minimum asymptotic
variance. The weight function wt(Zt−1,θ) may depend not only on the current state st and the
parameter θ, but also on the previous states and rewards. However, we do not need to consider such
weight functions, as Lemma 5 shows.

1984

GENERALIZED TD LEARNING

Lemma 5 Let wt(Zt ,θ) be any weight function that depends on the current and previous observa-
tions and the parameter, and satisfies the conditions in Assumption 4. Then, there is necessarily a
weight function depending only on the current state and the parameter whose corresponding esti-
mator has the minimum asymptotic variance among all possible weight functions.

The proof is given in Appendix F.
We next discuss the optimal weight function of Equation (14) in terms of asymptotic variance,

which corresponds to the optimal estimating function.

Theorem 6 Suppose that random sequence ZT is generated from distribution p(ZT ;θ∗,ξ∗). If the
conditions in Assumptions 1-4 are satisfied, an optimal estimating function with minimum asymp-
totic estimation variance is given by

f ∗T (ZT ,θ) =
T

∑
t=1

ψ∗t (zt ,θ)≡
T

∑
t=1

w∗
t−1(st−1,θ

∗)ε(zt ,θ), (18)

where

w∗
t−1(st−1,θ

∗)≡ Eθ∗,ξ∗s [ε(zt ,θ
∗)2|st−1]−1Eθ∗,ξ∗s [∂θε(zt ,θ

∗)|st−1].

The proof is given in Appendix G. Note that weight function w∗
t−1(Zt−1,θ

∗) depends on true pa-
rameter θ∗ (unknown) and requires the expectation with respect to p(rt ,st |st−1;θ∗,ξ∗s), which is
also unknown. Therefore, we need to approximate the true parameter and the expectation, which
will be explained in a later section.

The asymptotic variance of the optimal estimating function can be calculated from Lemma 3
and Theorem 6.

Lemma 7 The minimum asymptotic variance is given by

Av= Av(θ̂T) =
1
T
Q−1,

where Q≡ lim
t→∞

Eθ∗,ξ∗ [∂θψ∗t (zt ,θ∗)] = lim
t→∞

Eθ∗,ξ∗
[
ψ∗t (zt ,θ∗)ψ∗t (zt ,θ∗)�

]
.

The proof is given in Appendix H. We here note that positive definite matrix Q is similar to the
Fisher information matrix, which is well-known in asymptotic estimation theory. However, the in-
formation associated with this matrixQ is generally smaller than the Fisher information because we
sacrifice statistical efficiency for robustness against the nuisance parameter (Amari and Kawanabe,
1997; Amari and Cardoso, 2002). In other words, the estimator derived from the estimating function
(18) does not achieve the statistical lower bound, that is, the Cramèr-Rao lower bound.4

5. Learning Algorithms

In this section, we present two kinds of practical algorithms to obtain the solution of the estimating
Equation (15): one is the batch learning procedure and the other is the online learning procedure. In
Section 5.1, we discuss batch learning and derive new least squares-type algorithms like LSTD and

4. If one wants more efficient estimators, it is necessary to identify the target MRP, including the nuisance parameters.

1985

UENO, MAEDA, KAWANABE AND ISHII

LSTD(λ) to determine the parameter θ under the assumption that the value function is represented
as a parametrically linear function. In Section 5.2, we then study convergence issues of online
learning. We first analyze the sufficient condition of the convergence of the estimation and the
convergence rate of various online procedures without the constraint of linear parametrization. This
theoretical consideration allows us to obtain a new online learning algorithm that asymptotically
converges faster than current online algorithms.

5.1 Batch Learning

Let g(s,θ) be a linear parametric function of features:

V (st)≡ φ(st)
�θ, (19)

where φ : S �→R
m is a feature vector and θ ∈Θ is a parameter vector. Then, estimating Equation (14)

is given as

T

∑
t=1

wt−1(Zt−1,θ)
{
(φ(st−1)− γφ(st))� θ̂T − rt

}
= 0.

If the weight function does not depend on parameter θ, the estimator θ̂T can be analytically obtained
as

θ̂T =

{
T

∑
t=1

 wt−1(Zt−1)(φ(st−1)− γφ(st))�
}−1{ T

∑
t=1

 wt−1(Zt−1)rt

}
,

where wt : St+1×Rt �→ R
m is a function which depends only on the previous observations. Note

that when the weight function w(Zt) is set to φ(st), this estimator is equivalent to that of the LSTD
learning.

We now derive a new least-squares learning algorithm, generalized least squares temporal dif-
ference (gLSTD), which achieves minimum estimation of asymptotic variance in linear estimations
of value functions. If weight function w∗

t (Zt ,θ
∗) defined in Theorem 6 is known, an estimator of

the estimating function (18) can be obtained as

θ̂T =

{
T

∑
t=1

w∗
t−1(Zt−1,θ

∗)(φ(st−1)− γφ(st))�
}−1{ T

∑
t=1

w∗
t−1(Zt−1,θ

∗)rt

}
,

by recalling that w∗
t−1(Zt−1,θ

∗) =Eθ∗,ξ∗s [ε(zt ,θ
∗)2|st−1]

−1
Eθ∗,ξ∗s [φ(st−1)−γφ(st)|st−1]. Obviously,

we do not know w∗
t−1(Zt−1,θ

∗) because the definition of w∗
t−1(Zt−1,θ

∗) contains the residual at the
true parameter, ε(zt ,θ∗), and unknown conditional expectations, Eθ∗,ξ∗s [ε(zt ,θ

∗)2|st−1]
and Eθ∗,ξ∗s [φ(st−1)− γφ(st)|st−1]. Therefore, we replace the true residual ε(zt ,θ∗) with that of the
LSTD estimator and approximate the expectations Eθ∗,ξ∗s [ε(zt ,θ

∗)2|st−1]
−1 and

Eθ∗,ξ∗s [φ(st−1)− γφ(st)|st−1] by using function approximations

Eθ∗,ξ∗s [ε(zt ,θ
∗)2|st−1]

−1 ≈ v(st−1,α),

Eθ∗,ξ∗s [φ(st−1)− γφ(st)|st−1]≈ ζ(st−1,β),

1986

GENERALIZED TD LEARNING

Algorithm 1 gLSTD learning

for t = 1,2, · · · do
Obtain sample zt = {st−1,st ,rt}

end for

Set constant k to a sufficiently large value
for t = 1,2, · · · do
Calculate LSTD estimator θ̂LSTD based on sample
{z1, · · · ,zt−1}∪{zt+k, · · · ,zT}
Calculate its residual ε̂t
ε̂t ← (φ(st−1)− γφ(st))�θ̂LSTD− rt

Calculate conditional expectations v(st−1,α), ζ(st−1,β) by means of function approximations
based on sample {z1, · · · ,zt−1}∪{zt+k, · · · ,zT}
Obtain the weight function

ŵ∗
t−1← v(st−1,α)−1ζ(st−1,β)

end for

Obtain the gLSTD estimator

θ̂
gLSTD
T ← [∑T

t=1 ŵ
∗
t−1(φ(st−1)− γφ(st))�]−1[∑T

t=1 ŵ
∗
t−1rt]

where α and β are adjustable parameters for function approximators v(st−1,α) and ζ(st−1,β),
respectively. The estimation of conditional expectations is a simpler problem than that of the con-
ditional probability itself. Also note that if the weight function is approximated by using past ob-
servations Zt−1, condition (13) still holds regardless of the approximation accuracy of the weight
function, implying the consistency of gLSTD. This is because any function that only depends on
past observations can be employed as a weight function. This favorable characteristic is consistent
regardless of the accuracy of approximation and allows us to use any approximation techniques
(e.g., sparse regression, kernel regression, or neural networks) without particular constraints. Al-
gorithm 1 demonstrates the pseudo-code of gLSTD learning. We introduce constant non-negative
integer k to Algorithm 1 to enhance the efficient use of samples. LSTD estimator θ̂LSTD can be ob-
tained in an unbiased manner by using future trajectory {zt+k, · · · ,zT} for sufficiently large positive
integer k, because the MRPs defined in Equation (1) satisfy geometrically uniform mixing, implying
the exponential decay of the correlation between the statistics of st and st+k. Although k must be
infinite to guarantee consistency in a strict sense, it could be a certain moderate integer when we
consider the trade-off between the accuracy of function approximations and consistency. There are
also some computational difficulties in Algorithm 1 with a large k value, because we must store the
sample trajectory in memory to estimate weight function ŵ∗

t at each time t. Thus, in the simulations
in Sections 7 and 8, we set k to zero; both the LSTD estimator and conditional expectations are
calculated by using whole samples. Although this simplified implementation in fact violates the
condition of consistency, it works well in practice.

1987

UENO, MAEDA, KAWANABE AND ISHII

5.2 Online Learning

Online learning procedures in the field of RL are often preferred to batch learning ones because they
require less memory and can be adapted even to time-variant situations. Here, an online estimator of
θ at time t is denoted as θ̂t . Suppose that sequence {ψ1(Z1,θ), · · · ,ψT (ZT ,θ)} forms a martingale
estimating function for MRP. Then, an online update rule can simply be given by

θ̂t = θ̂t−1−ηtψt(Zt , θ̂t−1), (20)

where ηt denotes a nonnegative scalar stepsize. In fact, there are other online update rules derived
from the same estimating function ft(Zt ,θ) = ∑ti=1ψi(Zi,θ) as

θ̂t = θ̂t−1−ηtR(θ̂t−1)ψt(Zt , θ̂t−1), (21)

whereR(θ) denotes anm×m nonsingular matrix only depending on θ (Amari, 1998). This variation
results from the fact that function R(θ) ∑ti=1ψi(Zi,θ) yields the same roots as its original for any
R(θ). This equivalence guarantees that both learning procedures, (20) and (21), have the same
equilibrium, while their dynamics may be different, that is, even if the original algorithm (20) is
unstable around the required solution, it can be stabilized by introducing appropriate R(θ) into
(21).

We will discuss the convergence of the online learning algorithm (21) in the next two subsec-
tions.

5.2.1 CONVERGENCE TO TRUE VALUE

We will now discuss the convergence of online learning (21) to the true parameter θ∗. For the sake
of simplicity, we will focus on local convergence, that is, initial estimator θ̂0 is confined in the
neighborhood of the true parameter, which is assumed to be a unique solution in the neighborhood.
Now let us introduce sufficient conditions for convergence.

Assumption 5

(a) For any t, (θ̂t −θ∗)�R(θ̂t)Eθ∗,ξ∗s [ψt+1(Zt+1, θ̂t)|st] is nonnegative.
(b) For any t, there exists such nonnegative constants c1 and c2 that

Eθ∗,ξ∗s

[∥∥R(θ̂t)ψt+1(Zt+1, θ̂t)
∥∥2∣∣∣st]≤ c1+ c2

∥∥θ̂t −θ∗
∥∥2 .

Condition (a) assumes that the opposite of gradientR(θ̂t)Eθ∗,ξ∗s [ψt+1(Zt+1, θ̂t)|st]must point toward
the true parameter θ∗ at each time t. Then, the following theorem guarantees the convergence of θ̂t
to θ∗.

Theorem 8 Suppose that random sequence ZT is generated from distribution p(ZT ;θ∗,ξ∗). Also,
suppose that the conditions in Assumptions 1-5 hold. If stepsizes {ηt} are all positive and sat-
isfy ∑∞

t=1ηt = ∞ and ∑∞
t=1η

2
t < ∞, then the online algorithm (21) almost surely converges to true

parameter θ∗.

The proof is given in Appendix I. Theorem 8 ensures that even if the original online learning algo-
rithm (20) does not converge to the true parameter, we can construct an online learning algorithm
with local consistency by appropriately choosing matrix R(θ).

1988

GENERALIZED TD LEARNING

5.2.2 CONVERGENCE RATE

The convergence speed of an online algorithm could generally be slower than that of its batch
counterpart that tries to solve the estimating equation using all available samples. However, if we set
matrix R(θ) and stepsizes {ηt} appropriately, then it is possible to achieve the same convergence
speed as that of the batch algorithm (Amari, 1998; Murata and Amari, 1999; Bottou and LeCun,
2004, 2005). Following the discussion on the previous work (Bottou and LeCun, 2004, 2005), we
elucidate the convergence speed of online learning for estimating the value function in this section.
Throughout the following discussion, the notion of stochastic orders plays a central role. Appendix
A briefly describes the definition of stochastic orders and their properties. Then, we characterize
the learning process for the batch algorithm.

Lemma 9 Let θ̃t and θ̃t−1 be solutions to estimating equations
(1/t)∑ti=1ψi(Zi, θ̃t) = 0 and (1/(t − 1))∑t−1i=1ψi(Zi, θ̃t−1) = 0, respectively. We assume that the
conditions in Assumptions 2-4 are satisfied. Also we assume that θ̃t is uniformly bounded for any t,
and matrix R̃t(θ̃t−1)≡ (1/t)∑ti=1 ∂θψi(Zi, θ̃t−1) is nonsingular for any t. Then, we have

θ̃t = θ̃t−1− 1t R̃
−1
t (θ̃t−1)ψt(Zt , θ̃t−1)+Op

(
1
t2

)
, (22)

where the definition of Op(·) is given in Appendix A.

The proof is given in Appendix J. Note that Equation (22) defines the sequence of θ̃t as a recursive
stochastic process that is essentially the same as online learning (21) for the same R. In other
words, Lemma 9 indicates that online algorithms can converge with the same convergence speed as
their batch counterparts through an appropriate choice of matrix R. Finally, the following theorem
addresses the convergence speed of the (stochastic) learning process such as that in Equation (22).

Theorem 10 Suppose that random sequence ZT is generated from distribution p(ZT ;θ∗,ξ∗), and
then consider the following learning process

θ̂t = θ̂t−1− 1t R̂
−1
t ψt(Zt , θ̂t−1)+Op

(
1
t2

)
, (23)

where R̂t ≡ {(1/t)∑ti=1 ∂θψi(Zi, θ̂i−1)}. Assume that:
(a) For any t, θ̂t is uniformly bounded.

(b) R̂−1t can be written as R̂−1t = Eθ∗,ξ∗s [R̂
−1
t |Zt−1]+op(1/t).

(c) Eθ∗,ξ∗ [∂θψt(Zt ,θ∗)θ̂t−1θ̂�t−1] can be written as
Eθ∗,ξ∗ [∂θψt(Zt ,θ∗)θ̂t−1θ̂�t−1] = Eθ∗,ξ∗ [∂θψt(Zt ,θ∗)]Eθ∗,ξ∗ [θ̂t−1θ̂�t−1]+o(1/t).

(d) For any t, R̂t is a nonsingular matrix.

Also assume that the conditions in Assumptions 1-4 are satisfied. If learning process (23) almost
surely converges to the true parameter, then the convergence rate is given as

Eθ∗,ξ∗
[‖θ̂t −θ∗‖2]= 1

t
tr
{
A−1Σ(A−1)�

}
+o

(
1
t

)
, (24)

1989

UENO, MAEDA, KAWANABE AND ISHII

where A= lim
t→∞

Eθ∗,ξ∗ [wt−1(Zt−1,θ∗){∂θε(zt ,θ∗)}�] and
Σ= lim

t→∞
Eθ∗,ξ∗ [ε(zt ,θ∗)2wt−1(Zt−1,θ∗)wt−1(Zt−1,θ∗)�].

The proof is given in Appendix K. Note that this convergence rate (24) is neither affected by the
third term of (23) nor by the op(1/t) term in matrix R̂−1t .

5.2.3 GENERALIZED TD LEARNING

We now present the online learning procedure that yields the minimum estimation error. Roughly
speaking, this is given by estimating function f ∗T (ZT ,θ) in Theorem 6 with the best (i.e., with the
fastest convergence) choice of the nonsingular matrix in Theorem 10:

θ̂t = θ̂t−1− 1t Q̂
−1
t ψ∗(zt , θ̂t−1), (25)

where Q̂−1t = {(1/t)∑ti=1 ∂θψ∗(zi, θ̂i−1)}−1 and ψ∗(zt ,θ) have been defined by Equation (18). If
learning equation (25) satisfies conditions in Assumptions 1-5 and Theorem 10, then it converges
to the true parameter with the minimum estimation error, (1/t)Q−1. However, this is impractical
as learning rule (25) contains unknown parameters and quantities. For practical implementation,
we need to evaluate Eθ∗,ξ∗s [ε(zt ,θ

∗)2|st−1] and Eθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1] by using function approxi-

mations, whereas standard online learning procedures do not maintain statistics as a time series to
avoid increasing the amount of memory. Therefore, we apply online functional approximations to
these.

Let v(st ,αt)and ζ(st ,βt) be the approximations of Eθ∗,ξ∗s [ε(zt+1,θt)
2|st] and

Eθ∗,ξ∗s [∂θε(zt+1,θt)|st], respectively. Here, αt and βt are adjustable parameters, and they are ad-
justed in an online manner;

α̂t = α̂t−1−ηαt ∂αv(st−1,α̂t−1){v(st−1,α̂t−1)− ε(zt , θ̂t−1)2}
β̂t = β̂t−1−ηβt ∂βζ(st−1, β̂t−1){ζ(st−1, β̂t−1)−∂θε(zt , θ̂t−1)},

where ηαt and η
β

t are stepsizes. By using these parametrized functions, we can replace ψ
∗
t (zt , θ̂t−1)

and Q̂−1t by

ψ∗t (zt , θ̂t−1) = v(st−1,α̂t−1)−1ζ(st−1, β̂t−1)ε(zt , θ̂t−1)

Q̂−1t =

{
1
t

t

∑
i=1

v(si−1,α̂i−1)−1ζ(si−1, β̂i−1)∂θε(zi, θ̂i−1)�
}−1

. (26)

Note that update (26) can be done in an online manner by applying the well-known matrix
inversion lemma (Horn and Johnson, 1985);

Q̂−1t =
1

(1− εt)Q̂
−1
t−1−

εt
1− εt

Q̂−1t−1ŵ
∗
t−1∂θε(zt , θ̂t−1)

�Q̂−1t−1
(1− εt)+ εt∂θε(zt , θ̂t−1)�Q̂−1t−1ŵ

∗
t−1

, (27)

where εt ≡ 1/t and ŵ∗
t−1 ≡ v(st−1,α̂t−1)−1ζ(st−1, β̂t−1). Following Amari et al. (2000), we addi-

tionally simplify update equation (27) as

Q̂−1t = (1+ εt)Q̂−1t−1− εtQ̂−1t−1ŵ∗
t−1∂θε(zt , θ̂t−1)

�Q̂−1t−1, (28)

1990

GENERALIZED TD LEARNING

Algorithm 2 Optimal TD Learning

Initialize α̂0, β̂0, θ̂0, Q̂−10 = εIm, a1, a2
{ε and Im denote a small constant and an m×m identical matrix.}
for t = 1,2, · · · do
Obtain a new sample, zt = {st−1,st ,rt}
Calculate the weight function, ŵ∗

t−1
α̂t ← α̂t−1−ηαt ∂αv(st−1,α̂t−1){v(st−1,α̂t−1)− ε(zt , θ̂t−1)2}
β̂t ← β̂t−1−ηβt ∂βζ(st−1, β̂t−1){ζ(st−1, β̂t−1)−∂θε(zt , θ̂t−1)}
ŵ∗
t−1← v(st−1,α̂t−1)−1ζ(st−1, β̂t−1)

Update Q̂−1t by using Equation (28)
Q̂−1t ← (1+(1/t))Q̂−1t−1− (1/t)Q̂−1t−1ŵ

∗
t−1∂θε(zt , θ̂t−1)

�Q̂−1t−1
Update the parameter,
τ←min(a1,a2/t)
θ̂t ← θ̂t−1− (1/τ)Q̂−1t ŵ∗

t−1ε(zt , θ̂t−1)
end for

which can be obtained because εt is small. We call this procedure optimal TD learning and its
pseudo-code is summarized in Algorithm 2.5

5.2.4 ACCELERATED TD LEARNING

TD learning is a traditional online approach to model-free policy evaluation and has been one of
the most important algorithms in the RL field. Although TD learning is widely used because of
its simplicity, it is known that it converges rather slowly. This section discusses TD learning from
the viewpoint of the method of estimating functions and proposes a new online algorithm that can
achieve faster convergence than standard TD learning.

To simplify the following discussion, we have assumed that g(s,θ) is a linear function as in
Equation (19) with which we can solve the linear estimating equation using both batch and online
procedures. When weight function wt(Zt ,θ) in Equation (13) is set to φ(st), the online and batch
procedures correspond to the TD and LSTD algorithms, respectively. Note that both TD and LSTD
share the same estimating function. Therefore, from Lemma 9 and Theorem 10, we can theoretically
construct accelerated TD learning, which converges at the same speed as LSTD learning.

Here, we consider the following learning equation:

θ̂t = θ̂t−1− 1t R̂
−1
t φ(st−1)ε(zt , θ̂t−1), (29)

where R̂−1t = {(1/t)∑ti=1φ(si−1)(φ(si−1)− γφ(si))�}−1. Since R̂−1t converges to
A−1 = lim

t→∞
Eθ∗,ξ∗ [φ(st−1)(φ(st−1)− γφ(st))�]−1 and A−1 must be a positive definite matrix (see

Lemma 6.4 in Bertsekas and Tsitsiklis 1996), online algorithm (29) also almost surely converges
to the true parameter. Then, if R̂t satisfies the conditions in Theorem 10, it can achieve the same

5. Since the online approximation of the weight function only depends on past observations, optimal TD learning is
necessarily consistent even when the online approximation of the weight function is inaccurate.

1991

UENO, MAEDA, KAWANABE AND ISHII

Algorithm 3 Accelerated-TD Learning

Initialize θ̂0, R̂−10 = εIm, a1, a2
{ε and Im denote a small constant and an m×m identical matrix.}
for t = 1,2, · · · do
Obtain a new sample, zt = {st−1,st ,rt}
Update R̂−1t
R̂−1t ← (1+(1/t))R̂−1t−1− (1/t)R̂−1t−1∂θg(st−1, θ̂t−1)∂θε(zt , θ̂t−1)R̂

−1
t−1

Update the parameter,
τ←min(a1,a2/t)
θ̂t ← θ̂t−1− (1/τ)R̂−1t ∂θg(st−1, θ̂t−1)ε(zt , θ̂t−1)

end for

convergence rate as LSTD. We call this procedure Accelerated-TD learning. We present an imple-
mentation of Accelerated-TD learning in Algorithm 3.

6. Related Work

This section discusses the relation between current major RL algorithms and the proposed ones from
the viewpoint of estimating functions. Theorem 4 describes the broadest class of estimating func-
tions that lead to unbiased estimators. Therefore, almost all the current value-based RL methods, in
which consistency is assured, can be viewed as instances of the method of estimating functions.

For simplicity, let g(s,θ) be a linear function, that is, the value function can be represented as in
Equation (19). We have two ways of solving such a linear estimating equation. The first is a batch
procedure:

θ̂T =

[
T

∑
t=1

wt−1 (φ(st−1)− γφ(st))�
]−1[T

∑
t=1

wt−1rt

]
.

and the second is an online procedure:

θ̂t = θ̂t−1−ηtR̂twt−1ε(zt , θ̂t−1),

where wt is a weight function at time t. By choosing both weight function wt−1 and the learning
procedure, we can derive various RL algorithms. Let fTDT , fTD(λ)T , fRGT and f ∗T be the estimating
functions that are defined as

fTDT ≡ fTDT (ZT ,θ) =
T

∑
t=1

φ(st−1)ε(zt ,θ),

f
TD(λ)
T ≡ f

TD(λ)
T (ZT ,θ) =

T

∑
t=1

t

∑
i=1

(γλ)t−iφ(si−1)ε(zt ,θ),

fRGT ≡ fRGT (ZT ,θ) =
T

∑
t=1

Eθ∗,ξ∗s [φ(st−1)− γφ(st)|st−1]ε(zt ,θ),

f ∗T ≡ f ∗T (ZT ,θ) =
T

∑
t=1

Eθ∗,ξ∗s [(ε(zt ,θ
∗)2|st−1]−1Eθ∗,ξ∗s [φ(st−1)− γφ(st)|st−1]ε(zt ,θ).

1992

GENERALIZED TD LEARNING

s1 s2 s3 s4 s5

p= 0.5 p= 0.5 p= 0.5 p= 0.5 p= 0.5

p= 0.5 p= 0.5 p= 0.5 p= 0.5 p= 0.5

Figure 3: A five-states MRP.

Here, we remark that TD-based algorithms (TD Sutton and Barto, 1998, NTD Bradtke and Barto,
1996, LSTD Bradtke and Barto, 1996, LSPE Nedić and Bertsekas, 2003, GTD Sutton et al., 2009b,
GTD2, TDC Sutton et al., 2009a and iLSTD Geramifard et al., 2006), TD (λ)-based algorithms
(TD (λ) Sutton and Barto, 1998, NTD (λ) Bradtke and Barto, 1996, LSTD (λ) Boyan, 2002, LSPE
(λ) Nedić and Bertsekas, 2003, and iLSTD (λ) Geramifard et al., 2007) and RG (Baird, 1995)
originated from the estimating functions fTDT , fTD(λ)T and fRGT , respectively. It should be noted
that GTD, GTD2, GTDc, iLSTD, and iLSTD (λ) are specific online implementations for solving
corresponding estimating equations; however, these algorithms can also be interpreted as instances
of the method of estimating functions we propose. We have briefly summarized the relation between
the current learning algorithms and the proposed algorithms in Table 1.

The asymptotic behavior of model-free policy evaluation has been analyzed within special con-
texts; Konda (2002) derived the asymptotic variance of LSTD (λ) and revealed that the convergence
rate of TD (λ) was worse than that of LSTD (λ). Yu and Bertsekas (2006) derived the convergence
rate of LSPE (λ) and found that it had the same convergence rate as LSTD (λ). Because these results
can be seen in Lemma 3 and Theorem 8, our proposed framework generalizes previous asymptotic
analyses to provide us with a methodology that can be more widely applied to carry out asymptotic
analyses.

7. Simulation Experiment

In order to validate our theoretical developments, we compared the performance (statistical error)
of the proposed algorithms (gLSTD, Accelerated-TD and Optimal-TD algorithms) with those of the
online and batch baselines: TD algorithm (Sutton and Barto, 1998) and LSTD algorithm (Bradtke
and Barto, 1996), respectively, in a very simple problem. An MRP trajectory was generated from a
simple Markov random walk on a chain with five states (s = 1, · · · ,5) as depicted in Figure 3. At
each time t, the state changes to either of its left (−1) or right (+1) with equal probability of 0.5. A
reward function was set as a deterministic function of the state:
r = [0.6594,−0.3870,−0.9742,−0.9142,0.9714]6 and the discount factor was set to 0.95. The
value function was approximated by a linear function with three-dimensional basis functions, that is,
V (s)≈∑3n=1θnφn(s). The basis functions φn(s) were generated according to a diffusion model (Ma-
hadevan and Maggioni, 2007); basis functions were given based on the minor eigenvectors of the

6. This reward function was prepared as follows. We first set the true value function by choosing the basis function and
generating the parameter randomly, then the reward function was set so that it satisfied the Bellman equation.

1993

UENO, MAEDA, KAWANABE AND ISHII

Online Learning: θ̂t = θ̂t−1−ηtR̂twt−1(Zt−1)ε(zt , θ̂t)

• fTDT (ZT ,θ) = ∑T
t=1φ(st−1)ε(zt ,θ)

• TD (Sutton, 1988) R̂t = R= I

• NTD (Bradtke and Barto, 1996) R̂t = {(1/t)∑ti=1φ(si)�φ(si)}−1I
• LSPE (Nedić and Bertsekas, 2003) R̂t = {(1/t)∑ti=1φ(si)φ(si)�}−1
• GTD (Sutton et al., 2009b) See Equations (9) and (10) in the literature

• GTD2 (Sutton et al., 2009a) See Equations (8) and (9) in the literature

• TDC (Sutton et al., 2009a) See Equations (9) and (10) in the literature

• iLSTD (Geramifard et al., 2006) See Algorithm 3 in the literature

• Accelerated-TD Learning R̂t = {(1/t)∑ti=1φ(si−1)(φ(si−1) −
γφ(si))�}−1, ηt = 1/t

• f
TD(λ)
T (ZT ,θ) = ∑T

t=1∑
t
i=1(γλ)

t−iφ(si−1)ε(zt ,θ)

• TD(λ) (Sutton, 1988) R̂t = R= I

• NTD(λ) (Bradtke and Barto, 1996) R̂t = {(1/t)∑ti=1φ�(si)φ(si)}−1I
• LSPE(λ) (Nedić and Bertsekas, 2003) R̂t = {(1/t)∑ti=1φ(si)φ(si)�}−1
• iLSTD(λ) (Geramifard et al., 2007) See Algorithm 2 in the literature

• fRGT (ZT ,θ) = ∑T
t=1

(
φ(st−1)− γEθ∗,ξ∗s [φ(st)|st−1]

)
ε(zt ,θ)

• RG (Baird, 1995) R̂= R= I

• f ∗T (ZT ,θ) given by Equation (18)
• Optimal-TD Learning R̂t = Q̂−1t , ηt = 1/t

Batch Learning: θ̂T =
[
∑T
t=1wt−1(Zt−1)(φ(st−1)− γφ(st))�

]−1 [
∑T
t=1w(Zt−1)rt

]
• fTDT (ZT ,θ) = ∑T

t=1φ(st−1)ε(zt ,θ)

• LSTD (Bradtke and Barto, 1996)

• f
TD(λ)
T (ZT ,θ) = ∑T

t=1∑
t
i=1(γλ)

t−iφ(si−1)ε(zt ,θ)

• LSTD(λ) (Boyan, 2002)

• f ∗T (ZT ,θ) given by Equation (18)
• gLSTD

Table 1: Relation between the current learning and the proposed algorithms. I denotes an m×m
identity matrix.

1994

GENERALIZED TD LEARNING

 TD
(online)

Accelerated-TD
 (online)

Optimal-TD
 (online)

LSTD
(batch)

gLSTD
 (batch)

0

2

4

6

8

10

12

14

16

18

20

M
ea

n
sq

ua
re

d
er

ro
r

(M
SE

)

3.06 1.98 1.13 1.98 1.14

Figure 4: Boxplots of MSE both of the online (TD, Accelerated-TD and Optimal-TD) and batch
(LSTD and gLSTD) algorithms. The center line, and the upper and lower sides of each
box denote the median of MSE, and the upper and lower quartiles, respectively. The
number above each box is the average MSE.

graph Laplacian on an undirected graph constructed by the state transition. The basis functions actu-
ally used in this simulation were φ(s1) = [1,−0.6015,0.5117]�, φ(s2) = [1,−0.3717,−0.1954]�,
φ(s3) = [1,0,−0.6325]�, φ(s4) = [1,0.3717,−0.1954]�, and φ(s5) = [1,0.6015,0.5117]�. In gen-
eral, there is no guarantee that the true value function is included in the space spanned by the gener-
ated basis functions. In our example, however, the true value function can be represented faithfully
by the basis vectors above.

We first generated M = 500 trajectories (episodes) each of which consisted of T = 500 random
walk steps. The value function was estimated for each episode. We evaluated the mean squared
error (MSE) between the true value function and the estimated value function, evaluated over the
five states.

Figure 4 shows the boxplots of the MSE of the value functions estimated by the proposed
(Accelerated-TD, Optimal-TD and gLSTD) and baseline (TD and LSTD) algorithms, in which the
MSEs of all 500 episodes are shown by box-plots. For this example, the conditional expectations
both in Optimal-TD and gLSTD can be calculated by sample average in each state, because there
were only five states. In the online algorithms (TD, Accelerated-TD, and Optimal-TD), we used
some batch procedures to obtain initial estimates of the parameters, as is often done in many online

1995

UENO, MAEDA, KAWANABE AND ISHII

procedures. More specifically, the first 10 steps in each episode were used to obtain initial estimators
in a batch manner and the online algorithm started after the 10 steps.

In the proposed online algorithms (Accelerated-TD and Optimal-TD), the stepsizes were de-
creased as simple as 1/t. On the other hand, the convergence of TD learning was too slow in the sim-
ple 1/t setting due to fast decay of the stepsizes; this slow convergence was also observed when em-
ploying a certain well-chosen constant stepsize. Therefore, we adopt an ad-hoc adjustment for the
stepsizes as 1/τ, where τ= α0(n0+1)/(n0+ t). The best α0 and n0 have been selected by searching
the sets of α0 ∈ {0.05,0.1,0.2,0.3,0.4} and n0 ∈ {10,50,100,150,200,250,300,400,500,1000},
so that α0 and n0 are selected as 0.3 and 200, respectively.

As shown in Figure 4, the Optimal-TD and gLSTD algorithms achieved the minimum MSE
among the online and batch algorithms, respectively. The MSEs by these two methods were com-
parable.7 It should be noted that the Accelerated-TD algorithm performed significantly better than
the ordinary TD algorithm, showing the matrix R was effective for accelerating the convergence of
the online procedure as expected by our theoretical analysis.

Figure 5 shows how the estimation error of the estimator (θ̂T) behaves as the learning proceeds,
both for online (upper panel) and batch (lower panel) learning algorithms. X-axis and y-axis denote
the number of learning steps and the estimation error, that is, the MSE between the true parameter
and estimated parameter, average over 500 runs, respectively. The theoretical results, dotted and
solid lines, exhibit good accordance with the simulation results, crosses and circles, respectively, as
expected. Although our theoretical methods were mostly based on asymptotic analysis, they were
supported by simulation results even in the cases of relatively small number of samples.

8. Discussion and Future Work

The contributions of this study are to present a new semiparametric approach to the model-free
policy evaluation, which generalizes most of the current policy evaluation methods, and to clarify
statistical properties of the policy evaluation problem. On the other hand, our framework to eval-
uate the policy evaluation has been restricted to situations in which the function approximation is
faithful, that is, there is no model misspecification for the value function; we have not referred to sta-
tistical behaviors of our proposed algorithms in misspecified cases. In fact, the proposed algorithms
may not better than current algorithms when the choice of parametric function g or the preparation
of basis functions for approximating the value function introduces bias. Also, it is unsure whether
our proposed online algorithms converge or not in misspecified cases. Figure 6 shows an example
where the proposed algorithms (Optimal-TD and gLSTD) fail to obtain the best estimation accuracy.
Here, an MRP trajectory was generated from an Markov random chain on the same dynamics as in
Section 7. Rewards+1 and−1 were given when arriving at states ‘1’ and ‘20’, respectively, and the
discounted factor was set at 0.98. Under this setting, we generated M = 500 trajectories (episodes)
each of which consisted of T = 1000 random walk steps. We tested two linear function approxi-
mations with eight-dimensional and four-dimensional basis functions, respectively, which were also
generated by the diffusion model. The former basis functions cause a tiny bias which can be ignored,
whereas the latter ones make a significant bias. The upper and lower panels in Figure 6 show the

7. In a particular implementation of the gLSTD algorithm (Algorithm 1) here, we used the whole sample trajectory to
approximate the weight functionw∗

t , that is, k= 0, implying gLSTD does not necessarily hold consistency. Based on
good agreement of the results between gLSTD and Optimal-TD, however, we can speculate that the approximation
of the weight function using the whole sample trajectory did not affect the estimation accuracy so much.

1996

GENERALIZED TD LEARNING

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

Learning steps

E
st

im
at

io
n

er
ro

r

Online learning

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

Learning steps

E
st

im
at

io
n

er
ro

r

Batch learning

TD
Accelerated-TD
Optimal-TD

LSTD
gLSTD

fTD
T (Theory)

fTD
T (Theory)

f ∗T (Theory)

f ∗T (Theory)

Figure 5: 500 learning runs by varying the initial conditions were performed. (Upper panel) Trian-
gles (�), crosses (×) and circles (◦) denote the simulation results for TD, Accelerated-TD
and Optimal-TD, respectively. They were averaged over the 500 runs. The dotted and
solid lines show the theoretical results discussed in Lemma 3 for estimating functions
fTD
T and f ∗T described in Section 6. (Lower panel) Crosses (×) and circles (◦) denote the

simulation results for LSTD and gLSTD, respectively.

MSEs of the value functions estimated by the proposed (Accelerated-TD, Optimal-TD and gLSTD)
and baseline (TD and LSTD) algorithms employing eight-dimensional and four-dimensional ba-
sis functions, respectively. For scheduling of stepsizes in the online algorithms, we followed the
same procedures as in Section 7. In the well-specified case (upper panel), the proposed algorithms
achieved the smaller MSEs than the baseline algorithms as expected by our analysis, while in the
misspecified case (lower panel), our proposed algorithms were inferior to the baseline algorithms.
These results indicate the limitation of our analysis. When the bias-variance trade-off cannot be ig-
nored, it is not sufficient to consider solely the asymptotic variance. Therefore, we need to analyze a
risk R (θ̂T) which represents the deviation between the estimated value function and the true value
function. Also, it is an important future work to construct good parametric representations (e.g.,
basis functions in linear cases) which attain small modeling biases. Furthermore, it is necessary to
extend our convergence analysis for online learning algorithms to applicable to misspecified cases.

1997

UENO, MAEDA, KAWANABE AND ISHII

Figure 6: Boxplots of MSE for both of the online (TD, Accelerated-TD and Optimal-TD) and batch
(LSTD and gLSTD) algorithms on a twenty states Markov random walk problem. (Upper
panel) Simulation results on the function approximation with eight-dimensional diffusion
basis functions. (Lower panel) Simulation results on the function approximation with
four-dimensional diffusion basis functions.

8.1 Asymptotic Analysis in Misspecified Situations

First, let us revisit the asymptotic variance of the estimating function (15). In misspecified cases,
estimating function (14) does not necessarily satisfy the martingale property, then its asymptotic
variance can no longer be calculated by Equation (16). However, by introducing a notion of uniform
mixing, the asymptotic variance can be correctly evaluated, even in misspecified cases.

To clarify the following discussion, we only consider the class of estimators given by the fol-
lowing estimating function fT : ST+1×RT ×Θ �→ R

m:

 fT (ZT ,θ) =
T

∑
t=1

 ψt(Zt ,θ)≡
T

∑
t=1

 wt−1(Zt−1)ε(zt ,θ). (30)

Note that the class of estimators characterized by the above estimating function (30) is general
enough for our theoretical consideration because it leads to almost all of the major algorithms for
model-free policy evaluation that have been proposed so far (see Table 1). Now we demonstrate

1998

GENERALIZED TD LEARNING

with Lemma 11 that the asymptotic variance of the estimators θ̂T given by the estimating equation

T

∑
t=1

 ψt(Zt , θ̂) = 0. (31)

Lemma 11 Suppose that the random sequence ZT is generated from the distribution p(ZT) defined
by Equation (1). Assume that:

(a) There exists such a parameter value θ ∈ Θ that

lim
t→∞

E
[

 ψt(Zt , θ)
]
= 0,

where that E[·] denotes the expectation with respect to p(ZT), and θ̂T converges to the pa-
rameter θ in probability.8

(b) There exists a limit of matrix E
[

 wt−1(Zt−1){∂θε(zt , θ)}�] and
lim
t→∞

E
[

 wt−1(Zt−1){∂θε(zt , θ)}�] is nonsingular.
(c) E

[‖ wt−1(Zt−1)ε(zt , θ)‖2
]
is finite for any t.

Then, the estimator derived from estimating Equation (31) has the asymptotic variance

Ãv≡ Ãv(θ̂T)≡ E

[
(θ̂T − θ)(θ̂T − θ)�

]
=

1
T

 A−1 Σ
(

 A�
)−1

, (32)

where

 A≡ A(θ)≡ lim
t→∞

E

[
 wt−1
{
∂θε(zt , θ)

}�]
,

 Σ≡ Σ(θ)≡ lim
t→∞

E

[
ε(zt , θ)2 wt−1 w�

t−1

]
+ lim

t→∞
2

∞

∑
t ′=1

cov
[
ε(zt , θ) wt−1,ε(zt+t ′ , θ) wt+t ′−1

]
.

Here, wt and cov[·, ·] denote the abbreviation of wt(Zt) and the covariance function, respectively.
The proof is given in Appendix L. Since this proof required the central limit theorem under uni-

form mixing condition, we briefly review the notion and properties of uniform mixing in Appendix
B. We note that the infinite sum of covariance in Equation (32) becomes zero when the parametric
representation of the value function is faithful. This implies that Lemma 11 generalizes the result
of Lemma 3.

Furthermore, we can derive the upper bound of the asymptotic variance (32).

Lemma 12 There exists such a positive constant ϒ that

1
T

 A−1 Σ
(

 A�
)−1

� ϒ
T

 A−1 Σ0

(
 A�
)−1

holds, where Σ0 ≡ lim
t→∞

E
[
ε(zt , θ)2 wt−1 w�

t−1

]
.

8. We can show the stochastic convergence of the estimator to the parameter θ by imposing further mild conditions to
 fT . The proof can be obtained by following the procedure used in Theorem 3.6 in Sørensen (1999).

1999

UENO, MAEDA, KAWANABE AND ISHII

The proof is given in Appendix M. This lemma addresses that the estimators, which we have
proposed so far, minimize the upper bound of the asymptotic variance in misspecified cases.

Lemma 11 allows us to see the asymptotic behavior of the risk, like done by the previous work in
a different context; Liang and Jordan (2008) evaluated the quality of probabilistic model-based pre-
dictions in a structured prediction task. They analyzed the expected log-loss (risk) of composite like-
lihood estimators and compared it with those of generative, discriminative and pseudo-likelihood
estimators, both when the probabilistic models are well-specified and misspecified. Since composite
likelihood estimators are in the class of M-estimator, we will be able to evaluate the risk of vari-
ous estimators by performing a similar analysis to Liang and Jordan (2008). Konishi and Kitagawa
(1996) introduced generalized information criterion (GIC) which could be applied to evaluate statis-
tical models constructed by various types of estimation procedures. GIC is the generalization of the
well-known Akaike information criterion (AIC) (Akaike, 1974) and provided an unbiased estimator
for the expected log-loss (risk) of statistical models obtained by M-estimators. Therefore, it may
be possible to select a good model from a set of potential models by constructing an information
criterion for model-free policy evaluation based on the analysis in Konishi and Kitagawa (1996).

8.2 Online Learning Procedures in Large Scale Situations

In both Optimal-TD and Accelerated-TD learning, it is necessary to maintain the inverse of the
scaling matrix R̂t . Since this matrix inversion operation costs O(m2) in each step, maintaining the
inverse matrix becomes expensive when the dimensionality of the parameters increases. An effi-
cient implementation in such a large-scale setting is to use a coarsely-represented scale matrix, for
example, a diagonal or a block diagonal matrix. An appropriate setting still ensures the conver-
gence rate of O(1/t) without losing the computational efficiency. Le Roux et al. (2008) presented
an interesting implementation of natural gradient learning (Amari, 1998) for large-scale settings,
which was called “TONGA”. TONGA uses a low-rank approximation of the scaling matrix and
casted both problems of finding the low-rank approximation and computing the gradient onto a
lower-dimensional space, thereby attaining a lower computational complexity. Therefore, by apply-
ing such an idea to our proposed algorithms, we can improve the computational complexity without
sacrificing the fast convergence.

9. Conclusions

We introduced a framework of semiparametric statistical inference for value function estimation
which can be applied to analyzing both batch learning and online learning procedures. Based on
this framework, we derived the general form of estimating functions for model-free value function
estimation in MRPs, which provides a statistical basis to many batch and online learning algorithms
available currently for policy evaluation. Moreover, we found an optimal estimating function, which
yields the minimum asymptotic estimation variance amongst the general class, and presented new
learning algorithms based on it as both batch and the online procedures. Using a simple MRP prob-
lem, we confirmed the validity of our analysis; actually, our proposed algorithms showed reasonably
good performance.

2000

GENERALIZED TD LEARNING

Acknowledgments

This study was partly supported by Grant-in-Aid for Scientific Research (B) (No.21300113) from
Japan Society for the Promotion of Science (JSPS) and the Federal Ministry of Economics and
Technology of Germany (BMWi) under the project THESEUS, grant 01MQ07018. Tsuyoshi Ueno
was also supported by JSPS Fellowship for Young Scientist.

Appendix A. Stochastic Order Symbols

The stochastic order symbols Op and op are useful when evaluating the rate of convergence by
means of asymptotic theory. Let n denote the number of observations. The stochastic order symbols
are defined as follows.

Definition 13 Let {Xn} and {Rn} denote a sequence of random variables and a sequence of real
numbers, respectively. Then Xn = op(Rn) if and only if Xn/Rn converges in probability to 0 when
n→ ∞.

Definition 14 Let {Xn} and {Rn} denote a sequence of random variables and a sequence of real
numbers, respectively. Then Xn = Op(Rn) if and only if Xn/Rn is bounded in probability when
n→ ∞. “Bounded in probability” means that there exist a constant Cε and a natural number n0(ε)
such that for any ε> 0 and n> n0(ε),

P{|Xn| ≤Cε} ≥ 1− ε

holds.
Most properties of the usual orders also apply to stochastic orders. For instance,

op(1)+op(1) = op(1),

op(1)+Op(1) = Op(1),

Op(1)op(1) = op(1),

(1+op(1))
−1 = Op(1),

op(Rn) = Rnop(1),

Op(Rn) = RnOp(1),

op(Op(1)) = op(1).

Moreover, by taking the expectation, the stochastic order symbol op(·) reduces to the usual order
symbol o(·).
Remark 15 Let {Xn} and {Rn} denote a sequence of random variables which satisfies Xn = op(1)
and a sequence of real numbers, respectively. Let Yn = XnRn denote a random variable which
satisfies Yn = op(Rn). If the sequence of random variable Yn is asymptotically uniformly integrable,
then, the expectation of the random variables Yn has the same normal order, E[Yn] = o(Rn).

This remark can be shown from Theorem 2.20 in van der Vaart (2000). Note that the sequence
of real numbers {Rn} which appears in Definition 13 and 14 corresponds to the convergence rate;
then Yn = op(Rn) and Yn = Op(Rn) mean that the sequence Yn converges in probability to zero and
is bounded in probability, respectively, at the rate of Rn.

2001

UENO, MAEDA, KAWANABE AND ISHII

Appendix B. Uniform Mixing and Central Limit Theorem

The notion ofmixing is important when analyzing the rate of convergence in the stochastic processes
which do not satisfy the martingale condition. There are several different definitions for mixing. In
this section, we will especially focus on uniform mixing which is defined as follows.

Definition 16 Let Y ≡ {Yt : t = 1,2, . . .} be a strictly stationary process9 on a probabilistic space
(Ω,F ,P) and F m

k be σ-algebra generated by {Yk, · · · ,Ym}. Then, the processY is said to be uniform
mixing (φ-mixing) if ϕ(t)→ 0 as t→ ∞ where

ϕ(t)≡ sup
A∈F k

1 ,B∈F ∞
k+t

|P(B|A)−P(B)|, P(A) �= 0.

The function ϕ(t) is called mixing coefficient. If the mixing coefficient ϕ(t) converges to zero
as fast as exponential, then Y is called geometrically uniform mixing.

Definition 17 Suppose that Y is a strictly stationary process. If there exist some constants C > 0
and ρ ∈ [0,1) such that

ϕ(t)<Cρt ,

then Y is said to be geometrically uniform mixing.
Let f be a Borel function on the state space and define fT = 1/T ∑T

t=1 f (Yt). We now consider
the conditions under which the central limit theorem holds for fT .

Lemma 18 (Ibragimov and Linnik, 1971, Theorem 18.5.2.) Suppose that {YT} is a strictly station-
ary process with geometrically uniform mixing. If lim

t→∞
E[‖ f (Yt)‖2] is finite, then the central limit

theorem holds for f , that is,
√
T
(

 fT − lim
t→∞

E[f (Yt)]
)

d−→N (0,σ2),

as T → ∞ where σ2 ≡ lim
t→∞

E[f (Yt)2]+2 lim
t→∞

∑∞
t ′=1 cov [f (Yt), f (Yt+t ′)].

Note that, unlike the i.i.d. or the martingale case, the variance of the asymptotic distribution
involves the correlation between different times. Generally, such time dependency makes finding
an exact relationship difficult; however, it may be easy to evaluate the upper bound of the time-
dependent covariance.

Lemma 19 (Ibragimov and Linnik, 1971, Theorem 17.2.3.) Suppose that Y is a strictly stationary
process with uniform mixing. Let f and g be measurable functions with respect to F k

1 and F ∞
k+t ,

respectively. If f and g satisfy

E [| f |p]< ∞, E [|g|q]< ∞,

where p,q> 1, p+q= 1, then

|E [f g]−E [f]E [g]| ≤ 2ϕ(t)1/p
E [| f |p]1/pE [|g|q]1/q .

Finally in this section, we consider the conditions that Markov processes satisfy the uniform
mixing condition.

9. In a strictly stationary stochastic process, joint probability distribution is consistent when shifted in time.

2002

GENERALIZED TD LEARNING

Lemma 20 (Bradley, 2005, Theorem 3.1) Suppose thatY is a strictly stationary, finite state Markov
process. Then the following statements are equivalent:

(a) Y is irreducible and aperiodic.

(b) Y is ergodic.

(c) Y is geometrically uniform mixing.

Note that if a finite state Markov process has an unique and invariant stationary distribution, it
implies ergodicity. Then Lemma 20 addresses that such Markov process is uniform mixing.

Appendix C. Proof of Lemma 2

Proof Condition corresponding to (12) is satisfied by condition (c) in Assumption 4. Also, condi-
tion (10) is satisfied by Equation (13). From condition (a) in Assumption 4, the expectation of the
derivative of the functionwt−1(Zt−1,θ)ε(zt ,θ) can be expressed as

lim
t→∞

Eθ,ξ [∂θ {wt−1(Zt−1,θ)ε(zt ,θ)}]
= lim

t→∞
Eθ,ξ [∂θwt−1(Zt−1,θ)ε(zt ,θ)]+ lim

t→∞
Eθ,ξ [wt−1(Zt−1,θ)∂θε(zt ,θ)]

= lim
t→∞

Eθ,ξ

⎡⎣∂θwt−1(Zt−1,θ)Eθ,ξs [ε(zt ,θ)|Zt−1]︸ ︷︷ ︸
=0

⎤⎦+ lim
t→∞

Eθ,ξ [wt−1(Zt−1,θ)∂θε(zt ,θ)]

= lim
t→∞

Eθ,ξ [wt−1(Zt−1,θ)∂θε(zt ,θ)] ,

where we have used the fact in Equation (13). Therefore, using condition (b) in Assumption 4, we
can show that condition (11) is satisfied.

Appendix D. Proof of Lemma 3

Proof By performing a Taylor series expansion of estimating Equation (15) around the true param-
eter θ∗, we obtain

0=
T

∑
t=1

ψt(Zt ,θ
∗)+

T

∑
t=1

∂θψt(Zt ,θ
∗)(θ̂T −θ∗)+Op

(∥∥θ̂T −θ∗
∥∥2) .

Here, high order terms of the above equation are in total represented as
Op(‖θ̂T −θ∗‖2) because of Assumption 3, that is, the twice differentiable condition for the function
g(s,θ). By applying the law of large numbers (ergodic pointwise theorem) (Billingsley, 1995,
Theorem 24.1) to (1/T)∑T

t=1 ∂θψt(Zt ,θ∗) and the martingale central limit theorem (Billingsley,

2003

UENO, MAEDA, KAWANABE AND ISHII

1961) to (1/
√
T)∑T

t=1 ∂θψt(Zt ,θ∗), we have

1
T

T

∑
t=1

∂θψt(Zt ,θ
∗) =

1
T

T

∑
t=1

∂θwt−1(Zt−1,θ∗)ε(zt ,θ∗)+
1
T

T

∑
t=1

wt−1(Zt−1,θ∗)∂θε(zt ,θ∗)

a.s.−−→ lim
t→∞

Eθ∗,ξ∗ [∂θwt−1(Zt−1,θ∗)ε(zt ,θ∗)]︸ ︷︷ ︸
=0

+ lim
t→∞

Eθ∗,ξ∗
[
wt−1(Zt−1,θ∗){∂θε(zt ,θ∗)}�

]
︸ ︷︷ ︸

=A

1√
T

T

∑
t=1

ψt(Zt ,θ
∗) =

1√
T

T

∑
t=1

wt−1(Zt−1,θ∗)ε(zt ,θ∗)

d−→N

⎛⎜⎜⎝0, lim
t→∞

Eθ∗,ξ∗
[
ε(zt ,θ∗)2wt−1(Zt−1,θ∗)wt−1(Zt−1,θ∗)�

]
︸ ︷︷ ︸

=Σ

⎞⎟⎟⎠ .

By neglecting higher order terms, we obtain

√
T (θ̂T −θ∗)∼N

(
0,A−1Σ(A�)−1

)
.

Then, θ̂T is Gaussian distributed: θ̂T ∼ N (θ∗,Av), where the asymptotic variance Av is given by
Equation (16).

Appendix E. Proof of Theorem 4

Proof From Equation (2), for any t, the value function V (st) = g(st ,θ) must satisfy

Eθ,ξs [rt+1|st] = g(st ,θ)−Eθ,ξs [g(st+1,θ)|st] ,

regardless of the nuisance parameter ξ. Then, the TD error
ε(zt+1,θ) = g(st ,θ)− γg(st+1,θ)− rt+1 must satisfy Eθ,ξs [ε(zt+1,θ)|Zt] = 0 for any t and ξ. Also,
from the condition of martingale estimating functions, for any time t, the estimating function must
satisfy

Eθ,ξs [ft+1(Zt+1,θ)−ft(Zt ,θ)|Zt] = 0, (33)

regardless of the nuisance parameter ξ. If we can show from Equation (33) that
ft+1(Zt+1,θ)−ft(Zt ,θ) =wt(Zt ,θ)ε(zt+1,θ) holds, fT (ZT ,θ) must have the form (17) by induc-
tion. Since this statement can be considered component-wise, we will prove the similar claim for
scalar functions, that is,

Eθ,ξs [h(Zt+1,θ)|Zt] = 0, ∀ξs =⇒ h(Zt+1,θ) = w(Zt ,θ)ε(zt+1,θ), (34)

in the following two steps.

2004

GENERALIZED TD LEARNING

1. We first prove in a constructive manner that any simple function h(zt+1,θ) which depends
only on zt+1 and satisfy Eθ,ξs [h(zt+1,θ)|st] = 0 and Eθ,ξs [{h(zt+1,θ)}2]< ∞ for any t, θ and
ξs can be expressed as h(zt+1,θ) = w(st ,θ)ε(zt+1,θ), where w(st ,θ) is a function of st .

2. Our claim (34) for general function h(Zt+1,θ) is derived from the fact shown in the previous
step, because for each fixed Zt this problem boils down to the simple case above.

To prove the simple case first, for arbitrary fixed st and θ, we consider the set M (st ,θ) of
all probability distributions of rt+1 and st+1 with each of which the expectation of the TD error
ε(zt+1,θ) vanishes. In the following discussion, st is treated as a fixed constant. In our semipara-
metric case, this set can be expressed as the set of all conditional distributions of rt+1 and st+1 for
given st which has value function g(st ,θ) with the fixed θ, that is,

M (st ,θ) ≡ { p(rt+1,st+1|st ;θ,ξs) |st , θ: fixed,
Eθ,ξs [ε(zt+1,θ)|st] = g(st ,θ)− γEθ,ξs [g(st+1,θ)|st]−Eθ,ξs [rt+1|st] = 0},

where the nuisance parameter ξs is designed so that it becomes bijective with the distributions in
M (st ,θ). We remark that the setM (st ,θ) and the domain of the nuisance parameter ξs depend on
st and θ.

Suppose that there exists a function of h(zt+1) which satisfies Ep[h(zt+1)] = 0 and
Ep[{h(zt+1)}2] < ∞ for any p(rt+1,st+1) ∈M (st ,θ). Then, because of the linearity and continuity
of the integral operator, the unbiasedness condition can be extended to any function q(rt+1,st+1)
which belongs to the closed spanM (st ,θ) ofM (st ,θ):

∑
st+1

∫
h(zt+1)q(rt+1,st+1)drt+1 = 0. (35)

It is also easy to show that M (st ,θ) contains any functions (i.e., even without satisfying the non-
negativity constraint of probabilities) which satisfy the condition

∑
st+1

∫
ε(zt+1)q(rt+1,st+1)drt+1 = 0. (36)

Indeed, we can always construct a linear representation of such a function q(rt+1,st+1) with four
probability distributions inM (st ,θ) which take positive values only in two regions out of
{(rt+1,st+1) |ε≥ 0, q≥ 0}, {(rt+1,st+1) |ε≥ 0, q< 0}, {(rt+1,st+1) |ε< 0, q≥ 0} and
{(rt+1,st+1) |ε< 0, q< 0}.

Now, we take a distribution p(rt+1,st+1) in M (st ,θ) which is positive over its domain10 and
consider its perturbation

q̃(rt+1,st+1)≡ p(rt+1,st+1)

{
1+δh(zt+1)−δEp[h(zt+1)ε(zt+1)]

Ep[ε(zt+1)2]
ε(zt+1)

}
,

where δ > 0 is a small constant and Ep denotes the expectation over rt+1 and st+1 with respect to
p(rt+1,st+1). This function q̃(rt+1,st+1) does not necessarily belong to the model M (st ,θ), but

10. If there exists a region where all distributions inM (st ,θ) take 0, it is impossible to characterize the functional form
of h(zt+1) in that region. For simplicity, however, we do not consider such a pathological case in this proof.

2005

UENO, MAEDA, KAWANABE AND ISHII

is an element of its closed span M (st ,θ), because it also satisfies the condition (36). Therefore,
Equation (35) must hold for this perturbed function q̃, leading to

∑
st+1

∫
h(zt+1) q̃(rt+1,st+1)drt+1 = δ

{
Ep[h(zt+1)

2]− (Ep[h(zt+1)ε(zt+1)])
2

Ep[ε(zt+1)2]

}
= 0. (37)

From Cauchy-Schwarz’s inequality, this equation holds if and only if h(zt+1) ∝ ε(zt+1) and other-
wise Eq̃[h(zt+1)], the left-hand-side of Equation (37), becomes strictly positive, which contradicts
the fact (35). Since the whole argument holds for any st and θ, the first claim is proved.

In the general case for the function of Zt+1, we just show that any function h(Zt+1,θ) which
satisfies Eθ,ξs [h(Zt+1,θ)|Zt] = 0 and Eθ,ξs [{h(Zt+1,θ)}2]< ∞ for any st , θ and ξs can be expressed
as h(Zt+1,θ) = wt(Zt ,θ)ε(zt+1,θ), where wt(Zt ,θ) is a function of Zt and θ.

For arbitrary fixed Zt , h(Zt+1,θ) can be regarded as a function of rt+1 and st+1. Therefore,
the problem reduces to the case that the function only depends on zt+1, so that we can say that
h(rt+1,st+1,Zt ,θ) ∝ ε(rt+1,st+1,st). Since this relationship holds for any Zt , we conclude that the
function h(Zt+1,θ) must have the form wt(Zt ,θ)ε(zt+1,θ).

Appendix F. Proof of Lemma 5

Proof We show that the conditional expectation w̃t(st ,θ) = Eξs [wt(Zt ,θ)|st], which depends only
on the current state st and the parameter θ, gives an equally good estimator or better estimator than
those by the original weight functionwt(Zt ,θ). As shown in Equation (16), the asymptotic variance
of the estimator θ̂w with wt(Zt ,θ) is given by

Av(θ̂w)≡ 1
T
A−1w Σw

(
A−1w
)�

,

where Aw = lim
t→∞

Eθ∗,ξ∗
[
wt−1 {∂θε(zt ,θ∗)}�

]
≡ lim

t→∞
Eθ∗,ξ∗

[
wt−1(Zt−1,θ∗){∂θε(zt ,θ∗)}�

]
and

Σw = lim
t→∞

Eθ∗,ξ∗
[
(ε∗t)2wt−1w�

t−1
]≡ lim

t→∞
Eθ∗,ξ∗

[
(ε∗t)2wt−1(Zt−1,θ∗)wt−1(Zt−1,θ∗)�

]
. Here, wt is

an abbreviation ofwt(Zt ,θ∗). Similarly, the asymptotic variance of the estimator θ̂w̃ with w̃t−1(st−1,θ)
is given by

Av(θ̂w̃)≡ 1
T
A−1w̃ Σw̃

(
A−1w̃
)�

,

where Aw̃ ≡ lim
t→∞

Eθ∗,ξ∗
[
w̃t−1 {∂θε(zt ,θ∗)}�

]
≡ lim

t→∞
Eθ∗,ξ∗

[
w̃t−1(st−1,θ∗){∂θε(zt ,θ∗)}�

]
and

Σw̃ ≡ lim
t→∞

Eθ∗,ξ∗
[
(ε∗t)2w̃t−1w̃�

t−1
] ≡ lim

t→∞
Eθ∗,ξ∗

[
(ε∗t)2w̃t−1(st−1,θ∗)w̃t−1(st−1,θ∗)�

]
. Here, w̃t is

2006

GENERALIZED TD LEARNING

an abbreviation of w̃t(st ,θ). The matrices Aw and Σw can be calculated as

Aw = lim
t→∞

Eθ∗,ξ∗
[
wt−1 {∂θεt(zt ,θ∗)}�

]
= lim
t→∞

Eθ∗,ξ∗
[
Eθ∗,ξ∗s [wt−1|st−1]{∂θεt(zt ,θ∗)}�

]
= Aw̃,

Σw = lim
t→∞

Eθ∗,ξ∗
[
(ε∗t)

2 (
Eθ∗,ξ∗s [wt−1|st−1]+wt−1−Eθ∗,ξ∗s [wt−1|st−1]

)
(
Eθ∗,ξ∗s [wt−1|st−1]+wt−1−Eθ∗,ξ∗s [wt−1|st−1]

)�]
= lim
t→∞

Eθ∗,ξ∗
[
(ε∗t)

2
Eθ∗,ξ∗s [wt−1|st−1]Eθ∗,ξ∗s [wt−1|st−1]�

]
+ lim

t→∞
Eθ∗,ξ∗

[
(ε∗t)

2
Eθ∗,ξ∗s [wt−1|st−1]

(
wt−1−Eθ∗,ξ∗s [wt−1|st−1]

)�]
+ lim

t→∞
Eθ∗,ξ∗

[
(ε∗t)

2 (wt−1−Eθ∗,ξ∗s [wt−1|st−1]
)(

Eθ∗,ξ∗s [wt−1|st−1]
)�]

+ lim
t→∞

Eθ∗,ξ∗
[
(ε∗t)

2 (wt−1−Eθ∗,ξ∗s [wt−1|st−1]
)(

wt−1−Eθ∗,ξ∗s [wt−1|st−1]
)�]

=Σw̃+ lim
t→∞

Eθ∗,ξ∗
[
(ε∗t)

2 (wt−1−Eθ∗,ξ∗s [wt−1|st−1]
)(

wt−1−Eθ∗,ξ∗s [wt−1|st−1]
)�]

=Σw̃+ lim
t→∞

Eθ∗,ξ∗
[
(ε∗t)

2 (wt−1− w̃t−1)(wt−1− w̃t−1)�
]
,

where we have used Eθ∗,ξ∗s [wt−1|zt−1] = Eθ∗,ξ∗s [wt−1|st−1] = w̃t−1 and

lim
t→∞

Eθ∗,ξ∗
[
(ε∗t)

2 (wt−1−Eθ∗,ξ∗s [wt−1|st−1]
)
Eθ∗,ξ∗s [wt−1|st−1]�

]
= lim

t→∞
Eθ∗,ξ∗

[
(ε∗t)

2 (
Eθ∗,ξ∗s [wt−1|st−1]−Eθ∗,ξ∗s [wt−1|st−1]

)(
Eθ∗,ξ∗s [wt−1|st−1]

)�]
= 0.

This implies that

Av(θ̂w) =
1
T
A−1w Σw

(
A−1w
)� � 1

T
A−1w̃ Σw̃

(
A−1w̃
)�

= Av(θ̂w̃),

where � denotes the semipositive definiteness of the subtraction.

Appendix G. Proof of Theorem 6

Proof As shown in Equation (16), the asymptotic variance of the estimator θ̂w is given by

Av=
1
T
AwΣw(A−1w)�,

where

Aw ≡ lim
t→∞

Eθ∗,ξ∗ [wt−1(Zt−1,θ∗){∂θε(zt ,θ∗)}�],
Σw ≡ lim

t→∞
Eθ∗,ξ∗ [ε(zt ,θ

∗)2wt−1(Zt−1,θ∗)wt−1(Zt−1,θ∗)�].

2007

UENO, MAEDA, KAWANABE AND ISHII

For the sake of expression simplicity, the weight function wt(Zt ,θ∗) the TD error ε(zt ,θ∗) are
abbreviated aswt and εt , respectively; we rewrite Aw and Σ as

Aw = lim
t→∞

Eθ∗,ξ∗
[
wt−1{∂θε(zt ,θ∗)}�

]
,

Σw = lim
t→∞

Eθ∗,ξ∗
[
ε2twt−1w�

t−1
]
.

We first derive the weight function that minimizes the trace of the asymptotic variance, that is,

w∗
t−1 = argmin

wt−1
F (wt−1)

where F (wt−1) = tr{Av(wt−1)}.

Let δt−1 ≡ δt−1(Zt−1,θ∗) be an arbitrary function of Zt−1 and θ∗. We consider how much a func-
tional F(wt−1) changes when we make a small change hδt−1 to the weight functionwt−1. For nota-
tional convenience, we defineG(h;wt−1,δt−1)≡F (wt−1+hδt−1).11 If the functionG(h;wt−1,δt−1)
is twice differentiable with respect to h, then we have

G(h;wt−1,δt−1) = G(0;wt−1,δt−1)+h ∂hG(h;wt−1,δt−1)|h=0+O(h2),

where ∂h denotes the partial derivative with respect to h. Since the functional F(wt−1) is stationary
for tiny variation in the function wt−1, the weight function w∗

t−1 which minimizes the asymptotic
estimation variance must satisfy

∂hG(h;w
∗
t−1,δt−1)

∣∣
h=0 = 0,

for arbitrary choice of δt−1.
The definition of derivative says

∂hG(h;wt−1,δt−1)|h=0 = lim
λ→0

G(λ;wt−1,δt−1)−G(0;wt−1,δt−1)
λ

.

The numerator of the above equation is written as

G(λ;wt−1,δt−1)−G(0;wt−1,δt−1)

= tr
[
A−1w+λδΣw+λδ(A

−1
w+λδ)

�
]
− tr
[
A−1w Σw(A−1w)�

]
, (38)

where

Aw+λδ ≡ lim
t→∞

Eθ∗,ξ∗ [(wt−1+λδt−1){∂θε(zt ,θ∗)}�]
= Aw+λ lim

t→∞
Eθ∗,ξ∗ [δt−1{∂θε(zt ,θ∗)}�] (39)

Σw+λδ ≡ lim
t→∞

Eθ∗,ξ∗ [ε
2
t (wt−1+λδt−1)(wt−1+λδt−1)�]

=Σw+λ lim
t→∞

Eθ∗,ξ∗ [ε
2
t (δt−1w

�
t−1+wt−1δ�t−1)]+O(λ2). (40)

11. We used this notation to emphasize that G(h;wt−1,δt−1) is a function of h, while wt−1 and δt−1 are regarded as
auxiliary variables.

2008

GENERALIZED TD LEARNING

By using the matrix inversion lemma (Horn and Johnson, 1985), A−1w+λδ can be written as

A−1w+λδ =
(
Aw+λ lim

t→∞
Eθ∗,ξ∗ [δt−1{∂θε(zt ,θ∗)}�]

)−1
= A−1w − lim

t→∞
A−1w
(
I+λEθ∗,ξ∗ [δt−1{∂θε(zt ,θ∗)}�]A−1w

)−1
λEθ∗,ξ∗ [δt−1{∂θε(zt ,θ∗)}�]A−1w .

The matrix
(
I+λEθ∗,ξ∗ [δt−1{∂θε(zt ,θ∗)}�]A−1w

)−1
can be calculated as(

I+λEθ∗,ξ∗ [δt−1{∂θε(zt ,θ∗)}�]A−1w
)−1

=
(
I−λEθ∗,ξ∗ [δt−1{∂θε(zt ,θ∗)}�]A−1w

)
+O(λ2),

because of(
I+λEθ∗,ξ∗ [δt−1{∂θε(zt ,θ∗)}�]A−1w

)(
I−λEθ∗,ξ∗ [δt−1{∂θε(zt ,θ∗)}�]A−1w

)
= I+O

(
λ2
)
.

Thus we obtain

A−1w+λδ = A
−1
w −λ lim

t→∞
A−1w Eθ∗,ξ∗

[
δt−1{∂θε(zt ,θ∗)}�

]
A−1w +O(λ2), (41)

where high order terms are summarized as O(λ2).
Substituting Equations (39)-(41) to Equation (38), we have

tr
[
A−1w+λδΣw+λδ(A

−1
w+λδ)

�
]
− tr
[
A−1w Σw(A−1w)�

]
=−λ lim

t→∞
tr
[
A−1w Eθ∗,ξ∗

[
δt−1{∂θε(zt ,θ∗)}�

]
A−1w Σw

(
A−1w
)�]

−λ lim
t→∞

tr
[
A−1w Eθ∗,ξ∗

[
∂θε(zt ,θ

∗)δ�t−1
]
A−1w Σw

(
A−1w
)�]

+λ lim
t→∞

tr
[
A−1w lim

t→∞
Eθ∗,ξ∗ [ε

2
t (δt−1w

�
t−1+wt−1δ�t−1)]

(
A−1w
)�]

+O(λ2)

=−2λ lim
t→∞

tr
[
A−1w Σw(A−1w)�Eθ∗,ξ∗

[
∂θε(zt ,θ

∗)δ�t−1
]
(A−1w)�

]
+2λ lim

t→∞
tr
[
A−1w Eθ∗,ξ∗ [ε

2
twt−1δ�t−1](A

−1
w)�
]
+O(λ2).

This gives the partial derivative ∂hG(h;wt−1,δt−1) as

∂hG(h;wt−1,δt−1)|h=0
=−2 lim

t→∞
tr
[
A−1w Σw(A−1w)�Eθ∗,ξ∗

[
∂θε(zt ,θ

∗)δ�t−1
]
(A−1w)�

]
+2 lim

t→∞
tr
[
A−1w Eθ∗,ξ∗ [ε

2
twt−1δ�t−1](A

−1
w)�
]

=−2 lim
t→∞

Eθ∗,ξ∗
[
δ�t−1(A

−1
w)�A−1w Σw(A−1w)�Eθ∗,ξ∗s [∂θε(zt ,θ

∗)|Zt−1]
]

+2 lim
t→∞

Eθ∗,ξ∗
[
δ�t−1(A

−1
w)�A−1w Eθ∗,ξ∗s [ε

2
t |Zt−1]wt−1

]
=2 lim

t→∞
Eθ∗,ξ∗

[
δ�t−1(A

−1
w)�A−1w

{
Eθ∗,ξ∗s [ε

2
t |st−1]wt−1−Σw(A−1w)�Eθ∗,ξ∗s [∂θε(zt ,θ

∗)|st−1]
}]

.

2009

UENO, MAEDA, KAWANABE AND ISHII

By applying the condition that the deviation becomes 0 for any function δt−1(Zt−1,θ
∗), the optimal

weight function is obtained as

w∗
t−1 = Eθ∗,ξ∗s [(ε(zt ,θ

∗)2|st−1]
−1
Σw(A−1

w)�Eθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1].

Because any estimating function is invariant to transformation applied by any regular matrix, the
optimal estimating function is restricted as

w∗
t−1 =w∗

t−1(Zt−1,θ
∗) = Eθ∗,ξ∗s

[
ε(zt ,θ∗)2|st−1

]−1
Eθ∗,ξ∗s [∂θε(zt ,θ

∗)|st−1],

or its transformation applied by any regular matrix.
Now, we confirm that the estimator obtained by Equation (18) yields the minimum asymptotic

variance. Substituting w∗
t−1 to the matrix Aw, some calculations in Appendix H lead us to

Aw∗ =Σw∗ =Q,

where

Q≡ lim
t→∞

Eθ∗,ξ∗
[
Eθ∗,ξ∗s [ε

2
t |st]−1

Eθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1]Eθ∗,ξ∗s [∂θε(zt ,θ

∗)|st−1]
�
]
.

We consider how much the asymptotic variance Av changes when we make a small change
 δt−1 ≡ hδt−1 on w∗

t−1. The matrices at w∗
t−1 +

 δt−1 become

Aw∗+ δ =Q+ lim
t→∞

Eθ∗,ξ∗ [δt−1∂θε(zt ,θ
∗)�],

Σw∗+ δ =Q+ lim
t→∞

Eθ∗,ξ∗
[
∂θε(zt ,θ

∗) δ�t−1

]
+ lim

t→∞
Eθ∗,ξ∗

[
 δt−1{∂θε(zt ,θ∗)}�

]
+ lim

t→∞
Eθ∗,ξ∗

[
ε2
t

 δt−1 δ�t−1

]
.

Therefore,

A−1
w∗+ δ

Σw∗+ δ

(
A−1
w∗+ δ

)�
−A−1

w∗Σw∗
(
A−1
w∗
)�

= A−1
w∗+ δ

(
Σw∗+ δ−Aw∗+ δA

−1
w∗Σw∗(A−1

w∗)
�A�w∗+ δ

)
︸ ︷︷ ︸

C1

(
A−1
w∗+ δ

)�
.

The matrix C1 is a semipositive definite matrix, because

C1 =Σw∗+ δ−Aw∗+ δA
−1
w∗Σw∗(A−1

w∗)
�A�w∗+ δ

= lim
t→∞

Eθ∗,ξ∗
[
ε2
t

 δt−1 δ�t−1

]
− lim

t→∞
Eθ∗,ξ∗

[
 δt−1{∂θε(zt ,θ∗)}�

]
Q−1

Eθ∗,ξ∗
[
∂θε(zt ,θ

∗) δ�t−1

]
= lim
t→∞

Eθ∗,ξ∗
[(

 δt−1−νt−1
)(

 δt−1−νt−1
)�]� 0,

where

νt−1 ≡ Eθ∗,ξ∗s [ε
2
t |st−1]

−1
Eθ∗,ξ∗

[
 δt−1{∂θε(zt ,θ∗)}�

]
Q−1

Eθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1] .

Thus we have

A−1
w∗+ δ

Σw∗+ δ

(
A−1
w∗+ δ

)�
−A−1

w∗Σw∗
(
A−1
w∗
)� � 0,

where� denotes the semipositive definiteness of the subtraction. The equality in the above equation
holds only when δt−1 ∝w∗

t−1.

2010

GENERALIZED TD LEARNING

Appendix H. Proof of Lemma 7

Proof The matrix A in the asymptotic variance given by Equation (16) can be calculated as

A= lim
t→∞

Eθ∗,ξ∗ [∂θψ
∗
t (zt ,θ

∗)]

= lim
t→∞

Eθ∗,ξ∗
[
w∗
t−1(Zt−1,θ

∗){∂θε(zt ,θ)}�
]

= lim
t→∞

Eθ∗,ξ∗
[
Eθ∗,ξ∗s [ε(zt ,θ

∗)2|st−1]−1

Eθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1]Eθ∗,ξ∗s [∂θε(zt ,θ

∗)|st−1]�
]
.

Also the matrix Σ can be calculated as

Σ= lim
t→∞

Eθ∗,ξ∗
[
ψ∗t (zt ,θ

∗)ψ∗t (zt ,θ
∗)�
]

= lim
t→∞

Eθ∗,ξ∗
[
Eθ∗,ξ∗s

[
ε(zt ,θ∗)2|st−1

]
w∗
t−1(Zt−1,θ

∗){w∗
t−1(Zt−1,θ

∗)}�
]

= lim
t→∞

Eθ∗,ξ∗

[
Eθ∗,ξ∗s

[
ε(zt ,θ

∗)2|st−1
]

{
Eθ∗,ξ∗s

[
ε(zt ,θ∗)2|st−1

]−1
Eθ∗,ξ∗s [∂θε(zt ,θ

∗)|st−1]
}

{
Eθ∗,ξ∗s

[
ε(zt ,θ

∗)2|st−1
]−1

Eθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1]

}�]
= lim

t→∞
Eθ∗,ξ∗

[
Eθ∗,ξ∗s [ε(zt ,θ

∗)2|st−1]−1

Eθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1]Eθ∗,ξ∗s [∂θε(zt ,θ

∗)|st−1]�
]
= A=Q.

These observations yield

Av(θ̂) =
1
T
A−1Σ(A−1)� =

1
T
Q−1.

Appendix I. Proof of Theorem 8

Proof To simplify the following proof, we assume the true parameter is located on the origin
without loss of generality: θ∗ = 0. Let ht be ‖θ̂t‖2. The conditional expectation of variation of ht
can be derived as

Eθ∗,ξ∗s [ht+1−ht |st] =−2ηt+1θ̂�t R(θ̂t)Eθ∗,ξ∗s
[
ψt+1(Zt+1, θ̂t)

∣∣st]
+η2t+1Eθ∗,ξ∗s

[‖R(θ̂t)ψt+1(Zt+1, θ̂t)‖2
∣∣st] .

From Assumption 5, the second term of this equation is bounded by the second moment, thus we
obtain

Eθ∗,ξ∗s
[
ht+1− (1+η2t+1c2)ht |st

]
≤−2ηt+1θ̂�t R(θ̂t)Eθ∗,ξ∗s

[
ψt+1(Zt+1, θ̂t)

∣∣st]+η2t+1c1. (42)

2011

UENO, MAEDA, KAWANABE AND ISHII

Now, let χt =∏t
k=1 1/(1+η2kc2) and h

′
t = χtht . From the assumption

∑∞
t=1η

2
t < ∞, we easily verify that 0< χt < 1. Multiplying the both sides of Equation (42) by χt+1,

we obtain

Eθ∗,ξ∗
[
h′t+1−h′t |Zt

]
≤−2ηt+1χt+1θ̂�t R(θ̂t)Eθ∗,ξ∗s

[
ψt+1(Zt+1, θ̂t)

∣∣st]+η2t+1χt+1c1.

The first term of this upper bound is negative because of Assumption 5, the second term is non-
negative because ηt , χt+1, and c1 are nonnegative, and the sum of the second terms ∑∞

t=1η
2
t χt+1c1

is finite. Then, the supermartingale convergence theorem (Neveu, 1975; Bertsekas and Tsitsiklis,
1996, Proposition 4.2) guarantees that h′t converges to a nonnegative random variable almost surely,
and ∑∞

t=1ηt+1χt+1θ̂
�
t Rt(θ̂t)Eθ∗,ξ∗s

[
ψt+1(Zt+1, θ̂t)

∣∣st]<∞. Since ∑∞
t=1ηt =∞ and lim

t→∞
χt = χ∞ > 0,

we have θ̂�t R(θ̂t)Eθ∗,ξ∗s
[
ψt+1(Zt+1, θ̂t)

∣∣st] a.s.−→ 0. This result suggests the conclusion that the on-

line learning algorithm converges to the true parameter almost surely: θ̂t
a.s.−→ θ∗ = 0.

Appendix J. Proof of Lemma 9

Proof Using Taylor series expansion of the estimating equation (1/t)∑ti=1ψi(Zi, θ̃t) around θ̃t−1,
we obtain

1
t

t

∑
i=1

ψi(Zi, θ̃t) =
1
t

t

∑
i=1

ψi(Zi, θ̃t−1)

+
1
t

t

∑
i=1

∂θψi(Zi, θ̃t−1)(θ̃t− θ̃t−1)+Op
(‖θ̃t − θ̃t−1‖2

)
.

Since ∑ti=1ψi(Zi, θ̃t) = ∑t−1i=1ψi(Zi, θ̃t−1) = 0, we obtain the following equation:

−1
t
ψt(Zt , θ̃t−1) = R̃t(θ̃t−1)(θ̃t− θ̃t−1)+Op

(‖θ̃t − θ̃t−1‖2
)
.

We can then rewrite the right hand side as

−1
t
ψt(Zt , θ̃t−1) = {R̃t(θ̃t−1)+Op(‖θ̃t − θ̃t−1‖)}(θ̃t− θ̃t−1),

and

(θ̃t − θ̃t−1) =−1t {R̃
−1
t (θ̃t−1)+Op(‖θ̃t − θ̃t−1‖)}ψt(Zt , θ̃t−1).

Note that R̃−1t (θ̃t−1) is uniformly bounded because of the nonsingular condition in Lemma 9. Also
θ̃t is uniformly bounded for any t. Furthermore, ψt(Zt , θ̃t−1) is uniformly bounded for any t since
the conditions in Assumptions 2-4 imply that ψt(Zt , θ̃t−1) is a continuous function of uniformly
bounded variables. Hence, the above equation implies that
θ̃t − θ̃t−1 = Op(1/t). Therefore, we can obtain the following equation

−1
t
ψt(Zt , θ̃t−1) = R̃t(θ̃t−1)(θ̃t− θ̃t−1)+Op

(
1
t2

)
.

2012

GENERALIZED TD LEARNING

By using the matrix inversion operation, we derive

θ̃t = θ̃t−1− 1t R̃
−1
t ψt(Zt , θ̃t−1)+Op

(
1
t2

)
.

Appendix K. Proof of Theorem 10

Proof Similar to the proof in Appendix I, we assume the true parameter is located at the origin:
θ∗ = 0. From the assumption in Theorem 10, the online learning converges to the true parameter
almost surely; this implies that θ̂t = θ∗+ op(1) = op(1). Note also that Rt converges to A almost
surely; this implies that Rt =A+op(1). Furthermore, from condition (d) in Theorem 10, the matrix
Rt is invertible for any t; this implies that R−1t = A−1+op(1).

Using Equation (23), (θ̂t −θ∗)(θ̂t −θ∗)� = θ̂t θ̂
�
t can be expressed as

θ̂t θ̂
�
t =

(
θ̂t−1− 1t R̂

−1
t ψt(Zt , θ̂t−1)+Op

(
1
t2

))
(
θ̂t−1− 1t R̂

−1
t ψt(Zt , θ̂t−1)+Op

(
1
t2

))�
=θ̂t−1θ̂�t−1−

1
t
θ̂t−1ψt(Zt , θ̂t−1)�(R̂−1t)�− 1

t
R̂−1t ψt(Zt , θ̂t−1)θ̂�t−1

+
1
t2
R̂−1t ψt(Zt , θ̂t−1)ψt(Zt , θ̂t−1)�(R̂−1t)�+op

(
1
t2

)
,

where high order terms are in total represented as op
(
1/t2
)
because of

θ̂t−1Op(1/t2) = op(1)Op(1/t2) = op(1/t2). Taking the conditional expectation of θ̂t θ̂�t given Zt−1,
we obtain

Eθ∗,ξ∗s

[
θ̂t θ̂

�
t |Zt−1

]
=θ̂t−1θ̂�t−1−

1
t
θ̂t−1Eθ∗,ξ∗s

[
ψt(Zt , θ̂t−1)�(R̂−1t)�

∣∣∣Zt−1]︸ ︷︷ ︸
C�1

− 1
t
Eθ∗,ξ∗s

[
R̂−1t ψt(Zt , θ̂t−1)

∣∣Zt−1] θ̂�t−1︸ ︷︷ ︸
C1

+
1
t2
Eθ∗,ξ∗s

[
R̂−1t ψt(Zt , θ̂t−1)ψt(Zt , θ̂t−1)�(R̂−1t)�

∣∣∣Zt−1]︸ ︷︷ ︸
C2

+op

(
1
t2

)
.

We now express each of the terms in the above equation.
In order to express C1 and C2, we introduce the following lemma.

Lemma 21 (Bottou and LeCun, 2005, Theorem 4) Let Xt be a uniformly bounded random variable
depending on Zt . Then we have

Eθ∗,ξ∗s
[
R̂−1t Xt

∣∣Zt−1]= Eθ∗,ξ∗s
[
R̂−1t
∣∣Zt−1]Eθ∗,ξ∗s [Xt |Zt−1]+op

(
1
t

)
.

2013

UENO, MAEDA, KAWANABE AND ISHII

Proof By using assumption (b) in Theorem 10, Eθ∗,ξ∗s [R̂
−1
t Xt |Zt−1] can be calculated as

Eθ∗,ξ∗s
[
R̂−1t Xt |Zt−1

]
= Eθ∗,ξ∗s [R̂

−1
t |Zt−1]Eθ∗,ξ∗s [Xt |Zt−1]+Eθ∗,ξ∗s [εt(Zt)Xt |Zt−1] ,

where εt(Zt) = op(1/t). Eθ∗,ξ∗s [εt(Zt)Xt |Zt−1] is summarized as op(1/t) because of the Cauchy-
Schwartz’s inequality:

Eθ∗,ξ∗s [εt(Zt)Xt |Zt−1]≤
√
Eθ∗,ξ∗s [‖εt(Zt)‖2|Zt−1]

√
Eθ∗,ξ∗s [‖Xt‖2|Zt−1].

Since condition (a) in Theorem 10 and Assumptions 2-4 lead ψt(Zt , θ̂t−1) and R̂t to be continuous
functions of uniformly bounded variables, ψt(Zt , θ̂t−1) and R̂t are uniformly bounded for any t.
Then, using Lemma 21, C2 can be expressed as

C2 =
{
Eθ∗,ξ∗s

[
R̂−1t
∣∣Zt−1]

Eθ∗,ξ∗s

[
ψt(Zt , θ̂t−1)ψt(Zt , θ̂t−1)�

∣∣∣Zt−1]Eθ∗,ξ∗s

[
(R̂−1t)�

∣∣∣Zt−1]}+op

(
1
t

)
.

We note that Eθ∗,ξ∗s [ψt(Zt , θ̂t−1)ψt(Zt , θ̂t−1)�|Zt−1] can be calculated as

Eθ∗,ξ∗s

[
ψt(Zt , θ̂t−1)ψt(Zt , θ̂t−1)�

∣∣∣Zt−1]= Eθ∗,ξ∗s

[
ψt(Zt ,θ

∗)ψt(Zt ,θ
∗)�
∣∣∣Zt−1]+op(1),

because θ̂t−1 converges to the true parameter and ψt(Zt ,θ) is uniformly bounded. Since
R̂−1t = A−1+op(1) is satisfied, C2 can be rewritten as

C2 = A−1Eθ∗,ξ∗s

[
ψt(Zt ,θ

∗)ψt(Zt ,θ
∗)�
∣∣∣Zt−1](A−1)�+op (1) . (43)

Using similar arguments, C1 can be expressed as

C1 = Eθ∗,ξ∗s
[
R̂−1t ψt(Zt , θ̂t−1)

∣∣Zt−1] θ̂t−1
= Eθ∗,ξ∗s

[
R̂−1t
∣∣Zt−1]Eθ∗,ξ∗s

[
ψt(Zt , θ̂t−1)|Zt−1

]
θ̂�t−1+op

(
1
t

)
.

We now consider Eθ∗,ξ∗s [ψt(Zt , θ̂t−1)|Zt−1]. Applying a Taylor series expansion to
Eθ∗,ξ∗s [ψt(Zt , θ̂t−1)|Zt−1] around the true parameter θ∗ = 0, we have

Eθ∗,ξ∗s
[
ψt(Zt , θ̂t−1)

∣∣Zt−1]
= Eθ∗,ξ∗s [ψt(Zt ,θ

∗)|Zt−1]+Eθ∗,ξ∗s [∂θψt(Zt ,θ
∗)|Zt−1] θ̂t−1+op

(|θ̂t−1|)
= Eθ∗,ξ∗s [∂θψt(Zt ,θ

∗)|Zt−1] θ̂t−1+op
(|θ̂t−1|) ,

where we have used the fact that Eθ∗,ξ∗s [ψt(Zt ,θ∗)|Zt−1] is zero. Since
R̂t = A+op(1) is satisfied, C1 can be rewritten as

C1 =
(
A−1+op (1)

)(
Eθ∗,ξ∗s [∂θψt(Zt ,θ

∗)|Zt−1] θ̂t−1+op
(|θ̂t−1|)) θ̂�t−1+op

(
1
t

)
= A−1Eθ∗,ξ∗s [∂θψt(Zt ,θ

∗)|Zt−1] θ̂t−1θ̂�t−1+op
(‖θ̂t−1‖2)+op

(
1
t

)
. (44)

2014

GENERALIZED TD LEARNING

We now use Equations (43) and (44), leading to

Eθ∗,ξ∗s

[
θ̂t θ̂

�
t |Zt−1

]
=

(
1+op

(
1
t

))
θ̂t−1θ̂

�
t−1−

1
t
A−1

Eθ∗,ξ∗s [∂θψt(Zt ,θ
∗)|Zt−1] θ̂t−1θ̂

�
t−1

− 1
t

(
A−1

Eθ∗,ξ∗s [∂θψt(Zt ,θ
∗)|Zt−1] θ̂t−1θ̂

�
t−1

)�
+

1
t2
A−1

Eθ∗,ξ∗s

[
ψt(Zt ,θ

∗)ψt(Zt ,θ
∗)�|Zt−1

]
(A−1)�+op

(
1
t2

)
.

Taking the expectation over the sequence, we obtain

Eθ∗,ξ∗
[
θ̂t θ̂

�
t

]
=

(
1+o

(
1
t

))
Eθ∗,ξ∗

[
θ̂t−1θ̂

�
t−1

]
− 1
t
A−1

Eθ∗,ξ∗
[
∂θψt(Zt ,θ

∗)θ̂t−1θ̂
�
t−1

]
− 1
t

(
A−1

Eθ∗,ξ∗
[
∂θψt(Zt ,θ

∗)θ̂t−1θ̂
�
t−1

])�
+

1
t2
A−1

Σ(A−1)�+o

(
1
t2

)
,

where we have used the fact that Eθ∗,ξ∗
[
ψt(Zt ,θ∗)ψt(Zt ,θ∗)�

]
converges to Σ:

Eθ∗,ξ∗
[
ψt(Zt ,θ∗)ψt(Zt ,θ∗)�

]
=Σ+ o(1). Using assumption (c) in Theorem 10 and applying the

trace operator, we obtain

Eθ∗,ξ∗
[‖θ̂t‖2]=(1− 2

t
+o

(
1
t

))
Eθ∗,ξ∗

[‖θ̂t−1‖2]+ 1
t2

tr
{
A−1

Σ(A−1)�
}
+o

(
1
t2

)
.

We now introduce the following lemma.

Lemma 22 (Bottou and LeCun, 2005, Lemma 1) Let {ut} be a positive sequence defined as

ut =

(
1− α

t
+o

(
1
t

))
ut−1 +

 β
t2

+o

(
1
t2

)
.

If α> 1 and β> 0 hold, then

tut →
 β

 α−1
.

The proof is given in Lemma 1 in Bottou and LeCun (2005). Referring the result of Lemma 22, we
have

Eθ∗,ξ∗
[‖θ̂t‖2]= 1

t
tr
{
A−1

Σ(A−1)�
}
+o

(
1
t

)
.

Appendix L. Proof of Lemma 11

Proof Since the MRPs defined in Section 2 are ergodic, the MRPs satisfy geometrically uniform
mixing. By performing a Taylor series expansion to estimating Equation (15) around the parameter
 θ, we obtain

0=
T

∑
t=1

 ψt(Zt , θ)+
T

∑
t=1

∂θ ψt(Zt , θ)(θ̂T − θ)+O
(∥∥θ̂T − θ

∥∥2
)
.

2015

UENO, MAEDA, KAWANABE AND ISHII

Here, high order terms are in total represented as O(‖θ̂T − θ‖2) because of the twice differentiable
condition for the function g(s,θ) as Assumption 3. By applying the law of large numbers (ergodic
pointwise theorem) (Billingsley, 1995, Theorem 24.1) to (1/T)∑T

t=1 ∂θ ψt(Zt , θ), we have

1
T

T

∑
t=1

∂θ ψt(Zt , θ) =
1
T

T

∑
t=1

 wt−1(Zt−1){∂θε(zt , θ)}� a.s.−→ lim
t→∞

E

[
 wt−1(Zt−1)∂θ{ε(zt , θ)}�

]
︸ ︷︷ ︸

= A

.

Let k ∈ R
m be any nonzero vector. By applying the central limit theorem in Lemma 18 to

(1/
√
T)∑T

t=1k
� ψt(Zt , θ), we have

1√
T

T

∑
t=1

k� ψt(Zt , θ) =
1√
T

T

∑
t=1

k� wt−1(Zt−1)εt(zt , θ)

d−→N

⎛⎜⎜⎜⎜⎝0,k

(
lim
t→∞

E

[
εt(zt , θ)2 wt−1 w�

t−1

]
+ lim

t→∞
2

∞

∑
t ′=1

cov
[
ε(zt , θ) wt−1,ε(zt+t ′ , θ) wt+t ′−1

])
︸ ︷︷ ︸

 Σ

k

⎞⎟⎟⎟⎟⎠ .

Therefore, from the Cramér-Wold theorem (van der Vaart, 2000), (1/
√
T)∑T

t=1
 ψt(Zt , θ) converges

to a Gaussian distribution as follows;

1√
T

T

∑
t=1

 ψt(Zt , θ)
d−→N

(
0, Σ
)
.

By neglecting higher order terms, we obtain

√
T (θ̂T − θ)∼N

(
0, A−1 Σ(A�)−1

)
.

Then, θ̂T is Gaussian distributed: θ̂T ∼ N (θ, Ãv), where the asymptotic variance Ãv is given by
Equation (32).

Appendix M. Proof of Lemma 12

Proof Let k ∈ R
m be any nonzero vector. By applying the central limit theorem to

(1/
√
T)∑T

t=1k
� ψt(Zt , θ) in Lemma 18, we have

1√
T

T

∑
t=1

k� ψt(Zt , θ)
d−→N

(
0,k� Σk

)
,

where

k� Σk = lim
t→∞

k�E
[
ε(zt , θ)2 wt−1 w�

t−1

]
k

+ lim
t→∞

2
∞

∑
t ′=1

cov
[
ε(zt , θ)k� wt−1,ε(zt+t ′ , θ)k� wt+t ′−1

]
.

2016

GENERALIZED TD LEARNING

Since the target process is a geometrically uniform mixing, there exist some positive constants C
and ρ ∈ [0,1) such that ϕ(t)≤Cρt . Then, by using the covariance bound in Lemma 19, we obtain∣∣∣cov

[
ε(zt , θ)k� wt−1,ε(zt+t ′ , θ)k� wt+t ′−1

]∣∣∣≤ 2
√
ϕ(t ′) lim

t→∞
k�E

[
ε(zt , θ)2 wt−1 w�

t−1

]
k

≤ 2
√
Cρt

′/2 lim
t→∞

k�E
[
ε(zt , θ)2 wt−1 w�

t−1

]
k.

Therefore, k� Σk is bounded as∣∣∣k� Σk

∣∣∣
=

∣∣∣∣∣limt→∞
k�E

[
ε(zt , θ)2 wt−1 w�

t−1

]
k+2 lim

t→∞

∞

∑
t ′=1

cov
[
ε(zt , θ)k� wt−1,ε(zt+t ′ , θ)k� wt+t ′−1

]∣∣∣∣∣
≤ lim

t→∞

∣∣∣k�E[ε(zt , θ)2 wt−1 w�
t−1

]
k

∣∣∣+2 lim
t→∞

∞

∑
t ′=1

∣∣∣cov
[
ε(zt , θ)k� wt−1,ε(zt+t ′ , θ)k� wt+t ′−1

]∣∣∣
≤ lim

t→∞

∣∣∣k�E[ε(zt , θ)2 wt−1 w�
t−1

]
k

∣∣∣+4
√
C

∞

∑
t ′=1

ρt
′/2 lim

t→∞

∣∣∣k�E[ε(zt , θ)2 wt−1 w�
t−1

]
k

∣∣∣
= lim

t→∞

∣∣∣k�E[ε(zt , θ)2 wt−1 w�
t−1

]
k

∣∣∣(1+4
√
C

∞

∑
t ′=1

ρt
′/2

)

= lim
t→∞

∣∣∣k�E[ε(zt , θ)2 wt−1 w�
t−1

]
k

∣∣∣(1+4
√
C

ρ1/2

(1−ρ1/2)

)
= ϒ lim

t→∞

∣∣∣k�E[ε(zt , θ)2 wt−1 w�
t−1

]
k

∣∣∣= ϒ
∣∣∣k� Σ0k

∣∣∣ ,
where ϒ= 1+4

√
Cρ1/2/(1−ρ1/2). Thus, we can obtain the following relation;

k�
(
ϒ Σ0− Σ

)
k ≥ 0.

This implies that ϒ Σ0− Σ is a semipositive definite matrix, hence we derive

1
T

 A−1 Σ
(

 A−1)� � ϒ
T

 A−1 Σ0
(

 A−1)� .

References

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19(6):716–723, 1974.

S. Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276, 1998.

S. Amari and J. F. Cardoso. Blind source separation-semiparametric statistical approach. IEEE
Transactions on Signal Processing, 45(11):2692–2700, 2002.

2017

UENO, MAEDA, KAWANABE AND ISHII

S. Amari and M. Kawanabe. Information geometry of estimating functions in semi-parametric
statistical models. Bernoulli, 3(1):29–54, 1997.

S. Amari, H. Park, and K. Fukumizu. Adaptive method of realizing natural gradient learning for
multilayer perceptrons. Neural Computation, 12(6):1399–1409, 2000.

L. Baird. Residual algorithms: Reinforcement learning with function approximation. In Proceed-
ings of the 12th International Conference on Machine Learning, pages 30–37, 1995.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

P. J. Bickel, C. A. Klaassen, Y. Ritov, and J. A. Wellner. Efficient and Adaptive Estimation for
Semiparametric Models. Springer, 1998.

P. Billingsley. The Lindeberg-Levy theorem for martingales. Proceedings of the American Mathe-
matical Society, 12(5):788–792, 1961.

P. Billingsley. Probability and Measure. John Wiley and Sons, 1995.

L. Bottou and Y. LeCun. Large scale online learning. In Advances in Neural Information Processing
Systems 16, 2004.

L. Bottou and Y. LeCun. On-line learning for very large datasets. Applied Stochastic Models in
Business and Industry, 21(4):137–151, 2005.

J. A. Boyan. Technical update: Least-squares temporal difference learning. Machine Learning, 49
(2):233–246, 2002.

R. C. Bradley. Basic properties of strong mixing conditions. A survey and some open questions.
Probability Surveys, 2:107–144, 2005.

S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference learning.
Machine Learning, 22(1):33–57, 1996.

R. H. Crites and A. G. Barto. Improving elevator performance using reinforcement learning. In
Advances in Neural Information Processing Systems 8, pages 1017–1023, 1996.

A. Geramifard, M. Bowling, and R. S. Sutton. Incremental least-squares temporal difference learn-
ing. In Proceedings of the 21st National Conference on Artificial Intelligence, pages 356–361.
AAAI Press, 2006.

A. Geramifard, M. Bowling, M. Zinkevich, and R. S. Sutton. iLSTD: Eligibility traces and con-
vergence analysis. In Advances in Neural Information Processing Systems 19, pages 441–448,
2007.

V. P. Godambe. An optimum property of regular maximum likelihood estimation. The Annals of
Mathematical Statistics, 31(4):1208–1211, 1960.

V. P. Godambe. The foundations of finite sample estimation in stochastic processes. Biometrika, 72
(2):419–428, 1985.

2018

GENERALIZED TD LEARNING

V. P. Godambe, editor. Estimating Functions. Oxford University Press, 1991.

S. Grunëwälder and K. Obermayer. Optimality of LSTD and its relation to TD and MC. Technical
report, Berlin University of Technology, 2006.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

P. J. Huber and E. M. Ronchetti. Robust Statistics. John Wiley and Sons, 2009.

I. A. Ibragimov and I. U. V. Linnik. Independent and Stationary Sequences of Random Variables.
Wolters-Noordhoff, 1971.

M. Kawanabe and K. Müller. Estimating functions for blind separation when sources have variance
dependencies. Journal of Machine Learning Research, 6(1):453—482, 2005.

V. R. Konda. Actor-Critic Algorithm. PhD thesis, Massachusetts Institute of Technology, 2002.

S. Konishi and G. Kitagawa. Generalised information criteria in model selection. Biometrika, 83
(4):875–890, 1996.

N. Le Roux, P. A. Manzagol, and Y. Bengio. Topmoumoute online natural gradient algorithm. In
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Process-
ing Systems 20. MIT Press, 2008.

P. Liang and M. I. Jordan. An asymptotic analysis of generative, discriminative, and pseudolike-
lihood estimators. In Proceedings of the 25th International Conference on Machine Learning,
pages 584–591, 2008.

S. Mahadevan and M. Maggioni. Proto-value functions: A Laplacian framework for learning repre-
sentation and control in Markov decision processes. Journal of Machine Learning Research, 8:
2169–2231, 2007.

S. Mannor, D. Simester, P. Sun, and J. N. Tsitsiklis. Bias and variance in value function estimation.
In Proceedings of the 21st International Conference on Machine Learning, pages 308–322, 2004.

S. Mannor, D. Simester, P. Sun, and J. N. Tsitsiklis. Bias and variance approximation in value
function estimates. Management Science, 53(2):308–322, 2007.

N. Murata and S. Amari. Statistical analysis of learning dynamics. Signal Processing, 74(1):3–28,
1999.

A. Nedić and D. P. Bertsekas. Least squares policy evaluation algorithms with linear function
approximation. Discrete Event Dynamic Systems, 13(1):79–110, 2003.

J. Neveu. Discrete-parameter Martingales. Elsevier, 1975.

S. Singh and D. P. Bertsekas. Reinforcement learning for dynamic channel allocation in cellular
telephone systems. In Advances in Neural Information Processing Systems 9, pages 974–980,
1997.

S. Singh and P. Dayan. Analytical mean squared error curves for temporal difference learning.
Machine Learning, 32(1):5–40, 1998.

2019

UENO, MAEDA, KAWANABE AND ISHII

M. Sørensen. On asymptotics of estimating functions. Brazilian Journal of Probability and Statis-
tics, 13(2):419–428, 1999.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3(1):
9–44, 1988.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and E. Wiewiora. Fast
gradient-descent methods for temporal-difference learning with linear function approximation.
In Proceedings of the 26thth International Conference on Machine Learning, pages 993–1000,
2009a.

R. S. Sutton, C. Szepesvári, and R. H. Maei. A convergent O(n) temporal-difference algorithm
for off-policy learning with linear function approximation. In Advances in Neural Information
Processing Systems 21, 2009b.

G. Tesauro. Temporal difference learning and TD-Gammon. Communications of the ACM, 38(3):
58 – 68, 1995.

A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press, 2000.

W. Wefelmeyer. Quasi-likelihood models and optimal inference. The Annals of Statistics, 24(1):
405–422, 1996.

H. Yu and D. P. Bertsekas. Convergence results for some temporal difference methods based on
least squares. Technical report, LIDS REPORT 2697, 2006.

W. Zhang and T. G. Dietterich. A reinforcement learning approach to job-shop scheduling. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence, pages 1114–
1120, 1995.

2020

Journal of Machine Learning Research 12 (2011) 2021-2025 Submitted 1/11; Published 6/11

The arules R-Package Ecosystem: Analyzing Interesting Patterns from
Large Transaction Data Sets

Michael Hahsler MHAHSLER@LYLE.SMU.EDU
Sudheer Chelluboina SCHELLUBOI@LYLE.SMU.EDU
Department of Computer Science and Engineering
Southern Methodist University
Dallas, Texas 75275-0122, USA

Kurt Hornik KURT.HORNIK@WU.AC.AT
Department of Finance, Accounting and Statistics
Wirtschaftsuniversität Wien, Augasse 2-6, A-1090 Wien, Austria

Christian Buchta CHRISTIAN.BUCHTA@WU.AC.AT
Department of Cross-Border Business
Wirtschaftsuniversität Wien, Augasse 2-6, A-1090 Wien, Austria

Editor:Mikio Braun

Abstract

This paper describes the ecosystem of R add-on packages developed around the infrastructure pro-
vided by the package arules. The packages provide comprehensive functionality for analyzing
interesting patterns including frequent itemsets, association rules, frequent sequences and for build-
ing applications like associative classification. After discussing the ecosystem’s design we illustrate
the ease of mining and visualizing rules with a short example.

Keywords: frequent itemsets, association rules, frequent sequences, visualization

1. Overview

Mining frequent itemsets and association rules is a popular and well researched method for dis-
covering interesting relations between variables in large databases. Association rules are used in
many applications and have become prominent as an important exploratory method for uncovering
cross-selling opportunities in large retail databases.

Agrawal et al. (1993) introduced the problem of mining association rules from transaction data
as follows:

Let I = {i1, i2, . . . , in} be a set of n binary attributes called items. Let D = {t1, t2, . . . , tm} be
a set of transactions called the database. Each transaction in D has a unique transaction ID and
contains a subset of the items in I. A rule is defined as an implication of the form X ⇒ Y where
X ,Y ⊆ I and X ∩Y = /0 are called itemsets. On itemsets and rules several quality measures can
be defined. The most important measures are support and confidence. The support supp(X) of
an itemset X is defined as the proportion of transactions in the data set which contain the itemset.
Itemsets with a support which surpasses a user defined threshold σ are called frequent itemsets. The
confidence of a rule is defined as conf(X ⇒Y) = supp(X ∪Y)/supp(X). Association rules are rules
with supp(X ∪Y)≥ σ and conf(X)≥ δ where σ and δ are user defined thresholds.

©2011 Michael Hahsler, Sudheer Chelluboina, Kurt Hornik and Christian Buchta.

HAHSLER, CHELLUBOINA, HORNIK AND BUCHTA

Figure 1: The arules ecosystem.

The R package arules (Hahsler et al., 2005, 2010) implements the basic infrastructure for cre-
ating and manipulating transaction databases and basic algorithms to efficiently find and analyze
association rules. Over the last five years several packages were built around the arules infrastruc-
ture to create the ecosystem shown in Figure 1. Compared to other tools, the arules ecosystem is
fully integrated, implements the latest approaches and has the vast functionality of R for further
analysis of found patterns at its disposal.

2. Design and Implementation

The core package arules provides an object-oriented framework to represent transaction databases
and patterns. To facilitate extensibility, patterns are implemented as an abstract superclass associa-
tions and then concrete subclasses implement individual types of patterns. In arules the associations
itemsets and rules are provided. Databases and associations both use a sparse matrix representation
for efficient storage and basic operations like sorting, subsetting and matching are supported. Dif-
ferent aspects of arules were discussed in previous publications (Hahsler et al., 2005; Hahsler and
Hornik, 2007b,a; Hahsler et al., 2008).

In this paper we focus on the ecosystem of several R-packages which are built on top of the
arules infrastructure. While arules provides Apriori and Eclat (implementations by Borgelt, 2003),
two of the most important frequent itemset/association rule mining algorithms, additional algo-
rithms can easily be added as new packages. For example, package arulesNBMiner (Hahsler, 2010)
implements an algorithm to find NB-frequent itemsets (Hahsler, 2006). A collection of further im-
plementations which could be interfaced by arules in the future and a comparison of state-of-the-art
algorithms can be found at the Frequent Itemset Mining Implementations Repository.1

arulesSequences (Buchta and Hahsler, 2010) implements mining frequent sequences in trans-
action databases. It implements additional association classes called sequences and sequencerules
and provides the algorithm cSpade (Zaki, 2001) to efficiently mine frequent sequences. Another
application currently under development is arulesClassify which uses the arules infrastructure to
implement rule-based classifiers, including Classification Based on Association rules (CBA, Liu
et al., 1998) and general associative classification techniques (Jalali-Heravi and Zaïane, 2010).

A known drawback of mining for frequent patterns such as association rules is that typically the
algorithm returns a very large set of results where only a small fraction of patterns is of interest to
the analysts. Many researchers introduced visualization techniques including scatter plots, matrix

1. The Frequent Itemset Mining Implementations Repository can be found at http://fimi.ua.ac.be/.

2022

THE ARULES R-PACKAGE ECOSYSTEM

Scatter plot for 410 rules

4

6

8

10

lift
0.001 0.0015 0.002 0.0025 0.003

0.8

0.85

0.9

0.95

1

support

co
nf

id
en

ce

Graph for 3 rules

citrus fruit

tropical fruit

root vegetables

other vegetables

whole milk yogurt

oil

soda

fruit/vegetable juice
bottled beer

liquor

red/blush wine

size: support (0.001 − 0.0019)
color: lift (8.3404 − 11.2353)

(a) (b)

Figure 2: Visualization of all 410 rules as (a) a scatter plot and (b) shows the top 3 rules according
to lift as a graph.

visualizations, graphs, mosaic plots and parallel coordinates plots to analyze large sets of association
rules (see Bruzzese and Davino, 2008, for a recent overview paper). arulesViz (Hahsler and Chel-
luboina, 2010) implements most of these methods for arules while also providing improvements
using color shading, reordering and interactive features.

Finally, arules provides a Predictive Model Markup Language (PMML) interface to import and
export rules via package pmml (Williams et al., 2010). PMML is the leading standard for exchang-
ing statistical and data mining models and is supported by all major solution providers. Although
pmml provides interfaces for different packages it is still considered part of the arules ecosystem.

The packages in the described ecosystem are available for Linux, OS X and Windows. All
packages are distributed via the Comprehensive R Archive Network2 under GPL-2, along with
comprehensive manuals, documentation, regression tests and source code. Development versions
of most packages are available from R-Forge.3

3. User Interface

We illustrate the user interface and the interaction between the packages in the arules ecosystem
with a small example using a retail data set called Groceries which contains 9835 transactions with
items aggregated to 169 categories. We mine association rules and then present the rules found as
well as the top 3 rules according to the interest measure lift (deviation from independence) in two
visualizations.

> library("arules") ### attach package 'arules'
> library("arulesViz") ### attach package 'arulesViz'
> data("Groceries") ### load data set
> ### mine association rules

2. The Comprehensive R Archive Network can be found at http://CRAN.R-project.org.
3. R-Forge can be found at http://R-Forge.R-project.org.

2023

HAHSLER, CHELLUBOINA, HORNIK AND BUCHTA

> rules <- apriori(Groceries, parameter = list(supp = 0.001, conf = 0.8))
> rules
set of 410 rules

> ### visualize rules as a scatter plot (with jitter to reduce occlusion)
> plot(rules, control=list(jitter=2))
> ### select and inspect rules with highest lift
> rules_high_lift <- head(sort(rules, by="lift"), 3)
> inspect(rules_high_lift)
lhs rhs support confidence lift

1 {liquor, red/blush wine}
=> {bottled beer} 0.001931876 0.9047619 11.235269

2 {citrus fruit, other vegetables, soda, fruit/vegetable juice}
=> {root vegetables} 0.001016777 0.9090909 8.340400

3 {tropical fruit, other vegetables, whole milk, yogurt, oil}
=> {root vegetables} 0.001016777 0.9090909 8.340400

> ### plot selected rules as graph
> plot(rules_high_lift, method="graph", control=list(type="items"))

Figure 2 shows the visualizations produced by the example code. Both visualizations clearly
show that there exists a rule ({liquor, red/blush wine} => {bottled beer}) with high sup-
port, confidence and lift. With the additionally available interactive features for the scatter plot and
other available plots like the grouped matrix visualization, the rule set can be further explored.

References

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules between sets of
items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, pages 207–216. ACM Press, 1993.

Christian Borgelt. Efficient implementations of Apriori and Eclat. In FIMI’03: Proceedings of the
IEEE ICDM Workshop on Frequent Itemset Mining Implementations, November 2003.

Dario Bruzzese and Cristina Davino. Visual mining of association rules. In Visual Data Mining:
Theory, Techniques and Tools for Visual Analytics, pages 103–122. Springer-Verlag, 2008.

Christian Buchta and Michael Hahsler. arulesSequences: Mining Frequent Sequences, 2010. URL
http://CRAN.R-project.org/package=arulesSequences. R package version 0.1-11.

Michael Hahsler. A model-based frequency constraint for mining associations from transaction
data. Data Mining and Knowledge Discovery, 13(2):137–166, September 2006.

Michael Hahsler. arulesNBMiner: Mining NB-Frequent Itemsets and NB-Precise Rules, 2010. URL
http://CRAN.R-project.org/package=arulesNBMiner. R package version 0.1-1.

Michael Hahsler and Sudheer Chelluboina. arulesViz: Visualizing Association Rules, 2010. URL
http://CRAN.R-Project.org/package=arulesViz. R package version 0.1-0.

Michael Hahsler and Kurt Hornik. New probabilistic interest measures for association rules. Intel-
ligent Data Analysis, 11(5):437–455, 2007a.

2024

THE ARULES R-PACKAGE ECOSYSTEM

Michael Hahsler and Kurt Hornik. Building on the arules infrastructure for analyzing transaction
data with R. In R. Decker and H.-J. Lenz, editors, Advances in Data Analysis, Proceedings of
the 30th Annual Conference of the Gesellschaft für Klassifikation e.V., Freie Universität Berlin,
March 8–10, 2006, Studies in Classification, Data Analysis, and Knowledge Organization, pages
449–456. Springer-Verlag, 2007b.

Michael Hahsler, Bettina Grün, and Kurt Hornik. arules – A computational environment for mining
association rules and frequent item sets. Journal of Statistical Software, 14(15):1–25, October
2005.

Michael Hahsler, Christian Buchta, and Kurt Hornik. Selective association rule generation. Com-
putational Statistics, 23(2):303–315, April 2008.

Michael Hahsler, Christian Buchta, Bettina Grün, and Kurt Hornik. arules: Mining Association
Rules and Frequent Itemsets, 2010. URL http://CRAN.R-project.org/package=arules. R
package version 1.0-3.

Mojdeh Jalali-Heravi and Osmar R. Zaïane. A study on interestingness measures for associative
classifiers. In Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10, pages
1039–1046. ACM, 2010.

Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and association rule mining. In
Proceedings of the 4rd International Conference Knowledge Discovery and Data Mining (KDD-
98), pages 80–86. AAAI Press, 1998.

Graham Williams, Michael Hahsler, Hemant Ishwaran, Udaya B. Kogalur, and Rajarshi Guha.
pmml: Generate PMML for various models, 2010. URL http://CRAN.R-project.org/
package=pmml. R package version 1.2.22.

Mohammed J. Zaki. SPADE: an efficient algorithm for mining frequent sequences. Machine Learn-
ing, 42:31–60, January–February 2001.

2025

Journal of Machine Learning Research 12 (2011) 2027-2044 Submitted 1/11; Published 6/11

A Cure for Variance Inflation in High Dimensional Kernel Principal
Component Analysis

Trine Julie Abrahamsen TJAB@IMM.DTU.DK
Lars Kai Hansen LKH@IMM.DTU.DK
DTU Informatics
Technical University of Denmark
Richard Petersens Plads, 2800 Lyngby, Denmark

Editor:Manfred Opper

Abstract
Small sample high-dimensional principal component analysis (PCA) suffers from variance infla-
tion and lack of generalizability. It has earlier been pointed out that a simple leave-one-out vari-
ance renormalization scheme can cure the problem. In this paper we generalize the cure in two
directions: First, we propose a computationally less intensive approximate leave-one-out estimator,
secondly, we show that variance inflation is also present in kernel principal component analysis
(kPCA) and we provide a non-parametric renormalization scheme which can quite efficiently re-
store generalizability in kPCA. As for PCA our analysis also suggests a simplified approximate
expression.

Keywords: PCA, kernel PCA, generalizability, variance renormalization

1. Introduction

While linear dimensionality reduction by principal component analysis (PCA) is a trusted machine
learning workhorse, kernel based methods for non-linear dimensionality reduction are only starting
to find application. We expect the use of non-linear dimensionality reduction to expand in many
applications as recent research has shown that kernel principal component analysis (kPCA) can be
expected to work well as a pre-processing device for pattern recognition (Braun et al., 2008). In the
following we consider non-linear signal detection by kernel PCA followed by a linear discriminant
classifier.

In spite of its conceptual simplicity and ubiquitous use, principal component learning in high
dimensions is in fact highly non-trivial (see, e.g., Hoyle and Rattray, 2007; Kjems et al., 2001).
In the physics literature much attention has been devoted to learnability phase transitions. In PCA
there is a sharp transition as function of sample size from no learning at all to a regime where
the projections become more and more accurate. In the transition regime where learning is still
incomplete there is a mismatch between the test and training projections. In Kjems et al. (2001) it
was shown that this can be interpreted as a case of over-fitting and leads to pronounced variance
inflation in the training set projections and results in lack of generalization to test data as illustrated
in Figure 1.

Variance inflation is of particular concern if PCA is used to reduce dimensionality prior to, for
example, a classifier. When the data analytic pipeline is applied to test data the reduced variance of
the PCA text projections can lead to significantly reduced performance. Fortunately, the bias can

c©2011 Trine J. Abrahamsen and Lars K. Hansen.

ABRAHAMSEN AND HANSEN

B

A

D

Figure 1: Illustration of the variance inflation problem in PCA. Because PCA maximizes variance,
small data sets in high dimensions will be overfitted. When the PCA subspace (A) is
applied to a test data set (B) the projected data will have smaller variance. This leads
to lack of generalizability if the training data is used to train a classifier, say a linear
discriminant (D). In Kjems et al. (2001) this problem was noted and it was shown that the
necessary renormalization can be estimated in a leave-one-out procedure

be reduced effectively by a leave-one-out (LOO) scale renormalization of the PCA test projections
to restore generalizability (Kjems et al., 2001). In this paper we pursue several extensions of this
result. We give a straightforward geometric analysis of the projection problem that suggests a com-
putationally less intensive approximate cure than the one originally proposed by Kjems et al. (2001).
Next, we proceed to investigate the issue in the context of kernel based unsupervised dimensionality
reduction. We show in both simulation and in real world data (USPS handwritten digits and func-
tional MRI data) that variance inflation also happens in kPCA and basically for the same reasons
as in PCA. We then provide an extension to the LOO procedure for kPCA which can cope with
potential non-Gaussian distributions of the kPCA projections, and finally we propose a simplified
approximate renormalization scheme.

2. Generalizability in PCA

The most complete theoretical picture of principal component learning is presented by Hoyle and
Rattray (2007), which builds on and extends earlier work by, for example, Biehl and Mietzner
(1994), Hoyle and Rattray (2004c), Johnstone (2001), Reimann et al. (1996), and Silverstein and
Combettes (1992). Hoyle and Rattray (2007) consider a general PCA model with a multidimen-
sional normal distributed signal that emerges from an isotropic noise background as the sample size
increases. The stabilization of a given principal component happens at a given sample size and takes
the form of a phase transition. For small sample sizes -below the phase transition point - the train-
ing set principal component eigenvectors are in completely random directions in space and there is
no learning at all. Then, as the sample size increases, the first principal component stabilizes, and
for even larger sample sizes the second, and so forth. Sharp transitions are strictly present only in a
limit where both dimensionality and sample size are infinite with a finite ratio α=N/D, but the the-
oretical results are very accurate at realistic dimensions as seen in Figure 2. The location of the first

2028

A CURE FOR VARIANCE INFLATION IN HIGH DIMENSIONAL KERNEL PCA

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
ve

rla
p

w
ith

 s
ym

m
et

ry
 b

re
ak

in
g

di
re

ct
io

n

Training set size (N)

Simulation
Theoretical

Figure 2: Phase transitions in PCA. Simulated data was created as x = ηu+ ε, with a nor-
mal distributed signal of unit strength η ∼ N(0,1), embedded in i.i.d. normal noise
ε ∼ N(0,σ21). In this simulated data set we show the phase transition like behavior
of the overlap (the mean square of the projection) of the first PCA eigenvector and the
signal direction u. The input space has dimension D = 1000, and the curves are for 10
values of signal to noise within the interval σ ∈ [0.01,0.5]. For a noise level of, for ex-
ample, σ = 0.17 (black curves) there is a sharp transition both in the theoretical curve
(dash/cross) and the experimental curve (full/circle) around N = 120 examples.

phase transition depends on the signal variance to noise variance ratio (SNR). The theoretical result
provides a mean bias for a specific model, hence, cannot directly be used to restore generalizability
in a given data set.

Now, what happens to the generalization performance of PCA in the noisy region? The PCA
projections will be offset by different angles depending on how severe the given component is
affected by the noise. Because of the bias the test projections will follow different probability laws
than the training data, typically with much lower variance. Hence, if we train a classifier on the
training projections the classifier will make additional errors on the test set as visualized in Figure
1.

In the case of PCA the subspace projections are uncorrelated, hence, it is meaningful to renor-
malize them independently. Assuming approximate normality, a simple affine transformation suf-
fices. The scale factor is simply the ratio of the standard deviations of the training and test projec-
tions and can be estimated by a leave-one-out procedure (Kjems et al., 2001). However, since the
LOO procedure involves the computation of N SVD’s of an (N−1)×(N−1)matrix, it is of interest
to find a simplified estimate.

2029

ABRAHAMSEN AND HANSEN

−2 −1 0 1 2
−4

−2

0

2

4

A
pp

ro
xi

m
at

io
n

PC 1

−1.5 −1 −0.5 0 0.5 1 1.5 2

−2

0

2

4

PC 2

−1 −0.5 0 0.5 1

−2

0

2

4

A
pp

ro
xi

m
at

io
n

LOO projection

PC 3

−0.5 0 0.5

−2

0

2

LOO projection

PC 4

Figure 3: Approximating the leave-one-out (LOO) procedure. Here we simulate data with four
normal independent signal components, x= Σ4k=1ηkuk+ε of strengths (1.4,1.2,1.0,0.8,
embedded in i.i.d. normal noise ε ∼ N(0,σ21), with σ = 0.2. The dimension was
D = 2000 and the sample size was N = 50. In the four panels we show the training
set projections (red crosses), the projections corrected for the theoretical mean overlap
(Hoyle and Rattray, 2007) (yellow squares) and the geometric approximation in Equation
(1) (green dots) versus the exact LOO projections (black line).

Let {x1, . . . ,xN} be N training data points in a D dimensional input space X (see notation),1 we
consider the case N � D. The LOO step for the N’th point xN concerns projecting onto the PCA
eigenvectors derived from the subset {x1, . . . ,xN−1}. Define the orthogonal and parallel compo-
nents of the test point, xN = x⊥N +x

‖
N , relative to the subspace spanned by the training data. As the

PCA eigenvectors with non-zero variance are all in the span of the training data we obtain

uTN−1,k ·xN = uTN−1,k ·x‖N ,

where uN−1,k is the k’th eigenvector of the LOO training set. Assuming that the changes in the PCA
eigenvectors going from sample size N to N−1 are small, we can approximate the test projections
as

uTN−1,k ·xN = uTN−1,k ·x‖N ≈ uTN,k ·x‖N , (1)

where uN,k is the k’th eigenvector on the full sample. The approximation introduces a small error
of order 1/N as discussed in detail in the Appendix and further illustrated in a simulation data set

in Figure 3. Note that the orthogonal projections x‖N of the N points may be calculated from the
inverse matrix of the inner products of all data points, in N steps each of a cost scaling as N2, thereby
achieving a computational burden which scales as N3 rather than the N4 scaling for an exact LOO
procedure proposed in Kjems et al. (2001).

1. Bold uppercase letters denote matrices, bold lowercase letters represent column vectors, and non-bold letters denote
scalars. a j denotes the j’th column of A, while ai j denotes the scalar in the i’th row and j’th column of A. Finally
1NN is a N×N matrix of ones.

2030

A CURE FOR VARIANCE INFLATION IN HIGH DIMENSIONAL KERNEL PCA

3. Renormalization Cure for Variance Inflation in kernel PCA

The statistical properties of kernel PCA have also been studied extensively by Blanchard et al.
(2007), Hoyle and Rattray (2004a), Hoyle and Rattray (2004b), Mosci et al. (2007), Shawe-Taylor
and Williams (2003) and Zwald and Blanchard (2006), but to our knowledge the geometry of gen-
eralization for kPCA has not been discussed in the extremely ill-posed case N� D.

To better understand the variance inflation problem in relation to kPCA let us recapitulate some
basic aspects of this non-linear dimensional reduction technique.

Let F be the Reproducing Kernel Hilbert Space (RKHS) associated with the kernel function
k(x,x′) = ϕ(x)Tϕ(x′), where ϕ : X �→ F is a possibly non-linear map from the D-dimensional
input space X to the high dimensional (possibly infinite) feature space F . In kPCA the PCA step
is carried out in the feature space, F , mapped data (Schölkopf et al., 1998). However, as F can
be infinite dimensional we first apply the kernel trick allowing us to work with the Gram matrix
of inner products. Let {x1, . . . ,xN} be N training data points in X and {ϕ(x1), . . . ,ϕ(xN)} be the
corresponding images in F . The mean of the ϕ-mapped data points is denoted ϕ and the ‘centered’
images are given by ϕ̃(x) = ϕ(x)− ϕ. The kPCA is performed by solving the eigenvalue problem
K̃αi = λiαi where the centered kernel matrix, K̃, is defined as

K̃ =K− 1
N
1NNK− 1

N
K1NN+

1
N21NNK1NN . (2)

The projection of a ϕ-mapped test point onto the i’th component is given by

βi = ϕ̃(x)Tvi =
N

∑
n=1

αinϕ̃(x)T ϕ̃(xn) =
N

∑
n=1

αink̃(x,xn) , (3)

where vi is the i’th eigenvector of the feature space covariance matrix and the αi’s have been nor-
malized. The centered kernel function can be found as k̃(x,x′) = k(x,x′)− 1

N11Nkx− 1
N11Nkx′ +

1
N211NK1N1, where kx = [k(x,x1), . . . ,k(x,xN)]T . The projection of ϕ(x) onto the first q princi-
pal components will in be denoted Pq(x).

In the following we focus on a Gaussian kernel of the form k(x,x′)= exp(− 1
c ||x−x′||2), where

c is the scale parameter controlling the non-linearity of the kernel map. By the centering operation,
PCA is the obtained in the limit when c→ ∞. Thus for large values we expect variance inflation to
be present due the reasons discussed above. What happens in the non-linear regime with a finite c?
To answer this question we analyze the LOO scenario for kPCA.

Consider the squared distance ||xn−xN ||2 in the exponent in the Gaussian kernel for some
training set point xn and a test point xN . If we split the test point in the orthogonal components as
above with respect to the subspace spanned by the training set we obtain,

||xn−xN ||2 = ||xn−x
||
N ||2 + ||x⊥N ||2 .

Inserting this expression in the Gaussian kernel in Equation (3) it is seen that the test projection
acquire a common factor exp

(− 1
c ||x⊥N ||2

)
:

βi(xN) =
N−1

∑
n=1

αink̃(xN ,xn) = exp

(
−1
c
||x⊥N ||2

)N−1

∑
n=1

αink̃(x
||
N ,xn) ,

which can be arbitrary small for small values c, that is, in the non-linear regime.

2031

ABRAHAMSEN AND HANSEN

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.2

0

0.2

A
pp

ro
xi

m
at

io
n

kPC 1

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

−0.2

0

0.2

kPC 2

−0.015 −0.01 −0.005 0 0.005 0.01

−0.2

0

0.2

A
pp

ro
xi

m
at

io
n

LOO projection

kPC 3

−0.015 −0.01 −0.005 0 0.005 0.01

−0.2

0

0.2

LOO projection

kPC 4

Figure 4: Approximating the leave-one-out (LOO) procedure for kPCA. We simulate a data
set with four normal independent signal components, x = Σ4k=1ηkuk + ε of strengths
(1.4,1.2,1.0,0.8, embedded in i.i.d. normal noise ε ∼N (0,σ21), with σ = 0.2. The di-
mension was chosen D = 2000 and the sample size was N = 50. In the four panels we
show the four kPCA component’s training set projections (red crosses), and the result of
applying the point wise correction factor exp(1c ||x⊥N ||2) for the lost orthogonal projection
(green dots) versus the exact LOO kPCA test projections (black).

For a coordinate-wise LOO renormalization procedure we thus propose to compute N test pro-
jections by repeated kPCA on the N− 1 sized sub training sets. However, compared to the PCA
case we face two additional challenges, namely the potentially strongly non-Gaussian distributions
and component dependencies.

To check for dependency we appeal to simple pairwise permutation test of significant mutual
information measure (see, e.g., Moddemeijer, 1989). If the null hypothesis is rejected for a given
set of components we cannot expect coordinate-wise renormalization to be effective. If, on the
other hand, the kernel PCA projections pass the independence test we can proceed to renormalize
the components individually. In the following we will assume that a coordinate-wise approach is
acceptable. First, as a simple approximation to the full LOO we consider adjusting for the common
scaling factor due to the lost orthogonal projection. This may indeed provide for viable approxima-
tion as seen in Figure 4.

To address the second challenge, namely the potential non-normality we propose to generalize
the affine scaling method of Kjems et al. (2001) by a non-parametric procedure. Assume that
there exists a monotonic transformation between the N training and N LOO test set projections.
The problem of calibrating for an unknown monotone transformation is a common operation in
image processing, and is used, for example, to transform the gray scale of an image in order to
standardize the pixel histogram (Gonzalez and Wintz, 1977). Equalizing two equal sized samples,
simply involves sorting both and assigning the sorted test projections the sorted values of the training
projections, this procedure is easily seen to equalize the histograms without changing the level sets
(relative ordering) of the LOO test projections. In Figure 5 a simple 1-dimensional data set is used
to illustrate the equalization procedure. The training set clearly contains two classes. However, due
to variance inflation (induced by, for example, kernel PCA) the test set does not follow the same

2032

A CURE FOR VARIANCE INFLATION IN HIGH DIMENSIONAL KERNEL PCA

0 5 10 15 20
0

50

100

150

x

0 5 10 15 20
0

200

400

600

S
am

pl
e

N
o.

0 5 10 15 20
0

50

100

150

x

0 5 10 15 20
0

200

400

600

S
am

pl
e

N
o.

DataHistograms

Renormalize

Figure 5: Illustration of renormalization by histogram equalization. The left panel shows the train-
ing set (yellow squares) and original test set (red crosses) and their respective histograms.
The histograms are then equalized as seen in the right panel, where the green dots are the
renormalized test data. The renormalization clearly restores the variation of the test set.

distribution, and may potentially lead to a high misclassification rate. The right panel of the figure
shows how histogram equalization restores generalizability.

Technically, the transformation may be described as follows. Let H(f) be the cumulative distri-
bution of values f of a given kPCA projection of the training set. Let the test set projections on the
same component for Ntest samples take values g(m). Let I(m) be the index of sample m in a sorted
list of the test set values. Then the renormalized value of the test projection m is

g̃(m) = H−1(I(m)/Ntest) .

The test set projections can be obtained by the simple relation

g̃(m) = fsort(I(m)) , (4)

where fsort is the sorted list of training set projections. The algorithm for approximate renormaliza-
tion is summarized in Algorithm 1.2

4. Evaluation of the Proposed Cure in Classification Problems

In the following we evaluate the non-parametric exact LOO correction scheme when kPCA is used
as a dimensional reduction step in simulated and real classification data sets.

2. We thank the reviewers for pointing out that while non-normality is expected in the case of kPCA, non-normality
may also appear in PCA calling for application of the proposed non-parametric renormalization scheme in this case.

2033

ABRAHAMSEN AND HANSEN

Algorithm 1 Approximate renormalization in kernel PCA
Require: Xtr andXteto be Ntr×D and Nte×D respectively
Compute K̃tr using Equation (2) and find the eigenvectors, α1, . . . ,αq

for i= 1 to Ntr do
f
i,:
tr ← Pq(x

i,:
tr) = k̃Txiα

i:q{see Equation (3)}
end for
for j = 1 to Nte do
f
j,:
te ← Pq(x

j,:
te) = k̃Tx jα

i:q{see Equation (3)}
end for
for d = 1 to q do

[fsort ,]← sort(f :,dtr) {ascending order}
[, I]← sort(f :,dte) {ascending order}
if Ntr = Nte then
h← fsort

else {Ntr �= Nte}
h← spline

(
[1 : Ntr],fsort , linspace(1,Ntr,Nte)

) {interpolate to create Nte values of fsort in
the interval [1 : Ntr]}

end if
for n= 1 to Nte do
g̃
I(n),d
te ← hn,d {renormalized test data in the principal subspace, see Equation (4)}

end for
end for

4.1 Simulated Data

To get some insight into the non-linear regime, we design a synthetic data set containing two 2-
dimensional semi-circular clusters which cannot be separated linearly (cf., Jenssen et al., 2006).
Gaussian noise is added to one of the clusters, and the data is further embedded in 1000 ‘noise
dimensions’. The basis is changed so that the 2D signal space occupies a general position. The
noise is as earlier assumed i.i.d. with variance σ2. The assignment variable is t = 0,1, and in the
experiments the data set is assumed unbalanced with p(t = 0) = 0.6.

In Figure 6 we show in the left panel a linear discriminant trained on the training set projections
in a data set of N = 500 in D = 1000 dimensions. The role of the non-linearity as controlled by
the parameter c in the Gaussian kernel is investigated in Figure 7 for a simulation setup similar to
Figure 6. As seen the inflation problem dramatically amplifies as non-linearity increases. Finally,
Figure 8 shows how renormalization improves the learning curve for the same problem.

4.2 USPS Handwritten Digit Data

The USPS handwritten digit benchmark data set is often used to illustrate unsupervised and super-
vised kernel methods. The USPS data set consists of D= 16×16= 256 pixels handwritten digits.3
For each digit we randomly chose 10 examples for training and another 10 examples for testing. The
scale was chosen as the 5th percentile of the mutual distances of the data points leading to c≈ 120,

3. The USPS data set is described by Hull (1994) and can be downloaded from www.kernel-machines.org.

2034

A CURE FOR VARIANCE INFLATION IN HIGH DIMENSIONAL KERNEL PCA

−0.05 0 0.05 0.1 0.15
−0.2

−0.15

−0.1

−0.05

0

0.05

KPCA 1

K
P

C
A

 2

Training data

−0.05 0 0.05 0.1 0.15
−0.2

−0.15

−0.1

−0.05

0

0.05

KPCA 1

Test data

−0.05 0 0.05 0.1 0.15
−0.2

−0.15

−0.1

−0.05

0

0.05

KPCA 1

Renormalized test data

Figure 6: An unbalanced two cluster data set showing a pronounced variance inflation problem in
the projections of the test data in the middle panel. In the right panel we have applied the
cure based on non-parametric renormalization to equalize training and test projections us-
ing histogram equalization. The linear discriminant performs close to the optimal Bayes
rate after non-parametric renormalization. The sample size is N = 500 in D = 1000 di-
mensions and the SNR is 10. The training error rate is 0.002 while the uncorrected test
error rate is 0.4. Renormalization reduces the test error to 0.002.

and the number of principal components was chosen so 85% of the variance was contained in the
principal subspace leading to around q= 57 PCs to be included.

The first step is to submit the data to the mutual information permutation test. For every pair
of principal components a permutation test with 1000 permutations was performed in order to test
the null hypothesis of the two given components being independent. Using a ρ= 0.05 significance
level, we find that the null hypothesis can only be rejected for approximately 2% of the principal
component pairs when not using Bonferroni correction. The combinations for which the null hy-
pothesis can be rejected are equally distributed across the principal components. Since the expected
number of rejected tests at the given confidence level is 5%, hence, we can safely proceed with the
coordinate-wise renormalization process.

In the q dimensional principal subspace the projections of the test set are renormalized to follow
the training set histogram. We chose in these experiments for demonstration to classify digit 8 versus
the rest. A linear discriminant classifier was trained on the kernel PCA projections of the training
set, and the classification error was found using both the conventional kernel PCA projections of the
test set and their renormalized counterparts. In order to compare the two methods, the procedure
was repeated 300 times using random training and test sets. While classification based on the
conventional projections resulted in a mean classification error rate (± 1 std) of 0.06±0.01, using
the renormalized projections lowered the error rate to 0.05±0.02. A paired t-test showed that this
reduction is highly significant (p= 2.0875 ·10−11).

Figure 9 shows an example of the projections before and after renormalization. The axis are
fixed across the two methods. The top row clearly illustrates the inflation problem for conventional
kPCA. Furthermore, due to the imbalanced nature of the data set, the inflation causes a high misclas-

2035

ABRAHAMSEN AND HANSEN

5 10 15 20 25 30 35
0

0.2

0.4

E
rr

or
 r

at
e

Etrain
Etest
EtestRenorm

5 10 15 20 25 30 35
0

0.2

0.4

E
rr

or
 r

at
e

5 10 15 20 25 30 35
0

0.2

0.4

SNR

E
rr

or
 r

at
e

Figure 7: The role of non-linearity on the variance inflation problem. We carry out three experi-
ments at different values of the Gaussian kernel scale parameter (top to bottom: c= 0.05,
c= 0.1, c= 0.5). We show classification errors as a function of SNR. The linear discrim-
inant performs close to the optimal Bayes rate after the renormalization operation in all
cases, while the un-renormalized systems suffers from poor generalizability. The sample
size is N = 500 and the number of dimensions is D= 1000.

sification rate. The bottom row illustrates how renormalization overcomes the distortions induced
by the variance inflation. The discriminant line is seen to separate the two classes appropriately.

To gain a better understanding of how the variance inflation and quality of the renormalization
are effected by noise, we added Gaussian noise (N (0,σ2e)) with σe ∈ [0,5]. For every noise level,
300 random training and test sets where drawn as explained above and kPCA was performed. Once
again our goal was to classify digit 8 versus the rest by a linear classifier in the principal subspace.
The results are summarized in Figure 10 where we show the error rate before and after renormal-
ization as well as the result based on renormalizing according to the leave-one-out error. In the last
case, the N projections determined from leave-one-out cross validation (LOOCV) are renormalized
to follow the entire training set histogram. Renormalization is then only applied to the test set when
this renormalized LOOCV error is less than the estimated baseline error. In the right panel of Figure
10 it is seen how renormalizing the projections leads to a much improved classifier as long as the
SNR is ‘reasonable’. Even when σe = 0 there is some inherent noise in the data, which explains
why renormalization still improves the classification. As σe reaches 1 it is no longer possible to
identify the digits by visual inspection, and classification becomes increasingly difficult.

The left panel of Figure 10 shows how the conventional error rate converges to the baseline of
0.1 (misclassifying all digits 8), for high noise levels. Basically, increasing the noise result in a
more skewed test set subspace in relation to the subspace spanned by the training set (see Figure
1). At a given threshold this causes all the projections to lie on the same side of the discrimination
function due to the imbalanced composition, leading to a misclassifications rate of 1/10. As the
idea of renormalization by histogram equalization is to restore the variation in the test set, this be-

2036

A CURE FOR VARIANCE INFLATION IN HIGH DIMENSIONAL KERNEL PCA

0 500 1000 150
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

N

E
rr

or
 r

at
e

Etrain
Etest
EtestRenorm

Figure 8: Classification error learning curves for the two semicircular clusters in i.i.d. noise setup.
The signal to noise ratio was SNR = 60. The linear discriminant performs close to the
optimal Bayes rate after the renormalization operation in all cases, while the conventional
system suffers from poor generalizability, and requires about ten times as many examples
to reach the same error level as the renormalized classifier. The experiment was carried
out with D= 2000.

havior is naturally not encountered for the renormalized projections. Instead, as the SNR decreases,
renormalization increases the error rate, as the test set observations are forced to be distributed on
both sides of the discrimination line - which leads to many misclassifications when the signal is sup-
pressed by the noise. However, using LOOCV based renormalization prevents the error rate from
blowing up while at the same time improving the classification in the more sensible SNR regime as
compared to conventional kPCA.

4.3 Functional MRI Data

As a second high dimensional real data example, functional magnetic resonance imaging (fMRI)
data was used to illustrate the effect of renormalization. The fMRI data set was acquired by Dr. Egill
Rostrup at Hvidovre Hospital on a 1.5 TMagnetom Vision MR scanner. The scanning sequence was
a 2D gradient echo EPI (T2- weighted) with 66 ms echo time and 50◦ RF flip angle. The images
were acquired with a matrix of D = 128× 128 = 16,384 pixels, with FOV of 230 mm, and 10
mm slice thickness, in a para-axial orientation parallel to the calcarine sulcus. The visual paradigm
consisted of a rest period of 20 sec of darkness using a light fixation dot, followed by 10 sec of
full-field checkerboard reversing at 8 Hz, and ending with 20 sec of rest (darkness). In total, 150
images were acquired in 50 sec, corresponding to a period of approximately 330 msec per image.
The experiment was repeated in 10 separate runs containing 150 images each. In order to reduce
saturation effects, the first 29 images were discarded, leaving 121 images for each run. We use a

2037

ABRAHAMSEN AND HANSEN

−0.6−0.4−0.2 0 0.2

−0.6

−0.4

−0.2

0

0.2

00

0

00000
0 0

1
1
1

1

1
1

1
1

1

1

2

222
2

2
2

2

22
3

3
33
3
3 333

3

4
4

4

4

4

4

4

4
4

4

5

55
555

55
55

6

6
6
6

6

66
6

6

6 7
7 7 7

7
7

7

77

7
8

8

8 88 88

8

8

8
9

9
9

9

9
9

9

9
9
9

kP
C

 3

−0.6−0.4−0.2 0 0.2

−0.6

−0.4

−0.2

0

0.2

00

0

00000
0 0

1

1
1

1

1
1

1
1

1

1

2

2
22

2
2

2

2

22
3

3
33
3

3 333

3

4
4

4

4

4

4

4

4
4

4

5

55

55
5

55

5
5

6

6

6
6

6

6 6
6

6

6 7
7

7
7

7

7

7

7 7

7

8

8

8 8
8 8

8

8

8

8

9

9
9

9

9
9

9

9
9

9

kP
C

 3

kPC 1

−0.4 −0.2 0 0.2

−0.6

−0.4

−0.2

0

0.2

00

0

00000
0 0

1
1
1

1

1
1

1
1

1

1

2

2 22
2

2
2

2

22
3

3
3 3

3
3 3 33

3

4
4
4

4

4

4

4

4
4

4

5

55
55 5
55
55

6

6
6
6

6

666

6

67
7 7 7

7
7

7

77

7
8

8

8 88 88

8

8

8
9

9
9

9

9
9

9

9
9

9

−0.4 −0.2 0 0.2

−0.6

−0.4

−0.2

0

0.2

00

0

00000
0 0

1

1
1

1

1
1

1
1

1

1

2

2
22
2

2
2

2

22
3

3
3 3

3

3 3 33

3

4
4

4

4

4

4

4

4
4

4

5

55

55
5
55

5
5

6

6

6
6

6

66
6

6

67
7
7

7

7

7

7

77

7

8

8

8 8
8 8
8

8

8

8

9

9
9

9

9
9

9

9
9

9

kPC 2

−0.4 −0.2 0 0.2 0.4

−0.6

−0.4

−0.2

0

0.2

00

0

0 0
000

00
1

1
1

1

1
1

1
1

1

1

2

2 22
2
2
2

2

22
3

3
33
3
3 333

3

4
4
4

4

4

4

4

4
4

4

5

5 5
5 55

5 5
55

6

6
6

6
6

6 6
6

6

6 7
7 77

7
7
7

77

7
8

8

8 888 8

8

8

8
9

9
9

9

9
9

9

9
9

9

−0.4 −0.2 0 0.2 0.4

−0.6

−0.4

−0.2

0

0.2

00

0

0 0
000

00

1

1
1

1

1
1

1
1

1

1

2

2
22

2
2
2

2

22
3

3
33
3

3 333

3

4
4

4

4

4

4

4

4
4

4

5

5 5

5 5
5

5 5

5
5

6

6

6
6

6

6 6
6

6

6 7
7

7
7

7

7

7

77

7

8

8

8 8
88

8

8

8

8

9

9
9

9

9
9

9

9
9

9

kPC 4

−0.2 0 0.2 0.4

−0.6

−0.4

−0.2

0

0.2

0 0

0

00
00 0

0 0
1
1
1

1

1
1
1
1

1

1

2

222
2

2
2
2

22
3

3
33
3
33 33

3

4
4

4

4

4

4

4

4
4

4

5

55
555

55
55

6

6
6

6
6

666

6

6 7
777

7
7

7

77

7
8

8

88 888

8

8

8
9

9
9

9

9
9

9

9
9

9

−0.2 0 0.2 0.4

−0.6

−0.4

−0.2

0

0.2

0 0

0

00
00 0

0 0

1

1
1

1

1
1

1
1

1

1

2

2
22

2
2

2

2

22
3

3
3 3
3

33 33

3

4
4

4

4

4

4

4

4
4

4

5

55

55
5

55

5
5

6

6

6
6

6

66
6

6

6 7
7

7
7

7

7

7

77

7

8

8

88
88

8

8

8

8

9

9
9

9

9
9

9

9
9

9

kPC 5

−0.2 0 0.2 0.4

−0.6

−0.4

−0.2

0

0.2

00

0

0 0
0 00
00

1
1
1

1

1
1
1
1

1

1

2

2 22
2

2
2

2

22
3

3
33
3

3333

3

4
4
4

4

4

4

4

4
4

4

5

55
55 5

55
55

6

6
6
6

6

6 6
6

6

6 7
77

7
7
7
7

77

7
8

8

8 88 88

8

8

8
9

9
9

9

9
9

9

9
9

9

−0.2 0 0.2 0.4

−0.6

−0.4

−0.2

0

0.2

00

0

0 0
0 00

00

1

1
1

1

1
1

1
1

1

1

2

2
22
2

2
2

2

22
3

3
33
3

333 3

3

4
4

4

4

4

4

4

4
4

4

5

55

55
5

55

5
5

6

6

6
6

6

6 6
6

6

6 7
7
7

7

7

7

7

77

7

8

8

8 8
8 8

8

8

8

8

9

9
9

9

9
9

9

9
9

9

kPC 6

Figure 9: USPS handwritten digits test set projections. The top row shows the conventional projec-
tions, while the bottom row shows the projections after renormalization. In this example
the third kPC carries a large part of the signal, and hence this component is shown versus
the other five first PCs. The variance reduction and the consequent shift is evident from
the top row. The dashed line indicates the linear discriminant function for classifying
digit 8 vs the rest.

simple on-off activation reference function for supervision of the classifier. The reference function
is off-set by 4 seconds to emulate the hemodynamic delay.

The data set is split in two equal sized subsets: Five runs for training and five runs for testing.
As the test and training data are independent, the test error estimate is an unbiased estimator of
performance. The scale of the Gaussian kernel was chosen as the 5th percentile of the mutual
distances leading to c≈ 15000, while the dimension of the principal subspace is chosen as q= 20.

Again the principal components are tested for independence by a mutual information permuta-
tion test. Using 1000 permutations and a ρ= 0.05 significance level, we find that the null hypothesis
is rejected for approximately 1% of the principal component pairs.

Similar to the handwritten digit data we perform linear classification in the kernel principal
subspace. This was repeated 300 times using random splits for different noise levels. The results
are summarized in Figure 11. Again renormalization is seen to decrease the error rate significantly,
while the LOOCV based scheme furthermore prevents the increase in error rate for high noise levels
(low SNR).

Figure 12 shows the projection of the data onto the first kPC’s before and after renormalization.

2038

A CURE FOR VARIANCE INFLATION IN HIGH DIMENSIONAL KERNEL PCA

0 1 2 3 4 5
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

E
rr

or
 r

at
e

Std. of noise

Etest
EtestRenorm
LOOCV based

0 0.2 0.4 0.6 0.8 1
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Std. of noise

Figure 10: Mean error rates ± 1 standard deviation as a function of the noise level. The test error
based on conventional kernel PCA projections, renormalized projections, and a LOOCV
scheme is shown. Renormalization is seen to improve the performance, while LOOCV
based renormalization prevents the classification error to blow up in the very low SNR
regime.

5. Conclusion

Dimensionality reduction by PCA and kPCA can lack generalization due to training set variance
inflation in the extremely ill-posed case when the sample size is much smaller than the input space
dimension. In this work we have provided a simple geometric explanation for the main effect,
namely that test points ‘loose’ their orthogonal projections, when their embedding is computed.
This insight allowed for a speed-up of a previously proposed LOO scheme for renormalization.
For kPCA we showed that the effects can be even more dramatic than in PCA, and we proposed a
scheme for exact LOO renormalization of the embedding, and an approximate expression at lower
cost. The viability of the new scheme was demonstrated for kPCA when used for dimensionality
reduction both in simple synthetic data, in the USPS digit classification problem, and for fMRI brain
state decoding.

Acknowledgments

We thank the reviewers of this manuscript and earlier versions for many useful comments. This
research was supported by the Danish Lundbeckfonden through the Center for Integrated Molecular
Brain Imaging (www.cimbi.dk).

2039

ABRAHAMSEN AND HANSEN

0 5 10 15 20 25 30

0.05

0.1

0.15

0.2

0.25

0.3

Std. of noise

E
rr

or
 r

at
e

Etest
EtestRenorm
LOOCV based

A

Figure 11: Mean error rates ± 1 standard deviation as a function of the noise level for fMRI data
(D = 16,384,N = 605) . The test error based on conventional kernel PCA projections,
renormalized projections, and a LOOCV scheme is shown. Renormalization is seen to
clearly improve the performance. Arrow ’A’ indicates the noise level used in Figure 12

Appendix A.

Let uN,k be the k’th eigenvector of the covariance matrix on the full sample ΣN and uN−1,k be the
corresponding eigenvector of LOO training set covariance matrix ΣN−1. In the following we use
first order perturbation theory to show that

uTN−1,k ·xN ≈ uTN,k ·x‖N ,

where the data vector x has been split in its orthogonal and parallel components, xN = x⊥N +x
‖
N ,

relative to the subspace spanned by the training data. Thus, we are interested in the difference
between uN,k and uN−1,k. Simple manipulations of the covariance matrices lead to

ΣN−1 =ΣN+
1

N−1ΣN− 1
N
(xN−μN−1)(xN−μN−1)T︸ ︷︷ ︸

O(1N)

.

By introducing the shorthandA=ΣN−1 andB =ΣN we get

A=B+δC , (5)

where δ is of order 1N . Note that all matrices are symmetric. We now look at the k’th eigenvector of
A andB:

Buk = λkuk , (6)

Avk = νkvk . (7)

2040

A CURE FOR VARIANCE INFLATION IN HIGH DIMENSIONAL KERNEL PCA

−0.1 0 0.1

−0.15

−0.1

−0.05

0

0.05

0.1

kP
C

 1

−0.1 0 0.1

−0.15

−0.1

−0.05

0

0.05

0.1

kP
C

 1

kPC 2

−0.1 0 0.1

−0.15

−0.1

−0.05

0

0.05

0.1

−0.1 0 0.1

−0.15

−0.1

−0.05

0

0.05

0.1

kPC 3

−0.1 0 0.1

−0.15

−0.1

−0.05

0

0.05

0.1

−0.1 0 0.1

−0.15

−0.1

−0.05

0

0.05

0.1

kPC 4

−0.1 0 0.1

−0.15

−0.1

−0.05

0

0.05

0.1

−0.1 0 0.1

−0.15

−0.1

−0.05

0

0.05

0.1

kPC 5

−0.1 0 0.1

−0.15

−0.1

−0.05

0

0.05

0.1

−0.1 0 0.1

−0.15

−0.1

−0.05

0

0.05

0.1

kPC 6

Figure 12: Test set projections of the fMRI data with Gaussian noise added as marked on Figure
11 (εi =N (0,3.82)). The top row shows the conventional projections, while the bottom
row shows the projections after renormalization. The ‘red class’ indicates activation,
while the blue observations are acquired during rest. The dashed line marks the linear
discriminant. The scale is chosen as the 5th percentile of the mutual distances.

First order perturbation theory posits

νk = λk+δξk , (8)

vk = uk+δwk . (9)

That is, when going from N to N− 1 samples we only have a small (O(1N)) change in eigenvalues
and rotation of eigenvectors. Since all eigenvectors are orthonormal it follows that uk⊥wk, c.f.,

||vk||2 = ||uk+δwk||2 = ||uk||2︸ ︷︷ ︸
=1

+ δ2︸︷︷︸
≈0
||wk||2+2δuTkwk = 1

δuTkwk = 0 .

We now expand Equation (7) using Equation (5), (8) and (9)

Avk = νkvk ⇒
(B+δC)(uk+δwk) = (λk+δξk)(uk+δwk) ,

ignoring higher order terms of δ gives

Buk+δCuk+δBwk = λkuk+δλkwk+δξkuk ,

2041

ABRAHAMSEN AND HANSEN

Finally, exploiting Equation (6) reduces the above to

Cuk+Bwk = λkwk+ξkuk . (10)

We now look for an estimate of ξk by left multiplying with uTk

uTkCuk+uTkBwk = λku
T
kwk+ξku

T
k uk ,

using ||uk||2 = 1 and uk⊥wk gives

uTkCuk+uTkBwk = ξk ,

since B is symmetric, uk is both a left and right singular vector. Hence, uTkBwk = λkuTkwk=0.
Thus finally, it follows that

uTkCuk = ξk . (11)

Next, we find an estimate ofwk by left multiplying Equation (10) with uTj j �= k.

uTjCuk+uTjBwk = λku
T
jwk+ξku

T
j uk ,

again we exploit the fact thatB is symmetric and that u j is orthogonal to uk, which gives

uTjCuk+λ ju
T
jwk = λku

T
jwk . (12)

Assuming that span{u1,u2, . . . ,uD} = span{v1,v2, . . . ,vD}, that is, the v-basis is a rotation of the
u-basis, which implies that wk can be represented as a linear combination of the u-vectors (or
v-vectors), leads to

wk =
D

∑
m=1

hkmum .

Due to orthonormality of the eigenvectors, we now realize that hkk = 0 and uTjwk =uTj ∑
D
m=1 hkmum

will only be non-zero for m= j. Hence, Equation (12) reduces to

uTjCuk+λ jhk j = λkhk j ⇒

hk j =
uTjCuk

λk−λ j k �= j

hkk = 0 .

In the above we have assumed a nondegenerate system, that is, λk �= λ j ∀k �= j. Thus, wk can be
expressed as

wk =
N

∑
m=1 �=k

uTmCuk

λk−λmum , (13)

2042

A CURE FOR VARIANCE INFLATION IN HIGH DIMENSIONAL KERNEL PCA

where we used that Cuk is only non-zero for k ≤ N. We are now ready to return to Equation (8)
and (9) inserting the expressions derived for ξk and wk in Equation (11) and (13) respectively:

νk = λk+δuTkCuk (14)

vk = uk+δ
N

∑
m=1 �=k

(uTm(xN−μN−1))(uTk(xN−μN−1))
λk−λm um . (15)

Equation (14) shows that the change in eigenvalue is indeed small (O(1N)) when going from N to
N− 1 samples. For the eigenvector perturbation, Equation (15), we can bound the squared length
of the sum and obtain a similar result,∣∣∣∣∣

∣∣∣∣∣ 1N N

∑
m=1 �=k

(uTm(xN−μN−1))(uTk(xN−μN−1))
λk−λm um

∣∣∣∣∣
∣∣∣∣∣
2

≤

1
N2
||xN−μN−1||2

∣∣∣∣∣
∣∣∣∣∣ N

∑
m=1 �=k

(uTm(xN−μN−1))
λk−λm um

∣∣∣∣∣
∣∣∣∣∣=

1
N2
||xN−μN−1||2

N

∑
m=1 �=k

|(uTm(xN−μN−1))|2
|λk−λm|2 ≤

1
N2
2||xN−μN−1||4

|Δλk|2 ,

where Δλk is the spacing between the k’th eigenvalue and the closest neighbor, and the factor of two
compensates for the missing k’th term in the sum, that is, the perturbation is of order O(1/N)

References

Michael Biehl and Andreas Mietzner. Statistical mechanics of unsupervised structure recognition.
Journal of Physics A-Mathematical and General, 27(6):1885–1897, 1994.

Gilles Blanchard, Olivier Bousquet, and Laurent Zwald. Statistical properties of kernel principal
component analysis. Machine Learning, 66(2-3):259–294, 2007.

Mikio L. Braun, Joachim M. Buhmann, and Klaus-Robert Müller. On relevant dimensions in kernel
feature spaces. Journal of Machine Learning Research, 9:1875–1908, 2008.

Rafael C. Gonzalez and Paul Wintz. Digital Image Processing. 1977. ISBN 0-201-02596-5 (hard-
cover), 0-201-02597-3 (paperback).

David C. Hoyle and Magnus Rattray. A statistical mechanics analysis of gram matrix eigenvalue
spectra. In Lecture Notes in Computer Science, 17th Annual Conference on Learning Theory,
volume 3120, pages 579–593. Springer Verlag, 2004a.

David C. Hoyle and Magnus Rattray. Limiting form of the sample covariance eigenspectrum in pca
and kernel pca. In Advances in Neural Information Processing Systems 16, pages 16–23. MIT
Press, 2004b.

2043

ABRAHAMSEN AND HANSEN

David C. Hoyle and Magnus Rattray. Principal-component-analysis eigenvalue spectra from data
with symmetry-breaking structure. Physical Review E, 69(2):026124, 2004c.

David C. Hoyle and Magnus Rattray. Statistical mechanics of learning multiple orthogonal signals:
Asymptotic theory and fluctuation effects. Physical Review E (Statistical, Nonlinear, and Soft
Matter Physics), 75(1):016101, 2007.

Jonathan J . Hull. A database for handwritten text recognition research. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 16(5):550–554, 1994.

Robert Jenssen, Torbjörn Eltoft, Deniz Erdogmus, and Jose C. Principe. Some equivalences between
kernel methods and information theoretic methods. Journal of VLSI Signal Processing, 45:49–65,
2006.

Iain M. Johnstone. On the distribution of the largest eigenvalue in principal components analysis.
Annals of Statistics, 29(2):295–327, 2001.

Ulrik Kjems, Lars K. Hansen, and Stephen C. Strother. Generalizable singular value decomposition
for ill-posed datasets. In Advances in Neural Information Processing Systems 13, pages 549–555.
MIT Press, 2001.

Rudy Moddemeijer. On estimation of entropy and mutual information of continuous distributions.
Signal Processing, 16(3):233–246, 1989.

Sofia Mosci, Lorenzo Rosasco, and Alessandro Verri. Dimensionality reduction and generalization.
In Proceedings of the 24th International Conference on Machine Learning, pages 657–664, 2007.

Peter Reimann, Chris Van den Broeck, and Geert J. Bex. A Gaussian scenario for unsupervised
learning. Journal of Physics A - Mathematical and General, 29(13):3521–3535, 1996.

Bernhard Schölkopf, Alex Smola, and Klaus-Robert Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

John Shawe-Taylor and Christopher K. I. Williams. The stability of kernel principal components
analysis and its relation to the process eigenspectrum. In Advances in Neural Information Pro-
cessing Systems 15, pages 367–374. MIT Press, 2003.

Jack W. Silverstein and Patrick L. Combettes. Signal-detection via spectral theory of large dimen-
sional random matrices. IEEE Transactions on Signal Processing, 40(8):2100–2105, 1992.

Laurent Zwald and Gilles Blanchard. On the convergence of eigenspaces in kernel principal com-
ponent analysis. In Advances in Neural Information Processing Systems 18, pages 1649–1656.
MIT Press, 2006.

2044

Journal of Machine Learning Research 12 (2011) 2045-2094 Submitted 3/10; Revised 1/11; Published 6/11

Exploiting Best-Match Equations
for Efficient Reinforcement Learning

Harm van Seijen HARM.VANSEIJEN@TNO.NL
Distributed Sensor Systems Group
TNO Defence, Security and Safety
P.O. Box 96864
2509 JG, The Hague, The Netherlands

Shimon Whiteson S.A.WHITESON@UVA.NL
Informatics Institute
University of Amsterdam
Amsterdam, The Netherlands

Hado van Hasselt H.VAN.HASSELT@CWI.NL
Multi-agent and Adaptive Computation Group
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Marco Wiering MWIERING@AI.RUG.NL
Department of Artificial Intelligence
University of Groningen
Groningen, The Netherlands

Editor: Peter Dayan

Abstract

This article presents and evaluates best-match learning, a new approach to reinforcement learning
that trades off the sample efficiency of model-based methods with the space efficiency of model-
free methods. Best-match learning works by approximating the solution to a set of best-match
equations, which combine a sparse model with a model-free Q-value function constructed from
samples not used by the model. We prove that, unlike regular sparse model-based methods, best-
match learning is guaranteed to converge to the optimal Q-values in the tabular case. Empirical
results demonstrate that best-match learning can substantially outperform regular sparse model-
based methods, as well as several model-free methods that strive to improve the sample efficiency
of temporal-difference methods. In addition, we demonstrate that best-match learning can be suc-
cessfully combined with function approximation.

Keywords: reinforcement learning, on-line learning, temporal-difference methods, function ap-
proximation, data reuse

1. Introduction

In reinforcement learning (RL) (Kaelbling et al., 1996; Sutton and Barto, 1998), an agent seeks
an optimal control policy for a sequential decision problem in an unknown environment. Unlike
in supervised learning, the agent never sees examples of correct or incorrect behavior. Instead,
it receives only positive and negative rewards for the actions it tries. Its goal is to maximize the

c©2011 Harm van Seijen, Shimon Whiteson, Hado van Hasselt and Marco Wiering.

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

expected return, which is the cumulative discounted reward. When the sequential decision problem
is modeled as aMarkov decision process (MDP), the agent’s policy can be represented as a mapping
from each state it may encounter to a probability distribution over the available actions.

There are several approaches for learning the optimal policy of an MDP. Model-free, or di-
rect, methods find an optimal policy by using sample experience to directly update the state values,
which predict the return when following a specified policy, or the state-action values, or Q-values,
which predict the return when taking an action in a certain state and following a specified policy
thereafter. Once the optimal state or state-action values have been found, the optimal policy can
easily be constructed. A popular model-free approach is temporal-difference (TD) learning (Sut-
ton, 1988), which bootstraps value estimates from other values using updates based on the Bellman
equations (Bellman, 1957). Temporal-difference methods such as Q-learning (Watkins, 1989) and
Sarsa (Rummery and Niranjan, 1994; Sutton, 1996) require only O(|S ||A |) space and are guaran-
teed to find optimal policies in the limit. However, they often need prohibitively many samples in
practice.

Alternatively,model-based, or indirect, methods (Sutton, 1990; Moore and Atkeson, 1993; Braf-
man and Tennenholtz, 2002; Kearns and Singh, 2002; Strehl and Littman, 2005; Diuk et al., 2009)
use sample experience to estimate a model of the MDP and then compute the optimal values us-
ing this model via off-line planning techniques such as dynamic programming (Bellman, 1957).
Because the sample experience gathered by the agent is incorporated into the model, it is reused
throughout learning. As a result, some model-based methods can find approximately optimal poli-
cies with high probability using only a polynomial number of samples (Brafman and Tennenholtz,
2002; Kearns and Singh, 2002; Strehl and Littman, 2005). However, representing the model requires
O(|S |2|A |) space, which can be prohibitive in problems with large state spaces.

To avoid this limitation, methods can learn smaller, approximate models that require only a frac-
tion of the space used by full model-based methods. Kearns and Singh (1999) show that, when using
such sparse models, it is still possible to learn probably approximately correct policies. However, the
performance of such methods is bounded by the quality of the model approximation. Furthermore,
since the models may remain incorrect regardless of how much sample experience is gathered, such
methods are not guaranteed to find optimal policies even in the limit.

In this article, we present and evaluate best-match learning, a new approach for trading off the
strengths of model-based and model-free methods. Best-match learning works by approximating
the solution to a set of best-match equations, which combine a sparse model with a model-free
Q-value function constructed from samples not used by the model. We prove that, unlike regular
sparse model-based methods, best-match learning is guaranteed to converge to the optimal policy in
the tabular case. This guarantee holds even when using a last-visit model (LVM), which stores only
the last observed reward and transition state for each state-action pair.

In addition, we present an extensive empirical analysis, comparing the performance of best-
match learning to several algorithms with similar space requirements. These results demonstrate that
best-match learning can outperform regular sparse model-based methods, as well as several model-
free methods that strive to improve the sample efficiency of traditional TD methods. These include
eligibility traces (Sutton, 1988; Watkins, 1989), which update recently visited states in proportion to
a trace parameter; experience replay (Lin, 1992), which stores experience sequences and uses them
for repeated TD updates; and delayed Q-learning (Strehl et al., 2006), which uses optimistic Q-value
estimates to follow an approximately correct policy except for O(|S ||A | log(|S ||A |)) timesteps.

2046

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

The rest of this article is organized as follows. Section 2 formally defines the RL problem and
summarizes some basic theoretical results. As a conceptual stepping stone, Section 3 presents just-
in-time Q-learning, which postpones updates until the moment of revisit of the corresponding state.
We prove that, although just-in-time Q-learning performs the same number of updates as regular
Q-learning, the Q-values used in its update targets generally have received more updates. Thus, it
can improve performance without extra computation.

Section 4 extends the idea of using improved update targets to best-match learning with an
LVM, in which updates are continually revised such that the update targets constructed from them
are more accurate. We show that best-match LVM learning is related to eligibility traces, by proving
that under certain conditions they compute the same values. However, we also show that in arbitrary
MDPs best-match LVM learning, unlike eligibility traces, performs updates that are unbiased with
respect to initial state values. We demonstrate empirically that, as a result, it can substantially
outperform TD(λ) despite using similar space and computation.

Section 4 also addresses the control case. We propose an efficient best-match LVM algorithm
that uses prioritized sweeping (Moore and Atkeson, 1993), a well-known technique for prioritizing
model-based updates, to trade off extra computation for improved performance. We prove that,
despite the use of a sparse model, this approach converges to the optimal Q-values under the same
conditions as Q-learning. In addition, we demonstrate empirically that it can substantially outper-
form competitors with similar space requirements.

Section 5 proposes a best-match learning algorithm that uses an n-transition model (NTM),
which maintains an estimate of the transition probability for n transition states per state action pair.
By tuning n, the space requirements can be controlled. We prove that the algorithm converges to
the optimal Q-values for any value of n. We demonstrate empirically the resulting performance
improvement over regular sparse model-based methods with equal space requirements, whose per-
formance is bounded by the quality of the model approximation.

Section 6 proposes best-match function approximation, which demonstrates that best-match
learning is useful beyond the tabular case. In particular, we combine best-match learning with
gradient-descent function approximation and show empirically that it can outperform Sarsa(λ) and
experience replay with linear function approximation while using similar computation.

Section 7 discusses the article’s theoretical and empirical results, Section 8 outlines future work,
and Section 9 concludes.

2. Background

Sequential decision problems are often formalized as Markov decision processes (MDPs), which
can be described as 4-tuples 〈S ,A ,P ,R 〉 consisting of S , the set of all states; A , the set of all
actions; P s′

sa = P(s′|s,a), the transition probability from state s ∈ S to state s′ when action a ∈ A is
taken; and R sa = E(r|s,a), the reward function giving the expected reward r when action a is taken
in state s. Actions are selected at discrete timesteps t = 0,1,2, ... and rt+1 is defined as the reward
received after taking action at in state st at timestep t. An optimal policy π∗ is a mapping from S to
A that maximizes the expected discounted return

Rt = rt+1+ γrt+2+ γ2 rt+3+ ...=
∞

∑
k=0

γkrt+k+1 ,

where γ is a discount factor with 0≤ γ≤ 1.

2047

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

Most solution methods are based on estimating a value functionV π(s), which gives the expected
return when the agent is in state s and follows policy π, or an action-value function Qπ(s,a), which
gives the expected return when the agent takes action a in state s and follows policy π thereafter.

In the control case, TD methods seek to learn the optimal action-value function Q∗(s,a), which
is the solution to the Bellman optimality equations (Bellman, 1957):

Q∗(s,a) = R sa+ γ ∑
s′
P s′
samax

a′
Q∗(s′,a′) .

By iteratively updating the current estimate Qt(s,a) each time new experience is obtained, TD
methods seek to approximate this function. A common form for these updates is

Qt+1(st ,at)← (1−α)Qt(st ,at)+αυ t ,

where α is the learning rate and υ t is the update target. Many update targets are possible, such as
the Q-learning (Watkins and Dayan, 1992) update target

υ t = rt+1+ γmax
a
Qt(st+1,a) .

Once the optimal action-value function has been learned, an optimal policy can be derived by taking
the greedy action with respect to this function.

Alternatively, the agent can take a model-based approach (Sutton, 1990; Moore and Atkeson,
1993), in which its experience is used to compute maximum-likelihood estimates of P andR . Using
this model, the agent can computeQ (or the value functionV) using dynamic programming methods
(Bellman, 1957) such as value iteration (Puterman and Shin, 1978). Each time new experience is
gathered, the model is updated and Q recomputed.

In the control case, the agent faces the exploration-exploitation dilemma. The agent can either
exploit its current knowledge by taking the action that predicts the highest expected return given
current estimates, or it can explore by taking a different action in order to improve the accuracy of
the Q-value of that action.

Related to the control case is the policy evaluation case. In this case, the goal is to estimate the
value function V π(s) belonging to policy π. TD methods iteratively improve the current estimate,
Vt(s) each time new experience is obtained using the update rule

Vt+1(st)← (1−α)Vt(st)+αυ t .

An example of an update target for policy evaluation is the TD(0) update target

υ t = rt+1+ γVt(st+1) .

3. Just-In-Time Q-Learning

In this section we present just-in-time (JIT) Q-learning, whose underlying principles form a stepping
stone towards best-match learning (introduced in Section 4). Like other lazy learning methods, for
example, Atkeson et al. (1997), JIT Q-learning postpones updates until they are needed. Wiering
and Schmidhuber (1998) showed that by postponing updates a computationally efficient version of
Q(λ) can be constructed that does not rely on placing a bound on the trace length. We prove that by
postponing Q-learning updates until a state is revisited, the update targets involved receive in general

2048

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

more updates, while the total number of updates of the current state stays the same. Empirically, we
demonstrate that this leads to a performance gain under a range of settings at similar computational
cost.

When a Q-learning update is postponed, the values on which the update target is based are from
a more recent timestep. This is advantageous, since Q-learning updates cause the expected error
in the values to decrease over time (Watkins and Dayan, 1992) and therefore more recent values
will be on average more accurate. However, postponing the update of a value for too long can
negatively affect performance, since a value that has not been updated might be used for action
selection or for bootstrapping other values. We start by showing that updates can be postponed until
their corresponding states are revisited, without negatively affecting performance.

Figure 1: A state transition sequence in which the initial state sA is revisited at timestep 4. The
small black dots in between states represent actions.

Consider the state-action sequence in Figure 1. State sA is visited at timestep 0 and revisited at
timestep 4. With the regular Q-learning update, the Q-value of state-action pair (sA,a0) gets updated
at timestep 1:

Q1(sA,a0) = (1−α)Q0(sA,a0)+α [r1+ γmax
a
Q0(sB,a)] ,

while at timesteps 2− 4 no update of (sA,a0) occurs, and therefore Q4(sA,a0) = Q1(sA,a0). The
update of the Q-value of (sA,a0) at timestep 1 can be considered premature, since the earliest use
of its value is in the update target for (sD,a3), which uses Q3(sA,a0). Therefore, the update of the
Q-value of (sA,a0) can be postponed until at least timestep 3 without negatively affecting the update
target for (sD,a3). When the update of (sD,a3) is also postponed, the earliest use of the Q-value of
(sA,a0) occurs at timestep 4, where it is used for action selection. Thus, if we postpone the update
of all state-action pairs, the update of the Q-value of (sA,a0) can be postponed until the timestep of
its revisit, without causing dependent state values or the action selection procedure to use a value of
(sA,a0) that has not been updated. We call this type of update a just-in-time update, since the update
is postponed until just before the updated value is needed.

To denote the Q-values resulting from just-in-time updates we use Q̃ throughout this section.
With just-in-time updates, no updates of (sA,a0) occur at timesteps 1-3, so Q̃3(sA,a0) = Q̃0(sA,a0).
Instead, an update occurs when sA is revisited:

Q̃4(sA,a0) = (1−α)Q̃3(sA,a0)+α [r1+ γmax
a
Q̃3(sB,a)] .

The regular and just-in-time update for (sA,a0) can be written in a more similar form by expressing
the value at timestep 4 in terms of the value at timestep 0:

Q4(sA,a0) = (1−α)Q0(sA,a0)+α[r1+ γmax
a
Q0(sB,a)] ,

Q̃4(sA,a0) = (1−α)Q̃0(sA,a0)+α[r1+ γmax
a
Q̃3(sB,a)] . (1)

2049

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

This formulation highlights the difference between the two update types. At timestep 4, under
both update schemes, the Q-value of (sA,a0) has received one update based on the same experience
sample. However, a just-in-time update uses the most recent value of the Q-values of sB, while a
regular update uses the value at the timestep of the initial visit of sA. By defining t∗ as the timestep
of the previous visit of state st , we can write the two update types more generally as

Qt(st ,at∗) = (1−α)Qt∗(st ,at∗)+α[rt∗+1+ γmax
a
Qt∗(st∗+1,a)] , (2)

Q̃t(st ,at∗) = (1−α)Q̃t∗(st ,at∗)+α[rt∗+1+ γmax
a
Q̃t−1(st∗+1,a)] . (3)

Note that we express the update target using only values from the past, making an implementation
easier to interpret. Note also that while st = st∗ per definition (because st is revisited), st∗+1 does not
have to be equal to st+1, since the state transition from st can be stochastic. Also, at∗ is in general
not equal to at .

When comparing the two update targets in more detail, two cases can be distinguished. See
Figure 2 for an example of each case. In the first case, state sB is not revisited before the revisit of
state sA. In this case, neither update type makes use of an updated Q-value for sB in the update target
for sA. The regular update does not since it uses the values of sB at timestep t∗, and the just-in-time
update does not since sB is not revisited and therefore no update has occurred yet at timestep t−1.
In the second case, state sB has been revisited before the revisit of sA. The regular update still uses
the value of sB from timestep t∗ and therefore does not use an updated value. The just-in-time update
on the other hand does use an updated value, since this update occurred at the revisit of sB. Note
that for a returning action (t∗ = t− 1), both update types have exactly the same form and this can
therefore be treated as an example of case 1. From these two cases, we can deduce the following
theorem, which is proven in Appendix A.

Theorem 1 Given the same experience sequence, each Q-value from the current state has received
the same number of updates using JIT updates (Equation 3) as using regular updates (Equation
2). However, each Q-value in the update target of a JIT update has received an equal or greater
number of updates as in the update target of the corresponding regular update.

Figure 2: Two cases in which state sA is revisited. In the first case, neither a regular update nor a
just-in-time update make use of an updated value for sB in the update target of sA, while
in the second case a just-in-time update does.

Algorithm 1 shows pseudocode for the implementation of just-in-time (JIT) Q-learning. The
agent stores the reward and transition state received upon the last visit of a state, that is, the last-
visit sample, in R′(s) and S′(s) respectively, while the action taken at the last visit of a state is stored

2050

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

Algorithm 1 JIT Q-Learning
1: initialize Q(s,a) arbitrarily for all s,a
2: initialize S′(s) = /0 for all s
3: loop {over episodes}
4: initialize s
5: repeat {for each step in the episode}
6: if S′(s) �= /0 then
7: Q(s, a)← (1−αs a) ·Q(s, a)+αs a [R′(s)+ γ maxa′ Q(S′(s),a′)] // a= A(s)
8: end if
9: select action a, based on Q(s, ·)

10: take action a, observe r and s′

11: S′(s)← s′; R′(s)← r; A(s)← a
12: s← s′

13: until s is terminal
14: end loop

in A(s). If S′(s) = /0, state s has not been visited yet and no update can be performed. Note that the
last-visit sample is not reset at the end of an episode, but maintained across episodes.

Because JIT Q-learning uses more recent values in its update targets than regular Q-learning, we
expect a performance improvement over regular Q-learning. We test this hypothesis by comparing
the performance of JIT Q-learning with regular Q-learning on the Dyna Maze task (Sutton, 1990).
In this navigation task, depicted in Figure 3, the agent has to find its way from start to goal. The
agent can choose between four movement actions: up, down, left and right. All actions result in 0
reward, except for when the goal is reached, which results in a reward of +1. The discount factor
γ is set to 0.95. We use a deterministic as well as a stochastic environment to test the generality of
the hypothesis. In the stochastic version, we employ a probabilistic transition function: with a 20%
probability, the agent moves in an arbitrary direction instead of the direction corresponding to the
action.

To compare performance, we measure the average return each method accrues from the start
state during the first 100 episodes in the deterministic case, averaged over 5000 independent runs
per method. For the stochastic version, we measure the return during the first 200 episodes. Each
method uses ε-greedy action selection with ε = 0.1. In the deterministic case, we use a constant
learning rate of 1, while in the stochastic case we use an initial learning rate α0 of 1 that is decayed
in the following manner:1

αsa =
α0

d · [n(s,a)−1]+1
, (4)

where n(s,a) is the total number of times action a has been selected in state s. Note that for d = 0,
αsa = α0, while for d = 1, αsa = α0/n(s,a). We optimize the learning rate decay d between 0 and
1 by taking the decay rate with the maximum average return over the measured number of episodes.
We use two different initialization schemes for the Q-values to determine whether the performance
difference depends on initialization. We use optimistic initialization, by initializing the Q-values to
20, and pessimistic initialization, by setting the Q-values to 0.

1. This decay is similar to the more common form c1
c2+n(s,a)

, but with the free parameters re-arranged.

2051

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

S

G

Figure 3: The Dyna Maze task, in which the agent must travel from S to G. The reward is +1 when
the goal state is reached and 0 otherwise.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

episodes

re
tu

rn

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

episodes

re
tu

rn

JIT Q−learning, Q
0
 = 20

Q−learning, Q
0
 = 20

JIT Q−learning, Q
0
 = 0

Q−learning, Q
0
 = 0

JIT Q−learning, Q
0
 = 20

Q−learning, Q
0
 = 20

JIT Q−learning, Q
0
 = 0

Q−learning, Q
0
 = 0

Figure 4: Comparison of the performance of JIT Q-learning and regular Q-learning on the de-
terministic (left) and stochastic (right) Dyna Maze task for two different initialization
schemes.

deterministic - 100 eps. stochastic - 200 eps.
d average standard d average standard

return error return error
Q-learning,Q0 = 0 0 0.3506 0.0004 1.0 0.3039 0.0003

JIT Q-learning,Q0 = 0 0 0.3628 0.0004 1.0 0.3083 0.0003
Q-learning,Q0 = 20 0 0.3438 0.0002 0.005 0.2562 0.0002

JIT Q-learning,Q0 = 20 0 0.3714 0.0002 0.010 0.2674 0.0002

Table 1: The performance of JIT Q-learning and regular Q-learning on the Dyna Maze task and the
optimal learning rate decay d.

Figure 4 plots the return as a function of the number of episodes, while Table 1 shows the av-
erage return and optimal learning rate. The computation time for both methods was similar. JIT
Q-learning outperforms regular Q-learning in the deterministic as well as the stochastic environ-

2052

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

ment and for both types of initialization, although not always by a large margin. This confirms our
intuition that, since JIT Q-learning uses values from a later time which are in general more accurate,
a performance benefit is gained over regular Q-learning in a broad range of settings. The perfor-
mance benefit in the deterministic case can be explained by exploration, which causes the order in
which states are visited to change despite the deterministic state transitions.

4. Best-Match Last-Visit Model

In this section, we demonstrate that updates can be postponed much further than is done by JIT
Q-learning, without negatively affecting other updates, when best-match updates are performed.
Best-match updates are updates that can correct previous updates when more recent information
becomes available. This insight leads to the derivation of the best-match last-visit model equations,
which combine a last-visit model (LVM), consisting of the last experienced reward and transition
state for each state-action pair, with model-free Q-values, constructed from model-free updates of
all observed samples, except the ones stored in the LVM. We present an evaluation as well as a
control algorithm based on solving these equations and empirically demonstrate that these methods
can outperform competitors with similar space requirements.

4.1 Best-Match LVM Equations

In the example presented in Section 3, the update ofQ(sA,a0) is postponed until state sA is revisited.
In this section, we demonstrate that the update can be postponed even further in the case that a
different action is selected upon revisit. Since we will consider multiple updates per timestep in this
section, we denote the Q-value function using two iteration indices: t and i. Each time an update
occurs, i is increased, while each time an action is taken, t is increased and i is reset to 0. Therefore,
if I denotes the total number of updates that occurs at time t, by definition Qt,I = Qt+1,0. Action
selection at time t is based on Qt,I . Using this convention, the regular Q-learning update can be
written as

Qt+1,1(st ,at) = (1−α)Qt+1,0(st ,at)+α[rt+1+max
a′

Qt+1,0(st+1,a
′)] .

Now consider the example shown in Figure 5, which extends Figure 1 to include a second revisit
of s0 at timestep t = 7. Suppose that a different action is selected on the first revisit, that is, a4 �= a0.
Using just-in-time updates, the Q-value of state-action pair (sA,a0) gets updated at time t = 4. Using
the two indices convention we can rewrite Equation 1 as2

Q4,1(sA,a0) = (1−α)Q1,0(sA,a0)+α[r1+ γmax
a
Q4,0(sB,a)] . (5)

To perform this update, the experience set (r1,sB) resulting from taking action a0 in sA is tem-
porarily stored. With JIT Q-learning, this experience is stored per state. If the state is revisited and
a new action is taken, the previous experience is overwritten and lost. However, if the experience
is stored per state-action pair, then the previous experience is not overwritten until the same action
is selected again. If the same action is not selected upon revisit, the experience can be used again

2. We use Q now instead of Q̃, since the only purpose of the tilde was to distinguish it from the Q-values of regular
Q-learning.

2053

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

Figure 5: A state transition sequence in which best-match updates can enable further postponing.
Timesteps are shown below each state.

to redo the update at a later time, using more recent values for the next state. In the example from
Figure 5, the update of (sA,a0) can be redone at timestep 7:

Q7,1(sA,a0) = (1−α)Q1,0(sA,a0)+α[r1+ γmax
a
Q7,0(sB,a)] . (6)

Since state sB is revisited at timestep 6, (sB,a1) has received an extra update and thereforeQ7,0(sB,a1)
is likely to be more accurate than Q4,0(sB,a1).

Equation 6 is not equivalent to a (postponed) Q-learning update, in contrast to Equation 5, since
Q1,0(sA,a0) is not equal to Q7,0(sA,a0) due to the update at timestep 4. Equation 6 corrects the
update from timestep 4, by redoing it using the most recent Q-values for the update target. We call
this update a best-match update (this name will be explained later in the section), while we call
Q1,0(sA,a0) the model-free Q-value of (sA,a0).

Before formally defining a best-match update, we define the last-visit experience and the model-
free Q-values.

Definition 2 The last-visit experience of state-action pair (s,a) denotes the last-visit reward, R′t(s,a),
that is, the reward received upon the last visit of (s,a), and the last-visit transition state, S′t(s,a),
that is, the state transitioned to upon the last visit of (s,a). For a state-action pair that has not yet
been visited, we define R′t(s,a) = /0 and S′t(s,a) = /0.

The LVM consists of the last-visit experience from all state-action pairs.

Definition 3 The model-free Q-value of a state-action pair (s,a), Qm f
t (s,a), is a Q-value that has

received updates from all observed samples except those stored in the LVM, that is, R′t(s,a) and
S′t(s,a). For a state-action pair that has not yet been visited, we define Q

mf
t (s,a) = Q0,0(s,a).

While Q can be updated multiple times per timestep, Qmf is updated only once per timestep. There-
fore, it is uses a single time index t. We define a best-match update as:

Definition 4 A best-match update combines the model-free Q-value of a state-action pair with its
last-visit experience from the same timestep according to

Qt,i+1(s,a) = (1−α)Qmf
t (s,a)+α[R′t(s,a)+ γmax

a′
Qt,i(S

′
t(s,a),a

′)] .

Using best-match updates to extend the postponing period of a sample update requires addi-
tional computation, as the agent typically performs multiple best-match updates per timestep. In
the example, at timestep 7 the agent redoes the update of Q(sA,a0), but also performs an update of
Q(sA,a4).

2054

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

The model-free Q-value function is updated only once per timestep. Specifically, at timestep
t+1 Qmf is updated according to

Qmf
t+1(st ,at) = Qt+1,0(st ,at) . (7)

Assuming (st ,at) has received a best-match update at timestep t, Equation 7 is equivalent to the
update

Qmf
t+1(st ,at) = (1−α)Qmf

t (st ,at)+α[R′t(st ,at)+ γmax
a′

Qt,i(S
′
t(st ,at),a

′)] ,

where the value of i depends on the order of best-match updates at timestep t. After Qmf has been
updated, the last-visit experience for (st ,at) is overwritten with the new experience

R′t+1(st ,at) = rt+1 ,

S′t+1(st ,at) = st+1 .

In the approach described above, best-match updates are used to postpone the update from a
sample without negatively affecting other updates or the action selection process. However, best-
match updates can be exploited far beyond simply avoiding these negative effects. As an example,
consider the state-action sequence in Figure 6. sB is not revisited before the revisit of sA. With the
update strategy described above, best-match updates occur only when a state is revisited. Conse-
quently, the experience from (sB,a1) is not used in the update target of (sA,a0). However, it is not
necessary to wait for a revisit of sB to perform a best-match update. Instead, it can be performed at
the moment it is needed: when sA is revisited. Thus, if at timestep 3 the agent performs a best-match
update of Q(sB,a1), before updating Q(sA,s0), the latter update will exploit more recent Q-values
for sB, just as if sB had been revisited.

Figure 6: A state transition sequence in which sB is not revisited. Timesteps are shown below each
state.

Taking this idea further, the agent can first update the Q-values of sC before updating the Q-
values of sB. In other words, the agent uses the Q-values of sA to perform a best-match update of
sC, then performs a best-match update of sB and finally updates sA. However, once the Q-values
of sA have changed, it is possible to further improve the Q-values of sC by performing a new best-
match update. The new Q-values of sC can then be used to redo the update of sB, which in turn can
be used to re-update sA. This process can repeat until the Q-values reach a fixed point, which is
the solution to a system of |S ||A | best-match LVM equations. We call this solution the best-match
Q-value function, QB, which forms the best match between the LVM and the model-free Q-values.

Definition 5 The best-match LVM equations at timestep t are defined as

QB
t (s,a) =

{
(1−αsa

t)Q
mf
t (s,a)+αsa

t [R′t(s,a)+ γmaxc QB
t (S

′
t(s,a),c)] if S′t(s,a) �= /0

Qmf
t (s,a) if S′t(s,a) = /0 .

2055

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

There are different ways to look at these equations. One way is to see them as the limit case of
redoing updates using (in general) increasingly more accurate update targets. Another way is to see
them as Bellman optimality equations based on an induced model. For state-action pair (s,a) this
induced model can be described as a transition with probability α to state S′(s,a) with a reward of
R′(s,a) and a transition with probability 1−α to a terminal state sT (with a value of 0) and a reward
of Qmf (s,a) (see Figure 7).3

Figure 7: Illustration of the induced model for state-action pair (s,a) corresponding with the best-
match LVM equations. The small black dot represents the stochastic action a leading
with probability α to state S′(s,a) and with probability 1-α to state sT .

The advantage of solving the Bellman optimality equations for this induced model, compared
to solving it using only the LVM, is that the bias towards the samples in the LVM can be controlled
using the learning rates. With annealing learning rates, the transition probability to S′t(s,a) is de-
creased over time in favor of transition to the terminal state. On the other hand, when using only
the LVM, the solution of the Bellman equations depends only on the samples of the LVM and does
not take into account any previous samples. Clearly, in a stochastic environment, this will lead to a
sub-optimal policy. Also when the solution is not computed exactly, but approximated by only per-
forming a finite number of updates at each timestep (which is the case for any practical algorithm),
using the induced model leads to a better performance, because of the strong bias towards the most
recent samples that occurs when using only the LVM.

Section 4.3 discusses how to solve the best-match equations. However, we first discuss the
policy evaluation case, for which analogous equations can be defined.

Definition 6 The best-match LVM equations for state values at time t are

V B
t (s) =

{
(1−αst)V mf

t (s)+αst [R
′
t(s)+ γV B

t (S
′
t(s))] if S′t(s) �= /0

V mf
t (s) if S′t(s) = /0 .

The model-free state values are updated according to V mf
t+1(st) =Vt+1,0(st).

While in general the value function V can be seen as a special case of the action-value function
Q (with all states only having a single action),V has a linear set of best-match equations, in contrast
to Q, a property we exploit in best-match LVM evaluation.

3. We assume S′t(s,a) �= /0 for (s,a) in this case.

2056

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

4.2 Best-Match LVM Evaluation

In the evaluation case, the best-match LVM equations form a linear set that can be solved exactly.
This section proposes an algorithm that does so in a computationally efficient way, using updates
that are unbiased with respect to the initial state values.

The algorithm is based on two observations. First, not all |S | best-match equations necessarily
depend on each other. The subset of equations needed to compute the best-match value for st can
be found by iterating through the sequence of last-visit transition states, starting with S′(st). The
corresponding N best-match equations form the linear set of equations to solve. For readability, we
write st as s[0] and use the notation s[n] = S′(s[n−1]) and r[n] = R′(s[n−1]) for the subsequent transition
state and reward. In addition, we use α [n] for αs[n] . The equations can now be written as

V B(s[n]) = (1−α [n])V mf (s[n])+α [n] [r[n+1] + γV B(s[n+1])
]
, for all n ∈ [0,N−1] .

Second, the last state of this sequence, s[N], is always either a terminal state or the current state.
Furthermore, none of the intermediate states can appear twice, making the N equations independent.
This can be proven by contradiction. First, assume that the sequence has a dead-end, that is, ends
with a state for which S′ = /0. This is impossible because it would cause the agent to get stuck in this
state, preventing it from reaching the current state. Since last-visit information is maintained across
episodes, s[N] is a terminal state if the path followed after the previous visit of st led to a terminal
state. Next, assume the sequence contains the same intermediate state twice. After the second visit
of this intermediate state, the subsequent sequence would be the same as after the first visit, since
there is only a single last-visit next state defined per state. This would create an infinite sequence of
next states, also preventing the agent from reaching the current state.

The set of equations can be solved by backwards substituting the equations, that is, substituting
the equation for V B(s[n+1]) in the one for V

B(s[n]) and so on until a single equation for V
B(s[0])

remains of the form
V B(s[0]) = cA+ cBV

B(s[N]) ,

with cA and cB defined as

cA =
N−1
∑
i=0

(
(1−α [i])V mf (s[i])+α [i]r[i+1]

) i−1
∏
k=0

γα [k] , (8)

cB =
N−1
∏
i=0

γα [i] . (9)

If s[N] is a terminal state, its value is 0 and V
B(st) = cA. On the other hand, if s[N] = st then

V B(st) = cA/(1− cB).
Algorithm 2 shows pseudocode of the on-line policy evaluation algorithm, which computes the

best-match value of the current state at each timestep. Lines 7-12 compute the values of cA and
cB in a forward, incremental way by going from one next state to the other. Note that it is not
necessary to store V mf and R′ separately, since they are always used in the same combination,
(1−α)V mf (s)+αR′(s), which is stored in a single variable, V mf

r , saving space and computation.
Line 20 combines the assignments V mf (st) = V (st), R′(st) = rt+1 and the computation of V

mf
r

in a single update. Note that the algorithm makes use of the just-in-time learning principle, that
is, updating states at the moment of their revisit. In JIT Q-learning, it is used to improve the

2057

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

Algorithm 2 Best-Match LVM Evaluation
1: initialize V (s) arbitrarily for all s
2: initialize S′(s) = /0 for all s
3: loop {over episodes}
4: initialize s
5: repeat {for each step in the episode}
6: if S′(s) �= /0 then
7: cA←V mf

r (s); cB← γαs; s′ ← S′(s); n← 0
8: while s′ �= s∧ s′ is not terminal do
9: cA← cA+ cB ·V mf

r (s′)
10: cB← cB · γαs′

11: s′ ← S′(s′)
12: end while
13: if s′ = s then
14: V (s)← cA/(1− cB)
15: else
16: V (s)← cA
17: end if
18: end if
19: take action π(s), observe r and s′

20: V mf
r (s)← (1−αs)V (s)+αs · r

21: S′(s)← s′; s← s′

22: until s is terminal
23: end loop

performance without increasing the computation cost, while in the best-match evaluation algorithm
it is used to efficiently compute the best-match values.

Algorithm 2 is an on-line algorithm that computes at each timestep the best-match value of the
current state. We define the off-line version as one that computes at the end of each episode the best-
match values of the states that were visited during that episode. This off-line algorithm is related to
off-line TD(λ), as demonstrated by the following theorem. We prove this theorem in Appendix B.

Theorem 7 For an episodic, acyclic, evaluation task, off-line best-match LVM evaluation computes
the same values as off-line TD(λ) with λ t = α t(st).

For acyclic tasks, that is, episodic tasks with no revisits of states within an episode, TD(λ) with
λ t = α t(st) can perform TD updates that are unbiased with respect to the initial values (Sutton and
Singh, 1994). Because of Theorem 7, this also holds for best-match LVM evaluation. However, in
contrast to TD(λ), best-match LVM evaluation can perform unbiased updates for any MDP, as we
demonstrate with the following theorem, also proven in Appendix B.

Theorem 8 The state values computed by the on-line best-match LVM evaluation algorithm (Algo-
rithm 2) are unbiased with respect to the initial state values, when the initial learning rates α0(s)
are set to 1 for all s.

Because best-match LVM evaluation can perform unbiased updates for any MDP, it can often
substantially outperform TD(λ) while requiring similar space and computation. We demonstrate

2058

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

this empirically using the two tasks shown in Figure 8. Besides comparing against TD(λ), we also
compare against experience replay (Lin, 1992), which stores the n last experience samples and uses
them for repeated TD updates.

Task A features a small circular network consisting of four identical states, each having a de-
terministic transition to a neighbor. The reward received after each transition is +1. Task B is a
stochastic variation on the first task, with stochastic transitions and a reward drawn from a normal
distribution with mean 1 and standard deviation 0.5. The discount factor is 0.95, resulting in a
state value of 20 on both tasks for all states. We compare the RMS error of the current state value
Vt(st) for all three methods. For experience replay, we performed a TD update for each of the last 4
samples at every timestep, resulting in a computation time similar to best-match LVM and TD(λ).
In addition, we implemented a version where all observed samples are stored and updated at each
timestep. The learning rate is initialized to 1 and decayed according to

αs =
α0

d · [n(s)−1]+1 .

where n(s) is the total number of times state s has been visited. We optimize d as well as λ between
0 and 1. Results are averaged over 5000 runs.

Figure 8: Two tasks for policy evaluation. Task A has deterministic state transitions and a deter-
ministic reward of +1, while task B has stochastic transitions and a reward drawn from a
normal distribution with mean +1 and standard deviation 0.5.

Figure 9 shows the experimental results in these tasks. In task A, at timestep 4 the start state is
revisited and the RMS error for best-match LVM drops to 0. The reason is that in the deterministic
case the last-visit model is equal to the full model once every state has been visited. Furthermore,
with learning rates of 1, the best-match LVM equations reduce to the Bellman optimality equations.
Therefore best-match LVM effectively performs model-based learning. TD(λ), on the other hand,
has to incrementally improve upon the initial values of 0. The spiky behavior of TD(λ) is caused
by the combination of a λ of 1, with zero learning rate decay (which were the optimal settings in
this case). Experience replay has a performance in between best-match LVM and TD(λ). In task
B, the RMS error drops more smoothly. Best-match LVM again substantially outperforms TD(λ)
and experience replay, even when all samples are stored and updated. The total computation time
for the 5000 runs was marginally higher for experience replay with N=4, which has to maintain a
queue of recent samples, than for best-match LVM and TD(λ): on task A, around 90 ms compared

2059

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

22

timesteps

R
M

S
 e

rr
or

 V
t(s

t)

0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

18

20

22

timesteps

R
M

S
 e

rr
or

 V
t(s

t)

TD(λ)
exp. replay, N = 4
exp. replay, N = all
best−match LVM

TD(λ)
exp. replay, N = 4
exp. replay, N = all
best−match LVM

Figure 9: Comparison of the performance of best-match LVM, TD(λ) and experience replay on
tasks A (left) and task B (right) of Figure 8.

to 80 ms for both best-match LVM and TD(λ). Experience replay with all samples updated had a
computation time of 280 ms. On task B, all methods were about 10 ms slower.

4.3 Best-Match LVM Control

The best-match LVM equations for the control case form a nonlinear set. Therefore, it is in general
not possible to compute the exact best-match Q-values at each timestep. However, they can be
approximated to arbitrary accuracy via update sweeps through the state-action space, in a manner
similar to value iteration, as we prove in the following lemma.

Lemma 9 For the best-match Q-values the following equation holds for all (s,a):

QB
t (s,a) = lim

i→∞
Qt,i(s,a) ,

where Qt,i is initialized arbitrarily for i= 0 and is defined for i> 0 as

Qt,i(s,a) =

{
(1−α)Qmf

t (s,a)+α [R′t(s,a)+ γmaxa′Qt,i−i(S′t(s,a),a′)] if S′t(s,a) �= /0
Qmf
t (s,a) if S′t(s,a) = /0 .

Proof For state-action pairs (s,a) with S′t(s,a) = /0 the proof follows directly from the definition of
QB
t and Qt,i. For (s,a) with S′t(s,a) �= /0, the absolute difference between Qt,i(s,a) and QB

t (s,a) can
be written as

|Qt,i(s,a)−QB
t (s,a)| = αγ |max

c
Qt,i−i(S′t(s,a),c)−maxc QB

t (S
′
t(s,a),c)|

≤ αγmax
c
|Qt,i−i(S′t(s,a),c)−QB

t (S
′
t(s,a),c)|

≤ αγ ||Qt,i−i−QB
t || .

2060

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

From this it follows that
||Qt,i−QB

t || ≤ αγ ||Qt,i−i−QB
t || .

For αγ< 1, it follows that for i→ ∞, Qt,i→ QB
t .

Lemma 9 shows that QB
t can be approximated to arbitrary accuracy with a finite number of best-

match updates.
Algorithm 3 shows the pseudocode for a general class of algorithms that approximate the best-

match Q-values by performing best-match updates.4 Lines 9 to 12 perform a series of best-match
updates. Note that while only a single Qmf value is updated per timestep, many Q-values can be up-
dated at the same timestep. By varying the way state-action pairs are selected for updating (line 10)
and changing the stopping criterion (line 12), a whole range of algorithms can be constructed that
trade off computation cost per timestep for better approximations of the best-match Q-values. Note
that JIT Q-learning and even regular Q-learning are members of this general class of algorithms. If
the state-action pair selection criterion is the state-action pair visited at the previous timestep and
the stopping criterion allows only a single update, the algorithm reduces to the regular Q-learning
algorithm. Thus, Q-learning is a form of best-match control with a simplistic approximation of the
best-match Q-values. However, we reserve the term ‘best-match learning’ for algorithms that use
the same sample multiple times to redo updates.

Algorithm 3 General Best-Match LVM Control
1: initialize Q(s,a) arbitrarily for all s,a
2: initialize S′(s,a) = /0 for all s,a
3: loop {over episodes}
4: initialize s
5: repeat {for each step in the episode}
6: select action a, based on Q(s, ·)
7: take action a, observe r and s′

8: Qmf (s,a)← Q(s,a);S′(s,a)← s′;R′(s,a)← r
9: repeat

10: select some (s, a) pair with S′(s, a) �= /0 {each pair is selected at least once before its
revisit}

11: Q(s, a)← (1−α s a)Qmf (s, a)+α s a [R′(s, a)+ γ maxc Q(S′(s, a),c)]
12: until some stopping criterion has been met
13: s← s′

14: until s is terminal
15: end loop

The following theorem states that, for any member of the best-match LVM control class, the
Q-values converge to the optimal Q-values.

Theorem 10 The Q-values of a member of the best-match LVM control class, shown in Algorithm
3, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

4. Similar to the variable V mf
r of Algorithm 2, a variable Qmf

r can be defined that combines the variables Qmf and R′,
saving space and computation. For readability we do not show this for Algorithm 3.

2061

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

2. α t(s,a) ∈ [0,1] , ∑ t α t(s,a) = ∞ , ∑ t(α t(s,a))
2 < ∞ w.p.1

and α t(s,a) = 0 unless (s,a) = (st ,at).

3. Var{R(s,a,s′)}< ∞.

4. γ< 1.

We prove this theorem in Appendix D.

4.4 Best-Match LVM Prioritized Sweeping

A wide range of methods can be constructed within the general class of best-match LVM control
algorithms that trade off increased computation time for better approximation of the best-match
Q-values in different ways. This section proposes one method that performs this trade-off with a
strategy based on prioritized sweeping (PS) (Moore and Atkeson, 1993).

PS makes the planning step of model-based RL more efficient by focusing on the updates ex-
pected to have the largest effect on the Q-value function. The algorithm maintains a priority queue
of state-action pairs in consideration for updating. When a state-action pair (s,a) is updated, all
predecessors (i.e., those state-action pairs whose estimated transition probabilities to s are greater
than 0) are added to the queue according to a heuristic estimating the impact of the update. At
each timestep, the top N state-action pairs from this queue are updated, with N depending on the
available computation time. Because PS maintains a full model, it requires O(|S |2|A |) space.

This same idea can be applied to the best-match equations for efficient approximation of the
best-match values. A priority queue of state-action pairs is maintained whose corresponding best-
match updates have the largest expected effect on the best-match Q-value estimates. When a state-
action pair has received an update, all state-action pairs whose last-visit transition state equals the
state from the updated state-action pair are placed into the priority queue with a priority equal to
the absolute change an update would cause in its Q-value. Since this approach uses only an LVM,
it requires only O(|S ||A |) space.

Algorithm 4 shows the pseudocode of this algorithm, which we call best-match LVM prioritized
sweeping (BM-LVM). By always putting the state-action pair from the previous timestep on top of
the priority queue (line 10), the requirement that each visited state-action pair receives at least one
best-match update is fulfilled, guaranteeing convergence in the limit.

On the surface, this algorithm resembles deterministic prioritized sweeping (DPS) (Sutton and
Barto, 1998), a simpler variation that learns only a deterministic model, uses a slightly different
priority heuristic, and performs Q-learning updates to its Q-values. While clearly designed for
deterministic tasks, it can also be applied to stochastic tasks, in which case updates are based on an
LVM.

However, there is a crucial difference between DPS and BM-LVM. By performing updates with
respect to Qmf instead of Q, BM-LVM corrects previous updates instead of performing multiple
updates based on the same sample. This ensures proper averaging of experience and enables con-
vergence to the optimal Q-values using only an LVM, even in stochastic environments. This is not
guaranteed for DPS since if some samples are used more often than others a bias towards these
samples is created, which can prevent convergence to the optimal Q-values.

We compare the performance of PS, DPS, and BM-LVM on the deterministic and stochastic
variation of the Dyna Maze task shown in Figure 3. In addition, we also compare to Q(λ) as

2062

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

Algorithm 4 Best-Match LVM Prioritized Sweeping (BM-LVM)
1: initialize Q(s,a) arbitrarily for all s,a
2: initialize S′(s,a) = /0 for all s,a
3: initialize PQueue as an empty queue
4: loop {over episodes}
5: initialize s
6: repeat {for each step in the episode}
7: select action a, based on Q(s, ·)
8: Take action a, observe r and s′

9: S′(s,a)← s′;R′(s,a)← r;Qmf (s,a)← Q(s,a)
10: promote (s,a) to top of priority queue
11: n← 0
12: while (n< N)∧ (PQueue is not empty) do
13: s1,a1 ← f irst(PQueue)
14: Q(s1,a1)← (1−αs1a1)Qmf (s1,a1)+αs1a1 [R′(s1,a1)+ γ maxc Q(S′(s1,a1),c)]
15: Vs1 ← maxa′Q(s1,a′)
16: for all (s, a) with S′(s, a) = s1 do
17: p← |(1−α s a)Qmf (s, a)+α s a [R′(s, a)+ γVs1]−Q(s, a)|
18: if p> θ then
19: insert (s, a) into PQueue with priority p
20: end if
21: end for
22: n← n+1
23: end while
24: s← s′

25: until s is terminal
26: end loop

described by Watkins (1989). This is an off-policy control version of eligibility traces. We also
tried Sarsa(λ), the on-policy version, since it can sometimes outperform Q(λ) considerably, but saw
no significant difference for these experiments and present only the Q(λ) results. Note that when a
greedy behavior policy is used, as in the deterministic experiment, Q(λ) computes exactly the same
values as Sarsa(λ). As in Section 4.2, we also compare to experience replay.

Finally, we compare to delayed Q-learning (Strehl et al., 2006), a model-free method that, like
some model-based methods (Brafman and Tennenholtz, 2002; Kearns and Singh, 2002; Strehl and
Littman, 2005), is proven to be probably approximately correct (PAC), that is, its sample complex-
ity is polynomial with high probability. Delayed Q-learning initializes its Q-values optimistically
and ensures that value estimates are not reduced until the corresponding state-action pairs have been
sufficiently explored. Because it does not maintain a model, it has the sameO(|S ||A |) space require-
ments as best-match prioritized sweeping. However, to our knowledge, its empirical performance
has never been evaluated before.

For each method, the free parameters are optimized within a certain range. In the deterministic
case, for Q(λ) we optimized the λ value in the range from 0 to 1, and the learning rate decay d (using
Equation 4) in the range from 0 to 1, while α0 was set to 1. We also optimized the (unbounded) trace

2063

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

type (replacing versus accumulating). For delayed Q-learning we optimized m in the range from 1
to 5 with steps of 1 and e1 in the range 0 to 0.020 with steps of 0.001. For DPS and BM-LVM, we
did not optimize any parameters in the deterministic case, but simply used a constant α of 1. In the
stochastic case, we also optimized the learning rate decay d for DPS and BM-LVM.

For all methods, we used optimistic initialization with Q0 = 20 in order to get a fair comparison
with delayed Q-learning, for which initialization to Rmax/(1− γ) is part of the algorithm.5

In the deterministic case we used a greedy behavior policy, while we used an ε-greedy policy
with ε = 0.1 in the stochastic variant. For all prioritized-sweeping algorithms we performed a
maximum of 20 updates per timestep (i.e., N = 20). For experience replay we used the last 20
samples, which also results in 20 updates per timestep. Results are averaged over 1000 independent
runs.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

episodes

re
tu

rn

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

episodes

re
tu

rn

Q(λ)
exp. replay
delayed Q
BM−LVM
DPS
PS

Q(λ)
exp. replay
delayed Q
BM−LVM
DPS
PS

Figure 10: Comparison of the performance of BM-LVM and several competitors on the determin-
istic (left) and stochastic (right) Dyna Maze task.

Figure 10 shows the return as a function of the number of episodes, while Tables 2 and 3 show
the average return over the measured episodes and the optimal parameter values. In the determinis-
tic experiment, we see that the performance of PS, DPS, and BM-LVM is exactly equal, as expected
when α= 1, since the last-visit experience is equal to the model of the environment. Q(λ) performs
considerably worse than the prioritized sweeping methods and does not converge to the optimal pol-
icy. In contrast, the combination of a greedy behavior policy with optimistic initialization enables
the prioritized sweeping methods to converge to the optimal policy in a deterministic environment.
Experience replay performs similarly to Q(λ), though it does converge to the optimal policy. De-
layed Q-learning also converges to the optimal policy, as predicted by the theory, but does so much
more slowly.

In the stochastic experiment, PS has a clear performance advantage. However, the goal of BM-
LVM is not to match or even come close to the performance of PS. It cannot match this performance
in general, since PS takes advantage of its higher space complexity. Instead, the goal of BM-LVM

5. For this task r = Rmax only when the exit is reached and 0 otherwise. Thus, the Q-values can never be higher than 1
and Q0 = 20 is overly optimistic. However, since realizing that an initialization of 1 is possible would require extra
prior knowledge, we initialize to 20.

2064

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

deterministic - 50 eps.
optimal parameters average standard time per step

return error (·10−6s)
Q(λ) λ: 0.8, d: 0 0.3606 0.0007 0.68

exp. replay d: 0 0.3602 0.0004 0.37
delayed Q m: 1, e1 = 0 0.1878 0.0004 0.11
BM-LVM d: 0 0.4769 0.0002 0.88

DPS d: 0 0.4774 0.0002 0.85
PS - 0.4772 0.0002 0.95

Table 2: Average return and optimal parameters (d = α decay rate) of best-match prioritized sweep-
ing and several competitors on the deterministic Dyna Maze task.

stochastic - 100 eps.
optimal parameters average standard time per step

return error (·10−6s)
Q(λ) λ: 0.9, d: 0.03 0.2417 0.0007 0.59

exp. replay d: 0.18 0.2272 0.0006 0.43
delayed Q m: 2, e1:0.015 0.0668 0.0004 0.12
BM-LVM d: 0.02 0.2911 0.0006 3.2

DPS d: 0.30 0.2683 0.0008 3.7
PS - 0.3603 0.0004 4.7

Table 3: Average return and optimal parameters (d = α decay rate) of best-match prioritized sweep-
ing and several competitors on the stochastic Dyna Maze task.

is to optimally perform at a space complexity of O(|S ||A |). The results confirm that BM-LVM
is considerably better than the other methods with this space complexity, like Q(λ) and DPS. DPS
initially performs well, but cannot keep up with BM-LVM after about 10 episodes, even though BM-
LVM has similar space and computation costs per timestep. Experience replay performs slightly
worse than Q(λ). We tested whether doubling the size of the stored experience sequence improves
the performance of experience replay, but this led to no significant performance increase. Delayed
Q-learning also performs poorly in the stochastic case, despite its PAC bounds.

The computation time of BM-LVM, DPS and PS is in the deterministic experiment considerably
lower than in the stochastic case. The reason for this is that while in both cases the maximum
number of updates per timestep is 20, in the deterministic case the priority queue often has fewer
than 20 samples, so fewer updates occur. The computation time of Q(λ) is slightly better than that
of BM-LVM, while experience replay is about twice as fast as BM-LVM.

In the stochastic experiment, the computation time of Q(λ) is much better than that of any of
the prioritized sweeping algorithms, which could suggest that Q(λ) is a better choice than BM-LVM
when computation power is scarce. To test this hypothesis, we performed additional experiments
with smaller values of N. The computation time for BM-LVM for N = 4 (0.61 ·10−6 s) was similar
to that of Q(λ). The average return of BM-LVM dropped to 0.2598 in this case, which is still

2065

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

considerably better than the average return of Q(λ). This demonstrates that BM-LVM is a better
choice than Q(λ) even under severe computational constraints.

Together, these results clearly demonstrate the strength of best-match learning, since BM-LVM
outperforms several competitors with similar space complexity. However, the results also show that
the performance gap with full model-based learning can be considerable. Therefore, if more space
is available, a better approximate model would be preferred. We address this need in the next section
by applying best-match learning to an n-transition model, which estimates the transition function for
n next states per state-action pair, allowing increased space requirements to be traded for improved
performance.

5. Best-Match n-Transition Model

The best-match LVM equations described above combine model-free Q-values with the last-visit
model. When state-action pairs have only a small number of possible next states, the last-visit
model can effectively approximate the full model. In other cases, however, the last-visit model
captures only a fraction of the full model and the effect of the best-match updates will be small.
In this section, we combine best-match learning with the n-transition model, which estimates the
transition probability for n possible next states of each state-action pair. By tuning n, increased
space requirements can be traded for improved performance.

5.1 Generalized Best-Match Equations

Best-match LVM learning takes the idea of using more accurate update targets to the extreme by
continuously revising update targets with best-match updates. For a specific sample, the update
target is revised until the moment of revisit of the corresponding state-action pair, since at that
moment the sample is overwritten with the newly collected sample. However, if space allows, the
new sample can be stored along with the old sample instead of overwriting it, allowing the update
target from the new as well as the old sample to be further improved. We explain with an example
how this changes the best-match equations.

Figure 11: A state transition sequence in which best-match updates can enable further postponing.
Timesteps are shown below each state.

Consider the state-action sequence from Figure 11 and assume the best-match Q-values are
computed at each timestep. At the revisit of sA, action a0 is retaken. Therefore, when using the LVM,
at timestep 5 the old experience sample is overwritten with the new experience. Before this occurs,
the old experience is used in a final update ofQmf . Let υxy indicate the update target from the sample
collected at timestep x based on the best-match Q-value of timestep y: υxy = rx+ γmaxaQB

y (sx,a).
Using this convention the update of Qmf at timestep 5 becomes

Qmf
5 (sA,a0) = (1−α)Qmf

0 (sA,a0)+αυ14 .

2066

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

At timestep 7, the best-match LVM equation for (sA,a0) can be written as

QB
7 (sA,a0) = (1−α)Qmf

7 (sA,a0)+αυ57

= (1−α)Qmf
5 (sA,a0)+αυ57

= (1−α)2Qmf
0 (sA,a0)+α(1−α)υ14+αυ57 .

Thus, the best-match Q-value of (sA,a0) at timestep 7 is equal to a weighted average of Q
mf
0 , υ14

and υ57. On the other hand, if both the old and the new sample are stored, Q-values from timestep 7
could also be used for the update target of the old sample, yielding

QB
7 (sA,a0) = (1−α)2Qmf

0 (sA,a0)+α(1−α)υ17+αυ57 . (10)

For the state-sequence from Figure 11 this means that the experience resulting from (sB,a6) is also
taken into account in the update target for (sA,a0).

The above example shows how the best-match LVM equations can be naturally extended to two
samples per state-action pair. Following the same pattern, we can define best-match equations given
an arbitrary set of samples. Consider the set of samples X of size NX , where a sample x ∈ X has the
form {s,a,r,s′ }. These samples can be grouped according to their state-action pairs. We define Xsa
as the subset of X containing all samples belonging to state-action pair (s,a) and Nx

sa as the size of
Xsa. Without loss of generality, we index the samples from Xsa as xsak for 1 ≤ k ≤ Nx

sa. In addition,
we defineWsa as a set consisting of Nx

sa+1 weights w
sa
k ∈ IR such that 0≤ wsa

k ≤ 1 for 0≤ k ≤ Nx
sa

and ∑
Nx
sa

k=0w
sa
k = 1. We defineW as the union of the weight sets from all state-action pairs.

Definition 11 The generalized best-match equations with respect to Qmf
t , X and W are

QB
t (s,a) = wsa

0 Q
mf
t (s,a)+wsa

1 υ
sa
1 +wsa

2 υ
sa
2 + ...+wsa

Nx
sa
υNx

sa
, for all s,a , (11)

where υsak = r+ γmaxcQB
t (s

′,c) |r,s′ ∈ xsak .

Note that Equation 11 reduces to QB
t (s,a) = Qmf

t (s,a) for state-action pairs with no samples in X .
Within this context, Qmf is defined as a model-free Q-value constructed from all observed sam-

ples except those in X . Consequently, when a sample is removed from X , it is used for a model-free
update of Qmf .

Using Definition 11, a range of algorithms can be constructed based on different sets of samples
X and weights W . When the samples are combined by incremental Q-learning updates, like in
Equation 10, the weights have the values

wsa
0 =

Nx
sa

∏
i=1

(1−αsa
i) , (12)

wsa
k = αsa

k

Nx
sa

∏
i=k+1

(1−αsa
i) , for 1≤ k ≤ Nx

sa . (13)

With this weight distribution, the update targets from older samples have lower weights than more
recent samples. In Q-learning, more recent samples in general have more accurate update targets so
giving them higher weight makes sense. However, in best-match learning the update targets from

2067

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

all stored samples have the same time index so there is no reason to use different weights for them.
A better weight distribution gives all samples the same weights:

wsa
k = (1−wsa

0)/Nx
sa , for 1≤ k ≤ Nx

sa ,

for some value of wsa
0 .

The last-visit model, storing one sample for each state-action pair, is one possible sample set.
A straightforward extension is to store n samples per state-action pair. In the following section,
however, we propose a different sample set, called the n-transition model, which can be stored more
compactly.

5.2 Best-Match Learning based on the n-transition Model

While BM-LVM outperforms model-free methods with the same space complexity, it does not per-
form as well as PS, which stores a full model. This is symptomatic of an important limitation
of BM-LVM: it offers only a single trade-off between space and performance. When there is not
enough space available to store the full model, but more than enough to store the LVM, a more
sophisticated method is needed to make maximal use of the available space. Using the generalized
best-match equations, we can construct such a method.

An obvious approach is to store n samples per state-action pair. However, obtaining an accurate
model often requires a large n, even when the number of next states per state-action pair is small.
A more space-efficient solution is to group together samples that have the same next state. If we
store the size of such a group in Nx

sas′ and give each sample a weight of 1/Nsa, where Nsa is the
total number of times state-action pair (s,a) is visited, then we can rewrite the contribution from all
samples of Xsa to the best-match equations as

Nx
sa

∑
k=1

wkυk =
1
Nsa

[
∑
X

rsa+ γ∑
s′
Nx
sas′max

a′
QB(s′,a′)

]
,

where ∑X rsa is the sum of the rewards from all samples in the sample set belonging to (s,a). Using
wsa
0 = 1−Nx

sa/Nsa, P̂ s′
sa =Nx

sas′/N
x
sa and R̂ sa =∑X rsa/N

x
sa, the generalized best-match equations can

now be rewritten as

QB(s,a) = wsa
0 Q

mf (s,a)+(1−wsa
0)

[
R̂ sa+ γ∑

s′
P̂ s′
samax

a′
QB(s′,a′)

]
, for all s,a .

In these equations, P̂ and R̂ constitute a sparse, approximate model, whose size can be controlled
by limiting the number of next states per state-action pair for which P̂ is estimated. wsa

0 is the
fraction of all samples belonging to (s,a) not used by the sparse model. We define an n-transition
model (NTM) to be one that estimates the transition probability P̂ for n next states per state action
pair. Once a sample enters the model, that is, is used to update P̂ , it stays in the model. Each sample
not used to update the model is used for a model-free update of Qmf . Different strategies can be
used to determine which samples enter the model. A simple approach is to use the first n unique
next states that are encountered for a specific state-action pair.

Algorithm 5 shows general pseudocode for best-match NTM learning. The algorithm presents
two trade-offs. First, the space complexity can be traded off with performance by selecting n.

2068

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

Algorithm 5 General Best-Match NTM Control

1: initialize Q(s,a) = Qmf (s,a) arbitrarily for all s,a
2: initialize Nsa,Nx

sa,R
sum
sa to 0 for all s,a

3: initialize Nx
sas′ to 0 for all s,a and s′ ∈ NTM(s,a)

4: initialize wsa
0 to 1 for all s,a

5: loop {over episodes}
6: initialize s
7: repeat {for each step in the episode}
8: select action a, based on Q(s, ·)
9: take action a, observe r and s′

10: if s′ ∈ NTM(s,a) then
11: Nx

sa = Nx
sa+1; Nx

sas′ = Nx
sas′+1; Rsumsa = Rsumsa + r

12: P̂ s′
sa = Nx

sas′/N
x
sa; R̂ sa = Rsumsa /Nx

sa
13: else
14: Qmf (s,a)← (1−αsa)Qmf (s,a)+αsa [r+ γ maxc Q(s′,c)]
15: end if
16: Nsa = Nsa+1
17: wsa

0 = 1−Nx
sa/Nsa

18: repeat
19: select some (s, a) pair with N s a > 0 {each pair is selected at least once before its

revisit}
20: Q(s, a)← w s a

0 Q
mf (s, a)+(1−w s a

0)
[
R̂ s a+ γ∑s′ P̂ s′

 s amaxcQ(s′,c)
]

21: until some stopping criterion has been met
22: s← s′

23: until s is terminal
24: end loop

Second, the computation time per simulation step can be traded off with performance by controlling
the number of best-match updates performed per timestep.

Based on this general control algorithm, various specific algorithms can be constructed using
different stopping criteria and strategies for selecting state-action pairs to receive best-match up-
dates. The following theorem states that, for any member of this class, the Q-values converge to the
optimal Q-values. We prove this theorem in Appendix E.

Theorem 12 The Q-values of a member of the best-match NTM control class, shown in Algorithm
5, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

2. α t(s,a) ∈ [0,1] , ∑ t α t(s,a) = ∞ , ∑ t(α t(s,a))
2 < ∞ w.p.1

and α t(s,a) = 0 unless (s,a) = (st ,at) and st+1 /∈ NTM(st ,at).

3. Var{R(s,a,s′)}< ∞.

4. γ< 1.

2069

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

5.3 Experimental Results

As in BM-LVM, prioritized sweeping can be used to trade off computation time and performance
in Algorithm 5, yielding a method we call BM-NTM. We compare its performance to BM-LVM,
Q-learning, and a sparse model-based method that combines prioritized sweeping with an NTM
without best-match updates, which we call PS-NTM. While BM-NTM uses the samples that are not
part of the NTM to update Qmf , PS-NTM ignores these samples. The priority of a state-action pair
(s,a) for BM-NTM is defined as

p= (1−wsa
0)P̂ s1

sa · |ΔV (s1)| ,

where ΔV (s1) is the difference in the state value of s1 before and after the best-match update of one
of the Q-values of s1. For PS-NTM, the priority is defined similarly:

p= P̂ s1
sa · |ΔV (s1)| .

The NTM we use for BM-NTM and PS-NTM is defined by the first n unique next states that
are encountered for a specific state-action pair. Although more sophisticated models could be used
(e.g., by estimating the n most likely transition states), this model is sufficient for our experimental
setting since most transition states have similar transition probabilities.

We consider the large maze task shown at the left in Figure 12. For this maze, the reward
received by the agent is −0.1 at each timestep, while reaching the goal state results in a reward
of +100. The discount factor is 0.99. The agent can take four actions, ‘north’,‘south’,‘east’ and
‘west’. The action outcomes are made very stochastic, in order to compare different model sizes.
The right side of Figure 12 shows the relative action outcome for a ‘north’ action. In free space,
there are 15 possible next states, each with equal transition probability. On the other hand, walls
prevent not only the transition to the square the wall is located on, but also any squares behind the
wall. Therefore, close to a wall the number of possible next states is less than 15. When transition
to a square is blocked by a wall, the transition probability of that square is added to the transition
probability of the square in front of the wall. In order to make reaching the goal feasible despite the
stochastic actions, we use a goal area consisting of four goal states.

To compare performance, we measure the average return for each method over the first 500
episodes. For all methods, we use an ε-greedy policy with ε = 0.05 and initialize Q-values to 0.
BM-NTM, PS-NTM and BM-LVM perform a maximum of 5 updates per timestep. For all learning
rate based methods, we use an initial learning rate of 1 and decay the learning rate according to
Equation 4, while optimizing the decay rate d. Results are averaged over 200 independent runs. An
episode is stopped prematurely if the goal is not reached within 500 steps.

Table 4 presents the results, including the average return, optimal parameters, and computation
time per simulation step. The model sizes used are N = 1, 3, 5, and 15. For N = 15, all samples
enter the model. Therefore, BM-NTM has no decay rate in this case. The model weight indicates
the fraction of samples that entered the model. BM-NTM has in general a slightly higher weight
than PS-NTM, indicating the agent spends less time in open spaces and more time close to a wall.

For model sizes N = 1 and N = 3, the average return of BM-NTM is much better than that of
PS-NTM, despite the fact that for N = 3 more than a third of the samples are stored in the model.
For N = 1, the average return of PS-NTM is even worse than that of Q-learning. Figure 13 shows the
return as a function of the number of episodes for BM-NTM and PS-NTM with N = 1 and N = 3.
Unlike BM-NTM, the asymptotic performance for PS-NTM is clearly bounded by the size of the

2070

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

Figure 12: Left, the large maze task, in which the agent must travel from S to one of the G’s.
Right, transition probabilities (· 115) of a ‘north’ action for different positions of the agent
(indicated by the circle) with respect to the walls (black squares). When the transition
to a square is blocked by a wall, its transition probability is added to that of the square
in front of the wall.

model. Thus, PS-NTM can match the performance of BM-NTM only when the space reduction
over the full model is quite small (i.e., less than a factor of 2).

Interestingly, when N = 1, BM-LVM outperforms BM-NTM despite having the same space
complexity. Thus, when space is scarce, BM-LVM is a good option. In contrast, BM-NTM can
exploit larger models to further improve performance. The computation time per simulation step
for BM-NTM is comparable to that of PS-NTM, with the exception of N = 1, for which it is four
times larger. The reason is that the priority queue of PS-NTM is often close to empty in this case
and thus the 5 updates per timestep are often not reached.

Overall, these results clearly demonstrate the strength of best-match NTM learning. When a
significant space reduction over storing the full model is required, BM-NTM performs dramatically
better than PS-NTM at similar computational cost.

6. Best-Match Function Approximation

The BM-NTMmethod described in the previous section has a space complexity of O(n|S ||A |) com-
pared to O(|S |2|A |) for full model-based methods. However, in problems with large state spaces,
this space complexity may be prohibitive even when n= 1. In addition, BM-NTM cannot be applied
in problems with continuous state spaces. To address these limitations, this section demonstrates
that the principles behind best-match learning can also be applied to function approximation. We
show that the resulting algorithm, which combines the N most recent samples with the model-free
Q-value function, outperforms both linear Sarsa(λ) and linear experience replay on the mountain
car task. We start by describing best-match learning based on the N most recent samples for the
tabular case, and then we show how this can be extended to the function approximation case.

2071

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

model model optimal average standard time per step
size weight parameters return error (·10−6 s)

PS-NTM 1 0.12 - -16.9 0.4 0.21
3 0.36 - 9.8 0.3 1.5
5 0.57 - 22.6 0.2 2.1
15 1.00 - 28.9 0.2 3.1

BM-NTM 1 0.14 d = 0.04 15.4 0.3 0.85
3 0.40 d = 0.09 19.6 0.2 1.7
5 0.60 d = 0.06 22.3 0.2 2.2
15 1.00 - 29.3 0.2 3.1

BM-LVM - - d = 0.09 17.4 0.3 1.5
Q-learning - - d = 0.03 2.4 0.2 0.09

Table 4: Average return over the first 500 episodes, optimal parameters (d: α decay rate) and com-
putation time per simulation step on the Large Maze task.

0 100 200 300 400 500
−40

−30

−20

−10

0

10

20

30

40

episodes

re
tu

rn

PS−NTM, N = 1
BM−NTM, N = 1
PS−NTM, N = 3
BM−NTM, N = 3

Figure 13: Performance of BM-NTM and PS-NTM on the large maze task.

2072

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

6.1 Tabular Sequence Based Best-Match Learning

The generalized best-match equations are defined for an arbitrary set of samples (see Definition 11),
which can be stored in a model or as an explicit set. To combine best-match principles with function
approximation, we employ an explicit set consisting of the last N observed samples, an approach
we call sequence based best-match learning. In this section we describe sequence based best-match
learning for the tabular case and its advantage over experience replay, which also exploits a set of
recent samples. In the next section, we extend the tabular version of sequence based best-match
learning to function approximation.

Assume that a queue of the last N samples is maintained. When the queue is full and a new
sample is added to the back of the queue, the sample at the front of the queue is removed and used
to perform a model-free update of Qmf (s,a). The queue may contain multiple samples that belong
to the same state-action pair. If there are Nx

sa samples belonging to state-action pair (s,a), then the
best-match update based on these samples is

Qt,i+1(s,a) = wsa
0 Qmf

t (s,a)+wsa
1 υ

sa
1 +wsa

2 υ
sa
2 + ...+wsa

Nx
sa
υNx

sa
, (14)

where υsak = r+ γ maxcQt,i(s′,c) |r,s′ ∈ xsak . When the weights are defined according to Equations
12 and 13, this update can be implemented incrementally by performing Nx

sa Q-learning updates:

Q<k>(s,a) = (1−α)Q<k−1>(s,a)+α [rk+ γ max
a′

Qt,i(s
′
k,a

′)] , for 1≤ k ≤ Nx
sa ,

with Q<0>(s,a) = Qmf
t (s,a) and Qt,i+1(s,a) = Q<Nx

sa>(s,a).
By stepping through the queue from front to back and using each sample to perform an incre-

mental Q-learning update, all state-action pairs with samples in the queue receive one full best-
match update, according to Equation 14. By storing the intermediate Q<k> values at the same
location as the final Q-value, Q<Nx

sa> automatically becomes Qt,i+1 after all incremental updates
have been performed. This implementation requires that the Q-values from the state-action pairs
with samples in the queue are set equal to Q<0>, that is, to Qmf

t , before the update sweep begins.
Before resetting these Q-values, the update targets of the samples must be recomputed.

Despite a superficial resemblance, sequence based best-match learning is fundamentally differ-
ent from experience replay. Best-match learning uses the stored samples to correct previous updates
based on those samples, whereas experience replay performs additional updates with the same sam-
ple. To illustrate the effect of this difference, suppose that sample (s,a,r,s′) is observed at timestep
t = 1 and used for an update n timesteps in a row. For simplicity, assume there are no other sam-
ples belonging to (s,a) in the sample queue and that the learning rate α is constant. We indicate
the update target of the sample with υi, where i corresponds to the timestep at which the update is
performed. Therefore, υi+1 is likely to be more accurate than υi since it uses more recent Q-values
for s′. Since experience replay performs additional updates we can express Qn(s,a), the Q-value
of (s,a) at timestep n, in terms of Q0(s,a) and the update targets from the different timesteps as
follows:

Qn(s,a) = w0Q0(s,a)+w1 υ1 +w2 υ2 + ...+wn υn ,

with w0 =∏n
i=1 (1−α) and wk =α∏n

i=k+1 (1−α) for k> 0. If α� 1, the weights can be accurately
described with first-order approximations in α, yielding w0 ≈ 1−nα and wk ≈ α for k > 0. Using
these approximations, we can write for Qn(s,a):

Qn(s,a)≈ (1−β)Q0(s,a)+β
∑n
i=1 υi
n

, (15)

2073

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

with β = nα. On the other hand, best-match learning uses the sample for best-match updates, that
is, Qn(s,a) = (1−α)Qmf

n (s,a)+α υn. However, since Qmf
i (s,a) gets updated only when a sample

is removed from the queue, Qmf
n (s,a) = Q0(s,a) in this case. Therefore, the following holds for

best-match learning:
Qn(s,a) = (1−α)Q0(s,a)+α υn . (16)

The difference between Equation 15 and Equation 16 illustrates the fundamental advantage of se-
quence based best-match learning, for which Qn can be seen as an update with sample (s,a,r,s′)
using the most recent update target. In contrast, experience replay effectively performs an update
using an update target that is an average of the update targets from the different timesteps. There-
fore, the older, less accurate update targets still have an effect on Qn.

6.2 Best-Match Gradient Descent Learning

Since tabular sequence based best-match learning can be implemented by incremental Q-learning
updates, it can be easily extended to function approximation by combining it with the general gra-
dient descent update for Q-values (Sutton and Barto, 1998)

θ t+1 = θ t +α [υ t −Qt(st ,at)]∇θ tQt(st ,at) , (17)

where θ t is a weight vector corresponding to the basis functions of the approximation.
Algorithm 6 shows pseudocode for general gradient descent best-match function approximation.

Note that a learning rate and the most recent update target are stored per sample. The updates of θ
and θmf are based on Equation 17.

We evaluate a linear version of the best-match gradient descent algorithm by comparing its
performance with linear Sarsa(λ) as well as a linear version of experience replay on the mountain car
task (Boyan and Moore, 1995; Sutton, 1996; Sutton and Barto, 1998) using the settings as described
in Sutton and Barto (1998). This involves tile coding with ten 9x9 tilings, a discount factor of 1,
an exploration parameter ε= 0, and Q-values optimistically initialized to 0. Additionally, to bound
the run-time of an experiment, an episode is stopped prematurely if the goal is not reached within
1000 steps. Linear Sarsa(λ) is known for its good performance on this task (Sutton and Barto,
1998) and is therefore a good benchmark test. For Sarsa(λ), we use the settings that showed the
best performance over the first 20 episodes: α= 0.14 and λ= 0.9 with replacing traces. We tested
whether decaying the learning rate improves the performance for a number of different α values
around 0.14 but did not find a significant improvement. To make Sarsa(λ) more computationally
efficient, traces are cut-off for state-action pairs that were visited longer than 20 timesteps ago. For
best-match and experience replay, a queue of the 20 most recent samples is used and a single update
sweep through this sample set is performed at every timestep. We optimize the initial learning rate
α0 and the learning rate decay d (see Equation 4). Results are averaged over 5000 independent runs.

Table 5 shows the average return over the first 20 episodes, the optimal parameters, and the
computation time per simulation step for the 5000 runs. Figure 14 shows the return as a function
of the number of episodes. For trace length/N = 20, the performance of linear best-match is about
27% better than that of linear Sarsa(λ).6 On the other hand, Sarsa(λ) is about twice as fast.

Surprisingly, while experience replay performed comparably to Sarsa(λ) in the tabular case, in
the mountain car task it performs 16% better than linear Sarsa(λ). However, as expected, it performs

6. The linear Sarsa(λ) performance is in accordance with the performance found by several other researchers (http:
//webdocs.cs.ualberta.ca/˜sutton/book/errata.html).

2074

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

Algorithm 6 General Gradient-Descent Best-Match
1: set N, γ
2: initialize θ,α and set θmf = θ
3: initialize SampleQueue to empty
4: loop {over episodes}
5: initialize s
6: while s �= terminal state do
7: select action a, based on θ
8: take action a, observe s′,r
9: if size SampleQueue= N then
10: pop sample x from front of the SampleQueue
11: update θmf using x
12: end if
13: decay α; υ= /0
14: push new sample {s,a,r,s′,α,υ} to back of SampleQueue
15: for all samples x update υx← rx+ γ ·Vs′x using θ
16: for all samples x do
17: for all features from x: θ← θmf

18: end for
19: for all samples x (from front to back of SampleQueue) do
20: update θ using υx
21: end for
22: s← s′

23: end while
24: end loop

optimal parameters average standard time per step
return error (·10−6s)

best-match, N=20 α0 = 0.10, d = 0.09 -170.1 0.4 3.0
exp. replay, N=20 α0 = 0.10, d = 0.16 -195.1 0.4 2.5
Sarsa(λ), trace=20 λ= 0.9, α0 = 0.14, d = 0.0 -231.9 0.4 1.5
best-match, N=15 α0 = 0.10, d = 0.03 -176.3 0.4 2.5
best-match, N= 5 α0 = 0.10, d = 0.03 -215.1 0.4 1.5
Sarsa(λ), trace=∞ λ= 0.9, α0 = 0.14, d = 0.0 -228.2 0.4 6.7

Table 5: Average performance over the first 20 episodes and the computation time per simulation
step on the Mountain Car task (‘trace’ indicates trace length)

worse than linear best-match. Thus, a substantial portion of the performance improvement linear
best-match offers over Sarsa(λ) is due to the use of best-match principles, not simply the reuse of
data.

Besides a comparison with equal number of samples/updates, it is interesting to make a compar-
ison with equal computation time. To achieve this, we can either increase the sample set size used
by experience replay and Sarsa(λ), or decrease the sample set size used by linear best-match, in such

2075

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

2 4 6 8 10 12 14 16 18 20
−800

−700

−600

−500

−400

−300

−200

−100

0

episodes

re
tu

rn

linear best−match, N = 20
linear exp. replay, N = 20
linear Sarsa(λ), trace length = 20

Figure 14: Performance of linear best-match, experience replay and linear Sarsa(λ) on the Moun-
tain Car task using the 20 most recent samples.

a way that the computation times approximately match. We chose to decrease the sample set size of
linear best-match. Using N = 15 and N = 5 resulted in a computation time matching that of expe-
rience replay and Sarsa(λ), respectively. Table 5 shows that the performance of linear best-match is
also better with equal amount of computation time. In addition, we performed an experiment with
Sarsa(λ) without bound on the trace length. This resulted in an average return of −228.2, demon-
strating that the performance of Sarsa(λ) cannot be improved significantly by increasing the trace
length.

Overall, these results show that best-match learning can be successfully applied to function
approximation. Furthermore, they demonstrate that using samples to correct previous updates can
lead to better performance that using them to perform additional updates.

7. Discussion

The methods presented in this article approximate solutions to different instantiations of the gen-
eralized best-match equations (Definition 11). These best-match equations provide a theoretical
foundation for combining model-free learning (through updates of Qmf) with model-based learn-
ing (through updates of Q). The resulting methods offer two trade-offs. First, the selection of a
sparse, approximate model provides a trade-off between space and performance. Second, the num-
ber of best-match updates performed per timestep provides a trade-off between computation cost per
timestep and performance. The performance gain offered by best-match learning can be explained
from the perspective of the update targets. By performing best-match updates, the update targets
from the samples stored in the model are continually recomputed and the Q-values are updated to
incorporate any resulting changes.

2076

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

In the case of best-match LVM, this produces an evaluation method that leads to the same values
as TD(λ) with λ t = α t(st) for acyclic tasks, as proven in Theorem 7. This equivalence arises from
the fact that both best-match LVM learning and eligibility traces outperform 1-step methods by
correcting previous updates with newly obtained samples. However, our theoretical and empirical
results suggest that the best-match LVM equations provide a much stronger basis for exploiting this
principle.

Theorem 8 proves that best-match LVM evaluation can perform updates that are unbiased with
respect to the initial values for an arbitrary MDP, while for TD(λ) this can only be achieved for
acyclic tasks. In the control case, Theorem 10 proves convergence in the limit to the optimal Q-
values for a general class of best-match LVM control algorithms. Similar converge guarantees do
not exist for eligibility traces. In addition, best-match LVM learning avoids the need to choose be-
tween different trace types (accumulating or replacing) and does not require an extra λ parameter.
Furthermore, in deterministic problems, best-match LVM learning, reduces to model-based learn-
ing, as one would expect for an algorithm that makes optimal use of theO(|S ||A |) space complexity.

Our empirical results show that best-match LVM evaluation substantially outperforms TD(λ)
and experience replay (Figure 9), despite having similar computational costs. For the control case,
we show that BM-LVM, which uses prioritized sweeping to trade-off computation cost with perfor-
mance, substantially outperforms not only Q(λ), but also other methods with a space complexity of
O(|S ||A |) (Figure 10). These results illustrate how best-match LVM learning efficiently exploits its
stored samples.

Alternatively, best-match learning can be combined with an n-transition model, yielding space
complexity betweenO(|S ||A |) andO(|S |2|A |). Without using best-match learning, the performance
of an NTM is bounded by the quality of the model approximation. In contrast, Theorem 12 proves
that BM-NTM converges in the limit to the optimal Q-values. Empirically, we demonstrate that, for
any significant space reduction compared to the full model, BM-NTM performs much better than
using only the NTM (Figure 13).

Finally, our results demonstrate that the ideas behind best-match learning can be successfully
extended to function approximation by combining sequence based best-match learning with gradient
descent updates (Algorithm 6). In particular, a linear implementation outperforms Sarsa(λ) and
experience replay on a benchmark task (Figure 14).

8. Future Work

Several avenues of future research are suggested by the work presented in this article. For example,
in Section 4.2 we proved that the best-match LVM evaluation algorithm can eliminate bias with
respect to the initial values. It may be possible to extend this result to the control case. One approach
would be to define a state value as the maximum of the Q-values over previously taken actions
instead of the maximum over all available actions. However, a potential problem is that the control
algorithms compute an approximation of the best-match Q-values, instead of the exact values. It is
an open question whether efficient approximations exist that are also unbiased. A second potential
problem is that many exploration schemes, such as optimistic initialization, depend on the Q-values
and might not work as well when updates are unbiased.

The convergence results for the tabular best-match methods are similar to those of Q-learning:
convergence in the limit to the optimal policy. It may be possible, however, to construct best-match

2077

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

methods that are probably approximately correct (PAC). Since Strehl et al. (2006) showed that a full
model is not required for a method to be PAC, we are optimistic that such methods exist.

Finally, it may be possible to develop novel combinations of best-match function approxima-
tion with other sample-based approaches such as fitted Q-iteration (Ernst et al., 2005) or LSPI
(Lagoudakis and Parr, 2003). By combining the strengths of each approach, such methods could
yield even better on-line performance. Fitted Q-iteration, for example, is an off-line algorithm that
computes a policy based on a large set of samples, by performing iterative update sweeps through
the sample set. For a good approximation, the number of samples should be much larger than the
number of parameters of the approximation. By using a combination between a model-free Q-value
function and a sample set, a smaller sample set might be possible, reducing the requirements with
respect to space and computation, and potentially producing an efficient on-line version of fitted
Q-iteration.

9. Conclusion

This article introduced best-match learning, a reinforcement learning approach that combines model-
free and model-based learning by using some samples to update a sparse model and the rest to update
a model-free Q-value. The final Q-values are computed from best-match updates that combine the
model-free Q-values with the sparse model. By controlling which samples enter the model, the size
of the model, and hence the space requirements, can be controlled. In the tabular case, the combi-
nation with the model-free Q-values ensures convergence to the optimal Q-values for a variety of
model approximations.

Our empirical results demonstrate that in the tabular case, when there is not enough space avail-
able to store the full model, methods that exploit the best-match equations perform substantially
better than methods based on only model-free learning or sparse model-based methods. This sug-
gests that best-match learning should be the strategy of choice when limited space is available.

In addition, we demonstrated that best-match learning can be successfully extended to the func-
tion approximation domain, where the sparse model is replaced by an explicit set of samples. An
interesting result in this domain is that best-match learning, which uses the sample set to correct
previous updates, outperforms experience replay, which uses the same sample set but performs ad-
ditional updates.

Overall, we believe that best-match learning provides an important missing link between model-
free and model-based learning and that the methods introduced in this article constitute a new
benchmark for reinforcement learning algorithms that are efficient with respect to both space and
computation.

Acknowledgments

The research reported here is part of the Interactive Collaborative Information Systems (ICIS)
project, supported by the Dutch Ministry of Economic Affairs, grant nr: BSIK03024.

Appendix A. Proof of Theorem 1

Theorem 1 Given the same experience sequence, each Q-value from the current state has received
the same number of updates using JIT updates (Equation 3) as using regular updates (Equation

2078

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

2). However, each Q-value in the update target of a JIT update has received an equal or greater
number of updates as in the update target of the corresponding regular update.

Proof To prove the theorem, we need to prove

U [Q̃t(st ,a)] = U [Qt(st ,a)] , for all a , (18)

U [Q̃t−1(st∗+1,a)] ≥ U [Qt∗(st∗+1,a)] , for all a , (19)

whereU [Qk] is the total number of updates a Q-value has received at time k. From Equation 2 and
3 it follows that for both update types (st ,at∗) is updated once between timestep t∗ and timestep t,
while the Q-values of the other actions of st are not updated during this period. Since this applies
to all visits and U [Q̃0(s,a)] = U [Q0(s,a)] = 0 for all s and a, the total number of updates for a
state-action pair is always equal for just-in-time updates and regular updates, when the state is the
current state, proving (18).

To prove (19), first assume that at∗ is a returning action, that is, t− 1 = t∗. In this case clearly
(19) is true. Now, assume at∗ is not a returning action, that is, t−1> t∗. From (18) it follows that
U [Q̃t∗+1(st∗+1,a)] =U [Qt∗+1(st∗+1,a)]. Since t−1≥ t∗+1 andU [Q̃] increases monotonically over
time, it follows that (19) is true. When state st∗+1 is revisited before t, an extra update is performed
and there is at least one action a, for whichU [Q̃t−1(st∗+1,a)]>U [Qt∗(st∗+1,a)].

Appendix B. Relationship between Best-Match LVM and TD(λ)

Sutton and Singh (1994) showed that it is possible to perform TD updates that are unbiased with
respect to the initial values, by using TD(λ) where λ is made time-dependent and set equal to α t(st).
However, TD(λ) can be made unbiased only for acyclic tasks, that is, episodic tasks with no revisits
of states within an episode. In this appendix, we prove that best-match LVM evaluation and TD(λ)
can lead to the same values for acyclic tasks and that best-match LVM evaluation can perform
unbiased updates for all MDPs.

B.1 Background on TD(λ)

The forward view of TD(λ) relates it to the λ-return (Watkins, 1989; Jaakkola et al., 1994), defined
by

Rλt = (1−λ)
∞

∑
n=1

λn−1R(n)
t ,

where R(n)
t indicates the n-step return, defined by

R(n)
t = rt+1+ γrt+2+ γ2 rt+3+ ...+ γn−1 rt+n+ γnVt(st+n) .

The λ-return algorithm updates state st with Rλt . It can only be implemented off-line, since it makes
use of values from timesteps larger than t for the update of state st . While the off-line version of
TD(λ) computes the same state values as the λ-return algorithm (Sutton and Barto, 1998), TD(λ)
can also be implemented on-line, since it does not rely on values from the future. On-line TD(λ)
can lead to more accurate updates than off-line TD(λ), although the interpretation as an incremental

2079

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

implementation of the λ-return holds only by approximation for the on-line case (Sutton and Barto,
1998).

The backward view of TD(λ) interprets λ as the trace decay parameter of an eligibility trace.
Each sample is used to update, not just the current state, but all states, proportional to their trace
parameter. At each timestep the trace of the current state is increased, while the other traces are
decreased by γλ. Accumulating traces increase the trace parameter of a visited state by 1, while
replacing traces set it equal to 1.

Sutton and Singh (1994) proposed several ways for setting α and λ that eliminate bias towards
initial state values, normally inherent to temporal-difference methods. One of these is to use TD(λ)
where λ t = α t(st) and α0(s) = 1 for all s. This produces the same values as processing a state
backwards with TD(0). All the proposed methods eliminate the bias only for acyclic tasks.

The equation for the λ-return with time-dependent λ is (Sutton and Barto, 1998)

Rλ tt =
∞

∑
n=1

R(n)
t (1−λ t+n)

n−1
∏
i=1

λ t+i

=
T−t−1
∑
n=1

R(n)
t (1−λ t+n)

n−1
∏
i=1

λ t+i+Rt
T−t−1
∏
i=1

λ t+i , (20)

where T is the last timestep of the episode and Rt is the complete return. Note that Rt = R
(T−t)
t .

B.2 Forward View Best-Match LVM Values

The λ-return is based on the experience sequence encountered by the agent when interacting with
the environment. We can define for each visited state a last-visit experience sequence based on the
LVM by going through the transition states defined in the LVM. Using this sequence we define a
last-visit version of the n-step return and of a special version of the λ-return.

Definition 13 The last-visit experience sequence for state s is

s[0],r[1],s[1],r[2],s[2], ...,r[N],s[N] ,

where s[0] = s, s[n] = S′(s[n−1]) for n > 0 and r[n] = R′(s[n−1]). The sequence ends when a state is
encountered that is terminal, equal to s[0] or that has no transition state. We call s[N] the last-visit
sequence end state.

Using this definition, we define a last-visit version of the n-step return.

Definition 14 The last-visit n-step return of s is the n-step return applied to the last-visit experience
sequence of s:

R̆(n)
s = r[1] + γr[2] + γ2 r[3] + ...+ γn−1 r[n] + γnV m f (s[n]) . (21)

We can now define a special version of the λ-return, which we call the last-visit α-return: a last-visit
version of the time dependent λ-return (Equation 20) with λ t = α t(st).

Definition 15 The last-visit α-return of s is

R̆αs =
N−1
∑
n=1

R̆(n)
s (1−α [n])

n−1
∏
i=1

α [i] + R̆(N)
s

N−1
∏
i=1

α [i] , (22)

2080

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

where α [k] is shorthand for α(s[k]), s[k] is the kth state from the last-visit experience sequence of s
and N is the index of the last-visit sequence end state.

The following lemma relates the last-visit α-return of s to the best-match value of s. The lemma
is proven in Appendix C.

Lemma 16 If the last-visit sequence end state of s is a terminal state, the following equation holds
for the best-match value of s:

V B(s) = (1−αs)V mf (s)+αsR̆αs .

This lemma forms the basis for the proof of the following theorem.
Theorem 7 For an episodic, acyclic, evaluation task, off-line best-match LVM evaluation computes
the same values as off-line TD(λ) with λ t = α t(st).
Proof Let Vk be the state value function after the off-line updates at the end of episode k. For all
states that are visited during an episode, V is updated according to Lemma 16, since the last-visit
sequence end state is a terminal state for all these visited states. For the off-line algorithm, before
Vk(s) is computed, the update V

mf
k (s) = Vk−1(s) is performed for all visited states. Therefore, the

value updates of the visited states can be written as

Vk(s) = (1−αs)Vk−1(s)+αsR̆αs .

If the task is acyclic, the last-visit experience sequence of a visited state s is equal to the experience
sequence followed by the agent from this state to the terminal state. Therefore, R̆αs = Rλ=α t(st)t . Fi-
nally, since the values computed by off-line TD(λ) are equal to the values computed by the λ-return
algorithm, off-line TD(λ) with λ t = α t(st) performs the same updates as off-line best-match LVM
evaluation.

It follows from Theorem 7 that best-match evaluation can also eliminate the bias for acyclic
tasks. The next theorem extends this property to a general MDP.
Theorem 8 The state values computed by the on-line best-match LVM evaluation algorithm (Al-
gorithm 2) are unbiased with respect to the initial state values, when the initial learning rates α0(s)
are set to 1 for all s.
Proof Algorithm 2 computes at each timestep the best-match value of the current state. We will
prove that if the best-match values of visited states computed at timesteps smaller than t are unbiased
with respect to the initial state values, then so is the best-match value computed at timestep t. Since
for t = 0 there are no visited states, it follows by induction that the values computed for all timesteps
t are unbiased.

The best-match values are computed using V B(s[0]) = cA+ cBV B(s[N]) with cA and cB defined
as in (8) and (9) respectively. In Section 4.2 we showed that for the current state, s[N] is either
a terminal state or equal to s[0]. If s[N] is a terminal state, V

B(s[0]) = cA, while if s[0] = s[N], then
V B(s[0]) = cA/(1−cB). In either case, the computed best-match value depends only on the variables
in cA and cB, which consists of the learning rates, V mf (s[i]), s[i] and r[i] for 0≤ i≤ N. Clearly, only
V mf (s[i]) can be affected by the initial state values. s[i] has been visited at least once, else it would
not appear in the last-visit experience sequence. If s[i] has been visited once,V

mf (s[i]) is equal to the

2081

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

initial value V0(s[i]). However, since we assumed initial learning rates of 1, this value of V
mf (s[i]) is

removed from cA. If s[i] has been visited more than once, it is equal to the best-match value of s[i]
computed at a timestep smaller than t. From this it follows that if the best-match values computed
at timesteps smaller than t are unbiased with respect to the initial values, then so is the best-match
value computed at timestep t.

Appendix C. Proof of Lemma 16

For the sake of brevity, we present only the proof of Lemma 16 for constant α. The proof for state
dependent α follows the same pattern.
Lemma 16 If the last-visit sequence end state of s is a terminal state, the following equation holds
for the best-match value of s:

V B(s) = (1−αs)V mf (s)+αsR̆αs .

Proof The best-match values in case of an LVM are defined as the solution of the set of best-match
LVM equations (Definition 6). In Section 4.2 we showed that by backward substitution of best-
match equations we can express the best-match value of s[0] in terms of the best-match value of s[N].
If s[N] is a terminal state, V

B(s[N]) = 0 and V
B(s[0]) is equal to cA defined as in (8). This yields

V B(s[0]) =
N−1
∑
i=0

(
(1−α)V mf (s[i])+αr[i+1]

) i−1
∏
k=0

γα ,

= α
N

∑
k=1

(αγ)k−1 r[k] + (1−α)
N−1
∑
k=0

(αγ)kV m f (s[k]) . (23)

On the other hand, by substituting the definitions of the last-visit α-return (22) and the last-visit
n-step return (21) into the lemma, the following equation for V B(s[0]) appears:

V B(s[0]) = (1−α)V mf (s[0])+α

[
(1−α)

N−1
∑
k=1

αk−1
(k

∑
p=1

γ p−1r[p] + γkV m f (s[k])

)

+ αN−1
N

∑
p=1

γ p−1r[p]

]
. (24)

The rest of this proof shows that (23) is equal to (24).
We start by separating (24) into its state value components (Vc) and its reward components (Rc).

We then simplify these components separately:

Vc = (1−α)V mf (s[0])+α(1−α)
N−1
∑
k=1

αk−1 γkV m f (s[k])

= (1−α)
(
V mf (s[0])+

N−1
∑
k=1

(αγ)kV m f (s[k])

)
= (1−α)

N−1
∑
k=0

(αγ)kV m f (s[k]) ,

2082

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

Rc = (1−α)
N−1
∑
k=1

k

∑
p=1

αk γ p−1r[p] +αN
N

∑
p=1

γ p−1r[p]

= (1−α)
N−1
∑
p=1

N−1
∑
k=p

αk γ p−1r[p] +αN
N−1
∑
p=1

γ p−1r[p] +αN γN−1 r[N]

=
N−1
∑
p=1

[
(1−α)

N−1
∑
k=p

αk γ p−1r[p] +αN γ p−1r[p]

]
+αN γN−1 r[N]

=
N−1
∑
p=1

[(N−1
∑
k=p

αk−
N−1
∑
k=p

αk+1+αN
)
γ p−1 r[p]

]
+αN γN−1 r[N]

=
N−1
∑
p=1

[(N

∑
k=p

αk−
N−1
∑
k=p

αk+1
)
γ p−1 r[p]

]
+αN γN−1 r[N]

=
N−1
∑
p=1

[(N−1
∑

j=p−1
α j+1−

N−1
∑
k=p

αk+1
)
γ p−1 r[p]

]
+αN γN−1 r[N]

=
N−1
∑
p=1

[
αp γ p−1 r[p]

]
+αN γN−1 r[N]

= α
N

∑
p=1

(αγ)p−1 r[p] .

Adding these simplified components back together yields Equation 23.

Appendix D. Proof of Theorem 10

Theorem 10 The Q-values of a member of the best-match LVM control class, shown in Algorithm
3, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

2. α t(s,a) ∈ [0,1] , ∑ t α t(s,a) = ∞ , ∑ t(α t(s,a))
2 < ∞ with probability 1 (w.p.1)

and α t(s,a) = 0 unless (s,a) = (st ,at).

3. Var{R(s,a,s′)}< ∞.

4. γ< 1.

Proof We prove that the Q-values of an arbitrary instantiation of Algorithm 3 converge in the limit
w.p.1 to those of the regular Q-learning algorithm. Because the algorithm requires that each visited
state action pair is updated at least once before its revisit, the following equation holds

Qmf
t+1(st ,at) = (1−α t(st ,at))Qmf

t (st ,at)+α t(st ,at)

(
rt∗+1+max

a′
Qτ,i(st∗+1,a

′)
)
,

2083

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

where t∗ is the timestep of the previous visit of (st ,at) and Qτ,i is the Q-value of st∗+1 that is
used in the update target of the last best-match update of (st ,at), at timestep τ. Note that t∗+
1 ≤ τ ≤ t. Assume that Q-learning is applied to the same state-action sequence produced by the
given instantiation of Algorithm 3. We denote the Q-values from Q-learning by Q̃. Subtracting the
update equation for Q-learning at time t∗+ 1 using learning rate α t(st ,at) and defining Δ t(s,a) =
Qmf
t (s,a)− Q̃t∗(s,a) yields

Δ t+1(st ,at) = (1−α t(st ,at))Δ t(st ,at)+α t(st ,at)Ft(st ,at) , (25)

where Ft(st ,at) = γ
(
maxcQτ,i(st∗+1,c)−maxc Q̃t∗(st∗+1,c)

)
.

We now prove that Qmf
t and Qt∗ converge in the limit to each other using the same lemma used

to prove the convergence of Sarsa (Singh et al., 2000):

Lemma 17 Consider a stochastic process (α t ,Δ t ,Ft), t ≥ 0, where α t ,Δ t ,Ft : X → IR satisfy the
equations:

Δ t+1(x) = (1−α t(x))Δ t(x)+α t(x)Ft(x) ,

where x ∈ X and t = 0,1,2, Let Pt be a sequence of increasing σ-fields such that α0 and Δ0
are P0-measurable and ζ t ,Δ t and Ft−1 are Pt-measurable, t = 1,2, Assume that the following
conditions hold:

1. The set X is finite.

2. α t(x) ∈ [0,1] , ∑ t α t(x) = ∞ , ∑ t(α t(x))
2 < ∞ w.p.1 .

3. ‖E{Ft |Pt}‖ ≤ κ‖Δ t‖+ ct , where κ ∈ [0,1) and ct converges to zero w.p.1, and

4. Var{Ft(xt)|Pt} ≤ K(1+κ‖Δ t‖)2, where K is some constant,

where ‖ · ‖ denotes a maximum norm. Then Δ t converges to zero with probability one.

The correspondence of (25) to Lemma 17 follows from associating X with the set of state-action
pairs (s,a) and α t(x) with α t(s,a). We now prove that the 4 conditions hold.

The first two conditions follow from the first two conditions of Theorem 10. We define Pt
as the set {Q0,α0,a0,s0, ...,rt−1,α t ,at ,st}. With this definition, Var{Ft(st ,at)|Pt} = 0, satisfying
condition 4, and E{Ft(st ,at)|Pt}= Ft(st ,at). For |Ft(st ,at)| the following holds:

|Ft(st ,at)| = γ |max
b
Qτ,i(st∗+1,b)−max

b
Q̃t∗(st∗+1,b)|

≤ γ||Qτ,i(u,b)− Q̃t∗(u,b)||
= γ||Δ t(u,b)+Qτ,i(u,b)−Qmf

t (u,b)||
≤ γ||Δ t ||+ ||Qτ,i(u,b)−Qmf

t (u,b)|| .

We further define Ft(s,a) = 0 if (s,a) �= (st ,at). Therefore, ||Ft(s,a)||= |Ft(st ,at)| ≤ γ||Δ t ||+Ct ,
where Ct = ||Qτ,i(u,b)−Qmf

t (u,b)||. We now show that Ct converges to zero w.p.1. For Ct , the
following holds:

Ct ≤ ||Qτ,i(u,b)−Qmf
τ∗ (u,b)||+ ||Qmf

τ∗ (u,b)−Qmf
t (u,b)|| ,

2084

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

where τ∗ is the timestep of the last visit of (u,b) before timestep τ. Qτ,i(u,b) is the result of a best-
match update of Qmf

τ∗ (u,b) or is equal to it if no best-match update has been performed yet. In the
latter case, the first term is zero; in the former case it is

Qτ,i(u,b) = (1−ατ(u,b))Q
mf
τ∗ (u,b)+ατ(u,b)υ

ub
τ .

Because of condition 2 of Theorem 10, ατ(u,b) converges to 0 w.p.1 and Qτ,i(u,b) converges to
Qmf
τ∗ (u,b) w.p.1. Therefore, the first term converges to 0 w.p.1. For the same reason, the second
term converges to zero.

Thus, the third condition of the lemma also holds and Qmf (s,a) converges to Q̃(s,a), the Q-
values from Q-learning. Because of the convergence guarantee of Q-learning, Qmf (s,a) also con-
verges to Q∗(s,a). Finally, since the Q-values of the given instantiation are a best-match update
of Qmf (s,a) and because α t(s,a) converges to zero w.p.1, this also proves that the Q-values of the
instantiation converge to Q∗.

Appendix E. Proof of Theorem 12

Theorem 12 The Q-values of a member of the best-match NTM control class, shown in Algorithm
5, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

2. αsa
t ∈ [0,1] , ∑ t α

sa
t = ∞ , ∑ t(α

sa
t)

2 < ∞ with probability 1 (w.p.1),
and αsa

t = 0 unless (s,a) = (st ,at) and st+1 /∈ NTM(st ,at).

3. Var{R(s,a,s′)}< ∞.

4. γ< 1.

E.1 Preliminaries

In this proof, we indicate the NTM by M . Also, we indicate the model-free Q-value, Qmf , by Q̆.
In addition, we use a single iteration index j for Q as well as Q̆. This global index is increased each
time an update (of either Q̆ or Q) occurs. Thus, j is equal to the total number of model-free updates
plus best-match updates that have occurred since the start of an episode. Clearly, t → ∞ implies
j→ ∞.
By denoting the state-action pair that gets updated by the j-th update as (s j,a j), we can write

the model-free (mf) update as

Q̆ j+1(s j,a j) = (1−αs ja j)Q̆ j(s j,a j)+αs ja j [r j+1+ γmax
a′

Qj(s
′
j+1,a

′)] , (26)

where r j+1 and s′j+1 are the reward and transition state from the sample (st ,at ,rt+1,st+1) corre-
sponding to (s j,a j). We use s′j+1 instead of s j+1, since s

′
j+1, the transition state for s j, is in general

not equal to s j+1, the state that receives an update at iteration step j+1. The best-match (bm) update
is

Qj+1(s j,a j) = w
sj,a j
0 Q̆ j(s j,a j)+(1−wsja j0)

[
R̂ s ja j + γ∑

s′
P̂ s′
s ja jmaxa′

Qj(s
′,a′)

]
.

2085

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

Note that there is no specific sample corresponding to a best-match update, since the update is based
on the model estimate and can occur multiple times per timestep.

Let PM
sa = ∑s′∈M P s′

sa. If PM
sa = 0, wsa

0 will always be 1 and the best-match update reduces to
Qj+1(s j,a j) = Q̆ j(s j,a j). We make this explicit by the following equation:

Qj+1(s j,a j) =

{
Q̆ j(s j,a j) if PM

sa = 0

Yj(s j,a j) if PM
sa > 0 ,

(27)

with

Yj(s j,a j) = w
sj,a j
0 Q̆ j(s j,a j)+(1−wsja j0)

[
R̂ s ja j + γ∑

s′
P̂ s′
s ja jmaxa′

Qj(s
′,a′)

]
.

Each time a sample is observed by the algorithm, w0 gets updated. In addition, when the sample
is part of M , R̂ and P̂ get updated. Therefore, the values of these variables can change between
iteration steps. However, for readability, we omit the j subscript for these variables. From the
definition of w0, R̂ and P̂ , and the law of large numbers, it follows that in the limit the following
holds:7

lim
j→∞

wsa
0 = 1−PM

sa , (28)

lim
j→∞

R̂ sa = ∑
s′∈M

P s′
saR

s′
sa/P

M
sa , (29)

lim
j→∞

P̂ s′
sa = P s′

sa/P
M
sa . (30)

In general, the model-free Q-values, Q̆, will not converge to Q∗, since they do not receive
updates from samples corresponding to the next states stored by the NTM. However, as part of the
proof, we show that the model-free Q-values converge to an alternative value, which we indicate by
Q̆∗. This value is defined as8

Q̆∗(s,a) = ∑
s′ /∈M

P s′
sa [R

s′
sa+ γmax

a′
Q∗(s′,a′)]/(1−PM

sa) . (31)

Using this equation, we can express Q∗ as

Q∗(s,a) = ∑
s′ /∈M

P s′
sa[R

s′
sa+ γmax

a′
Q∗(s′,a′)]+ ∑

s′∈M
P s′
sa[R

s′
sa+ γmax

a′
Q∗(s′,a′)]

= (1−PM
sa)Q̆

∗(sa)+ ∑
s′∈M

P s′
sa[R

s′
sa+ γmax

a′
Q∗(s′,a′)] . (32)

Note that it follows from (32), that

Q∗(s,a) = Q̆∗(s,a) , if PM
sa = 0 . (33)

Convergence of Qj to Q∗ requires convergence of Q̆ j to Q̆∗, and vice versa. To deal with this
mutual dependence relation, we simultaneously prove their convergence. To achieve this, we define

7. Note that R̂ sa and P̂ s′
sa do not converge to R sa and P s′

sa, but to normalized values of these variables.
8. For PM

sa = 1, that is, when all samples are stored by the NTM, Q̆∗(s,a) is not defined. However, in this case, Q̆(s,a)
does not receive any updates, nor is it used by any other update. Therefore, we can safely ignore the value Q̆(s,a),
and consequently Q̆∗(s,a), if PM

sa = 1.

2086

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

a function U : S ×A ×B → IR that encompasses both functions Q and Q̆. B is a set consisting of
only two elements: ‘mf’ and ‘bm’, which indicate the Q-value type. We defineUj as

Uj(s,a,b) =

{
Q̆ j(s,a) if b = ‘mf’

Qj(s,a) if b = ‘bm’ .
(34)

Both updates (26) and (27) can now be interpreted as updates ofUj(s j,a j,b j). It follows from (34)
that when the model-free update is performed, b j = ‘mf’, while for the best-match update b j = ‘bm’.

We will prove convergence ofUj toU∗j , defined as

U∗(s,a,b) =

{
Q̆∗(s,a) if b = ‘mf’

Q∗(s,a) if b = ‘bm’ .

The difficulty with this proof is that we cannot simply apply Lemma 17 (or similar stochastic
approximation lemmas), used to prove convergence of BM-LVM, since the ∑ t(α t(xt))

2 < ∞ con-
dition of Lemma 17 is not met for b = ‘bm’. On the other hand, a related lemma can be deduced
(see Appendix F), that does not require ∑ t(α t(xt))

2 < ∞, however, it requires that the contraction
condition holds for the value of Ft , instead of its expected value. Hence, also this lemma cannot be
directly applied.

To deal with this, we define a related function U ′j, that does comply with the ∑ t(α t(xt))
2 < ∞

condition, hence we can prove convergence of it to U∗ using Lemma 17. On the other hand, the
difference between U ′j and Uj complies with all the conditions of Lemma 20, hence we can prove
thatUj converges toU ′j using Lemma 20. Adding these two results together, proves the theorem.

We defineU ′j as

U ′j(s,a,b) =

{
Q̆′(s,a) if b = ‘mf’

Q′(s,a) if b = ‘bm’ .

Q̆′ and Q′ are updated using the same sample sequence as used for Q̆ and Q. The update for Q̆′ is

Q̆′j+1(s j,a j) = (1−αs ja j)Q̆′j(s j,a j)+αs ja j [r j+1+ γmax
a′

Q′j(s
′
j+1,a

′)] ,

while the update for Q′ is

Q′j+1(s j,a j) =

{
Q̆′j(s j,a j) if PM

sa = 0

(1−βs ja j)Q′j(s j,a j)+βs ja jY ′j(s j,a j) if PM
sa > 0 ,

(35)

with

Y ′j(s j,a j) = w
sj,a j
0 Q̆′j(s j,a j)+(1−wsja j0)

[
R̂ s ja j + γ∑

s′
P̂ s′
s ja jmaxa′

Q′j(s
′,a′)

]
.

Note that the only difference with the updates of Q and Q̆ is the way Q′ is updated for PM
sa > 0.

Instead of setting Q′j+1(s j,a j) equal to Y
′
j(s j,a j), it is set equal to a weighted average of Y

′
j(s j,a j)

and Q′j(s j,a j). The weighting is controlled by β j, which is an arbitrary learning rate with properties
βsaj ∈ [0,1], ∑ j β

sa
j = ∞ , ∑ j(β

sa
j)
2 < ∞ w.p.1., and βsaj = 0 unless (s,a) = (s j,a j) and b j = ‘bm’.9

Because of this learning rate, Lemma 17 can be used to prove convergence ofU ′j toU
∗.

9. Note that such a β always exists.

2087

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

E.2 Convergence ofU ′j toU
∗

Lemma 18 U ′j(s,a,b) converges in the limit to U
∗(s,a,b) w.p.1.

Proof We define Δ′(s,a,b) =U ′j(s,a,b)−U∗j (s,a,b) and will prove that Δ′(s,a,b) converges to 0
using Lemma 17. For b j = ‘bm’, we use the contraction factor κsa, defined as

κsa = (1−PM
sa)+ γPM

sa . (36)

To ensure that κsa < 1, PM
sa has to be larger than 0. Therefore, we exclude (s,a,b) triples for which

b = ‘bm’∧PM
sa = 0 from the domain of Δ′. This can be done, because Algorithm 5 states that at

least one best-match update occurs in between two model-free updates. Therefore, if PM
sa = 0 ,

Q′j(s,a) is either equal to Q̆
′
j(s,a) or one (model-free) update apart. Since α

sa
j converges to 0, it

follows that Q′j(s,a) converges in the limit to Q̆
′
j(s,a). Alternatively, we can say

Q′j(s,a) = Q̆′j(s,a)+ c′j(s,a) , if PM
sa = 0 , (37)

with c′j(s,a) converging to 0 w.p.1.
10 Combining this with (33), the following holds:

lim
j→∞

Q̆′j(s,a) = Q̆∗(s,a) ⇒ lim
j→∞

Q′j(s,a) = Q∗(s,a) , if PM
sa = 0 . (38)

Note, ‖Q̆′j−Q̆∗‖ ≤ ‖Δ′j‖. However, because of the exclusion of (s,a, ‘bm’) triples with PM
sa = 0,

‖Q′j−Q∗‖ ≤ ‖Δ j‖ does not hold in general. Instead, the following holds:

‖Q′j−Q∗‖ = max(‖Q′j−Q∗‖PMsa >0,‖Q
′
j−Q∗‖PMsa =0)

≤ max(‖Q′j−Q∗‖PMsa >0,‖Q̆
′
j− Q̆∗‖PMsa =0+‖c

′
j‖)

≤ max(‖U ′j−U∗‖,‖U ′j−U∗‖+‖c′j‖)
= ‖U ′j−U∗‖+‖c′j‖
= ‖Δ′‖+‖c′j‖ .

Because of the exclusion of the (s,a,b) triples mentioned above, for all (s,a, ‘bm’) triples in the
domain of Δ′j, PM

sa > 0.
Δ′j is updated according to

Δ′j+1(s,a,b) = (1−ζ′j(s,a,b))Δ′j(s,a,b)+ζ′j(s,a,b)F
′
j(s,a,b) .

For (s,a,b) �= (s j,a j,b j), ζ′j(s,a,b) = 0 and F
′
j (s,a,b) = 0. For (s j,a j,b j) the following holds:

ζ′j(s j,a j,b j) =

{
α
s ja j
j if b j = ‘mf’

β
s ja j
j if b j = ‘bm’ ,

F ′j (s j,a j,b j) =

{
r j+1+ γmaxa′Q′j(s

′
j+1,a

′)− Q̆∗(s j,a j) if b j = ‘mf’

Y ′j(s j,a j)−Q∗(s j,a j) if b j = ‘bm’ .

10. We use the notational convention to indicate variables that converge to 0 with probability 1 with lowercase, Latin
letters: c, d, e,

2088

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

We now prove that Δ′j converges to zero, by showing the conditions for Lemma 17 hold, using
the σ-field Pj, defined as11

P0 = {Q′0, Q̆′0,ζ0,w0,0, P̆0, R̆ 0,s0,a0} ,
Pj = Pj−1∩{r j,s′j,ζ j,w0, j, P̆ j, R̆ j,s j,a j} .

Conditions 1, 2 and 4 of the Lemma 17 follow from conditions 1,2, and 3 of Theorem 12 and the
conditions that hold for βsaj . Condition 3 of the lemma, we prove below.

For b j = ‘mf’, using (31), the following holds:

|E{F ′j(s j,a j, ‘mf’)|Pj}| =
∣∣∣ ∑
s′ /∈M

P s′
s ja j [R

s′
s ja j + γmax

a′
Q′j(s

′,a′)]/(1−PM
s ja j)− Q̆∗(s j,a j)

∣∣∣
= γ ∑

s′ /∈M
P s′
s ja j

∣∣∣max
a′

Q′j(s
′,a′)−max

a′
Q∗(s′,a′)

∣∣∣/(1−PM
s ja j)

≤ γ‖Q′j−Q∗‖
≤ γ‖Δ′j‖+ γ‖c′j‖ . (39)

For b j = ‘bm’, using (32), we can write

|F ′j(s j,a j, ‘bm’)| = |Y ′j(s j,a j)−Q∗(s j,a j)|
≤
∣∣∣(1−PM

s ja j)(Q̆
′
j(s j,a j)− Q̆∗(s j,a j))

+ γ ∑
s′∈M

P s′
s ja j [maxa′

Q′j(s
′,a′)−max

a′
Q∗(s′,a′)]

∣∣∣
+
∣∣∣ [wsja j0 − (1−PM

s ja j)
]
· Q̆′j(s j,a j)

∣∣∣
+
∣∣∣(1−wsja j0)R̂ s ja j − ∑

s′∈M
P s′
s ja jR

s′
s ja j

∣∣∣
+ γ

∣∣∣ ∑
s′∈M

[
(1−wsja j0)P̂ s′

s ja j −P s′
s ja j

]
·max

a′
Q′j(s

′,a′)
∣∣∣ .

The sum of the last three terms we call d j(s j,a j). By substituting (28), (29) and (30) in these three
terms, it follows that lim j→∞ d j(s j,a j) = 0. We can further bound |F ′j (s j,a j, ‘bm’)| as follows:

|F ′j(s j,a j, ‘bm’)| ≤ (1−PM
s ja j)‖Q̆ j− Q̆∗‖+ γPM

s ja j‖Qj−Q∗‖+d j(s j,a j)

≤ (1−PM
s ja j)‖Δ′j‖+ γPM

s ja j

(‖Δ′j‖+‖c j‖)+d j(s j,a j)

≤
(
(1−PM

s ja j)+ γPM
s ja j

)
· ‖Δ′j‖+ γPM

s ja j‖c′j‖+d j(s j,a j)

= κs ja j ‖Δ′j‖+ γPM
s ja j‖c′j‖+d j(s j,a j) . (40)

Note ‖c′j‖, as well as d j(s j,a j), converge to 0. Note also that κs ja j < 1, since PM
s ja j > 0 and γ < 1.

From (39) and (40) it follows that the third condition of Lemma 17 is also satisfied. Hence, all
conditions hold and Δ′j converges to 0 w.p.1. Combining this with (38), proves Lemma 18.

11. There is no explicit sample related to a best-match update. For consistency, we define r j = /0 and s′j = /0 if b j−1= ‘bm′.

2089

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

E.3 Convergence ofUj toU ′j
Lemma 19 Uj(s,a,b) converges in the limit to U ′j(s,a,b) w.p.1.

Proof We define Δ(s,a,b) = U ′j(s,a,b)−Uj(s,a,b) and will prove that Δ(s,a,b) converges to 0

using Lemma 20. We exclude (s,a, ‘bm’) triples for which PM
sa = 0 from the domain of Δ. Similar

to the reasoning behind (38) and (37), we can deduce

Qj(s,a) = Q̆ j(s,a)+ c j(s,a) , if PM
sa = 0 ,

with c j(s,a) converging to 0 in the limit, as well as

lim
j→∞

(
Q̆′j(s,a)− Q̆ j(s,a)

)
= 0 ⇒ lim

j→∞

(
Q′j(s,a)−Qj(s,a)

)
= 0 , if PM

sa = 0 . (41)

Note, ‖Q̆′j− Q̆ j‖ ≤ ‖Δ j‖. However, ‖Q′j−Qj‖ ≤ ‖Δ j‖ does not hold in general, because of the
exclusion of (s,a,‘bm’) triples with PM

sa = 0 from the domain of Δ j. Instead, the following holds:

‖Q′j−Qj‖ = max(‖Q′j−Qj‖PMsa >0,‖Q
′
j−Qj‖PMsa =0)

≤ max(‖Q′j−Qj‖PMsa >0,‖Q̆
′
j− Q̆ j‖PMsa =0+‖c j‖+‖c

′
j‖)

≤ max(‖U ′j−Uj‖,‖U ′j−U∗‖+‖c j‖+‖c′j‖)
= ‖U ′j−Uj‖+‖c j‖+‖c′j‖
= ‖Δ′j‖+ c′′j ,

with c′′j = ‖c j‖+‖c′j‖ converging to 0 w.p.1.
For PM

sa > 0 we can rewrite (35) as

Q′j+1(s j,a j) = (1−βs ja j)Q′j(s j,a j)+βs ja jY ′j(s j,a j)
= Y ′j(s j,a j)+(1−βs ja j)[Q′j(s j,a j)−Y ′j(s j,a j)] .

In Section E.2 we proved that Δ′j(s,a, ‘bm’) = Q′(s,a)−Q∗(s,a) j converges to 0 w.p.1. On the
other hand, it follows from (40), that F ′j (s j,a j, ‘bm’), which is equal to Y

′
j(s j,a j)−Q∗(s j,a j), also

converges to 0 w.p.1. Therefore, both Q′j(s j,a j) and Y
′
j(s j,a j) converge to the same value, so we

can write
Q′j+1(s j,a j) = Y ′j(s j,a j)+ e j(s j,a j) , if PM

s ja j > 0 ,

with e j(s j,a j) converging to 0 w.p.1.
Δ j is updated according to

Δ j+1(s,a,b) = (1−ζ j(s,a,b))Δ j(s,a,b)+ζ j(s,a,b)Fj(s,a,b) .

For (s,a,b) �= (s j,a j,b j), ζ j(s,a,b) = 0 and Fj(s,a,b) = 0. While for (s j,a j,b j) the following
holds:

ζ j(s j,a j,b j) =

{
α
s ja j
j if b j = ‘mf’

1 if b j = ‘bm’ ,

and

Fj(s j,a j,b j) =

{
γmaxa′Q′j(s

′
j+1,a

′)− γmaxa′Qj(s′j+1,a
′) if b j = ‘mf’

Y ′j(s j,a j)−Yj(s j,a j,b j)+ e j(s j,a j) if b j = ‘bm’ .

2090

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

We now check the three conditions of Lemma 20. Conditions 1 and 2 from the lemma follow
from conditions 1 and 2 of Theorem 12. Condition 3, we prove below.

For b j = ‘mf’, the following holds:

|Fj(s j,a j, ‘mf’)| = γ

∣∣∣∣maxa′ Q′j(s
′
j+1,a

′)−max
a′

Qj(s
′
j+1,a

′)
∣∣∣∣

≤ γ‖Q′j−Qj‖
≤ γ‖Δ j‖+ γc′′j , (42)

while for b j = ‘bm’, we can write

|Fj(s j,a j, ‘bm’)| = |Y ′j(s j,a j)−Yj(s j,a j)+ e j(s j,a j,b j)|
≤ w

sj,a j
0 |Q̆′j(s j,a j)− Q̆ j(s j,a j)|+ |e j(s j,a j)|+

γ(1−wsja j0)∑
s′
P̂ s′
s ja j

∣∣∣∣maxa′ Q′j(s
′,a′)−max

a′
Qj(s

′,a′)
∣∣∣∣

≤ w
sj,a j
0 ‖Δ j‖+ γ(1−wsja j0)‖Δ j‖+ |e j(s j,a j)|+ γ(1−wsja j0)c′′j

=
(
(1−PM

s ja j)+ γPM
s ja j

)
‖Δ j‖+ |e j(s j,a j)|+ γ(1−wsja j0)c′′j +(

w
sj,a j
0 + γ(1−wsja j0)− (1−PM

s ja j)− γPM
s ja j

)
‖Δ j‖ .

We define

f j(s j,a j) =
(
w
sj,a j
0 + γ(1−wsja j0)− (1−PM

s ja j)− γPM
s ja j

)
‖Δ j‖

+|e j(s j,a j)|+ γ(1−wsja j0)c′′j .

Note that lim j→∞ f j = 0, since e j and c′′j converge to 0 and w
sj,a j
0 converges to 1−PM

s ja j . Using this
definition and (36), we can write

|Fj(s j,a j, ‘bm’)| ≤ κs ja j‖Δ j‖+ f j(s j,a j) . (43)

Note that κs ja j < 1. From (42) and (43) it follows that the third condition of Lemma 20 is also
satisfied. Hence, all conditions hold and Δ j converges to 0 w.p.1.Combining this with (41), proves
Lemma 19.

E.4 Proof of Theorem 12

Because U ′j converges to U
∗ (Lemma 18) and Uj converges to U ′j (Lemma 19), it follows that also

Uj converges toU∗. From this it follows that Q converges to Q∗, proving Theorem 12.

Appendix F. Lemma 20

Lemma 20 Consider a stochastic process (α t ,Δ t ,Ft), t ≥ 0, where α t ,Δ t ,Ft : X → IR satisfy the
equations:

Δ t+1(x) = (1−α t(x))Δ t(x)+α t(x)Ft(x) ,

where x ∈ X and t = 0,1,2, Assume that the following conditions hold:

2091

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

1. The set X is finite.

2. α t(x) = [0,1], ∑ t α t(x) = ∞.

3. ‖Ft‖ ≤ κ‖Δ t‖+ ct , where κ ∈ [0,1) and ct converges to zero w.p. 1 ,

where ‖ · ‖ denotes a maximum norm. Then Δ t converges to zero with probability one.

Note that this lemma is similar to Lemma 17, but the conditions for the learning rates are less
strict (∑ t(α t(xt))

2 < ∞ is missing), while the condition for Ft is more strict (condition 3 uses the
value of Ft instead of its expected value).

Proof The outline of this proof is that we define a related process Δ′t that converges to 0 and show
that ‖Δ t‖≤‖Δ′t‖ for all t. We will ignore ct in this proof. This can be safely done, since ct converges
to zero, κ< 1 and ∑ t α t(x) = ∞ for all x. Therefore, this term is asymptotically unimportant.

We define Δ′0(x) = ‖Δ0‖ for all x. For t > 0, Δ′t(x) is defined as

Δ′t+1(x) = (1−β t(x))Δ′t(x)+β t(x)κ‖Δ′t‖ , (44)

with β t(x) ≤ α t(x) and β t(x) ∈ [0,1], ∑ t β t(x) = ∞ , ∑ t(β t(x))
2 < ∞ w.p.1. It follows from (44)

that ‖Δ′t+1‖ ≤ ‖Δ′t‖. It also follows that if Δ′t(x) ≥ κ‖Δ′t‖ then Δ′t+1(x) ≥ κ‖Δ′t‖ ≥ κ‖Δ′t+1‖. And
since Δ′0(x)≥ κ‖Δ′0‖ it follows that

Δ′t(x)≥ κ‖Δ′t‖ , for all t . (45)

Using Lemma 17, it can easily be shown that Δ′ converges in the limit to 0 w.p.1.
We now prove that ‖Δ t‖ ≤ ‖Δ′t‖ for all t. We start by proving

|Δ t(x)| ≤ Δ′t(x) for all x ⇒ |Δ t+1(x)| ≤ Δ′t+1(x) for all x . (46)

Assuming the left part of (46), for |Δ t+1(x)| the following holds:

|Δ t+1(x)| ≤ (1−α t(x))|Δ t(x)|+α t(x)κ‖Δ t‖
≤ (1−α t(x))Δ′t(x)+α t(x)κ‖Δ′t‖ .

Since (45) and β t(x)≤ α t(x), we can continue as

|Δ t+1(x)| ≤ (1−β t(x))Δ′t(x)+β t(x)κ‖Δ′t‖
≤ Δ′t+1(x) .

This proves (46). And since |Δ0(x)| ≤ Δ′0(x), it follows that |Δ t(x)| ≤ Δ′t(x) holds for all t, and
hence, ‖Δ t‖ ≤ ‖Δ′t‖ proving the lemma.

2092

EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

References

C.G. Atkeson, A.W. Moore, and S. Schaal. Locally weighted learning. Artificial Intelligence Re-
view, 11(1):11–73, 1997.

R.E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ., 1957.

J. Boyan and A.W. Moore. Generalization in reinforcement learning: Safely approximating the
value function. In Advances in Neural Information Processing Systems 7, 1995.

R.I. Brafman and M. Tennenholtz. R-max: A general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research, 3:213–231, 2002.

C. Diuk, L. Li, and B.R. Leffler. The adaptive k-meteorologists problem and its application to
structure learning and feature selection in reinforcement learning. In Proceedings of the 26th
Annual International Conference on Machine Learning, 2009.

D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning. Journal of
Machine Learning Research, 6(1):503–556, 2005.

T. Jaakkola, M.I. Jordan, and S. Singh. On the convergence of stochastic iterative dynamic pro-
gramming algorithms. Neural Computation, 6:1185–1201, 1994.

L.P. Kaelbling, M.L. Littman, and A.P. Moore. Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 4:237–285, 1996.

M. Kearns and S. Singh. Finite-sample convergence rates for Q-learning and indirect algorithms.
Advances in Neural Information Processing Systems, 11:996–1002, 1999. ISSN 1049-5258.

M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Machine Learn-
ing, 49(2):209–232, 2002.

M.G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning Re-
search, 4:1149, 2003.

L.J. Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine Learning, 8(3):293–321, 1992.

A. Moore and C. Atkeson. Prioritized sweeping: Reinforcement learning with less data and less
real time. Machine Learning, 13:103–130, 1993.

M. L. Puterman and M. C. Shin. Modified policy iteration algorithms for discounted Markov deci-
sion problems. Management Science, 24:1127–1137, 1978.

G.A. Rummery and M. Niranjan. On-line Q-learning using connectionist systems. Technical report,
Tech. rep. CUED/F-INENG/TR166, Cambridge University, 1994.

S. Singh, T. Jaakkola, M.L. Littman, and C. Szepesvari. Convergence results for single-step on-
policy reinforecement-learning algorithms. Machine Learning, 38:287–308, 2000.

A.L. Strehl and M.L. Littman. A theoretical analysis of model-based interval estimation. In Pro-
ceedings of the 22th International Conference on Machine Learning, pages 856–863, 2005.

2093

VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

A.L. Strehl, L. Li, E. Wiewiora, J. Langford, and M.L. Littman. PAC model-free reinforcement
learning. In Proceedings of the 23rd International Conference on Machine Learning, pages 881–
888, 2006.

R.S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3(1):
9–44, 1988.

R.S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. In Proceedings of the 7th International Conference onMachine Learning,
pages 216–224, 1990.

R.S. Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse
coding. In Advances in Neural Information Processing Systems 8, pages 1038–1045, 1996.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
Massachussets, 1998.

R.S. Sutton and S.P. Singh. On step-size and bias in temporal-difference learning. In Proceedings
of the 8th Yale Workshop on Adaptive and Learning Systems, 1994.

C. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge, England,
1989.

C. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3-4):9–44, 1992.

M. Wiering and J. Schmidhuber. Fast online Q(λ). Machine Learning, 33:105–115, 1998.

2094

Journal of Machine Learning Research 12 (2011) 2095-2119 Submitted 12/10; Revised 5/11; Published 6/11

Information Rates of Nonparametric Gaussian Process Methods

Aad van der Vaart AAD@FEW.VU.NL
Department of Mathematics
VU University Amsterdam
De Boelelaan 1081
1081 HV Amsterdam
The Netherlands

Harry van Zanten J.H.V.ZANTEN@TUE.NL
Department of Mathematics
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands

Editor:Manfred Opper

Abstract

We consider the quality of learning a response function by a nonparametric Bayesian approach
using a Gaussian process (GP) prior on the response function. We upper bound the quadratic risk
of the learning procedure, which in turn is an upper bound on the Kullback-Leibler information
between the predictive and true data distribution. The upper bound is expressed in small ball prob-
abilities and concentration measures of the GP prior. We illustrate the computation of the upper
bound for the Matérn and squared exponential kernels. For these priors the risk, and hence the
information criterion, tends to zero for all continuous response functions. However, the rate at
which this happens depends on the combination of true response function and Gaussian prior, and
is expressible in a certain concentration function. In particular, the results show that for good
performance, the regularity of the GP prior should match the regularity of the unknown response
function.

Keywords: Bayesian learning, Gaussian prior, information rate, risk, Matérn kernel, squared
exponential kernel

1. Introduction

In this introductory section we first recall some important concepts from Gaussian process regres-
sion and then outline our main contributions.

1.1 Gaussian Process Regression

Gaussian processes (GP’s) have become popular tools for making inference about unknown func-
tions. They are widely used as prior distributions in nonparametric Bayesian learning to predict a
response Y ∈ Y from a covariate X ∈ X . In this approach (cf. Rasmussen and Williams, 2006) a
response function f :X → Y is “a-priori” modelled by the sample path of a Gaussian process. This
means that for every finite set of points x j in X , the prior distribution of the vector (f (x1), . . . , f (xn))

c©2011 Aad van der Vaart and Harry van Zanten.

VAN DER VAART AND VAN ZANTEN

is multivariate Gaussian. As Gaussian distributions are completely parameterized by their mean and
covariance matrix, a GP is completely determined by its mean function m:X → R and covariance
kernel K:X ×X → R, defined as

m(x) = E f (x), K(x1,x2) = cov
(
f (x1), f (x2)

)
.

The mean function can be any function; the covariance function can be any symmetric, positive
semi-definite function. Popular choices are the squared-exponential and Matérn kernels (see Ras-
mussen andWilliams, 2006), or (multiply) integrated Brownian motions (e.g., Wahba, 1978; Van der
Vaart and Van Zanten, 2008a). The first two choices are examples of stationary GP: the correspond-
ing covariance function has the form K(x1,x2) =K0(x1−x2), for some function K0 of one argument
and hence the distribution of the random function x �→ f (x) remains the same under shifting its argu-
ment. By Bochner’s theorem the stationary covariance functions on X =R

d correspond one-to-one
to spectral distributions (see below for the examples of the squared-exponential and Matérn kernels,
or see Rasmussen and Williams, 2006).

In Gaussian process learning the regression function f is modeled as a GP and conditionally
on f , observed training data (X1,Y1), . . . ,(Xn,Yn) are viewed as independent pairs that satisfy Yi =
f (Xi)+εi, for noise variables εi. If g denotes the marginal density of the covariates Xi and for μ∈R,
pμ denotes the density of μ+ εi, then conditional on the GP f the pairs (Xi,Yi) are independently
generated according to the probability density (x,y) �→ p f (x)(y)g(x). If the errors are normal with
mean 0 and variance σ2 for instance, we have pμ(y) = (2πσ2)−1/2 exp(−(y−μ)2/(2σ2)). By Bayes’
rule, the posterior distribution for f given the training data is then given by

dΠn(f |X1:n,Y1:n) ∝
n

∏
i=1

p f (Xi)(Yi)dΠ(f),

where dΠ(f) refers to the prior distribution, and Z1:n is short for the sequence Z1, . . . ,Zn. After
computation (see for instance Rasmussen and Williams, 2006 for methodology), the posterior dis-
tribution may be used to predict new responses from covariate values.

1.2 Quantifying Performance

A common approach to assessing the performance of nonparametric Bayes methods is to assume
that the data are in actual fact generated according to a fixed, “true” regression function f0 and to
study how well the posterior distribution, which is a distribution over functions, approximates the
target f0 as the number of training data n tends to infinity.

The distance of the posterior to the truth can be measured in various ways. Seeger et al. (2008)
discussed the performance of this method in terms of an information criterion due to Barron (1999).
They consider the quantity

E f0
1
n

n

∑
i=1

KL
(
p f0(Xi),

∫
p f (Xi) dΠi−1(f |X1:i−1,Y1:i−1)

)
. (1)

Here KL(p,q) =
∫
log(p/q)dP denotes the Kullback-Leibler divergence between two probability

densities p and q, so that the terms of the sum are the Kullback-Leibler divergences between the
density y �→ p f0(Xi)(y) and the Bayesian predictive density y �→ ∫

p f (Xi)(y)dΠi−1(f |X1:(i−1),Y1:i−1)
based on the first (i− 1) observations, both evaluated for fixed covariate Xi. The expectation E f0

2096

NONPARAMETRIC GAUSSIAN PROCESS METHODS

on the far left is relative to the distribution of (X1,Y1), . . . ,(Xn,Yn). Seeger et al. (2008) obtain a
bound on the information criterion (1), which allows them to show for several combinations of true
regression functions f0 and GP priors Π that this tends to zero at a certain rate in the number of
observations n.

The information criterion (1) is the Cesàro average of the sequence of prediction errors, for
n= 1,2, . . .,

E f0KL
(
p f0(Xn+1),

∫
p f (Xn+1) dΠn(f |X1:n,Y1:n)

)
.

By concavity of the logarithm and Jensen’s inequality (or the convexity of KL in its second argu-
ment), these are bounded above by the risks

E f0

∫
KL
(
p f0(Xn+1), p f (Xn+1)

)
dΠn(f |X1:n,Y1:n). (2)

The KL divergence between two normal densities with means μ1 and μ2 and common variance σ2 is
equal to (μ1−μ2)2/(2σ2). Therefore, in the case of normal errors, with p f the density of the normal
distribution with mean f and variance σ2, the risks reduce to

1
2σ2

E f0

∫
‖ f0− f‖22 dΠn(f |X1:n,Y1:n), (3)

where ‖ · ‖2 is the L2-norm relative to the distribution of the covariate Xn+1, that is,
‖ f‖22 =

∫
f 2(x)g(x)dx, and σ2 is the error variance.

Barron (1999) suggested to use the information criterion (1) as a discrepancy measure, because
the risks (2) sometimes behave erratically. However, the risks measure the concentration of the
full posterior (both location and spread) near the truth, whereas the prediction errors concern the
location of the posterior only. Furthermore, taking Cesàro averages may blur discrepancies in the
individual prediction errors. We will show that the present situation is in fact not one where the risk
(2) behaves badly, and this bigger quantity can be bounded instead of the information criterion (1).

If the risk (3) is bounded by ε2n for some sequence εn→ 0, then by another application of Jensen’s
inequality the posterior mean E(f |X1:n,Y1:n) =

∫
f dΠn(f |X1:n,Y1:n) satisfies

E f0
∥∥E(f |X1:n,Y1:n)− f0

∥∥2
2 ≤ ε2n. (4)

Thus the posterior distribution induces a “point estimator” that approximates f0 at the rate same εn.
It follows that a bound ε2n on the posterior risk (3) must satisfy the same fundamental lower bound as
the (quadratic) risk of general nonparametric estimators for the regression function f0. Such bounds
are usually formulated as minimax results: for a given point estimator (for example the posterior
mean) one takes the maximum (quadratic) risk over all f0 in a given “a-priori class” of response
functions, and shows that this cannot be smaller than some lower bound (see, e.g., Tsybakov, 2009
for a general introduction to this approach). Typical a-priori classes in nonparametric learning are
spaces of “smooth” functions. Several variations exist in the precise definition of such spaces,
but they have in common a positive parameter β, which measures the extent of the smoothness or
“regularity”; this is roughly the number of times that the functions f0 are differentiable. It is known
that if f0 is defined on a compact subset of Rd and has regularity β> 0, then the optimal, minimax
rate εn is given by (see, e.g., Tsybakov, 2009)

εn = n−β/(2β+d). (5)

2097

VAN DER VAART AND VAN ZANTEN

It follows that this is also the best possible bound for the risk (3) if f0 is a β-regular function of d
variables. Recent findings in the statistics literature show that for GP priors, it is typically true that
this optimal rate can only be attained if the regularity of the GP that is used matches the regularity
of f0 (see Van der Vaart and Van Zanten, 2008a). Using a GP prior that is too rough or too smooth
deteriorates the performance of the procedure. Plain consistency however, that is, the existence of
some sequence εn for which (4) holds, typically obtains for any f0 in the support in the prior.

Seeger et al. (2008) considered the asymptotic performance for the Matérn and squared expo-
nential GP priors, but we will argue in the next subsection that using their approach it is not possible
to exhibit the interesting facts that optimal rates are obtained by matching regularities and that con-
sistency holds for any f0 in the support of the prior. In this paper we will derive these results by
following a different approach, along the lines of Ghosal et al. (2000) and Van der Vaart and Van
Zanten (2008a).

1.3 Role of the RKHS

A key issue is the fact that Seeger et al. (2008) require the true response function f0 to be in the
reproducing kernel Hilbert space (RKHS) of the GP prior. The RKHS of a GP prior with zero mean
function and with covariance kernel K can be constructed by first defining the space H0 consisting
of all functions of the form x �→ ∑k

j=1 ciK(x,yi). Next, the inner product between two functions in
H0 is defined by 〈

∑ciK(·,yi),∑c′jK(·,y′j)
〉
H
=∑∑cic

′
jK(yi,y

′
j),

and the associated RKHS-norm by ‖h‖2
H
= 〈h,h〉

H
. Finally, the RKHS H is defined as the closure

of H0 relative to this norm. Since for all h ∈H0 we have the reproducing formula

h(x) = 〈h,K(x, ·)〉
H
,

the RKHS is (or, more precisely, can be identified with) a space of functions on X and the repro-
ducing formula holds in fact for all h ∈H. (For more details, see, e.g., the paper Van der Vaart and
Van Zanten, 2008b, which reviews theory on RKHSs that is relevant for Bayesian learning.)

The assumption that f0 ∈H is very limiting in most cases. The point is that unless the GP prior
is a finite-dimensional Gaussian, the RKHS is very small relative to the support of the prior. In the
infinite-dimensional case that we are considering here the probability that a draw f from the prior
belongs to H is 0. The reason is that typically, the elements of H are “smoother” than the draws
from the prior. On the other hand, the probability of a draw f falling in a neighbourhood of a given
continuous f0 is typically positive, no matter how small the neighbourhood. (A neighbourhood
of f0 could for instance be defined by all functions with | f (x)− f0(x)| < ε for all x, and a given
ε > 0.) This means that prior draws can approximate any given continuous function arbitrarily
closely, suggesting that the posterior distribution should be able to learn any such function f0, not
just the functions in the RKHS.

Example 1 (Integrated Brownian motion and Matérn kernels) It is well known that the sample
paths x �→ f (x) of Brownian motion f have regularity 1/2. More precisely, for all α ∈ (0,1/2)
they are almost surely Hölder continuous with exponent α: sup0≤x<y≤1 | f (x)− f (y)|/|x− y|α is
finite or infinite with probability one depending on whether α< 1/2 or α≥ 1/2 (see, e.g., Karatzas
and Shreve, 1991). Another classical fact is that the RKHS of Brownian motion is the so-called
Cameron-Martin space, which consists of functions that have a square integrable derivative (see,

2098

NONPARAMETRIC GAUSSIAN PROCESS METHODS

e.g., Lifshits, 1995). Hence, the functions in the RKHS have regularity 1. More generally, it can
be shown that draws from a k times integrated Brownian motion have regularity k+ 1/2, while
elements from its RKHS have regularity k+ 1 (cf., e.g., Van der Vaart and Van Zanten, 2008b).
Analogous statements hold for the Matérn kernel, see Section 3.1 ahead. All these priors can
approximate a continuous function f0 arbitrarily closely on any compact domain: the probability
that supx | f (x)− f0(x)|< ε is positive for any ε> 0.

We show in this paper that if the true response function f0 on a compact X ⊂ R
d has regularity

β, then for the Matérn kernel with smoothness parameter α the (square) risk (3) decays at the rate
n−2min(α,β)/(2α+d). This rate is identical to the optimal rate (5) if and only if α = β. Because the
RKHS of the Matérn (α) prior consists of functions of regularity α+ 1/2, it contains functions of
regularity β only if β≥ α+1/2, and this excludes the case α= β that the Matérn prior is optimal.
Thus if it is assumed a-priori that f0 is contained in the RKHS, then optimality of Bayesian learning
can never be established.

A second drawback of the assumption that f0 ∈ H is that consistency (asymptotically correct
learning at some rate) can be obtained only for a very small class of functions, relative to the support
of the GP prior. For instance, Bayesian learning with a Matérn (α) prior is consistent for any con-
tinuous true function f0, not only for f0 of regularity α+1/2 or higher. For the square-exponential
process restricting to f0 ∈H is even more misleading.

Example 2 (Squared exponential kernel) For the squared exponential GP on a compact subset of
R
d, every function h in the RKHS has a Fourier transform ĥ that satisfies

∫
|ĥ(λ)|2ec‖λ‖2 dλ< ∞

for some c> 0 (see Van der Vaart and Van Zanten, 2009 and Section 3.2 ahead). In particular, every
h ∈H can be extended to an analytic (i.e., infinitely often differentiable) function on Cd.

Hence for the squared exponential kernel, restricting to f0 ∈ H only proves consistency for
certain analytic regression functions. However, the support of the process is equal to the space of
all continuous functions, and consistency pertains for every continuous regression function f0.

A third drawback of the restriction to f0 ∈ H is that this is the best possible case for the prior,
thus giving an inflated idea of its performance. For instance, the squared exponential process gives
very fast learning rates for response functions in its RKHS, but as this is a tiny set of analytic
functions, this gives a misleading idea of its performance in genuinely nonparametric situations.

1.4 Contributions

In this paper we present a number of contributions to the study of the performance of GP methods
for regression.

Firstly, our results give bounds for the risk (2) instead of the information criterion (1). As argued
in Section 1.2 the resulting bounds are stronger.

Secondly, our results are not just valid for functions f0 in the RKHS of the GP prior, but for
all functions in the support of the prior. As explained in the preceding section, this is a crucial
difference. It shows that in GP regression we typically have plain consistency for all f0 in the
support of the prior and it allows us to study how the performance depends on the relation between

2099

VAN DER VAART AND VAN ZANTEN

the regularities of the regression function f0 and typical draws from the prior. We illustrate the
general results for theMatérn and squared exponential priors. We present new rate-optimality results
for these priors.

A third contribution is that although the concrete GP examples that we consider (Matérn and
squared exponential) are stationary, our general results are not limited to stationary processes. The
results of Seeger et al. (2008) do concern stationary process and use eigenvalue expansions of the
covariance kernels. Underlying our approach are the so-called small deviations behaviour of the
Gaussian prior and entropy calculations, following the same basic approach as in our earlier work
(Van der Vaart and Van Zanten, 2008a). This allows more flexibility than eigenvalue expansions,
which are rarely available and dependent on the covariate distribution. In our approach both sta-
tionary and nonstationary prior processes can be considered and it is not necessary to assume a
particular relationship between the distribution of the covariates and the prior.

Last but not least, the particular cases of the Matérn and squared exponential kernels that we
investigate illustrate that the performance of Bayesian learning methods using GP priors is very
sensitive to the fine properties of the priors used. In particular, the relation between the regularity
of the response function and the GP used is crucial. Optimal performance is only guaranteed if the
regularity of the prior matches the regularity of the unknown function of interest. Serious mismatch
leads to (very) slow learning rates. For instance, we show that using the squared-exponential prior,
in a situation where a Matérn prior would be appropriate, slows the learning rate from polynomial
to logarithmic in n.

1.5 Notations and Definitions

In this section we introduce notation that is used throughout the paper.

1.5.1 SPACES OF SMOOTH FUNCTIONS

As noted in Section 1.2 it is typical to quantify the performance of nonparametric learning proce-
dures relative to a-priori models of smooth functions. The proper definition of “smoothness” or
“regularity” depends on the specific situation, but roughly speaking, saying that a function has reg-
ularity α means it has α derivatives. In this paper we use two classical notions of finite smoothness:
Hölder and Sobolev regularity; and also a scale of infinite smoothness.

For α > 0, write α = m+η, for η ∈ (0,1] and m a nonnegative integer. The Hölder space
Cα[0,1]d is the space of all functions whose partial derivatives of orders (k1, . . . ,kd) exist for all
nonnegative integers k1, . . . ,kd such that k1+ . . .+ kd ≤ m and for which the highest order partial
derivatives are Lipshitz functions of order η. (A function f is Lipschitz of order η if | f (x)− f (y)| ≤
C|x−y|η, for every x,y; see for instance Van der Vaart and Wellner (1996), Section 2.7.1, for further
details on Hölder classes.)

The Sobolev space Hα[0,1]d is the set of functions f0: [0,1]d → R that are restrictions of a
function f0:Rd → R with Fourier transform f̂0(λ) = (2π)−d

∫
eiλ

T t f (t)dt such that

‖ f0‖2α|2:=
∫ (
1+‖λ‖2)α∣∣ f̂0(λ)∣∣2 dλ< ∞.

Roughly speaking, for integer α, a function belongs to Hα if it has partial derivatives up to order α
that are all square integrable. This follows, because the αth derivative of a function f0 has Fourier
transform λ �→ (iλ)α f̂0(λ),

2100

NONPARAMETRIC GAUSSIAN PROCESS METHODS

Qualitatively both spaces Hα[0,1]d and Cα[0,1]d describe “α-regular” functions. Technically
their definitions are different, and so are the resulting sets. There are however many functions in the
intersection Hα[0,1]d ∩Cα[0,1]d and these are α-regular in both senses at the same time.

We also consider functions that are “infinitely smooth”. For r ≥ 1 and λ > 0, we define the
space Aγ,r(Rd) of functions f0:Rd → R with Fourier transform f̂0 satisfying

‖ f0‖2A :=
∫
eγ‖λ‖

r | f̂0|2(λ)dλ< ∞.

This requires exponential decrease of the Fourier transform, in contrast to polynomial decrease for
Sobolev smooothness. The functions inAγ,r(Rd) are infinitely often differentiable and “increasingly
smooth” as γ or r increase. They extend to functions that are analytic on a strip in Cd containing Rd

if r = 1, and to entire functions if r > 1 (see, e.g., Bauer, 2001, 8.3.5).

1.5.2 GENERAL FUNCTION SPACES AND NORMS

For a general metric space X we denote byCb(X) the space of bounded, continuous functions on X .
If the space X is compact, for example, X = [0,1]d , we simply writeC(X). The supremum norm of
a bounded function f on X is denoted by ‖ f‖∞ = supx∈X | f (x)|.

For x1, . . . ,xn ∈ X and a function f :X → R we define the empirical norm ‖ f‖n by

‖ f‖n =
(1
n

n

∑
i=1

f 2(xi)
)1/2

. (6)

For m a (Borel) measure on A⊂ R
d we denote by L2(m) the associated L2-space, defined by

L2(m) =
{
f :A→ R

∣∣∣ ∫
A
| f (x)|2 dm(x)< ∞

}
.

In a regression setting where the covariates have probability density g on Rd , we denote the corre-
sponding L2-norm simply by ‖ f‖2, that is,

‖ f‖2 =
∫
f 2(x)g(x)dx.

1.5.3 MISCELLANEOUS

The notation a 	 b means that a ≤ Cb for a universal constant C. We write a∨ b = max{a,b},
a∧b=min{a,b}.

2. General Results

In this section we present general bounds on the posterior risk. The next section treats the special
cases of the Matérn and squared exponential kernels. Proofs are deferred to Section 4.

2.1 Fixed Design

In this section we assume that given the function f :X → R, the data Y1, . . . ,Yn are independently
generated according toYj = f (x j)+ε j, for fixed x j ∈X and independent ε j ∼N(0,σ2). Such a fixed
design setting occurs when the covariate values in the training data have been set by an experimenter.

2101

VAN DER VAART AND VAN ZANTEN

For simplicity we assume that X is a compact metric space, such as a bounded, closed set in Rd ,
and assume that the true response function f0 and the support of the GP prior are included in the
spaceCb(X) of bounded, continuous functions on the metric space X . This enables to formulate the
conditions in terms of the supremum norm (also called “uniform” norm). Recall that the supremum
norm of f ∈Cb(X) is given by ‖ f‖∞ = supx∈X | f (x)|. (Actually Theorem 1 refers to the functions
on the design points only and is in terms of the norm (6). The conditions could be formulated in
terms of this norm. This would give a stronger result, but its interpretation is hampered by the fact
that the norm (6) changes with n.) The RKHS of the GP prior, as defined in Section 1.3, is denoted
by H and the RKHS-norm by ‖ · ‖H.

The following theorem gives an upper bound for the posterior risk. The bound depends on the
“true” response function f0 and the GP priorΠ and its RKHSH through the so-called concentration
function

φ f0(ε) = inf
h∈H:‖h− f0‖∞<ε

‖h‖2H− logΠ
(
f :‖ f‖∞ < ε

)
(7)

and the associated function

ψ f0(ε) =
φ f0(ε)
ε2

. (8)

We denote by ψ−1f0 the (generalized) inverse function of the function ψ f0 , that is, ψ
−1
f0
(l) = sup{ε>

0: ψ f0(ε)≥ l}.
The concentration function φ f0 for a general response function consists of two parts. The second

is the small ball exponent φ0(ε) =− logΠ(f :‖ f‖∞ < ε), which measures the amount of prior mass
in a ball of radius ε around the zero function. As the interest is in small ε this is (the exponent
of) the small ball probability of the prior. There is a large literature on small ball probabilities of
Gaussian distributions. (See Kuelbs and Li, 1993 and Li and Shao, 2001 and references.) This
contains both general methods (probabilistic and analytic) for its computation and many examples,
stationary and non-stationary. The first part of the definition of φ f0(ε), the infimum, measures the
decrease in prior mass if the (small) ball is shifted from the origin to the true parameter f0. This is
not immediately clear from the definition (7), but it can be shown that up to constants, φ f0(ε) equals
− logΠ(f :‖ f − f0‖∞ < ε) (see for instance Van der Vaart and Van Zanten, 2008b, Lemma 5.3). The
infimum depends on how well f0 can be approximated by elements h of the RKHS of the prior, and
the quality of this approximation is measured by the size of the approximand h in the RKHS-norm.
The infimum is finite for every ε> 0 if and only if f0 is contained in the closure of H withinCb(X).
The latter closure is the support of the prior (Van der Vaart and Van Zanten, 2008b, Lemma 5.1) and
in typical examples it is the full spaceCb(X).

Our general upper bound for the posterior risk in the fixed design case takes the following form.

Theorem 1 For f0 ∈Cb(X) it holds that

E f0

∫
‖ f − f0‖2n dΠn

(
f |Y1:n

)
	 ψ−1f0 (n)

2.

For ψ−1f0 (n)→ 0 as n→ ∞, which is the typical situation, the theorem shows that the posterior

distribution contracts at the rate ψ−1f0 (n) around the true response function f0. To connect to Seeger
et al. (2008), we have expressed the contraction using the quadratic risk, but the concentration is
actually exponential. In particular, the power 2 can be replaced by any finite power.

2102

NONPARAMETRIC GAUSSIAN PROCESS METHODS

From the definitions one can show that (see Lemma 17), whenever f0 ∈H,

ψ−1f0 (n)	
‖ f0‖H√

n
+ψ−10 (n). (9)

This relates the theorem to formula (3) in Seeger et al., whose logdet(I+cK) is replaced byψ−10 (n)2.
However, the left side ψ−1f0 (n) of the preceding display is finite for every f0 in the support of the
prior, which is typically a much large space than the RKHS (see Section 1.3). For instance, functions
f0 in the RKHS of the squared exponential process are analytic, whereas ψ

−1
f0
(n) is finite for every

continuous function f0 in that case. Thus the theorem as stated is much more refined than if its upper
bound would be replaced by the right side of (9). It is true that ψ−1f0 (n) is smallest if f0 belongs to
the RKHS, but typically the posterior also contracts if this is not the case.

In Sections 3.1 and 3.2 we show how to obtain bounds for the concentration function, and
hence a risk bound, for two classes of specific priors: the Matérn class and the squared exponential.
Other examples, including non-stationary ones like (multiply) integrated Brownian motion, were
considered in Van der Vaart and Van Zanten (2008a), Van der Vaart and Van Zanten (2007) and
Van der Vaart and Van Zanten (2009).

2.2 Random Design

In this section we assume that given the function f : [0,1]d → R on the d-dimensional unit cube
[0,1]d (or another compact, Lipschitz domain inRd) the data (X1,Y1), . . . ,(Xn,Yn) are independently
generated, Xi having a density g on [0,1]d that is bounded away from zero and infinity, and Yj =
f (Xj)+ ε j, for errors ε j ∼ N(0,σ2) that are independent given the Xi’s.
We assume that under the GP prior Π the function f is a zero-mean, continuous Gaussian pro-

cess. The concentration function φ f0 and the derived functionψ f0 are defined as before in (7) and (8).
Recall that ‖ f‖2 is the L2-norm relative to the covariate distribution, that is, ‖ f‖22 =

∫
f 2(x)g(x)dx.

The theorem assumes that for some α> 0, draws from the prior are α-regular in Hölder sense. This
roughly means that α derivatives should exist. See Section 1.5 for the precise definition.

Theorem 2 Suppose that for some α > 0 the prior gives probability one to the Hölder space
Cα[0,1]d. For ψ−1f0 the inverse function of ψ f0 and C a constant that depends on the prior and

the covariate density, if ψ−1f0 (n)≤ n−d/(4α+2d), then

E f0

∫
‖ f − f0‖22 dΠn

(
f |X1:n,Y1:n

)≤Cψ−1f0 (n)2.
If, on the other hand, ψ−1f0 (n) ≥ n−d/(4α+2d), then the assertion is true with the upper bound

Cnψ−1f0 (n)
(4α+4d)/d.

Unlike in the case of fixed design treated in Theorem 1, this theorem makes assumptions on
the regularity of the prior. This seems unavoidable, because the ‖ · ‖2-risk extrapolates from the
observed design points to all points in the support of the covariate density.

In the next section we shall see that a typical rate for estimating a β-smooth response function
f0 is given by

ψ−1f0 (n)∼ n−(β∧α)/(2α+d).

2103

VAN DER VAART AND VAN ZANTEN

(This reduces to the minimax rate n−α/(2α+d) if and only if α= β.) In this caseψ−1f0 (n)≤ n−d/(4α+2d)
if and only if α∧β≥ d/2. In other words, upper bounds for fixed and random design have exactly
the same form if prior and true response are not too rough.

For very rough priors and true response functions, the rate given by the preceding theorem is
slower than the rate for deterministic design, and for very rough response functions the theorem
may not give a rate at all. The latter seems partly due to using the second moment of the posterior,
rather than posterior concentration, although perhaps the theorem can be improved.

3. Results for Concrete Priors

In this section we specialize to two concrete classes of Gaussian process priors, the Matérn class
and the squared exponential process.

3.1 Matérn Priors

In this section we compute the risk bounds given by Theorems 1 and 2 for the case of the Matérn
kernel. In particular, we show that optimal rates are attained if the smoothness of the prior matches
the smoothness of the unknown response function.

The Matérn priors correspond to the mean-zero Gaussian processesW = (Wt : t ∈ [0,1]d) with
covariance function

EWsWt =
∫
Rd
eiλ

T (s−t)m(λ)dλ,

defined through the spectral densities m:Rd → R given by, for α> 0,

m(λ) =
1(

1+‖λ‖2)α+d/2 . (10)

The integral can be expressed in certain special functions (see, e.g., Rasmussen andWilliams, 2006).
This is important for the numerical implementation of the resulting Bayesian procedure, but not
useful for our present purpose.

The sample paths of the Matérn process possess the same smoothness in L2 as the set of func-
tions et(λ) = eiλ

T t in L2(m). From this it can be seen that the sample paths are k times differentiable
in L2, for k the biggest integer smaller than α, with kth derivative satisfying

E(W (k)
s −W (k)

t)2 	 ‖s− t‖2(α−k).
By Kolmogorov’s continuity criterion it follows that the sample paths of the kth derivative can be
constructed to be Lipshitz of any order strictly smaller than α− k. Thus the Matérn process takes
its values inCα[0,1]d for any α< α. Hence in this specific sense it is α-regular.

By Lemma 4.1 of Van der Vaart and Van Zanten (2009) the RKHS H of the process W is the
space of all (real parts of) functions of the form

hψ(t) =
∫
eiλ

T tψ(λ)m(λ)dλ, (11)

for ψ ∈ L2(m), and squared RKHS-norm given by

‖hψ‖2H = min
φ:hφ=hψ

∫
|φ|2(λ)m(λ)dλ. (12)

2104

NONPARAMETRIC GAUSSIAN PROCESS METHODS

This characterization is generic for stationary Gaussian processes. The minimum is unnecessary if
the spectral density has exponential tails (as in the next section), but is necessary in the present case.

In the following two lemmas we describe the concentration function (7) of the Matérn prior. The
small ball probability can be obtained from the preceding characterization of the RKHS, estimates
of metric entropy, and general results on Gaussian processes. See Section 4.3 for proofs.

Lemma 3 For ‖ · ‖∞ the uniform norm, and C a constant independent of ε,

− logP(‖W‖∞ < ε
)≤C(1

ε

)d/α
.

To estimate the infimum in the definition of the concentration function φ f0 for a nonzero response
function f0, we approximate f0 by elements of the RKHS. The idea is to write f0 in terms of its
Fourier inverse f̂0 as

f0(x) =
∫
eiλ

T x f̂0(λ)dλ (13)

=
∫
eiλ

T x f̂0
m
(λ)m(λ)dλ.

If f̂0/m were contained in L2(m), then f0 would be contained in the RKHS, with RKHS-norm
bounded by the L2(m)-norm of f̂0/m, that is, the square root of

∫
(| f̂0|2/m)(λ)dλ. In general this

integral may be infinite, but we can remedy this by truncating the tails of f̂0/m. We then obtain
an approximation of f0 by an element of the RKHS, which is enough to compute the concentration
function (8).

A natural a-priori condition on the true response function f0: [0,1]d → R is that this function is
contained in a Sobolev space of order β. This space consists roughly of functions that possess β
square integrable derivatives. The precise definition is given in Section 1.5.

Lemma 4 If f0 ∈Cβ[0,1]d ∩Hβ[0,1]d for β≤ α, then, for ε< 1, and a constant C depending on f0
and α,

inf
h:‖h− f0‖∞<ε

‖h‖2
H
≤C
(1
ε

)(2α+d−2β)/β
.

Combination of the two lemmas yields that for f0 ∈Cβ[0,1]d ∩Hβ[0,1]d for β≤ α, the concen-
tration function (7) satisfies

φ f0(ε)	
(1
ε

)(2α+d−2β)/β
+
(1
ε

)d/α
.

This implies that

ψ−1f0 (n)	
(1
n

)β/(2α+d)
.

Theorems 1 and 2 imply that the rate of contraction of the posterior distribution is of this order in
the case of fixed design, and of this order if β > d/2 in the case of random design. We summarize
these findings in the following theorem.

Theorem 5 Suppose that we use a Matérn prior with parameter α> 0 and f0 ∈Cβ[0,1]d∩Hβ[0,1]d

for β > 0. Then in the fixed design case the posterior contracts at the rate n−(α∧β)/(2α+d). In the
random design case this holds as well, provided α∧β> d/2.

2105

VAN DER VAART AND VAN ZANTEN

Observe that the optimal rate n−β/(2β+d) is attained if and only if α = β. Using a prior that is
“rougher” or “smoother” than the truth leads to sub-optimal rates. This is in accordance with the
findings for other GP priors in in Van der Vaart and Van Zanten (2008a). It should be remarked
here that Theorem 5 only gives an upper bound on the rate of contraction. However, the paper by
Castillo (2008) shows that these bounds are typically tight.

3.2 Squared Exponential Kernel

In this section we compute the risk bounds given by Theorems 1 and 2 for the case of the squared
exponential kernel.

The squared exponential process is the zero-mean Gaussian process with covariance function

EWsWt = e−‖s−t‖
2
, s, t ∈ [0,1]d.

Like the Matérn process the squared exponential process is stationary. Its spectral density is given
by

m(λ) =
1

2dπd/2
e−‖λ‖

2/4. (14)

The sample paths of the square exponential process are analytic.
This process was studied already in Van der Vaart and Van Zanten (2007) and Van der Vaart

and Van Zanten (2009). The first of the following lemmas is Lemma 4.5 in Van der Vaart and Van
Zanten (2009). It deals with the second term in the concentration function (7). As before, let ‖ · ‖∞
be the uniform norm on the functions f : [0,1]d → R.

Lemma 6 There exists a constant C depending only on d such that

− logP
(
‖W‖∞ ≤ ε

)
≤C
(
log

1
ε

)1+d
.

The following lemma concerns the infimum part of the concentration function in the case that
the function f0 belongs to a Sobolev space with regularity β (see Section 1.5).

Lemma 7 If f0 ∈ Hβ[0,1]d for β> d/2, then, for a constant C that depends only on f0,

inf
‖h− f0‖∞≤ε

‖h‖2H ≤ exp
(
Cε−2/(β−d/2)

)
.

Combination of the preceding two lemmas shows that for a β-regular response function f0 (in
Sobolev sense)

φ f0(ε)	 exp
(
Cε−2/(β−d/2)

)
+
(
log

1
ε

)1+d
.

The first term on the right dominates, for any β> 0. The corresponding rate of contraction satisfies

ψ−1f0 (n)	 (1/ logn)β/2−d/4.

Thus the extreme smoothness of the prior relative to the smoothness of the response function
leads to very slow contraction rates for such functions. A remedy for this mismatch is to rescale
the sample paths. The length scale of the process can be treated as a hyperparameter and can be
endowed with a prior of its own, or can be selected using an empirical Bayes procedure. Van der

2106

NONPARAMETRIC GAUSSIAN PROCESS METHODS

Vaart and Van Zanten (2007) and Van der Vaart and Van Zanten (2009) for example show that the
prior x �→ f (Ax), for f the squared exponential process and Ad an independent Gamma distributed
random variable, leads to optimal contraction rates for β-smooth true response functions, for any
β> 0.

Actually, the preceding discussion permits only the derivation of an upper bound on the con-
traction rate. In the next theorem we show that the logarithmic rate is real however. The theorem
shows that asymptotically, balls around f0 of logarithmic radius receive zero posterior mass. The
proof, following an idea of Castillo (2008) and given in Section 4.4, is based on the fact that balls
of this type also receive very little prior mass, essentially because the inequality of the preceding
lemma can be reversed.

Theorem 8 If f0 is contained in Hβ[0,1]d for some β > d/2, has support within (0,1)d and pos-
sesses a Fourier transform satisfying | f̂0(λ)|
 ‖λ‖−k for some k> 0 and every ‖λ‖ ≥ 1, then there
exists a constant l such that E f0Π

(
f :‖ f − f0‖2 ≤ (logn)−l|X1:n,Y1:n

)→ 0.

As the prior puts all of its mass on analytic functions, perhaps it is not fair to study its per-
formance only for β-regular functions, and it makes sense to study the concentration function also
for “supersmooth”, analytic response functions as well. The functions in the RKHS of the squared
exponential process are examples of supersmooth functions, and for those functions we obtain the
rate ψ−10 (n) determined by the (centered) small ball probability only. In view of Lemma 6 this is a
1/
√
n-rate up to a logarithmic factor.
The following lemma deals with the infimum part of the concentration function in the case that

that the function f0 is supersmooth. Recall the definition of the space Aγ,r(Rd) of analytic functions
given in Section 1.5.

Lemma 9 • If f0 is the restriction to [0,1]d of an element of Aγ,r(Rd), for r > 2, or for r ≥ 2
with γ≥ 4, then f0 ∈H.

• If f0 is the restriction to [0,1]d of an element of Aγ,r(Rd) for r< 2, then there exist a constant
C depending on f0 such that

inf
‖h−w‖∞≤ε

‖h‖2H ≤Ce
(
log(1/ε)

)2/r
/(4γ2/r).

Combination of Lemmas 6 and 9 with the general theorems yields the following result.

Theorem 10 Suppose that we use a squared exponential prior and f0 is the restriction to [0,1]d of
an element of Aγ,r(Rd), for r≥ 1 and γ> 0. Then both in the fixed and the random design cases the
posterior contracts at the rate (logn)1/r/

√
n.

Observe that the rate that we get in the last theorem is up to a logarithmic factor equal to the rate
1/
√
n at which the posterior typically contracts for parametric models (cf., the Bernstein-von Mises

theorem, for example, Van der Vaart, 1998). This “almost parametric rate” is explainable from the
fact that spaces of analytic functions are only slightly bigger than finite-dimensional spaces in terms
of their metric entropy (see Kolmogorov and Tihomirov, 1961).

Together, Theorems 8 and 10 give the same general message for the squared exponential kernel
as Theorem 5 does for the Matérn kernel: fast convergence rates are only attained if the smooth-
ness of the prior matches the smoothness of the response function f0. However, generally the

2107

VAN DER VAART AND VAN ZANTEN

assumption of existence of infinitely many derivatives of a true response function (f0 ∈ Ag,r(Rd))
is considered too strong to define a test case for nonparametric learning. If this assumption holds,
then the response function f0 can be recovered at a very fast rate, but this is poor evidence of good
performance, as only few functions satisfy the assumption. Under the more truly “nonparamet-
ric assumption” that f0 is β-regular, the performance of the squared-exponential prior is disastrous
(unless the length scale is changed appropriately in a data-dependent way).

4. Proofs

This section contains the proofs of the presented results.

4.1 Proof of Theorem 1

The proof of Theorem 1 is based on estimates of the prior mass near the true parameter f0 and on
the metric entropy of the support of the prior. This is expressed in the following proposition.

We use the notationD(ε,A ,d) for the ε-packing number of the metric space (A ,d): the maximal
number of points in A such that every pair has distance at least ε relative to d.

Proposition 11 Suppose that for some ε> 0 with
√
nε≥ 1 and for every r > 1 there exists a set Fr

such that

D
(
ε,Fr,‖ · ‖n

)≤ enε
2r2 , (15)

Π(Fr)≥ 1− e−2nε2r2 .

Furthermore, suppose that
Π
(
f :‖ f − f0‖n ≤ ε

)≥ e−nε
2
. (16)

Then
Pn, f0

∫
‖ f − f0‖ln dΠn

(
f |Y1:n

)
	 εl.

For θ ∈R
n let Pn,θ be the normal distribution Nn(θ, I). In the following three lemmas let ‖ ·‖ be

the Euclidean norm on Rn.

Lemma 12 For any θ0,θ1 ∈ R
n, there exists a test φ based on Y ∼ Nn(θ, I) such that, for every

θ ∈ R
n with ‖θ−θ1‖ ≤ ‖θ0−θ1‖/2,

Pn,θ0φ∨Pn,θ(1−φ)≤ e−‖θ0−θ1‖
2/8.

Proof For simplicity of notation we can choose θ0 = 0. If ‖θ−θ1‖ ≤ ‖θ1‖/2, then ‖θ‖ ≥ ‖θ1‖/2
and hence 〈θ,θ1〉 =

(‖θ‖2+ ‖θ1‖2−‖θ−θ1‖2)/2 ≥ ‖θ1‖2/2. Therefore, the test φ = 1θT1Y>D‖θ1‖
satisfies, with Φ the standard normal cdf,

Pn,θ0φ= 1−Φ(D),
Pn,θ(1−φ) =Φ

(
(D‖θ1‖−〈θ,θ1〉)/‖θ1‖

)≤Φ(D−ρ),

for ρ= ‖θ1‖/2. The infimum over D of
(
1−Φ(D))+Φ(D−ρ) is attained for D= ρ/2, for which

D−ρ = −ρ/2. We substitute this in the preceding display and use the bound 1−Φ(x) ≤ e−x
2/2,

2108

NONPARAMETRIC GAUSSIAN PROCESS METHODS

valid for x≥ 0.

Let D(ε,Θ) be the maximal number of points that can be placed inside the set Θ⊂R
n such that

any pair has Euclidean distance at least ε.

Lemma 13 For anyΘ⊂R
n there exists a test φ based on Y ∼Nn(θ, I) with, for any r> 1 and every

integer j ≥ 1,
Pn,θ0φ≤ 9D(r/2,Θ)exp(−r2/8),

sup
θ∈Θ:‖θ−θ0‖≥ jr

Pn,θ(1−φ)≤ exp(− j2r2/8).

Proof The set Θ can be partitioned into the shells

Cj,r =
{
θ ∈ Θ: jr ≤ ‖θ−θ0‖< (j+1)r

}
.

We place in each of these shells a maximal collection Θ j of points that are jr/2-separated, and next
construct a test φ j as the maximum of all the tests as in the preceding lemma attached to one of these
points. The number of points is equal to D(jr/2,Cj,r). Every θ ∈Cj,r is in a ball of radius jr/2 of
some point θ1 ∈ Θ j and satisfies ‖θ−θ1‖ ≤ jr/2 ≤ ‖θ0−θ1‖/2, since θ1 ∈Cj,r. Hence each test
satisfies the inequalities of the preceding lemma. It follows that

Pn,θ0φ j ≤ D(jr/2,Cj,r)e
− j2r2/8,

sup
θ∈Cj,r

Pn,θ(1−φ j)≤ e− j
2r2/8.

Finally, we construct φ as the supremum over all tests φ j, for j ≥ 1. We note that

∑ j≥1D(jr/2,Cj,r)e− j
2r2/8 ≤ D(r/2,Θ)e−r

2/8/(1− e−r2/8), and 1/(1− e−1/8)≈ 8.510.

Lemma 14 For any probability distribution Π on Rn and x> 0,

Pn,θ0
(∫ pn,θ

pn,θ0
dΠ(θ)≤ e−σ

2
0/2−‖μ0‖x

)
≤ e−x

2/2,

for μ0 =
∫
(θ−θ0)dΠ(θ) and σ20 =

∫ ‖θ−θ0‖2 dΠ(θ). Consequently, for any probability distribu-
tion Π on Rn and any r > 0,

Pn,θ0
(∫ pn,θ

pn,θ0
dΠ(θ)≥ e−r

2
Π
(
θ:‖θ−θ0‖< r

))≥ 1− e−r2/8.
Proof Under θ0 the variable

∫
log(pn,θ/pn,θ0)dΠ(θ) = μT0 (Y −θ0)−σ20/2 is normally distributed

with mean −σ20/2 and variance ‖μ0‖2. Therefore, the event Bn that this variable is smaller than
−σ20/2−‖μ0‖x has probability bounded above by Φ(−x)≤ e−x

2/2. By Jensen’s inequality applied
to the logarithm, the event in the left side of the lemma is contained in Bn.

To prove the second assertion we first restrict the integral
∫
pn,θ/pn,θ0 dΠ(θ) to the ball {θ:‖θ−

θ0‖ ≤ r}, which makes it smaller. Next we divide by Π(θ:‖θ− θ0‖ < r
)
to renormalize Π to a

2109

VAN DER VAART AND VAN ZANTEN

probability measure on this ball, and apply the first assertion with this renormalized measure Π.
The relevant characteristics of the renormalized measure satisfy ‖μ0‖ ≤ r and σ20 ≤ r2. Therefore
the assertion follows upon choosing x= r/2.

Proof [Proof of Proposition 11] For any event A , any test φ and any r > 1, the expected value
Pn, f0Π

(
f :‖ f − f0‖n > 4εr|Y1:n

)
is bounded by A+B+C+D, for

A= Pn, f0φ,

B= Pn, f0(A
c)

C = Pn, f0Πn
(
f �∈ Fr|Y1:n

)
1A ,

D= Pn, f0Πn
(
f ∈ Fr:‖ f − f0‖n > 4εr|Y1:n

)
(1−φ)1A .

For the test φ given by Lemma 13 with Θ the set of all vectors
(
f (x1), . . . , f (xn)

)
as f ranges over

Fr, with θ0 this vector at f = f0, and with r taken equal to 4
√
nεr, we obtain, for 4

√
nεr > 1,

A≤ 9D(2√nεr,Θ)e−2nε2r2 ≤ 9e−nε2r2 .

In view of Lemma 14 applied with r equal to
√
nεr, there exists an event A such that

B≤ e−nε
2r2/8,

while on the event A ,
∫

pn, f
pn, f0

dΠ(f)≥ e−nε
2r2Π
(
f :‖ f − f0‖n < εr

)≥ e−nε
2(r2+1).

It follows that on the event A , for any set B ,

Πn(B|Y1:n)≤ enε
2(r2+1)

∫
B
pn, f /pn, f0 dΠ(f).

Therefore, in view of the fact that Pn, f0(pn, f /pn. f0)≤ 1, we obtain,

C ≤ enε
2(r2+1)Pn, f0

∫
F c
r

pn, f /pn, f0 dΠ(f)

≤ enε
2(r2+1)Π(F c

r)≤ e−nε
2(r2−1). (17)

Finally, in view of the fact that Pn, f0(pn, f /pn. f0)(1− φ) ≤ Pn, f (1− φ), which is bounded above
by e−2 j

2nε2r2 for f contained in Cj,r:= { f ∈ Fn,r:4 jεr ≤ ‖ f − f0‖n < 4(j+ 1)εr} by the second
inequality in Lemma 13, we obtain, again using Fubini’s theorem,

D≤ enε
2(r2+1)∑

j≥1
Pn, f0(1−φ)

∫
Cj,r

pn, f /pn, f0 dΠ(f)

≤ enε
2(r2+1)∑

j≥1
e−2 j

2nε2r2 ≤ 9e−nε2(r2−1),

for nε2r2 ≥ 1/16, as 1/(1− e−1/8)≈ 8.5.

2110

NONPARAMETRIC GAUSSIAN PROCESS METHODS

Finally we write

Pn, f0

∫
‖ f − f0‖ln dΠn

(
f |Y1:n

)
= Pn, f0

∫ ∞

0
lrl−1Πn

(‖ f − f0‖n > 4εr|Y1:n
)
dr (4ε)l

≤ (8ε)l+(4ε)lPn, f0

∫ ∞

2
lrl−1(A+B+C+D)(r)dr.

Inserting the bound on A+B+C+D obtained previously we see that the integral is bounded by
10

∫ ∞
2 (e

−r2/8+ e−(r
2−1))dr < ∞.

Proof [Proof of Theorem 1] Theorem 1 is a specialization of Proposition 11 to Gaussian priors,
where the conditions of the proposition are reexpressed in terms of the concentration function φ f0
of the prior. The details are the same as in Van der Vaart and Van Zanten (2008a).

First we note that ε:= 2ψ−1f0 (n) satisfies φ f0(ε/2) ≤ nε2/4 ≤ nε2. It is shown in Kuelbs et al.
(1994) (or see Lemma 5.3 in Van der Vaart and Van Zanten, 2008b) that the concentration function
φ f0 determines the small ball probabilities around f0, in the sense that, for the given ε,

Π
(
f :‖ f − f0‖∞ < ε

)≥ e−nε
2
. (18)

Because ‖ · ‖n ≤ ‖ ·‖∞, it follows that (16) is satisfied.
For H1 and B1 the unit balls of the RKHS and B and Mr = −2Φ−1(e−nε2r2), we define sets

Fr = εB1+MrH1. By Borell’s inequality (see Borell, 2008, or Theorem 5.1 in Van der Vaart and
Van Zanten, 2008b) these sets have prior probability Π(Fr) bounded below by 1−Φ(α+Mr), for
Φ the standard normal distribution function and α the solution to the equationΦ(α) =Π

(
f :‖ f‖∞ <

ε
)
= e−φo(ε). Because Φ(α)≥ e−nε

2 ≥ e−nε
2r2 , we have α+Mr ≥−Φ−1(e−nε2r2). We conclude that

Π(Fr)≥ 1− e−nε2r2 .
It is shown in the proof of Theorem 2.1 of Van der Vaart and Van Zanten (2008a) that the sets

Fr also satisfy the entropy bound (15), for the norm ‖ · ‖∞, and hence certainly for ‖ · ‖n.

4.2 Proof of Theorem 2

For a function f : [0,1]d → R and α > 0 let ‖ f‖α|∞ be the Besov norm of regularity α measured
using the L∞−L∞-norms (see (19) below). This is bounded by the Hölder norm of order α (see for
instance Cohen et al., 2001 for details).

Lemma 15 Let X = [0,1]d and suppose that the density of the covariates is bounded below by a

constant c. Then ‖ f‖∞ 	 c−2α/(2α+d)‖ f‖d/(2α+d)α|∞ ‖ f‖2α/(2α+d)2 , for any function f : [0,1]d → R.

Proof We can assume without loss of generality that the covariate distribution is the uniform distri-
bution. We can write the function as the Fourier series f = ∑∞

j=0∑k∑vβ j,k,ve j,k,v relative to a basis
(e j,k,v) of orthonormal wavelets in L2(Rd). (Here k runs for each fixed j through an index set for of
the order O(2 jd) translates, and v runs through {0,1}d when j = 0 and {0,1}d \ {0} when j ≥ 1.)

2111

VAN DER VAART AND VAN ZANTEN

For wavelets constructed from suitable scaling functions, the various norms of f can be expressed
in the coefficients through (up to constants, see for instance Cohen et al., 2001, Section 2)

‖ f‖2 =
(
∑
j
∑
k
∑
v
β2j,k,v
)1/2

,

‖ f‖∞ ≤∑
j

max
k
max
v
|β j,k,v|2 jd/2,

‖ f‖α|∞ = sup
j
max
k
max
v
|β j,k,v|2 j(α+d/2). (19)

For given J let fJ = ∑ j≤J∑k∑vβ j,k,ve j,k,v be the projection of f on the base elements of resolution
level bounded by J. Then

‖ f − fJ‖∞ ≤ ∑
j>J

max
k
max
v
|β j,k,v|2 jd/2

≤ ∑
j>J

2− j(α+d/2)‖ f‖α|∞2 jd/2 ≤ 2−Jα‖ f‖α|∞.

Furthermore, by the Cauchy-Schwarz inequality,

‖ fJ‖∞ ≤ ∑
j≤J
max
k
max
v
|β j,k,v|2 jd/2

≤
(
∑
j≤J
max
k
max
v
β2j,k,v
)1/2(

∑
j≤J
2 jd
)1/2

≤ ‖ f‖22Jd/2,

where in the last inequality we have bounded the maximum over (k,v) by the sum.

Combining the two preceding displays we see that ‖ f‖∞ ≤ 2−Jα‖ f‖α|∞+‖ f‖22Jd/2. We finish
the proof by choosing J to balance the two terms on the right.

Proof [Proof of Theorem 2] Let ε= 2ψ−1f0 (n) so that φ f0(ε/2)≤ nε2 and (18) holds. By the definition
of φ f0 there exists an element fε of the RKHS of the prior with ‖ fε− f0‖∞ ≤ ε/2 and ‖ fε‖2H ≤
φ f0(ε/2) ≤ nε2. Because ‖ fε− f0‖2 ≤ ‖ fε− f0‖∞ ≤ ε, the posterior second moments of ‖ f − fε‖2
and ‖ f − f0‖2 are within a multiple of ε2, and hence it suffices to bound the former of the two.

For any positive constants γ,τ, any η≥ ε, and any events Ar we can bound

1
η2
E f0

∫
‖ f − fε‖22 dΠ(f |X1:n,Y1:n)

= E f0

∫ ∞

0
rΠ
(
f :‖ f − fε‖2 > ηr|X1:n,Y1:n

)
dr

2112

NONPARAMETRIC GAUSSIAN PROCESS METHODS

by I+ II+ III+ IV , for

I = E f0

∫ ∞

0
rΠ
(
f :2‖ f − fε‖n > ηr|X1:n,Y1:n

)
dr,

II = E f0

∫ ∞

0
r1Ac

r
dr,

III = E f0

∫ ∞

0
r1ArΠ

(‖ f‖α|∞ > τ
√
nηrγ|X1:n,Y1:n

)
dr,

IV = E f0

∫ ∞

0
r1ArΠ

(
f :‖ f − fε‖2 > ηr ≥ 2‖ f − fε‖n,
‖ f‖α|∞ ≤ τ

√
nηrγ|X1:n,Y1:n

)
dr.

The term I is the quadratic risk in terms of the empirical norm, centered at fε. Conditioned on the
design points and centered at f0 this was seen to be bounded in the previous section (as η ≥ ε),
uniformly in the design points. Because ‖ f0− fε‖∞ ≤ ε, the term I is bounded by a constant.

In view of Lemma 14, with r of the lemma equal to
√
nεrγ, there exist events Ar such that

II ≤
∫ ∞

0
re−nε

2r2γ/8 dr 	 1,

while on the event Ar,
∫

pn, f
pn, f0

dΠ(f)≥ e−nε
2r2γΠ
(
f :‖ f − f0‖n < εrγ

)
≥ e−nε

2(r2γ+1), (20)

by (18) and because ‖ · ‖n ≤ ‖ ·‖∞.
Because the prior Π is concentrated on the functions with ‖ f‖α|∞ < ∞ by assumption, it can be

viewed as the distribution of a Gaussian random element with values in the Hölder space Cα[0,1]d .
It follows that τ2:= 16

∫ ‖ f‖2α|∞ dΠ(f) is finite, and Π
(
f :‖ f‖α|∞ > τx

)≤ e−2x
2
, for every x> 0, by

Borell’s inequality (e.g., Van der Vaart and Wellner, 1996, A.2.1.). By the same argument as used
to obtain (17) in the proof of Proposition 11, we see that

III ≤ 1+
∫ ∞

1
renε

2(r2γ+1)Π
(
f :‖ f‖α|∞ > τ

√
nηrγ
)
dr

≤ 1+
∫ ∞

1
renε

2(r2γ+1)e−2nη
2r2γ dr 	 2.

It remains to prove that IV is bounded as well.
The squared empirical norm ‖ f − fε‖2n is the average of the independent random variables (f −

fε)2(Xi), which have expectation ‖ f − fε‖22, and variance bounded by P(f − fε)4 ≤ ‖ f − fε‖22‖ f −
fε‖2∞. Therefore, we can apply Bernstein’s inequality (see, e.g., Lemma 2.2.9 in Van der Vaart and
Wellner, 1996) to see that

P
(‖ f − fε‖2 ≥ 2‖ f − fε‖n

)≤ e−(n/5)‖ f− fε‖
2
2/‖ f− fε‖2∞ .

The unit ball of the RKHS of a GP f is always contained in c times the unit ball of the Banach space
on which it is supported, for c2 = E‖ f‖2, where ‖ · ‖ is the norm of the Banach space (see, e.g.,

2113

VAN DER VAART AND VAN ZANTEN

Van der Vaart and Van Zanten, 2008b), formula (2.5)). An equivalent statement is that the Banach
norm ‖ f‖ of an element of the RKHS is bounded above by c times its RKHS-norm. Because Π is
concentrated onCα[0,1]d , we can apply this general fact with ‖·‖ the α-Hölder norm, and conclude
that the α-Hölder norm of an element of the RKHS is bounded above by τ/4 times its RKHS-norm,
for τ/4 the second moment of the prior norm defined previously. In particular ‖ fε‖α|∞ ≤ τ‖ fε‖H ≤
τ
√
nε. Therefore, for f in the set F of functions with ‖ f‖α|∞ ≤ τ

√
nεrγ, we have ‖ f − fε‖α|∞ ≤

2τ
√
nεrγ, whence by Lemma 15 for f ∈ F we can replace ‖ f − fε‖∞ in the preceding display by

c(2τ
√
nεrγ)d/(2α+d)‖ f − fε‖2α/(2α+d)2 , for a constant c depending on the covariate density. We then

have

E f0Π
(
f ∈ F :‖ f − fε‖2 > ηr ≥ 2‖ f − fε‖n

)
≤

∫
f∈F :‖ f− fε‖2>ηr

P
(‖ f − fε‖2 ≥ 2‖ f − fε‖n

)
dΠ(f)

≤
∫
‖ f− fε‖2>ηr

exp
(
− n
5c2

(‖ f − fε‖2
2τ
√
nεrγ

)2d/(2α+d))
dΠ(f)

≤ exp
(
−Cn2α/(2α+d)(ηr1−γ/ε)2d/(2α+d)

)
,

for 1/C = 5c2(2τ)2d/(2α+d). Substitution of this bound and the lower bound (20) in IV yields

IV ≤ 1+
∫ ∞

1
renε

2(r2γ+1)e−Cn
2α/(2α+d)(ηr1−γ/ε)2d/(2α+d) dr.

ForCn2α/(2α+d)(η/ε)2d/(2α+d) ≥ nε2 this is finite if γ> 0 is chosen sufficiently small. Equivalently,
IV is bounded if η

√
nε(2α+2d)/d .

We must combine this with the requirement made at the beginning of the proof that η ≥ ε ≥
2ψ−1f0 (n). If ε≤ n−d/(4α+2d), then

√
nε(2α+2d)/d ≤ ε and hence the requirement η

√
nε(2α+2d)/d is

satisfied for η= ε. Otherwise, we choose η∼√nε(2α+2d)/d" ε. In both cases we have proved that
the posterior second moment has mean bounded by a multiple of η2.

4.3 Proofs for Section 3

Proof [Proof of Lemma 3] The Fourier transform of hψ given in (11) is, up to constants, the function
φ= ψm, and for ψ the minimal choice as in (12) this function satisfies (cf., (10))

∫ ∣∣φ(λ)∣∣2(1+‖λ‖2)α+d/2 dλ= ‖hψ‖2H.
In other words, the unit ball H1 of the RKHS is contained in a Sobolev ball of order α+d/2. (See
Section 1.5 for the definition of Sobolev spaces.) The metric entropy relative to the uniform norm
of such a Sobolev ball is bounded by a constant times (1/ε)d/(α+d/2) (see Theorem 3.3.2 on p. 105
in Edmunds and Triebel, 1996). The lemma next follows from the results of Kuelbs and Li (1993)
and Li and Linde (1998) that characterize the small ball probability in terms of the entropy of the
RKHS-unit ball.

2114

NONPARAMETRIC GAUSSIAN PROCESS METHODS

Proof [Proof of Lemma 4] Let κ:R → R be a function with a real, symmetric Fourier trans-
form κ̂, which equals 1/(2π) in a neighborhood of 0 and which has compact support. From
κ̂(λ) = (2π)−1

∫
eiλtκ(t)dt it then follows that

∫
κ(t)dt = 1 and

∫
(it)kκ(t)dt = 0 for k ≥ 1. For

t = (t1, . . . , td), define φ(t) = κ(t1) · · ·κ(td). Then φ integrates to 1, has finite absolute moments of
all orders, and vanishing moments of all orders bigger than 0.

For σ> 0 set φσ(x) = σ−dφ(x/σ) and h= φσ ∗ f0. Because φ is a higher order kernel, standard
arguments from the theory of kernel estimation shows that ‖ f0−φσ ∗ f0‖∞ 	 σβ.

The Fourier transform of h is the function λ �→ ĥ(λ) = φ̂(σλ) f̂0(λ), and therefore (12) and (13)
show that

‖h‖2H 	

∫ ∣∣φ̂(σλ) f̂0(λ)∣∣2 1
m(λ)

dλ

	 sup
λ

[(
1+‖λ‖2)α+d/2−β∣∣φ̂(σλ)∣∣2]‖ f0‖2β|2

	C(σ)sup
λ

[(
1+‖λ‖2)α+d/2−β∣∣φ̂(λ)∣∣2]‖ f0‖2β|2.

for

C(σ) = sup
λ

(1+‖λ‖2
1+‖σλ‖2

)α+d/2−β
	

(1
σ

)2α+d−2β
,

if σ≤ 1. The assertion of the lemma follows upon choosing σ∼ ε1/β.

Proof [Proof of Lemma 7] For given K > 0 let ψ(λ) = (f̂0/m)(λ)1‖λ‖≤K . The function hψ defined
by (11) with m given in (14) satisfies

‖hψ− f0‖∞ ≤
∫
‖λ‖>K

| f̂0(λ)|dλ

≤ ‖ f0‖β|2
(∫
‖λ‖>K

(
1+‖λ‖2)−β dλ)1/2

	 ‖ f0‖β|2
1

Kβ−d/2 .

Furthermore, the squared RKHS-norm of hψ is given by

‖hψ‖2H =
∫
‖λ‖≤K

| f̂0|2
m

(λ)dλ

≤ sup
‖λ‖≤K

m(λ)−1
(
1+‖λ‖2)−β‖ f0‖2β|2

	 eK
2/4‖ f0‖2β|2.

We conclude the proof by choosing K ∼ ε−1/(β−d/2).

Proof [Proof of 9] The first assertion is proved in Van der Vaart and Van Zanten (2009), Lemma 4.4.
The second assertion is proved in the same way as Lemma 7, where this time, with ‖ f0‖A the norm

2115

VAN DER VAART AND VAN ZANTEN

of f0 in Aγ,r(Rd),

‖hψ− f0‖2∞ ≤
∫
‖λ‖>K

e−γ‖λ‖
r
dλ‖ f0‖2A

≤ e−γK
r
K−r+1‖ f0‖2A ,

‖hψ‖2H ≤ sup
‖λ‖≤K

e‖λ‖
2/4−γ‖λ‖r‖ f0‖2A ≤ eK

2/4‖ f0‖2A .

We finish by choosing K ∼ (γ−1 log(1/ε))1/r.
4.4 Miscellaneous Results

Proof [Proof of Theorem 8] We start by proving the following lower bound on the concentration
function: there exists b,v> 0 such that for ε ↓ 0,

φ f0(ε)≥ inf
ψ:‖hψ− f0‖2<ε

‖hψ‖2H (21)

 exp
(
bε−v
)
.

For given ε> 0 let hψ be a function in the RKHS of the form (11) such that ‖hψ− f0‖2< ε. Let r be a
function which is equal to 1 on the support of f0, has itself support within [0,1] and Fourier transform
with exponentially small tails: |r̂(λ)exp(|λ|u)→ 0 as |λ| → ∞, for some u > 0. (Such a function
exists for u< 1.) Then hψr has support inside [0,1] and f0r= f0, so that ‖hψr− f0‖2,R≤‖hψ− f0‖2,
where ‖ · ‖2,R is the norm of L2(Rd) and ‖ · ‖2 the norm of L2[0,1]d . The function hψr has Fourier
transform (ψm)∗ r̂, and hence by Parseval’s identity ∥∥(ψm)∗ r̂− f̂0

∥∥
2,R < ε. Therefore, for K > 0

and χK the indicator of the set {λ ∈ R
d :‖λ‖> K},∥∥(ψm)∗ r̂χ2K∥∥2,R ≥ ‖ f̂0χ2K‖2,R− ε≥ c(1/K)k−d/2− ε,

by the assumption on f̂0, for some constant c. By Lemma 16 with A= K/2 and 2K instead of K, it
follows that

‖ψmχK‖2,R‖r̂(1−χK)‖1,R ≥ c(1/K)k−d/2− ε−‖ψm‖2,R‖r̂χK‖1.

In view of (12) we have that ‖hψ‖H = ‖ψ√m‖2,R and hence ‖ψmχK‖2,R ≤
√
m(K)‖hψ‖H, and

‖ψm‖2,R ≤ ‖hψ‖H. Combining this with the preceding display we see that(‖r̂(1−χK)‖1,R√m(K)+‖r̂χK‖1)‖hψ‖H ≥ c(1/K)k−d/2− ε= ε,

for K = (c/2ε)1/(k−d/2). Here ‖r̂(1−χK)‖1,R
√
m(K) is of the order exp(−K2/4), in view of the

definition (14) of m and the fact that r̂ is integrable, and ‖r̂χK‖1 is of the order exp(−dKu), by
construction. The proof of (21) is complete upon substituting K = (c/2ε)1/(k−d/2) and rearranging
the preceding display.

The prior mass of a ball of radius ε around f0 is bounded below by e−φ f0 (ε/2) and bounded above
by e−φ f0 (ε), where we can use any norm. In view of (21) and Lemmas 6 and 7 we conclude that

2116

NONPARAMETRIC GAUSSIAN PROCESS METHODS

there exist constants such

exp
(−eaε−u)≤Π(f :‖ f − f0‖∞ < ε

)
,

Π(f :‖ f − f0‖2 < ε
)≤ exp(−ebε−v).

By choosing ηn,εn such that aε−un = logns and bη−vn = lognt , we obtain that

Π
(
f :‖ f − f0‖2 < ηn

)
Π
(
f :‖ f − f0‖∞ < εn

) ≤ exp(−nt+ns)� e−2nε
2
n ,

if t > 1∨ s. It then follows that E f0Π
(
f :‖ f − f0‖2 < ηn|X1:n,Y1:n

)→ 0, by the same argument as
given to prove (17).

If the convolution of a function f with a light-tailed function g has heavy tails, then f itself must
have heavy tails. The following quantitative version of this principle underlies the preceding proof.

Lemma 16 For arbitrary functions f ,g:R→ R, χK the indicator function of {λ ∈ R
d :‖λ‖ > K},

and 0< A< K,

‖ fχK−A‖2‖g(1−χA)‖1 ≥ ‖(f ∗g)χK‖2−‖ f‖2‖gχA‖1.

Proof For ft the function λ �→ f (λ− t), we have ‖ ftχK‖2 ≤ ‖ fχK−A‖ if ‖t‖ ≤ A, and ‖ ftχK‖2 ≤
‖ f‖2 for every t. Therefore∥∥∥∫ ftχK g(t)dt

∥∥∥
2
≤

∫
‖ ftχK‖2 |g(t)|dt

≤ ‖ fχK−A‖2
∫
‖t‖≤A

|g(t)|dt+‖ f‖2
∫
‖t‖>A

|g(t)|dt.

It suffices to arrange this inequality.

Lemma 17 For ψ f0 defined by (8) and f0 ∈H we have (9).

Proof Because the function ψ f0 is decreasing, the relation ψ f0(ε) ≤ n for some ε implies that
ψ−1f0 (n)≤ ε. Consequently, if ψ̃ f0 is an upper bound on ψ f0 , then ψ̃ f0(ε)≤ n for some ε implies that

ψ−1f0 (n)≤ ε. If f0 ∈H, then we can choose h= f0 in the infimum in the definition of φ f0 , and hence
we obtain

φ f0(ε)≤ ‖ f0‖2H+φ0(ε).

If both ‖ f0‖2H ≤ nε2/2 and ψ0(ε)≤ nε2/2, then ψ̃ f0(ε)≤ n and hence ψ−1f0 (n)≤ ε.

2117

VAN DER VAART AND VAN ZANTEN

References

A. R. Barron. Information-theoretic characterization of Bayes performance and the choice of priors
in parametric and nonparametric problems. In Bayesian Statistics, 6 (Alcoceber, 1998), pages
27–52. Oxford Univ. Press, New York, 1999.

H. Bauer. Measure and integration theory, volume 26 of de Gruyter Studies in Mathematics. Walter
de Gruyter & Co., Berlin, 2001.

C. Borell. Inequalities of the Brunn-Minkowski type for Gaussian measures. Probab. Theory Re-
lated Fields, 140(1-2):195–205, 2008.

I. Castillo. Lower bounds for posterior rates with Gaussian process priors. Electron. J. Stat., 2:
1281–1299, 2008.

A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore. Tree approximation and optimal encoding.
Appl. Comput. Harmon. Anal., 11(2):192–226, 2001.

D. E. Edmunds and H. Triebel. Function Spaces, Entropy Numbers, Differential Operators, volume
120 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1996.

S. Ghosal, J. K. Ghosh, and A. W. van der Vaart. Convergence rates of posterior distributions. Ann.
Statist., 28(2):500–531, 2000.

I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus, 2nd edition. Springer-
Verlag, New York, 1991.

J. Kuelbs and W. V. Li. Metric entropy and the small ball problem for Gaussian measures. J. Funct.
Anal., 116(1):133–157, 1993.

J. Kuelbs, W. V. Li, and W. Linde. The Gaussian measure of shifted balls. Probab. Theory Related
Fields, 98(2):143–162, 1994.

A. N. Kolmogorov and V. M. Tihomirov. ε-entropy and ε-capacity of sets in functional space. Amer.
Math. Soc. Transl. (2), 17: 277–364, 1961

W. V. Li and Q.-M. Shao. Gaussian processes: inequalities, small ball probabilities and applications.
In Stochastic Processes: Theory and Methods, volume 19 of Handbook of Statist., pages 533–
597. North-Holland, Amsterdam, 2001.

W. V. Li and W. Linde. Existence of small ball constants for fractional Brownian motions. C. R.
Acad. Sci. Paris Sér. I Math., 326(11):1329–1334, 1998.

M. A. Lifshits. Gaussian Random Functions. Kluwer Academic Publishers, Dordrecht, 1995.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine learning. MIT Press,
Cambridge, MA, 2006.

M. W. Seeger, S. M. Kakade, and D. P. Foster. Information consistency of nonparametric Gaussian
process methods. IEEE Trans. Inform. Theory, 54(5):2376–2382, 2008.

2118

NONPARAMETRIC GAUSSIAN PROCESS METHODS

A. B. Tsybakov., Introduction to Nonparametric Estimation. Springer, New York, 2009.

A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press, Cambridge, 1998.

A. W. van der Vaart and J. H. van Zanten. Bayesian inference with rescaled Gaussian process priors.
Electron. J. Stat., 1:433–448 (electronic), 2007.

A. W. van der Vaart and J. H. van Zanten. Rates of contraction of posterior distributions based on
Gaussian process priors. Ann. Statist., 36(3):1435–1463, 2008a.

A. W. van der Vaart and J. H. van Zanten. Reproducing kernel Hilbert spaces of Gaussian priors.
In Pushing the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh,
volume 3 of Inst. Math. Stat. Collect., pages 200–222. Inst. Math. Statist., Beachwood, OH,
2008b.

A. W. van der Vaart and J. H. van Zanten. Adaptive Bayesian estimation using a Gaussian random
field with inverse gamma bandwidth. Ann. Statist., 37(5B):2655–2675, 2009.

A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. Springer Series
in Statistics. Springer-Verlag, New York, 1996.

G. Wahba. Improper priors, spline smoothing and the problem of guarding against model errors in
regression. J. Roy. Statist. Soc. Ser. B, 40(3): 364–372, 1978.

2119

Journal of Machine Learning Research 12 (2011) 2121-2159 Submitted 3/10; Revised 3/11; Published 7/11

Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization∗

John Duchi JDUCHI@CS.BERKELEY.EDU
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720 USA

Elad Hazan EHAZAN@IE.TECHNION.AC.IL
Technion - Israel Institute of Technology
Technion City
Haifa, 32000, Israel

Yoram Singer SINGER@GOOGLE.COM
Google
1600 Amphitheatre Parkway
Mountain View, CA 94043 USA

Editor: Tong Zhang

Abstract
We present a new family of subgradient methods that dynamically incorporate knowledge of the
geometry of the data observed in earlier iterations to perform more informative gradient-based
learning. Metaphorically, the adaptation allows us to find needles in haystacks in the form of very
predictive but rarely seen features. Our paradigm stems from recent advances in stochastic op-
timization and online learning which employ proximal functions to control the gradient steps of
the algorithm. We describe and analyze an apparatus for adaptively modifying the proximal func-
tion, which significantly simplifies setting a learning rate and results in regret guarantees that are
provably as good as the best proximal function that can be chosen in hindsight. We give several
efficient algorithms for empirical risk minimization problems with common and important regu-
larization functions and domain constraints. We experimentally study our theoretical analysis and
show that adaptive subgradient methods outperform state-of-the-art, yet non-adaptive, subgradient
algorithms.

Keywords: subgradient methods, adaptivity, online learning, stochastic convex optimization

1. Introduction

In many applications of online and stochastic learning, the input instances are of very high di-
mension, yet within any particular instance only a few features are non-zero. It is often the case,
however, that infrequently occurring features are highly informative and discriminative. The infor-
mativeness of rare features has led practitioners to craft domain-specific feature weightings, such as
TF-IDF (Salton and Buckley, 1988), which pre-emphasize infrequently occurring features. We use
this old idea as a motivation for applying modern learning-theoretic techniques to the problem of
online and stochastic learning, focusing concretely on (sub)gradient methods.

∗. A preliminary version of this work was published in COLT 2010.

c©2011 John Duchi, Elad Hazan and Yoram Singer.

DUCHI, HAZAN AND SINGER

Standard stochastic subgradient methods largely follow a predetermined procedural scheme that
is oblivious to the characteristics of the data being observed. In contrast, our algorithms dynamically
incorporate knowledge of the geometry of the data observed in earlier iterations to perform more
informative gradient-based learning. Informally, our procedures give frequently occurring features
very low learning rates and infrequent features high learning rates, where the intuition is that each
time an infrequent feature is seen, the learner should “take notice.” Thus, the adaptation facilitates
finding and identifying very predictive but comparatively rare features.

1.1 The Adaptive Gradient Algorithm

Before introducing our adaptive gradient algorithm, which we term ADAGRAD, we establish no-
tation. Vectors and scalars are lower case italic letters, such as x ∈ X . We denote a sequence of
vectors by subscripts, that is, xt ,xt+1, . . ., and entries of each vector by an additional subscript, for
example, xt, j. The subdifferential set of a function f evaluated at x is denoted ∂ f (x), and a partic-
ular vector in the subdifferential set is denoted by f ′(x) ∈ ∂ f (x) or gt ∈ ∂ ft(xt). When a function
is differentiable, we write ∇ f (x). We use 〈x,y〉 to denote the inner product between x and y. The
Bregman divergence associated with a strongly convex and differentiable function ψ is

Bψ(x,y) = ψ(x)−ψ(y)−〈∇ψ(y),x− y〉 .

We also make frequent use of the following two matrices. Let g1:t = [g1 · · · gt] denote the matrix
obtained by concatenating the subgradient sequence. We denote the ith row of this matrix, which
amounts to the concatenation of the ith component of each subgradient we observe, by g1:t,i. We
also define the outer product matrix Gt = ∑tτ=1 gτgτ

�.
Online learning and stochastic optimization are closely related and basically interchangeable

(Cesa-Bianchi et al., 2004). In order to keep our presentation simple, we confine our discussion and
algorithmic descriptions to the online setting with the regret bound model. In online learning, the
learner repeatedly predicts a point xt ∈ X ⊆ R

d , which often represents a weight vector assigning
importance values to various features. The learner’s goal is to achieve low regret with respect to a
static predictor x∗ in the (closed) convex set X ⊆ R

d (possibly X = R
d) on a sequence of functions

ft(x), measured as

R(T) =
T

∑
t=1

ft(xt)− inf
x∈X

T

∑
t=1

ft(x) .

At every timestep t, the learner receives the (sub)gradient information gt ∈ ∂ ft(xt). Standard sub-
gradient algorithms then move the predictor xt in the opposite direction of gt while maintaining
xt+1 ∈ X via the projected gradient update (e.g., Zinkevich, 2003)

xt+1 =ΠX (xt −ηgt) = argmin
x∈X

‖x− (xt −ηgt)‖22 .

In contrast, let the Mahalanobis norm ‖·‖A =
√〈·,A·〉 and denote the projection of a point y onto X

according to A by ΠA
X (y) = argminx∈X ‖x− y‖A = argminx∈X 〈x− y,A(x− y)〉. Using this notation,

our generalization of standard gradient descent employs the update

xt+1 =ΠG1/2t
X

(
xt −ηG−1/2t gt

)
.

2122

ADAPTIVE SUBGRADIENT METHODS

The above algorithm is computationally impractical in high dimensions since it requires computa-
tion of the root of the matrix Gt , the outer product matrix. Thus we specialize the update to

xt+1 =Πdiag(Gt)1/2

X

(
xt −ηdiag(Gt)

−1/2gt
)
. (1)

Both the inverse and root of diag(Gt) can be computed in linear time. Moreover, as we discuss later,
when the gradient vectors are sparse the update above can often be performed in time proportional
to the support of the gradient. We now elaborate and give a more formal discussion of our setting.

In this paper we consider several different online learning algorithms and their stochastic convex
optimization counterparts. Formally, we consider online learning with a sequence of composite
functions φt . Each function is of the form φt(x) = ft(x)+ϕ(x) where ft and ϕ are (closed) convex
functions. In the learning settings we study, ft is either an instantaneous loss or a stochastic estimate
of the objective function in an optimization task. The function ϕ serves as a fixed regularization
function and is typically used to control the complexity of x. At each round the algorithm makes a
prediction xt ∈ X and then receives the function ft . We define the regret with respect to the fixed
(optimal) predictor x∗ as

Rφ(T)�
T

∑
t=1

[φt(xt)−φt(x∗)] =
T

∑
t=1

[ft(xt)+ϕ(xt)− ft(x
∗)−ϕ(x∗)] . (2)

Our goal is to devise algorithms which are guaranteed to suffer asymptotically sub-linear regret,
namely, Rφ(T) = o(T).

Our analysis applies to related, yet different, methods for minimizing the regret (2). The first
is Nesterov’s primal-dual subgradient method (2009), and in particular Xiao’s (2010) extension,
regularized dual averaging, and the follow-the-regularized-leader (FTRL) family of algorithms (see
for instance Kalai and Vempala, 2003; Hazan et al., 2006). In the primal-dual subgradient method
the algorithm makes a prediction xt on round t using the average gradient gt = 1

t ∑
t
τ=1 gτ. The update

encompasses a trade-off between a gradient-dependent linear term, the regularizer ϕ, and a strongly-
convex term ψt for well-conditioned predictions. Here ψt is the proximal term. The update amounts
to solving

xt+1 = argmin
x∈X

{
η〈 gt ,x〉+ηϕ(x)+

1
t
ψt(x)

}
, (3)

where η is a fixed step-size and x1 = argminx∈X ϕ(x). The second method similarly has numer-
ous names, including proximal gradient, forward-backward splitting, and composite mirror descent
(Tseng, 2008; Duchi et al., 2010). We use the term composite mirror descent. The composite mirror
descent method employs a more immediate trade-off between the current gradient gt , ϕ, and staying
close to xt using the proximal function ψ,

xt+1 = argmin
x∈X

{
η〈gt ,x〉+ηϕ(x)+Bψt (x,xt)

}
. (4)

Our work focuses on temporal adaptation of the proximal function in a data driven way, while
previous work simply sets ψt ≡ ψ, ψt(·) =

√
tψ(·), or ψt(·) = tψ(·) for some fixed ψ.

We provide formal analyses equally applicable to the above two updates and show how to au-
tomatically choose the function ψt so as to achieve asymptotically small regret. We describe and
analyze two algorithms. Both algorithms use squared Mahalanobis norms as their proximal func-
tions, setting ψt(x) = 〈x,Htx〉 for a symmetric matrix Ht � 0. The first uses diagonal matrices while

2123

DUCHI, HAZAN AND SINGER

the second constructs full dimensional matrices. Concretely, for some small fixed δ ≥ 0 (specified
later, though in practice δ can be set to 0) we set

Ht = δI+diag(Gt)
1/2 (Diagonal) and Ht = δI+G1/2t (Full) . (5)

Plugging the appropriate matrix from the above equation into ψt in (3) or (4) gives rise to our
ADAGRAD family of algorithms. Informally, we obtain algorithms which are similar to second-
order gradient descent by constructing approximations to the Hessian of the functions ft , though we
use roots of the matrices.

1.2 Outline of Results

We now outline our results, deferring formal statements of the theorems to later sections. Recall the
definitions of g1:t as the matrix of concatenated subgradients and Gt as the outer product matrix in
the prequel. The ADAGRAD algorithm with full matrix divergences entertains bounds of the form

Rφ(T) = O
(
‖x∗‖2 tr(G1/2T)

)
and Rφ(T) = O

(
max
t≤T

‖xt − x∗‖2 tr(G1/2T)

)
.

We further show that

tr
(
G1/2T

)
= d1/2

√√√√inf
S

{
T

∑
t=1

〈gt ,S−1gt〉 : S� 0, tr(S)≤ d

}
.

These results are formally given in Theorem 7 and its corollaries. When our proximal function
ψt(x) =

〈
x,diag(Gt)1/2x

〉
we have bounds attainable in time at most linear in the dimension d of

our problems of the form

Rφ(T) = O

(
‖x∗‖∞

d

∑
i=1

‖g1:T,i‖2
)

and Rφ(T) = O

(
max
t≤T

‖xt − x∗‖∞
d

∑
i=1

‖g1:T,i‖2
)
.

Similar to the above, we will show that

d

∑
i=1

‖g1:T,i‖2 = d1/2

√√√√inf
s

{
T

∑
t=1

〈gt ,diag(s)−1gt〉 : s� 0,〈1,s〉 ≤ d

}
.

We formally state the above two regret bounds in Theorem 5 and its corollaries.
Following are a simple example and corollary to Theorem 5 to illustrate one regime in which

we expect substantial improvements (see also the next subsection). Let ϕ ≡ 0 and consider Zinke-
vich’s online gradient descent algorithm. Given a compact convex set X ⊆ R

d and sequence
of convex functions ft , Zinkevich’s algorithm makes the sequence of predictions x1, . . . ,xT with
xt+1 = ΠX (xt − (η/

√
t)gt). If the diameter of X is bounded, thus supx,y∈X ‖x− y‖2 ≤ D2, then on-

line gradient descent, with the optimal choice in hindsight for the stepsize η (see the bound (7) in
Section 1.4), achieves a regret bound of

T

∑
t=1

ft(xt)− inf
x∈X

T

∑
t=1

ft(x)≤
√
2D2

√
T

∑
t=1

‖gt‖22 . (6)

When X is bounded via supx,y∈X ‖x− y‖∞ ≤D∞, the following corollary is a simple consequence of
our Theorem 5.

2124

ADAPTIVE SUBGRADIENT METHODS

Corollary 1 Let the sequence {xt} ⊂ R
d be generated by the update (4) and assume that

maxt ‖x∗ − xt‖∞ ≤ D∞. Using stepsize η= D∞/
√
2, for any x∗, the following bound holds.

Rφ(T)≤
√
2dD∞

√
inf

s�0,〈1,s〉≤d

T

∑
t=1

‖gt‖2diag(s)−1 =
√
2D∞

d

∑
i=1

‖g1:T,i‖2 .

The important feature of the bound above is the infimum under the square root, which allows us to
perform better than simply using the identity matrix, and the fact that the stepsize is easy to set a
priori. For example, if the set X = {x : ‖x‖∞≤ 1}, thenD2= 2

√
d whileD∞= 2, which suggests that

if we are learning a dense predictor over a box, the adaptive method should perform well. Indeed,
in this case we are guaranteed that the bound in Corollary 1 is better than (6) as the identity matrix
belongs to the set over which we take the infimum.

To conclude the outline of results, we would like to point to two relevant research papers. First,
Zinkevich’s regret bound is tight and cannot be improved in a minimax sense (Abernethy et al.,
2008). Therefore, improving the regret bound requires further reasonable assumptions on the input
space. Second, in a independent work, performed concurrently to the research presented in this
paper, McMahan and Streeter (2010) study competitive ratios, showing guaranteed improvements
of the above bounds relative to families of online algorithms.

1.3 Improvements and Motivating Example

Asmentioned in the prequel, we expect our adaptive methods to outperform standard online learning
methods when the gradient vectors are sparse. We give empirical evidence supporting the improved
performance of the adaptive methods in Section 6. Here we give a few abstract examples that show
that for sparse data (input sequences where gt has many zeros) the adaptive methods herein have
better performance than non-adaptive methods. In our examples we use the hinge loss, that is,

ft(x) = [1− yt 〈zt ,x〉]+ ,

where yt is the label of example t and zt ∈ R
d is the data vector.

For our first example, which was also given by McMahan and Streeter (2010), consider the
following sparse random data scenario, where the vectors zt ∈ {−1,0,1}d . Assume that at in each
round t, feature i appears with probability pi =min{1,ci−α} for some α ∈ (1,∞) and a dimension-
independent constant c. Then taking the expectation of the gradient terms in the bound in Corol-
lary 1, we have

E

d

∑
i=1

‖g1:T,i‖2 =
d

∑
i=1

E

[√
|{t : |gt,i|= 1}|

]
≤

d

∑
i=1

√
E|{t : |gt,i|= 1}|=

d

∑
i=1

√
piT

by Jensen’s inequality. In the rightmost sum, we have c∑d
i=1 i

−α/2 = O(logd) for α ≥ 2, and
∑d
i=1 i

−α/2 =O(d1−α/2) for α∈ (1,2). If the domain X is a hypercube, say X = {x : ‖x‖∞ ≤ 1}, then
in Corollary 1 D∞ = 2, and the regret of ADAGRAD is O(max{logd,d1−α/2}√T). For contrast, the
standard regret bound (6) for online gradient descent has D2 = 2

√
d and ‖gt‖22 ≥ 1, yielding best

case regret O(
√
dT). So we see that in this sparse yet heavy tailed feature setting, ADAGRAD’s re-

gret guarantee can be exponentially smaller in the dimension d than the non-adaptive regret bound.
Our remaining examples construct a sparse sequence for which there is a perfect predictor that

the adaptive methods learn after d iterations, while standard online gradient descent (Zinkevich,

2125

DUCHI, HAZAN AND SINGER

2003) suffers significantly higher loss. We assume the domain X is compact, so that for online
gradient descent we set ηt = η/

√
t, which gives the optimal O(

√
T) regret (the setting of η does not

matter to the adversary we construct).

1.3.1 DIAGONAL ADAPTATION

Consider the diagonal version of our proposed update (4) with X = {x : ‖x‖∞ ≤ 1}. Evidently,
we can take D∞ = 2, and this choice simply results in the update xt+1 = xt −

√
2diag(Gt)−1/2gt

followed by projection (1) onto X for ADAGRAD (we use a pseudo-inverse if the inverse does not
exist). Let ei denote the ith unit basis vector, and assume that for each t, zt = ±ei for some i. Also
let yt = sign(〈1,zt〉) so that there exists a perfect classifier x∗ = 1 ∈ X ⊂ R

d . We initialize x1 to be
the zero vector. Fix some ε > 0, and on rounds rounds t = 1, . . . ,η2/ε2, set zt = e1. After these
rounds, simply choose zt =±ei for index i ∈ {2, . . . ,d} chosen at random. It is clear that the update
to parameter xi at these iterations is different, and amounts to

xt+1 = xt + ei ADAGRAD xt+1 =

[
xt +

η√
t

]
[−1,1]d

(Gradient Descent) .

(Here [·][−1,1]d denotes the truncation of the vector to [−1,1]d). In particular, after suffering d− 1
more losses, ADAGRAD has a perfect classifier. However, on the remaining iterations gradient
descent has η/

√
t ≤ ε and thus evidently suffers loss at least d/(2ε). Of course, for small ε, we

have d/(2ε)" d. In short, ADAGRAD achieves constant regret per dimension while online gradient
descent can suffer arbitrary loss (for unbounded t). It seems quite silly, then, to use a global learning
rate rather than one for each feature.
Full Matrix Adaptation. We use a similar construction to the diagonal case to show a situation
in which the full matrix update from (5) gives substantially lower regret than stochastic gradient
descent. For full divergences we set X = {x : ‖x‖2 ≤

√
d}. Let V = [v1 . . . vd] ∈ R

d×d be an
orthonormal matrix. Instead of having zt cycle through the unit vectors, we make zt cycle through
the vi so that zt = ±vi. We let the label yt = sign(

〈
1,V�zt

〉
) = sign

(
∑d
i=1 〈vi,zt〉

)
. We provide an

elaborated explanation in Appendix A. Intuitively, with ψt(x) = 〈x,Htx〉 and Ht set to be the full
matrix from (5), ADAGRAD again needs to observe each orthonormal vector vi only once while
stochastic gradient descent’s loss can be made Ω(d/ε) for any ε> 0.

1.4 Related Work

Many successful algorithms have been developed over the past few years to minimize regret in
the online learning setting. A modern view of these algorithms casts the problem as the task of
following the (regularized) leader (see Rakhlin, 2009, and the references therein) or FTRL in short.
Informally, FTRL methods choose the best decision in hindsight at every iteration. Verbatim usage
of the FTRL approach fails to achieve low regret, however, adding a proximal1 term to the past
predictions leads to numerous low regret algorithms (Kalai and Vempala, 2003; Hazan and Kale,
2008; Rakhlin, 2009). The proximal term strongly affects the performance of the learning algorithm.
Therefore, adapting the proximal function to the characteristics of the problem at hand is desirable.

Our approach is thus motivated by two goals. The first is to generalize the agnostic online learn-
ing paradigm to the meta-task of specializing an algorithm to fit a particular data set. Specifically,

1. The proximal term is also referred to as regularization in the online learning literature. We use the phrase proximal
term in order to avoid confusion with the statistical regularization function ϕ.

2126

ADAPTIVE SUBGRADIENT METHODS

we change the proximal function to achieve performance guarantees which are competitive with the
best proximal term found in hindsight. The second, as alluded to earlier, is to automatically adjust
the learning rates for online learning and stochastic gradient descent on a per-feature basis. The
latter can be very useful when our gradient vectors gt are sparse, for example, in a classification
setting where examples may have only a small number of non-zero features. As we demonstrated
in the examples above, it is rather deficient to employ exactly the same learning rate for a feature
seen hundreds of times and for a feature seen only once or twice.

Our techniques stem from a variety of research directions, and as a byproduct we also extend a
few well-known algorithms. In particular, we consider variants of the follow-the-regularized leader
(FTRL) algorithms mentioned above, which are kin to Zinkevich’s lazy projection algorithm. We
use Xiao’s recently analyzed regularized dual averaging (RDA) algorithm (2010), which builds upon
Nesterov’s (2009) primal-dual subgradient method. We also consider forward-backward splitting
(FOBOS) (Duchi and Singer, 2009) and its composite mirror-descent (proximal gradient) general-
izations (Tseng, 2008; Duchi et al., 2010), which in turn include as special cases projected gradients
(Zinkevich, 2003) and mirror descent (Nemirovski and Yudin, 1983; Beck and Teboulle, 2003). Re-
cent work by several authors (Nemirovski et al., 2009; Juditsky et al., 2008; Lan, 2010; Xiao, 2010)
considered efficient and robust methods for stochastic optimization, especially in the case when the
expected objective f is smooth. It may be interesting to investigate adaptive metric approaches in
smooth stochastic optimization.

The idea of adapting first order optimization methods is by no means new and can be traced
back at least to the 1970s with the work on space dilation methods of Shor (1972) and variable
metric methods, such as the BFGS family of algorithms (e.g., Fletcher, 1970). This prior work
often assumed that the function to be minimized was differentiable and, to our knowledge, did not
consider stochastic, online, or composite optimization. In her thesis, Nedić (2002) studied variable
metric subgradient methods, though it seems difficult to derive explicit rates of convergence from the
results there, and the algorithms apply only when the constraint set X = R

d . More recently, Bordes
et al. (2009) proposed a Quasi-Newton stochastic gradient-descent procedure, which is similar in
spirit to our methods. However, their convergence results assume a smooth objective with positive
definite Hessian bounded away from 0. Our results apply more generally.

Prior to the analysis presented in this paper for online and stochastic optimization, the strongly
convex functionψ in the update equations (3) and (4) either remained intact or was simply multiplied
by a time-dependent scalar throughout the run of the algorithm. Zinkevich’s projected gradient,
for example, uses ψt(x) = ‖x‖22, while RDA (Xiao, 2010) employs ψt(x) =

√
tψ(x) where ψ is a

strongly convex function. The bounds for both types of algorithms are similar, and both rely on the
norm ‖·‖ (and its associated dual ‖·‖∗) with respect to which ψ is strongly convex. Mirror-descent
type first order algorithms, such as projected gradient methods, attain regret bounds of the form
(Zinkevich, 2003; Bartlett et al., 2007; Duchi et al., 2010)

Rφ(T)≤ 1
η
Bψ(x

∗,x1)+
η
2

T

∑
t=1

∥∥ f ′t (xt)∥∥2∗ . (7)

Choosing η ∝ 1/
√
T gives Rφ(T) = O(

√
T). When Bψ(x,x∗) is bounded for all x ∈ X , we choose

step sizes ηt ∝ 1/
√
t which is equivalent to setting ψt(x) =

√
tψ(x). Therefore, no assumption on

the time horizon is necessary. For RDA and follow-the-leader algorithms, the bounds are similar

2127

DUCHI, HAZAN AND SINGER

(Xiao, 2010, Theorem 3):

Rφ(T)≤
√
Tψ(x∗)+

1

2
√
T

T

∑
t=1

∥∥ f ′t (xt)∥∥2∗ . (8)

The problem of adapting to data and obtaining tighter data-dependent bounds for algorithms
such as those above is a natural one and has been studied in the mistake-bound setting for online
learning in the past. A framework that is somewhat related to ours is the confidence weighted
learning scheme by Crammer et al. (2008) and the adaptive regularization of weights algorithm
(AROW) of Crammer et al. (2009). These papers provide mistake-bound analyses for second-
order algorithms, which in turn are similar in spirit to the second-order Perceptron algorithm (Cesa-
Bianchi et al., 2005). The analyses by Crammer and colleagues, however, yield mistake bounds
dependent on the runs of the individual algorithms and are thus difficult to compare with our regret
bounds.

AROW maintains a mean prediction vector μt ∈ R
d and a covariance matrix Σt ∈ R

d×d over μt
as well. At every step of the algorithm, the learner receives a pair (zt ,yt) where zt ∈ R

d is the tth
example and yt ∈ {−1,+1} is the label. Whenever the predictor μt attains a margin value smaller
than 1, AROW performs the update

βt =
1

〈zt ,Σt zt〉+λ
, αt = [1− yt 〈zt ,μt〉]+ ,

μt+1 = μt +αtΣtytzt , Σt+1 = Σt −βtΣtxtx�t Σt . (9)

In the above scheme, one can force Σt to be diagonal, which reduces the run-time and storage
requirements of the algorithm but still gives good performance (Crammer et al., 2009). In contrast
to AROW, the ADAGRAD algorithm uses the root of the inverse covariance matrix, a consequence of
our formal analysis. Crammer et al.’s algorithm and our algorithms have similar run times, generally
linear in the dimension d, when using diagonal matrices. However, when using full matrices the
runtime of AROW algorithm is O(d2), which is faster than ours as it requires computing the root of
a matrix.

In concurrent work, McMahan and Streeter (2010) propose and analyze an algorithm which
is very similar to some of the algorithms presented in this paper. Our analysis builds on recent
advances in online learning and stochastic optimization (Duchi et al., 2010; Xiao, 2010), whereas
McMahan and Streeter use first-principles to derive their regret bounds. As a consequence of our
approach, we are able to apply our analysis to algorithms for composite minimization with a known
additional objective term ϕ. We are also able to generalize and analyze both the mirror descent and
dual-averaging family of algorithms. McMahan and Streeter focus on what they term the compet-
itive ratio, which is the ratio of the worst case regret of the adaptive algorithm to the worst case
regret of a non-adaptive algorithm with the best proximal term ψ chosen in hindsight. We touch on
this issue briefly in the sequel, but refer the interested reader to McMahan and Streeter (2010) for
this alternative elegant perspective. We believe that both analyses shed insights into the problems
studied in this paper and complement each other.

There are also other lines of work on adaptive gradient methods that are not directly related to
our work but nonetheless relevant. Tighter regret bounds using the variation of the cost functions ft
were proposed by Cesa-Bianchi et al. (2007) and derived by Hazan and Kale (2008). Bartlett et al.
(2007) explore another adaptation technique for ηt where they adapt the step size to accommodate

2128

ADAPTIVE SUBGRADIENT METHODS

both strongly and weakly convex functions. Our approach differs from previous approaches as it
does not focus on a particular loss function or mistake bound. Instead, we view the problem of
adapting the proximal function as a meta-learning problem. We then obtain a bound comparable to
the bound obtained using the best proximal function chosen in hindsight.

2. Adaptive Proximal Functions

Examining the bounds (7) and (8), we see that most of the regret depends on dual norms of f ′t (xt),
and the dual norms in turn depend on the choice ofψ. This naturally leads to the question of whether
we can modify the proximal term ψ along the run of the algorithm in order to lower the contribution
of the aforementioned norms. We achieve this goal by keeping second order information about the
sequence ft and allow ψ to vary on each round of the algorithms.

We begin by providing two corollaries based on previous work that give the regret of our base
algorithms when the proximal function ψt is allowed to change. These corollaries are used in
the sequel in our regret analysis. We assume that ψt is monotonically non-decreasing, that is,
ψt+1(x) ≥ ψt(x). We also assume that ψt is 1-strongly convex with respect to a time-dependent
semi-norm ‖·‖ψt . Formally, ψ is 1-strongly convex with respect to ‖·‖ψ if

ψ(y)≥ ψ(x)+ 〈∇ψ(x),y− x〉+ 1
2
‖x− y‖2ψ .

Strong convexity is guaranteed if and only if Bψt (x,y)≥ 1
2 ‖x− y‖2ψt . We also denote the dual norm

of ‖·‖ψt by ‖·‖ψ∗t . For completeness, we provide the proofs of following two results in Appendix F,
as they build straightforwardly on work by Duchi et al. (2010) and Xiao (2010). For the primal-dual
subgradient update, the following bound holds.

Proposition 2 Let the sequence {xt} be defined by the update (3). For any x∗ ∈ X ,
T

∑
t=1

ft(xt)+ϕ(xt)− ft(x
∗)−ϕ(x∗)≤ 1

η
ψT (x∗)+

η
2

T

∑
t=1

∥∥ f ′t (xt)∥∥2ψ∗t−1 . (10)

For composite mirror descent algorithms a similar result holds.

Proposition 3 Let the sequence {xt} be defined by the update (4). Assume w.l.o.g. that ϕ(x1) = 0.
For any x∗ ∈ X ,

T

∑
t=1

ft(xt)+ϕ(xt)− ft(x
∗)−ϕ(x∗)

≤ 1
η
Bψ1(x

∗,x1)+
1
η

T−1
∑
t=1

[
Bψt+1(x

∗,xt+1)−Bψt (x∗,xt+1)
]
+
η
2

T

∑
t=1

∥∥ f ′t (xt)∥∥2ψ∗t . (11)

The above corollaries allow us to prove regret bounds for a family of algorithms that iteratively
modify the proximal functions ψt in attempt to lower the regret bounds.

2129

DUCHI, HAZAN AND SINGER

INPUT: η> 0, δ≥ 0
VARIABLES: s ∈ R

d ,H ∈ R
d×d , g1:t,i ∈ R

t for i ∈ {1, . . . ,d}
INITIALIZE x1 = 0, g1:0 = []
FOR t = 1 to T
Suffer loss ft(xt)
Receive subgradient gt ∈ ∂ ft(xt) of ft at xt
UPDATE g1:t = [g1:t−1 gt], st,i = ‖g1:t,i‖2
SET Ht = δI+diag(st), ψt(x) = 1

2〈x,Ht x〉

Primal-Dual Subgradient Update (3):

xt+1 = argmin
x∈X

{
η

〈
1
t

t

∑
τ=1

gτ,x

〉
+ηϕ(x)+

1
t
ψt(x)

}
.

Composite Mirror Descent Update (4):
xt+1 = argmin

x∈X

{
η〈gt ,x〉+ηϕ(x)+Bψt (x,xt)

}
.

Figure 1: ADAGRAD with diagonal matrices

3. Diagonal Matrix Proximal Functions

We begin by restricting ourselves to using diagonal matrices to define matrix proximal functions
and (semi)norms. This restriction serves a two-fold purpose. First, the analysis for the general case
is somewhat complicated and thus the analysis of the diagonal restriction serves as a proxy for better
understanding. Second, in problems with high dimension where we expect this type of modification
to help, maintaining more complicated proximal functions is likely to be prohibitively expensive.
Whereas earlier analysis requires a learning rate to slow changes between predictors xt and xt+1, we
will instead automatically grow the proximal function we use to achieve asymptotically low regret.
To remind the reader, g1:t,i is the ith row of the matrix obtained by concatenating the subgradients
from iteration 1 through t in the online algorithm.

To provide some intuition for the algorithm we show in Algorithm 1, let us examine the problem

min
s

T

∑
t=1

d

∑
i=1

g2t,i
si

s.t. s� 0, 〈1,s〉 ≤ c .

This problem is solved by setting si = ‖g1:T,i‖2 and scaling s so that 〈s,1〉= c. To see this, we can
write the Lagrangian of the minimization problem by introducing multipliers λ� 0 and θ≥ 0 to get

L(s,λ,θ) =
d

∑
i=1

‖g1:T,i‖22
si

−〈λ,s〉+θ(〈1,s〉− c).

Taking partial derivatives to find the infimum of L , we see that−‖g1:T,i‖22 /s2i −λi+θ= 0, and com-
plementarity conditions on λisi (Boyd and Vandenberghe, 2004) imply that λi = 0. Thus we have
si = θ−

1
2 ‖g1:T,i‖2, and normalizing appropriately using θ gives that si = c‖g1:T,i‖2 /∑d

j=1

∥∥g1:T, j∥∥2.
2130

ADAPTIVE SUBGRADIENT METHODS

As a final note, we can plug si into the objective above to see

inf
s

{
T

∑
t=1

d

∑
i=1

g2t,i
si

: s� 0,〈1,s〉 ≤ c

}
=
1
c

(
d

∑
i=1

‖g1:T,i‖2
)2

. (12)

Let diag(v) denote the diagonal matrix with diagonal v. It is natural to suspect that for s achieving
the infimum in Equation (12), if we use a proximal function similar to ψ(x) = 〈x,diag(s)x〉 with
associated squared dual norm ‖x‖2ψ∗ =

〈
x,diag(s)−1x

〉
, we should do well lowering the gradient

terms in the regret bounds (10) and (11).
To prove a regret bound for our Algorithm 1, we note that both types of updates suffer losses that

include a term depending solely on the gradients obtained along their run. The following lemma
is applicable to both updates, and was originally proved by Auer and Gentile (2000), though we
provide a proof in Appendix C. McMahan and Streeter (2010) also give an identical lemma.

Lemma 4 Let gt = f ′t (xt) and g1:t and st be defined as in Algorithm 1. Then

T

∑
t=1

〈
gt ,diag(st)

−1gt
〉≤ 2 d

∑
i=1

‖g1:T,i‖2 .

To obtain a regret bound, we need to consider the terms consisting of the dual-norm of the sub-
gradient in the regret bounds (10) and (11), which is ‖ f ′t (xt)‖2ψ∗t . When ψt(x) = 〈x,(δI+diag(st))x〉,
it is easy to see that the associated dual-norm is

‖g‖2ψ∗t =
〈
g,(δI+diag(st))−1g

〉
.

From the definition of st in Algorithm 1, we clearly have ‖ f ′t (xt)‖2ψ∗t ≤
〈
gt ,diag(st)−1gt

〉
. Note that

if st,i = 0 then gt,i = 0 by definition of st,i. Thus, for any δ≥ 0, Lemma 4 implies
T

∑
t=1

∥∥ f ′t (xt)∥∥2ψ∗t ≤ 2 d

∑
i=1

‖g1:T,i‖2 . (13)

To obtain a bound for a primal-dual subgradient method, we set δ ≥ maxt ‖gt‖∞, in which case
‖gt‖2ψ∗t−1 ≤

〈
gt ,diag(st)−1gt

〉
, and we follow the same lines of reasoning to achieve the inequal-

ity (13).
It remains to bound the various Bregman divergence terms for Corollary 3 and the term ψT (x∗)

for Corollary 2. We focus first on the composite mirror-descent update. Examining the bound (11)
and Algorithm 1, we notice that

Bψt+1(x
∗,xt+1)−Bψt (x∗,xt+1) =

1
2
〈x∗ − xt+1,diag(st+1− st)(x∗ − xt+1)〉

≤ 1
2
max
i
(x∗i − xt+1,i)2 ‖st+1− st‖1 .

Since ‖st+1− st‖1 = 〈st+1− st ,1〉 and 〈sT ,1〉= ∑d
i=1 ‖g1:T,i‖2, we have

T−1
∑
t=1

Bψt+1(x
∗,xt+1)−Bψt (x∗,xt+1) ≤

1
2

T−1
∑
t=1

‖x∗ − xt+1‖2∞ 〈st+1− st ,1〉

≤ 1
2
max
t≤T

‖x∗ − xt‖2∞
d

∑
i=1

‖g1:T,i‖2−
1
2
‖x∗ − x1‖2∞ 〈s1,1〉 . (14)

2131

DUCHI, HAZAN AND SINGER

We also have

ψT (x∗) = δ‖x∗‖22+ 〈x∗,diag(sT)x∗〉 ≤ δ‖x∗‖22+‖x∗‖2∞
d

∑
i=1

‖g1:T,i‖2 .

Combining the above arguments with Corollaries 2 and 3, and using (14) with the fact thatBψ1(x
∗,x1)≤

1
2 ‖x∗ − x1‖2∞ 〈1,s1〉, we have proved the following theorem.
Theorem 5 Let the sequence {xt} be defined by Algorithm 1. For xt generated using the primal-
dual subgradient update (3) with δ≥maxt ‖gt‖∞, for any x∗ ∈ X ,

Rφ(T)≤ δ
η
‖x∗‖22+

1
η
‖x∗‖2∞

d

∑
i=1

‖g1:T,i‖2+η
d

∑
i=1

‖g1:T,i‖2 .

For xt generated using the composite mirror-descent update (4), for any x∗ ∈ X

Rφ(T)≤ 1
2η
max
t≤T

‖x∗ − xt‖2∞
d

∑
i=1

‖g1:T,i‖2+η
d

∑
i=1

‖g1:T,i‖2 .

The above theorem is a bit unwieldy. We thus perform a few algebraic simplifications to get the
next corollary, which has a more intuitive form. Let us assume that X is compact and set D∞ =
supx∈X ‖x− x∗‖∞. Furthermore, define

γT �
d

∑
i=1

‖g1:T,i‖2 = infs

{
T

∑
t=1

〈
gt ,diag(s)

−1gt
〉
: 〈1,s〉 ≤

d

∑
i=1

‖g1:T,i‖2 , s� 0
}

.

Also w.l.o.g. let 0 ∈ X . The following corollary is immediate (this is equivalent to Corollary 1,
though we have moved the

√
d term in the earlier bound).

Corollary 6 Assume that D∞ and γT are defined as above. For {xt} generated by Algorithm 1 using
the primal-dual subgradient update (3) with η= ‖x∗‖∞, for any x∗ ∈ X we have

Rφ(T)≤ 2‖x∗‖∞ γT +δ
‖x∗‖22
‖x∗‖∞

≤ 2‖x∗‖∞ γT +δ‖x∗‖1 .

Using the composite mirror descent update (4) to generate {xt} and setting η= D∞/
√
2, we have

Rφ(T)≤
√
2D∞

d

∑
i=1

‖g1:T,i‖2 =
√
2D∞γT .

We now give a short derivation of Corollary 1 from the introduction: use Theorem 5, Corollary 6,
and the fact that

inf
s

{
T

∑
t=1

d

∑
i=1

g2t,i
si

: s� 0,〈1,s〉 ≤ d

}
=
1
d

(
d

∑
i=1

‖g1:T,i‖2
)2

.

as in (12) in the beginning of Section 3. Plugging the γT term in from Corollary 6 and multiplying
D∞ by

√
d completes the proof of the corollary.

2132

ADAPTIVE SUBGRADIENT METHODS

As discussed in the introduction, Algorithm 1 should have lower regret than non-adaptive algo-
rithms on sparse data, though this depends on the geometry of the underlying optimization space
X . For example, suppose that our learning problem is a logistic regression with 0/1-valued features.
Then the gradient terms are likewise based on 0/1-valued features and sparse, so the gradient terms
in the bound ∑d

i=1 ‖g1:T,i‖2 should all be much smaller than
√
T . If some features appear much more

frequently than others, then the infimal representation of γT and the infimal equality in Corollary 1
show that we have significantly lower regret by using higher learning rates for infrequent features
and lower learning rates on commonly appearing features. Further, if the optimal predictor is rela-
tively dense, as is often the case in predictions problems with sparse inputs, then ‖x∗‖∞ is the best
p-norm we can have in the regret.

More precisely, McMahan and Streeter (2010) show that if X is contained within an �∞ ball
of radius R and contains an �∞ ball of radius r, then the bound in the above corollary is within a
factor of

√
2R/r of the regret of the best diagonal proximal matrix, chosen in hindsight. So, for

example, if X = {x ∈ R
d : ‖x‖p ≤C}, then R/r = d1/p, which shows that the domain X does effect

the guarantees we can give on optimality of ADAGRAD.

4. Full Matrix Proximal Functions

In this section we derive and analyze new updates when we estimate a full matrix for the divergence
ψt instead of a diagonal one. In this generalized case, we use the root of the matrix of outer products
of the gradients that we have observed to update our parameters. As in the diagonal case, we build
on intuition garnered from an optimization problem, and in particular, we seek a matrix S which is
the solution to the following minimization problem:

min
S

T

∑
t=1

〈
gt ,S

−1gt
〉
s.t. S� 0, tr(S)≤ c . (15)

The solution is obtained by defining Gt = ∑tτ=1 gτgτ
� and setting S to be a normalized version of

the root of GT , that is, S = cG1/2T / tr(G1/2T). For a proof, see Lemma 15 in Appendix E, which also
shows that when GT is not full rank we can instead use its pseudo-inverse. If we iteratively use

divergences of the form ψt(x) =
〈
x,G1/2t x

〉
, we might expect as in the diagonal case to attain low

regret by collecting gradient information. We achieve our low regret goal by employing a similar
doubling lemma to Lemma 4 and bounding the gradient norm terms. The resulting algorithm is
given in Algorithm 2, and the next theorem provides a quantitative analysis of the brief motivation
above.

Theorem 7 Let Gt be the outer product matrix defined above and the sequence {xt} be defined by
Algorithm 2. For xt generated using the primal-dual subgradient update of (3) and δ≥maxt ‖gt‖2,
for any x∗ ∈ X

Rφ(T)≤ δ
η
‖x∗‖22+

1
η
‖x∗‖22 tr(G1/2T)+η tr(G1/2T).

For xt generated with the composite mirror-descent update of (4), if x∗ ∈ X and δ≥ 0

Rφ(T)≤ δ
η
‖x∗‖22+

1
2η
max
t≤T

‖x∗ − xt‖22 tr(G1/2T)+η tr(G1/2T).

2133

DUCHI, HAZAN AND SINGER

INPUT: η> 0, δ≥ 0
VARIABLES: St ∈ R

d×d , Ht ∈ R
d×d , Gt ∈ R

d×d

INITIALIZE x1 = 0, S0 = 0, H0 = 0, G0 = 0
FOR t = 1 to T
Suffer loss ft(xt)
Receive subgradient gt ∈ ∂ ft(xt) of ft at xt
UPDATE Gt = Gt−1+gtg�t , St = G

1
2
t

SET Ht = δI+St , ψt(x) = 1
2〈x,Ht x〉

Primal-Dual Subgradient Update ((3)):

xt+1 = argmin
x∈X

{
η

〈
1
t

t

∑
τ=1

gτ,x

〉
+ηϕ(x)+

1
t
ψt(x)

}
.

Composite Mirror Descent Update ((4)):
xt+1 = argmin

x∈X

{
η〈gt ,x〉+ηϕ(x)+Bψt (x,xt)

}
.

Figure 2: ADAGRAD with full matrices

Proof To begin, we consider the difference between the divergence terms at time t+ 1 and time t
from the regret (11) in Corollary 3. Let λmax(M) denote the largest eigenvalue of a matrix M. We
have

Bψt+1(x
∗,xt+1)−Bψt (x∗,xt+1) =

1
2

〈
x∗ − xt+1,(Gt+11/2−Gt1/2)(x∗ − xt+1)

〉
≤ 1

2
‖x∗ − xt+1‖22λmax(G1/2t+1−G1/2t) ≤ 1

2
‖x∗ − xt+1‖22 tr(G1/2t+1−G1/2t) .

For the last inequality we used the fact that the trace of a matrix is equal to the sum of its eigenvalues
along with the property Gt+11/2−Gt1/2 � 0 (see Lemma 13 in Appendix B) and therefore tr(G1/2t+1−
G1/2t)≥ λmax(G

1/2
t+1−G1/2t). Thus, we get

T−1
∑
t=1

Bψt+1(x
∗,xt+1)−Bψt (x∗,xt+1)≤

1
2

T−1
∑
t=1

‖x∗ − xt+1‖22
(
tr(G1/2t+1)− tr(G1/2t)

)
.

Now we use the fact that G1 is a rank 1 PSD matrix with non-negative trace to see that

T−1
∑
t=1

‖x∗ − xt+1‖22
(
tr(G1/2t+1)− tr(G1/2t)

)
≤max

t≤T
‖x∗ − xt‖22 tr(GT

1/2)−‖x∗ − x1‖22 tr(G1/21) . (16)

It remains to bound the gradient terms common to all our bounds. We use the following three
lemmas, which essentially directly applicable. We prove the first two in Appendix D.

Lemma 8 Let B � 0 and B−1/2 denote the root of the inverse of B when B $ 0 and the root of the
pseudo-inverse of B otherwise. For any ν such that B−νgg� � 0 the following inequality holds.

2tr((B−νgg�)1/2)≤ 2tr(B1/2)−ν tr(B−1/2gg�) .

2134

ADAPTIVE SUBGRADIENT METHODS

Lemma 9 Let δ≥ ‖g‖2 and A� 0, then
〈
g,(δI+A1/2)−1g

〉≤ 〈g,((A+gg�)†
)1/2

g
〉
.

Lemma 10 Let St = Gt1/2 be as defined in Algorithm 2 and A† denote the pseudo-inverse of A.
Then

T

∑
t=1

〈
gt ,S

†
t gt
〉
≤ 2

T

∑
t=1

〈
gt ,S

†
T gt
〉
= 2tr(GT

1/2) .

ProofWe prove the lemma by induction. The base case is immediate, since we have〈
g1,(G

†
1)
1/2g1

〉
=
〈g1,g1〉
‖g1‖2

= ‖g1‖2 ≤ 2‖g1‖2 .

Now, assume the lemma is true for T −1, so from the inductive assumption we get
T

∑
t=1

〈
gt ,S

†
t gt
〉
≤ 2

T−1
∑
t=1

〈
gt ,S

†
T−1gt

〉
+
〈
gT ,S

†
T gT
〉
.

Since ST−1 does not depend on t we can rewrite ∑T−1
t=1

〈
gt ,S

†
T−1gt

〉
as

tr

(
S†T−1,

T−1
∑
t=1

gtg
�
t

)
= tr((G†T−1)

1/2GT−1) ,

where the right-most equality follows from the definitions of St and Gt . Therefore, we get

T

∑
t=1

〈
gt ,S

†
t gt
〉
≤ 2tr((G†T−1)

1/2GT−1)+
〈
gT ,(G

†
T)
1/2gT

〉
= 2tr(G1/2T−1)+

〈
gT ,(G

†
T)
1/2gT

〉
.

Using Lemma 8 with the substitution B= GT , ν= 1, and g= gt lets us exploit the concavity of the
function tr(A1/2) to bound the above sum by 2tr(G1/2T). �

We can now finalize our proof of the theorem. As in the diagonal case, we have that the squared
dual norm (seminorm when δ= 0) associated with ψt is

‖x‖2ψ∗t =
〈
x,(δI+St)

−1x
〉
.

Thus it is clear that ‖gt‖2ψ∗t ≤
〈
gt ,S

†
t gt
〉
. For the dual-averaging algorithms, we use Lemma 9 above

show that ‖gt‖2ψ∗t−1 ≤
〈
gt ,S

†
t gt
〉
so long as δ≥ ‖gt‖2. Lemma 10’s doubling inequality then implies

that
T

∑
t=1

∥∥ f ′t (xt)∥∥2ψ∗t ≤ 2tr(G1/2T) and
T

∑
t=1

∥∥ f ′t (xt)∥∥2ψ∗t−1 ≤ 2tr(G1/2T) (17)

for the mirror-descent and primal-dual subgradient algorithm, respectively.
To finish the proof, Note that Bψ1(x

∗,x1)≤ 1
2 ‖x∗ − x1‖22 tr(G

1/2
1) when δ= 0. By combining this

with the first of the bounds (17) and the bound (16) on ∑T−1
t=1 Bψt+1(x

∗,xt+1)−Bψt (x∗,xt+1), Corol-
lary 3 gives the theorem’s statement for the mirror-descent family of algorithms. Combining the

2135

DUCHI, HAZAN AND SINGER

fact that ∑T
t=1 ‖ f ′t (xt)‖2

ψ∗t−1
≤ 2tr(G1/2

T) and the bound (16) with Corollary 2 gives the desired bound

on Rφ(T) for the primal-dual subgradient algorithms, which completes the proof of the theorem.

As before, we can give a corollary that simplifies the bound implied by Theorem 7. The infimal
equality in the corollary uses Lemma 15 in Appendix B. The corollary underscores that for learn-
ing problems in which there is a rotation U of the space for which the gradient vectors gt have
small inner products 〈gt ,Ugt〉 (essentially a sparse basis for the gt) then using full-matrix proximal
functions can attain significantly lower regret.

Corollary 11 Assume that ϕ(x1)= 0. Then the regret of the sequence {xt} generated by Algorithm 2
when using the primal-dual subgradient update with η= ‖x∗‖2 is

Rφ(T)≤ 2‖x∗‖2 tr(G1/2
T)+δ‖x∗‖2 .

Let X be compact set so that supx∈X ‖x− x∗‖2 ≤ D. Taking η = D/
√

2 and using the composite
mirror descent update with δ= 0, we have

Rφ(T)≤
√

2D tr(G1/2
T) =

√
2dD

√√√√inf
S

{
T

∑
t=1

g�t S−1gt : S� 0, tr(S)≤ d

}
.

5. Derived Algorithms

In this section, we derive updates using concrete regularization functions ϕ and settings of the
domain X for the ADAGRAD framework. We focus on showing how to solve Equations (3) and (4)
with the diagonal matrix version of the algorithms we have presented. We focus on the diagonal
case for two reasons. First, the updates often take closed-form in this case and carry some intuition.
Second, the diagonal case is feasible to implement in very high dimensions, whereas the full matrix
version is likely to be confined to a few thousand dimensions. We also discuss how to efficiently
compute the updates when the gradient vectors are sparse.

We begin by noting a simple but useful fact. Let Gt denote either the outer product matrix of
gradients or its diagonal counterpart and let Ht = δI+G1/2

t , as usual. Simple algebraic manipula-
tions yield that each of the updates (3) and (4) in the prequel can be written in the following form
(omitting the stepsize η):

xt+1 = argmin
x∈X

{
〈u,x〉+ϕ(x)+

1
2
〈x,Htx〉

}
. (18)

In particular, at time t for the RDA update, we have u= ηt gt . For the composite gradient update (4),

η〈gt ,x〉+ 1
2
〈x− xt ,Ht(x− xt)〉= 〈ηgt −Htxt ,x〉+ 1

2
〈x,Htx〉+ 1

2
〈xt ,Htxt〉

so that u = ηgt −Htxt . We now derive algorithms for solving the general update (18). Since most
of the derivations are known, we generally provide only the closed-form solutions or algorithms for
the solutions in the remainder of the subsection, deferring detailed derivations to Appendix G for
the interested reader.

2136

ADAPTIVE SUBGRADIENT METHODS

5.1 �1-regularization

We begin by considering how to solve the minimization problems necessary for Algorithm 1 with
diagonal matrix divergences and ϕ(x) = λ‖x‖1. We consider the two updates we proposed and
denote the ith diagonal element of the matrix Ht = δI+ diag(st) from Algorithm 1 by Ht,ii = δ+
‖g1:t,i‖2. For the primal-dual subgradient update, the solution to (3) amounts to the following simple
update for xt+1,i:

xt+1,i = sign(− gt,i)
ηt
Ht,ii

[| gt,i|−λ]+ . (19)

Comparing the update (19) to the standard dual averaging update (Xiao, 2010), which is

xt+1,i = sign(− gt,i)η
√
t [| gt,i|−λ]+ ,

it is clear that the difference distills to the step size employed for each coordinate. Our generalization
of RDA yields a dedicated step size for each coordinate inversely proportional to the time-based
norm of the coordinate in the sequence of gradients. Due to the normalization by this term the step
size scales linearly with t, so when Ht,ii is small, gradient information on coordinate i is quickly
incorporated.

The composite mirror-descent update (4) has a similar form that essentially amounts to iterative
shrinkage and thresholding, where the shrinkage differs per coordinate:

xt+1,i = sign

(
xt,i− η

Ht,ii
gt,i

)[∣∣∣∣xt,i− η
Ht,ii

gt,i

∣∣∣∣− λη
Ht,ii

]
+

.

We compare the actual performance of the newly derived algorithms to previously studied versions
in the next section.

For both updates it is clear that we can perform “lazy” computation when the gradient vectors
are sparse, a frequently occurring setting when learning for instance from text corpora. Suppose
that from time step t0 through t, the ith component of the gradient is 0. Then we can evaluate the
above updates on demand since Ht,ii remains intact. For composite mirror-descent, at time t when
xt,i is needed, we update

xt,i = sign(xt0,i)

[
|xt0,i|−

λη
Ht0,ii

(t− t0)
]
+

.

Even simpler just in time evaluation can be performed for the the primal-dual subgradient update.
Here we need to keep an unnormalized version of the average gt . Concretely, we keep track of
ut = t gt = ∑tτ=1 gτ = ut−1 +gt , then use the update (19):

xt,i = sign(−ut,i) ηtHt,ii

[|ut,i|
t
−λ
]
+

,

where Ht can clearly be updated lazily in a similar fashion.

5.2 �1-ball Projections

We next consider the setting in which ϕ ≡ 0 and X = {x : ‖x‖1 ≤ c}, for which it is straightfor-
ward to adapt efficient solutions to continuous quadratic knapsack problems (Brucker, 1984). We

2137

DUCHI, HAZAN AND SINGER

INPUT: v� 0, a� 0, c≥ 0.
IF ∑i vi ≤ c RETURN z∗ = v
SORT vi/ai into μ=

[
vi j/ai j

]
s.t. vi j/ai j ≥ vi j+1/ai j+1

SET ρ := max
{
ρ : ∑

ρ
j=1 ai jvi j −

viρ
aiρ
∑
ρ
j=1 a

2
i j < c

}
SET θ=

∑
ρ
j=1 ai j vi j−c
∑
ρ
j=1 a

2
i j

RETURN z∗ where z∗i = [vi−θai]+.

Figure 3: Project v� 0 to {z : 〈a,z〉 ≤ c,z� 0}.

use the matrix Ht = δI+ diag(Gt)1/2 from Algorithm 1. We provide a brief derivation sketch and
an O(d logd) algorithm in this section. First, we convert the problem (18) into a projection prob-
lem onto a scaled �1-ball. By making the substitutions z = H1/2x and A = H−1/2, it is clear that
problem (18) is equivalent to

min
z

∥∥∥z+H−1/2u
∥∥∥2

2
s.t. ‖Az‖1 ≤ c .

Now, by appropriate choice of v = −H−1/2u = −ηtH−1/2
t gt for the primal-dual update (3) and

v= H1/2
t xt −ηH−1/2

t gt for the mirror-descent update (4), we arrive at the problem

min
z

1
2
‖z− v‖2

2 s.t.
d

∑
i=1

ai|zi| ≤ c . (20)

We can clearly recover xt+1 from the solution z∗ to the projection (20) via xt+1 = H−1/2
t z∗.

By the symmetry of the objective (20), we can assume without loss of generality that v� 0 and
constrain z � 0, and a bit of manipulation with the Lagrangian (see Appendix G) for the problem
shows that the solution z∗ has the form

z∗i =
{
vi−θ∗ai if vi ≥ θ∗ai
0 otherwise

for some θ∗ ≥ 0. The algorithm in Figure 3 constructs the optimal θ and returns z∗.

5.3 �2 Regularization

We now turn to the case where ϕ(x) = λ‖x‖2 while X = R
d . This type of regularization is useful

for zeroing multiple weights in a group, for example in multi-task or multiclass learning (Obozinski
et al., 2007). Recalling the general proximal step (18), we must solve

min
x
〈u,x〉+ 1

2
〈x,Hx〉+λ‖x‖2 . (21)

There is no closed form solution for this problem, but we give an efficient bisection-based procedure
for solving (21). We start by deriving the dual. Introducing a variable z = x, we get the equivalent
problem of minimizing 〈u,x〉+ 1

2 〈x,Hx〉+λ‖z‖2 subject to x= z. With Lagrange multipliers α for
the equality constraint, we obtain the Lagrangian

L(x,z,α) = 〈u,x〉+ 1
2
〈x,Hx〉+λ‖z‖2 + 〈α,x− z〉 .

2138

ADAPTIVE SUBGRADIENT METHODS

INPUT: u ∈ R
d , H � 0, λ> 0.

IF ‖u‖2 ≤ λ
RETURN x= 0
SET v= H−1u, θmax = ‖v‖2 /λ−1/σmin(H)
θmin = ‖v‖2 /λ−1/σmax(H)

WHILE θmax−θmin > ε
SET θ= (θmax+θmin)/2, α(θ) =−(H−1+θI)−1v
IF ‖α(θ)‖2 > λ
SET θmin = θ
ELSE
SET θmax = θ

RETURN x=−H−1(u+α(θ))

Figure 4: Minimize 〈u,x〉+ 1
2 〈x,Hx〉+λ‖x‖2

Taking the infimum of L with respect to the primal variables x and z, we see that the infimum is
attained at x=−H−1(u+α). Coupled with the fact that infzλ‖z‖2−〈α,z〉=−∞ unless ‖α‖2 ≤ λ,
in which case the infimum is 0, we arrive at the dual form

inf
x,z
L(x,z,α) =

{ − 1
2

〈
u+α,H−1(u+α)

〉
if ‖α‖2 ≤ λ

−∞ otherwise.

Setting v= H−1u, we further distill the dual to

min
α
〈v,α〉+ 1

2

〈
α,H−1α

〉
s.t. ‖α‖2 ≤ λ . (22)

We can solve problem (22) efficiently using a bisection search of its equivalent representation in
Lagrange form,

min
α
〈v,α〉+ 1

2

〈
α,H−1α

〉
+
θ
2
‖α‖22 ,

where θ > 0 is an unknown scalar. The solution to the latter as a function of θ is clearly α(θ) =
−(H−1+θI)−1v=−(H−1+θI)−1H−1u. Since ‖α(θ)‖2 is monotonically decreasing in θ (consider
the the eigen-decomposition of the positive definite H−1), we can simply perform a bisection search
over θ, checking at each point whether ‖α(θ)‖2 ≷ λ.

To find initial upper and lower bounds on θ, we note that

(1/σmax(H)+θ)−1 ‖v‖2 ≤ ‖α(θ)‖2 ≤ (1/σmin(H)+θ)−1 ‖v‖2

where σmax(H) denotes the maximum singular value of H and σmin(H) the minimum. To guarantee
‖α(θmax)‖2 ≤ λ, we thus set θmax = ‖v‖2 /λ−1/σmax(H). Similarly, for θmin we see that so long as
θ ≥ ‖v‖2 /λ− 1/σmin(H) we have ‖α(θ)‖2 ≥ λ. The fact that ∂‖x‖2 = {z : ‖z‖2 ≤ 1} when x = 0
implies that the solution for the original problem (21) is x = 0 if and only if ‖u‖2 ≤ λ. We provide
pseudocode for solving (21) in Algorithm 4.

2139

DUCHI, HAZAN AND SINGER

5.4 �∞ Regularization

We again let X = R
d but now choose ϕ(x) = λ‖x‖∞. This type of update, similarly to �2, zeroes

groups of variables, which is handy in finding structurally sparse solutions for multitask or multi-
class problems. Solving the �∞ regularized problem amounts to

min
x
〈u,x〉+ 1

2
〈x,Hx〉+λ‖x‖∞ . (23)

The dual of this problem is a modified �1-projection problem. As in the case of �2 regularization,
we introduce an equality constrained variable z= x with associated Lagrange multipliers α ∈ R

d to
obtain

L(x,z,α) = 〈u,x〉+ 1
2
〈x,Hx〉+λ‖z‖∞+ 〈α,x− z〉 .

Performing identical manipulations to the �2 case, we take derivatives and get that x=−H−1(u+α)
and, similarly, unless ‖α‖1 ≤ λ, infzL(x,z,α) =−∞. Thus the dual problem for (23) is

max
α

− 1
2
(u+α)H−1(u+α) s.t. ‖α‖1 ≤ λ .

When H is diagonal we can find the optimal α∗ using the generalized �1-projection in Algorithm 3,
then reconstruct the optimal x via x=−H−1(u+α∗).

5.5 Mixed-norm Regularization

Finally, we combine the above results to show how to solve problems with matrix-valued inputs
X ∈ R

d×k, where X = [x1 · · · xd]�. We consider mixed-norm regularization, which is very useful
for encouraging sparsity across several tasks (Obozinski et al., 2007). Now ϕ is an �1/�p norm, that
is, ϕ(X) = λ∑d

i=1 ‖xi‖p. By imposing an �1-norm over p-norms of the rows of X , entire rows are
nulled at once.

When p ∈ {2,∞} and the proximal H in (18) is diagonal, the previous algorithms can be readily
used to solve the mixed norm problems. We simply maintain diagonal matrix information for each
of the rows xi of X separately, then solve one of the previous updates for each row independently.
We use this form of regularization in our experiments with multiclass prediction problems in the
next section.

6. Experiments

We performed experiments with several real world data sets with different characteristics: the Im-
ageNet image database (Deng et al., 2009), the Reuters RCV1 text classification data set (Lewis
et al., 2004), the MNIST multiclass digit recognition problem, and the census income data set from
the UCI repository (Asuncion and Newman, 2007). For uniformity across experiments, we focus on
the completely online (fully stochastic) optimization setting, in which at each iteration the learning
algorithm receives a single example. We measure performance using two metrics: the online loss
or error and the test set performance of the predictor the learning algorithm outputs at the end of a
single pass through the training data. We also give some results that show how imposing sparsity
constraints (in the form of �1 and mixed-norm regularization) affects the learning algorithm’s per-
formance. One benefit of the ADAGRAD framework is its ability to straightforwardly generalize to

2140

ADAPTIVE SUBGRADIENT METHODS

RDA FB ADAGRAD-RDA ADAGRAD-FB PA AROW

ECAT .051 (.099) .058 (.194) .044 (.086) .044 (.238) .059 .049
CCAT .064 (.123) .111 (.226) .053 (.105) .053 (.276) .107 .061
GCAT .046 (.092) .056 (.183) .040 (.080) .040 (.225) .066 .044
MCAT .037 (.074) .056 (.146) .035 (.063) .034 (.176) .053 .039

Table 1: Test set error rates and proportion non-zero (in parenthesis) on Reuters RCV1.

domain constraints X �=R
d and arbitrary regularization functions ϕ, in contrast to previous adaptive

online algorithms.
We experiment with RDA (Xiao, 2010), FOBOS(Duchi and Singer, 2009), adaptive RDA, adap-

tive FOBOS, the Passive-Aggressive (PA) algorithm (Crammer et al., 2006), and AROW (Crammer
et al., 2009). To remind the reader, PA is an online learning procedure with the update

xt+1 = argmin
x

[1− yt 〈zt ,x〉]+ +
λ
2
‖x− xt‖22 ,

where λ is a regularization parameter. PA’s update is similar to the update employed by AROW
(see (9)), but the latter maintains second order information on x. By using a representer theorem
it is also possible to derive efficient updates for PA and AROW when the loss is the logistic loss,
log(1+ exp(−yt 〈zt ,xt〉)). We thus we compare the above six algorithms using both hinge and
logistic loss.

6.1 Text Classification

The Reuters RCV1 data set consists of a collection of approximately 800,000 text articles, each
of which is assigned multiple labels. There are 4 high-level categories, Economics, Commerce,
Medical, and Government (ECAT, CCAT, MCAT, GCAT), and multiple more specific categories.
We focus on training binary classifiers for each of the four major categories. The input features
we use are 0/1 bigram features, which, post word stemming, give data of approximately 2 million
dimensions. The feature vectors are very sparse, however, and most examples have fewer than 5000
non-zero features.

We compare the twelve different algorithms mentioned in the prequel as well as variants of
FOBOS and RDA with �1-regularization. We summarize the results of the �1-regularized runs as
well as AROW and PA in Table 1. The results for both hinge and logistic losses are qualitatively
and quantitatively very similar, so we report results only for training with the hinge loss in Table 1.
Each row in the table represents the average of four different experiments in which we hold out 25%
of the data for a test set and perform an online pass on the remaining 75% of the data. For RDA
and FOBOS, we cross-validate the stepsize parameter η by simply running multiple passes and then
choosing the output of the learner that had the fewest mistakes during training. For PA and AROW
we choose λ using the same approach. We use the same regularization multiplier on the �1 term for
RDA and FOBOS, selected so that RDA achieved approximately 10% non-zero predictors.

It is evident from the results presented in Table 1 that the adaptive algorithms (AROW and ADA-
GRAD) are far superior to non-adaptive algorithms in terms of error rate on test data. The ADA-
GRAD algorithms naturally incorporate sparsity as well since they are run with �1-regularization,
though RDA has significantly higher sparsity levels (PA and AROW do not have any sparsity). Fur-
thermore, although omitted from the table to avoid clutter, in every test with the RCV1 corpus, the

2141

DUCHI, HAZAN AND SINGER

Alg. Avg. Prec. P@1 P@3 P@5 P@10 Prop. nonzero

ADAGRAD RDA 0.6022 0.8502 0.8307 0.8130 0.7811 0.7267
AROW 0.5813 0.8597 0.8369 0.8165 0.7816 1.0000
PA 0.5581 0.8455 0.8184 0.7957 0.7576 1.0000
RDA 0.5042 0.7496 0.7185 0.6950 0.6545 0.8996

Table 2: Test set precision for ImageNet

adaptive algorithms outperformed the non-adaptive algorithms. Moreover, both ADAGRAD-RDA
and ADAGRAD-Fobos outperform AROW on all the classification tasks. Unregularized RDA and
FOBOS attained similar results as did the �1-regularized variants (of course without sparsity), but
we omit the results to avoid clutter and because they do not give much more understanding.

6.2 Image Ranking

ImageNet (Deng et al., 2009) consists of images organized according to the nouns in the WordNet
hierarchy, where each noun is associated on average with more than 500 images collected from
the web. We selected 15,000 important nouns from the hierarchy and conducted a large scale im-
age ranking task for each noun. This approach is identical to the task tackled by Grangier and
Bengio (2008) using the Passive-Aggressive algorithm. To solve this problem, we train 15,000
ranking machines using Grangier and Bengio’s visterms features, which represent patches in an im-
age with 79-dimensional sparse vectors. There are approximately 120 patches per image, resulting
in a 10,000-dimensional feature space.

Based on the results in the previous section, we focus on four algorithms for solving this task:
AROW, ADAGRAD with RDA updates and �1-regularization, vanilla RDA with �1, and Passive-
Aggressive. We use the ranking hinge loss, which is [1−〈x,z1− z2〉]+ when z1 is ranked above
z2. We train a ranker xc for each of the image classes individually, cross-validating the choice of
initial stepsize for each algorithm on a small held-out set. To train an individual ranker for class
c, at each step of the algorithm we randomly sample a positive image z1 for the category c and
an image z2 from the training set (which with high probability is a negative example for class c)
and perform an update on the example z1− z2. We let each algorithm take 100,000 such steps for
each image category, we train four sets of rankers with each algorithm, and the training set includes
approximately 2 million images.

For evaluation, we use a distinct test set of approximately 1 million images. To evaluate a set of
rankers, we iterate through all 15,000 classes in the data set. For each class we take all the positive
image examples in the test set and sample 10 times as many negative image examples. Following
Grangier and Bengio, we then rank the set of positive and negative images and compute precision-
at-k for k = {1, . . . ,10} and the average precision for each category. The precision-at-k is defined
as the proportion of examples ranked in the top k for a category c that actually belong to c, and
the average precision is the average of the precisions at each position in which a relevant picture
appears. Letting Pos(c) denote the positive examples for category c and p(i) denote the position of
the ith returned picture in list of images sorted by inner product with xc, the average precision is

1
|Pos(c)|

|Pos(c)|
∑
i=1

i
p(i)

.

2142

ADAPTIVE SUBGRADIENT METHODS

0 1 2 3 4 5 6

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Examples seen

M
is

ta
ke

s

PA
Ada RDA
RDA
Ada RDA L1/L2
RDA L1/L2

Figure 5: Learning curves on MNIST

We compute the mean of each measurement across all classes, performing this twelve times for
each of the sets of rankers trained. Table 2 summarizes our results. We do not report variance as the
variance was on the order of 10−5 for each algorithm. One apparent characteristic to note from the
table is that ADAGRAD RDA achieves higher levels of sparsity than the other algorithms—using
only 73% of the input features it achieves very high performance. Moreover, it outperforms all the
algorithms in average precision. AROW has better results than the other algorithms in terms of
precision-at-k for k ≤ 10, though ADAGRAD’s performance catches up to and eventually surpasses
AROW’s as k grows.

6.3 Multiclass Optical Character Recognition

In the well-known MNIST multiclass classification data set, we are given 28× 28 pixel images ai,
and the learner’s task is to classify each image as a digit in {0, . . . ,9}. Linear classifiers do not
work well on a simple pixel-based representation. Thus we learn classifiers built on top of a kernel
machine with Gaussian kernels, as do Duchi and Singer (2009), which gives a different (and non-
sparse) structure to the feature space in contrast to our previous experiments. In particular, for the

ith example and jth feature, the feature value is zi j = K(ai,a j)� exp
(
− 1
2σ2
∥∥ai−a j∥∥22). We use a

support set of approximately 3000 images to compute the kernels and trained multiclass predictors,
which consist of one vector xc ∈ R

3000 for each class c, giving a 30,000 dimensional problem.
There is no known multiclass AROW algorithm. We therefore compare adaptive RDA with and
without mixed-norm �1/�2 and �1/�∞ regularization (see Section 5.5), RDA, and multiclass Passive
Aggressive to one another using the multiclass hinge loss (Crammer et al., 2006). For each algorithm
we used the first 5000 of 60,000 training examples to choose the stepsize η (for RDA) and λ (for
PA).

In Figure 5, we plot the learning curves (cumulative mistakes made) of multiclass PA, RDA,
RDA with �1/�2 regularization, adaptive RDA, and adaptive RDA with �1/�2 regularization (�1/�∞

2143

DUCHI, HAZAN AND SINGER

Test error rate Prop. nonzero

PA 0.062 1.000
Ada-RDA 0.066 1.000
RDA 0.108 1.000

Ada-RDA λ= 5 ·10−4 0.100 0.569
RDA λ= 5 ·10−4 0.138 0.878
Ada-RDA λ= 10−3 0.137 0.144
RDA λ= 10−3 0.192 0.532

Table 3: Test set error rates and sparsity proportions on MNIST. The scalar λ is the multiplier on
the �1/�2 regularization term.

is similar). From the curves, we see that Adaptive RDA seems to have similar performance to PA,
and the adaptive versions of RDA are vastly superior to their non-adaptive counterparts. Table 3
further supports this, where we see that the adaptive RDA algorithms outperform their non-adaptive
counterparts both in terms of sparsity (the proportion of non-zero rows) and test set error rates.

6.4 Income Prediction

The KDD census income data set from the UCI repository (Asuncion and Newman, 2007) contains
census data extracted from 1994 and 1995 population surveys conducted by the U.S. Census Bureau.
The data consists of 40 demographic and employment related variables which are used to predict
whether a respondent has income above or below $50,000. We quantize each feature into bins (5
per feature for continuous features) and take products of features to give a 4001 dimensional feature
space with 0/1 features. The data is divided into a training set of 199,523 instances and test set of
99,762 test instances.

As in the prequel, we compare AROW, PA, RDA, and adaptive RDA with and without �1-
regularization on this data set. We use the first 10,000 examples of the training set to select the
step size parameters λ for AROW and PA and η for RDA. We perform ten experiments on random
shuffles of the training data. Each experiment consists of a training pass through some proportion
of the data (.05, .1, .25, .5, or the entire training set) and computing the test set error rate of the
learned predictor. Table 4 and Figure 6 summarize the results of these experiments. The variance
of the test error rates is on the order of 10−6 so we do not report it. As earlier, the table and figure
make it clear that the adaptive methods (AROW and ADAGRAD-RDA) give better performance
than non-adaptive methods. Further, as detailed in the table, the ADAGRAD methods can give
extremely sparse predictors that still give excellent test set performance. This is consistent with
the experiments we have seen to this point, where ADAGRAD gives sparse but highly accurate
predictors.

6.5 Experiments with Sparsity-Accuracy Tradeoffs

In our final set of experiments, we investigate the tradeoff between the level of sparsity and the
classification accuracy for the ADAGRAD-RDA algorithms. Using the same experimental setup
as for the initial text classification experiments described in Section 6.1, we record the average
test-set performance of ADAGRAD-RDA versus the proportion of features that are non-zero in the
predictor ADAGRAD outputs after a single pass through the training data. To achieve this, we run

2144

ADAPTIVE SUBGRADIENT METHODS

0 0.2 0.4 0.6 0.8 1
0.044

0.046

0.048

0.05

0.052

0.054

0.056

Proportion train

T
es

t e
rr

or
 r

at
e

AROW
PA
RDA
Ada RDA

Figure 6: Test set error rates as function of proportion of training data seen on Census Income data
set.

Prop. Train 0.05 0.10 0.25 0.50 1.00

AROW 0.049 0.048 0.046 0.045 0.044
PA 0.055 0.052 0.050 0.049 0.048
RDA 0.055 0.054 0.052 0.051 0.050

Ada-RDA 0.053 0.051 0.049 0.048 0.047
�1 RDA 0.056 (0.075) 0.054 (0.066) 0.053 (0.058) 0.052 (0.053) 0.051 (0.050)

�1 Ada-RDA 0.052 (0.062) 0.051 (0.053) 0.050 (0.044) 0.050 (0.040) 0.049 (0.037)

Table 4: Test set error rates as function of proportion of training data seen (proportion of non-zeros
in parenthesis where appropriate) on Census Income data set.

ADAGRAD with �1-regularization, and we sweep the regularization multiplier λ from 10−8 to 10−1.
These values result in predictors ranging from a completely dense predictor to an all-zeros predictor,
respectively.

We summarize our results in Figure 7, which shows the test set performance of ADAGRAD
for each of the four categories ECAT, CCAT, GCAT, and MCAT. Within each plot, the horizontal
black line labeled AROW designates the baseline performance of AROW on the text classification
task, though we would like to note that AROW generates fully dense predictors. The plots all
portray a similar story. With high regularization values, ADAGRAD exhibits, as expected, poor
performance as it retains no predictive information from the learning task. Put another way, when
the regularization value is high ADAGRAD is confined to an overly sparse predictor which exhibits
poor generalization. However, as the regularization multiplier λ decreases, the learned predictor
becomes less sparse and eventually the accuracy of ADAGRAD exceeds AROW’s accuracy. It is
interesting to note that for these experiments, as soon as the predictor resulting from a single pass

2145

DUCHI, HAZAN AND SINGER

ECAT CCAT

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Proportion non−zero

T
es

t−
se

t e
rr

or
 r

at
e

AdaGrad
AROW

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Proportion non−zero

T
es

t−
se

t e
rr

or
 r

at
e

AdaGrad
AROW

GCAT MCAT

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Proportion non−zero

T
es

t−
se

t e
rr

or
 r

at
e

AdaGrad
AROW

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Proportion non−zero

T
es

t−
se

t e
rr

or
 r

at
e

AdaGrad
AROW

Figure 7: Test set error rates as a function of proportion of non-zeros in predictor x output by ADA-
GRAD (AROW plotted for reference).

through the data has more than 1% non-zero coefficients, ADAGRAD’s performance matches that of
AROW. We also would like to note that the variance in the test-set error rates for these experiments
is on the order of 10−6, and we thus do not draw error bars in the graphs. The performance of
ADAGRAD as a function of regularization for other sparse data sets, especially in relation to that of
AROW, was qualitatively similar to this experiment.

7. Conclusions

We presented a paradigm that adapts subgradient methods to the geometry of the problem at hand.
The adaptation allows us to derive strong regret guarantees, which for some natural data distributions
achieve better performance guarantees than previous algorithms. Our online regret bounds can be
naturally converted into rate of convergence and generalization bounds (Cesa-Bianchi et al., 2004).
Our experiments show that adaptive methods, specifically ADAGRAD-FOBOS, ADAGRAD-RDA,
and AROW clearly outperform their non-adaptive counterparts. Furthermore, the ADAGRAD fam-

2146

ADAPTIVE SUBGRADIENT METHODS

ily of algorithms naturally incorporates regularization and gives very sparse solutions with similar
performance to dense solutions. Our experiments with adaptive methods use a diagonal approxima-
tion to the matrix obtained by taking outer products of subgradients computed along the run of the
algorithm. It remains to be tested whether using the full outer product matrix can further improve
performance.

To conclude we would like to underscore a possible elegant generalization that interpolates
between full-matrix proximal functions and diagonal approximations using block diagonal matrices.
Specifically, for v ∈ R

d let v = [v�[1] · · · v�[k]]� where v[i] ∈ R
di are subvectors of v with ∑k

i=1 di = d.

We can define the associated block-diagonal approximation to the outer product matrix ∑tτ=1 gτg
�
τ

by

Gt =
t

∑
τ=1

⎡⎢⎢⎢⎢⎢⎣
gτ,[1]g

�
τ,[1] 0 · · · 0

0 gτ,[2]g
�
τ,[2]

. . . 0
...

. 0
0 · · · 0 gτ,[k]g

�
τ,[k]

⎤⎥⎥⎥⎥⎥⎦ .

In this case, a combination of Theorems 5 and 7 gives the next corollary.

Corollary 12 Let Gt be the block-diagonal outer product matrix defined above and the sequence

{xt} be defined by the RDA update of (3) with ψt(x) =
〈
x,G1/2t x

〉
. Then, for any x∗ ∈ X ,

Rφ(T)≤ 1
η
max
i

∥∥∥x∗[i]∥∥∥22 tr(G1/2T)+η tr(G1/2T).

A similar bound holds for composite mirror-descent updates, and it is straightforward to get infimal
equalities similar to those in Corollary 11 with the infimum taken over block-diagonal matrices.
Such an algorithm can interpolate between the computational simplicity of the diagonal proximal
functions and the ability of full matrices to capture correlation in the gradient vectors.

A few open questions stem from this line of research. The first is whether we can efficiently
use full matrices in the proximal functions, as in Section 4. A second open issue is whether non-
Euclidean proximal functions, such as the relative entropy, can be used. We also think that the
strongly convex case—when ft or ϕ is strongly convex—presents interesting challenges that we
have not completely resolved. We hope to investigate both empirical and formal extensions of this
work in the near future.

Acknowledgments

There are many people to whom we owe our sincere thanks for this research. Fernando Pereira
helped push us in the direction of working on adaptive online methods and has been a constant
source of discussion and helpful feedback. Samy Bengio provided us with a processed version of
the ImageNet data set and was instrumental in helping to get our experiments running, and Adam
Sadovsky gave many indispensable coding suggestions. The anonymous reviewers also gave several
suggestions that improved the quality of the paper. Lastly, Sam Roweis was a sounding board for
some of our earlier ideas on the subject, and we will miss him dearly.

2147

DUCHI, HAZAN AND SINGER

Appendix A. Full Matrix Motivating Example

As in the diagonal case, as the adversary we choose ε > 0 and on rounds t = 1, . . . ,η2/ε2 play the
vector ±v1. After the first η2/ε2 rounds, the adversary simply cycles through the vectors v2, . . . ,vd .
Thus, for Zinkevich’s projected gradient, we have xt = αt,1v1 for some multiplier αt,1 > 0 when
t ≤ η2/ε2. After the first η2/ε2 rounds, we perform the updates

xt+1 =Π‖x‖2≤
√
d

(
xt +

η√
t
vi

)
for some index i, but as in the diagonal case, η/

√
t ≤ ε, and by orthogonality of vi,v j, we have

xt = Vαt for some αt � 0, and the projection step can only shrink the multiplier αt,i for index
i. Thus, each coordinate incurs loss at least 1/(2ε), and projected gradient descent suffers losses
Ω(d/ε).

On the other hand, ADAGRAD suffers loss at most d. Indeed, since g1 = v1 and ‖v1‖2 = 1, we
have G21 = v1v�1 v1v

�
1 = v1v�1 = G1, so G1 = G†1 = G

1
2
1 , and

x2 = x1+G†1 = x1+ v1v
�
1 v1 = x1+ v1.

Since 〈x2,v1〉= 1, we see that ADAGRAD suffers no loss (and Gt = G1) until a vector zt =±vi for
i �= 1 is played by the adversary. However, an identical argument shows that Gt is simply updated
to v1v�1 + viv�i , in which case xt = v1+ vi. Indeed, an inductive argument shows that until all the
vectors vi are seen, we have ‖xt‖2 <

√
d by orthogonality, and eventually we have

xt =
d

∑
i=1

vi and ‖xt‖2 =
√

d

∑
i=1

‖vi‖22 =
√
d

so that xt ∈ X = {x : ‖x‖2 ≤
√
d} for ADAGRAD for all t. All future predictions thus achieve margin

1 and suffer no loss.

Appendix B. Technical Lemmas

Lemma 13 Let A� B� 0 be symmetric d×d PSD matrices. Then A1/2 � B1/2.

Proof This is Example 3 of Davis (1963). We include a proof for convenience of the reader.
Let λ be any eigenvalue (with corresponding eigenvector x) of A1/2−B1/2; we show that λ ≥ 0.
Clearly A1/2x−λx= B1/2x. Taking the inner product of both sides with A1/2x, we have

∥∥A1/2x∥∥22−
λ
〈
A1/2x,x

〉
=
〈
A1/2x,B1/2x

〉
. We use the Cauchy-Schwarz inequality:∣∣∣∣∥∥∥A1/2x∥∥∥22−λ〈A1/2x,x〉
∣∣∣∣≤ ∥∥∥A1/2x∥∥∥2∥∥∥B1/2x∥∥∥2 =√〈Ax,x〉〈Bx,x〉 ≤ 〈Ax,x〉= ∥∥∥A1/2x∥∥∥22

where the last inequality follows from the assumption that A� B. Thus we must have λ
〈
A1/2x,x

〉≥
0, which implies λ≥ 0.
The gradient of the function tr(X p) is easy to compute for integer values of p. However, when p is
real we need the following lemma. The lemma tacitly uses the fact that there is a unique positive
semidefinite X p when X � 0 (Horn and Johnson, 1985, Theorem 7.2.6).

2148

ADAPTIVE SUBGRADIENT METHODS

Lemma 14 Let p ∈ R and X $ 0. Then ∇X tr(X p) = pX p−1.

Proof We do a first order expansion of (X +A)p when X $ 0 and A is symmetric. Let X =UΛU�

be the symmetric eigen-decomposition of X andVDV� be the decomposition of Λ−1/2U�AUΛ−1/2.
Then

(X+A)p = (UΛU�+A)p =U(Λ+U�AU)pU� =UΛp/2(I+Λ−1/2U�AUΛ−1/2)pΛp/2U�

=UΛp/2V�(I+D)pVΛp/2U� =UΛp/2V�(I+ pD+o(D))VΛp/2U�

=UΛpU�+ pUΛp/2V�DVΛp/2U�+o(UΛ−/2V�DVΛp/2U�)

= X p+UΛ(p−1)/2U�AUΛ(p−1)/2U�+o(A) = X p+ pX (p−1)/2AX (p−1)/2+o(A).

In the above, o(A) is a matrix that goes to zero faster than A→ 0, and the second line follows via a
first-order Taylor expansion of (1+di)p. From the above, we immediately have

tr((X+A)p) = trX p+ p tr(X p−1A)+o(trA),

which completes the proof.

Appendix C. Proof of Lemma 4

We prove the lemma by considering an arbitrary real-valued sequence {ai} and its vector represen-
tation a1:i = [a1 · · · ai]. We are next going to show that

T

∑
t=1

a2t
‖a1:t‖2

≤ 2‖a1:T‖2 , (24)

where we define 00 = 0. We use induction on T to prove inequality (24). For T = 1, the inequality
trivially holds. Assume the bound (24) holds true for T −1, in which case

T

∑
t=1

a2t
‖a1:t‖2

=
T−1
∑
t=1

a2t
‖a1:t‖2

+
a2T

‖a1:T‖2
≤ 2‖a1:T−1‖2+

a2T
‖a1:T‖2

,

where the inequality follows from the inductive hypothesis. We define bT = ∑T
t=1 a

2
t and use con-

cavity to obtain that
√
bT −a2T ≤

√
bT −a2T 1

2
√
bT
so long as bT −a2T ≥ 0.2 Thus,

2‖a1:T−1‖2+
a2T

‖a1:T‖2
= 2
√
bT −a2T +

a2T√
bT
≤ 2
√
bT = 2‖a1:T‖2 .

Having proved the bound (24), we note that by construction that st,i = ‖g1:t,i‖2, so
T

∑
t=1

〈
gt ,diag(st)

−1gt
〉
=

T

∑
t=1

d

∑
i=1

g2t,i
‖g1:t,i‖2

≤ 2
d

∑
i=1

‖g1:T,i‖2 .

2. We note that we use an identical technique in the full-matrix case. See Lemma 8.

2149

DUCHI, HAZAN AND SINGER

Appendix D. Proof of Lemmas 8 and 9

We begin with the more difficult proof of Lemma 8.
Proof of Lemma 8 The core of the proof is based on the concavity of the function tr(A1/2). How-
ever, careful analysis is required as Amight not be strictly positive definite. We also use the previous
lemma which implies that the gradient of tr(A1/2) is 12A

−1/2 when A$ 0.
First, Ap is matrix-concave for A $ 0 and 0 ≤ p ≤ 1 (see, for example, Corollary 4.1 in Ando,

1979 or Theorem 16.1 in Bondar, 1994). That is, for A,B$ 0 and α ∈ [0,1] we have

(αA+(1−α)B)p � αAp+(1−α)Bp . (25)

Now suppose simply A,B � 0 (but neither is necessarily strict). Then for any δ > 0, we have
A+δI $ 0 and B+δI $ 0 and therefore

(α(A+δI)+(1−α)(B+δI))p � α(A+δI)p+(1−α)(B+δI)p � αAp+(1−α)Bp ,

where we used Lemma 13 for the second matrix inequality. Moreover, αA+ (1−α)B+ δI →
αA+(1−α)B as δ→ 0. Since Ap is continuous (when we use the unique PSD root), this line of
reasoning proves that (25) holds for A,B� 0. Thus, we proved that

tr((αA+(1−α)B)p)≥ α tr(Ap)+(1−α) tr(Bp) for 0≤ p≤ 1 .

Recall now that Lemma 14 implies that the gradient of tr(A1/2) is 12A
−1/2 when A $ 0. There-

fore, from the concavity of A1/2 and the form of its gradient, we can use the standard first-order
inequality for concave functions so that for any A,B$ 0,

tr(A1/2)≤ tr(B1/2)+ 1
2
tr(B−1/2(A−B)) . (26)

Let A = B− νgg� � 0 and suppose only that B � 0. We must take some care since B−1/2 may
not necessarily exist, and the above inequality does not hold true in the pseudo-inverse sense when
B �$ 0. However, for any δ> 0 we know that 2∇B tr((B+δI)1/2)= (B+δI)−1/2, and A−B=−νgg�.
From (26) and Lemma 13, we have

2tr(B− tgg�)1/2 = 2tr(A1/2) ≤ 2tr((A+δI)1/2)

≤ 2tr(B+δI)1/2−ν tr((B+δI)−1/2gg�) . (27)

Note that g ∈ Range(B), because if it were not, we could choose some u with Bu= 0 and 〈g,u〉 �= 0,
which would give

〈
u,(B− cgg�)u〉=−c〈g,u〉2 < 0, a contradiction. Now let B=V diag(λ)V� be

the eigen-decomposition of B. Since g ∈ Range(B),

g�(B+δI)−1/2g = g�V diag
(
1/
√
λi+δ

)
V�g

= ∑
i:λi>0

1√
λi+δ

(g�vi)2 −→
δ↓0 ∑

i:λi>0

λ−1/2i (g�vi)2 = g�(B†)1/2g .

Thus, by taking δ ↓ 0 in (27), and since both tr(B+ δI)1/2 and tr((B+ δI)−1/2gg�) are evidently
continuous in δ, we complete the proof.

2150

ADAPTIVE SUBGRADIENT METHODS

Proof of Lemma 9We begin by noting that δ2I � gg�, so from Lemma 13 we get (A+gg�)1/2 �
(A+ δ2I)1/2. Since A and I are simultaneously diagonalizable, we can generalize the inequality√
a+b≤√a+√b, which holds for a,b≥ 0, to positive semi-definite matrices, thus,

(A+δ2I)1/2 � A1/2+δI .

Therefore, if A+ gg� is of full rank, we have (A+ gg�)−1/2 � (A1/2+ δI)−1 (Horn and Johnson,
1985, Corollary 7.7.4(a)). Since g ∈ Range((A+gg�)1/2), we can apply an analogous limiting ar-
gument to the one used in the proof of Lemma 8 and discard all zero eigenvalues of A+gg�, which
completes the lemma.

Appendix E. Solution to Problem (15)

We prove here a technical lemma that is useful in characterizing the solution of the optimization
problem below. Note that the second part of the lemma implies that we can treat the inverse of the
solution matrix S−1 as S†. We consider solving

min
S
tr(S−1A) subject to S� 0, tr(S)≤ c where A� 0 . (28)

Lemma 15 If A is of full rank, then the minimizer of (28) is S= cA
1
2 / tr(A

1
2). If A is not of full rank,

then setting S= cA
1
2 / tr(A

1
2) gives

tr(S†A) = inf
S

{
tr(S−1A) : S� 0, tr(S)≤ c

}
.

In either case, tr(S†A) = tr(A
1
2)2/c.

Proof Both proofs rely on constructing the Lagrangian for (28). We introduce θ ∈ R+ for the trace
constraint and Z � 0 for the positive semidefinite constraint on S. In this case, the Lagrangian is

L(S,θ,Z) = tr(S−1A)+θ(tr(S)− c)− tr(SZ).

The derivative of L with respect to S is

−S−1AS−1+θI−Z. (29)

If S is full rank, then to satisfy the generalized complementarity conditions for the problem (Boyd
and Vandenberghe, 2004), we must have Z = 0. Therefore, we get S−1AS−1 = θI. We now can
multiply by S on the right and the left to get that A= θS2, which implies that S ∝ A

1
2 . If A is of full

rank, the optimal solution for S$ 0 forces θ to be positive so that tr(S) = c. This yields the solution
S = cA

1
2 / tr(A

1
2). In order to verify optimality of this solution, we set Z = 0 and θ = c−2 tr(A1/2)2

which gives ∇SL(S,θ,Z) = 0, as is indeed required.
Suppose now that A is not full rank and that

A= Q

[
Λ 0
0 0

]
Q�

2151

DUCHI, HAZAN AND SINGER

is the eigen-decomposition of A. Let n be the dimension of the null-space of A (so the rank of A is
d−n). Define the variables

Z(θ) =

[
0 0
0 θI

]
, S(θ,δ) =

1√
θ
Q

[
Λ

1
2 0
0 δI

]
Q�, S(δ) =

c

tr(A
1
2)+δn

Q

[
Λ

1
2 0
0 δI

]
Q�.

It is easy to see that trS(δ) = c, and

lim
δ→0

tr(S(δ)−1A) = tr(S(0)†A) = tr(A
1
2) tr(Λ

1
2)/c= tr(A

1
2)2/c.

Further, let g(θ) = infSL(S,θ,Z(θ)) be the dual of (28). From the above analysis and (29), it is
evident that

−S(θ,δ)−1AS(θ,δ)−1+θI−Z(θ) =−θQ
[
Λ−

1
2ΛΛ−

1
2 0

0 δ−2I ·0
]
Q�+θI−

[
0 0
0 θI

]
= 0.

So S(θ,δ) achieves the infimum in the dual for any δ> 0, tr(S(0)Z(θ)) = 0, and

g(θ) =
√
θ tr(Λ

1
2)+

√
θ tr(Λ

1
2)+

√
θδn−θc.

Setting θ= tr(Λ
1
2)2/c2 gives g(θ) = tr(Λ

1
2)2/c−δn tr(Λ 1

2)/c. Taking δ→ 0 gives g(θ) = tr(A
1
2)2/c,

which means that limδ→0 tr(S(δ)−1A) = tr(A
1
2)2/c = g(θ). Thus the duality gap for the original

problem is 0 so S(0) is the limiting solution.
The last statement of the lemma is simply plugging S†= (A†)

1
2 tr(A

1
2)/c in to the objective being

minimized.

Appendix F. Proofs of Propositions 2 and 3

We begin with the proof of Proposition 2. The proof essentially builds upon Xiao (2010) and
Nesterov (2009), with some modification to deal with the indexing of ψt . We include the proof for
completeness.
Proof of Proposition 2 Define ψ∗t to be the conjugate dual of tϕ(x)+ψt(x)/η:

ψ∗t (g) = sup
x∈X

{
〈g,x〉− tϕ(x)− 1

η
ψt(x)

}
.

Since ψt/η is 1/η-strongly convex with respect to the norm ‖·‖ψt , the function ψ∗t has η-Lipschitz
continuous gradients with respect to ‖·‖ψ∗t :

‖∇ψ∗t (g1)−∇ψ∗t (g2)‖ψt ≤ η‖g1−g2‖ψ∗t (30)

for any g1,g2 (see, e.g., Nesterov, 2005, Theorem 1 or Hiriart-Urruty and Lemaréchal, 1996, Chap-
ter X). Further, a simple argument with the fundamental theorem of calculus gives that if f has
L-Lipschitz gradients, f (y)≤ f (x)+ 〈∇ f (x),y− x〉+(L/2)‖y− x‖2, and

∇ψ∗t (g) = argmin
x∈X

{
−〈g,x〉+ tϕ(x)+

1
η
ψt(x)

}
. (31)

2152

ADAPTIVE SUBGRADIENT METHODS

Using the bound (30) and identity (31), we can give the proof of the corollary. Indeed, letting
gt ∈ ∂ ft(xt) and defining zt = ∑tτ=1 gτ, we have

T

∑
t=1

ft(xt)+ϕ(xt)− ft(x
∗)−ϕ(x∗)

≤
T

∑
t=1

〈gt ,xt− x∗〉−ϕ(x∗)+ϕ(xt)

≤
T

∑
t=1

〈gt ,xt〉+ϕ(xt)+ sup
x∈X

{
−

T

∑
t=1

〈gt ,x〉−Tϕ(x)− 1ηψT (x)
}
+ψT (x∗)

=
1
η
ψT (x

∗)+
T

∑
t=1

〈gt ,xt〉+ϕ(xt)+ψ∗T (−zT) .

Since ψt+1 ≥ ψt , it is clear that

ψ∗T (−zT) =−
T

∑
t=1

〈gt ,xT+1〉−Tϕ(xT+1)− 1ηψT (xT+1)

≤−
T

∑
t=1

〈gt ,xT+1〉− (T −1)ϕ(xT+1)−ϕ(xT+1)− 1ηψT−1(xT+1)

≤ sup
x∈X

(
−〈zT ,x〉− (T −1)ϕ(x)− 1

η
ψT−1(x)

)
−ϕ(xT+1) = ψ∗T−1(−zT)−ϕ(xT+1).

The Lipschitz continuity of ∇ψ∗t , the identity (31), and the fact that zT − zT−1 =−gT give
T

∑
t=1

ft(xt)+ϕ(xt+1)− ft(x
∗)−ϕ(x∗)

≤ 1
η
ψT (x∗)+

T

∑
t=1

〈gt ,xt〉+ϕ(xt+1)+ψ∗T−1 (−zT)−ϕ(xT+1)

≤ 1
η
ψT (x

∗)+
T

∑
t=1

〈gt ,xt〉+ϕ(xt+1)−ϕ(xT+1)

+ψ∗T−1 (−zT−1)−
〈
∇ψ∗T−1(zT−1),gT

〉
+
η
2
‖gT‖2ψ∗T−1

=
1
η
ψT (x

∗)+
T−1
∑
t=1

〈gt ,xt〉+ϕ(xt+1)+ψ∗T−1(−zT−1)+
η
2
‖gT‖2ψ∗T−1 .

We can repeat the same sequence of steps that gave the last equality to see that

T

∑
t=1

ft(xt)+ϕ(xt+1)− ft(x
∗)−ϕ(x∗)≤ 1

η
ψT (x∗)+

η
2

T

∑
t=1

‖gt‖2ψ∗t−1 +ψ∗0(−z0).

Recalling that x1 = argminx∈X {ϕ(x)} and that ψ∗0(0) = 0 completes the proof.

We now turn to the proof of Proposition 3. We begin by stating and fully proving an (essentially)
immediate corollary to Lemma 2.3 of Duchi et al. (2010).

2153

DUCHI, HAZAN AND SINGER

Lemma 16 Let {xt} be the sequence defined by the update (4) and assume that Bψt (·, ·) is strongly
convex with respect to a norm ‖·‖ψt . Let ‖·‖ψ∗t be the associated dual norm. Then for any x∗,

η(ft(xt)− ft(x
∗))+η(ϕ(xt+1)−ϕ(x∗))≤ Bψt (x

∗,xt)−Bψt (x∗,xt+1)+
η2

2

∥∥ f ′t (xt)∥∥2ψ∗t
Proof The optimality of xt+1 for (4) implies for all x ∈ X and ϕ′(xt+1) ∈ ∂ϕ(xt+1)〈

x− xt+1,η f ′(xt)+∇ψt(xt+1)−∇ψt(xt)+ηϕ′(xt+1)
〉≥ 0. (32)

In particular, this obtains for x= x∗. From the subgradient inequality for convex functions, we have
ft(x∗)≥ ft(xt)+ 〈 f ′t (xt),x∗ − xt〉, or ft(xt)− ft(x∗)≤ 〈 f ′t (xt),xt− x∗〉, and likewise for ϕ(xt+1). We
thus have

η [ft(xt)+ϕ(xt+1)− ft(x
∗)−ϕ(x∗)]

≤ η
〈
xt − x∗, f ′t (xt)

〉
+η
〈
xt+1− x∗,ϕ′(xt+1)

〉
= η

〈
xt+1− x∗, f ′t (xt)

〉
+η
〈
xt+1− x∗,ϕ′(xt+1)

〉
+η
〈
xt − xt+1, f ′t (xt)

〉
=
〈
x∗ − xt+1,∇ψt(xt)−∇ψt(xt+1)−η f ′t (xt)−ηϕ′(xt+1)

〉
+ 〈x∗ − xt+1,∇ψt(xt+1)−∇ψt(xt)〉+η

〈
xt − xt+1, f ′t (xt)

〉
.

Now, by (32), the first term in the last equation is non-positive. Thus we have that

η [ft(xt)+ϕ(xt+1)− ft(x
∗)−ϕ(x∗)]

≤ 〈x∗ − xt+1,∇ψt(xt+1)−∇ψt(xt)〉+η
〈
xt − xt+1, f ′t (xt)

〉
= Bψt (x

∗,xt)−Bψt (xt+1,xt)−Bψt (x∗,xt+1)+η
〈
xt − xt+1, f ′t (xt)

〉
= Bψt (x

∗,xt)−Bψt (xt+1,xt)−Bψt (x∗,xt+1)+η
〈
η−

1
2 (xt − xt+1),

√
η f ′t (xt)

〉
≤ Bψt (x

∗,xt)−Bψt (xt+1,xt)−Bψt (x∗,xt+1)+
1
2
‖xt − xt+1‖2ψt +

η2

2

∥∥ f ′t (xt)∥∥2ψ∗t
≤ Bψt (x

∗,xt)−Bψt (x∗,xt+1)+
η2

2

∥∥ f ′t (xt)∥∥2ψ∗t .
In the above, the first equality follows from simple algebra with Bregman divergences, the second
to last inequality follows from Fenchel’s inequality applied to the conjugate functions 12 ‖·‖2ψt and
1
2 ‖·‖2ψ∗t (Boyd and Vandenberghe, 2004, Example 3.27), and the last inequality follows from the
assumed strong convexity of Bψt with respect to the norm ‖·‖ψt .

Proof of Proposition 3 Sum the equation in the conclusion of Lemma 16.

Appendix G. Derivations of Algorithms

In this appendix, we give the formal derivations of the solution to the ADAGRAD update for �1-
regularization and projection to an �1-ball, as described originally in Section 5.

2154

ADAPTIVE SUBGRADIENT METHODS

G.1 �1-regularization

We give the derivation for the primal-dual subgradient update, as composite mirror-descent is en-
tirely similar. We need to solve update (3), which amounts to

min
x

η〈 gt ,x〉+ 1
2t
δ‖x‖2

2 +
1
2t
〈x,diag(st)x〉+ηλ‖x‖1 .

Let x̂ denote the optimal solution of the above optimization problem. Standard subgradient calculus
implies that when | gt,i| ≤ λ the solution is x̂i = 0. Similarly, when gt,i < −λ, then x̂i > 0, the
objective is differentiable, and the solution is obtained by setting the gradient to zero:

η gt,i+
Ht,ii
t
x̂i+ηλ= 0 , so that x̂i =

ηt
Ht,ii

(− gt,i−λ) .

Likewise, when gt,i > λ then x̂i < 0, and the solution is x̂i =
ηt
Ht,ii

(− gt,i+λ). Combining the three
cases, we obtain the simple update (19) for xt+1,i.

G.2 �1-ball projections

The derivation we give is somewhat terse, and we refer the interested reader to Brucker (1984) or
Pardalos and Rosen (1990) for more depth. Recall that our original problem (20) is symmetric in its
objective and constraints, so we assume without loss of generality that v� 0 (otherwise, we reverse
the sign of each negative component in v, then flip the sign of the corresponding component in the
solution vector). This gives

min
z

1
2
‖z− v‖2

2 s.t. 〈a,z〉 ≤ c, z� 0 .

Clearly, if 〈a,v〉≤ c the optimal z∗= v, hence we assume that 〈a,v〉> c. We also assume without loss
of generality that vi/ai ≥ vi+1/ai+1 for simplicity of our derivation. (We revisit this assumption at
the end of the derivation.) Introducing Lagrange multipliers θ ∈R+ for the constraint that 〈a,z〉 ≤ c
and α ∈ R

d
+ for the positivity constraint on z, we get

L(z,α,θ) =
1
2
‖z− v‖2

2 +θ(〈a,z〉− c)−〈α,z〉 .

Computing the gradient of L , we have ∇zL(z,α,θ) = z− v+ θa−α. Suppose that we knew the
optimal θ∗ ≥ 0. Using the complementarity conditions on z and α for optimality of z (Boyd and
Vandenberghe, 2004), we see that the solution z∗i satisfies

z∗i =
{
vi−θ∗ai if vi ≥ θ∗ai
0 otherwise .

Analogously, the complimentary conditions on 〈a,z〉 ≤ c show that given θ∗, we have

d

∑
i=1

ai [vi−θ∗ai]+ = c or
d

∑
i=1

a2
i

[
vi
ai
−θ∗
]
+

= c .

Conversely, had we obtained a value θ ≥ 0 satisfying the above equation, then θ would evidently
induce the optimal z∗ through the equation zi = [vi−θai]+.

2155

DUCHI, HAZAN AND SINGER

Now, let ρ be the largest index in {1, . . . ,d} such that vi−θ∗ai > 0 for i ≤ ρ and vi−θ∗ai ≤ 0
for i> ρ. From the assumption that vi/ai ≤ vi+1/ai+1, we have vρ+1/aρ+1 ≤ θ∗ < vρ/aρ. Thus, had
we known the last non-zero index ρ, we would have obtained

ρ

∑
i=1

aivi−
vρ
aρ

ρ

∑
i=1

a2i =
ρ

∑
i=1

a2i

(
vi
ai
− vρ
aρ

)
< c ,

ρ

∑
i=1

aivi−
vρ+1
aρ+1

ρ

∑
i=1

a2i =
ρ+1

∑
i=1

a2i

(
vi
ai
− vρ+1
aρ+1

)
≥ c .

Given ρ satisfying the above inequalities, we can reconstruct the optimal θ∗ by noting that the latter
inequality should equal c exactly when we replace vρ/aρ with θ, that is,

θ∗ = ∑
ρ
i=1 aivi− c
∑
ρ
i=1 a

2
i

. (33)

The above derivation results in the following procedure (when 〈a,v〉 > c). We sort v in descend-
ing order of vi/ai and find the largest index ρ such that ∑

ρ
i=1 aivi− (vρ/aρ)∑

ρ−1
i=1 a

2
i < c. We then

reconstruct θ∗ using equality (33) and return the soft-thresholded values of vi (see Algorithm 3). It
is easy to verify that the algorithm can be implemented in O(d logd) time. A randomized search
with bookkeeping (Pardalos and Rosen, 1990) can be straightforwardly used to derive a linear time
algorithm.

References

J. Abernethy, P. L. Bartlett, A. Rakhlin, and A. Tewari. Optimal strategies and minimax lower
bounds for online convex games. In Proceedings of the Twenty First Annual Conference on
Computational Learning Theory, 2008.

T. Ando. Concavity of certain maps on positive definite matrices and applications to Hadamard
products. Linear Algebra and its Applications, 26:203–241, 1979.

A. Asuncion and D. J. Newman. UCI machine learning repository, 2007. URL http://www.ics.
uci.edu/˜mlearn/MLRepository.html.

P. Auer and C. Gentile. Adaptive and self-confident online learning algorithms. In Proceedings of
the Thirteenth Annual Conference on Computational Learning Theory, 2000.

P. L. Bartlett, E. Hazan, and A. Rakhlin. Adaptive online gradient descent. In Advances in Neural
Information Processing Systems 20, 2007.

A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31:167–175, 2003.

J. V. Bondar. Comments on and complements to Inequalities: Theory of Majorization and Its
Applications. Linear Algebra and its Applications, 199:115–129, 1994.

A. Bordes, L. Bottou, and P. Gallinari. Sgd-qn: Careful quasi-newton stochastic gradient descent.
Journal of Machine Learning Research, 10:1737–1754, 2009.

2156

ADAPTIVE SUBGRADIENT METHODS

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

P. Brucker. An O(n) algorithm for quadratic knapsack problems. Operations Research Letters, 3
(3):163–166, 1984.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning
algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, September 2004.

N. Cesa-Bianchi, A. Conconi, , and C. Gentile. A second-order perceptron algorithm. SIAM Journal
on Computing, 34(3):640–668, 2005.

N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for prediction with
expert advice. Machine Learning, 66:321–352, 2007.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive aggressive
algorithms. Journal of Machine Learning Research, 7:551–585, 2006.

K. Crammer, M. Dredze, and F. Pereira. Exact convex confidence-weighted learning. In Advances
in Neural Information Processing Systems 22, 2008.

K. Crammer, M. Dredze, and A. Kulesza. Adaptive regularization of weight vectors. In Advances
in Neural Information Processing Systems 23, 2009.

C. Davis. Notions generalizing convexity for functions defined on spaces of matrices. In Proceed-
ings of the Symposia in Pure Mathematics, volume 7, pages 187–201. American Mathematical
Society, 1963.

J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. ImageNet: a large-scale hierarchi-
cal image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2009.

J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. Journal
of Machine Learning Research, 10:2873–2908, 2009.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewari. Composite objective mirror descent. In
Proceedings of the Twenty Third Annual Conference on Computational Learning Theory, 2010.

R. Fletcher. A new approach to variable metric algorithms. Computer Journal, 13:317–322, 1970.

D. Grangier and S. Bengio. A discriminative kernel-based model to rank images from text queries.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(8):1371–1384, 2008.

E. Hazan and S. Kale. Extracting certainty from uncertainty: regret bounded by variation in costs.
In Proceedings of the Twenty First Annual Conference on Computational Learning Theory, 2008.

E. Hazan, A. Kalai, S. Kale, and A. Agarwal. Logarithmic regret algorithms for online convex
optimization. In Proceedings of the Nineteenth Annual Conference on Computational Learning
Theory, 2006.

J. B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms II. Springer-
Verlag, 1996.

2157

DUCHI, HAZAN AND SINGER

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

A. Juditsky, A. Nemirovski, and C. Tauvel. Solving variational inequalities with the stochastic
mirror-prox algorithm. http://arxiv.org/abs/0809.0815, 2008.

A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal of Computer
and System Sciences, 71(3):291–307, 2003.

G. Lan. An optimal method for stochastic composite optimization. Mathematical Programming
Series A, 2010. Online first; to appear.

D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text categorization
research. Journal of Machine Learning Research, 5:361–397, 2004.

H. B. McMahan and M. Streeter. Adaptive bound optimization for online convex optimization. In
Proceedings of the Twenty Third Annual Conference on Computational Learning Theory, 2010.

A. Nedić. Subgradient Methods for Convex Minimization. PhD thesis, Massachusetts Institute of
Technology, 2002.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

A. S. Nemirovski and D. B. Yudin. Problem Complexity and Efficiency in Optimization. John Wiley
and Sons, 1983.

Y. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming, 103:
127–152, 2005.

Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Programming,
120(1):221–259, 2009.

G. Obozinski, B. Taskar, and M. Jordan. Joint covariate selection for grouped classification. Tech-
nical Report 743, Dept. of Statistics, University of California Berkeley, 2007.

P. M. Pardalos and J. B. Rosen. An algorithm for a singly constrained class of quadratic programs
subject to upper and lower bounds. Mathematical Programming, 46:321–328, 1990.

A. Rakhlin. Lecture notes on online learning. For the Statistical Machine Learning Course at
University of California, Berkeley, 2009.

G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval. Information
Processing and Management, 24(5), 1988.

N. Z. Shor. Utilization of the operation of space dilation in the minimization of convex functions.
Cybernetics and Systems Analysis, 6(1):7–15, 1972. Translated from Kibernetika.

P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. Technical
report, Department of Mathematics, University of Washington, 2008.

L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. Tech-
nical Report MSR-TR-2010-23, Microsoft Research, 2010.

2158

ADAPTIVE SUBGRADIENT METHODS

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Pro-
ceedings of the Twentieth International Conference on Machine Learning, 2003.

2159

Journal of Machine Learning Research 12 (2011) 2161-2180 Submitted 12/10; Revised 4/11; Published 7/11

On the Relation between Realizable and Nonrealizable Cases of the
Sequence Prediction Problem

Daniil Ryabko DANIIL@RYABKO.NET
INRIA Lille-Nord Europe
40, avenue Halley
Parc Scientifique de la Haute Borne
59650 Villeneuve d’Ascq, France

Editor: Nicolò Cesa-Bianchi

Abstract
A sequence x1, . . . ,xn, . . . of discrete-valued observations is generated according to some unknown
probabilistic law (measure) μ. After observing each outcome, one is required to give conditional
probabilities of the next observation. The realizable case is when the measure μ belongs to an ar-
bitrary but known class C of process measures. The non-realizable case is when μ is completely
arbitrary, but the prediction performance is measured with respect to a given set C of process mea-
sures. We are interested in the relations between these problems and between their solutions, as
well as in characterizing the cases when a solution exists and finding these solutions. We show that
if the quality of prediction is measured using the total variation distance, then these problems coin-
cide, while if it is measured using the expected average KL divergence, then they are different. For
some of the formalizations we also show that when a solution exists it can be obtained as a Bayes
mixture over a countable subset of C . We also obtain several characterization of those sets C for
which solutions to the considered problems exist. As an illustration to the general results obtained,
we show that a solution to the non-realizable case of the sequence prediction problem exists for the
set of all finite-memory processes, but does not exist for the set of all stationary processes. It should
be emphasized that the framework is completely general: the processes measures considered are
not required to be i.i.d., mixing, stationary, or to belong to any parametric family.

Keywords: sequence prediction, time series, online prediction, realizable sequence prediction,
non-realizable sequence prediction

1. Introduction

A sequence x1, . . . ,xn, . . . of discrete-valued observations (where xi belong to a finite set X) is gen-
erated according to some unknown probabilistic law (measure). That is, μ is a probability measure
on the space Ω = (X∞,B) of one-way infinite sequences (here B is the usual Borel σ-algebra).
After each new outcome xn is revealed, one is required to predict conditional probabilities of the
next observation xn+1 = a, a ∈ X , given the past x1, . . . ,xn. Since a predictor ρ is required to give
conditional probabilities ρ(xn+1 = a|x1, . . . ,xn) for all possible histories x1, . . . ,xn, it defines itself
a probability measure on the space Ω of one-way infinite sequences. In other words, a probability
measure on Ω can be considered both as a data-generating mechanism and as a predictor.

Therefore, given a set C of probability measures onΩ, one can ask two kinds of questions about
C . First, does there exist a predictor ρ whose forecast probabilities converge (in a certain sense) to
the μ-conditional probabilities, if an arbitrary μ∈ C is chosen to generate the data? Here we assume

c©2011 Daniil Ryabko.

DANIIL RYABKO

that the “true” measure that generates the data belongs to the set C of interest, and would like to
construct a predictor that predicts all measures in C . The second type of questions is as follows:
does there exist a predictor that predicts at least as well as any predictor ρ ∈ C , if the measure that
generates the data comes possibly from outside of C? Thus, here we consider elements of C as
predictors, and we would like to combine their predictive properties, if this is possible. Note that in
this setting the two questions above concern the same object: a set C of probability measures on Ω.

Each of these two questions, the realizable and the non-realizable one, have enjoyed much
attention in the literature; the setting for the non-realizable case is usually slightly different, which
is probably why it has not (to the best of the author’s knowledge) been studied as another facet of
the realizable case. The realizable case traces back to Laplace, who has considered the problem of
predicting outcomes of a series of independent tosses of a biased coin. That is, he has considered
the case when the set C is that of all i.i.d. process measures. Other classical examples studied are
the set of all computable (or semi-computable) measures (Solomonoff, 1978), the set of k-order
Markov and finite-memory processes (e.g., Krichevsky, 1993) and the set of all stationary processes
(Ryabko, 1988). The general question of finding predictors for an arbitrary given set C of process
measures has been addressed in Ryabko and Hutter (2007, 2008); Ryabko (2010a); the latter work
shows that when a solution exists it can be obtained as a Bayes mixture over a countable subset
of C .

The non-realizable case is usually studied in a slightly different, non-probabilistic, setting. We
refer to Cesa-Bianchi and Lugosi (2006) for a comprehensive overview. It is usually assumed that
the observed sequence of outcomes is an arbitrary (deterministic) sequence; it is required not to give
conditional probabilities, but just deterministic guesses (although these guesses can be selected us-
ing randomisation). Predictions result in a certain loss, which is required to be small as compared to
the loss of a given set of reference predictors (experts) C . The losses of the experts and the predictor
are observed after each round. In this approach, it is mostly assumed that the set C is finite or count-
able. The main difference with the formulation considered in this work is that we require a predictor
to give probabilities, and thus the loss is with respect to something never observed (probabilities,
not outcomes). The loss itself is not completely observable in our setting. In this sense our non-
realizable version of the problem is more difficult. Assuming that the data generating mechanism is
probabilistic, even if it is completely unknown, makes sense in such problems as, for example, game
playing, or market analysis. In these cases one may wish to assign smaller loss to those models or
experts who give probabilities closer to the correct ones (which are never observed), even though
different probability forecasts can often result in the same action. Aiming at predicting probabilities
of outcomes also allows us to abstract from the actual use of the predictions (for example, making
bets) and thus from considering losses in a general form; instead, we can concentrate on those forms
of loss that are more convenient for the analysis. In this latter respect, the problems we consider
are easier than those considered in prediction with expert advice. (However, in principle, noth-
ing restricts us to considering the simple losses that we chose; they are just a convenient choice.)
Noteworthy, the probabilistic approach also makes the machinery of probability theory applicable,
hopefully making the problem easier. A reviewer suggested the following summary explanation of
the difference between the non-realizable problems of this work and prediction with expert advice:
the latter is prequential (in the sense of Dawid, 1992), whereas the former is not.

In this work we consider two measures of the quality of prediction. The first one is the total
variation distance, which measures the difference between the forecast and the “true” conditional
probabilities of all future events (not just the probability of the next outcome). The second one is

2162

REALIZABLE AND NONREALIZABLE PREDICTION PROBLEMS

expected (over the data) average (over time) Kullback-Leibler divergence. Requiring that predicted
and true probabilities converge in total variation is very strong; in particular, this is possible if
(Blackwell and Dubins, 1962) and only if (Kalai and Lehrer, 1994) the process measure generating
the data is absolutely continuous with respect to the predictor. The latter fact makes the sequence
prediction problem relatively easy to analyse. Here we investigate what can be paralleled for the
other measure of prediction quality (average KL divergence), which is much weaker, and thus allows
for solutions for the cases of much larger sets C of process measures (considered either as predictors
or as data generating mechanisms).

Having introduced our measures of prediction quality, we can further break the non-realizable
case into two problems. The first one is as follows. Given a set C of predictors, we want to
find a predictor whose prediction error converges to zero if there is at least one predictor in C
whose prediction error converges to zero; we call this problem simply the “non-realizable” case,
or Problem 2 (leaving the name “Problem 1” to the realizable case). The second non-realizable
problem is the “fully agnostic” problem: it is to make the prediction error asymptotically as small
as that of the best (for the given process measure generating the data) predictor in C (we call this
Problem 3). Thus, we now have three problems about a set of process measures C to address.

We show that if the quality of prediction is measured in total variation then all the three problems
coincide: any solution to any one of them is a solution to the other two. For the case of expected
average KL divergence, all the three problems are different: the realizable case is strictly easier than
non-realizable (Problem 2), which is, in turn, strictly easier than the fully agnostic case (Problem 3).
We then analyse which results concerning prediction in total variation can be transferred to which of
the problems concerning prediction in average KL divergence. It was shown in Ryabko (2010a) that,
for the realizable case, if there is a solution for a given set of process measures C , then a solution can
also be obtained as a Bayesian mixture over a countable subset of C ; this holds both for prediction in
total variation and in expected average KL divergence. Here we show that this result also holds true
for the (non-realizable) case of Problem 2, for prediction in expected average KL divergence. We do
not have an analogous result for Problem 3 (and, in fact, conjecture that the opposite statement holds
true). However, for the fully agnostic case of Problem 3, we show that separability with respect to
a certain topology given by KL divergence is a sufficient (though not a necessary) condition for the
existence of a predictor. This is used to demonstrate that there is a solution to this problem for the set
of all finite-memory process measures, complementing similar results obtained earlier in different
settings. On the other hand, we show that there is no solution to this problem for the set of all
stationary process measures, in contrast to a result of B. Ryabko (1988) that gives a solution to the
realizable case of this problem (that is, a predictor whose expected average KL error goes to zero if
any stationary process is chosen to generate the data). Finally, we also consider a modified version
of Problem 3, in which the performance of predictors is only compared on individual sequences.
For this problem, we obtain, using a result from (Ryabko, 1986), a characterisation of those sets C
for which a solution exists in terms of the Hausdorff dimension.

2. Notation and Definitions

Let X be a finite set. The notation x1..n is used for x1, . . . ,xn. We consider stochastic processes
(probability measures) on Ω := (X∞,B) where B is the sigma-field generated by the cylinder sets
[x1..n], xi ∈ X ,n ∈ N ([x1..n] is the set of all infinite sequences that start with x1..n). For a finite set A
denote |A| its cardinality. We use Eμ for expectation with respect to a measure μ.

2163

DANIIL RYABKO

Next we introduce the measures of the quality of prediction used in this paper. For two measures
μ and ρ we are interested in how different the μ- and ρ-conditional probabilities are, given a data
sample x1..n. Introduce the (conditional) total variation distance

v(μ,ρ,x1..n) := sup
A∈B

|μ(A|x1..n)−ρ(A|x1..n)|,

if μ(x1..n) �= 0 and ρ(x1..n) �= 0, and v(μ,ρ,x1..n) = 1 otherwise.

Definition 1 We say that ρ predicts μ in total variation if

v(μ,ρ,x1..n)→ 0 μ-a.s.

This convergence is rather strong. In particular, it means that ρ-conditional probabilities of arbitrary
far-off events converge to μ-conditional probabilities. Moreover, ρ predicts μ in total variation
if (Blackwell and Dubins, 1962) and only if (Kalai and Lehrer, 1994) μ is absolutely continuous
with respect to ρ. Denote ≥tv the relation of absolute continuity (that is, ρ ≥tv μ if μ is absolutely
continuous with respect to ρ).

Thus, for a class C of measures there is a predictor ρ that predicts every μ∈ C in total variation
if and only if every μ ∈ C has a density with respect to ρ. Although such sets of processes are
rather large, they do not include even such basic examples as the set of all Bernoulli i.i.d. processes.
That is, there is no ρ that would predict in total variation every Bernoulli i.i.d. process measure δp,
p ∈ [0,1], where p is the probability of 0. Indeed, all these processes δp, p ∈ [0,1], are singular with
respect to one another; in particular, each of the non-overlapping sets Tp of all sequences which have
limiting fraction p of 0s has probability 1 with respect to one of the measures and 0 with respect to
all others; since there are uncountably many of these measures, there is no measure ρ with respect
to which they all would have a density (since such a measure should have ρ(Tp)> 0 for all p).

Therefore, perhaps for many (if not most) practical applications this measure of the quality of
prediction is too strong, and one is interested in weaker measures of performance.

For two measures μ and ρ introduce the expected cumulative Kullback-Leibler divergence (KL
divergence) as

dn(μ,ρ) := Eμ
n

∑
t=1
∑
a∈X

μ(xt = a|x1..t−1) log μ(xt = a|x1..t−1)
ρ(xt = a|x1..t−1) ,

In words, we take the expected (over data) cumulative (over time) KL divergence between μ- and
ρ-conditional (on the past data) probability distributions of the next outcome.

Definition 2 We say that ρ predicts μ in expected average KL divergence if

1
n
dn(μ,ρ)→ 0.

This measure of performance is much weaker, in the sense that it requires good predictions only one
step ahead, and not on every step but only on average; also the convergence is not with probability 1
but in expectation. With prediction quality so measured, predictors exist for relatively large classes
of measures; most notably, Ryabko (1988) provides a predictor which predicts every stationary
process in expected average KL divergence.

2164

REALIZABLE AND NONREALIZABLE PREDICTION PROBLEMS

We will use the following well-known identity (introduced, in the context of sequence predic-
tion, by Ryabko, 1988)

dn(μ,ρ) =− ∑
x1..n∈X n

μ(x1..n) log
ρ(x1..n)
μ(x1..n)

,

where on the right-hand side we have simply the KL divergence between measures μand ρ restricted
to the first n observations.

Thus, the results of this work will be established with respect to two very different measures
of prediction quality, one of which is very strong and the other rather weak. This suggests that the
facts established reflect some fundamental properties of the problem of prediction, rather than those
pertinent to particular measures of performance. On the other hand, it remains open to extend the
results below to different measures of performance.

Definition 3 Consider the following classes of process measures: P is the set of all process mea-
sures,D is the set of all degenerate discrete process measures, S is the set of all stationary processes
andMk is the set of all stationary measures with memory not greater than k (k-order Markov pro-
cesses, withM0 being the set of all i.i.d. processes):

D := {μ∈ P : ∃x ∈ X∞ μ(x) = 1} ,

S := {μ∈ P : ∀n,k ≥ 1∀a1..n ∈ X nμ(x1..n = a1..n) = μ(x1+k..n+k = a1..n)} .

Mk := {μ∈ S : ∀n≥ k∀a ∈ X ∀a1..n ∈ X n

μ(xn+1 = a|x1..n = a1..n) = μ(xk+1 = a|x1..k = an−k+1..n)} .

Abusing the notation, we will sometimes use elements ofD and X∞ interchangeably. The following
(simple and well-known) statement will be used repeatedly in the examples.

Lemma 4 For every ρ ∈ P there exists μ∈D such that dn(μ,ρ)≥ n log |X | for all n ∈ N.

Proof Indeed, for each n we can select μ(xn = a) = 1 for a ∈ X that minimizes ρ(xn = a|x1..n−1),
so that ρ(x1..n)≤ |X |−n.

3. Sequence Prediction Problems

For the two notions of predictive quality introduced, we can now state formally the sequence pre-
diction problems.

Problem 1(realizable case). Given a set of probability measures C , find a measure ρ such that ρ
predicts in total variation (expected average KL divergence) every μ∈ C , if such a ρ exists.

Thus, Problem 1 is about finding a predictor for the case when the process generating the data
is known to belong to a given class C . That is, the set C here is a set of measures that generate the
data. Next let us formulate the questions about C as a set of predictors.

Problem 2 (non-realizable case). Given a set of process measures (predictors) C , find a process
measure ρ such that ρ predicts in total variation (in expected average KL divergence) every measure
ν ∈ P such that there is μ∈ C which predicts (in the same sense) ν.

2165

DANIIL RYABKO

While Problem 2 is already quite general, it does not yet address what can be called the fully
agnostic case: if nothing at all is known about the process ν generating the data, it means that there
may be no μ∈ C such that μ predicts ν, and then, even if we have a solution ρ to the Problem 2, we
still do not know what the performance of ρ is going to be on the data generated by ν, compared to
the performance of the predictors from C . To address this fully agnostic case we have to introduce
the notion of loss.

Definition 5 Introduce the almost sure total variation loss of ρ with respect to μ

ltv(μ,ρ) := inf{α ∈ [0,1] : limsup
n→∞

v(μ,ρ,x1..n)≤ α μ–a.s.},

and the asymptotic KL loss

lKL(ν,ρ) := limsup
n→∞

1
n
dn(ν,ρ).

We can now formulate the fully agnostic version of the sequence prediction problem.
Problem 3. Given a set of process measures (predictors) C , find a process measure ρ such that ρ

predicts at least as well as any μ in C , if any process measure ν ∈ P is chosen to generate the data:
l(ν,ρ)− l(ν,μ)≤ 0

for every ν ∈ P and every μ∈ C , where l(·, ·) is either ltv(·, ·) or lKL(·, ·).
The three problems just formulated represent different conceptual approaches to the sequence

prediction problem. Let us illustrate the difference by the following informal example. Suppose
that the set C is that of all (ergodic, finite-state) Markov chains. Markov chains being a familiar
object in probability and statistics, we can easily construct a predictor ρ that predicts every μ∈ C
(for example, in expected average KL divergence, see Krichevsky, 1993). That is, if we know that
the process μgenerating the data is Markovian, we know that our predictor is going to perform well.
This is the realizable case of Problem 1. In reality, rarely can we be sure that the Markov assumption
holds true for the data at hand. We may believe, however, that it is still a reasonable assumption, in
the sense that there is a Markovian model which, for our purposes (for the purposes of prediction),
is a good model of the data. Thus we may assume that there is a Markov model (a predictor) that
predicts well the process that we observe, and we would like to combine the predictive qualities of
all these Markov models. This is the “non-realizable” case of Problem 2. Note that this problem
is more difficult than the first one; in particular, a process ν generating the data may be singular
with respect to any Markov process, and still be predicted well (in the sense of expected average
KL divergence, for example) by some of them. Still, here we are making some assumptions about
the process generating the data, and, if these assumptions are wrong, then we do not know anything
about the performance of our predictor. Thus, we may ultimately wish to acknowledge that we do
not know anything at all about the data; we still know a lot about Markov processes, and we would
like to use this knowledge on our data. If there is anything at all Markovian in it (that is, anything
that can be captured by a Markov model), then we would like our predictor to use it. In other words,
we want to have a predictor that predicts any process measure whatsoever (at least) as well as any
Markov predictor. This is the “fully agnostic” case of Problem 3.

Of course, Markov processes were just mentioned as an example, while in this work we are only
concerned with the most general case of arbitrary (uncountable) sets C of process measures.

The following statement is rather obvious.

2166

REALIZABLE AND NONREALIZABLE PREDICTION PROBLEMS

Proposition 6 Any solution to Problem 3 is a solution to Problem 2, and any solution to Problem 2
is a solution to Problem 1.

Despite the conceptual differences in formulations, it may be somewhat unclear whether the three
problems are indeed different. It appears that this depends on the measure of predictive quality
chosen: for the case of prediction in total variation distance all the three problems coincide, while
for the case of prediction in expected average KL divergence they are different.

4. Prediction in Total Variation

As it was mentioned, a measure μ is absolutely continuous with respect to a measure ρ if and
only if ρ predicts μ in total variation distance. This reduces studying at least Problem 1 for total
variation distance to studying the relation of absolute continuity. Introduce the notation ρ ≥tv μ for
this relation.

Let us briefly recall some facts we know about≥tv; details can be found, for example, in Plesner
and Rokhlin (1946). Let [P]tv denote the set of equivalence classes of P with respect to ≥tv, and for
μ∈ Ptv denote [μ] the equivalence class that contains μ. Two elements σ1,σ2 ∈ [P]tv (or σ1,σ2 ∈ P)
are called disjoint (or singular) if there is no ν ∈ [P]tv such that σ1 ≥tv ν and σ2 ≥tv ν; in this
case we write σ1 ⊥tv σ2. We write [μ1] + [μ2] for [12(μ1+ μ2)]. Every pair σ1,σ2 ∈ [P]tv has a
supremum sup(σ1,σ2) = σ1+σ2. Introducing into [P]tv an extra element 0 such that σ≥tv 0 for all
σ ∈ [P]tv, we can state that for every ρ,μ∈ [P]tv there exists a unique pair of elements μs and μa
such that μ= μa+μs, ρ≥ μa and ρ⊥tv μs. (This is a form of Lebesgue decomposition.) Moreover,
μa = inf(ρ,μ). Thus, every pair of elements has a supremum and an infimum. Moreover, every
bounded set of disjoint elements of [P]tv is at most countable.

Furthermore, we introduce the (unconditional) total variation distance between process mea-
sures.

Definition 7 (unconditional total variation distance) The (unconditional) total variation distance
is defined as

v(μ,ρ) := sup
A∈B

|μ(A)−ρ(A)|.

Known characterizations of those sets C that are bounded with respect to≥tv can now be related
to our prediction problems 1-3 as follows.

Theorem 8 Let C ⊂ P . The following statements about C are equivalent.

(i) There exists a solution to Problem 1 in total variation.

(ii) There exists a solution to Problem 2 in total variation.

(iii) There exists a solution to Problem 3 in total variation.

(iv) C is upper-bounded with respect to ≥tv.

(v) There exists a sequence μk ∈ C , k ∈N such that for some (equivalently, for every) sequence of
weights wk ∈ (0,1], k ∈N such that ∑k∈Nwk = 1, the measure ν=∑k∈Nwkμk satisfies ν≥tv μ
for every μ∈ C .

(vi) C is separable with respect to the total variation distance.

2167

DANIIL RYABKO

(vii) Let C+ := {μ∈ P : ∃ρ ∈ C ρ ≥tv μ}. Every disjoint (with respect to ≥tv) subset of C+ is at
most countable.

Moreover, every solution to any of the Problems 1-3 is a solution to the other two, as is any upper
bound for C . The sequence μk in the statement (v) can be taken to be any dense (in the total variation
distance) countable subset of C (cf. (vi)), or any maximal disjoint (with respect to ≥tv) subset of C+

of statement (vii), in which every measure that is not in C is replaced by any measure from C that
dominates it.

Proof The implications (i)⇐ (ii)⇐ (iii) are obvious (cf. Proposition 6). The implication (iv)⇒ (i)
is a reformulation of the result of Blackwell and Dubins (1962). The converse (and hence (v)⇒ (iv))
was established in Kalai and Lehrer (1994). (i)⇒ (ii) follows from the equivalence (i)⇔ (iv) and
the transitivity of ≥tv; (i)⇒ (iii) follows from the transitivity of ≥tv and from Lemma 9 below:
indeed, from Lemma 9 we have ltv(ν,μ) = 0 if μ≥tv ν and ltv(ν,μ) = 1 otherwise. From this and
the transitivity of≥tv it follows that if ρ≥tv μ then also ltv(ν,ρ)≤ ltv(ν,μ) for all ν ∈ P . The equiv-
alence of (v), (vi), and (i) was established in Ryabko (2010a). The equivalence of (iv) and (vii)
was proven in Plesner and Rokhlin (1946). The concluding statements of the theorem are easy to
demonstrate from the results cited above.

The following lemma is an easy consequence of Blackwell and Dubins (1962).

Lemma 9 Let μ,ρ be two process measures. Then v(μ,ρ,x1..n) converges to either 0 or 1 with
μ-probability 1.

Proof Assume that μ is not absolutely continuous with respect to ρ (the other case is covered
by Blackwell and Dubins, 1962). By Lebesgue decomposition theorem, the measure μ admits a
representation μ= αμa+(1−α)μs where α ∈ [0,1] and the measures μa and μs are such that μa is
absolutely continuous with respect to ρ and μs is singular with respect to ρ. Let W be such a set
that μa(W) = ρ(W) = 1 and μs(W) = 0. Note that we can take μa = μ|W and μs = μ|X∞\W . From
Blackwell and Dubins (1962) we have v(μa,ρ,x1..n)→ 0 μa-a.s., as well as v(μa,μ,x1..n)→ 0 μa-
a.s. and v(μs,μ,x1..n)→ 0 μs-a.s. Moreover, v(μs,ρ,x1..n) ≥ |μs(W |x1..n)− ρ(W |x1..n)| = 1 so that
v(μs,ρ,x1..n)→ 1 μs-a.s. Furthermore,

v(μ,ρ,x1..n)≤ v(μ,μa,x1..n)+ v(μa,ρ,x1..n) = I

and
v(μ,ρ,x1..n)≥−v(μ,μs,x1..n)+ v(μs,ρ,x1..n) = II.

We have I → 0 μa-a.s. and hence μ|W -a.s., as well as II → 1 μs-a.s. and hence μ|X∞\W -a.s. Thus,
μ(v(μ,ρ,x1..n)→ 0 or 1)≤ μ(W)μ|W (I→ 0)+μ(X∞\W)μ|X∞\W (II→ 1) = μ(W)+μ(X∞\W) = 1,
which concludes the proof.

Remark. Using Lemma 9 we can also define expected (rather than almost sure) total variation
loss of ρ with respect to μ, as the μ-probability that v(μ,ρ) converges to 1:

l′tv(μ,ρ) := μ{x1,x2, · · · ∈ X∞ : v(μ,ρ,x1..n)→ 1}.

2168

REALIZABLE AND NONREALIZABLE PREDICTION PROBLEMS

Then Problem 3 can be reformulated for this notion of loss. However, it is easy to see that for this
reformulation Theorem 8 holds true as well.

Thus, we can see that, for the case of prediction in total variation, all the sequence prediction
problems formulated reduce to studying the relation of absolute continuity for process measures
and those families of measures that are absolutely continuous (have a density) with respect to some
measure (a predictor). On the one hand, from a statistical point of view such families are rather
large: the assumption that the probabilistic law in question has a density with respect to some (nice)
measure is a standard one in statistics. It should also be mentioned that such families can easily be
uncountable. (In particular, this means that they are large from a computational point of view.) On
the other hand, even such basic examples as the set of all Bernoulli i.i.d. measures does not allow
for a predictor that predicts every measure in total variation (as explained in Section 2).

That is why we have to consider weaker notions of predictions; from these, prediction in ex-
pected average KL divergence is perhaps one of the weakest. The goal of the next sections is to see
which of the properties that we have for total variation can be transferred (and in which sense) to
the case of expected average KL divergence.

5. Prediction in Expected Average KL Divergence

First of all, we have to observe that for prediction in KL divergence Problems 1, 2, and 3 are
different, as the following theorem shows. While the examples provided in the proof are artificial,
there is a very important example illustrating the difference between Problem 1 and Problem 3 for
expected average KL divergence: the set S of all stationary processes, given in Theorem 16 in the
end of this section.

Theorem 10 For the case of prediction in expected average KL divergence, Problems 1, 2 and 3
are different: there exists a set C1 ⊂ P for which there is a solution to Problem 1 but there is no
solution to Problem 2, and there is a set C2 ⊂ P for which there is a solution to Problem 2 but there
is no solution to Problem 3.

Proof We have to provide two examples. Fix the binary alphabet X = {0,1}. For each deterministic
sequence t = t1, t2, · · · ∈X∞ construct the process measure γt as follows: γt(xn= tn|t1..n−1) := 1− 1

n+1
and for x1..n−1 �= t1..n−1 let γt(xn = 0|x1..n−1) = 1/2, for all n ∈ N. That is, γt is Bernoulli i.i.d. 1/2
process measure strongly biased towards a specific deterministic sequence, t. Let also γ(x1..n) = 2−n

for all x1..n ∈ X n, n ∈ N (the Bernoulli i.i.d. 1/2). For the set C1 := {γt : t ∈ X∞} we have a solution
to Problem 1: indeed, dn(γt ,γ) ≤ 1 = o(n). However, there is no solution to Problem 2. Indeed,
for each t ∈D we have dn(t,γt) = logn= o(n) (that is, for every deterministic measure there is an
element of C1 which predicts it), while by Lemma 4 for every ρ ∈ P there exists t ∈ D such that
dn(t,ρ)≥ n for all n∈N (that is, there is no predictor which predicts every measure that is predicted
by at least one element of C1).

The second example is similar. For each deterministic sequence t = t1, t2, · · · ∈ D construct
the process measure γt as follows: γ′t(xn = tn|t1..n−1) := 2/3 and for x1..n−1 �= t1..n−1 let γ′t(xn =
0|x1..n−1) = 1/2, for all n ∈ N. It is easy to see that γ is a solution to Problem 2 for the set
C2 := {γ′t : t ∈ X∞}. Indeed, if ν ∈ P is such that dn(ν,γ′) = o(n) then we must have ν(t1..n) = o(1).
From this and the fact that γ and γ′ coincide (up to O(1)) on all other sequences we conclude
dn(ν,γ) = o(n). However, there is no solution to Problem 3 for C2. Indeed, for every t ∈ D we
have dn(t,γ′t) = n log3/2+o(n). Therefore, if ρ is a solution to Problem 3 then limsup 1ndn(t,ρ)≤

2169

DANIIL RYABKO

log3/2< 1 which contradicts Lemma 4.

Thus, prediction in expected average KL divergence turns out to be a more complicated matter
than prediction in total variation. The next idea is to try and see which of the facts about prediction
in total variation can be generalized to some of the problems concerning prediction in expected
average KL divergence.

First, observe that, for the case of prediction in total variation, the equivalence of Problems 1
and 2 was derived from the transitivity of the relation ≥tv of absolute continuity. For the case of
expected average KL divergence, the relation “ρ predicts μ in expected average KL divergence” is
not transitive (and Problems 1 and 2 are not equivalent). However, for Problem 2 we are interested
in the following relation: ρ “dominates” μ if ρ predicts every ν such that μ predicts ν. Denote this
relation by ≥KL:

Definition 11 (≥KL) We write ρ ≥KL μ if for every ν ∈ P the equality limsup 1ndn(ν,μ) = 0 implies
limsup 1ndn(ν,ρ) = 0.

The relation ≥KL has some similarities with ≥tv. First of all, ≥KL is also transitive (as can be easily
seen from the definition). Moreover, similarly to ≥tv, one can show that for any μ,ρ any strictly
convex combination αμ+ (1−α)ρ is a supremum of {ρ,μ} with respect to ≥KL. Next we will
obtain a characterization of predictability with respect to ≥KL similar to one of those obtained for
≥tv.

The key observation is the following. If there is a solution to Problem 2 for a set C then a
solution can be obtained as a Bayesian mixture over a countable subset of C . For total variation this
is the statement (v) of Theorem 8.

Theorem 12 Let C be a set of probability measures on Ω. If there is a measure ρ such that ρ≥KL μ
for every μ∈ C (ρ is a solution to Problem 2) then there is a sequence μk ∈ C , k ∈ N, such that
∑k∈Nwkμk ≥KL μ for every μ∈ C , where wk are some positive weights.

The proof is deferred to Section 7. An analogous result for Problem 1 was established in Ryabko
(2009). (The proof of Theorem 12 is based on similar ideas, but is more involved.)

For the case of Problem 3, we do not have results similar to Theorem 12 (or statement (v) of
Theorem 8); in fact, we conjecture that the opposite is true: there exists a (measurable) set C of
measures such that there is a solution to Problem 3 for C , but there is no Bayesian solution to
Problem 3, meaning that there is no probability distribution on C (discrete or not) such that the
mixture over C with respect to this distribution is a solution to Problem 3 for C .

However, we can take a different route and extend another part of Theorem 8 to obtain a char-
acterization of sets C for which a solution to Problem 3 exists.

We have seen that, in the case of prediction in total variation, separability with respect to the
topology of this distance is a necessary and sufficient condition for the existence of a solution to
Problems 1-3. In the case of expected average KL divergence the situation is somewhat different,
since, first of all, (asymptotic average) KL divergence is not a metric. While one can introduce a
topology based on it, separability with respect to this topology turns out to be a sufficient but not a
necessary condition for the existence of a predictor, as is shown in the next theorem.

2170

REALIZABLE AND NONREALIZABLE PREDICTION PROBLEMS

Definition 13 Define the distance d∞(μ1,μ2) on process measures as follows

d∞(μ1,μ2) = limsup
n→∞

sup
x1..n∈X n

1
n

∣∣∣∣log μ1(x1..n)μ2(x1..n)

∣∣∣∣ ,
where we assume log0/0 := 0.

Clearly, d∞ is symmetric and satisfies the triangle inequality, but it is not exact. Moreover, for every
μ1,μ2 we have

limsup
n→∞

1
n
dn(μ1,μ2)≤ d∞(μ1,μ2).

The distance d∞(μ1,μ2) measures the difference in behaviour of μ1 and μ2 on all individual se-
quences. Thus, using this distance to analyse Problem 3 is most close to the traditional approach
to the non-realizable case, which is formulated in terms of predicting individual deterministic se-
quences.

Theorem 14 (i) Let C be a set of process measures. If C is separable with respect to d∞ then
there is a solution to Problem 3 for C , for the case of prediction in expected average KL
divergence.

(ii) There exists a set of process measures C such that C is not separable with respect to d∞, but
there is a solution to Problem 3 for this set, for the case of prediction in expected average KL
divergence.

Proof For the first statement, let C be separable and let (μk)k∈N be a dense countable subset of
C . Define ν := ∑k∈Nwkμk, where wk are any positive summable weights. Fix any measure τ and
any μ∈ C . We will show that limsupn→∞

1
ndn(τ,ν)≤ limsupn→∞

1
ndn(τ,μ). For every ε, find such a

k ∈ N that d∞(μ,μk)≤ ε. We have

dn(τ,ν)≤ dn(τ,wkμk) = Eτ log
τ(x1..n)
μk(x1..n)

− logwk

= Eτ log
τ(x1..n)
μ(x1..n)

+Eτ log
μ(x1..n)
μk(x1..n)

− logwk

≤ dn(τ,μ)+ sup
x1..n∈X n

log

∣∣∣∣ μ(x1..n)μk(x1..n)

∣∣∣∣− logwk.
From this, dividing by n taking limsupn→∞ on both sides, we conclude

limsup
n→∞

1
n
dn(τ,ν)≤ limsup

n→∞

1
n
dn(τ,μ)+ ε.

Since this holds for every ε> 0 the first statement is proven.
The second statement is proven by the following example. Let C be the set of all deterministic

sequences (measures concentrated on just one sequence) such that the number of 0s in the first n
symbols is less than

√
n, for all n ∈ N. Clearly, this set is uncountable. It is easy to check that

μ1 �= μ2 implies d∞(μ1,μ2) = ∞ for every μ1,μ2 ∈ C , but the predictor ν, given by ν(xn = 0) = 1/n
independently for different n, predicts every μ∈ C in expected average KL divergence. Since all

2171

DANIIL RYABKO

elements of C are deterministic, ν is also a solution to Problem 3 for C .

Although simple, Theorem 14 can be used to establish the existence of a solution to Problem 3
for an important class of process measures: that of all processes with finite memory, as the next
theorem shows. Results similar to Theorem 15 are known in different settings, for example, Ziv and
Lempel (1978), Ryabko (1984), Cesa-Bianchi and Lugosi (1999) and others.

Theorem 15 There exists a solution to Problem 3 for prediction in expected average KL divergence
for the set of all finite-memory process measuresM := ∪k∈NMk.

Proof We will show that the setM is separable with respect to d∞. Then the statement will follow
from Theorem 14. It is enough to show that each setMk is separable with respect to d∞.

For simplicity, assume that the alphabet is binary (|X | = 2; the general case is analogous).
Observe that the family Mk of k-order stationary binary-valued Markov processes is parametrized
by |X |k [0,1]-valued parameters: probability of observing 0 after observing x1..k, for each x1..k ∈
X k. Note that this parametrization is continuous (as a mapping from the parameter space with the
Euclidean topology toMk with the topology of d∞). Indeed, for any μ1,μ2 ∈Mk and every x1..n ∈X n

such that μi(x1..n) �= 0, i= 1,2, it is easy to see that

1
n

∣∣∣∣log μ1(x1..n)μ2(x1..n)

∣∣∣∣≤ sup
x1..k+1

1
k+1

∣∣∣∣log μ1(x1..k+1)μ2(x1..k+1)

∣∣∣∣, (1)

so that the right-hand side of (1) also upper-bounds d∞(μ1,μ2), implying continuity of the parametriza-
tion.

It follows that the set μkq, q ∈ Q|X |
k
of all stationary k-order Markov processes with rational val-

ues of all the parameters (Q := Q∩ [0,1]) is dense inMk, proving the separability of the latter set.

Another important example is the set of all stationary process measures S . This example also
illustrates the difference between the prediction problems that we consider. For this set a solution
to Problem 1 was given in Ryabko (1988). In contrast, here we show that there is no solution to
Problem 3 for S .

Theorem 16 There is no solution to Problem 3 for the set of all stationary processes S .

Proof This proof is based on the construction similar to the one used in Ryabko (1988) to demon-
strate impossibility of consistent prediction of stationary processes without Cesaro averaging.

Let m be a Markov chain with states 0,1,2, . . . and state transitions defined as follows. From
each sate k ∈ N∪ {0} the chain passes to the state k+ 1 with probability 2/3 and to the state 0
with probability 1/3. It is easy to see that this chain possesses a unique stationary distribution on
the set of states (see, e.g., Shiryaev, 1996); taken as the initial distribution it defines a stationary
ergodic process with values in N∪{0}. Fix the ternary alphabet X = {a,0,1}. For each sequence
t = t1, t2, · · · ∈ {0,1}∞ define the process μt as follows. It is a deterministic function of the chain m.
If the chain is in the state 0 then the process μt outputs a; if the chain m is in the state k > 0 then
the process outputs tk. That is, we have defined a hidden Markov process which in the state 0 of the

2172

REALIZABLE AND NONREALIZABLE PREDICTION PROBLEMS

underlying Markov chain always outputs a, while in other states it outputs either 0 or 1 according
to the sequence t.

To show that there is no solution to Problem 3 for S , we will show that there is no solu-
tion to Problem 3 for the smaller set C := {μt : t ∈ {0,1}∞}. Indeed, for any t ∈ {0,1}∞ we
have dn(t,μt) = n log3/2+ o(n). Then if ρ is a solution to Problem 3 for C we should have
limsupn→∞

1
ndn(t,ρ)≤ log3/2< 1 for every t ∈D , which contradicts Lemma 4.

From the proof of Theorem 16 one can see that, in fact, the statement that is proven is stronger:
there is no solution to Problem 3 for the set of all functions of stationary ergodic countable-state
Markov chains. We conjecture that a solution to Problem 2 exists for the latter set, but not for the
set of all stationary processes.

As we have seen in the statements above, the set of all deterministic measures D plays an
important role in the analysis of the predictors in the sense of Problem 3. Therefore, an interesting
question is to characterize those sets C of measures for which there is a predictor ρ that predicts
every individual sequence at least as well as any measure from C . Such a characterization can
be obtained in terms of Hausdorff dimension, using a result of Ryabko (1986), that shows that
Hausdorff dimension of a set characterizes the optimal prediction error that can be attained by any
predictor.

For a set A⊂ X∞ denote H(A) its Hausdorff dimension (see, for example, Billingsley, 1965 for
its definition).

Theorem 17 Let C ⊂ P . The following statements are equivalent.

(i) There is a measure ρ ∈ P that predicts every individual sequence at least as well as the best
measure from C : for every μ∈ C and every sequence x1,x2, · · · ∈ X∞ we have

liminf
n→∞

−1
n
logρ(x1..n)≤ liminf

n→∞
−1
n
logμ(x1..n).

(ii) For every α ∈ [0,1] the Hausdorff dimension of the set of sequences on which the average
prediction error of the best measure in C is not greater than α is bounded by α/ log |X |:

H({x1,x2, · · · ∈ X∞ : inf
μ∈C

liminf
n→∞

−1
n
logμ(x1..n)≤ α})≤ α/ log |X |.

Proof The implication (i)⇒ (ii) follows directly from Ryabko (1986) where it is shown that for
every measure ρ one must have H({x1,x2, · · · ∈ X∞ : liminfn→∞− 1

n logρ(x1..n)≤ α})≤ α/ log |X |.
To show the opposite implication, we again refer to Ryabko (1986): for every set A⊂ X∞ there

is a measure ρA such that

liminf
n→∞

−1
n
logρA(x1..n)≤ H(A) log |X |. (2)

For each α ∈ [0,1] define Aα := {x1,x2, · · · ∈ X∞ : infμ∈C liminfn→∞− 1
n logμ(x1..n) ≤ α}). By as-

sumption, H(Aα)≤ α/ log |X |, so that from (2) for all x1,x2, · · · ∈ Aα we obtain

liminf
n→∞

−1
n
logρA(x1..n)≤ α. (3)

2173

DANIIL RYABKO

Furthermore, define ρ := ∑q∈QwqρAq , where Q = [0,1]∩Q is the set of rationals in [0,1] and
(wq)q∈Q is any sequence of positive reals satisfying ∑q∈Qwq = 1. For every α ∈ [0,1] let qk ∈ Q,
k ∈ N be such a sequence that 0 ≤ qk−α ≤ 1/k. Then, for every n ∈ N and every x1,x2, · · · ∈ Aqk
we have

−1
n
logρ(x1..n)≤−1n logρq(x1..n)−

logwqk
n

.

From this and (3) we get

liminf
n→∞

−1
n
logρ(x1..n)≤ liminf

n→∞
ρqk(x1..n)+1/k ≤ qk+1/k.

Since this holds for every k ∈ N, it follows that for all x1,x2, · · · ∈ ∩k∈NAqk = Aα we have

liminf
n→∞

−1
n
logρ(x1..n)≤ inf

k∈N
(qk+1/k) = α,

which completes the proof of the implication (ii)⇒ (i).

6. Discussion

It has been long realized that the so-called probabilistic and agnostic (adversarial, non-stochastic,
deterministic) settings of the problem of sequential prediction are strongly related. This has been
most evident from looking at the solutions to these problems, which are usually based on the same
ideas. Here we have proposed a formulation of the agnostic problem as a non-realizable case of the
probabilistic problem. While being very close to the traditional one, this setting allows us to directly
compare the two problems. As a somewhat surprising result, we can see that whether the two prob-
lems are different depends on the measure of performance chosen: in the case of prediction in total
variation distance they coincide, while in the case of prediction in expected average KL divergence
they are different. In the latter case, the distinction becomes particularly apparent on the example
of stationary processes: while a solution to the realizable problem has long been known, here we
have shown that there is no solution to the agnostic version of this problem. This formalization also
allowed us to introduce another problem that lies in between the realizable and the fully agnostic
problems: given a class of process measures C , find a predictor whose predictions are asymptot-
ically correct for every measure for which at least one of the measures in C gives asymptotically
correct predictions (Problem 2). This problem is less restrictive then the fully agnostic one (in par-
ticular, it is not concerned with the behaviour of a predictor on every deterministic sequence) but
at the same time the solutions to this problem have performance guarantees far outside the model
class considered.

In essence, the formulation of Problem 2 suggests to assume that we have a set of models one
of which is good enough to make predictions, with the goal of combining the predictive powers of
these models. This is perhaps a good compromise between making modelling assumptions on the
data (the data is generated by one of the models we have) and the fully agnostic, worst-case, setting.

Since the problem formulations presented here are mostly new (at least, in such a general form),
it is not surprising that there are many questions left open. A promising route to obtain new results
seems to be to first analyse the case of prediction in total variation, which amounts to studying
the relation of absolute continuity and singularity of probability measures, and then to try and find

2174

REALIZABLE AND NONREALIZABLE PREDICTION PROBLEMS

analogues in less restrictive (and thus more interesting and difficult) cases of predicting only the
next observation, possibly with Cesaro averaging. This is the approach that we took in this work.
Here it is interesting to find properties common to all or most of the prediction problems (in total
variation as well as with respect to other measures of the performance), if it is at all possible. For
example, the “countable Bayes” property of Theorem 12, that states that if there is a solution to a
given sequence prediction problem for a set C then a solution can be obtained as a mixture over a
suitable countable subset of C , holds for Problems 1–3 in total variation, and for Problems 1 and 2
in KL divergence; however we conjecture that it does not hold for the Problem 3 in KL divergence.

It may also be interesting to study algebraic properties of the relation ≥KL that arises when
studying Problem 2. We have show that it shares some properties with the relation ≥tv of absolute
continuity. Since the latter characterizes prediction in total variation and the former characterizes
prediction in KL divergence (in the sense of Problem 2), which is much weaker, it would be inter-
esting to see exactly what properties the two relations share.

Another direction for future research concerns finite-time performance analysis. In this work
we have adopted the asymptotic approach to the prediction problem, ignoring the behaviour of
predictors before asymptotic. While for prediction in total variation it is a natural choice, for other
measures of performance, including average KL divergence, it is clear that Problems 1-3 admit
non-asymptotic formulations. It is also interesting what are the relations between performance
guarantees that can be obtained in non-asymptotic formulations of Problems 1–3.

7. Proof of Theorem 12

Proof Define the setsCμ as the set of all measures τ ∈ P such that μ predicts τ in expected average
KL divergence. Let C+ := ∪μ∈CCμ. For each τ ∈ C+ let p(τ) be any (fixed) μ∈ C such that τ ∈Cμ.
In other words, C+ is the set of all measures that are predicted by some of the measures in C , and
for each measure τ in C+ we designate one “parent” measure p(τ) from C such that p(τ) predicts τ.

Define the weights wk := 1/k(k+1), for all k ∈ N.
Step 1. For each μ∈ C+ let δn be any monotonically increasing function such that δn(μ) = o(n) and
dn(μ, p(μ)) = o(δn(μ)). Define the sets

Un
μ :=

{
x1..n ∈ X n : μ(x1..n)≥ 1

n
ρ(x1..n)

}
, (4)

Vn
μ :=

{
x1..n ∈ X n : p(μ)(x1..n)≥ 2−δn(μ)μ(x1..n)

}
, (5)

and
Tnμ :=Un

μ ∩Vn
μ . (6)

We will upper-bound μ(Tnμ). First, using Markov’s inequality, we derive

μ(X n\Un
μ) = μ

(
ρ(x1..n)
μ(x1..n)

> n

)
≤ 1
n
Eμ
ρ(x1..n)
μ(x1..n)

=
1
n
. (7)

Next, observe that for every n ∈ N and every set A⊂ X n, using Jensen’s inequality we can obtain

− ∑
x1..n∈A

μ(x1..n) log
ρ(x1..n)
μ(x1..n)

=−μ(A) ∑
x1..n∈A

1
μ(A)

μ(x1..n) log
ρ(x1..n)
μ(x1..n)

≥−μ(A) log ρ(A)
μ(A)

≥−μ(A) logρ(A)− 1
2
. (8)

2175

DANIIL RYABKO

Moreover,

dn(μ, p(μ)) =− ∑
x1..n∈X n\Vn

μ

μ(x1..n) log
p(μ)(x1..n)
μ(x1..n)

− ∑
x1..n∈Vn

μ

μ(x1..n) log
p(μ)(x1..n)
μ(x1..n)

≥ δn(μn)μ(X n\Vn
μ)−1/2,

where in the inequality we have used (5) for the first summand and (8) for the second. Thus,

μ(X n\Vn
μ)≤

dn(μ, p(μ))+1/2
δn(μ)

= o(1). (9)

From (6), (7) and (9) we conclude

μ(X n\Tnμ)≤ μ(X n\Vn
μ)+μ(X n\Un

μ) = o(1). (10)

Step 2n: a countable cover, time n. Fix an n ∈ N. Define mn
1 := maxμ∈C ρ(Tnμ) (since X n are

finite all suprema are reached). Find any μn1 such that ρ
n
1(T

n
μn1
) = mn

1 and let T
n
1 := Tnμn1 . For k > 1,

let mn
k := maxμ∈C ρ(T

n
μ \Tnk−1). If mn

k > 0, let μ
n
k be any μ∈ C such that ρ(Tnμnk\T

n
k−1) = mn

k , and let
Tnk := Tnk−1∪Tnμnk ; otherwise let T

n
k := Tnk−1. Observe that (for each n) there is only a finite number

of positive mn
k , since the set X

n is finite; let Kn be the largest index k such that mn
k > 0. Let

νn :=
Kn

∑
k=1

wkp(μ
n
k).

As a result of this construction, for every n ∈ N every k ≤ Kn and every x1..n ∈ Tnk using the defini-
tions (6), (4) and (5) we obtain

νn(x1..n)≥ wk
1
n
2−δn(μ)ρ(x1..n). (11)

Step 2: the resulting predictor. Finally, define

ν :=
1
2
γ+

1
2 ∑n∈N

wnνn, (12)

where γ is the i.i.d. measure with equal probabilities of all x ∈ X (that is, γ(x1..n) = |X |−n for every
n ∈ N and every x1..n ∈ X n). We will show that ν predicts every μ∈ C+, and then in the end of the
proof (Step r) we will show how to replace γ by a combination of a countable set of elements of C
(in fact, γ is just a regularizer which ensures that ν-probability of any word is never too close to 0).

Step 3: ν predicts every μ∈ C+. Fix any μ∈ C+. Introduce the parameters εnμ∈ (0,1), n ∈N, to
be defined later, and let jnμ := 1/ε

n
μ. Observe that ρ(T

n
k \Tnk−1)≥ ρ(Tnk+1\Tnk), for any k > 1 and any

n∈N, by definition of these sets. Since the sets Tnk \Tnk−1, k∈N are disjoint, we obtain ρ(Tnk \Tnk−1)≤
1/k. Hence, ρ(Tnμ \Tnj)≤ εnμ for some j ≤ jnμ, since otherwise m

n
j =maxμ∈C ρ(T

n
μ \Tnjnμ)> εnμ so that

ρ(Tnjnμ+1\Tnjnμ)> εnμ = 1/ j
n
μ, which is a contradiction. Thus,

ρ(Tnμ \Tnjnμ)≤ εnμ. (13)

2176

REALIZABLE AND NONREALIZABLE PREDICTION PROBLEMS

We can upper-bound μ(Tnμ \Tnjnμ) as follows. First, observe that

dn(μ,ρ) =− ∑
x1..n∈Tnμ ∩Tnjnμ

μ(x1..n) log
ρ(x1..n)
μ(x1..n)

− ∑
x1..n∈Tnμ \Tnjnμ

μ(x1..n) log
ρ(x1..n)
μ(x1..n)

− ∑
x1..n∈X n\Tnμ

μ(x1..n) log
ρ(x1..n)
μ(x1..n)

= I+ II+ III. (14)

Then, from (6) and (4) we get
I ≥− logn. (15)

From (8) and (13) we get

II ≥−μ(Tnμ \Tnjnμ) logρ(Tnμ \Tnjnμ)−1/2≥−μ(Tnμ \Tnjnμ) logεnμ−1/2. (16)

Furthermore,

III ≥ ∑
x1..n∈X n\Tnμ

μ(x1..n) logμ(x1..n)

≥ μ(X n\Tnμ) log
μ(X n\Tnμ)
|X n\Tnμ |

≥ −1
2
−μ(X n\Tnμ)n log |X |, (17)

where the first inequality is obvious, in the second inequality we have used the fact that entropy is
maximized when all events are equiprobable and in the third one we used |X n\Tnμ | ≤ |X |n. Com-
bining (14) with the bounds (15), (16) and (17) we obtain

dn(μ,ρ)≥− logn−μ(Tnμ \Tnjnμ) logεnμ−1−μ(X n\Tnμ)n log |X |,

so that

μ(Tnμ \Tnjnμ)≤
1

− logεnμ
(
dn(μ,ρ)+ logn+1+μ(X n\Tnμ)n log |X |

)
. (18)

From the fact that dn(μ,ρ) = o(n) and (10) it follows that the term in brackets is o(n), so that we can
define the parameters εnμ in such a way that − logεnμ = o(n) while at the same time the bound (18)
gives μ(Tnμ \Tnjnμ) = o(1). Fix such a choice of εnμ. Then, using (10), we conclude

μ(X n\Tnjnμ)≤ μ(X n\Tnμ)+μ(Tnμ \Tnjnμ) = o(1). (19)

We proceed with the proof of dn(μ,ν) = o(n). For any x1..n ∈ Tnjnμ we have

ν(x1..n)≥ 1
2
wnνn(x1..n)≥ 1

2
wnwjnμ

1
n
2−δn(μ)ρ(x1..n)≥ wn

4n
(εnμ)

22−δn(μ)ρ(x1..n), (20)

2177

DANIIL RYABKO

where the first inequality follows from (12), the second from (11), and in the third we have used
wjnμ = 1/(j

n
μ)(j

n
μ+1) and j

n
μ = 1/ε

μ
n. Next we use the decomposition

dn(μ,ν) =− ∑
x1..n∈Tnjnμ

μ(x1..n) log
ν(x1..n)
μ(x1..n)

− ∑
x1..n∈X n\Tnjnμ

μ(x1..n) log
ν(x1..n)
μ(x1..n)

= I+ II. (21)

From (20) we find

I ≤− log
(wn
4n

(εnμ)
22−δn(μ)

)
− ∑

x1..n∈Tnjnμ
μ(x1..n) log

ρ(x1..n)
μ(x1..n)

= (o(n)−2logεnμ+δn(μ))+

⎛⎝dn(μ,ρ)+ ∑
x1..n∈X n\Tnjnμ

μ(x1..n) log
ρ(x1..n)
μ(x1..n)

⎞⎠
≤ o(n)− ∑

x1..n∈X n\Tnjnμ
μ(x1..n) logμ(x1..n)

≤ o(n)+μ(X n\Tnjnμ)n log |X |= o(n), (22)

where in the second inequality we have used − logεnμ= o(n), dn(μ,ρ) = o(n) and δn(μ) = o(n), in
the last inequality we have again used the fact that the entropy is maximized when all events are
equiprobable, while the last equality follows from (19). Moreover, from (12) we find

II ≤ log2− ∑
x1..n∈X n\Tnjnμ

μ(x1..n) log
γ(x1..n)
μ(x1..n)

≤ 1+nμ(X n\Tnjnμ) log |X |= o(n), (23)

where in the last inequality we have used γ(x1..n) = |X |−n and μ(x1..n) ≤ 1, and the last equality
follows from (19).

From (21), (22) and (23) we conclude 1ndn(ν,μ)→ 0.
Step r: the regularizer γ. It remains to show that the i.i.d. regularizer γ in the definition of ν (12),

can be replaced by a convex combination of a countably many elements from C . Indeed, for each
n ∈ N, denote

An := {x1..n ∈ X n : ∃μ∈ C μ(x1..n) �= 0},
and let for each x1..n ∈ X n the measure μx1..n be any measure from C such that
μx1..n(x1..n)≥ 1

2 supμ∈C μ(x1..n). Define

γ′n(x
′
1..n) :=

1
|An| ∑x1..n∈An

μx1..n(x
′
1..n),

for each x′1..n ∈ An, n ∈ N, and let γ′ := ∑k∈Nwkγ′k. For every μ∈ C we have

γ′(x1..n)≥ wn|An|−1μx1..n(x1..n)≥
1
2
wn|X |−nμ(x1..n)

for every n ∈ N and every x1..n ∈ An, which clearly suffices to establish the bound II = o(n) as
in (23).

2178

REALIZABLE AND NONREALIZABLE PREDICTION PROBLEMS

Acknowledgments

Some of the results have appeared (Ryabko, 2010b) in the proceedings of COLT’10. The author
is grateful to the anonymous reviewers for their constructive comments on the paper. This re-
search was partially supported by the French Ministry of Higher Education and Research, Nord-
Pas-de-Calais Regional Council and FEDER through CPER 2007-2013, ANR projects EXPLO-RA
(ANR-08-COSI-004) and Lampada (ANR-09-EMER-007), by the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement 231495 (project CompLACS), and
by Pascal-2.

References

P. Billingsley. Ergodic Theory and Information. Wiley, New York, 1965.

D. Blackwell and L. Dubins. Merging of opinions with increasing information. Annals of Mathe-
matical Statistics, 33:882–887, 1962.

N. Cesa-Bianchi and G. Lugosi. On prediction of individual sequences. Annals of Statistics, 27:
1865–1895, 1999.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,
2006. ISBN 0521841089.

A. P. Dawid. Prequential data analysis. Lecture Notes-Monograph Series, 17:113–126, 1992.

E. Kalai and E. Lehrer. Weak and strong merging of opinions. Journal of Mathematical Economics,
23:73–86, 1994.

R. Krichevsky. Universal Compression and Retrival. Kluwer Academic Publishers, 1993.

A.I. Plesner and V.A. Rokhlin. Spectral theory of linear operators, II. Uspekhi Matematicheskikh
Nauk, 1:71–191, 1946.

B. Ryabko. Twice-universal coding. Problems of Information Transmission, 3:173–177, 1984.

B. Ryabko. Noiseless coding of combinatorial sources, Hausdorff dimension, and Kolmogorov
complexity. Problems of Information Transmission, 22:16–26, 1986.

B. Ryabko. Prediction of random sequences and universal coding. Problems of Information Trans-
mission, 24:87–96, 1988.

D. Ryabko. Characterizing predictable classes of processes. In A. Ng J. Bilmes, editor, Proceedings
of the 25th Conference on Uncertainty in Artificial Intelligence (UAI’09), Montreal, Canada,
2009.

D. Ryabko. On finding predictors for arbitrary families of processes. Journal of Machine Learning
Research, 11:581–602, 2010a.

2179

DANIIL RYABKO

D. Ryabko. Sequence prediction in realizable and non-realizable cases. In Proc. the 23rd Conference
on Learning Theory (COLT 2010), pages 119–131, Haifa, Israel, 2010b.

D. Ryabko and M. Hutter. On sequence prediction for arbitrary measures. In Proc. 2007 IEEE
International Symposium on Information Theory, pages 2346–2350, Nice, France, 2007. IEEE.

D. Ryabko and M. Hutter. Predicting non-stationary processes. Applied Mathematics Letters, 21
(5):477–482, 2008.

A. N. Shiryaev. Probability. Springer, 1996.

R. J. Solomonoff. Complexity-based induction systems: comparisons and convergence theorems.
IEEE Trans. Information Theory, IT-24:422–432, 1978.

J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE Trans-
actions on Information Theory, 24:530–536, 1978.

2180

Journal of Machine Learning Research 12 (2011) 2181-2210 Submitted 4/11; Published 7/11

Discriminative Learning of Bayesian Networks
via Factorized Conditional Log-Likelihood

Alexandra M. Carvalho ASMC@INESC-ID.PT
Department of Electrical Engineering
Instituto Superior Técnico, Technical University of Lisbon
INESC-ID, R. Alves Redol 9
1000-029 Lisboa, Portugal

Teemu Roos TEEMU.ROOS@CS.HELSINKI.FI
Department of Computer Science
Helsinki Institute for Information Technology
P.O. Box 68
FI-00014 University of Helsinki, Finland

Arlindo L. Oliveira AML@INESC-ID.PT
Department of Computer Science and Engineering
Instituto Superior Técnico, Technical University of Lisbon
INESC-ID, R. Alves Redol 9
1000-029 Lisboa, Portugal

Petri Myllymäki PETRI.MYLLYMAKI@CS.HELSINKI.FI
Department of Computer Science
Helsinki Institute for Information Technology
P.O. Box 68
FI-00014 University of Helsinki, Finland

Editor: Russell Greiner

Abstract

We propose an efficient and parameter-free scoring criterion, the factorized conditional
log-likelihood (f̂CLL), for learning Bayesian network classifiers. The proposed score is an ap-
proximation of the conditional log-likelihood criterion. The approximation is devised in order to
guarantee decomposability over the network structure, as well as efficient estimation of the optimal
parameters, achieving the same time and space complexity as the traditional log-likelihood scoring
criterion. The resulting criterion has an information-theoretic interpretation based on interaction
information, which exhibits its discriminative nature. To evaluate the performance of the proposed
criterion, we present an empirical comparison with state-of-the-art classifiers. Results on a large
suite of benchmark data sets from the UCI repository show that f̂CLL-trained classifiers achieve
at least as good accuracy as the best compared classifiers, using significantly less computational
resources.

Keywords: Bayesian networks, discriminative learning, conditional log-likelihood, scoring crite-
rion, classification, approximation

c©2011 Alexandra M. Carvalho, Teemu Roos, Arlindo L. Oliveira and Petri Myllymäki.

CARVALHO, ROOS, OLIVEIRA AND MYLLYMÄKI

1. Introduction

Bayesian networks have been widely used for classification, see Friedman et al. (1997), Grossman
and Domingos (2004), Su and Zhang (2006) and references therein. However, they are often out-
performed by much simpler methods (Domingos and Pazzani, 1997; Friedman et al., 1997). One of
the likely causes for this appears to be the use of so called generative learning methods in choos-
ing the Bayesian network structure as well as its parameters. In contrast to generative learning,
where the goal is to be able to describe (or generate) the entire data, discriminative learning focuses
on the capacity of a model to discriminate between different classes of instances. Unfortunately,
discriminative learning of Bayesian network classifiers has turned out to be computationally much
more challenging than generative learning. This led Friedman et al. (1997) to bring up the ques-
tion: are there heuristic approaches that allow efficient discriminative learning of Bayesian network
classifiers?

During the past years different discriminative approaches have been proposed, which tend to
decompose the problem into two tasks: (i) discriminative structure learning, and (ii) discriminative
parameter learning. Greiner and Zhou (2002) were among the first to work along these lines. They
introduced a discriminative parameter learning algorithm, called the Extended Logistic Regression
(ELR) algorithm, that uses gradient descent to maximize the conditional log-likelihood (CLL) of the
class variable given the other variables. Their algorithm can be applied to an arbitrary Bayesian net-
work structure. However, they only considered generative structure learning methods. Greiner and
Zhou (2002) demonstrated that their parameter learning method, although computationally more ex-
pensive than the usual generative approach that only involves counting relative frequencies, leads to
improved parameter estimates. More recently, Su et al. (2008) have managed to significantly reduce
the computational cost by proposing an alternative discriminative parameter learning method, called
the Discriminative Frequency Estimate (DFE) algorithm, that exhibits nearly the same accuracy as
the ELR algorithm but is considerably more efficient.

Full structure and parameter learning based on the ELR algorithm is a burdensome task. Em-
ploying the procedure of Greiner and Zhou (2002) would require a new gradient descent for each
candidate network at each search step, turning the method computationally infeasible. Moreover,
even in parameter learning, ELR is not guaranteed to find globally optimal CLL parameters. Roos
et al. (2005) have showed that globally optimal solutions can be guaranteed only for network struc-
tures that satisfy a certain graph-theoretic property, including for example, the naive Bayes and
tree-augmented naive Bayes (TAN) structures (see Friedman et al., 1997) as special cases. The
work by Greiner and Zhou (2002) supports this result empirically by demonstrating that their ELR
algorithm is successful when combined with (generatively learned) TAN classifiers.

For discriminative structure learning, Kontkanen et al. (1998) and Grossman and Domingos
(2004) propose to choose network structures by maximizing CLL while choosing parameters by
maximizing the parameter posterior or the (joint) log-likelihood (LL). The BNC algorithm of Gross-
man and Domingos (2004) is actually very similar to the hill-climbing algorithm of Heckerman et al.
(1995), except that it uses CLL as the primary objective function. Grossman and Domingos (2004)
also experiment with full structure and parameter optimization for CLL. However, they found that
full optimization does not produce better results than those obtained by the much simpler approach
where parameters are chosen by maximizing LL.

The contribution of this paper is to present two criteria similar to CLL, but with much better
computational properties. The criteria can be used for efficient learning of augmented naive Bayes

2182

FACTORIZED CONDITIONAL LOG-LIKELIHOOD

classifiers. We mostly focus on structure learning. Compared to the work of Grossman and Domin-
gos (2004), our structure learning criteria have the advantage of being decomposable, a property
that enables the use of simple and very efficient search heuristics. For the sake of simplicity, we
assume a binary valued class variable when deriving our results. However, the methods are directly
applicable to multi-class classification, as demonstrated in the experimental part (Section 5).

Our first criterion is the approximated conditional log-likelihood (aCLL). The proposed score
is the minimum variance unbiased (MVU) approximation to CLL under a class of uniform priors
on certain parameters of the joint distribution of the class variable and the other attributes. We
show that for most parameter values, the approximation error is very small. However, the aCLL
criterion still has two unfavorable properties. First, the parameters that maximize aCLL are hard to
obtain, which poses problems at the parameter learning phase, similar to those posed by using CLL
directly. Second, the criterion is not well-behaved in the sense that it sometimes diverges when the
parameters approach the usual relative frequency estimates (maximizing LL).

In order to solve these two shortcomings, we devise a second approximation, the factorized
conditional log-likelihood (f̂CLL). The f̂CLL approximation is uniformly bounded, and moreover,
it is maximized by the easily obtainable relative frequency parameter estimates. The f̂CLL criterion
allows a neat interpretation as a sum of LL and another term involving the interaction information
between a node, its parents, and the class variable; see Pearl (1988), Cover and Thomas (2006),
Bilmes (2000) and Pernkopf and Bilmes (2005).

To gauge the performance of the proposed criteria in classification tasks, we compare them
with several popular classifiers, namely, tree augmented naive Bayes (TAN), greedy hill-climbing
(GHC), C4.5, k-nearest neighbor (k-NN), support vector machine (SVM) and logistic regression
(LogR). On a large suite of benchmark data sets from the UCI repository, f̂CLL-trained classifiers
outperform, with a statistically significant margin, their generatively-trained counterparts, as well
as C4.5, k-NN and LogR classifiers. Moreover, f̂CLL-optimal classifiers are comparable with ELR
induced ones, as well as SVMs (with linear, polynomial, and radial basis function kernels). The
advantage of f̂CLL with respect to these latter classifiers is that it is computationally as efficient as
the LL scoring criterion, and considerably more efficient than ELR and SVMs.

The paper is organized as follows. In Section 2 we review some basic concepts of Bayesian net-
works and introduce our notation. In Section 3 we discuss generative and discriminative learning of
Bayesian network classifiers. In Section 4 we present our scoring criteria, followed by experimental
results in Section 5. Finally, we draw some conclusions and discuss future work in Section 6. The
proofs of the results stated throughout this paper are given in the Appendix.

2. Bayesian Networks

In this section we introduce some notation, while recalling relevant concepts and results concerning
discrete Bayesian networks.

Let X be a discrete random variable taking values in a countable set X ⊂R. In all what follows,
the domain X is finite. We denote an n-dimensional random vector by X= (X1, . . . ,Xn) where each
component Xi is a random variable over Xi. For each variable Xi, we denote the elements of Xi by
xi1, . . . ,xiri where ri is the number of values Xi can take. The probability that X takes value x is
denoted by P(x), conditional probabilities P(x | z) being defined correspondingly.

A Bayesian network (BN) is defined by a pair B= (G,Θ), where G refers to the graph structure,
and Θ are the parameters. The structure G= (V,E) is a directed acyclic graph (DAG) with vertices

2183

CARVALHO, ROOS, OLIVEIRA AND MYLLYMÄKI

(nodes) V , each corresponding to one of the random variables Xi, and edges E representing direct
dependencies between the variables. The (possibly empty) set of nodes from which there is an
edge to node Xi is called the set of the parents of Xi, and denoted by ΠXi . For each node Xi, we
denote the number of possible parent configurations (vectors of the parents’ values) by qi, the actual
parent configurations being ordered (arbitrarily) and denoted by wi1, . . . ,wiqi . The parameters, Θ=
{θi jk}i∈{1,...,n}, j∈{1,...,qi},k∈{1,...,ri}, determine the local distributions in the network via

PB(Xi = xik |ΠXi = wi j) = θi jk.

The local distributions define a unique joint probability distribution over X given by

PB(X1, . . . ,Xn) =
n

∏
i=1

PB(Xi |ΠXi).

The conditional independence properties pertaining to the joint distribution are essentially deter-
mined by the network structure. Specifically, Xi is conditionally independent of its non-descendants
given its parents ΠXi in G (Pearl, 1988).

Learning unrestricted Bayesian networks from data under typical scoring criteria is NP-hard
(Chickering et al., 2004). This result has led the Bayesian network community to search for the
largest subclass of network structures for which there is an efficient learning algorithm. First at-
tempts confined the network to tree structures and used Edmonds (1967) and Chow and Liu (1968)
optimal branching algorithms. More general classes of Bayesian networks have eluded efforts to
develop efficient learning algorithms. Indeed, Chickering (1996) showed that learning the struc-
ture of a Bayesian network is NP-hard even for networks constrained to have in-degree at most
two. Later, Dasgupta (1999) showed that even learning an optimal polytree (a DAG in which there
are not two different paths from one node to another) with maximum in-degree two is NP-hard.
Moreover, Meek (2001) showed that identifying the best path structure, that is, a total order over
the nodes, is hard. Due to these hardness results exact polynomial-time algorithms for learning
Bayesian networks have been restricted to tree structures.

Consequently, the standard methodology for addressing the problem of learning Bayesian net-
works has become heuristic score-based learning where a scoring criterion φ is considered in or-
der to quantify the capability of a Bayesian network to explain the observed data. Given data
D = {y1, . . . ,yN} and a scoring criterion φ, the task is to find a Bayesian network B that maxi-
mizes the score φ(B,D). Many search algorithms have been proposed, varying both in terms of the
formulation of the search space (network structures, equivalence classes of network structures and
orderings over the network variables), and in the algorithm to search the space (greedy hill-climbing,
simulated annealing, genetic algorithms, tabu search, etc). The most common scoring criteria are
reviewed in Carvalho (2009) and Yang and Chang (2002). We refer the interested reader to newly
developed scoring criteria to the works of de Campos (2006) and Silander et al. (2010).

Score-based learning algorithms can be extremely efficient if the employed scoring criterion is
decomposable. A scoring criterion φ is said to be decomposable if the score can be expressed as a
sum of local scores that depends only on each node and its parents, that is, in the form

φ(B,D) =
n

∑
i=1

φi(ΠXi ,D).

2184

FACTORIZED CONDITIONAL LOG-LIKELIHOOD

One of the most common criteria is the log-likelihood (LL), see Heckerman et al. (1995):

LL(B | D) =
N

∑
t=1

logPB(y
1
t , . . . ,y

n
t) =

n

∑
i=1

qi

∑
j=1

ri

∑
k=1

Ni jk logθi jk,

which is clearly decomposable.
Themaximum likelihood (ML) parameters that maximize LL are easily obtained as the observed

frequency estimates (OFE) given by

θ̂i jk =
Ni jk
Ni j

, (1)

where Ni jk denotes the number of instances in D where Xi = xik and ΠXi = wi j, and Ni j =∑ri
k=1Ni jk.

Plugging these estimates back into the LL criterion yields

L̂L(G | D) =
n

∑
i=1

qi

∑
j=1

ri

∑
k=1

Ni jk log

(
Ni jk
Ni j

)
.

The notation with G as the argument instead of B= (G,Θ) emphasizes that once the use of the OFE
parameters is decided upon, the criterion is a function of the network structure, G, only.

The L̂L scoring criterion tends to favor complex network structures with many edges since
adding an edge never decreases the likelihood. This phenomenon leads to overfitting which is
usually avoided by adding a complexity penalty to the log-likelihood or by restricting the network
structure.

3. Bayesian Network Classifiers

A Bayesian network classifier is a Bayesian network over X = (X1, . . . ,Xn,C), where C is a class
variable, and the goal is to classify instances (X1, . . . ,Xn) to different classes. The variables X1, . . . ,Xn
are called attributes, or features. For the sake of computational efficiency, it is common to restrict
the network structure. We focus on augmented naive Bayes classifiers, that is, Bayesian network
classifiers where the class variable has no parents, ΠC = /0, and all attributes have at least the class
variable as a parent,C ∈ΠXi for all Xi.

For convenience, we introduce a few additional notations that apply to augmented naive Bayes
models. Let the class variable C range over s distinct values, and denote them by z1, . . . ,zs. Recall
that the parents of Xi are denoted by ΠXi . The parents of Xi without the class variable are denoted
by Π∗Xi = ΠXi \ {C}. We denote the number of possible configurations of the parent set Π∗Xi by
q∗i ; hence, q

∗
i = ∏Xj∈Π∗Xi r j. The j’th configuration of Π

∗
Xi is represented by w

∗
i j, with 1 ≤ j ≤ q∗i .

Similarly to the general case, local distributions are determined by the corresponding parameters

P(C = zc) = θc,

P(Xi = xik |Π∗Xi = w∗i j,C = zc) = θi jck.

We denote by Ni jck the number of instances in the data D where Xi = xik, Π∗Xi = w∗i j and C = zc.
Moreover, the following short-hand notations will become useful:

Ni j∗k =
s

∑
c=1

Ni jck, Ni j∗ =
ri

∑
k=1

s

∑
c=1

Ni jck,

Ni jc =
ri

∑
k=1

Ni jck, Nc =
1
n

n

∑
i=1

q∗i

∑
j=1

ri

∑
k=1

Ni jck.

2185

CARVALHO, ROOS, OLIVEIRA AND MYLLYMÄKI

Finally, we recall that the total number of instances in the data D is N.
The ML estimates (1) become now

θ̂c =
Nc
N
, and θ̂i jck =

Ni jck
Ni jc

, (2)

which can again be plugged into the LL criterion:

L̂L(G | D) =
N

∑
t=1

logPB(y
1
t , . . . ,y

n
t ,ct)

=
s

∑
c=1

(
Nc log

(
Nc
N

)
+

n

∑
i=1

qi

∑
j=1

ri

∑
k=1

Ni jck log

(
Ni jck
Ni jc

))
. (3)

As mentioned in the introduction, if the goal is to discriminate between instances belonging
to different classes, it is more natural to consider the conditional log-likelihood (CLL), that is, the
probability of the class variable given the attributes, as a score:

CLL(B | D) =
N

∑
t=1

logPB(ct | y1t , . . . ,ynt).

Friedman et al. (1997) noticed that the log-likelihood can be rewritten as

LL(B | D) = CLL(B | D)+
N

∑
t=1

logPB(y
1
t , . . . ,y

n
t). (4)

Interestingly, the objective of generative learning is precisely to maximize the whole sum, whereas
the goal of discriminative learning consists on maximizing only the first term in (4). Friedman et al.
(1997) attributed the underperformance of learning methods based on LL to the term CLL(B | D)
being potentially much smaller than the second term in Equation (4). Unfortunately, CLL does
not decompose over the network structure, which seriously hinders structure learning, see Bilmes
(2000); Grossman and Domingos (2004). Furthermore, there is no closed-form formula for optimal
parameter estimates maximizing CLL, and computationally more expensive techniques such as ELR
are required (Greiner and Zhou, 2002; Su et al., 2008).

4. Factorized Conditional Log-Likelihood Scoring Criterion

The above shortcomings of earlier discriminative approaches to learning Bayesian network clas-
sifiers, and the CLL criterion in particular, make it natural to explore good approximations to the
CLL that are more amenable to efficient optimization. More specifically, we now set out to construct
approximations that are decomposable, as discussed in Section 2.

4.1 Developing a New Scoring Criterion

For simplicity, assume that the class variable is binary, C = {0,1}. For the binary case the condi-
tional probability of the class variable can then be written as

PB(ct | y1t , . . . ,ynt) =
PB(y1t , . . . ,y

n
t ,ct)

PB(y1t , . . . ,y
n
t ,ct)+PB(y1t , . . . ,y

n
t ,1− ct)

. (5)

2186

FACTORIZED CONDITIONAL LOG-LIKELIHOOD

For convenience, we denote the two terms in the denominator as

Ut = PB(y
1
t , . . . ,y

n
t ,ct) and

Vt = PB(y
1
t , . . . ,y

n
t ,1− ct), (6)

so that Equation (5) becomes simply

PB(ct | y1t , . . . ,ynt) =
Ut

Ut +Vt
.

We stress that bothUt and Vt depend on B, but for the sake of readability we omit B in the notation.
Observe that while (y1t , . . . ,y

n
t ,ct) is the t’th sample in the data set D, the vector (y

1
t , . . . ,y

n
t ,1− ct),

which we call the dual sample of (y1t , . . . ,y
n
t ,ct), may or may not occur in D.

The log-likelihood (LL), and the conditional log-likelihood (CLL) now take the form

LL(B | D) =
N

∑
t=1

logUt , and

CLL(B | D) =
N

∑
t=1

logUt − log(Ut +Vt).

Recall that our goal is to derive a decomposable scoring criterion. Unfortunately, even though logUt
decomposes, log(Ut +Vt) does not.

Now, let us consider approximating the log-ratio

f (Ut ,Vt) = log

(
Ut

Ut +Vt

)
,

by functions of the form
f̂ (Ut ,Vt) = α logUt +β logVt + γ,

where α, β, and γ are real numbers to be chosen so as to minimize the approximation error. Since the
accuracy of the approximation obviously depends on the values ofUt andVt as well as the constants
α, β, and γ, we need to make some assumptions aboutUt andVt in order to determine suitable values
of α, β and γ. We explicate one possible set of assumptions, which will be seen to lead to a good
approximation for a very wide range ofUt and Vt . We emphasize that the role of the assumptions is
to aid in arriving at good choices of the constants α, β, and γ, after which we can dispense with the
assumptions—they need not, in particular, hold true exactly.

Start by noticing that Rt = 1− (Ut +Vt) is the probability of observing neither the t’th sam-
ple nor its dual, and hence, the triplet (Ut ,Vt ,Rt) are the parameters of a trinomial distribution. We
assume, for the time being, that no knowledge about the values of the parameters (Ut ,Vt ,Rt) is avail-
able. Therefore, it is natural to assume that (Ut ,Vt ,Rt) follows the uniform Dirichlet distribution,
Dirichlet(1,1,1), which implies that

(Ut ,Vt)∼ Uniform(Δ2), (7)

where Δ2 = {(x,y) : x+y≤ 1 and x,y≥ 0} is the 2-simplex set. However, with a brief reflection on
the matter, we can see that such an assumption is actually rather unrealistic. Firstly, by inspecting
the total number of possible observed samples, we expect, Rt to be relatively large (close to 1).

2187

CARVALHO, ROOS, OLIVEIRA AND MYLLYMÄKI

In fact, Ut and Vt are expected to become exponentially small as the number of attributes grows.
Therefore, it is reasonable to assume that

Ut ,Vt ≤ p<
1
2
< Rt

for some 0< p< 1
2 . Combining this constraint with the uniformity assumption, Equation (7), yields

the following assumption, which we will use as a basis for our further analysis.

Assumption 1 There exists a small positive p< 1
2 such that

(Ut ,Vt)∼ Uniform(Δ2)|Ut ,Vt≤p = Uniform([0, p]× [0, p]).

Assumption 1 implies that Ut and Vt are uniform i.i.d. random variables over [0, p] for some
(possibly unknown) positive real number p< 1

2 . (See Appendix B for an alternative justification for
Assumption 1.) As we show below, we do not need to know the actual value of p. Consequently,
the envisaged approximation will be robust to the choice of p.

We obtain the best fitting approximation f̂ by the least squares method.

Theorem 1 Under Assumption 1, the values of α, β and γ that minimize the mean square error
(MSE) of f̂ w.r.t. f are given by

α =
π2+6
24

, (8)

β =
π2−18
24

, and (9)

γ =
π2

12ln2
−
(
2+

(π2−6) log p
12

)
, (10)

where log is the binary logarithm and ln is the natural logarithm.

We show that the mean difference between f̂ and f is zero for all values of p, that is, f̂ is
unbiased.1 Moreover, we show that f̂ is the approximation with the lowest variance among unbiased
ones.

Theorem 2 The approximation f̂ with α, β, γ defined as in Theorem 1 is the minimum variance
unbiased (MVU) approximation of f .

Next, we derive the standard error of the approximation f̂ in the square [0, p]× [0, p], which,
curiously, does not depend on p. To this end, consider

μ= E[f (Ut ,Vt)] =
1

2ln(2)
−2

which is a negative value; as it should since f ranges over (−∞,0].
1. Herein we apply the nomenclature of estimation theory in the context of approximation. Thus, an approximation
is unbiased if E[f̂ (Ut ,Vt)− f (Ut ,Vt)] = 0 for all p. Moreover, an approximation is (uniformly) minimum variance
unbiased if the value E[(f̂ (Ut ,Vt)− f (Ut ,Vt))2] is the lowest for all unbiased approximations and values of p.

2188

FACTORIZED CONDITIONAL LOG-LIKELIHOOD

Theorem 3 The approximation f̂ with α, β, and γ defined as in Theorem 1 has standard error given
by

σ=

√
36+36π2−π4
288ln2(2)

−2≈ 0.352

and relative standard error σ/|μ| ≈ 0.275.

Figure 1 illustrates the function f as well as its approximation f̂ for (Ut ,Vt) ∈ [0, p]× [0, p] with
p = 0.05. The approximation error, f − f̂ is shown in Figure 2. While the properties established
in Theorems 1–3 are useful, we find it even more important that, as seen in Figure 2, the error is
close to zero except when either Ut or Vt approaches zero. Moreover, we point out that the choice
of p = 0.05 used in the figure is not important: having chosen another value would have produced
identical graphs except in the scale of theUt and Vt . In particular, the scale and numerical values on
the vertical axis (i.e., in Figure 2, the error) would have been precisely the same.

Using the approximation in Theorem 1 to approximate CLL yields

CLL(B | D) ≈
N

∑
t=1

α logUt +β logVt + γ

=
N

∑
t=1

(α+β) logUt −β log
(
Ut
Vt

)
+ γ

= (α+β)LL(B | D)−β
N

∑
t=1

log

(
Ut
Vt

)
+Nγ, (11)

where constants α, β and γ are given by Equations (8), (9) and (10), respectively. Since we want to
maximize CLL(B | D), we can drop the constant Nγ in the approximation, as maxima are invariant
under monotone transformations, and so we can just maximize the following formula, which we
call the approximate conditional log-likelihood (aCLL):

aCLL(B | D) = (α+β)LL(B | D)−β
N

∑
t=1

log

(
Ut
Vt

)

= (α+β)LL(B | D)−β
n

∑
i=1

q∗i

∑
j=1

ri

∑
k=1

1

∑
c=0

Ni jck log

(
θi jck

θi j(1−c)k

)

−β
1

∑
c=0

Nc log

(
θc

θ(1−c)

)
. (12)

The fact thatNγ can be removed from the maximization in (11) is most fortunate, as we eliminate
the dependency on p. An immediate consequence of this fact is that we do not need to know the
actual value of p in order to employ the criterion.

We are now in the position of having constructed a decomposable approximation of the condi-
tional log-likelihood score that was shown to be very accurate for a wide range of parameters Ut
and Vt . Due to the dependency of these parameters on Θ, that is, the parameters of the Bayesian
network B (recall Equation (6)), the score still requires that a suitable set of parameters is chosen.
Finding the parameters maximizing the approximation is, however, difficult; apparently as difficult
as finding parameters maximizing the CLL directly. Therefore, whatever computational advantage

2189

CARVALHO, ROOS, OLIVEIRA AND MYLLYMÄKI

0.00
0.01

0.02
0.03

0.04
0.05

0.00
0.01

0.02
0.03

0.04
0.05
−6

−4

−2

0

2

UtVt 0.00
0.01

0.02
0.03

0.04
0.05

0.00
0.01

0.02
0.03

0.04
0.05
−6

−4

−2

0

2

UtVt

Figure 1: Comparison between f (Ut ,Vt) = log
(

Ut
Ut+Vt

)
(left), and f̂ (Ut ,Vt) = α logUt+β logVt+ γ

(right). Both functions diverge (to −∞) asUt → 0. The latter diverges (to +∞) also when
Vt → 0. For the interpretation of different colors, see Figure 2 below.

0.00

0.01
0.02

0.03
0.04

0.05

0.00
0.01

0.02
0.03

0.04
0.05

−6

−4

−2

0

2

UtVt −3

−2

−1

0

1

2

3

Figure 2: Approximation error: the difference between the exact value and the approximation given
in Theorem 1. Notice that the error is symmetric in the two arguments, and diverges as
Ut → 0 or Vt → 0. For points where neither argument is close to zero, the error is small
(close to zero).

2190

FACTORIZED CONDITIONAL LOG-LIKELIHOOD

is gained by decomposability, it would seem to be dwarfed by the expensive parameter optimization
phase.

Furthermore, trying to use the OFE parameters in aCLL may lead to problems since the ap-
proximation is undefined at points where either Ut or Vt is zero. To better see why this is the case,
substitute the OFE parameters, Equation (2), into the aCLL criterion, Equation (12), to obtain

âCLL(G | D) = (α+β) L̂L(G | D)−β
n

∑
i=1

q∗i

∑
j=1

ri

∑
k=1

1

∑
c=0

Ni jck log

(
Ni jckNi j(1−c)
Ni jcNi j(1−c)k

)

−β
1

∑
c=0

Nc log

(
Nc
N1−c

)
. (13)

The problems are associated with the denominator in the second term. In LL and CLL cri-
teria, similar expressions where the denominator may be zero are always eliminated by the OFE
parameters since they are always multiplied by zero, see, for example, Equation (3), where Ni jc = 0
implies Ni jck = 0. However, there is no guarantee that Ni j(1−c)k is non-zero even if the factors in the
numerator are non-zero, and hence the division by zero may lead to actual indeterminacies.

Next, we set out to resolve these issues by presenting a well-behaved approximation that enables
easy optimization of both structure (via decomposability), as well as parameters.

4.2 Achieving a Well-Behaved Approximation

In this section, we address the singularities of aCLL under OFE by constructing an approximation
that is well-behaved.

Recall aCLL in Equation (12). Given a fixed network structure, the parameters that maximize
the first term, (α+β)LL(B | D), are given by OFE. However, as observed above, the second term
may actually be unbounded due to the appearance of θi j(1−c)k in the denominator. In order to obtain a
well-behaved score, we must therefore make a further modification to the second term. Our strategy
is to ensure that the resulting score is uniformly bounded and maximized by OFE parameters. The
intuition behind this is that we can thus guarantee not only that the score is well-behaved, but also
that parameter learning is achieved in a simple and efficient way by using the OFE parameters—
solving both of the aforementioned issues with the aCLL score. As it turns out, we can satisfy our
goal while still retaining the discriminative nature of the score.

The following result is of importance in what follows.

Theorem 4 Consider a Bayesian network B whose structure is given by a fixed directed acyclic
graph, G. Let f (B | D) be a score defined by

f (B | D) =
n

∑
i=1

q∗i

∑
j=1

ri

∑
k=1

1

∑
c=0

Ni jck

⎛⎝λ log
⎛⎝ θi jck

Ni jc
Ni j∗θi jck+

Ni j(1−c)
Ni j∗ θi j(1−c)k

⎞⎠⎞⎠ , (14)

where λ is an arbitrary positive real value. Then, the parametersΘ that maximize f (B |D) are given
by the observed frequency estimates (OFE) obtained from G.

The theorem implies that by replacing the second term in (12) by (a non-negative multiple of)
f (B |D) in Equation (14), we get a criterion where both the first and the second term are maximized

2191

CARVALHO, ROOS, OLIVEIRA AND MYLLYMÄKI

by the OFE parameters. We will now proceed to determine a suitable value for the parameter λ
appearing in Equation (14).

To clarify the analysis, we introduce the following short-hand notations:

A1 = Ni jcθi jck, A2 = Ni jc,

B1 = Ni j(1−c)θi j(1−c)k, B2 = Ni j(1−c).
(15)

With simple algebra, we can rewrite the logarithm in the second term of Equation (12) using the
above notations as

log

(
Ni jcθi jck

Ni j(1−c)θi j(1−c)k

)
− log

(
Ni jc

Ni j(1−c)

)
= log

(
A1
B1

)
− log

(
A2
B2

)
. (16)

Similarly, the logarithm in (14) becomes

λ log

(
Ni jcθi jck

Ni jcθi jck+Ni j(1−c)θi j(1−c)k

)
+ρ−λ log

(
Ni jc

Ni jc+Ni j(1−c)

)
−ρ

= λ log

(
A1

A1+B1

)
+ρ−λ log

(
A2

A2+B2

)
−ρ, (17)

where we used Ni j∗ = Ni jc+Ni j(1−c); we have introduced the constant ρ that was added and sub-
tracted without changing the value of the expression for a reason that will become clear shortly. By
comparing Equations (16) and (17), it can be seen that the latter is obtained from the former by
replacing expressions of the form log(AB) by expressions of the form λ log(A

A+B)+ρ.
We can simplify the two-variable approximation to a single variable one by takingW = A

A+B . In
this case we have that AB = W

1−W , and so we propose to apply once again the least squares method to
approximate the function

g(W) = log

(
W

1−W
)

by
ĝ(W) = λ logW +ρ.

The role of the constant ρ is simply to translate the approximate function to better match the target
g(W).

As in the previous approximation, here too it is necessary to make assumptions about the values
of A and B (and thusW), in order to find suitable values for the parameters λ and ρ. Again, we stress
that the sole purpose of the assumption is to guide in the choice of the parameters.

As both A1, A2, B1, and B2 in Equation (15) are all non-negative, the ratio Wi =
Ai

Ai+Bi
is al-

ways between zero and one, for both i ∈ {1,2}, and hence it is natural to make the straightforward
assumption that W1 and W2 are uniformly distributed along the unit interval. This gives us the
following assumption.

Assumption 2 We assume that

Ni jcθi jck
Ni jcθi jck+Ni j(1−c)θi j(1−c)k

∼ Uniform(0,1), and

Ni jc
Ni jc+Ni j(1−c)

∼ Uniform(0,1).

2192

FACTORIZED CONDITIONAL LOG-LIKELIHOOD

g(w)

g
�

(w)

0.2 0.4 0.6 0.8 1.0
w

�4

�3

�2

�1

0

1

2

3

Figure 3: Plot of g(w) = log
(

w
1−w
)
and ĝ(w) = λ logw+ρ.

Herein, it is worthwhile noticing that although the previous assumption was meant to hold for
general parameters, in practice, we know in this case that OFE will be used. Hence, Assumption 2
reduces to

Ni jck
Ni j∗k

∼ Uniform(0,1), and Ni jc
Ni j∗

∼ Uniform(0,1).

Under this assumption, the mean squared error of the approximation can be minimized analyti-
cally, yielding the following solution.

Theorem 5 Under Assumption 2, the values of λ and ρ that minimize the mean square error (MSE)
of ĝ w.r.t. g are given by

λ =
π2

6
, and (18)

ρ =
π2

6 ln2
. (19)

Theorem 6 The approximation ĝ with λ and ρ defined as in Theorem 5 is the minimum variance
unbiased (MVU) approximation of g.

In order to get an idea of the accuracy of the approximation ĝ, consider the graph of log
(

w
1−w
)

and λ logw+ρ in Figure 3. It may appear problematic that the approximation gets worse as w tends
to one. However this is actually unavoidable since that is precisely where âCLL diverges, and our
goal is to obtain a criterion that is uniformly bounded.

To wrap up, we first rewrite the logarithm of the second term in Equation (12) using for-
mula (16), and then apply the above approximation to both terms to get

log

(
θi jck

θi j(1−c)k

)
≈ λ log

(
Ni jcθi jck

Ni jcθi jck+Ni j(1−c)θi j(1−c)k

)
+ρ−λ log

(
Ni jc
Ni j∗

)
−ρ, (20)

where ρ cancels out. A similar analysis can be applied to rewrite the logarithm of the third term in
Equation (12) leading to

log

(
θc

θ(1−c)

)
= log

(
θc

1−θc

)
≈ λ logθc+ρ. (21)

2193

CARVALHO, ROOS, OLIVEIRA AND MYLLYMÄKI

Plugging the approximations of Equations (20) and (21) into Equation (12) gives us finally the
factorized conditional log-likelihood (fCLL) score:

fCLL(B | D) = (α+β)LL(B | D)

−βλ
n

∑
i=1

q∗i

∑
j=1

ri

∑
k=1

1

∑
c=0

Ni jck

(
log

(
Ni jcθi jck

Ni jcθi jck−Ni j(1−c)θi j(1−c)k

)
− log

(
Ni jc
Ni j∗

))

−βλ
1

∑
c=0

Nc logθc−βNρ.

(22)

Observe that the third term of Equation (22) is such that

−βλ
1

∑
c=0

Nc logθc =−βλN
1

∑
c=0

Nc
N
logθc, (23)

and, since β< 0, by Gibbs inequality (see Lemma 8 in the Appendix at page 2204) the parameters
that maximize Equation (23) are given by the OFE, that is, θ̂c =

Nc
N . Therefore, by Theorem 4, given

a fixed structure, the maximizing parameters of fCLL are easily obtained as OFE. Moreover, the
fCLL score is clearly decomposable.

As a final step, we plug in the OFE parameters, Equation (2), into the fCLL criterion, Equa-
tion (22), to obtain

f̂CLL(G | D) = (α+β) L̂L(B | D)−βλ
n

∑
i=1

q∗i

∑
j=1

ri

∑
k=1

1

∑
c=0

Ni jck

(
log

(
Ni jck
Ni j∗k

)
− log

(
Ni jc
Ni j∗

))

−βλ
1

∑
c=0

Nc log

(
Nc
N

)
−βNρ, (24)

where we also use the OFE parameters in the log-likelihood L̂L. Observe that we can drop the last
two terms in Equation (24) as they become constants for a given data set.

4.3 Information-Theoretical Interpretation

Before we present empirical results illustrating the behavior of the proposed scoring criteria, we
point out that the f̂CLL criterion has an interesting information-theoretic interpretation based on
interaction information. We will first rewrite LL in terms of conditional mutual information, and
then, similarly, rewrite the second term of f̂CLL in Equation (24) in terms of interaction information.

As Friedman et al. (1997) point out, the local contribution of the i’th variable to LL(B | D)
(recall Equation (3)) is given by

N
q∗i

∑
j=1

1

∑
c=0

ri

∑
k=1

Ni jck
N

log

(
Ni jck
Ni jc

)
= −NHP̂D(Xi |Π∗Xi ,C)

= −NHP̂D(Xi |C)+NIP̂D(Xi ;Π
∗
Xi |C), (25)

where HP̂D(Xi | . . .) denotes the conditional entropy, and IP̂D(Xi ;Π∗Xi | C) denotes the conditional
mutual information, see Cover and Thomas (2006). The subscript P̂D indicates that the information

2194

FACTORIZED CONDITIONAL LOG-LIKELIHOOD

theoretic quantities are evaluated under the joint distribution P̂D of (�X ,C) induced by the OFE
parameters.

Since the first term on the right-hand side of (25) does not depend on Π∗Xi , finding the parents
of Xi that maximize LL(B |D) is equivalent to choosing the parents that maximize the second term,
NIP̂D(Xi ;Π

∗
Xi |C), which measures the information that Π∗Xi provides about Xi when the value of C

is known.
Let us now turn to the second term of the f̂CLL score in Equation (24). The contribution of the

i’th variable in it can also be expressed in information theoretic terms as follows:

−βλN (HP̂D(C | Xi,Π∗Xi)−HP̂D(C |Π∗Xi))= βλNIP̂D(C ; Xi |Π∗Xi)
= βλN

(
IP̂D(C ; Xi ;Π

∗
Xi)+ IP̂D(C ; Xi))

)
,

(26)

where IP̂D(C ; XI ;Π
∗
Xi) denotes the interaction information (McGill, 1954), or the “co-information”

(Bell, 2003); for a review on the history and use of interaction information in machine learning and
statistics, see Jakulin (2005).

Since IP̂D(Xi ;C) on the last line of Equation (26) does not depend on Π
∗
Xi , finding the parents of

Xi that maximize the sum amounts to maximizing the interaction information. This is intuitive, since
the interaction information measures the increase—or the decrease, as it can also be negative—of
the mutual information between Xi andC when the parent set Π∗Xi is included in the model.

All said, the f̂CLL criterion can be written as

f̂CLL(G | D) =
n

∑
i=1

[
(α+β)NIP̂D(Xi ;Π

∗
Xi |C)−βλNIP̂D(C ; Xi ;Π∗Xi)

]
+ const, (27)

where const is a constant independent of the network structure and can thus be omitted. To get a
concrete idea of the trade-off between the first two terms, the numerical values of the constants can
be evaluated to obtain

f̂CLL(G | D)≈
n

∑
i=1

[
0.322NIP̂D(Xi ;Π

∗
Xi |C)+0.557NIP̂D(C ; Xi ;Π∗Xi)

]
+ const. (28)

Normalizing the weights shows that the first term that corresponds to the behavior of the LL crite-
rion, Equation (25), has proportional weight of approximately 36.7 percent, while the second term
that gives f̂CLL criterion its discriminative nature has the weight 63.3 percent.2

In addition to the insight provided by the information-theoretic interpretation of f̂CLL, it also
provides a practically most useful corollary: the f̂CLL criterion is score equivalent. A scoring
criterion is said to be score equivalent if it assigns the same score to all network structures encoding
the same independence assumptions, see Verma and Pearl (1990), Chickering (2002), Yang and
Chang (2002) and de Campos (2006).

Theorem 7 The f̂CLL criterion is score equivalent for augmented naive Bayes classifiers.

The practical utility of the above result is due to the fact that it enables the use of powerful
algorithms, such as the tree-learning method by Chow and Liu (1968), in learning TAN classifiers.

2. The particular linear combination of the two terms in Equation (28) brings out the question what would happen in only
one of the terms was retained, or equivalently, if one of the weights was set to zero. As mentioned above, the first term
corresponds to the LL criterion, and hence, setting the weight of the second term to zero would reduce the criterion to
LL. We also experimented with a criterion where only the second term is retained but this was observed to yield poor
results; for details, see the additional material at http://kdbio.inesc-id.pt/˜asmc/software/fCLL.html.

2195

CARVALHO, ROOS, OLIVEIRA AND MYLLYMÄKI

4.4 Beyond Binary Classification and TAN

Although âCLL and f̂CLL scoring criteria were devised having in mind binary classification tasks,
their application in multi-class problems is straightforward.3 For the case of f̂CLL, the expression
(24) does not involve the dual samples. Hence, it can be trivially adapted for non-binary classifica-
tion tasks. On the other hand, the score âCLL in Equation (13) does depend on the dual samples. To
adapt it for multi-class problems, we considered Ni j(1−c)k = Ni j∗k−Ni jck and Ni j(1−c) = Ni j−Ni jc.

Finally, we point out that despite being derived under the augmented naive Bayes model, the
f̂CLL score can be readily applied to models where the class variable is not a parent of some of the
attributes. Hence, we can use it as a criterion for learning more general structures. The empirical
results below demonstrate that this indeed leads to good classifiers.

5. Experimental Results

We implemented the f̂CLL scoring criterion on top of the Weka open-source software (Hall et al.,
2009). Unfortunately, the Weka implementation of the TAN classifier assumes that the learning
criterion is score equivalent, which rules out the use of our âCLL criterion. Non-score-equivalent
criteria require the Edmonds’ maximum branchings algorithm that builds a maximal directed span-
ning tree (see Edmonds 1967, or Lawler 1976) instead of an undirected one obtained by the Chow-
Liu algorithm (Chow and Liu, 1968). Edmonds’ algorithm had already been implemented by some
of the authors (see Carvalho et al., 2007) using Mathematica 7.0 and the Combinatorica package
(Pemmaraju and Skiena, 2003). Hence, the âCLL criterion was implemented in this environment.
All source code and the data sets used in the experiments, can be found at fCLL web page.4

We evaluated the performance of âCLL and f̂CLL scoring criteria in classification tasks compar-
ing them with state-of-the-art classifiers. We performed our evaluation on the same 25 benchmark
data sets used by Friedman et al. (1997). These include 23 data sets from the UCI repository of
Newman et al. (1998) and two artificial data sets, corral and mofn, designed by Kohavi and John
(1997) to evaluate methods for feature subset selection. A description of the data sets is presented
in Table 1. All continuous-valued attributes were discretized using the supervised entropy-based
method by Fayyad and Irani (1993). For this task we used the Weka package.5 Instances with
missing values were removed from the data sets.

The classifiers used in the experiments were:
GHC2: Greedy hill climber classifier with up to 2 parents.
TAN: Tree augmented naive Bayes classifier.
C4.5: C4.5 classifier.
k-NN: k-nearest neighbor classifier, with k = 1,3,5.
SVM: Support vector machine with linear kernel.
SVM2: Support vector machine with polynomial kernel of degree 2.

3. As suggested by an anonymous referee, the techniques used in Section 4.1 for deriving the âCLL criterion can be
generalized to the multi-class case as well as to other distributions in addition to the uniform one in a straightforward
manner by applying results from regression theory. We plan to explore such generalizations of both the âCLL and
f̂CLL criteria in future work.

4. fCLL web page is at http://kdbio.inesc-id.pt/˜asmc/software/fCLL.html.
5. Discretization was done using weka.filters.supervised.attribute.Discretize, with default parameters.
This discretization improved the accuracy of all classifiers used in the experiments, including those that do not
necessarily require discretization, that is, C4.5 k-NN, SVM, and LogR.

2196

FACTORIZED CONDITIONAL LOG-LIKELIHOOD

Data Set Features Classes Train Test

1 australian 15 2 690 CV-5
2 breast 10 2 683 CV-5
3 chess 37 2 2130 1066
4 cleve 14 2 296 CV-5
5 corral 7 2 128 CV-5
6 crx 16 2 653 CV-5
7 diabetes 9 2 768 CV-5
8 flare 11 2 1066 CV-5
9 german 21 2 1000 CV-5
10 glass 10 7 214 CV-5
11 glass2 10 2 163 CV-5
12 heart 14 2 270 CV-5
13 hepatitis 20 2 80 CV-5
14 iris 5 3 150 CV-5
15 letter 17 26 15000 5000
16 lymphography 19 4 148 CV-5
17 mofn-3-7-10 11 2 300 1024
18 pima 9 2 768 CV-5
19 satimage 37 6 4435 2000
20 segment 20 7 1540 770
21 shuttle-small 10 7 3866 1934
22 soybean-large 36 19 562 CV-5
23 vehicle 19 4 846 CV-5
24 vote 17 2 435 CV-5
25 waveform-21 22 3 300 4700

Table 1: Description of data sets used in the experiments.

SVMG: Support vector machine with Gaussian (RBF) kernel.
LogR: Logistic regression.

Bayesian network-based classifiers (GHC2 and TAN) were included in different flavors, dif-
fering in the scoring criterion used for structure learning (LL, âCLL, f̂CLL) and the parameter
estimator (OFE, ELR). Each variant along with the implementation used in the experiments is de-
scribed in Table 2. Default parameters were used in all cases unless explicitly stated. Excluding
TAN classifiers obtained with the ELR method, we improved the performance of Bayesian network
classifiers by smoothing parameter estimates according to a Dirichlet prior (see Heckerman et al.,
1995). The smoothing parameter was set to 0.5, the default in Weka. The same strategy was used
for TAN classifiers implemented in Mathematica. For discriminative parameter learning with ELR,
parameters were initialized to the OFE values. The gradient descent parameter optimization was
terminated using cross tuning as suggested in Greiner et al. (2005).

Three different kernels were applied in SVM classifiers: (i) a linear kernel of the formK(xi,x j)=
xTi x j; (ii) a polynomial kernel of the form K(xi,x j) = (xTi x j)

2; and (iii) a Gaussian (radial basis

2197

CARVALHO, ROOS, OLIVEIRA AND MYLLYMÄKI

Classifier Struct. Param. Implementation

GHC2 LL OFE HillClimber (P=2) implementation from Weka
GHC2 f̂CLL OFE HillClimber (P=2) implementation from Weka

TAN LL OFE TAN implementation from Weka
TAN LL ELR TAN implementation from Greiner and Zhou (2002)
TAN âCLL OFE TAN implementation from Carvalho et al. (2007)
TAN f̂CLL OFE TAN implementation from Weka

C4.5 J48 implementation from Weka
1-NN IBk (K=1) implementation from Weka
3-NN IBk (K=3) implementation from Weka
5-NN IBk (K=5) implementation from Weka
SVM SMO implementation from Weka
SVM2 SMO with PolyKernel (E=2) implementation from Weka
SVMG SMO with RBFKernel implementation from Weka
LogR Logistic implementation from Weka

Table 2: Classifiers used in the experiments.

function) kernel of the form K(xi,x j) = exp(−γ||xi− x j||2). Following established practice (see
Hsu et al., 2003), we used a grid-search on the penalty parameter C and the RBF kernel parameter
γ, using cross-validation. For linear and polynomial kernels we selected C from [10−1,1,10,102]
by using 5-fold cross-validation on the training set. For the RBF kernel we selected C and γ from
[10−1,1,10,102] and [10−3,10−2,10−1,1,10], respectively, by using 5-fold cross-validation on the
training set.

The accuracy of each classifier is defined as the percentage of successful predictions on the
test sets in each data set. As suggested by Friedman et al. (1997), accuracy was measured via the
holdout method for larger training sets, and via stratified five-fold cross-validation for smaller ones,
using the methods described by Kohavi (1995). Throughout the experiments, we used the same
cross-validation folds for every classifier. Scatter plots of the accuracies of the proposed methods
against the others are depicted in Figure 4 and Figure 5. Points above the diagonal line represent
cases where the method shown in the vertical axis performs better than the one on the horizontal
axis. Crosses over the points depict the standard deviation. The standard deviation is computed
according to the binomial formula

√
acc× (1−acc)/m, where acc is the classifier accuracy and,

for the cross-validation tests, m is the size of the data set. For the case of holdout tests, m is the
size of the test set. Tables with the accuracies and standard deviations can be found at the fCLL
webpage.

We compare the performance of the classifiers using Wilcoxon signed-rank tests, using the same
procedure as Grossman and Domingos (2004). This test is applicable when paired classification ac-
curacy differences, along the data sets, are independent and non-normally distributed. Alternatively,
a paired t-test could be used, but as the Wilcoxon signed-rank test is more conservative than the
paired t-test, we apply the former. Results are depicted in Table 3 and Table 4. Each entry of Ta-
ble 3 and Table 4 gives the Z-score and p-value of the significance test for the corresponding pairs

2198

FACTORIZED CONDITIONAL LOG-LIKELIHOOD

Figure 4: Scatter plots of the accuracy of Bayesian network-based classifiers.

of classifiers. The arrow points towards the learning algorithm that yields superior classification
performance. A double arrow is used if the difference is significant with p-value smaller than 0.05.

Over all, TAN-f̂CLL-OFE and GHC-f̂CLL-OFE performed the best (Tables 3–4). They outper-
formed C4.5, the nearest neighbor classifiers, and logistic regression, as well as the generatively-
trained Bayesian network classifiers, TAN-LL-OFE and GHC-LL-OFE, all differences being sta-
tistically significant at the p < 0.05 level. On the other hand, TAN-âCLL-OFE did not stand out
compared to most of the other methods. Moreover, TAN-f̂CLL-OFE and GHC-f̂CLL-OFE classi-
fiers fared sightly better than TAN-LL-ELR and the SVM classifiers, although the difference was
not statistically significant. In these cases, the only practically relevant factor is computational
efficiency.

To roughly characterize the computational complexity of learning the various classifiers, we
measured the total time required by each classifier to process all the 25 data sets.6 Most of the
methods only took a few seconds (∼ 1− 3 seconds), except for TAN-âCLL-OFE which took a
few minutes (∼ 2− 3 minutes), SVM with linear kernel which took some minutes (∼ 17− 18
minutes), TAN-LL-ELR and SVM with polynomial kernel which took a few hours (∼ 1−2 hours)
and, finally, logistic regression and SVM with RBF kernel which took several hours (∼ 18− 32
hours). In the case of TAN-âCLL-OFE, the slightly increased computation time was likely caused
by the Mathematica package, which is not intended for numerical computation. In theory, the
computational complexity of TAN-âCLL-OFE is of the same order as TAN-LL-OFE or TAN-f̂CLL-

6. Reporting the total time instead of the individual times for each data set will emphasize the significance of the larger
data sets. However, the individual times were in accordance with the general conclusion drawn from the total time.

2199

CARVALHO, ROOS, OLIVEIRA AND MYLLYMÄKI

Figure 5: The accuracy of the proposed methods vs. state-of-the-art classifiers.

2200

FACTORIZED CONDITIONAL LOG-LIKELIHOOD

Classifier GHC2 TAN GHC2 TAN TAN
Struct. f̂CLL âCLL LL LL LL
Param. OFE OFE OFE OFE ELR

TAN 0.37 1.44 2.13 2.13 0.31
f̂CLL 0.36 0.07 0.02 0.02 0.38
OFE ← ← ⇐ ⇐ ←
GHC2 1.49 2.26 2.21 0.06
f̂CLL 0.07 0.01 0.01 0.48
OFE ← ⇐ ⇐ ←
TAN 0.04 -0.34 -1.31
âCLL 0.48 0.37 0.10
OFE ← ↑ ↑

Table 3: Comparison of the Bayesian network classifiers against each other, using the Wilcoxon
signed-rank test. Each cell of the array gives the Z-score (top) and the corresponding p-
value (middle). Arrow points towards the better method, double arrow indicates statistical
significance at level p< 0.05.

Classifier C4.5 1-NN 3-NN 5-NN SVM SVM2 SVMG LogR

TAN 3.00 2.25 2.16 2.07 0.43 0.61 0.21 1.80
f̂CLL <0.01 0.01 0.02 0.02 0.33 0.27 0.42 0.04
OFE ⇐ ⇐ ⇐ ⇐ ← ← ← ⇐
GHC2 3.00 2.35 2.20 2.19 0.39 0.74 0.11 1.65
f̂CLL <0.01 <0.01 0.01 0.01 0.35 0.23 0.45 0.05
OFE ⇐ ⇐ ⇐ ⇐ ← ← ← ⇐
TAN 2.26 1.34 1.17 1.31 -0.40 -0.29 -0.55 1.37
âCLL 0.01 0.09 0.12 0.09 0.35 0.38 0.29 0.09
OFE ⇐ ← ← ← ↑ ↑ ↑ ←

Table 4: Comparison of the Bayesian network classifiers against other classifiers. Conventions
identical to those in Table 3.

OFE:O(n2 logn) in the number of features and linear in the number of instances, see Friedman et al.
(1997).

Concerning TAN-LL-ELR, the difference is caused by the discriminative parameter learning
method (ELR), which is computationally expensive. In our experiments, TAN-LL-ELR was 3 order
of magnitude slower than TAN-f̂CLL-OFE. Su and Zhang (2006) report a difference of 6 orders of
magnitude, but different data sets were used in their experiments. Likewise, the high computational
cost of SVMs was expected. Selection of the regularization parameter using cross-tuning further

2201

CARVALHO, ROOS, OLIVEIRA AND MYLLYMÄKI

increases the cost. In our experiments, SVMs were clearly slower than f̂CLL-based classifiers.
Furthermore, in terms of memory, SVMs with polynomial and RBF kernels, as well as logistic
regression, required that the available memory was increased to 1 GB of memory, whereas all other
classifiers coped with the default 128 MB.

6. Conclusions and Future Work

We proposed a new decomposable scoring criterion for classification tasks. The new score, called
factorized conditional log-likelihood, f̂CLL, is based on an approximation of conditional
log-likelihood. The new criterion is decomposable, score-equivalent, and allows efficient estima-
tion of both structure and parameters. The computational complexity of the proposed method is
of the same order as the traditional log-likelihood criterion. Moreover, the criterion is specifically
designed for discriminative learning.

The merits of the new scoring criterion were evaluated and compared to those of common state-
of-the-art classifiers, on a large suite of benchmark data sets from the UCI repository. Optimal
f̂CLL-scored tree-augmented naive Bayes (TAN) classifiers, as well as somewhat more general
structures (referred to above as GHC2), performed better than generatively-trained Bayesian net-
work classifiers, as well as C4.5, nearest neighbor, and logistic regression classifiers, with statistical
significance. Moreover, f̂CLL-optimized classifiers performed better, although the difference is not
statistically significant, than those where the Bayesian network parameters were optimized using an
earlier discriminative criterion (ELR), as well as support vector machines (with linear, polynomial
and RBF kernels). In comparison to the latter methods, our method is considerably more efficient
in terms of computational cost, taking 2 to 3 orders of magnitude less time for the data sets in our
experiments.

Directions for future work include: studying in detail the asymptotic behavior of f̂CLL for TAN
and more general models; combining our intermediate approximation, aCLL, with discriminative
parameter estimation (ELR); extending aCLL and f̂CLL to mixture models; and applications in data
clustering.

Acknowledgments

The authors are grateful to the invaluable comments by the anonymous referees. The authors thank
Vtor Rocha Vieira, from the Physics Department at IST/TULisbon, for his enthusiasm in cross-
checking the analytical integration of the first approximation, and Mrio Figueiredo, from the Elec-
trical Engineering at IST/TULisbon, for his availability in helping with concerns that appeared with
respect to this work.

The work of AMC and ALO was partially supported by FCT (INESC-ID multiannual funding)
through the PIDDAC Program funds. The work of AMC was also supported by FCT and EU
FEDER via project PneumoSyS (PTDC/SAU-MII/100964/2008). The work of TR and PM was
supported in part by the Academy of Finland (Projects MODEST and PRIME) and the European
Commission Network of Excellence PASCAL.

Availability: Supplementary material including program code and the data sets used in the experi-
ments can be found at http://kdbio.inesc-id.pt/˜asmc/software/fCLL.html.

2202

FACTORIZED CONDITIONAL LOG-LIKELIHOOD

Appendix A. Detailed Proofs

Proof (Theorem 1)We have that

Sp(α,β,γ) =

p∫

0

p∫

0

1
p2

(
log

(
x

x+ y

)
− (α log(x)+β log(y)+ γ)

)2
dydx

=
1

12ln(2)2
(−π2(−1+α+β)

+6(2+4α2+4β2−4ln(2)−2γ ln(2)+4ln(2)2+8γ ln(2)2+2γ2 ln2(2)
+β(5−4(2+ γ) ln(2))+α(1+4β−4(2+ γ) ln(2)))

−12(α+β)(1+2α+2β−4ln(2)−2γ ln(2)) ln(p)+12(α+β)2 ln2(p)).

Moreover, ∇.Sp = 0 iff

α =
π2+6
24

,

β =
π2−18
24

,

γ =
π2

12ln(2)
−
(
2+

(π2−6) log(p)
12

)
,

which coincides exactly with (8), (9) and (10), respectively. Now to show that (8), (9) and (10)
define a global minimum, take δ= (α log(p)+β log(p)+ γ) and notice that

Sp(α,β,γ) =

p∫

0

p∫

0

1
p2

(
log

(
x

x+ y

)
− (α log(x)+β log(y)+ γ)

)2
dydx

=

1∫

0

1∫

0

1
p2

(
log

(
px

px+ py

)
− (α log(px)+β log(py)+ γ)

)2
p2dydx

=

1∫

0

1∫

0

(
log

(
x

x+ y

)
− (α log(x)+β log(y)+(α log(p)+β log(p)+ γ))

)2
dydx

=

1∫

0

1∫

0

(
log

(
x

x+ y

)
− (α log(x)+β log(y)+δ)

)2
dydx

= S1(α,β,δ).

So, Sp has a minimum at (8), (9) and (10) iff S1 has a minimum at (8), (9) and

δ=
π2

12ln(2)
−2.

The Hessian of S1 is ⎛⎜⎝
4

ln2(2)
2

ln2(2)
− 2
ln(2)

2
ln2(2)

4
ln2(2)

− 2
ln(2)

− 2
ln(2) − 2

ln(2) 2

⎞⎟⎠
2203

CARVALHO, ROOS, OLIVEIRA AND MYLLYMÄKI

and its eigenvalues are

rcle1 =
3+ ln2(2)+

√
9+2ln2(2)+ ln(2)4

ln2(2)
,

e2 =
2

ln2(2)
,

e3 =
3+ ln2(2)−

√
9+2ln2(2)+ ln(2)4

ln2(2)
,

which are all positive. Thus, S1 has a local minimum in (α,β,δ) and, consequently, Sp has a local
minimum in (α,β,γ). Since ∇.Sp has only one zero, (α,β,γ) is a global minimum of Sp. �

Proof (Theorem 2)We have that

p∫

0

p∫

0

1
p2

(
log

(
x

x+ y

)
− (α log(x)+β log(y)+ γ)

)
dydx= 0

for α,β and γ defined as in (8), (9) and (10). Since the MSE coincides with the variance for any
unbiased estimator, the proposed approximation is the one with minimum variance. �

Proof (Theorem 3)We have that√√√√√ p∫

0

p∫

0

1
p2

(
log

(
x

x+ y

)
− (α log(x)+β log(y)+ γ)

)2
dydx=

√
36+36π2−π4
288ln2(2)

−2

for α,β and γ defined as in (8), (9) and (10), which concludes the proof. �

For the proof of Theorem 4, we recall Gibb’s inequality.

Lemma 8 (Gibb’s inequality) Let P(x) and Q(x) be two probability distributions over the same
domain, then

∑
x
P(x) log(Q(x))≤∑

x
P(x) log(P(x)).

Proof (Theorem 4) We now take advantage of Gibb’s inequality to show that the parameters that
maximize the f (B | D) are those given by the OFE. Observe that

f (B | D) = λ
n

∑
i=1

q∗i

∑
j=1

ri

∑
k=1

1

∑
c=0

Ni jck log

(
Ni jcθi jck

Ni jcθi jck+Ni j(1−c)θi j(1−c)k

)
− log

(
Ni jc
Ni j∗

)

= K+λ
n

∑
i=1

q∗i

∑
j=1

ri

∑
k=1

Ni j∗k
1

∑
c=0

Ni jck
Ni j∗k

log

(
Ni jcθi jck

Ni jcθi jck+Ni j(1−c)θi j(1−c)k

)
, (29)

2204

FACTORIZED CONDITIONAL LOG-LIKELIHOOD

where K is a constant that does not depend on the parameters θi jck, and therefore, can be ignored.
Moreover, if we take the OFE for the parameters, we have

θ̂i jck =
Ni jkc
Ni jc

and θ̂i j(1−c)k =
Ni jk(1−c)
Ni j(1−c)

.

By plugging the OFE estimates in (29) we obtain

f̂ (G | D) = K+λ
n

∑
i=1

q∗i

∑
j=1

ri

∑
k=1

Ni j∗c
1

∑
c=0

Ni jck
Ni j∗k

log

⎛⎝ Ni jc
Ni jck
Ni jc

Ni jc
Ni jck
Ni jc

+Ni j(1−c)
Ni j(1−c)k
Ni j(1−c)

⎞⎠
= K+λ

n

∑
i=1

qi

∑
j=1

ri

∑
k=1

Ni j∗k
1

∑
c=0

Ni jck
Ni j∗k

log

(
Ni jck
Ni j∗k

)
.

According to Gibb’s inequality, this is the maximum value that f (B | D) can attain, and therefore,
the parameters that maximize f (B | D) are those given by the OFE. �

Proof (Theorem 5)We have that

S(λ,ρ) =

1∫

0

(
log

(
x

1− x
)
− (λ log(x)+ρ)

)2
dx=

6λ2+π2+3ρ2 ln2(2)−λ(π2+6ρ ln(2))
3ln2(2)

.

Moreover ∇.S= 0 iff
λ = π2

6 ,

ρ = π2
6 ln(2) ,

which coincides with (18) and (19), respectively. The Hessian of S is(
4

ln2(2)
− 2
ln(2) ,

− 2
ln(2) 2

)

with eigenvalues

2+ ln2(2)±
√
4+ ln4(2)

ln2(2)

which are both positive. Hence, there is only one minimum, and (λ,ρ) is the global minimum. �

Proof (Theorem 6)We have that

1∫

0

(
log

(
x

1− x
)
− (λ log(x)+ρ)

)
dx= 0

for λ and ρ defined as in Equations (18) and (19). Since the MSE coincides with the variance for
any unbiased estimator, the proposed approximation is the one with minimum variance. �

Proof (Theorem 7) By Theorem 2 in Chickering (1995), it is enough to show that for graphs G1
and G2 differing only on reversing one covered edge, we have that f̂CLL(G1 | D) = f̂CLL(G2 | D).

2205

CARVALHO, ROOS, OLIVEIRA AND MYLLYMÄKI

Assume that X → Y occurs in G1 and Y → X occurs in G2 and that X → Y is covered, that is,
ΠG1
Y = ΠG1

X ∪{X}. Since we are only dealing with augment naive Bayes classifiers, X and Y are
different from C and so we also have Π∗G1Y = Π∗G1X ∪{X}. Moreover, take G0 to be the graph G1
without the edge X → Y (which is the same as graph G2 without the edge Y → X). Then, we have
that Π∗G0X =Π∗G0Y =Π∗G0 and, moreover, the following equalities hold:

Π∗G1X =Π∗G0 ; Π∗G2Y =Π∗G0 ;

Π∗G1Y =Π∗G0 ∪{X}; Π∗G2X =Π∗G0 ∪{Y}.
Since f̂CLL is a local scoring criterion, f̂CLL(G1 | D) can be computed from f̂CLL(G0 | D) taking
only into account the difference in the contribution of node Y . In this case, by Equation (27), it
follows that

f̂CLL(G1 | D) = f̂CLL(G0 | D)− ((α+β)NIP̂D(Y ;Π
∗G0 |C)−βλNIP̂D(Y ;Π∗G0 ;C))

+((α+β)NIP̂D(Y ;Π
∗G1
Y |C)−βλNIP̂D(Y ;Π∗G1Y ;C))

= f̂CLL(G0 | D)+(α+β)N(IP̂D(Y ;Π
∗G0 ∪{X} |C)− IP̂D(Y ;Π∗G0 |C))

−βλN(IP̂D(Y ;Π∗G0 ∪{X};C)− IP̂D(Y ;Π∗G0 ;C))
and, similarly, that

f̂CLL(G2 | D) = f̂CLL(G0 | D)+(α+β)N(IP̂D(X ;Π
∗G0 ∪{Y} |C)− IP̂D(X ;Π∗G0 |C))+

−βλN(IP̂D(X ;Π∗G0 ∪{Y};C)− IP̂D(X ;Π∗G0 ;C)).
To show that f̂CLL(G1 | D) = f̂CLL(G2 | D) it suffices to prove that

IP̂D(Y ;Π
∗G0 ∪{X} |C)− IP̂D(Y ;Π∗G0 |C) = IP̂D(X ;Π

∗G0 ∪{Y} |C)− IP̂D(X ;Π∗G0 |C) (30)

and that

IP̂D(Y ;Π
∗G0 ∪{X};C)− IP̂D(Y ;Π∗G0 ;C) = IP̂D(X ;Π

∗G0 ∪{Y};C))− IP̂D(X ;Π∗G0 ;C). (31)

We start by showing (30). In this case, by definition of conditional mutual, we have that

IP̂D(Y ;Π
∗G0 ∪{X} |C)− IP̂D(Y ;Π∗G0 |C) =

= HP̂D(Y |C)+HP̂D(Π
∗G0 ∪{X} |C)−HP̂D(Π∗G0 ∪{X ,Y} |C)−HP̂D(Y |C)+

−HP̂D(Π∗G0 |C)+HP̂D(Π
∗G0 ∪{Y} |C)

=−HP̂D(Π∗G0 |C)+HP̂D(Π
∗G0 ∪{X} |C)+HP̂D(Π

∗G0 ∪{Y} |C)−HP̂D(Π∗G0 ∪{X ,Y} |C)
= IP̂D(X ;Π

∗G0 ∪{Y} |C)− IP̂D(X ;Π∗G0 |C).
Finally, each term in (31) is, by definition, given by

IP̂D(Y ;Π
∗G0 ∪{X};C) = IP̂D(Y ;Π

∗G0 ∪{X} |C)− IP̂D(Y ;Π∗G0 ∪{X})︸ ︷︷ ︸
E1

IP̂D(Y ;Π
∗G0 ;C) = IP̂D(Y ;Π

∗G0 |C)− IP̂D(Y ;Π∗G0)︸ ︷︷ ︸
E2

IP̂D(X ;Π
∗G0 ∪{Y};C) = IP̂D(X ;Π

∗G0 ∪{Y} |C)− IP̂D(X ;Π∗G0 ∪{Y})︸ ︷︷ ︸
E3

IP̂D(X ;Π
∗G0 ;C) = IP̂D(X ;Π

∗G0 |C)− IP̂D(X ;Π∗G0︸ ︷︷ ︸
E4

).

2206

FACTORIZED CONDITIONAL LOG-LIKELIHOOD

Since by definition of mutual information we have that

IP̂D(Y ;Π
∗G0 ∪{X})− IP̂D(Y ;Π∗G0) =

= HP̂D(Y)+HP̂D(Π
∗G0 ∪{X})−HP̂D(Π∗G0 ∪{X ,Y})−HP̂D(Y)−HP̂D(Π∗G0)+

+HP̂D(Π
∗G0 ∪{Y})

=−HP̂D(Π∗G0)+HP̂D(Π
∗G0 ∪{X})+HP̂D(Π

∗G0 ∪{Y})− xHP̂D(Π∗G0 ∪{X ,Y})
= IP̂D(X ;Π

∗G0 ∪{Y})− IP̂D(X ;Π∗G0),

we know that E1−E2 = E3−E4. Thus, to prove the identity (31) it remains to show that

IP̂D(Y ;Π
∗G0 ∪{X} |C)− IP̂D(Y ;Π∗G0 |C) = IP̂D(X ;Π

∗G0 ∪{Y} |C)− IP̂D(X ;Π∗G0 |C),

which was already shown (in Equation (30)). This concludes the proof. �

Appendix B. Alternative Justification for Assumption 1

Observe that in the case at hand, we have some information aboutUt and Vt , namely the number of
times, say NUt and NVt , respectively, thatUt and Vt occur in the data set D. Moreover, we also have
the number of times, say NRt = N− (NUt +NVt), that Rt is found in D. Given these observations, the
posterior distribution of (Ut ,Vt) under a uniform prior is

(Ut ,Vt)∼ Dirichlet(NUt +1,NVt +1,NRt +1). (32)

Furthermore, we know that NUt and NVt are, in general, a couple (or more) orders of magnitude
smaller than NRt . Due to this fact, most of all probability mass of (32) is found in the square
[0, p]× [0, p] for some small p.

Take as an example the (typical) case where NUt = 1, NVt = 0, N = 500 and

p= E[Ut]+
√
Var[Ut]≈ E[Vt]+

√
Var[Vt],

and compare the cumulative distribution of Uniform([0, p]× [0, p]) with the cumulative distribution
of Dirichlet(NUt +1,NVt +1,NRt +1). (We provide more details in the supplementary material web-
page.) Whenever NRt is much larger than NUt and NVt , the cumulative distribution Dirichlet(NUt +
1,NVt +1,NRt +1) is close to that of the uniform distribution Uniform([0, p]× [0, p]) for some small
p, and hence, we obtain approximately Assumption 1.

Concerning independence, and by assuming that the distribution of (Ut ,Vt) is given by Equa-
tion (32), it results from the neutrality property of the Dirichlet distribution that

Vt ⊥⊥ Ut
1−Vt .

Since Vt is very small we have

Vt ⊥⊥ Ut
1−Vt ≈Ut .

Therefore, it is reasonable to assume thatUt and Vt are (approximately) independent.

2207

CARVALHO, ROOS, OLIVEIRA AND MYLLYMÄKI

References

A. J. Bell. The co-information lattice. In Proc. ICA’03, pages 921–926, 2003.

J. Bilmes. Dynamic Bayesian multinets. In Proc. UAI’00, pages 38–45. Morgan Kaufmann, 2000.

A. M. Carvalho. Scoring function for learning Bayesian networks. Technical report, INESC-ID
Tec. Rep. 54/2009, 2009.

A. M. Carvalho, A. L. Oliveira, and M.-F. Sagot. Efficient learning of Bayesian network classifiers:
An extension to the TAN classifier. In M. A. Orgun and J. Thornton, editors, Proc. IA’07, volume
4830 of LNCS, pages 16–25. Springer, 2007.

D. M. Chickering. A transformational characterization of equivalent Bayesian network structures.
In Proc. UAI’95, pages 87–98. Morgan Kaufmann, 1995.

D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and H.-J. Lenz,
editors, Learning from Data: AI and Statistics V, pages 121–130. Springer, 1996.

D. M. Chickering. Learning equivalence classes of Bayesian-network structures. Journal of Ma-
chine Learning Research, 2:445–498, 2002.

D. M. Chickering, D. Heckerman, and C. Meek. Large-sample learning of Bayesian networks is
NP-hard. Journal of Machine Learning Research, 5:1287–1330, 2004.

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees.
IEEE Transactions on Information Theory, 14(3):462–467, 1968.

T. Cover and J. Thomas. Elements of Information Theory. John Wiley & Sons, 2006.

S. Dasgupta. Learning polytrees. In Proc. UAI’99, pages 134–141. Morgan Kaufmann, 1999.

L. M. de Campos. A scoring function for learning Bayesian networks based on mutual information
and conditional independence tests. Journal of Machine Learning Research, 7:2149–2187, 2006.

P. Domingos and M. J. Pazzani. On the optimality of the simple Bayesian classifier under zero-one
loss. Machine Learning, 29(2–3):103–130, 1997.

J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of Standards, 71B:
233–240, 1967.

U. M. Fayyad and K. B. Irani. Multi-interval discretization of continuous-valued attributes for
classification learning. In Proc. IJCAI’93, pages 1022–1029. Morgan Kaufmann, 1993.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning, 29
(2-3):131–163, 1997.

R. Greiner and W. Zhou. Structural extension to logistic regression: Discriminative parameter
learning of belief net classifiers. In Proc. AAAI/IAAI’02, pages 167–173. AAAI Press, 2002.

R. Greiner, X. Su, B. Shen, and W. Zhou. Structural extension to logistic regression: Discriminative
parameter learning of belief net classifiers. Machine Learning, 59(3):297–322, 2005.

2208

FACTORIZED CONDITIONAL LOG-LIKELIHOOD

D. Grossman and P. Domingos. Learning Bayesian network classifiers by maximizing conditional
likelihood. In Proc. ICML’04, pages 46–53. ACM Press, 2004.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA data
mining software: An update. SIGKDD Explorations, 11(1):10–18, 2009.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20(3):197–243, 1995.

C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A practical guide to support vector classification. Technical
report, Department of Computer Science, National Taiwan University, 2003.

A. Jakulin. Machine Learning Based on Attribute Interactions. PhD thesis, University of Ljubljana,
2005.

R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection.
In Proc. IJCAI’95, pages 1137–1145. Morgan Kaufmann, 1995.

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):
273–324, 1997.

P. Kontkanen, P. Myllymäki, T. Silander, and H. Tirri. BAYDA: Software for Bayesian classification
and feature selection. In Proc. KDD’98, pages 254–258. AAAI Press, 1998.

E. Lawler. Combinatorial Optimization: Networks and Matroids. Dover, 1976.

W. J. McGill. Multivariate information transmission. Psychometrika, 19:97–116, 1954.

C. Meek. Finding a path is harder than finding a tree. Journal of Artificial Intelligence Research,
15:383–389, 2001.

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine learning
databases, 1998. URL http://www.ics.uci.edu/˜mlearn/MLRepository.html.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Francisco, CA, USA, 1988.

S. V. Pemmaraju and S. S. Skiena. Computational Discrete Mathematics: Combinatorics and Graph
Theory with Mathematica. Cambridge University Press, 2003.

F. Pernkopf and J. A. Bilmes. Discriminative versus generative parameter and structure learning of
Bayesian network classifiers. In Proc. ICML’05, pages 657–664. ACM Press, 2005.

T. Roos, H. Wettig, P. Grünwald, P. Myllymäki, and H. Tirri. On discriminative Bayesian network
classifiers and logistic regression. Machine Learning, 59(3):267–296, 2005.

T. Silander, T. Roos, and P. Myllymäki. Learning locally minimax optimal Bayesian networks.
International Journal of Approximate Reasoning, 51(5):544–557, 2010.

J. Su and H. Zhang. Full Bayesian network classifiers. In Proc. ICML’06, pages 897–904. ACM
Press, 2006.

2209

CARVALHO, ROOS, OLIVEIRA AND MYLLYMÄKI

J. Su, H. Zhang, C. X. Ling, and S. Matwin. Discriminative parameter learning for Bayesian net-
works. In Proc ICML’08, pages 1016–1023. ACM Press, 2008.

T. Verma and J. Pearl. Equivalence and synthesis of causal models. In Proc. UAI’90, pages 255–270.
Elsevier, 1990.

S. Yang and K.-C. Chang. Comparison of score metrics for Bayesian network learning. IEEE
Transactions on Systems, Man, and Cybernetics, Part A, 32(3):419–428, 2002.

2210

Journal of Machine Learning Research 12 (2011) 2211-2268 Submitted 12/09; Revised 9/10; Published 7/11

Multiple Kernel Learning Algorithms

Mehmet Gönen GONEN@BOUN.EDU.TR
Ethem Alpaydın ALPAYDIN@BOUN.EDU.TR
Department of Computer Engineering
Boğaziçi University
TR-34342 Bebek, İstanbul, Turkey

Editor: Francis Bach

Abstract
In recent years, several methods have been proposed to combine multiple kernels instead of using a
single one. These different kernels may correspond to using different notions of similarity or may
be using information coming from multiple sources (different representations or different feature
subsets). In trying to organize and highlight the similarities and differences between them, we give
a taxonomy of and review several multiple kernel learning algorithms. We perform experiments on
real data sets for better illustration and comparison of existing algorithms. We see that though there
may not be large differences in terms of accuracy, there is difference between them in complexity as
given by the number of stored support vectors, the sparsity of the solution as given by the number of
used kernels, and training time complexity. We see that overall, using multiple kernels instead of a
single one is useful and believe that combining kernels in a nonlinear or data-dependent way seems
more promising than linear combination in fusing information provided by simple linear kernels,
whereas linear methods are more reasonable when combining complex Gaussian kernels.
Keywords: support vector machines, kernel machines, multiple kernel learning

1. Introduction

The support vector machine (SVM) is a discriminative classifier proposed for binary classifica-
tion problems and is based on the theory of structural risk minimization (Vapnik, 1998). Given
a sample of N independent and identically distributed training instances {(xi,yi)}Ni=1 where xi is
the D-dimensional input vector and yi ∈ {−1,+1} is its class label, SVM basically finds the lin-
ear discriminant with the maximum margin in the feature space induced by the mapping function
Φ : RD→ R

S. The resulting discriminant function is

f (x) = 〈w,Φ(x)〉+b.

The classifier can be trained by solving the following quadratic optimization problem:

minimize
1
2
‖w‖22+C

N

∑
i=1

ξi

with respect to w ∈ R
S, ξ ∈ R

N
+, b ∈ R

subject to yi(〈w,Φ(xi)〉+b)≥ 1−ξi ∀i
where w is the vector of weight coefficients, C is a predefined positive trade-off parameter between
model simplicity and classification error, ξ is the vector of slack variables, and b is the bias term

c©2011 Mehmet Gönen and Ethem Alpaydın.

GÖNEN AND ALPAYDIN

of the separating hyperplane. Instead of solving this optimization problem directly, the Lagrangian
dual function enables us to obtain the following dual formulation:

maximize
N

∑
i=1

αi− 12
N

∑
i=1

N

∑
j=1

αiα jyiy j 〈Φ(xi),Φ(x j)〉︸ ︷︷ ︸
k(xi,x j)

with respect to α ∈ R
N
+

subject to
N

∑
i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i

where k : RD×R
D → R is named the kernel function and α is the vector of dual variables corre-

sponding to each separation constraint. Solving this, we getw=∑N
i=1αiyiΦ(xi) and the discriminant

function can be rewritten as

f (x) =
N

∑
i=1

αiyik(xi,x)+b.

There are several kernel functions successfully used in the literature, such as the linear kernel
(kLIN), the polynomial kernel (kPOL), and the Gaussian kernel (kGAU):

kLIN(xi,x j) = 〈xi,x j〉
kPOL(xi,x j) = (〈xi,x j〉+1)q, q ∈ N

kGAU(xi,x j) = exp
(−‖xi−x j‖22/s2) , s ∈ R++.

There are also kernel functions proposed for particular applications, such as natural language pro-
cessing (Lodhi et al., 2002) and bioinformatics (Schölkopf et al., 2004).

Selecting the kernel function k(·, ·) and its parameters (e.g., q or s) is an important issue in train-
ing. Generally, a cross-validation procedure is used to choose the best performing kernel function
among a set of kernel functions on a separate validation set different from the training set. In recent
years, multiple kernel learning (MKL) methods have been proposed, where we use multiple kernels
instead of selecting one specific kernel function and its corresponding parameters:

kη(xi,x j) = fη({km(xmi ,xmj)}Pm=1)

where the combination function, fη : RP→R, can be a linear or a nonlinear function. Kernel func-
tions, {km : RDm ×R

Dm → R}Pm=1, take P feature representations (not necessarily different) of data
instances: xi= {xmi }Pm=1 where xmi ∈R

Dm , andDm is the dimensionality of the corresponding feature
representation. η parameterizes the combination function and the more common implementation is

kη(xi,x j) = fη({km(xmi ,xmj)}Pm=1|η)

where the parameters are used to combine a set of predefined kernels (i.e., we know the kernel
functions and corresponding kernel parameters before training). It is also possible to view this as

kη(xi,x j) = fη({km(xmi ,xmj |η)}Pm=1)

2212

MULTIPLE KERNEL LEARNING ALGORITHMS

where the parameters integrated into the kernel functions are optimized during training. Most of
the existing MKL algorithms fall into the first category and try to combine predefined kernels in an
optimal way. We will discuss the algorithms in terms of the first formulation but give the details of
the algorithms that use the second formulation where appropriate.

The reasoning is similar to combining different classifiers: Instead of choosing a single kernel
function and putting all our eggs in the same basket, it is better to have a set and let an algorithm
do the picking or combination. There can be two uses of MKL: (a) Different kernels correspond to
different notions of similarity and instead of trying to find which works best, a learning method does
the picking for us, or may use a combination of them. Using a specific kernel may be a source of
bias, and in allowing a learner to choose among a set of kernels, a better solution can be found. (b)
Different kernels may be using inputs coming from different representations possibly from different
sources or modalities. Since these are different representations, they have different measures of
similarity corresponding to different kernels. In such a case, combining kernels is one possible way
to combine multiple information sources. Noble (2004) calls this method of combining kernels
intermediate combination and contrasts this with early combination (where features from different
sources are concatenated and fed to a single learner) and late combination (where different features
are fed to different classifiers whose decisions are then combined by a fixed or trained combiner).

There is significant amount of work in the literature for combining multiple kernels. Section 2
identifies the key properties of the existing MKL algorithms in order to construct a taxonomy,
highlighting similarities and differences between them. Section 3 categorizes and discusses the
existing MKL algorithms with respect to this taxonomy. We give experimental results in Section 4
and conclude in Section 5. The lists of acronyms and notation used in this paper are given in
Appendices A and B, respectively.

2. Key Properties of Multiple Kernel Learning

We identify and explain six key properties of the existing MKL algorithms in order to obtain a
meaningful categorization. We can think of these six dimensions (though not necessarily orthogo-
nal) defining a space in which we can situate the existing MKL algorithms and search for structure
(i.e., groups) to better see the similarities and differences between them. These properties are the
learning method, the functional form, the target function, the training method, the base learner, and
the computational complexity.

2.1 The Learning Method

The existing MKL algorithms use different learning methods for determining the kernel combina-
tion function. We basically divide them into five major categories:

1. Fixed rules are functions without any parameters (e.g., summation or multiplication of the
kernels) and do not need any training.

2. Heuristic approaches use a parameterized combination function and find the parameters of
this function generally by looking at some measure obtained from each kernel function sepa-
rately. These measures can be calculated from the kernel matrices or taken as the performance
values of the single kernel-based learners trained separately using each kernel.

2213

GÖNEN AND ALPAYDIN

3. Optimization approaches also use a parametrized combination function and learn the parame-
ters by solving an optimization problem. This optimization can be integrated to a kernel-based
learner or formulated as a different mathematical model for obtaining only the combination
parameters.

4. Bayesian approaches interpret the kernel combination parameters as random variables, put
priors on these parameters, and perform inference for learning them and the base learner
parameters.

5. Boosting approaches, inspired from ensemble and boosting methods, iteratively add a new
kernel until the performance stops improving.

2.2 The Functional Form

There are different ways in which the combination can be done and each has its own combination
parameter characteristics. We group functional forms of the existing MKL algorithms into three
basic categories:

1. Linear combinationmethods are the most popular and have two basic categories: unweighted
sum (i.e., using sum or mean of the kernels as the combined kernel) and weighted sum. In the
weighted sum case, we can linearly parameterize the combination function:

kη(xi,x j) = fη({km(xmi ,xmj)}Pm=1|η) =
P

∑
m=1

ηmkm(xmi ,x
m
j)

where η denotes the kernel weights. Different versions of this approach differ in the way
they put restrictions on η: the linear sum (i.e., η ∈ R

P), the conic sum (i.e., η ∈ R
P
+), or

the convex sum (i.e., η ∈ R
P
+ and ∑

P
m=1ηm = 1). As can be seen, the conic sum is a special

case of the linear sum and the convex sum is a special case of the conic sum. The conic
and convex sums have two advantages over the linear sum in terms of interpretability. First,
when we have positive kernel weights, we can extract the relative importance of the combined
kernels by looking at them. Second, when we restrict the kernel weights to be nonnegative,
this corresponds to scaling the feature spaces and using the concatenation of them as the
combined feature representation:

Φη(x) =

⎛⎜⎜⎜⎝
√
η1Φ1(x1)√
η2Φ2(x2)
...√

ηPΦP(xP)

⎞⎟⎟⎟⎠
and the dot product in the combined feature space gives the combined kernel:

〈Φη(xi),Φη(x j)〉=

⎛⎜⎜⎜⎝
√
η1Φ1(x1i)√
η2Φ2(x2i)
...√

ηPΦP(xPi)

⎞⎟⎟⎟⎠
�⎛⎜⎜⎜⎝

√
η1Φ1(x1j)√
η2Φ2(x2j)
...√

ηPΦP(xPj)

⎞⎟⎟⎟⎠=
P

∑
m=1

ηmkm(xmi ,x
m
j).

2214

MULTIPLE KERNEL LEARNING ALGORITHMS

The combination parameters can also be restricted using extra constraints, such as the �p-
norm on the kernel weights or trace restriction on the combined kernel matrix, in addition
to their domain definitions. For example, the �1-norm promotes sparsity on the kernel level,
which can be interpreted as feature selection when the kernels use different feature subsets.

2. Nonlinear combination methods use nonlinear functions of kernels, namely, multiplication,
power, and exponentiation.

3. Data-dependent combination methods assign specific kernel weights for each data instance.
By doing this, they can identify local distributions in the data and learn proper kernel combi-
nation rules for each region.

2.3 The Target Function

We can optimize different target functions when selecting the combination function parameters. We
group the existing target functions into three basic categories:

1. Similarity-based functions calculate a similarity metric between the combined kernel matrix
and an optimum kernel matrix calculated from the training data and select the combination
function parameters that maximize the similarity. The similarity between two kernel ma-
trices can be calculated using kernel alignment, Euclidean distance, Kullback-Leibler (KL)
divergence, or any other similarity measure.

2. Structural risk functions follow the structural risk minimization framework and try to mini-
mize the sum of a regularization term that corresponds to the model complexity and an error
term that corresponds to the system performance. The restrictions on kernel weights can be
integrated into the regularization term. For example, structural risk function can use the �1-
norm, the �2-norm, or a mixed-norm on the kernel weights or feature spaces to pick the model
parameters.

3. Bayesian functionsmeasure the quality of the resulting kernel function constructed from can-
didate kernels using a Bayesian formulation. We generally use the likelihood or the posterior
as the target function and find the maximum likelihood estimate or the maximum a posteriori
estimate to select the model parameters.

2.4 The Training Method

We can divide the existing MKL algorithms into two main groups in terms of their training method-
ology:

1. One-step methods calculate both the combination function parameters and the parameters
of the combined base learner in a single pass. One can use a sequential approach or a si-
multaneous approach. In the sequential approach, the combination function parameters are
determined first, and then a kernel-based learner is trained using the combined kernel. In the
simultaneous approach, both set of parameters are learned together.

2. Two-step methods use an iterative approach where each iteration, first we update the combi-
nation function parameters while fixing the base learner parameters, and then we update the
base learner parameters while fixing the combination function parameters. These two steps
are repeated until convergence.

2215

GÖNEN AND ALPAYDIN

2.5 The Base Learner

There are many kernel-based learning algorithms proposed in the literature and all of them can be
transformed into an MKL algorithm, in one way or another.

The most commonly used base learners are SVM and support vector regression (SVR), due
to their empirical success, their ease of applicability as a building block in two-step methods, and
their ease of transformation to other optimization problems as a one-step training method using the
simultaneous approach. Kernel Fisher discriminant analysis (KFDA), regularized kernel discrimi-
nant analysis (RKDA), and kernel ridge regression (KRR) are three other popular methods used in
MKL.

Multinomial probit and Gaussian process (GP) are generally used in Bayesian approaches. New
inference algorithms are developed for modified probabilistic models in order to learn both the
combination function parameters and the base learner parameters.

2.6 The Computational Complexity

The computational complexity of an MKL algorithm mainly depends on its training method (i.e.,
whether it is one-step or two-step) and the computational complexity of its base learner.

One-step methods using fixed rules and heuristics generally do not spend much time to find the
combination function parameters, and the overall complexity is determined by the complexity of the
base learner to a large extent. One-step methods that use optimization approaches to learn combina-
tion parameters have high computational complexity, due to the fact that they are generally modeled
as a semidefinite programming (SDP) problem, a quadratically constrained quadratic programming
(QCQP) problem, or a second-order cone programming (SOCP) problem. These problems are
much harder to solve than a quadratic programming (QP) problem used in the case of the canonical
SVM.

Two-step methods update the combination function parameters and the base learner parameters
in an alternating manner. The combination function parameters are generally updated by solving
an optimization problem or using a closed-form update rule. Updating the base learner parameters
usually requires training a kernel-based learner using the combined kernel. For example, they can
be modeled as a semi-infinite linear programming (SILP) problem, which uses a generic linear
programming (LP) solver and a canonical SVM solver in the inner loop.

3. Multiple Kernel Learning Algorithms

In this section, we categorize the existing MKL algorithms in the literature into 12 groups de-
pending on the six key properties discussed in Section 2. We first give a summarizing table (see
Tables 1 and 2) containing 49 representative references and then give a more detailed discussion of
each group in a separate section reviewing a total of 96 references.

3.1 Fixed Rules

Fixed rules obtain kη(·, ·) using fη(·) and then train a canonical kernel machine with the kernel
matrix calculated using kη(·, ·). For example, we can obtain a valid kernel by taking the summation

2216

MULTIPLE KERNEL LEARNING ALGORITHMS

or multiplication of two valid kernels (Cristianini and Shawe-Taylor, 2000):

kη(xi,x j) = k1(x1i ,x
1
j)+ k2(x2i ,x

2
j)

kη(xi,x j) = k1(x1i ,x
1
j)k2(x

2
i ,x

2
j). (1)

We know that a matrix K is positive semidefinite if and only if υ�Kυ≥ 0, for all υ ∈R
N . Trivially,

we can see that k1(x1i ,x
1
j)+ k2(x2i ,x

2
j) gives a positive semidefinite kernel matrix:

υ�Kηυ= υ�(K1+K2)υ= υ�K1υ+υ�K2υ≥ 0
and k1(x1i ,x

1
j)k2(x

2
i ,x

2
j) also gives a positive semidefinite kernel due to the fact that the element-wise

product between two positive semidefinite matrices results in another positive semidefinite matrix:

υ�Kηυ= υ�(K1)K2)υ≥ 0.
We can apply the rules in (1) recursively to obtain the rules for more than two kernels. For

example, the summation or multiplication of P kernels is also a valid kernel:

kη(xi,x j) =
P

∑
m=1

km(xmi ,x
m
j)

kη(xi,x j) =
P

∏
m=1

km(xmi ,x
m
j).

Pavlidis et al. (2001) report that on a gene functional classification task, training an SVM with
an unweighted sum of heterogeneous kernels gives better results than the combination of multiple
SVMs each trained with one of these kernels.

We need to calculate the similarity between pairs of objects such as genes or proteins especially
in bioinformatics applications. Pairwise kernels are proposed to express the similarity between pairs
in terms of similarities between individual objects. Two pairs are said to be similar when each object
in one pair is similar to one object in the other pair. This approach can be encoded as a pairwise
kernel using a kernel function between individual objects, called the genomic kernel (Ben-Hur and
Noble, 2005), as follows:

kP({xai ,xaj},{xbi ,xbj}) = k(xai ,x
b
i)k(x

a
j ,x

b
j)+ k(xai ,x

b
j)k(x

a
j ,x

b
i).

Ben-Hur and Noble (2005) combine pairwise kernels in two different ways: (a) using an unweighted
sum of different pairwise kernels:

kPη({xai ,xaj},{xbi ,xbj}) =
P

∑
m=1

kPm({xai ,xaj},{xbi ,xbj})

and (b) using an unweighted sum of different genomic kernels in the pairwise kernel:

kPη({xai ,xaj},{xbi ,xbj})

=

(
P

∑
m=1

km(xai ,x
b
i)

)(
P

∑
m=1

km(xaj ,x
b
j)

)
+

(
P

∑
m=1

km(xai ,x
b
j)

)(
P

∑
m=1

km(xaj ,x
b
i)

)
= kη(xai ,x

b
i)kη(x

a
j ,x

b
j)+ kη(xai ,x

b
j)kη(x

a
j ,x

b
i).

The combined pairwise kernels improve the classification performance for protein-protein interac-
tion prediction task.

2217

GÖNEN AND ALPAYDIN

R
epresentative

L
earning

Functional
Target

T
raining

B
ase

C
om
putational

Sec.
R
eferences

M
ethod

Form
Function

M
ethod

L
earner

C
om
plexity

3.1
Pavlidis

etal.(2001)
Fixed

L
in.
(unw

ei.)
N
one

1-step
(seq.)

S
V
M

Q
P

B
en-H

ur
and

N
oble

(2005)
Fixed

L
in.
(unw

ei.)
N
one

1-step
(seq.)

S
V
M

Q
P

3.2
de
D
iego

etal.(2004,2010a)
H
euristic

N
onlinear

V
al.
error

2-step
S
V
M

Q
P

M
oguerza

etal.(2004);de
D
iego

etal.(2010a)
H
euristic

D
ata-dep.

N
one

1-step
(seq.)

S
V
M

Q
P

Tanabe
etal.(2008)

H
euristic

L
in.
(convex)

N
one

1-step
(seq.)

S
V
M

Q
P

Q
iu
and

L
ane

(2009)
H
euristic

L
in.
(convex)

N
one

1-step
(seq.)

S
V
R

Q
P

Q
iu
and

L
ane

(2009)
H
euristic

L
in.
(convex)

N
one

1-step
(seq.)

S
V
M

Q
P

3.3
L
anckrietetal.(2004a)

O
ptim

.
L
in.
(linear)

Sim
ilarity

1-step
(seq.)

S
V
M

S
D
P
+
Q
P

Igeletal.(2007)
O
ptim

.
L
in.
(linear)

Sim
ilarity

1-step
(seq.)

S
V
M

G
rad.+

Q
P

C
ortes

etal.(2010a)
O
ptim

.
L
in.
(linear)

Sim
ilarity

1-step
(seq.)

S
V
M

M
at.
Inv.+

Q
P

3.4
L
anckrietetal.(2004a)

O
ptim

.
L
in.
(conic)

Sim
ilarity

1-step
(seq.)

S
V
M

Q
C
Q
P
+
Q
P

K
andola

etal.(2002)
O
ptim

.
L
in.
(conic)

Sim
ilarity

1-step
(seq.)

S
V
M

Q
P
+
Q
P

C
ortes

etal.(2010a)
O
ptim

.
L
in.
(conic)

Sim
ilarity

1-step
(seq.)

S
V
M

Q
P
+
Q
P

3.5
H
e
etal.(2008)

O
ptim

.
L
in.
(convex)

Sim
ilarity

1-step
(seq.)

S
V
M

Q
P
+
Q
P

Tanabe
etal.(2008)

O
ptim

.
L
in.
(convex)

Sim
ilarity

1-step
(seq.)

S
V
M

Q
P
+
Q
P

Y
ing

etal.(2009)
O
ptim

.
L
in.
(convex)

Sim
ilarity

1-step
(seq.)

S
V
M

G
rad.+

Q
P

3.6
L
anckrietetal.(2002)

O
ptim

.
L
in.
(linear)

Str.
risk

1-step
(seq.)

S
V
M

S
D
P
+
Q
P

Q
iu
and

L
ane

(2005)
O
ptim

.
L
in.
(linear)

Str.
risk

1-step
(seq.)

S
V
R

S
D
P
+
Q
P

C
onfortiand

G
uido

(2010)
O
ptim

.
L
in.
(linear)

Str.
risk

1-step
(seq.)

S
V
M

S
D
P
+
Q
P

3.7
L
anckrietetal.(2004a)

O
ptim

.
L
in.
(conic)

Str.
risk

1-step
(seq.)

S
V
M

Q
C
Q
P
+
Q
P

Fung
etal.(2004)

O
ptim

.
L
in.
(conic)

Str.
risk

2-step
K
F
D
A

Q
P
+
M
at.
Inv.

T
suda

etal.(2004)
O
ptim

.
L
in.
(conic)

Str.
risk

2-step
K
F
D
A

G
rad.+

M
at.
Inv.

Q
iu
and

L
ane

(2005)
O
ptim

.
L
in.
(conic)

Str.
risk

1-step
(seq.)

S
V
R

Q
C
Q
P
+
Q
P

V
arm

a
and

R
ay
(2007)

O
ptim

.
L
in.
(conic)

Str.
risk

1-step
(sim

.)
S
V
M

S
O
C
P

V
arm

a
and

R
ay
(2007)

O
ptim

.
L
in.
(conic)

Str.
risk

2-step
S
V
M

G
rad.+

Q
P

C
ortes

etal.(2009)
O
ptim

.
L
in.
(conic)

Str.
risk

2-step
K
R
R

G
rad.+

M
at.
Inv.

K
loftetal.(2010a)

O
ptim

.
L
in.
(conic)

Str.
risk

2-step
S
V
M

N
ew
ton+

Q
P

X
u
etal.(2010b)

O
ptim

.
L
in.
(conic)

Str.
risk

1-step
(sim

.)
S
V
M

G
rad.

K
loftetal.(2010b);X

u
etal.(2010a)

O
ptim

.
L
in.
(conic)

Str.
risk

2-step
S
V
M

A
nalytical+

Q
P

C
onfortiand

G
uido

(2010)
O
ptim

.
L
in.
(conic)

Str.
risk

1-step
(seq.)

S
V
M

Q
C
Q
P
+
Q
P

Table
1:
R
epresentative

M
K
L
algorithm

s.

2218

MULTIPLE KERNEL LEARNING ALGORITHMS

R
ep
re
se
nt
at
iv
e

L
ea
rn
in
g

Fu
nc
tio
na
l

Ta
rg
et

T
ra
in
in
g

B
as
e

C
om
pu
ta
tio
na
l

Se
c.

R
ef
er
en
ce
s

M
et
ho
d

Fo
rm

Fu
nc
tio
n

M
et
ho
d

L
ea
rn
er

C
om
pl
ex
ity

3.
8

B
ou
sq
ue
ta
nd
H
er
rm
an
n
(2
00
3)

O
pt
im
.

L
in
.
(c
on
ve
x)

St
r.
ri
sk

2-
st
ep

S
V
M

G
ra
d.
+
Q
P

B
ac
h
et
al
.(
20
04
)

O
pt
im
.

L
in
.
(c
on
ve
x)

St
r.
ri
sk

1-
st
ep
(s
im
.)

S
V
M

S
O
C
P

So
nn
en
bu
rg
et
al
.(
20
06
a,
b)

O
pt
im
.

L
in
.
(c
on
ve
x)

St
r.
ri
sk

2-
st
ep

S
V
M

L
P
+
Q
P

K
im
et
al
.(
20
06
)

O
pt
im
.

L
in
.
(c
on
ve
x)

St
r.
ri
sk

1-
st
ep
(s
eq
.)

K
F
D
A

S
D
P
+
M
at
.
In
v.

Y
e
et
al
.(
20
07
a)

O
pt
im
.

L
in
.
(c
on
ve
x)

St
r.
ri
sk

1-
st
ep
(s
eq
.)

R
K
D
A

S
D
P
+
M
at
.
In
v.

Y
e
et
al
.(
20
07
b)

O
pt
im
.

L
in
.
(c
on
ve
x)

St
r.
ri
sk

1-
st
ep
(s
eq
.)

R
K
D
A

Q
C
Q
P
+
M
at
.
In
v.

Y
e
et
al
.(
20
08
)

O
pt
im
.

L
in
.
(c
on
ve
x)

St
r.
ri
sk

1-
st
ep
(s
eq
.)

R
K
D
A

S
IL
P
+
M
at
.
In
v.

R
ak
ot
om
am
on
jy
et
al
.(
20
07
,2
00
8)

O
pt
im
.

L
in
.
(c
on
ve
x)

St
r.
ri
sk

2-
st
ep

S
V
M

G
ra
d.
+
Q
P

C
ha
pe
lle
an
d
R
ak
ot
om
am
on
jy
(2
00
8)

O
pt
im
.

L
in
.
(c
on
ve
x)

St
r.
ri
sk

2-
st
ep

S
V
M

Q
P
+
Q
P

K
lo
ft
et
al
.(
20
10
b)
;X
u
et
al
.(
20
10
a)

O
pt
im
.

L
in
.
(c
on
ve
x)

St
r.
ri
sk

2-
st
ep

S
V
M

A
na
ly
tic
al
+
Q
P

C
on
fo
rt
ia
nd
G
ui
do
(2
01
0)

O
pt
im
.

L
in
.
(c
on
ve
x)

St
r.
ri
sk

1-
st
ep
(s
eq
.)

S
V
M

Q
C
Q
P
+
Q
P

3.
9

L
ee
et
al
.(
20
07
)

O
pt
im
.

N
on
lin
ea
r

St
r.
ri
sk

1-
st
ep
(s
im
.)

S
V
M

Q
P

V
ar
m
a
an
d
B
ab
u
(2
00
9)

O
pt
im
.

N
on
lin
ea
r

St
r.
ri
sk

2-
st
ep

S
V
M

G
ra
d.
+
Q
P

C
or
te
s
et
al
.(
20
10
b)

O
pt
im
.

N
on
lin
ea
r

St
r.
ri
sk

2-
st
ep

K
R
R

G
ra
d.
+
M
at
.
In
v.

3.
10

L
ew
is
et
al
.(
20
06
b)

O
pt
im
.

D
at
a-
de
p.

St
r.
ri
sk

1-
st
ep
(s
im
.)

S
V
M

Q
P

G
ön
en
an
d
A
lp
ay
dı
n
(2
00
8)

O
pt
im
.

D
at
a-
de
p.

St
r.
ri
sk

2-
st
ep

S
V
M

G
ra
d.
+
Q
P

Y
an
g
et
al
.(
20
09
a)

O
pt
im
.

D
at
a-
de
p.

St
r.
ri
sk

2-
st
ep

S
V
M

G
ra
d.
+
Q
P

Y
an
g
et
al
.(
20
09
b,
20
10
)

O
pt
im
.

D
at
a-
de
p.

St
r.
ri
sk

2-
st
ep

S
V
M

S
IL
P
+
Q
P

3.
11

G
ir
ol
am
ia
nd
R
og
er
s
(2
00
5)

B
ay
es
ia
n

L
in
.
(c
on
ic
)

L
ik
el
ih
oo
d

In
fe
re
nc
e

K
R
R

A
pp
ro
xi
m
at
io
n

G
ir
ol
am
ia
nd
Z
ho
ng
(2
00
7)

B
ay
es
ia
n

L
in
.
(c
on
ic
)

L
ik
el
ih
oo
d

In
fe
re
nc
e

G
P

A
pp
ro
xi
m
at
io
n

C
hr
is
to
ud
ia
s
et
al
.(
20
09
)

B
ay
es
ia
n

D
at
a-
de
p.

L
ik
el
ih
oo
d

In
fe
re
nc
e

G
P

A
pp
ro
xi
m
at
io
n

3.
12

B
en
ne
tt
et
al
.(
20
02
)

B
oo
st
in
g

D
at
a-
de
p.

St
r.
ri
sk

P
×
1-
st
ep

K
R
R

M
at
.
In
v.

C
ra
m
m
er
et
al
.(
20
03
)

B
oo
st
in
g

L
in
.
(c
on
ic
)

St
r.
ri
sk

P
×
1-
st
ep

Pe
rc
ep
t.

E
ig
en
va
lu
e
Pr
ob
.

B
ie
ta
l.
(2
00
4)

B
oo
st
in
g

L
in
.
(l
in
ea
r)

St
r.
ri
sk

P
×
1-
st
ep

S
V
M

Q
P

Ta
bl
e
2:
R
ep
re
se
nt
at
iv
e
M
K
L
al
go
ri
th
m
s
(c
on
tin
ue
d)
.

2219

GÖNEN AND ALPAYDIN

3.2 Heuristic Approaches

de Diego et al. (2004, 2010a) define a functional form of combining two kernels:

Kη =
1
2
(K1+K2)+ f (K1−K2)

where the term f (K1−K2) represents the difference of information between what K1 and K2 pro-
vide for classification. They investigate three different functions:

kη(xi,x j) =
1
2
(k1(x1i ,x

1
j)+ k2(x2i ,x

2
j))+ τyiy j|k1(x1i ,x1j)− k2(x2i ,x2j)|

kη(xi,x j) =
1
2
(k1(x1i ,x

1
j)+ k2(x2i ,x

2
j))+ τyiy j(k1(x1i ,x

1
j)− k2(x2i ,x2j))

Kη =
1
2
(K1+K2)+ τ(K1−K2)(K1−K2)

where τ ∈R+ is the parameter that represents the weight assigned to the term f (K1−K2) (selected
through cross-validation) and the first two functions do not ensure having positive semidefinite
kernel matrices. It is also possible to combine more than two kernel functions by applying these
rules recursively.

Moguerza et al. (2004) and de Diego et al. (2010a) propose a matrix functional form of com-
bining kernels:

kη(xi,x j) =
P

∑
m=1

ηm(xi,x j)km(xmi ,x
m
j)

where ηm(·, ·) assigns a weight to km(·, ·) according to xi and x j. They propose different heuris-
tics to estimate the weighing function values using conditional class probabilities, Pr(yi = y j|xi)
and Pr(y j = yi|x j), calculated with a nearest-neighbor approach. However, each kernel function
corresponds to a different neighborhood and ηm(·, ·) is calculated on the neighborhood induced by
km(·, ·). For an unlabeled data instance x, they take its class label once as+1 and once as−1, calcu-
late the discriminant values f (x|y = +1) and f (x|y = −1), and assign it to the class that has more
confidence in its decision (i.e., by selecting the class label with greater y f (x|y) value). de Diego
et al. (2010b) use this method to fuse information from several feature representations for face veri-
fication. Combining kernels in a data-dependent manner outperforms the classical fusion techniques
such as feature-level and score-level methods in their experiments.

We can also use a linear combination instead of a data-dependent combination and formulate
the combined kernel function as follows:

kη(xi,x j) =
P

∑
m=1

ηmkm(xmi ,x
m
j)

where we select the kernel weights by looking at the performance values obtained by each kernel
separately. For example, Tanabe et al. (2008) propose the following rule in order to choose the
kernel weights for classification problems:

ηm =
πm−δ

P
∑
h=1

(πh−δ)

2220

MULTIPLE KERNEL LEARNING ALGORITHMS

where πm is the accuracy obtained using only Km, and δ is the threshold that should be less than or
equal to the minimum of the accuracies obtained from single-kernel learners. Qiu and Lane (2009)
propose two simple heuristics to select the kernel weights for regression problems:

ηm =
Rm
P
∑
h=1

Rh

∀m

ηm =

P
∑
h=1

Mh−Mm

(P−1)
P
∑
h=1

Mh

∀m

where Rm is the Pearson correlation coefficient between the true outputs and the predicted labels
generated by the regressor using the kernel matrix Km, and Mm is the mean square error generated
by the regressor using the kernel matrix Km. These three heuristics find a convex combination of
the input kernels as the combined kernel.

Cristianini et al. (2002) define a notion of similarity between two kernels called kernel align-
ment. The empirical alignment of two kernels is calculated as follows:

A(K1,K2) =
〈K1,K2〉F√〈K1,K1〉F〈K2,K2〉F

where 〈K1,K2〉F =∑N
i=1∑

N
j=1 k1(x

1
i ,x

1
j)k2(x

2
i ,x

2
j). This similarity measure can be seen as the cosine

of the angle between K1 and K2. yy� can be defined as ideal kernel for a binary classification task,
and the alignment between a kernel and the ideal kernel becomes

A(K,yy�) =
〈K,yy�〉F√

〈K,K〉F〈yy�,yy�〉F
=

〈K,yy�〉F
N
√〈K,K〉F .

Kernel alignment has one key property due to concentration (i.e., the probability of deviation from
the mean decays exponentially), which enables us to keep high alignment on a test set when we
optimize it on a training set.

Qiu and Lane (2009) propose the following simple heuristic for classification problems to select
the kernel weights using kernel alignment:

ηm =
A(Km,yy�)
P
∑
h=1
A(Kh,yy�)

∀m (2)

where we obtain the combined kernel as a convex combination of the input kernels.

2221

GÖNEN AND ALPAYDIN

3.3 Similarity Optimizing Linear Approaches with Arbitrary Kernel Weights

Lanckriet et al. (2004a) propose to optimize the kernel alignment as follows:

maximize A(Ktraη ,yy�)

with respect to Kη ∈ S
N

subject to tr
(
Kη
)
= 1

Kη � 0

where the trace of the combined kernel matrix is arbitrarily set to 1. This problem can be converted
into the following SDP problem using arbitrary kernel weights in the combination:

maximize

〈
P

∑
m=1

ηmKtram ,yy�
〉
F

with respect to η ∈ R
P, A ∈ S

N

subject to tr(A)≤ 1⎛⎜⎜⎝ A
P
∑
m=1

ηmK�m
P
∑
m=1

ηmKm I

⎞⎟⎟⎠� 0
P

∑
m=1

ηmKm � 0.

Igel et al. (2007) propose maximizing the kernel alignment using gradient-based optimization.
They calculate the gradients with respect to the kernel parameters as

∂A(Kη,yy�)
∂ηm

=

〈
∂Kη
∂ηm

,yy�
〉
F
〈Kη,Kη〉F −〈Kη,yy�〉F

〈
∂Kη
∂ηm

,Kη

〉
F

N
√
〈Kη,Kη〉3F

.

In a transcription initiation site detection task for bacterial genes, they obtain better results by opti-
mizing the kernel weights of the combined kernel function that is composed of six sequence kernels,
using the gradient above.

Cortes et al. (2010a) give a different kernel alignment definition, which they call centered-kernel
alignment. The empirical centered-alignment of two kernels is calculated as follows:

CA(K1,K2) =
〈Kc

1,K
c
2〉F√〈Kc

1,K
c
1〉F〈Kc

2,K
c
2〉F

where Kc is the centered version of K and can be calculated as

Kc =K− 1
N
11�K− 1

N
K11�+

1
N2

(1�K1)11�

2222

MULTIPLE KERNEL LEARNING ALGORITHMS

where 1 is the vector of ones with proper dimension. Cortes et al. (2010a) also propose to optimize
the centered-kernel alignment as follows:

maximize CA(Kη,yy�)
with respect to η ∈M (3)

whereM = {η : ‖η‖2 = 1}. This optimization problem (3) has an analytical solution:

η=
M−1a
‖M−1a‖2 (4)

whereM= {〈Kc
m,K

c
h〉F}Pm,h=1 and a= {〈Kc

m,yy
�〉F}Pm=1.

3.4 Similarity Optimizing Linear Approaches with Nonnegative Kernel Weights

Kandola et al. (2002) propose to maximize the alignment between a nonnegative linear combination
of kernels and the ideal kernel. The alignment can be calculated as follows:

A(Kη,yy�) =

P
∑
m=1

ηm〈Km,yy�〉F

N

√
P
∑
m=1

P
∑
h=1

ηmηh〈Km,Kh〉F
.

We should choose the kernel weights that maximize the alignment and this idea can be cast into the
following optimization problem:

maximize A(Kη,yy�)

with respect to η ∈ R
P
+

and this problem is equivalent to

maximize
P

∑
m=1

ηm〈Km,yy�〉F

with respect to η ∈ R
P
+

subject to
P

∑
m=1

P

∑
h=1

ηmηh〈Km,Kh〉F = c.

Using the Lagrangian function, we can convert it into the following unconstrained optimization
problem:

maximize
P

∑
m=1

ηm〈Km,yy�〉F −μ
(

P

∑
m=1

P

∑
h=1

ηmηh〈Km,Kh〉F − c
)

with respect to η ∈ R
P
+.

2223

GÖNEN AND ALPAYDIN

Kandola et al. (2002) take μ= 1 arbitrarily and add a regularization term to the objective func-
tion in order to prevent overfitting. The resulting QP is very similar to the hard margin SVM
optimization problem and is expected to give sparse kernel combination weights:

maximize
P

∑
m=1

ηm〈Km,yy�〉F −
P

∑
m=1

P

∑
h=1

ηmηh〈Km,Kh〉F −λ
P

∑
m=1

η2m

with respect to η ∈ R
P
+

where we only learn the kernel combination weights.
Lanckriet et al. (2004a) restrict the kernel weights to be nonnegative and their SDP formulation

reduces to the following QCQP problem:

maximize
P

∑
m=1

ηm〈Ktram ,yy�〉F

with respect to η ∈ R
P
+

subject to
P

∑
m=1

P

∑
h=1

ηmηh〈Km,Kh〉F ≤ 1. (5)

Cortes et al. (2010a) also restrict the kernel weights to be nonnegative by changing the definition
ofM in (3) to {η : ‖η‖2 = 1, η ∈ R

P
+} and obtain the following QP:

minimize v�Mv−2v�a
with respect to v ∈ R

P
+ (6)

where the kernel weights are given by η= v/‖v‖2.

3.5 Similarity Optimizing Linear Approaches with Kernel Weights on a Simplex

He et al. (2008) choose to optimize the distance between the combined kernel matrix and the ideal
kernel, instead of optimizing the kernel alignment measure, using the following optimization prob-
lem:

minimize 〈Kη−yy�,Kη−yy�〉2F
with respect to η ∈ R

P
+

subject to
P

∑
m=1

ηm = 1.

This problem is equivalent to

minimize
P

∑
m=1

P

∑
h=1

ηmηh〈Km,Kh〉F −2
P

∑
m=1

ηm〈Km,yy�〉F

with respect to η ∈ R
P
+

subject to
P

∑
m=1

ηm = 1. (7)

2224

MULTIPLE KERNEL LEARNING ALGORITHMS

Nguyen and Ho (2008) propose another quality measure called feature space-based kernel ma-
trix evaluation measure (FSM) defined as

FSM(K,y) =
s++ s−

‖m+−m−‖2
where {s+,s−} are the standard deviations of the positive and negative classes, and {m+,m−} are
the class centers in the feature space. Tanabe et al. (2008) optimize the kernel weights for the convex
combination of kernels by minimizing this measure:

minimize FSM(Kη,y)

with respect to η ∈ R
P
+

subject to
P

∑
m=1

ηm = 1.

This method gives similar performance results when compared to the SMO-like algorithm of Bach
et al. (2004) for a protein-protein interaction prediction problem using much less time and memory.

Ying et al. (2009) follow an information-theoretic approach based on the KL divergence be-
tween the combined kernel matrix and the optimal kernel matrix:

minimize KL(N (0,Kη)‖N (0,yy�))

with respect to η ∈ R
P
+

subject to
P

∑
m=1

ηm = 1

where 0 is the vector of zeros with proper dimension. The kernel combinations weights can be
optimized using a projected gradient-descent method.

3.6 Structural Risk Optimizing Linear Approaches with Arbitrary Kernel Weights

Lanckriet et al. (2002) follow a direct approach in order to optimize the unrestricted kernel com-
bination weights. The implausibility of a kernel matrix, ω(K), is defined as the objective function
value obtained after solving a canonical SVM optimization problem (Here we only consider the
soft margin formulation, which uses the �1-norm on slack variables):

maximize ω(K) =
N

∑
i=1

αi− 12
N

∑
i=1

N

∑
j=1

αiα jyiy jk(xi,x j)

with respect to α ∈ R
N
+

subject to
N

∑
i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i.
The combined kernel matrix is selected from the following set:

KL =

{
K : K=

P

∑
m=1

ηmKm, K� 0, tr(K)≤ c

}

2225

GÖNEN AND ALPAYDIN

where the selected kernel matrix is forced to be positive semidefinite.

The resulting optimization problem that minimizes the implausibility of the combined kernel
matrix (the objective function value of the corresponding soft margin SVM optimization problem)
is formulated as

minimize ω(Ktraη)

with respect to Kη ∈KL

subject to tr
(
Kη
)
= c

where Ktraη is the kernel matrix calculated only over the training set and this problem can be cast
into the following SDP formulation:

minimize t

with respect to η ∈ R
P, t ∈ R, λ ∈ R, ν ∈ R

N
+, δ ∈ R

N
+

subject to tr
(
Kη
)
= c(

(yy�))Ktraη 1+ν−δ+λy

(1+ν−δ+λy)� t−2Cδ�1

)
� 0

Kη � 0.

This optimization problem is defined for a transductive learning setting and we need to be able to
calculate the kernel function values for the test instances as well as the training instances.

Lanckriet et al. (2004a,c) consider predicting function classifications associated with yeast pro-
teins. Different kernels calculated on heterogeneous genomic data, namely, amino acid sequences,
protein-protein interactions, genetic interactions, protein complex data, and expression data, are
combined using an SDP formulation. This gives better results than SVMs trained with each kernel
in nine out of 13 experiments. Qiu and Lane (2005) extends ε-tube SVR to a QCQP formulation
for regression problems. Conforti and Guido (2010) propose another SDP formulation that removes
trace restriction on the combined kernel matrix and introduces constraints over the kernel weights
for an inductive setting.

3.7 Structural Risk Optimizing Linear Approaches with Nonnegative Kernel Weights

Lanckriet et al. (2004a) restrict the combination weights to have nonnegative values by selecting the
combined kernel matrix from

KP =

{
K : K=

P

∑
m=1

ηmKm, η≥ 0, K� 0, tr(K)≤ c

}

2226

MULTIPLE KERNEL LEARNING ALGORITHMS

and reduce the SDP formulation to the following QCQP problem by selecting the combined kernel
matrix from KP instead of KL:

minimize
1
2
ct−

N

∑
i=1

αi

with respect to α ∈ R
N
+, t ∈ R

subject to tr(Km) t ≥ α�((yy�))Ktram)α ∀m
N

∑
i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i

where we can jointly find the support vector coefficients and the kernel combination weights. This
optimization problem is also developed for a transductive setting, but we can simply take the number
of test instances as zero and find the kernel combination weights for an inductive setting. The
interior-point methods used to solve this QCQP formulation also return the optimal values of the
dual variables that correspond to the optimal kernel weights. Qiu and Lane (2005) give also a
QCQP formulation of regression using ε-tube SVR. The QCQP formulation is used for predicting
siRNA efficacy by combining kernels over heterogeneous data sources (Qiu and Lane, 2009). Zhao
et al. (2009) develop a multiple kernel learning method for clustering problems using the maximum
margin clustering idea of Xu et al. (2005) and a nonnegative linear combination of kernels.

Lanckriet et al. (2004a) combine two different kernels obtained from heterogeneous informa-
tion sources, namely, bag-of-words and graphical representations, on the Reuters-21578 data set.
Combining these two kernels with positive weights outperforms the single-kernel results obtained
with SVM on four tasks out of five. Lanckriet et al. (2004b) use a QCQP formulation to integrate
multiple kernel functions calculated on heterogeneous views of the genome data obtained through
different experimental procedures. These views include amino acid sequences, hydropathy profiles,
gene expression data and known protein-protein interactions. The prediction task is to recognize the
particular classes of proteins, namely, membrane proteins and ribosomal proteins. The QCQP ap-
proach gives significantly better results than any single kernel and the unweighted sum of kernels.
The assigned kernel weights also enable us to extract the relative importance of the data sources
feeding the separate kernels. This approach assigns near zero weights to random kernels added
to the candidate set of kernels before training. Dehak et al. (2008) combine three different ker-
nels obtained on the same features and get better results than score fusion for speaker verification
problem.

A similar result about unweighted and weighted linear kernel combinations is also obtained by
Lewis et al. (2006a). They compare the performances of unweighted and weighted sums of kernels
on a gene functional classification task. Their results can be summarized with two guidelines: (a)
When all kernels or data sources are informative, we should use the unweighted sum rule. (b)
When some of the kernels or the data sources are noisy or irrelevant, we should optimize the kernel
weights.

Fung et al. (2004) propose an iterative algorithm using the kernel Fisher discriminant analysis as
the base learner to combine heterogeneous kernels in a linear manner with nonnegative weights. The
proposed method requires solving a simple nonsingular system of linear equations of size (N+ 1)
and a QP problem having P decision variables at each iteration. On a colorectal cancer diagnosis

2227

GÖNEN AND ALPAYDIN

task, this method obtains similar results using much less computation time compared to selecting a
kernel for standard kernel Fisher discriminant analysis.

Tsuda et al. (2004) learn the kernel combination weights by minimizing an approximation of
the cross-validation error for kernel Fisher discriminant analysis. In order to update the kernel com-
bination weights, cross-validation error should be approximated with a differentiable error function.
They use the sigmoid function for error approximation and derive the update rules of the kernel
weights. This procedure requires inverting a N ×N matrix and calculating the gradients at each
step. They combine heterogeneous data sources using kernels, which are mixed linearly and non-
linearly, for bacteria classification and gene function prediction tasks. Fisher discriminant analysis
with the combined kernel matrix that is optimized using the cross-validation error approximation,
gives significantly better results than single kernels for both tasks.

In order to consider the capacity of the resulting classifier, Tan and Wang (2004) optimize the
nonnegative combination coefficients using the minimal upper bound of the Vapnik-Chervonenkis
dimension as the target function.

Varma and Ray (2007) propose a formulation for combining kernels using a linear combination
with regularized nonnegative weights. The regularization on the kernel combination weights is
achieved by adding a term to the objective function and integrating a set of constraints. The primal
optimization problem with these two modifications can be given as

minimize
1
2
‖wη‖22+C

N

∑
i=1

ξi+
P

∑
m=1

σmηm

with respect to wη ∈ R
Sη , ξ ∈ R

N
+, b ∈ R, η ∈ R

P
+

subject to yi(〈wη,Φη(xi)〉+b)≥ 1−ξi ∀i
Aη≥ p

where Φη(·) corresponds to the feature space that implicitly constructs the combined kernel func-
tion kη(xi,x j) =∑P

m=1ηmkm(x
m
i ,x

m
j) and wη is the vector of weight coefficients assigned to Φη(·).

The parameters A ∈ R
R×P, p ∈ R

R, and σ ∈ R
P encode our prior information about the kernel

weights. For example, assigning higher σi values to some of the kernels effectively eliminates them
by assigning zero weights to them. The corresponding dual formulation is derived as the following
SOCP problem:

maximize
N

∑
i=1

αi−p�δ

with respect to α ∈ R
N
+, δ ∈ R

P
+

subject to σm−δ�A(:,k)≥ 1
2

N

∑
i=1

N

∑
j=1

αiα jyiy jkm(xmi ,x
m
j) ∀m

N

∑
i=1

αiyi = 0 ∀m

C ≥ αi ≥ 0 ∀i.

Instead of solving this SOCP problem directly, Varma and Ray (2007) also propose an alternating
optimization problem that performs projected gradient updates for kernel weights and solves a QP

2228

MULTIPLE KERNEL LEARNING ALGORITHMS

problem to find the support vector coefficients at each iteration. The primal optimization problem
for given η is written as

minimize J(η) =
1
2
‖wη‖22+C

N

∑
i=1

ξi+
P

∑
m=1

σmηm

with respect to wη ∈ R
Sη , ξ ∈ R

N
+, b ∈ R

subject to yi(〈wη,Φη(xi)〉+b)≥ 1−ξi ∀i

and the corresponding dual optimization problem is

maximize J(η) =
N

∑
i=1

αi− 12
N

∑
i=1

N

∑
j=1

αiα jyiy j

(
P

∑
m=1

ηmkm(xmi ,x
m
j)

)
︸ ︷︷ ︸

kη(xi,x j)

+
P

∑
m=1

σmηm

with respect to α ∈ R
N
+

subject to
N

∑
i=1

αiyi = 0 ∀m

C ≥ αi ≥ 0 ∀i.

The gradients with respect to the kernel weights are calculated as

∂J(η)
∂ηm

= σm− 12
N

∑
i=1

N

∑
j=1

αiα jyiy j
∂kη(xi,x j)

∂ηm
= σm− 12

N

∑
i=1

N

∑
j=1

αiα jyiy jkm(xmi ,x
m
j) ∀m

and these gradients are used to update the kernel weights while considering nonnegativity and other
constraints.

Usually, the kernel weights are constrained by a trace or the �1-norm regularization. Cortes
et al. (2009) discuss the suitability of the �2-norm for MKL. They combine kernels with ridge
regression using the �2-norm regularization over the kernel weights. They conclude that using the
�1-norm improves the performance for a small number of kernels, but degrades the performance
when combining a large number of kernels. However, the �2-norm never decreases the performance
and increases it significantly for larger sets of candidate kernels. Yan et al. (2009) compare the
�1-norm and the �2-norm for image and video classification tasks, and conclude that the �2-norm
should be used when the combined kernels carry complementary information.

Kloft et al. (2010a) generalize the MKL formulation for arbitrary �p-norms with p≥ 1 by regu-
larizing over the kernel coefficients (done by adding μ‖η‖pp to the objective function) or equivalently,

2229

GÖNEN AND ALPAYDIN

constraining them (‖η‖pp ≤ 1). The resulting optimization problem is

maximize
N

∑
i=1

αi− 12

⎛⎜⎜⎝ P

∑
m=1

(
N

∑
i=1

N

∑
j=1

αiα jyiy jkm(xmi ,x
m
j)

) p−1
p

⎞⎟⎟⎠
p

p−1

with respect to α ∈ R
N
+

subject to
N

∑
i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i

and they solve this problem using alternative optimization strategies based on Newton-descent and
cutting planes. Xu et al. (2010b) add an entropy regularization term instead of constraining the
norm of the kernel weights and derive an efficient and smooth optimization framework based on
Nesterov’s method.

Kloft et al. (2010b) and Xu et al. (2010a) propose an efficient optimization method for arbitrary
�p-norms with p ≥ 1. Although they approach the problem from different perspectives, they find
the same closed-form solution for updating the kernel weights at each iteration. Kloft et al. (2010b)
use a block coordinate-descent method and Xu et al. (2010a) use the equivalence between group
Lasso and MKL, as shown by Bach (2008) to derive the update equation. Both studies formulate an
alternating optimization method that solves an SVM at each iteration and update the kernel weights
as follows:

ηm =
‖wm‖

2
p+1
2(

P
∑
h=1
‖wh‖

2p
p+1
2

) 1
p

(8)

where ‖wm‖22 = η2m∑
N
i=1∑

N
j=1αiα jyiy jkm(xmi ,x

m
j) from the duality conditions.

When we restrict the kernel weights to be nonnegative, the SDP formulation of Conforti and
Guido (2010) reduces to a QCQP problem.

Lin et al. (2009) propose a dimensionality reduction method that uses multiple kernels to embed
data instances from different feature spaces to a unified feature space. The method is derived from
a graph embedding framework using kernel matrices instead of data matrices. The learning phase
is performed using a two-step alternate optimization procedure that updates the dimensionality re-
duction coefficients and the kernel weights in turn. McFee and Lanckriet (2009) propose a method
for learning a unified space from multiple kernels calculated over heterogeneous data sources. This
method uses a partial order over pairwise distances as the input and produces an embedding us-
ing graph-theoretic tools. The kernel (data source) combination rule is learned by solving an SDP
problem and all input instances are mapped to the constructed common embedding space.

Another possibility is to allow only binary ηm for kernel selection. We get rid of kernels whose
ηm = 0 and use the kernels whose ηm = 1. Xu et al. (2009b) define a combined kernel over the set of
kernels calculated on each feature independently and perform feature selection using this definition.

2230

MULTIPLE KERNEL LEARNING ALGORITHMS

The defined kernel function can be expressed as

kη(xi,x j) =
D

∑
m=1

ηmk(xi[m],x j[m])

where [·] indexes the elements of a vector and η ∈ {0,1}D. For efficient learning, η is relaxed into
the continuous domain (i.e., 1≥ η≥ 0). Following Lanckriet et al. (2004a), an SDP formulation is
derived and this formulation is cast into a QCQP problem to reduce the time complexity.

3.8 Structural Risk Optimizing Linear Approaches with Kernel Weights on a Simplex

We can think of kernel combination as a weighted average of kernels and consider η ∈ R
P
+ and

∑P
m=1ηm = 1. Joachims et al. (2001) show that combining two kernels is beneficial if both of them
achieve approximately the same performance and use different data instances as support vectors.
This makes sense because in combination, we want kernels to be useful by themselves and com-
plementary. In a web page classification experiment, they show that combining the word and the
hyperlink representations through the convex combination of two kernels (i.e., η2 = 1−η1) can
achieve better classification accuracy than each of the kernels.

Chapelle et al. (2002) calculate the derivative of the margin and the derivative of the radius (of
the smallest sphere enclosing the training points) with respect to a kernel parameter, θ:

∂‖w‖22
∂θ

=−
N

∑
i=1

N

∑
j=1

αiα jyiy j
∂k(xi,x j)

∂θ

∂R2

∂θ
=

N

∑
i=1

βi
∂k(xi,xi)

∂θ
−

N

∑
i=1

N

∑
j=1

βiβ j
∂k(xi,x j)

∂θ

where α is obtained by solving the canonical SVM optimization problem and β is obtained by
solving the QP problem defined by Vapnik (1998). These derivatives can be used to optimize the
individual parameters (e.g., scaling coefficient) on each feature using an alternating optimization
procedure (Weston et al., 2001; Chapelle et al., 2002; Grandvalet and Canu, 2003). This strategy
is also a multiple kernel learning approach, because the optimized parameters can be interpreted as
the kernel parameters and we combine these kernel values over all features.

Bousquet and Herrmann (2003) rewrite the gradient of the margin by replacing K with Kη and
taking the derivative with respect to the kernel weights gives

∂‖wη‖22
∂ηm

=−
N

∑
i=1

N

∑
j=1

αiα jyiy j
∂kη(xi,x j)

∂ηm
=−

N

∑
i=1

N

∑
j=1

αiα jyiy jkm(xmi ,x
m
j) ∀m

where wη is the weight vector obtained using Kη in training. In an iterative manner, an SVM is
trained to obtain α, then η is updated using the calculated gradient while considering nonnegativity
(i.e., η ∈ R

P
+) and normalization (i.e., ∑

P
m=1ηm = 1). This procedure considers the performance (in

terms of margin maximization) of the resulting classifier, which uses the combined kernel matrix.

2231

GÖNEN AND ALPAYDIN

Bach et al. (2004) propose a modified primal formulation that uses the weighted �1-norm on
feature spaces and the �2-norm within each feature space. The modified primal formulation is

minimize
1
2

(
P

∑
m=1

dm‖wm‖2
)2

+C
N

∑
i=1

ξi

with respect to wm ∈ R
Sm , ξ ∈ R

N
+, b ∈ R

subject to yi

(
P

∑
m=1

〈wm,Φm(xmi)〉+b

)
≥ 1−ξi ∀i

where the feature space constructed using Φm(·) has the dimensionality Sm and the weight dm.
When we consider this optimization problem as an SOCP problem, we obtain the following dual
formulation:

minimize
1
2
γ2−

N

∑
i=1

αi

with respect to γ ∈ R, α ∈ R
N
+

subject to γ2d2m ≥
N

∑
i=1

N

∑
j=1

αiα jyiy jkm(xmi ,x
m
j) ∀m

N

∑
i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i (9)

where we again get the optimal kernel weights from the optimal dual variables and the weights
satisfy ∑P

m=1 d
2
mηm = 1. The dual problem is exactly equivalent to the QCQP formulation of Lanck-

riet et al. (2004a) when we take dm =
√
tr(Km)/c. The advantage of the SOCP formulation is

that Bach et al. (2004) devise an SMO-like algorithm by adding a Moreau-Yosida regularization
term, 1/2∑P

m=1 a
2
m‖wm‖22, to the primal objective function and deriving the corresponding dual for-

mulation. Using the �1-norm on feature spaces, Yamanishi et al. (2007) combine tree kernels for
identifying human glycans into four blood components: leukemia cells, erythrocytes, plasma, and
serum. Except on plasma task, representing glycans as rooted trees and combining kernels improve
performance in terms of the area under the ROC curve. Özen et al. (2009) use the formulation of
Bach et al. (2004) to combine different feature subsets for protein stability prediction problem and
extract information about the importance of these subsets by looking at the learned kernel weights.

Bach (2009) develops a method for learning linear combinations of an exponential number of
kernels, which can be expressed as product of sums. The method is applied to nonlinear variable
selection and efficiently explores the large feature spaces in polynomial time.

2232

MULTIPLE KERNEL LEARNING ALGORITHMS

Sonnenburg et al. (2006a,b) rewrite the QCQP formulation of Bach et al. (2004):

minimize γ

with respect to γ ∈ R, α ∈ R
N
+

subject to
N

∑
i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i

γ≥ 1
2

N

∑
i=1

N

∑
j=1

αiα jyiy jkm(xmi ,x
m
j)−

N

∑
i=1

αi︸ ︷︷ ︸
Sm(α)

∀m

and convert this problem into the following SILP problem:

maximize θ

with respect to θ ∈ R, η ∈ R
P
+

subject to
P

∑
m=1

ηm = 1

P

∑
m=1

ηmSm(α)≥ θ ∀α ∈ {α : α ∈ R
N , α�y= 0, C ≥ α≥ 0}

where the problem has infinitely many constraints due to the possible values of α.
The SILP formulation has lower computational complexity compared to the SDP and QCQP

formulations. Sonnenburg et al. (2006a,b) use a column generation approach to solve the resulting
SILPs using a generic LP solver and a canonical SVM solver in the inner loop. Both the LP solver
and the SVM solver can use the previous optimal values for hot-start to obtain the new optimal
values faster. These allow us to use the SILP formulation to learn the kernel combination weights
for hundreds of kernels on hundreds of thousands of training instances efficiently. For example,
they perform training on a real-world splice data set with millions of instances from computational
biology with string kernels. They also generalize the idea to regression, one-class classification, and
strictly convex and differentiable loss functions.

Kim et al. (2006) show that selecting the optimal kernel from the set of convex combinations
over the candidate kernels can be formulated as a convex optimization problem. This formulation
is more efficient than the iterative approach of Fung et al. (2004). Ye et al. (2007a) formulate an
SDP problem inspired by Kim et al. (2006) for learning an optimal kernel over a convex set of
candidate kernels for RKDA. The SDP formulation can be modified so that it can jointly optimize
the kernel weights and the regularization parameter. Ye et al. (2007b, 2008) derive QCQP and SILP
formulations equivalent to the previous SDP problem in order to reduce the time complexity. These
three formulations are directly applicable to multiclass classification because it uses RKDA as the
base learner.

De Bie et al. (2007) derive a QCQP formulation of one-class classification using a convex
combination of multiple kernels. In order to prevent the combined kernel from overfitting, they also
propose a modified mathematical model that defines lower limits for the kernel weights. Hence,

2233

GÖNEN AND ALPAYDIN

each kernel in the set of candidate kernels is used in the combined kernel and we obtain a more
regularized solution.

Zien and Ong (2007) develop a QCQP formulation and convert this formulation in two differ-
ent SILP problems for multiclass classification. They show that their formulation is the multiclass
generalization of the previously developed binary classification methods of Bach et al. (2004) and
Sonnenburg et al. (2006b). The proposed multiclass formulation is tested on different bioinfor-
matics applications such as bacterial protein location prediction (Zien and Ong, 2007) and protein
subcellular location prediction (Zien and Ong, 2007, 2008), and outperforms individual kernels and
unweighted sum of kernels. Hu et al. (2009) combine the MKL formulation of Zien and Ong (2007)
and the sparse kernel learning method of Wu et al. (2006). This hybrid approach learns the optimal
kernel weights and also obtains a sparse solution.

Rakotomamonjy et al. (2007, 2008) propose a different primal problem for MKL and use a
projected gradient method to solve this optimization problem. The proposed primal formulation is

minimize
1
2

P

∑
m=1

1
ηm
‖wm‖22+C

N

∑
i=1

ξi

with respect to wm ∈ R
Sm , ξ ∈ R

N
+, b ∈ R, η ∈ R

P
+

subject to yi

(
P

∑
m=1

〈wm,Φm(xmi)〉+b

)
≥ 1−ξi ∀i

P

∑
m=1

ηm = 1

and they define the optimal SVM objective function value given η as J(η):

minimize J(η) =
1
2

P

∑
m=1

1
ηm
‖wm‖22+C

N

∑
i=1

ξi

with respect to wm ∈ R
Sm , ξ ∈ R

N
+, b ∈ R

subject to yi

(
P

∑
m=1

〈wm,Φm(xmi)〉+b

)
≥ 1−ξi ∀i.

Due to strong duality, one can also calculate J(η) using the dual formulation:

maximize J(η) =
N

∑
i=1

αi− 12
N

∑
i=1

N

∑
j=1

αiα jyiy j

(
P

∑
m=1

ηmkm(xmi ,x
m
j)

)
︸ ︷︷ ︸

kη(xi,x j)

with respect to α ∈ R
N
+

subject to
N

∑
i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i.

2234

MULTIPLE KERNEL LEARNING ALGORITHMS

The primal formulation can be seen as the following constrained optimization problem:

minimize J(η)

with respect to η ∈ R
P
+

subject to
P

∑
m=1

ηm = 1. (10)

The overall procedure to solve this problem, called SIMPLEMKL, consists of two main steps: (a)
solving a canonical SVM optimization problem with given η and (b) updating η using the following
gradient calculated with α found in the first step:

∂J(η)
∂ηm

=−1
2

N

∑
i=1

N

∑
j=1

αiα jyiy j
∂kη(xmi ,x

m
j)

∂ηm
=−1

2

N

∑
i=1

N

∑
j=1

αiα jyiy jkm(xmi ,x
m
j) ∀m.

The gradient update procedure must consider the nonnegativity and normalization properties of the
kernel weights. The derivative with respect to the kernel weights is exactly equivalent (up to a
multiplicative constant) to the gradient of the margin calculated by Bousquet and Herrmann (2003).
The overall algorithm is very similar to the algorithm used by Sonnenburg et al. (2006a,b) to solve
an SILP formulation. Both algorithms use a canonical SVM solver in order to calculate α at
each step. The difference is that they use different updating procedures for η, namely, a projected
gradient update and solving an LP. Rakotomamonjy et al. (2007, 2008) show that SIMPLEMKL
is more stable than solving the SILP formulation. SIMPLEMKL can be generalized to regression,
one-class and multiclass classification (Rakotomamonjy et al., 2008).

Chapelle and Rakotomamonjy (2008) propose a second order method, called HESSIANMKL,
extending SIMPLEMKL. HESSIANMKL updates kernel weights at each iteration using a con-
strained Newton step found by solving a QP problem. Chapelle and Rakotomamonjy (2008) show
that HESSIANMKL converges faster than SIMPLEMKL.

Xu et al. (2009a) propose a hybrid method that combines the SILP formulation of Sonnenburg
et al. (2006b) and SIMPLEMKL of Rakotomamonjy et al. (2008). The SILP formulation does not
regularize the kernel weights obtained from the cutting plane method and SIMPLEMKL uses the
gradient calculated only in the last iteration. The proposed model overcomes both disadvantages
and finds the kernel weights for the next iteration by solving a small QP problem; this regularizes
the solution and uses the past information.

The alternating optimization method proposed by Kloft et al. (2010b) and Xu et al. (2010a)
learns a convex combination of kernels when we use the �1-norm for regularizing the kernel weights.
When we take p= 1, the update equation in (8) becomes

ηm =
‖wm‖2
P
∑
h=1
‖wh‖2

. (11)

The SDP formulation of Conforti and Guido (2010) reduces to a QCQP problem when we use
a convex combination of the base kernels.

Longworth and Gales (2008, 2009) introduce an extra regularization term to the objective func-
tion of SIMPLEMKL (Rakotomamonjy et al., 2008). This modification allows changing the level

2235

GÖNEN AND ALPAYDIN

of sparsity of the combined kernels. The extra regularization term is

λ
P

∑
m=1

(
ηm− 1P

)2
= λ

P

∑
m=1

η2m−
λ
P
=+ λ

P

∑
m=1

η2m

where λ is regularization parameter that determines the solution sparsity. For example, large values
of λ force the mathematical model to use all the kernels with a uniform weight, whereas small values
produce sparse combinations.

Micchelli and Pontil (2005) try to learn the optimal kernel over the convex hull of predefined
basic kernels by minimizing a regularization functional. Their analysis shows that any optimizing
kernel can be expressed as the convex combination of basic kernels. Argyriou et al. (2005, 2006)
build practical algorithms for learning a suboptimal kernel when the basic kernels are continuously
parameterized by a compact set. This continuous parameterization allows selecting kernels from
basically an infinite set, instead of a finite number of basic kernels.

Instead of selecting kernels from a predefined finite set, we can increase the number of candi-
date kernels in an iterative manner. We can basically select kernels from an uncountably infinite
set constructed by considering base kernels with different kernel parameters (Özöğür-Akyüz and
Weber, 2008; Gehler and Nowozin, 2008). Gehler and Nowozin (2008) propose a forward selection
algorithm that finds the kernel weights for a fixed size of candidate kernels using one of the methods
described above, then adds a new kernel to the set of candidate kernels, until convergence.

Most MKL methods do not consider the group structure between the kernels combined. For
example, a group of kernels may be calculated on the same set of features and even if we assign
a nonzero weight to only one of them, we have to extract the features in the testing phase. When
kernels have such a group structure, it is reasonable to pick all or none of them in the combined
kernel. Szafranski et al. (2008, 2010) follow this idea and derive an MKL method by changing the
mathematical model used by Rakotomamonjy et al. (2007). Saketha Nath et al. (2010) propose an-
other MKL method that considers the group structure between the kernels and this method assumes
that every kernel group carries important information. The proposed formulation enforces the �∞-
norm at the group level and the �1-norm within each group. By doing this, each group is used in the
final learner, but sparsity is promoted among kernels in each group. They formulate the problem
as an SCOP problem and give a highly efficient optimization algorithm that uses a mirror-descent
approach.

Subrahmanya and Shin (2010) generalize group-feature selection to kernel selection by intro-
ducing a log-based concave penalty term for obtaining extra sparsity; this is called sparse multiple
kernel learning (SMKL). The reason for adding this concave penalty term is explained as the lack
of ability of convex MKL methods to obtain sparse formulations. They show that SMKL obtains
more sparse solutions than convex formulations for signal processing applications.

Most of the structural risk optimizing linear approaches can be casted into a general framework
(Kloft et al., 2010a,b). The unified optimization problem with the Tikhonov regularization can be
written as

minimize
1
2

P

∑
m=1

‖wm‖22
ηm

+C
N

∑
i=1

L

(
P

∑
m=1

〈wm,Φm(xmi)〉+b,yi

)
+μ‖η‖pp

with respect to wm ∈ R
Sm , b ∈ R, η ∈ R

P
+

2236

MULTIPLE KERNEL LEARNING ALGORITHMS

where L(·, ·) is the loss function used. Alternatively, we can use the Ivanov regularization instead of
the Tikhonov regularization by integrating an additional constraint into the optimization problem:

minimize
1
2

P

∑
m=1

‖wm‖22
ηm

+C
N

∑
i=1

L

(
P

∑
m=1

〈wm,Φm(xmi)〉+b,yi

)
with respect to wm ∈ R

Sm , b ∈ R, η ∈ R
P
+

subject to ‖η‖pp ≤ 1.

Figure 1 lists the MKL algorithms that can be casted into the general framework described
above. Zien and Ong (2007) show that their formulation is equivalent to those of Bach et al. (2004)
and Sonnenburg et al. (2006a,b). Using unified optimization problems given above and the results
of Zien and Ong (2007), Kloft et al. (2010a,b) show that the formulations with p = 1 in Figure 1
fall into the same equivalence class and introduce a new formulation with p ≥ 1. The formulation
of Xu et al. (2010a) is also equivalent to those of Kloft et al. (2010a,b).

Tikhonov Regularization Ivanov Regularization︷ ︸︸ ︷ ︷ ︸︸ ︷
p= 1

︷
︸︸

︷

Varma and Ray (2007)

Bach et al. (2004)
Sonnenburg et al. (2006a,b)
Rakotomamonjy et al. (2007, 2008)
Zien and Ong (2007)

p≥ 1 ︷︸︸
︷ Kloft et al. (2010a,b)

Xu et al. (2010a)

Figure 1: MKL algorithms that can be casted into the general framework described.

3.9 Structural Risk Optimizing Nonlinear Approaches

Ong et al. (2003) propose to learn a kernel function instead of a kernel matrix. They define a kernel
function in the space of kernels called a hyperkernel. Their construction includes convex combi-
nations of an infinite number of pointwise nonnegative kernels. Hyperkernels are generalized to
different machine learning problems such as binary classification, regression, and one-class classi-
fication (Ong and Smola, 2003; Ong et al., 2005). When they use the regularized risk functional
as the empirical quality functional to be optimized, the learning phase can be performed by solving
an SDP problem. Tsang and Kwok (2006) convert the resulting optimization problems into SOCP
problems in order to reduce the time complexity of the training phase.

Varma and Babu (2009) propose a generalized formulation called generalized multiple kernel
learning (GMKL) that contains two regularization terms and a loss function in the objective func-
tion. This formulation regularizes both the hyperplane weights and the kernel combination weights.
The loss function can be one of the classical loss functions, such as, hinge loss for classification,
or ε-loss for regression. The proposed primal formulation applied to binary classification problem

2237

GÖNEN AND ALPAYDIN

with hinge loss and the regularization function, r(·), can be written as

minimize
1
2
‖wη‖22+C

N

∑
i=1

ξi+ r(η)

with respect to wη ∈ R
Sη , ξ ∈ R

N
+, b ∈ R, η ∈ R

P
+

subject to yi(〈wη,Φη(xi)〉+b)≥ 1−ξi ∀i
where Φη(·) corresponds to the feature space that implicitly constructs the combined kernel func-
tion kη(·, ·) and wη is the vector of weight coefficients assigned to Φη(·). This problem, different
from the primal problem of SIMPLEMKL, is not convex, but the solution strategy is the same. The
objective function value of the primal formulation given η is used as the target function:

minimize J(η) =
1
2
‖wη‖22+C

N

∑
i=1

ξi+ r(η)

with respect to wη ∈ R
Sη , ξ ∈ R

N
+, b ∈ R

subject to yi(〈wη,Φη(xi)〉+b)≥ 1−ξi ∀i
and the following dual formulation is used for the gradient step:

maximize J(η) =
N

∑
i=1

αi− 12
N

∑
i=1

N

∑
j=1

αiα jyiy jkη(xi,x j)+ r(η)

with respect to α ∈ R
N
+

subject to
N

∑
i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i.
The regularization function r(·) and kη(·, ·) can be any differentiable function of η with continuous
derivative. The gradient with respect to the kernel weights is calculated as

∂J(η)
∂ηm

=
∂r(η)
∂ηm

− 1
2

N

∑
i=1

N

∑
j=1

αiα jyiy j
∂kη(xi,x j)

∂ηm
∀m.

Varma and Babu (2009) perform gender identification experiments on a face image data set by
combining kernels calculated on each individual feature, and hence, for kernels whose ηm goes to
0, they perform feature selection. SIMPLEMKL and GMKL are trained with the kernel functions
kSη(·, ·) and kPη(·, ·), respectively:

kSη(xi,x j) =
D

∑
m=1

ηm exp
(
−γm (xi[m]−x j[m])2

)
kPη(xi,x j) =

D

∏
m=1

exp
(
−ηm (xi[m]−x j[m])2

)
= exp

(
D

∑
m=1

−ηm (xi[m]−x j[m])2
)
.

They show that GMKL with kPη(·, ·) performs significantly better than SIMPLEMKL with kSη(·, ·).
We see that using kPη(·, ·) as the combined kernel function is equivalent to using different scaling

2238

MULTIPLE KERNEL LEARNING ALGORITHMS

parameters on each feature and using an RBF kernel over these scaled features with unit radius, as
done by Grandvalet and Canu (2003).

Cortes et al. (2010b) develop a nonlinear kernel combination method based on KRR and poly-
nomial combination of kernels. They propose to combine kernels as follows:

kη(xi,x j) = ∑
q∈Q

ηq1q2...qPk1(x
1
i ,x

1
j)
q1k2(x2i ,x

2
j)
q2 . . .kP(xPi ,x

P
j)
qP

where Q = {q : q ∈ Z
P
+, ∑

P
m=1 qm ≤ d} and ηq1q2...qP ≥ 0. The number of parameters to be learned

is too large and the combined kernel is simplified in order to reduce the learning complexity:

kη(xi,x j) = ∑
q∈R

ηq11 η
q2
2 . . .ηqPP k1(x

1
i ,x

1
j)
q1k2(x2i ,x

2
j)
q2 . . .kP(xPi ,x

P
j)
qP

where R = {q : q∈Z
P
+, ∑

P
m=1 qm = d} and η∈R

P. For example, when d = 2, the combined kernel
function becomes

kη(xi,x j) =
P

∑
m=1

P

∑
h=1

ηmηhkm(xmi ,x
m
j)kh(x

h
i ,x

h
j). (12)

The combination weights are optimized using the following min-max optimization problem:

minimize
η∈M

maximize
α∈RN

−α�(Kη+λI)α+2y�α

whereM is a positive, bounded, and convex set. Two possible choices for the setM are the �1-norm
and �2-norm bounded sets defined as

M1 = {η : η ∈ R
P
+, ‖η−η0‖1 ≤ Λ} (13)

M2 = {η : η ∈ R
P
+, ‖η−η0‖2 ≤ Λ} (14)

where η0 and Λ are two model parameters. A projection-based gradient-descent algorithm can be
used to solve this min-max optimization problem. At each iteration, α is obtained by solving a KRR
problem with the current kernel matrix and η is updated with the gradients calculated using α while
considering the bound constraints on η due toM1 orM2.

Lee et al. (2007) follow a different approach and combine kernels using a compositional method
that constructs a (P×N)× (P×N) compositional kernel matrix. This matrix and the training
instances replicated P times are used to train a canonical SVM.

3.10 Structural Risk Optimizing Data-Dependent Approaches

Lewis et al. (2006b) use a latent variable generative model using the maximum entropy discrim-
ination to learn data-dependent kernel combination weights. This method combines a generative
probabilistic model with a discriminative large margin method.

Gönen and Alpaydın (2008) propose a data-dependent formulation called localized multiple
kernel learning (LMKL) that combines kernels using weights calculated from a gating model. The

2239

GÖNEN AND ALPAYDIN

proposed primal optimization problem is

minimize
1
2

P

∑
m=1

‖wm‖22+C
N

∑
i=1

ξi

with respect to wm ∈ R
Sm , ξ ∈ R

N
+, b ∈ R, V ∈ R

P×(DG+1)

subject to yi

(
P

∑
m=1

ηm(xi|V)〈wm,Φm(xmi)〉+b

)
≥ 1−ξi ∀i

where the gating model ηm(·|·), parameterized by V, assigns a weight to the feature space obtained
with Φm(·). This optimization problem is not convex and a two-step alternate optimization proce-
dure is used to find the classifier parameters and the gating model parameters. When we fix the
gating model parameters, the problem becomes convex and we obtain the following dual problem:

maximize J(V) =
N

∑
i=1

αi− 12
N

∑
i=1

N

∑
j=1

αiα jyiy jkη(xi,x j)

with respect to α ∈ R
N
+

subject to
N

∑
i=1

αiyi = 0

C ≥ αi ≥ 0 ∀i

where the combined kernel matrix is represented as

kη(xi,x j) =
P

∑
m=1

ηm(xi|V)km(xmi ,xmj)ηm(x j|V).

Assuming that the regions of expertise of kernels are linearly separable, we can express the gating
model using softmax function:

ηm(x|V) = exp(〈vm,xG 〉+ vm0)
P
∑
h=1
exp(〈vh,xG 〉+ vh0)

∀m (15)

whereV= {vm,vm0}Pm=1, xG ∈R
DG is the representation of the input instance in the feature space in

which we learn the gating model and there are P×(DG +1) parameters where DG is the dimension-
ality of the gating feature space. The softmax gating model uses kernels in a competitive manner
and generally a single kernel is active for each input. We may also use the sigmoid function instead
of softmax and thereby allow multiple kernels to be used in a cooperative manner:

ηm(x|V) = 1
exp(−〈vm,xG 〉− vm0) ∀m. (16)

The gating model parameters are updated at each iteration by calculating ∂J(V)/∂V and performing
a gradient-descent step (Gönen and Alpaydın, 2008).

Inspired from LMKL, two methods that learn a data-dependent kernel function are used for
image recognition applications (Yang et al., 2009a,b, 2010); they differ in their gating models that

2240

MULTIPLE KERNEL LEARNING ALGORITHMS

are constants rather than functions of the input. Yang et al. (2009a) divide the training set into clus-
ters as a preprocessing step, and then cluster-specific kernel weights are learned using alternating
optimization. The combined kernel function can be written as

kη(xi,x j) =
P

∑
m=1

ηmcikm(x
m
i ,x

m
j)η

m
cj

where ηmci corresponds to the weight of kernel km(·, ·) in the cluster xi belongs to. The kernel weights
of the cluster that the test instance is assigned to are used in the testing phase. Yang et al. (2009b,
2010) use instance-specific kernel weights instead of cluster-specific weights. The corresponding
combined kernel function is

kη(xi,x j) =
P

∑
m=1

ηmi km(x
m
i ,x

m
j)η

m
j

where ηmi corresponds to the weight of kernel km(·, ·) for xi and these instance-specific weights
are optimized using alternating optimization over the training set. In the testing phase, the kernel
weights for a test instance are all taken to be equal.

3.11 Bayesian Approaches

Girolami and Rogers (2005) formulate a Bayesian hierarchical model and derive variational Bayes
estimators for classification and regression problems. The proposed decision function can be for-
mulated as

f (x) =
N

∑
i=0

αi
P

∑
m=1

ηmkm(xmi ,x
m)

where η is modeled with a Dirichlet prior and α is modeled with a zero-mean Gaussian with an
inverse gamma variance prior. Damoulas and Girolami (2009b) extend this method by adding aux-
iliary variables and developing a Gibbs sampler. Multinomial probit likelihood is used to obtain an
efficient sampling procedure. Damoulas and Girolami (2008, 2009a) apply these methods to differ-
ent bioinformatics problems, such as protein fold recognition and remote homology problems, and
improve the prediction performances for these tasks.

Girolami and Zhong (2007) use the kernel combination idea for the covariance matrices in GPs.
Instead of using a single covariance matrix, they define a weighted sum of covariance matrices
calculated over different data sources. A joint inference is performed for both the GP coefficients
and the kernel combination weights.

Similar to LMKL, Christoudias et al. (2009) develop a Bayesian approach for combining dif-
ferent feature representations in a data-dependent way under the GP framework. A common co-
variance function is obtained by combining the covariances of feature representations in a nonlinear
manner. This formulation can identify the noisy data instances for each feature representation and
prevent them from being used. Classification is performed using the standard GP approach with the
common covariance function.

2241

GÖNEN AND ALPAYDIN

3.12 Boosting Approaches

Inspired from ensemble and boosting methods, Bennett et al. (2002) modify the decision function
in order to use multiple kernels:

f (x) =
N

∑
i=1

P

∑
m=1

αmi km(x
m
i ,x

m)+b.

The parameters {αm}Pm=1 and b of the KRR model are learned using gradient-descent in the function
space. The columns of the combined kernel matrix are generated on the fly from the heterogeneous
kernels. Bi et al. (2004) develop column generation boosting methods for binary classification and
regression problems. At each iteration, the proposed methods solve an LP or a QP on a working set
depending on the regularization term used.

Crammer et al. (2003) modify the boosting methodology to work with kernels by rewriting two
loss functions for a pair of data instances by considering the pair as a single instance:

ExpLoss(k(xi,x j),yiy j) = exp(−yiy jk(xi,x j))
LogLoss(k(xi,x j),yiy j) = log(1+ exp(−yiy jk(xi,x j))).

We iteratively update the combined kernel matrix using one of these two loss functions.

4. Experiments

In order to compare several MKL algorithms, we perform 10 different experiments on four data
sets that are composed of different feature representations. We use both the linear kernel and the
Gaussian kernel in our experiments; we will give our results with the linear kernel first and then
compare them with the results of the Gaussian kernel. The kernel matrices are normalized to unit
diagonal before training.

4.1 Compared Algorithms

We implement two single-kernel SVM and 16 representative MKL algorithms in MATLAB1 and
solve the optimization problems with the MOSEK optimization software (Mosek, 2011).

We train SVMs on each feature representation singly and report the results of the one with the
highest average validation accuracy, which will be referred as SVM (best). We also train an SVM
on the concatenation of all feature representations, which will be referred as SVM (all).

RBMKL denotes rule-based MKL algorithms discussed in Section 3.1. RBMKL (mean) trains an
SVM with the mean of the combined kernels. RBMKL (product) trains an SVM with the product of
the combined kernels.

ABMKL denotes alignment-based MKL algorithms. For determining the kernel weights, ABMKL
(ratio) uses the heuristic in (2) of Section 3.2 (Qiu and Lane, 2009), ABMKL (conic) solves the QCQP
problem in (5) of Section 3.4 (Lanckriet et al., 2004a), and ABMKL (convex) solves the QP problem
in (7) of Section 3.5 (He et al., 2008). In the second step, all methods train an SVM with the kernel
calculated with these weights.

CABMKL denotes centered-alignment-based MKL algorithms. In the first step, CABMKL (linear)
uses the analytical solution in (4) of Section 3.3 (Cortes et al., 2010a) and CABMKL (conic) solves

1. Implementations are available at http://www.cmpe.boun.edu.tr/~gonen/mkl.

2242

MULTIPLE KERNEL LEARNING ALGORITHMS

the QP problem in (6) of Section 3.4 (Cortes et al., 2010a) for determining the kernel weights. In
the second step, both methods train an SVM with the kernel calculated with these weights.

MKL is the original MKL algorithm of Bach et al. (2004) that is formulated as the SOCP
problem in (9) of Section 3.8. SimpleMKL is the iterative algorithm of Rakotomamonjy et al. (2008)
that uses projected gradient updates and trains SVMs at each iteration to solve the optimization
problem in (10) of Section 3.8.

GMKL is the generalized MKL algorithm of Varma and Babu (2009) discussed in Section 3.9. In
our implementation, kη(·, ·) is the convex combination of base kernels and r(·) is taken as 1/2(η−
1/P)�(η−1/P).

GLMKL denotes the group Lasso-based MKL algorithms proposed by Kloft et al. (2010b) and
Xu et al. (2010a). GLMKL (p= 1) updates the kernel weights using (11) of Section 3.8 and learns a
convex combination of the kernels. GLMKL (p= 2) updates the kernel weights setting p= 2 in (8)
of Section 3.7 and learns a conic combination of the kernels.

NLMKL denotes the nonlinear MKL algorithm of Cortes et al. (2010b) discussed in Section 3.9
with the exception of replacing the KRR in the inner loop with an SVM as the base learner. NLMKL
uses the quadratic kernel given in (12). NLMKL (p= 1) and NLMKL (p= 2) select the kernel weights
from the setsM1 in (13) andM2 in (14), respectively. In our implementation, η0 is taken as 0 and
Λ is assigned to 1 arbitrarily.

LMKL denotes the localized MKL algorithm of Gönen and Alpaydın (2008) discussed in Sec-
tion 3.10. LMKL (softmax) uses the softmax gating model in (15), whereas LMKL (sigmoid) uses the
sigmoid gating model in (16). Both methods use the concatenation of all feature representations in
the gating model.

4.2 Experimental Methodology

Our experimental methodology is as follows: Given a data set, if learning and test sets are not
supplied separately, a random one-third is reserved as the test set and the remaining two-thirds is
used as the learning set. If the learning set has more than 1000 data instances, it is resampled using
5× 2 cross-validation to generate 10 training and validation sets, with stratification, otherwise, we
use 30-fold cross-validation. The validation sets of all folds are used to optimize the common
hyperparameter C (trying values 0.01, 0.1, 1, 10, and 100). The best hyperparameter configuration
(the one that has the highest average accuracy on the validation folds) is used to train the final
learners on the training folds. Their test accuracies, support vector percentages, active kernel2

counts, and numbers of calls to the optimization toolbox for solving an SVM optimization problem
or a more complex optimization problem3 are measured; we report their averages and standard
deviations. The active kernel count and the number of calls to the optimization toolbox for SVM
(best) are taken as 1 and P, respectively, because it uses only one of the feature representations
but needs to train the individual SVMs on all feature representations before choosing the best.
Similarly, the active kernel count and the number of calls to the optimization toolbox for SVM (all)
are taken as P and 1, respectively, because it uses all of the feature representations but trains a single
SVM.

2. A kernel is active, if it needs to be calculated to make a prediction for an unseen test instance.
3. All algorithms except the MKL formulation of Bach et al. (2004), MKL, solve QP problems when they call the
optimization toolbox, whereas MKL solves an SOCP problem.

2243

GÖNEN AND ALPAYDIN

The test accuracies and support vector percentages are compared using the 5×2 cv paired F test
(Alpaydın, 1999) or the paired t test according to the resampling scheme used. The active kernel
counts and the number of calls to the optimization toolbox are compared using the Wilcoxon’s
signed-rank test (Wilcoxon, 1945). For all statistical tests, the significance level, α, is taken as 0.05.
We want to test if by combining kernels, we get accuracy higher than any of the single kernels. In the
result tables, a superscript a denotes that the performance values of SVM (best) and the compared
algorithm are statistically significantly different, where a and a denote that the compared algorithm
has statistically significantly higher and lower average than SVM (best), respectively. Similarly,
we want to test if an algorithm is better than a straightforward concatenation of the input features,
SVM (all), and if it is better than fixed combination, namely, RBMKL (mean); for those, we use the
superscripts b and c, respectively.

4.3 Protein Fold Prediction Experiments

We perform experiments on the Protein Fold (PROTEIN) prediction data set4 from the MKL Repos-
itory, composed of 10 different feature representations and two kernels for 694 instances (311 for
training and 383 for testing). The properties of these feature representations are summarized in Ta-
ble 3. We construct a binary classification problem by combining the major structural classes {α,β}
into one class and {α/β,α+β} into another class. Due to the small size of this data set, we use
30-fold cross-validation and the paired t test. We do three experiments on this data set using three
different subsets of kernels.

Name Dimension Data Source

COM 20 Amino-acid composition
SEC 21 Predicted secondary structure
HYD 21 Hydrophobicity
VOL 21 Van der Waals volume
POL 21 Polarity
PLZ 21 Polarizability
L1 22 Pseudo amino-acid composition at interval 1
L4 28 Pseudo amino-acid composition at interval 4
L14 48 Pseudo amino-acid composition at interval 14
L30 80 Pseudo amino-acid composition at interval 30
BLO 311 Smith-Waterman scores with the BLOSUM 62 matrix
PAM 311 Smith-Waterman scores with the PAM 50 matrix

Table 3: Multiple feature representations in the PROTEIN data set.

Table 4 lists the performance values of all algorithms on the PROTEIN data set with (COM-SEC-
HYD-VOL-POL-PLZ). All combination algorithms except RBMKL (product) and GMKL outperform
SVM (best) by more than four per cent in terms of average test accuracy. NLMKL (p = 1), NLMKL
(p= 2), LMKL (softmax), and LMKL (sigmoid) are the only four algorithms that obtain more than 80
per cent average test accuracy and are statistically significantly more accurate than SVM (best), SVM
(all), and RBMKL (mean). Nonlinear combination algorithms, namely, RBMKL (product), NLMKL
(p = 1), and NLMKL (p = 2), have the disadvantage that they store statistically significantly more

4. Available at http://mkl.ucsd.edu/dataset/protein-fold-prediction.

2244

MULTIPLE KERNEL LEARNING ALGORITHMS

support vectors than all other algorithms. ABMKL (conic) and CABMKL (conic) are the two MKL al-
gorithms that perform kernel selection and use less than five kernels on the average, while the others
use all six kernels, except CABMKL (linear) which uses five kernels in one of 30 folds. The two-step
algorithms, except GMKL, LMKL (softmax), and LMKL (sigmoid), need to solve fewer than 20 SVM
problems on the average. GLMKL (p= 1) and GLMKL (p= 2) solve statistically significantly fewer
optimization problems than all the other two-step algorithms. LMKL (softmax) and LMKL (sigmoid)
solve many SVM problems; the large standard deviations for this performance value are mainly
due to the random initialization of the gating model parameters and it takes longer for some folds to
converge.

Table 5 summarizes the performance values of all algorithms on the PROTEIN data set with
(COM-SEC-HYD-VOL-POL-PLZ-L1-L4-L14-L30). All combination algorithms except RBMKL
(product) outperform SVM (best) by more than two per cent in terms of average test accuracy.
NLMKL (p= 1) and NLMKL (p= 2) are the only two algorithm that obtain more than 85 per cent av-
erage test accuracy and are statistically significantly more accurate than SVM (best), SVM (all), and
RBMKL (mean). When the number of kernels combined becomes large as in this experiment, as a
result of multiplication, RBMKL (product) starts to have very small kernel values at the off-diagonal
entries of the combined kernel matrix. This causes the classifier to behave like a nearest-neighbor
classifier by storing many support vectors and to perform badly in terms of average test accuracy.
As observed in the previous experiment, the nonlinear combination algorithms, namely, RBMKL
(product), NLMKL (p= 1), and NLMKL (p= 2), store statistically significantly more support vectors
than all other algorithms. ABMKL (conic), ABMKL (convex), CABMKL (linear), CABMKL (conic),
MKL, SimpleMKL, and GMKL are the seven MKL algorithms that perform kernel selection and use
fewer than 10 kernels on the average, while others use all 10 kernels. Similar to the results of the
previous experiment, GLMKL (p= 1) and GLMKL (p= 2) solve statistically significantly fewer op-
timization problems than all the other two-step algorithms and the very high standard deviations for
LMKL (softmax) and LMKL (sigmoid) are also observed in this experiment.

Table 6 gives the performance values of all algorithms on the PROTEIN data set with a larger
set of kernels, namely, (COM-SEC-HYD-VOL-POL-PLZ-L1-L4-L14-L30-BLO-PAM). All combi-
nation algorithms except RBMKL (product) outperform SVM (best) by more than three per cent in
terms of average test accuracy. NLMKL (p = 1) and NLMKL (p = 2) are the only two algorithms
that obtain more than 87 per cent average test accuracy. In this experiment, ABMKL (ratio), GMKL,
GLMKL (p = 1), GLMKL (p = 2), NLMKL (p = 1), NLMKL (p = 2), and LMKL (sigmoid) are sta-
tistically significantly more accurate than SVM (best), SVM (all), and RBMKL (mean). As noted
in the two previous experiments, the nonlinear combination algorithms, namely, RBMKL (product),
NLMKL (p = 1), and NLMKL (p = 2), store statistically significantly more support vectors than all
other algorithms. ABMKL (conic), ABMKL (convex), CABMKL (linear), CABMKL (conic), MKL, Sim-
pleMKL, and GMKL are the seven MKL algorithms that perform kernel selection and use fewer than
12 kernels on the average, while others use all 12 kernels, except GLMKL (p = 1) which uses 11
kernels in one of 30 folds. Similar to the results of the two previous experiments, GLMKL (p = 1)
and GLMKL (p = 2) solve statistically significantly fewer optimization problems than all the other
two-step algorithms, but the very high standard deviations for LMKL (softmax) and LMKL (sigmoid)
are not observed in this experiment.

2245

GÖNEN AND ALPAYDIN

Algorithm Test Accuracy Support Vector Active Kernel Calls to Solver

SVM (best) 72.06±0.74 bc 58.29±1.00 bc 1.00±0.00 bc 6.00± 0.00 bc

SVM (all) 79.13±0.45a c 62.14±1.04a c 6.00±0.00 1.00± 0.00
RBMKL (mean) 78.01±0.63 60.89±1.02 6.00±0.00 1.00± 0.00
RBMKL (product) 72.35±0.95 bc 100.00±0.00abc 6.00±0.00 1.00± 0.00
ABMKL (conic) 79.03±0.92a c 49.96±1.01abc 4.60±0.50abc 1.00± 0.00
ABMKL (convex) 76.90±1.17abc 29.54±0.89abc 6.00±0.00 1.00± 0.00
ABMKL (ratio) 78.06±0.62 56.95±1.07abc 6.00±0.00 1.00± 0.00
CABMKL (linear) 79.51±0.78abc 49.81±0.82abc 5.97±0.18abc 1.00± 0.00
CABMKL (conic) 79.28±0.97a c 49.84±0.77abc 4.73±0.52abc 1.00± 0.00
MKL 76.38±1.19abc 29.65±1.02abc 6.00±0.00 1.00± 0.00
SimpleMKL 76.34±1.24abc 29.62±1.08abc 6.00±0.00 18.83± 4.27abc

GMKL 74.96±0.50abc 79.85±0.70abc 2.37±0.56abc 37.10± 3.23abc

GLMKL (p= 1) 77.71±0.96 55.80±0.95abc 6.00±0.00 6.10± 0.31abc

GLMKL (p= 2) 77.20±0.42abc 75.34±0.70abc 6.00±0.00 5.00± 0.00abc

NLMKL (p= 1) 83.49±0.76abc 85.67±0.86abc 6.00±0.00 17.50± 0.51abc

NLMKL (p= 2) 82.30±0.62abc 89.57±0.77abc 6.00±0.00 13.40± 4.41abc

LMKL (softmax) 80.24±1.37abc 27.24±1.76abc 6.00±0.00 85.27±41.77abc
LMKL (sigmoid) 81.91±0.92abc 30.95±2.74abc 6.00±0.00 103.90±62.69abc

Table 4: Performances of single-kernel SVM and representative MKL algorithms on the PROTEIN
data set with (COM-SEC-HYD-VOL-POL-PLZ) using the linear kernel.

Algorithm Test Accuracy Support Vector Active Kernel Calls to Solver

SVM (best) 72.15±0.68 bc 47.50±1.25 bc 1.00±0.00 bc 10.00± 0.00 bc

SVM (all) 79.63±0.74a c 43.45±1.00a c 10.00±0.00 1.00± 0.00
RBMKL (mean) 81.32±0.74 61.67±1.31 10.00±0.00 1.00± 0.00
RBMKL (product) 53.04±0.21abc 100.00±0.00abc 10.00±0.00 1.00± 0.00
ABMKL (conic) 80.45±0.68abc 48.16±1.08abc 6.90±0.66abc 1.00± 0.00
ABMKL (convex) 77.47±0.62abc 87.86±0.76abc 9.03±0.61abc 1.00± 0.00
ABMKL (ratio) 76.22±1.14abc 35.54±1.01abc 10.00±0.00 1.00± 0.00
CABMKL (linear) 77.15±0.63abc 73.84±0.80abc 9.90±0.31abc 1.00± 0.00
CABMKL (conic) 81.02±0.67 48.32±0.86abc 6.93±0.74abc 1.00± 0.00
MKL 79.74±1.02a c 56.00±0.85abc 8.73±0.52abc 1.00± 0.00
SimpleMKL 74.53±0.90abc 80.22±1.05abc 4.73±1.14abc 23.83± 7.46abc

GMKL 74.68±0.68abc 80.36±0.83abc 5.73±0.91abc 29.10± 8.47abc

GLMKL (p= 1) 79.77±0.86a c 55.94±0.93abc 10.00±0.00 6.87± 0.57abc

GLMKL (p= 2) 78.00±0.43abc 72.49±1.00abc 10.00±0.00 5.03± 0.18abc

NLMKL (p= 1) 85.38±0.70abc 93.84±0.51abc 10.00±0.00 14.77± 0.43abc

NLMKL (p= 2) 85.40±0.69abc 93.86±0.51abc 10.00±0.00 18.00± 0.00abc

LMKL (softmax) 81.11±1.82 36.00±3.61abc 10.00±0.00 34.40±23.12abc
LMKL (sigmoid) 81.90±2.01 51.94±2.14abc 10.00±0.00 31.63±13.17abc

Table 5: Performances of single-kernel SVM and representative MKL algorithms on the PROTEIN
data set with (COM-SEC-HYD-VOL-POL-PLZ-L1-L4-L14-L30) using the linear kernel.

2246

MULTIPLE KERNEL LEARNING ALGORITHMS

Algorithm Test Accuracy Support Vector Active Kernel Calls to Solver

SVM (best) 78.37±1.08 bc 93.09±0.73 bc 1.00±0.00 bc 12.00± 0.00 bc

SVM (all) 82.01±0.76a c 89.32±0.99a c 12.00±0.00 1.00± 0.00
RBMKL (mean) 83.57±0.59 65.94±0.93 12.00±0.00 1.00± 0.00
RBMKL (product) 53.04±0.21abc 100.00±0.00abc 12.00±0.00 1.00± 0.00
ABMKL (conic) 83.52±0.94 63.07±1.35abc 7.30±0.88abc 1.00± 0.00
ABMKL (convex) 83.76±1.02 64.36±1.56abc 6.87±0.94abc 1.00± 0.00
ABMKL (ratio) 85.65±0.67abc 57.87±1.24abc 12.00±0.00 1.00± 0.00
CABMKL (linear) 83.48±0.92 68.00±1.48abc 11.87±0.35abc 1.00± 0.00
CABMKL (conic) 83.43±0.95 62.12±1.63abc 8.43±0.73abc 1.00± 0.00
MKL 83.55±1.25 81.75±1.06abc 7.67±0.76abc 1.00± 0.00
SimpleMKL 83.96±1.20 86.41±0.98abc 9.83±0.91abc 54.53± 9.92abc

GMKL 85.67±0.91abc 79.53±2.71abc 9.93±0.74abc 47.40±10.81abc
GLMKL (p= 1) 85.96±0.96abc 79.06±1.04abc 11.97±0.18abc 14.77± 0.57abc

GLMKL (p= 2) 85.02±1.20abc 62.06±1.02abc 12.00±0.00 5.60± 0.67abc

NLMKL (p= 1) 87.00±0.66abc 96.78±0.32abc 12.00±0.00 4.83± 0.38abc

NLMKL (p= 2) 87.28±0.65abc 96.64±0.32abc 12.00±0.00 17.77± 0.43abc

LMKL (softmax) 83.72±1.35 37.55±2.54abc 12.00±0.00 25.97± 5.75abc

LMKL (sigmoid) 85.06±0.83abc 48.99±1.59abc 12.00±0.00 25.40± 9.36abc

Table 6: Performances of single-kernel SVM and representative MKL algorithms on the PROTEIN
data set with (COM-SEC-HYD-VOL-POL-PLZ-L1-L4-L14-L30-BLO-PAM) using the lin-
ear kernel.

4.4 Pendigits Digit Recognition Experiments

We perform experiments on the Pendigits (PENDIGITS) digit recognition data set5 from the MKL
Repository, composed of four different feature representations for 10,992 instances (7,494 for train-
ing and 3,498 for testing). The properties of these feature representations are summarized in Table 7.
Two binary classification problems are generated from the PENDIGITS data set: In the PENDIGITS-
EO data set, we separate even digits from odd digits; in the PENDIGITS-SL data set, we separate
small (‘0’ - ‘4’) digits from large (‘5’ - ‘9’) digits.

Name Dimension Data Source

DYN 16 8 successive pen points on two-dimensional coordinate system
STA4 16 4×4 image bitmap representation
STA8 64 8×8 image bitmap representation
STA16 256 16×16 image bitmap representation

Table 7: Multiple feature representations in the PENDIGITS data set.

Table 8 summarizes the performance values of all algorithms on the PENDIGITS-EO data set.
We see that SVM (best) is outperformed (by more than three per cent) by all other algorithms in

5. Available at http://mkl.ucsd.edu/dataset/pendigits.

2247

GÖNEN AND ALPAYDIN

terms of average test accuracy, which implies that integrating different information sources helps.
RBMKL (product), NLMKL (p = 1), NLMKL (p = 2), LMKL (softmax), and LMKL (sigmoid) achieve
statistically significantly higher average test accuracies than the other MKL algorithms. NLMKL
(p = 1) and NLMKL (p = 2) are the only two algorithms that get more than 99 percent average
test accuracy and improve the average test accuracy of RBMKL (mean) statistically significantly,
by nearly six per cent. When we look at the percentages of support vectors stored, we see that
RBMKL (product) stores statistically significantly more support vectors than the other algorithms,
whereas LMKL (softmax) and LMKL (sigmoid) store statistically significantly fewer support vectors.
All combination algorithms except ABMKL (convex) use four kernels in all folds. All two-step
algorithms except LMKL (softmax) and LMKL (sigmoid) need to solve less than 15 SVM optimization
problems on the average. As observed before, LMKL (softmax) and LMKL (sigmoid) have very high
standard deviations in the number of SVM optimization calls due to the random initialization of the
gating model parameters; note that convergence may be slow at times, but the standard deviations
of the test accuracy are small.

Table 9 lists the performance values of all algorithms on the PENDIGITS-SL data set. We again
see that SVM (best) is outperformed (more than five per cent) by all other algorithms in terms of av-
erage test accuracy. RBMKL (product), NLMKL (p= 1), NLMKL (p= 2), LMKL (softmax), and LMKL
(sigmoid) achieve statistically significantly higher average test accuracies than the other MKL algo-
rithms. Similar to the results on the PENDIGITS-EO data set, NLMKL (p = 1) and NLMKL (p = 2)
are the only two algorithms that get more than 99 percent average test accuracy by improving the av-
erage test accuracy of RBMKL (mean) nearly eight per cent for this experiment. As observed on the
PENDIGITS-EO data set, we see that RBMKL (product) stores statistically significantly more support
vectors than the other algorithms, whereas LMKL (softmax) and LMKL (sigmoid) store fewer support
vectors. All combination algorithms except ABMKL (convex) use four kernels in all folds, whereas
this latter uses exactly three kernels in all folds by eliminating STA8 representation. All two-step
algorithms except LMKL (softmax) and LMKL (sigmoid) need to solve less than 20 SVM optimiza-
tion problems on the average. GLMKL (p = 1) and GLMKL (p = 2) solve statistically significantly
fewer SVM problems than the other two-step algorithms.

4.5 Multiple Features Digit Recognition Experiments

We perform experiments on the Multiple Features (MULTIFEAT) digit recognition data set6 from
the UCI Machine Learning Repository, composed of six different feature representations for 2,000
handwritten numerals. The properties of these feature representations are summarized in Table 10.
Two binary classification problems are generated from the MULTIFEAT data set: In the MULTIFEAT-
EO data set, we separate even digits from odd digits; in the MULTIFEAT-SL data set, we separate
small (‘0’ - ‘4’) digits from large (‘5’ - ‘9’) digits. We do two experiments on these data set using
two different subsets of feature representations.

Table 11 gives the performance values of all algorithms on the MULTIFEAT-EO data set with
(FOU-KAR-PIX-ZER). Though all algorithms except CABMKL (linear) have higher average test ac-
curacies than SVM (best); only LMKL (sigmoid) is statistically significantly more accurate than SVM
(best), SVM (all), and RBMKL (mean). Note that even though RBMKL (product) is not more accu-
rate than SVM (all) or RBMKL (mean), nonlinear and data-dependent algorithms, namely, NLMKL
(p = 1), NLMKL (p = 2), LMKL (softmax), and LMKL (sigmoid), are more accurate than these two

6. Available at http://archive.ics.uci.edu/ml/datasets/Multiple+Features.

2248

MULTIPLE KERNEL LEARNING ALGORITHMS

Algorithm Test Accuracy Support Vector Active Kernel Calls to Solver

SVM (best) 88.93±0.28 bc 20.90±1.22 c 1.00±0.00 bc 4.00± 0.00 bc

SVM (all) 92.12±0.42a c 22.22±0.72 c 4.00±0.00 1.00± 0.00
RBMKL (mean) 93.34±0.28 18.91±0.67 4.00±0.00 1.00± 0.00
RBMKL (product) 98.46±0.16abc 51.08±0.48abc 4.00±0.00 1.00± 0.00
ABMKL (conic) 93.40±0.15 17.52±0.73abc 4.00±0.00 1.00± 0.00
ABMKL (convex) 93.53±0.26 13.83±0.75abc 3.90±0.32abc 1.00± 0.00
ABMKL (ratio) 93.35±0.20 18.89±0.68 4.00±0.00 1.00± 0.00
CABMKL (linear) 93.42±0.16 17.48±0.74abc 4.00±0.00 1.00± 0.00
CABMKL (conic) 93.42±0.16 17.48±0.74abc 4.00±0.00 1.00± 0.00
MKL 93.28±0.29 19.20±0.67 bc 4.00±0.00 1.00± 0.00
SimpleMKL 93.29±0.27 19.04±0.71 4.00±0.00 8.70± 3.92abc

GMKL 93.28±0.26 19.08±0.72 4.00±0.00 8.60± 3.66abc

GLMKL (p= 1) 93.34±0.27 19.02±0.73 4.00±0.00 3.20± 0.63abc

GLMKL (p= 2) 93.32±0.25 16.91±0.61abc 4.00±0.00 3.80± 0.42abc

NLMKL (p= 1) 99.36±0.08abc 19.55±0.48 4.00±0.00 11.60± 6.26abc

NLMKL (p= 2) 99.38±0.07abc 19.79±0.52 4.00±0.00 10.90± 4.31abc

LMKL (softmax) 97.14±0.39abc 7.25±0.65abc 4.00±0.00 97.70±55.48abc
LMKL (sigmoid) 97.80±0.20abc 11.71±0.71abc 4.00±0.00 87.70±47.30abc

Table 8: Performances of single-kernel SVM and representative MKL algorithms on the
PENDIGITS-EO data set using the linear kernel.

Algorithm Test Accuracy Support Vector Active Kernel Calls to Solver

SVM (best) 84.44±0.49 bc 39.31±0.77 bc 1.00±0.00 bc 4.00± 0.00 bc

SVM (all) 89.48±0.67a c 19.55±0.61a c 4.00±0.00 1.00± 0.00
RBMKL (mean) 91.11±0.34 16.22±0.59 4.00±0.00 1.00± 0.00
RBMKL (product) 98.37±0.11abc 60.28±0.69abc 4.00±0.00 1.00± 0.00
ABMKL (conic) 90.97±0.49 20.93±0.46abc 4.00±0.00 1.00± 0.00
ABMKL (convex) 90.85±0.51 24.59±0.69abc 3.00±0.00abc 1.00± 0.00
ABMKL (ratio) 91.12±0.32 16.23±0.57 4.00±0.00 1.00± 0.00
CABMKL (linear) 91.02±0.47 20.89±0.49abc 4.00±0.00 1.00± 0.00
CABMKL (conic) 91.02±0.47 20.90±0.50abc 4.00±0.00 1.00± 0.00
MKL 90.85±0.45 23.59±0.56abc 4.00±0.00 1.00± 0.00
SimpleMKL 90.84±0.50 23.48±0.55abc 4.00±0.00 14.50± 3.92abc

GMKL 90.85±0.47 23.46±0.54abc 4.00±0.00 15.60± 3.34abc

GLMKL (p= 1) 90.90±0.46 23.33±0.57abc 4.00±0.00 4.90± 0.57abc

GLMKL (p= 2) 91.12±0.44 20.40±0.55abc 4.00±0.00 4.00± 0.00 bc

NLMKL (p= 1) 99.11±0.10abc 17.37±0.17 4.00±0.00 18.10± 0.32abc

NLMKL (p= 2) 99.07±0.12abc 17.66±0.23 4.00±0.00 10.90± 3.70abc

LMKL (softmax) 97.77±0.54abc 5.72±0.46abc 4.00±0.00 116.60±73.34abc
LMKL (sigmoid) 97.13±0.40abc 6.69±0.27abc 4.00±0.00 119.00±45.04abc

Table 9: Performances of single-kernel SVM and representative MKL algorithms on the
PENDIGITS-SL data set using the linear kernel.

2249

GÖNEN AND ALPAYDIN

Name Dimension Data Source

FAC 216 Profile correlations
FOU 76 Fourier coefficients of the shapes
KAR 64 Karhunen-Loève coefficients
MOR 6 Morphological features
PIX 240 Pixel averages in 2×3 windows
ZER 47 Zernike moments

Table 10: Multiple feature representations in the MULTIFEAT data set.

Algorithm Test Accuracy Support Vector Active Kernel Calls to Solver

SVM (best) 95.96±0.50 bc 21.37±0.81 c 1.00±0.00 bc 4.00± 0.00 bc

SVM (all) 97.79±0.25 21.63±0.73 c 4.00±0.00 1.00± 0.00
RBMKL (mean) 97.94±0.29 23.42±0.79 4.00±0.00 1.00± 0.00
RBMKL (product) 96.43±0.38 bc 92.11±1.18abc 4.00±0.00 1.00± 0.00
ABMKL (conic) 97.85±0.25 19.40±1.02abc 2.00±0.00abc 1.00± 0.00
ABMKL (convex) 95.97±0.57 bc 21.45±0.92 c 1.20±0.42 bc 1.00± 0.00
ABMKL (ratio) 97.82±0.32 22.33±0.57 bc 4.00±0.00 1.00± 0.00
CABMKL (linear) 95.78±0.37 bc 19.25±1.09 bc 4.00±0.00 1.00± 0.00
CABMKL (conic) 97.85±0.25 19.37±1.03abc 2.00±0.00abc 1.00± 0.00
MKL 97.88±0.31 21.01±0.87 c 3.50±0.53abc 1.00± 0.00
SimpleMKL 97.87±0.32 20.90±0.94 c 3.40±0.70abc 22.50± 6.65abc

GMKL 97.88±0.31 21.00±0.88 c 3.50±0.53abc 25.90±10.05abc
GLMKL (p= 1) 97.90±0.25 21.31±0.78 c 4.00±0.00 11.10± 0.74abc

GLMKL (p= 2) 98.01±0.24 19.19±0.61 bc 4.00±0.00 4.90± 0.32abc

NLMKL (p= 1) 98.67±0.22 56.91±1.17abc 4.00±0.00 4.50± 1.84 bc

NLMKL (p= 2) 98.61±0.24 53.61±1.20abc 4.00±0.00 5.60± 3.03 bc

LMKL (softmax) 98.16±0.50 17.40±1.17abc 4.00±0.00 36.70±14.11abc
LMKL (sigmoid) 98.94±0.29abc 15.23±1.08abc 4.00±0.00 88.20±36.00abc

Table 11: Performances of single-kernel SVM and representative MKL algorithms on the
MULTIFEAT-EO data set with (FOU-KAR-PIX-ZER) using the linear kernel.

algorithms. Alignment-based and centered-alignment-based MKL algorithms, namely, ABMKL (ra-
tio), ABMKL (conic), ABMKL (convex), CABMKL (linear) and CABMKL (convex), are not more accu-
rate than RBMKL (mean). We see that ABMKL (convex) and CABMKL (linear) are statistically signif-
icantly less accurate than SVM (all) and RBMKL (mean). If we compare the algorithms in terms of
support vector percentages, we note that MKL algorithms that use products of the combined ker-
nels, namely, RBMKL (product), NLMKL (p= 1), and NLMKL (p= 2), store statistically significantly
more support vectors than all other algorithms. If we look at the active kernel counts, 10 out of 16
MKL algorithms use all four kernels. The two-step algorithms solve statistically significantly more
optimization problems than the one-step algorithms.

Table 12 summarizes the performance values of all algorithms on the MULTIFEAT-EO data set
with (FAC-FOU-KAR-MOR-PIX-ZER). We note that NLMKL (p = 1) and LMKL (sigmoid) are the

2250

MULTIPLE KERNEL LEARNING ALGORITHMS

two MKL algorithms that achieve average test accuracy greater than or equal to 99 per cent, while
NLMKL (p = 1), NLMKL (p = 2), and LMKL (sigmoid) are statistically significantly more accurate
than RBMKL (mean). All other MKL algorithms except RBMKL (product) and CABMKL (linear)
achieve average test accuracies between 98 per cent and 99 per cent. Similar to the results of
the previous experiment, RBMKL (product), NLMKL (p = 1), and NLMKL (p = 2) store statistically
significantly more support vectors than all other algorithms. When we look at the number of active
kernels, ABMKL (convex) selects only one kernel and this is the same kernel that SVM (best) picks.
ABMKL (conic) and CABMKL (conic) use three kernels, whereas all other algorithms use more than
five kernels on the average. GLMKL (p = 1), GLMKL (p = 2), NLMKL (p = 1), and NLMKL (p = 2)
solve fewer optimization problems than the other two-step algorithms, namely, SimpleMKL, GMKL,
LMKL (softmax), and LMKL (sigmoid).

Table 13 lists the performance values of all algorithms on the MULTIFEAT-SL data set with
(FOU-KAR-PIX-ZER). SVM (best) is outperformed by the other algorithms on the average and
this shows that, for this data set, combining multiple information sources, independently of the
combination algorithm used, improves the average test accuracy. RBMKL (product), NLMKL (p =
1), NLMKL (p = 2), and LMKL (sigmoid) are the four MKL algorithms that achieve statistically
significantly higher average test accuracies than RBMKL (best), SVM (all), RBMKL (mean). NLMKL
(p = 1) and NLMKL (p = 2) are the two best algorithms and are statistically significantly more
accurate than all other algorithms, except LMKL (sigmoid). However, NLMKL (p = 1) and NLMKL
(p= 2) store statistically significantly more support vectors than all other algorithms, except RBMKL
(product). All MKL algorithms use all of the kernels and the two-step algorithms solve statistically
significantly more optimization problems than the one-step algorithms.

Table 14 gives the performance values of all algorithms on the MULTIFEAT-SL data set with
(FAC-FOU-KAR-MOR-PIX-ZER). GLMKL (p = 2), NLMKL (p = 1), NLMKL (p = 2), LMKL (soft-
max), and LMKL (sigmoid) are the five MKL algorithms that achieve higher average test accuracies
than RBMKL (mean). CABMKL (linear) is the only algorithm that has statistically significantly lower
average test accuracy than SVM (best). No MKL algorithm achieves statistically significantly higher
average test accuracies than SVM (best), SVM (all), and RBMKL (mean). MKL algorithms with non-
linear combination rules, namely, RBMKL (product), NLMKL (p= 1) and NLMKL (p= 2), again use
more support vectors than the other algorithms, whereas LMKL with a data-dependent combination
approach stores statistically significantly fewer support vectors. ABMKL (conic), ABMKL (convex),
and CABMKL (conic) are the three MKL algorithms that perform kernel selection and use fewer than
five kernels on the average, while others use all of the kernels. GLMKL (p= 1) and GLMKL (p= 2)
solve statistically significantly fewer optimization problems than all the other two-step algorithms
and the very high standard deviations for LMKL (softmax) and LMKL (sigmoid) are also observed in
this experiment.

4.6 Internet Advertisements Experiments

We perform experiments on the Internet Advertisements (ADVERT) data set7 from the UCI Machine
Learning Repository, composed of five different feature representations (different bags of words);
there is also some additional geometry information of the images, but we ignore them in our experi-
ments due to missing values. After removing the data instances with missing values, we have a total

7. Available at http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements.

2251

GÖNEN AND ALPAYDIN

Algorithm Test Accuracy Support Vector Active Kernel Calls to Solver

SVM (best) 98.39±0.36 10.30±0.83 bc 1.00±0.00 bc 6.00± 0.00 bc

SVM (all) 98.24±0.40 14.44±0.74 6.00±0.00 1.00± 0.00
RBMKL (mean) 98.09±0.31 15.16±0.83 6.00±0.00 1.00± 0.00
RBMKL (product) 95.87±0.31abc 100.00±0.00abc 6.00±0.00 1.00± 0.00
ABMKL (conic) 98.24±0.38 13.08±0.93 3.00±0.00abc 1.00± 0.00
ABMKL (convex) 98.39±0.36 10.30±0.83 bc 1.00±0.00 bc 1.00± 0.00
ABMKL (ratio) 98.19±0.25 14.11±0.64 6.00±0.00 1.00± 0.00
CABMKL (linear) 96.90±0.34 16.89±0.91abc 5.90±0.32abc 1.00± 0.00
CABMKL (conic) 98.15±0.41 12.54±0.75 3.00±0.00abc 1.00± 0.00
MKL 98.31±0.34 14.88±0.81 5.40±0.70abc 1.00± 0.00
SimpleMKL 98.25±0.37 14.89±0.70 5.60±0.52abc 37.50±12.09abc
GMKL 98.24±0.34 14.33±0.85a c 5.60±0.52abc 31.70±10.79abc
GLMKL (p= 1) 98.28±0.31 14.44±0.87a c 6.00±0.00 9.30± 1.25abc

GLMKL (p= 2) 98.37±0.28 17.04±0.80abc 6.00±0.00 4.90± 0.32abc

NLMKL (p= 1) 99.00±0.16 c 47.50±1.27abc 6.00±0.00 8.30± 2.71abc

NLMKL (p= 2) 98.93±0.18 c 46.78±1.07abc 6.00±0.00 12.00± 3.16abc

LMKL (softmax) 98.34±0.25 11.36±1.83 6.00±0.00 94.90±24.73abc
LMKL (sigmoid) 99.24±0.18 c 17.88±1.06 6.00±0.00 94.90±57.64abc

Table 12: Performances of single-kernel SVM and representative MKL algorithms on the
MULTIFEAT-EO data set with (FAC-FOU-KAR-MOR-PIX-ZER) using the linear kernel.

Algorithm Test Accuracy Support Vector Active Kernel Calls to Solver

SVM (best) 90.54±1.12 bc 28.90±1.69 bc 1.00±0.00 bc 4.00± 0.00 bc

SVM (all) 94.45±0.44 40.26±1.28a c 4.00±0.00 1.00± 0.00
RBMKL (mean) 95.00±0.76 24.73±1.19 4.00±0.00 1.00± 0.00
RBMKL (product) 96.51±0.31abc 95.31±0.60abc 4.00±0.00 1.00± 0.00
ABMKL (conic) 95.12±0.36 33.44±1.20abc 4.00±0.00 1.00± 0.00
ABMKL (convex) 94.51±0.59 24.34±1.19 4.00±0.00 1.00± 0.00
ABMKL (ratio) 94.93±0.73 24.88±1.02 4.00±0.00 1.00± 0.00
CABMKL (linear) 95.10±0.38 33.44±1.24abc 4.00±0.00 1.00± 0.00
CABMKL (conic) 95.10±0.38 33.44±1.24abc 4.00±0.00 1.00± 0.00
MKL 94.81±0.67 24.46±1.13 4.00±0.00 1.00± 0.00
SimpleMKL 94.84±0.64 24.40±1.18 4.00±0.00 15.50± 8.11abc

GMKL 94.84±0.64 24.41±1.18 4.00±0.00 15.60± 8.07abc

GLMKL (p= 1) 94.84±0.69 24.34±1.27 4.00±0.00 6.20± 1.03abc

GLMKL (p= 2) 95.18±0.32 32.34±1.36abc 4.00±0.00 4.20± 0.63 bc

NLMKL (p= 1) 98.64±0.25abc 50.17±1.31abc 4.00±0.00 9.20± 4.80abc

NLMKL (p= 2) 98.63±0.28abc 57.02±1.26abc 4.00±0.00 9.10± 3.28abc

LMKL (softmax) 96.24±0.90 24.16±3.29 4.00±0.00 41.70±31.28abc
LMKL (sigmoid) 97.16±0.60abc 20.18±1.06abc 4.00±0.00 75.50±28.38abc

Table 13: Performances of single-kernel SVM and representative MKL algorithms on the
MULTIFEAT-SL data set with (FOU-KAR-PIX-ZER) using the linear kernel.

2252

MULTIPLE KERNEL LEARNING ALGORITHMS

Algorithm Test Accuracy Support Vector Active Kernel Calls to Solver

SVM (best) 94.99±0.85 bc 17.96±0.89 bc 1.00±0.00 bc 6.00± 0.00 bc

SVM (all) 97.69±0.44 23.34±1.13 6.00±0.00 1.00± 0.00
RBMKL (mean) 97.67±0.50 20.98±0.84 6.00±0.00 1.00± 0.00
RBMKL (product) 96.01±0.17 bc 97.58±0.48abc 6.00±0.00 1.00± 0.00
ABMKL (conic) 96.84±0.39 27.49±0.92abc 4.50±0.53abc 1.00± 0.00
ABMKL (convex) 96.46±0.34 33.78±0.90abc 4.60±0.52abc 1.00± 0.00
ABMKL (ratio) 97.66±0.46 20.95±0.88 6.00±0.00 1.00± 0.00
CABMKL (linear) 89.18±0.81abc 57.22±1.47abc 6.00±0.00 1.00± 0.00
CABMKL (conic) 96.84±0.39 27.57±0.95abc 4.50±0.53abc 1.00± 0.00
MKL 97.40±0.37 32.59±0.82abc 6.00±0.00 1.00± 0.00
SimpleMKL 97.51±0.37 32.53±0.94abc 6.00±0.00 14.40± 3.27abc

GMKL 97.51±0.35 32.73±1.01abc 6.00±0.00 14.20± 4.59abc

GLMKL (p= 1) 97.51±0.28 32.49±0.93abc 6.00±0.00 6.70± 0.95 bc

GLMKL (p= 2) 97.81±0.22 25.19±1.06abc 6.00±0.00 5.00± 0.82abc

NLMKL (p= 1) 98.79±0.28 38.44±0.96abc 6.00±0.00 12.10± 3.98abc

NLMKL (p= 2) 98.82±0.20 43.99±0.99abc 6.00±0.00 10.70± 4.62abc

LMKL (softmax) 97.79±0.62 14.71±1.10 bc 6.00±0.00 59.00±31.42abc
LMKL (sigmoid) 98.48±0.70 16.10±2.09 bc 6.00±0.00 107.60±76.90abc

Table 14: Performances of single-kernel SVM and representative MKL algorithms on the
MULTIFEAT-SL data set with (FAC-FOU-KAR-MOR-PIX-ZER) using the linear kernel.

of 3,279 images in the data set. The properties of these feature representations are summarized in
Table 15. The classification task is to predict whether an image is an advertisement or not.

Name Dimension Data Source

URL 457 Phrases occurring in the URL
ORIGURL 495 Phrases occurring in the URL of the image
ANCURL 472 Phrases occurring in the anchor text
ALT 111 Phrases occurring in the alternative text
CAPTION 19 Phrases occurring in the caption terms

Table 15: Multiple feature representations in the ADVERT data set.

Table 16 lists the performance values of all algorithms on the ADVERT data set. We can see that
all MKL algorithms except RBMKL (product) achieve similar average test accuracies. However,
no MKL algorithm is statistically significantly more accurate than RBMKL (mean), and ABMKL
(convex) is statistically significantly worse. We see again that algorithms that combine kernels by
multiplying them, namely, RBMKL (product), NLMKL (p= 1), and NLMKL (p= 2), store statistically
significantly more support vectors than other MKL algorithms. 10 out of 16 MKL algorithms use
all five kernels; ABMKL (conic) and ABMKL (convex) eliminate two representations, namely, URL
and ORIGURL.GMKL (p= 1) andGMKL (p= 2) solve statistically significantly fewer optimization
problems than the other two-step algorithms.

2253

GÖNEN AND ALPAYDIN

Algorithm Test Accuracy Support Vector Active Kernel Calls to Solver

SVM (best) 95.45±0.31 64.90± 5.41 bc 1.00±0.00 bc 5.00± 0.00 bc

SVM (all) 96.43±0.24 41.99± 1.76 5.00±0.00 1.00± 0.00
RBMKL (mean) 96.53±0.58 34.40± 4.25 5.00±0.00 1.00± 0.00
RBMKL (product) 89.98±0.49abc 96.61± 1.71abc 5.00±0.00 1.00± 0.00
ABMKL (conic) 95.69±0.27 44.16± 2.65a c 3.00±0.00abc 1.00± 0.00
ABMKL (convex) 95.10±0.52 bc 58.07± 2.47 bc 3.00±0.00abc 1.00± 0.00
ABMKL (ratio) 96.23±0.61 35.07± 2.92 5.00±0.00 1.00± 0.00
CABMKL (linear) 95.86±0.19 36.43± 1.50 5.00±0.00 1.00± 0.00
CABMKL (conic) 95.84±0.19 38.06± 2.36 4.40±0.52abc 1.00± 0.00
MKL 96.32±0.50 35.82± 4.35 4.10±0.32abc 1.00± 0.00
SimpleMKL 96.37±0.46 33.78± 4.40 4.60±0.52abc 27.00± 7.39abc

GMKL 96.40±0.49 33.18± 3.49 4.70±0.48abc 27.20± 7.94abc

GLMKL (p= 1) 96.35±0.55 32.81± 3.56 5.00±0.00 5.40± 1.07 bc

GLMKL (p= 2) 96.56±0.32 35.62± 1.55 5.00±0.00 4.90± 0.74 bc

NLMKL (p= 1) 95.96±0.50 67.63± 3.46 bc 5.00±0.00 15.90± 5.38abc

NLMKL (p= 2) 96.13±0.31 65.70± 3.03 bc 5.00±0.00 13.00± 0.00abc

LMKL (softmax) 95.68±0.53 24.18± 5.74 5.00±0.00 38.80±24.11abc
LMKL (sigmoid) 95.49±0.48 18.22±12.16 5.00±0.00 56.60±53.70abc

Table 16: Performances of single-kernel SVM and representative MKL algorithms on the AD-
VERT data set using the linear kernel.

4.7 Overall Comparison

After comparing algorithms for each experiment separately, we give an overall comparison on 10
experiments using the nonparametric Friedman’s test on rankings with the Tukey’s honestly signif-
icant difference criterion as the post-hoc test (Demšar, 2006).

Figure 2 shows the overall comparison between the algorithms in terms of misclassification
error. First of all, we see that combining multiple information sources clearly improves the classifi-
cation performance because SVM (best) is worse than all other algorithms. GLMKL (p= 2), NLMKL
(p = 1), NLMKL (p = 2), LMKL (softmax), and LMKL (sigmoid) are statistically significantly more
accurate than SVM (best). MKL algorithms using a trained, weighted combination on the average
seem a little worse (but not statistically significantly) than the untrained, unweighted sum, namely,
RBMKL (mean). NLMKL (p= 1), NLMKL (p= 2), LMKL (softmax), and LMKL (sigmoid) are more ac-
curate (but not statistically significantly) than RBMKL (mean). These results seem to suggest that if
we want to improve the classification accuracy of MKL algorithms, we should investigate nonlinear
and data-dependent approaches to better exploit information provided by different kernels.

Figure 3 illustrates the overall comparison between the algorithms in terms of the support vec-
tor percentages. We note that algorithms are clustered into three groups: (a) nonlinear MKL al-
gorithms, (b) single-kernel SVM and linear MKL algorithms, and (c) data-dependent MKL al-
gorithms. Nonlinear MKL algorithms, namely, RBMKL (product), NLMKL (p = 1) and NLMKL
(p= 2), store more (but not statistically significantly) support vectors than single-kernel SVM and
linear MKL algorithms, whereas they store statistically significantly more support vectors than

2254

MULTIPLE KERNEL LEARNING ALGORITHMS

−5 0 5 10 15 20 25

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 2: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of misclassification error using the linear kernel.

−5 0 5 10 15 20 25

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 3: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of support vector percentages using the linear kernel.

2255

GÖNEN AND ALPAYDIN

data-dependent MKL algorithms. Data-dependent MKL algorithms, namely, LMKL (softmax) and
LMKL (sigmoid), store fewer (but not statistically significantly) support vectors than single-kernel
SVM and linear MKL algorithms, whereas LMKL (softmax) stores statistically significantly fewer
support vectors than SVM (best) and SVM (all).

Figure 4 gives the overall comparison between the algorithms in terms of active kernel counts.
We see that ABMKL (conic), ABMKL (convex), CABMKL (linear), CABMKL (conic),MKL, SimpleMKL,
and GMKL use fewer kernels (statistically significantly in the case of the first two algorithms) than
other combination algorithms. Even if we optimize the alignment and centered-alignment measures
without any regularization on kernel weights using ABMKL (conic), ABMKL (convex), and CABMKL
(conic), we obtain more sparse (but not statistically significantly) kernel combinations than MKL
and SimpleMKL, which regularize kernel weights using the �1-norm. Trained nonlinear and data-
dependent MKL algorithms, namely, NLMKL (p= 1), NLMKL (p= 2), LMKL (softmax), and LMKL
(sigmoid), tend to use all of the kernels without eliminating any of them, whereas data-dependent
algorithms use the kernels in different parts of the feature space with the help of the gating model.

Figure 5 shows the overall comparison between the algorithms in terms of the optimization
toolbox call counts. We clearly see that the two-step algorithms need to solve more optimization
problems than the other combination algorithms. SimpleMKL, GMKL, NLMKL (p= 1), NLMKL (p=
2), LMKL (softmax), and LMKL (sigmoid) require solving statistically significantly more optimization
problems than the one-step algorithms, whereas the differences between the one-step algorithms and
GLMKL (p= 1) and GLMKL (p= 2) are not statistically significant.

4.8 Overall Comparison Using Gaussian Kernel

We also replicate the same set of experiments, except on PENDIGITS data set, using three different
Gaussian kernels for each feature representation. We select the kernel widths as {√Dm/2,

√
Dm,

2
√
Dm} where Dm is the dimensionality of the corresponding feature representation.

Figure 6 shows the overall comparison between the algorithms in terms of misclassification
error. We see that no MKL algorithm is statistically significantly better than RBMKL (mean) and
conclude that combining complex Gaussian kernels does not help much. ABMKL (ratio), MKL,
SimpleMKL, GMKL, GLMKL (p = 1), and GLMKL (p = 2) obtain accuracy results comparable to
RBMKL (mean). As an important result, we see that nonlinear and data-dependent MKL algorithms,
namely, NLMKL (p = 1), NLMKL (p = 2), LMKL (softmax), and LMKL (sigmoid), are outperformed
(but not statistically significantly) by RBMKL (mean). If we have highly nonlinear kernels such as
Gaussian kernels, there is no need to combine them in a nonlinear or data-dependent way.

Figure 7 illustrates the overall comparison between the algorithms in terms of the support vec-
tor percentages. Different from the results obtained with simple linear kernels, algorithms do not
exhibit a clear grouping. However, data-dependent MKL algorithms, namely, LMKL (softmax) and
LMKL (sigmoid), tend to use fewer support vectors, whereas nonlinear MKL algorithms, namely,
RBMKL (product), NLMKL (p = 1), and NLMKL (p = 2), tend to store more support vectors than
other algorithms.

Figure 8 gives the overall comparison between the algorithms in terms of active kernel counts.
ABMKL (ratio), GLMKL (p = 2), NLMKL (p = 1), NLMKL (p = 2), and LMKL (sigmoid) do not elim-
inate any of the base kernels even though we have three different kernels for each feature repre-
sentation. When combining complex Gaussian kernels, trained MKL algorithms do not improve
the classification performance statistically significantly, but they can eliminate some of the kernels.

2256

MULTIPLE KERNEL LEARNING ALGORITHMS

−4 −2 0 2 4 6 8 10 12 14 16

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 4: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of active kernel counts using the linear kernel.

0 5 10 15 20 25

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 5: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of optimization toolbox call counts using the linear kernel.

2257

GÖNEN AND ALPAYDIN

−5 0 5 10 15 20 25

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 6: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of misclassification error using the Gaussian kernel.

−5 0 5 10 15 20 25

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 7: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of support vector percentages using the Gaussian kernel.

2258

MULTIPLE KERNEL LEARNING ALGORITHMS

−5 0 5 10 15 20

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 8: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of active kernel counts using the Gaussian kernel.

0 5 10 15 20 25

LMKL (sigmoid)

LMKL (softmax)

NLMKL (p = 2)

NLMKL (p = 1)

GLMKL (p = 2)

GLMKL (p = 1)

GMKL

SimpleMKL

MKL

CABMKL (conic)

CABMKL (linear)

ABMKL (ratio)

ABMKL (convex)

ABMKL (conic)

RBMKL (product)

RBMKL (mean)

SVM (all)

SVM (best)

rank

Figure 9: Overall comparison of single-kernel SVM and representative MKL algorithms in terms
of optimization toolbox call counts using the Gaussian kernel.

2259

GÖNEN AND ALPAYDIN

We see that ABMKL (conic), ABMKL (convex), CABMKL (conic), MKL, SimpleMKL, GMKL, GLMKL
(p= 1), and LMKL (softmax) use fewer kernels (statistically significantly in the case of the first three
algorithms) than other combination algorithms.

Figure 9 shows the overall comparison between the algorithms in terms of the optimization
toolbox call counts. Similar to the previous results obtained with simple linear kernels, the two-step
algorithms need to solve more optimization problems than the other combination algorithms.

5. Conclusions

There is a significant amount of work on multiple kernel learning methods. This is because in
many applications, one can come up with many possible kernel functions and instead of choosing
one among them, we are interested in an algorithm that can automatically determine which ones
are useful, which ones are not and therefore can be pruned, and combine the useful ones. Or, in
some applications, we may have different sources of information coming from different modalities
or corresponding to results from different experimental methodologies and each has its own (pos-
sibly multiple) kernel(s). In such a case, a good procedure for kernel combination implies a good
combination of inputs from those multiple sources.

In this paper, we give a taxonomy of multiple kernel learning algorithms to best highlight the
similarities and differences among the proposed algorithms in the literature, which we then review
in detail. The dimensions we compare the existing MKL algorithms are the learning method, the
functional form, the target function, the training method, the base learner, and the computational
complexity. Then by looking at these dimensions, we form 12 groups of MKL variants to allow an
organized discussion of the literature.

We also perform 10 experiments on four real data sets with simple linear kernels and eight ex-
periments on three real data sets with complex Gaussian kernels comparing 16 MKL algorithms
in practice. When combining simple linear kernels, in terms of accuracy, we see that using multi-
ple kernels is better than using a single one but that in combination, trained linear combination is
not always better than an untrained, unweighted combination and that nonlinear or data-dependent
combination seem more promising. When combining complex Gaussian kernels, trained linear
combination is better than nonlinear and data-dependent combinations but not than unweighted
combination. Some MKL variants may be preferred because they use fewer support vectors or
fewer kernels or need fewer calls to the optimizer during training. The relative importance of these
criteria depend on the application at hand.

We conclude that multiple kernel learning is useful in practice and that there is ample evidence
that better MKL algorithms can be devised for improved accuracy, decreased complexity and train-
ing time.

Acknowledgments

The authors would like to thank the editor and the three anonymous reviewers for their constructive
comments, which significantly improved the presentation of the paper. This work was supported
by the Turkish Academy of Sciences in the framework of the Young Scientist Award Program un-
der EA-TÜBA-GEBİP/2001-1-1, Boğaziçi University Scientific Research Project 07HA101 and
the Scientific and Technological Research Council of Turkey (TÜBİTAK) under Grant EEEAG

2260

MULTIPLE KERNEL LEARNING ALGORITHMS

107E222. The work of M. Gönen was supported by the Ph.D. scholarship (2211) from TÜBİTAK.
M. Gönen is currently at the Department of Information and Computer Science, Aalto University
School of Science and the Helsinki Institute for Information Technology (HIIT), Finland.

Appendix A. List of Acronyms

GMKL Generalized Multiple Kernel Learning
GP Gaussian Process
KFDA Kernel Fisher Discriminant Analysis
KL Kullback-Leibler
KRR Kernel Ridge Regression
LMKL Localized Multiple Kernel Learning
LP Linear Programming
MKL Multiple Kernel Learning
QCQP Quadratically Constrained Quadratic Programming
QP Quadratic Programming
RKDA Regularized Kernel Discriminant Analysis
SDP Semidefinite Programming
SILP Semi-infinite Linear Programming
SMKL Sparse Multiple Kernel Learning
SOCP Second-order Cone Programming
SVM Support Vector Machine
SVR Support Vector Regression

Appendix B. List of Notation

R Real numbers
R+ Nonnegative real numbers
R++ Positive real numbers
R
N Real N×1 matrices

R
M×N RealM×N matrices

S
N Real symmetric N×N matrices

N Natural numbers
Z Integers
Z+ Nonnegative integers

‖x‖p The �p-norm of vector x
〈x,y〉 Dot product between vectors x and y
k(x,y) Kernel function between x and y

K Kernel matrix
X� Transpose of matrix X
tr(X) Trace of matrix X
‖X‖F Frobenius norm of matrix X
X)Y Element-wise product between matrices X and Y

References

Ethem Alpaydın. Combined 5×2 cv F test for comparing supervised classification learning algo-
rithms. Neural Computation, 11(8):1885–1892, 1999.

2261

GÖNEN AND ALPAYDIN

Andreas Argyriou, Charles A. Micchelli, and Massimiliano Pontil. Learning convex combinations
of continuously parameterized basic kernels. In Proceeding of the 18th Conference on Learning
Theory, 2005.

Andreas Argyriou, Raphael Hauser, Charles A. Micchelli, and Massimiliano Pontil. A DC-
programming algorithm for kernel selection. In Proceedings of the 23rd International Conference
on Machine Learning, 2006.

Francis R. Bach. Consistency of the group Lasso and multiple kernel learning. Journal of Machine
Learning Research, 9:1179–1225, 2008.

Francis R. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In
Advances in Neural Information Processing Systems 21, 2009.

Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan. Multiple kernel learning, conic
duality, and the SMO algorithm. In Proceedings of the 21st International Conference on Machine
Learning, 2004.

Asa Ben-Hur and William Stafford Noble. Kernel methods for predicting protein-protein interac-
tions. Bioinformatics, 21(Suppl 1):i38–46, 2005.

Kristin P. Bennett, Michinari Momma, and Mark J. Embrechts. MARK: A boosting algorithm for
heterogeneous kernel models. In Proceedings of the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2002.

Jinbo Bi, Tong Zhang, and Kristin P. Bennett. Column-generation boosting methods for mixture
of kernels. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2004.

Olivier Bousquet and Daniel J. L. Herrmann. On the complexity of learning the kernel matrix. In
Advances in Neural Information Processing Systems 15, 2003.

Olivier Chapelle and Alain Rakotomamonjy. Second order optimization of kernel parameters. In
NIPS Workshop on Automatic Selection of Optimal Kernels, 2008.

Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee. Choosing multiple
parameters for support vector machines. Machine Learning, 46(1–3):131–159, 2002.

Mario Christoudias, Raquel Urtasun, and Trevor Darrell. Bayesian localized multiple kernel learn-
ing. Technical Report UCB/EECS-2009-96, University of California at Berkeley, 2009.

Domenico Conforti and Rosita Guido. Kernel based support vector machine via semidefinite pro-
gramming: Application to medical diagnosis. Computers and Operations Research, 37(8):1389–
1394, 2010.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. L2 regularization for learning kernels.
In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, 2009.

Corinna Cortes, Mehryar Mohri, and Rostamizadeh Afshin. Two-stage learning kernel algorithms.
In Proceedings of the 27th International Conference on Machine Learning, 2010a.

2262

MULTIPLE KERNEL LEARNING ALGORITHMS

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Learning non-linear combinations of
kernels. In Advances in Neural Information Processing Systems 22, 2010b.

Koby Crammer, Joseph Keshet, and Yoram Singer. Kernel design using boosting. In Advances in
Neural Information Processing Systems 15, 2003.

Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge University Press, 2000.

Nello Cristianini, John Shawe-Taylor, Andree Elisseef, and Jaz Kandola. On kernel-target align-
ment. In Advances in Neural Information Processing Systems 14, 2002.

Theodoros Damoulas and Mark A. Girolami. Probabilistic multi-class multi-kernel learning: On
protein fold recognition and remote homology detection. Bioinformatics, 24(10):1264–1270,
2008.

Theodoros Damoulas and Mark A. Girolami. Combining feature spaces for classification. Pattern
Recognition, 42(11):2671–2683, 2009a.

Theodoros Damoulas and Mark A. Girolami. Pattern recognition with a Bayesian kernel combina-
tion machine. Pattern Recognition Letters, 30(1):46–54, 2009b.

Tijl De Bie, Leon-Charles Tranchevent, Liesbeth M. M. van Oeffelen, and Yves Moreau. Kernel-
based data fusion for gene prioritization. Bioinformatics, 23(13):i125–132, 2007.

Isaac Martı́n de Diego, Javier M. Moguerza, and Alberto Muñoz. Combining kernel information
for support vector classification. In Proceedings of the 4th International Workshop Multiple
Classifier Systems, 2004.

Isaac Martı́n de Diego, Alberto Muñoz, and Javier M. Moguerza. Methods for the combination of
kernel matrices within a support vector framework. Machine Learning, 78(1–2):137–174, 2010a.

Isaac Martı́n de Diego, Ángel Serrano, Cristina Conde, and Enrique Cabello. Face verification with
a kernel fusion method. Pattern Recognition Letters, 31:837–844, 2010b.

Réda Dehak, Najim Dehak, Patrick Kenny, and Pierre Dumouchel. Kernel combination for SVM
speaker verification. In Proceedings of the Speaker and Language Recognition Workshop, 2008.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7:1–30, 2006.

Glenn Fung, Murat Dundar, Jinbo Bi, and Bharat Rao. A fast iterative algorithm for Fisher dis-
criminant using heterogeneous kernels. In Proceedings of the 21st International Conference on
Machine Learning, 2004.

Peter Vincent Gehler and Sebastian Nowozin. Infinite kernel learning. Technical report, Max Planck
Institute for Biological Cybernetics, 2008.

Mark Girolami and Simon Rogers. Hierarchic Bayesian models for kernel learning. In Proceedings
of the 22nd International Conference on Machine Learning, 2005.

2263

GÖNEN AND ALPAYDIN

Mark Girolami and Mingjun Zhong. Data integration for classification problems employing Gaus-
sian process priors. In Advances in Neural Processing Systems 19, 2007.

Mehmet Gönen and Ethem Alpaydın. Localized multiple kernel learning. In Proceedings of the
25th International Conference on Machine Learning, 2008.

Yves Grandvalet and Stéphane Canu. Adaptive scaling for feature selection in SVMs. In Advances
in Neural Information Processing Systems 15, 2003.

Junfeng He, Shih-Fu Chang, and Lexing Xie. Fast kernel learning for spatial pyramid matching. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, 2008.

Mingqing Hu, Yiqiang Chen, and James Tin-Yau Kwok. Building sparse multiple-kernel SVM
classifiers. IEEE Transactions on Neural Networks, 20(5):827–839, 2009.

Christian Igel, Tobias Glasmachers, Britta Mersch, Nico Pfeifer, and Peter Meinicke. Gradient-
based optimization of kernel-target alignment for sequence kernels applied to bacterial gene start
detection. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4(2):216–
226, 2007.

Thorsten Joachims, Nello Cristianini, and John Shawe-Taylor. Composite kernels for hypertext
categorisation. In Proceedings of the 18th International Conference on Machine Learning, 2001.

Jaz Kandola, John Shawe-Taylor, and Nello Cristianini. Optimizing kernel alignment over combi-
nations of kernels. In Proceedings of the 19th International Conference on Machine Learning,
2002.

Seung-Jean Kim, AlessandroMagnani, and Stephen Boyd. Optimal kernel selection in kernel Fisher
discriminant analysis. In Proceedings of the 23rd International Conference on Machine Learning,
2006.

Marius Kloft, Ulf Brefeld, Sören Sonnenburg, Pavel Laskov, Klaus-Robert Müller, and Alexander
Zien. Efficient and accurate �p-norm multiple kernel learning. In Advances in Neural Information
Processing Systems 22, 2010a.

Marius Kloft, Ulf Brefeld, Sören Sonnenburg, and Alexander Zien. Non-sparse regularization and
efficient training with multiple kernels. Technical report, Electrical Engineering and Computer
Sciences, University of California at Berkeley, 2010b.

Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I. Jordan.
Learning the kernel matrix with semidefinite programming. In Proceedings of the 19th Interna-
tional Conference on Machine Learning, 2002.

Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I. Jordan.
Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Re-
search, 5:27–72, 2004a.

Gert R. G. Lanckriet, Tijl de Bie, Nello Cristianini, Michael I. Jordan, and William Stafford Noble.
A statistical framework for genomic data fusion. Bioinformatics, 20(16):2626–2635, 2004b.

2264

MULTIPLE KERNEL LEARNING ALGORITHMS

Gert R. G. Lanckriet, Minghua Deng, Nello Cristianini, Michael I. Jordan, and William Stafford
Noble. Kernel-based data fusion and its application to protein function prediction in Yeast. In
Proceedings of the Pacific Symposium on Biocomputing, 2004c.

Wan-Jui Lee, Sergey Verzakov, and Robert P. W. Duin. Kernel combination versus classifier com-
bination. In Proceedings of the 7th International Workshop on Multiple Classifier Systems, 2007.

Darrin P. Lewis, Tony Jebara, and William Stafford Noble. Support vector machine learning from
heterogeneous data: An empirical analysis using protein sequence and structure. Bioinformatics,
22(22):2753–2760, 2006a.

Darrin P. Lewis, Tony Jebara, and William Stafford Noble. Nonstationary kernel combination. In
Proceedings of the 23rd International Conference on Machine Learning, 2006b.

Yen-Yu Lin, Tyng-Luh Liu, and Chiou-Shann Fuh. Dimensionality reduction for data in multiple
feature representations. In Advances in Neural Processing Systems 21, 2009.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. Text clas-
sification using string kernels. Journal of Machine Learning Research, 2:419–444, 2002.

Chris Longworth andMark J. F. Gales. Multiple kernel learning for speaker verification. In Proceed-
ings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2008.

Chris Longworth and Mark J. F. Gales. Combining derivative and parametric kernels for speaker
verification. IEEE Transactions on Audio, Speech, and Language Processing, 17(4):748–757,
2009.

Brian McFee and Gert Lanckriet. Partial order embedding with multiple kernels. In Proceedings of
the 26th International Conference on Machine Learning, 2009.

Charles A. Micchelli and Massimiliano Pontil. Learning the kernel function via regularization.
Journal of Machine Learning Research, 6:1099–1125, 2005.

Javier M. Moguerza, Alberto Muñoz, and Isaac Martı́n de Diego. Improving support vector classi-
fication via the combination of multiple sources of information. In Proceedings of the Structural,
Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshops, 2004.

Mosek. The MOSEK Optimization Tools Manual Version 6.0 (Revision 106). MOSEK ApS, Den-
mark, 2011.

Canh Hao Nguyen and Tu Bao Ho. An efficient kernel matrix evaluation measure. Pattern Recog-
nition, 41(11):3366–3372, 2008.

William Stafford Noble. Support vector machine applications in computational biology. In Bern-
hard Schölkopf, Koji Tsuda, and Jean-Philippe Vert, editors, Kernel Methods in Computational
Biology, chapter 3. The MIT Press, 2004.

Cheng Soon Ong and Alexander J. Smola. Machine learning using hyperkernels. In Proceedings of
the 20th International Conference on Machine Learning, 2003.

2265

GÖNEN AND ALPAYDIN

Cheng Soon Ong, Alexander J. Smola, and Robert C. Williamson. Hyperkernels. In Advances in
Neural Information Processing Systems 15, 2003.

Cheng Soon Ong, Alexander J. Smola, and Robert C. Williamson. Learning the kernel with hyper-
kernels. Journal of Machine Learning Research, 6:1043–1071, 2005.

Ayşegül Özen, Mehmet Gönen, Ethem Alpaydın, and Türkan Haliloğlu. Machine learning inte-
gration for predicting the effect of single amino acid substitutions on protein stability. BMC
Structural Biology, 9(1):66, 2009.

Süreyya Özöğür-Akyüz and Gerhard Wilhelm Weber. Learning with infinitely many kernels via
semi-infinite programming. In Proceedings of Euro Mini Conference on Continuous Optimization
and Knowledge-Based Technologies, 2008.

Paul Pavlidis, Jason Weston, Jinsong Cai, and William Noble Grundy. Gene functional classifi-
cation from heterogeneous data. In Proceedings of the 5th Annual International Conference on
Computational Molecular Biology, 2001.

Shibin Qiu and Terran Lane. Multiple kernel learning for support vector regression. Technical
report, Computer Science Department, University of New Mexico, 2005.

Shibin Qiu and Terran Lane. A framework for multiple kernel support vector regression and its
applications to siRNA efficacy prediction. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 6(2):190–199, 2009.

Alain Rakotomamonjy, Francis Bach, Stéphane Canu, and Yves Grandvalet. More efficiency in mul-
tiple kernel learning. In Proceedings of the 24th International Conference on Machine Learning,
2007.

Alain Rakotomamonjy, Francis R. Bach, Stéphane Canu, and Yves Grandvalet. SimpleMKL. Jour-
nal of Machine Learning Research, 9:2491–2521, 2008.

Jagarlapudi Saketha Nath, Govindaraj Dinesh, Sankaran Raman, Chiranjib Bhattacharya, Aharon
Ben-Tal, and Kalpathi R. Ramakrishnan. On the algorithmics and applications of a mixed-norm
based kernel learning formulation. In Advances in Neural Information Processing Systems 22,
2010.

Bernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert, editors. Kernel Methods in Computational
Biology. The MIT Press, 2004.

Sören Sonnenburg, Gunnar Rätsch, and Christin Schäfer. A general and efficient multiple kernel
learning algorithm. In Advances in Neural Information Processing Systems 18, 2006a.

Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, and Bernhard Schölkopf. Large scale multiple
kernel learning. Journal of Machine Learning Research, 7:1531–1565, 2006b.

Niranjan Subrahmanya and Yung C. Shin. Sparse multiple kernel learning for signal processing
applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):788–798,
2010.

2266

MULTIPLE KERNEL LEARNING ALGORITHMS

Marie Szafranski, Yves Grandvalet, and Alain Rakotomamonjy. Composite kernel learning. In
Proceedings of the 25th International Conference on Machine Learning, 2008.

Marie Szafranski, Yves Grandvalet, and Alain Rakotomamonjy. Composite kernel learning. Ma-
chine Learning, 79(1–2):73–103, 2010.

Ying Tan and Jun Wang. A support vector machine with a hybrid kernel and minimal Vapnik-
Chervonenkis dimension. IEEE Transactions on Knowledge and Data Engineering, 16(4):385–
395, 2004.

Hiroaki Tanabe, Tu Bao Ho, Canh Hao Nguyen, and Saori Kawasaki. Simple but effective methods
for combining kernels in computational biology. In Proceedings of IEEE International Confer-
ence on Research, Innovation and Vision for the Future, 2008.

Ivor Wai-Hung Tsang and James Tin-Yau Kwok. Efficient hyperkernel learning using second-order
cone programming. IEEE Transactions on Neural Networks, 17(1):48–58, 2006.

Koji Tsuda, Shinsuke Uda, Taishin Kin, and Kiyoshi Asai. Minimizing the cross validation error to
mix kernel matrices of heterogeneous biological data. Neural Processing Letters, 19(1):63–72,
2004.

Vladimir Vapnik. The Nature of Statistical Learning Theory. John Wiley & Sons, 1998.

Manik Varma and Bodla Rakesh Babu. More generality in efficient multiple kernel learning. In
Proceedings of the 26th International Conference on Machine Learning, 2009.

Manik Varma and Debajyoti Ray. Learning the discriminative power-invariance trade-off. In Pro-
ceedings of the International Conference in Computer Vision, 2007.

Jason Weston, Sayan Mukherjee, Olivier Chapelle, Massimiliano Pontil, Tomaso Poggio, and
Vladimir Vapnik. Feature selection for SVMs. In Advances in Neural Information Processing
Systems 13, 2001.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83,
1945.

Mingrui Wu, Bernhard Schölkopf, and Gökhan Bakır. A direct method for building sparse kernel
learning algorithms. Journal of Machine Learning Research, 7:603–624, 2006.

Linli Xu, James Neufeld, Bryce Larson, and Dale Schuurmans. Maximum margin clustering. In
Advances in Neural Processing Systems 17, 2005.

Zenglin Xu, Rong Jin, Irwin King, and Michael R. Lyu. An extended level method for efficient
multiple kernel learning. In Advances in Neural Information Processing Systems 21, 2009a.

Zenglin Xu, Rong Jin, Jieping Ye, Michael R. Lyu, and Irwin King. Non-monotonic feature selec-
tion. In Proceedings of the 26th International Conference on Machine Learning, 2009b.

Zenglin Xu, Rong Jin, Haiqin Yang, Irwin King, and Michael R. Lyu. Simple and efficient multiple
kernel learning by group Lasso. In Proceedings of the 27th International Conference on Machine
Learning, 2010a.

2267

GÖNEN AND ALPAYDIN

Zenglin Xu, Rong Jin, Shenghuo Zhu, Michael R. Lyu, and Irwin King. Smooth optimization
for effective multiple kernel learning. In Proceedings of the 24th AAAI Conference on Artifical
Intelligence, 2010b.

Yoshihiro Yamanishi, Francis Bach, and Jean-Philippe Vert. Glycan classification with tree kernels.
Bioinformatics, 23(10):1211–1216, 2007.

Fei Yan, Krystian Mikolajczyk, Josef Kittler, and Muhammad Tahir. A comparison of �1 norm
and �2 norm multiple kernel SVMs in image and video classification. In Proceedings of the 7th
International Workshop on Content-Based Multimedia Indexing, 2009.

Jingjing Yang, Yuanning Li, Yonghong Tian, Ling-Yu Duan, and Wen Gao. Group-sensitive mul-
tiple kernel learning for object categorization. In Proceedings of the 12th IEEE International
Conference on Computer Vision, 2009a.

Jingjing Yang, Yuanning Li, Yonghong Tian, Ling-Yu Duan, and Wen Gao. A new multiple ker-
nel approach for visual concept learning. In Proceedings of the 15th International Multimedia
Modeling Conference, 2009b.

Jingjing Yang, Yuanning Li, Yonghong Tian, Ling-Yu Duan, and Wen Gao. Per-sample multiple
kernel approach for visual concept learning. EURASIP Journal on Image and Video Processing,
2010.

Jieping Ye, Jianhui Chen, and Shuiwang Ji. Discriminant kernel and regularization parameter learn-
ing via semidefinite programming. In Proceedings of the 24th International Conference on Ma-
chine Learning, 2007a.

Jieping Ye, Shuiwang Ji, and Jianhui Chen. Learning the kernel matrix in discriminant analysis
via quadratically constrained quadratic programming. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2007b.

Jieping Ye, Shuiwang Ji, and Jianhui Chen. Multi-class discriminant kernel learning via convex
programming. Journal of Machine Learning Research, 9:719–758, 2008.

Yiming Ying, Kaizhu Huang, and Colin Campbell. Enhanced protein fold recognition through a
novel data integration approach. BMC Bioinformatics, 10(1):267, 2009.

Bin Zhao, James T. Kwok, and Changshui Zhang. Multiple kernel clustering. In Proceedings of the
9th SIAM International Conference on Data Mining, 2009.

Alexander Zien and Cheng Soon Ong. Multiclass multiple kernel learning. In Proceedings of the
24th International Conference on Machine Learning, 2007.

Alexander Zien and Cheng Soon Ong. An automated combination of kernels for predicting protein
subcellular localization. In Proceedings of the 8th International Workshop on Algorithms in
Bioinformatics, 2008.

2268

Journal of Machine Learning Research 12 (2011) 2269-2292 Submitted 6/10; Revised 4/11; Published 7/11

Smoothness, Disagreement Coefficient, and the Label Complexity of
Agnostic Active Learning

Liwei Wang WANGLW@CIS.PKU.EDU.CN
Key Laboratory of Machine Perception, MOE
School of Electronics Engineering and Computer Science
Peking University
Beijing, 100871, P.R.China

Editor: Rocco Servedio

Abstract

We study pool-based active learning in the presence of noise, that is, the agnostic setting. It is
known that the effectiveness of agnostic active learning depends on the learning problem and the
hypothesis space. Although there are many cases on which active learning is very useful, it is
also easy to construct examples that no active learning algorithm can have an advantage. Previous
works have shown that the label complexity of active learning relies on the disagreement coefficient
which often characterizes the intrinsic difficulty of the learning problem. In this paper, we study the
disagreement coefficient of classification problems for which the classification boundary is smooth
and the data distribution has a density that can be bounded by a smooth function. We prove upper
and lower bounds for the disagreement coefficients of both finitely and infinitely smooth problems.
Combining with existing results, it shows that active learning is superior to passive supervised
learning for smooth problems.

Keywords: active learning, disagreement coefficient, label complexity, smooth function

1. Introduction

Active learning addresses the problem that the algorithm is given a pool of unlabeled data drawn
i.i.d. from some underlying distribution; the algorithm can then pay for the label of any example
in the pool. The goal is to learn an accurate classifier by requesting as few labels as possible. This
is in contrast with the standard passive supervised learning, where the labeled examples are chosen
randomly.

The simplest example that demonstrates the potential of active learning is to learn the optimal
threshold on an interval. Suppose the instances are uniformly distributed on [0,1], and there exists
a perfect threshold separating the two classes (i.e., there is no noise), then binary search needs
O(log 1ε) labels to learn an ε-accurate classifier, while passive learning requiresO(

1
ε) labels. Another

encouraging example is to learn homogeneous linear separators. If the data are distributed on the
unit sphere of Rd , and the distribution has a density function upper and lower bounded by λ and
1/λ respectively, where λ is some constant, then active learning can still give exponential savings
in the label complexity (Dasgupta, 2005).

However, there are also very simple problems that active learning does not help. Suppose again
that the instances are uniformly distributed on [0,1]. But this time the positive class could be any
interval on [0,1]. In this case, for any active learning algorithm there exists a distribution (i.e., a

©2011 Liwei Wang.

WANG

target classifier) such that the algorithm needs Ω(1ε) label requests to learn an ε-accurate classifier
(Dasgupta, 2005). Thus there is no improvement over passive learning in the minimax sense. All
above are realizable problems. Of more interest and more realistic is the agnostic setting, where the
best classifier in the hypothesis space has a non-zero error ν. For agnostic active learning, there is
no active learning algorithm that can always reduce label requests due to a lower bound Ω(ν

2

ε2) for
the label complexity (Kääriäinen, 2006).

Previous results have shown that whether active learning helps relies crucially on the disagree-
ment coefficient of the learning problem (Hanneke, 2007). The disagreement coefficient depends on
the distribution of the instance-label pairs and the hypothesis space and often describes the intrinsic
difficulty of the active learning problem. In particular, it has been shown that the label complexity
of two important agnostic active learning algorithms A2 (Balcan et al., 2006) and the one due to
Dasgupta et al. (2007) (will be referred to as DHM) are characterized by the disagreement coeffi-
cient. If the disagreement coefficient is small, active learning usually has smaller label complexity
than passive learning.

In this paper, we study the disagreement coefficient for smooth problems. Specifically we ana-
lyze the disagreement coefficient for learning problems whose classification boundaries are smooth.
Such problems are often referred to as the boundary fragment class (van der Vaart and Wellner,
1996). Under some mild assumptions on the distribution, we show that the magnitude of the dis-
agreement coefficient depends on the order of smoothness. For finite order smoothness, it is poly-
nomially smaller than the largest possible value, and exponentially smaller for infinite smoothness.
Combining with known upper bounds on the label complexity in terms of disagreement coefficient,
we give sufficient condition under which active learning is strictly superior to passive learning.

1.1 Related Works

Our work is closely related to Castro and Nowak (2008) which proved label complexity bounds for
problems with smooth classification boundary under Tsybakov’s noise condition (Tsybakov, 2004).
Please see Section 3.3 for a detailed discussion on this work.

Another related work is due to Friedman (2009). He introduced a different notion of smooth-
ness. In particular, he considered smooth problems whose hypothesis space is a finite dimensional
parametric space (and therefore has finite VC dimension). He gave conditions under which the dis-
agreement coefficient is always bounded from above by a constant. In contrast, the hypothesis space
(the boundary fragment class) studied in our work is a nonparametric class and is more expressive
than VC classes.

2. Background

Let X be an instance space, D a distribution over X ×{−1,1}. Let H be the hypothesis space, a
set of classifiers from X to {−1,1}. Denote DX the marginal of D over X . In our active learning
model, the algorithm has access to a pool of unlabeled examples from DX . For any unlabeled point
x, the algorithm can ask for its label y, which is generated from the conditional distribution at x.
The error of a hypothesis h according to D is erD(h) = Pr(x,y)∼D(h(x) �= y). The empirical error on
a sample S of size n is erS (h) = 1

n ∑(x,y)∈S I[h(x) �= y], where I is the indicator function. We use h∗

denote the best classifier in H . That is, h∗ = argminh∈H erD(h). Let ν = erD(h∗). Our goal is to
learn a ĥ ∈H with error rate at most ν+ ε, where ε is the desired accuracy.

2270

SMOOTHNESS, DISAGREEMENT COEFFICIENT, AND AGNOSTIC ACTIVE LEARNING

Input: unlabeled data pool (x1,x2, . . . ,xm) i.i.d. from DX , hypothesis space H ;
Initially: V ←H , R← DIS(V), Q← /0;
for t = 1,2, . . . ,m do
if Pr(DIS(V))≤ 1

2 Pr(R) then
R← DIS(V); Q← /0;

end
Find a new data xi from the data pool with xi in R;
Request the label yi of xi, and let Q← Q∪{(xi,yi)};
V ←{h ∈V : LB(h,Q,δ/m)≤minh′∈V UB(h′,Q,δ/m)};
ht ← argminh∈V erQ(h);
βt ← (UB(ht ,Q,δ/m)−LB(ht ,Q,δ/m))Pr(R) ;

end
Return ĥ= h j, where j = arg min

t∈{1,2,...,m}
βt .

Algorithm 1: The A2 algorithm

A2 (Balcan et al., 2006) is the first rigorous agnostic active learning algorithm. It can be viewed
as a robust version of the active learning algorithm due to Cohn et al. (1994) for the realizable
setting. A description of the algorithm is given in Algorithm 1. It was shown that A2 is never much
worse than passive learning in terms of the label complexity. The key observation that A2 can be
superior to passive learning is that, since our goal is to choose an ĥ such that erD(ĥ)≤ erD(h∗)+ ε,
we only need to compare the errors of hypotheses. Therefore we can just request labels of those x
on which the hypotheses under consideration have disagreement.

To do this, the algorithm keeps track of two spaces. One is the current version space V , con-
sisting of hypotheses that with statistical confidence are not too bad compared to h∗; the other is the
region of disagreement DIS(V), which is the set of all x ∈ X for which there are hypotheses in V
that disagree on x. Formally, for any subset V ⊂H ,

DIS(V) = {x ∈ X : ∃h,h′ ∈V, h(x) �= h′(x)}.

To achieve the statistical guarantee that the version space V contains only good hypotheses, the
algorithm must be provided with a uniform convergence bound over the hypothesis space. That is,
with probability at least 1−δ over the draw of sample S according to D conditioned on DIS(V) for
any version spaces V ,

LB(S ,h,δ)≤ erD|V (h)≤UB(S ,h,δ),
hold simultaneously for all h ∈H , where the lower bound LB(S ,h,δ) and upper boundUB(S ,h,δ)
can be computed from the empirical error erS (h). Here D|V is the distribution of D conditioned on

DIS(V). If H has finite VC dimension VC(H), then erS (h)±O(VC(H)
n)−1/2 are upper and lower

bounds of erD|V (h) respectively.
We will denote the volume of DIS(V) by Δ(V) = PrX∼DX (X ∈ DIS(V)). Requesting labels of

the instances from DIS(V) rather than from the whole space X allows A2 require fewer labels than
passive learning. Hence the key issue is how fast Δ(V) reduces. This process, and in turn the label
complexity of A2, are nicely characterized by the disagreement coefficient θ introduced in Hanneke
(2007).

2271

WANG

Input: unlabeled data pool (x1,x2, . . . ,xm) i.i.d. from DX , hypothesis space H ;
Initially: G0← /0, T0← /0;
for t = 1,2, . . . ,m do

For each ŷ ∈ {−1,1}, hŷ← LEARNH (Gt−1∪{(xt , ŷ)},Tt−1);
if erGt−1∪Tt−1(h−ŷ)− erGt−1∪Tt−1(hŷ)> Δt−1 for some ŷ ∈ {−1,1} then

Gt ← Gt−1∪{(xt , ŷ)}; Tt ← Tt−1;
end
else

Request the true label yt of xt ; Gt ← Gt−1; Tt ← Tt−1∪{(xt ,yt)};
end

end
Return h= LEARNH (Gm,Tm).

Algorithm 2: The DHM algorithm

Definition 1 Let ρ(·, ·) be the pseudo-metric on a hypothesis space H induced by DX . That is, for
h,h′ ∈H , ρ(h,h′) = PrX∼DX (h(X) �= h′(X)). Let B(h,r) = {h′ ∈H : ρ(h,h′)≤ r}. The disagreement
coefficient θ(ε) is

θ(ε) = sup
r≥ε

Δ(B(h∗,r))
r

= sup
r≥ε
PrX∼DX (X ∈ DIS(B(h∗,r)))

r
,

where h∗ = argminh∈H erD(h).

Note that θ depends on H and D , and 1≤ θ(ε)≤ 1
ε .
1 The following is an upper bound of the label

complexity of A2 in terms of the disagreement coefficient θ(ε) (Hanneke, 2007).

Theorem 2 Suppose that H has finite VC dimension VC(H). Then using the definitions given
above, the label complexity of A2 is

O

(
(θ(ν+ ε))2

(
ν2

ε2
+1

)
polylog

(
1
ε

)
log

(
1
δ

)
VC(H)

)
. (1)

In addition, Hanneke (2007) showed that Ω̃(θ2 log 1δ) is a lower bound for the A
2 algorithm of any

problem with ν= 0, where in Ω̃ we hide the logrithm terms.
Another important agnostic active learning algorithm is DHM. (Algorithm 2 gives a formal

description of the algorithm.) DHM reduces active learning to a series of constrained supervised
learning. The key idea of the algorithm is that each time we encounter a new unlabeled data x, we
test if we can guess the label of x with high confidence, using the information obtained so far. If
we can, we put the data and the confidently guessed label (x, ŷ) into the guessed set G ; otherwise,
we request the true label y of x and put (x,y) into the true set T . The criterion of whether we can
guess the label of x confidently is as follows. For each ỹ ∈ {−1,+1}, we learn a classifier hỹ ∈ H
such that hỹ(x) = ỹ, and hỹ is consistent with all (x, ŷ) ∈ G and has minimal error on T . (This is the
subroutine LEARN in Algorithm 2.) If for some ỹ ∈ {−1,+1} the error rate of hỹ is smaller than
1. Here we only consider the nontrivial case that Δ(B(h∗,r)) ≥ r for all r. This condition is satisfied by the smooth
problems studied in this paper.

2272

SMOOTHNESS, DISAGREEMENT COEFFICIENT, AND AGNOSTIC ACTIVE LEARNING

that of h−ỹ by a threshold Δt (t is the number of unlabeled data encountered so far), then we guess
that ŷ= ỹ confidently.

The algorithm DHM relies crucially on a good choice of the threshold function Δt . If H has
finite VC dimensionVC(H), Dasgupta et al. (2007) suggested to choose Δt based on the normalized
uniform convergence bound onH (Vapnik, 1998). They also showed that DHM is never much worse
than passive learning and it has label complexity2

Õ

(
θ(ν+ ε)

(
1+

ν2

ε2

)
polylog

(
1
ε

)
log

(
1
δ

)
VC(H)

)
. (2)

From (1) and (2) it can be seen that if ε > ν, the term ν2

ε2 is upper bounded by 1 and the label
complexity of the active learning algorithms crucially depends on the disagreement coefficient θ.
However, the asymptotic label complexity as ε tends to 0 (assuming ν> 0) can at best only be upper

bounded by O
(
ν2

ε2

)
. In fact, this bound cannot be improved: it is known that given some hypothesis

space H , for every active learning algorithm A, there is a learning problem (to be concrete, a h∗)
such that the label complexity of A is at least Ω(ν

2

ε2) (Kääriäinen, 2006). Thus Ω(
ν2

ε2) is a minimax
lower bound of the label complexity of agnostic active learning algorithms.

Although no active learning algorithm is superior to passive learning in all agnostic settings, it
turns out that if the disagreement coefficient is small, active learning does always help under a finer
parametrization of the noise distribution, known as Tsybakov’s noise condition (Tsybakov, 2004).

Definition 3 Let η(x) = Pr(Y = 1|X = x). We say that the distribution of the learning problem has
noise exponent κ= a+1

a (κ≥ 1) if there exists constant c> 0 such that

Pr

(∣∣∣∣η(X)− 12
∣∣∣∣≤ t

)
≤ cta, 0< a≤+∞

for all 0< t ≤ t0 for some constant t0.

Tsybakov’s noise condition characterizes the behavior of η(x) when x crosses the class bound-
ary. If κ= 1, η(x) has a jump from 1

2 − t0 to 1
2 + t0. The larger the κ, the more “flat” η(x) is.

Under Tsybakov’s noise condition, Hanneke (2009, 2011) proved that a variant of the DHM al-
gorithm (by choosing the threshold Δt based on local Rademacher complexity (Koltchinskii, 2006))
has the following asymptotic label complexity.

Theorem 4 Suppose that the learning problem satisfies the Tsybakov’s noise condition with noise
exponent κ. Assume that the hypothesis space H and the marginal distributionDX satisfies that the

entropy with bracketing H[](ε,H ,L2(DX)) =O
((

1
ε

)2p)
for some 0< p< 1. If the Bayes classifier

h∗B ∈H , then the label complexity of DHM is

O

(
θ(ε0)

(
1
ε

)2− 2−p
κ
(
log

1
ε
+ log

1
δ

))
, (3)

where ε0 depends on ε, κ, p, δ and the learning problem. In particular, setting ε0 = ε
1
κ the theorem

holds.

2. Here in Õ we hide terms like log log(1ε) and loglog(
1
δ).

2273

WANG

Inspired by this result, Koltchinskii (2010) further proved that under similar conditions a variant
of the A2 algorithm has label complexity

O

(
θ(ε

1
κ)

((
1
ε

)2− 2−p
κ

+

(
1
ε

)2− 2
κ
(
log

1
δ
+ log log

1
ε

)))
. (4)

Note that in the last formula
(
1
ε

)2− 2−p
κ dominates over

(
1
ε

)2− 2
κ as ε→ 0 if p> 0.

If the hypothesis space H has finite VC dimension, the entropy with bracketing is

H[](ε,H ,L2(DX)) = O

(
log

1
ε

)
,

smaller than
(
1
ε

)2p
for any p > 0. In this case, it can be shown that the above label complexity

bounds still hold by just putting p= 0 into them.
In contrast, the sample complexity for passive learning under the same conditions is known to

be (Tsybakov, 2004)

O

((
1
ε

)2− 1−p
κ
(
log

1
δ
+ log log

1
ε

))
, (5)

and it is also a minimax lower bound. Comparing (3), (4) and (5) one can see that whether active
learning is strictly superior to passive learning entirely depends on how small the disagreement
coefficient θ(ε) is.

One shortcoming of A2 and DHM is that they are computationally expensive. This is partially
because that they need to minimize the 0-1 loss and need to maintain the version space. Beygelzimer
et al. (2009) proposed an importance weighting procedure IWAL which, during learning, minimize
a convex surrogate loss and therefore avoid 0-1 minimization. Furthermore, Beygelzimer et al.
(2010) developed an active learning algorithm which does not need to keep the version space and
therefore is computationally efficient. There are also upper bounds on the label complexity of these
two algorithms in terms of the disagreement coefficient.

Finally, for a comprehensive survey of the theoretical research on active learning, please see the
excellent tutorial (Dasgupta and Langford, 2009).

3. Main Results

As described in the previous section, whether active learning helps largely depends on the disagree-
ment coefficient which often characterizes the intrinsic difficulty of the learning problem using a
given hypothesis space. So it is important to understand if the disagreement coefficient is small for
learning problems with practical and theoretical interests. In this section we give bounds on the
disagreement coefficient for problems that have smooth classification boundaries, under additional
assumptions on the distribution. Such smooth problems are often referred to as boundary fragment
class and has been extensively studied in passive learning and especially in empirical processes.

In Section 3.1 we give formal definitions of the smooth problems. Section 3.2 contains the main
results, where we establish upper and lower bounds for the disagreement coefficient of smooth
problems. In Section 3.3 we provide some discussions on some closely related works.

2274

SMOOTHNESS, DISAGREEMENT COEFFICIENT, AND AGNOSTIC ACTIVE LEARNING

3.1 Smoothness

Let f be a function defined on Ω ⊂ R
d and α > 0 be a real number. Let α be the largest integer

strictly smaller than α. (Hence α= α−1 when α is an integer.) For any vector k= (k1, · · · ,kd) of
d nonnegative integers, let |k|= ∑d

i=1 ki. Let

Dk =
∂|k|

∂k1x1 · · ·∂kd xd ,

be the differential operator. Define the α-norm as (van der Vaart and Wellner, 1996)

‖ f‖α := max
|k|≤α

sup
x
|Dk f (x)|+max

|k|=α
sup
x,x′

|Dk f (x)−Dk f (x′)|
‖x− x′‖α−α ,

where the suprema are taken over all x,x′ over Ω with x �= x′.

Definition 5 (Finite Smooth Functions) A function f is said to be αth order smooth with respect
to a constant C, if ‖ f‖α ≤C. The set of αth order smooth functions is defined as

FαC := { f : ‖ f‖α ≤C}.

Thus αth order smooth functions have uniformly bounded partial derivatives up to order α, and the
αth order partial derivatives are Hölder continuous. As a special case, note that if f has continuous
partial derivatives upper bounded byC up to order m, where m is any positive integer, then f ∈ FmC .
Also, if 0< β< α, then f ∈ FαC implies f ∈ FβC .

Definition 6 (Infinitely Smooth Functions) A function f is said to be infinitely smooth with respect
to a constant C, if ‖ f‖α ≤C for all α> 0. The set of infinitely smooth functions is denoted by F∞C .

With the definitions of smoothness, we introduce the hypothesis space we use in active learning
algorithms.

Definition 7 (Hypotheses with Smooth Classification Boundaries) A set of hypotheses H α
C de-

fined on X = [0,1]d+1 is said to have αth order smooth classification boundaries, if for every
h ∈ H α

C , the classification boundary is a αth order smooth function on [0,1]d. To be precise,
let x = (x1,x2, . . . ,xd+1) ∈ [0,1]d+1. The classification boundary is the graph of function xd+1 =
f (x1, . . . ,xd), where f ∈ FαC . Similarly, a hypothesis space H ∞

C is said to have infinitely smooth
boundaries, if for every h ∈ H ∞

C the classification boundary is the graph an infinitely smooth func-
tion on [0,1]d.

The first thing we need to guarantee is that smooth problems are learnable, both passively and
actively. To be concrete, we must show that the entropy with bracketing of smooth problems satisfies

H[] (ε,H ,L2(DX)) = O

((
1
ε

)2p)
,

for some p< 1 (van der Vaart and Wellner, 1996) (see also Theorem 4). For smooth problems, the
following proposition is known.

2275

WANG

Proposition 8 (van der Vaart and Wellner, 1996)
Let the instance space be [0,1]d+1 and the hypothesis space be H α

C . Assume that the marginal
distribution DX has a density upper bounded by a constant. Then

H[] (ε,H α
C ,L2(DX)) = O

((
1
ε

) 2d
α

)
.

The problem is learnable if α> d.

In the rest of this paper, we only consider smooth problems such that α> d.

3.2 Disagreement Coefficient

The disagreement coefficient θ plays an important role for the label complexity of active learning
algorithms. In fact previous negative examples for which active learning does not work are all
because of large θ. For instance the interval learning problem, θ(ε) = 1

ε , which leads to the same
label complexity as passive learning. (Recall that θ(ε)≤ 1

ε , so this is the worst case.)
In this section we will show that that the disagreement coefficient θ(ε) for smooth problems is

small. Especially, we establish both upper bounds (Theorem 9 and Theorem 10) and lower bounds
(Theorem 13) for the disagreement coefficient of smooth problems. Finally we will combine our
upper bounds on the disagreement coefficient with the label complexity result of Theorem 4 and
show that active learning is strictly superior to passive learning for smooth problems.

Theorem 9 Let the instance space be X = [0,1]d+1. Let the hypothesis space be H α
C , where d <

α< ∞. If the marginal distribution DX has a density p(x) on [0,1]d+1 such that there exists an αth
order smooth function g(x) and two constants 0 < a ≤ b such that ag(x) ≤ p(x) ≤ bg(x) for all
x ∈ [0,1]d+1, then3

θ(ε) = O

((
1
ε

) d
α+d

)
.

The key points in the theorem are: the classification boundaries are smooth; and the density is
bounded from above and below by constants times a smooth function.4 Note that the density itself
is not necessarily smooth. We merely require the density does not change too rapidly.

The intuition behind the theorem above is as follows. Let fh∗(x) and fh(x) be the classification
boundaries of h∗ and h, and suppose ρ(h,h∗) is small, where ρ(h,h∗) = Prx∼DX (h(x) �= h∗(x)) is
the pseudo metric. If the classification boundaries and the density are all smooth, then the two
boundaries have to be close to each other everywhere. That is, | fh(x)− f f ∗(x)| is small uniformly
for all x. Hence only the points close to the classification boundary of h∗ can be in DIS(B(h∗,ε)),
which leads to a small disagreement coefficient.

For infinitely smooth problems, we have the following theorem. Note that the requirement on
the density is stronger than finite smoothness problems.

3. This upper bound was obtained with the help of Yanqi Dai, Kai Fan, Chicheng Zhang and Ziteng Wang. It improves

a previous upper bound O

((1
ε

)1− αd

(1+α)d

)
, which converges to the current bound as α

d → ∞.

4. These two conditions include a large class of learning problems. For example, the boundary fragment class equipped
with most elementary distributions (truncated in [0,1]d+1) satisfies these conditions.

2276

SMOOTHNESS, DISAGREEMENT COEFFICIENT, AND AGNOSTIC ACTIVE LEARNING

Theorem 10 Let the hypothesis space be H ∞
C . If the distribution DX has a density p(x) such

that there exist two constants 0 < a ≤ b such that a ≤ p(x) ≤ b for all x ∈ [0,1]d+1, then θ(ε) =
O(log2d(1ε)).

The proofs of Theorem 9 and Theorem 10 rely on the following two lemmas.

Lemma 11 Let Φ be a function defined on [0,1]d and is αth order smooth. If
∫
[0,1]d

|Φ(x)|dx≤ r,

then

‖Φ‖∞ = O
(
r

α
α+d

)
= O

(
r ·
(
1
r

) d
α+d

)
,

where ‖Φ‖∞ = supx∈[0,1]d |Φ(x)|.

Lemma 12 Let Φ be a function defined on [0,1]d and is infinitely smooth. If
∫
[0,1]d

|Φ(x)|dx≤ r,

then

‖Φ‖∞ = O

(
r ·
(
log

1
r

)2d)
.

Proof of Theorem 9 First of all, since we focus on binary classification, DIS(B(h∗,r)) can be
written equivalently as

DIS(B(h∗,r)) = {x ∈ X , ∃h ∈ B(h∗,r), s.t. h(x) �= h∗(x)}.

Consider any h ∈ B(h∗,r). Let fh, fh∗ ∈ FαC be the corresponding classification boundaries of h and
h∗ respectively. If r is sufficiently small, we must have

ρ(h,h∗) = Pr
X∼DX

(h(X) �= h∗(X)) =
∫

[0,1]d

dx1 . . .dxd
∣∣∣∣∣
∫ fh(x1,...,xd)

fh∗ (x1,...,xd)
p(x1, . . . ,xd+1)dxd+1

∣∣∣∣∣ .
Denote

Φh(x
1, . . . ,xd) =

∫ fh(x1,...,xd)

fh∗ (x1,...,xd)
p(x1, . . . ,xd+1)dxd+1.

We assert that there is a αth order smooth function Φ̃h(x1, . . . ,xd) and two constants 0< a≤ b such
that a|Φ̃h| ≤ |Φh| ≤ b|Φ̃h|. To see this, remember that fh and fh∗ are αth order smooth functions;
and the density p is upper and lower bounded by constants times a αth order smooth function
g(x1, . . . ,xd+1). Also note that if we define

Φ̃h(x
1, . . . ,xd) =

∫ fh(x1,...,xd)

fh∗ (x1,...,xd)
g(x1, . . . ,xd+1)dxd+1,

2277

WANG

Φ̃h is a αth order smooth function, which is easy to check by taking derivatives. Now

∫
[0,1]d

|Φ̃h(x)|dx≤
∫
[0,1]d

1
a
|Φh(x)|dx≤ r

a
.

According to Lemma 11, we have ‖Φ̃h‖∞ = O(r
α

α+d). Thus ‖Φh‖∞ ≤ b‖Φ̃h‖∞ = O(r
α

α+d). Because
this holds for all h ∈ B(h∗,r), we have

sup
h∈B(h∗,r)

‖Φh‖∞ = O
(
r

α
α+d

)
.

Now consider the region of disagreement of B(h∗,r). Note that

DIS(B(h∗,r)) = ∪h∈B(h∗,r){x : h(x) �= h∗(x)}.

Hence

Pr
X∼DX

(x ∈ DIS(B(h∗,r))) = Pr
X∼DX

(
x ∈ ∪h∈B(h∗,r){x : h(x) �= h∗(x)})

≤ 2
∫
[0,1]d

sup
h∈B(h∗,r)

‖Φh‖∞dx1 . . .dxd = O
(
r

α
α+d

)
= O

(
r ·
(
1
r

) d
α+d

)
.

The theorem follows by the definition of θ(ε).

Theorem 10 can be proved similarly by using Lemma 12.
In the next theorem, we give lower bounds on the disagreement coefficient for finite smooth

problems under the condition that the marginal distribution DX is the uniform distribution.5 Note
that in this case the lower bound matches the upper bound in Theorem 9. Thus in general Theorem
9 cannot be improved.

Theorem 13 Let the hypothesis space be H α
C where α< ∞. Assume that the marginal distribution

DX is uniform on [0,1]d+1. Then the disagreement coefficient has the following lower bound6

θ(ε) =Ω

((
1
ε

) d
α+d

)
.

Proof Without loss of generality, we assume that the classification boundary of the optimal classifier
h∗ is the graph of function xd+1 = f (x1,x2, . . . ,xd)≡ 1/2. That is, the classification boundary of h∗
is a hyperplane orthogonal to the d+1th axis. We will show that for most points (x1,x2, . . . ,xd+1) ∈
[0,1]d+1 that are ε ·(1ε) d

α+d -close to the classification boundary of h∗, that is, |xd+1− 1
2 | ≤ ε ·(1ε) d

α+d ,
there is a h f ∈H α

C satisfying

h f (x
1,x2, . . . ,xd+1) �= h∗(x1,x2, . . . ,xd+1),

5. The condition can be relaxed to that DX is bounded from above and below by positive constants.
6. The bound was obtained with the help of Yanqi Dai, Kai Fan, Chicheng Zhang and Ziteng Wang. It improves a

previous lower bound Ω

((1
ε

) d
2α+d

)
.

2278

SMOOTHNESS, DISAGREEMENT COEFFICIENT, AND AGNOSTIC ACTIVE LEARNING

and at the same time
ρ(h f ,h

∗) = Pr(h f (X) �= h∗(X))≤ ε,

and therefore h f ∈ B(h∗,ε). Thus the volume of DIS(B(h∗,ε)) is Ω
(
ε · (1ε) d

α+d

)
; and consequently

θ(ε)≥ Pr(DIS(B(h∗,ε)))
ε

=Ω

((
1
ε

) d
α+d

)
.

For this purpose, fixing (x1,x2, . . . ,xd+1) ∈ [0,1]d+1 with

0≤ xd+1− 1
2
≤ cε

(
1
ε

) d
α+d

,

for some constant c. We only consider point (x1,x2, . . . ,xd+1)∈ [0,1]d+1 that are not too close to the
“boundary” of [0,1]d+1. (e.g., 0.1≤ xi ≤ 0.9 for all 1≤ i≤ d.) We construct h f whose classification
boundary is the graph of the following function f . For convenience, we shift (x1,x2, . . . ,xd, 12) to
the origin. Let f be defined on [0,1]d as

f (u1,u2, . . . ,ud) =

{
ξ−α
(
ξ2−∑d

i=1 u
2
i

)α
if ∑d

i=1 u
2
i ≤ ξ2,

0 otherwise,

where ξ is determined by ∫
Ω
| f |dω= ε,

that is, ρ(h f ,h∗) = ε, and Ω is the region obtained from [0,1]d after shifting (x1,x2, . . . ,xd, 12) to the
origin.

First, it is not hard to check by calculus that f is αth order smooth. Next, since
∫
Ω | f |dω= ε, it

is not difficult to calculate that ξ= c′ε
1

α+d , for some constant c′. Thus

‖ f‖∞ = f (0,0, . . . ,0) = c′ε
α

α+d = c′ε
(
1
ε

) d
α+d

.

So we have h f (0,0, . . . ,0) �= h∗(0,0, . . . ,0) and ρ(h f ,h∗) = ε. This completes the proof.

For infinite smoothness, we do not know any lower bound for the disagreement coefficient larger
than the trivial Ω(1).

3.2.1 LABEL COMPLEXITY FOR SMOOTH PROBLEMS

Now we combine our results (Theorem 9 and Theorem 10) with the label complexity bounds for
active learning (Theorem 4 and (4)) and show that active learning is strictly superior to passive
learning for smooth problems.

Remember that under Tsybakov’s noise conditions the label complexity of active learning is
(see Theorem 4 and (4))

O

(
θ(ε

1
κ)

(
1
ε

)2− 2−p
κ
(
log

1
ε
+ log

1
δ

))
.

2279

WANG

While for passive learning it is (see (5))

O

((
1
ε

)2− 1−p
κ
(
log

1
δ
+ log log

1
ε

))
.

We see that if

θ(ε
1
κ) = o

((
1
ε

) 1
κ

)
,

then active learning requires strictly fewer labels than passive learning.
By Theorem 9 and remember that α> d (see Proposition 8) we obtain

θ(ε
1
κ) = O

(
1
ε

) d
κ(α+d)

= o

((
1
ε

) 1
2κ

)
= o

((
1
ε

) 1
κ

)
.

So we have the following conclusion.

Theorem 14 Assume that the Tsybakov noise exponent κ is finite. Then active learning algorithms
A2 and DHM have label complexity strictly smaller than passive learning for αth order smooth
problems whenever α> d.

3.3 Discussion

In this section we discuss and compare our results to a closely related work due to Castro and
Nowak (2008), which also studied the label complexity of smooth problems under Tsybakov’s noise
condition. Castro and Nowak’s work is heavily based on their detailed analysis of actively learning
a threshold on [0,1] described below.

Consider the learning problem in which the instance space X = [0,1]; the hypothesis space H
contains all threshold functions, that is, H = {I(x ≥ t) : t ∈ [0,1]}∪ {I(x < t) : t ∈ [0,1]}, where
I is indicator function; and the marginal distribution DX is the uniform distribution on [0,1]. Sup-
pose that the Bayes classifier h∗B ∈ H . Assume that the learning problem satisfies the “geometric”
Tsybakov’s noise condition ∣∣∣∣η(x)− 12

∣∣∣∣≥ b |x− x∗B|κ−1 , (6)

for some constant b > 0 and for all x such that |η(x)− 1
2 | ≤ τ0 with the constant τ0 > 0. Here

x∗B is the threshold of the Bayes classifier. (One can verity that (6) implies the ordinary Tsybakov’s
condition with noise exponent κwhenDX is uniform on [0,1].) In addition, assume that the learning
problem satisfies a reverse-sided Tsybakov’s condition∣∣∣∣η(x)− 12

∣∣∣∣≤ B |x− x∗B|κ−1 ,

for some constant B> 0.
Under these assumptions, Castro and Nowak showed that an active learning algorithm they

attributed to Burnashev and Zigangirov (1974) (will be referred to as BZ), which is essentially

a Bayesian binary search algorithm,7 has label complexity Õ

((
1
ε

)2− 2
κ

)
. Moreover, due to the

7. Note that this BZ algorithm can choose any point x from the instance space, not necessarily from the given pool of
unlabeled data. This model is called membership query, making stronger assumptions than the pool-based active
learning model.

2280

SMOOTHNESS, DISAGREEMENT COEFFICIENT, AND AGNOSTIC ACTIVE LEARNING

reverse-sided Tsybakov’s condition, one can show that with high probability that the threshold x̂
returned by the active learning algorithm converges to the Bayes threshold x∗B exponentially fast
with respect to the number of label requests.8

Castro and Nowak then generalized this result to smooth problems similar to what we studied
in this paper. Let the hypothesis space be H α

C . Suppose that the Bayes classifier h
∗
B ∈H α

C . Assume
that on every vertical line segment in [0,1]d+1, (that is, for every {(x1,x2, . . . ,xd,xd+1) : xd+1 ∈
[0,1]}, (x1,x2, . . . ,xd) ∈ [0,1]d ,) the one dimensional distribution ηx1,...,xd (x

d+1) satisfies the two-
sided geometric Tsybakov’s condition with noise exponent κ. Based on these assumptions, they
proposed the following active learning algorithm: Choosing M vertical line segments in [0,1]d+1.
Performing one dimensional threshold learning on each line segment as in the one-dimensional
case described above. After obtaining the threshold for each line, doing a piecewise polynomial
interpolation on these thresholds and return the interpolation function as the classification boundary.

They showed that this algorithm has label complexity Õ

((
1
ε

)2− 2− d
α
κ

)
.

In sum, their algorithm makes the following main assumptions:

(A1) On every vertical line, the conditional distribution is two-sided Tsybakov. Thus the distri-
bution DXY has a uniform “one-dimensional” behavior along the (d+1)th axis.

(A2) The algorithm can choose any point from X = [0,1]d+1 and ask for its label.

Comparing the label complexity of this algorithm

Õ

⎛⎝(1
ε

)2− 2− d
α
κ

⎞⎠
and that obtained from Theorem 4 and Proposition 8

Õ

⎛⎝θ(ε0)(1ε
)2− 2− d

α
κ

⎞⎠
one sees that their label complexity is smaller by θ(ε0). It seems that the disagreement coefficient
of smooth problem does not play a role in their label complexity formula. The reason is that the
assumption (A1) in their model assumes that the distribution of the problem has a uniform one-
dimensional behavior: on each line segment parallel to the d+1th axis, the conditional distribution
ηx1,...,xd (x

d+1) satisfies the two-sided Tsybakov’s condition with equal noise exponent κ. Therefore
the algorithm can assign equal label budget to each line segment for one-dimensional learning.
Recall that the disagreement coefficient of the one-dimensional threshold learning problem is at
most 2 for all ε> 0, so there seems no θ(ε) term in the final label complexity formula. If, instead of
assumption (A1), we assume the ordinary Tsybakov’s noise condition, the algorithm has to assign

8. It needs to be pointed out that the BZ algorithm requires that the noise exponent κ is known and the algorithm takes it
as imput. But by Threorem 4 and (4) we know that both A2 and DHM (with slight modifications) have the same label
complexity and the convergence property, since the disagreement coefficient for this threshold problem is θ(ε) = 2
for all ε> 0.

2281

WANG

label budgets according to the “worst” noise on all the line segments, that is, the largest κ of the
conditional distributions ηx1,...,xd (x

d+1) over all (x1, . . . ,xd). But under the ordinary Tsybakov’s
condition, the largest κ on lines can be arbitrarily large, resulting a label complexity equal to that of
passive learning.

4. Proof of Lemma 11 and 12—Some Generalizations of the Landau-Kolmogorov
Type Inequalities

In this section we give proofs of Lemma 11 and Lemma 12. The two lemmas are closely related
to the Landau-Kolmogorov type inequalities (Landau, 1913; Kolmogorov, 1938; Schoenberg, 1973)
(see also Mitrinović et al., 1991 Chapter I for a comprehensive survey), and specifically the follow-
ing result due to Gorny (1939).

Theorem 15 Let f (x) be a function defined on [0,1] and has derivatives up to the nth order. Let
Mk = ‖ f (k)‖∞, k = 0,1, . . . ,n. Then

Mk ≤ 4
(n
k

)k
ekM

1− k
n

0 M
′ kn
n ,

where M′
n =max(M0n!,Mn).

Roughly, for function f defined on a finite interval, the above theorem bounds the ∞-norm of
the kth order derivative of f by the ∞-norm of f and its nth derivative.

In order to prove Lemma 11, we give the following generalization of Theorem 15 (in the direc-
tion of dimensionality and non-integer smoothness). Our proof is elementary and is simpler than
Gorny’s proof of Theorem 15. But note that the definition of M′

α in Theorem 16 is different to that
of Theorem 15.

Theorem 16 Let f be a function defined on [0,1]d. Let α> 1 be a real number. Assume that f has
partial derivatives up to order α. For all 1≤ t ≤ α, define

Mt =max|k|=t
sup
x,x′

|Dk f (x)−Dk f (x′)|
‖x− x′‖t−t ,

where Dk is the differential operator defined in Section 3.1 and x,x′ ∈ [0,1]d. Also define M0 =
supx∈[0,1]d f (x). Then

Mk ≤CM1− k
α

0 M
′ kα
α , (7)

where M′
α = max(M0,Mα), k = 1,2, . . . ,α, and the constant C depends on k and α but does not

depend on M0 and Mα.

Lemma 11 can be derived from Theorem 16.

Proof of Lemma 11 The proof has two steps. First, we construct a function f by scaling Φ and
redefine the domain of the function, so that a) the integral of f over the unit hypercube is at most
1; b) the αth order derivatives of f is Hölder continuous with the same constant as Φ, and c)

‖ f‖∞ =
(
1
r

) α
α+d ‖Φ‖∞. Next, we use Theorem16 to show that ‖ f‖∞ can be bounded from above by

2282

SMOOTHNESS, DISAGREEMENT COEFFICIENT, AND AGNOSTIC ACTIVE LEARNING

a constant depending only on α, d, C (recall that Φ ∈ FαC) but independent of r. Combining the two
steps concludes the theorem.

Now, for the first step assume

∫
[0,1]d

|Φ(x)|dx= t ≤ r.

Let

f (x1,x2, . . . ,xd) =

(
1
t

) α
α+d

Φ(t
1

α+d x1, t
1

α+d x2, . . . , t
1

α+d xd),

where now the domain of f is (x1, . . . ,xd) ∈ [0, 1t
1

α+d]d .
First, it is easy to check that ∫

[0, 1t
1

α+d]d
| f (x)|dx= 1;

and the αth order derivatives of f is Hölder continuous with the same constantC as Φ. That is,

max
|k|=α

sup

x,x′∈[0, 1t
1

α+d]d

|Dk f (x)−Dk f (x′)|
‖x− x′‖α−α = max

|k|=α
sup

x,x′∈[0,1]d
|DkΦ(x)−DkΦ(x′)|

‖x− x′‖α−α ≤C.

In addition, clearly we have
‖Φ‖∞ = t

α
α+d ‖ f‖∞ ≤ r

α
α+d ‖ f‖∞.

Thus in order to prove the lemma, we only need to show ‖ f‖∞ is bounded from above by a universal
constant independent of r.

Note that the domain of f is [0, 1t
1

α+d]d , larger than [0,1]d . Assume f achieves its maximum at

(a1,a2, . . . ,ad)∈ [0, 1t
1

α+d]d . Nowwe truncate the domain of f to a d-dimensional hypercube [z1,z1+
1]⊗ [z2,z2+1]⊗ . . . ,⊗[zd,zd+1] so that (a1,a2, . . . ,ad)∈ [z1,z1+1]⊗ [z2,z2+1]⊗ . . . ,⊗[zd,zd+1].
Let f be the function by restricting f on this hypercube [z1,z1+1]⊗ [z2,z2+1]⊗ . . . ,⊗[zd,zd+1].
Clearly, we have

‖ f‖∞ = ‖ f‖∞,
where ‖ f‖∞ is the maximum over the hypercube [z1,z1+ 1]⊗ [z2,z2+ 1]⊗ . . . ,⊗[zd,zd + 1]. Thus
we just need to show ‖ f‖∞ has a universal upper bound.

Now we begin the second step of the proof, where our goal is to show f has an upper bound
independent of r. Assume zi = 0 for i= 1, . . . ,d by shifting if necessary.

Let

gd(x
1, . . . ,xd) =

∫ xd

0
f (x1, . . . ,xd−1,ud)dud .

For any fixed x1, . . . ,xd−1, consider gd as a function of the single variable xd . Since f is the first
order derivative of gd , it is easy to check that gd has derivatives up to order α+1 with respect to xd

and its α+1 order derivative is Hölder continuous with constantC. Thus according to Theorem16,
we have

‖ f‖∞ ≤ ‖gd‖
α

α+1
∞ C

1
α+1 . (8)

2283

WANG

Similarly, let

gi(x
1, . . . ,xd) =

∫ xi

0
gi+1(x

1, . . . ,xi−1,ui,xi+1, . . . ,xd)dui, i= 1,2, . . . ,d−1.

For each gi use the above argument and observe that the α+ 1th order derivative of each gi is
bounded from above byC, then it is easy to obtain that

‖gi‖∞ ≤ ‖gi+1‖
α

α+1
∞ C

1
α+1 . (9)

Combining (8) and (9) for all i= 1,2, . . . ,d we have

‖ f‖∞ ≤ ‖g1‖(
α

α+1)
d

∞ C′,

whereC′ is a constant depending onC, α, d. This completes the proof since

g1(x
1, . . . ,xd) =

∫ x1

0
. . .

∫ xd

0
f (u1, . . . ,ud)du1, . . . ,dud ≤ 1.

Proof of Theorem 16 The structure of the proof is as follows: we first deal with the case of d = 1
and then generalize to d > 1. For the case of d = 1, we first show the case 1< α≤ 2, and then prove
general α by induction.

Now assume d = 1 and 1< α≤ 2. Our goal is to show

M1 ≤CM1− 1
α

0 M
′ 1α
α .

For any fixed x ∈ [0,1], there must be a y ∈ [0,1] such that |y− x|= 1/2. We thus have
f (y)− f (x)
y− x = f ′(x+u), (10)

where |u| ≤ 1/2. Since 1< α≤ 2, we know α= 1. By the definition ofMα we have

| f ′(x+u)− f ′(x)| ≤Mα|u|α−1. (11)

Combining (10) and (11) and recall |y− x|= 1/2, we obtain

| f ′(x)| ≤
∣∣∣∣ f (y)− f (x)

y− x
∣∣∣∣+Mα|u|α−1

≤ 4M0+

(
1
2

)α−1
Mα

≤ 4M0+Mα. (12)

Let g(x) = f (ax+ r), where 0< a≤ 1, r ∈ [0,1−a] and x ∈ [0,1]. Let

Mg
0 = sup

x∈[0,1]
|g(x)|, Mg

α = sup
x,x′∈[0,1]

|g′(x)−g′(x′)|
|x− x′|α−1 .

2284

SMOOTHNESS, DISAGREEMENT COEFFICIENT, AND AGNOSTIC ACTIVE LEARNING

It is easy to check thatMg
0 ≤M0 andM

g
α ≤ aαMα. Applying (12) to g(x), which is defined on [0,1],

we obtain that for every a ∈ (0,1]

| f ′(ax+ r)|= 1
a
|g′(x)| ≤ 4Mg

0

a
+
Mg
α

a
≤ 4M0

a
+aα−1Mα.

Taking

a=min

((
M0

Mα

) 1
α

,1

)
,

we obtain for all x ∈ [r,a+ r]

| f ′(x)| ≤ 5M1− 1
α

0 M
′ 1α
α ,

whereM′
α =max(M0,Mα). Since r ∈ [0,1−a] is arbitrary, we have that

M1 = sup
x∈[0,1]

| f ′(x)| ≤ 5M1− 1
α

0 M
′ 1α
α . (13)

Note that this implies that for all nonnegative integer m and 1< α≤ 2, we have

Mm+1 ≤ 5M1− 1
α

m M
′ 1α
m+α.

We next prove the general α> 1 case. Let n be a positive integer. By induction, assume for all
1< α≤ n we already have, for k = 1,2, . . . ,α

Mk ≤CM1− k
α

0 (max(M0,Mα))
k
α , (14)

where the constant C depends on k and α but does not depend on M0 and Mα. (In the following the
constant C my be different from line to line and even in the same line.) We will prove that (14) is
true for α ∈ (n,n+1]. Here we will treat the two cases 1≤ k < n and k = n separately.

For the case 1≤ k < n, since α− k ≤ n, by the assumption of the induction we have

Mn ≤CM1− n−k
α−k

k (max(Mk,Mα))
n−k
α−k . (15)

Combining (14) and (15), and setting α= n in (14). We distinguish three cases.

Case I: M0 >Mn

We have

Mk ≤ CM
1− k

n
0 (max(M0,Mn))

k
n

= CM0

≤ CM
1− k

α
0 (max(M0,Mα))

k
α .

Case II:M0 ≤Mn andMk >Mα

We have

Mk ≤CM1− k
n

0 M
k
n
n ≤CM1− k

n
0 M

k
n
k .

2285

WANG

Thus
Mk ≤CM0 ≤CM1− k

α
0 (max(M0,Mα))

k
α .

Case III:M0 ≤Mn and Mk ≤Mα

We have

Mk ≤ CM
1− k

n
0 M

k
n
n

≤ CM
1− k

n
0

(
M
1− n−k

α−k
k M

n−k
α−k
α

) k
n

= CM
1− k

n
0 M

k(α−n)
n(α−k)
k M

k(n−k)
n(α−k)
α .

We obtain after some simple calculations that

Mk ≤CM1− k
α

0 M
k
α
α .

This completes the proof for 1≤ k < n.
For the case k = n, note that

Mn ≤CM1− n−1
α−1

1 max(M1,Mα)
n−1
α−1 , (16)

and
M1 ≤CM1− 1

n
0 max(M0,Mn)

1
n . (17)

We need to distinguish four cases.
Case I: M1 >Mα andM0 >Mn

Combining (16) and (17), we have

Mn ≤CM1 ≤CM0 ≤CM1− n
α

0 (max(M0,Mα))
n
α .

Case II:M1 >Mα andM0 ≤Mn

We have
Mn ≤CM1 ≤CM1− 1

n
0 M

1
n
n .

Thus
Mn ≤CM0 ≤CM1− n

α
0 (max(M0,Mα))

n
α .

Case III:M1 ≤Mα and M0 >Mn

We have

Mn ≤ CM
1− n−1

α−1
1 M

n−1
α−1
α

≤ CM
1− n−1

α−1
0 M

n−1
α−1
α . (18)

IfM0 ≤Mα, then from (18) we obtain

Mn ≤ CM
1− n

α
0 M

n
α
α

(
M0

Mα

) n
α− n−1

α−1

≤ CM
1− n

α
0 (max(M0,Mα))

n
α .

2286

SMOOTHNESS, DISAGREEMENT COEFFICIENT, AND AGNOSTIC ACTIVE LEARNING

Otherwise,M0 >Mα, by (18)
Mn ≤CM0.

Case IV:M1 ≤Mα andM0 ≤Mn

We have

Mn ≤ C

(
M
1− 1

n
0 M

1
n
n

)1− n−1
α−1

M
n−1
α−1
α

= CM
(n−1)(α−n)
n(α−1)

n M
n−1
α−1
α M

α−n
n(α−1)
n .

After some simple calculation, this yields

Mn ≤CM1− n
α

0 M
n
α
α .

This completes the proof of the k = n case, and we finished the discussion of the d = 1 case.
The above arguments are easy to generalize to the d≥ 2 case. Consider the function f (x1, . . . ,xd).

Again we first look at 1< α≤ 2. AssumeM1 is achieved at the jth partial derivative of f . That is,∥∥∥∥ ∂ f∂x j
∥∥∥∥
∞
=M1.

Fixing x1, . . . ,x j−1,x j+1, . . . ,xd , consider f as a function of a single variable x j. By the argument
for the d = 1 case, we know that

M1 ≤ 5M1− 1
α

0 M̃
1
α ,

where

M̃ =max

⎛⎝M0,sup
x,x′

∣∣∣ ∂ f∂x j ∣∣x− ∂ f
∂x j
∣∣
x′

∣∣∣
‖x− x′‖α−1

⎞⎠ .

Clearly, M̃ ≤max(M0,Mα) =M′
α. Hence for 1< α≤ 2, we have M1 ≤ 5M1− 1

α
0 M

′ 1α
α . Finally, using

the previous induction argument and noting that it does not depend on the dimensionality d, we
obtain the desired result for all α> 1.

To prove Lemma 12 however, Theorem 16 is not a suitable tool. Note that the M′
α in (7) is

max(M0,Mα), while in Theorem 15 M′
α = max(n!M0,Mα). Therefore the constant in Theorem 16

grows exponentially regarding to α. In the following we give another generalization of Gorny’s
inequality which will be used to prove Lemma 12. The price however is that it cannot handle the
non-integer smoothness.

Theorem 17 Let f (x) be defined on [0,1]d and have uniformly bounded partial derivatives up to
order n. Let

Mk = sup
|k|=k

‖Dk f‖∞, k = 0,1,2, . . . ,n.

Then
Mk ≤CnkM1− k

n
0 M

′ kn
n ,

where M′
n = max(n!M0,Mn), and C is a constant depending on k but does not depend on M0, Mn

and n.

2287

WANG

This theorem is a straightforward generalization of Gorny’s theorem to multidimension. Now we
can use this theorem to prove Lemma 12.

Proof of Lemma 12 Similar to the proof of Lemma 11, for (x1, . . . ,xd) ∈ [0,1]d , let

f (x1, . . . ,xd) =
∫ x1

0

∫ x2

0
· · ·

∫ xd

0
Φ(u1, . . . ,ud)du1, . . . ,dud.

It is easy to check that f is infinitely smooth. Let Mt be defined as in Theorem 15 for f . Clearly
M0 ≤ r and ‖Φ‖∞ ≤ Md . Since f is infinitely smooth, there is a constant C such that Mn ≤ C for
n= d+1,d+2,

Now for r sufficiently small, take n=
log 1r
log log 1r

. Let’s first look at n!M0. Note that

nn =

(
log 1r
log log 1r

) log 1r
log log 1r ≤

(
log

1
r

) log 1r
log log 1r

=
1
r
.

We have

M0n! ≤ r
√
2πnnne−n ≤

√
2π

log 1r
log log 1r

(r)
1

loglog 1r

≤
√
2πexp

(
log log 1r − log loglog 1r

2
− log 1r
log log 1r

)
,

which tends to zero as r→ 0 and therefore

M′
n =max(M0n!,Mn))≤C.

Thus we have, by Theorem 17

‖Φ‖∞ ≤ Md

≤ CndM
1− d

n
0 M

′ dn
n

≤ CndM
1− d

n
0

≤ C

(
log 1r
log log 1r

)d
r

(
1
r

) d log log 1r
log 1r

≤ Cr

(
log

1
r

)2d
.

Proof of Theorem 17 We know that the theorem is valid when d = 1. Now assume d ≥ 2. Using
the same argument in the proof of Theorem 16, we have that for all positive integers n,

M1 ≤CnM1− 1
n

0 M
′ 1n
n ,

2288

SMOOTHNESS, DISAGREEMENT COEFFICIENT, AND AGNOSTIC ACTIVE LEARNING

and in general

Mm+1 ≤CnM1− 1
n

m M
′ 1n
m+n, (19)

for any nonnegative integer m.
Now we prove the theorem by induction on k. Assume we have already shown

Mk−1 ≤Cnk−1M1− k−1
n

0 (max(M0n!,Mn))
k−1
n . (20)

By (19) we have

Mk ≤C(n− k+1)M1− 1
n−k+1

k−1
(
max
(
(n− k+1)!Mk−1,Mn

)) 1
n−k+1

. (21)

We consider the following four cases separately. Note that below we will frequently use the fact
that for m= 1,2, . . .

1√
2π

(m!)
1
m e≤ m≤ (m!)

1
m e1+

1
12 .

To see this, just note that
√
2πmmme−(m+

1
12m) ≤ m!≤

√
2πmmme−m,

and

1≤
(√
2πm
) 1

m ≤
√
2π.

Case I: (n− k+1)!Mk−1 >Mn and n!M0 ≤Mn

From (21) we have

Mk ≤C(n− k+1)Mk−1
(
(n− k+1)!

) 1
n−k+1 ≤C(n− k+1)2Mk−1 ≤Cn2Mk−1.

Taking into consideration of (20), we have

Mk ≤ Cnk+1M
1− k−1

n
0 M

′ k−1n
n

≤ CnkM
1− k

n
0 M

′ kn
n

(
nM

1
n
0M

′− 1
n

n

)
≤ CnkM

1− k
n

0 M
′ kn
n

(
n!M0

M′
n

) 1
n

≤ CnkM
1− k

n
0 M

′ kn
n .

Case II: (n− k+1)!Mk−1 >Mn and n!M0 >Mn

By the similar argument as in Case I, we have

Mk ≤ Cnk+1M
1− k−1

n
0 M

′ k−1n
n

= Cnk+1M0(n!)
k−1
n

≤ CnkM0(n!)
k
n

= CnkM
1− k

n
0 (n!M0)

k
n .

2289

WANG

Case III: (n− k+1)!Mk−1 ≤Mn and n!M0 >Mn

Combining (20) and (21),

Mk ≤ C(n− k+1)
(
nk−1M0(n!)

k−1
n

)1− 1
n−k+1

M
1

n−k+1
n

≤ CnkM
1− 1

n−k+1
0 (n!)(

k−1
n)(1− 1

n−k+1)(n!M0)
1

n−k+1

≤ CnkM0(n!)
k
n

≤ CnkM
1− k

n
0 (n!M0)

k
n .

Case IV: (n− k+1)!Mk−1 ≤Mn and n!M0 ≤Mn Combining (20) and (21), we obtain

Mk ≤ C(n− k+1)M1− 1
n−k+1

k−1 M
1

n−k+1
n

≤ Cn

(
nk−1M1− k−1

n
0 M

k−1
n

n

)1− 1
n−k+1

M
1

n−k+1
n

≤ CnkM
1− k

n
0 M

k
n
n .

This completes the proof.

5. Conclusion

This paper studies the disagreement coefficient of smooth problems and extends our previous results
(Wang, 2009). Comparing to the worst case θ(ε) = 1

ε for which active learning has the same label

complexity as passive learning, the disagreement coefficient is θ(ε) =O

((
1
ε

) d
α+d

)
for αth (α<∞)

order smooth problems, and is θ(ε) =O
(
log2d

(
1
ε

))
for infinite order smooth problems. Combining

with the bounds on the label complexity in terms of disagreement coefficient, we give sufficient
conditions for which active learning algorithm A2 and DHM are superior to passive learning under
Tsybakov’s noise condition.

Although we assume that the classification boundary is the graph of a function, our results can be
generalized to the case that the boundaries are a finite number of functions. To be precise, considerN
(N is even) functions f1(x)≤ ·· · ≤ fN(x), for all x∈ [0,1]d . Let f0(x)≡ 0, fN+1(x)≡ 1. The positive
(or negative) set defined by these functions is {(x,xd+1) : f2i(x)≤ xd+1≤ f2i+1(x), i= 0,1, . . . , N2 }.
It is easy to show that our main theorems still hold in this case. Moreover, using the techniques in
Dudley (1999, page 259), our results may generalize to the case that the classification boundaries
are intrinsically smooth, and not necessarily graphs of smooth functions. This would include a
substantially richer class of problems which can be benefit from active learning.

There is an open problems worthy of further study. For infinitely smooth problems we proved
that the disagreement coefficient can be upper and lower bounded by O

(
log2d

(
1
ε

))
and Ω(1) re-

spectively. Improving the upper bound and (or) the lower bound would be interesting.

Acknowledgments

The author thank Yanqi Dai, Kai Fan, Chicheng Zhang and Ziteng Wang for very helpful discus-
sions. In particular, they helped to improve Theorem 9 and Theorem 13 over previous versions. The

2290

SMOOTHNESS, DISAGREEMENT COEFFICIENT, AND AGNOSTIC ACTIVE LEARNING

author is grateful to an anonymous reviewer who gave many constructive suggestions. It greatly
improves the quality of the paper. This work was supported by NSFC (61075003) and a grant from
MOE-Microsoft Key Laboratory of Statistics and Information Technology of Peking University.

References

M.-F. Balcan, A.Beygelzimer, and J. Langford. Agnostic active learning. In 23th International
Conference on Machine Learning, 2006.

A. Beygelzimer, S. Dasgupta, and J. Langford. Importance weighted active learning. In 26th
International Conference on Machine Learning, 2009.

A. Beygelzimer, D. Hsu, J. Langford, and T. Zhang. Agnostic active learning without constraints.
In Advances in Neural Information Processing Systems, 2010.

M. Burnashev and K. Zigangirov. An interval estimation problem for controlled problem. Problems
of Information Transmission, 10:223–231, 1974.

R. Castro and R. Nowak. Minimax bounds for active learning. IEEE Transactions on Information
Theory, 54:2339–2353, 2008.

D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning.Machine Learning,
15:201–221, 1994.

S. Dasgupta. Coarse sample complexity bounds for active learning. In Advances in Neural Infor-
mation Processing Systems, 2005.

S. Dasgupta and J. Langford. A tutorial on active learning, 2009.

S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning algorithm. In Advances
in Neural Information Processing Systems, 2007.

R.M. Dudley. Uniform Central Limit Theorems. Cambridge University Press, 1999.

E. Friedman. Active learning for smooth problems. In 22th Annual Conference on Learning Theory,
2009.

A. Gorny. Contribution a l’etude des fonctions dérivables d’une variable réelle. Acta Mathematica,
13:317–358, 1939.

S. Hanneke. A bound on the label complexity of agnostic active learning. In 24th International
Conference on Machine Learning, 2007.

S. Hanneke. Adaptive rates of convergence in active learning. In 22th Annual Conference on
Learning Theory, 2009.

S. Hanneke. Rates of convergence in active learning. Annals of Statistics, 39:333–361, 2011.

M. Kääriäinen. Active learning in the non-realizable case. In 17th International Conference on
Algorithmic Learning Theory, 2006.

2291

WANG

A. Kolmogorov. Une généralisation de l’inégalite de J. Hadamard entre les bornes supérieurs des
dérivés successives d’une fonction. C. R. Académie des Sciences, Paris, 207:763–765, 1938.

V. Koltchinskii. Local rademacher complexities and oracle inequalities in risk minimization. The
Annals of Statistics, 34:2593–2656, 2006.

V. Koltchinskii. Rademacher complexities and bounding the excess risk in active learning. Journal
of Machine Learning Research, 11:2457–2485, 2010.

E. Landau. Einige ungleichungen für zweimal differentiierbare funktionen. Proceedings of the
London Mathematical Society, 13:43–49, 1913.

D.S. Mitrinović, J.E. Pečarié, and A.M. Fink. Inequalities Involving Functions and Their Integrals
and Derivatives. Kluwer Academic Publishers, 1991.

I.J. Schoenberg. The elementary cases of landau’s problem of inequlities between derivatives. The
American Mathematical Monthly, 80:121–158, 1973.

A. Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of Statistics, 32:
135–166, 2004.

A. van der Vaart and J. Wellner. Weak Convergence and Empirical Processes with Application to
Statistics. Springer Verlag, 1996.

V. Vapnik. Statistical Learning Theory. John Wiely and Sons, 1998.

L. Wang. Sufficient conditions for agnostic active learnable. In Advances in Neural Information
Processing Systems, 2009.

2292

Journal of Machine Learning Research 12 (2011) 2293-2296 Submitted 5/10; Revised 3/11; Published 7/11

MSVMpack: A Multi-Class Support Vector Machine Package

Fabien Lauer FABIEN.LAUER@LORIA.FR

Yann Guermeur YANN.GUERMEUR@LORIA.FR

LORIA – Equipe ABC
Campus Scientifique, BP 239
54506 Vandœuvre-lès-Nancy cedex, France

Editor:Mikio Braun

Abstract

This paper describes MSVMpack, an open source software package dedicated to our generic model
of multi-class support vector machine. All four multi-class support vector machines (M-SVMs)
proposed so far in the literature appear as instances of this model. MSVMpack provides for them
the first unified implementation and offers a convenient basis to develop other instances. This is
also the first parallel implementation for M-SVMs. The package consists in a set of command-line
tools with a callable library. The documentation includes a tutorial, a user’s guide and a developer’s
guide.

Keywords: multi-class support vector machines, open source, C

1. Introduction

In the framework of polytomy computation, a multi-class support vector machine (M-SVM) is a
support vector machine (SVM) dealing with all the categories simultaneously. Four M-SVMs can
be found in the literature: the models of Weston and Watkins (1998), Crammer and Singer (2001),
Lee et al. (2004), and the M-SVM2 of Guermeur and Monfrini (2011). The proposed software
implements them all in a single package named MSVMpack. Its design paves the way for the im-
plementation of our generic model of M-SVM and the integration of additional functionalities such
as model selection algorithms. The current version offers a parallel implementation with the pos-
sibility to use custom kernels. This software package is available for Linux under the terms of the
GPL at http://www.loria.fr/˜lauer/MSVMpack/ and provides two command-line tools with a
C application programming interface without dependencies beside a linear programming solver.

2. Multi-Class Support Vector Machines

We consider Q-category classification problems where X is the description space and the set Y of
the categories can be identified with [[1,Q]]. Let κ be a real-valued positive type function (Berlinet
and Thomas-Agnan, 2004) on X 2 and let (Hκ,〈·, ·〉Hκ) be the corresponding reproducing kernel
Hilbert space. Let H =HQ

κ and H = (Hκ+{1})Q. H is the class of functions h= (hk)1�k�Q from

X to R
Q that can be written as h(·) = h(·)+b=

(
 hk (·)+bk

)
1�k�Q, where h=

(
 hk
)

1�k�Q ∈ H and

b= (bk)1�k�Q ∈ R
Q. A function h assigns the category y to x if and only if y= argmax1�k�Q hk(x)

(cases of ex æquo are dealt with by introducing a dummy category). H is endowed with the norm

c©2011 Fabien Lauer and Yann Guermeur.

LAUER AND GUERMEUR

Reference M-SVM type M p K1 K2 K3

Weston and Watkins (1998) WW IQm 1 1 1 0
Crammer and Singer (2001) CS 1

Q−1 IQm 1 1 1 1

Lee et al. (2004) LLW IQm 1 0 1
Q−1 0

Guermeur and Monfrini (2011) MSVM2 M(2) 2 0 1
Q−1 0

Table 1: Specifications of the M-SVMs with their type as used by the MSVMpack interface.

‖·‖ H given by:

∀ h ∈ H ,
∥∥ h
∥∥ H =

√√√√ Q

∑
k=1

〈 hk, hk〉Hκ =

∥∥∥∥(∥∥ hk
∥∥
Hκ

)
1�k�Q

∥∥∥∥
2
.

With these definitions at hand, our generic definition of a Q-category M-SVM is:

Definition 1 (Generic model of M-SVM, Definition 4 in Guermeur, forthcoming) Let
((xi,yi))1�i�m ∈ (X × [[1,Q]])m and λ ∈ R

∗
+. Let ξ ∈ R

Qm be a vector such that for (i,k) ∈ [[1,m]]×
[[1,Q]], ξik is its component of index (i−1)Q+ k, with (ξiyi)1�i�m = 0m. A Q-category M-SVM is a
classifier obtained by solving a convex quadratic programming (QP) problem of the form

min
h,ξ

J (h,ξ) = ‖Mξ‖pp+λ
∥∥ h
∥∥2

 H

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∀i ∈ [[1,m]] , ∀k ∈ [[1,Q]]\{yi} , K1hyi(xi)−hk(xi)� K2−ξik
∀i ∈ [[1,m]] , ∀(k, l) ∈ ([[1,Q]]\{yi})2 , K3 (ξik−ξil) = 0

∀i ∈ [[1,m]] , ∀k ∈ [[1,Q]]\{yi} , (2− p)ξik � 0

(1−K1)∑
Q
k=1 hk = 0,

where p ∈ {1,2}, (K1,K3) ∈ {0,1}2, K2 ∈ R
∗
+ and the matrix M is such that ‖Mξ‖p is a norm of ξ.

Extending to matrices the notation used to designate the components of ξ and using δ to denote the
Kronecker symbol, let us define the general term of M(2) ∈MQm,Qm (R) as:

m(2)
ik, jl = (1−δyi,k)

(
1−δy j,l

)
δi, j

(
δk,l+

√
Q−1
Q−1

)
.

This allows us to summarize the characteristics of the four M-SVMs in Table 1. The potential of
the generic model is discussed in Guermeur (forthcoming).

3. The Software Package

MSVMpack includes a C application programming interface (API) and two command-line tools:
one for training an M-SVM and one for making predictions with a trained M-SVM. The following
discusses some algorithmic issues before presenting these tools and the API.

2294

MSVMPACK: A MULTI-CLASS SUPPORT VECTOR MACHINE PACKAGE

3.1 Training Algorithm

As in the bi-class case, an M-SVM is trained by solving the Wolfe dual of its instantiation of the QP
problem in Definition 1. The corresponding dual variables αik are the Lagrange multipliers of the
constraints of correct classification. The implemented QP algorithm is based on the Frank-Wolfe
method (Frank and Wolfe, 1956), in which each step of the descent is obtained as the solution of a
linear program (LP). The LP solver included in MSVMpack is lp solve (Berkelaar et al., 2009). In
order to make it possible to process large data sets, a decomposition method is applied and only a
small subset of the data is considered in each iteration.

Let Jd be the dual objective function and let α = (αik) be a (feasible) solution of the dual
problem obtained at some point of the training procedure. The quality of α is measured thanks
to the computation of an upper bound U(α) on the optimum J (h∗,ξ∗) = Jd (α∗) that goes to this
optimum. The stopping criterion is defined as a large enough value for Jd(α)/U(α). In MSVMpack,
the bound U(α) is obtained by solving the primal problem with h being the function associated
with the current α. This partial optimization requires little computation except in the case of the
M-SVM2, for which another QP problem has to be solved. However, the computational burden may
increase for a large number of classes (e.g., Q> 20).

3.2 Practical Use and Experiments

In its most simple form, the command line ’trainmsvm trainingdata -m WW’ is used to train an
M-SVM, where the -m flag allows one to choose the type of M-SVM model according to Table 1.
Then, this model can be applied to a test set by using ’predmsvm testdata’. The complete list of
options and parameters for these command-line tools can be found in the documentation or simply
obtained by calling them without argument.

Table 2 shows a comparison of MSVMpack with other implementations of M-SVMs on a subset
of the USPS database with 500 instances from 10 classes and the whole CB513 data set with 84119
instances from 3 classes. For the latter, the numbers reflect the average error and total times over a
5-fold cross validation, and the implementations that failed due to a lack of memory are not included
in the Table. We refer the reader to the documentation for the details of the experimental setup and
additional comparisons on other data sets.

3.3 Calling the Library from Other Programs

The “Developer’s guide” section of the documentation presents the API reference and an example
program including MSVMpack functionalities through this API. The library defines specific data
structures for M-SVM models and data sets. It also provides wrapper functions, which act according
to the M-SVM model type, for example, call the corresponding training function. The standard
workflow for a train-and-test sequence is: call MSVM make model() to initialize the model; call
MSVM make dataset() for each data set to load; call MSVM train() to train the model; and call
MSVM classify set() to test the trained classifier.

4. Ongoing and Future Developments

MSVMpack implements the four M-SVMs proposed in the literature. Current work focuses on the
explicit implementation of our generic model of M-SVM, which will make it possible to study new
machines thanks to a simple choice of the values of the hyperparametersM, p, and (Kt)1�t�3. Future

2295

LAUER AND GUERMEUR

Data set M-SVM Software Test error Training time Testing time

USPS 500 WW Spider (Matlab) 10.20 % 4m 19s 0.2s
Q= 10 BSVM (C++) 10.00 % 0.2s 0.1s
m= 500 MSVMpack (C) 10.40 % 2.5s 0.1s
X ⊂ R

256 CS MCSVM (C) 9.80 % 0.5s 0.3s
test set: MSVMpack 9.80 % 30s 0.1s
m= 500 LLW SMSVM (R) 12.00 % 5m 58s 0.1s

MSVMpack 11.40 % 1m 22s 0.1s
MSVM2 MSVMpack 12.00 % 22s 0.1s

CB513 WW BSVM 23.96 % 9h 48m 40s 46m 29s
Q= 3 MSVMpack 23.72 % 1h 05m 11s 1m 51s
m= 84119 CS MCSVM 23.55 % 22h 52m 10s 2h 08m 33s
X ⊂ Z

260 MSVMpack 23.63 % 1h 00m 36s 2m 06s
test: LLW MSVMpack 25.65 % 1h 14m 21s 2m 33s
5-fold CV MSVM2 MSVMpack 23.47 % 6h 44m 50s 2m 49s

Table 2: Relative performance of different M-SVM implementations on two data sets.

work will consider including automatic tuning procedures for the regularization parameter λ, and
relaxing the hypothesis on the norm of the penalizer.

References

M. Berkelaar, K. Eikland, and P. Notebaert. An Open Source (Mixed-Integer) Linear Programming
System, 2009. Software available at http://lpsolve.sourceforge.net/.

A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and Statistics.
Kluwer Academic Publishers, Boston, 2004.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines. Journal of Machine Learning Research, 2:265–292, 2001.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quar-
terly, 3(1–2):95–110, 1956.

Y. Guermeur. A generic model of multi-class support vector machine. International Journal of
Intelligent Information and Database Systems, forthcoming.

Y. Guermeur and E. Monfrini. A quadratic loss multi-class SVM for which a radius-margin bound
applies. Informatica, 22(1):73–96, 2011.

Y. Lee, Y. Lin, and G.Wahba. Multicategory support vector machines: Theory and application to the
classification of microarray data and satellite radiance data. Journal of the American Statistical
Association, 99(465):67–81, 2004.

J. Weston and C. Watkins. Multi-class support vector machines. Technical Report CSD-TR-98-04,
Royal Holloway, University of London, Department of Computer Science, 1998.

2296

Journal of Machine Learning Research 12 (2011) 2297-2334 Submitted 9/10; Revised 3/11; Published 7/11

Proximal Methods for Hierarchical Sparse Coding

Rodolphe Jenatton∗† RODOLPHE.JENATTON@INRIA.FR
Julien Mairal∗† JULIEN.MAIRAL@INRIA.FR
Guillaume Obozinski† GUILLAUME.OBOZINSKI@INRIA.FR
Francis Bach† FRANCIS.BACH@INRIA.FR
INRIA - WILLOW Project-Team
Laboratoire d’Informatique de l’Ecole Normale Supérieure (INRIA/ENS/CNRS UMR 8548)
23, avenue d’Italie
75214 Paris CEDEX 13, France

Editor: Tong Zhang

Abstract

Sparse coding consists in representing signals as sparse linear combinations of atoms selected from
a dictionary. We consider an extension of this framework where the atoms are further assumed to
be embedded in a tree. This is achieved using a recently introduced tree-structured sparse regu-
larization norm, which has proven useful in several applications. This norm leads to regularized
problems that are difficult to optimize, and in this paper, we propose efficient algorithms for solving
them. More precisely, we show that the proximal operator associated with this norm is computable
exactly via a dual approach that can be viewed as the composition of elementary proximal opera-
tors. Our procedure has a complexity linear, or close to linear, in the number of atoms, and allows
the use of accelerated gradient techniques to solve the tree-structured sparse approximation prob-
lem at the same computational cost as traditional ones using the �1-norm. Our method is efficient
and scales gracefully to millions of variables, which we illustrate in two types of applications:
first, we consider fixed hierarchical dictionaries of wavelets to denoise natural images. Then, we
apply our optimization tools in the context of dictionary learning, where learned dictionary ele-
ments naturally self-organize in a prespecified arborescent structure, leading to better performance
in reconstruction of natural image patches. When applied to text documents, our method learns
hierarchies of topics, thus providing a competitive alternative to probabilistic topic models.

Keywords: Proximal methods, dictionary learning, structured sparsity, matrix factorization

1. Introduction

Modeling signals as sparse linear combinations of atoms selected from a dictionary has become
a popular paradigm in many fields, including signal processing, statistics, and machine learning.
This line of research, also known as sparse coding, has witnessed the development of several well-
founded theoretical frameworks (Tibshirani, 1996; Chen et al., 1998; Mallat, 1999; Tropp, 2004,
2006; Wainwright, 2009; Bickel et al., 2009) and the emergence of many efficient algorithmic tools

∗. These authors contributed equally.
†. Rodolphe Jenatton, Guillaume Obozinski, and Francis Bach are now affiliated to INRIA - Sierra Project-Team.
Julien Mairal is now with the Statistics Department of the University of California at Berkeley. When this work was
performed all authors were affiliated to INRIA - Willow Project-Team.

©2011 Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski and Francis Bach.

JENATTON, MAIRAL, OBOZINSKI AND BACH

(Efron et al., 2004; Nesterov, 2007; Beck and Teboulle, 2009; Wright et al., 2009; Needell and
Tropp, 2009; Yuan et al., 2010).

In many applied settings, the structure of the problem at hand, such as, for example, the spatial
arrangement of the pixels in an image, or the presence of variables corresponding to several levels
of a given factor, induces relationships between dictionary elements. It is appealing to use this a
priori knowledge about the problem directly to constrain the possible sparsity patterns. For instance,
when the dictionary elements are partitioned into predefined groups corresponding to different types
of features, one can enforce a similar block structure in the sparsity pattern—that is, allow only
that either all elements of a group are part of the signal decomposition or that all are dismissed
simultaneously (see Yuan and Lin, 2006; Stojnic et al., 2009).

This example can be viewed as a particular instance of structured sparsity, which has been
lately the focus of a large amount of research (Baraniuk et al., 2010; Zhao et al., 2009; Huang et al.,
2009; Jacob et al., 2009; Jenatton et al., 2009; Micchelli et al., 2010). In this paper, we concentrate
on a specific form of structured sparsity, which we call hierarchical sparse coding: the dictionary
elements are assumed to be embedded in a directed tree T , and the sparsity patterns are constrained
to form a connected and rooted subtree of T (Donoho, 1997; Baraniuk, 1999; Baraniuk et al., 2002,
2010; Zhao et al., 2009; Huang et al., 2009). This setting extends more generally to a forest of
directed trees.1

In fact, such a hierarchical structure arises in many applications. Wavelet decompositions lend
themselves well to this tree organization because of their multiscale structure, and benefit from it for
image compression and denoising (Shapiro, 1993; Crouse et al., 1998; Baraniuk, 1999; Baraniuk
et al., 2002, 2010; He and Carin, 2009; Zhao et al., 2009; Huang et al., 2009). In the same vein,
edge filters of natural image patches can be represented in an arborescent fashion (Zoran and Weiss,
2009). Imposing these sparsity patterns has further proven useful in the context of hierarchical
variable selection, for example, when applied to kernel methods (Bach, 2008), to log-linear models
for the selection of potential orders (Schmidt and Murphy, 2010), and to bioinformatics, to exploit
the tree structure of gene networks for multi-task regression (Kim and Xing, 2010). Hierarchies of
latent variables, typically used in neural networks and deep learning architectures (see Bengio, 2009,
and references therein) have also emerged as a natural structure in several applications, notably to
model text documents. In particular, in the context of topic models (Blei et al., 2003), a hierarchical
model of latent variables based on Bayesian non-parametric methods has been proposed by Blei
et al. (2010) to model hierarchies of topics.

To perform hierarchical sparse coding, our work builds upon the approach of Zhao et al. (2009)
who first introduced a sparsity-inducing norm Ω leading to this type of tree-structured sparsity
pattern. We tackle the resulting nonsmooth convex optimization problem with proximal methods
(e.g., Nesterov, 2007; Beck and Teboulle, 2009; Wright et al., 2009; Combettes and Pesquet, 2010)
and we show in this paper that its key step, the computation of the proximal operator, can be
solved exactly with a complexity linear, or close to linear, in the number of dictionary elements—
that is, with the same complexity as for classical �1-sparse decomposition problems (Tibshirani,
1996; Chen et al., 1998). Concretely, given an m-dimensional signal x along with a dictionary
D = [d1, . . . ,dp] ∈ R

m×p composed of p atoms, the optimization problem at the core of our paper
can be written as

min
α∈Rp

1
2
‖x−Dα‖22+λΩ(α), with λ≥ 0.

1. A tree is defined as a connected graph that contains no cycle (see Ahuja et al., 1993).

2298

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

In this formulation, the sparsity-inducing norm Ω encodes a hierarchical structure among the atoms
of D, where this structure is assumed to be known beforehand. The precise meaning of hierarchical
structure and the definition ofΩwill be made more formal in the next sections. A particular instance
of this problem—known as the proximal problem—is central to our analysis and concentrates on
the case where the dictionary D is orthogonal.

In addition to a speed benchmark that evaluates the performance of our proposed approach in
comparison with other convex optimization techniques, two types of applications and experiments
are considered. First, we consider settings where the dictionary is fixed and given a priori, corre-
sponding for instance to a basis of wavelets for the denoising of natural images. Second, we show
how one can take advantage of this hierarchical sparse coding in the context of dictionary learn-
ing (Olshausen and Field, 1997; Aharon et al., 2006; Mairal et al., 2010a), where the dictionary is
learned to adapt to the predefined tree structure. This extension of dictionary learning is notably
shown to share interesting connections with hierarchical probabilistic topic models.

To summarize, the contributions of this paper are threefold:

• We show that the proximal operator for a tree-structured sparse regularization can be com-
puted exactly in a finite number of operations using a dual approach. Our approach is equiva-
lent to computing a particular sequence of elementary proximal operators, and has a complex-
ity linear, or close to linear, in the number of variables. Accelerated gradient methods (e.g.,
Nesterov, 2007; Beck and Teboulle, 2009; Combettes and Pesquet, 2010) can then be applied
to solve large-scale tree-structured sparse decomposition problems at the same computational
cost as traditional ones using the �1-norm.

• We propose to use this regularization scheme to learn dictionaries embedded in a tree, which,
to the best of our knowledge, has not been done before in the context of structured sparsity.

• Our method establishes a bridge between hierarchical dictionary learning and hierarchical
topic models (Blei et al., 2010), which builds upon the interpretation of topic models as
multinomial PCA (Buntine, 2002), and can learn similar hierarchies of topics. This point
is discussed in Sections 5.5 and 6.

Note that this paper extends a shorter version published in the proceedings of the international
conference of machine learning (Jenatton et al., 2010).

1.1 Notation

Vectors are denoted by bold lower case letters and matrices by upper case ones. We define for q≥ 1
the �q-norm of a vector x in Rm as ‖x‖q

= (∑m
i=1 |xi|q)1/q, where xi denotes the i-th coordinate of x,

and ‖x‖∞
= maxi=1,...,m |xi| = limq→∞ ‖x‖q. We also define the �0-pseudo-norm as the number of

nonzero elements in a vector:2 ‖x‖0
= #{i s.t. xi �= 0} = limq→0+(∑m

i=1 |xi|q). We consider the
Frobenius norm of a matrix X in R

m×n: ‖X‖F
= (∑m

i=1∑
n
j=1X

2
i j)
1/2, where Xi j denotes the entry

of X at row i and column j. Finally, for a scalar y, we denote (y)+

=max(y,0).

The rest of this paper is organized as follows: Section 2 presents related work and the prob-
lem we consider. Section 3 is devoted to the algorithm we propose, and Section 4 introduces the

2. Note that it would be more proper to write ‖x‖00 instead of ‖x‖0 to be consistent with the traditional notation ‖x‖q.
However, for the sake of simplicity, we will keep this notation unchanged in the rest of the paper.

2299

JENATTON, MAIRAL, OBOZINSKI AND BACH

dictionary learning framework and shows how it can be used with tree-structured norms. Section 5
presents several experiments demonstrating the effectiveness of our approach and Section 6 con-
cludes the paper.

2. Problem Statement and Related Work

Let us consider an input signal of dimension m, typically an image described by its m pixels, which
we represent by a vector x in Rm. In traditional sparse coding, we seek to approximate this signal
by a sparse linear combination of atoms, or dictionary elements, represented here by the columns of
a matrix D

= [d1, . . . ,dp] in Rm×p. This can equivalently be expressed as x ≈ Dα for some sparse
vector α in Rp, that is, such that the number of nonzero coefficients ‖α‖0 is small compared to p.
The vector α is referred to as the code, or decomposition, of the signal x.

Figure 1: Example of a tree T when p = 6. With the rule we consider for the nonzero patterns, if
we have α5 �= 0, we must also have αk �= 0 for k in ancestors(5) = {1,3,5}.

In the rest of the paper, we focus on specific sets of nonzero coefficients—or simply, nonzero
patterns—for the decomposition vector α. In particular, we assume that we are given a tree3 T
whose p nodes are indexed by j in {1, . . . , p}. We want the nonzero patterns ofα to form a connected
and rooted subtree of T ; in other words, if ancestors(j) ⊆ {1, . . . , p} denotes the set of indices
corresponding to the ancestors4 of the node j in T (see Figure 1), the vector α obeys the following
rule

α j �= 0⇒ [αk �= 0 for all k in ancestors(j)]. (1)

Informally, we want to exploit the structure of T in the following sense: the decomposition of any
signal x can involve a dictionary element d j only if the ancestors of d j in the tree T are themselves
part of the decomposition.

We now review previous work that has considered the sparse approximation problem with tree-
structured constraints (1). Similarly to traditional sparse coding, there are basically two lines of
research, that either (A) deal with nonconvex and combinatorial formulations that are in general
computationally intractable and addressed with greedy algorithms, or (B) concentrate on convex
relaxations solved with convex programming methods.

3. Our analysis straightforwardly extends to the case of a forest of trees; for simplicity, we consider a single tree T .
4. We consider that the set of ancestors of a node also contains the node itself.

2300

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

2.1 Nonconvex Approaches

For a given sparsity level s≥ 0 (number of nonzero coefficients), the following nonconvex problem

min
α∈Rp

‖α‖0≤s

1
2
‖x−Dα‖22 such that condition (1) is respected, (2)

has been tackled by Baraniuk (1999); Baraniuk et al. (2002) in the context of wavelet approxima-
tions with a greedy procedure. A penalized version of problem (2) (that adds λ‖α‖0 to the objec-
tive function in place of the constraint ‖α‖0 ≤ s) has been considered by Donoho (1997), while
studying the more general problem of best approximation from dyadic partitions (see Section 6 in
Donoho, 1997). Interestingly, the algorithm we introduce in Section 3 shares conceptual links with
the dynamic-programming approach of Donoho (1997), which was also used by Baraniuk et al.
(2010), in the sense that the same order of traversal of the tree is used in both procedures. We
investigate more thoroughly the relations between our algorithm and this approach in Appendix A.

Problem (2) has been further studied for structured compressive sensing (Baraniuk et al., 2010),
with a greedy algorithm that builds upon Needell and Tropp (2009). Finally, Huang et al. (2009)
have proposed a formulation related to (2), with a nonconvex penalty based on an information-
theoretic criterion.

2.2 Convex Approach

We now turn to a convex reformulation of the constraint (1), which is the starting point for the
convex optimization tools we develop in Section 3.

2.2.1 HIERARCHICAL SPARSITY-INDUCING NORMS

Condition (1) can be equivalently expressed by its contrapositive, thus leading to an intuitive way
of penalizing the vector α to obtain tree-structured nonzero patterns. More precisely, defining
descendants(j) ⊆ {1, . . . , p} analogously to ancestors(j) for j in {1, . . . , p}, condition (1) amounts
to saying that if a dictionary element is not used in the decomposition, its descendants in the tree
should not be used either. Formally, this can be formulated as:

α j = 0⇒ [αk = 0 for all k in descendants(j)]. (3)

From now on, we denote by G the set defined by G
= {descendants(j); j ∈ {1, . . . , p}}, and refer to

each member g of G as a group (Figure 2). To obtain a decomposition with the desired property (3),
one can naturally penalize the number of groups g in G that are “involved” in the decomposition
of x, that is, that record at least one nonzero coefficient of α:

∑
g∈G

δg, with δg

=

{
1 if there exists j ∈ g such that α j �= 0,
0 otherwise.

(4)

While this intuitive penalization is nonconvex (and not even continuous), a convex proxy has been
introduced by Zhao et al. (2009). It was further considered by Bach (2008); Kim and Xing (2010);
Schmidt and Murphy (2010) in several different contexts. For any vector α ∈ R

p, let us define

Ω(α)

= ∑

g∈G
ωg‖α|g‖,

2301

JENATTON, MAIRAL, OBOZINSKI AND BACH

where α|g is the vector of size p whose coordinates are equal to those of α for indices in the set g,
and to 0 otherwise.5 The notation ‖.‖ stands in practice either for the �2- or �∞-norm, and (ωg)g∈G
denotes some positive weights.6 As analyzed by Zhao et al. (2009) and Jenatton et al. (2009),
when penalizing by Ω, some of the vectors α|g are set to zero for some g ∈ G .7 Therefore, the
components of α corresponding to some complete subtrees of T are set to zero, which exactly
matches condition (3), as illustrated in Figure 2.

Figure 2: Left: example of a tree-structured set of groups G (dashed contours in red), corresponding
to a tree T with p = 6 nodes represented by black circles. Right: example of a sparsity pattern
induced by the tree-structured norm corresponding to G : the groups {2,4},{4} and {6} are set to
zero, so that the corresponding nodes (in gray) that form subtrees of T are removed. The remaining
nonzero variables {1,3,5} form a rooted and connected subtree of T . This sparsity pattern obeys
the following equivalent rules: (i) if a node is selected, the same goes for all its ancestors. (ii) if a
node is not selected, then its descendant are not selected.

Note that although we presented for simplicity this hierarchical norm in the context of a single
tree with a single element at each node, it can easily be extended to the case of forests of trees,
and/or trees containing arbitrary numbers of dictionary elements at each node (with nodes possibly
containing no dictionary element). More broadly, this formulation can be extended with the notion
of tree-structured groups, which we now present:

Definition 1 (Tree-structured set of groups.)
A set of groups G

={g}g∈G is said to be tree-structured in {1, . . . , p}, if ⋃g∈Gg= {1, . . . , p} and if
for all g,h∈G , (g∩h �= /0)⇒ (g⊆ h or h⊆ g). For such a set of groups, there exists a (non-unique)
total order relation � such that:

g� h ⇒ {
g⊆ h or g∩h= /0

}
.

Given such a tree-structured set of groupsG and its associated normΩ, we are interested throughout
the paper in the following hierarchical sparse coding problem,

min
α∈Rp

f (α)+λΩ(α), (5)

5. Note the difference with the notation αg, which is often used in the literature on structured sparsity, where αg is a
vector of size |g|.

6. For a complete definition of Ω for any �q-norm, a discussion of the choice of q, and a strategy for choosing the
weights ωg (see Zhao et al., 2009; Kim and Xing, 2010).

7. It has been further shown by Bach (2010) that the convex envelope of the nonconvex function of Equation (4) is in
fact Ω with ‖.‖ being the �∞-norm.

2302

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

where Ω is the tree-structured norm we have previously introduced, the non-negative scalar λ is a
regularization parameter controlling the sparsity of the solutions of (5), and f a smooth convex loss
function (see Section 3 for more details about the smoothness assumptions on f). In the rest of the
paper, we will mostly use the square loss f (α) = 1

2‖x−Dα‖22, with a dictionary D in Rm×p, but the
formulation of Equation (5) extends beyond this context. In particular one can choose f to be the
logistic loss, which is commonly used for classification problems (e.g., see Hastie et al., 2009).

Before turning to optimization methods for the hierarchical sparse coding problem, we consider
a particular instance. The sparse group Lasso was recently considered by Sprechmann et al. (2010)
and Friedman et al. (2010) as an extension of the group Lasso of Yuan and Lin (2006). To induce
sparsity both groupwise and within groups, Sprechmann et al. (2010) and Friedman et al. (2010)
add an �1 term to the regularization of the group Lasso, which given a partition P of {1, . . . , p} in
disjoint groups yields a regularized problem of the form

min
α∈Rp

1
2
‖x−Dα‖22+λ ∑

g∈P
‖α|g‖2+λ′‖α‖1.

Since P is a partition, the set of groups in P and the singletons form together a tree-structured set
of groups according to definition 1 and the algorithm we will develop is therefore applicable to this
problem.

2.2.2 OPTIMIZATION FOR HIERARCHICAL SPARSITY-INDUCING NORMS

While generic approaches like interior-point methods (Boyd and Vandenberghe, 2004) and subgra-
dient descent schemes (Bertsekas, 1999) might be used to deal with the nonsmooth normΩ, several
dedicated procedures have been proposed.

In Zhao et al. (2009), a boosting-like technique is used, with a path-following strategy in the
specific case where ‖.‖ is the �∞-norm. Based on the variational equality

‖u‖1 = min
z∈Rp

+

1
2

[p

∑
j=1

u2j
z j

+ z j
]
, (6)

Kim and Xing (2010) follow a reweighted least-square scheme that is well adapted to the square
loss function. To the best of our knowledge, a formulation of this type is however not available
when ‖.‖ is the �∞-norm. In addition it requires an appropriate smoothing to become provably
convergent. The same approach is considered by Bach (2008), but built upon an active-set strategy.
Other proposed methods consist of a projected gradient descent with approximate projections onto
the ball {u ∈ R

p;Ω(u) ≤ λ} (Schmidt and Murphy, 2010), and an augmented-Lagrangian based
technique (Sprechmann et al., 2010) for solving a particular case with two-level hierarchies.

While the previously listed first-order approaches are (1) loss-function dependent, and/or (2)
not guaranteed to achieve optimal convergence rates, and/or (3) not able to yield sparse solutions
without a somewhat arbitrary post-processing step, we propose to resort to proximal methods8 that
do not suffer from any of these drawbacks.

8. Note that the authors of Chen et al. (2010) have considered proximal methods for general group structure G when
‖.‖ is the �2-norm; due to a smoothing of the regularization term, the convergence rate they obtained is suboptimal.

2303

JENATTON, MAIRAL, OBOZINSKI AND BACH

3. Optimization

We begin with a brief introduction to proximal methods, necessary to present our contributions.
From now on, we assume that f is convex and continuously differentiable with Lipschitz-continuous
gradient. It is worth mentioning that there exist various proximal schemes in the literature that differ
in their settings (e.g., batch versus stochastic) and/or the assumptions made on f . For instance, the
material we develop in this paper could also be applied to online/stochastic frameworks (Duchi and
Singer, 2009; Hu et al., 2009; Xiao, 2010) and to possibly nonsmooth functions f (e.g., Duchi and
Singer, 2009; Xiao, 2010; Combettes and Pesquet, 2010, and references therein). Finally, most of
the technical proofs of this section are presented in Appendix B for readability.

3.1 Proximal Operator for the Norm Ω

Proximal methods have drawn increasing attention in the signal processing (e.g., Becker et al., 2009;
Wright et al., 2009; Combettes and Pesquet, 2010, and numerous references therein) and the ma-
chine learning communities (e.g., Bach et al., 2011, and references therein), especially because of
their convergence rates (optimal for the class of first-order techniques) and their ability to deal with
large nonsmooth convex problems (e.g., Nesterov, 2007; Beck and Teboulle, 2009). In a nutshell,
these methods can be seen as a natural extension of gradient-based techniques when the objective
function to minimize has a nonsmooth part. Proximal methods are iterative procedures. The sim-
plest version of this class of methods linearizes at each iteration the function f around the current
estimate α̂, and this estimate is updated as the (unique by strong convexity) solution of the proximal
problem, defined as follows:

min
α∈Rp

f (α̂)+(α− α̂)�∇f (α̂)+λΩ(α)+
L
2
‖α− α̂‖22.

The quadratic term keeps the update in a neighborhood where f is close to its linear approximation,
and L>0 is a parameter which is an upper bound on the Lipschitz constant of ∇ f . This problem
can be equivalently rewritten as:

min
α∈Rp

1
2

∥∥∥α− (α̂− 1
L
∇f (α̂)

)∥∥∥2
2
+
λ
L
Ω(α).

Solving efficiently and exactly this problem is crucial to enjoy the fast convergence rates of proximal
methods. In addition, when the nonsmooth term Ω is not present, the previous proximal problem
exactly leads to the standard gradient update rule. More generally, we define the proximal operator:

Definition 2 (Proximal Operator)
The proximal operator associated with our regularization term λΩ, which we denote by ProxλΩ, is
the function that maps a vector u ∈ R

p to the unique solution of

min
v∈Rp

1
2
‖u−v‖22+λΩ(v). (7)

This operator was initially introduced by Moreau (1962) to generalize the projection operator onto
a convex set. What makes proximal methods appealing for solving sparse decomposition problems
is that this operator can be often computed in closed-form. For instance,

2304

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

• When Ω is the �1-norm—that is, Ω(u) = ‖u‖1, the proximal operator is the well-known
elementwise soft-thresholding operator,

∀ j ∈ {1, . . . , p}, u j �→ sign(u j)(|u j|−λ)+ =

{
0 if |u j| ≤ λ

sign(u j)(|u j|−λ) otherwise.

• When Ω is a group-Lasso penalty with �2-norms—that is, Ω(u) =∑g∈G ‖u|g‖2, with G being
a partition of {1, . . . , p}, the proximal problem is separable in every group, and the solution
is a generalization of the soft-thresholding operator to groups of variables:

∀g ∈ G ,u|g �→ u|g−Π‖.‖2≤λ[u|g] =
{
0 if ‖u|g‖2 ≤ λ
‖u|g‖2−λ
‖u|g‖2 u|g otherwise,

where Π‖.‖2≤λ denotes the orthogonal projection onto the ball of the �2-norm of radius λ.

• When Ω is a group-Lasso penalty with �∞-norms—that is, Ω(u) = ∑g∈G ‖u|g‖∞, the solution
is also a group-thresholding operator:

∀g ∈ G , u|g �→ u|g−Π‖.‖1≤λ[u|g],

where Π‖.‖1≤λ denotes the orthogonal projection onto the �1-ball of radius λ, which can be
solved in O(p) operations (Brucker, 1984; Maculan and Galdino de Paula, 1989). Note that
when ‖u|g‖1 ≤ λ, we have a group-thresholding effect, with u|g−Π‖.‖1≤λ[u|g] = 0.

More generally, a classical result (see, e.g., Combettes and Pesquet, 2010; Wright et al., 2009) says
that the proximal operator for a norm ‖.‖ can be computed as the residual of the projection of a
vector onto a ball of the dual-norm denoted by ‖.‖∗, and defined for any vector κ in Rp by ‖κ‖∗

=
max‖z‖≤1 z�κ.9 This is a classical duality result for proximal operators leading to the different
closed forms we have just presented. We have indeed that Proxλ‖.‖2 = Id−Π‖.‖2≤λ and Proxλ‖.‖∞ =
Id−Π‖.‖1≤λ, where Id stands for the identity operator. Obtaining closed forms is, however, not
possible anymore as soon as some groups in G overlap, which is always the case in our hierarchical
setting with tree-structured groups.

3.2 A Dual Formulation of the Proximal Problem

We now show that Equation (7) can be solved using a dual approach, as described in the following
lemma. The result relies on conic duality (Boyd and Vandenberghe, 2004), and does not make any
assumption on the choice of the norm ‖.‖:
Lemma 3 (Dual of the proximal problem)
Let u ∈ R

p and let us consider the problem

max
ξ∈Rp×|G |

−1
2

[∥∥∥u− ∑
g∈G

ξg
∥∥∥2
2
−‖u‖22

]
s.t. ∀g ∈ G , ‖ξg‖∗ ≤ λωg and ξ

g
j = 0 if j /∈ g,

(8)

9. It is easy to show that the dual norm of the �2-norm is the �2-norm itself. The dual norm of the �∞ is the �1-norm.

2305

JENATTON, MAIRAL, OBOZINSKI AND BACH

where ξ = (ξg)g∈G and ξgj denotes the j-th coordinate of the vector ξ
g in R

p. Then, problems (7)
and (8) are dual to each other and strong duality holds. In addition, the pair of primal-dual vari-
ables {v,ξ} is optimal if and only if ξ is a feasible point of the optimization problem (8), and

v= u−∑g∈G ξ
g and ∀g ∈ G , ξg =Π‖.‖∗≤λωg(v|g+ξg), (9)

where we denote by Π‖.‖∗≤λωg the orthogonal projection onto the ball {κ ∈ R
p; ‖κ‖∗ ≤ λωg}.

Note that we focus here on specific tree-structured groups, but the previous lemma is valid regard-
less of the nature of G . The rationale of introducing such a dual formulation is to consider an
equivalent problem to (7) that removes the issue of overlapping groups at the cost of a larger num-
ber of variables. In Equation (7), one is indeed looking for a vector v of size p, whereas one is
considering a matrix ξ in Rp×|G | in Equation (8) with ∑g∈G |g| nonzero entries, but with separable
(convex) constraints for each of its columns.

This specific structure makes it possible to use block coordinate ascent (Bertsekas, 1999). Such
a procedure is presented in Algorithm 1. It optimizes sequentially Equation (8) with respect to the
variable ξg, while keeping fixed the other variables ξh, for h �= g. It is easy to see from Equation (8)
that such an update of a column ξg, for a group g in G , amounts to computing the orthogonal
projection of the vector u|g−∑h �=g ξh|g onto the ball of radius λωg of the dual norm ‖.‖∗.

Algorithm 1 Block coordinate ascent in the dual

Inputs: u ∈ R
p and set of groups G .

Outputs: (v,ξ) (primal-dual solutions).
Initialization: ξ= 0.
while (maximum number of iterations not reached) do
for g ∈ G do
ξg←Π‖.‖∗≤λωg(

[
u−∑h �=g ξ

h]
|g).

end for
end while
v← u−∑g∈G ξ

g.

3.3 Convergence in One Pass

In general, Algorithm 1 is not guaranteed to solve exactly Equation (7) in a finite number of itera-
tions. However, when ‖.‖ is the �2- or �∞-norm, and provided that the groups in G are appropriately
ordered, we now prove that only one pass of Algorithm 1, that is, only one iteration over all groups,
is sufficient to obtain the exact solution of Equation (7). This result constitutes the main technical
contribution of the paper and is the key for the efficiency of our procedure.

Before stating this result, we need to introduce a lemma showing that, given two nested groups
g,h such that g ⊆ h ⊆ {1, . . . , p}, if ξg is updated before ξh in Algorithm 1, then the optimality
condition for ξg is not perturbed by the update of ξh.

Lemma 4 (Projections with nested groups)
Let ‖.‖ denote either the �2- or �∞-norm, and g and h be two nested groups—that is, g ⊆ h ⊆
{1, . . . , p}. Let u be a vector in Rp, and let us consider the successive projections

ξg

=Π‖.‖∗≤tg(u|g) and ξh

=Π‖.‖∗≤th(u|h−ξg),

2306

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

with tg, th > 0. Let us introduce v= u−ξg−ξh. The following relationships hold

ξg =Π‖.‖∗≤tg(v|g+ξg) and ξh =Π‖.‖∗≤th(v|h+ξh).

The previous lemma establishes the convergence in one pass of Algorithm 1 in the case where G
only contains two nested groups g ⊆ h, provided that ξg is computed before ξh. Let us illustrate
this fact more concretely. After initializing ξg and ξh to zero, Algorithm 1 first updates ξg with
the formula ξg←Π‖.‖∗≤λωg(u|g), and then performs the following update: ξ

h←Π‖.‖∗≤λωh(u|h−ξg)
(where we have used that ξg = ξg|h since g ⊆ h). We are now in position to apply Lemma 4 which

states that the primal/dual variables {v,ξg,ξh} satisfy the optimality conditions (9), as described in
Lemma 3. In only one pass over the groups {g,h}, we have in fact reached a solution of the dual
formulation presented in Equation (8), and in particular, the solution of the proximal problem (7).

In the following proposition, this lemma is extended to general tree-structured sets of groups G :

Proposition 5 (Convergence in one pass)
Suppose that the groups in G are ordered according to the total order relation � of Definition 1,
and that the norm ‖.‖ is either the �2- or �∞-norm. Then, after initializing ξ to 0, a single pass of
Algorithm 1 over G with the order � yields the solution of the proximal problem (7).

Proof The proof largely relies on Lemma 4 and proceeds by induction. By definition of Algo-
rithm 1, the feasibility of ξ is always guaranteed. We consider the following induction hypothesis

H (h)

=
{∀g� h, it holds that ξg =Π‖.‖∗≤λωg([u−∑g′�hξ

g′]|g+ξg)
}
.

Since the dual variables ξ are initially equal to zero, the summation over g′ � h, g′ �= g is equivalent
to a summation over g′ �= g. We initialize the induction with the first group in G , that, by definition
of�, does not contain any other group. The first step of Algorithm 1 easily shows that the induction
hypothesis H is satisfied for this first group.

We now assume that H (h) is true and consider the next group h′, h � h′, in order to prove that
H (h′) is also satisfied. We have for each group g⊆ h,

ξg =Π‖.‖∗≤λωg([u−∑g′�hξ
g′]|g+ξg) =Π‖.‖∗≤λωg([u−∑g′�hξ

g′+ξg]|g).

Since ξg|h′ = ξg for g⊆ h′, we have

[u−∑g′�hξ
g′]|h′ = [u−∑g′�hξ

g′]|h′+ξg−ξg = [u−∑g′�hξ
g′+ξg]|h′ −ξg,

and following the update rule for the group h′,

ξh
′
=Π‖.‖∗≤λωh′ ([u−∑g′�hξ

g′]|h′) =Π‖.‖∗≤λωh′ ([u−∑g′�hξ
g′+ξg]|h′ −ξg).

At this point, we can apply Lemma 4 for each group g ⊆ h, which proves that the induction hy-
pothesis H (h′) is true. Let us introduce v

= u−∑g∈G ξ
g. We have shown that for all g in G ,

ξg = Π‖.‖∗≤λωg(v|g+ξg). As a result, the pair {v,ξ} satisfies the optimality conditions (9) of prob-
lem (8). Therefore, after one complete pass over g ∈ G , the primal/dual pair {v,ξ} is optimal, and
in particular, v is the solution of problem (7).

2307

JENATTON, MAIRAL, OBOZINSKI AND BACH

Using conic duality, we have derived a dual formulation of the proximal operator, leading to Algo-
rithm 1 which is generic and works for any norm ‖.‖, as long as one is able to perform projections
onto balls of the dual norm ‖.‖∗. We have further shown that when ‖.‖ is the �2- or the �∞-norm, a
single pass provides the exact solution when the groups G are correctly ordered. We show however
in Appendix C, that, perhaps surprisingly, the conclusions of Proposition 5 do not hold for general
�q-norms, if q /∈ {1,2,∞}. Next, we give another interpretation of this result.

3.4 Interpretation in Terms of Composition of Proximal Operators

In Algorithm 1, since all the vectors ξg are initialized to 0, when the group g is considered, we
have by induction u−∑h �=g ξ

h = u−∑h�g ξ
h. Thus, to maintain at each iteration of the inner loop

v = u−∑h �=g ξ
h one can instead update v after updating ξg according to v← v− ξg. Moreover,

since ξg is no longer needed in the algorithm, and since only the entries of v indexed by g are
updated, we can combine the two updates into v|g ← v|g−Π‖.‖∗≤λωg(v|g), leading to a simplified
Algorithm 2 equivalent to Algorithm 1.

Algorithm 2 Practical Computation of the Proximal Operator for �2- or �∞-norms.

Inputs: u ∈ R
p and an ordered tree-structured set of groups G .

Outputs: v (primal solution).
Initialization: v= u.
for g ∈ G , following the order �, do
v|g← v|g−Π‖.‖∗≤λωg(v|g).

end for

Actually, in light of the classical relationship between proximal operator and projection (as
discussed in Section 3.1), it is easy to show that each update v|g← v|g−Π‖.‖∗≤λωg(v|g) is equivalent
to v|g← Proxλωg‖.‖[v|g]. To simplify the notations, we define the proximal operator for a group g in

G as Proxg(u)
= Proxλωg‖.‖(u|g) for every vector u in R

p.
Thus, Algorithm 2 in fact performs a sequence of |G | proximal operators, and we have shown

the following corollary of Proposition 5:

Corollary 6 (Composition of Proximal Operators)
Let g1 � . . . � gm such that G = {g1, . . . ,gm}. The proximal operator ProxλΩ associated with the
norm Ω can be written as the composition of elementary operators:

ProxλΩ = Proxgm ◦ . . .◦Proxg1 .

3.5 Efficient Implementation and Complexity

Since Algorithm 2 involves |G | projections on the dual balls (respectively the �2- and the �1-balls
for the �2- and �∞-norms) of vectors in Rp, in a first approximation, its complexity is at most O(p2),
because each of these projections can be computed in O(p) operations (Brucker, 1984; Maculan
and Galdino de Paula, 1989). But in fact, the algorithm performs one projection for each group g

involving |g| variables, and the total complexity is therefore O
(
∑g∈G |g|

)
. By noticing that if g

and h are two groups with the same depth in the tree, then g∩ h = /0, it is easy to show that the
number of variables involved in all the projections is less than or equal to dp, where d is the depth
of the tree:

2308

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

Algorithm 3 Fast computation of the Proximal operator for �2-norm case.

Require: u ∈ R
p (input vector), set of groups G , (ωg)g∈G (positive weights), and g0 (root of the

tree).
1: Variables: ρ= (ρg)g∈G in R|G | (scaling factors); v in Rp (output, primal variable).
2: computeSqNorm(g0).
3: recursiveScaling(g0,1).
4: Return v (primal solution).

Procedure computeSqNorm(g)

1: Compute the squared norm of the group: ηg←‖uroot(g)‖22+∑h∈children(g) computeSqNorm(h).
2: Compute the scaling factor of the group: ρg←

(
1−λωg/√ηg

)
+
.

3: Return ηgρ2g.

Procedure recursiveScaling(g,t)

1: ρg← tρg.
2: vroot(g)← ρguroot(g).
3: for h ∈ children(g) do
4: recursiveScaling(h,ρg).
5: end for

Lemma 7 (Complexity of Algorithm 2)
Algorithm 2 gives the solution of the primal problem Equation (7) in O(pd) operations, where d is
the depth of the tree.

Lemma 7 should not suggest that the complexity is linear in p, since d could depend of p as well,
and in the worst case the hierarchy is a chain, yielding d = p− 1. However, in a balanced tree,
d = O(log(p)). In practice, the structures we have considered experimentally are relatively flat,
with a depth not exceeding d = 5, and the complexity is therefore almost linear.

Moreover, in the case of the �2-norm, it is actually possible to propose an algorithm with com-
plexity O(p). Indeed, in that case each of the proximal operators Proxg is a scaling operation:
v|g←

(
1−λωg/‖v|g‖2

)
+
v|g. The composition of these operators in Algorithm 1 thus corresponds

to performing sequences of scaling operations. The idea behind Algorithm 3 is that the correspond-
ing scaling factors depend only on the norms of the successive residuals of the projections and that
these norms can be computed recursively in one pass through all nodes in O(p) operations; finally,
computing and applying all scalings to each entry takes then again O(p) operations.

To formulate the algorithm, two new notations are used: for a group g inG , we denote by root(g)
the indices of the variables that are at the root of the subtree corresponding to g,10 and by children(g)
the set of groups that are the children of root(g) in the tree. For example, in the tree presented
in Figure 2, root({3,5,6})={3}, root({1,2,3,4,5,6})={1}, children({3,5,6})={{5},{6}}, and
children({1,2,3,4,5,6})={{2,4},{3,5,6}}. Note that all the groups of children(g) are necessarily
included in g. The next lemma is proved in Appendix B.

Lemma 8 (Correctness and complexity of Algorithm 3)
When ‖.‖ is chosen to be the �2-norm, Algorithm 3 gives the solution of the primal problem Equa-
tion (7) in O(p) operations.

10. As a reminder, root(g) is not a singleton when several dictionary elements are considered per node.

2309

JENATTON, MAIRAL, OBOZINSKI AND BACH

So far the dictionary D was fixed to be for example a wavelet basis. In the next section, we apply
the tools we developed for solving efficiently problem (5) to learn a dictionary D adapted to our
hierarchical sparse coding formulation.

4. Application to Dictionary Learning

We start by briefly describing dictionary learning.

4.1 The Dictionary Learning Framework

Let us consider a set X= [x1, . . . ,xn] in Rm×n of n signals of dimension m. Dictionary learning is a
matrix factorization problem which aims at representing these signals as linear combinations of the
dictionary elements, that are the columns of a matrix D= [d1, . . . ,dp] in Rm×p. More precisely, the
dictionary D is learned along with a matrix of decomposition coefficients A= [α1, . . . ,αn] in Rp×n,
so that xi ≈ Dαi for every signal xi.

While learning simultaneously D and A, one may want to encode specific prior knowledge
about the problem at hand, such as, for example, the positivity of the decomposition (Lee and
Seung, 1999), or the sparsity of A (Olshausen and Field, 1997; Aharon et al., 2006; Lee et al., 2007;
Mairal et al., 2010a). This leads to penalizing or constraining (D,A) and results in the following
formulation:

min
D∈D,A∈A

1
n

n

∑
i=1

[1
2
‖xi−Dαi‖22+λΨ(αi)

]
, (10)

where A and D denote two convex sets and Ψ is a regularization term, usually a norm or a squared
norm, whose effect is controlled by the regularization parameter λ> 0. Note thatD is assumed to be
bounded to avoid any degenerate solutions of Problem (10). For instance, the standard sparse coding
formulation takes Ψ to be the �1-norm, D to be the set of matrices in R

m×p whose columns have
unit �2-norm, with A = R

p×n (Olshausen and Field, 1997; Lee et al., 2007; Mairal et al., 2010a).
However, this classical setting treats each dictionary element independently from the others, and

does not exploit possible relationships between them. To embed the dictionary in a tree structure,
we therefore replace the �1-norm by our hierarchical norm and set Ψ=Ω in Equation (10).

A question of interest is whether hierarchical priors are more appropriate in supervised settings
or in the matrix-factorization context in which we use it. It is not so common in the supervised
setting to have strong prior information that allows us to organize the features in a hierarchy. On
the contrary, in the case of dictionary learning, since the atoms are learned, one can argue that the
dictionary elements learned will have to match well the hierarchical prior that is imposed by the
regularization. In other words, combining structured regularization with dictionary learning has
precisely the advantage that the dictionary elements will self-organize to match the prior.

4.2 Learning the Dictionary

Optimization for dictionary learning has already been intensively studied. We choose in this paper a
typical alternating scheme, which optimizes in turn D and A= [α1, . . . ,αn] while keeping the other
variable fixed (Aharon et al., 2006; Lee et al., 2007; Mairal et al., 2010a).11 Of course, the convex
optimization tools we develop in this paper do not change the intrinsic non-convex nature of the

11. Note that although we use this classical scheme for simplicity, it would also be possible to use the stochastic approach
proposed by Mairal et al. (2010a).

2310

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

dictionary learning problem. However, they solve the underlying convex subproblems efficiently,
which is crucial to yield good results in practice. In the next section, we report good performance
on some applied problems, and we show empirically that our algorithm is stable and does not seem
to get trapped in bad local minima. The main difficulty of our problem lies in the optimization of
the vectors αi, i in {1, . . . ,n}, for the dictionary D kept fixed. Because of Ω, the corresponding
convex subproblem is nonsmooth and has to be solved for each of the n signals considered. The
optimization of the dictionary D (for A fixed), which we discuss first, is in general easier.

4.2.1 UPDATING THE DICTIONARY D

We follow the matrix-inversion free procedure of Mairal et al. (2010a) to update the dictionary.
This method consists in iterating block-coordinate descent over the columns of D. Specifically, we
assume that the domain set D has the form

Dμ

= {D ∈ R

m×p, μ‖d j‖1+(1−μ)‖d j‖22 ≤ 1, for all j ∈ {1, . . . , p}}, (11)

or D+
μ

= Dμ∩R

m×p
+ , with μ ∈ [0,1]. The choice for these particular domain sets is motivated

by the experiments of Section 5. For natural image patches, the dictionary elements are usually
constrained to be in the unit �2-norm ball (i.e., D = D0), while for topic modeling, the dictionary
elements are distributions of words and therefore belong to the simplex (i.e., D =D+

1). The update
of each dictionary element amounts to performing a Euclidean projection, which can be computed
efficiently (Mairal et al., 2010a). Concerning the stopping criterion, we follow the strategy from the
same authors and go over the columns of D only a few times, typically 5 times in our experiments.
Although we have not explored locality constraints on the dictionary elements, these have been
shown to be particularly relevant to some applications such as patch-based image classification (Yu
et al., 2009). Combining tree structure and locality constraints is an interesting future research.

4.2.2 UPDATING THE VECTORS αi

The procedure for updating the columns of A is based on the results derived in Section 3.3. Further-
more, positivity constraints can be added on the domain of A, by noticing that for our norm Ω and
any vector u in R

p, adding these constraints when computing the proximal operator is equivalent
to solving minv∈Rp

1
2‖[u]+− v‖22+ λΩ(v). This equivalence is proved in Appendix B.6. We will

indeed use positive decompositions to model text corpora in Section 5. Note that by constraining
the decompositions αi to be nonnegative, some entries αij may be set to zero in addition to those
already zeroed out by the norm Ω. As a result, the sparsity patterns obtained in this way might not
satisfy the tree-structured condition (1) anymore.

5. Experiments

We next turn to the experimental validation of our hierarchical sparse coding.

5.1 Implementation Details

In Section 3.3, we have shown that the proximal operator associated to Ω can be computed exactly
and efficiently. The problem is therefore amenable to fast proximal algorithms that are well suited to
nonsmooth convex optimization. Specifically, we tried the accelerated scheme from both Nesterov

2311

JENATTON, MAIRAL, OBOZINSKI AND BACH

(2007) and Beck and Teboulle (2009), and finally opted for the latter since, for a comparable level of
precision, fewer calls of the proximal operator are required. The basic proximal scheme presented
in Section 3.1 is formalized by Beck and Teboulle (2009) as an algorithm called ISTA; the same
authors propose moreover an accelerated variant, FISTA, which is a similar procedure, except that
the operator is not directly applied on the current estimate, but on an auxiliary sequence of points
that are linear combinations of past estimates. This latter algorithm has an optimal convergence
rate in the class of first-order techniques, and also allows for warm restarts, which is crucial in the
alternating scheme of dictionary learning.12

Finally, we monitor the convergence of the algorithm by checking the relative decrease in the
cost function.13 Unless otherwise specified, all the algorithms used in the following experiments
are implemented in C/C++, with a Matlab interface. Our implementation is freely available at
http://www.di.ens.fr/willow/SPAMS/.

5.2 Speed Benchmark

To begin with, we conduct speed comparisons between our approach and other convex programming
methods, in the setting where Ω is chosen to be a linear combination of �2-norms. The algorithms
that take part in the following benchmark are:
• Proximal methods, with ISTA and the accelerated FISTA methods (Beck and Teboulle, 2009).
• A reweighted-least-square scheme (Re-�2), as described by Jenatton et al. (2009); Kim and Xing
(2010). This approach is adapted to the square loss, since closed-form updates can be used.14

• Subgradient descent, whose step size is taken to be equal either to a/(k+b) or a/(
√
k+b) (re-

spectively referred to as SG and SGsqrt), where k is the iteration number, and (a,b) are the best15

parameters selected on the logarithmic grid (a,b) ∈ {10−4, . . . ,103}×{10−2, . . . ,105}.
• A commercial software (Mosek, available at http://www.mosek.com/) for second-order cone
programming (SOCP).
Moreover, the experiments we carry out cover various settings, with notably different sparsity
regimes, that is, low, medium and high, respectively corresponding to about 50%,10% and 1%
of the total number of dictionary elements. Eventually, all reported results are obtained on a single
core of a 3.07Ghz CPU with 8GB of memory.

5.2.1 HIERARCHICAL DICTIONARY OF NATURAL IMAGE PATCHES

In this first benchmark, we consider a least-squares regression problem regularized by Ω that arises
in the context of denoising of natural image patches, as further exposed in Section 5.4. In particular,
based on a hierarchical dictionary, we seek to reconstruct noisy 16×16-patches. The dictionary we
use is represented on Figure 7. Although the problem involves a small number of variables, that
is, p = 151 dictionary elements, it has to be solved repeatedly for tens of thousands of patches, at
moderate precision. It is therefore crucial to be able to solve this problem quickly and efficiently.

12. Unless otherwise specified, the initial stepsize in ISTA/FISTA is chosen as the maximum eigenvalue of the sampling
covariance matrix divided by 100, while the growth factor in the line search is set to 1.5.

13. We are currently investigating algorithms for computing duality gaps based on network flow optimization tools
(Mairal et al., 2010b).

14. The computation of the updates related to the variational formulation (6) also benefits from the hierarchical structure
of G , and can be performed in O(p) operations.

15. “The best step size” is understood as being the step size leading to the smallest cost function after 500 iterations.

2312

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

−3 −2 −1 0
−8

−6

−4

−2

0

2

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
SG

sqrt

Fista
Ista
Re−L2
SOCP

(a) scale: small, regul.: low

−3 −2 −1 0
−8

−6

−4

−2

0

2

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
SG

sqrt

Fista
Ista
Re−L2
SOCP

(b) scale: small, regul.: medium

−3 −2 −1 0
−8

−6

−4

−2

0

2

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
SG

sqrt

Fista
Ista
Re−L2
SOCP

(c) scale: small, regul.: high

Figure 3: Benchmark for solving a least-squares regression problem regularized by the hierarchical
norm Ω. The experiment is small scale, m= 256, p= 151, and shows the performances of six opti-
mization methods (see main text for details) for three levels of regularization. The curves represent
the relative value of the objective to the optimal value as a function of the computational time in
second on a log10 / log10 scale. All reported results are obtained by averaging 5 runs.

We can draw several conclusions from the results of the simulations reported in Figure 3. First,
we observe that in most cases, the accelerated proximal scheme performs better than the other
approaches. In addition, unlike FISTA, ISTA seems to suffer in non-sparse scenarios. In the least
sparse setting, the reweighted-�2 scheme is the only method that competes with FISTA. It is however
not able to yield truly sparse solutions, and would therefore need a subsequent (somewhat arbitrary)
thresholding operation. As expected, the generic techniques such as SG and SOCP do not compete
with dedicated algorithms.

−1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
SG

sqrt

Fista
Ista

(a) scale: large, regul.: low

−1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
SG

sqrt

Fista
Ista

(b) scale: large, regul.: medium

−1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

log(CPU time in seconds)

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
SG

sqrt

Fista
Ista

(c) scale: large, regul.: high

Figure 4: Benchmark for solving a large-scale multi-class classification problem for four optimiza-
tion methods (see details about the data sets and the methods in the main text). Three levels of
regularization are considered. The curves represent the relative value of the objective to the optimal
value as a function of the computational time in second on a log10 / log10 scale. In the highly regu-
larized setting, tuning the step-size for the subgradient turned out to be difficult, which explains the
behavior of SG in the first iterations.

2313

JENATTON, MAIRAL, OBOZINSKI AND BACH

5.2.2 MULTI-CLASS CLASSIFICATION OF CANCER DIAGNOSIS

The second benchmark explores a different supervised learning setting, where f is no longer the
square loss function. The goal is to demonstrate that our optimization tools apply in various scenar-
ios, beyond traditional sparse approximation problems. To this end, we consider a gene expression
data set16 in the context of cancer diagnosis. More precisely, we focus on a multi-class classifica-
tion problem where the number m of samples to be classified is small compared to the number p of
gene expressions that characterize these samples. Each atom thus corresponds to a gene expression
across the m samples, whose class labels are recorded in the vector x in Rm.

The data set contains m = 308 samples, p = 30017 variables and 26 classes. In addition, the
data exhibit highly-correlated dictionary elements. Inspired by Kim and Xing (2010), we build the
tree-structured set of groups G using Ward’s hierarchical clustering (Johnson, 1967) on the gene
expressions. The norm Ω built in this way aims at capturing the hierarchical structure of gene
expression networks (Kim and Xing, 2010).

Instead of the square loss function, we consider the multinomial logistic loss function that is
better suited to deal with multi-class classification problems (see, e.g., Hastie et al., 2009). As
a direct consequence, algorithms whose applicability crucially depends on the choice of the loss
function f are removed from the benchmark. This is the case with reweighted-�2 schemes that do
not have closed-form updates anymore. Importantly, the choice of the multinomial logistic loss
function leads to an optimization problem over a matrix with dimensions p times the number of
classes (i.e., a total of 30017× 26 ≈ 780000 variables). Also, due to scalability issues, generic
interior point solvers could not be considered here.

The results in Figure 4 highlight that the accelerated proximal scheme performs overall better
that the two other methods. Again, it is important to note that both proximal algorithms yield sparse
solutions, which is not the case for SG.

5.3 Denoising with Tree-Structured Wavelets

We demonstrate in this section how a tree-structured sparse regularization can improve classical
wavelet representation, and how our method can be used to efficiently solve the corresponding large-
scale optimization problems. We consider two wavelet orthonormal bases, Haar and Daubechies3
(see Mallat, 1999), and choose a classical quad-tree structure on the coefficients, which has notably
proven to be useful for image compression problems (Baraniuk, 1999). This experiment follows
the approach of Zhao et al. (2009) who used the same tree-structured regularization in the case
of small one-dimensional signals, and the approach of Baraniuk et al. (2010) and Huang et al.
(2009) images where images were reconstructed from compressed sensing measurements with a
hierarchical nonconvex penalty.

We compare the performance for image denoising of both nonconvex and convex approaches.
Specifically, we consider the following formulation

min
α∈Rm

1
2
‖x−Dα‖22+λψ(α) = min

α∈Rm

1
2
‖D�x−α‖22+λψ(α),

where D is one of the orthonormal wavelet basis mentioned above, x is the input noisy image, Dα
is the estimate of the denoised image, and ψ is a sparsity-inducing regularization. Note that in this
case, m = p. We first consider classical settings where ψ is either the �1-norm— this leads to the

16. The data set we use is 14 Tumors, which is freely available at http://www.gems-system.org/.

2314

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

wavelet soft-thresholding method of Donoho and Johnstone (1995)—or the �0-pseudo-norm, whose
solution can be obtained by hard-thresholding (see Mallat, 1999). Then, we consider the convex
tree-structured regularization Ω defined as a sum of �2-norms (�∞-norms), which we denote by Ω�2

(respectively Ω�∞). Since the basis is here orthonormal, solving the corresponding decomposition
problems amounts to computing a single instance of the proximal operator. As a result, when ψ
is Ω�2 , we use Algorithm 3 and forΩ�∞ , Algorithm 2 is applied. Finally, we consider the nonconvex
tree-structured regularization used by Baraniuk et al. (2010) denoted here by �tree0 , which we have
presented in Equation (4); the implementation details for �tree0 can be found in Appendix A.

Haar
σ �0 [0.0012] �tree0 [0.0098] �1 [0.0016] Ω�2 [0.0125] Ω�∞ [0.0221]

PSNR

5 34.48 34.78 35.52 35.89 35.79
10 29.63 30.24 30.74 31.40 31.23
25 24.44 25.27 25.30 26.41 26.14
50 21.53 22.37 20.42 23.41 23.05
100 19.27 20.09 19.43 20.97 20.58

IPSNR

5 - .30± .23 1.04± .31 1.41± .45 1.31± .41
10 - .60± .24 1.10± .22 1.76± .26 1.59± .22
25 - .83± .13 .86± .35 1.96± .22 1.69± .21
50 - .84± .18 .46± .28 1.87± .20 1.51± .20
100 - .82± .14 .15± .23 1.69± .19 1.30± .19

Daub3
σ �0 [0.0013] �tree0 [0.0099] �1 [0.0017] Ω�2 [0.0129] Ω�∞ [0.0204]

PSNR

5 34.64 34.95 35.74 36.14 36.00
10 30.03 30.63 31.10 31.79 31.56
25 25.04 25.84 25.76 26.90 26.54
50 22.09 22.90 22.42 23.90 23.41
100 19.56 20.45 19.67 21.40 20.87

IPSNR

5 - .31± .21 1.10± .23 1.49± .34 1.36± .31
10 - .60± .16 1.06± .25 1.76± .19 1.53± .17
25 - .80± .10 .71± .28 1.85± .17 1.50± .18
50 - .81± .15 .33± .24 1.80± .11 1.33± .12
100 - .89± .13 0.11± .24 1.82± .24 1.30± .17

Table 1: Top part of the tables: Average PSNR measured for the denoising of 12 standard im-
ages, when the wavelets are Haar or Daubechies3 wavelets (see Mallat, 1999), for two nonconvex
approaches (�0 and �tree0) and three different convex regularizations—that is, the �1-norm, the tree-
structured sum of �2-norms (Ω�2), and the tree-structured sum of �∞-norms (Ω�∞). Best results for
each level of noise and each wavelet type are in bold. Bottom part of the tables: Average improve-
ment in PSNR with respect to the �0 nonconvex method (the standard deviations are computed over
the 12 images). CPU times (in second) averaged over all images and noise realizations are reported
in brackets next to the names of the methods they correspond to.

2315

JENATTON, MAIRAL, OBOZINSKI AND BACH

Compared to Zhao et al. (2009), the novelty of our approach is essentially to be able to solve
efficiently and exactly large-scale instances of this problem. We use 12 classical standard test im-
ages,17 and generate noisy versions of them corrupted by a white Gaussian noise of variance σ. For
each image, we test several values of λ = 2

i
4σ
√
logm, with i taken in a specific range.18 We then

keep the parameter λ giving the best reconstruction error. The factor σ
√
logm is a classical heuristic

for choosing a reasonable regularization parameter (see Mallat, 1999). We provide reconstruction
results in terms of PSNR in Table 1.19 We report in this table the results when Ω is chosen to
be a sum of �2-norms or �∞-norms with weights ωg all equal to one. Each experiment was run 5
times with different noise realizations. In every setting, we observe that the tree-structured norm
significantly outperforms the �1-norm and the nonconvex approaches. We also present a visual com-
parison on two images on Figure 5, showing that the tree-structured norm reduces visual artefacts
(these artefacts are better seen by zooming on a computer screen). The wavelet transforms in our
experiments are computed with the matlabPyrTools software.20

(a) Lena, σ= 25, �1 (b) Lena, σ= 25, Ω�2 (c) Barb., σ= 50, �1 (d) Barb., σ= 50, Ω�2

Figure 5: Visual comparison between the wavelet shrinkage model with the �1-norm and the tree-
structured model, on cropped versions of the images Lena and Barb.. Haar wavelets are used.

This experiment does of course not provide state-of-the-art results for image denoising (see
Mairal et al., 2009b, and references therein), but shows that the tree-structured regularization sig-
nificantly improves the reconstruction quality for wavelets. In this experiment the convex set-
ting Ω�2 and Ω�∞ also outperforms the nonconvex one �

tree
0 .21 We also note that the speed of our

approach makes it scalable to real-time applications. Solving the proximal problem for an image
with m = 512× 512 = 262144 pixels takes approximately 0.013 seconds on a single core of a
3.07GHz CPU if Ω is a sum of �2-norms, and 0.02 seconds when it is a sum of �∞-norms. By con-
trast, unstructured approaches have a speed-up factor of about 7-8 with respect to the tree-structured
methods.

17. These images are used in classical image denoising benchmarks. See Mairal et al. (2009b).
18. For the convex formulations, i ranges in {−15,−14, . . . ,15}, while in the nonconvex case i ranges in {−24, . . . ,48}.
19. Denoting by MSE the mean-squared-error for images whose intensities are between 0 and 255, the PSNR is defined

as PSNR= 10log10(255
2/MSE) and is measured in dB. A gain of 1dB reduces the MSE by approximately 20%.

20. Software available at http://www.cns.nyu.edu/˜eero/steerpyr/.
21. It is worth mentioning that comparing convex and nonconvex approaches for sparse regularization is a bit difficult.

This conclusion holds for the classical formulation we have used, but might not hold in other settings such as Coifman
and Donoho (1995).

2316

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

5.4 Dictionaries of Natural Image Patches

This experiment studies whether a hierarchical structure can help dictionaries for denoising natural
image patches, and in which noise regime the potential gain is significant. We aim at reconstructing
corrupted patches from a test set, after having learned dictionaries on a training set of non-corrupted
patches. Though not typical in machine learning, this setting is reasonable in the context of images,
where lots of non-corrupted patches are easily available.22

noise 50 % 60 % 70 % 80 % 90 %
flat 19.3±0.1 26.8±0.1 36.7±0.1 50.6±0.0 72.1±0.0
tree 18.6±0.1 25.7±0.1 35.0±0.1 48.0±0.0 65.9±0.3

Table 2: Quantitative results of the reconstruction task on natural image patches. First row: percent-
age of missing pixels. Second and third rows: mean square error multiplied by 100, respectively for
classical sparse coding, and tree-structured sparse coding.

16 21 31 41 61 81 121 161 181 241 301 321 401
50

60

70

80

Figure 6: Mean square error multiplied by 100 obtained with 13 structures with error bars, sorted
by number of dictionary elements from 16 to 401. Red plain bars represents the tree-structured
dictionaries. White bars correspond to the flat dictionary model containing the same number of
dictionary as the tree-structured one. For readability purpose, the y-axis of the graph starts at 50.

We extracted 100000 patches of size m= 8×8 pixels from the Berkeley segmentation database
of natural images (Martin et al., 2001), which contains a high variability of scenes. We then split this
data set into a training set Xtr, a validation set Xval , and a test set Xte, respectively of size 50000,
25000, and 25000 patches. All the patches are centered and normalized to have unit �2-norm.

For the first experiment, the dictionary D is learned on Xtr using the formulation of Equa-
tion (10), with μ= 0 for Dμ as defined in Equation (11). The validation and test sets are corrupted
by removing a certain percentage of pixels, the task being to reconstruct the missing pixels from the
known pixels. We thus introduce for each element x of the validation/test set, a vector x̃, equal to x
for the known pixel values and 0 otherwise. Similarly, we define D̃ as the matrix equal to D, except
for the rows corresponding to missing pixel values, which are set to 0. By decomposing x̃ on D̃, we
obtain a sparse code α, and the estimate of the reconstructed patch is defined as Dα. Note that this
procedure assumes that we know which pixel is missing and which is not for every element x.

The parameters of the experiment are the regularization parameter λtr used during the training
step, the regularization parameter λte used during the validation/test step, and the structure of the

22. Note that we study the ability of the model to reconstruct independent patches, and additional work is required to
apply our framework to a full image processing task, where patches usually overlap (Elad and Aharon, 2006; Mairal
et al., 2009b).

2317

JENATTON, MAIRAL, OBOZINSKI AND BACH

Figure 7: Learned dictionary with a tree structure of depth 5. The root of the tree is in the middle of
the figure. The branching factors are p1 = 10, p2 = 2, p3 = 2, p4 = 2. The dictionary is learned on
50,000 patches of size 16×16 pixels.

tree. For every reported result, these parameters were selected by taking the ones offering the
best performance on the validation set, before reporting any result from the test set. The values
for the regularization parameters λtr,λte were selected on a logarithmic scale {2−10,2−9, . . . ,22},
and then further refined on a finer logarithmic scale with multiplicative increments of 2−1/4. For
simplicity, we chose arbitrarily to use the �∞-norm in the structured norm Ω, with all the weights
equal to one. We tested 21 balanced tree structures of depth 3 and 4, with different branching
factors p1, p2, . . . , pd−1, where d is the depth of the tree and pk, k ∈ {1, . . . ,d− 1} is the number
of children for the nodes at depth k. The branching factors tested for the trees of depth 3 where
p1 ∈{5,10,20,40,60,80,100}, p2 ∈{2,3}, and for trees of depth 4, p1 ∈{5,10,20,40}, p2 ∈{2,3}
and p3= 2, giving 21 possible structures associated with dictionaries with at most 401 elements. For
each tree structure, we evaluated the performance obtained with the tree-structured dictionary along
with a non-structured dictionary containing the same number of elements. These experiments were
carried out four times, each time with a different initialization, and with a different noise realization.

Quantitative results are reported in Table 2. For all fractions of missing pixels considered, the
tree-structured dictionary outperforms the “unstructured one”, and the most significant improvement
is obtained in the noisiest setting. Note that having more dictionary elements is worthwhile when
using the tree structure. To study the influence of the chosen structure, we report in Figure 6 the
results obtained with the 13 tested structures of depth 3, along with those obtained with unstructured
dictionaries containing the same number of elements, when 90% of the pixels are missing. For
each dictionary size, the tree-structured dictionary significantly outperforms the unstructured one.
An example of a learned tree-structured dictionary is presented on Figure 7. Dictionary elements
naturally organize in groups of patches, often with low frequencies near the root of the tree, and
high frequencies near the leaves.

2318

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

5.5 Text Documents

This last experimental section shows that our approach can also be applied to model text corpora.
The goal of probabilistic topic models is to find a low-dimensional representation of a collection
of documents, where the representation should provide a semantic description of the collection.
Approaching the problem in a parametric Bayesian framework, latent Dirichlet allocation (LDA)
Blei et al. (2003) model documents, represented as vectors of word counts, as a mixture of a prede-
fined number of latent topics that are distributions over a fixed vocabulary. LDA is fundamentally
a matrix factorization problem: Buntine (2002) shows that LDA can be interpreted as a Dirichlet-
multinomial counterpart of factor analysis. The number of topics is usually small compared to the
size of the vocabulary (e.g., 100 against 10000), so that the topic proportions of each document
provide a compact representation of the corpus. For instance, these new features can be used to feed
a classifier in a subsequent classification task. We similarly use our dictionary learning approach to
find low-dimensional representations of text corpora.

Suppose that the signals X = [x1, . . . ,xn] in R
m×n are each the bag-of-word representation of

each of n documents over a vocabulary of m words, the k-th component of xi standing for the
frequency of the k-th word in the document i. If we further assume that the entries of D and A
are nonnegative, and that the dictionary elements d j have unit �1-norm, the decomposition (D,A)
can be interpreted as the parameters of a topic-mixture model. The regularization Ω induces the
organization of these topics on a tree, so that, if a document involves a certain topic, then all ancestral
topics in the tree are also present in the topic decomposition. Since the hierarchy is shared by all
documents, the topics at the top of the tree participate in every decomposition, and should therefore
gather the lexicon which is common to all documents. Conversely, the deeper the topics in the tree,
the more specific they should be. An extension of LDA to model topic hierarchies was proposed
by Blei et al. (2010), who introduced a non-parametric Bayesian prior over trees of topics and
modelled documents as convex combinations of topics selected along a path in the hierarchy. We
plan to compare our approach with this model in future work.

5.5.1 VISUALIZATION OF NIPS PROCEEDINGS

We qualitatively illustrate our approach on the NIPS proceedings from 1988 through 1999 (Griffiths
and Steyvers, 2004). After removing words appearing fewer than 10 times, the data set is composed
of 1714 articles, with a vocabulary of 8274 words. As explained above, we considerD+

1 and take A
to be Rp×n

+ . Figure 8 displays an example of a learned dictionary with 13 topics, obtained by using
the �∞-norm in Ω and selecting manually λ=2−15. As expected and similarly to Blei et al. (2010),
we capture the stopwords at the root of the tree, and topics reflecting the different subdomains of
the conference such as neurosciences, optimization or learning theory.

5.5.2 POSTING CLASSIFICATION

We now consider a binary classification task of n postings from the 20 Newsgroups data set.23 We
learn to discriminate between the postings from the two newsgroups alt.atheism and talk.religion.misc,
following the setting of Lacoste-Julien et al. (2008) and Zhu et al. (2009). After removing words
appearing fewer than 10 times and standard stopwords, these postings form a data set of 1425
documents over a vocabulary of 13312 words. We compare different dimensionality reduction tech-

23. Available at http://people.csail.mit.edu/jrennie/20Newsgroups/.

2319

JENATTON, MAIRAL, OBOZINSKI AND BACH

Figure 8: Example of a topic hierarchy estimated from 1714 NIPS proceedings papers (from 1988
through 1999). Each node corresponds to a topic whose 5 most important words are displayed.
Single characters such as n, t,r are part of the vocabulary and often appear in NIPS papers, and their
place in the hierarchy is semantically relevant to children topics.

3 7 15 31 63
60

70

80

90

100

Number of Topics

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

PCA + SVM
NMF + SVM
LDA + SVM
SpDL + SVM
SpHDL + SVM

Figure 9: Binary classification of two newsgroups: classification accuracy for different dimen-
sionality reduction techniques coupled with a linear SVM classifier. The bars and the errors are
respectively the mean and the standard deviation, based on 10 random splits of the data set. Best
seen in color.

niques that we use to feed a linear SVM classifier, that is, we consider (i) LDA, with the code from
Blei et al. (2003), (ii) principal component analysis (PCA), (iii) nonnegative matrix factorization
(NMF), (iv) standard sparse dictionary learning (denoted by SpDL) and (v) our sparse hierarchical
approach (denoted by SpHDL). Both SpDL and SpHDL are optimized over D+

1 and A =R
p×n
+ ,

2320

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

with the weights ωg equal to 1. We proceed as follows: given a random split into a training/test set
of 1000/425 postings, and given a number of topics p (also the number of components for PCA,
NMF, SpDL and SpHDL), we train an SVM classifier based on the low-dimensional representa-
tion of the postings. This is performed on a training set of 1000 postings, where the parameters,
λ∈{2−26, . . . ,2−5} and/orCsvm∈{4−3, . . . ,41} are selected by 5-fold cross-validation. We report in
Figure 9 the average classification scores on the test set of 425 postings, based on 10 random splits,
for different number of topics. Unlike the experiment on image patches, we consider only complete
binary trees with depths in {1, . . . ,5}. The results from Figure 9 show that SpDL and SpHDL per-
form better than the other dimensionality reduction techniques on this task. As a baseline, the SVM
classifier applied directly to the raw data (the 13312 words) obtains a score of 90.9±1.1, which
is better than all the tested methods, but without dimensionality reduction (as already reported by
Blei et al., 2003). Moreover, the error bars indicate that, though nonconvex, SpDL and SpHDL
do not seem to suffer much from instability issues. Even if SpDL and SpHDL perform similarly,
SpHDL has the advantage to provide a more interpretable topic mixture in terms of hierarchy, which
standard unstructured sparse coding does not.

6. Discussion

We have applied hierarchical sparse coding in various settings, with fixed/learned dictionaries, and
based on different types of data, namely, natural images and text documents. A line of research to
pursue is to develop other optimization tools for structured norms with general overlapping groups.
For instance, Mairal et al. (2010b) have used network flow optimization techniques for that purpose,
and Bach (2010) submodular function optimization. This framework can also be used in the context
of hierarchical kernel learning (Bach, 2008), where we believe that our method can be more efficient
than existing ones.

This work establishes a connection between dictionary learning and probabilistic topic models,
which should prove fruitful as the two lines of work have focused on different aspects of the same
unsupervised learning problem: Our approach is based on convex optimization tools, and provides
experimentally more stable data representations. Moreover, it can be easily extended with the same
tools to other types of structures corresponding to other norms (Jenatton et al., 2009; Jacob et al.,
2009). It should be noted, however, that, unlike some Bayesian methods, dictionary learning by
itself does not provide mechanisms for the automatic selection of model hyper-parameters (such as
the dictionary size or the topology of the tree). An interesting common line of research to pursue
could be the supervised design of dictionaries, which has been proved useful in the two frameworks
(Mairal et al., 2009a; Bradley and Bagnell, 2009; Blei and McAuliffe, 2008).

Acknowledgments

This paper was partially supported by grants from the Agence Nationale de la Recherche (MGA
Project) and from the European Research Council (SIERRA Project 239993). The authors would
like to thank Jean Ponce for interesting discussions and suggestions for improving this manuscript.
They also would like to thank Volkan Cevher for pointing out links between our approach and non-
convex tree-structured regularization and for insightful discussions. Finally, we thank the reviewers
for their constructive and helpful comments.

2321

JENATTON, MAIRAL, OBOZINSKI AND BACH

Appendix A. Links with Tree-Structured Nonconvex Regularization

We present in this section an algorithm introduced by Donoho (1997) in the more general context
of approximation from dyadic partitions (see Section 6 in Donoho, 1997). This algorithm solves the
following problem

min
v∈Rp

1
2
‖u−v‖22+λ ∑

g∈G
δg(v), (12)

where the u in Rp is given, λ is a regularization parameter, G is a set of tree-structured groups in
the sense of definition 1, and the functions δg are defined as in Equation (4)—that is, δg(v) = 1 if
there exists j in g such that v j �= 0, and 0 otherwise. This problem can be viewed as a proximal
operator for the nonconvex regularization ∑g∈G δg(v). As we will show, it can be solved efficiently,
and in fact it can be used to obtain approximate solutions of the nonconvex problem presented in
Equation (1), or to solve tree-structured wavelet decompositions as done by Baraniuk et al. (2010).

We now briefly show how to derive the dynamic programming approach introduced by Donoho
(1997). Given a group g in G , we use the same notations root(g) and children(g) introduced in
Section 3.5. It is relatively easy to show that finding a solution of Equation (12) amounts to finding
the support S⊆ {1, . . . , p} of its solution and that the problem can be equivalently rewritten

min
S⊆{1,...,p}

−1
2
‖uS‖22+λ ∑

g∈G
δg(S), (13)

with the abusive notation δg(S) = 1 if g∩S �= /0 and 0 otherwise. We now introduce the quantity

ψg(S)

=

{
0 if g∩S= /0

− 1
2‖uroot(g)‖22+λ+∑h∈children(g)ψh(S) otherwise.

After a few computations, solving Equation (13) can be shown to be equivalent to minimizing
ψg0(S) where g0 is the root of the tree. It is then easy to prove that for any group g in G , we have

min
S⊆{1,...,p}

ψg(S) =min
(
0,−1

2
‖uroot(g)‖22+λ+ ∑

h∈children(g)
min

S′⊆{1,...,p}
ψh(S

′)
)
,

which leads to the following dynamic programming approach presented in Algorithm 4. This al-
gorithm shares several conceptual links with Algorithm 2 and 3. It traverses the tree in the same
order, has a complexity in O(p), and it can be shown that the whole procedure actually performs a
sequence of thresholding operations on the variable v.

Appendix B. Proofs

We gather here the proofs of the technical results of the paper.

B.1 Proof of Lemma 3

Proof The proof relies on tools from conic duality (Boyd and Vandenberghe, 2004). Let us intro-
duce the cone C

= {(v,z)∈R
p+1; ‖v‖≤ z} and its dual counterpart C ∗

= {(ξ,τ)∈R
p+1; ‖ξ‖∗ ≤ τ}.

These cones induce generalized inequalities for which Lagrangian duality also applies. We refer the
interested readers to Boyd and Vandenberghe (2004) for further details.

2322

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

Algorithm 4 Computation of the Proximal Operator for the Nonconvex Approach

Inputs: u ∈ R
p, a tree-structured set of groups G and g0 (root of the tree).

Outputs: v (primal solution).
Initialization: v← u.
Call recursiveThresholding(g0).

Procedure recursiveThresholding(g)

1: η←min
(
0,− 1

2‖uroot(g)‖22+λ+∑h∈children(g) recursiveThresholding(h)
)
.

2: if η= 0 then
3: vg← 0.
4: end if
5: Return η.

We can rewrite problem (7) as

min
v∈Rp,z∈R|G |

1
2
‖u−v‖22+λ ∑

g∈G
ωgzg, such that (v|g,zg) ∈ C , ∀g ∈ G ,

by introducing the primal variables z = (zg)g∈G ∈ R
|G |, with the additional |G | conic constraints

(v|g,zg) ∈ C , for g ∈ G .
This primal problem is convex and satisfies Slater’s conditions for generalized conic inequalities

(i.e., existence of a feasible point in the interior of the domain), which implies that strong duality
holds (Boyd and Vandenberghe, 2004). We now consider the Lagrangian L defined as

L(v,z,τ,ξ) =
1
2
‖u−v‖22+λ ∑

g∈G
ωgzg− ∑

g∈G

(
zg
v|g

)�(τg
ξg

)
,

with the dual variables τ = (τg)g∈G in R
|G |, and ξ = (ξg)g∈G in R

p×|G |, such that for all g ∈ G ,
ξgj = 0 if j /∈ g and (ξg,τg) ∈ C ∗.

The dual function is obtained by minimizing out the primal variables. To this end, we take the
derivatives of L with respect to the primal variables v and z and set them to zero, which leads to

v−u− ∑
g∈G

ξg = 0 and ∀g ∈ G , λωg− τg = 0.

After simplifying the Lagrangian and flipping (without loss of generality) the sign of ξ, we obtain the
dual problem in Equation (8). We derive the optimality conditions from the Karush–Kuhn–Tucker
conditions for generalized conic inequalities (Boyd and Vandenberghe, 2004). We have that {v,z,τ,ξ}
are optimal if and only if

∀g ∈ G ,zgτg−v�|gξg = 0, (Complementary slackness)

∀g ∈ G ,(v|g,zg) ∈ C , ∀g ∈ G ,λωg− τg = 0,

∀g ∈ G ,(ξg,τg) ∈ C ∗, v−u+∑g∈G ξ
g = 0.

Combining the complementary slackness with the definition of the dual norm, we have

∀g ∈ G , zgτg = v�|gξ
g ≤ ‖v|g‖‖ξg‖∗.

2323

JENATTON, MAIRAL, OBOZINSKI AND BACH

Furthermore, using the fact that ∀g ∈ G , (v|g,zg) ∈ C and (ξg,τg) = (ξg,λωg) ∈ C ∗, we obtain the
following chain of inequalities

∀g ∈ G , λzgωg = v�|gξ
g ≤ ‖v|g‖‖ξg‖∗ ≤ zg‖ξg‖∗ ≤ λzgωg,

for which equality must hold. In particular, we have v�|gξ
g = ‖v|g‖‖ξg‖∗ and zg‖ξg‖∗ = λzgωg.

If v|g �= 0, then zg cannot be equal to zero, which implies in turn that ‖ξg‖∗ = λωg. Eventually,
applying Lemma 9 gives the advertised optimality conditions.

Conversely, starting from the optimality conditions of Lemma 3, and making use again of
Lemma 9, we can derive the Karush–Kuhn–Tucker conditions displayed above. More precisely,
we define for all g ∈ G ,

τg

= λωg and zg

= ‖v|g‖.

The only condition that needs to be discussed is the complementary slackness condition. If v|g = 0,
then it is easily satisfied. Otherwise, combining the definitions of τg, zg and the fact that

v�|gξ
g = ‖v|g‖‖ξg‖∗ and ‖ξg‖∗ = λωg,

we end up with the desired complementary slackness.

B.2 Optimality Condition for the Projection on the Dual Ball

Lemma 9 (Projection on the dual ball)
Let w ∈ R

p and t > 0. We have κ=Π‖.‖∗≤t(w) if and only if{
if ‖w‖∗ ≤ t, κ= w,

otherwise, ‖κ‖∗ = t and κ�(w−κ) = ‖κ‖∗‖w−κ‖.

Proof When the vector w is already in the ball of ‖.‖∗ with radius t, that is, ‖w‖∗ ≤ t, the situation
is simple, since the projection Π‖.‖∗≤t(w) obviously gives w itself. On the other hand, a necessary
and sufficient optimality condition for having κ = Π‖.‖∗≤t(w) = argmin‖y‖∗≤t ‖w− y‖2 is that the
residual w−κ lies in the normal cone of the constraint set (Borwein and Lewis, 2006), that is, for
all y such that ‖y‖∗≤ t, (w−κ)�(y−κ)≤ 0. The displayed result then follows from the definition
of the dual norm, namely ‖κ‖∗=max‖z‖≤1 z�κ.

B.3 Proof of Lemma 4

Proof First, notice that the conclusion ξh = Π‖.‖∗≤λωh(v|h+ ξh) simply comes from the definition

of ξh and v, along with the fact that ξg = ξg|h since g⊆ h. We now examine ξg.
The proof mostly relies on the optimality conditions characterizing the projection onto a ball of

the dual norm ‖ · ‖∗. Precisely, by Lemma 9, we need to show that either
ξg = u|g−ξh|g, if ‖u|g−ξh|g‖∗ ≤ tg,

or
‖ξg‖∗ = tg and ξg�(u|g−ξh|g−ξg) = ‖ξg‖∗‖u|g−ξh|g−ξg‖.

2324

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

Note that the feasibility of ξg, that is, ‖ξg‖∗ ≤ tg, holds by definition of κg.
Let us first assume that ‖ξg‖∗ < tg. We necessarily have that u|g also lies in the interior of

the ball of ‖.‖∗ with radius tg, and it holds that ξg = u|g. Since g ⊆ h, we have that the vector
u|h−ξg = u|h−u|g has only zero entries on g. As a result, ξhg = 0 (or equivalently, ξh|g = 0) and we
obtain

ξg = u|g = u|g−ξh|g,
which is the desired conclusion. From now on, we assume that ‖ξg‖∗ = tg. It then remains to show
that

ξg�(u|g−ξh|g−ξg) = ‖ξg‖∗‖u|g−ξh|g−ξg‖.
We now distinguish two cases, according to the norm used.

�2-norm: As a consequence of Lemma 9, the optimality condition reduces to the conditions
for equality in the Cauchy-Schwartz inequality, that is, when the vectors have same signs and are
linearly dependent. Applying these conditions to individual projections we get that there exists
ρg,ρh > 0 such that

ρgξ
g = u|g−ξg and ρhξ

h = u|h−ξg−ξh. (14)

Note that the case ρh = 0 leads to u|h− ξg− ξh = 0, and therefore u|g− ξg− ξh|g = 0 since g ⊆ h,

which directly yields the result. The case ρg = 0 implies u|g−ξg = 0 and therefore ξh|g = 0, yielding
the result as well. Now, we can therefore assume ρh > 0 and ρg > 0. From the first equality of (14),
we have ξg = ξg|g since (ρg+1)ξ

g = u|g. Further using the fact that g ⊆ h in the second equality of
(14), we obtain

(ρh+1)ξ
h
|g = u|g−ξg = ρgξ

g.

This implies that u|g−ξg−ξh|g = ρgξ
g− ρg

ρh+1
ξg, which eventually leads to

ξg =
ρh+1
ρgρh

(u|g−ξg−ξh|g).

The desired conclusion follows ξg�(u|g−ξg−ξh|g) = ‖ξg‖2‖u|g−ξg−ξh|g‖2.
�∞-norm: In this case, the optimality corresponds to the conditions for equality in the �∞-�1

Hölder inequality. Specifically, ξg =Π‖.‖∗≤tg(u|g) holds if and only if for all ξ
g
j �= 0, j ∈ g, we have

u j−ξgj = ‖u|g−ξg‖∞ sign(ξgj).

Looking at the same condition for ξh, we have that ξh = Π‖.‖∗≤th
(
u|h− ξg

)
holds if and only if for

all ξhj �= 0, j ∈ h, we have

u j−ξgj −ξhj = ‖u|h−ξg−ξh‖∞ sign(ξhj).

From those relationships we notably deduce that for all j ∈ g such that ξgj �= 0, sign(ξgj) = sign(u j) =
sign(ξhj) = sign(u j− ξgj) = sign(u j− ξgj − ξhj). Let j ∈ g such that ξgj �= 0. At this point, using the
equalities we have just presented,

|u j−ξgj −ξhj |=
{
‖u|g−ξg‖∞ if ξhj = 0
‖u|h−ξg−ξh‖∞ if ξhj �= 0.

2325

JENATTON, MAIRAL, OBOZINSKI AND BACH

Since ‖u|g− ξg‖∞ ≥ ‖u|g− ξg− ξh|g‖∞ (which can be shown using the sign equalities above), and
‖u|h−ξg−ξh‖∞ ≥ ‖u|g−ξg−ξh|g‖∞ (since g⊆ h), we have

‖u|g−ξg−ξh|g‖∞ ≥ |u j−ξgj −ξhj | ≥ ‖u|g−ξg−ξh|g‖∞,

and therefore for all ξgj �= 0, j ∈ g, we have u j−ξgj −ξhj = ‖u|g−ξg−ξh|g‖∞ sign(ξgj), which yields
the result.

B.4 Proof of Lemma 8

Proof Notice first that the procedure computeSqNorm is called exactly once for each group g in G ,
computing a set of scalars (ρg)g∈G in an order which is compatible with the convergence in one
pass of Algorithm 1—that is, the children of a node are processed prior to the node itself. Following
such an order, the update of the group g in the original Algorithm 1 computes the variable ξg which
updates implicitly the primal variable as follows

v|g←
(
1− λωg

‖v|g‖2
)
+
v|g.

It is now possible to show by induction that for all group g in G , after a call to the procedure
computeSqNorm(g), the auxiliary variable ηg takes the value ‖v|g‖22 where v has the same value as
during the iteration g of Algorithm 1. Therefore, after calling the procedure computeSqNorm(g0),
where g0 is the root of the tree, the values ρg correspond to the successive scaling factors of the
variable v|g obtained during the execution of Algorithm 1. After having computed all the scaling
factors ρg, g ∈ G , the procedure recursiveScaling ensures that each variable j in {1, . . . , p} is
scaled by the product of all the ρh, where h is an ancestor of the variable j.

The complexity of the algorithm is easy to characterize: Each procedure computeSqNorm and
recursiveScaling is called p times, each call for a group g has a constant number of operations
plus as many operations as the number of children of p. Since each child can be called at most one
time, the total number of operation of the algorithm is O(p).

B.5 Sign Conservation by Projection

The next lemma specifies a property for projections when ‖.‖ is further assumed to be a �q-norm
(with q≥ 1). We recall that in that case, ‖.‖∗ is simply the �q′-norm, with q′ = (1−1/q)−1.

Lemma 10 (Projection on the dual ball and sign property)
Let w ∈ R

p and t > 0. Let us assume that ‖.‖ is a �q-norm (with q ≥ 1). Consider also a diagonal
matrix S ∈ R

p×p whose diagonal entries are in {−1,1}. We have Π‖.‖∗≤t(w) = SΠ‖.‖∗≤t(Sw).

Proof Let us consider κ = Π‖.‖∗≤t(w). Using essentially the same argument as in the proof of
Lemma 9, we have for all y such that ‖y‖q′ ≤ t, (w−κ)�(y−κ)≤ 0. Noticing that S�S = I and
‖y‖q′ = ‖Sy‖q′ , we further obtain (Sw−Sκ)�(y′ −Sκ)≤ 0 for all y′ with ‖y′‖q′ ≤ t. This implies in
turn that SΠ‖.‖∗≤t(w) =Π‖.‖∗≤t(Sw), which is equivalent to the advertised conclusion.

2326

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

Based on this lemma, note that we can assume without loss of generality that the vector we want to
project (in this case, w) has only nonnegative entries. Indeed, it is sufficient to store beforehand the
signs of that vector, compute the projection of the vector with nonnegative entries, and assign the
stored signs to the result of the projection.

B.6 Non-negativity Constraint for the Proximal Operator

The next lemma shows how we can easily add a non-negativity constraint on the proximal operator
when the norm Ω is absolute (Stewart and Sun, 1990, Definition 1.2), that is, a norm for which the
relation Ω(u)≤Ω(w) holds for any two vectors w and u ∈ R

p such that |u j| ≤ |w j| for all j.

Lemma 11 (Non-negativity constraint for the proximal operator)
Let κ ∈ R

p and λ> 0. Consider an absolute norm Ω. We have

argmin
z∈Rp

[1
2
‖[κ]+− z‖22+λΩ(z)

]
= argmin

z∈Rp
+

[1
2
‖κ− z‖22+λΩ(z)

]
. (15)

Proof Let us denote by ẑ+ and ẑ the unique solutions of the left- and right-hand side of (15)
respectively. Consider the normal cone N

R
p
+
(z0) of R

p
+ at the point z0 (Borwein and Lewis, 2006)

and decompose κ into its positive and negative parts, κ = [κ]+ + [κ]−. We can now write down
the optimality conditions for the two convex problems above (Borwein and Lewis, 2006): ẑ+ is
optimal if and only if there exists w ∈ ∂Ω(ẑ+) such that ẑ+− [κ]++λw= 0. Similarly, ẑ is optimal
if and only if there exists (s,u) ∈ ∂Ω(ẑ)×N

R
p
+
(ẑ) such that ẑ− κ+ λs+ u = 0. We now prove

that [κ]− = κ− [κ]+ belongs to NR
p
+
(ẑ+). We proceed by contradiction. Let us assume that there

exists z ∈ R
p
+ such that [κ]

�−(z− ẑ+) > 0. This implies that there exists j ∈ {1, . . . , p} for which
[κ j]− < 0 and z j− ẑ+j < 0. In other words, we have 0 ≤ z j = z j− [κ j]+ < ẑ+j = ẑ+j − [κ j]+. With
the assumption made on Ω and replacing ẑ+j by z j, we have found a solution to the left-hand side
of (15) with a stricly smaller cost function than the one evaluated at ẑ+, hence the contradiction.
Putting the pieces together, we now have

ẑ+− [κ]+ +λw= ẑ+−κ+λw+[κ]− = 0, with (w, [κ]−) ∈ ∂Ω(ẑ+)×N
R
p
+
(ẑ+),

which shows that ẑ+ is the solution of the right-hand side of (15).

Appendix C. Counterexample for �q-norms, with q /∈ {1,2,∞}.
The result we have proved in Proposition 5 in the specific setting where ‖.‖ is the �2- or �∞-norm
does not hold more generally for �q-norms, when q is not in {1,2,∞}. Let q > 1 satisfying this

condition. We denote by q′ = (1−q−1)−1 the norm parameter dual to q. We keep the same notation
as in Lemma 4 and assume from now on that ‖u|g‖q′ > tg and ‖u|h‖q′ > tg+th. These two inequalities
guarantee that the vectors u|g and u|h−ξg do not lie in the interior of the �q′-norm balls, of respective
radius tg and th.

We show in this section that there exists a setting for which the conclusion of Lemma 4 does not
hold anymore. We first focus on a necessary condition of Lemma 4:

2327

JENATTON, MAIRAL, OBOZINSKI AND BACH

Lemma 12 (Necessary condition of Lemma 4)
Let ‖.‖ be a �q-norm, with q /∈ {1,2,∞}. If the conclusion of Lemma 4 holds, then the vectors ξg|g
and ξh|g are linearly dependent.

Proof According to our assumptions on u|g and u|h−ξg, we have that ‖ξg‖q′ = tg and ‖ξh‖q′ = th.
In this case, we can apply the second optimality conditions of Lemma 9, which states that equality
holds in the �q-�q′ Hölder inequality. As a result, there exists ρg,ρh > 0 such that for all j in g:

|ξgj |q
′
= ρg|u j−ξgj |q and |ξhj |q

′
= ρh|u j−ξgj −ξhj |q.

If the conclusion of Lemma 4 holds—that is, we have ξg = Π‖.‖∗≤tg(u|g− ξh|g), notice that it is not
possible to have the following scenarios, as proved below by contradiction:

• If ‖u|g−ξh|g‖q′ < tg, then we would have ξ
g = u|g−ξh|g, which is impossible since ‖ξg‖q′ = tg.

• If ‖u|g− ξh|g‖q′ = tg, then we would have for all j in g, |ξhj |q
′
= ρh|u j− ξgj − ξhj |q = 0, which

implies that ξh|g = 0 and ‖u|g‖q′ = tg. This is impossible since we assumed ‖u|g‖q′ > tg.

We therefore have ‖u|g−ξh|g‖q′ > tg and using again the second optimality conditions of Lemma 9,

there exists ρ > 0 such that for all j in g, |ξgj |q
′
= ρ|u j− ξgj − ξhj |q. Combined with the previous

relation on ξh|g, we obtain for all j in g, |ξgj |q
′
= ρ

ρh
|ξhj |q

′
. Since we can assume without loss of

generality that u only has nonnegative entries (see Lemma 10), the vectors ξg and ξh can also be
assumed to have nonnegative entries, hence the desired conclusion.

We need another intuitive property of the projection Π‖.‖∗≤t to derive our counterexample:

Lemma 13 (Order-preservation by projection)
Let ‖.‖ be a �q-norm, with q /∈ {1,∞} and q′

= 1/(1−q−1). Let us consider the vectors κ,w ∈ R
p

such that κ = Π‖.‖∗≤t(w) = argmin‖y‖q′≤t ‖y−w‖2, with the radius t satisfying ‖w‖q′ > t. If we

have wi < w j for some (i, j) in {1, . . . , p}2, then it also holds that κi < κ j.

Proof Let us first notice that given the assumption on t, we have ‖κ‖q′ = t. The Lagrangian L
associated with the convex minimization problem underlying the definition ofΠ‖.‖∗≤t can be written
as

L(y,α) =
1
2
‖y−w‖22+α

[‖y‖q′q′ − tq′], with the Lagrangian parameter α≥ 0.
At optimality, the stationarity condition for κ leads to

∀ j ∈ {1, . . . , p}, κ j−w j+αq′|κ j|q′−1 = 0.
We can assume without loss of generality thatw only has nonnegative entries (see Lemma 10). Since
the components of κ and w have the same signs (see Lemma 10), we therefore have |κ j|= κ j ≥ 0,
for all j in {1, . . . , p}. Note that α cannot be equal to zero because of ‖κ‖q′ = t < ‖w‖q′ .

Let us consider the continuously differentiable function ϕw : κ �→ κ−w+αq′κq
′−1 defined on

(0,∞). Since ϕw(0) = −w < 0, limκ→∞ϕw(κ) = ∞ and ϕw is strictly nondecreasing, there exists a
unique κ∗w > 0 such that ϕw(κ∗w) = 0. If we now take w< v, we have

ϕv(κ
∗
w) = ϕw(κ

∗
w)+w− v= w− v< 0= ϕv(κ

∗
v).

2328

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

With ϕv being strictly nondecreasing, we thus obtain κ∗w < κ∗v . The desired conclusion stems from
the application of the previous result to the stationarity condition of κ.

Based on the two previous lemmas, we are now in position to present our counterexample:

Proposition 14 (Counterexample)
Let ‖.‖ be a �q-norm, with q /∈ {1,2,∞} and q′

= 1/(1− q−1). Let us consider G = {g,h}, with
g⊆ h⊆ {1, . . . , p} and |g|> 1. Let u be a vector inRp that has at least two different nonzero entries
in g, that is, there exists (i, j) in g× g such that 0 < |ui| < |u j|. Let us consider the successive
projections

ξg

=Π‖.‖∗≤tg(u|g) and ξh

=Π‖.‖∗≤th(u|h−ξg)

with tg, th > 0 satisfying ‖u|g‖q′ > tg and ‖u|h‖q′ > tg+ th. Then, the conclusion of Lemma 4 does
not hold.

Proof We apply the same rationale as in the proof of Lemma 13. Writing the stationarity conditions
for ξg and ξh, we have for all j in g

ξgj +αq′(ξgj)
q′−1−u j = 0, and ξhj +βq′(ξhj)

q′−1− (u j−ξgj) = 0,

with Lagrangian parameters α,β > 0. We now proceed by contradiction and assume that ξg =
Π‖.‖∗≤tg(u|g−ξh|g). According to Lemma 12, there exists ρ > 0 such that for all j in g, ξhj = ρξgj . If

we combine the previous relations on ξg and ξh, we obtain for all j in g,

ξgj =C(ξgj)
q′−1, withC

=
q′(α−βρq′−1)

ρ
.

IfC< 0, then we have a contradiction, since the entries of ξg and u|g have the same signs. Similarly,
the case C = 0 leads a contradiction, since we would have u|g = 0 and ‖u|g‖q′ > tg. As a conse-

quence, it follows that C > 0 and for all j in g, ξgj = exp
{ log(C)
2−q′
}
, which means that all the entries

of the vector ξgg are identical. Using Lemma 13, since there exists (i, j) ∈ g× g such that ui < u j,
we also have ξgi < ξgj , which leads to a contradiction.

References

M. Aharon, M. Elad, and A. M. Bruckstein. The K-SVD: An algorithm for designing of overcom-
plete dictionaries for sparse representations. IEEE Transactions on Signal Processing, 54(11):
4311–4322, 2006.

R. K. Ahuja, T. L. Magnanti, and J. Orlin. Network Flows. Prentice Hall, 1993.

F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Advances in
Neural Information Processing Systems, 2008.

F. Bach. Structured sparsity-inducing norms through submodular functions. In Advances in Neural
Information Processing Systems, 2010.

2329

JENATTON, MAIRAL, OBOZINSKI AND BACH

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex optimization with sparsity-inducing
norms. In Optimization for Machine Learning. MIT Press, 2011. To appear.

R. Baraniuk. Optimal tree approximation with wavelets. Wavelet Applications in Signal and Image
Processing VII, 3813:206214, 1999.

R. G. Baraniuk, R. A. DeVore, G. Kyriazis, and X. M. Yu. Near best tree approximation. Advances
in Computational Mathematics, 16(4):357–373, 2002.

R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based compressive sensing. IEEE
Transactions on Information Theory, 56:1982–2001, 2010.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

S. Becker, J. Bobin, and E. Candes. NESTA: A Fast and Accurate First-order Method for Sparse
Recovery. Technical report, Preprint arXiv:0904.3367, 2009.

Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1),
2009.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Annals
of Statistics, 37(4):1705–1732, 2009.

D. Blei and J. McAuliffe. Supervised topic models. In Advances in Neural Information Processing
Systems, 2008.

D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

D. Blei, T. L. Griffiths, and M. I. Jordan. The nested chinese restaurant process and bayesian
nonparametric inference of topic hierarchies. Journal of the ACM, 57(2):1–30, 2010.

J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization: Theory and Exam-
ples. Springer, 2006.

S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

D. M. Bradley and J. A. Bagnell. Differentiable sparse coding. In Advances in Neural Information
Processing Systems, 2009.

P. Brucker. An O(n) algorithm for quadratic knapsack problems. Operations Research Letters, 3:
163–166, 1984.

W. L. Buntine. Variational Extensions to EM andMultinomial PCA. In Proceedings of the European
Conference on Machine Learning (ECML), 2002.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM
Journal on Scientific Computing, 20(1):33–61, 1998.

2330

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

X. Chen, Q. Lin, S. Kim, J. Peña, J. G. Carbonell, and E. P. Xing. An efficient proximal-gradient
method for single and multi-task regression with structured sparsity. Technical report, Preprint
arXiv:1005.4717, 2010.

R. R. Coifman and D. L. Donoho. Translation-invariant de-noising. Lectures Notes in Statistics,
pages 125–125, 1995.

P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In Fixed-Point
Algorithms for Inverse Problems in Science and Engineering. Springer, 2010.

M. Crouse, R. D. Nowak, and R. G. Baraniuk. Wavelet-based statistical signal processing using
hidden Markov models. IEEE Transactions on Signal Processing, 46(4):886–902, 1998.

D. L. Donoho. CART and best-ortho-basis: a connection. Annals of Statistics, pages 1870–1911,
1997.

D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. Journal
of the American Statistical Association, 90(432), 1995.

J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. Journal
of Machine Learning Research, 10:2899–2934, 2009.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32
(2):407–451, 2004.

M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned
dictionaries. IEEE Transactions on Image Processing, 54(12):3736–3745, December 2006.

J. Friedman, T. Hastie, and R. Tibshirani. A note on the group lasso and a sparse group lasso.
Technical report, Preprint arXiv:1001.0736, 2010.

T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National Academy of
Sciences, 101(Suppl 1):5228, 2004.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, Second Edition. Springer, 2009.

L. He and L. Carin. Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE
Transactions on Signal Processing, 57:3488–3497, 2009.

C. Hu, J. T. Kwok, andW. Pan. Accelerated gradient methods for stochastic optimization and online
learning. In Advances in Neural Information Processing Systems, 2009.

J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. In Proceedings of the
International Conference on Machine Learning (ICML), 2009.

L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlaps and graph Lasso. In Proceedings
of the International Conference on Machine Learning (ICML), 2009.

R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms.
Technical report, Preprint arXiv:0904.3523, 2009.

2331

JENATTON, MAIRAL, OBOZINSKI AND BACH

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dic-
tionary learning. In Proceedings of the International Conference on Machine Learning (ICML),
2010.

S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.

S. Kim and E. P. Xing. Tree-guided group Lasso for multi-task regression with structured sparsity.
In Proceedings of the International Conference on Machine Learning (ICML), 2010.

S. Lacoste-Julien, F. Sha, and M. I. Jordan. DiscLDA: Discriminative learning for dimensionality
reduction and classification. In Advances in Neural Information Processing Systems, 2008.

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788–791, 1999.

H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In Advances in
Neural Information Processing Systems, 2007.

N. Maculan and J. R. G. Galdino de Paula. A linear-time median-finding algorithm for projecting a
vector on the simplex of Rn. Operations Research Letters, 8(4):219–222, 1989.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learning. In
Advances in Neural Information Processing Systems, 2009a.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image
restoration. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
2009b.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse
coding. Journal of Machine Learning Research, 11(1):19–60, 2010a.

J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for structured sparsity.
In Advances in Neural Information Processing Systems, 2010b.

S. G. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1999.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2001.

C. A. Micchelli, J. M. Morales, and M. Pontil. A family of penalty functions for structured sparsity.
In Advances in Neural Information Processing Systems, 2010.

J. J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad.
Sci. Paris Sér. A Math., 255:2897–2899, 1962.

D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate
samples. Applied and Computational Harmonic Analysis, 26(3):301–321, 2009.

Y. Nesterov. Gradient methods for minimizing composite objective function. Technical report, Cen-
ter for Operations Research and Econometrics (CORE), Catholic University of Louvain, 2007.

2332

PROXIMAL METHODS FOR HIERARCHICAL SPARSE CODING

B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed
by V1? Vision Research, 37:3311–3325, 1997.

M. Schmidt and K. Murphy. Convex structure learning in log-linear models: Beyond pairwise
potentials. In Proceedings of the International Conference on Artificial Intelligence and Statistics
(AISTATS), 2010.

J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions
on Signal Processing, 41(12):3445–3462, 1993.

P. Sprechmann, I. Ramirez, G. Sapiro, and Y. C. Eldar. Collaborative hierarchical sparse modeling.
Technical report, Preprint arXiv:1003.0400, 2010.

G. W. Stewart and Ji-Guang Sun. Matrix Perturbation Theory (Computer Science and Scientific
Computing). Academic Press, 1990.

M. Stojnic, F. Parvaresh, and B. Hassibi. On the reconstruction of block-sparse signals with an
optimal number of measurements. IEEE Transactions on Signal Processing, 57(8):3075–3085,
2009.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical
Society. Series B, pages 267–288, 1996.

J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on
Information Theory, 50(10):2231–2242, 2004.

J. A. Tropp. Just relax: Convex programming methods for identifying sparse signals in noise. IEEE
Transactions on Information Theory, 52(3), 2006.

M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of sparsity using �1-
constrained quadratic programming. IEEE Transactions on Information Theory, 55:2183–2202,
2009.

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by separable approxi-
mation. IEEE Transactions on Signal Processing, 57(7):2479–2493, 2009.

L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. Jour-
nal of Machine Learning Research, 11:2543–2596, 2010.

K. Yu, T. Zhang, and Y. Gong. Nonlinear learning using local coordinate coding. In Advances in
Neural Information Processing Systems, 2009.

G. X. Yuan, K. W. Chang, C. J. Hsieh, and C. J. Lin. Comparison of optimization methods and soft-
ware for large-scale l1-regularized linear classification. Journal of Machine Learning Research,
11:3183–3234, 2010.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society. Series B, 68(1):49–67, 2006.

P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical
variable selection. Annals of Statistics, 37(6A):3468–3497, 2009.

2333

JENATTON, MAIRAL, OBOZINSKI AND BACH

J. Zhu, A. Ahmed, and E. P. Xing. MedLDA: maximum margin supervised topic models for re-
gression and classification. In Proceedings of the International Conference on Machine Learning
(ICML), 2009.

D. Zoran and Y. Weiss. The “tree-dependent components” of natural scenes are edge filters. In
Advances in Neural Information Processing Systems, 2009.

2334

